

A distributed feature-based environment for collaborative
design
Citation for published version (APA):
Li, W. D., Lu, Y-Q., Zhou, H., Ong, S. K., Nee, A. Y. C., Fuh, J. Y. H., & Wong, Y. S. (2003). A distributed
feature-based environment for collaborative design. Journal of Systemics, Cybernetics and Informatics, 1(1), 3-
8.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/7aa92334-ad3d-40c9-86dd-061b57cd085c

A Distributed Feature-based Environment for Collaborative Design

Wei-Dong Li‡, Yi-Qiang Lu, Hong Zhou

Singapore Institute of Manufacturing Technology
71 Nanyang Drive, Singapore, 638075

‡ Email: wdli@gintic.gov.sg, Tel: +65-6793-8354, Fax: +65-6791-6377

Soh-Khim Ong, Andrew YC Nee, Jerry YH Fuh, Yoke-San Wong
Department of Mechanical Engineering, National University of Singapore

10 Kent Ridge Crescent, Singapore, 119260

ABSTRACT

This paper presents a client/server design environment

based on 3D feature-based modelling and Java technologies to
enable design information to be shared efficiently among
members within a design team. In this environment, design tasks
and clients are organised through working sessions generated
and maintained by a collaborative server. The information from
an individual design client during a design process is updated
and broadcast to other clients in the same session through an
event-driven and call-back mechanism. The downstream
manufacturing analysis modules can be wrapped as agents and
plugged into the open environment to support the design
activities. At the server side, a feature-feature relationship is
established and maintained to filter the varied information of a
working part, so as to facilitate efficient information update
during the design process.

Keywords: Distributed environment, collaborative design,

feature-based modelling

1. INTRODUCTION

For a complex design task, a design team is usually

engaged, and the communication and collaboration among
members in the team are crucial to enable the design to be
carried out effectively. With the rapid development of IT, it is
possible and imperative to develop a distributed design
environment, in which geographically-distributed design systems
can be integrated and a design team can be set up within the
Internet/Intranet. In this environment, design information among
the team can be exchanged across physical and temporal
boundaries efficiently. With the integration of manufacturing
analysis modules in the environment, downstream
manufacturing processes of the product life-cycle can be
considered and evaluated in the initial design phase, which will
lead to better engineered products with higher quality, less
iterations and more cost competitiveness.

Recently, some research and developments have been
carried out in this area. Different collaborative design
mechanisms and system architectures have been designed. A
summary is listed in Table 1.

In this paper, a distributed feature-based modelling
environment to support collaborative design is described. A
designed part is modelled at the server side, and the clients are
responsible for design parameter input, visualization and
selection of operations for the part. The information
communicated between the clients and the server is wrapped as

events, and an event-driven and call-back mechanism is
developed to efficiently update information in the environment.
The environment is open and scaleable, and it can dynamically
integrate downstream manufacturing analysis agents without re-
initializing the whole system. At the server side, a feature-
feature relationship is established to differentiate the varied
information of a part during its creation or edition process, so as
to efficiently update information in the network.

2. SYSTEM FRAMEWORK

The system framework is illustrated in Figure 1. The
three parts in the system are as follows:
(1) Design clients;
(2) A collaborative server; and
(3) Intelligent downstream manufacturing analysis and

optimization agents.
The detailed functions of each part in the environment

are described in Table 2. The organization for designing a part
collaboratively in the environment is depicted in Figure 2.

3. DISTRIBUTED MECHANISM

3.1 Remote Method Invocation (RMI) protocol

Java RMI is a simple and yet powerful protocol for
distributed object design. Java RMI-based objects can be quickly
deployed and managed across networks, and the RMI
mechanism is a much easier and lighter weight approach to
distributed object design. In this research, the establishment of
the distributed design environment is based on the Java RMI
mechanism.

According to the Java RMI mechanism, through defining
remote interfaces, methods and objects can be used for remote
calling and transmission. The remote interfaces defined in the
environment are given in Figure 3.

