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Abstract 

We present a probabilistic analysis of the average case-behavior of the 2-opt algorithm for the 
Traveling Salesman Problem. We derive an expression for the distribution oflocal minima of 
the 2-optneighborhood. This distribution is numerically computed and empirically validated 
for a restricted version of the 2-opt neighborhood. Furthermore. we present a semi-empirical 
analysis of the behavior of an iterated 2-opt algorithm based on extensive numerical results. 
Finally. we discuss the expected time to find a solution within a given range from optimality. 

1 Introduction 

Local search algorithms are a class of approximation algorithms for combinatorial optimization 
problems, i.e., problems in which an optimal solution has to be found among a finite number of 
alternatives. The performance of a local search algorithm can be quantified by the relative error 
of the obtained solutions and its running time .. Extensive empirical results have shown that there 
is a considerable difference between the worst-case and average-case behavior of local search 
algorithms, and that occurrences of the worst case are rare. Hence, average-case analyzes could 
be useful, and provide a better understanding of local search algorithms. 

In this paper we present a probabilistic analysis of the average-case performance of a simple 
local search algorithm. We concentrate on the well-known 2-opt algorithm for the Traveling 
Salesman Problem (TSP) of Lin [1965]. We formulate a probabilistic model, which we use to 
predict the average quality of the final solutions. Furthermore, we analyze the performance of 
iterated local search methods. 

2 Local search 

Local search algorithms constitute a class of approximation algorithms for combinatorial opti
mization that are based on repeatedly replacing a solution by a neighboring solution. An essential 
concept in local search algorithms is the notion of a neighborhood structure. 

Definition 2.1. An instance of a combinatorial optimization problem is given by a compact 
representation of a pair (S, f), where S is the set of solutions, and f : S ~ IR is a function that 
gives the cost of a solution. The objective is to find a solution with minimal cost. A neighborhood 
structure N : S ~ peS) assigns to each solution a set of solutions, called a neighborhood, that 
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can be directly obtained from it. A solution s E S is a local optimum w.r.t. N, if f(s') ::: f(s) 
foreachs'EN(s). 0 

The basic local search algorithm is the iterative improvement algorithm. An iterative improvement 
algorithm starts off with a randomly chosen solution or a solution constructed by some heuristic. 
Next, the algorithm repeatedly tries to improve the current solution by replacing it with a 
neighboring solution with lower cost. If a solution has been reached that has no neighbors 
with lower cost, a locally optimal solution has been found. A pivoting rule determines which 
neighboring solution becomes the new current solution. Well-known pivoting rules are first 
improvement, replacing the current solution by the first neighbor found with lower cost, and 
best improvement in which the lowest cost neighbor replaces the current solution. An iterative 
improvement algorithm with best-improvement is called a steepest descent algorithm. 

Local search algorithms have the advantage of being generally applicable and flexible, since 
they only require a specification of the solution space, a cost function and a neighborhood 
structure. A disadvantage is that local search algorithms may get trapped in local minima of 
poor quality. To overcome this disadvantage, many variants of the basic local search algorithm 
have been proposed in literature. Well-known examples are simulated annealing, tabu search, 
and genetic local search. For an overview of local search we refer to [Aarts & Lenstra, 1995]. 

In this paper we concentrate on iterative improvement and iterated local search [Johnson, 
199D], which can be considered as the starting point for the analysis of more advanced local 
search algorithms. Iterated local search algorithms repeatedly execute an iterative improvement 
algorithm. Each time the iterative improvement algorithm terminates, the obtained local minimum 
is modified and the iterative improvement algorithm is restarted with the modified local minimum. 
The choice of a modification mechanism is usually guided by two principles: intensification 
and diversification. Intensification is based on the observation that good solutions seem to 
have common properties. Therefore, the modification mechanism should try to preserve these 
properties, thus intensifying the search into a special region of the solution space. On the other 
hand, diversification of the search is needed to ensure that no region of the solution space is 
neglected. These two principles can be found in many advanced algorithms, e.g., the use of tabu 
lists in tabu search and the cross-over step used in genetic local search. 

2.1 Local search for the traveling salesman problem 

Probably the best-known combinatorial optimization problem is the TSP. In the TSP a salesman 
wishes to visit a number of cities and return to the starting point, in such a way that each city is 
visited exactly once, and the total distance covered is as short as possible. The TSP belongs to 
the class of NP-hard problems and therefore considerable effort has gone into designing efficient 
approximation algorithms. Formally, the TSP can be defined as follows. 

Definition 2.2. Let V be a set of N cities and dij E IR a distance for each i, j E V. A tour t 
is a set of N edges {eo, ... , eN-II that constitutes a Hamiltonian cycle in the complete graph 
(V, V x V). A tour t is represented by a bijection rr : {D, .. , , N - II --> V, where rr; gives 
the city at the i'h position in t, such that e; = (rr;, rrU+I)modN)' The solution space S of a TSP 
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instance is the set of all tours. The cost function I is given by 

l(t) = L dij. 
(i,j)Et 

The problem is to find t E S for which l(t) is minimaL o 
We consider only symmetric instances of the TSP, in which the distances satisfy dij = dji for 
each i, j E V. From now on, we consider all arguments of bijection :rr to be modulo N, that is, 
:rri denotes :rrimodN. 

The choice of the neighborhood structure has great influence on the average cost of the 
solutions found by local search algorithms. Therefore various neighborhood structures have been 
introduced for the TSP, most of which are based on edge exchanges. In the 2-opt neighborhood 
of Lin [1965] a tour t' is a neighbor of tour t, if t' can be obtained from t by removing two 
edges and inserting two edges such that t' is obtained. Another well-known neighborhood is the 
variable-depth neighborhood of Lin & Kernighan [1973]. 

For an overview of the worst-case complexity and empirical behavior of local search for 
the TSP, we refer to [Johnson, 1990]. The main conclusion from the empirical results in this 
paper is that local search algorithms can find good-quality solutions within low-order polynomial 
empirical running time, but it is conjectured that worst-case running times can not be bounded 
polynomially. Furthermore, it is not possible to give upper bounds on the relative error of local 
minima. 

