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Abstract

This paper is concerned with finding compleie axiomatizations of probabilistic processes. We exanine
this problem within the conlext of the process algebra ACP and obtain as our end-result the axiom system
prACP}, a probabilistic version of ACP which can be used Lo reason algebraically about the reliability and
performance of concurrent systems. Our goal was to inlroduce probability into ACP in as simple a fashion
as possible. Optimally, ACP should be the homomorphic image of the probabilistic version in which the
probabilities are forgotten.

We begin by weakening slightly ACP to obtain the axiom system ACP}. The main difference between
ACP and ACP} is thal the axiom 2+§ = =z, which does not yield a plausible interpretation in the generative
modecl of probabilistic computation, is rcjected in ACP;. We argue that this does not aflfect the usefulness
of ACPY in practice, and show how ACP can be reconstructed from ACP} with a minimal amount of
technical machinery.

prACP; is obtained from ACP; through the introduction of probabilistic alternative and parallel com-
position operators, and a process graph model for prACP} based on probabilistic bisimulation is developed.
We show that prACP; is a sound: and complele axiomatization of probabilistic blslmulatxon for- finite
processes, and ihat prACP; can be homomorphically embedded in ACP; as desired. .

Our results for ACP; and prACP; are presented in a modular fasluon by first considering several
subsets of the mgnaturcs We conclude with a discission about the suilability of an internal probwl)xhshc
choice opcerator in the contlext of prAC'P,

1 Ixﬁ:roduction

It is intriguing to consider the notion of probability (or probabilistic behavior) within the context of process
algebra: a formal system of algebraic, equational, and operational techniques for the specification and verifi-
cation of concurrent systems. Through the introduction of probabilistic measures, one can begin to analyze
— in an algebraic fashion — “quantitative” aspects of concurrency such as rehabxhty, performance, and fault’
tolerance.

In this paper, we address this problem in terms of complete axiomatizations of probabilistic processes
within the context of the axiom system ACP [BK84]. ACP models an asynchronous merge, with synchronous
cominunication, by means of arbitrary interleaving. It uses an additional constant §, which plays the role of
NIL from CCS [Mil80] (CCS is a predecessor of ACP). The key axioms for & are:
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z+d=2 A6
d.z=4¢ AT

The process § represents an unfeasible option; i.e. a task that cannot be performed and therefore will be
ppostponed indefinitely. The interaction with merge (parallel compesition) is as follows:

2:][6::{:-5 )

This is not provable from ACP but for each closed process expression p we find that ACP Fp}j § = p-4.)
-Now § represents deadlock according to the explanation of [BK84].

Our goal is to introduce probability into ACP in as simple a fashion as possible. Optimally we would like
P to be'the homomorphic image of the probabilistic version in which the probabilities are forgotten. To
:this: end, we develop a weaker version of ACP called ACP; i This axioin system is just a minor alteration

ACP7 does not imply z + & = z. In fact, this axiom has often been criticized as being non-obvious for the
interpretation §=deadlock=inaction.

i) ACPT + {z + § = =} implies the same identities on finite processes as ACP (but it is slightly weaker on
identities between open processes).

(iii) ACP; has for all practical purposes the same cxpressiveness as ACP. Le., if one can specify a protocol
< in ACP, this can be donc just.as well in ACP7.

:(1v) ACP7T allowsa probabxhstlc interpretation of +, and for this reason we need it as a point of departure
s for the development of a probabilistic version of ACP.

We introduce probability into ACP] by replacing the operators for alternative and parallel composition
ith probabilistic counterparts to obtain the axiom system prAGP;. Probabilistic choice in prACPT is
of ‘the generalive variety, as defined in [vGSST90], in that a single probability distribution is ascribed to
all alternatives. Consequently, choices involving possibly different actions are resolved probabilistically. In
‘contrast, in the reactive model of probabilistic computation [1.589, vGSST90], a separate distribution is
sociated with each action, and choices involving different actions are resolved nondeterministically.

A property of the generative model of probabilistic computation is that, unlike the reactive model, the
‘probabilities of alternatives are conditional with respect to the set of actions offered by the environment.
‘more detailed compatison of the reactive and generative models can be found in [vGS5T90]. There the
iralified model is also considered and it is shown that the generative model is an abstraction of the stratxﬁed
1odel and the reactive model is an abstraction of the generative model.

