
 

Complexity and approximation in routing and scheduling

Citation for published version (APA):
Sitters, R. A. (2004). Complexity and approximation in routing and scheduling. [Dissertatie 1 (Onderzoek TU/e /
Promotie TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR578517

DOI:
10.6100/IR578517

Document status and date:
Gepubliceerd: 01/01/2004

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR578517
https://doi.org/10.6100/IR578517
https://research.tue.nl/nl/publications/b4fb0b15-dc15-48b3-9856-b266fae98ca0


Complexity and Approximation in

Routing and Scheduling

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 24 mei 2004 om 16.00 uur

door

Renatus Augustinus Sitters

geboren te Alkmaar



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. J.K. Lenstra
en
prof.dr. J. Sgall

Copromotor:
dr. L. Stougie

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Sitters, Renatus A.

Complexity and approximation in routing and scheduling /
by Renatus A. Sitters. - Eindhoven : Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-0882-9
NUR 919
Subject headings : combinatorial optimisation / computational complexity /
scheduling / routing / algorithms
2000 Mathematics Subject Classification : 68Q17, 68Q25, 68W25, 90B35, 68M20



Acknowledgments

I thank Leen Stougie who has been an enormous help during my PhD research.
His enthusiasm motivated me and people around me which created a great
atmosphere for research. He advised me in many ways and most of this research
was done with him. It am very happy to have Leen as advisor and supervisor.

I thank Jan Karel Lenstra for his advise, and comments on my writings.
I thank everybody that I worked together with during my research. In partic-

ular I thank Willem de Paepe, Maarten Lipmann, Xiwen Lu, Tjark Vredeveld,
and Nicole Megow. Together with Leen, we spent much time on research in
Eindhoven, but also Berlin and during many conferences in Europe. I enjoyed
it a lot. I am also grateful to have worked with Jiri Sgall, Stefano Leonardi, Cor
Hurkens, Judith Keijsper and Rudi Pendavingh. I thank Stefano and Alberto
Marchetti Spaccamela for inviting me to Rome. I am grateful for the financial
support I received from AMORE and DONET which gave me the opportunity
to visit many conferences and meet researchers abroad.

Finally, I thank my girlfriend Corina, and my family and friends for their
love and support.
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Chapter 1

Introduction

1.1 Combinatorial optimization

Imagine you are the driver of a school bus. Day after day you bring the same
group of thirty children from their homes to school and back again. In the
morning and afternoon the trip starts and ends at the school where the school-
bus remains overnight. Through your experience you found a route that seems
quite efficient, but at some day you decide to look for the best possible tour.
You decide that best possible means a tour of minimum length. You will find
out that this is not so easy. In fact, it is very unlikely that you will solve this
problem without the use of modern software for solving combinatorial optimiza-
tion problems.

Definition 1 An optimization problem Π is a three-tuple (I,S, f) where

1 I is the set of problem instances,

2 every instance I ∈ I has a set of solutions S(I),

3 every solution x ∈ S(I) has a value f(x, I) ∈ R.

The objective is to determine for a given instance I if there exists a solution,
and if so, either to find a solution that has smallest value amongst all solutions
for I, in which case we call Π a minimization problem, or to find a solution
that has largest value amongst all solutions for I, in which case we call Π a
maximization problem.

In this chapter we assume that an optimization problem is a minimization prob-
lem, since we only consider such problems in this thesis. Optimization problems

1
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in which the solution set is finite for any instance are called combinatorial opti-
mization problems. Since we only consider optimization problems with a finite
solution set, we will often omit the word combinatorial or simply write problem.

Notice the distinction we make between a problem and an instance of a
problem. In an instance we actually have the information from which we can
obtain an optimal solution; a problem is a set of instances, usually implicitly
defined. The explicit problem of the bus driver is an instance of the well-studied
traveling salesman problem (TSP). Instances of TSP are specified by a set of
points with their pairwise distances, where the set S is the set of all possible
tours through all points, and the function f adds to each tour its length.

In this thesis we consider two types of optimization problems: machine
scheduling problems and routing problems.

1.2 Machine scheduling problems

Machine scheduling concerns the allocation of activities to resources over time,
so as to optimize some objective function. Applications are found in areas like
production planning, computer control, personnel scheduling, and maintenance
scheduling. In production planning we can think of machines being the resources
and operations that have to be performed on the machines being the activities.
In the sequel we refer to the resources as machines and to the activities as jobs.

Graham et al. [45] classified the frequently used machine scheduling problems
by distinguishing three problem characteristics: the machine environment, the
job characteristics, and the objective function. We mention some basic features.

The simplest machine environment is the single machine in which each of n

jobs Jj (j = 1 . . . n) has to be processed during pj time units on the machine.
We assume that a machine can work on only one job at a time. In the parallel
machine environment the processing time of a job is reciprocal to the speed of
the machine, and any job can be processed by at most one machine at a time.
Identical parallel machines operate all at the same constant speed. Uniform
parallel machines have their own constant speed and unrelated parallel machines
process at a job-dependent speed.

Examples of job characteristics are release dates, deadlines, and the possi-
bility of allowing preemption. If preemption is allowed, then an operation may
be interrupted and resumed at the same moment on a different machine or at a
later moment on any machine. If preemption is not allowed, then any job must
be processed on one machine without interruption.

A schedule is an allocation of the jobs to time intervals on the machines; it
is feasible if all requirements imposed by the machine environment and the job
characteristics are met. The objective is usually to minimize a non-decreasing
function of the completion times C1, . . . , Cn of the jobs, e.g. the makespan
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(maxj Cj), or the total weighted completion time (
∑n

j=1 wjCj), where each job
has a given weight wj indicating its importance.

1.3 Routing problems

Routing problems concern the design of routes in a metric space. In this thesis
we only consider the routing of servers through a metric space so as to serve
requests. The traveling salesman problem is a typical example of such a routing
problem: Each request is a point in the metric space, and a request is served
when the server’s position matches the request point. The job characteristics
that we mentioned for machine scheduling also apply to routing problems. For
example, a request might be preempted if it has a processing time, i.e., the
server must stay in the request point for a given time in order to serve the
request.

Many of the popular objective functions used in scheduling problems are
also common for routing problems. For example, the objective in the traveling
repairman problem (TRP) is to minimize the sum of the (weighted) completion
times. Instances of this problem are similar to TSP instances with the addition
that one of the given points is labelled as the origin. The completion time of a
request is the length of the partial tour from the origin to the request point. If
the bus driver uses the TRP objective for the design of the afternoon ride (when
he drops off the children), then the optimal tour minimizes the total travel time
of the children. We see that the repairman is more client oriented than the
salesman, who minimizes his own travel time.

There is no true distinction between scheduling and routing problems. For
example, a routing problem with processing times and a single point as its metric
space is basically a machine scheduling problem.

1.4 Complexity theory

We can solve the problem of the bus driver by going through all possible tours
and take the one of minimum length. In general, an optimal solution for an
instance of the traveling salesman problem with n points can be found by this
complete enumeration of all possible solutions. A step-by-step procedure for
a combinatorial optimization problem, which either outputs some solution or
outputs that it cannot find a solution, is called an algorithm. In this thesis we
only consider deterministic algorithms. Such algorithms always return the same
answer for any fixed instance. In randomized algorithms, the steps are defined
by the instance and by the value of random variables. Such algorithms may give
different answers for multiple runs on a fixed instance.
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Definition 2 An algorithm solves a problem Π if for any instance I with a non-
empty solution set S(I), the output is an optimal solution of I. An algorithm
that solves a problem Π is called an exact algorithm for Π.

We can easily program a computer to run the complete enumeration algorithm
for the traveling salesman problem. However, an instance with only 30 points,
such as the bus-driver’s problem, already has so many possible solutions that
we would not live long enough to see the answer! It seems fair to say that
complete enumeration does not really solve the TSP problem. Informally, we
call an algorithm efficient if it is guaranteed to run in an acceptable amount of
time, for any instance of the problem. A generally used standard to formalize
efficiency of algorithms is that of polynomial boundedness.

Definition 3 We say that an algorithm is efficient if for any instance I the
number of computational steps required to solve I is bounded by a polynomial in
the size |I| of the instance.

The size |I| is the number of characters used to represent an instance. For
example, instances of TSP can be written as a sequence of n(n− 1)/2 numbers,
representing the pairwise distances. Each number is represented by a sequence
of characters (digits). The way in which instances are represented is part of the
problem definition.

A decision promlem is given by a set of instances, where each insctance
either has the value ‘yes’ or the value ‘no’. The problem is to decide if the given
instance is a yes-instance. For example, given 2n integers, can we partition
them in two sets with equal sum? Given a minimization problem Π, we can
define a decision problem DΠ with parameter b that asks for each instance I

of Π and value of b, if it has a solution with value at most b. An algorithm
solves the decision problem if it answers this question correctly for any instance
(I, b) of the decision problem. If we efficiently solve a problem Π, then we
efficiently solve the associated decision problem. Conversely, an algorithm that
solves the decision problem efficiently can be used, under a mild restriction on
the objective function, to find the optimal value of an instance efficiently.

We denote by P the class of decision problems that can be solved by an
efficient algorithm. For many natural problems, such as TSP, it is conjectured
but not yet proven that their decision problem does not belong to P . On the
other hand, if an instance of TSP has a solution with value at most b, then we
can easily verify this if such a solution is given to us. We denote by NP the
class of decision problems for which we can efficiently verify any yes answers
of the decision problem. For a formal definition of the classes P and NP we
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refer to [37]. The class P is contained in NP . A famous open question in
mathematics is whether or not P = NP .

We say that a problem D1 ∈ NP polynomially transforms to a problem
D2 ∈ NP if we have a function F that maps any instance I1 of D1 to an
instance I2 of D2 such that F can be computed in polynomial time, and I1 is a
yes instance of D1 if and only if I2 is a yes instance of D2. More generally, we
say that D1 polynomially reduces to D2 if we can solve D1 efficiently if solving
any instance of D2 is counted as a single step.

Definition 4 A decision problem D is NP -complete if all problems in NP

polynomially transform to D.

It is unlikely that we can efficiently solve any NP -complete problem, since this
would imply that we can efficiently solve all problems in NP . Since polyno-
mial transformations are transitive we can prove NP -completeness of a decision
problem D1 by showing that:

(i) D1 is a member of NP ;
(ii) there is an NP -complete problem D2 that polynomially transforms to D1.

Cook [27] showed that the satisfiability problem is NP -complete by giving an
explicit transformation to SAT for any problem in NP . See [37] for a definition
of the satisfiability problem. Since Cook’s proof, many decision problems have
been classified as NP -complete using the two conditions above [37].

We say that an optimization problem is NP-hard if any exact algorithm
for this problem will solve an NP -complete problem at the loss of at most a
polynomial factor in running time. Hence, an optimization problem is NP -hard
if its decision problem is NP -complete.

Many optimization problems contain numbers, representing distances, ca-
pacities or weights. A decision problem is called strongly NP -complete, or
NP -complete in the strong sense, if it is NP -complete even if we restrict our-
selves to instances in which all numbers are polynomially bounded in the input
size. We use the term ordinarily NP -complete if we can show NP -completeness
of a problem but we do not know if it is also strongly NP -complete. Conversely,
we say that a problem is pseudo-polynomially solvable if we can solve it in a time
polynomial in the input size and the value of the largest integer.

1.5 Approximation algorithms

Algorithms that are not guaranteed to find an optimal solution could still be
considered ‘good’ if the output value is never far from the optimal value. Given
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an instance I for minimization problem Π we denote the optimal value of in-
stance I by Opt(I). If I has no feasible solution, then we set Opt(I) = ∞. We
denote the value of the solution given by A on input I by A(I). If no solution
is returned, then we set A(I) = ∞.

Definition 5 An algorithm A is an α-approximation algorithm for a minimiza-
tion problem Π if for any instance I with Opt(I) < ∞, the value of the solution
returned by A is at most α times the optimal value for instance I.

The value α is called the performance guarantee of algorithm A. It is at least 1
for a minimization problem and solves a problem if and only if α = 1.

A family of algorithm {Aε}ε>1 is called a polynomial time approximation
scheme (PTAS) for a minimization problem Π if Aε is an efficient ε-approximation
algorithm for every fixed ε > 1.

We briefly mention how we can classify optimization problems by their ap-
proximability in a similar way as we did above for their solvability. For an exten-
sive overview on complexity classes and approximation we refer to the pioneering
paper by Papadimitriou and Yannakakis [67], and the books by Vazirani [85]
and Ausiello et al. [9]. The class APX is formed by all optimization problems
that have an efficient α-approximation algorithm for some constant α. The
APX-complete problems are the hardest problems within APX with respect
to so called approximation preserving reductions. The class of APX-complete
problems is non-empty and an APX-complete problem does not have a PTAS
unless P=NP [8]. Hence, assuming P 6= NP , we can show the inapproximabil-
ity of an optimization problem by giving an approximation preserving reduction
from an APX-complete problem.

Papadimitriou and Yannakakis [67] defined the class Max-SNP to find ev-
idence of non-approximability. We omit any definition of this class and only
mention that there is no Max-SNP -hard problem with a PTAS [8], unless
P=NP .

1.6 On-line algorithms

In many practical applications optimization is a continuous process. Think
about routing taxis in a city or assigning airplanes to gates. We simply cannot
afford to wait until we have all information (if it is finite at all) before making
choices about the solution. Many classical off-line optimization problems have a
natural on-line variant. In the on-line traveling repairman problem, as described
in [55], the instances are similar to the off-line traveling repairman problem with
release dates. We require that at any moment t, the algorithm is ignorant of the
requests released after time t. In other words, the tour followed by the server
until time t is a function of the requests released until time t only.
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We distinguish two frequently used models for on-line problems: problems in
which the requests (or jobs) arrive over time, as in on-line TRP, and problems
in which requests (or jobs) arrive one by one. In the first case the algorithm is
free to choose among the available requests or it might even remain idle for some
time. The latter case does not involve time. Any request is revealed as soon as
the preceding request has been served. Any step made by the algorithm at the
release of a request is a function of the requests released until then. There are
many other ways to model optimization problems as on-line problems.

The performance of an on-line algorithm is often measured through its com-
petitive ratio.

Definition 6 An algorithm A is c-competitive for a minimization problem Π if
there exists a constant γ such that for all inputs I

A(I) ≤ c ·Opt(I) + γ.

If γ is at most zero, then we say that A is strictly c-competitive.

An algorithm is called competitive if it is c-competitive for some constant c.
The competitive ratio of an algorithm A is the infimum value c for which A is
c-competitive. The competitive ratio of an on-line minimization problem Π is
the infimum over all values c for which there exists a c-competitive algorithm.

A strictly c-competitive algorithm is a c-approximation algorithm. In prac-
tice we usually seek efficient on-line algorithms, i.e. algorithms requiring poly-
nomial time. However, in on-line optimization theory we usually make no re-
quirements or assumptions about the running time of algorithms. Most on-line
problems do not have 1-competitive algorithms. The usual goal in on-line op-
timization is to find a c-competitive algorithm for some on-line optimization
problem, and in addition to show that no on-line algorithm can be better than
c-competitive.

An on-line problem is often described as a game between an on-line player
(the algorithm) and an evil adversary, who tries to make the relative perfor-
mance of the on-line player as bad as possible. The adversary knows the algo-
rithm of the on-line player and chooses the worst instance for this algorithm.

1.7 Outline of the thesis

The research is focused on the computational complexity and competitive anal-
ysis of some elementary machine scheduling and routing problems. Here we
briefly mention the main results.

In Chapter 2 we show that minimizing total completion time on unrelated
parallel machines is NP -hard if preemption is allowed. The result is surprising
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since the non-preemptive case can be solved in polynomial time. There are
very few scheduling problems for which allowing preemption makes the problem
harder.

In Chapter 3 we consider on-line algorithms for minimizing total (weighted)
completion time on identical parallel machines. We generalize existing results
and improve upon the best known competitive ratio for a preemptive single-
machine problem.

Routing problems are the subject of Chapters 4 and 5. We prove NP -
hardness of the traveling repairman problem on the tree metric. Many routing
problems are much easier for trees than for a general metric space. Nevertheless,
the tree metric is a useful model for many application in network routing. The
traveling repairman problem has been well-studied, but most research is done on
approximation algorithms for various metric spaces, including the tree metric.
Our negative result implies that an efficient exact algorithm for this problem is
highly unlikely to exist.

In Chapter 5 we consider the competitiveness of metrical service systems.
This model contains many well-studied on-line routing problems as a special
case, e.g. the paging problem and the k-server problem. We show a non-trivial
sufficient condition for competitiveness of any metrical service system and pro-
vide an implicit algorithm. Although our algorithm attains huge competitive
ratios in general, it is the first provably competitive algorithm for an important
on-line routing problem: the general two-server problem. Our structural theo-
rem gives new insight into the competitive analysis of metrical service systems.



Chapter 2

Complexity of preemptive

minsum scheduling on

unrelated machines

2.1 Introduction

Suppose that m machines Mi (i = 1, . . . ,m) have to process n jobs Jj (j =
1, . . . , n). Each job can be processed by any of the machines but by only one at
time. Each machine can process at most one job at a time. The time it takes
to process job Jj completely on machine Mi is given by a positive integer pij .
Preemption is allowed. We consider two optimality criteria: minimizing the sum
of completion times

∑n
j=1 Cj , and minimizing the sum of unit lateness penalties∑n

j=1 Uj . In the latter case each job Jj has a given due date dj , that is, the
moment in time by which it should be completed. We say that a job is late if
dj < Cj and the penalty Uj is 1 if job Jj is late, and 0 otherwise.

∑n
j=1 Cj is

also called the total completion time.
∑n

j=1 Uj is the number of late jobs.
With the two optimality criteria we have defined two scheduling problems.

In the notation introduced by Graham et al. [45] they are R|pmtn|
∑

Uj and
R|pmtn|

∑
Cj . The ‘R’ indicates that we have unrelated parallel machines, i.e.,

no relation between the mn processing times pij is presumed. The number of
machines m is defined as part of the problem instance. If the number of machines
m is fixed, the notation ‘Rm’ is used. The abbreviation ‘pmtn’ indicates that
preemption is allowed. The third field indicates which optimality criterion is
used. We will use this notation in this chapter as a name for the problems.

Lawler [57] proved that the problem of preemptively minimizing the num-
ber of late jobs on identical parallel machines, is ordinarily NP -hard. Hence,

9
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R|pmtn|
∑

Uj is ordinarily NP -hard. We show that R|pmtn|
∑

Uj is NP -hard
in the strong sense.

If no preemption is allowed (R||
∑

Cj), an optimal schedule can be found in
polynomial time by solving a weighted bipartite matching problem (Horn [49],
Bruno et al. [17]). Consider the jobs that are to be processed on some machine
Mi, and for simplicity assume that these are Jl, Jl−1 . . . , J1. The total comple-
tion time of these jobs, if scheduled in this order, is lpl1+(l−1)pi,l−1+. . .+pi1. In
general, the contribution of a job Jj is kpij if it is scheduled kth last on machine
Mi. Define the weighted bipartite matching problem with the set of machines
as one set of the partition and the other set is {(i, k) | 1 ≤ i ≤ m, 1 ≤ k ≤ n},
where the pair (i, k) indicates the kth last job position on machine Mi. The cost
of matching job Jj to the pair (i, k) is kpij . Any optimal schedule corresponds to
a minimum weighted matching and vice versa. The weighted matching problem
can be solved in O(n3) time.

In the case of uniform parallel machines and no release date constraints,
Gonzalez [44] shows that an optimal preemptive schedule can be found in poly-
nomial time. We say that the machines are uniform if pij = pj/si for given
processing requirement pj of job Jj , and speed si of machine Mi. On the other
hand, preemptive scheduling to minimize total completion time under release
date constraints on two identical machines is NP -hard. We show that the prob-
lem R|pmtn|

∑
Cj is NP -hard in the strong sense.

R||
P

Cj O(n3) [17],[49]

R|pmtn|
P

Cj NP -hard∗ [♦]

R||
P

Uj NP -hard∗ [36]

R|pmtn|
P

Uj NP -hard∗ [♦],[79]

R|pij ∈ {pj ,∞}|
P

Cj O(n3) [17],[49]

R|pmtn, pij ∈ {pj ,∞}|
P

Cj O(n3) [♦],[79]

R|pij ∈ {pj ,∞}|
P

Uj NP -hard∗ [36]

R|pmtn, pij ∈ {pj ,∞}|
P

Uj NP -hard [57]

[♦] this chapter

* NP -hard in the strong sense.

Table 2.1: Complexity status of some unrelated machine problems.

