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PREFACE 

The application of the theory of matrices and eigenvalues to combina

torics is certainly not new. In a certain sense the study of the eigenvalues 

of the adjacency matrix of a graph even became a subject of its own, see for 

instance [BS], [C11], [C12], [H14] and [S2]. Also in the theory of designs, 

matrix and eigenvalue methods have often been used successfully; see for 

instance [C6], [C9], [H17] and [R3]. In the present monograph the starting 

point is a new theorem concerning the eigenvalues of partitioned matrices. 

Applications of this theorem and some known matrix theorems to matrices 

associated to graphs or designs lead to new results, and new proofs of 

known results. These concern inequalities of various types, including con

clusions for the case of equality. In addition we obtain guiding-principles 

for constructing strongly regular graphs or 2-designs. Let us give some 

more details. 

Our theorem (Theorem 1.2.3) about eigenvalues and partitionings of 

matrices, which was announced in [Hl], reads as follows: 

THEOREM. Let A be a complete he'f'l'flitian n x n matri:c, pa.I'titioned into m2 

bZoak matrices, suah that ail diagonal bZoak matrices are square. Let B be 

the m x m matrix whose i,j-th entry equals the average row sum of the i,j-th 

block matrix of A for i, j = 1, •• .,m. Then the eigenvalues Al (A) <:: ... <:: An (Al 

of A and the eigenvalues A1 (B) <:: ••• <:: Am(B) of B satisfy 

Ai {A) <: Ai (B) <: An-m+i (A) for i = 1, ••• ,m • 

Moreover, if for some integer k, O s k s m, A1 (A) = Ai(B) for i = 1, ••• ,k 

and Ai(B) = >.n-m+i(A) for i = k+l, ••• ,m, then all the block matrices of A 

have constant row and column sums. 

The weaker inequalities Al (A) <:: >.i(B) <: An(A) were already observed by 

c.c. Sims (unpublished), and have been applied successfully by HESTENES & 

HIGMAN [H10], PAYNE [P4], [P6] and others. They are usually applied under 

the name Higman-Sims technique. Many proofs by means of this Higman-Sims 

technique can be shortened by use of our generalization. But, what is more 

important, our theorem leads to new results, which we shall indicate below. 
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Suppose G is a graph on n vertices, whose (0,1)-adjacency matrix has 

eigenvalues A1 (G) ~ ••• ~ An(G). DELSARTE [D1] proved that, for strongly 

regular G, the size of any coclique {independent set) cannot be larger than 

- n An ~G) I {A1 {G) - An (G)). A.J. Hoffman (unpublished) proved that this bound 

holds for any regular graph G. Using the above theorem we prove that an 

upperbound for the size of a coclique in any graph G is provided by 

- n Al (G) A (G} / Cd
2
i - Al (G) A (G}) , n m n n 

where dmin denotes the smallest degree in G. This generalizes Hoffman's 

bound, since in case of regularity A1 (G) = dmin holds. More generally, by 

use of the same methods we find bounds for the size of an induced subgraph 

of G in terms of the average degree of the subgraph (Theorem 2 .1 • 2) • Apart 

from the inequalities of Delsarte and Hoffman we also find inequalities of 

Bumiller, De Clerck and Payne as corollaries of our result. 

By applying the generalization of the Higman-Sims technique {with 

m == 4) to the adjacency matrix of the incidence graph of a design, we obtain 

bounds for the sizes of a subdesign in terms of the singular values of the 

incidence matrix (Theorem 3.1.1). For nice designs, such as 2-designs and 

partial geometries, this result becomes easy to apply, since then the sin

gular values are expressible in the design parameters (for symmetric 2-

designs the inequality also appeared in [H4]}. Thanks to the second part of 

our theorem certain conclusions may be drawn easily for the case that the 

bounds are attained, for the graph case as well as for the design case. 

We also prove results concerning the intersection numbers of designs, 

such as the inequalities of AGRAWAL [Al] (Theorem 3.2.1) and the results of 

BEKER & HAEMERS [B2] about 2 - (v,k,A) designs with an intersection number 

k - A (v - kl I Ck - 1). 

HOFFMAN [B13] proved that the chromatic number y (G) of a graph G 

satisfies y (G) ~ 1 - A1 (G) I An (G). To achieve this, Hoffman first proves a 

generalization of the inequalities of Araonszajn concerning eigenvalues of 

partitioned matrices. In Section 1.3 we give a new proof of these inequali

ties using our generalization of the Higman-Sims technique. In Section 2.2 

the application of these inequalities yields a generalization of Boffman's 

bound {Theorem 2.2.1). For non-trivial strongly regular graphs this leads 

to y (G} ~ max{l - A1 (G} I An (G) , 1 - An (G) / A2 (G}}. In Chapter 4 we use these 

bounds, and many other results from the previous chapters, in order to 

determine all 4-colourable strongly regular graphs. This chapter is also 
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meant to illustrate some applications of the results and techniques obtained 

in the first three chapters. 

Chapter 5 is in the same spirit, but rather independent from the other 

ones. The main result is the inequality of HAEMERS & ROOS [H3]: t :s; s 3 if 

s # 1 'for a generalized hexagon of order (s,t), together with some addition

al regularity for the case of equality. This is proved by rather elementary 

eigenvalue methods. The same technique applied to generalized quadrangles 

of order (s,t) yields the inequality of HIGMAN [B11]: t ~ s 2 if s # 1, the 

result of BOSE [B7] for the case of equality and a theorem of CAMERON, 

GOETHALS & SEIDEL [CS] about pseudo-geometric graphs. 

Using eigenvalue methods we obtain guiding-principles for the con

struction of designs and graphs. In Section 6 .1 we construct a 2 - ( 56, 12, 3) 

design, for which the framework is provided by Theorem 3.2.4. This design 

is embeddable in a symmetric 2 - ( 71, 15, 3) design. By modifying this design 

we obtain eight non-isomorphic 2 - (71,15,3) designs. All these designs seem 

to be new (the construction is also published in [B2]). In Section 6.2 some 

ideas for the construction of strongly regular graphs are described. We 

construct strongly regular graphs with parameter sets 
3 2 2 3n 2n+l 2n n n n (q +q +q+1,q +q,q-1,q+l) and (2 +2 , 2 +2 -1, 2 -2, 2 ) for prime power q 

and positive integer n. Strongly regular graphs with the first parameter 

set are known; however, our construction yields graphs which are not iso

morphic to the known ones. The second family seems to be new. Special at

tention is given to strongly regular graphs with parameter set (40,12,2,4). 

Several such graphs are constructed with the help of a computer. 

In the first appendix we recall some basic concepts and results from 

the theory of graphs and designs (including finite geometries). This appen

dix is meant for readers who are not familiar with the theory of designs 

and graphs. The second appendix exhibits explicitly some of the designs and 

graphs constructed earlier. 
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CHAPTER I 

MATRICES AND EIGENVALUES 

1.1. INTRODUCTION 

In this chapter we shall derive some results about eigenvalues of 

matrices. They provide the main tools for our investigations. We shall 

assume familiarity with the basic concepts and results from the theory of 

matrices and eigenvalues. Some general references are [M3], (Nl], (WS]. 

Let A be a square complex matrix of size n. The hermitian transpose 

of A will be denoted by A*. Suppose A has n (not necessarily distinct) 

real eigenvalues, which for instance is the case if A is hermitian (i.e. 

A = A*). Then we shall denote these eigenvalues by 

If denoted by subscripted variables, eigenvectors will always be ordered 

according to the ordering of their eigenvalues. Vectors are always column 

vectors. The linear span of a set of vectors u1, ••• ,un is denoted by 

< u1, ••• , un >. A basic result, which is important to our purposes, is 

Rayley's principle (see (Nl], [WS]). 

1.1.1. RESULT. Let A be a 'he:rwritian ma:t;r>i:c of size n. For some i, O s i s n, 

iet u1, ••• ,ui be an orthonormai set of eigenvectors of A for A1(A), ••• ,Ai(A). 

Then 

equaiity ho74s iff u is an eigenvector of A for Ai (A). 

* ii. A (A)~~ 
i+1 * u u 

equaiity ho74s iff u is an eigenvector of A for Ai+l(A). 

For the multiplicity of an eigenvalue we shall always take the geo

metric one, that is, 1:fe maximal number of linearly independent eigenvectors 
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(to be honest, this agreement is only of influence to the proof of the next 

lemma, because throughout the remainder of this monograph we shall only 

consider eigenvalues of diagonalizable matrices). Now we shall prove some 

easy and well known, but nevertheless useful lemmas. 

1.1. 2. LEMMA. Let M* and. N be aorrrp le;;; m
1 

x m2 matriaes. Put 

Then the foLZo!iJing al'e equivalent. 

i. A of 0 is an ei(Jenvalue of A of multipliaity f; 

11. -A of 0 is an ei(Jenvalue of A of muitipUcity f; 

iii. A. 2 .;.o is an ei(Jenvalue of MN of muitipUaity f; 

iv. A. 2 of O is an eigenvalue of NM of multiptiaity f. 

PROOF. 

1. (i) ..... (ii): let AU A.U for some matrix u of rank f. Write 

and define 

where Ui has mi rows for i • 1,2. Then NU2 = A.u1 and Mu1 = AU2• This implies 

AU = -;\U, Since rank u = rank u, the first equivalence is proved. 

2. {iii) ..... (iv): let MNU' = A.U' for some matrix u• of rank f. Then 

NM(NU') = A.NU', and rank NU' rank U', since 

rank A.U' = rank MNU' ::; rank NU' ::; rank u• , 

and ;\ 1' O. This proves the second equivalence. 

3. (i) ..... (iii): because 

2 ~NM OJ A "' ' 
0 MN 

this equivalence follows immediately from the previous steps. 

The singu"lal' values of a complex matrix N, are the positive eigen

values of 

D 
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[:. :J · 
By the above lemma we see that they are the same as the square roots of the 

' * non-zero eigenvalues of NN • 

1.1.3, LEMMA. Let 

be a comp'le:x: matri:x:. If A11 is non-singu'lar, and rank A11 • rank A, then 

~· For i "' 1,2, let ai j denote the j-th co1umn of Ai2• From 
* * * . I rank A= rank [A11 A21 J it follows 

-1 
for some vector u. But if A11 is non-singular, then u • A11 a 1,j. Hence 

-1 
a2,j = A21 A11 al,j' which proves the lemma. D 

The identity matrix of size n will be denoted by In or I. The matrix 

with all entries equal to one by J; a column vector of J is denoted by j; 

Jn is a square J of size n; the symbol © is used for the Kronecker product 

of matrices. 

As a last result in this section we observe that, if K := In © Jm' then 

1.2. INTERLACING OF EIGENVALUES 

Suppose A and B are square complex matrices of size n and m, respec

tively (m ~ n), having only real eigenvalues. If 



for all i = 1, ••• ,m, then we say that the eigenvalues of B interZaae the 

eigenvalues of A. If there exists an integer k, 0 s k s m, such that 

for i = 1, ••• ,k 

and 

then the interlacing will be called tight. 

7 

1.2.1. THEOREM. Let s be a aompZe:x: n x m matl'i:1; such that s*s = Im. Let A 

be a he:r:rm:itian matl'i3: of size n. Define B := s*AS, and Zet vl' •• .,vm be an 
orthonormal, set of eigenvectors of B. Then 

i. 

ii. 

iii. 

iv. 

the eigenvaZues of B intertaae the eigenvalues of A; 

if>.. (B) € {;\i(A), A +·(A)} for some i € {1, ••• ,m}, then thel'e 
i n-m i 

e:x:ists an eigenvector v of B for >.i(B), such that sv is an eigen-

vectol' of A for Ai(B); 

if, for some JI.€ {O, ••• ,m}, .Ai(A) = Ai(B) for aU i • l, ••• ,R., 

then svi is an eigenveatol' of A for .Ai(A), for i = 1, ••• ,J!.; 

if the intertacing is tight, then SB = AS. 

~· Let u1, ••• ,un be an orthonormal set of eigenvectors of A. For any i, 

1 $ i s m, take 

~i; 0 . 

Thus also 

This proves (i) • 

If .Ai(B) = >. 1 (A), then viand S~i are eigenvectors of Band A respectively 

for the eigenvalue Ai(B) = >.1 (A). This, together with the same result 

applied to - B and - A yields (ii) • 
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We shall prove (iii) by induction on I!.. If I!. = O, there is nothing to 

prove. Suppose I!. > o. We have 

* * vl!.S ASVI!. 

* * vl!.s svl!. 

On the other hand, SV R. E < SV 1 , ••• ,SV 1!.-l >'L, and by the induction hypothesis 

sv1, ••• ,svl!.-l are orthonormal eigenvectors of A for A1 (A), ••• ,Al!.-l(A). Now 

1.1.1.ii yields that svl!. is an eigenvector of A for Al!.(A). This proves 

(iii). 

Let the interlacing be tight. By applying (iii) to A with I!. = k and to -A 

with R. = m - k, we find that Sv 1, ••• ,svm is an orthonormal set of eigenvec

tors of A for A1 (B), ••• ,Am(B). Write V := [v1 ••• vm] and 

D := diag(Al(B), ••• ,Am(B)). Then ASV = SVD, and BV =VD. Hence 

ASV = SBV • 

Because V is non-singular, (iv) has now been proved. 

A direct consequence of the above theorem is the following theorem. 

This result is known under the name Ca.uohy inequalitie8, see [H7], [M2], 

[WS]. 

0 

1.2.2. THEOREM. Suppo8e 

ie a hermitian ma.tri:x:. 

i. The eigenvalueB of A
11 

interlaae the eigenvalues of A. 

ii. If the interlar:dng is tight, then A12 = o. 

~·Let m be the size of A11 • Defines :=[Im oJ*, and apply 1.2.1. 0 

Another consequence of 1.2.1 is the following result which was 

announced in [al] (see also [H2]). This result will often be used in the 

forthcoming sections. 
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1.2.3. THEOREM. Let A be a he:rmitian matri:x: partitioned as foUows 

suah that A. . is square for i = 1, ••• ,m. Let b. . be the averoge row swn of 
11 1J 

Aij' for i,j = 1, ••• ,m. Define them x m matri:x: B := (bij). 

i. 

ii. 

iii. 

PROOF. 

The eigenvalues of B interlace the eigenvalues of A. 

If the interlacing is tight, then Aij has constant row and colwnn 

sums for i,j = 1, ••. ,m. 

If,-for i,j = 1, ••• ,m, Aij has constant row and colwnn swns, then 

any eigenvalue of B is also an eigenvalue of A with not smaller 

a muZtipZicity. 

Let n. be the size of A ..• Define 
1 11 

1 1 0 0 0 0 

0 0 1 1 0 0 

-* 0 0 0 0 0 0 s := 

0 0 0 0 1 1 

nl n2 n m 

- -1 * -- 2 D := diag(n1, ••• ,nm)' and S := SD .Then SS= I and SS= D. We easily 

-~ see that (S AS)ij equals the sum of the entries of Aij" Hence 

-* - -2 B = S ASD • 

By 1.2.1.i we know that the eigenvalues of s*AS interlace the eigenvalues 

of A. But B has the same eigenvalues as s*AS, since 

* -1- - -1 -1 S AS = D S ASD = D BD • 

This proves (i). 
-1 

It is easily checked that AS = S(D BD) reflects that Aij has constant row 

sums. for all i,j = 1, ••• ,m. Hence 1.2.1.iv implies (ii). 
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-1 
On the other hand, if AS = SD BD and BO • l i (B) u for some matrix u and 

-1 -1 -1 
integer i, then A(SD U) = li (B)SD u, and rank u = rank SD u. This proves 

{iii). D 

As a special case of the above theorem we have that 

for i = 1, ••• ,m. These inequalities are well known and usually applied 

under the name Higman-Sims technique, see [H10], [P4]. We shall also use 

the name Higmans-Sims technique if we apply the more general result 1.2.3. 

Also 1.2.3.iii is well known, see for instance [C12], [H9] (note that this 

result remains valid for non-hermitian A). We see that 1.2.3.ii gives a 

sufficient, and that 1.2.3.iii gives a necessary condition for the block 

matrices of A to have constant. row and column sums. However, neither of 

these conditions is both necessary and sufficient. This is illustrated by 

the following partitioned matrices: 

For both A and A' the eigenvalues are 2,0,0,-2, and the average row sums of 

the block matrices are given by the entries of B = (~ ~). The block 

matrices of A have constant row sums, whilst the interlacing is not tight. 

The row sums of the block matrices of A' are not constant, whilst the 

eigenvalues of B are also eigenvalues of A. 

1.3. MORE EIGENVALUE INEQUALITIES 

In this section we shall use interlacing of eigenvalues in order to 

prove some known inequalities and equalities, which we shall use in later 

sections. The ·first result is due to WEYL [W2] (see also [WS]). 

1.3.1. THEOREM. Let A1 and A2 be hel'ITlitian matl'ices of size m. Then 

for i = 1, ••• ,m, 0 s j s min{i-1,m-i}. 



PROOF. Define 

and 

S:=\fi[I I]*. m m 

Then A1 (A) = O, and 

With 1.2.l we now have 

11 

If we replace A
1 

and A2 by - A
1 

and - A2, we get the second inequality. D 

The next theorem is due to HOFFMAN [B13]. 

