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A note on Continuous Bisimulation and Stability

P.J.L. Cuijpers

1 Introduction

Recently, the notion of bisimilarity as an equivalence on systems behavior,
has been transferred from computer science to control science [5]. It has been
used, for example, to reduce the complexity of linear differential equations,
while preserving reachability notions. In [3] it was argued that, if we want
to use bisimulation for the preservation of control science notions, we need
continuity conditions in addition to the usual preservation of transitions.
This idea was independently explored in [6, 4] where a modal logic was
extended with topological operators, to be able to reason about robustness
of a control strategy for embedded systems. In [4], it was shown that so-
called upper semi-continuous bisimulation relations preserve this logic, and
hence the stated robustness conditions.

The work on preservation of control properties, however, has not ended with
that. In this report, we will show that upper semi-continuous bisimulation
is not sufficient to preserve the well-known idea of stability of a state [1]. As
a direct, but rather unexpected consequence, we conclude that stability is
therefore not expressible in the logic of [4]. Even more surprising, it turns out
that even bi-continuous bisimulation (i.e. a symmetric simulation relation
that is both upper and lower semicontinuous) only preserves stability in one
direction (the image of a stable set is again stable). To preserve stability
in the other direction (if the image of a set is stable, then the set itself is
stable) we need functionality conditions in addition.

We start this report by a short discussion of the mathematical preliminaries
used to model a systems behavior in Section 2, and we define the notions
of equivalence that we use to reason about systems. Then, in Section 3, we
discuss our definition of the notion of stability, and we give theorems, proofs
and counterexamples to show how this property is preserved by several no-
tions of equivalence. Finally, in section 4, we discuss the consequences of
our findings for hybrid systems theory.
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2 Mathematical Preliminaries

We start out by giving a number of definitions that fix our way of thinking
about systems behaviour.

The first definition, is that of a topology [7]. A topology is a mathemati-
cal structure that describes when two elements of a set are in each others
vicinity.

Definition 1 (Topological space) A tuple, 〈X, T 〉 is called a topological
space, and T ⊆ 2X of subsets of X is a topology on X, iff

• X, ∅ ∈ T ;

• U, V ∈ T implies U ∩ V ∈ T ;

• Ui ∈ T for all i ∈ I implies
⋃

i∈I Ui ∈ T .

The elements U ∈ T are called open sets, their complements U are closed
sets.

One popular way to define a topology, is for example by using a distance
function or metric d : X × X → R, satisfying the well known triangular
equations: d(x, x) = 0 and d(x, y) + d(y, z) ≥ d(x, z). The topology is then
given by all arbitrary unions of sets of the form {x ∈ X | d(x, y) < ǫ}, with
y ∈ X and ǫ > 0.

The second definition, is that of a labelled transition system. A labelled
transition system is a mathematical structure that describes how a system
behaves when going from one state to the other.

Definition 2 (Labelled transition system) A labelled transition system
is a tuple 〈X, A,→〉 where

• X is called the state space

• A is the set of actions, and

• →⊆ X × A × X is a transition relation.

We use < x >
a→ < x′ > to denote (x, a, x′) ∈→.
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In this report, we will always assume that we have a labelled transition
system that is also equipped with a topology on the state space. This allows
us to reason about small variations in behavior that are not captured in the
transition relation.

Definition 3 (Topological transition system) A topological transition
system is a tuple 〈X, A,→, T 〉 where

• X is called the state space

• A is the set of actions,

• →⊆ X × A × X is a transition relation, and.

• T ⊆ 2X is a topology on X.

When analysing a systems behaviour, is often useful to transform a it into
a simpler system, while preserving the properties that are the focus of our
analysis. In this report, we will assume without loss off generality, that
the two systems we want to compare are both part of a common topological
transition system, and we will simply make a comparison between the states
of this topological transition system. The comparison is carried out by a
relation R ⊆ X × X, with the following notational conventions.