For almost all scheduling problems the preemptive version of the problem is
not harder to solve than the non-preemptive version. For at least two schedul-
ing problems this empirical law does not hold true. Brucker, Kravchenko, and
Sotskov [16] showed that the preemptive job shop scheduling problem with two
machines and three jobs (J2|n = 3, pmtn|Cmax) is ordinarily NP -hard, whereas
Kravchenko and Sotskov [54] showed that the non-preemptive version can be
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solved in O(r4) time, where r is the maximum number of operations of a job.
The other exception is that of finding an optimal preemptive schedule for equal
length jobs on identical parallel machines. The optimality criterion is the sum of
weighted lateness penalties. This problem was proven to be ordinarily NP -hard
by Brucker and Kravchenko [15]. In the same paper they give a O(n log n) time
algorithm for the non-preemptive version. Recently they even proved strong
NP -hardness for the preemptive problem [14]. R|pmtn|

∑
Cj is the third prob-

lem type on this short list.
A special case of the unrelated machine model is the model in which each

job Jj has a fixed processing time pj but the job can only be processed on a
job-specific subset of the machines. This is modelled by defining the processing
time of job Jj on machine Mi as either pj or infinite. We denote this problem
as R|pmtn, pij ∈ {pj ,∞}|

∑
Cj . If preemption is not allowed, then the problem

can be solved efficiently [49, 17]. We show that within this model, the problem
of minimizing total completion time, when preemption is allowed, can be solved
in polynomial time by showing that there exists an optimal schedule that is
non-preemptive.

2.2 NP-hardness of preemptive minsum

scheduling

We prove that preemptive scheduling on unrelated machines is NP -hard in the
strong sense for both the sum of unit lateness penalties objective and the total
completion time objective. We will polynomially transform the 3-dimensional

matching problem to the decision problems of either of the two optimization
problems. The 3-dimensional matching problem was proven to be NP -
hard by Karp [50].

3-Dimensional Matching (3DM)

Instance: Sets U = {u1, . . . , um}, V = {v1, . . . , vm}, and W = {w1, . . . , wm},
and a subset S ⊂ U × V ×W of size n ≥ m.
Question: Does S contain a perfect matching, that is, a subset S′ of cardinality
m that covers every element in U ∪ V ∪W?

As a preliminary we define, for each instance of the 3DM problem, three basic
sets of machines and one basic set of jobs that we shall use in both NP -hardness
proofs in this chapter.

Given an instance of 3DM we define one machine Ui for each element ui

of the set U . The set of these m machines is denoted by U as well. In the
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same way we define the sets of machines V and W . We use the following
notation for the set S: S = {(uαj

, vβj
, wγj

)| j = 1, . . . , n}. For each element
sj = (uαj

, vβj
, wγj

) of S we define one job which we denote by Jj . The set
of these n jobs is denoted by J . Their processing time is small on the three
machines that correspond to the related triple, and is large on all other machines.
To be specific: let sj = (uαj

, vβj
, wγj

) be an element of S, then the processing
time of job Jj is 3p on machine Uαj

, 3
2p on machine Vβj

, and p on machine
Wγj , where p ∈ R, p ≥ 2. The processing time is K on any of the other
3m− 3 machines, where K ∈ R, K ≥ 6p. The numbers K and p will be chosen
appropriately in each of the two NP -hardness proofs.

We use the following terminology. We say that a machine is a slow machine
for job Jj if the processing time of job Jj is K on that machine. In any other
case we say that the machine is fast for the job. The following lemma relates the
perfect 3-dimensional matching property to properties of the scheduling instance
given by the sets U,W,W and J .

Lemma 1 Let I be an instance of 3DM and let the corresponding sets U, V,W

and J as defined before. If we add the restriction that none of the V -machines
can process a job before time t = 1 and none of the W -machines can be used
for processing before time t = 2, then the following holds for every preemptive
schedule:

(i) Cj ≥ p + 1 for every job Jj ∈ J ,

(ii) if there are m jobs Jj for which Cj < (p + 1) + 1
12 , then I contains a perfect

matching.

Proof. (i) The completion time of job Jj is minimized if it is at any time
scheduled on the fastest available machine. Schedule job Jj on machine Uαj

from t = 0 to t = 1, on machine Vβj
from t = 1 to t = 2, and on machine Wγj

from time t = 2 onwards. Scheduled in this way Cj = p+1. Any other schedule
will give a strictly larger completion time. We call this the optimal schedule job
Jj .

(ii) We say that the schedule of job Jj is nearly optimal if Jj is scheduled for
more than 0.5 time units on machine Uαj

in the interval [0, 1], for more than 0.5
time units on machine Vβj in the interval [1, 2], and for more than 0.5 time units
on machine Wγj in the interval [2, 3]. If m jobs receive simultaneously a nearly
optimal schedule, then a perfect matching exists. Now consider the completion
time of a job Jj that is processed at any time on the fastest available machine
with the restriction that machine Uαj is available between time 0 an 1 for
exactly t ≤ 0.5 time units. At time 2, job Jj has been processed for a fraction
t/3p + (1 − t)/K + 1/1.5p ≤ 11/12p. Hence, the completion time is at least
2 + (1 − 11/12p)p = p + 1 + 1/12. Similarly, we can show that the completion
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time of Jj is at least p + 1 + 1/6 if it is scheduled for at most 0.5 time units on
machine Vβj

in the interval [1, 2], or for at most 0.5 time units on machine Wγj

in the interval [2, 3]. We conclude that the completion time of a job is at least
p + 1 + 1/12 if its schedule is not nearly optimal. �

We use this construction with the optimal schedule of the J-jobs to prove The-
orems 1 and 2. In the lemma we made the restriction that sets of machines can
only be used from some point in time onwards; in the NP -hardness proofs we
have to find a way to enforce this. It turns out that this is easy for the

∑
Uj

objective and more complicated for the
∑

Cj objective.

2.2.1 Minimizing the number of late jobs

Formally, the decision problem of R|pmtn|
∑

Uj is:

Instance: A number α, a set {M1,M2, . . . ,Mm} of m unrelated machines, a set
{J1, J2, . . . , Jn} of n independent jobs, and a set {pij |i = 1 . . .m, j = 1 . . . n}
where pij is the processing time of job Jj on machine Mi.
Question: Does there exist a preemptive schedule for which

∑n
j=1 Uj ≤ α?

Theorem 1 R|pmtn|
∑

Uj is strongly NP -hard.

Proof. Let I be an instance of 3DM with the notation as defined before. The
scheduling instance consists of the basic sets of machines U , V and W , and the
basic set of jobs J , defined before, and additionally we define a set A of jobs
as follows. For each machine of the set V we introduce one job with processing
time 1 on that specific machine, and with processing time K on any of the other
3m− 1 machines. The due date is 1 for all these jobs. For each machine of W

we define one job with processing time 2 on that specific machine, and with
processing time K on any of the other 3m− 1 machines. The due date is 2 for
all these jobs. We define the set J of jobs related to S, with their processing
times as before. We define the due dates of the jobs in the set J as p + 1. We
choose the values p = 3m + 3 and K = 6p.

We claim that for any schedule, the number of late jobs is less than or equal
to n−m, if and only if a perfect matching exists. Notice that, since the number
of jobs is n + 2m, this is the same as claiming that the number of early jobs is
at least 3m if and only if a perfect matching exists.

If there exists a perfect matching, then it is possible to schedule the jobs
such that 3m jobs are early: Schedule the 2m A-jobs such that they are early
(there is only one way to do this), and give the m J-jobs that correspond to the
elements in the 3-dimensional matching their optimal schedule as described in
the proof of Lemma 1.
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Now observe that it is impossible to have more than m early J-jobs. For a
J-job to be early, it must be scheduled on its fast W -machine for a time of at
least p− 2. So if there are at least m + 1 early J-jobs, then the total processing
time required on the W -machines is at least (m + 1)(p− 2) = (m + 1)(3m + 1).
For any m this is strictly larger than m(3m + 4), which is the total available
processing time on the W -machines before the due date, 3m + 4.

We conclude that if at least 3m jobs are early, then these jobs are the 2m

A-jobs and exactly m of the J-jobs. From Lemma 1(ii) it follows that in this
case a perfect matching exists. �

It is not obvious that the decision problem is in the class NP since we have to
exclude the possibility that there is a schedule with a superpolynomial number
of preemptions that has a strictly smaller objective value than any schedule
with a polynomial number of preemptions. Lawler and Labetoulle [58] show
that for any monotone, non-decreasing objective function f(C1, C2, . . . , Cn),
an optimal schedule can be constructed by solving a linear program, if the
completion times of the jobs in an optimal schedule are given. The number of
preemptions for this schedule is O(m2n). Verifying the feasibility of a schedule
with O(m2n) preemptions requires polynomial time, whence Theorem 1 implies
that the decision problem of R|pmtn|

∑
Uj is NP -complete.

2.2.2 Minimizing the sum of completion times

Formally, the decision problem of R|pmtn|
∑

Cj is:

Instance: A number α, a set {M1,M2, . . . ,Mm} of m unrelated machines, a set
{J1, J2, . . . , Jn} of n independent jobs, and a set {pij |i = 1 . . .m, j = 1 . . . n}
where pij is the processing time of job Jj on machine Mi.
Question: Does there exist a preemptive schedule for which

∑n
j=1 Cj ≤ α?

Theorem 2 R|pmtn|
∑

Cj is strongly NP -hard.

Proof. Let I be an instance of 3DM with the notation as defined before. The
scheduling instance contains the basic sets of machines U , V and W , and the
basic set of jobs J . Additionally we define one machine which we denote by
Z. The processing time on the Z-machine is p for any job from J . The value
of p is set to p = 2. The value of K (which was defined as the processing
time on slow machines) will be specified later. We also define two additional
sets A and B of jobs. For each V -machine we define M A-jobs with processing
time 1

M on that specific machine and processing time K on any other machine.
The value of M will be specified later. For each W -machine we define 2M

A-jobs with processing time 1
M on that specific machine and with processing
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Figure 2.1: Sketch of the schedule σ3DM .

time K on any other machine. For the Z-machine we define 3M A-jobs with
processing time 1

M on the Z-machine and processing time K on any of the other
3m machines. This makes the total number of jobs in the set A (3m+3)M . The
A-jobs are meant to keep the V -machines busy until time 1, the W -machines
busy until time 2, and the Z-machine busy until time 3. Finally, we define the
B-jobs. For each U -machine we define 1

3 (n − m) B-jobs with processing time
2n + 4 on that specific machine, and processing time K on any other machine.
(Without loss of generality we may assume that 1

3 (n−m) is integer.) For each
V -machine we define 2

3 (n−m) B-jobs with processing time 2n+4 on that specific
machine and processing time K on any other machine. For each W -machine we
define (n−m) B-jobs with processing time 2n + 4 on that specific machine and
processing time K on any other machine. The B-jobs are introduced to ensure
that, in an optimal schedule, a limited subset of the J-jobs is scheduled on the
U -, V -, and W -machines.

If a perfect matching exists then the jobs can be scheduled as shown in Fig.
2.1. All A-jobs are scheduled as early as possible on their fast machines. The
m jobs from J that correspond to the perfect matching are scheduled as in the
proof of Lemma 1. The completion time of these jobs is 3. All other J-jobs are
scheduled after the A-jobs on the Z-machine. Each B-job is scheduled on its
unique fast machine. The B-jobs are placed directly after the other jobs. This
schedule is denoted by σ3DM . The sum of completion times in σ3DM is denoted
by Cσ3DM

. The value of Cσ3DM
is clearly a polynomial in m, n, M , and 1/M .

The expression is omitted here.
We write Cσ for the total completion time of any feasible schedule σ, and

we write Cσ(Y ) for the sum of completion times of any subset of jobs Y in σ.
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Now we show that if no perfect matching exists, then for any preemptive sched-
ule σ the total completion time is strictly larger than Cσ3DM

. In fact we will
show that Cσ ≥ Cσ3DM

+ 1
48 .

We introduce two restrictions to the scheduling problem.

• Restriction 1: No job may be processed on a slow machine.

• Restriction 2: All A-jobs have to be scheduled as in σ3DM .

With these two restrictions we define three scheduling problems.

• Problem 1: The original problem with Restrictions 1 and 2.

• Problem 2: The original problem with Restriction 1.

• Problem 3: The original problem.

For each of the three problems we show a lower bound on the total completion
time in case no perfect matching exists for the 3DM instance I. The essence of
the reduction is contained in the proof for Problem l. It is intuitively clear that
a lower bound for Problem 2 or 3 can be made arbitrarily close to a lower bound
for Problem 1 if M and K are chosen large enough. We give explicit values for
the numbers M and K and prove that these values suffice, i.e., we show that
processing the A-jobs different or using slow machines will not invalidate the
reduction.

Problem 1: Let σ be a feasible schedule for Problem 1. We prove that Cσ ≥
Cσ3DM

+ 1
12 if no perfect matching exists. Since the total processing time of

the jobs for which the Z-machine is fast is at most 2n + 3, and the processing
time of a B-job is 2n+4, we may assume that the completion time of any J-job
is strictly smaller than the completion time of any B-job. Otherwise we could
decrease the completion time such a J-job by processing it as early as possible
on the Z-machine.

Let TUi (i = 1, . . . ,m) be the time that is spent on processing J-jobs on
machine Ui. Define TVi

, TWi
(i = 1, . . . ,m) and TZ in a similar way. Notice

that in schedule σ3DM we have TUi
= TVi

= TWi
= 1 and TZ = 2(n −m). Let

B(Ui) (i = 1, . . . ,m) be the set of B-jobs that have machine Ui as their fast
machine and define B(Vi) and B(Wi) in a similar way.

Cσ(B(Ui)) ≥ Cσ3DM
(B(Ui)) + 1

3 (n−m)(TUi
− 1) (i = 1, . . . ,m),

Cσ(B(Vi)) ≥ Cσ3DM
(B(Vi)) + 2

3 (n−m)(TVi
− 1) (i = 1, . . . ,m),

Cσ(B(Wi)) ≥ Cσ3DM
(B(Wi)) + (n−m)(TUi − 1) (i = 1, . . . ,m).

Adding the three equations above yields:

Cσ(B) ≥ Cσ3DM
(B) + (n−m)

1
3

m∑
i=1

TUi
+

2
3

m∑
j=i

TVi
+

m∑
i=1

TWi
− 2m

 .
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By the choice of the processing times of the J-jobs we have

TZ = 2n− 1
3

m∑
i=1

TUi −
2
3

m∑
i=1

TVi −
m∑

i=1

TWi .

Combining the two equations above yields

Cσ(B) ≥ Cσ3DM
(B) + (n−m) (2(n−m)− TZ) . (2.1)

Let Cσ(J)1 be the sum of the m smallest completion times amongst the J-
jobs in the schedule σ, and let Cσ(J)2 be the sum of the n−m largest completion
times among the J-jobs. In a similar way we define Cσ3DM

(J)1 and Cσ3DM
(J)2.

Let c1 ≤ c2 ≤ . . . ≤ cn be an ordering of the completion times of the J-jobs in
σ. The largest completion time cn is at least 3 + TZ , and the second largest is
at least 3 + TZ − 2, and so on. In general we have cj ≥ 3 + TZ − 2(n− j). We
obtain:

Cσ(J)2 =
∑n

j=m+1 cj

≥
∑n

j=m+1 (3 + TZ − 2(n− j))

=
∑n

j=m+1 (3 + 2(j −m) + TZ − 2(n−m))

= Cσ3DM
(J)2 + (TZ − 2(n−m))(n−m).

(2.2)

Combining inequalities (2.1) and (2.2), and using Cσ3DM
(A) = Cσ(A) and

Cσ3DM
(J)1 = 3m we obtain

Cσ = Cσ(A) + Cσ(B) + Cσ(J)1 + Cσ(J)2
≥ Cσ3DM

(A) + Cσ3DM
(B) + Cσ(J)1 + Cσ3DM

(J)2
= Cσ3DM

− Cσ3DM
(J)1 + Cσ(J)1

= Cσ3DM
− 3m + Cσ(J)1.

From Lemma 1 we have Cσ(J)1 ≥ 3m + 1
12 , implying Cσ ≥ Cσ3DM

+ 1
12 .

Problem 2: Let σ be any feasible schedule for Problem 2. We prove that Cσ ≥
Cσ3DM

+ 1
24 for an appropriately large value of M if there does not exists a

perfect matching.
Let δ(Vi) (1 ≤ i ≤ m) be the total time between time 0 and 1 during which

machine Vi does not process A-jobs. Similarly, let δ(Wi) and δ(Z) be the total
time in respectively the time interval [0, 2] and [0, 3] during which machine Wi

and Z do not process their A-jobs. The last A-job on machine V1 completes
earliest at time 1+ δ(V1), and the second last at time 1+ δ(V1)− 1

M , and so on.
Hence, compared to the schedule σ3DM , at least dδ(V1)Me A-jobs on machine V1

are delayed by δ(V1), increasing the total completion time by at least δ(V1)
2
M .

Denote δ = δ(V1) + . . . + δ(Vm) + δ(W1) + . . . + δ(Wm) + δ(Z).
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Cσ(A) ≥ Cσ3DM
(A) +

∑m
i=1 δ(Vi)2M +

∑m
i=1 δ(Wi)2M + δ(Z)2M

≥ Cσ3DM
(A) + δ2M/(2m + 1).

(2.3)

If this total time δ is used for processing a J-job, then at most a fraction δ/2
of this job can be processed during this time. For B-jobs this fraction is even
smaller. Now consider the problem in which all processing times of J- and B-
jobs are multiplied by a factor 1− δ/2, slow machines may not be used, and the
machines from V , W and Z may not be used until time 1, 2 and 3 respectively.
From Problem 1 it follows that the sum of completion times of the J- and B-
jobs in this scaled problem, and thus also in the original problem, is at least
(1− 1

2δ)(C∗+ 1
12 ), where we write C∗ for Cσ3DM

(J)+Cσ3DM
(B). Together with

(2.3) this gives the following inequality:

Cσ ≥ Cσ3DM
(A) + δ2M/(2m + 1) + (1− 1

2δ)(C∗ + 1
12 )

= Cσ3DM
+ δ2M/(2m + 1)− 1

2δ(C∗ + 1
12 ) + 1

12

(2.4)

Standard calculus tells us that (2.4) implies

Cσ ≥ Cσ3DM
− 1

16
(C∗ +

1
12

)2(2m + 1)/M +
1
12

(2.5)

The number M has not been specified yet. If we choose M = 3
8 (C∗+ 1

12 )2(2m+
1), then Cσ ≥ Cσ3DM

+ 1
24 . Notice that M is well-defined since C∗ = Cσ3DM

(J)+
Cσ3DM

(B) does not depend on M .

Problem 3: Let σ be any schedule for Problem 3. If a perfect matching does
not exist, we prove we will prove that Cσ ≥ Cσ3DM

+ 1/48 for K ≥ 48(2m +
4)N(Cσ3DM

+ 1
48 ), where N is the total number of jobs in our scheduling instance.

Suppose that some parts of jobs are scheduled on slow machines. If the total
number of processing units scheduled on slow machines exceeds (Cσ3DM

+ 1
48 )/K,

then the statement clearly holds. From σ we define a new schedule in three steps.
First, remove all the work that is scheduled on slow machines. Secondly, shift
the remaining schedule forward in time over a time 1/(48N). That is, all work is
postponed by 1/(48N). Thirdly, reschedule the removed work on fast machines
between t = 0 and t = 1/(48N). This is possible since the total processing
time of this work is at most (2m + 4)(Cσ3DM

+ 1
48 )/K ≤ 1/(48N) if completely

scheduled on fast machines. In this new schedule no job is scheduled on a slow
machine, and the increase in the total sum of completion times is at most 1/48.
Using the lower bound for Problem 2 we obtain

Cσ +
1
48

≥ Cσ3DM
+

1
24

⇒ Cσ ≥ Cσ3DM
+

1
48

.

We conclude that a perfect matching exists if and only if there exist a schedule
σ for which Cσ ≤ Cσ3DM

+ 1
48 . �
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From Section 2.2.1 we know that the decision problem of R|pmtn|
∑

Cj is in
NP . Hence, Theorem 2 implies that the decision problem is NP -complete.

2.3 Identical machines with job-specific

availability

A special case of the unrelated machine model is the model in which each job
Jj has a fixed processing time pj but with the restriction that it can only be
processed on a job-specific subset of the machines. This is modelled by setting
the processing time of job Jj to pj on machine Mi if Jj can be processed on Mi

and to ∞ otherwise.
McNaughton [62] proved already in 1959 that for identical machines there is

no preemptive schedule with a finite number of preemptions for which the total
completion time is strictly less than that of the optimal non-preemptive sched-
ule. As we mentioned earlier there is an optimal schedule with at most O(m2n)
preemptions [58], implying that McNaugthon’s restriction to a finite number of
preemptions may be removed. We generalize this theorem of McNaughton to
the restricted unrelated machine model.

Theorem 3 Let I be an instance of the problem R|pmtn|
∑

Cj. If there are
numbers {p1, . . . , pn} such that pij ∈ {pj ,∞} for all i ∈ {1, . . . ,m} and j ∈
{1, . . . , n} then there exists an optimal schedule that is non-preemptive.

Proof. Suppose the theorem is not true. Then there exists an instance with the
smallest number of jobs for which its optimal preemptive schedule has a strictly
smaller total completion time than any non-preemptive schedule. Let this be
instance I with m machines and n jobs. Let σ∗ be an optimal schedule among
the non-preemptive schedules and let σ be a feasible schedule with Cσ < Cσ∗ .
Since we can assume that the number of preemptions is finite [58], we assume
that σ has the smallest number of preemptions among all feasible schedules σ

for I for which Cσ < Cσ∗ . Without loss of generality we assume that no machine
remains empty in σ.

Let Ti (1 ≤ i ≤ m) be the completion time of machine Mi and let Ji be the
job that is processed last on this machine. W.l.o.g. we assume T1 ≤ · · · ≤ Tm.
We distinguish between the case in which all jobs Ji (1 ≤ i ≤ m) are different
and the case in which at least two are equal.