1.3.2. THEOREM. Let A be a hermitian matri:x: of size n, partitioned as 

fol.tows 

A= ~
All Alm] . . . . ' 
A~l • • • A~ 

where A11 is a square matioix of size ni, for i = 1, ••• ,m. Let j 1, •.• ,jm be 

integers euah that ls ji s n1 for i = 1, ••• ,m. Then 

!!!:Q2!.· Let u1, ••• ,un be an orthonormal set of eigenvectors of A. Let 

u11 , ••• ,uin. be an orthonormal set of eigenvectors of A11 for i = 1, ••• ,m. 
l. ... "'* "'* ]* Put k := j 1 + ••• + jm. Choose a vector uk"' [ulk •.• umk ;. O, such that 
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and 

It follows from dimension considerations that we can always do so. Now 

define 

and 

for i = 1, ••• ,m. Furthermore put 

and 

0 0 

0 
s :== 

0 0 

Then we have 

* S S = I * and (S AS) ii for i = 1 , ••• ,m • 

By 1.1.1.i and the choice of Qik' the last formula gives 

for i = 1, ••• ,m • 

Hence 

m 
(*) r 

i=l 

~ s*s On the other hand, sw = uk, = I and 1 .1 .1 yield 
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(**) 

Apply~ng 1.2.1 gives 

m-1 m-1 
I A. cs*AS> s I A.i CA) • 

i=1 i i=l 

Combining (*), (**) and (***) yields the first inequality of our theorem. 

Again, the second inequality follows by substituting -A for A in the first 

one. 

If the matrix A of the above theorem is positive semi-definite and 

m = 2, then we have 

These are the inequalities of ARONSZAJN [A3] (see also [H7]). 

The following consequence of 1 • 3. 2 will turn out to be a useful tool 

in computations with eigenvalues. 

1.3.3. THEOREM. Suppose 

is he:t'l'fl'itian of aise n. Suppose A has just 1::1Po distinct eigenvaiues, that 

is,, 

0 

for some f, 1 s f < n. Let n1,and n2 be the aisea of A11 and A22 respective

ty. Then 
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PROOF. By the Cauchy inequalities (1.2.2.i) we have 

This proves the result for 1 s i < f+1-n1, and for f < i s n2• 

For the remaining values of i, 1.3.2 gives 

which proves the required result. 

It is an easy exercise to give a direct proof of the above theorem. 

The proof then could go analogously to the one of Theorem 5.1 of [CS], 

where a similar result is stated. 

D 
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CHAPTER 2 

INEQUALITIES FOR GRAPHS 

2.1. INDUCED SUBGRAPBS 

In this section we shall derive inequalities for induced subgraphs of 

graphs, using the results of section 1.2 on interlacing of eigenvalues. 

Let G be a graph on n vertices. The eigenvaZues of G are the eigen

values of its (0,1)-adjacency matrixi we denote them by A1 (G) ~ ••• ~ An(G). 

Let a1 be an induced subgraph of G. Then by 1.2.2 (Cauchy inequalities) the 

eigenvalues of G1 interlace the eigenvalues of G. In particular, if G1 is a 

coclique of size a, then Aa(G) ~ Aa(G1) = O, and An-a+l(G) ~ A1 CG1) = O. 

Bence, we have the following result, which was first observed by CVETKOVIC 

[Cll] (see also [C12]). 

2.1.1. 'l'BEOREM. The size of a cocZique of a graph G cannot e:x:ceed the number 

of nonnegative [nonpositive] eigenvaiues of G. 

Now we shall derive inequalities for induced subgraphs using the 

Higman-Sims technique (1.2.3). Suppose G is a graph on n vertices of 

average degree d. Let the vertex set of G be partitioned into two sets, 

and let a1 and G2 be the subgraphs induced by these two sets. For i = 1,2, 

let ni b~ the number of vertices of Gi' let di be the average degree of Gi' 

and let di be the average of the degrees in G over the vertices of Gi. Now 

we can state the following theorem. 

2.1.2. TBEO:REM. For i = 1,2 

i. 

ii. if equaUty hoUs on one of the sides~ then G1 and G2 are 

reguZar~ and aZso the degrees in G are conatant over the 

vertices of a1 and a2• 



16 

~· If G is complete we easily see that the theorem is correct. So let 

us assume that G is not complete. Let A11 , A22 and 

be the adjacency matrices of G1, G2, and G, respectively. Put 

Then the entries of B are the average row sums of the block matrices of A. 

By 1.2.3.i we have 

Because trace A = 0, we have A.n (A) s; 0. From 2 .1 .1 we know that I. 2 (A) <: 0, 

since otherwise G would be complete. Hence 

On the other hand we know 

We quickly see 

This yields 

With{*) and(**) this proves (i). 

If equality holds on one of the sides, the interlacing must have been 

tight. Hence 1.2.3.ii gives (ii). 

Now let us look at the consequences of the above inequalities for 

some special cases. The size of the largest coclique and clique of G are 

denoted by a(G) and w(G), respectively. 

D 
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2.1.3. THEOREM. If dmin and dmax are the smaUest and the Zargest degree in 
the gra:ph G, respectively, then 

i. 

ii. 

PROOF. (i) • Substitute a (G) = n1 , d1 = 0 and d
1 

:2: dmin in the right hand 

inequality of 2.1.2.i. 
"" (ii). Substitute w(G) = n1, d1 = w(G) -1 and d1 ~ dmax in the left hand 

inequality of 2.1.2.i. 0 

2.1.4. THEOREM. If G is a r>eguw graph on n vertices of degree d, then 

i. any subgra:ph G1 of G with n 1 vertices and aver>age degree d1 
satisfies 

nd -n d 
A (G) :2: l l ~ An(G) , 

2 n - n1 

"" .... 
~·If G is regular then A1 (G) = d = d1 = a2 = dmin = dmax. Now 

2.1.2.i, 2.1.3.i and 2.1.3.ii give the required results. 0 

The inequality 2.1.4.ii is an unpublished result of A.J. Hoffman 

(see [C12], [H2], [L2]). In fact, the inequalities (ii) and (iii) of 2.1.4 

(just as the left and the right hand inequality of 2.1.4.i) are equivalent, 

because either one can be obtained from the other by using w(G) = a(G), 

>. 1 (G) .. n - Al (G) - 1 and Xi (G) = - An-i+2 (G) - 1 for i = 2, ••• ,n (G is 

the complemen~ of G). 

For the graph G with its subgraphs G1 and G2, we define D(G,G1) to be 

the incidence structure whose points and blocks are the vertices of G1 and 

G2, respectively, a point and a block being incident if the corresponding 

vertices are adjacent. If we have equality in any of the inequalities of 

2.1.2 - 2.1.4, then 2.1.2.ii yields that D(G,G1) is a 1-design, possibly 
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degenerate. Now let G be strongly regular. Then by use of 1.2.3.iii it is 

not difficult to show that equality holds in 2.1.4 iff D(G,G1) is a 1-design. 

If G1 is a coclique or a clique we have a criterion for D(G,G1) to be a 2-

design. 

2.1.5. TEIEOREM. If G is a strongly regu'la:r> graph on n vertices of de{II'ee d, 

then 

i. a(G) s 1 + (n-d-1) I o.
2

(G) +1), 

iii. if equality hoUB in (i) or (ii), and G1 is a coclique of size 

a(G), or a clique of size w(G), respectively, then D(G,G
1

) is a 

2-design, possibly degenerate. 

PROOF. If G is strongly regular, we know (see [CS], [S4] or Appendix I) 

(d - A. 2 (G)) (d - An (G)) = n(d + ).
2 

(G) An (G)) • 

From this it follows in a straightforward way that (i) and (ii) are equi

valent to 2.1.4.ii and 2.1.4.iii. 

From the definition of a strongly regular graph we know that any two points 

of D(G,G1) are incident with a constant number of blocks of D{G,G1). 

Furthermore, equality in (i) or (ii} implies that D(G,G1) is a 1-design, so 

in this case D(G,G1) is then a 2-design, possibly degenerate. 0 

The theorems 2 .1. 5 and 2 .1. 4 for strongly regular graphs are known. 

They are direct consequences of the linear programming bound of DELSAR'l'E 

[Dl] (see also [H2]}. They were also proved by BUMILLER [B9]. 

Applying 2.1.4.i to the point graph of a partial geometry (see Appen

dix I, or [B6], [Tl]) gives the following result of DE CLER.CK [C7] (see 

also [P3] for the case a~ 1: and [B9] fort= t 1). 

2.1.6. COROLLARY. Let P be a partial geometry with parameters (s,t,B), 

containing a partial subgeometry P1 with parameters Cs1 ,tl'B). Then 



~· If G and G1 are the point graphs of P and P1, respectively, then 

(see Appendix I or [Tl]) G1 is an induced subgraph of G, and 

n = (s+l){st+a) /a, n1 = (s1 +l)(s1t 1 +a)/a, 
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Substitution of these values in the left hand inequality of 2.1.4.i leads 

to 

{s - s
1
) (st +a) {s

1 
t

1 
+a - s - 1) ~ 0 • 

This proves the result. D 

The next theorem gives a result in case both Boffman's bound {2.1.4.ii) 

and cvetkovic • s bound (2 .1.1) are tight. 

2.1. 7. THEOREM. Let G be a strongly regular graph on n vertices. Let fn (G) 

denote the multiplicity of the eigenvalue An(G). Then 

iii. let G1 be a cocUque,, u>hose size attains both of these bounds, 

then G2, the subgraph of G induced by the remaining vertices, is 

strongly regular u>ith eigenvalues 

A. 1 CG2) = A. 1 (G)a(G) /(n-a(G)) 

~·Theorem 2.1.1 implies (i); (ii) is the same as 2.1.5.i. Let A and A2 
be the adjacency matrices of·G and G2, respectively. Then 

has· just two distinct eigenvalues, A2 (G) and An (G) of multiplicity n - fn (G) 

and fn(G) = a(G), respectively. From 1.3.3 it follows that 
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has three distinct eigenvalues, A2 (G), A2 (G) + An(G) and A2{G) + An(G) + 

+ a(GHA 1 {G) -A. 2 CG)) In, where the last eigenvalue is simple (has multi

plicity one). On the other hand, 2.1.S.iii gives that G
2 

is regular of 

degree A 1 (G) a (G) I (n - a (G)) • This shows that A
2 

and A2 have a common basis 

of eigenvectors, and that the simple eigenvalue of i 2 belongs to the eigen

vector j. Thus A2 has the desired eigenvalues, and therefore (see [C6] or 

Appendix I) G2 is strongly regular. 0 

Using 1.1.3 it is not difficult to show that D(G,G1) is a quasi

symmetric 2-design (see Section 3.2), whose block graph is the complement 

of G2• This situation has been studied by SHRIKHANDE [SS]. 

In proving 2.1.2 we applied interlacing to the product of eigenvalues. 

We did so in order to get reasonably nice formulas. However, for non

regular graphs the inequality for the product carries less information than 

the separate inequalities. For this reason, applying the Higman-Sims 

technique directly to the adjacency matrix of a given non-regular graph, 

may yield better results than 2.1.2 or 2.1.3. Also, if more is known about 

the structure of G or G1, it is often possible to get better results by a 

more detailed application of the Higman-Sims technique. Let us illustrate 

this by the following result. 

2.1.8. THEOREM. Let G be a regular graph on n vertiaes of degree d, and let 

the aomp'lete bipal'tite graph Kt,m be an induaed subgraph of G. Let x 1 and 

x2' x 1 ~ x 2, be the zeros of 

(n -t -m)x
2 + (dt +dm - 2.tm)x - tm(n - 2d) • 

Then 

PROOF. Without loss of generality, let G have adjacency matrix 

A= I: 
~21 

J 

0 

A" 21 



21 

where the diagonal block matrices are square of sizes R., m and n2, respect

ively. Usin9 the BiCJmaO-Sims technique (i.2.3) we find that the ei9envalues 

of 

0 m d-m 

B := I .. _. 0 d-R. 

d-R. 
d - R.d +md - 2R.m R.-- m--

n2 n2 n2 

interlace the eigenvalues of A. Clearly 11 (B) = 11 (A) = d and hence 

This yields x1 =12 (B) and x2 = 13 (B). Now the interlaci09 gives the 

required result. 

BUMILLER [B9] showed for stron9ly regular G and m = 1 that 

one easily checks that this follows from the second inequality of the 

above theorem. PAYNE [P6] proved that 

2 
(.t - 1) (m - 1) :s;. s , 

if G is the point graph of a 9eneralized quadrangle of order (s,t) (see 

Chapter 5 or Appendix I). This follows after substituting 

n = (s+1)(st+1) ~ d = s(t+l) , 12 (G) = s-1 

D 

in the first ,inequality of the above theorem. It should not be surprisi09 

that for this case we obtain the same result as Payne, because he too uses 

the BiCJmaO-Sims technique. 
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2. 2. CHROMATIC NUMBER 

In this section we shall derive lower bounds for the chromatic number 

of a graph in terms of its eigenvalues. The main tool is Hoffman's generali

zation of Aronszajn's inequalities (1.3.2). 

Let G be a non~void graph on n vertices. Then it follows immediately 

that y(G), the chromatic number of G, satisfies 

y(G)a(G) ?: n • 

combining this with the upper bounds for a(G) found in the previous section 

we obtain lower bounds for y(G). For instance, 2.1.3 gives 

However, this is not best possible, since HOFFMAN [H13] (see also [BS], 

[H2], [H14], [L2]) showed that 

which, if G is not regular, is better than the above bound. If G is regular, 

then the two bounds coincide. Takinq into account that a(G) is an integer 

we get 

y(G) ?: n I l n A. 1 (G)A (G) I CA. 1 (G)A (G) -d2
i ) J , n n m n 

which is occasionally better than Hoffman's bound. 

HOFFMAN [H13] proves his lower bound by use of the inequalities 1.3.2. 

We shall use the same technique, but in a more profound way, in order to 

obtain a generalization of Hoffman's inequality. 

2.2.1. THEOREM. Let G be a g:Paph on n vertiaea with ahromatia nwnber y. Let 

k be an integer satisfying O !> k !> n I y. Phen 

(y - 1) 1k+l (G) ?: -\1-k (y-1) (G) 

ii. 

~· Let A be the adjacency matrix of G. Then without loss of generality / 



where'Aii is the nix ni all-zero matrix, for i • 1, ••• ,y. 

First, we assume that n1 > k for i • 1, ••• ,y. Let u1, ••• ,un denote an 

orthonormal set of eigenvectors of A. Define 

23 

* Clearly the matrices uiui and A have a canmon basis of eigenvectors. This 

implies 

(*) 1, ••• ,n-k • 

For 1 = 1, ••• ,y, let Aii be the submatrix of A corresponding to Aii' Since 

k * uiu~ is positive semi-definite of rank one, l uiui is positive semi-
"' i•1 

definite of rank k. This yields that -Aii is positive semi-definite of 

rank at most k, hence 

A k (A .. ) = 0 for i n.- l.l. 
l. 

1, ••• ,y • 

Now we apply the left hand inequality of 1.3.2 with ji = ni -k. This gives 

With (*) this yields 

Bence 

(***) 

Now suppose that ni s k for some i E {1, ••• ,y}. Let L c {1, ••• ,y} be such 

that ni s k iff i E L. Let A' be the n' x n' submatrix of A, obtained by 

discarding all block matrices Aij with i EL or j EL. Putt:= iLj. From 

k < n/y it follows that t < y, hence n' > 0. Now (***) gives 
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(y-.t-1)/.l+k(A') + An'+k.t-k(y-l)(A');:: O • 

Using n' +k.t > n and the Cauchy inequalities (1.2.2) we have 

"n'+kt-k(y-1) (A') ~ "n-k(y-1} (A') ~ "n-k(y-1) (A) ' 

Hence 

From k < n/y it follows that /.l+k (A) ;:: "n-k(y-1) (A}, hence "i+k (A) <:: o. 
Thus 

This proves (i).The proof of (ii) proceeds analogouslyz'but also follows 

from the above by replacing A by - A. 

We see that the second inequality of the above theorem for k = 0 is 

Hoffman's bound. In Chapter 4 we shall need a sharpened version of this 

inequality (see [H13]): 

y-2 
- l An-i(G) <:: t.1 (G) , 

i=O 

which is in fact just formula (**) in the above proof with k = O, and A 

equal to minus the adjacency matrix of G. 

If k > O, the above inequalities are not really bounds for y(G), 

since y(G) also occurs in an index. However, this does not matter much if 

we use these inequalities for estimating the chromatic number of a given 

graph. It is also not difficult to derive proper bounds from these in

equalities. The next results illustrate this. 