‘Previous work on probabilistic process algebra [LS89, GIS90, vGSST90, Chr90, BM39, JL91, CSZ92] has
as'lieen primarily of an operational/behavioral nature. Three exceptions, however, are [J590, Tof90, L592].
In [J590}, a complete axiomatization of generative probabilistic processes built from a limited set of operators
NIL, action prefix, probabilistic alternative composition, and tail recursion) are provided, while in [Tof90],
‘axioms for synchronously composed “weighted processes” are given. A complete axiomatization of an SCCS-
like calculus with reactive probabilities is presented in [L592].

ilmmary of Technical Results

ing results toward our goal of finding complete axiomatizations of probabilistic

® We first present the axiom system ACPT, our point of departure from ACP. Its development is modular
beginning with BPA (consisting of process constants, alternative composition, and sequential composi-
tion), to which we add a merge operator to obtain PA. Finally, a communication merge operator, the

expressing almost the same process identities on ﬁmte processes. The virtues of this weaker axiom system are
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constant &, and an auxiliary inifials operator I are added to PA to obtain ACP7. In cach case, we
present a process graph model based on bisimulation and prove that the system is a sound and complete
axiomatization of bisimulation for finite processes.

» We show in a technical sense, how ACP can be reconstructed from ACP} through the reintroduction of
the axiom A6. ‘ ‘ '

¢ The axiom systems prBPA, prPA, and prACP] for probabilistic processes are considered next. In each
case, we present a process graph model based on probabilistic bisimulation, Larsen and Skou’s {LS89]
probabilistic extension of strong bisimulation, and prove that the system is a sound and complete
axiomatization of probabilistic bisimulation for finite probabilistic processes.

e Connections between ACP} and its probabilistic counterpart are then explored. We show that ACPy
is the homomorphic image of prACP} in which the probabilities are forgotten. This result is obtained
for both the graph model — the homomorphism preserves the structure of the bisimulation congruence

“classes, and the proof theory — the homoinorphic inage of a valid proof it pr ACP7 is a valid preof in”
ACP;.

¢ We show that certain technical problems arise when a probabilistic internal choice operator is added to
prACP;, and argue that a state operator should be introduced to remedy the situation.

The structure of the rest of this paper is as.follows. Section 2 presents the equational specifications BPA
and ACP;, and their accompanying process graph models and completeness results. Section 3 treats the
probabilistic versions of these axiom systems, namely, prBPA and prACPf. The homomorphic derivability of
ACP7T from prACP} is the subject of Section 4, and, finally; Section 5 concludes. Note that we do not treat
internal or 7-moves in this paper, so we stay within the setting of concrete process algebra.

Due to space limitations, all proofs of results are either omitted or sketched; the full proofs appear
in [BBS92]. Also, we have eliminated from this extended abstract the sections on the axiom system PA and
its probabilistic counterpart prPA, and the section concerning probabilistic internal choice.

2 A Weaker Version of ACP

In this section we present tlie equational theory ACP7, which, as described in-Section 1, will be our point of
departure for a probabilistic version of ACP. The main difference between ACP and ACP] is that the axiom
2486 = =z, which does not yield a plausible interpretation in the generalive model of probabilistic compubtation,
is rejected in ACP;. We begin with the theory BPA (Basic Process Algebra). ‘

2.1 BPA
The signature E(BPA(A)) consists-of one sort P (for processes) and three types of operators:” constant pro-
cesses a, for each atomic action a, the sequential composition (or sequencing) operator *-’, and the alternative

composition (or nondeterministic choice) operator ‘+°. The set of all constants is denoted by A, and is
considered a parameter to the theory.

z(BPA(A))='{a:—»P1ae’A}u{+:.PxP—»P}u{.:PxP_)P}

The axiom system BPA(A4) is given by:

g;+y;y+g Al
(zt+y)tz=2+(y+2) A2
ztz == - A3

(z+y)z2=2-z4+y-z. Ad
(z-9)-z2=2-(y-2) A5
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““Note the absence of the axiom 2 - (y + z) = @ - y + @ - z which does not hold in our process graph model.

Definition 2.1 .A process graph g is a triple < V,r,—> such that

.8 V is the setl of nodes (vertices) of ¢

o 7 CVisthe root of g

¢ —C VX AXYV is the transition relation of g

The endpoinis of g are those nodes devoid of outgoing transitions and represent successful termination.

“We often write v —— v to denote the fact that (v,a, v') € —. We denote by G the family of all process
raphs. Bisimulation, due to Milner and Park, is the primary equivalence relation we consider on process

“Definition 2.2 Let g; =< V1,71,~51>, g2 =< V3,72, —2> be two process graphs. A bisimulation belween
:g1-and g2 is a relation R C V4 x V, with the following properties:

L] R(Tl,rz) .
e Yv e W, we Vs with R(v, w):

Va€ A and v’ €V,
ifv —2 1 o' then Jw' € V2 with R(v',w') and w '3 w'

o and vice versa with the roles of v and w reversed.
Graphs g1 and g, are said to be bisimilar, writlen g1 < g3, if there ezists a bisimulation between g1 and gs.