Case 1 : All jobs Ji are different. Define the instance I ′ from I by re-
moving the jobs J1, . . . , Jm from the instance. By induction there exists an
optimal schedule σ

′
for I ′ that is non-preemptive. From σ

′
we construct a

non-preemptive schedule σ
′′

for I by simply adding each job Ji at the end on
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machine Mi. Since σ
′
is optimal it does not have idle time implying

Cσ′′ = Cσ′ +
∑m

i=1 Cσ′′ (Ji)
= Cσ′ +

∑n
j=1 pj .

(2.6)

Since Cσ(Ji) ≥ Ti and
∑m

i=1 Ti ≥
∑n

j=1 pj we have
∑m

i=1 Cσ(Ji) ≥
∑n

j=1 pj .
The optimality of σ

′
for I

′
now implies

Cσ ≥ Cσ′ +
∑m

i=1 Cσ(Ji)
≥ Cσ′ +

∑n
j=1 pj

= Cσ′′ .

(2.7)

Hence we constructed a non-preemptive schedule σ
′′

the total completion time
of which is at most the total completion time of the optimal preemptive schedule
schedule σ. A contradiction.

Case 2 : There are indices j and k, 1 ≤ j < k ≤ m, such that job Jj is
the same job as Jk. We make a small change in the schedule as follows. In
the current schedule, some part of job Jj is processed on machine Mj up to
time Tj , and then job Jj is completed on machines Mj+1, . . . ,Mm. In the new
schedule, we continue processing job Jj on machine Mj after time Tj until its
completion. Note that this reduces the number of preemptions of job Jj while its
completion time does not increase. For all other jobs the number of preemptions
and completion time remains the same. Again we obtain a contradiction. �

Since the non-preemptive problem can be solved in O(n3) time even in the more
general case of unrelated machines [17], [49], we have the following corollary.

Corollary 1 The problem R|pmtn|
∑

Cj can be solved in O(n3) time if we
restrict to instances with pij ∈ {pj ,∞} for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
and some set {p1, . . . , pn}.

If we replace the
∑

Cj objective by the
∑

Uj objective, then the non-preemptive
version is NP -hard in the strong sense since the problem is strongly NP -hard on
identical parallel machines [36]. Simalarly, Lawler [57] proved that minimizing∑

Uj on identical machines is ordinarily NP -hard if preemption is allowed.
Hence, the preemptive version of our problem is ordinarily NP -hard.

McNaughton proved his theorem mentioned above for the total weighted
completion time objective. Thus, NP -hardness of minimizing total completion
time on identical parallel machines implies NP -hardness of the weighted version.
It follows immediately that the weighted version of the problem of Corollary 1
is also NP -hard. However, it is not true that preemption is redundant for these
problems as illustrated by the following example.
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Example 1 We define an instance with machines M1 and M2 and jobs J1, J2

and J3. The processing times are p11 = 1, p21 = ∞, p12 = ∞, p22 = 1, p13 =
p23 = 2, and the weights are w1 = w2 = 1, w3 = 2. One can easily check that
the value of any non-preemptive schedule is at least 8. Now schedule job J1

first on machine M1. Schedule J2 between time 1 and 2 on machine M2 and
schedule J3 from 0 to 1 on machine M2 and from 1 to 2 on machine M1. The
value of this preemptive schedule is 7. �

2.4 Postlude

Recently [81], we were able to prove that the problems R|pmtn|
∑

Uj and
R|pmtn|

∑
Cj are Max-SNP -hard, using an L-reduction from the maximal

3-dimensional matching problem. The complexity of both problems is still open
for a fixed number of machines, even for m = 2. Another open question is
whether R|pmtn, pij ∈ {pj ,∞}|

∑
Uj solvable in pseudopolynomial time or NP -

hard in the strong sense.





Chapter 3

On-line scheduling so as to

minimize total completion

time

3.1 Introduction

We consider the problem of on-line minimizing total (weighted) completion on
identical parallel machines with release time constraints. Formally, an instance
I is given by n jobs Jj (j = 1, . . . , n) and m machines Mi (i = 1, . . . ,m). Each
job Jj (j = 1, . . . , n) has a given processing time pj , release date rj and weight
wj . In any feasible schedule a machine can process only one job at a time and a
job must be processed without interruption on one machine. The processing of
a job is not allowed to start before its release date. Given a schedule we write
Sj for the start time of job Jj , and Cj for its completion time. The objective is
to minimize

∑n
j=1 wjCj . We write Opt(I) for the optimal value for instance I.

In Section 3.2 we consider the non-preemptive unweighted problem, i.e., all
weights are 1. This is joint work with Leen Stougie and Xiwen Lu [60]. In
Section 3.3 we consider the weighted problem with and without preemption.
For each of the three problems we present an algorithm and a proof of its
competitiveness. The competitive ratios for the non-preemptive problems do
not improve on existing ratios. However, we generalize existing algorithms and
present a new algorithm which is 1.56-competitiveness for the preemptive single-
machine problem, improving the best known ratio of 2.

Our proof technique is similar in any of the three proofs and is based on
work of Anderson and Potts [3]. We describe the general idea as follows. Given
an on-line optimization problem we look for a simple property of a solution
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that is sufficient for (near)-optimality. In the on-line algorithm we try to satisfy
this property as much as possible and in the analysis we analyze how much we
have to change the instance and/or solution such that the property holds. In
this chapter we give some simple properties of parallel machine schedules for
which we conjecture that they ensure near-optimality. We use these properties
to express the competitive ratios of our algorithms.

3.2 Minimizing total completion time

Hoogeveen and Vestjens [48] (see Lemma 2) show that no deterministic on-line
algorithm can have a competitive ratio smaller than 2 for the problem on a single
machine. Several single machine algorithms with competitive ratio matching
this lower bound have been given in the literature. Phillips, Stein and Wein [70]
presented a 2-competitive algorithm based on the optimal preemptive schedule.
Hoogeveen and Vestjens used the idea of shifted release dates to obtain a 2-
competitive algorithm. The same idea was used by Stougie (cited in [86]) who
obtained a third algorithm. However, 2-competitiveness of this algorithm was
never proved. The algorithm that we present in this section generalizes these
last two algorithms.

For the problem on m identical parallel machines, Chekuri et al. [21] gave
an on-line algorithm that is 3− 1/m-competitive. They construct a preemptive
schedule on a single machine, and use the order of completion times of the jobs
in this schedule obtain a non-preemptive schedule on identical parallel machines.
A general lower bound of 1.309 on the competitive ratio of any algorithm for
this problem is given by Vestjens [86].

For some special cases an optimal schedule can be found in a very simple
way. If all jobs are released at time zero, then the parallel-machine problem is
solved by list scheduling the jobs in order of increasing processing times [26], i.e.
jobs are scheduled one by one in the order of the list and as early as possible.
This algorithm is known as the shortest processing time (SPT) rule. Schrage [73]
showed that an optimal schedule for the unweighted preemptive single-machine
problem with release date constraints is obtained if at any moment the job with
the shortest remaining processing time is processed. This algorithm is known
as the shortest remaining processing time (SRPT) rule.

The computational complexity of the off-line problems is well understood.
Lenstra et al. [59] proved NP -hardness in the strong sense for the non-
preemptive single-machine problem. The preemptive problem is ordinarily NP -
hard for two machines [28]. A polynomial time approximation scheme for the
(preemptive) problem on identical parallel machines was given by Afrati et
al. [1]. This scheme even applies to the case of a fixed number of unrelated
machines with weighted completion time objective.
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We present the single-machine lower bound since it indicates a property that
any on-line algorithm for minimizing total completion time should have.

Lemma 2 (Hoogeveen and Vestjens [48])
For the single-machine problem there is no deterministic on-line algorithm with
competitive ratio (2−ε), for any ε > 0.

Proof. Assume that an algorithm A is 2 − ε-competitive for some ε > 0. We
will prove that there exists an instance, depending on A, that contradicts this
assumption. We imagine that an adversary builds the instance on-line based
on the steps of A. The adversary releases a job J1 with processing time p1 = 1
at time 0. If, according to A, job J1 starts later than 1− ε, then no more jobs
are given and the competitive ratio becomes (S1 + 1)/1 > 2 − ε, where S1 is
the starting time of J1. A contradiction. If, on the other hand, S1 ≤ 1 − ε,
then n− 1 jobs are presented at time 1/2 + S1/2, each with processing time 0.
The total completion time of the schedule produced by A is at least n(S1 + 1),
whereas the optimal schedule has total completion time n(1/2 + S1/2) + 1.
Hence, the competitive ratio tends to 2 if n tends to infinity, which contradicts
the assumption that A is 2− ε-competitive. �

In order to be 2-competitive on a single machine, no job Jj can start before time
pj , but the processing of a job cannot be postponed too long. The algorithms of
Hoogeveen and Vestjens [48] and Stougie (cited in [86]) both use a similar ap-
proach: At the release of any job Jj it is assigned a new release date qj ≥ rj ; the
SPT rule is applied to the jobs with these shifted release dates, always schedul-
ing the shortest available job. Hoogeveen and Vestjens define qj = max{rj , pj}
while Stougie chooses qj = rj +pj . Both algorithms are 2-competitive, although
a proof has never been published for the latter algorithm. The Delayed-SPT
algorithm defined below generalizes these algorithms.

Delayed-SPT:
At the release of a job Jj shift its release date rj to qj , where qj is an arbitrary
number in the interval [max{rj , pj}, rj +pj ]. Apply the SPT rule with the de-
layed release dates.

We analyze the performance of this algorithm for identical parallel machines.
The SPT rule is readily applicable on identical parallel machines. Also SRPT
has a simple extension to identical parallel machines: At any moment process
the m jobs with smallest remaining processing time among the available jobs.
Another preemptive rule is the preemptive shortest processing time rule. The
Preemptive-SPT rule is similar to SRPT except that the order of the jobs in
the list is not based on remaining processing time but on the original processing
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time. Although this rule does not provide optimal schedules in general for the
total completion time objective, we use it below in the analyzeis of Delayed-
SPT.

Definition 7 Given any schedule σ for some instance I, we say that σ is an
SPT schedule with respect to I if it is the output of the SPT rule applied to I

(assuming that ties are broken in favor of σ). We define an SRPT schedule and
a Preemptive-SPT schedule in a similar way.

Let I1 be the set of instances for which there exists an SRPT schedule in which
no job is preempted. We define α as the maximum, taken over all I ∈ I1, of the
ratio between the value of the SRPT schedule of I and Opt(I).

Similarly, let I2 be the set of instances for which there exists a Preemptive-
SPT schedule in which no job is preempted. We define β as the maximum, taken
over all I ∈ I2, of the ratio between the value of the Preemptive-SPT schedule
of I and Opt(I).

Notice that any Preemptive-SPT schedule in which no job is preempted is
also an SRPT-schedule, implying I2 ⊆ I1, whence α ≥ β.

Theorem 4 Algorithm Delayed-SPT is 2α-competitive for the problem of
minimizing total completion time on identical parallel machines with jobs ar-
riving over time. If qj = max{rj , pj} for all j, then Delayed-SPT is 2β-
competitive.

Proof. Let σ be the schedule produced by the Delayed-SPT algorithm for
some instance I with job set J , and let Z(σ) be its total completion time. We
relate the value Z(σ) to the optimal value Opt(I) through a modified instance
I ′. This instance is defined from the original instance I and schedule σ. First, we
show that σ is an optimal schedule for the modified instance. Next we use any
optimal schedule for I to bound Opt(I ′) from above. These two observations
together prove the theorem.

The modified instance I ′ is defined from I and from the on-line schedule
σ. For each job Jj ∈ J we define one job J ′j with parameters r′j and p′j . The
processing time remains the same: p′j = pj , and the release date is changed to
r′j = min{Sj , 2rj + pj}, where Sj is the starting time of job Jj in σ.

First, we prove that σ satisfies the SRPT rule with respect to the modified
instance I ′. Assume that at time t one of the machines is processing a job
Jk and job Jj is available for instance I ′, i.e. r′j ≤ t and Jj is not processed
at time t, hence r′j = 2rj + pj . If qj ≤ Sk, then we must have pj ≥ pk

since otherwise the SPT-rule would have been violated at time Sk. Notice
that Sk + pk ≤ 2Sk since job Jk did not start before time pk. Therefore,
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qj > Sk implies that the remaining processing time of job Jk at time t is
Sk + pk − t ≤ 2Sk − t < 2rj + 2pj − t = r′j + pj − t ≤ pj .

We conclude that
Z(σ) ≤ αOpt(I ′). (3.1)

Now assume that qj = max{rj , pj}. Again, if qj ≤ Sk then we must have
pj ≥ pk since otherwise the SPT-rule would have been violated at time Sk. If
qj > Sk then 2rj + pj = r′j ≤ t < Sk + pk ≤ 2Sk < 2qj = 2 max{rj , pj}. Thus,
qj = max{rj , pj} = pj implying pk ≤ Sk < qj = pj . We conclude that

Z(σ) ≤ βOpt(I ′). (3.2)

Now we show that the optimal value for I ′ is at most twice the optimal value
for instance I. Consider any optimal schedule for I. We transform this schedule
into a feasible schedule for I ′ as follows. If job Jj is scheduled between time t

and t + pj , then we process job J ′j on the same machine between time 2t + pj

and 2t + 2pj . Clearly, this is a feasible schedule for I ′ and all completion times
are doubled. Hence,

Opt(I ′) ≤ 2Opt(I). (3.3)

Combining (3.1), (3.2) and (3.3) completes the proof. �

Since the SRPT rule produces an optimal schedule for the preemptive single-
machine problem we have the following corollary.

Corollary 2 On a single machine the value of the Delayed-SPT schedule is
at most twice the value of an optimal preemptive schedule.

Unfortunately, SRPT is not optimal for the preemptive problem on parallel
machines. This is not surprising since Du et al. [28] proved that this problem is
NP -hard. Phillips et al. [70] showed that the SRPT schedule is not worse than
twice the optimal preemptive schedule. This bound combined with Theorem 4
implies that Delayed-SPT is 4-competitive for the non-preemptive identical
parallel machines problem. Although this is larger than the 3−1/m-competitive
algorithm of Chekuri et al. [21], a proof of a smaller ratio for SRPT would yield
a proof of a smaller ratio for our algorithm. Finding the competitive ratio of
SRPT on identical parallel machines seems a very interesting problem on its
own. We conjecture that this ratio is much smaller than 2.

The best ratio for Delayed-SPT that can be derived from our proof is 2β.
Unfortunately we do not know of an upper bound for β smaller than 2. We
conjecture that the values of α and β are close to the lower bounds provided in
the following two propositions.

Proposition 1 The worst-case ratio α between a non-preemptive SRPT sched-
ule and the corresponding optimal non-preemptive schedule is at least 12

11 .
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Proof. Define an instance with 2 machines and 5 jobs with parameters p1 =
p2 = p4 = p5 = 1 and p3 = 2 and r1 = r2 = r3 = 0, and r4 = r5 = 2. A feasible
SRPT-schedule is induced by the starting times S1 = S2 = 0, S3 = 1, S4 = 2,
and S5 = 3 and has total completion time 12. The optimal schedule starts job
1 and 3 at time 0 and has value 11. �

Proposition 2 The worst-case ratio β between a Preemptive-SPT schedule
without preemptions and the corresponding optimal non-preemptive schedule is
at least 14

13 .

Proof. The instance of the proof above is adjusted a little bit. Take 2 machines
and 5 jobs with parameters p1 = p2 = 1 and p3 = p4 = p5 = 2, and r1 = r2 =
r3 = 0 and r4 = r5 = 2. A feasible Preemptive-SPT schedule is induced by
the starting times S1 = S2 = 0, S3 = 1, S4 = 2, and S5 = 3 and has total
completion time 14. The optimal schedule starts job 1 and 3 at time 0 and has
value 13. �

Both examples apply to any even number of machines. For odd numbers we have
slightly weaker lower bounds. Proposition 2 implies that, through Theorem 4,
we will not be able to prove a competitive ratio smaller than 28/13 for Delayed-

SPT. Additionally, an instance of the scheduling problem with only one job
released at time 0 and processing time 1 shows that its ratio is at least 2 on any
number of machines.

The interesting question remains if an on-line algorithm for the problem
on identical parallel machines exists with competitive ratio strictly less than
2. The single-machine lower bound does not extend to parallel machines: If m

jobs with processing time 1 are given at time zero, then we could gradually start
processing them from time 0. In this way there are always some machines that
are available or will become available soon. The best lower bound is 1.309 [48]. A
competitive ratio strictly smaller than 2 would be a divergence from the general
phenomenon in on-line scheduling in which competitive ratios of algorithms
for multiple machine problems are higher than those for their single machine
counterparts (see [77]).

3.3 Minimizing total weighted completion time

The problem of minimizing total weighted completion time on a single machine
with release date constraints is a well-studied problem in scheduling theory. In
the last decade many algorithm have been developed for several variants of the
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off-line and the on-line problem. The complexity of the off-line problems is well-
understood. The preemptive single machine problem is strongly NP -hard [56]
and the non-preemptive single machine problem is strongly NP -hard even if all
job weights are 1 [59]. The earlier mentioned polynomial time approximation
scheme by Afrati et al. [1] applies also to the weighted problems that we consider
in this section.

In Section 3.3.2 we consider the non-preemptive setting on identical parallel
machines, and in Section 3.3.3 we consider the preemptive setting on a single
machine. For the first problem we present a simple proof for 2-competitiveness
of a deterministic on-line algorithm proposed by Anderson and Potts [3] and
show how to extend this algorithm to parallel machines. We use the same proof
technique in Section 3.3.3 to prove that a simple modification of Smith’s ratio
rule yields a 1.56-competitive algorithm for the preemptive problem. Prelimi-
nary to both results we introduce the mean busy date relaxation.

3.3.1 Mean busy date relaxation

The mean busy date of a job in a schedule is the average of all moments in which
it is processed. Formally, let δj(t) be the indicator function of a given schedule
σ, i.e. δj(t) = 1 if job Jj is processed at time t and δj(t) = 0 otherwise. The
mean busy date Mj of job Jj is defined by

Mj =
1
pj

Cj∫
rj

δj(t)t · dt.

Lemma 3 For any job Jj, we have Mj ≤ Cj − pj/2. On a single machine,
equality holds if and only if job Jj is not preempted.

Proof. If job Jj is not preempted then δj is 1 between Cj−pj and Cj implying
Mj = Cj − pj/2. Conversely, if the processing of Jj is interrupted, then clearly
Mj < Cj − pj/2. �

A lower bound on the total weighted completion time
∑

wjCj is the total
weighted mean busy date

∑
wjMj plus 1

2

∑
wjpj . Several models to mini-

mize this lower bound for the single machine have been investigated. Dyer and
Wolsey [29] formulate it as an LP (linear program) with variables yj(t) ≥ 0,
(j = 1 . . . n, t = 0, 1, . . . , L), where L is an upper bound on the makespan of
an optimal schedule. Intuitively, a machine can work on multiple jobs at the
same moment. Each job Jj is processed in the interval [t, t+1] with speed yj(t).
Goemans [39] gave an LP in which Mj , j = 1 . . . n, are the only variables, and
proved that the optimum of this problem is equal to the optimum of the time
indexed LP of Dyer and Wolsey.
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The relaxation (R) below is based on the model of Dyer and Wolsey. Since
we we do not care about computational issues of the relaxation and want to use
it only as a tool in our proofs, we choose a general formulation with functions
δj(t) ≥ 0, (j = 1 . . . , n, t ∈ R+). This enhances the notation and we do not
have to consider integrality issues.

minimize
∑

j
wj

pj

∞∫
rj

δj(t)t·dt

(R) subject to
∞∫
rj

δj(t)·dt = pj for j = 1, . . . , n;

∑
j

δj(t) ≤ 1 for all t ≥ 0;

δj(t) ≥ 0 for j = 1, . . . , n and t ≥ 0.

To avoid pathological situations we require that, in a feasible solution of (R),
any function δj(t) is piecewise constant with a finite number of pieces which all
have a strictly positive length. We call any feasible solution a pseudo schedule.

We denote ρj = wj/pj . Given a set of jobs we say that job Jj has highest
priority if there is no job Jk with ρk > ρj . We call a complete ordering of the
jobs, in which Jj ≺ Jk for any two jobs with ρj > ρk, a ρ-ordering. Notice that
a ρ-ordering can be obtained on-line, i.e. at time rj we can fix the order of job
Jj with respect to any job released before time rj .

Smith [82] showed that if all release dates are zero, then an optimal solution
for the preemptive single machine problem is obtained by sequencing jobs in
non-increasing order of ratio wj/pj . This method is known as Smith’s ratio rule
or as the weighted shortest processing time (WSPT) rule. It becomes the SPT
rule in the case of unit weights. For non-trivial release dates the WSPT rule is
no longer optimal. Even if the rule is applied preemptively, i.e. the job on the
machine is replaced by a job with higher ratio at the moment that such a job is
released, then this Preemptive-WSPT-rule is not optimal for the preemptive
problem. However, Goemans et al. showed that this rule is optimal for problem
(R) [42].