2.2.2. COROLLARY• Let fn(G) denote the muitipLicity of the eigenvaiue 

An (G). Then 

y(G) <: min{l +f (G), 1 ->. (G) I t.2 CG)} n n 

PROOF. Suppose y = y(G) ~ f (G).Then A (G) =A +l(G). Now 2.2.1.i with 
-- n n n-y 

0 

k = l gives (y - 1) t. 2 (G) <:: - An (G). This proves the required result. 0 



For strongly regular graphs the above results lead to the following 

theorem. 
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2.2.3. THEOREM. Let G be a st1.'ongl-y Ngul-a1.' g1.'aph on n vel'tiaes. Suppose G 

is not the pentagon 01.' a aompl.ete Y-pal'tite gz>aph. Then 

y(G) 2!: max{1-A1(G) /An(G), 1-An(G) /A2(G)} • 

PROOF. Due to the above results, it suffices to prove the following claim: 

To achieve this, we distinguish three cases. 

a) n s 28. For this case it is easily checked that all feasible parameter 

sets for strongly regular qraphs which violate our claim are those of the 

pentaqon and the complete y-partite qraphs. 

b) :1.
2 

(G) < 2.. In this case A
2 

(G) = 1, or G is a conference graph (see 

[C9] or Appendix I). If G is a conference qraph, then A2 (G) = - l:i + l:i Iii., 
and hence n < 25 and we are in case 1. Strongly regular graphs with 

A2 (G) = 1 were detexmined by SEIDEL [s3]. They satisfy n s 28 or G is a 

ladder {disjoint union of edges), the complement of a lattice (line qraph of 

a K ) or the complement of a trianqular graph (line graph of . a K ) • One m,m m 
easily verifies that these three families of graphs satisfy our claim. 

c) ~ 2 {G) 2!: 2 and n > 28. If G is imprimitive (G is complete y-partite or 

the disjoint union of complete qraphs), the result is obvious. So assume G 

is primitive. Suppose the claim does not hold. Using l 2 (G) 2!: 2, A1 (G) < n 

and 

fn {G) An (G) + (n - 1 - fn (G)) A. 2 (G) + Al (G) = 0 

we obtain 

f! (G) < - fn (G) ln (G) I A2 (G) 

This yields 

f!(G) + 3fn(G) < { n + 2~ • 
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For primitive G the absolute bound (see [D2], [54]) reads 

Hence' ~ n < 2'/fn, i.e. n < 24. This contradicts our assumption, and there

fore the theorem is proved. O 

2.2.4. EXAMPLE. Let G be the 5chllifli graph, which is drawn in Figure 1; 

two black or two white vertices are adjacent iff they are on one line, a 

black vertex is adjacent to a white one iff they are not on a line, (see 

[53], [H2]). Then G is strongly regular, n = 27 and 

···="2.iCG) 

where G denotes the complement of G. From Figure 1 we see that 

a{G) 2 3 and a(G) 2 6 • 

-2, 

- 5, 

The thin vertical lines partition G into six cliques, hence y{G) ::;; 6. The 

numbering gives a colouring of G with nine colours, so y(G) ::;; 9. Using our 

bounds it follows that equality holds in all these inequalities. Indeed, 

by 2.1.4.ii or 2.1.5.i we have a(G) ::;; 3; 2.1.1 yields a(G) ::;; 6; y(G) 2 9 

follows from Hoffman's bound, and y(G) 2 6 follows from our last theorem. 

FIGURE I 

The chromatic number of strongly regular graphs will be the subject of 

Chapter 4. 



CHAPTER 3 

INEQUALITIES FOR DESIGNS 

3.1. SUBDESIGNS 

In this section we shall derive inequalities for subdesigns of de

signs. 
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Let D be a design with incidence matrix N. It is clear that we cannot 

apply the Higman-Sims technique (1.2.3) to N, because N does not have to 

be symmetric. Instead, we apply the Higman-Sims technique to 

A -[:. :] • 

By definition the positive eigenvalues of A are the singular values of N. 

Let o1 ~ o2 ~ ••• > 0 denote these singular values. Then we can state the 

main result of this section. 

3 .1.1. THEOREM. Let D be a 1 - (v ,k,r) design with b btocks. Let o1 be a 

possibty degeneztate 1- Cv1,k1,r1) subdesign of D with b 1 btoaks. Then 

i. 

ii. if equa.Uty hoUa~ then each point [btoak] off o1 is incident 

'With a constant nunUJel' of btocks [points] of o1• 

PROOF. Let N1 and 

be the incidence matrices of o1 and D, respectively. Put 
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0 0 N1 N2 0 0 rl r-r1 

0 0 N3 N4 0 0 x r-x 
A I'" and B := 

* * 0 k N1 N3 0 k-k1 0 0 

* * 0 0 k-y N2 N4 y 0 0 

where 

x := b1 (k-k1) I (v-v1) and y :'" v1 Cr-r1) /(b-b1) . 

Then the entries of B are the average row sums of the block matrices of A. 

By 1.1.2 we know 

for i = 1, ••• ,b+v, j c 1, ••• ,4. We easily have 

From det B = rk (r 1 - x) Ck1 -y) it now follows that 

Now 1.2.3.i gives 

With b1k1 = v1r 1 this yields (i). 

If equality holds, then the interlacing must be tight. Thus 1.2.3.iv gives 

(ii). 

From the above proof it is clear that the result also holds if o1 is 

not a 1-design, but then we have to take r 1 and k1 to be the average row 

and column sums of N1• 

For many 1-designs cr 2 is expressible in terms of the parameters of 

the design. For instance, cr~ = r -.>. if D is a 2 - (v,k,>.) design, and 

cr; = s + t - a+ 1 if D is a partial geometry with parameters (s,t,a) (see 

Appendix I, or [C6], [T1]). 

We shall make explicit two consequences of the above theorem. 

D 



3.1.2. COROLLARY. If a symmetric 2 - (v,k,>.) design aontains a symmetric 

2 - Cv1,k1 ,>. 1> eubdesign, possibly degenerate, then 

2 
~· Substitute b = v, k = r, b1 = v1, k 1 = r 1 and a

2 
= k ->. in 

3.1.1.i. 

3.1.3. COROLLARY. Let X and Y be a set of points a:nd a set of lines, 

respeatively, of a partial geometry with paramete:r>s (s,t,a), such that no 

point of X is incident with a Une of Y. Then 

(ajxj + (s+t+l-a)(s+l)}(alYI + (s+t+1-a)(t+1)) :s: 

~·Substitute k 1 = r 1 = O, b1 = jY!, v1 == jxj, k = s+l, r = t+l, 

v = (s+l)(st+a) /a, b = (t+l)(st+a) /a and cr~ = s+t+l-a in 

3.1.1.i. 

corollary 3 .1. 2 appeared in [H4]. A Baer subplane of a projective 

plane (see [03]) satisfies 3.1.2 with equality. Other examples which meet 

this bound (hence where 3.1.1.ii applies) can be found in [I:I4]. 

The bound of 3. 1. 3 can also be tight. For instance, let Q be the 

partial geometry with parameters (2,4,1) (generalized quadrangle), whose 

points and lines are the vertices and the triangles of the complement of 

the Schlafli graph (see Example 2.2.4). There are 15 triangles which do 

not have a vertex in common with a double six (the black vertices in 

Figure 1) , Thus we have an empty subgeometry (no point and line are in

cident) of Q having 12 points and 15 lines. This satisfies 3.1.3 with 

equality. 
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D 

D 

If o1 is an empty design (kl= r 1 = 0), then one easily finds examples 

which meet the bound of 3.1.1.i. For instance: a projective plane with a 

maximal arc (see [03]); a symmetric 2-design containing an oval without 

tangent blocks (see [A4]); a 2-design having a block repeated b/v times 

(see [Ll]; here the inequality 3.1.1.i is Mann's inequality [M2]). 
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Although the results of this section are similar to those of Section 

2.1, we did not start with a general inequality for substructures of an 

incidence structure like we did for subqraphs of a graph in 2.1.2. This has 

two reasons. Firstly, the formula for an arbitrary incidence structure is 

more complicated than 2.1.2. The second reason is that there does not seem 

to be much interest in incidence structures without any additional proper

ties; this is certainly not true for graphs. Yet we shall give one result 

for an arbitrary incidence structure, namely an inequality for the sizes of 

an empty substructure. 

3.1.4. THEOREM. Let D be an incidence structure with v points and b bioaks. 

Let every point [block] be incident with at least r . blocks [k i points]. min m n 
Let X and Y be a set of points and a set of blocks, Pespectively, suah that 

no point of X is incident with a block of Y. Then 

2 2 2 2 r. k i lxllYI s a1 a2 Cv-!Xl)(b-!YI), min m n 

wher-e a1 and a2 denote the two lar-gest singular' values of the incidence 

matr'i:t Of D. 

PROOF. Let the incidence matrix of D be 

where O denotes the lxl x IYI all-zero matrix. Let ri and. k1 be the 

* average row sums of Ni and Ni, respectively, for i = 2,3,4. Then by 

1.2.3.i the eigenvalues of 

0 0 0 r2 

0 0 r3· r4 
B := 

0 k3 0 0 

k2 k4 0 0 

interlace the eigenvalues of 

A := ~* :] . 
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Now with 1.1. 2 it follows that 

on the other hand we have 

0 

3.2. INTERSECTION NUMBERS 

If two distinct blocks of a design D have exactly p points in cOlllllon, 

then p is called an intersection n1.DT/ber of D. It is obvious that an inter

section number p of a 1 - (v,k,r} design satisfies 

k ~ p ~ max{0,2k-v} • 

The next result, which is due to AGRAWAL [Al], gives non-trivial bounds 

for the intersection numbers of a 1-design. Like in the previous section, 

the singular values of the incidence matrix of a design D will be denoted 

by 01 ~ 02 ~ ••• > o. 

3.2.1. THEOREM. Let D be a 1 - (v,k,r} design unth b bl.oake. Let B1 and B2 
be distinat blocks of D. Then 

i. 

2 

I I rk - cr2 - k + ..,2 • 
Bl n B2 S 2 b v 2 , 

if equality ho'lds then I B1 n B3 I + I B2 n B3 I = 2 (rk - a;) I b for 
any further b l.oak B3 , 

ii. IB1 n B2 1 ~ k - c~ ; 

if equality ho'lds then IB1 n B3 1 = IB2 n B3 1 for any further 
bl.ook B3 • 

PROOF. The result is obvious if b s 3, so assume,b ~ 4. Let N be the in

cidence matrix of D, such that the first two columns correspond to the 

blocks B1 and B2• Define 
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* A := N N 

Then the off-diagonal entries of A are the intersection numbers of D, and 

the row and column sums of A equal kr. Put p := ls1 n s21 and consider the 

follo~ing partitioning of A: 

A= 

Define 

kr-k-pl • 

kr-x 

Then the entries of B are the average row sums of the block matrices of A. 

Clearly 

rk and 1'2 (B) = k + p - x • 

By 1.2.3.i we have 

Hence 

cr;(b-2)::; (k+p)(b-2) - 2(kr-k-p). 

This yields 

If equality holds, the interlacing is tight and 1.2.3.i gives that every 

column sum of A12 equals x. This proves (i}. 

To prove (ii} we apply 1.2.l·to A with 

Then 

* B := S AS 

1 0 o]* [2 o l-'2 
1 0 n-2 0 1 

[
k-p 0 l 

0 kr-x 



It is easily seen that kr-x ~ k -p if b ~ 4. So A. 2 (B} • k-p. Hence, by 

1.2.1.i 
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Here equality does not have to imply that the interlacing is tight. There-
2 fore we shall use 1.2.1.ii. If a2 • k -p = kr-x, then r = 1, p = 0 or 

r = 2, p = O, b = 4, and the result is easily checked to be true. If 

a;= k-p < kr-x, then 1.2.1.ii implies that S{l,O)* • (-/2,/2,0, ..• ,0}* 
* * is an eigenvector of A for the eigenvalue k-p. Thus A12 C-1,1) = O. 

This proves (ii). D 

It is straightforward to verify that equality in (i) or (ii) for a 

pair of blocks of D implies also equality for the corresponding blocks of 

the complement of D. 

Although Agrawal's proof of the above theorem is different fran ours, 

it also uses eigenvalue techniques (in essence the Cauchy inequalities 

1. 2. 2) • MAJtJMDAR [M1.] gives a proof of this theorem for the case that D is 

a 2-design, using counting arguments. See also BUSH [BlO] and CONNOR [C8] 

for similar results. 

It is clear that our method also leads to inequalities if we consider 

the intersection pattern of more than two blocks. 

3.2.2. THEOREM. Let D be a 1 - (v,k,r} design with b bl.ocks. Let Y be a set 

of bl.ocke which rrrutuatZ.y have p points in common. Then 

i. I YI (bp - rkl ~ b (p - k} , 

ii. 2 2 IYI (bp -rk+a2) ~ b(a2 -k+p) 

~· Let N be the incidence matrix of D. We apply the Higman-Sims 

technique to A :• N*N, partitioned according to Y and the other blocks of 

D. Put 

x := 

Then 

I YI k er - u - P c I YI - 1 l 
b - IYI 

rk - k + P - P I YI] 

rk-x 



34 

carries the average row sums of the block matrices of A. Clearly 

A.
2

(B) =k-p+plYl-x= (b(k-p)+(bp-kr)IYJ)/(b-IYI). 

From 1.2.3.i we have 

This lower and upper bound for A. 2 (B) yields (i) and (ii), respectively. D 

We define two blocks B1 and B2 of a 1 - (v,k,r) design to be equivalent 

if 

Then from 3.2.1.ii it is clear that this indeed defines an equivalence 

relation, and that the number of colll1ll0n points of two blocks only depends 

on the equivalence classes of these blocks. By the use of 3.2.2 we find 

bounds for the· size of the equivalence classes. 

3.2.3. THEOREM. Let D be a 1 - (v,k,r) desi(Jn u>ith b bZocks. Let Y be an 

equivalence class of bZoaks. Then 

i. k and k - o~ cannot both be an inteI'section numbeI' of D,, 

ii. if k - o~ is an inte:t'section number of D,, then 

2 bo2 I Y ls ---,
2
,,_...;;. ___ ,, 

bo2 - bk+ rk 

iii. if k is an intersection number of D, then 

bo2 
2 IYl s 2 • 

bk - rk + o2 · 

~· Assume 2r s b; we may do so because of the remark right after 
2 2 Theorem 3 • 2. 1. Suppose k - o 2 is an inter section number. Then k - o 2 ~ 0, 

hence o;-k+2(rk-o~) /b s 2k(r-1) /b < k. So 3.2.1.i yields that k can

not be an intersection number. 
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Formulas (ii) and (iii) follow immediately from (i) and (ii) of 3.2.2 by 
2 

substitu.tion of p = k -a2 and p = k, respectively. D 

2 Suppose D is a 2 - (v,k,A) design, so a 2 = r -A = (bk -rk) / (v -1). 

From 3.2.3.iii it follows that D has at most b/v repeated blocks; this is 

the inequality of MANN [M2] (see also [Li]). If D has an intersection 
2 

number k-a2 = k-r+A, then 3.2.3.ii implies that the size of any equi-

valence class is at most b/ (b -v + 1); this bound appeared in [B2]. This 

paper also contains the next result (see also [B1]). 

A 2-design with just two distinct intersection numbers is called 

quasi-sy1m1etric. Consider the graph G, whose vertices are the blocks of a 

quasi-symmetric 2-design D, two vertices being adjacent if the number of 

points which the corresponding blocks have in common equals the larger 

intersection number. We call G the b'lock graph of D. GOE'1'BALS & SEIDEL [G2] 

(see also [C6]) proved that the block graph of a quasi-symmetric 2-design 

is strongly regular. 

Now suppose D is a 2 - (v,k,A) design with just three distinct intersection 

numbers k - r + A, p 1 and p 2 (p 
1 

> p 
2
). We have already observed that the 

number of points which two blocks have in common only depends on the equi

valence classes of these blocks. For this reason the following definition 

is legitimate. The class graph of D is the graph whose vertices are the 

equivalence classes, two vertices being adjacent if two blocks representing 

the corresponding classes have p1 points in common. 

3.2.4. THEOREM. Let D be a 2 - (v,k,A) d.esi(ln r..Jith just three intersection 

numbers, k-r+A, p1 and p 2• Then the class graph of Dis a strongly 

Ngu"Lar graph on 

b (k - r + A - p 1) (k - r + A - P 2> 
n := _.,,.2---------.,,,2---...-------

Ak - k(r -A) + (r - A) + bp 1p2 - Av(pl + P2) 

vertices, unth eigenvalues 
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PROOF. Let N be the incidence matrix of D. Define A := N*N. Then 

(*) 2 * * * 2 A = N (NN )N = N (),J + (r -A)I)N = Ak J + (r -A)A • 

Put Po := k -r +A. Let xj (j = O, 1, 2) denote the number of times that p j 

occurs in the i-th row of A, for some i E {1, ••• ,b}. Then 

(AJ) i1 

on using (*) • Substitute x2 = b - 1 - x0 - x1 and subtract the first equation 

multiplied by (p 1 + p 2> from the second one. This yields 

x
0 

(k - r + A - p 1) (k - r + A - p 2> = 

= (b-1)p1p2 - k(r-l)(pl +p 2) + k(r-A} + k2(>.-l) • 

Hence x0 does not depend on i and therefore all equivalence classes have 

size x0 + 1. Now n = b/ (x0 + 1) yields the given formula for n. 

Now we partition A according to the equivalence classes. Let A denote the 

adjacency matrix of G. Then the definition of G yields that the entries of 

are the row sums (which are constant) of the block matrices of A. Since A 

has three distinct eigenvalues, rk, r -A and O, it follows from 1.2.3.iii 

that each eigenvalue of B is equal to rk, r -A or 0. We easily check that 

rk is a simple eigenvalue of B, belonging to the all-one vector j. Now from 

(**) the eigenvalues of A follow. Hence A has an eigenvector j and just two 

distinct eigenvalues not belonging to j. This implies (see Appendix I or 

[C6]) that G is strongly regular. D 

Examples of designs which satisfy the hypothesis of the above theorem 

can be found in [Bl], [B3] or [MS]. For all these examples the class graph 

is a complete multipartite graph. In Section 6.1 we shall give an example 

for the above theorem where the class graph is primitive (not complete 

multipartite or the complement). For other results on 2-designs with an 

intersection number k - r +A, see [B2]. 



CHAPTER 4 

4-COLOURABLE STRONGLY REGULAR GRAPHS 

4.1. INTRODUCTION 

In this chapter we shall illustrate the use of the results and 

techniques obtained in the previous chapters. The result will be the de

termination of all 4-colourable strongly regular graphs. 
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It is obvious that a regular complete y-partite graph, and a disjoint 

union of complete graphs on y vertices are strongly regular graphs with 

chromatic number y. Strongly regular graphs, not belonging to one of these 

two families, are called primitive. 
1 2 Let G be a strongly regular graph with parameters (n,d,p11 ,p11 >. Then 

(see [CS], [c9] or Appendix I) 

d = >.1 {G) , 

Moreover, G has at most three distinct eigenvalues: 

-1 <:: ).f+2 (G) ••• = An (G) , 

where f = f 2(G), the multiplicity of >. 2 (G), satisfies 

2 If G is primitive, then p
11 

> O, >. 2 (G) > O, and >.n(G) < -1. 

