On the minimal property of the Fourier projection

Citation for published version (APA):

Cheney, E. W., Hobby, C. R., Morris, P. D., Schurer, F., \& Wulbert, D. E. (1969). On the minimal property of the Fourier projection. Bulletin of the American Mathematical Society, 75(1), 51-52. https://doi.org/10.1090/S0002-9904-1969-12141-5

DOI:

10.1090/S0002-9904-1969-12141-5

Document status and date:

Published: 01/01/1969

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

ON THE MINIMAL PROPERTY OF THE FOURIER PROJECTION

BY E. W. CHENEY, ${ }^{1}$ C. R. HOBBY, ${ }^{1}$ P. D. MORRIS, ${ }^{2}$
F. SCHURER ${ }^{3}$ AND D. E. WULBERT ${ }^{2}$

Communicated by Henry Helson, September 10, 1968
Let C be the space of real 2π-periodic continuous functions normed with the supremum norm. Let P_{n} denote the subspace of trigonometric polynomials of degree $\leqq n$. It is known [1] that the Fourier projection F of C onto P_{n} is minimal; i.e., if A is a projection of C onto P_{n} then $\|F\| \leqq\|A\|$. We prove that F is the only minimal projection of C onto P_{n}. The proof is constructed by verifying the assertions listed below. Details will appear elsewhere.

Assertion. If there exists a minimal projection different from F, then there exist minimal projections L and H, different from F such that $\frac{1}{2} L+\frac{1}{2} H=F$.

The proof of this assertion utilizes Berman's equation,

$$
F=\frac{1}{2 \pi} \int_{-\pi}^{\pi} T_{-\lambda} A T_{\lambda} d \lambda
$$

which is valid for any projection A of C onto P_{n}. Here T_{λ} denotes the shift operator $\left(T_{\lambda} f\right)(x)=f(x+\lambda)$.

Assertion. There is a function $K(x, t)$ of two variables such that
(i) $K(x, \cdot) \in L^{1}$ for each fixed x,
(ii) $K(\cdot, t) \in P_{n}$ for each fixed t, and
(iii) $(L f)(x)=\int f(t) K(x, t) d t$.

This is proved by extending A to its second adjoint, and applying the Radon-Nikodym theorem to the functionals $\phi(f)=\left(A^{* *} f\right)(x)$.

Let D_{n} denote the Dirichlet kernel. The next assertion follows from an examination of the roots of K where K is considered as a function of x.

Assertion. There is a function $g \in L^{1}$ such that $0 \leqq g \leqq 2$, and $K(x, t)=g(t) D_{n}(x-t)$.

Assertion. (i) $(1-g) \perp P_{2 n}$ and (ii) $(1-g) *\left|D_{n}\right|=0$ where $*$ denotes convolution.

[^0]Part (i) is immediate from the fact that L is a projection. The minimality of L is needed to prove part (ii).

Let $d(n, k)=\int\left|D_{n}(t)\right| e^{i k t} d t$.
Assertion. $d(n, k) \neq 0$ for $|k|>2 n$.
This result, when combined with the preceding assertion, will prove the theorem. The remainder of this paper pertains to proving that $d(n, k) \neq 0$.

Assertion.

$$
d(n, k)=\frac{1}{\pi} \sum_{j=k-n}^{k+n} \frac{1}{j} \frac{\beta^{j}-1}{\beta^{j}+1}
$$

where $\beta=e^{2 \pi i / 2 n+1}$.
Assertion. If $d(n, k)=0$ then

$$
\sum_{j=k-n}^{k+n} \frac{1}{j} \sum_{t=1}^{2 n}\left(-\beta^{j}\right)^{t}=0
$$

Thus if $d(n, k)=0$ we have a polynomial of degree $2 n$ with rational coefficients which has β as a root. We next derive a relation which must be satisfied by the coefficients of such a polynomial. The final step is to show that in our case this relation is not even satisfied modulo a convenient prime. The existence of the convenient prime is a consequence of the following extension of the Sylvester-Schur theorem.

Assertion. If n and k are integers satisfying $6 \leqq k \leqq n / 2$, then at least two integers between $n-k+1$ and n possess prime factors exceeding k.

References

[^1]
[^0]: ${ }^{1}$ Supported by the Air Force Office of Scientific Research.
 ${ }^{2}$ Supported by the National Science Foundation.
 ${ }^{3}$ Supported by a NATO Science Fellowship, granted by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

[^1]: 1. D. L. Berman, On the impossibility of constructing a linear polynomial operator furnishing an approximation of the order of best approximation, Dokl. Akad. Nauk. SSSR 120 (1958), 143-148.
 2. M. Golomb, Lectures on theory of approximation, Argonne National Laboratory, Argonne, Illinois, 1962.
 3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, New York, 1962.

 University of Texas, Austin, Texas 78712
 University of Washington, Seattle, Washington 98105
 Pennsylvania State University, University Park, Pennsylvania 16802
 Technological University, Eindhoven, Netherlands
 University of Washington, Seattle, Washington 98105