Preemptive-WSPT:
Maintain a ρ-ordering of the jobs. At any point in time schedule (preemptively)
the highest priority job.
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A schedule is called a Preemptive-WSPT schedule if it can be produced by
the Preemptive-WSPT Algorithm for some ρ-ordering of the jobs.

Lemma 4 (Goemans et al. [42])
A pseudo schedule is optimal for (R) if and only if it is a Preemptive-WSPT

schedule.

For a given pseudo schedule σ we denote the objective value
∑

wjMj by ZM (σ)
and we denote the optimal value of (R) for a given instance I by OptM (I). A
generalization of the Preemptive-WSPT algorithm to m identical parallel
machines is to schedule at any moment the m jobs with highest priority among
the available jobs. The relaxation (R) can easily be generalized to identical
parallel machines. We denote this also by (R) and by omit the details.

Proposition 3 Preemptive-WSPT on parallel machines is not better than
5/4-competitive with respect to the optimal value of (R).

Proof. Consider the instance consisting of two machines and three jobs with
parameters p1 = p2 = 1, p3 = 2, r1 = r2 = r3 = 0, and w1 = w2 = 1, w3 = 2.
Preemptive-WSPT might choose to start job 1 and 2 at time 0 and job 3 at
time 1, which leads to objective value 5. The optimal schedule starts job 3 at
time 0 and has value 4. �

If all weights are 1 then a Preemptive-SPT schedule is exactly a Preemptive-

WSPT schedule. Thus, it also follows from Proposition 2 that Preemptive-

WSPT is not optimal for identical parallel machines. On the other hand, an
upper bound on the ratio of Preemptive-WSPT would yield an upper bound
on the ratio β defined in Section 3.2.

3.3.2 Non-Preemptive Scheduling

The first constant factor approximation algorithm for the single machine was
given in the paper of Phillips et al. [69] and had a factor 16+ ε. Many improve-
ments followed [74][46][19][70]. Goemans [40] used the concept of α-points,
which were introduced in [69]. For any α ∈ [0, 1] and any j he defined the α-
point tj(α) as the time at which αpj units of job Jj have been processed in the
preemptive WSPT schedule. For a fixed α the non-preemptive schedule is ob-
tained by processing the jobs in order of their α-points. Goemans showed that
this yields a deterministic on-line 1+

√
2–competitive algorithm for α = 1/

√
2.

If α is chosen independently for each job from a specific distribution (see [42]),
then a randomized 1.685-approximation is obtained.

The only 2-competitive algorithm for the non-preemptive single-machine
problem was given by Anderson and Potts [3]. Although their proof technique
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is elegant, the actual proof is rather long and technical. Even before publication
in 2002, Queyranne [71] gave a different proof using an LP relaxation as a lower
bound. His proof follows quite easily from properties of this relaxation, which
was studied extensively by Goemans [39]. This emphasizes the value of this
relaxation, although there does not seem to be a general method in the way the
relaxation is applied.

We will combine the good ideas from both proofs. Like Anderson and Potts
we define a modified instance I ′ and a modified schedule σ′ from the original
instance I and the corresponding on-line schedule σ. Instead of proving op-
timality of σ′ for I ′, we prove that σ′ is optimal for a relaxation of I ′. This
relaxation is related to the one used by Queyranne. Additionally, we give an
upper bound on the optimal value for the relaxed modified instance. This part
in particular seems much easier in our proof than in the original proof by Ander-
son and Potts, who bound the optimal value of the unrelaxed modified instance.
The simplification of the proof allows a generalization of the originally proposed
algorithm.

In Section 3.2 we showed that the Delayed-SPT algorithm is best possible
for the non-preemptive problem with unit weights on a single machine. A nat-
ural extension of this algorithm to the weighted problem is to shift the release
dates to max{rj , pj} and then apply the WSPT-rule respecting the new release
dates. Recently, Megow [63] showed that the the algorithm is 3-competitive on a
single machine and 4-competitive on identical parallel machines. The following
example shows that the competitive ratio on a single machine cannot be strictly
smaller than 3.

Example 2 There are two jobs with parameters (r1, p1, w1) = (0, p, 1) and
(r2, p2, w2) = (0, p + 1,W ), where p and W are large numbers. The proposed
algorithm will start job 1 at time p and job 2 at time 2p, yielding an objective
value of p + W (3p + 1). In the optimal solution job 2 starts at time 0 and job
1 starts at time p + 1 and has value W (p + 1) + 2p + 1. The competitive ratio
tends to 3 if W tends to infinity.

The 2-competitive algorithm from Anderson and Potts[3] is a slightly different
extension of the Delayed-SPT algorithm than the one we discussed above.

Delayed-WSPT (Single machine):
Maintain a ρ-ordering of the jobs as described. At any moment t that the ma-
chine is idle consider the job Jj with highest priority among the available, yet
unscheduled jobs. If t ≥ pj then start processing job Jj , else wait.

We give an alternative proof of 2-competitiveness of Delayed-WSPT, which
was first proven by Anderson en Potts [3]
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Theorem 5 (Anderson and Potts[3])
The Delayed-WSPT algorithm is 2-competitive on a single machine, with
respect to the optimal preemptive schedule.

Proof. Let σ be the schedule produced by Delayed-WSPT for an arbitrary
instance I with job set J , and let Z(σ) be its total weighted completion time.
We relate the value Z(σ) to the optimal value Opt(I) of the preemptive problem
through a modified instance I ′. For this instance our objective is to minimize
total weighted mean busy date. We modify σ such that it becomes optimal for
I ′.

We say that at time t the machine is waiting for job Jj if the machine is
idle at time t and job Jj has highest priority among the available jobs at that
moment, but the machine does not start job Jj , i.e. t < pj . Notice that at any
moment, either the machine is processing a job, or the machine is idle and no
jobs are available, or the machine is idle and waiting for some specific job Jj .
We denote by Fj the total time that the machine waited for job Jj .

The modified instance I ′ is defined by I and by the on-line schedule σ. For
each job Jj ∈ J we define one job J ′j with parameters r′j , p

′
j and w′

j . We define
p′j = pj + Fj . If Fj > 0, i.e. the machine waited for job Jj then let sj be the
earliest moment at which it waited for Jj . If Fj = 0, then let sj = Sj , i.e.
the start time of job Jj . We define r′j = min{2rj , sj}. Notice that this implies
r′j ≥ rj . Finally, we define w′

j = wjp
′
j/pj so as to keep the ratio w′

j/p′j equal to
wj/pj , preserving the ρ-ordering on the jobs, i.e. Jj ≺ Jk ⇔ J ′j ≺ J ′k.

We extend schedule σ to a feasible schedule σ′ for I ′ in the obvious way:
job J ′j is processed at time t in σ′ if either job Jj is processed or is waited for
at time t in σ. We show that σ′ is a Preemptive-WSPT schedule for I ′ and
hence is optimal with respect to the mean busy date objective. Consider an
arbitrary moment t. We have to show that σ′ is processing the job with highest
wj/pj-ratio amongst the jobs available w.r.t. I ′. This follows immediately if
σ′ is idle at time t since in that case no jobs are available in σ and therefore
neither in σ′. If σ′ is processing a job while at the same time σ is waiting for
this job, then clearly σ′ is processing the highest priority job. Now assume that
at time t job Jj and J ′j are processed in σ and σ′ while job J ′k is available for
σ′. We will prove that Jj ≺ Jk, hence J ′j ≺ J ′k.

If the machine waited for job Jk in σ, then it was doing so before time Sj .
This immediately implies that Jj ≺ Jk since the algorithm gave priority to job
Jj at time Sj . Now assume the machine did not wait for job Jk. Since job J ′k
starts at Sk and is released strictly before it starts processing, we must have
r′k < Sk, implying r′k = min{2rk, sk} = min{2rk, Sk} = 2rk. Since job Jj did
not start before time pj we know that r′k ≤ t < Sj +pj ≤ 2Sj , implying rk < Sj .
Again we conclude that Jj ≺ Jk since the algorithm gave priority to job Jj while
job Jk was available.
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Now we compare the values Z(σ) and ZM (σ′) (the total mean busy date of σ′).
Let the indicator function yj(t) (t ≥ 0, j = 1 . . . n) be 1 if σ is waiting for job
Jj at time t and 0 otherwise. We define Gj as the contribution of the first Fj

units of job Jj in σ′ to the weighted mean busy date, i.e. Gj = ρj

∫
yj(t)t · dt.

The mean busy date is then,

w′
jM

′
j = ρj

∫
yj(t)t · dt + ρj

∫ Cj

Cj−pj

t · dt = Gj + wjCj −
1
2
wjpj .

Hence,

OptM (I ′) = ZM (σ′) =
∑

j

Gj + Z(σ)− 1
2

∑
j

wjpj . (3.4)

Next, we bound OptM (I ′) from above. We use an optimal schedule for I

and schedule σ to construct a pseudo schedule for I ′. Let the function xj(t)
(t ≥ 0, j = 1 . . . n) be the indicator function of an optimal schedule for I. We
will show that a pseudo schedule for I ′ is given by the function δj(t):

δj(t) =
1
2
xj(t/2) +

1
2
yj(t/2), for all t ≥ 0.

Intuitively, we take the optimal schedule and slow down the processing by a
factor 2. Parallel to that we process the jobs as in σ′, restricted to the first
Fj processing units of p′j , and also slowed down by a factor 2. First, since∑

δj(t) = 1/2
∑

xj(t)+1/2
∑

yj(t) ≤ 1, the machine is not overloaded. Second,
no job starts before time min{2rj , 2sj} ≥ min{2rj , sj} = r′j . Third, each job J ′j
is processed for exactly p′j processing units.

∞∫
0

δj(t) · dt =
∞∫
0

1
2xj(t/2) · dt +

∞∫
0

1
2yj(t/2) · dt

=
∞∫
0

xj(t) · dt +
∞∫
0

yj(t) · dt = pj + Fj = p′j .

If we denote by M∗
j and C∗

j , respectively, the mean busy date and completion
time of job Jj in the optimal schedule for I, then by Lemma 3 M∗

j ≤ C∗
j −pj/2.

Now we are ready to bound the total weighted mean busy date of the constructed
schedule.

ρj

∞∫
0

δj(t)t · dt = ρj

∞∫
0

1
2xj(t/2)t · dt + ρj

∞∫
0

1
2yj(t/2)t · dt

= 2ρj

∞∫
0

xj(t)t · dt + 2ρj

∞∫
0

yj(t)t · dt

≤ 2ρjpj(C∗
j −

pj

2 ) + 2Gj

= 2wjC
∗
j − wjpj + 2Gj .
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Hence,
OptM (I ′) ≤ 2Opt(I)−

∑
j

wjpj + 2
∑

j

Gj . (3.5)

Combing (3.4) and (3.5) we obtain

Z(σ) ≤ 2Opt(I)− 1
2

∑
j

wjpj +
∑

j

Gj . (3.6)

Since the machine does not wait for job Jj at a time t ≥ pj we have

Gj ≤ ρj

pj∫
0

t · dt =
1
2
wjpj ,

completing the proof. �

The proof of Theorem 5 above enables us to create some freedom in the algo-
rithm in the way we did for the unweighted problem in Section 3.2. In order to
stay 2-competitive it is sufficient if the following three conditions are satisfied:
First, no job Jj starts before time pj . Second, at the moment a job starts it
has highest priority in the ρ-ordering among the available jobs. Third, the sum
of the two series in equation (3.6) is at most zero. This last condition is clearly
satisfied if the machine does not wait for a job Jj after time pj . However, incor-
porating this condition directly in the algorithm itself would allow to wait for
a job Jj even after time pj . Define Gj(t) = ρj

∫ t

0
yj(s)s · ds, where, as before,

yj(t) is 1 if the machine is waiting for job Jj at time t, and 0 otherwise. Now
define G(t) =

∑
j Gj(t), where the sum is taken over all jobs that have been

released until time t. The conditions in the Delayed-WSPT algorithm then
become: If t < pj , then wait; if G(t) ≥

∑
j wjpj/2, then start processing job Jj ;

In the other case either wait or start processing Jj . These conditions give the
most general form of the Delayed-WSPT that can be derived directly from
our proof. However, if we prefer to have an easy expression in terms of the job
parameters, then we can use the following observation:

ρj

√
r2

j +p2
j∫

rj

t · dt =
1
2
wjpj .

Delayed-WSPT (extended):
Maintain a ρ-ordering of the jobs as described. At any moment t that the ma-
chine is idle consider the highest priority job Jj among the available jobs. If

t < pj , then wait. If pj ≤ t <
√

r2
j + p2

j then either wait or start processing job
Jj . In the other case start processing job Jj .
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The single machine algorithm and the proof of Theorem 5 can easily be gen-
eralized to identical parallel machines. However, we can no longer prove 2-
competitiveness since Preemptive-WSPT is not optimal for identical parallel
machines.

Delayed-WSPT:
Maintain a ρ-ordering of the jobs. At any moment t consider the k highest
priority jobs among the available jobs, where k is the number of idle machines
at time t. For any job Jj in this set apply the following rule. If t ≥ pj then
start processing job Jj , else wait.

Theorem 6 Delayed-WSPT is 2γ-competitive for identical parallel machines,
where γ is the competitive ratio of Preemptive-WSPT for the preemptive ver-
sion of the problem on identical parallel machines.

Proof. The proof is similar to the single machine proof. We say that the
machines are waiting for job Jj at time t if job Jj is in the set of highest priority
jobs at time t but does not start at time t (since t < pj). The instance I ′ and
σ′ are defined in the same way. The equality OptM (I ′) = ZM (σ′) changes to
γOptM (I ′) ≥ ZM (σ′). The equations (3.4) and (3.6) now become:

γOptM (I ′) ≥ ZM (σ′) =
∑

j

Gj + Z(σ)− 1
2

∑
j

wjpj ,

Z(σ) ≤ 2Opt(I)− (γ − 1
2
)
∑

j

wjpj + (2γ − 1)
∑

j

Gj .

Combining this with γ ≥ 1 and Gj ≤ 1
2wjpj completes the proof. �

We can prove a slightly better ratio than 2γ if we replace the condition t ≥ pj

by t ≥ (1 + ε)pj for some small ε. We skip the calculations.

3.3.3 Preemptive Scheduling

The Delayed-WSPT algorithm produces a non-preemptive schedule with value
at most twice the value of an optimal preemptive schedule. This follows also
from Queyranne’s proof but is not mentioned in the paper of Anderson and
Potts. Epstein and Van Stee [30] show that no deterministic on-line algorithm
can have a competitive ratio smaller than 1.073 for the problem with preemp-
tion. Several other 2-competitive algorithms have been given for the preemptive
single-machine problem (see [43],[63]). Schulz and Skutella [75] gave a ran-
domized 4/3-competitive algorithm for the single machine. Megow and Schulz



37

proved that the competitive ratio of Preemptive-WSPT is 2 on identical par-
allel machines. In the worst-case instance this algorithm preempts jobs at the
moment they are almost completed. To overcome this problem Megow [63] con-
siders the shortest weighted remaining processing time (SWRPT) rule, in which
at any moment the job with largest ratio between weight and remaining process-
ing time is processed. Megow shows a lower bound of 1.16 on a single machine
and conjectures that the competitive ratio is much smaller than 2. Megow et
al. [64] show that this ratio is at most 2 on identical parallel machines.

Our algorithm has a parameter c > 1 and it applies the preemptive-WSPT

with the restriction that a job cannot be preempted at a time t if it can be com-
pleted before time ct.

Delayed-Preemptive-WSPT[c]: (Single machine)
Maintain a ρ-ordering of the jobs. At any moment schedule the job that has
highest priority, with the restriction that a job is never preempted at a moment
t if its remaining processing time at that moment is not more than (c− 1)t.

Theorem 7 Algorithm Delayed-Preemptive-WSPT[c] is c-competitive on
a single machine for any c ≥ υ, where υ is the real root of 2υ3 − 4υ2 + 2υ − 1
(υ ≈ 1.56).

Proof. Let σ be the schedule produced by Delayed-Preemptive-WSPT[c]
for instance I with job set J , and let Z(σ) be its total weighted completion
time. We relate the value Z(σ) to the optimal value Opt(I) through a modified
instance I ′. For this instance our objective is to minimize total weighted mean
busy date.

The modified instance I ′ is defined by I and by the on-line schedule σ. For
each job Jj ∈ J we define one job J ′j with parameters r′j , p

′
j and w′

j . Each of
the three parameters depends on I and σ. The shifted release date is given by
r′j = min{crj , Sj}, where Sj is the start time of job Jj in σ. Assume c ≥ 1.
We denote by uj the moment at which job Jj is preempted for the last time
in schedule σ and denote by Fj the total time that Jj is processed before time
uj . Now we define p′j = pj + Fj . We define w′

j = wjp
′
j/pj so as to keep the

ratio w′
j/p′j equal to wj/pj . We preserve the same ρ-ordering on the jobs, i.e.

Jk ≺ Jj ⇔ J ′k ≺ J ′j .
The rest of the proof consists of three parts. First we bound OptM (I ′) from

above using an optimal schedule for I and using σ. Next we compare the values
Z(σ) and OptM (I ′) and in the last part we combine the two results.

Let the function xj(t) (t ≥ 0, j = 1 . . . n) be the indicator function of an
optimal schedule for I. Let the function yj(t) (t ≥ 0, j = 1 . . . n) be 1 if σ is
processing job Jj at time t ≤ uj and 0 otherwise. A feasible schedule for I ′ is
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now given by the function δj(t):

δj(t) =
1
c
xj(t/c) +

c− 1
c

yj ((c− 1)t/c) , for all t ≥ 0.

Intuitively, we take the optimal schedule and slow down the processing by a
factor c. Parallel to that we process the jobs as in σ, slowed down by a factor
c/(c− 1) and restricted to the first Fj processing units. We will show that δj(t)
defines a pseudo schedule for I ′. Since∑

j

δj(t) =
1
c

∑
j

xj(t/c) +
c− 1

c

∑
j

yj((c− 1)t/c) ≤ 1/c + (c− 1)/c = 1,

the machine is not overloaded. Second, no job starts before time
min{crj ,

c
c−1Sj} ≥ min{crj , Sj} = r′j . Third, each job J ′j is completely pro-

cessed.
∞∫
0

δj(t) · dt =
∞∫
0

1
cxj(t/c) · dt +

∞∫
0

c−1
c yj((c− 1)t/c) · dt

=
∞∫
0

xj(t) · dt +
∞∫
0

yj(t) · dt = pj + Fj = p′j .

Now we define Gj as the contribution of the first Fj processing units of Jj in σ

to the weighted mean busy date in σ, i.e. Gj = ρj

∫∞
0

yj(t)t ·dt. If we denote by
M∗

j and C∗
j the mean busy date and completion time of job Jj in the optimal

schedule, then by Lemma 3 M∗
j ≤ C∗

j − pj/2. Now we are ready to bound the
total mean busy date of the constructed schedule.

ρj

∞∫
0

δj(t)t · dt = ρj

∞∫
0

1
cxj(t/c)t · dt + ρj

∞∫
0

c−1
c yj((c− 1)t/c)t · dt

= ρjc
∞∫
0

xj(t)t · dt + ρj
c

c−1

∞∫
0

yj(t)t · dt

≤ ρjcpj(C∗
j −

pj

2 ) + c
c−1Gj

= cwjC
∗
j − 1

2wjpj + c
c−1Gj .

Hence,
OptM (I ′) ≤ cOpt(I)− c

2

∑
j

wjpj +
c

c− 1

∑
j

Gj . (3.7)

Next, we relate OptM (I ′) to the value Z(σ) of the on-line schedule. For this
purpose we define another modified instance I ′′. This instance is formed from
I by shifting the release dates to r′′j = min{crj , Sj} while keeping the other
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parameters intact. We prove that σ is a Preemptive-WSPT schedule for I ′′

and hence is optimal with respect to the mean busy date objective. Assume
that at time t job Jj is processed, while job Jk is available for σ in the modified
instance I ′′. We have to prove that Jj ≺ Jk. Let v be the moment at which
the segment of Jj that is currently on the machine started processing. If rk ≤ v

then clearly Jj ≺ Jk since the algorithm gave priority to job Jj at time v. If,
on the other hand rk > v, then the length of the remaining segment of job Jj

at time rk was more than t − rk ≥ r′′k − rk = (c − 1)rk. Since the algorithm
gave priority to job Jj at time rk while the remaining processing time of Jj was
more than (c− 1)rk, the ordering must be Jj ≺ Jk. Hence,

ZM (σ) = OptM (I ′′).

Now we relate the values OptM (I ′) and OptM (I ′′) = ZM (σ). Consider the
Preemptive-WSPT schedules of I ′ and I ′′, both with the same ρ-ordering on
the jobs. We denote the former schedule by σ′ and the latter is exactly σ, as we
just showed. Notice that a Preemptive-WSPT schedule can be obtained in
an off-line way by scheduling the jobs one by one as early as possible and in the
fixed order. By this construction it is easy to see that the inequalities p′j ≥ pj

(for all jobs Jj) imply that for any number q ∈ [0, pj ], schedule σ′ completes the
first q processing units of job J ′j not earlier than schedule σ completes the first
q processing units of job Jj . More specifically, σ′ starts the last pj processing
units of job J ′j not earlier than time Cj − (pj − Fj). Let y′(j) be the indicator
function for σ′.

w′
jM

′
j = ρj

∞∫
0

y′j(t)t · dt

≥ ρj

∞∫
0

yj(t)t · dt + ρj

Cj+Fj∫
Cj−pj+Fj

t · dt

= Gj + ρj(pjCj + pjFj − 1
2p2

j )

= Gj + wjCj + wjFj − 1
2wjpj

Hence,

OptM (I ′) ≥
∑

j

Gj + Z(σ) +
∑

j

wjFj −
1
2

∑
j

wjpj . (3.8)

Combining the inequalities (3.7) and (3.8) yields

Z(σ) ≤ cOpt(I)− c− 1
2

∑
j

wjpj +
1

c− 1

∑
j

Gj −
∑

j

wjFj .