' The operators from L(BPA(4)) are defined on the domain of (root-unwound) process graphs in the stan-
‘dard way (e.g., [BW90]). For example, letting g1 = < V3,71, —1>, g2 = <Va, 72, —32>, we have that g1-g5 is
obtained by\ appending a copy of g, at each endpoint of gi. In detail, g;-g» is given by <V; X Va,(r1,73), —>
‘whiere (g1, 92) — (g}, ¢3) if either

a ' o
e —1¢and @ =¢q3 =72

e g2 —=55¢,and ¢; = ¢, is an endpoint

. In the setting of BPA, < is a congruence and BPA(A) constitutes a sound and complete axiomatization
of process equivalence in G/« for finite processes.

Theorem 2.1 ((BW9e)])

1. /e = BPA(4) ¢
2. For all closed ezpressions p,y over B(BPA(A)):
GlaekEp=qg = BPA(A)Fp=gq.

2.2  ACP without A6

The equational system ACP7 (A) treals the operators of BPA(A) as well as the new constant §, representing
deadlock; a communicalion merge operator | describing the result of a communication between any two atomic
actions; a merge operator || representing the interleaved composition of two process which additionally admits
the possibility of comnunication; a left merge operator | which is the same as || but always starts with the
“left” process; and a family of restriction operators 8y, I C A. We will also need an auxiliary operator I
that defines the initial actions (the iniliels) that a process can perform.

Letting As = AU {8}, the signature of ACP; (A) extends that of BPA(A) as follows:
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T(ACP7(4)) = S(BPA(A)) U {§:» P} U {|: PxP P} U {|:PxP > P}lu
{}:PxPoP}U {y:P—-P|HCA} U {I:P— 24}

It is convenient to define the communication merge operator as a binary commutative and associative
function on atomic actions; i.e., | : 45 X As — As,. In order to axiomatize | as a function on processes (rather
than on elements of As) we define the characteristic predicate A5 of 45 in the usyal way:

T =V =0
aCAg

We require | to be total and this is captured by the following axiom:!

[v.z,bepz;(a)/\zg(b) = acePAT,-(c)Aaw:c co

The axioms of ACP[(A) are now given. In this system, a,b,c range overAg, and MU are used on 245
without further specification.

BPA(4)  +
Sez=§ AT
+
(of I
alb="bla C1
(a]b)lc = a}(blc) C2
Sla=6 c3
+ N
zlly=zytylz+zly CcM1
alz=a-2 CM2
(a-2) &./ = a(z || y) CM3
(z+y)lz=(el2)+(ylz) CM4
a|(b-z) = (a[b) s CM5
(@-2)b=(aP)-z ~  CMs
(a-2)|(b-y) = (alb)-(z]ly)  OMT
(z+y)lz==zlz+ylz CMs8
zi(y + z) = |y + 2|z CM9
+
I{a) = {a} n
I(z-y) = I{z) 12
I{z+y) = I(x)L I(y) 13

"Axiom CO0 is often replaced by choosing a total function v : 4s x A5 — As and having all identitics of the graph of 7 as
axioms: alb = 7(a,b). In this way, ¥ becomes a parameler to the theory (see, c.g., [BW90]).
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e = dyla)=4 D1
a¢H = dy(a)=a . ’ D2
I{(z) CHU {6} = du(z+y)=0rly) D3.1
Iz 4+y)n(Hu{6})=0 => 9p(z+v)=0g(z) + du(y) D32
Ip(z-y) = 9u(z) - Ouly) D4

Comments: ACPI_(A) differs from ACP by the absence of A6 and the presence of the weaker axioms D3.1-2
instead of D3: dx(z +y) = du(x)+ dg(y)- Note that it is within axioms D3.1-2 where the auxiliary operator
I comes into play. We give an example to illustrate the new axiom system.

