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Polarization effects in the ionization cross section of Ar, Kr,
and Xe by laser-excited Ne**[(2p)°(3p);J =3, M] atoms
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M. F. M. Janssens, H. C. W. Beijerinck, and B. J. Verhaar

Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 20 July 1989)

In a crossed-beam experiment the total ionization cross section for the title systems has been in-
vestigated in the range 0.1<FE (eV) =<4 of collision energies. The population of the short-lived
Ne**[(3p);J =3] state is produced by saturated optical pumping of the
Ne*[(3s);J =2]<Ne**[(3p);J =3] two-level system with a polarized laser beam, resulting in a
well-determined distribution of the magnetic substates |J,M ) with respect to the relative velocity g.
By measuring the ion yield in the scattering center at five different orientations of the laser polariza-
tion (linear and circular) with respect to g, the data can be analyzed in terms of pure-state total ion-
ization cross sections Q'™ corresponding to a single asymptotic state |J,M ). The observed polar-
ization effect at E =0.1 eV is 3Q'M'=01 30'MI=3=3 5 which is in good agreement with the data of
Bussert, T. Bregel, R. J. Allan, M. W. Ruf, and H. Hotop [Z. Phys. A 320, 105 (1985)] in the
thermal energy range as obtained by analyzing the Penning electrons. This polarization effect de-
creases to a value of 1.4 for E >2 eV. The results are discussed in terms of semiclassical scattering
calculations with an optical potential as input, using a model-potential approach for calculating
both the real and the imaginary parts. For the autoionization width this results in a two-state I,
and I', basis for the ¢’ and 7' orientations of the (Zp)fl hole, calculated in a one-electron orbital
overlap approximation. The preference for the 2=0,1 states at E =0.1 eV indicates the correct
relative scaling of these two ionization widths, leading to I',,=79I",. at R =4.5a,. The observed
energy dependence is due to the decrease of “locking” of the total angular momentum J to the inter-
nuclear axis R with increasing angular velocity $, leading to the dynamical criterion wpm=443 for
the transition of a space-fixed to a body-fixed description of J. The semiclassical precession frequen-
CY ®pc Of J around R is related to the average () splitting of the real part of the optical potential by
Opree={AV g 0+ ) /#i. With these assumptions we observe a good agreement between the experi-
mental results and the semiclassical calculations. Finally, we discuss the validity of a semiclassical
locking picture, with emphasis on the difference between locking of the angular momentum versus
locking of the electron orbitals involved.

1 OCTOBER 1990

I. INTRODUCTION

Scattering experiments with polarized atoms have be-
come possible with the availability of stabilized cw
single-mode dye lasers. The alignment of the excited
atom with respect to the initial relative velocity g is
determined by the laser polarization. Polarization effects
as a function of the angle between laser polarization and
relative velocity have been observed in (Ca,Sr)-rare-gas
spin-changing collisions [, /1 in = Qmax /Cmin = 1.2 to
2.5 (Refs. 1-4)] and in ionizing collisions of excited Ne
states with Ar [I .. /I . =1.33; Qp./Omin=1.8 (Refs.
5 and 6)]. The interpretation of the observed polarization
effect [1,../Imin] in terms of cross sections for the
different magnetic substates [Q .. /Qmin] is not always
straightforward, as can be seen in the case of associative
ionization of two Na(3p) atoms [[,, /1, =2; negative
Q values (Ref. 7)]. Very large polarization effects
(I max /L min = Qmax /Qmin =35 to 10) occur in the case of in-
tramultiplet mixing of short-lived Ne**[(2p)3(3p)] atoms
colliding with He.3 7 1°

Many interesting features of the potential surfaces and
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collision dynamics can be obtained from these polariza-
tion effects. A full quantum-mechanical analysis is the
proper way and has been successfully applied in one
case.® It is a rather elaborate calculation with little gain
in insight in the collision dynamics. Semiclassical mod-
els, although not fully correct, have proven so far to give
more insight into the ongoing collision dynamics.® A
very interesting feature in a semiclassical analysis is the
concept of “locking”.!°"'7 During a collision the two
atoms pass through regions where different coupling
schemes apply.'®!®  The interpretation of this
phenomenon in terms of “orbital locking” is a hot topic
in the recent literature. There are both arguments
for'®~ 15 as well as against'®!” this “locking” picture, with
an angular momentum (J, L, or S) going from a space-
fixed situation to a body-fixed situation.

The interpretation of the observed polarization effects
in the underlying inelastic processes is very sensitive to
this locking picture.® Therefore a clear picture of the ap-
plied locking interpretation must be given when analyz-
ing polarization effects.

Our primary aim is to study the polarization effects in
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the ionization cross section of the Ne**[(3p);J=3]-
(Ar,Kr,Xe) systems in the energy range 0.05 < E (eV) <6.
This wide energy range is essential because it allows us to
separate the influence of locking from the actual energy
dependence of the process of ionization. The choice of
the Ne**[(3p);J=3] short-lived state is determined by
the requirements of sufficient ion intensities. Although
the state is short lived (=20 ns), this state is the upper
level of the Ne*[(3s);J =2]«<>Ne**[(3p);J=3] two-level
system, with a metastable lower level. By saturated laser
excitation both states become nearly equally populated.
This also results in an additional problem in analyzing
the data. Due to the repeated excitation, both the upper
and the lower level become polarized. For a correct
analysis of the upper-state polarization effect, it is thus
essential to perform a separate measurement of the polar-
ization effect in the ionization cross section of the meta-
stable lower state. The only data available for this polar-
ization effect are of Bregel et al.?® for the energy range
30 < E (meV) < 150 and of Driessen et al.?! in the energy
range 50 < E (meV) < 5000.

The process of Penning ionization is usually described
in terms of an optical potential, which consists of a real
part V(R) determining the classical trajectory, and an
imaginary part, the so-called autoionization width I'(R).
In Sec. II we discuss the model-potential method for cal-
culating ¥V (R) and extend this approach to the imaginary
part I'(R). In this way a rather simple expression for
I'(R) is obtained, which can be applied to both the meta-
stable and the short-lived states with the advantage of a
rather limited number of free parameters.

The experiments have been performed in a crossed-
beam machine (Sec. III), with a well-defined relative ve-
locity vector g. The process of optical pumping produces
a distribution of magnetic substates with respect to the
laser quantization axis (electric field E or wave vector k),
which has to be transformed to the quantization axis g
which is relevant for the collision process. Both the pro-
cess of optical pumping and this transformation are dis-
cussed in Sec. IV.

In Sec. V we discuss the experimental signals that we
obtain in our measurements of the polarization effect in
the ionization cross section. In Sec. VI we present mea-
surements of the polarization effect in the ionization
cross section of the short-lived upper level. To obtain a
high accuracy we have first sacrificed the energy resolu-
tion, presenting data at the average energies of the two
beam sources used being E =130+50 meV and
E =2500£1500 meV. This allows a detailed and direct
comparison with the Penning ionization electron spec-
troscopy data of Bussert at thermal energies.®> The polar-
ization effects have also been studied including energy
resolution (Sec. VII). In this case we analyze the
influence of the polarization effect of the Ne*[(3s)] lower
level on the polarization effect of the Ne**[(3p)] upper
level.

In Sec. VIII we discuss the observed differences for the
Ne*[(3s)] and Ne**[(3p)] states in terms of a semiclassi-
cal locking model for the rotational coupling of the total
electronic angular momentum J and the dynamics of the
ionization process in terms of our model-potential ap-
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proach for the autoionization width I'(R). The compet-
ing process of intramultiplet mixing has also been includ-
ed in these semiclassical model calculations, using an ap-
proach similar to that of Manders ez al.!® for the Ne**-
He system.

II. DYNAMICS OF PENNING IONIZATION

A. Model potentials

The process of Penning ionization is usually described
by an optical potential ¥, (R) given by

Vou(R)=V(R)—LiT(R) . (1)

The real part V(R) determines the classical trajectories
and the autoionization width I'(R) takes into account the
loss of flux due to ionization. In a classical interpretation
the ionization rate at an internuclear distance R is equal
to I'(R) /4.

Ab initio calculations of the potential curves involve
all electrons, e.g., for the Ne**-Ar system a total of 28
electrons.?>?’ The model-potential method, which only
considers the motion of the valence electron in the
effective potential of the two cores, is much less labori-
ous.?*?% 1t has been successfully applied to generate adi-
abatic potential curves for the Na-Ne system”® and the
Ne**-He system.®?> In the latter case the nonisotropic
interaction with the (2p) ' core of neon has to be taken
into account as well. The same holds for the Ne**-Ar
system.

Firstly, the one-electron Schrodinger equation is solved
for the isotropic part of the interaction with the Ne*
core without spin-orbit interaction, which results in a
two-dimensional basis V,(R) and V_(R) for the
|(3p);|m ,|=0,1) states of the valence electron. Because
the actual atomic states |LSJM J> are not pure o or T
states, the matrix elements of the one-electron interaction
are linear combinations of V,(R) and V_(R). The adia-
batic potential curves of the molecular system are then
obtained by diagonalization of the total Hamiltonian, in-
cluding the spin-orbit coupling and the nonspherical part
of the valence electron-core interaction of the neon atom.