Other investigations have dealt with the theoretical average-case behavior of local search. 
Kern [1989] showed with a probabilistic analysis that the 2-exchange algorithm for Euclidian 
instances of the TSP has an average-case running time that is polynomially bounded. Other 
probabilistic models for local search have been studied by Tovey [1985]. In these studies artificial 
problems are considered with special classes of neighborhood graphs with regular structures, e.g. 
the hypercube. The cost function for these problems is chosen to induce an orientation on this 
regular structure. Different probability distributions on the orientations are considered and for 
some cases low order polynomial average case running times are proved. More recently, Chandra, 
Karloff & Tovey [1994] showed similar results for 2-opt and 3-opt algorithms for the TSP, and 
derived weak upper bounds, both worst case and probabilistic, on the cost of the local minima 
obtained by these algorithms. 

Another approach is studied by Nakano & Nakanishi [1983], who model local search algo
rithms by Markov chains. Using this method, they obtain distributions for the cost of locally 
optimal solutions for 2-opt and 3-opt algorithms, based on assumptions for the transition proba
bilities and the probability that a solution is a local optimum. 

3 A probabilistic analysis of the 2-opt neighborhood 

In this section we analyze the average-case performance of local search algorithms that use the 
2-opt neighborhood structure. The 2-opt neighborhood N2 is specified as follows. 

Definition 3.1. Let t E S be represented by :rr. Define the function 2-change( t, r, s) : S x N x 
IN ~ S which gives for each tour the neighbor that is obtained by removing the two edges at the 
r'ft and S'lt position in the tour and inserting two different edges, that is 

2-change(t, r, s) = t \ {(:rr" rr,+I), (rr." :rrs+l)) U {(:rrr, :rr.,), (:rrr+I, :rrHd). 

3 



Then, N2 is defined by N2 (t) = (2-change(t, r, s) I 0 ~ r, s < N 1\ 1 < r - s < N - I}. 0 

3.1 Preliminaries 

An instance of the TSP is completely specified by its distance matrix. As the first step in our 
approach we assume that the distances d;j are independently drawn from some distribution. 
This is a common approach in probabilistic analyzes; examples can be found in [Kirkpatrick 
& Toulouse, 1985; Weinberger, 1991; Stadler & Schnabl, 1992). However, it should be noted 
that the assumption of independence is in fact a restriction that excludes Euclidean instances, 
because then the triangle inequality holds. Still, Euclidian distances are sometimes considered 
to be effectively independent [Bonomi & Lutton, 1984). In view of the above assumption, we 
can easily define a class of instances by letting the edge lengths 4.;j be independent, identically 
distributed random variables. Consequently, we can also view the costs of solutions as random 
variables, i.e., the sum of N independent, identically distributed edge lengths. Hence the cost 
approximates the normal distribution, according to the central limit theorem. Formally, this is 
stated as follows. 

Theorem 3.1. Let the distances 4.;j be independent, identically distributed random variables. 
with mean J-LI and variance at Define J-L = N J-LI and a 2 = Nat 
Then. the cost f(t) of a solution t has a normal distribution with density 

w(f(t» = ~ exp[ -(f(t) - J-L)2/2a 2). 
- bra -

o 
Thus. we can represent a class of instances as a tuple (S. I). where f is a function that assigns a 
random variable to each solution. 

The next step is to express the relationships between different solutions in this class. Usually, 
the dependence between two random variables is measured by their covariance, so it is natural 
to express the relation between solution by the covariance of their cost. The covariance rSI = 
1E[(f(s) - J-L)(f(t) - J-L») between the costs of solutions sand t is calculated as follows: 

Theorem 3.2. Suppose the cost of two tours s, t E S is given by f(s) = LU.j)ES 4.;j and 
f(t) = L(;.j)EI 4.;j' Define K = Is n tl. that is, the number of edges sand t have in common. 

Then. r." = K a? . 
Proof Since the covariance distributes over addition we find 

r.<I = L L cov(4;j' 4.;./). 
(i,j)E.\' (i'.j')EI 

Due to the independence of the edge lengths the covariance covC4.;j' 4.;'j') will be either 0 if 
4.;j # 4.;'j" or al if 4.;j = 4.;'j" Then, it immediately follows that rSI = Ka?, 0 

In order to express the influence of the covariance, an important aspect of our analysis deals with 
conditional probabilities. The following theorem given by Papoulis [1965) shows how, given the 
cost of a solution, the covariance affects the distribution of the costs of other solutions. 

Theorem 3.3. Let s, t, U E S be tours. whose costs are normally distributed with mean J-L and 
variance a. Let p (s, t) be the correlation coefficient r.,-, / rl/. Then the cost of tour s. given the 
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cost of tour t, is normally distributed with mean 

1E[J(s) I f(t) = c] = /k + pes, t)(c - /k). 

Given the cost of tour t, the covariance between tours sand u can be expressed as 

IE[(f(s) - /k)(f(u) - /k) I f(t) = c] = a 2(p(s, u) - pes, t)p(u, t». 

o 
So far, we calculated properties of one tour, averaging over all instances in a class. However, the 
properties we are interested in are instance properties, i.e., averages taken over all tours in one 
instance. The mean, variance, and covariances of an instance are defined as follows: 

Definition 3.2. Let (S, f) be an instance of the TSP. Then the instance mean fl is given by 

fl = I~~I ~ f(s). 

The instance variance &2 is given by 

A2 __ 1 ~j'2()_A2 a- L.. S /k. 
lSI .>ES 

Let 'Dk (s) be the set of all tours that have N - k edges in common with a tour s E S. Then the 
instance covariance h between all pairs of tours that have N - k edges in common is given by 

rk = I I: I: f(.\")f(s') - fl2. 
lSI· l'Dki .>oS .,'ED,(.» 

o 
Since the number of tours is extremely large, it is impossible to calculate the instance averages 
exactly. The question is now how to obtain expressions for these averages. To answer this 
question we prove first that, on the average, the instance mean, variance and covariance are 
approximately the same as their class equivalents. 