Iplat+ (b)) = d{c+(a+b)) (by Al and A2)
) B o= Oiglatdy o (byD31) e
= Oyla) +95(b)  (by D3.2) '
= a+b (by D2 twice)

Our graph model for ACP} (4) is standard (see, e.g., [BW90]) with the exception of the restriction operator.
This operator removes all-edges labeled with actions from the set of resiricted actions H. Tt also removes ..
d-cdges, which it must do to ensure the soundness of D3.1. In case a node with at least one outgoing edge
has all its edges removed, a new d-edge, to the “dead” state vs, is added. Formally, g(g1) is given by
© < Vy U{vs}, 71, —> where v; & Vy and

—_ = {(v,a,v') € — faﬁHU{‘f}} u )
{(v.8,9)| #({(v;0,v") € —1 lac HU{6}}) = #({(v,a,9') € — |a € 45}) > 1}

Here #(S5) is equivalent notation for ||, for S a set; i.e. # is the cardinality function on sets.

The interpretation of § as deadlock reqﬂres a new definition of bisimulation in which a weaker condition .
is imposed on d-edges. The resulting relation, which we call a §-bisimulation, is the same as in Definition 2.2
" on non-§ edges. Otherwise, if R is'a §-bisimulation and R (v, w), then:

. 1] &
if v — ; o, for some v', then w — 5 w’, for some w’
and vice verse with the roles of v and w reversed. The resulting equivalence is denoted =25 and can be shown

- to'be a congruence in the context of ACP7(4). That ACP;(A) is a sound and complete axiomatization of
25 for finite processes is given by the following. )

. Theorem 2.2

1. g/ = ACP7(4)

2. For all closed expressions p,q over L(ACP] (4)):

GlesFp=q = ACP[(A)Fp=q.

 Proof sketch:  The proof is by a normal form reduction and relies on the completeness of BPA (Theo-
- rem 2.1). We first define a basic teri as one constructed from the constants Ajs, alternative composition, and
(non-§) action prefixing. Note that a basic term is a BPA(A;s) term. A term rewriting system, RACP; (A),
© based on ACP[(4) is introduced such that a normal form of the system is a BPA(A;s) term in which all
occurrences of conununication merge, merge, lefi-merge, and restriction have been eliminated. RACP[(A)is
shown to be strongly normalizing by translorming a reduction sequence 7 of RACP; (A) into a valid reduction’
sequence of RACP(4) [BK84]. Finally, a normal form of RACP] (4) is shown to be a basic term, and by the
-~ completeness of BPA(As) we are done. o
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2.2.1 Connections Between ACP and ACPy

Let A be the usual bisimulation model for ACP(4), and let A~ = G/e25 be the bisimulation model for
ACP7 (A). Then for p,q closed expressions over Z(ACP(A)) we have the following results.

1. A" Ep=g => A |=p=gq. This implies that A~ can be honiomorphica]ly embedded in A using the
identity mapping. :

2. Al=p=g¢ => A~ = 9(p) = 9(q). This implies that A can be homomorphically embedded in A~
using the homomorphism ¢ : A — A~ such that p(z) = dp(z) "

3. ACP(4)Fp=q = ACP;(A)+{z+b6=zc}kp=4q
4. ACP;(A) S 3@(1& + 6) = (90(-’12)

3 A Probabilistic Version of ACP
Our discussion of probabilistic ACP will proceed in a manner similar to before. We will present the axioms

systems prBPA(A) and prACP;(A), the probabilistic counterparts of BPA(A) and ACP7(A), and prove
completeness in a graph model based on probabilistic bisimulation. . -

3.1 Probabilistic BPA

As usual, (0, 1) denotes the open interval of the real line {r € R | 0 <7 < 1}, and [0,1] deénotes the closed
interval of the real line {r € %] 0 < + < 1}. The signature Z(prBPA(A)) over the sort prP (for probabilistic
processes) is given hy:

I(prBPA(4)). = {a:—prPlac A}U{+,:prP X prP — prP lpe(0,1)} u
{-:prP x prP — prP}

The operator -+ has been replaced by the family of operators +,, for each probability p in the interval (0,1),
and is now called probabilistic allernative composition. Intuitively, the expression & 4, y hehaves like z with
probability p and like y with probability 1 — p. Probabilistic alternative composition is generative [vGSST90]
in that a single distribution (viz. the discrete probability distribution {p,1 — p}) is associated with the two
alternatives z and y. As mentioned in Section 1, these probabilities are conditional with: respect to the set
of actions permitted by the environment. This will become clear in Section 3.2 with the introduction of the
restriction operator 9y in the setting of probabilistic ACP.

We have the following axioms for prBPA(4):

2ty y=y-+1p2 prAl-

4y (y+g2) = (2 To/(ra-pa) ¥) Frigpg 2 PrA2
ztpr==z prA3
(z4p9)z=2 24,9 -2 prAd
(z-9)-z=2-(y-2) prA5

As for BPA(A), we consider process graphs, with labels from A, as a model for prBPA(4). Additionally,
a probability distribution will be ascribed to each node’s outgoing transitions. .