To determine the basis potentials for the (3s,3p)
valence electron in the Ne**[(2p)%(3s,3p)]-Ar molecular
system, we use the potential moments calculated by
Diiren et al.?® for the Na'*'[(2p)%3s,3p)]-Ar system.
The electronic configuration of the Ne atom and the Na
atom are identical, except for the (2p)'1 core in the neon
case. This results in an additional anisotropic interac-
tion, which becomes noticeable only at short internuclear
distances R. The Hartree-Fock wave functions for Ne
and Na are almost identical,?’ therefore we use the
Na*'[(2p)®3s,3p)]-Ar potential curves V_(R) and
V.(R) for the Ne*'*-Ar system. The extra potential
splitting V°"®(R), due to the anisotropic core
configuration, is based on the Ne™-Ar system,® as given
by

Vr(R)=990 (eV) exp(—2.03a5 'R) . (2)

The potentials for the core interactions are now given by
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V(;[?l‘e(R): __%VCOI‘&(R) ,
(3)
V?r(')re(R ):_;_VCO[‘C(R) A

We have constructed the real potential curves using
the recipe of the model-potential method of Hennecart
and Masnou-Seeuws.?*?* The contribution of the aniso-
tropic Ne(2p)® core has been taken into account accord-
ing to the extension of the model-potential method as de-
scribed by Manders et al.® The input potential curves
are V_,(R) and V _(R) for the Ne(3p)-Ar interaction and
Vre(R) and V™(R) for the Ne(2p)>-Ar core interac-
tion. We thus obtain adiabatic potential curves for all
Ne**[(2p)3(3p);JQ]-Ar states, with Q the absolute value
of the magnetic quantum number of the total angular
momentum J with respect to the internuclear axis. The
real potential curves we have thus constructed for the
Ne**[(2p)*(3p);J =3,Q]-Ar system are depicted in Fig.
1. As already noted by Bussert et al.,>° the repulsive
barrier of Ne**[J =3,Q2=0" ]-Ar potential is the result
of an avoided crossing with Ne**[a,,J =1,0=0" ]-Ar
potential with a, the 2p, state in Paschen notation. In
our semiclassical calculations (Sec. VIII), we have includ-
ed Landau-Zener transitions between the neighboring
states with Q=0": ag(J =3)«<>a;. The intermediate
maximum in the Ne**[J =3,Q2=0" ]-Ar potential curve
has been confirmed in the Penning ionization electron
spectroscopy (PIES) experiments of Bussert et al.’ and
Bregel et al.?® The Ne**-Ar potentials are almost the
same as the ones Bussert calculated,>® only the repulsive
wall of the potential lies at shorter internuclear distances
in our case. This difference originates from the fact that
Bussert takes into account the (3s) contribution in the
calculation, which we neglected. The repulsive branch of
the potentials is not reliable, because it is very difficult to
obtain a complete basis set and because the model-
potential method loses its validity in this R range. For a
comparison we have depicted the best available

100—

V(R) (meV)

0 5 10
infernuclear distance R lunits of ap)

FIG. 1. The real potential curves Fqo(R) for the
Ne**[(2p)®(3p);J=3]-Ar system, calculated with the model-
potential method of Hennecart and Masnou-Seeuws (Refs. 24
and 25) in combination with the (3p) input potentials of Bussert
et al. (Refs. 5 and 6), in comparison with the best available
Ne*[(3s)]-Ar potential of Gregor and Siska (Ref. 29).
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Ne*[(3s)]-Ar potential of Gregor and Siska®® as well. It
has been shown that this potential gives a good descrip-
tion of elastic differential cross sections at thermal ener-
gies®® and total scattering cross sections in a wide energy
range.*°

B. Autoionization width

To determine the R dependence of the autoionization
width T'(R) of the optical potential, we have to obtain in-
sight in the mechanism of the process of ionization. Two
mechanisms have been proposed:*>3! a radiative mecha-
nism and an exchange mechanism. In the radiative
mechanism the excited Ne*'*’ state decays to the ground
state, accompanied by the promotion of an electron of
the target atom to a free-electron state in the continuum.
In the exchange mechanism an electron of the target
atom is transferred to the (2p)‘1 hole of the neon atom,
with a simultaneous transition of the excited valence elec-
tron to a free-electron state. The excited Ne*'*' states
that we deal with are pure triplet states. Because of the
optical selection rules, the radiative mechanism can be
neglected and the exchange mechanism is expected to be
dominant. ®

A full calculation of the autoionization width requires
the calculation of two-electron two-center integrals,
which takes into account the two electrons involved in
both the initial and final state.’>33 This rigorous ap-
proach has been put into practice,>*3° e.g., for the He*-
(H,D) system. A commonly used approximation for the
autoionization width I'(R) is the squared overlap integral
of the two orbitals involved in the first step of the ex-
change mechanism, i.e., the transfer of a target electron
to the (2p)"! hole of neon. For the Ne*'*'-Ar system
both orbitals are p orbitals and thus this overlap integral
is orientation dependent. We can discern two orienta-
tions |(2p) !, |m,|=0,1) of the core, resulting in a two-
state basis I' (R) and " (R). For the radial part of the
atomic wave function we have used the wave function of
Clementi*® for Ar(3p) and the wave function of Haber-
land®’ for Ne(2p); for the angular part of the usual spheri-
cal harmonics have been used. With these oriented wave
functions we have calculated the squared overlap in-
tegrals, denoted as ', and I' .. These autoionization
widths are depicted in Fig. 2, with the corresponding
orientations of the orbitals involved given in the inserts.
We observe that both autoionization widths can be de-
scribed in good approximation by a single exponential
function with a cutoff at small internuclear distances, in
agreement with experimental evidence.*®* ~*° Of course, a
sharp nonanalytical cutoff represents a nonphysical be-
havior. In general, the accuracy of experimental infor-
mation is not sufficient to determine more detail such as a
smooth transition to saturation. Only for a limited num-
ber of cases can this be done.>® Secondly, we remark that
I' (R) falls off more rapidly, because both the radial and
the angular dependence of the orbitals involved influence
the R dependence. Because the electron that makes a
transition to a free-electron state in the exchange mecha-
nism has not been taken into account, the absolute value
of both functions and their scaling relative to each other
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F(R) (arb units)

0 5 10
internuclear distance R (umits of ag)

FIG. 2. The calculated two-state basis set I',.(R) and " .(R)
for the autoionization width whose elements are proportional to
the squared overlap |[{Ne(2p)~',m,|Ar(3p),m,)|* (m, =0,
+1). The inserts show the two configurations of projectile and
target orbitals that contribute. The scaling of the two autoioni-
zation widths relative to each other is undetermined because the
influence of the second electron on the matrix element has not
been taken into account.

is still undetermined. This overlap calculation only gives
information on the shape of the functions. The range of
validity is estimated at R > 5a,, which is based on the
molecular wave-function calculations of Hennecart and
Masnou-Seeuws. 242

As discussed in the model-potential approach, the adi-
abatic atomic |LSJM, ) states and the adiabatic molecu-
lar |J,Q) states are thus linear combinations of both
basis functions. Moreover, a detailed analysis of the au-
toionization width in terms of the Feshbach formalism
shows that in the local approximation the autoionization
width is diagonal in the quantum number Q.%*%* This re-
sults in

Tyo(R)=c, (R)IT(R)+[1—c,.(R)IT.(R) .  (4)

The weight factor c,.(R) is the squared amplitude of the
o' contribution to the wave function of the |J,Q) state,
i.e., the relative population. For both excited states
Ne*[(3s);J =0,2] and Ne**[(3p);J =3], the weight fac-
tors ¢, for pure atomic conditions are given in Table I.
For the Ne*[(3s);J =2] and the Ne**[(3p);J=13] states
the spin and orbital angular momentum of the core and
the valence electron are all aligned, resulting in a gradual
decrease of the o’ character of the Ne*'*’ state with in-
creasing Q) values. For the Ne*[(3s);J=0] state an iso-
tropic mixture of o' and 7' character is observed.

This new approach to the autoionization width proves
to be very valuable in explaining the ionization cross sec-
tion for both metastable states and short-lived electroni-
cally excited states, as discussed in Secs. II C and VIII.

C. New light on metastable atom ionization cross sections

The two metastable states Ne*[(3s);J=0,2] both have a
(3s) valence electron and an oriented (2p)~! core. In a
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TABLE 1. The relative populations ¢, of the (2p) " core for
the atomic Ne*'*'[J, Q] states.

Q=0 Q=1 =2 Q=3
Ne**[(3p);J=3] = L % 0
Ne*[(3s);J=2] 2 1 0
Ne*[(3s);J=0] 1

collision experiment of unpolarized Ne*[(3s)] atoms both
metastable states will have an randomly oriented (2p) !
core. This would result in the same cross sections °Q and
2Q for both Ne*[(3s);J=0,2] states. State-selected exper-
iments using a laser beam technique, however, show a
30% larger ionization cross section °Q for the
Ne*[(3s);J=0] state in the thermal energy range increas-
ing to 50% in the superthermal energy range.>® Despite
all experimental and theoretical effort in the past 15
years, this cross-section difference has remained as one of
the unsolved basic problems.*' ~** The cross-section ra-
tio °Q /2Q can be explained by a difference in either the
real part and/or the imaginary part of the optical poten-
tial. It is generally accepted that the difference in the real
potential ¥V (R) for the two Ne*[(3s)] states is negligi-
ble.** A difference in the imaginary part I'(R) seems to
be obvious. However, there is no mathematical evidence
for a difference in the autoionization width as of yet. We
will discuss the influence of the imaginary part in detail,
using the model autoionization width of Eq. (4) as start-
ing point.

An important observation is that the spherical average
of the weight factors c,.(Q) for the Ne*[(3s);J=2] state,
given by (c,)=1{c, (2=0)+2c,(Q=1)+2c,(Q
=2)}, is equal to the value of ¢, (Q=0) for the
Ne*[(3s);J=0] state, as follows directly from the under-
lying vector algebra. This implies that, independent of
the shape and magnitude of I';.(R) and I'(R), the
spherical average of the TI';o(R) functions of the
Ne*[(3s);J=2] state, given by I ,(R)=1{I"x(R)
+2I,,(R)+2T,,(R)}, is also always equal to the au-
toionization width [y(R) of the Ne*[(3s);J=0] state.
This does not imply, however, that the ionization cross
section 2Q for a nonpolarized beam of Ne*[(3s);J=2]
atoms is equal to the cross section °Q for unpolarized
Ne*[(3s);J=0] atoms. The full dynamics of the collision,
which is essentially nonlinear in the autoionization
widths I, enters this last step.

As already stated in Sec. II B, the relative scaling of the
basis functions I' «(R) and I' .(R) is still undetermined.
A choice has to be made for this scaling factor, based on
experimental evidence: the ratio °Q /2Q, the polarization
effects 2Q'™! /2Q, or the fine-structure branching ratio of
the Ar® final states. According to the analysis of
Morgner,* the autoionization width is proportional to
the squared matrix elements lum4’mlz, with the indices
referring to the magnetic quantum numbers of the
Ne(2p)~! hole and the Ar(3p) core electron. Based on
the experimental cross-section ratio*!  for the
Ar*(*P,,,,’P,,,) fine-structure branching ratio, which
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strongly deviates from the statistical ratio 2 for both the
J=0 and J=2 metastable states, Morgner*’ finds
Ug/u;;=—1/0.106, which leads to a ratio
[,(R)/T (R)=|uy/u,;|*=89 in our description. The
relevant range of R values for Ne*[(3s)]-Ar ionizing col-
lisions is determined by the range of classical turning
points for trajectories with impact parameters b <6a,
(Fig. 3), resulting in a 6a;, <R <8a, at collision energies
of the order of E~50 meV. Figure 2 shows a ratio
I',. /T ,=10.4 increasing to 22.7 for R values increasing
from R =6a, to R =8a,, which implies an extra scaling
factor between 8.6 and 3.9. With our simplified one-
electron model, however, it is not possible to calculate
the Ar* (2P, ,,%P; ,,) fine-structure branching ratio.