Definition 4 (Relations) Given a relation R ⊆ X × X, we use

• xRy to denote (x, y) ∈ R;

• xRy to denote (x, y) 6∈ R;

• yR−1x to denote (x, y) ∈ R;

• Rl(S) to denote the lower image {y ∈ X | ∃xRy x ∈ S};

• Ru(S) to denote the upper image {y ∈ X | ∀xRy x ∈ S};

• R−l(S) to denote the lower inverse {x ∈ X | ∃xRy y ∈ S};

• R−u(S) to denote the upper inverse {x ∈ X | ∀xRy y ∈ S};
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The first transformation that is used to compare to systems, is that of a
simulation relation. It is defined for labelled transition systems, but is of
course easily extended to topological transition systems. A state x is said
to simulate a state y, if x it can mimick all the transitions of y, and if the
state x′ that is reached by mimicking a transition to y′ also simulates y′.

Definition 5 (Simulation) Let 〈X, A,→〉 and be a labelled transition sys-
tem. A relation R ⊆ X×X on the state space of this system is a simulation
iff for all x, y ∈ X we find that xRy and < x >

a→ < x′ > implies there exists
y′ such that <y >

a→ < y′ > and x′Ry′.

If both R and R−1 are simulation relations, then R is called a bisimulation
relation.

The notion of simulation preserves transition relations. The notion of conti-
nuity is usually used to preserve a topology. However, preserving open sets
by relations can be done in two ways, as was first observed by Kwiatkowsky
[2]. Either, we preserve openness of lower inverse images, this is called a
lower-semicontinuous relation, or we preserve openness of upper inverse im-
ages, this is called an upper-semicontinuous relation. If we preserve both,
we speak of a continuous relation.

Definition 6 (Continuity) Let 〈X, TX〉 be a topological space. A relation
R ⊆ X × X is:

• lower semi-continuous iff for every U ∈ T we have R−l(U) ∈ T .

• upper semi-continuous iff for every U ∈ T we have R−u(U) ∈ T .

• continuous iff we have both.

As a peculiar note, it was shown in [4] that upper semi-continuity has striking
similarities with the notion of simulation when phrased in a slightly different
way.

Finally, as will turn out at the end of the next section, it is sometimes im-
portant to preserve the size of sets. This is done by demanding functionality.

Definition 7 (Functionality) A relation R ⊆ X ×X is functional iff for
each x, y, z ∈ X we have that xRy and xRz implies y = z.
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3 Stability

Stability is a fundamental notion from control science, stating that small
deviations will not trigger large variations in behaviour. Stability of a set
of states signifies that any behaviour that begins in an arbitrarily close
neighbourhood of this set, will remain close to this set, regardless of the
transitions that are being taken. Formally, the definition of stability requires
a way to reason about consecutive transitions in a topological transition
system. To this end, we introduce the notion of concatenation closure.

Definition 8 (Concatenation closure) Given a topological transition sys-
tem 〈X, A,→, T 〉, the concatenation closure ։⊆ X × X of the transition
relation → is the smallest relation such that:

• < x >
a→ < y > implies x ։ y;

• x ։ y and y ։ z implies x ։ z.

Note, that ։ (A) denotes the set of all states that are reachable from A.
Furthermore, it is a standard theorem from computer science that if R is a
simulation relation, then ։

l (R−l(A)) ⊆ R−l(։l (A)) for any A ⊆ X.

Using the definition of concatenation closure, stability is defined as follows.

Definition 9 (Stable set) Given a topological transition system 〈X, A,→
, T 〉, a set S ⊆ X of states is stable if for every open set U ∈ T with S ⊆ U ,
there exists an open set V ∈ T such that S ⊆ V and ։

l (V ) ⊆ U .

According to [1], stability is preserved under so-called conjugacies, i.e. under
symmetric continuous simulation functions.

Theorem 1 Let 〈X, A,→, T 〉 be a topological transition system, and let
R ⊆ X×X be a symmetric continuous functional simulation relation. Then,
a set S ⊆ X is stable if and only if its lower image Rl(S) is stable.

Proof This is a standard result from control science. See, for example,
[1]. ⊠

When we drop functionality, symmetry and part of the continuity, we still
preserve stability of sets in one way.
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Theorem 2 Let 〈X, A,→, T 〉 be a topological transition system, and let
R ⊆ X × X be a relation such that R is upper semi-continuous, R−1 is
lower semi-continuous and R−1 is a simulation. Then, if a set S ⊆ X is
stable, its lower image Rl(S) is also stable.