Definition 3.1 A probabilistic process graphg is a iriple <V, 7,1t > such thal V. and r ere as in Definition 2.1
and g1 : (VX AXV) - [0,1], the transition distribution function of g, is a lolal funclion satisfying the following
stochasticity condition: g
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vweV Y. pva) € {0,1}
a€ A,
»EV

Intuitively, (v, a,v') = p means that, with probability p, node v can petform an e-transition to node v'.
A node in a stochastic probabilistic process graph performs some transition with probability 1, unless it is an
‘endpoint. When (v, a,v") >0 we say that v’ is reachable from v and the notion of reachability extends to
‘sequences of transitions in-the natural way. We denote by prg the family of all prebabilistic process graphs.

The notion of strong bisimulation for nondeterministic processes has been extended by Larsen and Skou [L589]
to reactive probabilistic processes in the form of probabilistic bisimulation. Here we define probabilistic bisim-
ulation on generative processes and to do so we first need to lift the definition of the transition distribution
function as follows: : )

S i (VX A% 2Y) = [0, 1] such that p(v,a,S)= Y plv,a,e)
v'ES
Intuitively, p(v,q, .S; } = ¢ means that node v, with total probability ¢, can perform an e-transition to some
node in S. R - SRR : :

Definition 3.2 ([LS89]) Let g1 = < Vi, 71, ft1 >, g2 = <Va2,72, t2 > be probabilistic process graphs. A prob- :
abilistic bisitnulation belween g1 and g3 is an equivalence relation R C Vi X V with the following properties:

[] R(Tl, 1'2)
e Yv € Vi, w € Vs with v reachable from.r1, w reachable from vy, .and R{v,w):
Va€ 4, Se(ViuW)/R, p(v,a,5)= pa(w,a,S)

Graphs g1 and. ga are probabilistically bisimilar, writlen g; ©P" g, if there ezists a probabilistic bisimulation
between gy and g,. )

Intuitively, two nodes are probabilistically bisimilar if, for all actions in A, they transit to probabilistic
bishmulation classes with equal probability. Note the somewhat subtle use of recursion in the definition.

We now define the operators of prBPA(4) on the domain of probabilistic process graphs. For this purpose,
it is convenient to assume that probabilistic process graphs are acyclic with respect to transitions of non-
zero probability (we consider only finite processes anyway) and that the root is not an endpoint. For the
remainder of Section 3, let g4 = < Vi, 1,41 >, g2 = < V3,72, 2 > be probabilistic process graphs satisfying
these assumptions such that Vinvy=10

Definition 3.3 The operators a € A, +p, and - are defined on prG as follows:

@ € A: The process graph for each of these constants is given by <{ra,v},Ta, fta >, where pa(re,a,v) =1 4s
the only transition with non-zero probabilily.

g1 +p 922 is given by <V UVa U {r}, 7, > wherer g V1 U V3 and

w(rya,v") = p- p{r,a,v") ifven
wrya,v) = (1 =p) pz(rz,a,9") o' eVs
1#(v,a,v") = p11(v,a,v") ifv,v' €V4
u(v,a,v") = p2(v,a,v’) fo,v' €V,
w{v,a,v') =0 otherwise

The case for g - g2 is analogous to the nonprobabilistic case. Note that as a consequence of this definition,
and the fact that probabilistic process graphs are acyclic, transitions from r; and 72 (somne of which may be
ascribed non-zero probabilities) are not reachable from the root r of g3 + g2.

We have that «?" is a congruence in prBPA_(A.).
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Proposition 3.1 If g; =P g2, then g+, 91 =P ¢ +tp 92,991 2P g-g5, and gy - g 2" g2-9.

The graph model for prBPA(4) is now given by prG /<P and we prove that prBPA(A) constitutes a
sound and complete axiomatization of process equivalence in prG/« for finite processes. -

Theorem 3.1

1. prG/=P" |= prBPA(4)
2. For all closed ezpressions s,t over L(prBPA(A)):
' préfer =s=t = prBPA(A)F s =1t.