3.2 Event-driven and call-back mechanism

In order to enable clients to update design information
only when the server has a new event to communicate, instead of
routinely pinging the server for information and creating a
network backlog, a call-back mechanism is employed to develop
a high-performance and robust server. The working process for
the call-back mechanism is described as follows:
(1) In a working session, a list is created to store the references

of clients that have joined the session.
(2) With an input of parameters for a feature, a parameter event

is generated in a client. Through invoking one of the server
methods - push_Event(), such an event is received and
handled by the server. After an object event is created and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 3

mailto:wdli@gintic.gov.sg

ready for broadcasting from the server, each client recorded
in the reference list is activated to receive the event by
invoking one of the clients’ methods - receive_Event(). A

similar process can be carried out between the server and
the required CAPP agent.

A common event interface, which extends Serializable

Distributed
Strategies Characteristics R&D Examples Diagrams

Visualization and
annotation of 3D

CAD models

• The tools are primarily for visualization, annotation
and inspection in a web environment. They do not
support a real co-modelling activity.

• The CAD models are simplified as polygon mesh
models for visualization.

• The mesh models are divided as different Levels of
Details (LODs) for incremental transmission and
display.

VizStream™,
Hoops Stream
Toolkit™,
van den Berg et al

AlibreDesign™,
GS-Design™,
OneSpace™

Nam and Wright,
Qiang et al

 Co-design of 3D
CAD models

• The tools provide collaborative facilities to support
real co-design activities on 3D CAD models.

• The exchanged messages for maintaining the
consistency of the co-design environment can be
3D models or creation/edition commands for 3D
models.

• The sizes of the CAD models are usually huge. In
some research, new kinds of feature or assembly
representation schemes have been developed for
distributed applications.

Lee,
Shyamsundar and
Gadh

Inventor™
collaborative tools

Services sharing for
other systems

• The services or sub-modules of a system can be
shared and manipulated by other systems.

• For the Inventor™ collaborative tool, at any one
time, only an Inventor system has the “control
baton” to design, and the controlled Inventor
system is an observer. The “control baton” can be
acquired and exchanged.

Begole et al,
Pahng et al

Table 1. Summary of reported research and systems for distributed design

BrowserBrowser

 LODsStreaming
transmission

 Mesh models
Web

server CAD models

 Viewer Client Modelling
workspace Manipulator

ServerClient

MessageCAD
 Server

CAD Broadcast CAD

Simplification
 3D model

AAG

 Inventor

Inventor Having a
“control baton”

Control and Manipulate

System

System
Service

Access & manipulate

Sharing

Assembly model AFRG
Re-organization

events events events

Remote Interfaces Remote Interfaces

N
et

wo
rk

Remote Interfaces

CAPP Optimization

Figure 1. System framework of the distributed design environment

Abstract classes

Feature Recognition

Manufacturability Analysis

Session Manager

N
et

wo
rk

• Visualization
• Selection
• Manipulation

Some visualization
and manipulation
functions (C++)

Wrapper

Client (Java Swing)

Model Kernel (C++)
• Feature creations
• Boolean operations
• Local operations
• Transformations
• Modifications

Java Functions

Wrapper

Modelling Workspace

Session

Discussion Community

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 14

Clients Collaborative Server Analysis Agents

Session Manager
• Dynamical generation of working sessions;
• Sharing of parts for clients within a working session

Parameter Input/Edition
Interface

• Input/edition of parameters
for features

• Selection of entities in
features

• Information queries for
features and parts

Modelling workspace
• Acceptanace of parameters or entities from the clients
• Modelling parts based on OpenCasCadeTM solid kernel
• Through Java Native Interface (JNI), the native API

functions of the OpenCasCadeTM can be invoked and
manipulated by Java application

Visualization Environment
• JFC-swing components to

build the environment
• Visualization and

manipulation of parts

Discussion Community
• Provision of e-room for discussion and information (text

and multimedia) exchange among clients

Intelligent analysis and
optimization modules

• Machining feature
recognition

• Manufacturability analysis.
• C APP optimization
• Providing abstract classes of

machining feature recognition
and manufacturablity analysis
for future integration

Communication
The communication between each part is through an event-driven and call-back mechanism based on the Java RMI protocol

Table 2. The functions in each part of the distributed environment

• Open a session
• Maintain the session
• Remove a client
• Close the session
• Carry out the design

collaboratively

class for communication in the network, is defined. Based on
this interface, four types of events have been implemented as
follows: • Join an existing

session
• Quit the session
• Carry out the design

collaboratively

Project leader (1) Parameter event for a design feature. This event, which is
generated in a client, is used to wrap the parameters for a
feature or a set of selected entities for local operations on an
existing feature. This event is dispatched to the server for
creating a feature represented as a B-Rep object.