40

To complete the proof it suffices to show that

−c− 1
2

wjpj +
1

c− 1
Gj − wjFj ≤ 0, for all j ∈ J. (3.9)

Therefore, we consider any job Jj and delete for simplicity the index j in the
remainder of the proof. Since job Jj is preempted at time u the remaining pro-
cessing time (p− F ) must be more than (c− 1)u implying u < (p− F )/(c− 1).
We use this inequality to bound G.

G ≤ ρ

u∫
u−F

t · dt = ρ(uF − 1
2
F 2) <

ρ(p− F )F
c− 1

− ρF 2

2
.

Substituting this in (3.9) we obtain

−c− 1
2

wp +
1

c− 1
G− wF < −c− 1

2
wp +

ρ(p− F )F
(c− 1)2

− ρF 2

2(c− 1)
− F

= − ρ(c + 1)
2(c− 1)2

F 2 − (c2 − 2c)w
(c− 1)2

F − (c− 1)wp

2

= wp

(
− (c + 1)

2(c− 1)2
H2 − c2 − 2c

(c− 1)2
H − (c− 1)

2

)
.

We substituted F = pH in the last equality. Standard calculus shows that this
expression is non-negative for any H ∈ R if 2c3 − 4c2 + 2c − 1 ≥ 0. The real
root of this inequality is 1.5651 . . .. �

We can extend Delayed-Preemptive-WSPT[c] to identical parallel machines
as has been done for the non-preemptive problem. We say that machine i and
job Jj are blocked at time t if job Jj is processed on i at time t and its remaining
processing time is at most (c− 1)t.

Delayed-Preemptive-WSPT[c]:
Maintain a ρ-ordering of the jobs. At any moment t apply the following rule.
If k is the number of machines that are not blocked at time t, then process on
those machines the k highest priority jobs among the available, but not blocked,
jobs.

The single machine proof extends almost directly to identical parallel machines:
Delayed-Preemptive-WSPT is 1.56γ-competitive on identical parallel ma-
chines, where γ is the competitive ratio of Preemptive-WSPT on identical
parallel machines. By Proposition 3, the best we can hope for is to prove
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1.56 · 5/4 = 1.95-competitiveness. This is not very tempting since SWRPT is
2-competitive and its best known lower bound is 1.16.

3.4 Remarks and open problems

The main challenge in on-line scheduling to minimize total (weighted) comple-
tion time, with jobs arriving over time, is to find provably good algorithms
for identical parallel machines. Recently, Megow and Schulz [63] showed that
Delayed-WSPT is 3.28-competitive for the non-preemptive problem. Unfor-
tunately, their algorithm cannot be better than 2.61-competitive. A large gap
with the best known general lower bound of 1.309 given by Vestjens [86] still
remains. We conjecture that the competitive ratio of the following algorithm is
strictly smaller than 2.

λ-Delayed-WSPT:
Schedule the highest priority job Jj at the earliest moment t at which a machine
is idle and the total remaining processing time is at most λmt − pj , provided
that no new job is released before time t. If a new job is released at a time
t′ ≤ t, then repeat the rule at time t′ with the new set of jobs.

This algorithm corresponds to the 2-competitive Delayed-WSPT algorithm
on a single machine if we choose λ = 1. A good choice for multiple machines
seems λ = 0.5. A lower bound of 1+λ follows from a construction similar to the
proof of Lemma 2. An alternative algorithm is obtained if at any moment the
k highest priority jobs are considered, where k is the number of idle machines
at that moment.

For preemptive scheduling on identical parallel machines Vestjens [86] proved
that no deterministic algorithm can be better than 1.047-competitve. No rele-
vant lower bound is know for randomized algorithms and the best upper bounnd
is 2 for any of the parallel-machine problems: preemptive or non-preemptive and
weighted or unweighted [76].

We conjecture that the competitive ratio for any of the problems mentioned
above is close to the best known lower bounds on these ratios that we mentioned.
A simple deterministic 1.5-competitive algorithm for the non-preemptive prob-
lem on parallel machines, and algorithms with much smaller ratios for the other
variants are plausible to exist. The existing lower bounds on the optimal value
do not seem to be strong enough to prove such small ratios. We presented three
properties of parallel machine schedules that we conjecture to ensure (near)-
optimality and we expressed the competitive ratios of the considered algorithms
in terms of these numbers α,β and γ. It is surprisingly difficult to prove good
upper bounds on these numbers. A good understanding of these problems seems
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essential to prove small competitive ratios.
The restart model was not considered in this chapter. In this setting a job

can be preempted at any moment, but if preempted its processing has to start
all over again. Van Stee and La Poutré [83] claimed a simple 1.5-competitive
algorithm for the unweighted single-machine problem. A lower bound of 1.211
for the single machine is given by Epstein and Van Stee [30]. Despite its sim-
plicity there seems to be no easy generalization of the algorithm to the weighted
single-machine problem. The difficulty is that, in the weighted problem, the
decision of whether or not to preempt a job in favor of another job, cannot be
based on the parameters of these two jobs only. One has to consider the value
of a set of jobs. Clearly, any c-competitive algorithm for the non-preemptive
problem is c-competitive for the restart problem as well. Hence, on identical
parallel machines the non-preemptive problem provides an upper bound of 4.
This is the best known so far and no lower bound is known.

Minimizing the total mean busy date on identical parallel machines seems
an interesting problem on its own. We showed a lower bound of 5/4 for the
Preemptive-WSPT algorithm but the competitive ratio of the problem itself
might be much smaller.



Chapter 4

Complexity of the traveling

repairman problem

4.1 Introduction

Given n points v1, . . . , vn and an integer distance between any pair of points,
the traveling repairman problem is to find a tour π, starting at the origin v1 and
visiting all points, for which the sum of the arrival times dπ(v1, vi) is minimum,
where the arrival time is the traveled distance from v1 to vi on tour π.

We can think of a repairman that needs to repair machines located at the
given points. We assume that the repairman travels at unit speed and that the
repair times are negligible in comparison with the travel time, i.e. all repair
times are zero. The repairman’s objective is to minimize the sum of the arrival
time, or equivalently, the sum of completion times of the repairs. The traveling
repairman problem has been well-studied in operations research, where it is also
known as the delivery man problem and in computer science, where it is often
called the minimum latency problem.

Unlike the traveling salesman problem, where the objective is minimizing
maximum arrival time and therefore is server oriented, TRP is client oriented,
with objective minimizing the average time that a machine waits for having
been repaired. An equivalent objective is minimizing average completion time:
total completion time divided by the number of points. We can also interpret
this objective as minimizing the average number of machines that waits for
service, or equivalently, as maximizing the average number of machines that are
operating.

A problem almost equivalent to TRP is the graph searching problem (GSP)
(introduced in [52]). We assume that the points are vertices of a graph and
the metric is induced by the shortest paths in the graph. There is an object

43
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hidden in one of the vertices of the graph. A distribution specifies for each of
the vertices the probability that the object is hidden there. The objective is
to find a tour that minimizes the expected search time for the object. Clearly,
GSP is polynomially equivalent to TRP under mild conditions on the numbers
in the instances.

The traveling repairman problem was proven to be NP -hard for general
metric spaces (Metric-TRP) by Sahni and Gonzalez [72]. In fact both the
traveling salesman problem and TRP are Max-SNP -hard for general metric
spaces, but the traveling repairman problem has a reputation for being much
harder than the traveling salesman problem. A 7.18-approximation algorithm
follows from a result of Goemans and Kleinberg [41] combined with the approx-
imation algorithm for the k-MST problem by Arora and Karakostas [6]. We
refer to the papers of Goemans and Kleinberg [41], Arora and Karakostas [7],
Ausiello et al.[10], Archer and Williamson [4], and de Paepe et al. [66] for an
overview of TRP and related problems.

In this chapter we prove NP -hardness for two special cases of the traveling
repairman problem: Line-TRP with release dates and Tree-TRP. The latter
result appeared before in [80]. We define an instance of Line-TRP as an edge-
weighted path, where one of the vertices is labelled as the origin. An instance of
Tree-TRP is a tree with root r and weights on the edges. The origin is the root
of the tree. For both problems the set of request points is the set of vertices.
The distance between two vertices is the length of the path between them. We
also consider problems with weights wj on the vertices. The objective in that
case is to minimize

∑
j wjCj . Notice that TRP on the path and TRP on the

tree, with weights on the edges and vertices, polynomially reduce to respectively
Line-TRP and Tree-TRP if all vertex weights are polynomially bounded in
the number of vertices. We will use this in our NP -hardness proofs. In the
sequel we will sometimes write edge length for the weight of an edge and total
completion time for the sum of the weighted completion times.

4.2 An exact algorithm

We show a simple O(n22n) dynamic program (D.P.) that solves TRP for any
metric space. It is a generalization of the algorithm for the Line-TRP and is
similar to the exact algorithm for TSP given in [47]. Each pair (S, s), with
S a subset of the request points and s ∈ S, defines a state of the tour. The
set S represents all requests served sofar and the last request served is s. Let
cost f of a state (S, s) be the minimum over all tours Π of

∑
vi∈S dΠ(v1, vi) +

(n − |S|)dΠ(v1, s). In other words, f(S, s) is the minimum possible total delay
accumulated by all requests during the first part of the tour, i.e. until serving
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s. Then f(S, s) satisfies the following equation, where |S| ≥ 2:

f(S, s) = min
t∈S\{s}

f(S \{s}, t) + (n− |S|+ 1)d(s, t) (4.1)

Since there are O(n2n) states and each value of a state is a function of at most
n−1 preceding state values, the dynamic programming can be done in O(n22n)
steps.

4.3 The traveling repairman problem on the line

with release dates

Afrati et al. [2] show that Line-TRP can be solved in O(n2) time by dynamic
programming. The key observation here is that, if a vertex v is served, then
also all vertices on the path from the origin to v are served. Hence, we have
to consider only O(n2) possibilities for the set S in the dynamic program (4.1).
Notice also that the last point served in any such set must be one of the two
extreme vertices. Implementation of these two observations in the dynamic
program reduces the running time to O(n2).

Suppose now that each vertex has a given release date and we impose the ad-
ditional condition that a vertex cannot be served before its release date. Neither
of the observations above holds true in the presence of release dates. In fact, for
any path we can choose the release dates in such a way that the optimal tour
will serve the vertices in an arbitrarily chosen order. Tsitsiklis [84] mentioned
that the complexity of this problem was unknown and de Paepe et al. [66] con-
sider it as one of the most challenging open problems in their classification of
dial-a-ride problems.

By a reduction from the Partition problem we show that the Line-TRP
with release dates is ordinarily NP -hard. NP -hardness of Partition was
proven by Karp [50].

Partition

Instance: A multiset of natural numbers {p1, p2 . . . , pn}, with p ≤ pi ≤ 2p for
some number p and every i ∈ {1, . . . , n}.
Question: Is there a perfect partition of {p1, p2 . . . , pn}, i.e., is there a set

A ⊂ {1, . . . , n} such that
∑
i∈A

pi = 1
2

n∑
i=1

pi?

Theorem 8 Line-TRP with release dates is ordinarily NP -hard.

Proof. For every instance I1 of the Partition problem we define an instance
I2 of the traveling repairman problem on a path with weights on the edges and
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vertices. We claim that there exists a perfect partition for I1 if and only if there
exists a solution with cost at most C − P/2 for I2, where P =

∑n
i=1 pi and C

is a function of I2 which we be specify below.
I2 consists of the path v11, v21, . . . , vn1, O, v12, v13, v22, v23, . . . , vn2, vn3, z,

where O is the origin. We define the numbers M = 10n2 and li = (n − i +
1)(2M + 1)pi + pi/2 (i = 1 . . . n). The lengths of the edges are:

d(vi1, vi+1,1) = li − li+1 + pi, (i = 1, . . . , n− 1);
d(vn1, O) = ln − (p1 + . . . + pn−1);
d(O, v12) = p1;
d(vi2, vi3) = 0, (i = 1, . . . , n);
d(vi3, vi+1,2) = pi+1, (i = 1, . . . , n− 1);
d(vn,3, z) = 0.

The weights on the vertices are:

w(vi1) = w(vi2) = M, (i = 1, . . . , n);
w(vi3) = w(vz) = 1, (i = 1, . . . , n).

We denote by rij (rz) the release date of vertex vij (z).

r13 = 0,

ri1 = ri3 + li (i = 1 . . . n),
ri2 = ri3 + 2li + pi (i = 1 . . . n),

ri+1,3 = ri2 (i = 1 . . . n− 1),
rz = rn2 + P.

Let tour T serve the vertices in the order O, v11, v12, v13, v21, . . . , vn3, z. Notice
that d(O, v11) = l1 and d(vi3, vi+1,1) = li+1 for i = 1, . . . , n − 1. The vertices
vi1 and vi2 (i = 1, . . . , n) are served exactly at their release dates. Every vertex
vi3 is served 2li + pi time units after its release date and the tour arrives in z

at P time units before its release date. We define C as the total total weighted
completion time of this solution T .

For any set A ⊆ {1, . . . , n} we define a solution TA for I2 as follows. We
follow tour T defined above, but if i ∈ A then vi3 is served directly after vi−1,3

is served and we continu on T . Notice that by this definition T = T∅. We claim
that the total weighted completion time CA of tour TA with A ⊆ {1, . . . , n} is
exactly C − P/2 + |P/2−

∑
i∈A pi|.

Let i ∈ A. The completion time of vi3 in TA is 2li time units smaller than
its completion time in TA\{i}. On the other hand the completion in TA of any
vertex served after vi3 is 2pi time units larger than its completion time in TA\{i}.
An exception is the vertex z, which is not delayed if the total delay

∑
i∈A 2pi is
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less than P . Summarizing we have

CA = C +
∑
i∈A

(2pi(n− i + 1)(2M + 1)− 2li) + max{0,
∑
i∈A

2pi − P}

= C −
∑
i∈A

pi + max{0,
∑
i∈A

2pi − P} (4.2)

= C − P/2 + |P/2−
∑
i∈A

pi| .

If there exists a perfect partition A, then CA = C − P/2.
If there is no perfect partition for I1, then any tour TA has total weighted

completion time at least CA = C − P/2 + 1, assuming P is even. It remains to
show that in this case any tour has value at least C − P/2 + 1.

First, we roughly bound C from above. Let R be the sum of weighted release
dates.

C = R +
n∑

i=1

(2li + pi)

= R +
n∑

i=1

2(n− i + 1)(2M + 1)pi + pi

≤ 2n(n + 1)(2M + 1)2u + 2p

= (4n(n + 1)(20n2 + 1) + 2)p.

For n ≥ 1 we can roughly bound this by C < 200n4p. Consider the order
in which the vertices with weight M are served in solution T . If this order
is different in a solution T ′, then at least one of these is served not earlier
than min{li|i = 1...n} > 2Mp after its release date. Hence, the total weighted
completion time of such solution T ′ is more than R + 2M2p = 200n4p > C.
Similarly, if z is served before vn1, then the total weighted completion time also
exceeds C. Therefore, in the optimal solution the vertices with weight M are
visited in the order v11, v12, v21, . . . , vn2, z, and z is served after vn3. Under
this condition, it is impossible that a vertex vi3 is served before vi−1,2, since
otherwise there must be a vertex with weight M that is released before vi−1,2

but served after vi−1,2. Now there remain two possible ways to serve a vertex
vi3. Either it is served between vi−1,2 and vi1, or it is served together with vi2.
This leaves exactly the tours of the form TA for which we already proved that
the value is at least C − P/2 + 1 if no perfect partition exists. �

It remains an open problem whether Line-TRP with release dates is pseudo-
polynomially solvable or NP -hard in the strong sense. Line-TRP with deadline
constraints is ordinarily NP -hard and pseudo-polynomially solvable by dynamic
programming [2]. If we follow an optimal tour, then, at any moment, the visited
vertices are neighboring vertices. In addition to the dynamic programming for
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the unrestricted Line-TRP, we need a time index. This makes the running time
of the dynamic programming pseudo-polynomial.

The complexity of the problem where, instead of release dates or deadlines,
there is a given repair time pj for each request sj , is an open problem for the
line metric [2, 84]. In this problem the server must stay in the request point
for a time pj to serve request sj . We can formulate this problem as a special
case of Tree-TRP by adding a vertex at a distance of half the repair time at
any request point on the path. Such trees are called caterpillars. Koutsoupias
et al. [52] conjecture that TRP is NP -hard on caterpillars.

Tsitsiklis [84] observed that strong NP -hardness of Line-TRP with both
release dates and repair times follows directly from strong NP -hardness of the
single machine scheduling problem with releases dates and minimizing total
completion time. In fact, TRP with these two constraints is even strongly NP -
hard if the metric space is a single point.

Line-TRP with repair times becomes easy if we add the restriction that a
request must be served at the moment that the server passes the request point.
We can use the same dynamic program as for the unrestricted Line-TRP to
obtain an O(n2) algorithm.

Recently Garćıa et al. [34] gave a linear time algorithm for Line-TRP. They
use the concepts of Monge matrices to improve the efficiency of the dynamic
program. An m×n matrix A is called Monge if aij +ai+1,j+1 ≤ ai+1,j +ai,j+1,
∀1 ≤ i ≤ m, 1 ≤ j ≤ n. This Monge property has been used before in several
optimization problems to improve the running time. Garćıa et al. use the same
technique to solve the problem of finding a feasible solution for Line-TRP with
deadlines in O(n) time, for which an O(n2) algorithm was given in [2].

4.4 The traveling repairman problem on a tree

Classifying the complexity of TRP for edge-weighted trees has been mentioned
as an open problem in many papers [6, 10, 11, 12, 41, 52, 65, 87, 88]. For
example Goemans and Kleinberg [41] write that ‘the TRP is not known to be
NP -hard on weighted trees, so it is worth considering whether it could be solved
optimally’. Notice that the traveling salesman problem is trivial on weighted
trees.

For some special cases an exact polynomial time algorithm is known. If the
tree is unweighted, then a tour is optimal if and only if it is a depth-first search.
Proofs have been given by several authors [65, 12]. The dynamic program-
ming solution for Line-TRP can be extended to an O(nk) dynamic program for
Tree-TRP [52], where k is the number of leaves. This was also observed by
Minieka [65] who formulated the Tree-TRP as a shortest path problem in a
network with O(nk+1) nodes. Blum et al. [12] show that dynamic programming
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gives an O(n2) algorithm for Tree-TRP on trees with combinatorial diameter
at most 3. These trees consist of a central edge with leaves on its two end points.
The observation here is that the leaves at either end are visited in increasing
order of their length. Wu [88] generalizes this to an exact algorithm for graphs
with a bounded number of internal nodes. We prove that no exact polynomial
time algorithm exists for the Tree-TRP, unless P = NP .

We give a preliminary lemma. Given an instance of TRP on a tree, let T be
an optimal tour and let t0 = 0, t1, . . . , tk be the moments at which the server is
in the origin. Without loss of generality we assume that the tour ends at time
tk in the origin. Let Ti be the subtour between time ti−1 and ti, 1 ≤ i ≤ k, and
let |Ti| and Wi be respectively the length of this subtour and the total weight
of the vertices that are served on Ti. Then we have the following lemma.

Lemma 5 For any optimal tour T the following holds.

(i) W1
|T1| ≥

W2
|T2| ≥ . . . ≥ Wk

|Tk| .

(ii) If Wi

|Ti| = Wj

|Tj | for some i, j ∈ {1, . . . , k}, then the total completion time
remains the same if the subtours Ti and Tj swap their position on T .

Proof. (i) We use a simple interchange argument. Assume that for some i we
have Wi

|Ti| < Wi+1
|Ti+1| . If we change the order of the subtours Ti and Ti+1, then the

increase in the total completion time is Wi|Ti+1| − Wi+1|Ti| < 0. (ii) follows
directly from the proof of (i). �

To prove NP -hardness for Tree-TRP we give a reduction from the 3-Partition

problem, which was proven to be NP -hard in the strong sense by Garey and
Johnson [35].

3-Partition

Instance: A multiset of natural numbers {p1, p2 . . . , p3n}, with P/4 < pi < P/2
for all i ∈ {1, . . . , 3n}, and a number P such that p1 + · · ·+ p3n = nP .
Question: Is it possible to partition the index set {1, . . . , 3n} in n sets A1, . . . , An

such that
∑

i∈Aj

pi = P for all j ∈ {1, . . . , n}?

Theorem 9 The traveling repairman problem is strongly NP -hard on edge-
weighted trees.