" Proof sketch: - The proof is again by a normal form reduction. We first introduce the notation
n
>
2 lpiles
i=1

with 37 p; = 1 and p; > 0 for all 7. So, in particular, when n = 1, p1 = 1. This notation abbreviates nested
probabilistic alternative composition expressions as follows:

i[p{]mi =2y and fg:l[p,-]a:i =21 4y, (g[ Pit1 ] :c,-+1)

i=1 i=1 1-m

This summation form fotation is useful as it directly reflects the transition structure of the probabilistic
process graph underlying the nested probabilistic alternative composition. That is, the process graph of the
summation form Y[p;}2; will have a probability-p; transition from its root to the node representing the root

of the process graph of z;.

A probabilistic basic term is then defined to be a summation form whose summands are either constants
from A or of the form a-¢, where a € 4 and £ itself is a probabilistic basic term. Furtherinore, the summands
of a probabilistic basic term are required {o be pairwise probabilistically bisimulation inequivalent.

We next show that the axioms of prBPA(A) are sufficient to prove a closed prBPA(4) term ¢ equal
to a probabilistic basic term. The proof is in two steps. First the term Tewriting system corresponding
to-prBPA(4) axioms prA4 and prA5 is used to transform ¢ into a term in which the only occurrences of
sequential composition are of the action-prefixing variety. Secondly, the comstraint that the summands be
pairwise inequivalent is met by using axioms prAi, prA2, and prA3 to group together and, in the process;
compute the total probability assumed by a summand in a probabilistic basic term. Completeness is then
proved by induction on the maximum depth of the probabilistic basic terms for the given s and {. o

3.2 Probabilistic ACP

The signature of prACP (A) extends that of prBPA(A):
E(prACP; (4)) = S(prBPA(A)) U {8 :5 prP} U {T: prP — 245} U
{lrs : PP X prP — prP|r s ¢ (0, 1)} U {|s,s: PP X prP — prPlr,se(0,1)} U
{lrs: prP X prP — prPr, sc (O} u (O :prP S prP|HC A}

Thus, for each of the operators |, §y and | we have a family of operators, each indexed by two probabilities
from the interval (0, 1). These operators work int vitively as follows. Consider for example the merge operator.
In the expression 2 [lr,s ¥, @ communication between 2 and y-occurs with probability 1 -5, and an autonomous
move by either = or y occurs with probability s.. Given thal an autonomous move occurs, it comes from z
with probability » and from y with probability 1 —»,

The treatment of the communication merge is exactly analogous to the situation in the nonprobabilistic
case (Section 2.2). The “totality” axiom C0 now becomes;
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' IiVa', be prP Ag(a) A As(b) => Jec e prP Vr,s5 € (0,1) As(c)Aaln.b=c prCll

he axioms of prACP7 (A) are as follows. In this system, a,b,c range over As, and I has functionality
L P—’ ZA‘.

pBPA(4)  +

’T:c =4 prA7J

+
prCO  +
a lrsb=10 l(l—r),sa . prCl !
(alrs B) luwe = @lns (blupe)  prC2
§ |r,3 e=4§ prC3
+
2l 9= (2 Lrs9) +r (¥ La=r)e 2)) s (Blrsy)  proML
alrsy=a-y prCM2
(a-2) sy =0 (2l ¥) prCM3
(+p9) Loz = (2 lne 2) 45 (9 s 2) prCM4
al,s(b-z) =(al,:0) = prCM5
(a-2) | sb=(alrsb)-2 prCM6
(a-2)frs(bry) = (alssb} - (2 {lrs 9) prCM7
(z+pY)lrsz=2 fra 2 4o Ylrs 2 prCM8
2l (ytp2) = 2lrsy +p 2o 2 préMe
+
'I(a) = {a} : prii
I(z-y)=I(z) pri2
I(z +py) = I(z) U I(y) pri3
+
acH = aH(a.) =4 prD1
a¢gH = dgla)=a prD2
I{g) C HU{s} = du(z+py) = arly) © . prD3.1
Ie+y)NHU{}) =0 = Ip(z +py)=0n(z) +»9u(y) prD32
| 9z - y) = 0n() - Ou(y) prD4

To define the graph model for prACP[ (4), we need to introduce a “normalization factor” to be used in
computing conditional probabilities in a restricted process.
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Definition 3.4 Let g = <V,r, u> be a probabilistic process graph. Then, for v € V', the normalization factor
of v with respect to the set of actions H C 4 is given by

vg(v)=1 => {u(v,a,v)lac HU{s},v' e v}

Intuitively, »g(v) is the sum of the probabilities of those transitions from v that remain after restricting
by the set of actions H.

Definition 3.5 The operalors §, lleves Loves lrysr and 85, H C A, are defined on prG as follows:

&: The process graph of § is given by Definilion 3.3, lreating § as e normal elomic action; i.c., the graph of
§ is <{rsyv},75,p5 >, where ps(rs, 8,0y =1 is the only transition with non-zero probabilily.