Theorem 3.4. Let E = 2 N~ I a/. Then we have 

IE[fl] - /k, 
IE[&2] _ a 2 - E, 

lE[rd - (N - k)a,z - E. 

Proof See Appendix. o 
Still, one might argue that for one specific instance the quantities can be substantially different 
from the average. In order to show that these differences effectively disappear, we introduce the 
notion of self-averaging properties, cf. [Stadler & Schnabl, 1992]. 

Definition 3.3. A quantity X (N) of an instance of the TSP with N cities is called self-averaging 
if 

hm =0. 
. (OE[X 2(N)]-e[X(N)])l) 

N .... oo IE[X(N)] 

o 
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Informally seen, this means that as the number of cities increases, the quantity X (N) approaches 
the mean for all instances in the class. For the quantities defined in Definition 3.2, the following 
theorem holds 

Theorem 3.5. The instance quantities p" &2 and h are self-averaging. 
Proof See Appendix. D 

Consequently, we conclude from Theorems 3.4 and 3.5 that class properties can be good estimates 
for the properties of an instance. 

3.2 The distribution of local minima 

Next we express analytically the distribution of the costs of local minima, based on the approach 
outlined in the previous section. However, the expression we obtain proves to be very hard to 
evaluate or even approximate, because of the complex dependencies induced by the neighborhood 
structure N2 • Therefore, we introduce a restricted version of the 2-opt neighborhood, for which 
we give an expression for the distribution of local minima that can be evaluated numerically. 

In order to express the distribution of local minima, we consider first an instance class (S, f) 
of the TSP. In the previous section we have established that the costs of the tours in this class are 
normally distributed, and we have expressed the mean and variance of this distribution, and the 
covariance between tours. We use these quantities to express the probability that a solution is a 
local minimum, i.e., the probability that all its neighbors have higher cost. 

Our goal is to find the density of the costs of local minima, which can easily be expressed as 
the density of the cost c of a tour t E S, given that t is a local minimum. 

IP{t is a local minimum I c)ev(c) 
(I) ev (c I t is a local minimum) = . 

IP{t is a local minimum) 
Of course, these expressions are properties of one tour in a class of instances. Again, we have 
to show how these properties are related to their instance equivalents, that is, the local minima 
and the density of the local minima in an instance. This is done in the following theorem and 
conjecture. 

Theorem 3.6. Let (S, f) be an instance of the TSP. Define LM(f) to be the number of local 
minima in Sand LM(f, c) to be the number of local minima in S with coste. Let t be a randomly 
chosen tour. Then, 

IE[LM(f)] - lSI ·IP{t is a local minimum}, 

IE[LM(f, c)] - lSI .IP{t is a local minimum I clev(c). 

Proof See Appendix. D 

Conjecture 3.1. Let (S, f) be an instance (~f the TSP, and let LM(f) and LM(f, c) be as 
defined in Theorem 3.6. Let t be a randomly chosen tour. Then. we conjecture that 

IE [LM(f, C)] = ev(e I t is a local minimum). 
LM(f) 

D 
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An intuitive foundation for Conjecture 3.1 can be found in the Appendix. Hence. we consider 
expression (1) to be a good estimate for the density of the costs of local minima in an instance. 

Consider now a randomly chosen tour to with cost Co. and let its neighbors have cost CI • ...• Cb. 
where b is the number of neighbors. We denote the joint density of these costs as W (co • ...• Cb). 
Now. we express the probability that to is a local minimum given its cost as 

00 00 

(2) P{to is a local minimum I co} = f dCI ... f dCbW(CI. '" • Cb I co). 

Co Co 

and the probability that to is a local minimum as 
00 

P{to is a local minimum} = f Plto is a local minimumlco}w(co)dco. 

-00 

Consequently. the problem reduces to expressing the probability that a tour is a local minimum. 
given its cost. In order to evaluate conditional probability (2) we assume that the costs of a tour 
and its neighbors have a multivariate normal distribution. which is defined as follows. 

Definition 3.4. Let the multidimensional random variable c denote the cost vector (co • ...• Cb) 
and J.L the mean vector. Let R = [rij] be the covariance matrix. with IIRII its determinant and 
R-1 its inverse. Then c has a multivariate normal distribution. if R is positive definite. i.e .• 
xRx T > 0 for all non-zero vectors x. and if the joint density is given by 

1 
w(c) = exp[(c - II.)R-l(C - II.)T/2] 

(2rr)(b+1)/2I1RII r r' 

o 
Tong [1990] states that a multidimensional normal random variable c has this density if all linear 
combinations of the costs co • ...• Cb are univariate normally distributed. This means that for 
all non-zero vectors a, acT has a normal distribution with mean aJ.LaT and variance aRaT. 
Since any linear combination of the costs can be rewritten to a linear combination of the edge 
lengths, this holds if the edge lengths are drawn from a normal distribution, because any sum 
of normally distributed random variables is again normally distributed. In case edge lengths are 
not drawn from a normal distribution, we assume that the linear combination of the edge lengths 
approximates a normal distribution, due to the central limit theorem. 

In order to specify the multidimensional normal density completely, we have to calculate the 
elements in the covariance matrix R. The elements rij in the covariance matrix can be obtained 
by Theorem 3.2. in which we showed that the covariance between two tours is determined by the 
number of edges they have in common. Since a tour and its neighbor always have N - 2 edges 
in common, it is easy to see that 

rOi = riO = (N - 2)a,2 for I ::: i ::: b. 

The covariance between two neighbors of a tour is determined in the following theorem, which 
states how many edges they have in common. 