Proof. Given an instance of 3-Partition with the notation as described
above, we define ai = Kpi for all i ∈ {1, . . . , 3n} and Q = KP , where K = 2Pn4.
We define a tree on 3n(n + 2) + 1 vertices as follows.
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For each i ∈ {1, . . . , 3n} we construct a path (r, vi1, vi2, . . . , vin, zi). All these
paths start in the root of the tree, which is appointed as the origin of the TRP-
instance. To each of these paths an extra vertex ui is attached through the edge
(vi1, ui) (see Figure 4.4). For the definition of the lengths of the edges in this
tree we introduce the numbers m and li, (i = {1, . . . , 3n}), and choose their
value appropriately later. The lengths of the edges are:

d(r, vi1) = li, (i = 1, . . . , 3n);
d(vij , vi,j+1) = ai, (i = 1, . . . , 3n, j = 1, . . . , n− 1);
d(vi1, ui) = 2Qai, (i = 1, . . . , 3n);
d(vin, zi) = m, (i = 1, . . . , 3n).

The weights on the vertices are:

w(vi1) = ai, (i = 1, . . . , 3n);
w(vij) = n− j + 1, (i = 1, . . . , 3n, j = 2, . . . , n);
w(zi) = ai, (i = 1, . . . , 3n);
w(ui) = 1, (i = 1, . . . , 3n).

i v vv

u

ij i,j+

i

iinvr il ma i

a i n−jn−j+ 1

1

root−branch i

i
2Qa 1

1 1 z

a i

Figure 4.1: Sketch of the TRP instance.

We call the subtree rooted at r and constituted by the path (r, vi1, . . . , vin, zi)
and the edge (vi1, ui) the root-branch i, (i = 1, . . . , 3n).
It is easy to see that the values m and li can be chosen appropriately such that an
optimal tour satisfies the following properties (a) and (b) for all i ∈ {1, . . . , 3n}:

(a) each edge (r, vi1) is traversed exactly once in each direction;

(b) vertex ui is visited before vertex zi.

Moreover, we choose li, (i = 1, . . . , 3n), such that for all i and h in {1, . . . , 3n}

(c) Wi

Li
= Wh

Lh
, where Wi and Li denote, respectively, the sum of all vertex-

weights and the sum of all edge-lengths of root-branch i.

With respect to (c) we note that choosing li = M(2ai +n(n−1)/2+1)− (2Q+
n−1)ai−m yields Wi

Li
= M , for all i ∈ {1, . . . , 3n}, where M is a large number.
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We prove later that the numbers m and M can be bounded by a polynomial in
the size of the 3-Partition instance.

Consider an optimal tour T . By (a) and (b) there are at most n different
ways for this tour to traverse root-branch i: for k = 1, . . . , n, we call the subtour
that visits vertex ui directly after vertex vik the k-tour. Lemma 5(i) implies
that in T , all k-tours precede all k + 1-tours (k = 1, . . . , n − 1). Renumber
the root-branches such that root-branches 1, . . . , i1 are traversed by a 1-tour,
i1+1, . . . , i2 by a 2-tour, etc. until in−1+1, . . . , in = 3n being the root-branches
traversed by an n-tour.

We compare the optimal tour T with the tour in which all root-branches are
traversed by a 1-tour. Applying Lemma 5(ii) and (c) we may assume that the
order in which the root-branches are served is the same for both tours.

Let us investigate the gains and losses in objective value of serving root-
branch i by a k-tour instead of by a 1-tour. The gains come from a reduction
of 4Qai in the completion time of each of the vertices vi2, . . . , vik. The losses
come from a delay of 2(k− 1)ai in visiting the vertices vi,k+1, . . . .vin, ui, zi and
all the vertices on the root-branches h ≥ i + 1.

Thus the total gain in objective value by serving according to T instead of
the all 1-tour is

n∑
k=2

3n∑
i=ik−1+1

4(n− k + 1)Qai =
n∑

k=2

4(n− k + 1)Q
3n∑

i=ik−1+1

ai

 . (4.3)

Expressing the total loss we first give a crude bound on RT the loss due to delay
of all vertices except the vertices zi and vi1, i = 1, . . . , 3n. There are 3n2 of
them and their total weight is 3n( 1

2n(n− 1) + 1) < 2n3. The delay for each of
them is at most 2(n− 1)Q. Therefore, RT < 4Qn4.

To express the total loss due to delay of the vertices vi1 and zi, i = 1, . . . , 3n,
consider a root-branch i served by a k-tour, i.e., ik ≤ i < ik+1. Compared to
serving it by a 1-tour, the vertex vi1 is not delayed, but, as noted before, the
vertex zi is delayed by an amount 2(k − 1)ai, which multiplied by its weight
gives a loss in objective value of 2(k− 1)a2

i . Moreover, for all h > i the vertices
vh1 and zh are delayed by 2(k−1)ai. Thus, the total loss by serving root-branch
i by the k-tour i.o. the 1-tour due to a delay of vertices vh1 and zh, h = i, . . . , 3n

amounts to

2(k − 1)ai(ai +
3n∑

h=i+1

2ah).

The total loss in objective value by serving according to tour T instead of the
all 1-tour is therefore given by

RT +
n∑

k=2

ik∑
i=ik−1+1

2(k − 1)ai(ai +
3n∑

h=i+1

2ah) = RT +
n∑

k=2

2(
3n∑

i=ik−1+1

ai)2. (4.4)
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Let CT and C be the total completion times, respectively, for T and the all
1-tour. Combining (4.3) and (4.4) we obtain

CT = C + RT +
n∑

k=2

2(
3n∑

i=ik−1+1

ai)2 − 4Q(n− k + 1)
3n∑

i=ik−1+1

ai

 . (4.5)

Writing bk =
∑3n

i=ik−1+1 ai, k = 2, . . . , n, (4.5) becomes

CT = C + RT +
n∑

k=2

(2b2
k − 4Q(n− k + 1)bk). (4.6)

Each of the terms 2b2
k−4Q(n−k +1)bk, k = 2, . . . n, attains its minimum value

−2Q2(n− k + 1)2 at bk = (n− k + 1)Q.
Assume the 3-Partition instance has a yes-answer and let A1, . . . , An be a

perfect partition. Consider the tour T̃ which traverses the 3 root-branches that
have their index in Ak by a k-tour, and all k-tours precede all k + 1-tours, for
every k ∈ {1, . . . , n}. We define b̃k =

∑
i∈Ak∪...∪An

ai implying b̃k = (n−k+1)Q
for all k ∈ {2, . . . , n}. Thus, by (4.6):

CT ≤ C
eT = C + R

eT +
n∑

k=2

(2b̃2
k − 4Q(n− k + 1)̃bk)

= C + R
eT − 2Q2

n∑
k=2

(n− k + 1)2

= C + R
eT − 1

3Q2n(n− 1)(2n− 1)

< C + 4Qn4 − 1
3Q2n(n− 1)(2n− 1)

= C + 2K2 − 1
3Q2n(n− 1)(2n− 1),

using Q = KP and K = 2Pn4 for the last equality.
If no 3-partition exists then there must be a j ∈ {2, . . . , n} such that |bj −

(n− j + 1)Q| ≥ K. (Remember that ak is a multiple of K for all k.) Standard
calculus tells us that

2b2
j − 4Q(n− j + 1)bj ≥ −Q2(n− j + 1)2 + 2K2,

implying

CT = C + RT +
n∑

k=2

(2b2
k − 4Q(n− k + 1)bk)

≥ C + RT − 1
3Q2n(n− 1)(2n− 1) + 2K2

≥ C − 1
3Q2n(n− 1)(2n− 1) + 2K2.

We conclude that the 3-Partition instance has a yes-answer if and only if

CT < C − 1
3
Q2n(n− 1)(2n− 1) + 2K2.
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It remains to show that the numbers m and M can be bounded by a polynomial
in the size of the 3-Partition instance, and still satisfy the conditions that each
edge (r, vi1) is traversed exactly once in each direction, and that vertex ui is
visited before vertex zi.

Consider a tour T1 that traverses the edge (r, vi1) more than once in each
direction. We adjust this tour to a tour T2 that passes (r, vi1) only once in each
direction. When tour T1 visits vertex vi1 for the first time we continue this tour
by visiting all the remaining vertices of root-branch i in the same order as they
are visited on T1. Next, we continue T1.

We will show that T2 has smaller total completion time than T1 if M is
chosen large enough. For any vertex, its completion time on T2 is at most
2((2n − 2 + 2Q)ai + m) larger than its completion time on T1. On the other
hand, for at least one of the vertices of root-branch i, its completion time is at
least 2li lower than its completion time on T1. Therefore, the total completion
time is at least 2li − 2((2n− 2 + 2Q)ai + m)W lower than the total completion
time of T1, where W = 3

2n2(n − 1) + 3n + 2nQ is the total weight of the tree.
Now it easy to see that we can choose M such that li > ((2n−2+2Q)ai +m)W
for all i ∈ {1, . . . , 3n} and to do so M can be kept polynomially bounded in the
size of the 3-Partition instance and in m.

Now consider a tour T1 that traverses the edges (r, vi1) (i = 1 . . . 3n) exactly
once in each direction but vertex zh is visited before vertex uh for some h ∈
{1, . . . , 3n}. We let tour T2 be similar to T1 with the exception that root-branch
h is traversed as a 1-tour. The completion time is unchanged for any vertex
that is not in root-branch h. The completion time of vertex uh in T ′ is exactly
2(m + (n − 1)ah) lower than its completion time in T1. The completion time
in T2 of the vertices vi2, . . . , vin, zi is exactly 4Qah larger than their completion
time in T1. Therefore, the total completion time of T ′ is 2(m + (n − 1)ai) −
4Qai(n(n−1)/2+ai) smaller than the total completion time of T1. Now it easy
to see that we can choose m such that the total completion of T2 is smaller than
the total completion time of T1 and keep m polynomially bounded in the size
of the 3-Partition instance. �

In the proof of Theorem 9 we used weights on the vertices and interpreted a
vertex with weight w as w unit-weight vertices at a distance zero from one
another. This might seem a deceptive way to get rid of the vertex weights in
the NP -hardness statement. If we replace a vertex with weight w by w unit-
weight vertices at a distance ε from one another and choose ε small enough,
then the proof works as well. Hence, Theorem 9 applies as well if we disallow
edge lengths to be zero.

Corollary 3 TRP is strongly NP -hard for edge-weighted trees where all weights
are integers larger than or equal to 1.
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If we do allow zero-length edges, then we can strengthen Theorem 9 in the sense
that NP -hardness holds even if all edge-lengths are either zero or one. This is
equivalent to the next theorem.

Theorem 10 TRP is strongly NP -hard for vertex-weighted trees.

Proof. We reduce from edge-weighted trees. Let I be an arbitrary instance
of Tree-TRP with vertices v1, . . . , vn and edges e1, . . . , em and with integer lj
being the length of edge ej . From I we define an instance I ′ of Tree-TRP with
all vertex weights 1 and edge-lengths 0 and 1.

We give each vertex vi (i = 1, . . . , n) a large weight K, which we choose
appropriately later. For any edge ej with length lj ≥ 1 incident to vertices u and
v we insert lj − 1 extra vertices vj1, . . . , vj,lj−1 and the path u, vj1, . . . , vj,lj−1, v

containing lj edges of length 1. The inserted vertices receive weight 1. Choose
K > 2L(n + L − m)2, with L the sum of the lengths of all edges of I. We
claim that, for any positive integer C, there exists a solution for I with total
completion time C(I) < C if and only if there exists a solution for I ′ with total
completion time C(I ′) < KC. This claim proves the theorem.

If there exists a tour T ′ for I ′ with C(I ′) < KC, then the tour for I that
follows from T ′ in the obvious way has total completion time less than C. On
the other hand, if there exists a tour T for I with C(I) ≤ C − 1, then the tour
T ′ for I ′ that follows from T in the obvious way has objective K(C − 1) + D,
where D is the total completion time of the inserted vertices. It suffices to show
that D < K.

The number of vertices of I ′ is n + L−m. Notice that 2L(n + L−m) is an
upper bound on the length of the tour that returns to the origin every time a
new vertex has been visited, which in its turn is clearly an upper bound on the
length of T ′. Therefore, D < 2L(n + L−m)2 < K. �

4.5 Approximation algorithms

Max-SNP -hardness of Metric-TRP follows directly from Max-SNP -hardness
of TSP for general metric spaces [68]. In the reduction from Metric-TSP we
simply add a lot of requests to the requests in the TSP instance, and make sure
that the optimal TRP-tour serves the added requests last. This simple reduc-
tion can be made for almost any metric space, which supports the general idea
that TRP is more difficult than TSP.

It is unlikely that Tree-TRP is Max-SNP -hard since Arora and Karakostas
gave a so called quasi-polynomial time approximation scheme with running time
nO(log n/ε) [7]. Hence, for any fixed ε there is an ε-approximation with nO(log n)



55

running time. Max-SNP -hardness of Tree-TRP implies that there exists a
number ε > 1 such that approximating Tree-TRP within a factor ε is an NP -
hard problem. It is generally believed that NP -hard problems cannot be solved
in nO(log n) time.

As mentioned before, Tree-TRP is easily solved if the edges are unweighted.
For general unweighted graphs the problem is Max-SNP -hard, which follows
directly from Max-SNP -hardness of the Hamiltonian path problem. Kout-
soupias et al. [52] give a 1.66-approximation algorithm, based on Christofides’
algorithm for TSP. In addition, a 2-approximate solution is easily obtained by
traversing an arbitrary spanning tree in depth-first order.

The first constant-factor approximation algorithm for Metric-TRP was a
144-approximation algorithm given by Blum et al. [12]. An improved version
was given by Goemans and Kleinberg [41]. We briefly describe their algorithm.

Let Tk (k = 1, 2, . . . , n) be a minimum k-TSP, i.e. a shortest tour, from
origin to origin, that contains at least k request points. Now consider the
problem of minimizing total completion time under the restriction that the tour
must be a concatenation of minimum k-TSPs. Goemans and Kleinberg prove
that the optimal value of this problem is at most 3.59 times the optimal value.
Additionally they show how an optimal solution for this problem can be find
efficiently if the k-TSPs are given. The k-TSP problem is NP -hard on a general
metric space but can be solved efficiently for the tree metric [12], yielding a 3.59-
approximation algorithm for Tree-TRP. For Euclidean spaces with bounded
dimension Arora’s PTAS [5] yields a 3.59 + ε-approximation algorithm. For an
arbitrary metric space Garg [38] gave a 3-approximation for k-TSP, and a 2+ ε-
approximation algorithm was given by Arora and Karakostas [6], which leads
to a 7.18 + ε-approximation for Metric-TRP. Instead of a k-TSP, we could
also consider k-MST, i.e., a tree rooted in the origin, with at least k vertices
and with a minimum sum of edge weights. The approximation guarantee that
follows from the algorithm of Goemans and Kleinberg remains the same.

Recently, Archer and Williamson [4] gave a 9.28-approximation algorithm for
Metric-TRP with a much smaller running time than the 7.18-approximation
algorithm. Their basic idea is that they do not use k-MST as a black box. In-
stead, they show that their k-MST algorithm, produces relatively small solutions
for some (uncontrolled) values of k. Subsequently, they exploit this property in
the choice for the trees that are concatenated.

The current best approximation ratio for Metric-TRP is 3.59. This algo-
rithm, given by Chaudhuri et al [20], elaborates on the algorithm of Goemans
and Kleinberg.

Fakcharoenphol et al. [31] generalized the algorithm of Goemans and Klein-
berg to the problem with multiple repairmen.

All polynomial time approximation algorithms mentioned for Metric-TRP
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use k-MST as a subroutine. This in itself does not exclude finding good ap-
proximation algorithms. Arora and Karakostas [7] showed that the optimal
TRP-tour can be partitioned in O(log(n)/ε) paths such that the overall loss for
the TRP objective is at most a factor ε if any path is replaced by an optimal
traveling salesman path. Any of the algorithms use at most n TSP tours (or
MST’s). One might obtain better approximation algorithms by defining this
set in a more sophisticated way. On one hand this set must be small enough
to maintain polynomial running time, and on the other hand it must be rich
enough to construct a small TRP-tour.

4.6 Related problems

A variant of TRP is the search ratio problem, introduced by Koutsoupias et
al. [52]. One has to find an object hidden in a vertex not known to the server.
Unlike the graph searching problem, where a distribution on the vertices is
given, one is facing an adversary who chooses at which vertex it hides the
object. The search ratio is then defined as the optimal competitive ratio, which
is the distance traveled by the server, divided by the length of the shortest
path from the origin to the object. Koutsoupias et al. [52] show that both
the randomized and the deterministic version are Max-SNP -hard for general
graphs. They note that computing the (randomized) search ratio for trees is a
‘surprisingly tough problem’ but show that, if one can solve the TRP for a class
of graphs in polynomial time, then by duality one can solve the randomized
search ratio problem for that same class of graphs. Our result excludes this tool
for finding a polynomial time algorithm for the randomized search ratio problem
for trees. However, polynomial time approximation algorithms for TRP may be
transferable to the randomized search ratio problem [52].

The value of the optimal TRP-tour clearly depends on the given starting
vertex. To find the best starting vertex we could repeatedly run an algorithm
that solves TRP, each time using a different starting vertex. However, Sichmi-
Levi and Berman [78] notice that for general metric spaces one run suffices: add
a point at the same large distance to any of the other points. Wu [88] gives an
O(n2) algorithm for this problem on the line, and Minieka [65] notices that for
unweighted trees, any vertex at the end of a longest path can be taken as the
best starting vertex. It is unknown to us whether, for weighted trees and for
arbitrary metric spaces, there is a more subtle way than solving a TRP instance
to find the best starting vertex.
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4.7 Open problems

We summarize some of the open problems mentioned in this chapter and raise
some new ones.

The tree used in the proof of Theorem 9 is not a caterpillar. So the complex-
ity of the Line-TRP with repair times remains open. But our proof does show
that the repair time problem is strongly NP -hard for another kind of trees:
spider graphs. Such graphs consist of a set of paths connected in a single point.

It remains open whether Line-TRP with release dates is strongly NP -hard
or pseudo-polynomially solvable.

It is interesting to see if we can push NP -hardness for trees even further
than we did in Corollary 3 and Theorem 10. In this context we consider the
problem in which all edge-lengths are strictly positive integers and bounded by
some constant k. It is easy to prove that in any optimal tour, the tour through
the first n/k points must have minimum length. This implies for the tree metric
that the first n/k points are visited in depth-first order. More generally, if at
some moment still m points are unvisited in the tree, then the next m/k points
are visited in depth-first order. It seems that to prove NP -hardness we need an
essentially different reduction than we used in Section 4.4. On the other hand, a
polynomial time algorithm follows if we can prove a polynomial upper bound on
the number of interesting states in the dynamic program 4.1. The complexity
status of this problem remains open.

We restrict the problem even more if we bound all distances of the metric
space by some constant k. Blum et al. [12] gave a polynomial time algorithm
for k ≤ 3 but there does not seem to be an easy away to extend this to larger
diameter trees.

A major challenge in this research is to find good approximation algorithms
for the traveling repairman problem. For example, the smallest approximation
ratios for Tree-TRP and Metric-TRP are respectively 3.59 and 7.18. Com-
pare this to the ratios 1 and 1.5 for the corresponding TSP problems.





Chapter 5

The general two-server

problem

5.1 Introduction

In the general k-server problem we are given k servers each of which is moving in
some metric space Mi, (i = 1, . . . , k), starting in some prefixed point Oi ∈ Mi.
They are to serve requests r ∈ M1 ×M2 × . . .×Mk which arrive one by one. A
request r = (z1, z2, . . . , zk) is served by moving, for at least one i, the server in
space Mi to the point zi. The decision which server to move to the next request
is irrevocable and has to be taken without any knowledge about future requests.
The cost of moving the ith server to zi is equal to the distance travelled by this
server from his current location to zi. The objective is to minimize the total
cost to serve all given requests.

We can see the general k-server problem as a single server problem, moving
in the metric space M = M1×. . .×Mk, and interpret the server positions and the
requests in the description above as the ‘coordinates’ of the single server and the
requests. Interpreted in this way, it is a special case of a metrical service system,
in which each request can be any subset of the metric space, and is served by
moving the server to one of the points in the request. Metrical service systems
were introduced in [24] to provide a formalism for investigating a wide variety
of on-line optimization problems. A precise definition is given in Section 5.2.
In the same section we derive the basic theorem of this chapter. It provides
a sufficient condition for the existence of constant competitive algorithms for
general metrical service systems. The result on the general two-server problem
then becomes a matter of verifying this condition.

The general k-server problem is a natural generalization of the well-known
k-server problem for which M1 = M2 = . . . = Mk and z1 = z2 = . . . = zk at

59



60

each time step. The k-server problem was introduced by Manasse, McGeoch
and Sleator [61], who proved a lower bound of k on the competitive ratio of any
deterministic algorithm for any metric space with at least k+1 points and posed
the well-known k-server conjecture saying that there exists a k-competitive al-
gorithm for any metric space. The conjecture has been proved for k = 2 [61]
and some special metric spaces [22][23]. For k ≥ 3 the current best upper bound
of 2k − 1 is given by Koutsoupias and Papadimitriou [51].

The weighted k-server problem turns out to be much harder. In this problem
a weight is assigned to each server and the total cost is the sum of the weighted
distances. Fiat and Ricklin [33] prove that for any metric space there exists a
set of weights such that the competitive ratio of any deterministic algorithm
is at least kΩ(k). For a uniform metric space, on which the problem is called
the weighted paging problem, Feuerstein et al. [32] give a 6.275-competitive
algorithm. For k = 2 Chrobak and Sgall [25] provided a 5-competitive algorithm
and proved that no better competitive ratio is possible.