91 llr.s 922 is given by <V; x Va, (71, 72), 18> where for all a € As, v, € VL, v, vh €V,

7.5 u(v1,a,v) if vp not an endpoint

#((v1,v2), @, (vi,02)) = ,’ ’ .

(v, a,) otherwise

(1-7)-5-p2(vyq, vy) if v, not.an endpoint

/‘-((vly'vZ)’ a, (”,1’ ”5)) = , .
) Ha{va, a,v}) otherwise

#{vi, )0, (05, 95)) = (1 =) D" (o1, b,0%) - pa(vs, ¢, )
byt bleyc=a -
91 [rs 928 is given by <V; x Vs, (r1,72), 1t > where for alla ¢ As, 01,91, € Vi, vyy 05, € Vo
hd “’((rlv 7'2)7‘7', (’"iv 7'2)) = 151(7‘1, a, ”i)
o ifvy £y or vy £ 7y
78+ (01, 0,v])  if vy not an endpoint

i

#{{v1,v2),a, (9], v2})
{(v1,v2), 0, (v}, v2)) p1 (o1, a,01) otherwise

(L=7)~ 5 ps(vy,a, v » if vy not an endpoint
(1,0, 0 (ony og)) = | 770 balonvd) o o
#2(v2, @, v5) otherwise
/‘((vly vz),d: (.'017 ’l);)) = (1_ 5) N Z I"l(vhb, v;)'ﬂz(”z,C, 'U;)
bet'dlrs e=a
° lf’”; 76 T2 ”((7'1,7'2)3 a, ('Ui,'vé)) =0
91 1r,s 920 is given by <V; X Vay (r1,72), > where for all a € As, v,m1 €N, v, €V,
b4 ﬂ((rl’ 7'2), a, ('Ui, vé)) = Zb,czb [0 c=a #1(7'1’ b7 v:’[) - /L2(7'2: c, 'U;)
] ifv1 9£ 71 Or vy # 72
P [ 75 11(v1,0,9}) if v, not an endpoint
#{((v1,v2), @, (v}, v2)) = \ .
#1(vi,a,v]) otherwise
) (1~7)-5- p2(vy,0,v4) if vy not an endpoint
({01, 2), 2, (o, ) = ey} o
: Ha(va,a,05) - othérwise

#{{vs,v2) @, (0, v3)) = (1 — 5) - Z #1{v1, b, v1) - piz(v2, ¢, v)

. bye: bl s c=a
(0 £ and o= 1) or (o} =y and vy £ 1) pl(ry,ra), s (o} o)) = 0
Ou{g1): is given by <V,r,p > where V = ViU {vs}; vs a new endpoint not in Vi, r=ry, and for alla € 4,
vy,v] € Vy )
0 ifac H
i (v1,a,0])/vg(v) otherwise
#{v1,6,v]) =0
#(o1,0,05) = 0 if a £ &
0 fdag HU{S},vi €V :py(vy,a,v)) >0
/l(vlaaa 'U,;) = . } t . ? L)
1 otherwise

w(vr,a,v) =
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Note the careful treatment of endpoints in the above definition—e.g., in a merge, if one process terminates,
jo“other continues with its original, unweighted probability—and of transitions from the root (ri;72) in
592 and ¢1 |5 g2—e.g-, in a lelt merge, transitions emanating from the root that start with g, are given
. robablhty 0.

As.in the nonprobabilistic case, the presence of §-edges requires a new definition of probabilistic bisimu-
tion. A d-probabilistic bisimulation is the same as in Definition 3.2 with the additional clause

/-Ll(vy 8, Vl) = I‘2(w’ 4, V'Z)

That is, d-probabilistically bisimilar nodes must perform the action § with the same total probability, without
tegard to where the é-transitions lead. The resuliing equivalence is denoted «¥F".

1. prG/=d = praCPF(4)
2. For all closed expressions p,q over S(prACP} (A)):

prélef Ep=q = prACP7(4)Fp= 2
»P‘roof sketch: ~ The proof is analogous to the coﬁj)leténess"pfoqf of ACPT(4).

o The definition of a probabilistic basic term uses +p instead of + and the term rewritiné system
erACPI_(A) uses the probabilistic counterparts of the rules in RACPT (4).