Theorem 3.7. Let t' = 2·change(t. r, s) and t" = 2-change(t, u, v) be different neighbors of 
t. Denote the successor of a two-change as succ(2-change(t. r, s) = 2-change(t. r + 1. s + 1). 
Then. the number of edges t' and t" have in common is equal to N - 3. if {r, s} n {u. v} =I 0 or 
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succ(2-change( t, r, s) = 2-change( t, u, v), or succ(2-change( t, u, v) = 2-change( t, r, s). In 
the remaining cases t' and t" have N - 4 edges in common. 0 

Consequently, the covariance between two neighbors of t is either (N - 3)a?, if the two-changes 
remove or introduce a common edge, or (N - 4 )a? otherwise. For each neighbor 2-change( t, r, s) 
there are exactly 2(N - 3) - 2 other neighbors of t resulting from the removal of either edge 
er or edge e .•. Adding the succeeding and preceeding 2-change we find that each neighbor has 
N - 3 edges in common with 2N - 6 other neighbors of t. 

We have now obtained an expression for the joint density w (co, ... ,Cb). However, to express 
the probability integral (2) we need the conditional density W(CI' ••• ,Cb I co). Papoulis [1965] 
states that the conditional density is again multivariate normal, and can be expressed as 

w(c], ... ,Cb I co) = (2rr)b:2I1R'llexp[-~(C - p.')R'-\c - p.')T]. 

The conditional mean vector p.' and the elements in the conditional covariance matrix R' are 
expressed in terms of the mean vector p. and covariance matrix R. The vector p.' contains the 
conditional means, and is calculated by applying Theorem 3.3, that is, 

p.; = lE[c; I co] = (I - 2/ N)co + (2/ N)J1, for 1 :s j :s h. 

The matrix R' = [rf) is the conditional covariance matrix. Its elements can be calculated by 
applying Theorem 3.3 and 3.7. This leads to 

I (4 - 4/ N)a? i = j, the conditional variance. 
r;j = ( -4/ N)a? i -I j and tours i and j have N - 4 edges in common. 

(1 - 4/ N)a? . i -I j and tours i and j have N - 3 edges in common. 
We have now obtained all ingredients to express the probability that a tour is a local minimum, 
given its cost. However, the problem that remains is how to evaluate or approximate the probability 
integral (2). 

A general method to evaluate a multidimensional normal probability is by a linear transfor
mation of the random variables, such that the resulting variables are independent. However, after 
such a transformation the dependencies typically return in the region of integration. 

Several other methods are known in literature to evaluate a multidimensional probability 
integral [Tong, 1990]. These methods are based on special properties of the covariance matrix, 
which do not apply to the covariance matrix induced by the neighborhood structure N2• 

3.3 The restricted neighborhood N~ 

In the previous section we derived an expression for the density of the costs of local minima, 
which, however, we can not be evaluated numerically. To validate our model, we introduce 
therefore the restricted neighborhood structureN~. In this neighborhood structure, the neighbors 
of a tour are a subset of its neighbors in N2• This subset is chosen in such a way that the density 
of the cost of local minima (of ND can be computed numerically. Formally, the neighborhood 
structure N~ is defined as follows. 

Definition 3.5. Let t E S. Then, the neighborhood N~(t) is given by (2-change(t, 0, s) I I < 
s < N - IJ. 0 
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It follows that each tour has N - 3 neighbors. The key property of this neighborhood structure is 
that all neighbors of a tour have N - 3 edges in common, which allows us to express the density 
of the costs of local minima of N~. 

Just as in the previous section, this problem reduces to calculating the probability that a tour 
is a local minimum, given its cost. Let to again be a randomly chosen tour with cost Co, and let 
its neighbors have cost c" ... ,CN-3. Applying the same strategy as in the previous section we 
find that the conditional density w(c" ... ,CN-3 I co) is again jointly normal, and is given by 

(3) ( I ) I [ I ( ')R,-I( ,)T) 
w c" ... ,CN-3 Co = (2Jr)(N-3)/2I1R'1I exp -z c - J.L c - J.L • 

The conditional means !1-; are the same as in the previous section, that is 

!1-: = (I - 21 N)co + (21 N)!1-. 
Since all pairs of neighbors have N - 3 edges in common, the elements in the conditional 
covariance matrix R' = [r;j) are 

, _ { (4 - 41 N)a/ i = j, the conditional variance. 
rij - (I - 41 N)al i # j, the conditional covariance. 

The essential observation is that all covariances are equal and positive. In this case, the joint 
density (3) can be simplified, as is shown in [Ihm, 1959; Marsaglia, 1963). In the remainder of 
this section we show how this is done. First, we introduce 

Yi = Ci -!1-: for I :5 i :5 N - 3. 
Then, the means become zero and, trivially, density (3) can be rewritten to 

I I ,-I T 
(4) w(y" ... ,YN-3 I co) = (2Jr)(N-3)/2I1R'1I exp[ -zyR y). 

The central observation in this method is that each random variable Yi can be represented as the 
sum of two random variables, that is, 

Yi = a, J I - 4 I N Xo + a, v'3Xi for I :5 i :5 N - 3 . 
Here, Xo, ... ,XN-3 are independent, standardized, normally distributed random variables. The 
random variables Yi again have a multidimensional normal distribution, with zero means, vari
ances (4 - 41 N)al, and covariances (I - 41 N)a? . 

Because the random variables Xi are independent, we can, by a generalization of the convo-
lution theorem, express density (4) as 

00 

J ) (y,-al.JI-4INXo ) (YN-3-al.JI-4INXo )d 
w(xo w . r;;; I Xo ... w r;;; I Xo xo· 

0~3 0~3 
-00 

Now, we are able to express the probability that to is a local minimum, given that its cost is co. 
Since the random variables Xi are identically distributed, we have 

Joo [JOO y,-a,.J1-4INxo ]N-3 
(5) IP{to is a local minimuml col = -00 w(Xo) "_1<' w( a/~ I xo)dy, dxo· 

The inner integral in (5) can be rewritten to 

I (.J2(CO-!1-) xo.J1 41N) 
-erfc = - !£ . 
2 ~3Na ~6 
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So, the probability that 10 is a local minimum, given that its cost is Co, is equal to 

00 [( j;:, )] N-3 1 ,,2(co-IL) sJI-4/N 
$ !exp(-s2/2) erfc ./3N -.j6 ds. 