Manage Participant Participant
A design task Member Member (2) Object event for design features. This event wraps the

features in the server to be sent back to the clients for
visualization and manipulation. Support

(3) Object event for a design part. The feature objects of a
design part are wrapped in this event, which is dispatched
from a client to the CAPP service provider for analysis.

• Machining feature recognition
• Manufacturability analysis
• Computer-aided process planning

Manufacturing
analysis services(4) Process plan event for a design part. This event is generated

by the CAPP service provider to bind the generated process
plans for a requested client.

The four types of events are defined in Table 3. Figure 2. Organization of a design task in the environment

4. INTELLIGENT ANALYSIS AGENTS

The downstream manufacturing analysis modules can be

wrapped as intelligent agents to be plugged in the system to
support concurrent engineering design.

A three-layer architecture, including remote interfaces,
abstract classes and class implementation, is designed for this
purpose. With the definitions of the abstract classes for agents,
some agents can be integrated later without re-initializing the
whole system.

Currently, a hybrid genetic algorithm and simulated
annealing CAPP optimization agent has been designed and
integrated [Li et al, 2002(a)]. With such an agent, the activities
of selecting machining resources, determining setup plans, and
sequencing machining operations can be considered
simultaneously so as to achieve the global lowest machining cost
according to a combined evaluation criterion of machine costs,
cutting tool costs, machine changes, tool and setup changes.

The other two agents, namely machining feature
recognition and manufacturability analysis [Li, 2001], will be
integrated later.

5. FEATURE RELATIONSHIP AND MANIPULATION

5.1 Feature-to-feature relationships

In the environment, a client dynamically and
interactively edits features in a part. Since a feature is usually
associated with other features in the part, the edition operation
on a feature might cause variations in other features in the part.
In order to speed up the transmission of the designed model
efficiently via the network with limited bandwidth, the varied
information during the edition process should be differentiated in
the server side and synchronized with the unchanged information
in the client side. For this purpose, a feature-feature relationship
should be studied.

The relationships between features can be categorized as
interacting and non-interacting relationships. The interacting
relationships between features include adjacency, overlapping,
nesting and constraining [Li et al, 2002(b)]. The relationships
are defined in Table 4, in which the symbols are as belows.
Several cases for these definitions are illustrated in Figure 4.

1FE , - Two volumetric features in a part 2FE P

Ι ⊄ - Regularized Boolean interaction, a proper

subset, not a proper subset

⊂

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 5

−

−
−−

=

Υ Υ

Υ

Υ

21

21

21

21

'

FEFEP

FEFEP

FEFEP
FEFEP

P

 negative are ,
positive is negative, is
negative is positive, is

 positive are ,

21

21

21

21

FEFE
FEFE
FEFE

FEFE

∂ - Boundary set of a volumetric feature

5.2 Feature manipulation operations
For the different edition operations on a feature (adding

features, deleting features, or modifying parameters of features),
the feature-feature relationships associated with this feature are
set up and maintained. The processes are described as follows:
(1) When a feature is New_Added, its interacting and non-

interacting sets are set up according to the definitions. The
features in the interacting set are Updated.

(2) When a feature is Deleted, its nesting features are Deleted.
Other features in its interacting set will be differentiated as
two types: features with changes in volume or boundary are
Updated, or features without changes in volume and
boundary are Unchanged. The features in the non-
interacting set are Unchanged.

(3) When the parameters of a feature are modified, the process
consists of three steps:
(a) The features in its non-interacting set that have

adjacency, overlapping or nesting relationship with
this feature due to the modification are Updated;

(b) The features in its interacting set will be differentiated
as two types: features with changes in volume or
boundary are Updated, and features without changes in
volume and boundary are Unchanged;

(c) If this feature has a constraining feature, the
interacting and non-interacting features of the
constraining feature will be adjusted according to the
above steps.

For features that are New_Added and Updated
differentiated from above process, their unique IDs, feature
objects and other properties are wrapped into the object event for
design features. For features that are Deleted, only their IDs are
recorded in the event for clients to erase the relevant
information. The Unchanged features will be kept the same in
the clients. The scenario is shown in Figure 5.