" prRACP7(A) is strongly normalizing: take a prRACP7(4) reduct.lon and erase all probability sub-
v scripts. One obtains a valid RACP7 (4) reduction.

e The proof that a probabilistic normal form is also a probabilistic basic terin proceeds as before — no rule
in prRACP} (4) is conditional with respect to any probability. By the completeness of prBPA(A;s) we
are done. : )

4 ACPy as an Abstraction of prACPy

Tin this section we demonstrate that ACP7(A) can'be considered an abstraction of prACP7 (4) at both the level
of the graph model and at the level of the equational theory. For the former, we exhibit a homomorphism
¢ from probabilistic process graphs to nonprobabilistic process graphs that preserves the structure of the
bisimulation congruence classes. For the latter, we exhibit a homomorphism & from prACP 7 (A) terms to
ACP7(A) terms that preserves the validity of equational reasoning.

Definition 4.1 Let g = <V, r, > be a probabilistic process graph. Then ¢(g) = <V,r,~—> has the same
states and start stale as g and —— is such that

9 — vy =3 plvy,a,vz) >0

Proposition 4.1 -Let gy, g2 be probabilistic process graphs.

#(a) =a,a € As

¢(g1 - 92) = B(91) - ¥(92)

¢(g1 +p g2) = 6(g1) + b(g2)

9(91 lrys 92) = $(91) 1 6(g2)

(91 |lr,s 92) = #(an) |l B(g2)
(g1 frs 92) = d(g1) [ &(92)

(9u(91)) = O (P(g1))




484

Proposition 4.2 The homomorphism ¢ preserves the struclure of the bisimulation congruence classes. That
is,
nef g = #a) s 9(g2)

The converse of this result is clearly not true, e.g., a + b =25 b+ a but a + i b A7 b+ 10 Thus, the
graph model G/ =5 of ACP7(4) is strictly more abstract than the probabilistic graph model Gl =f of
prACP; (4).

The homomorphism & : L{prACP7(A}) — L(ACP](A)) from prACP; (A) terms to ACP7(A) terms is
defined as follows:

®(a) =a,a € 45

B(z) ==

E(z-y) = B(z) 2(y)
&(z+py) = 2(2) + 2(y)
(e lr,sy) = 8(2) | 2(y)
&(z lr,s ¥) = E(2) || #(y)
¥z rsy) =2(z) | 2(3)
B(0u(z)) = 9u(B(z))

The following proposition states that any valid proof of ‘prACP;(A) can be mapped into a valid proof of
ACP(A) using the homomorphism &. )

Proposition 4.3 Let Uy, &y be terms of prACPT{4), ie., t1,t2 € L{prACPT {4)).

prACPT(A)Ft; =1,
ACPT(A) F &(t;) = &(t;)

Proof sketch:  The proof is by induction on the length of the prACP7 (A) proof, using the -observation
that, for every prACP} (4) axiom of the form ¢ = - #; = t,, its homomorphic image B{c) = (1) = ¥(t)
is an ACPy (A) axiom. Here ¢ is a possibly empty condition on the validity of the prACPy (A) axiom, and
the fact that ®(c) is equal to the condition of the corresponding ACP} (A) axiom-means that no axiom of
prACPy (A) is conditional on a probability appearing within an prACP;(4) term. o

Note that the converse of the result does not hold, e.g., a4-b = b+abut a +1b+# b+ a. Thus, ACP7(4)
is a strictly more abstract theory than prACP;(A4).

5 Conclusions

In this paper, we have presented complete axiomatizations of probabilistic processes within the context of the
process algebra ACP. Given that axiom A6 of ACP (246 = z) does not have a plausible interpretation in the
generative model of probabilistic computation, we introduced the somewhat weaker theory ACP7, in which
A6 is rejected. ACP is, in essence, a minor alteration of ACP expressing almost the same process identities
on finite processes. )

Our end-result is the axiom system prACP7, which can be seen as a probabilistic extension of ACP~

I - I

for gencrative probabilistic processes. In particular, ACP7 is homomorphically derivable fiom prACPT. As
desired, we showed that prACPT constitutes a complete axiomatization of Larsen and Skou’s probabilistic

bisimulation for finite processes.

Several directions for future work can be identified. First, we are interested in adding certain important
features to the model, such as recursion and unobservable 7 actions. Secondly, we desire also to completely
axiomatize the reactive and siraiified models ol probabilistic processes [vGSST90]. In the stratified model,
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which is well-suited for reasoning about probabilistic “fair” scheduling, distinctions are made between processes
¢ based on the branching structure of their purely probabilistic clicices. We conjecture that by eliminating axiom
: prAZ (probabilistic alternative composition is not associative in the stratified model!) and slightly modifying
prD3 2, the desired axiomatization can be obtained.
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