Secondly, we can also determine this scaling factor by
analyzing the Ne**[(3p);J=3]-Ar cross sections, with
the 3QM=0 30 IMI=3 ratio as the most sensitive parame-
ter (Sec. VIII). This leads to a scaling factor 9 in favor of
the o' orientation. This factor is supported by the two-
electron model calculations of the autoionization func-
tion for this system, as presented elsewhere,* which pre-
dict a scaling factor between 8 and 24 in the relevant
range between R =5a, and 6a,,.

As a compromise we have chosen the scaling factor
equal to 9, which gives the best agreement with the avail-
able information for both the metastable Ne*(3s)-Ar and
short-lived Ne**[(3p);J=3]-Ar systems. At R =7a, we
then have a corrected ratio I',./I", =149, slightly larger
than derived from Morgner’s analysis. ?

We perform a semiclassical trajectory calculation for

1.0 T T T T T T T T T T T T

Ne*[(3s);J=2]

iomization probability P (b; J,M)

impact parameter b (units of a,)

FIG. 3. The calculated ionization probability P(b|J,M) for
the asymptotic pure magnetic substates [J,M ), of the metasta-
ble Ne*[(3s);J=0,2] states colliding with an Ar atom. Because
the |J =2,Q0=2) state ionizes very poorly, the |J =2,M =£2),
has a small ionization probability for small impact parameters
b. For large impact parameters the ionization probability be-
comes significant because a large (1=0,1 contribution is ob-
tained due to rotational coupling. The |J=2,M =0,%+1),
states ionize poorly for large impact parameters, because rota-
tional coupling results in a large Q=2 admixture. The
Ne*[(3s);J=0]-Ar system has a significant ionization probabili-
ty for all impact parameters which probe small internuclear dis-
tances.
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the Ne*[(3s);J]-Ar system, which will be described in
further detail in Sec. VIII. Using the real potential V' (R)
of Gregor and Siska?® for both metastable states, we ob-
tain a trajectory for all Ne*[(3s);JM]-states, independent
of the quantum numbers J,M. The asymptotic magnetic
substates of the Ne*[(3s);J=2] atom are considered to be
space fixed along the classical trajectories because we
neglect the ) splitting for this system. Because the inter-
nuclear axis rotates during the collision, we apply the ap-
propriate rotation matrix to calculate the changing Q dis-
tribution along the trajectory. On a trajectory part
(R,R+AR) each Q state moving with velocity v is at-
tenuated by a factor exp[—I;o(R)AR /(#v)], with
I';q(R) given by Eq. (4). This factor represents the loss
of flux of ionization.

For a trajectory with impact parameter b we obtain the
ionization probability P(b|J,M), which represents the
fraction that is lost through ionization in a collision of an
asymptotic magnetic substate |J,M )g. The total cross
section for ionization “Q'™! can be calculated by integrat-
ing the ionization probability P(b|J,M) over the whole
impact-parameter range according to

YoM = [ “db 2mbP (blJ,M) )

For collision energies of E=50 and 100 meV we have
performed a semiclassical calculation. In Table II we
present the results for the isotropic cross sections °Q,2Q
and the polarization effect of ?Q'™!. To compare the
semiclassical results with experimental results, we have
included experimental data of three authors in Table II.
We observe a significant polarization effect in the 2Q ™!
cross sections. Although the experimentally observed po-
larization effect of Bregel et al.?° and Driessen et al.?! is
more pronounced, we conclude that the agreement is
very good.

The Gregor and Siska potential®® has been used as the
real potential with no  splitting. Realistic potentials,
however, have an () splitting in the real part as well (Sec.
ITA). In a second semiclassical calculation we use the
suggested () splitting of Eq. (3). These calculated cross
sections are also given in Table II. We observe a minor
increase on the ratio °Q/?Q and a slightly more
significant polarization effect with respect to the previous
calculation. The influence of the () splitting is very small
because it is only probed at small impact parameters,
which only give a minor contribution to the total cross
section [Eq. (5)].

To understand the difference in the isotropic ionization
cross sections °Q and 2Q, we have depicted the ionization
probability P(b|J,M) as a function of the impact parame-
ter b in Fig. 3 for a collision energy E=100 meV. At this
energy we probe internuclear distances R >S5.7a,, for
which the o’ orientation has a much larger autoioniza-
tion width I',.(R) in comparison to the 7' orientation
(Fig. 1). Only those () states that contain a significant o’
contribution will be ionized. The Ne*[(3s);J=0] state
has a constant o’ contribution c,.(R)=1, resulting in a
significant ionized fraction [P (b|J,M)>0.25] for a large
impact-parameter range 0 <b|a,| <6.4. In the case of a
Ne*[(3s);J=2] state, only the Q=0,1 states have a o’
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TABLE II. Semiclassical results for the ionization cross section of the Ne*[(3s)]-Ar system without
(1) and with (2) Q splitting in the real potential ¥ (R), compared with experimental data of (a) Van den
Berg et al.®, (b) Bregel et al.?, (c) Driessen et al.?! The number in parentheses is the error in the last

digit given.

°Q Q0 Polarization effect
(Az) (A 2) OQ/ZQ on/zQ 2Q‘/2Q zQz/2Q

E =50 meV
Semiclassical

(1) 19.7 17.9 1.07 1.04 0.93

(2) 19.7 17.9 1.08 1.04 0.92
Experiment

(b) 1.13(3) 1.13(8) 0.81(3)
E =100 meV
Semiclassical

(1) 21.8 19.4 1.12 1.02 1.01 0.98

(2) 21.8 19.3 1.13 1.03 1.01 0.98
Experiment

(a) 24.7 18.9 1.31

(b) 1.07(4) 1.07(8) 0.89(4)

(c) 1.11(8) 1.11(8) 0.83(8)

contribution (Table I). The Q=2 state, however, has no
o' contribution and thus ionizes very poorly. This results
in a significant ionized fraction [P (b|J, M| > 0.25] limited
to those impact-parameter ranges, where a large =0,1
contribution is obtained at the turning point. As can be
seen in Fig. 3, this impact-parameter range for the Q=0
state is 0 < b(ay) <5.7; for the Q=1 state, 0 <b(ay) <5.9;
and for the 1 =2 state, 1.7 <b(a,)<6.8. The isotropic

cross section for Ne*[(3s);J=2]-Ar, averaged for
M=-—2, is 12% smaller compared to the
Ne*[(3s);J=0]-Ar cross section (Table II). This

difference is fully accounted for by the nonlinear collision
dynamics of the system. This supports our previous
statement: Equal results for the spherical average of the
autoionization width do not imply equal values of the
ionization cross section for nonpolarized atoms. With
decreasing ionization probability this effect becomes less
important, resulting in a decrease of the calculated ratio
to 2Q/°0=1.05 at E=2500 meV.* A small fine-
structure dependence of the real part of the potential only
modifies these values slightly.

Experimentally we find an increasing ratio, with
°0/20=1.27 at E=75 meV and °Q/’Q=1.76 at
E=2500 meV.’** Although a small contribution to the
ratio °Q /2Q is accounted for by these calculations, it is
clear that so far no good explanation exists for the experi-
mental magnitude and energy dependence of the °Q /2Q
ratio.

III. EXPERIMENTAL SETUP

The measurements have been performed in the
crossed-beam apparatus, previously used by Verheijen
et al.*® and by Van den Berg, et al.*® for state-selected
measurements of the energy dependence of the ionization
cross section of the Ne*[(3s);J =0,2]-(rare-gas, mole-
cule) systems. A schematic view of the machine is given
in Fig. 4, together with typical operating pressures in the
differentially pumped vacuum chambers. In this section

we only discuss the features that are important for the in-
terpretation of the data. For the production of the meta-
stable Ne* atoms two different discharge beam sources
are available: a hollow cathode arc discharge (HCA) for
the superthermal energy range 0.5<E (eV)<5 with a
typical center line intensity 7(0)=10" s !sr™! and a
discharge  excited supersonic expansion (TMS)
[7(0)=2X10" s™'sr™!] for the thermal energy range
0.05 < E (eV) <0.2. The sources can be interchanged rap-
idly without breaking the vacuum, which guarantees a
good connection of measurements in the two different en-
ergy ranges. The primary beam is detected by Auger
emission from an untreated stainless-steel surface, fol-
lowed by a CuBe multiplier and pulse counting electron-
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FIG. 4. Schematic view of the crossed-beam apparatus. The
operating pressures in the different parts of the apparatus are in-
dicated. (1) Metastable atom source: (la) hollow cathode arc
(HCA), (1b) thermal metastable source (TMS); (2) three-wheel
time-of-flight (TOF) chopper; (3) collimator, 2 mm diameter; (4)
supersonic secondary beam source; (5) scattering center; (6) col-
limator, 0.3 mm diameter; (7) metastable atom detector.
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ics. The overall detection efficiency of the system is
17™=0.54, which is determined relative to the ion detec-
tion efficiency 7'°"=0.60 in the scattering center by using
the Ne*[(3s);J=2]-Ar ionization cross section 2Q=18.3
A2at E=0.1 eV (Ref. 46) as a calibration factor. Veloci-
ty analysis is performed with a single-burst time-of-flight
method, using a mechanical chopper. The chopper disc
has two slits of different width, which allows us to choose
a time resolution appropriate for each beam source. The
open time can be chosen as 0.67% or 2% of the chopper
period. The flight path between the first chopper disc
and the metastable atom detector is L; =2747 mm. The
primary beam is collimated 870 mm downstream of the
beam source with a 2-mm-diam circular orifice, resulting
in a time-averaged flux of 10® s™! or 5X 10% s ™! metasta-
ble atoms in the scattering center.