5.3 A case study to illustrate the updated process

N
et

wo
rk

N
et

wo
rk

Figure 3. Remote interfaces in the distributed environment

Remote Interfaces

public boolean receive_Event(Event e);
public String get_ClientName();

Remote Interfaces
public String get_SessionName();
public void close_Session();
public void add_Clients(Clients[] clients);
public void remove_Client(Client client);
public void quit_Client(Client client);
public void push_Event(Event e);

Remote Interfaces
public String get_EventID();
public String get_EventSource();
public String set_EventClients(String[] clientnames);
public boolean query_EventStatus();

Server

Remote Interfaces
public boolean receive_Event(Event e);

Analysis Agents

event

Clients

 Event
generator event Event

generator
Event

generator

Tags Remarks
Feature_Type Type of the feature
Feature_ID Unique ID of the feature
Feature_Parent Parent feature of the feature
Feature_Parent_ID Unique ID of the parent feature
Feature_Parameters Form parameters of the feature
Position_Parameters Position parameters of the feature

(a) Parameter event for a design feature

Tags Remarks
Feature_Types[] Type of the features
Feature_IDs[] Unique IDs of the features
Feature_Parents[] Parent features of the features
Feature_Parent_IDs[] Unique IDs of the parent features
Feature_Objects[] Objects of the features
Feature_Properties[] Properties of the feature objects
Del_Feat_IDs[] Unique IDs of the deleted features

(b) Object event for design features

Tags Remarks
Feature_Properties[] Properties of features in the part
Feature_Matrix[][] Feature relation matrix

(c) Object event for a design part

Tags Remarks
Process Plans Generated process plans
Machining Cost Machining cost for the plan

(d) Process plan event for a design part

Table 3. Four types of events in the distributed environment

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 16

Relationships Definitions

1FE and are 2FE
adjacent φ=∩ 21 FEFE , φ≠∂∩∂)()(21 FEFE , , . φ≠∂∩∂)()('

1 PFE φ≠∂∩∂)()('
2 PFE

1FE and are 2FE
overlapped

φ≠∩ 21 FEFE , 21 FEFE ⊄ and 12 FEFE ⊄ .

If both of and are either negative or positive: 1FE 2FE φ=∩ 21 FEFE , φ≠∂∩∂)()(21 FEFE ,

. φ=∩∂)(1FE ∂)('P
1FE nests 2FE

If one of and is negative, and another one is positive: . 1FE 2FE 21 FEFE ⊂

If both of and are either negative or positive: 1FE 2FE φ=∩ 21 FEFE , φ≠∂∩∂)()(21 FEFE ,

. φ=∩∂)(2FE ∂)('P
2FE nests 1FE

If one of and is negative, and another one is positive: . 1FE 2FE 32 FEFE ⊂

1FE and are 2FE
constrained

There are some constraints between the entities in and . 1FE 2FE

Table 4. The relationships between two interacting features - and 1FE 2FE

P

2FE

'P

1FE

1FE2FE

1FE 2FE

2FE
'P

1FE

2FE 1FE

Ι φ=12 FEFE

Ι φ≠∂∂)()(12 FEFE

P

1FE 2FE

1FE

2FE

'P

1FE 2FE

'P

1FE

12 FEFE ⊂

2FE 1FE

P

2FE

1FE 2FE

Ι φ≠12 FEFE

21 .. FEDiameterFEDiameter =

(a) and are abutted (b) and are overlapping

(d) and are constrained (c) nests on

Figure 4. Examples of relationships between interacting features - and

An example case is illustrated in Figure 6 (a). The
feature-to-feature relationships for the part are shown in Figure
6(b). There is a constraint between the widths of slots 1 and 2.
With the shrinking operation of slot 2 in Figure 6(c), the
relationship between the feature and the features in its non-
interacting set remain the same and are labeled as Unchanged.
The features in its non-interacting set are Updated. Since slots 1
and 2 have the same interacting set, with the variation of slot 1,
the features in the interacting set of slot 1 will not be handled
further. The final result is shown in Figure 6(d).

6. CONCLUSION

A distributed design environment based on 3D feature-

based modelling and Java technologies has been proposed and
developed. The advantages of the approach include:
(1) The environment can simulate a practical teamwork

situation through creating and managing dynamic sessions,
in which clients can play different roles in the design task.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 1 7

A high-performance and robust server is established
through an event-driven and call-back mechanism;

(2) The design information based on 3D feature-based
modelling technology can be exchanged and updated in the
environment efficiently through a feature-to-feature
relationship and manipulation method. The system is open
and scaleable, and additional analysis modules can be
incorporated by implementing some pre-defined abstract
classes.