4.1.1. LEMMA. If G is a primitive strongty regutar gru:ph, not the pentagon, 

then 

i. d s·->.n(G) (y(G) -1) , 

iii. >..
2

(G) <y(G)-1. 
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PROOF. (i) and (ii) are quoted from 2.2.3. Since G is primitive, 

0 < p~ 1 = d - A2 (G)An(G). Hence (i) gives y(G) -1 ~ ~d/Xn(G) > X2(G). 0 

~s a direct consequence of this lemma we have the following theorem. 

4.1.2. THEOREM. Given y e :N, the numbe:r> of p:r>i.mitive strongiy :r>eguZ.a:r> 

g't'aphs with chr>omatic number y is finite. 

2 
~· If the graph G is primitive, then p

11 
<?: 1 and hence by use of the 

formulas above 

By Lemma 4.1.1 we have 

This completes the proof. 

Now let us examine the case y(G) s 4. 

0 

4.1.3. LEMMA. Let G be a 4-coZ.Our>abie st:r>ongZ.y regul.ar !J:l'aph. Suppose G has 

a non-integmi eigenvaZ.ue. Then G is the pentagon. 

~· Since G has a non-integral eigenvalue, we have (see [C9] or 

Appendix I) 

Al(G) = ;cn-1), A2(G) = - ; + ;rn, 

n E 1 (mod 4) , in f. :fi • 

By 2.1.5 we have a(G) s In, hence 

4 ~ y(G) ~ n/a(G) ';;: n/ L In J , 

A (G) • - ; - Ii in, 
n 

therefore n = 16 or n s 12. Combining the restrictions for n we have n = 5, 

hence G is the pentagon. 

4.1.4. LEMMA. A 4-cotour>abZ.e p:r>i.mitive strongZ.y rieguZ.a:r> gmph has one of 

the foUowing parameter sets: 

0 



i. (5,2,0,1) , vii. .. (16,9,4,6) , 

ii. (9,4,1,2) , viii. (40,12,2,4), 

iii. (10,3,0,1), ix (50,7,0,1), 

iv. (15,6, 1,3» x. (56,10,0,2), 

v. (16,5,0,2), xi. (64,18,2,6), 

Vi (16,6,2,2), xii. (77,16,0,4). 

PROOF. Let G be such a graph. Suppose G is not the pentagon (which has 

parameter set (i)). Then by 4.1.3, the eigenvalues of G are integers. The 

primitivity of G yields A2(G) > O, An(G) < -1. Now 4.1.1.iii gives 

Suppose A2 (G) = 1. Then by 4.1.1 

Straightforward computations give that the only feasible parameter sets 

satisfying these conditions are (ii) - (v), (vii) and (10,6,3,4). However, 

a graph G with this last parameter set satisfies a(G) s 2, therefore 

y(G) ~ 5. Suppose A2 = 2. Then 4.1.1 implies 

An(G) E {-2,-3,-4,-5,-6} , d s 18 • 
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With a little more work than for the previous case, this leads to the 

feasible parameter sets (vi), (viii) - (xii) and (57,14,1,4). However, 

WILBlUNK & BROUWER [W4] proved the nonexistence of a strongly regular graph 

with this last parameter set. 0 

For graphs with parameters (i) - (v) existence and uniqueness is known 

(see [83]). Cases (i), (ii) and (iii) are the pentagon, the line graph of 

K
313 

(also ca:J.].ed the lattice graph L2 (3)), and the Petersen graph, 

respectively. It is easily seen that these three graphs have chromatic 

number three. From 4 .1.1 it is clear that none of the other graphs is 

3-colourable. case (iv) is the complement of the line graph of K6 (also 

called the complement of the triangular graph '1'(6)), which is easily seen 

to be 4-colourable. Case (v) is the Clebsch graph (see [S3]). This graph 
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is given in Figure 2, where two black or two white vertices are adjacent 

iff they are not on one line, whilst a black vertex is adjacent to a white 

one iff they are on one line. We almost immediately see that this graph is 

FIGURE 2 

4-colourable. There are precisely two nonisomorphic strongly regular 

graphs with parameter set (vi) (see [S6]): the line graph of K414 (L2(4)) 

and the Shrikhande graph (see cover), both graphs are easily seen to be 

4-colourable. Case (vii) is the complementary parameter set of (vi). We 

quickly see that the complement of the line graph of K414 is 4-colourable, 

however, the complement of the Shrikhande graph is not 4-colourable. 

Imeed, the size of the largest coclique equals three. The remaining cases 

are more difficult. They will be treated in the next section. 

4.2. STRONGLY .REGULAR GRAPHS ON 40, 50, 56, 64 AND 77 VERTICES 

In this section we shall study the feasible parameter sets for 4-

colourable strongly regular graphs, which remain from the previous section. 

The first case is the parameter set (40,12,2,4). Although several 

strongly regular graphs with these parameters are known (see Section 6.2), 

it will turn out that no such graph has chromatic number four. To prove 

this we use the following lemma. 

4.2.1. LEMMA. There is no reguZar bipartite graph on 20 vertices 1iJith 

eigenvaZues 4, 2, o, -2, -4 of muitipUcity 1, 6, 6, 6, 1,, respectiveZy. 
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PROOF. Suppose G were such a bipartite graph. Let 

be the adjacency matrix of G. Then N is the incidence matrix of a 

1 - (10,4,4) design, D say, with singular values a1 = 4, o2 = ••• = a
7 

2. 

Let s1 and B2 be two distinct blocks of D. Then 3.2.1.i yields 

Suppose s1 and s2 are disjoint. Let x and y be the two points of D which 

are not incident with s1 and s2• Let s3 be a block through x. Using 

3.2.1.ii it follows that 

so s3 is incident with y. Bence, any block incident with x is also in

cident with y. However, this is not possible, since two points of D have 

at most two blocks in common, as follows from 3.2.1.i applied to the dual 

of D. So we have 

This implies that B : = N*N - J - 3I is the adjacency matrix of a (strongly) 

regular graph with eigenvalues -3, 1 and 3 of multiplicity 3, 6 and 1, 

respectively. This is impossible, since 

2 2 2 2 30 =trace B ~ 3.(-3) + 6.1 + 1.3 • 

4.2.2. THEOREM. Then e:x:ists no 4-coZ.OUPab"le st:vong"ly ngula:v gruph UJith 

pa:l'<:1111ete:vs (40,12,2,4). 

D 

~· Let G be a strongly regular graph with parameter set (40,12,2,4). 

The eigenvalues of A, the adjacency matrix of G, are 12, 2 and -4 of multi

plicity 1, 24 and 15, respectively. Suppose G is 4-colourable. Then without 

loss of generality 
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0 A12 A13 A14 

A21 0 A23 A24 
A= 

A31 A32 0 A34 

A41 A42 A43 a 

By 2.1.5.i all block matrices are square of size 10, and by 2.1.5.iii all 

row and column sums of Aij are equal to 4, for i,j = 1,2,3,4, i Y. j. Define 

for i = 1,2. Let i e: {1,2}. Let Gi be the graph with adjacency matrix Ai. 

Now A has just two distinct eigenvalues 2 and -4 of multiplicity 25 and 15, 

respectively. Furthermore, Ai and Ai have the same eigenvalues, except for 

~e one belonging to the eigenvector j, which equals 4 for Ai and -1 for 

Ai. Since Gi is bipartite, Ai also has an eigenvalue -4. Now by the Cauchy 
..., 

inequalities (1.2.2) it follows that Ai' and hence also Ai, has at least 

five times the eigenvalue 2. But Gi is bipartite, therefore Ai' and hence 

also Ai' has at least five times the eigenvalue -2. Now from 1.3.3 it 

follows that A3_i, and hence also Ai and Ai' has at least five times the 

eigenvalue O. Since Gi is bipartite on an even number of vertices, the 

multiplicity of the eigenvalue O is even, so at least six. Going backwards 

through the above reasoning we conclude that the multiplicities of the 

eigenvalues 2 and -2 of Ai are also at least six. Thus Ai has eigenvalues 

4, 2, o, -2, -4 of multiplicity 1, 6, 6, 6, 1, respectively. Now Lemma 

4.2.1 finishes the proof. D 

HOFFMAN & SINGLETON [H15] showed the existence and uniqueness of a 

strongly regular graph with ~arameters (50,7,0,1). So we only have to 

determine whether this graph is 4-colourable or not. To do so, we shall 

use a description of the Hoffman-Singleton graph (this description seems 

to be folklore, since it is well known; however, I could not find a refer

ence) based on the following result, see [Bll] or [C10]. 

4.2.3. RESULT. The thirtyfive "lines of PG(3,2) can be repzoesented by the 

thirtyfive tripLes of a set IJJith seven eLements~ suah that two Zines 
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intersect iff the corresponding triples 'have one element in common. 

REMARK. This result is directly related to the isomorphism of the groups 

PSL(4,2) and the alternating group on eight symbols (see for instance [B4] 

or [C10]). 

Now we construct the Hoffman-Singleton graph as follows. The vertices 

are the fifteen points and the thirtyfive lines of PG(3,2). Points are 

mutually non-adjacent; a point is adjacent to a line iff the point is on 

that line; two lines are adjacent iff the triples, which correspond with 

these lines according to the above result, are disjoint. It is an easy 

exercise to check that this construction indeed gives the desired strongly 

regular graph. 

4.2.4. THEOREM. The Hoffma,n-Singleton graph 'has chromatic number four. 

PROOF. Colour the fifteen points red. Fix two elements x and y of the 7-set 

of Result 4.2.3. Colour lines blue, if they correspond to a triple contain

ing x. Of the remaining lines, colour those yellow, whose corresponding 

triple contains y, and colour the other ones green. From our definition it 

is obvious that this is a correct colouring of the Hoffman-Singleton 

graph. 

GEWIRTZ [Gl] showed existence and uniqueness of a strongly regular 

graph with parameters (56,10,0,2). Before giving a description of the 

Gewirtz graph we first prove the following. 

D 

4.2.5. PROPOSITION. If the GeUJirtz graph 'has two disjoint cocUques of size 

16~ then its chromatic number equals four. 

PROOF. Assume that the Gewirtz graph has adjacency matrix 

* where A12 = A21 is square of size 16. We know that A has three distinct 

eigenvalues, 10, 2 and -4. From 2.1.5 it follows that A12, A21 , A31 and A32 
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have constant row sums equal to 4. Therefore the graph G3, whose adjacency 

matrix is A33 , is a disjoint union of cycles. Suppose one of these cycles 

has c vertices. Partition A33 according to the vertices of this cycle, and 

. the remaining ones. This induces a partition of A into sixteen block 

matrices, and the entries of the matrix 

0 4 lie 6-l.,ic 

4 0 lie 6-l.,ic 
B := 

4 4 2 0 

4 4 0 2 

are the average row sums of these block matrices. We immediately see that 

the eigenvalues of B are 

However, we know that 

Hence the eigenvalues of B interlace the eigenvalues of A tightly, thus by 

1.2.3.ii all block matrices have constant row sums. Therefore, lie is an 

integer. This proves that each component of G3 is a cycle of even length. 

Thus G3 is bipartite, and therefore the whole graph is 4-colotirable. 0 

We use the description of the Gewirtz graph given in [G2], where this 

graph is obtained as the complement of the block graph of a quasi-symmetric 

2 - (21,6,4) design with intersection numbers O and 2 (see Section 3. 2). 

4.2.6. TBEORF.M. The Gewirtz graph has chromatic number four. 

~· Let D be the quasi-sYl!)llletric 2 - (21,6,4) design. It is clear that 

all blocks through a fixed point of D yield a coclique in our graph of size 

16. To see that there is another coclique of the same size, disjoint from 

this one, we proceed as follows. D can be obtained from. a 3 - ( 22, 6, 1) de

sign o (the extension of PG(2,4), see for instance [C6]) by deleting one 

point and all blocks through that point (i.e. Dis a residual design of D). 
Take a block B of o, which is not a block of D. An elementary counting 

argument (see [C2]) shows that there are 16 blocks of D which are disjoint 
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from B, and which mutually have 2 points in common. Hence these 16 blocks 

provide a coclique of size 16 in the Gewirtz graph, which, if B has been 

chosen appropiately, is disjoint from our previous coclique. Application of 

4.2.5 completes the proof. D 

Three 2 - (16,6,2) designs on a common point set are called Urik.ed if 

any two blocks from distinct designs have 3 or 1 points in common (see [Cl] 

or [M7]). Let N1, N2 and N3 be incidence matrices of three linked 

2- (16,6,2) designs. Then we know that 

for i = 1,2,3. Moreover, for i,j = 1,2,3, i ~ j, the matrix 

is a (0,1) matrix by definition. In fact, N .. is the incidence matrix of a 
l.J 

2 - (16,6, 2) design, since 

2J + 4I I 

by use of the above formulas. Define 

for i 0,1,2,3, j = 1,2,3. Then 

for i,j,k = 0,1,2,3, as follows readily from the formulas above. This 

implies that 

0 NOl N02 N03 

NlO 0 N12 N13 
A := 

N20 N21 0 N23 

N30 N31 N32 0 

is a symmetric matrix, which satisfies 

2 
A = 18I + 2A + 6 (J - I -A) • 
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Hence A is the adjacency matrix of a strongly regular graph with parameters 

(64,18,2,6), which is 4-colourable. We call this graph the incidenae {fl'aPh 

of the three linked designs. 

4. 2. 7. THEOREM. Let .G be a strong'ly regu'la:r> g:r>aph with par>ameters 

(64,18,2,6) and ahromatic number four. Then G is the inaidence graph of 

three 'linked 2 - (16,6,2) designs. 

~· Suppose G has adjacency matrix 

0 AOl A02 A03 

A10 0 
A= 

A12 A13 

A20 A21 0 A23 

A30 A31 A32 0 

A has eigenvalues 18, 2, and -6 of multiplicity 1, 45 and 18, respectively. 

By 2.1.5, Aij is square of size 16, andall row and column sums of Aij are 

equal to 6, for i,j = 0,1,2,3, i ~ j. This implies that A and 

have a common basis of eigenvectors. Using this, we obtain that 

A := A - 2I + l:!K 

has eigenvalues 24, 0 and -8 of multiplicity 1, 48 and 15, respectively. 

Thus 

-rank A= 16 • 

For i = 0,1,2,3, put Aii := l:iJ16 - 2I16 • Then 

-1 
From rank A00 =rank A, it follows that AiO A00 A0j = Aij' for i,j = 1,2,3, 

on applying 1.1.3. By use of 

A~~ = {l:iJ - 2I) -l .. (1/24)J - l:!I and AijJ = 6J 



47 

this implies that for i,j • 1,2,3 

This ~pletes the proof. Indeed, if i • j, then (*) implies 

* A0iAOi • 2J +4I, showing that A01 is the incidence matrix of a 2 - (16,6,2) 

design, and if i ~ j, then (*) reflects that the designs represented by 

A01 , A02 and A03 are linked, and that Aij is of the desired form for 

i,j = 1,2,3. D 

MATBON [M7] proved that there are exactly twelve non-isomorphic 

triples of linked 2 - (16,6,2) designs, which lead to eleven non-isomorphic 

incidence graphs. Bence there are precisely eleven non-isomorphic 4-colour

able strongly regular graphs with parameters (64,18,2,6). It is fairly easy 

to show that one of these graphs is the point graph of the known generaliz

ed quadrangle of order (3,5) (see Chapter 5; a construction is described in 

6.2.3). For completeness we list in Appendix II the systems of three linked 

2 - (16,6,2) designs, which provide the ten remaining graphs; these systems 

are taken from Mathon's paper. It is not known whether there are any 

further strongly regular graphs with these parameters, which are not 4-

colourable. 

Finally, the next theorem deals with the last set of parameters of 

Lemma 4.1.4. 

4.2.8. THEOREM. There e:x;ists no 4-co'Lourab'le stPcmg'ly Ngu'la:l' gruph UJith 

paX'a17letePs (77,16,0,4). 

PROOF. Let G be a strongly regular graph with parameters (77,16,0,4). Then 

G has eigenvalues 16, 2 and -6 of multiplicity 1, 55 and 21, respectively. 

Suppose G is 4-colourable, and let c be the size of the largest colour 

class. Then c <!: f 77/4 l = 20. ·Let 

where 0 is square of size c, be the adjacency matrix of G. Then G2, the 

graph with adjacency matrix A22 , is 3-colourable. From 2.1. 7 it follows that 

c s a(G) s 21, and that c = a(G) = 21 implies that G2 is the Gewirtz graph. 
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Since the Gewirtz graph has chromatic number four, G cannot be coloured 

with four colours if c = 21 {this shows that G is 5-colourable if a (G) = 21, 

which is the case for the known strongly regular graph with these para

meters; see [G2]). Suppose c = 20. Now we apply 1.3.3 to A - {2/11)J, so as 

to obtain that 

-6, 

Now 1.3.1 gives 

2 
"56 <A22 - IT J) -4. 

On the other hand, the average row sum of A22 equals 592/57. Hence by 

1.2.3.i (take m = 1) we have 

Now the sharpened version of Hoffman's inequality for the chromatic number 

(see Section 2.2), applied to the 3-colourable graph G2 gives 

This is a contradiction, proving the theorem. 0 

4. 3. RECAPITULATION, 

All cases of Lemma 4. 1. 4 have been treated now. The only thing left is 

to state the main theorem. 