A single-mode Spectra Physics 580A cw dye laser is
applied for optical pumping of the Ne*[(3s);J =2]
—Ne**[(3p);J=3] closed-level system at A=640.2 nm.
The laser beam can reach the scattering center from two
directions: perpendicular to the collision plane defined
by the beam velocities v; and v, or antiparallel to the
secondary beam velocity v,. The former configuration is
used for both linear and circular polarized light; the
latter is only used for a circular polarization. The size of
the laser beam at the scattering center is 3.6 mm full
width at 1/e? of maximum intensity. The laser beam and
the primary beam are always at right angles, with an ac-
curacy of 0.2 mrad as obtained by an automated pro-
cedure.*’

In the scattering center the primary beam is crossed at
right angles with a supersonic secondary beam. This sys-
tem is double differentially pumped with a slit skimmer
and a rectangular collimator (2X5 mm?) as beam limit-
ing devices, resulting in a well-defined and narrow beam
profile over the cross section of the primary beam. The
width of this profile, i.e., the scattering length of the pri-
mary beam atoms, is equal to 2.35 mm at 50% of the
maximum beam density and 2.8 mm at 10% of the max-
imum density. Compared to the full width waist of the
laser beam (3.6 mm), this guarantees an excellent overlap
of the laser beam with the beam profile. The density-
length product (n/) has been calibrated by Verheijen
et al.®® for the rare gases Ar, Kr, and Xe, resulting in
(nl)=2.8%x10"” m™2, 2.2X10"” m™?% and 1.8X10"
m ™2, respectively, for a reservoir pressure of 120 Torr.
The resolution in the collision energy E is determined
mainly by the time-of-flight spectrum of the ions, due to
this shorter flight path. Typical values are
Av, /v,=4.5% at v, =1000 ms ' and Av,/v,=12% at
v, =7500 ms~!, resulting in an energy resolution
AE/E=17.5% at E=80 meV in the thermal energy range
and AE /E=24% at E=4.5 eV in the superthermal ener-
gy range.

IV. OPTICAL PUMPING

A. Upper-level population

In order to analyze the measured data in terms of the
ionization cross section, we have to know the upper-level
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population density in the interaction region. The relative
population 7°P* of the upper level is determined by ab-
sorption, stimulated emission, and spontaneous emission.
For low laser intensities I spontaneous emission is dom-
inant over stimulated emission and an equal population
distribution cannot be reached (9°®' <1). In the case of
large laser intensities I stimulated emission is dominant
and equal populations in the two-level system will be
reached (7°"'=1). The relative population 7°" of the
up‘%er level is a function of the laser intensity Z, as given
by

opt— 1 (I/1,) ©
T
with I, the saturated laser intensity at n°®=1. We have

measured the ion signal with the excited two-level system
in the scattering center as a function of the laser intensity
I. If the difference in ionization cross section of the
upper and the lower level is large, the ion signal will show
a large dependence on the laser intensity /. This require-
ment is met in the Ne**-H, system.’®*! In Fig. 5 we
show the experimental results of the ratio & of the ion
signals with laser on and off, as a function of the laser in-
tensity, together with a least-squares analysis with the
model function of Eq. (6). The result for the saturated
laser intensity is I, =120 uW/mm?, which is a factor 3
larger than the theoretical value.*’ In our analysis of Eq.
(6) we neglected the Gaussian laser beam profile (3.6 mm
at 1/e? intensity) overlapping the secondary beam profile
(2.8 mm at 5 density). The ion signal from the edges of
the scattering center saturates at larger laser intensities 7,
leading to a larger effective value of I in our analysis.
The ionization cross-section measurements with the two-
level system have been performed at laser intensities in
the range 6<I/I, <11, with a corresponding range
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FIG. 5. The ratio R of the ion signals with laser on and off,
respectively, for the Ne**-H, system as a function of the laser
intensity I, for a linear laser polarization and B=m/4. The
least-squares analysis of the data with the model function of Eq.
(6) is given by the solid line. All AQ(E) measurements have
been performed in the laser intensity region 6 <I/I; <11.
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(B) and the alignment parameter A [Eq. (7)] for the

Ne*[(3s);J=2] and the Ne**[(3p);J=3] atoms, polarized by optical pumping with four linear laser po-
larizations [= L (E,g)] and a circular laser polarization [= L (k,g)].

Ne*[(3s5);J=2]

Ne**[(3p);J=3]

g%B) g B  guB) A giB  giB AP gP A
L(E,g)
B=0 0.476 0.476 0.048 —4 0.476 0.476 0.048 0.000 —10
B=m/6 0.321 0.516 0.163 —2% 0.223 0.468 0.266 0.043 —-6%
B=2mw/6 0.151 0.409 0.440 % 0.108 0.217 0.375 0.300 1}
B=3mw/6 0.137 0.262 0.601 2 0.089 0.208 0.173 0.530 5
L (k,g)
B=m/2 0.375 0.500 0.125 -3 0.312 0.469 0.188 0.031 —71

0.43 <7°"* <0.46 for the upper-level population. In the
data analysis we will use the average value n°P*=0.45 for
all velocities of the primary beam and for all different
series. This only introduces a minor correction of the or-
der of a few percent. Of course, it could be corrected for
in each series.

B. Degree of polarization

Repeated excitation of the two-level system
Ne*[(3s);J =3]«>Ne**[(3p);J=3] with a polarized laser
beam results in a beam of polarized atoms with a station-
ary distribution over the magnetic substates. For a linear
polarized laser beam the natural quantization axis is the
electric field vector E; for a circular polarization the
wave vector k serves this purpose. The polarized atom is
most conveniently characterized by the relative popula-
tion g¥(0) of the magnetic substates with respect to this
axis. The stationary values are determined by the relative
transition probabilities within the two-level system. The
degree of polarization can also be characterized by the
parameter A as given by*>>3

+J J
A= 3 [BM*—JU+D]gM0)/ 3 gMo).
M=-J M=—J

@)

For the scattering process of the polarized atoms the
relative velocity g is the relevant quantization axis. The
relative populations g*(B) of the magnetic substate
|J,M ) with respect to this axis are given by

+J

2

M=-J

gM(pB) [die (B)Pg™(0), (8)

with B the angle between the optical quantization axis (E
or k) and the relative velocity g. The Wigner d function
dj (B) describes the M’ mixing due to the quantum-
mechanical rotation operator. Because coherence effects
do not contribute to the total ionization cross section
(Sec. V A), the rotation operator Dige(a,B,7) over the
Euler angles is replaced by the Wigner d function that
takes on real values only.

In Table III we present the relative populations g ™!()
of the |J,M) states (g/M'=g "M+ =M Ar=£0) for five
experimental laser configurations. In case of a linear
laser polarization we get a broad |M| distribution at
B=0. Although we can match the relevant quantization

axes E and g, no pure magnetic substate with respect to g
can be excited. In case of a circular laser polarization a
pure magnetic substate is excited with respect to the
wave vector k, resulting in g3(0)=1. It is impossible,
however, to match this optical quantization axis k with
the collisional quantization axis g, because this results in
an unacceptable Doppler shift with respect to the pri-
mary beam velocity v,. Thus, for all possible laser polar-
izations we will get a linear combination of magnetic sub-
states with respect to the relative velocity g.

Using a computer simulation involving a Gaussian
laser beam profile, we have calculated the number of
absorption—spontaneous-emission cycles that is necessary
to obtain an A value equal to 90% of its stationary value.
For a linear polarized laser beam this number is eight ex-
citations. For a right-handed (RHC) of left-handed
(LHC) circularly polarized beam a larger number of 20
excitations is necessary to meet this condition. For this
latter case the stationary distribution represents a two-
level system Ne*[(3s);|J =2,M =+2), ]<>Ne**[(3p);|J
=3,M =+3),] with the + sign for RHC and the —
sign for LHC. In our case the beam profile of the secon-
dary beam (2.8 mm at ; density) is located well within
the laser beam profile (3.6 mm at 1/¢? intensity). The
primary beam particles have reached 90% of its station-
ary M distribution before entering the secondary beam
profile.

V. CROSS-SECTION MEASUREMENTS

A. Polarized-atom cross sections

For the scattering process of the polarized atoms the
relative velocity g is the relevant quantization axis. The
relative populations g™(B) of the magnetic substate
|J,M ) with respect to this axis are given by Eq. (8). The
effective ionization cross section 'Q(B) for this beam of
polarized atoms is then a linear combination of pure-state
ionization cross section QlM | with the relative velocity as
the quantization axis, as given by

+J o
‘o= 3 gMpro™M . 9)
M=-J
Of course, the ionization cross section also depends on
the collision energy E. For a given experimental situa-
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tion the direction of the relative velocity g will depend on
the collision energy E, and thus 8 will also depend on g
and thus on E.

The cross section 'Q(8) does not include coherence
effects between the different |J,M >g states. If the total
cross section is measured for a collision involving one po-
larized atom, there is cylinder symmetry with respect to
g. The result is thus invariant for a rotation over an an-
gle @ about this axis. Coherence effects, however, are
proportional to a phase factor exp[ —i (M —M')@]. The
integration over all impact parameters contains an in-
tegration over the angle ¢ from O to 27 canceling the
coherence terms for M#M'. Coherence effects thus do
not influence YQ (B). In collisions of two polarized atoms
there is no cylindrical symmetry about the relative veloci-
ty g. Therefore coherence effects will contribute to the
total cross section, as has been observed by Meijer et al.’
in collisions of two Na*(3p) atoms.

For a nonpolarized atom the weight factors are equal
to the statistical weights gM=(2J +1)7 L resulting in the
correct expression for the isotropic ionization cross sec-
tion

+J
‘o=r+1)7 3 oM, (10)

M=-J

which is measured, e.g., in a bulk experiment without any
information on the orientation of the relative velocity g
of the colliding particles.