2N - 3 2Jr 3Na 6 
-00 

(6) 

Expression (6) can be evaluated numerically. 

3.4 An analysis of first improvement algorithms 

In this section we outline a simple method to analyze the average-case performance of first im
provement algorithms, based on ideas described by Weinberger [1991) and Nakano & Nakanishi 
[1983). A first improvement algorithm repeatedly moves to the firstly found neighboring solution 
with lower cost, until no more neighbors with lower cost are found. As such, an execution of a 
first improvement algorithm can be represented as a path in the neighborhood graph. 

In this section we describe how these paths can be modeled statistically, and how this model 
can be used to analyze the running time and the distribution of final solutions of first improvement 
algorithms that use the neighborhood structure N;. 

First, we describe how a single transition can be modeled. For this, we define the transition 
probability P(Ci, ci+d, that is. the probability that a solution Ii with cost Ci found after i iterations 
is improved to a solution li+1 with cost Ci+I' Hence. 

P(Ci. Ci+l) = IP(f(ti+l) = Ci+1 I f(tJ = Ci } . - -
In order to express the transition probability P(Ci. Ci+I). we consider first that if tour Ii has cost 
Ci. we have two possibilities. The first possibility is that tour Ii is a local minimum. in which case 
no improvement is made. The second possibility is that tour Ii is not a local minimum. Then. we 
still have to consider the probability that solution ti with cost Ci moves to a neighboring solution 
li+1 with cost Ci+l. given that Ii is not a local minimum. If we make the simple assumption that 
the neighbors are conditionally independent and that the transition is made to a randomly chosen 
neighbor with lower cost. we can approximate this probability as 

IP(f(ti+l) = Ci+1 A Ci+1 < Ci I f(li) = Ci } 
IP(f(ti+l) = CHI I f(ti) = Ci A Ci+1 < c;} = 1P(f(ti+l) < f(ti) I f(t;) = Ci } . 

It follows from Theorem 3.3 and the replacement of 2 edges by a 2-change that the cost CHI of 
li+1 is drawn from a normal distribution. with mean and variance 

and density 

W(Ci+1 

Then. we can easily express 

ILi - IL + (I - 2/ N)(Ci - IL), 

a} _ (4 - 4/N)a/ 

I 2 2 I Ci) = r-= exp[-(ci+1 - ILi) /2ai )· 
,, 2JrDi 

C; 

1P{f(ti+l) < f(ti) I f(tJ = Ci) - ! w(c' I cJdc' 

-00 
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and 

{ 
W(C;+I I C;) 

IP{fCt;+I) = Ci+1 /\ Ci+1 < C; I f(td = C; } = 0 
if C;+l < C;. 

otherwise. 
Consequently, we can express the transition probability P(c;, C;+I) as 
(7) 

I 2w(ci+1 I c;) (I -IP{t; is loc. min·1 fCt;) = C;}) 
P(c;, Ci+I) = erf[(c; -11-;)/.Jia;] 

o otherwise. 

The distribution of final solutions. Next, we show how transition probability (7) can be used 
to express the distribution of the cost of local minima obtained by a first improvement algorithm. 

For this, we need an additional quantity /(c), which represents the probability that a solution 
with cost C is reached during an execution of a first improvement algorithm. Since a first 
improvement algorithm repeatedly moves to a neighbor with lower cost, a solution with cost C 
can be reached either initially, or by a transition from a solution with higher cost. Hence, if we 
let w(c) be the density of the tour lengths, I(c) can be recursively expressed as 

co 

(8) /(c) = w(c) + J l(c')P(c', c)dc'. 

Then, the probability that the algorithm finds a final solution with cost C equals the probability that 
a local minimum has been found once a solution with cost c is reached. Thus, the density wf;(c) 
of the costs of the final solutions obtained by a first improvement algorithm can be expressed as 

(9) wf;(c) = I(c) .IP{t is a local minimum I f(t) = c) . 

The running time of first improvement algorithms. Next, we propose a simple approach to 
approximate the average running time of first improvement algorithms. As a measure for the 
running time we use the number of accepted neighbors, i.e., the number of2-changes effectuated, 
even though, strictly seen, the number of proposed neighbors, should be used to represent the 
running time. However, in order to model the intermediate states of the algorithm the number of 
accepted neighbors is more useful. 

The state of a first improvement algorithm can be characterized by the probability p;(c), i.e., 
the probability that the solution has cost c after i improvements. Similar to the approach outlined 
above, we can recursively express the probability 1'; (c) as 

I 
Po (c) = ../2iT exp[(c - 11-)2/2a2], 

2rra 
co 

P;+I(C) = J p;(c;)P(c;, c)dc;. 

Here, we assume that the first improvement algorithm starts from randomly chosen initial solution. 
Since a first improvement algorithm stops if a local minimum is found, we can express the 

II 



probability that the algorithm terminates after i improvements as 
00 

PIt; is a local minimum} = J IP{t; is a local minimum I l(t;) = c}p;(c)dc. 

-00 

Hence, the average number ,of of iterations needed by a first improvement algorithm can be 
expressed as 

00 

(10) JE[i] = ~ i J PIt; is a local minimum I l(t;) = c}p;(c)dc. 

-00 

3.5 Empirical results 

We aim to validate the theoretically obtained results from the previous sections. A problem, 
however, is to empirically obtain the distribution of the cost of local minima. The correct method 
is to take a random sample of the solutions, and consider the local minima in this sample. 
Unfortunately, the sample size would have to be extremely large, because the probability that a 
solution is locally minimal is very small. So, this method is not feasible. Therefore, we only 
compare empirical distributions of final solutions with their theoretical predictions, discussed in 
Section 3.4. We consider instances in which edge lengths are distributed according to a normal 
distribution, which agree best with our assumptions. 
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Figure I: The distribution of final solutions. 
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deviation of the tour lengths. The solid curves represent the theoretically predicted distributions, 
the dashed curves the empirically obtained distributions. 