4.3.1. THEOREM. If G is a 4-coZ.ou:rubZ.e strongZ.y l'egular groph, then on6l of 

the foZZouYing hoZ.ds: 

i. y(G) = 2, and G is a regul,,ar> aompZ.ete bipartite groph, or a dis

joint union of edges; 

ii. y(G) = 3, a:nd G is a r-eguZar> compZ.ete 3-paritite groph, a dis

joint union of t'Pia:ngZ.es, the pentagon, the Une (J'Paph of K313, 

or the Petersen groph; 

iii. y{G) = 4, and G is a reguZ.a:l' compZ.ete 4-partite groph, a dis

joint union of K4 's, the compZ.ement of the Z.ine g-paph of K6, the 

Une groph of K
414

, or its compZement, the Shrikhande g-paph, the 
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Ctebsch g:ra:ph, the Hoffman-Singteton g:r>a::ph, the Gewil'ts g:r>a::ph, 
o:r> one of the eteven incidence grapha of three Unked 2 - (16,6,2) 

designs. 
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CHAPTER 5 

GENERALIZED POLYGONS 

5. 1. INTRODUCTION 

A gene:.ro.'lized n-gon of order (s,t), s > O, t > O, is a 1 - (v,s+l,t+l) 

design whose incidence graph has girth 2n and diameter n (see (T4], (D3], 

(Fl], [H12] or Appendix I). A generalized polygon is a generalized n-gon 

for some n. 

Generalized n-gons were introduced by TITS [T4]. An important result 

is the theorem of FEIT & HIGMAN [Fl] (see also (B12], [K2]), which states 

that a generalized n-gon of order (s,t) is an ordinary n-gon (s = t = 1) or 

n e {2,3,4,6,8,12}. 

For a generalized polygon we speak of lines rather than blocks. We 

shall often omit the adjective "generalized". If D is a polygon of order 

(s,t), then we immediately see that the dual of D (points and lines inter

changed) is a polygon of order (t,s). 

Suppose N is the incidence matrix of the incidence graph of an n-gon 

of order (s,s). Then N is the incidence matrix of a 2n-gon of order (1,s). 

conversely, it can be proved easily that all generalized n-gons of order 

(1,s), s > 1, are of this form. FEIT & HIGMAN [F1] also proved that s = 1 

or t = 1 for a 12-gon of order (s,t), thus in a sense generalized 12-gons 

are the same as generalized hexagons of order (s,s). Generalized n-gons of 

order (s,t) with s > 1, t > 1, are called thick. 

A generalized 2-gon is degenerate (every point is incident with every 

line). It is not difficult to verify that a generalized triangle of order 

(s,t) is a 2 - (s2+s+1,s+l,1) design, which is the same as a projective 

plane of orders (thus s = t). So 3-gons of order (s,s) exist for every 

prime power s. For projective planes see DEMBOWSKI [D3] or HUGHES & PIPER 

(B16]. 

Thick generalized quadrangles of order (s,t) are known to exist for 
. 2 2 3 

(s,t), (t,s) = (q,q), (q,q ), (q ,q ), (q-1,q+l), for every prime power q 

(q ~ 2 for the last case). Constructions are due to AHRENS & SZEKERES [A2], 

HALL [H6], KAN'l'OR [Kl], PAYNE [P1], [P2] and TITS [T4], see also [D3], 

[T3]. HIGMAN [B11] showed that 
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for thick quadrangles of order (s,t). Several other proofs of this inequal

ity have been found, see [C3], [CS], [H12], [P6] and Section 3 of this 

chapter; some of these proofs also lead to consequences for the case of 

equality. There is an extended literature on generalized quadrangles. We 

mention the survey papers [P4], [T1] and ['1'3]. 

Thick generalized hexagons are known to exist for the orders {s3,s), 

(s,s} and (s,s3J for prime power s, see [T4]. A necessary condition for 

existence of a hexagon of order (s,t) is that st be a square, see [F1]. 

HAEMERS & ROOS [H3] showed that 

for thick hexagons of order (s,t}. This inequality, together with a result 

for the case of equality, will be the subject of the next section. For more 

information about generalized hexagons we refer to [M4], [Rl], [St], ['1'4], 

[Yl]. 

Thick generalized octagons of order (s,t) are only known to exist for 

(t,s}, (s,t) = {~,22m), for odd m. The construction is due to J. Tits, see 

[D3]. A necessary condition for existence of an octagon of order (s,t) is 

that 2st be a square, see [F1]. HIGMAN [H12] showed that 

for thick octagons. There is hardly any literature about octagons. 

Let G be a connected graph of diameter m. For vertices x and y of G, 

let p(x,y) denote the distance between x and y. For i,j = O, ••• ,m, define 

pij (x,y) := I {z I p (x,z} = i & p (y,z) = j} I . 

If pij(x,y) depends on i, j and p(x,y) only, then G is called diatanae 

regu'lar (see [BS]), and we write p~j := pij(x,y) where k := p(x,y), and 
0 k • t t" di :o• pii' fo.r i,j = o, ..• ,m. The numbers pij are called the ?..n eraec i.on 

nwnbera of G. Clearly, a distance regular graph is regular of degree d1, 

and a distance regular graph of diameter 2 is the same as a connected 

strongly regular graph (in general, a distance regular graph of diameter m 

is equivalent to a metric association scheme with m classes, see [Dl]). 

For a distance regular graph G of diameter m, we define the matrices 

A0, ••• ,Am, indexed by the vertices of G, by 
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m 

if p(x,y) = i , 

otherwise. 

Clearly, A0 = I, l Ai = J and A1 is the adjacency matrix of G. Moreover, 
i•O 

(A A.) = ./ ~x,y) 
i J xy iJ 

implies 

Ai J = di J , for i,j 0 t • • • ,m • 

These equations show that A0 , ••• ,Am generate an m + 1 dimensional algebra. 

This type of algebra turns out to be useful in the study of distance 

regular graphs and similar configurations, see [BS], [B8], [Dl], [B12], 

[W1]. 

The point graph of a generalized n-gon D is the graph whose vertices are 

the points of o, two points being adjacent whenever they are on one line of 

D. It is well known (see [D3], [Y2]) that the point graph G of an n-gon of 

order (s,t) is distance regular of diameter L~nJ, and that the intersection 

numbers of G can be expressed in terms of s and t (in the forthcoming sec

tions of this chapter we shall exhibit this result for n = 6 and n = 4) • 

A graph G is called geometric for an n-gon if G is the point graph of 

an n-gon. A graph G is called pseudo-geometria for an n-gon if G is dis

tance regular of diameter L~nJ and its intersection numbers are such that G 

could be geometric, that is, there exist integers s and t, such that the 

intersection numbers of G depend on s and t as for geometric graphs. 

Let D be a generalized polygon. An element of D is a point or a line 

of o. A sequence of R. + 1 elements e0 , ••• ,eR., is called a path of length R. 

between e0 and eR.' if ei is incident with ei-l for i = 1, ••• ,R. (thus in 

e0 , ••• ,eR.' points and lines ~lternate). The distanae between elements e0 
and eR. of o, .denoted by A. (e0 ,e.~), is the length of the shortest path 

between e0 and eR.. Thus, if e0 and eR. are both points, then A.(e0 ,eR.) is 

twice the distance between e0 and eR. in the point graph of D. 

In the next two sections we shall describe a method which for quadr

angles and hexagons leads to the inequalities mentioned above, and to the 
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results in case of equality (unfortunately, this method does not work for 

octagons). The same method also yields a new proof of a theorem of CAMERON, 

GOETHALS & SEIDEL [CS], which states that a pseudo-geometric graph for a 
2 quadrangle of order (s,s ) is geometric. 

5.2. AN INEQUALITY FOR GENERALIZED HEXAGONS 

For n = 6 the definition of a generalized n-gon is equivalent to the 

following one: 

s.2.1. DEFINITION. A geneI'O.Uzed hexagon of oI'deZ' (s,t) is an inaidence 

stI'UCtUPe bJith points and iines, suah that 

i. each Line has s + 1 points, 

ii. each point is on t + 1 Lines, 

iii. two distinct iines meet in at most one point, 

iv. fol' any non-incident point-line pail' x,L the:l'e is a unique path 

of iength < 6 between x and L. 

Throughout this section H will denote a generalized hexagon of order 

(s,t). By use of the above definition it is straightforward to count the 

intersection numbers p~j of the point graph of H. They are exhibited in 

Table 1. The amount of work in computing these numbers can be reduced by 

use of the equalities 

This counting also shows that the point graph of a generalized hexagon is 

distance regular. 

TABLE 1 

k 
k k'. k k k k 

Pu P12 P22 P13 P23 P33 

0 s (t+l) 0 s 2t(t+1) 0 0 s3t2 

0 s2t2 2 2 
1 s-1 st st(s-1) s t (s-1} 

2 1 s-1 s (t2+t-1) st st(s-1) (t+1) st(s2t-st-s+t) 

3 0 t+1 (s-1)(t+1) 2 (s-1} (t+l) (t+1) Cs2t-st-s+t) 2 t(t-1) (s t-s+t) 
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Let A
0

, ••• ,A
3 

be the matrices of the point graph of H. Define 

E := A2 - (s - 1)A1 + (s
2 

- s + 1) I - _!._l J 
s+ 

Then we have the following lemma. 

s.2.2. LEMMA. The eigenvalues of E al"e 

0 and s
2 

+ st + t
2 

of multiplicity 

1 + st(s+1)(t+1) s2t+st2-st+s+t and 
s 2 + st +t2 

respectively. 

~· It is clear that EJ = O, and that 

3 s
2

t
2

+st+1 
s 

s 2 + st + t 2 ' 

(E - (s
2
-s+l)I + s!1 J)2 = (s-1)

2 
At- (s-l)(A1A2+A~1> +A~. 

A1A2 = A~1 = st A
1 

+ (s-1)A2 + (t+1)A3 , 

Ai= s(t+l)I + (s-1)Al + A2 . 

By use of A1 + A2 + A3 = J - I and EJ = 0, this leads to 

2 2 
E(E - (s +st+t )I) = 0 • 

2 2 Hence 0 and s + st + t are the eigenvalues of E. Finally, 

yields the multiplicities. 

~· In the terminology of DELSARTE [D1], the matrix (s2 + st + t 2) -l E 

is a minimal idempotent in the Bose-Mesner algebra of the association 

scheme on the points of H. The underlying theory provides a more elegant 

D 
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way to prove the previous lemma. 

Let L0 be a line of H, let Li (i = 1,2) denote the set of points at 

distance 2i + 1 from L0 • Partition E according to L0 , L1 and L2: 

roo 
EOl •oj E = ElO Ell E12 

E20 E21 E22 

* for i,j = 0,1,2. so Eij = Eji 

5. 2.3. LEMMA. The eigenvalues of E
11 

a:r>e o., s 2 and st of nruZtipliaity 

st - s + t, t(s2 -1) and s, respeatively. 

~· Let A1, 11 and A2111 be the submatrices of A1 and A2, respectively, 

corresponding to L1• We easily see that without loss of generality 

holds, hence 

From the eigenvalues of Is+l ® Jst' Ist+t ® Js' I and J, and the fact that 

these four matrices have a common basis of eigenvectors, the eigenvalues of 

E11 and their multiplicities follow. 

5.2.4. THEOREM. A generalized he:cagon 'With s + 1 points on a line and t + 1 

lines through a point satisfies 

i. t s s3 or s = 1 .. 

ii. s s t
3 or t = 1 • 

~· From 5.2.2 and 5.2.3 it follows that 

rank E = s 3 (s2t 2 +st+1) I (s2 +st+t2l 

Since rank E11 s rank E, we have 

D 
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2 2 2 3 2 2 (s t+s-t) (s +st+t) :$; s (s t +st+l) • 

This yields 

3 Thus s = 1 or t ~ s • Applying this result to the dual of H yields (ii) • D 

For another proof of this inequality see [E3]. Next we shall derive 

some additional regularity for hexagons meeting the above bound. To achieve 

this we need some properties of the matrices Eij. First we observe that 

t 
1-1/(s+l) 

(E02) xy = 
-1/(s+l) 

if A(x,y) = 4 I 

otherwise, 

as follows directly from the definition of E and E
02

• This implies 

* l 1-1/(s+l) 
CE02 Eo2> xy = 

-1/(s+l) 

if A(x,z) = A(y,z) for some z E L0 , 

otherwise. 

Hence, without loss of generality 

j * - _l_J 
E02 = ® 1s+1 s+l r(s+l) ' 

where r := s 2t 2• Now the positions of the points of L2 relative to the 

points of L
0 

give rise to a partition of E
22 

into (s + 1) 2 square block 

matrices F .. of size s 2t 2 : 
l.J 

:r·l . 
ssJ 

It is a matter of straightforward counting to see that F.j has 
2 2 2 l. 

sums equal to t (s-1+i5ij) - s t /(s+l} for i,j = O, ••• ,s. 

the structure of E02 imply that 

constant row 

This, and 
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'l'he following identities are now quickly seen to be true: 

EOO = s2 (I - s ! 1 J) EijJ = 0 for i,j = 0,1,2, 

5.2.5. LEMMA. The matT'i:x; 

hae eiuenvaiues 

0 , st + t 2 and s 2 + st + t 2 ; 

the muitipUaity of s
2 

+ st + t 2 equa"ls 

2 2 3 2 2 
t (s - 1) (s - t) / (s + st + t ) • 

PROOF. Define 

Using the above formulas we obtain 

(*) * 2 2 2 UU U = s (s + t )U , 

Since rank u = s, the last formula reflects that the columns of U span an 

s-dimensional eigenspace of E' corresponding to the eigenvalue s 2 + t 2 

Thanks to 5.2.2 and 5.2.3 the eigenvalues of E and E11 are known. By use of 

1.3.3 we obtain that the non-zero eigenvalues of E' are 

s 2 + t 2 , st + t.2 and s 2 + st + t 2 
, 

of multiplicity 

S I t(s2 -1) 

respectively. Now from (*) it follows that 

-2 * E' - s U U 

2 2 2 has just two distinct non-zero eigenvalues st + t and s + st + t , with the 



SB 

same multiplicities as before. On the other hand one easily verifies that 

E' - ,-
2

0•u. ~ .:,] , 

which proves the lemma. 0 

The important thing in the last lemma is that the eigenvalue s 2 + st + t 2 

disappears if t = s 3 • In order to give a combinatorial interpretation of 

this phenomenon, we need two definitions. For a line L and. points x and y 

of a generalized hexagon we define: 

p .. k(L,x,y) := I {z I A (z,L) = 2i + 1, A (z,x} = 2j, A (z,y) = 2k} I , 
l.J 

for i = 0,1,2, j,k = 0,1,2,3; the configuration induaed by L, x and y is the 

configuration formed by the points and the lines, which are on a shortest 

path between L and x, L and y, or x and y. For example, Figure 3 gives all 

possible configurations induced by L, x and y if A(L,x) = A(L,y) = 5 and 

A(X,y) = 4. 

7 4 3 2 s +s -s -s -1 
7 4 3 s +s -s -1 7 4 3 s +s -s -s 

7 4 3 s +s -s -s 

FIGURE 3 

5.2.6. THEOREM. If a generu'lized he:TJagon has ordsra (s,s3), then pijk(L,x,y) 

onty depends on i, j, k and the configuraation induaed by L, x and y. 

PROOF. First observe that 
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2 
l Pi'k(L,x,y) , 

i=O J 

3 

l pijk(L,x,y) 
j=O 

3 
and l pijk(L,x,y) 

k=O 

only depend on i, j, k and the configuration induced by L, x and y (in fact, 
2 . 

l p~jk(L,x,y) = ppj~x,yl). Subsequently, we verify (this is an easy but 
i=O 
tiresome job), that the theorem is true if i = O, or j ~ 1, or k ~ 1, and 

also if A(L,x) < 5 or A(L,y) < 5. Thus it suffices to prove the theorem for 

i = j = k = 2, A{L,x) = A(L,y) = 5. From the definitions of E, E22 and 

Pijk(L,x,y) it follows that 

( (E 1 J) 2) 
22 - s+T xy 

Now take t = s 3• Lemma 5.2.5 implies that i 22 has just two distinct eigen

values O and s 4 (1 + s 2) • Bence 

-2 4 2 -E
22 

= s (1 +s )E22 

Using the formulas for the matrices Eij this yields 

1 2 4 2 2 * 8 -1 (E22 - S'+T J) = s (1 + s )E22 - s E02 E02 + s (s + 1) J. 

-1 2 This implies that {(E22 - (s + 1) J) ) xy only depends on x, y and the 

configuration induced by L0, x and y. Combination with the previous steps 

yields that for x,y E L2, p222 (L0,x,y) only depends on the configuration 

induced by L0, x and y. This ·completes the proof. 

With the available formulas the values of pijk(L,x,y) are readily 

computed. For example, in Figure 3 we give p222 CL,x,y) for the given con

figurations. 

0 

RONAN [Rl], [R2] and THAS [T2], give sufficient conditions for a 

generalized hexagon to be one of the known ones. One hopes of course that a 

result like the one above will imply such a sufficient condition. Unfor-
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tunately, the gap between the condition we have and the condition we need, 

still seems to be too large to close up. It is worthwhile to remark that the 

known hexagons of order (s,t) with t ~ s 3 do not satisfy the condition of 

the above theorem. 

Finally we remark that similar techniques yield the inequality {see 

MATHON [M6]) 

3 2 t s s + t 2 (s -s+1) 

for a regular near hexagon with parameters (s,t,t2), as introduced by 

SHULT & YANUSBKA [S7] (see also [Y2]). If t 2 = O, then a near hexagon is 

the same as a generalized hexagon. 