B. Experimental signals

The time-of-flight spectrum of the primary beam of
metastable Ne* atoms is measured downstream of the
scattering center, using a flight path L; from chopper to
detector. For each chopper period the number of counts
S™(t,|L,) measured in time channel n centered at flight
time t, =L, /v,, with v, the velocity of the atom, is given
by

Sm(tn |Ld)=nmI(O)QdF(tn |Ld )Tch
=9"N "(t,|Ly)7e, » (1

with 7™ the efficiency for metastable-atom detection.
The flux N "(z,|L;) of metastable atoms arriving at the
detector with flight time ¢, is determined by the center
line intensity 7(0) (s~ 'sr™!), the solid angle Q, of the
primary beam seen by the detector, the duration of one
time channel 7,4, and the flight-time distribution
F(t,|Ly). From the time-of-flight spectrum S™(z,|L,)
we can determine by deconvolution the velocity distribu-
tion, which is then convoluted once more to determine
the time-of-flight spectrum S™(z,) of metastable atoms
arriving at the scattering center. This procedure of spec-
trum transformation is described in detail by Van Vliem-
bergen et al.>*

The beam of metastable atoms has an isotropic distri-
bution *°Ne:?'Ne:??Ne=90.9:0.3:8.8 and for each isotope
a distribution over the two metastable states. For Ne*
the latter is always close to the ratio
Ne*[(3s);J =2]:Ne*[(3s);J =0]=5:1 determined by the
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statistical weights. For the production of atoms in the
short-lived upper level, we are only interested in the rate
of arrival 2N(1;) of the metastable °Ne*[(3s);J =2]
atoms. However, information has to be extracted from
the time-of-flight spectrum S™(¢,) of all metastable
atoms. This requires a careful analysis of all assumptions
entering the analysis. First we have to consider the
detection efficiencies for both metastable states. The
time-of-flight spectrum S™(¢; ) has to be written as

S™t ) =" N1 )7, + O ON (1 )1y + " "Nt )Ty
(12)

where the superscript indicating the metastable states
with J=2 and J=0, respectively, or the metastable iso-
topes, indicated by the superscripts . Although there is
some experimental evidence for a different detection
efficiency for both metastable states, we assume
throughout this paper that ™ =%m"=2y"="y". Second,
we have to consider the shape of the flight-time distribu-
tions for the different species. Due to the larger mass of
the 2>Ne isotopes, we can expect that in a supersonic ex-
pansion these atoms will lag behind, usually indicated by
slip. In a separate experiment®® this effect has been stud-
ied resulting in a flow velocity ratio for the two isotopic
species of u (**Ne)/u (**Ne)=0.98. This small effect has
been neglected. The approximation used for the rate of
arrival of °Ne*[(3s);J =2] atoms at the scattering center
is then given by

IN(1, )=2fN ™1, )=2fS"(t,) /(1) (13)

with 2f the relative population of the 2°Ne*[(3s);J=2]
atoms. We get similar expressions for the other metasta-
ble state °N(t,)=°fN ™(t,) and for the ?’Ne isotope
'N(t,)="fN ™(t,). Assuming a statistical distribution
over the two metastable states we get 2f=0.7575,
0f=0.1515, and "f=0.091. With the laser beam switched
on, the rate of arrival of atoms in the short-lived upper
level is then equal to 3N (2, )=n"' 2N (1, ).

Collisions with secondary beam atoms at the scattering
center will produce ions. The number of counts from the
spiraltron S§" (¢, ) that is registered in time channel k of
each chopper period is equal to

SEM (1) = 7"y (g /v Inl YN (1)
X[*f2Q(8,)+°r°Q(g)+717Q(g)] (14)

with ((g, /v, )nl) the effective density-length product of
the secondary beam, including the kinematic factor
g /v,. This expression is valid when the attenuation of
the primary beam by elastic collisions is small.*® We as-
sume that the cross section of the ??Ne isotope, denoted
as 'Q, is equal to that of the °Ne isotope. Without the
laser beam the atoms are unpolarized. In this situation
we measure a cross section that is weighted with the sta-
tistical populations (°Q +52Q)/6. Switching on the laser
results in a decrease of the 2N(z,) signal and a corre-
sponding increase of the upper-level signal, resulting in
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S (2, 1B )= NP { (g /v, Il YN ™(2,,)
X[ 7P 230 (g, 1By)
+(1—=7°P) 2f20 (g, 1By )
+97°Q (g,)+77"Q ()] - (15

Both the upper and the lower level become polarized and
we have to use the effective polarized-atom cross sections
J0(g, 1By ) to calculate the contribution to the ion signal.
The direction of the relative velocity g, in the Newton di-
agram depends on the magnitude of the primary beam
velocity vy, which implies that at a fixed laser polariza-
tion the angle 3 also depends on the time channel k. The
difference of the ion signals with laser switched “on” and
“off’ is given by

AS©Y 1, B ) =S¥ (1 |By ) —SE" (1)
= pionr . (g /v nl YN ™(t,)
X{ 1P 2 f [P0 (g 1Bk —2Q (g 1Bi)]
+21°Q (g 1B ) —2Q (8]} - (16)

This equation shows that for the analysis of the
polarized-atom cross section of the upper level we need
both the isotropic cross section *Q(g) as well as the
effective polarized-atom cross section 2Q(g|B) of the
lower metastable state Ne*[(3s);J=2].

The final result for the effective cross-section difference
AQ (gk lBk ) is

AQ (g 1B )=Q (i 1Bk ) —Q (8x 1B

= (1) 7' *Q (gx 1Bk ) —*Q (g )]
+ gy /oIl ) P 7!
ASion(Ik |Bk ) ?1”'
ZfS m( 2 ) nion .

This result can be used to determine AQ (g, |8, ) from the
experimental signals. Two types of measurements have
been performed. First, the ion signal difference has been
measured as a function of B without velocity selection
(Sec. VI). Second, at five angles B,, the time-of-flight
spectra have been measured and analyzed in terms of the

energy dependence of the polarized-atom cross section
(Sec. VII).

(17)

VL. POLARIZATION EFFECTS IN *Q(B)

A. Experimental procedure

As we already discussed in Sec. IV B, it is not possible
in our experimental setup to excite a pure magnetic sub-
state |J =3,M ) with respect to the relative velocity g.
Therefore, the polarized cross section *Q () will be mea-
sured for several independent laser polarizations. Solving
the system of linear equations in Eq. (9) will result in the
polarized cross sections 3Q Ml

To obtain a high accuracy in the polarization effect, we
have first sacrificed the energy resolution. Without the
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time-of-flight chopper very large ion signals are obtained.
The cross sections resulting from these signals are aver-
age values at the collision energy of the two atomic-beam
sources available. The ratio #(f) of the ion signal with
laser on and off [Egs. (14) and (15)] can be written as
S¥(B)
Sé)on
— 14 QB 0B+ [P0 (B) 0]
2RO+ +f1Q

R(B)=

(18)

The polarized-atom cross sections *Q () and *Q (B) have
a B dependence according to Eqgs. (8) and (9). If we
neglect the polarization effect for the metastable lower
level [2Q (B)=2Q =2Q'M!], this ratio can be simplified to

opt2 £13 _2
=1+, SL2B=0Q] (19)
O+ O+ e

With the exception of the polarized-atom cross sections
30Mi of the Ne**[(3p);J=3] state, all the parameters in
this equation are known. The relative populations Of, 2f,
and "f are given in Sec. V B. Cross-section values for the
two metastable states are obtained from state-selective
measurements by Verheijen et al.*® The relative popula-
tion °P* of the upper level has been fixed at 7°P'=0.45
(Sec. IV A).

We measure the ion signals with laser on and off, as a
function of the angle 8 between the laser quantization
axis E and the relative velocity g, by rotating the linear
laser polarization E in the collision plane (v;,v,). Ex-
treme values are obtained for =0 and B=w/2. The
polarized-atom cross sections Q™' can be determined by

performing a least-squares analysis of the experimental
results for R ().

B. Experimental results

The ratio 2(B) of the ion signals with laser on and off
has been measured for the Ne**’-Ar,Kr,Xe systems.
With the two primary beam sources we obtain [-
dependent results for two collision energies (E =130%50
meV and E =2.5%1.5 eV). The experimental results for
R(B) for the Ne*'*)-Ar system are depicted in Fig. 6.
For the Ne**)-Kr, Xe systems the results are quite simi-
lar. We observe a significant polarization effect in the
thermal energy range for all systems [I,,,/I.,.~=1.15],
whereas in the superthermal energy range the polariza-
tion effect barely exceeds the statistical error bars
(1 ax /1 min = 1.01).

Based on the J=3 symmetry of the upper level, the ra-
tio 72(B) can be written as

3
R(B)= 3 R,cos(2np), (20)

n=0

where the R, coefficients can be interpreted in 3'Q!'M‘
cross sections according to Eq. (19). In a least-squares
analysis of the data, the coefficients R, and R; were
found to be negligible for all systems, resulting in
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ion signal ratio R(B)

I it ]
-3nt/6 -2m/6 -n/6 0 n/6 2m/6 3n/6

FIG. 6. Experimental results for the ratio #(B) for the
Ne**[(3p);J=3]-Ar system as a function of the angle 8 ob-
tained without energy resolution. Using the two primary beam
sources, we obtain results for two average energies E =130150
meV (open symbols) and E =2500%1500 meV (solid symbols).

30?=3Q. The coefficients R, and R, are given in Table
IV. The polarized-atom cross sections *Q'™' which are
obtained from these coefficients using Eq. (19) are given
in Table IV as well, together with the state-selected cross
sections °Q and 2Q of the two metastable states that are
needed in the analysis. The polarization effect for
Ne**[(3p);J=3]-Ar in the thermal energy range agrees
well with the experimental results of Bussert et al.,’
which have also been included in Table IV. In the
thermal energy range the polarized-atom cross sections
30'M differ by a factor of 2. The asymptotic
|J =3,M =0), state has the largest cross section; the
smallest cross section is observed for the
J=3,M :i3>g states. The cross sections *Q° and *Q'
have large error bars because the |M|=0,1 states are al-
most equally populated for every angle S (Table III). The
30°? cross section, however, can be solved very accurately
because the population of the |M|=3 state varies appre-
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ciably with respect to the other |M| states as a function of
the angle B. In this analysis we neglected the polarization
effect of the Ne*[(3s);J =2,M] lower level. In the Sec.
VII with the time-of-flight results we will take into ac-
count this lower-level polarization effect in a second
analysis.