Proof Adapted, slightly, from [3].
Assume that the set S is stable. Now, take an open set U ∈ T such
that Rl(S) ⊆ U . It is a standard property of upper inverses that S ⊆
R−u(Rl(S)) ⊆ R−u(U) (see [2]). By upper semi-continuity, the set R−u(U)
is therefore open around S. Because S is stable, we can construct an open
set V around S such that

S ⊆ V ⊆։
l (V ) ⊆ R−u(U).

The fact that R−1 is a simulation relation then gives us

Rl(S) ⊆ Rl(V ) ⊆։ (Rl(V )) ⊆ Rl(։ (V )) ⊆ Rl(R−u(U)).

Finally, the set Rl(V ) is open because R−1 is lower semi-continuous, and
another standard property of upper inverses gives us Rl(R−u(U)) ⊆ U (see,
again, [2]). This concludes the proof. ⊠

However, and this is most surprising, if we want to preserve stability in
the other direction as well, i.e. if we really want stability of S if and only
if we have stability of R(S), it does not suffice to have a bi-continuous
bisimulation relation. This is illustrated by the following example.

Example Consider the topological transition system 〈X, A,→, T 〉,
with X = [0, 1] ∪ {⊥}, A = {a}, and T the sum of the usual topology
on [0, 1] and the singleton topology on {⊥}. The transition relation → is
defined by < x >

a→ <
√

x >, for all x ∈ R and <⊥>
a→ <⊥>.

Clearly, the set {0} ⊆ R is not stable in this transition system, because
any deviation from 0 will trigger a sequence of transitions that converges to
1. The set {⊥} is stable, because there are no small deviations from this
singleton.

Finally, observe that the sets [0, 1] and {⊥} are open, closed and compact
in the chosen topology, which means that the relation R = [0, 1] × {⊥}, is
an upper- and lower-semicontinuous simulation relation, and so is R−1 (i.e.
it is a bicontinuous bisimulation relation). The counterexample now lies in
the observation that Rl({0}) = {⊥} is stable, while {0} is not.
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From this, we may already conclude that stability cannot be expressed in
the logic of [4], because that logic is preserved by relations on which the
only requirement is that they are upper semi-continuous simulation both
ways. To make the impossibility even clearer, a slight adaptation of the pre-
vious example shows that those relations are not even sufficient to preserve
stability in one direction.

Example Consider, the topological transition system of the previous
example again, but this time consider the relation S = {(0,⊥), (⊥, 0)}.
Observe, that it is an upper-semicontinuous simulation relation, and so is
S−1. But, despite upper-semicontinuity, Rl({0}) = R−l({0}) = {⊥} is
stable and {0} = Rl({⊥}) = R−l({⊥}) is not.

4 Conclusions

We have shown, by two simple counterexamples, that bi-upper semicontin-
uous bisimulation is not sufficient to preserve stability of sets. Additional
lower semicontinuity constraints help in preserving it from a set to its lower
image, but functionality constraints are needed to preserve stability both
ways. We suspect, that this phenomenon is caused by the fact that stability
is not preserved when taking subsets. I.e. if S is a stable set, then a subset
S′ ⊆ S is not necessarily stable. The precise reason, however, needs more
research.

An important consequence of our research is that stability cannot be ex-
pressed in the logic of [4], because this logic is preserved under bi-upper
semicontinuous bisimulation. This observation justifies further research from
a control / hybrid systems point of view, in the direction of expressibility of
topological and intuitionistic modal logics, and their relationship to topo-
logical labelled transition systems.

References

[1] E. Akin. The General Topology of Dynamical Systems, volume 1 of Grad-
uate Studies in Mathematics. American Mathematical Society, 1993.

[2] C. Berge. Topological Spaces: Including a treatment of multi-valued func-
tions, vectors spaces and convexity. Oliver and Boyd Ltd., London, 1963.

7



[3] P.J.L. Cuijpers. Hybrid Process Algebra. PhD thesis, Technische Uni-
versiteit Eindhoven (TU/e), Eindhoven, Netherlands, December 2004.

[4] J.M. Davoren, V. Coulthard, R.P. Goré, T. Moor, and A. Nerode. Topo-
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