5.3. GEOMETRIC AND PSEUDO-GEOMETRIC GRAPHS FOR GENERALIZED POLYGONS 

In this section we deal with the question whether a pseudo-geometric 

graph is geometric for a generalized n-gon. It is clear that for n € {2,3} 

the point graph of an n-gon is the complete graph. Assume G is the point 

graph of an n-gon D with n > 3. Then three points of D which form a triangle 

in G, must lie on one line of D. This implies that the graph ~ cannot 

be an induced subgraph of G. The next result states that the converse is 

also true. 

5. 3 .1. LEMMA. For a generalized n-gon with n > 3,, a paeudo-geometl'ic graph 

G ia geometric iff ~ ia not an induced aubgraph of G. 

~· Only the "if" part remains to be proved. Take n even {the case n odd 

is not difficult, but superfluous because of the Feit-Higman theorem). Let 

D be the incidence structure whose points are the vertices of G, and whose 
1 lines are the cliques {= complete subgraphs) of G of size p 11 + 2. For two 

1 adjacent vertices of G, there are p11 vertices adjacent to both, but all 

these vertices are mutually adjacent since otherwise ~ occurs. This 

means that eVf!JIY edge of G determines a unique line of D. This proves that 
1 n D is a 1 - (v,s+1,t+1) design, where s = p 11 +1 and t = Pi,n-i -1. 

k Let G.' denote the incidence graph of D. Then, because p. k i = 1 for 
J., -

k = O, ••• ,~n-1, i = O, ••• ,k, the girth of G' is at least 2n. Now, since 

each point of D is incident with pn1 1 lines, it follows that the distance ,n-
between a point and a line of D (regarded as vertices of G') is at most 
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n - 1. Hence G' has diameter n and girth 2n. This proves that D is an n-qon, 

whose point graph is G. 

A direct consequence of this lemma (which was pointed out to me by 

D.E. Taylor) is the following. 

S. 3. 2. COROLLARY. For> a genero.lized n-gon UJith n > 4, a pseudo-geomet'l'ia 

gr>aph is geomet'l'ia. 

PROOF. If n > 4, then p~ 1 .. 1. Hence ~ does not occur in a pseudo

geometric graph. Now S.3.1 gives the result. 

What remains to be studied are generalized quadrangles. A very easy 

counting argument shows that the point graph G of a quadrangle of order 

D 

D 

1 2 (s, t) is strongly regular with intersection numbers p
11 

= s - 1, p
11 

= t + 1, 
0 p11 = d 1 = s (t + 1) (this proves that the point graph of an n-gon is dis-

tance regular, in the case n .. 4). This implies (see [CS], [Tl] or Appendix 

I) that the eigenvalues of G, and hence the eigenvalues of any pseudo-geo

metric graph for a quadrangle of order (s,t), are 

s(t+1) , s-1 and -t-1 

of multiplicity 

1 , s 2(st+1) I (s+t) and st(s+l)(t+l} I (s+t} , 

respectively. 

There exist many pseudo-geometric graphs for quadrangles, which are 

not geometric. The Shrikhande graph (see cover} is one of them. More 

examples (including an infinite family} are given in Section 6.2. The 

following theorem, which is due to CAMERON, GOETHALS & SEIDEL [CS], gives 

a sufficient condition for a pseudo-geometric graph to be geometric, as 

well as the extension of Higtllan's inequality to pseudo-geometric graphs 

for generalized quadrangles. 

S.3.3. 'l.'HEOREM. Let G be a pseudo-geomet'l'ic gmph for> a thiak genero.lized 

quad.Pangle of order> (s,t). Then 

i. 
2 

t ::;; s .. 

ii. if equality holds, then G is geomet'l'ia, 
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iii. equality impl.ies that aU eubaonstituents of G are strort{Jl.y 

1'6(/U l.al'. 

!!!QQ!.· Let A be the adjacency matrix of G. Define 

2 
E :== - (s+1}A + (s -1}I + J. 

Then from the eigenvalues of A it follows that E has just one non-zero 
2 eigenvalue (s + 1) (s + t} of multiplicity s (st + 1) I (s + t). Hence 

(*) 
2 

rank E = s (st + l) I (s + t) • 

Lat x be a vertex of G. Partition A and E according to x, the vertices ad-

jacent to x, and the vertices not adjacent to x: 

A•~ 
j* 

.:'.] f:j 
* 

J*] 
-sj 

A11 E = E11 E12 I 

A21 A22 E21 E22 

where A12 = A; 1 and E12 = E;1• For i .. 1,2, let Gibe the graph with ad

jacency matrix Aii (so Gi is a subconstituent of .G). Then G1 has s(t + 1) 
1 

vertices, and is regular of degree p
11 

= s - 1. Bence s -1 is an eigenvalue 

of A11 of multiplicity c, say. It is known (see [BS], [C12] or Appendix I} 

that c equals the number of components of G1 • Clearly each component has 

at least s vertices. Hence 

(**) CS S S(t+l) • 

The matrices A
11

, I and J have a common basis of eigenvectors. Using this 

it follows that E
11 

has an eigenvalue 0 of multiplicity c - 1 (one of the 

eigenvalues s - 1 of A11 corresponding to the eigenvector j leads to the 

eigenvalue s(t + 1) of Eli). Hence 

rank E
11 

= s (t + 1) - (c - 1) • 

Now using (*) and (**) we have 

s(t+l) -t s rank E
11 

s rank E = s 2
(st+1) I (s+t) • 

This yields 



2 t(s-l)(t-s) s 0, 

proving (i).Suppose equality holds. Then we must have equality in(**), 

which means that G1 is a disjoint union of complete graphs on s vertices. 

Since, x is arbitrary, this yields that ~ does not occur in G. Now 

(ii} follows on applying 5.3.1. 
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Since the disjoint union of complete graphs of the same size is strongly 

regular, it only remains to be proved that G2 is strongly regular. This we 

shall prove analogously to the proof of 5.2.5. We know that the eigenvalues 

of E11 are O, s (s + 1) and s (s2 + 1) of multiplicity s 2, (s - 1) (s2 + 1) and 1, 

respectively. Now using 1.3.3 and the eigenvalues of E, we obtain that the 

matrix 

has eigenvalues O, s 2 (s + 1) and 2s2 , where 2s2 is a simple eigenvalue with 

2 * * eigenvector [s j ] • Bence E22 , and also A22 , has just two distinct eigen-

values not belonging to the eigenvector j. This proves that G2 is strongly 

regular. 0 

From (iii) of the above theorem it follows that the number of points 

adjacent to three mutually non-adjacent points of a quadrangle of order 

(s,s2) is constant. This result was first proved by BOSE [B7]. 

A quadrangle of order (s,t) is the same as a partial geometry with 

parameters (s,t,1) (see [H11], [Tl] or Appendix I). For pseudo-geometric 

graphs for a partial geometry with parameters (s,t,a), where a> 1, a result 

like Lemma 5.3.1 does not hold anymore. Therefore the question in the be

ginning of this section is much more difficult to answer for these geo

metries. 
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CHAPTER 6 

CONSTRUCTIONS 

6.1. SOME 2 - (71,15,3) DESIGNS 

In this section we shall construct eight non-isomorphic 2 - (71, 15,3) 

designs. First we shall construct a 2 - (56,12,3) design D, which satisfies 

the hypothesis of Theorem 3.2.4. Next we show that D is embeddable in a 

2- (71,15,3) design. A less extensive treatment of this construction appear

ed in [B2]. Designs with these parameters seem to be new (see [C4] p.104, 

or [H5] p.297). 

The most important ingredient for our construction is Fa, the field 

with eight elements. Let G be the full automorphism group of Fa, that is, 
i 

the group of order 16a defined by x.+ ax2 +b, a,b E lFa,a;. O, i €72:. We 

shall identify F
8 

with AG(3,2), the 3-dimensional affine space over JF2• 

Although G is the full automorphism group of JF 
8

, G is not the full auto

morphism group of AG(3,2). Yet G acts transitively on the elements (we 

reserve the word points for points of a design), the lines (i.e. unordered 

pairs of elements} , the planes (sets of four linearly dependent ele

ments), and the sets of four linearly independent elements. Moreover, the 

stabilizer of a line L has four orbits on lines: L itself, the lines inter

secting L, the lines parallel to L, and the lines skew to L. 

Now we shall define the incidence structure D. The points of D are the 

fiftysix ordered pairs of distinct elements of lF a. The blocks of D are the 

seventy 4-subsets of Fa· Let a, satisfying a.3 = a+ 1, be a primitive element 

of JFa· The point (0,1) is defined to be incident with the following blocks: 

3 2 2 3 2 3 4 2 3 4 5 {0,1,a,a }, {0,1,a,a }, {0,1,a ,a }, {a,a ,a ,a }, {a ,a ,a ,a }, 

2 6 2 4 4 6 2 4 6 3 4 6 {O,l,a ,a }, {0,1,a ,a }, {0,1,a ,a }, {a,a ,a ,a }, {a,a ,a ,a }, 

45 4 5 245 256 {0,1,a ,a }, {0,1,a,a }, {O,l,a,a }, {a,a ,a ,a }, {a,a ,a ,a }. 

Now we let G act on D. This defines D, because G acts transitively on the 

points of D, and because the map x I+ x 2, which fixes the point (0, 1), also 

fixes the set of blocks incident with (0,1). A point (x,y) is called 
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equivatent to a point (w,z) if {x,y} = {w,z}. 'l'wo blocks b c Fa and 

b' c Fa are called equivatent if b = b', orb n b' = 11 (i.e. bub' = F
8
). 

We know that G has two orbits on the blocks of D. The first orbit contains 

fifty~ix blocks, they are the linearly independent 4-subsets of JF
8

; these 

blocks will be called blocks of type I. The second orbit consists of the 

fourteen linearly dependent 4-subsets of JF
8 

(Le. planes), that is, they 

have the form {x,y,z,x+y+z}; these blocks are of type II. It is clear that 

equivalent blocks are of the same type. 

6.1.l. LEMMA. Let (x,y) be a point of D. Let b c F
8 

and b' c:: JF
8 

be dis

tinct equivatent btoaks of D. 

i. If (x,y) is inaident with b, then {x,y} c b OP {x,y} c b'. 

ii. If {x,y} c:: b, bof type I, then e:caatiy one of the foitowing two 

statements is tPUe. 

1. (x,y) is incident with b and not with b', and (y,x) is inai

dent with b' and not with b; 

2. (x,y) is incident with b' and not with b and (y,z) is incident 

with b and not with b'. 

iii. If b is of type II, then (x,y) is inaident with b iff {x,y} c:: b. 

iv. b and b' have no points of D in aonm:m. 

!:!QQ!.· Withoutlossof generality take (x,y) = (0,1). We may do so, because 

G is transitive on the points of D. Blocks incident with (0,1) are given in 

(*). on applying the map x 1+ x + 1 to (*) we find that the blocks incident 

with (1,0) are the following ones: 

3 3 6 6 3 5 6 4 5 6 {0,1,a,a }, {0,1,a ,a }, {0,1,a,a }, {a,a ,a ,a }, {a,a ,a ,a }, 

2 6 5 6 2 5 2 3 5 6 2 3 5 {0,1,a ,a }, {0,1,a. ,a }, {0,1,a ,a }, {a ,a ,a ,a }, {a,a ,a ,a }, 

4 s 3 s 3 4 3 4 s 6 2 3 4 6 {0,1,a ,a }, {0,1,a ,a }, }0,1,a ,a }, {a ,a ,a ,a }, {a ,a ,a ,a }. 

The first column of (*) and (**) consists of blocks of type II, all other 

blocks are of type I. Now (i), (ii) and {iii) are just a matter of verifica

tion. (iv) follows immediately from (ii) for blocks of type I, and from 

(iii) for blocks of type II. D 
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From (ii) and (iii} of this lemma we conclude the following. If each 

point of D is replaced by its equivalent partner and each block of D of 

type I by its equivalent partner, then incidence is not changed. Hence the 

peJ:IDutation of the points of D, which interchanges the equivalent pairs of 

points, is an automorphism of D. This automorphism is different from, and 

commutes with, the automorphisms provided by the group G. 

6.1.2. THEOREM. D is a 2 - (56,12,3) design. 

~· First we prove that D is a 1-design. Since every point is incident 

with fifteen blocks, the average number of points incident with a block 

equals twelve. By 6.1.1.iii a block of type II is incident with exactly 

twelve points. Now, since G acts transitively on blocks of the same type, 

also the blocks of type I are incident with exactly twelve points. We have 

seen that G has three orbits on the (unordered) pairs of lines of JF 
8 

(intersecting, parallel, skew}, for which the following pairs are repre

sentatives: 

{{0,1},{0,a}} , 3 {{O,l},{a,a }} , 2 4 {{0,1},{a ,a }} • 

From this it follows that the group 2 x G, which is an automorphism group of 

D, has seven orbits on the (unordered) pairs of points of D, for which the 

following ones are representatives: 

{(0,1),(0,a)}, 

{(1,0),(0,a)}, 

{ (1,0), (0, 1)} 

3 {(0,1),(a,a )} , 

3 {(1,0),(a,a )} , 

2 4 {(0,1),(a ,a)}, 

2 4 
{ (1, 0) , (a ,a ) } , 

Blocks incident with (0,1) and (1,0) are given in(*) and (**),respective

ly. Using the maps x r+ ax, x i+ x +a and x i+ a (x +a) , we obtain the blocks 

incident with (0,a), (a,a3) and (a2,a4}. The blocks incident with (0,a) are 

2 4 2 3 3 4 2 3 4 5 3 4 5 6 {O,a,a ,a }, {O,a,a ,a }, {O,a,a ,a }, <a ,a ,a ,a }, {a ,a ,a ,a ), 

3 35 5 235 245 
~0,1,a,a 1, {O,a,a ,a }, \0,1,a,a }, {1,a ,a ,a }, {1,a ,a ,a } , 

5 6 2 5 2 6 2 3 5 6 2 3 6 {O,a,a ,a }, {O,a,a ,a }, {O,a,a ,a }, {a ,a ,a ,a ), {1,a ,a ,a }. 

The blocks incident with (a,a3) are 
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3 3 4 3 4 2 4 2 4 6 (0,1,a,a ), {O,a,a ,a }, {1,a,a ,a }, (0,1,a ,a }, {1,a ,a ,a }, 

3 4 5 2 3 4 2 3 5 2 4 5 2 5 {a,a ,a ,a }, "(a,a ,a ,a }, {a,a ,a ,a ), {O,a ,a ,a }, {0,1,a ,a ), 

2 3 6 2 3 3 6 2 4 6 4 5 6 {a,a ,a ,a }, {O,a,a ,a }, {O,a,a ,a }, {O,a ,a ,a }, {O,a ,a ,a }. 

The blocks incident with (a2,a4) are 

2 4 2 4 5 2 4 5 3 5 3 5 {O,a,a ,a }, {O,a ,a ,a }, (a,a ,a ,a }, {O,a,a ,a }, {1,a,a ,a }, 

2 4 5 6 2 3 4 5 2 3 4 6 3 5 6 3 6 {a ,a ,a ,a }, (a ,a ,a ,a }, {a ,a ,a ,a ), {O,a ,a ,a }, {O,a,a ,a }, 

2 3 4 2 3 4 2 4 3 5 5 6 {1,a ,a ,a }, {O,a ,a ,a }, f{0,1,a ,a }, {0,1,a ,a ), {0,1,a ,a ). 

Blocks incident with (0,1) are marked by(. Blocks incident with (1,0) are 

marked by ). We see that for each of the seven pairs of points there are 

exactly three blocks incident with both points. Hence D is a 2 - (56,12,3) 

design. 0 

Next we shall see that D satisfies the hypothesis of 3.2.4. 'l'he "line 

graph of a geometry is the graph whose vertices are the lines, two vertices 

being adjacent iff the lines intersect. 

6.1.3. 'I'HEOREM. D has just three interieeation numbers 3, 2 and 0 (== k-r+>..). 

The alaee graph of Dis the comptement of the tine graph of PG(3,2). 

~· Let b 1 c JF
8 

and b2 c JF8 be non-equivalent blocks of D. Let bi and 

b2 be the equivalent partners of b 1 and b 2, respectively. Let B1, B2, Bi, 

B2 be the sets of points incident with b1, b 2, bi, b2, respectively. Then 

by 6.1.1 

Hence by 3.2.1.ii 

IB
1 

.n B
2

1 

This implies 

From (ii) and (iii) of 6.1.1 it follows that 
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I ca1 u B2) n <B2 u B2l I = 

.. I {<x,y> 2 I x _,, y, {x,y} c b1 {x,y} C bi I E F
8 

or 

{x,y} c b2 or {x,y} c b2}I 

L: 
if jbl n b2I .. 2 I 

if lb1 n b2I E {1,3} 

Hence 3, 2 and 0 are the intersection numbers of D. It is clear that the 

thirtyfive equivalence classes of blocks of D can be represented by the 

4-subsets of JF8 containing O. Therefore, they can also be represented by 

all 3-subsets of :m-
8

- {O}. Now using Result 4.2.3 we see that the class 

graph of Dis indeed the complement of the line graph of PG(3,2). 0 

By the above theorem, there exists a 2-1 correspondence between the 

blocks of D and the lines of PG(3,2), such that two blocks have no point in 

common if£ they correspond to the same line of PG(3,2}, two blocks have two 

points in common if£ they correspond to intersecting lines and two blocks 

have three points in common if£ they correspond to skew lines. 