VII. ENERGY DEPENDENCE
OF POLARIZED-ATOM CROSS SECTIONS 3Q !

A. Experimental procedure

Six different laser polarizations are chosen for which
time-of-flight experiments are performed: four linear and
two circular laser polarizations based on the 7 () mea-
surements of Sec. VI. In the thermal energy range ex-
treme values for 72(3) are obtained for laser polarizations
E|(g) and EL(g), with (g) the average relative veloci-
ty in this energy range. The four linear laser polariza-
tions are chosen with respect to these orientations, mak-
ing angles of L (E,{g))=0, 7/6, w/3, and 7/2. As can
be seen in Fig. 7, this results in angles
L(E,g )=Bytim/6 (i=0,1,2,3) for the time-of-flight
measurements with B,=0 in the thermal energy range
and By=m/6 in the superthermal energy range. Two cir-
cular laser polarizations are chosen, one with the wave
vector k perpendicular to the collision plane
[B= L(k,g,)=m/2] and one with k antiparallel to the
secondary beam velocity v, [B= L (k,g,)=arctan(v, /
v,)]. In the latter case this results in an angle B~7/3 in
the thermal energy range and B=m/2 in the super-
thermal energy range. From a Newton diagram the angle
B) between the optical quantization axis (E or k) and the
relative velocity g, for time channel k of the time-of-
flight spectrum can be determined (Fig. 7). Assuming a
stationary M distribution with respect to the optical
quantization axis, we use Eq. (6) to calculate the M distri-
bution of both upper and lower level with respect to the
radiative velocity g,.

TABLE IV. The R, and R coefficients for Ne*'*'-Ar,Kr,Xe in two energy ranges: (I) E =130+50 meV, (I E =2.5+1.5eV. Us-
ing the isotropic cross sections °Q and >Q we obtain the polarized-atom cross sections *Q ™. The Q! values are scaled with the iso-

tropic cross section *Q to show the polarization effect more clearly.

°0 kY ‘0 QM /Q
R, R, (A?) (A?Y) (A?) IM|=0 IM|=1 IM|=2 IM|=3
E =130%£50 meV
Ar 1.092(4) 0.065(2) 22.3 17.2 20.9 1.26(3) 1.20(3) 1.00(2) 0.67(1)
Kr 1.073(5) 0.071(2) 21.2 14.5 16.7 1.31(4) 1.23(4) 1.00(3) 0.62(1)
Xe 1.153(8) 0.075(4) 15.1 12.2 16.9 1.26(6) 1.19(5) 1.00(3) 0.68(2)
E=2.5+1.5eV
Ar 0.972(7) 0.005(3) 34.7 20.1 18.2 1.03(6) 1.02(6) 1.00(4) 0.96(2)
Kr 0.968(9) 0.005(3) 34.8 16.8 14.9 1.03(7) 1.02(7) 1.00(4) 0.96(2)
Xe 0.975(9) 0.009(3) 28.2 13.9 12.2 1.05(9) 1.04(8) 1.00(5) 0.94(3)
Ar Bussert er al.? E =30+10 meV 1.25(09) 1.19(7) 1.00(9) 0.68(7)
Ar Bussert et al.? E =554+20 meV 1.31(9) 1.23(7) 1.00(9) 0.61(7)
Ar Bussert et al.? E =110+30 meV 1.39(9) 1.28(7) 1.00(9) 0.51(7)

?References 5 and 27.
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FIG. 7. The Newton diagram of the colliding particles. The
average relative velocity (g) in the thermal energy range has
been indicated. The linear laser polarizations E; for the time-
of-flight measurements have been selected with respect to this
velocity (g). The angle B, = L (E;,g,)=p,+im7/6 can be deter-
mined from this Newton diagram.

As mentioned in Sec. V B, we measure the metastable-
atom signal [Eq. (11)] and the difference of the ion signals
with the laser switched on and off [Eq. (16)]. The final re-
sult for the effective polarized-atom cross-section
difference AQ (g, |B;) of Eq. (17) can be rewritten, giving
the effective ionization cross section

Q (g 1B ) =20 (gx|B)+AQ (g4 |By)

for the upper level. The ionization cross section 2Q (g, )
has been determined in state-selective measurements.3®
If we neglect the polarization effect in the lower-level
cross section 2Q (g, ), we can write the effective cross sec-
tion >Q (g, |8, ) of the upper level as

30(g,|Br)=2Q (g ) +AQ (g, 1By)
=20 (g )+ {(gy /vy )nl ) "N (5oPH) ™!

AS©(1 [By) g
ZfSM( 1 ) nion :

21

(22)

The first term for AQ (g, |8, ) in Eq. (17) is then equal to
zero and does not contribute to Eq. (22). Using the re-
sults of the time-of-flight measurements for the six laser
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polarizations, it is possible to determine the polarized-
atom cross sections 3Q|M l(gk) by performing a least-
squares analysis of the six experimental *Q (g, |8, ) values
with the model function of Eq. (22).

To determine the influence of the polarization effect of
the lower level on the polarized-atom cross sections
3Q|M'(gk ), we performed a second least-squares analysis
of the data with Eq. (21). Only scarce experimental data
are available for the 2Q'Ml(g, ) polarization effect of the
Ne*-Ar system [Table II]. The preliminary results of
Driessen’! have been obtained by optical depletion of sin-
gle magnetic substates in a magnetic field B. These data
indicate an energy-independent polarization effect for the
Ne*-Ar system of 2Q%g, ):2Q (g, ):2Q%(g, ) =4:4:3.

B. Experimental results

For the least-squares analysis of the polarized-atom
cross sections we have to determine the M distributions
for the various laser configurations. In none of the
prepared laser configurations is it possible to obtain a
pure magnetic substate with respect to the relative veloci-
ty g (Sec. IVB). In Table III the M distributions are
given for five independent laser polarizations. These re-
sults show that the [J=3,M=0), and the
|J =3,M =+1), states are almost equally populated for
all laser configurations used and it is hardly possible to
discern between the two polarized-atom cross sections
30%g, ) and 3QY(g,) [Sec. VIB]. Therefore we assume
these cross sections to be equal, leaving three polarized-
atom cross sections 3Q‘Ml(g,() to be determined in our
least-squares analysis of Egs. (21) and (22) with
30%g.)=30(g,), 2Q%gy), and 3Q3(g,) as free parame-
ters.

In Fig. 8 we present the isotropic ionization cross sec-
tions *Q (E) and Q(E) as a function of the collision ener-
gy E, for the two Ne*'*) states of the two-level system
colliding with Ar, Kr, and Xe. Using Chebyshev polyno-
mials®® T, (x) (—1<x <1), we have performed a least-
squares analysis of the isotropic cross sections *Q (E) and
2Q(E) in the energy range 0.05 < E (eV) < 5 according to

QE)= 3 ¢, Ti[x =log,o(E/0.5 eV)] . (23)
=0

The coefficients ¢, of this analysis are given in Table V.
We observe a similar energy dependence for all three rare

TABLE V. The ¢, coefficients obtained with a least-squares analysis of the isotropic cross sections
2Q(E) and *Q (E) according to Eq. (23) for the Ne*'*)-(Ar,Kr,Xe) systems.

¢, coefficients (A 2)

co ¢ c, cy C4 Ccs
20 Ar 18.16 —1.44 —4.27 —1.52 0.74
Kr 16.29 —~1.01 —1.93 —1.96 1.11
Xe 13.14 —0.54 —0.94 —1.37 0.32
0 Ar 20.67 —17.46 —0.24 —1.96 0.48 0.25
Kr 18.33 —5.04 1.06 —2.47 —0.04 0.68
Xe 16.88 —17.35 4.25 —3.48 1.34 —0.49
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FIG. 8. The energy-resolved ionization cross section *Q (E) for the Ne**[(3p);J=3]- (a) Ar, (b) Kr, (c) Xe systems, as obtained by
the least-squares analysis. For comparison we have depicted the ionization cross section 2Q ( E) of the metastable lower level as well.

gases. In the thermal energy range the *Q (E) cross sec-
tion is larger than the 2Q(E) cross section, which corre-
lates with the smaller distance of closest approach for the
Ne**[(3p)] state in comparison to the Ne*[(3s)] state.
At energies in the eV range the role of the valence elec-
tron is less important and the cross sections are nearly
equal, implying the same shape of the repulsive branch of
the potential in this range.

The energy dependence of the polarization effect
3QMI(E) /3Q (E) for the Ne**-Ar system is shown in Fig.
9, assuming a negligible polarization effect of the lower
level in the analysis [data points; Eq. (22)]. We see a large
polarization effect in the thermal energy range. In the
superthermal energy range this polarization effect has al-
most completely vanished. For the Ne**-(Kr,Xe) sys-

tems we obtain an identical polarization effect. For the
Ne**-Ar system we have performed a second analysis,
using the polarization effect of the lower-level cross sec-
tion, as discussed in Sec. VII A. The results of this
second analysis are given in Fig. 9 as well [full lines; Eq.

(21)]. The polarization effect of the *Q™I(E)/*Q(E)
cross section is even larger in this second analysis. This
is not very surprising because the (1 dependence of the
ionization probability for the Ne*[(3s);J=2] state has
the same trend as for the upper state. In Sec. VIII we
will present a semiclassical model that can explain the en-
ergy dependence of the polarization effect. The second
analysis has not been performed for the Ne**-(Kr,Xe)
systems because we have no information on the cross sec-
tions 2Q'M/(E) for these systems.
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FIG. 9. The polarized-atom cross sections 3QIM(E) for the
Ne**-Ar system scaled to the isotropic cross section *Q (E) as a
function of the collision energy E. We observe a large polariza-
tion effect in the thermal energy range, while in the super-
thermal energy range the polarization effect is almost negligible.

VIII. INFLUENCE OF LOCKING

A. Semiclassical model

To calculate the polarized-atom cross sections
JO0M(E) from the Q-dependent complex potentials
Vop(R) [Eq. (1)], we have extended the semiclassical
model developed by Manders et al.'° Basically this mod-
el is a classical trajectory calculation of the colliding par-
ticles, as already discussed in Sec. IIC. The trajectory
evolution for an asymptotic pure magnetic substate
Ne**[|J,M)g] colliding with an Ar atom with impact
parameter b is determined from the adiabatic real poten-
tials Vo(R) for the Ne**-Ar system, as calculated with
the model-potential method of Sec. Il A. Due to the ro-
tation of the internuclear axis R, the M distribution
» cM(R)lJ,M ) with respect to this axis is continuously
being scrambled along the trajectory, represented by the
R-dependent coefficients ¢, (R). The average potential
V(R) which we use for the trajectory calculation is given
by

+J +J
VIR)= 3 [en(RVo(R) /[ 3 [en(R,
M=-J M=—J

Q=|M|. (24

The potential is normalized by the total population
S [ey(R)]?, which is less than or equal to unity, be-
cause a fraction of the |J,M ) states is lost in the ioniza-
tion process.