A weighted k-server algorithm is called competitive if the competitive ratio is
independent of the weights. For a general metric space no competitive algorithm
is known yet even for k = 2. It is easy to see that the general k-server problem
is a generalization of the weighted k-server problem as well.

The general two-server problem in which both servers move on the real line
has become well-known as the CNN-problem. Koutsoupias and Taylor [53]
emphasize the importance of the CNN-problem as one of the simplest problems
in a rich class of so-called sum-problems [13]. In the sum-problem each of a set
of systems gets a request and only one system has to serve this request.

Koutsoupias and Taylor [53] prove a lower bound of 6 +
√

17 on the com-
petitive ratio of any deterministic on-line algorithm for the general two-server
problem, through an instance of the weighted two-server problem on the real
line. They also conjecture that the generalized work function algorithm has
constant competitive ratio for the general two-server problem. It seems to be a
bad tradition of multiple-server problems to keep unsettled conjectures. For the
general two-server problem the situation was even worse than for the k-server
problem: the question if any algorithm exists with constant competitive ratio
remained unanswered.

In Section 5.3 we answer this question affirmatively, by designing an algo-
rithm and prove a rough upper boud of 44, 800 on its competitive ratio. Our
algorithm is a combination of the well-known balance algorithm and the gen-
eralized work function algorithm. The result is merely checking the condition
of the general theorem for metrical service systems in Section 5.2, announced
above.

Optimal off-line solutions of metrical service systems can easily be found by
dynamic programming (see [13]), which yields an O(nk) time algorithm for the
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general k-server problem. For the classical k-server problem this running time
can be reduced to O(kn2) by formulating it as a min-cost flow problem [22]. No
such improvement should be expected for the general k-sever problem since the
problem is NP -hard as we will show in Section 5.4.

5.2 Competitiveness of metrical service systems

A metrical service system S = (M,R) is specified by a metric space M with
distance function d : M2 → R+ and a set of requests R. Each request r ∈ R is
a subset of M. An instance of the system consists of an initial server position
O ∈ M and a sequence of requests σ = r1, r2, . . . , rn. Every request rt must
be served immediately and irrevocably by moving the server to a point xt ∈ rt,
before the future requests, rt+1, rt+2, . . ., are given. The cost of the solution is
the length of the path in M followed by the server.

For any metrical service system we will define functions Ψm(σ) ≥ 0 de-
pending on the input sequence σ and any integer m ≥ 1. We show that if an
algorithm A exists for a metrical service system S with the property that for
some m ≥ 1 and any sequence σ the length of its path is at most c times the
length of the optimal path plus Ψm(σ), then there exists an on-line algorithm
A′ for this metrical service system producing a path of length at most c′ times
the optimal path length, for some constant c′. Since Ψm(σ) ≥ 0 the reverse
of this statement is obviously always true, i.e. if A′ is c′ competitive then the
length of any solution is certainly no more than c′ times the optimal path plus
Ψm(σ). If we would choose Ψm(σ) ≡ 0 then the statement is clearly a tautol-
ogy. The statement is formalized in Theorem 11 and the usefulness of our choice
of Ψm(σ) follows from Section 5.3 in which we show how a competitive algo-
rithm for the general two-server problem follows quite easily from Theorem 11.
Roughly speaking we define Ψm(σ) as the minimum sum of lengths of the paths
of m different adversaries, each serving the request sequence σ. What is meant
by different adversaries will be formalized later. The theorem then says that
if there exists an algorithm that is competitive against m different adversaries
then there exists an algorithm that is competitive against one adversary.

The competitive algorithm A′, which is called Online from now on, is a
combination of an algorithm A with the property mentioned above and the
generalized work function algorithm. The latter algorithm was introduced inde-
pendently by several people and has shown to be competitive for several on-line
problems. In fact we go along with Koutsoupias and Taylor [53] in conjecturing
that it is competitive for the general two-server problem as well. The gener-
alized work function algorithm bases its moves on the position of the on-line
server and the values of the work function.
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Definition 8 Given a metrical service system S = (M,R) with origin O ∈ M,
and request sequence σ we define the work function WO;σ : M → R+. For any
point s ∈ M, WO;σ(s) is the length of the shortest path that starts in O, ends
in s and serves σ. Omitting the restriction on the initial point we obtain an
alternative work function Ŵσ, i.e., Ŵσ(s) is the length of the shortest path that
ends in s and serves σ.

We assume here that the work function is always well-defined, i.e. for any
σ = r1, . . . , rn and point s ∈ M there are points si ∈ ri (i = 1 . . . n) such
that d(O, s1) + d(s1, s2) + . . . + d(sn−1, sn) + d(sn, s) ≤ d(O, t1) + d(t1, t2) +
. . . + d(tn−1, tn) + d(tn, s) for any set of points ti ∈ ri (i = 1 . . . n). Notice
that this implies WO;r1,...,ri

(si) = d(O, s1) + d(s1, s2) + . . . + d(si−1, si) for all
i ∈ {1, . . . , n}.

We will use the following properties, which are rather obvious. The work
function on the empty string of requests is WO;∅(s) = d(O, s), for all s ∈ M.
The work function is Lipschitz continuous: for any two points s and s′ in M,
|WO;σ(s) − WO;σ(s′)| ≤ d(s, s′). It exhibits monotonicity with respect to the
request sequence for every s ∈ M: given any request sequence σ and any new
request r, WO;σ,r(s) ≥ WO;σ(s), for all s ∈ M. Equality holds for all s ∈ r.

Given a work function WO;σ we say that point s is dominated by point t if
WO;σ(s) = WO;σ(t) + d(s, t). We define the support of WO;σ as

Supp(WO;σ) = {t ∈ M : t is not dominated by any other point}.

If WO;σ,r is a well-defined work function then Supp(WO;σ,r) ⊆ r, since for any
point s there is a point t ∈ r such that WO;σ,r(s) = WO;σ,r(t) + d(t, s), which
implies that if s ∈ Supp(WO;σ,r) then s = t. For more properties and a deeper
analysis of work functions we refer to [18],[24].

The generalized work function algorithm is a work function based algorithm
parameterized by some constant λ < 1. We call it λ-Wfa. For any request
sequence σ and any new request r, λ-Wfa-moves the server from the position
s it had after serving σ to point

s′ = argmint∈M{WO;σ,r(t) + λd(s, t)}.

Note that this minimum may not be well-defined if the request contains infinitely
many points of the metric space. In Theorem 11 we assume that the minimum
is always attained for some s′ ∈ M. As a result of any such a λ-Wfa-move, we
have for any point t ∈ M that

WO;σ,r(s′) + λd(s, s′) ≤ WO;σ,r(t) + λd(s, t).

Therefore, in particular,

WO;σ,r(s′) ≤ WO;σ,r(s)− λd(s, s′), (5.1)
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and for any t ∈ M

WO;σ,r(s′) ≤ WO;σ,r(t) + λd(s′, t). (5.2)

The choice λ < 1 together with (5.2) implies that s′ is not dominated by any
other point, whence s′ ∈ Supp(WO;σ,r) ⊆ r. We see that if the moves of λ-WFA
are well-defined then the choice of λ < 1 ensures that the point s′ always serves
the last request.

As announced before, we define an algorithm Online as a combination of
λ-Wfa and some algorithm A. Online works in phases. The final point of
a phase is the starting point of the next phase. This is the only information
taken from one phase to the next phase. The phases of the algorithm induce
a partition of the request sequence σ. Let σj be the subsequence of requests
served in the j-th phase of Online; i.e., if J is the total number of phases
then σ = σ1, . . . , σJ . We denote by A(s, σ) and Opt(s, σ) the cost of the
algorithm A and the cost of the optimal path starting in s and serving request
sequence σ. Thus, Opt(O, σ) = mint∈M WO;σ(t). In the description of a generic
phase j of the algorithm we use σh

j for the subsequence consisting of the first h

requests of σj . The starting point in phase j is denoted by Oj . The algorithm
is parameterized by γ (γ ≥ 1) and λ (0 < λ < 1).

Phase j of Online(A, γ, λ):

Given σh
j , if A(Oj , σ

h
j ) ≤ γOpt(Oj , σ

h
j ), move the server according

to A and continue the phase. Otherwise, σj = σh
j ; move the server

according to λ-Wfa, based on the work function WO;σ1,...,σj
, and

start a new phase.

Thus, each phase contains only one λ-Wfa-move and this moves concludes the
phase. We emphasize that the work function employed in the λ-Wfa-move is
defined over the complete input sequence, released sofar. In the sequel we refer
to the moves made according to A as A-moves.

We are now ready to define our main theorem. The idea behind it is best
explained by using adversaries serving the same request sequence, but knowing
the sequence in advance. Whereas our algorithm A has to start from O, these
adversaries are allowed to choose their starting point. On the other hand we
restrict the paths of the adversaries by requiring that they are sufficiently differ-
ent. We do so by requiring that the points where the m paths end are pairwise
σ-independent.

Definition 9 Given a sequence of requests σ we say that the points s1 and s2

are σ-independent if d(s1, s2) ≥ Ŵσ(s1) + Ŵσ(s2). Otherwise, the points are
called σ-dependent.
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The theorem says that if A is competitive against the optimal path plus m

such adversaries, then algorithm Online is competitive against one adversary
starting also in O, i.e., against the length of the optimal path.

Theorem 11 Let A be an algorithm for some metrical service system S, with
origin O, on which the work function and λ-Wfa are well-defined. If there exist
constants c and m ≥ 2 such that for any sequence σ and any set {s1, . . . , sm}
of m pairwise σ-independent points

A(O, σ) ≤ c Opt(O, σ) + c
m∑

h=1

Ŵσ(sh), (5.3)

then Online(A, γ, λ) with γ = c(1−λ)(1−2λ)−1 is (2+5/4c)λ−2(1/2−5λ)1−m-
competitive for S, for every λ < 1/10.

If algorithm A satisfies (5.3) for m = 1 then A itself is 2c competitive for S.
Restricting m to be at least 2 in the theorem allowed us to prove a slightly
better ratio of Online. In Section 5.3 we show that for the general two-server
problem the balance algorithm is competitive against the optimal path plus
3 such adversaries. A competitive algorithm follows then directly from the
theorem.

As a preliminary to the proof we define functions and prove some of their
properties. Given any function f : X → R, defined on some metric space X,
define, for i ≥ 1 and 0 < β < 1, the functions Gi

f : Xi → R as

Gi
f (x1, . . . , xi) = f(xi)−min

h<i
{ f(xh) + βd(xh, xi) }, (5.4)

and for n ≥ 1 and 0 < α < 1/2 the functions Fn
f : Xn → R as

Fn
f (x1, . . . , xn) =

n∑
i=1

αi−1Gi
f (x1, . . . , xi). (5.5)

We denote Fn
f = min

x1,...,xn∈X
{Fn

f (x1, . . . , xn)}.

Lemma 6 For any two functions, f and g, and any two sequences, (x1, . . . , xn)
and (y1, . . . , yn) such that f(xi) ≥ g(yi) for all i ∈ {1, . . . , n} we have

Fn
f (x1, . . . , xn)− Fn

g (y1, . . . , yn) ≥

∑n
i=1

(
( αi−1 −

n∑
h=i+1

αh−1 )( f(xi)− g(yi) )− βd(xi, yi)
n∑

h=i

αh−1

)
.

Proof. Suppose that hi < i is such that

Gi
g(y1, . . . , yi) = g(yi)− (g(yhi

) + βd(yi, yhi
)).
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Clearly,

Gi
f (x1, . . . , xi) = f(xi)−min

h<i
{f(xh) + βd(xi, xh)}

≥ f(xi)− (f(xhi) + βd(xi, xhi)).

Hence, using the triangle inequality to bound −βd(xi, xhi),

Gi
f (x1, . . . , xi)−Gi

g(y1, . . . , yi)

≥ f(xi)− g(yi)− (f(xhi
)− g(yhi

))− βd(xi, xhi
) + βd(yi, yhi

)

≥ f(xi)− g(yi)− (f(xhi
)− g(yhi

))− βd(xi, yi)− βd(xhi
, yhi

).

Thus,

Fn
f (x1, . . . , xn)− Fn

g (y1, . . . , yn)

=
∑n

i=1 αi−1(Gi
f (x1, . . . , xi)−Gi

g(y1, . . . , yi))

≥
∑n

i=1 αi−1(( f(xi)− g(yi) − βd(xi, yi))− (f(xhi
)− g(yhi

))− βd(xhi
, yhi

))

≥
∑n

i=1( ( αi−1 −
n∑

h=i+1

αh−1 )( f(xi)− g(yi) )− βd(xi, yi)
n∑

h=i

αh−1 ).

�

Lemma 7 Assume that Fn
f = Fn

f (x1, . . . , xn). Any pair p, q ∈ {1, . . . , n} sat-
isfies

|f(xp)− f(xq)| ≤ (1− 2α)−1βd(xp, xq).

Proof. Assume without loss of generality that f(xp) ≥ f(xq). Since the global
minimum of Fn

f is attained in (x1, . . . , xn) we must have that Fn
f (x1, . . . , xn)−

Fn
f (x1, . . . , xp−1, xq, xp+1, . . . , xn) ≤ 0. Now we apply Lemma 6 with g ≡ f ,

yp = xq and yi = xi for i 6= p.

f(xp)− f(xq) ≤ (
n∑

h=p

αh−1)( αp−1 −
n∑

h=p+1

αh−1 )−1βd(xp, xq)

≤ (
∞∑

h=p

αh−1)( αp−1 −
∞∑

h=p+1

αh−1 )−1βd(xp, xq)

= (αp−1/(1− α))(αp−1 − αp/(1− α))−1βd(xp, xq)

= ( 1− 2α )−1βd(xp, xq).

�
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Preliminary to the proof of Theorem 11 we derive an inequality which will be
used several times. In the proof we choose β = (1−2α)/5 implying that for any
α < 1/2 we have α(1+β) ≤ (1−α)(1−β) and for any n ≥ 1 and any 1 ≤ i ≤ n:

αi−1 −
n∑

h=i+1

αh−1 − β
n∑

h=i

αh−1

= (1− β)αi−1 − (1 + β)
n∑

h=i+1

αh−1

= (1− β)αi−1 − (1 + β)(αi − αn)/(1− α)

≥ (1− β)αi−1 − (1− β)(1− α)/α · (αi − αn)/(1− α)

= (1− β)αn−1.

(5.6)

Proof of Theorem 11. For each j ≥ 1 we define for n ≥ 1 the functions Gi
j , for

i = 1 . . . , n, and Fn
j , as in (5.4) and (5.5) by choosing f(s) = WO;σ1,...,σj−1(s).

We define σ0 = ∅.
From now on we let β = (1− 2α)/5 and α = 1/2− 5λ, whence β = 2λ. We

also assume 0 < λ < 1/10 implying 0 < α < 1/2.
First we show that Fn

j is a lower bound on the length of the optimal path
serving σ1, . . . , σj−1 for every j ∈ {1, . . . , J + 1} and any n ≥ 1. From the
definition, G1

j (s) = Wσ1,...,σj−1(s) and Gi
j(s, . . . , s) = 0, for all i > 1, whence

Fn
j (s, . . . , s) = WO;σ1,...,σj−1(s) for any j and n ≥ 1. In particular this implies

that

Fn
j ≤ min

s∈M
Fn

j (s, . . . , s) = min
s∈M

WO;σ1,...,σj−1(s) = Opt(O, σ1, . . . , σj−1). (5.7)

Also, Fn
1 (O,O, . . . , O) = WO;∅(O) = 0, for any n ≥ 1. In fact Fn

1 = 0, for every
n ≥ 1, which follows from Lemma 6 applied to any series (s1, . . . , sn):

Fn
1 (s1, . . . , sn)− Fn

1 (O, . . . , O)

≥
n∑

i=1

(( αi−1 −
n∑

h=i+1

αh−1 )( WO;∅(si)−WO;∅(O) )− βd(si, O)
n∑

h=i

αh−1)

=
n∑

i=1

( αi−1 −
n∑

h=i+1

αh−1 − β
n∑

h=i

αh−1 )d(si, O)

≥(5.6)
n∑

i=1

(1− β)αn−1d(si, O) ≥ 0.

Hence,

Fn
1 = Fn

1 (O, . . . , O) = 0. (5.8)

First we show that Theorem 11 follows from the next claim. Allowing σJ to be
empty, we assume, without loss of generality, that phase J ends with an A-move.
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Claim. For each phase j ≤ J − 1 we have Fm
j+1 −Fm

j ≥ λαm−1Opt(Oj , σj).

Let Cj be the cost of the A-moves in phase j. By definition of algorithm
Online, Cj ≤ γOpt(Oj , σj). Let O′

j denote the position of the server after the
last A-move in phase j. Clearly,

WO;σ1,...,σj (O
′
j)−WO;σ1,...,σj−1(Oj) ≤ 2Opt(Oj , σj) + d(Oj , O

′
j)

≤ (2 + γ)Opt(Oj , σj).

Since the last move in phase j, the move from O′
j to Oj+1, is a λ-Wfa-move,

we use (5.1) to obtain

WO;σ1...,σj (Oj+1) ≤ WO;σ1,...,σj (O
′
j)− λd(O′

j , Oj+1).

Therefore,∑J−1
j=1 d(O′

j , Oj+1)

≤ 1/λ
∑J−1

j=1 (WO;σ1,...,σj (O
′
j)−WO;σ1...,σj (Oj+1))

≤ 1/λ(2 + γ)
∑J−1

j=1 Opt(Oj , σj) +

1/λ
∑J−1

j=1 (WO;σ1,...,σj−1(Oj)−WO;σ1...,σj
(Oj+1))

= 1/λ(2 + γ)
∑J−1

j=1 Opt(Oj , σj) + 1/λ(WO;∅(O)−WO;σ1...,σJ−1(OJ))

≤ 1/λ(2 + γ)
∑J−1

j=1 Opt(Oj , σj).

Hence,

Onlineσ ≤ (2/λ + γ/λ + γ)
J−1∑
j=1

Opt(Oj , σj) + Cj .

Applying the claim together with (5.7) and (5.8) yields

Onlineσ ≤ (2/λ + γ/λ + γ)λ−1α1−m
J−1∑
j=1

(Fm
j+1 −Fm

j ) + Cj

= (2/λ + γ/λ + γ)λ−1α1−m(Fm
J −Fm

1 ) + Cj (5.9)

≤ (2/λ + γ/λ + γ)λ−1α1−mOpt(O, σ) + Cj .

Now we bound Cj . Let s be the endpoint of an optimal path starting in O and
serving σ.

(1− λ)d(O, OJ) ≤ WO;σ1,...,σJ−1(OJ)− λd(O,OJ)

≤(5.2) WO;σ1,...,σJ−1(s) + λd(OJ , s)− λd(O,OJ)

≤ WO;σ1,...,σJ−1(s) + λd(O, s)

≤ Opt(O, σ) + λOpt(O, σ).
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Hence,

Cj ≤ γOpt(OJ , σJ)

≤ γ(d(O,OJ) + Opt(O, σ))

≤ γ((1 + λ)/(1− λ) + 1)Opt(O, σ).

Together with the choices γ = c(1 − λ)/(1 − 2λ) and 0 < λ < 1/10 and m ≥ 2
this yields

Onlineσ

≤ ((2 + γ + γλ)λ−2(1/2− 5λ)1−m + γ((1 + λ)/(1− λ) + 1))Opt(O, σ)

≤ ((2 + 99/80c)λ−2(1/2− 5λ)1−m + 5/2c)Opt(O, σ)

< ((2 + 5/4c)λ−2(1/2− 5λ)1−mOpt(O, σ).

Proof of Claim. Consider a specific phase j, 1 ≤ j ≤ J − 1. Given a point
s ∈ M we define s− as the starting point at the beginning of phase j of the
part of the optimal path, serving σ1, . . . , σj and ending in s; i.e., Ws−;σj

(s) is
the length of the part of the optimal path ending in s which is traversed in
phase j. By these definitions WO;σ1,...,σj

(s) = WO;σ1,...,σj−1(s
−) + Ws−;σj

(s).
Clearly, Ws−;σj

(s) ≥ d(s, s−). Moreover, remembering the definition of Ŵ , we
have Ŵσj (s) ≤ Ws−;σj

(s). In the remainder of the proof we simplify notation
by abbreviating WO;σ1,...,σj

(s) to W≤j(s) and Ws−;σj
(s) and Ŵσj

(s) to, respec-
tively, Wj(s) and Ŵj(s). Assume Fm

j+1 = Fm
j+1(t1, . . . , tm), i.e. the minimum

at the end of phase j is attained in the points (t1, . . . , tm). We distinguish two
cases.

Case 1. The points t1, . . . , tm are pairwise σj-independent. Condition (5.3)
together with the definition of Online implies that for any j ≤ J − 1 we have
γOpt(Oj , σj) ≤ Cj ≤ cOpt(Oj , σj) + c

∑m
i=1 Ŵj(ti), whence

∑m
i=1 Wj(ti) ≥∑m

i=1 Ŵj(ti) ≥ (γ/c − 1)Opt(Oj , σj). We apply Lemma 6 with f ≡ W≤j and
with g ≡ W≤j−1.