We observe a reasonable agreement between the theoretically predicted and the empirically 
obtained curves, both in position and shape of the distributions. However, we see an increasing 
overestimation of the standard deviation as the size of the instance grows. This might be caused 
by our relatively simple approximation of the transition probability, for which we used the rather 
strong assumption that neighbors of a tour are conditionally independent. 

Further evidence that the assumption of conditional independence is too strong can be found in 
Figure 2, which shows our results for the average running time. For this, we have performed 500 
executions of a first improvement algorithm that employs the restricted neighborhood structure 
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N~. We have used a random normal instance with 100 cities. During the executions, we kept 
track of the cost obtained at each improvement and of the number of improvements that were 
needed to reach a local minimum. 

In the left figure the mean cost of the current solution is given as a function of the improvements 
that were made during the execution of the first improvement algorithm. The right figure shows 
the distribution of the number of iterations made by the algorithm. The solid curves represent the 
theoretically predicted results, the dashed curves the empirically obtained results. We observe 
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Figure 2: The average running time of first improvement algorithms. 

in Figure 2 that already early during the execution, the mean cost of the current solution is 
underestimated. This could be further evidence that our assumption of conditional independence 
is too strong, since at that time the probability that a tour is a local minimum given its cost has 
little influence on the transition probability. From this result, it follows that we underestimate the 
average number of improvements made, as can be seen in the right figure. 

Empirical results for first improvement 2 0 0pt and Lin-Kernighan. Finally, we consider the 
distribution of the final solutions obtained by a first improvement 2-opt algorithm and a Lin
Kernighan algorithm. Figure 3 shows the empirical results for a number of real world instances, 
that is, instances derived from practical problems. The frequency is plotted against the relative 
deviation w.r.!. the optimal solution value. 

For the 2-opt algorithm, the solid line represents the results for the kroB200 instance, the 
short-dashed line the results for the lin318 instance and the long-dashed line the results for the 
pcb442 instance. For the Lin-Kernighan algorithm, the solid line represents the results for the 
pcb442 instance, the short-dashed line the resul!s for the u574 instance and the long-dashed line 
the results for the pr 1002 instance. 

The distributions of the final solutions obtained by these iterative improvement algorithms 
appear to have two interesting properties. First, we observe that the final solutions seem to be 
distributed according to a gamma distribution. We checked this by performing a chi-square test, 
which was accepted for all instances except the kroB200 instance. Other instances, not shown in 
Figure 3 also fitted to a gamma distribution. 
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Figure 3: The distribution of final solutions obtained by a 2-opt and a Lin-Kernighan algorithm. 

Secondly, we see that for both the 2-opt and the Lin-Kernighan algorithm, the standard 
deviation of the distribution decreases as the size of the instance grows. Again, the results 
obtained for other instances, not shown in Figure 3 agree with this property. 

4 A semi-empirical analysis of iterated local search 

The best known heuristic to handle the TSP is the iterated Lin-Kernighan algorithm of [Johnson, 
1990]. In Johnson's iterated Lin-Kernighan algorithm a local minimum is modified by a 4-
change, i.e., replacing four edges by four new edges, and used as starting solution for the next 
run of the Lin-Kernighan heuristic. 

In this section we approximate the average computation time an iterated local search algorithm 
needs to find a solution within a given range from the optimal solution. Time is measured 
by the number of evaluations, i.e., the number of solutions examined by the algorithm. Our 
approximation is of a semi-empirical nature, which means that the average number of evaluations 
is expressed as a function of empirically obtained parameters, viz., the distribution of the final 
solutions and the average running time of the underlying iterative improvement algorithm. 

To approximate the average running time we differentiate between the average number of 
iterations needed and the number of evaluations needed per iteration. Hence, we assume an 
execution of an iterated local search algorithm to be a sample of the local minima, which means 
that we neglect the intermediate solutions generated by the iterative improvement algorithm. As 
a consequence of this assumption, we can express the probability that a solution whose cost is 
lower than the predefined value E has been found after i iterations, as 

j 

(II) 1P(i, E) = I - n (1 -IP{f(Sk) ::: (I + E) !opt)) , 
k=1 

with Sk be the final tour obtained at iteration k, (I ::: k ::: i). 
In order to determine the average number of iterations needed, we assume that the modification 

mechanism is primarily a diversification mechanism. Hence, we consider subsequent local 
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minima to be independent, so that probability P{f(Sk) ~ E} is independent of k. It should be 
noted that this is rather a strong assumption, since the modification mechanism only changes four 
edges. Because we assume the density Wlm (c) of the costs of local minima to be given, we then 
have 

(l+<)Jopt 

p(E) = 1P{f(Sk) ~ (I + E)foptl = J wlm(c)dc. 

-00 

This allows us to express probability (II) as 

pu, E) = I - (I - p(E»i. 

This can be rewritten to 
(12) 

where 
)." = -In(l - p(E». 

Expression (12) then implies that the number of iterations is distributed according to an expo
nential distribution, so we can easily express the average number of iterations as 

I 
IE<U] = -. . )." 

After the first iteration the iterative improvement algorithm starts with a tour that differs only 
four edges with a local optimum. Consequently, the average number of evaluations required per 
iteration decreases substantially from that required by the first iteration. In order to approximate 
the average number of evaluations needed per iteration, we therefore differentiate between two 
values: 

• k" the average number of evaluations needed to reach a local minimum from a randomly 
chosen starting solution . 

• k" the average number of evaluations needed to reach a local minimum that has been 
obtained by modifying a local minimum 

The averages kl and k, are obtained empirically. We have observed that the relative difference 
between kl and k, increases as the size of the problem instance grows. 

Using the above observations, the average number of evaluations needed to find a solution 
with a given relative error E is approximated as 

I 
IE,[k] = kl + (;.- - l)k,. 

4.1 Empirical results 

We have analyzed iterated 2-opt and Lin-Kernighan algorithms with a 4-change as modification 
mechanism. Both algorithms have been tested on instances from Reinell's TSPLIB. In order to 
acquire the average number of evaluations empirically, 100 executions of the iterated local search 
algorithm have been performed for each instance. 