The (3p) valence electron and the Ne (2p)~! core are
represented by the total electronic angular momentum J.
The evolution of the |J,M ) quantum numbers along the
trajectory is calculated with a semiclassical model, which
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describes both rotational coupling as well as locking.
The process of intramultiplet mixing and ionization are
also incorporated in the semiclassical model.

Rotational coupling describes the scrambling of the M
distribution caused by the rotation of the internuclear
axis. The rotational coupling is appropriate if the €
splitting in the real potential ¥ o(R) is negligible. In this
situation the ! quantum number is not a conserved quan-
tity and a space-fixed description of the J vector is applic-
able. For a large Q) splitting in the real potentials Vo(R)
a torque operates on the total electronic angular momen-
tum J. The Q splitting AV o;(R) can thus be translat-
ed into a precession frequency w,. of the J vector about
the internuclear axis, as given by

wprec(R)zAVﬂ,Qi](R)/ﬁ . (25)

This precession frequency w,..(R) has to be compared to
the angular velocity ¢(R) of the rotating internuclear
axis. The space-fixed description of the electronic angu-
lar momentum J is wvalid in the situation that
$(R)>>w,(R). On the other hand, if ¢(R) <<@yec(R)
a body-fixed description of J is necessary. There is a gra-
dual transition between the two descriptions. In our
semiclassical model, however, we have to introduce a
sharp boundary between the regions where the two J
descriptions are applicable. This locking radius R; can
be calculated with the condition

wprec(RL)szd;(RL) » (26)

where f; is a locking factor. Previous calculations with
a similar semiclassical model of Manders et al.!? for the
Ne**-He intramultiplet mixing process indicate this lock-
ing factor to be f; =4.

Because the () splitting is not equidistant for all
[Q,Q+1] combinations, we have to determine an average
Q splitting for the neighboring () levels as

AV o (R)=AV™XR)/J , 27)

where AV™*(R) denotes the maximum potential-energy
difference between the different |J,Q) states at an inter-
nuclear distance R. The precession frequency @..(R) of
the local molecular |J,Q}) states about the internuclear
axis is given by

@prec R)=AV™XR) /(JH) . (28)

The angular velocity ¢(R) is significant only for large im-
pact parameters b, corresponding with large N quantum
numbers of the orbital angular momentum of the two nu-
clei

N=pgXb=puv4(R)XR with vs(R)=¢(R)R .

For large values N >>J the N vector is approximately
conserved, because the total angular momentum
P=N+1J is a conserved quantity. This enables us to cal-
culate the angular velocity through

H(R)=|N|/(uR?) ~(N +11i/(uR?) . (29)

Using Egs. (26), (28), and (29), we can calculate a
Nk (R) value as a function of the internuclear distance
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R, which serves as the locking condition
Ny (R)+1=pR2AV™R) /(f, J#) . (30)

For a classical trajectory with impact parameter b ~NA,
with A=%/(u,g), the de Broglie wavelength, the body-
fixed description has to be used in the range of R values
where N =N, (R); outside this range the space-fixed
description is adequate. In Fig. 10 we have depicted this
Nk (R) value for the Ne**[(3p);J=3]-Ar system, to-
gether with the corresponding scale of impact parameters
for the collision energies E=100 meV and E=1000 meV.
For an impact parameter b =5a,, we see that the
Ne**[(3p);J=3]-Ar system is locked in the region
3.7 <R (units of ay) <10.3 for a collision energy E=100
meV. For a collision energy E=1000 meV this locking
region is reduced to 6.8 <R (units of a,,) <8.8.

When the body-fixed description is appropriate, the Q
splitting in the real potential V(R) is not negligible. In
our semiclassical model each local molecular state |J,M )
follows a unique trajectory determined by V(R) and no
Q) mixing due to rotational coupling occurs. Therefore,
the particle trajectory splits in (J +1) trajectories when
going from a space-fixed description to a body-fixed
description. In the space-fixed description of the elec-
tronic angular momentum J, we assume that the M distri-
bution of the local molecular states 3, cp(R)|J,M)
moves along one trajectory, which is calculated with the
average real potential V' (R) of Eq. (23). The evolution of
the local molecular M distribution ¢y, (R) to a new distri-
bution ¢, (R+AR) is calculated with the Wigner d func-
tion djy,, (Ag), with Ad the angle in the collision plane
between the two orientations ¢(R) and #(R+AR) of the
internuclear axis, as given by

+J
cy(RTAR)= S dip (Ad)ey (R) . (31)
M'==J

300 [ A S L — L — T T
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FIG. 10. The N, (R) value as a function of the internuclear
distance R. The impact-parameter scale is indicated for the en-
ergies E =100 meV and E=1000 meV. For low collision ener-
gies the J vector tends to get locked to the rotating internuclear
axis, while for high energies the J vector keeps its space-fixed
orientation.
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Because the trajectory is calculated in very small steps
(AR =0.0lay), the new M distribution is calculated only
when the internuclear axis has rotated over an angle
larger than 7 /20 since the last update of the M distribu-
tion.

Because the Wigner d function takes on real values
only, there is no phase information. These coherence
effects lead to interference effects, which are not neces-
sary negligible. Because the total cross section contains
an integration over all impact parameter [Eq. (5)], it is to
be expected that these interference effects will average
out, as in the case of Ne**-He intramultiplet mixing. 10

Rotational coupling according to Eq. (30) can be ap-
plied only if J is a good quantum number. Because we
use adiabatic molecular states (Sec. II A), there can be
some J mixing. This mixing of J quantum numbers is no-
ticeable only at “avoided crossings,” where radial cou-
pling between the different Ne**[(3p)] states occurs. A
correct description of rotational coupling of this J mix-
ture is not possible in our semiclassical model. Only a
full quantum-mechanical coupled-channel calculation in-
corporates this effect correctly.

The radial coupling, which occurs at the avoided cross-
ings in the adiabatic potentials, is incorporated in our
semiclassical model with Landau-Zener theory.!®*’ In
this manner the inelastic process of intramultiplet mixing
is taken into account. For each trajectory a crossing
probability p... is calculated for going to another Ne**
state of the (3p) multiplet. At the crossing radius R
the Ne**[(3p)] state is divided over the two states ac-
cording to this probability. The particle trajectory thus
splits into two trajectories when passing an avoided cross-
ing. In the case of Ne**-He intramultiplet mixing with a
very large polarization effect, the semiclassical results
agree very well with the experimental results and the
quantum-mechanical coupled-channel calculations.® In
our calculations for the Ne**[(3p);J=3]-Ar system, the
radial coupling to the neighboring Ne**[(3p)] states is
taken into account as well.

The spin-orbit coupling of the o’ and the 7’ state of the
Ne(2p)~! core to adiabatic Q states is much stronger
than the coupling to the continuum states through the
autoionization widths I' ,.,(R) and I' .(R). Therefore we
describe the process of ionization for each M ==+ state
of the M distribution ¢, (R) by the attenuation factor
exp[ —T";o(R)At /(2#)] rather than attenuating each o’
and 7' state independently. The total population of each
M=+ state is then attenuated by a factor
exp[ —T',o(R)At /#]. The total ionization cross section
JQ!M! can then be calculated with Eq. (5). A similar ex-
pression can be given for the total cross section for in-
tramultiplet mixing. '°

B. Semiclassical results

To explain the observed energy dependence of the po-
larization effect for the Ne**[(3p);J=3]-Ar system, we
performed calculations for several collision energies E
and for various locking conditions. Because the autoioni-
zation widths I .(R) and I" .(R) of Fig. 2 have been cal-
culated in a one-electron approximation, the relative scal-
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TABLE VI. Semiclassical results for the polarization effect *Q%'/*Q* as a function of the collision energy E for different locking
factors f; in comparison with the experimental results. The energy dependence of the polarization effect is best reproduced for a

semiclassical locking factor of f; =4.

3Q0, 1 /3Q 3
Body

fixed fr=2

Energy Experiment
(eV) (a) (b)

Space 30 (A?)

fixed Expt.

0.075 1.69 2.12
0.125 1.96 2.65 4.30
0.2 1.44 1.96 5.10
0.5 5.35
1.0 1.24 1.59 5.30
2.5 1.00 1.38 4.94

3.40 1.84
1.98
2.11
2.12
2.11

1.58

1.77
1.87
1.93
1.67
1.31
0.98

1.60
1.51
1.45
1.07
0.92
0.88

1.27
1.17
1.04
0.91
0.88
0.87

24.5
23.2
21.5

20.2
16.3

*Neglecting the polarization effect in 2Q'M.
®Analyzed with the 2Q'™! results of Driessen ez al. (Ref. 21).

ing of both functions is still undetermined. A prelimi-
nary analysis of the influence of the second electron**>®
shows that the one-electron results should be scaled rela-
tive to each other with a factor 9 in favor of the o' orien-
tation. This relative scaling is supported by our semiclas-
sical model calculations, which show that only with this
modification can an agreement with the experimental
data be obtained.

The autoionization widths used in our calculation are
finally represented by the functions

[,(R) (eV)
= | 4.362 exp(—0.658a; 'R)

1—exp[(R —2.283a,)/4.339a,] |’
1+exp[(R —2.283a,)/4.339a,] | ’

(32)
['(R) (eV)=[0.223a, 'R exp(—0.869a, 'R)]* .