Fm
j+1 −Fm

j

≥ Fm
j+1(t1, . . . , tm)− Fm

j (t−1 , . . . , t−m)

≥
m∑

i=1

(( αi−1 −
m∑

h=i+1

αh−1 )( W≤j(ti)−W≤j−1(t−i ) )− βd(ti, t−i )
m∑

h=i

αh−1)

≥
m∑

i=1

( αi−1 −
m∑

h=i+1

αh−1 − β
m∑

h=i

αh−1)Wj(ti)
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≥(5.6) αm−1(1− β)
m∑

i=1

Wj(ti)

≥ αm−1(1− β)(γ/c− 1)Opt(Oj , σj)

= αm−1λOpt(Oj , σj).

Case 2. There are points tp and tq (p 6= q ∈ {1, . . . ,m}) that are σj-dependent,
i.e. d(tp, tq) < Ŵj(tp) + Ŵj(tq) ≤ Wj(tp) + Wj(tq). Assume without loss of
generality that Wj(tp) ≥ Wj(tq). Define the series (u1, . . . , um) by ui = t−i for
i 6= q and uq = t−p . Lemma 6 implies

Fm
j+1(t1, . . . , tm)− Fm

j (u1, . . . , um) ≥
m∑

i=1

Hi, (5.10)

with for any i 6= q,

Hi = (αi−1 −
m∑

h=i+1

αh−1 − β
m∑

h=i

αh−1)Wj(ti)

≥(5.6) αm−1(1− β)Wj(ti) ≥ 0

and

Hq = ( αq−1 −
m∑

h=q+1

αh−1 )( W≤j(tq)−W≤j−1(t−p ) )− βd(tq, t−p )
m∑

h=q

αh−1.

To see that Hq ≥ 0, notice that by Lemma 7

W≤j(tq)−W≤j−1(t−p ) = (W≤j(tp)−W≤j−1(t−p )) + (W≤j(tq)−W≤j(tp))

≥ Wj(tp)− (1− 2α)−1βd(tp, tq)

> Wj(tp)− 2(1− 2α)−1βWj(tp).

Also notice that

d(tq, t−p ) ≤ d(tq, tp) + d(tp, t−p ) ≤ 2Wj(tp) + Wj(tp) = 3Wj(tp).

Hence, since we have chosen β = (1− 2α)/5,

Hq / Wj(tp) ≥ ( αq−1 −
m∑

h=q+1

αh−1 )(1− 2(1− 2α)−1β) − 3β
m∑

h=q

αh−1

= (αq−1 −
m∑

h=q+1

αh−1 )3/5− 3(1− 2α)/5(αq−1 +
m∑

h=q+1

αh−1)

= 6/5(α− 1)
m∑

h=q+1

αh−1 + 6/5αq = 6/5αm ≥ 0.
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In the series (u1, . . . , um) the point t−p appears at least twice, say ua = t−p and
ub = t−p , with a < b. By definition

Gb
j(u1, . . . , ub) ≥ W≤j−1(ub)− {W≤j−1(ua) + βd(ua, ub)} = 0. (5.11)

Next we define series (v1, . . . , vm−1) with vi = ui for i = 1, . . . , b − 1. We
distinguish two cases in defining vb, . . . , vm−1. If

∑m
i=b+1 Gi

j(u1, . . . , ui) ≤ 0 then
vi = ui+1 for i = b, . . . ,m− 1. Thus, Gi

j(v1, . . . , vi) = Gi+1
j (u1, . . . , ui, ui+1) for

i = b, . . . ,m− 1, and, using (5.11), we have

Fm
j (u1, . . . , um)− Fm−1

j (v1, . . . , vm−1) ≥ (α− 1)
m∑

i=b+1

αi−1Gi
j(u1, . . . , ui) ≥ 0.

If
∑m

i=b+1 Gi
j(u1, . . . , ui) ≥ 0 then define vi = argmin{W≤j−1(uh)|1 ≤ h ≤ b−1}

for i = b, . . . ,m−1, implying that Gi
j(v1, . . . , vi) = 0 for i = b, . . . ,m−1. Again

Fm
j (u1, . . . , um)− Fm−1

j (v1, . . . , vm−1)

=
m∑

i=b

αi−1Gi
j(u1, . . . , ui)−

m−1∑
i=b

αi−1Gi
j(v1, . . . , vi) ≥ 0.

Now choose vm = Oj . Then

Gm
j (v1, . . . , vm) = W≤j−1(Oj)− min

i≤m−1
{ W≤j−1(vi) + βd(vi, Oj)}.

Assume that the minimum in this expression is attained for the point vi = t−` .
(Notice that the multiset {v1, . . . , vm−1} is a subset of the multiset {t−1 , . . . , t−m}.)
Again we apply (5.2) to obtain, W≤j−1(t−` ) ≥ W≤j−1(Oj)−λd(Oj , t

−
` ). Another

observation is Opt(Oj , σj) ≤ d(Oj , t
−
` ) + Wj(t`). Together they yield,

Fm−1
j (v1, . . . , vm−1)− Fm

j (v1, . . . , vm)

= −αm−1Gm
j (v1, . . . , vm)

= −αm−1
(
W≤j−1(Oj)−W≤j−1(t−` )− βd(t−` , Oj)

)
≥ αm−1(β − λ)d(t−` , Oj)

≥ αm−1(β − λ)(Opt(Oj , σj)−Wj(t`)).

(5.12)
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Hence,

Fm
j+1 = Fm

j+1(t1, . . . , tm)

≥(5.10) Fm
j (u1, . . . , um) +

m∑
i=1

Hi

≥ Fm−1
j (v1, . . . , vm−1) + H`

≥(5.12) Fm
j (v1, . . . , vm) + αm−1(β − λ)(Opt(Oj , σj)−Wj(t`)) + H`

≥ Fm
j + αm−1λ(Opt(Oj , σj)−Wj(t`)) + H`

≥(5.2) Fm
j + αm−1λ(Opt(Oj , σj)−Wj(t`)) + αm−1(1− β)Wj(t`)

= Fm
j + αm−1(1− β − λ)Wj(t`) + αm−1λOpt(Oj , σj)

≥ Fm
j + αm−1λOpt(Oj , σj).

5.3 The general two-server problem

In the general two-server problem we are given a server, to whom we will address
as the x-server, moving in a metric space X, starting from point x0 ∈ X and a
server, the y-server, moving in a metric space Y, starting in y0 ∈ Y. Requests
(x, y) ∈ X × Y are presented on-line one by one and are served by moving one
of the servers to the corresponding point in its metric space. The objective is to
minimize the sum of the distances travelled by the two servers. This problem
can easily be modelled as a metrical service system: There is one server moving
in the product space X × Y and any pair (x, y) ∈ X × Y defines a request
r = {{x}×Y} ∪ {X×{y}}. For any two points (x1, y1) and (x2, y2) in X × Y
we define d((x1, y1), (x2, y2)) = dx(x1, x2) + dy(y1, y2), where dx and dy are the
distance function of the metric spaces X and Y.

Lemma 8 The work function and λ-WFA are well-defined for the general two-
server problem.

Proof. Let σ = (x0, y0), . . . , (xn, yn) be a request sequence for some general
two-server problem, where we assume, without loss of generality, that the first
request is given in the origin O = (x0, y0). Consider an arbitrary path serving
σ and ending in some point (x, y). If at some request both servers move on
this path then the move of the server that does not serve the request can be
postponed to the next request at no extra cost. Hence, there exists a path
ending in (x, y) of at most the same length on which only one server is moved
at each request, possibly with the exception of the last request. Since the
number of paths that move only one server with each request is 2n there exists
a path ending in (x, y) that has minimal length, whence the work function is
well-defined. More precisely, the endpoint of any such path is in the set S =
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{xn} × {y0, . . . , yn−1} ∪ {x0, . . . , xn−1} × {yn}. Hence WO,σ(x, y) = WO,σ(s) +
d(s, (x, y)) for some s ∈ S implying Supp(WO,σ) ⊆ S. Since S has only a finite
number (2n− 2) of elements the generalized work function algorithm λ-WFA is
well-defined. �

Thus, a part of the conditions of Theorem 11 is satisfied. We are still to define
an algorithm A that satisfies condition (5.3). As such an algorithm we have
chosen the simple Balance algorithm, which keeps track of the costs made by
the x- and y-server and tries to balance their costs. The Balance algorithm is
not competitive for our problem as it is known not to be competitive even for the
classical two-server problem. However, we will show that it satisfies condition
(5.3) with c = 4 and m = 3.

We define Balance starting in (x0, y0) and serving the request sequence
σ = (x1, y1), (x2, y2), . . .. Let Sx

j and Sy
j be the total costs made by, respectively,

the x- and the y-server after the j-th request is served and let Sj := Sx
j + Sy

j .
We denote the positions of the servers after serving request (xj , yj) by (x̂j , ŷj).

Balance

If Sx
j + d(x̂j , xj+1) ≤ Sy

j + d(ŷj , yj+1), then move the x-server to
request xj+1. Else move the y-server to request yj+1.

The following lemmas give an upper bound on the cost of Balance. We denote
by P x

ij , (0 ≤ i < j), the length of the path xi, xi+1, . . . , xj . We denote P y
ij

(0 ≤ i < j) in a similar way.

Lemma 9 If Balance is applied to the sequence (x1, y1), . . . , (xj , yj) starting
from (x0, y0), then Sj ≤ 2 min{P x

0j , P
y
0j} ∀j ≥ 0.

Proof. Clearly, Sx
j ≤ P x

0j and Sy
j ≤ P y

0j . Let request (xi, yi), be the last request
served by the x-server. Then, by definition, Sx

j = Sx
i ≤ Sy

i−1 + d(ŷi−1, yi) ≤
P y

0i ≤ P y
0j . Hence, Sx

j ≤ min{P x
0j , P

y
0j}. Similarly it is shown that Sy

j ≤
min{P x

0j , P
y
0j}.

�

Let Opt(O, σ) denote the cost of an optimal path serving the sequence σ and
starting from (x0, y0).

Lemma 10 If Balance is applied to the sequence σ = (x1, y1), . . . , (xj , yj)
starting from (x0, y0), then Sj ≤ 2Opt(O, σ) + 4 min{P x

1j , P
y
1j}.

Proof. If the optimal path uses only one server then the lemma follows im-
mediately from Lemma 9 since Opt(O, σ) = min{P x

0j , P
y
0j} ≥ Sj/2. So as-

sume the optimal path uses both servers and assume without loss of generality
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P x
1j ≤ P y

1j . Since the x-server of the optimal path serves at least one request
Opt(O, σ) ≥ P x

01 − P x
1j . Again using Lemma 9 yields Sj ≤ 2P x

01 + 2P x
1j ≤

2Opt(O, σ) + 4P x
1j = 2Opt(O, σ) + 4 min{P x

1j , P
y
1j}. �

Lemma 11 If s1, s2 and s3 are pairwise σ-independent points with respect to
the request sequence σ = (x1, y1), . . . , (xj , yj), then Ŵσ(s1)+Ŵσ(s2)+Ŵσ(s3) ≥
min{P x

1j , P
y
1j}.

Proof. Denote by Ti (i = 1, 2, 3) the path of length Ŵσ(si) that serves σ and
ends in si. Since Ŵσ(s1)+Ŵσ(s2) ≤ d(s1, s2) it is impossible that there are two
requests such that one request is served by the x-servers of T1 and T2 and the
other is served by the y-servers of T1 and T2. The same holds of course for the
other two pairs T1, T3 and T2, T3. So assume without loss of generality that the
x-server of T1 shares no request with the x-server of T2 and shares no request
with the x-server of T3. If the y-server of T1 serves all requests then the lemma
obviously holds. So assume request (xi, yi) is served by the x-server of T1. Then
T2 and T3 must serve point yi. But this means that the x-servers of T2 and T3

do not share a request. Hence, the three x-servers share no request. Thus, each
request is served by at least two y-servers and for each two consecutive requests
there is a y-server that serves both requests. �

Combining Lemma 10, Lemma 11 and Theorem 11 yields the next result.

Corollary 4 Algorithm Online(Balance, γ, λ) with γ = 4(1− λ)/(1− 2λ) is
7/(λ(1/2−5λ))2-competitive for any instance of the general two-server problem,
for any 0 < λ < 1/10.

The ratio is minimized by λ = 1/20, yielding a competitive ratio of 44,800.

5.4 Postlude

Unfortunately, Theorem 11 does not provide a competitive algorithm for the
general k-server problem for k ≥ 3 just as easily as for k = 2. The question
whether a competitive algorithm exists for k ≥ 3 remains unresolved. We
believe that the generalized work function is competitive for the general k-server
problem for any fixed k ≥ 1 and λ < 1.

It is not hard to prove that the generalized work function algorithm for the
general two-server problem satisfies Lemma 10 up to a constant factor. This does
not imply that the generalized work function algorithm is competitive for the
general two-server problem, since the work function in this part of the Online
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algorithm is defined for the requests within the phase. This is different from
the work function used in the last move of Online in a phase, which is defined
for the complete sequence. It remains open to prove competitiveness of the
generalized work function algorithm. We notice that our proof does not use any
information about the work function that is specific for the general two-server
problem. To make this step it seems essential to have a better understanding
of the structure of the work function of the general two-server problem.

A problem to which Theorem 11 applies directly is the k-client problem.
In this metrical service system the set of possible requests consists of all k-
element subsets of the metric space. Burley [18] showed that the generalized
work function algorithm is O(k2k)-competitive when λ is chosen appropriately
for each k. Our proof has many similarities with the proof of Burley. Notice
that if we choose m = k + 1 in Theorem 11 the condition of this theorem is
satisfied for any algorithm A since for any sequence σ at most k pairwise σ-
independent points exist. Therefore we can restrict the phases in Online to
the λ-Wfa-moves. This direct application of the theorem only shows that λ-
Wfa is O(k22k)-competitive for appropriate λ. However, adjusting the proof of
Theorem 11 to the k-client problem gives exactly Burley’s proof.

Condition (5.3) of Theorem 11 is imposed on an algorithm A. It would be
more interesting to give a (non-trivial) sufficient condition for a metrical service
system to have a finite competitive ratio. Even more interesting would it be to
know under what condition on the system λ-Wfa is competitive.

We conclude with the NP -hardness proof of the off-line version of the gen-
eral k-server problem. The proof is straightforward from the Exact 3-cover

problem. We first remind the reader to the definition of the latter problem. For
NP -completeness of this problem we refer to [50].

Exact 3-cover:
An instance is given by a set Z with |Z| = 3q and a collection C of 3-element
subsets of Z. The question is whether C contains an exact cover for Z, i.e. a
subcollection C ′ ⊆ C such that every element of Z occurs in exactly one member
of C ′.

Theorem 12 The general k-server problem is NP -hard.

Proof. Take any instance I of the exact 3-cover problem (with the notation
as defined above) we define an instance I ′ of the general k-server problem. For
each 3-element subset we define a metric space with its server. The |C| metric
spaces are identical and consist of an origin, one point at distance 1 from the
origin, and one point at distance q + 1 from the origin. For each element of Z

we define one request, i.e. a |C|-tuple of points, one in each of the |C| metric
spaces. In each metric space the three requests that correspond to the 3-element



75

subset are given at the point at distance 1. The remaining 3q − 3 requests are
given in the point at distance q + 1. Instance I ′ has a solution with value of at
most q if and only if I has an exact cover for Z. �
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(R. Möhring and R. Raman, eds.), Lecture Notes in Computer Science, vol.
2461, Springer, 2002, pp. 872–883.

[84] J.N. Tsitsiklis, Special cases of traveling salesman and repairman problems
with time windows, Networks 22 (1992), 263–282.

[85] V.V. Vazirani, Approximation algorithms, Springer, Berlin, 2001.

[86] A.P.A. Vestjens, On-line machine scheduling, Ph.D. thesis, Department of
Mathematics and Computing Science, Technische Universiteit Eindhoven,
Eindhoven, the Netherlands, 1997.

[87] I.R. Webb, Depth-first solutions for the deliveryman problem on tree-like
networks: an evaluations using a permutation model, Transportation Sci-
ence 30 (1996), 134–147.

[88] B.Y. Wu, Polynomial time algorithms for some minimum latency problems,
Information Processing Letters 75 (2000), 225–229.



Samenvatting

Een klassiek probleem op het gebied van de combinatorische optimalisering is
het handelsreizigersprobleem. Stel dat een handelsreiziger een lijst met klanten
heeft die hij wil bezoeken om zijn handelswaar te verkopen, alvorens weer naar
huis terug te keren. Het probleem dat deze persoon zichzelf stelt is om de volg-
orde van bezoek zodanig te kiezen dat de totaal afgelegde afstand op zijn reis
minimaal is. In theorie modelleren we dit probleem als het vinden van de kort-
ste tour door een gegeven verzameling punten met hun onderlinge afstanden.
Optimaliseringsproblemen van deze vorm komen in de praktijk op grote schaal
voor, bijvoorbeeld in de transportwereld, maar ook bij de assemblage van pro-
dukten. Het is daarom ook niet verwonderlijk dat er binnen de combinatorische
optimalisering veel onderzoek is gedaan naar het handelsreizigersprobleem, welk
een eenvoudig wiskundig model is voor problemen die in de praktijk vaak veel
complexer zijn. Kennis van elementaire wiskundige modellen is van essentieel
belang om overweg te kunnen met de veel complexere modellen die nodig zijn
voor problemen uit de praktijk.

In dit proefschrift behandelen we een aantal elementaire problemen uit twee
gebieden binnen de combinatorische optimalisering: het gebied van routerings-
problemen en het gebied van machine-volgordeproblemen. Het handelsreizigers-
probleem is een voorbeeld van een routeringsprobleem. Bij het andere gebied
kunnen we denken aan een machine die een reeks opdrachten één voor één
moet uitvoeren. Van elke opdracht veronderstellen we dat het moment waarop
deze voor bewerking beschikbaar komt en de bewerkingsduur bekend is. Het
moment waarop de bewerking van een opdracht voltooid is noemen we de com-
pleteringstijd. Het probleem is om de volgorde van bewerking te bepalen die de
som van alle completeringstijden minimaliseert.

Indien alle informatie bekend is bij het zoeken naar een oplossing, zoals bij de
twee geschetste problemen, noemen we het probleem statisch. Daartegenover is
het voor veel problemen reëel dat de oplossing stap voor stap wordt gevormd en
dat informatie zoals bedieningsduur of de lijst van klanten, tijdens het vormen
van de oplossing geleidelijk bekend wordt. In dat geval noemen we het probleem
dynamisch.
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Voor de meeste statische problemen geldt dat een beetje vernuft en een
eindeloos geduld voldoende zijn voor het vinden van een optimale oplossing.
Aangezien men dit geduld in de praktijk vaak niet heeft, beperkt men zich in
de theorie vaak tot zogenaamde polynomiale algoritmen. Dit zijn stap voor stap
gedefinieerde oplossingsmethoden waarin het aantal stappen relatief klein is.
Met deze beperking is het een stuk moeilijker om een algoritme te vinden welke
gegarandeerd altijd een optimale oplossing vindt. Voor dynamische problemen
is het vaak zelfs onmogelijk om altijd een optimale oplossing te vinden. In
dit proefschrift richten we ons op benaderingsgaranties. Een algoritme heeft
een benaderingsgarantie α als het voor iedere, willekeurig gekozen, instantie
een oplossing geeft waarvan dat waarde niet meer dan een constante α maal
de optimale waarde is. We doen zowel positieve als negatieve uitspraken en
noemen hier de drie belangrijkste resultaten.

Het traveling repairman probleem is een variant van het handelsreizigers-
probleem waarbij de doelstelling niet het minimaliseren van de reistijd van de
handelsreiziger is, maar het minimaliseren van de gemiddelde aankomsttijd bij
de punten. Het is bekend dat het bestaan van een optimaal (α = 1) polyno-
miaal algoritme uiterst onwaarschijnlijk is. We bewijzen hier dat dit ook geldt
voor een eenvoudigde versie van het probleem waarin de afstanden tussen de
punten een eenvoudige structuur heben in de vorm van een boom-graaf. Een
gelijke negatieve stelling geven we ook voor een machine-volgordeprobleem op
ongerelateerde parallelle machines. In dit model zijn er verscheidene machines
beschikbaar voor het bewerken van de opdracht. We mogen nu de bewerking
meerdere malen onderbreken en door verscheidene machines na elkaar uitvoeren
totdat de opdracht is voltooid. De bewerkingssnelheid hangt hierbij af van de
opdracht en de machine. Wij laten dus zien dan het toestaan van preemptie
het vinden van een optimale oplossing moeilijker maakt. Een positieve stelling
geven we voor het twee-server probleem. In dit dynamische probleem krijgen
twee servers steeds elk een punt te zien waarvan er slechts één door de betref-
fende server bezocht moet worden, voordat het volgende paar bekend wordt.
Het doel is het minimaliseren van de gezamelijk afgelegde afstand. We geven
voor dit probleem een algoritme met constante benaderingsgarantie α. Vooraf-
gaand geven we een algemener resultaat, dat voor een grote klasse van on-line
routeringsproblemen een voldoende (en noodzakelijke) voorwaarde geeft voor
het bestaan van algoritmen met constante-factor benaderingsgaranties.
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