Figures 4 and 5 show the results of the iterated 2-opt algorithm for the instance kroB200, and 
the iterated Lin-Kernighan algorithm for the instance u574, respectively. Iterated local search 
for other instances, not shown in Figure 4 and 5, display a similar behavior. In these figures, the 
probability that a solution is found with the given relative error E is depicted as function of the 

15 



100 

80 

60 
% 

40 

20 

0 
0 

100 

80 

60 
% 

40 

20 

0 
0 

J 

J 

f 

( 

• = 6% 

- ~ 
100 

" 
" "0 

I 
( 60 

% 
I 40 

20 I 

0 
0.5 1.5 2 0 

evaluations (X 1E7) 

• = 5% 

~ 

'"' 
I 

I 

J 

I 2 3 4 
evaluations 

5 6 7 
(X IE7) 

• = 4% 
100r......:;-~""':::.~;;:::::::=1 

80 

6 9 12 15 
evaJuations (X 1 E7) 

Figure 4: The average running time of an iterated 2-opt algorithm for KroB200 . 
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Figure 5: The average running time of an iterated Lin-Kernighan algorithm for u574. 

number of evaluations. The solid curves represent the theoretically predicted distributions, the 
dashed curves the empirically obtained distributions. 

We observe that the cumulative density fits well with an exponential distribution. A good 
agreement between our theoretical prediction and the empirical results is only obtained for low 
deviations E. This is explained by the observation that even a small under- or overestimation of 
the probability that a tour is within the desired range E, can have a large effect on the theoretical 
curves. 

5 Conclusions 

In this paper we have discussed the average-case performance, both with respect to quality of final 
solutions and running time, of the 2-opt algorithm for the Traveling Salesman Problem. We have 
used a probabilistic approach, in which we explicitly state the assumptions we made, to express 
the distribution of local minima for the restricted neighborhood structure N~. Furthermore, we 
have outlined a simple method to approximate the distribution of the final solutions obtained by 
a first improvement algorithm that uses this neighborhood structure. 
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An empirical investigation of the distribution of final solutions obtained by a first improvement 
2-opt and a Lin-Kernighan algorithm furthermore shows two interesting properties. First, we 
have observed that the local minima are distributed according to a gamma distribution and 
secondly, we have observed that the standard deviation of these distributions seems to decrease 
as the instance size grows. These characteristics are an important aspect of a neighborhood for 
iterated local search, or other more advanced local search algorithms, because they indicate the 
additional computational effort required by iterated local search to find lower-cost local minima. 
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Appendix 

This appendix contains proofs of the theorems. First, we prove Theorem 3.4. 

Theorem 3.4. Let E = 2 N~I a? Then we have 

IE[il] - N i-t" 
1E[&2] = Na,z - E, 

IE[i'd = (N - k)a/- E. 

Proof Define the set of edges V and the number of edges e as 

V - {(i, J)IO ::: i < j < N) 

e - IVI 
- N(N - 1)/2 

Recall that for any (i, J) E V 

i-t{ = lE[dij ] and a/ = IE[di~]-le[dij] 
The proofs we present below are based on rewriting summations over solutions as summations 
over edges. For instance, it is not hard to see that 

I N 
(13) - L f(s) = - L dij . 

151 .<e5 e 1i.j)eD 

Furthermore, we use our assumption of independence between edge lengths, that is, 

(i, J) # (i', j') => IE[dijdi,J'] = lE[dij]IE[di,J'] 

Then we have 

1. E[il] = N i-t{. 

lE[il] - IE [I~I ~f(S)] 
- I~~I ~IE[f(S)] 

I 
- 151 L L lE[dij ] 

seS (l,j)E.f 

- N i-t{ 

2. E[&2] = Na/- E. 

IE[&2] IE[ ~ Lf2
(S)-il

2
] 

I~ I .<e5 

(14) ~ L IE[f2(s)]-IE[il2] 
I~ l,e5 
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We can rewrite the left term in (14) as follows. 

lS
i I LIE[f2(s)] - _I L ( L IE [diA'j']) 

S lSI S (") (" ") .fE se I.J ' I.j E.( 

_ NlE[d2] + (N2 - N)e[d] 

_ NU,2 + N 2J1,7 
Using (13) we can rewrite the right term in (14) as 

(IS) 

Thus, 

lE[il
2

] = IE [N2 ( L d)2] 
e2 

(i,j)ED I) 

4 
---2 L lE[diA'j'] 
(N - I) (") (" ") D I,j . I.J E 

4 ,(eIE[d2] + e(e _ l)JE2[dJ) 
(N- 1)-

N N 
_ 2--IE[d2

] + N 2IE2[d] - 2 E2[d] 
N-I N-I 

1E[&2] _ No} + N 2 J1,7 - (N2J1,7 + E) 

- NO/-E 

3. lE[rd = (N - k)u,z - E, 

(16) 

JE[rd = IE [ISI1IDd ~)~') f(s)f(s') - il
2
] 

I 
- ISl'lDkl ~ ,L IE[f(s)f(s')]-IE[il

2
] 

.~ES J eD.d.\) 

We can rewrite the left term in (16) as follows. 

S 11) L L 1E[f(s)f(s')] 
I I· I k I sES ,'E'V,(s) 

Hence, subtraction of (15) leads to, 

- ISI.IIDkl ~ S,~,) Cj)E&'j')E"IE[dijdi'j']) 

_ (N - k)IE[d2] + (N2 - N + k)1E2[d] 

E[r,] - (N - k)u/ + N 2 J1,; - (N2 J1,7 + E) 

= (N - k)u/ - E 

Next, we prove Theorem3.5. 
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Theorem 3.5. The empirical quantities fl, &2 and rk are self-averaging. 
Proof 

1. fl is self-averaging. 
We already derived in the previous theorem that IE [fl2] = N 2/Lr + E. Hence, 

OE[fl2]-le[fl])! = (N2/Li + E - N2/Li)! 