The asymptotic behavior of the autoionization widths
I',(R) and T'(R) is determined by the exponential
terms exp[ —1.316a, 'R] and exp[—1.738a, 'R], re-
spectively. To compare the semiclassical results with the
experimental data, we have calculated the cross-section
ratio

Rl E)="Q%Y(E)/*Q*E) ,

with *Q®YE)=1[*Q%E)+3QYE)]. The results are
given in Table VI. The experimental value of 7 ,(E) is
given for the analysis both with and without the
Ne*[(3s)]-Ar polarization effect. Experimentally we ob-
serve a maximum in %, at an energy E=125 meV.
Semiclassically we can reproduce this maximum very well
for a locking condition f; =4. In Fig. 11 we have depict-
ed the semiclassical ionization probability P(b|J,M) as a
function of the impact parameter b for two energies at
this locking condition. For an energy E=125 meV the J
vector becomes locked to the internuclear axis, while for
an energy E=2500 meV the J vector remains space fixed.
The local molecular |J,M ==+3) state has a pure 7' con-
tribution and therefore ionizes very poorly (Table I). The
ionization probability P(b|J,M) for the asymptotic

(33)

1.0 T T T T T T T T T T T T
- E=125meV (a)

ionization probability P(b;J,M)

E= 2500 meV

L Ne**[(3p); J=3] - Ar i

ionization probability P (b;J,M)

impact parameter b (units of ag)

FIG. 11. The ionization probability P (b|J, M) for the asymp-
totic magnetic substates of the Ne**[(3p);J=3] state colliding
with an Ar atom. (a) For low energies the locking prevents the
[M|=3 state from admixing a large |M|=0,1 contribution,
leading to a small ionization probability for all impact parame-
ters. (b) For high energies, however, rotational coupling results
in a large |M|=0,1 contribution for large impact parameters
and thus increases the ionization probability.
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| M| =3 state remains very small for large impact parame-
ters at an energy E=125 meV because of this locking,
while at an energy E=2500 meV the ionization probabili-
ty becomes significant due to rotational coupling.

The results of Table VI show that in a body-fixed situa-
tion the polarization effect is too large and has no energy
dependence, whereas in a space-fixed situation the polar-
ization effect is too small. Only for a locking condition
fL>11s alarge energy dependence of the ratio #, ob-
served. Therefore we conclude that the concept of lock-
ing is necessary to explain the polarization effect
30%1 /3% and its energy dependence. In our belief the
energy dependence of the polarization effect gives very
strong evidence for a locking condition f; =4, which is
also confirmed by similar results of Manders et al.'® The
locking factor is also confirmed by Grosser'? in his
analysis of the results of Na™ scattering on laser-excited
Na*(3p) atoms of Hertel et al.,"! which also results in
f1 =4.5%1 in our approach.

IX. CONCLUDING REMARKS ON LOCKING

In this paper we have strong evidence for a semiclassi-
cal picture of rotational coupling, including a reliable
method for predicting an effective boundary between the
limiting cases of a body-fixed or a space-fixed picture of J.
With respect to the -dependence process of ionization
we have proven that a two-state basis for I'(R) is in fair
agreement with the polarization effect. In comparison
with Bussert et al.’ a considerable reduction of free pa-
rameters has been achieved.

To determine the polarization effect more accurately,
one has to eliminate the influence of the metastable lower
level Ne*[(3s);J=2] and/or to prepare a pure M state
with respect to the relative velocity g. In future experi-
ments we will meet these conditions by optical excitation
of single Zeeman states in a magnetic field B of the order
of B~300 G.

To calculate the polarized-atom cross section Q'™ we
perform a trajectory calculation with our semiclassical
model for a |J ) state with an asymptotic magnetic quan-
tum number =M. In the case of M0 the asymptotic in-
itial state can be chosen in several ways: We can choose
a pure magnetic substate |J,M) or a coherent sum
W2ALM)YE|J,—M)]. The coherent sums
W2[|J,M)*|J,—M)] correspond to electronic wave
functions that are symmetric of antisymmetric with
respect to reflection in the collision plane. In our experi-
ment we measure the total cross section with contribu-
tions from the whole impact parameter range [Eq. (5)].
The azimuthal orientation of the collision plane is not re-
stricted and a unique collision plane is not selected.
Therefore the symmetric and antisymmetric wave func-
tions will contribute equally to the polarized-atom cross
section in a semiclassical approach. Only in the case of a
pure magnetic substate |[J,M ) do we have azimuthal
symmetry, i.e., the collision system is invariant for a rota-
tion over an angle @ about the relative velocity g. An ini-
tial pure magnetic substate |J,M) determines the
polarized-atom cross section on its own. Because the col-
lision system is identical for all azimuthal orientations of
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the collision plane, the phase factor exp(—iMg) does not

contribute to the total cross section ’Q'M! [Sec. V BJ.

We have checked this assumption for the
Ne*[(3s);J=2]-Ar system. The trajectories are indepen-
dent of the choice of the initial state, because the () split-
ting in the real potential is negligible (Sec. IIC). The
cross-section results in Table VII indeed show that the
cross section 2Q™! for an initial pure magnetic substate
|/,M ) is equal to the average of the cross sections 2Q ¥
calculated with a coherent sum JV2[|J,M)£|J,—M )]
as initial state. The development of the € distribution is
not equal for the different initial states and thus in the
case of a large () splitting the average potential of Eq.
(24) differs for the different initial states. In this situation
the trajectory depends on the choice of the initial state.
Thus for a larFe Q splitting the average cross section
1[7Q'M +79 M obtained with the coherent sums is not
necessarily equal to the cross section 7Q'™! obtained with
a pure magnetic substate. For the Ne**[(3p);J=3]-Ar
system the difference was found to be less than 0.2%.

For a correct interpretation of locking we have to dis-
tinguish locking of the electron orbital from locking of
the total angular momentum of this orbital. To illustrate
this effect we have depicted the asymptotic orientation of
a p orbital |J =1) for three initial states in Fig. 12. The
asymptotic pure magnetic substates |1,+1) are sym-
metric with respect to a rotation over an angle ¢ about
the relative velocity g [Fig. 12 (I)]. Rotational coupling
according to Eq. (31) will scramble the Q distribution;
therefore the space-fixed and body-fixed descriptions are
distinguishable. The coherent sum 1v2[[1,1)—]1,
—1)] state corresponds to a p, orbital in the collision
plane [Fig. 12 (II), symmetric with respect to reflection in
the collision plane]. In this situation rotational coupling
will admix [Q=0) states as well and the space-fixed and
body-fixed descriptions are distinguishable also. The
coherent sum 1V2[|1,1)+[1,—1)], however, corre-
sponds to a p, orbital aligned perpendicular to the col-
lision plane [Fig. 12 (III), anti-symmetric]. Due to rota-
tional coupling according to Eq. (31), no |[2=0) states
can be obtained and therefore the space-fixed and body-
fixed descriptions are indistinguishable. In our opinion

TABLE VII. The polarized-atom cross sections Q'™ for the
Ne*[(3s);J=2]-Ar system at a collision energy E=100 meV,
calculated for three different initial |J, | M| ) states.

Ne*[(3s);J =2] 20 1Ml

Initial state (A?)
W2(12,1) 412, —1)); sym.(+) 15.41
1V2(12,1) =12, —1)); antisym.(—) 6.29
12,1) 10.85

Average value (?Q' +2Q')/2 10.85
1V2(12,2) +12,-2)); sym.(+) 9.94
1V2(12,2) =12, —2)); antisym.(—) 9.66
12,2) 9.80

Average value (*Q% +2Q%)/2 9.80
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FIG. 12. The asymptotic orientation of a p orbital |J =1) for
three initial states. The |1,+1) states have azimuthal symmetry
except for a phase factor exp(—iM¢) (I). The symmetric state
1V2[11,1) —=[1,—1)] corresponds to a p, orbital lying in the

collision plane (II), while the antisymmetric state
1V2[|1,1) +[1,—1)] corresponds to a p, orbital perpendicular
to the collision plane (III). The coherent sums

1V2[[1,1)£[1,—1)] are not symmetric if the collision plane
rotates over an angle @.

the interpretation of Alexander and Pouilly'® of the p,
orbital aligned perpendicular to the collision plane as a
pure space-fixed situation is incorrect. In our locking
picture the J vector will lock to the internuclear axis,
which leads to a straightforward interpretation. In an or-
bital locking model, however, the locking interpretation
is not straightforward, as we have shown above.

A limitation in our semiclassical model is the fact that
the particle trajectory is restricted to the initial collision
plane. In the case of an initially prepared wave function,
which is antisymmetric with respect to reflection in the
collision plane, it must remain antisymmetric and vice
versa. For large quantum numbers N the orbital angular
momentum of the two nuclei is practically conserved, be-
cause the total angular momentum P=N+1J is a con-
served quantity (N >>J). Therefore the collision plane ti-
Its over a very small angle and the corresponding scram-
bling of the symmetry of the initial prepared wave func-
tion is negligible. For small impact parameters (N =J)
this effect will become noticeable; however, the contribu-
tion of this impact-parameter range to the total cross sec-
tion [Eq. (5)] is negligible. Only in a collision experiment
which is selective for impact parameters, e.g., differential
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cross-section measurements or total cross-section mea-
surements of endothermic processes at collision energies
close to threshold, may the effect of the tilting collision
plane be important.

To calculate differential cross sections with our semi-
classical model for a collision of a polarized-atom with a
ground-state atom, the initial asymptotic state has to be
chosen very carefully. The collision plane is determined
uniquely in this situation. Therefore, the coherence of
the initial state is crucial for the resulting differential
cross section. Another limitation of the semiclassical
model with respect to differential cross sections is the fact
that possible interference effects between the different
magnetic substates are not likely to average out in the
limited impact-parameter range involved. For total cross
sections we have assumed that the interference effects will
average out when we integrate over the whole impact-
parameter range (Sec. VIIT A).

Note added in proof. With regard to the investigations
of Bussert et al.’> and to our recent work® and the
present work we add the following points: For the ion-
ization width I'(R) we introduced a two-state basis, by
taking into account only one electron, going into the
Ne(2p)~! hole. This simple model is sufficient to describe
the polarization effect, but cannot describe final-state
fine-structure branching ratios, as discussed previously by
Bussert et al.®> For this detailed information a more ex-
tensive model is required,’ as proposed by Morgner.*? In
this latter model the number of free parameters is consid-
erably larger, but was restricted to five significant transi-
tion amplitudes by Bussert et al.’ in a least-squares
analysis of their Ne**(2p,)+Ar total ionization cross
sections and Ar™ fine-structure branching ratios, mea-
sured for eight Ne**(2p,, x =2,4-10) states, with 2p,
the usual Paschen notation of the Ne**[(2p)’(3p)] multi-
plet. We have performed a theoretical analysis using the
Feshbach-projection formalism to calculate the ioniza-
tion amplitudes. Basically this analysis contains the same
parameters as the model of Bussert et al.> We find a set
of seven significant matrix elements that are in slight but
distinct disagreement with Bussert’s empirical values. A
detailed comparison of these two extended models is de-
scribed by Driessen et al.**
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