REFERENCES

Alibre Design™ 2001, Alibre Inc. www.alibre.com
Begole J, Struble CA and Shaffer CA, 1997, Leveraging Java

applets: toward collaboration transparency in Java. IEEE
Internet Computing, 1-2, pp. 57-64.

GS-Design™ 2000, Technical whitepaper - an introduction to
GS-Design beta, CollabWare Inc.
www.prodeveloper.net/downloads/whitepaper.pdf

Hoops Stream Toolkit ™ 2001, Hoops Inc. www.hoops.com

Inventor™ collaboration tools, 2001, Autodesk Inc.
www.autodesk.com

Deleted
Features

New_Added
Features

Updated
Features

Lee JY, Kim H, Han SB and Park SB, 1999, Network-centric
feature-based modeling. Proceedings of Pacific
Graphics’99, South Korea, pp. 280-289.

Parameter
Event

Li WD, 2001, Intelligent Synthesis of Product Design and
Manufacturing Processes in a CE Environment. Ph.D
Thesis, National University of Singapore.

Object
Event

Feature-feature
Relationship

A part A Client Li WD, Ong SK and Nee AYC, 2002(a), A hybrid GA-SA
approach to optimize process plan for prismatic parts.
International Journal of Production Research, in press.

A Client Li WD, Ong SK and Nee AYC, 2002(b), Recognizing
manufacturing features from a design-by-feature model.
Computer-Aided Design, in press.

Unchanged Features

A Client
Nam TJ and Wright DK, 1998, CollIDE: a shared 3D workspace

for CAD. Proceedings of the 1998 Conference on Network
Entities, Leeds, UK. Figure 5. Differentiation of features during a part edition process

OneSpace™ 2000, Technical whitepaper - sharing engineering,
CoCreate Inc. www.cocreate.com/onespace/documentation/
whitepapers/shared_eng.pdf

OpenCasCade™ 3D Modelling Kernel V3.0, 2001,
www.opencascade.com

Pahng GD, Bae S and Wallace D, 1998, Web-based
collaborative design modeling and decision support.
Proceedings of 1998 ASME Design Engineering Technical
Conference, Atlanta, US.

Qiang L, Zhang YF and Nee AYC, 2001, A distributed and
collaborative concurrent product design system through
the WWW/Internet. International Journal of Advanced
Manufacturing Technology, 17(5), pp. 315-322.

Shyamsundar N and Gadh R, 2001, Internet-based collaborative
product design with assembly features and virtual design
spaces. Computer-Aided Design, 33, pp. 637-651.

van den Berg E, Bidarra R and Bronsvoort WF, 2000, Web-
based interaction on feature models. Proceedings of the
Seventh IFIP WG 5.2 Workshop on Geometric Modelling:
Fundamentals and Applications, Parma, Italy.

VizStream ™ 2001, RealityWave Inc. www.realitywave.com

Hole 1
Slot 1 Slot 2

Step 2

Holes 6, 7

Stock

Hole 2

Holes 3, 4

Hole 5
Step 1

Step 3

Step 4
Stock

Step 1

Step 2
Hole 2

Slot 1

Slot 2

Hole 1

Holes 3, 4 Holes 6, 7

Hole 5
Step 3

Step 4

1 – Adjacency
2 – Overlapping
3 – Nesting
4 – Constraining 2

2 2 2
1 4 1

2 2 1

1
1 1

3

(b) The feature-feature relationship
(a) A design part

Unchanged features: Steps 1, 2, 3, and 4,
Holes 2 and 5

New_Added features: No
Deleted features: No
Updated features: Stock, Slots 1 and 2, Holes

1, 3, 4, 6 and 7

(d) The unchanged and changed features(c) The width of Slot 2 is shrunk

Figure 6. A case part containing the differentiated features

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 18

http://www.alibre.com/
http://www.prodeveloper.net/downloads/whitepaper.pdf
http://www.hoops.com/
http://www.autodesk.com/
http://www.cocreate.com/onespace/documentation/whitepapers/shared_eng.pdf
http://www.cocreate.com/onespace/documentation/whitepapers/shared_eng.pdf
http://www.opencascade.com/
http://www.realitywave.com/

	A Distributed Feature-based Environment for Collaborative Design
	REFERENCES