=-JE 
Since E is nearly constant, it is not hard to see that 

. OE[fl2]-1E2[fl])l 
hm , 
N~oo IE[/L] 

- lim .j€ = 0 
N~oo N/L/ 

2. &2 is self-averaging. 
We begin the proof with a calculation of IE[(&2n, for which we first rewrite &2 as a 
summation over edges. We have 

1 " 2 151 L...! (s) = 
JES 

{- L ( L d5 + L dijd;,}') 
I~ I , .. s U,j)E,' (i.j)#(;',/) 

(i ,i), (if ,j')ES 

_ ~ L d;~ + N(N _- 1) L d;A'}' 
e (' ') v e(e I) (' ')-"(" ") 1 . ./ E I.j yo I.J 

(i,j),(i'./)eV 

and 

'2 N
2 "2 N

2 
" /L = -2 L... djj + -2 L... 

e (' ') v e, ')-" ,',' /,1 E (I.) r(l } ) 
(i,j).(j'j')eV 

Substitution of a = ~ and fJ = ~~II then leads to 

Now let 

&2 = a(1 - a) L d5 + a(fJ - a) L d;A'}' 
(i.j)eV (i,)#(i' J') 

(i,j), (i' /)eD 

A = a(l - a) L d5 and B = a(fJ - a) L dijd;,}' 

so that 

Then we have 

(i,j )E'D (i.j)#Ci' j') 
(i,}),(i' j')eD 

&2 = A + B 
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- a\1 - a)21E [ L d~] + a2
(1 - a)21E [ L d5d~j'] 

(i,j)EV (i,j)#(i' j') 
(i,j),(i',j')eV 

= a 2(1 - a)2eIE[d4] + a2(1 - a)2e(e - 1)1E2[d2] 

Since a 2(1 - a)2e = 0(1) and a 2(l - a)2e(e - I) = N 2 + O(N) we get 

IE[A2] = N2Ie[d2] + O(N) 

Next, we calculate IE[AB] 

E[AB] = a
2
(l - a)(fJ - a)IE [C~V dj~) ((i,j~,j') djjdj,P)] 

(i,j), (i' ,j')ED 

- a 2(1 - a)(fJ - a)2e(e - I)IE[d3]IE[d] 

+ a2(l - a)(fJ - a)(e - 2)e(e - 1)IE[d2]1E2[d] 

Using a 2(1 - a)(fJ - a)2e(e - I) = 0(1) 
and a 2(1 - a)(fJ - a)(e - 2)e(e - I) = _N2 + O(N) we obtain 

IE[A B] = _N2IE2[d]IE[d2] + O(N) 

Finally, we calculate IE[B2] 

IE[B2] = a
2
(fJ _ a)21E [( L dUdj,P) 2] 

(;,))#(j''/) 
(i .j),(i' ,j')EV 

a 2 (fJ - a)22e(e - I)IE2[d2] 

+ a 2(fJ - a)2(4e - 6)e(e - 1)IE[d2]e[d] 

+ a 2(fJ - a)\e - 4)(e - I)e(e - J)1E4[d] 

Straightforward calculation leads to 

IE[B2] = N2IE4[d] + O(N) 

Consequently, we find that 

Subtraction of 

yields 

IE[(a2)2] = N2(IE[d2] _1E2[d])2 + O(N) 

1E2[a 2] = N2(1E[d2]_IE2[d])2 + O(N) 

IE[(a2)2] _IE2[a2] = O(N) 
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Hence, 

3. rk is self-averaging. 
This proof is analogous to the proof that the instance variance is self-averaging. 

D 

Theorem 3.6. Let (5, !) be an instance of the TSP. Define LM(J) to be the number of local 
minima in Sand LM(f, c) to be the number of local minima in S with coste. Let t be a randomly 
chosen tour, and w(c) the density oft in the instance class. Then. 

E[LM(J)] - 151 ·1P{t is a local minimum}, 

IE[LM(J, c)] = 151 ·IP(t is a local minimum I c}w(c). 

Proof Let all solutions in 5 be consecutively numbered. Then. we can define 

{ 0

1 if solution i is a local minimum in instance f 
Xi(J) = else 

{ 0

1 if solution i has cost c and is a local minimum in instance f 
Xi(J, c) = 

else 

We use w(!) to represent the joint density of all distances in the instance class. Consequently 
we have 

LM(J) = X, (J) + ... + XISI(J) 

LM(J, c) = Xl(J, c) + ... + XISI(J, c) 

Furthermore, it is not difficult to see that 

J w(J)Xi(J)df = IP(tour i is a local minimum} 

holds for any i and is, in fact, independent of i. Then, we prove 

1. IE[LM(J)] = 151 ·1P(t is a local minimum} 
It is easy to see that 

IE[LM(J)] - J (Xl (J) + ... + XlsM»w(J)df 

J X,(J)w(J)df + ... + J XlsM)w(J)df 

- 151 ·1P(t is a local minimum} 

2. IE[LM(J, c)] = 151 ·!p(t is a local minimum I c}w(c) 
Analogous to the proof of I. 

Next, we consider Conjecture 3.1. 

22 

D 



Conjecture 3.1. Let (5, f) be an instance 01 the TSP, and let LM(f) and LM(f, c) be as 
defined in Theorem 3.6. Let t be a randomly chosen tour. Then, we conjecture that 

[
LM(f, C)] . . . 

E LM(f) = w(clt IS a local mllllmum). 

By definition, we have for the left term 

E [LM(f, C)] = J (XI(f, c) + ... + Xlsl(f, c» w(f)dl 
LM(f) (XI (f) + ... + Xlsl(f» 

However, for the right term we have 

( I · I I .. ) !:....I-,;:(x_1 (..:../.,...' c:-) _+_._. ·_+_X-"IS....;.I.,.:.U",., c,-)--,)w--:(..:.../,..,)d,.:-I wet IS a oca mlmmum =-
I(xM) + ... + XISI (f)w (f)dl 

A proof that both terms are equal could consist of showing that LM (f) is more or less a constant. 
Possibly, this might be done by proving that LM (f) is self-averaging. D 
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