6.1.4. THEOREM. Dis embeddabZe in a eymmetl"ia 2- (71,15,3) design. 

PROOF. We extend D to o1 with fifteen points (called net.i points), being the 

points of PG(3,2) and one block (nav bZoak). The points incident with the 

new block are precisely the new points. We define a new point to be inci

dent with an old block (block of D) iff the line of PG(3,2) corresponding 

to that block contains that point. Now it is easily seen that o1 is a 

1 - (71, 15, 15) design, and that any two distinct blocks of o1 have three 

points in common. This proves that the dual of o1, and therefore o1 itself, 

is a symmetric 2 - (71,15,3) d~sign. 0 

From 6.1;1.iii it follows that the seven equivalence classes of blocks 

of type II of D correspond to seven mutually intersecting lines of PG(3,2). 

For these lines we may take seven lines through one point or seven lines in 

one plane. Let o1 be the embedding of D in which blocks of type II corre

spond to linea through one point, and J.et o2 be the other embedding of D. 

* * Define o1 and o2 to be the dual of o1 and o 2, respectively. We shall show 
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that these four 2- (71,15,3) designs are non-isomorhic. To achieve this we 

define a block B of a 2 - (71,15,3) design to be special if the derived 

design with respect to B (i.e. the 2 - (15,3,2) subdesign of the 2 - (71,15,3) 

. design, formed by the points of B and the blocks distinct from B) consists 

of twO identical copies of a 2 - (15,3,1) design. It is not difficult to see 

that the residual design with respect to a special block B (i.e. the 

2- (56,12,3) subdesi9n of the 2 - (71,15,3) design, formed by the points off 

B and the blocks distinct from B) satisfies the hypothesis of Theorem 3.2.4 

and that its class graph is isomorphic to the complement of the block graph 

of the 2 - (15,3,1) design associated to B (which clearly is quasi-symmetric, 

since A= 1). From the proof of 6.1.4 it follows that the new blocks of o1 
and D2 are special. Moreover, 6.1.1.iii implies that the new point of o1 
which is incident with all old blocks of type II, is a special block of D~. 

By verification it turns out that these are the only special blocks of o1, 
* nd *h . o1 a o2• However, o2 as seven special blocks. They are the seven new 

points of o2, which lie in the plane of PG(3,2) correspondinq to the old 

blocks of type II. This already shows that 

we know that any 2- (15,3,1) design associated to a special block of o1 or 

o2 is the design formed by the points and lines of PG(3,2). By use of 

6.1.1.iii it follows that also the 2 - (15,3,1) design associated to the 

special block of D~ is the desi9n which comes from PG(3,2). Leto* be the 

residual design of D~ with respect to the special block. Then the class 

graph of o* is again the complement of the line graph of PG(3,2). This 

means that, similarly as for the design o, interchanging points and planes 

of PG(3,2) yields a second embedding of o* into a 2- (71,15,3) design. Let 

* * o3 be this 2 - (71,15,3) design and let o3 be the dual of o3 • By verifica-

* tion it follows that o3 has just one special block (the one we started 

with), but that o3 has seven·special blocks. This already shows that 

* * o1 tA o3• By further investigation it turns out that the 2- (15,3,1) design 

associated to any of the seven special blocks of o3 is again the design 

obtained from PG(3,2), however, the seven special blocks of o~ give other 

2- (15,3,1) designs (in fact all seven of them give the second design in 

* the list of WHITE, COLE & CUMMINGS [W3]). This proves that o2 </.< o3, and 

* * * * therefore o1 .:;. o1• Bence o1, o1, o2, o 2, o3 and o3 are all non-isomorphic. 

But there is still more. As remarked before, the 2 - ( 15, 3, 1 ) design associ-
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ated to one of the seven special blocks of n3 (these seven special blocks 

form an orbit under the automorphism group of o3) is the design formed by 

the points and lines of PG(3,2). This implies that once again we can make 

another 2- (71,15,3) design by taking away the (two identical) 2 - (15,3,1) 

designs and putting .them back again after having interchanged points and 
* . planes. Call this new design n4 , and let n4 be its dual. It turns out that 

* D4 has one special block, and that o4 has seven special blocks. Bence n4 is 
. * * * . not isomorphic to o1, o1, n2, n3 and o4 • In addition, o4 is not isomorphic 

* * to o2 and o3, since otherwise n3 would have been isomorphic to o1 or n1• 

Because of time considerations we did not check whether it is possible 

to produce still more 2 - (71,15,3) designs by playing once again the same 

* game with respect to a special block of o4 • Thus we have the following 

result. 

6.1.5. THEOREM. Thel'e e:cist at least eight 2 - (71,15,3) cle.signa. 

* * * * The designs D1, n2, o3 and n4 are given explicitly in Appendix II. By 

taking residual designs with respect to various special blocks we obtain 

(at least) four non-isomorphic 2 - (56,12,3) designs which satisfy the hypo

thesis of Theorem 3.2.4. One of these designs has a class graph which is 

non-isomorphic to the class graph of the other ones. 

An ova 7, in a 2 - ( 71, 15, 3) design is a set S of six points such that 

any block has two or no points with S in common, see [A4]. Let S be an oval. 

It is clear that exactly twentysix blocks do not meet s. Therefore, by 

3 • 1. 1 an oval of a 2 - ( 71 , 15, 3) design is equivalent to an empty sub

design with six points and twentysix blocks. From 3.1.1.ii (see also [A4]) 

it follows that the subdesign of the 2- (71,15,3) design formed by the 

points off sand the blocks not meetings is the dual of a 2- (26,6,3) 

design. By verification it follows that the following blocks of D provide 
. * an oval in n1: 

2 3 2 5 5 {1,a,a ,a }, {1,a,a ,a }, {0,1,a,a } 

2 4 5 2 4 5 3 4 6 {1,a ,a ,a }, {a,a ,a ,a }, {O,a ,a ,a }. 

We conclude this section with a remark about automorphism groups. The 

group 2 x G of order 336 is an automorphism group of D1, n2, o3 and their 
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* duals. The designs o4 and o4 have an automorphism group of order 48, viz. 

the stabilizer of a special block of o3 • F.C. Bussemaker has verified by use 

of a computer that the groups mentioned above are the full automorphism 

groups. 

ACKNOWLEDGEMENT. I thank H.J. Beker, F.C 1 Bussemaker, R.H.P. Denniston and 

M. Ball Jr. for various contributions to this section. 

6.2. SafE STRONGLY REGULAR GRAPHS 

Suppose A is the adjacency matrix of a strongly regular graph G on n 

vertices of degree d. Furthermore, assume that A admits the following 

structure: 

where Aij is a square matrix of size c := n/m having constant row sums 

equal to bij' say, for i,j = 1, ••• ,m. Prom 1.2.3.iii it follows that the 

eigenvalues of the matrix B := (bij) satisfy 

Hence (*) yields directives for the construction of strongly regular graphs, 

whose adjacency matrix admits this block structure. Let us consider two 

special cases of this structure. 

CASE 1: All diagonal entries of B are equal to r 0 , say, and all off-diagonal 

entries of Bare equal to r 1, say, that is, 

Hence by (*) 

This implies 

o.
2

(A) (m -1) +d) /m 

or 
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6.2.1. EXAMPLE. We wish to construct a strongly regular graph G with para-
3 2 2 meter set (q +q +q+l,q +q,q-1,q+l), admitting the block structure of case 1 

with m = q2 + 1 and c = q + 1. Then (see Appendix I) A2 (G) = q - 1, 

An (G) ,= - q - 1 and the formulas above yield r 0 = q, r l = 1. It is indeed 

possible to construct G, by use of this framework. To do so we define the 

permutation matrices P and Q of size q + 1 by 

and (Q) ij := { : 

It easily follows that 

Pk Q = (Pk Q) * = QP -k ' r pi = J • 
i=O 

if i + j = q + 2' 

otherwise. 

Fork= l, ••• ,q, define 1\. := PkQ = QP-k. Then 

k-t = p , J I (q+l)J I 

for k,t = 1, ••• ,q. Let p1, ••• ,pv (v := q2) be the points, and let 

c1, ••. ,cq+l be the parallel classes of an affine plane of order q. For 

i,j = 1, ... ,q2+1, define the (q+1) x (q+l) matrices 

J-Iifi=j, 

I 
.J. 2 2 . if i r j , i = q + 1 or j = q + 1 , 

1\. if i :F j, is q2, j s q2, anq: ck contains the 

line through pi and pj. 

By use of the formulas above it is straightforward to verify that the square 
3 2 matrix A of size q +q +q+ 1, built up with these block matrices Aij' 

satisfies 

2 2 (A+I) •(q+l)J+qI, 

Therefore, A is the adjacency matrix of the desired strongly regular graph. 
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A strongly regular graph with the same parameters is provided by the 

point graph of a generalized quadrangle of order (q,q) (see Section 5.1). However, 

for q > 4 the graphs constructed above need not be geometric. Indeed, we can 

order the points and the parallel classes of an affine plane of order q in 

such a way that the graph we obtained by our construction has ~ as an 

induced su.bgraph. Then by 5.3.1, this graph is not geometric, and therefore 

non-isomorphic to any of those which come from generalized quadrangles. 

As a second example of graphs admitting the block structure of case 1 

we mention the eleven incidence graphs of three linked 2 - (16,6,2) designs 

(see Section 4.2). 

CASE 2; All diagonal entries of B are equal to r 0 , say. The off-diagonal 

entries of B take exactly two values r 1 and r 2, say Cr1 > r 2J. Then by(*) 

the (0,1) matrix 

1 
B ;= --- (B - r (J - I) - r I) 

r
1
-r

2 
2 O 

has just three distinct eigenvalues, one of which is simple and belongs to 

the eigenvector j. Hence B is the adjacency matrix of a strongly regular 

graph G' with eigenvalues 

6.2.2. EXAMPLE. We wish to construct a strongly regular graph G with para

meters (40,12,2,4), admitting the block structure of case 2 with m = 10, 

c = 4, r 0 = r 2 = O, r 1 = 2. From t.. 2 (G) = 2, t..40 CG) = -4 and the above for

mulas it foilows that d' = 6,· t.. 2 (G') • 1, t..10 CG') = - 2. Hence G' is the 

complement of .the Petersen graph. For h = 0,1 and i,j = 2,3,4, define the 

square (0,1) matrices Thij of size four, by 

h if (k,.I!.) € {(1,1),(1,.1!.),(k,1),(k,.I!.)}, 

1 - h otherwise. 
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Then we have for h,h' 0,1; i,j,i' ,j' .. 2,3,4, 

* Thij Thji Thij J .. 2J, Thij + T(l-h)ij .. J' 

* j "' j' * 2Tlii 1 Thij Th'i'j' J if , Thij Thi'j , 

Thij T(l-h)i'j = 2TOii' • 

With the help of these properties it is relatively easy to check that the 

following two matrices are adjacency matrices of strongly regular graphs 

with parameters (40,12,2,4). 

0 '1'044 T034 '1'044 Ton Tl22 T024 0 '1'022 T032 '!'042 T022 T032 T042 

T044 0 T044 Tl34 0 T122 T034 0 T1:22 T022 0 To33 "'o•3 T022 T032 T042 

"043 
0 T133 T043 T024 0 T133 T024 T023 T033 0 T044 T022 T032 0 T042 

T044 T044 T133 T123 T033 0 T024 T024 T034 T044 0 T022 T023 T024 

T033 Tl43 T034 0 Tl23 '!'144 T122 0 T022 T022 0 T033 T043 T033 T033 

Tl22 0 T042 Tl32 0 T124 0 T044 Tl34 T023 0 '1'022 TQ33 0 T044 T033 T043 

T042 Tl22 Tl32 T142 T032 T022 T024 0 T022 T034 T044 T033 T043 

0 T043 T 133 T033 T144 T123 T123 T023 T023 0 T033 T033 T044 T044 

0 T042 0 T122 T044 T023 '1'132 T033 T024 0 T023 T033 0 T033 T044 T044 

0 T122 0 T042 T143 T022 T132 T033 0 0 T024 T024 0 T0.34 T034 '1'044 T044 

MATHON [MS] used the block structure of case 2 for the construction of 

strongly regular graphs with parameters {pq2 , ~(pq2-1) , l.o(pq2-s) , l.o(pq2-1)) 

for prime powers p and q, p = 1, q: -1 (mod 4). The strongly regular graph 

G', which provides the framework for Mathon's construction has parameters 

(p , ~ (p-1) , l.o (p-5) , l.o (p-1)) • 

Any graph constructed in one of the examples above has the property 
1 2 that p11 + 2 p11 • This implies that its adjacency matrix A satisfies 

where d denotes the degree of the graph. This yields the well-known fact 

that A+ I is the incidence matrix of a symmetric 2 - (n,d+l ,pi 1) design. 

Similarly, if a strongly regular graph satisfies pi 1 = pi1, then its ad-
1 jacency matrix itself is the incidence matrix of a symmetric 2 - (n,d,p11) 

design. This phenomenon is behind the next example, where we derive a 
1 2 1 2 strongly regular graph with p 11 + 2 = p 11 from one with p11 p11 • 



75 

6.2.3. EXAMPLE. We start with a description of the generalized quadrangle Q 
1 1 of order {2 -1,2 +1), 1 e :N, due to BALL [H6]. Consider AG(3,q), the three 

dimensional affine geometry over JF , with 
q 

1 q = 2 • Let S be a set of 

m := q + 2 lines from AG(3,q) passing through one point, such that no three 

lines lie in one plane. Such a set exists, because it corresponds to a com

plete oval in the projective plane PG(2,q), which exists iff q is even, see 

[D3]. It is easy to prove that each plane of AG(3,q) contains two or no 

lines from s. The points of Qare the points of AG(3,q); the lines of Qare 

the lines of S, and the lines of AG(3,q) which are parallel to a line of S; 

a point and a line are incident in Q, iff they are incident in AG(3,q). Now 

it is easy to prove that Q is a generalized quadrangle of order (q-1,q+l). 

Let us partition the adjacency matrix A of the line graph of Q {i.e. the 

point graph of the dual of Q) into m2 square block matrices of size q 2, 

according to the m parallel classes in Q: 

From the structure of Q it follows that we may arrange the lines such that 

Aij 0 if i • j 1 

Aij = Iq $ Jq if i odd and j 1 + i, or j odd and i = j + l ; 

for all other values of i,j, where PkR. is a permutation matrix of size q, 

for k,i = 11 ••• ,q. Now we derive a new matrix A from A by replacing 

for i 1,3, ••• ,m-1. Then it follows that 

~2 2 2 
A =A =qJ+qI, 

Since A is symmetric with all diagonal entries equal to one, the matrix 



76 

A - I is the adjacency matrix of a strongly regular graph with parameters 
2 2 (q (q+2),q +q-1,q-2,q). For q = 2 this graph is the Clebsch graph (see 

.t Section 4.1, Figure 2), but for all other values of q = 2 these strongly 

. regular graphs seem to be new. 

We remark that in the above example A has the·block structure of case 

1, whilst A has the block structure of case 2 with the cocktailparty graph 

on m vertices (complete ~-partite graph) as the underlying strongly regular 

graph. 

The remainder of this section will be devoted to strongly regular 

graphs with parameters (40,12,2,4). For convenience we call such graphs 

40-graphs. Examples 6.2.1 (q = 3) and 6.2.2 provide 40-graphs. The point 

graph of a generalized quadrangle of order {3,3) is a 40-graph. PAYNE [PS] 

proved that there are exactly two generalized quadrangles of order (3,3) 

{one being the dual of the other). In fact, these two geometric 40-graphs 

are the graph of Example 6.2.1 with q = 3, and the second graph of Example 
1 6.2.2. From p11 = 2 it follows that a subgraph of a 40-graph induced by all 

vertices adjacent to a given vertex, is regular of degree two, so a dis

joint union of cycles. But we can say more. 

6.2.4. LEMMA. Let G be a 40-graph. Let x be a verte:x: of G and Zet Gx be the 

subgraph of G induced by the vertiaes adjaaent to x. Then Gx is one of the 

following graphs: 

i. a 12-ayale; 

ii. the disjoint union of a 9-ayale and a triangle; 

iii. the disjoint union of wo 6-ayales; 

iv. the disjoint union of a 6-ayale and wo triangles; 

v. the disjoint union of four triangles. 

~·We only have to prove.that the number of vertices of any component 

of Gx is divisible .by three. If Gx is connected, there is nothing to prove. 

Suppose Gx has a component c of size c < 12. We partition A into sixteen 

block matrices according to: the vertex x, the vertices of c, the remaining 

vertices of Gx, and the vertices not adjacent to x. Then the entries of 



77 

0 c 12-c 0 

1 2 0 9 
B := 

1 0 2 9 

0 c/3 4-c/3 a 

are the average row sums of the block matrices of A. It is easy to see that 

On the other hand we know 

So the eigenvalues of B interlace the eigenvalues of A tightly. Bence, by 

1.2.3.ii the row sums of the block matrices are constant, so c/3 is an 

integer. D 

We associate with a 40-graph a 5-tuple (a1, ••• ,a5), where a 1, ••• ,a5 
denote the number of vertices x for which Gx has the form (i), ••• ,(v), 

respectively, of the above lemma. Using 5.3.1 we observe that a 40-graph is 

the point graph of a generalized quadrangle iff its 5-tuple is (0,0,0,0,40). 

The first graph of Example 6.2.2 has 5-tuple (0,0,4,24,12). R. Mathon 

(private communication) constructed a 40-graph with 5-tuple (0,0,0,36,4). 

WEISFEILER [Wl] describes an algorithm for generating strongly regular 

graphs with a given parameter set, based on the principle of backtracking. 

By use of this algorithm we wrote a computer program (in Algol 60) for the 

construction of 40-graphs. Weisfeiler's algorithm rejects isomorphism only 

partially. This means that some of the produced 40-graphs may be isomorphic. 

We had our program run for about ten minutes. It turned out that, although 

we obtained about twohundred (not necessarily non-isomorphic) 40-graphs, 

the process of finding all 40'-graphs still was in the beginning phase. For 

this reason there was no hope for completing the whole search. It seems 

that there are thousands of 40-graphs. Still we wanted to test the few 

hundred 40-graphs we found on isomorphism. A complete test on isomorphisms 

would have been.too expensive. Therefore we just computed the 5-tuple of 

each 40-graph. It turned out that twentyone of these 40-graphs had different 

5-tuples. So we found at least twentyone non-isomorphic 40-graphs. one of 

these is the first graph of Example 6.2.2. But none of these graphs has the 
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5-tuple of a geometric 40-graph or Mathon's 40-graph. So we have the follow

ing result. 

· 6.2.5. THEOREM. ThePe exist at Zeast twentyfoUI' strongZy !'egu"la!' gruphs 

i»ith pa!'ametePs (40,12,2,4). 

These 40-graphs are given in Appendix II, except for the three 40-

graphs that are already exhibited in the Examples 6.2.1 and 6~2.2. The 

first graph in the list is Mathon's 40-graph. 

We noticed already that a 40-graph gives a 2 - (40,13,4) design. There 

is no reason why non-isomorphic graphs should lead tot non-isomorphic 

designs. However, it has been checked that our twentyfour 40-graphs do 

produce twentyfour non-isomorphic 2 - (40,13,4) designs. 

An oval in a 2 - (40,13,4) design is a set S of four points, such that 

any block has at most two pofnts in common with S, see [A4]. Easy counting 

arguments give that twelve blocks are disjoint from s and four blocks have 

exactly one point in common with S. Suppose we have a 40-graph with a co

clique of size four, such that any vertex is adjacent to two or to no 

vertices of that coclique. Then this coclique of the 40-graph produces an 

oval in the corresponding 2 - (40, 13,4) design. Conversely, it can be proved 

that any oval in a 2 - ( 40, 13, 4) design, obtained from a 40-graph, corre

sponds to such a coclique. We see that the two 40-graphs of Example 6.2.2 

produce 2 - ( 40, 13, 4) designs with ten disjoint ovals. Also the last six 

40-graphs of Appendix II supply designs with ovals. The remaining sixteen 

40-graphs have no ovals. 

In 4.2.2 we saw that the chromatic number of any 40-graph is at least 

five. Since the complement of the Petersen graph is 5-colourable, it follows 

that the two 40-graphs of Example 6.2.2 are 5-colourable as well. 
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APPENDIX I 

GRAPHS AND DESIGNS 

This appendix contains the basic concepts and results from the theory 

of graphs and designs, which are used in the present monograph. Some general 

references are [BS], [C12], [H8], [W6] for graphs, [D3], [HS], [H17], [R3] 

for designs, and [B7], [C6] for both. We shall assume knowledge of Section 

1.1. 

A gpaph consists of a finite non-empty set of vertiaes together with a 

set of edges, where each edge is an unordered pair of vertices (so our 

graphs are finite, undirected and without loops or multiple edges) • The two 

vertices of an edge are called adjaaent (or joint). A graph is aomplete if 

every pair of vertices is an edge. The complete graph on n vertices is 

denoted by Kn. A graph without edges is called void (or null) • The aomple

ment of a graph G is the graph G on the same vertex-set as G, where any two 

vertices are adjacent whenever they are not adjacent in G. The disjoint 

union of a collection of graphs G1, ••• ,Gm on disjoint vertex sets is the 

graph whose vertex-set is the union of all vertex-sets, and whose edge-set 

is the union of all edge-sets of G1 , ••• ,Gm. A graph is disaonnected if it 

is the disjoint union of two or more graphs. Any graph G is the disjoint 

union of one or more connected (= not disconnected) graphs, called the 

aomponente of G. 

Let G be a graph on n vertices. A sequence of distinct vertices 

x0 , ••• ,xt of G is a path of length£ between x0 and x£ if {xi_1,xi} is an 

edge for i = 1, ••• ,£. The distance p(x,y) between two vertices x and y is 

the length of the shortest path between x and y (p(x,y) =•if x and y are 

in distinct components of G) •· The diameter of G is the largest distance in 

G. A sequence.of vertices x0 , ••• ,xt is a circuit of length t if x1, ••• ,xt 

are distinct, x0 = xt' t > 2 and {x
1

_1,xi} is an edge for i = 1, ••• ,t. The 

gizoth of G is the length of the shortest circuit in G. The adjaaenay ma.t:ri:r; 

of G is the n x n matrix A, indexed by the vertices of G, defined by 

{ 

1 if {x,y} is an edge, 
(A) = 

xy 0 otherwise. 
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Obviously, G has adjacency matrix J - A - I. The eigenvalues of G are the 

eigenvalues of A; they are denoted by A1 (G) ~ ••• ~ An(G) (the eigenvalues 

are real, because A is symmetric). We easily have that 

The inaidence matri:x: N of G, whose rows are indexed by the vertices and 

whose columns are indexed by the edges, is defined by 

if x E EI 

otherwise. 

The graph with adjacency matrix N*N - 2I is called the line graph of G, 

denoted by L (G) • The aubgrcr:ph of G induced by a set S of vertices of G is 

the graph with vertex-set s, where two vertices are adjacent whenever they 

are adjacent in G (a subgraph is always an induced subgraph) • Note that the 

adjacency matrix of a subgraph of G is a principal submatrix of A. A alique 
is a complete subgraph; a aoalique (or independent set of vertiaea) is a 

void subgraph. The size of the largest clique and coclique is denoted by 

w(G) and a(G), respectively. A aolou:t.>ing of G is a colouring of the verti

ces, such that adjacent vertices have different colours (i.e. a partition 

of the vertices into cocliques) • Vertices which are coloured with the same 

colour form a aoloUP alass. G is k-aolo'UI'able if G admits a colouring with 

k colours; the smallest possible value of k is the ahz>omatia numbeP of G, 

denoted by y (G) • It easily follows that 

y (G) ~ w (G) , y (G) a (G) ~ n • 

If y(G) = 2, then G is bipa.I'tite. By use of 1.1.2 it follows that if G is 

bipartite, then 

Ai (G) = -1.n+l-i (G) for i = 1, ••• ,n. 

Conversely, A1 {G} = -An{G) in!Plies that G is void or bipartite; this follows 

from the Perron-Frobenius theorem on non-negative matrices (see [C12], 

[M3]). If G can be coloured with y colours, such that all pairs of differ

ently coloured vertices are edges, then G is aomplete y-paPtite (i.e. the 

complement of the disjoint union of complete graphs). The complete bipartite 

graph (Y = 2) is denoted by K0 , where R. and m are the sizes of the two .,,m 
colour classes. By use of 1.1.2 it follows that 
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The de(JNJe (or valency) of a vertex is the number of vertices adjacent to 

that vertex. A graph is l'egu'La:P (of degree d) if all its vertices have the 

same degree (equal to d). 

Let G be regular of degree d. Then Aj = dj, hence d is an eigenvalue 

of G with eigenvector j. Moreover, the matrices A, J and I have a common 

basis of eigenvectors. By use of this we obtain 

If G is connected, then the Perron-Frobenius theorem yields that d is the 

largest eigenvalue of G with multiplicity one. Hence, d = Al(G) and its 

multiplicity equals the number of components of G (see (BS] for an element

ary proof) • If G is connected and d = 2, then G is called an n-ayate (or 

ail'auit}. G is strongty regula't' if G is not void or complete and the ad

jacency matrix A satisfies 

(1) AJ=dJ, 

2 for some number p11 • This is equivalent to requiring that A has precisely 

two distinct eigenvalues not belonging to the eigenvector j. 

Now let G be strongly regular. Then also G is strongly regular. Com

putation of the diagonal entries and the row sums of both sides of the 

second equality of (1) yields 

(2) 

AJ=dJ, 
2 1 2 A = dI + p11A + p11 CJ-A-I) • 

This reflects that G satisfies the following three properties: G is regular 
1 of degree d; for any pair of adjacent vertices there are exactly p11 ver-

tices adjacent to both; for any pair of non-adjacent vertices there are 
2 1 2 exactly p11 vertices adjacent to both. The integers n, d, p11 , p11 are the 

panzmeters of G. Let f be the multiplicity of the eigenvalue A2(G). Then 
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whence 

d+ (n-1).\.n(G) 

f= .\.h(G)-.\.2(G) , 

So, if n Y, 2f + 1, then .\.n (G} is rational, and therefore A- 2 (G) and .\.n (G) are 

integers. It is an easy exercise (see [C6]) to show that n = 2f + 1 implies 

By use of the above results and trace A= O, it follows that A- 2 (G) ~ 0 and 

.\.n(G) ~ -1. From (2) we have that A- 2 (G) = 0 iff p~l =d. It is easily seen 

that p11 = d reflects that G is a complete y-partite graph. If .\.n(G) = -1, 

then A- 2 (G) = O, hence G is the disjoint union of complete graphs and 
2 2 p11 = O. conversely, by (1) p 11 = 0 implies d = >.. 2 (G} and .\.n{G) = -1. These 

two families of strongly regular graphs are called imprimitive. Let x be a 

vertex of G. The two subaonstituents of G with respect to x are the sub

graphs of G induced by the vertices adjacent to x and by the vertices non-
1 1 

adjacent to x. The subconstituents are regular of degree p 11 and d - p11 , 

respectively. Examples of primitive (= not imprimitive) strongly regular 

graphs are: the pentagon (5-cycle), L(Km) form~ 5 (= tPiangulaP gruph}, 

L{K ) for m ~ 3 (= Zattiae graph) and their complements. The Petersen m,m 
gruph is the complement of L(K

5
} and has parameters (10,3,0,1). 

An inaidenae struature consists of a finite non-empty set v1 of points 

and a finite non-empty set v2 of blocks, together with a subset of v1 x v2 
of [lags. A point and a block are incident if they form a flag. Often blocks 

are identified with the sets of points with which they are incident; if so, 

blocks are denoted by capitals, otherwise we use small types. An incidence 

structure without flags is called empty. 

Let D be an incidence structure with v points and b blocks. An inci

dence structure D' formed by points and blocks of D is a substruatu:re of D 

whenever a point and a block are incident in D' iff they are incident in D. 

The inaidenae·mat:r>i:x: N of D, whose rows are indexed by the points and whose 

columns are indexed by the blocks, is defined by 

(N) = x,B { 
0

1 ifXEB, 

otherwise. 
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The .incidence structures with incidence matrices N* and J - N are called the 

dual. and the aompl.ement of D, respectively. The graph with adjacency matrix 

[~* ~] is the inaidence graph of D. Clearly D and its dual have the same 

incidence graph. We call D at- (v,k,A.) design (or t-design with paI'alfleters 

(v,k,i)) if all blocks have size k, and if any set oft points is contained 

in exactly }. blocks. A t- (v,k,>.) design with k < t or v-k < t is degenerate. 

A design is a t-design for some t. A eubdesign is a substructure which is a 

design. Note that we allow repeated blocks (two or more blocks incident 

with exactly the same points). 

Let D be a non-degenerate t- (v,k,>.) design. The complement of D is 

also a non-degenerate t-design. By elementary counting we see that for t ~ 1 

D is also a (t-1) - (v,k,}. (v-t+l) I (k-t+l)) design. In particular, D is a 

1 - (v,k,r) design, where 

r equals the number of blocks incident with any point. counting flags yields 

bk = vr. If D is a 1 - (v,k,r) design, then rk is the largest eigenvalue of 

NN* and hence by 1.1. 2 rrk is the largest singular value of N. A 2-design 

is also called (bal.anaed incompZ.ete) bwak design. Now let D be a non

degenerate 2 - (v,k,A.) design. In terms of the incidence matrix N this means 

(3) N*J=kJ, NJ=rJ, NN*=A.J+(r-A)I. 

* NN has eigenvalues A.v + r - ). = rk and r - ). of multiplicity 1 and v - 1, 

respectively. By 1.1.2 these eigenvalues are the squares of the singular 

value!il of N. From rk '# O, r - ). ttj. O, it follows that v = rank NN* = rank N, 

hence b ~ v (Fisher's inequality). If b = v (i.e. r = k), Dis called 

symmetria. Formula (3) yields N(N* - (A./r)J) = (r - >.)I. If D is symmetric, N 

is square, hence (N* - (A./r)J)N = (r-A.)I, i.e. N*N = A.J + (r-A.)I, and 

therefore the dual of D is a symmetric 2 - (v,k,A.) design as well. Let D be 

symmetric, and let B be a block of D. The subdesign formed by the points 

incident with.Band the blocks distinct from B is a 2 - (k,A.,A.-1) design 

(possibly degenerate), called the derived design of D with respect to B. 

Similarly, the subdesign formed by the points not incident with B and the 

blocks distinct from Bis a 2- (v-k,k-A.,>.) design (possibly degenerate), 

called the residual. design of D with respect to B. A 2- (v-k,k->.,A.) design 

D' is embeddabZ.e in D if D' is a residual design of D. For example, the 
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points and lines of PG(2,q), the projective plane of order q, form a sym-
2 metric 2- (q +q+1,q+1,1) design; the degenerate 2- (q+l,1,0) design is a 

derived design, and the affine plane of order q, which is a 2 - (q2,q,1) 

design, is a residual design. 

A pai>tiaZ. geometry with pal'al11eters (s,t,a), s,t,a E JN, is a 

1 - (v,s+l,t+l) design satisfying the following two conditions: 

any two blocks have at most one point in common; 

(4) for any non-incident point-block pair (x,B) the number of 

blocks incident with x and intersecting B equals a. 

For a partial geometry we speak of lines rather than blocks. Let D denote a 

partial geometry with parameters (s,t,a) and incidence matrix N. The graph 

with adjacency matrix NN* - (t + 1) I is the point (J!'aph of D. The Une graph 

of D is the point graph of the dual of D. From the definition it readily 

follows that the point graph G of D is strongly regular with parameters 

(v, s(t+l) ,t(a-1) +s-1,a(t+l)) • 

By use of our identities for strongly regular graphs we obtain 

t. 1 CG) = s(t+l), t. 2 (G) = s-a, /.n(G) = -t-1, 

v = (s + 1) (st +a) /a , b = (t + 1) (st +a) /a • 

Hence NN* has the eigenvalues (s + 1) (t + 1) , 0 and s + t + 1 - a of multiplicity 

1, s(s+1-a)(st+a) /a(s+t+l-a) and st(s+1)(t+1) /a(s+t+1-a), 

respectively. By 1.1.2 the square roots of these eigenvalues are the singular 

values of N. A partial- subgeometry is a substructure, which itself is a 

partial qeometry. Let D' be a partial subgeometry of D with parameters 

(s',t',a). Then the point graph of D' is an induced subgraph of the point 

graph of D. This can be seen as follows. Let x and y be two points of D' and 

suppose there exists a line L of o, which is not a line of D', incident with 

x and y. Let M be a line of D.' incident with x. By (4) there are a lines of 

D' incident with x and intersecting M. Hence there are at least a+ 1 such 

lines in D. This is a contradiction. so two points are on a line of D' iff 

they are on a line of o, which proves the claim. A partial geometry with 

parameters (s,t,1) is the same as a generoUzed quad:riangZ-e of order (s,t). 
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APPENDIX II 

TABLES 

First we list the twentyone strongly regular graphs with parameters 

(40,12,2,4), as promised in Section 6.2. Together with the ones of Examples 

6.2.1 and 6.2.2 they form the twentyfour 40-graphs of Theorem 6.2.5. The 

respective 5-tuples of the 40-graphs listed below are: 

(0,0,0,36,4) 

(12, 18,6,3, 1) 

(12, 12,0, 14, 2) 

(6,22,6,3,3) 

(0,32,0,0,8) 

(0,24,0, 12,4) 

(2, 8, 12, 16, 2) 

2 3 4 5 6 7 8 9 10 11 12 13 
1 3 4 14 15 16 17 18 19 20 21 22 
1 2 4 23 24 25 26 27 28 29 30 31 
1 2 3 32 33 34 35 36 37 38 39 40 
t 6 7 14 17 20 23 27 31 32 37 39 
I 5 7 15 18 21 24 2B 29 33 35 40 
I 5 6 16 19 22 25 26 30 34 36 38 
1 9 10 14 17 20 25 26 30 33 35 40 
1 B 10 15 18 21 23 27 31 34 36 38 
1 a 9 16 19 22 24 20 29 32 37 39 
1 12 13 14 17 20 24 28 29 34 36 38 
I 11 13 IS IS 21 25 26 30 32 37 39 
1 11 12 16 19 22 23 27 31 33 35 40 
2 5 8 II IS 16 23 28 30 32 36 40 
2 6 9 12 14 16 24 26 31 33 37 38 
2 7 10 13 14 15 25 27 29 34 35 39 
2 5 6 11 IS 19 24 26 31 34 35 39 
2 6 9 12 17 19 25 27 29 32 36 40 
2 7 10 13 17 18 23 28 30 33 37 38 
2 5 s 11 21 22 25 27 29 33 37 38 
2 6 9 12 20 22 23 28 30 34 35 39 
2 7 10 13 20 21 24 26 31 32 36 40 
3 5 9 13 14 19 21 24 25 32 35 38 
3 6 10 11 15 17 22 23 25 33 36 39 
3 1 a 12 16 18 20 23 24 34 37 40 
3 1 a 12 1s 11 22 21 2s 32 35 38 
3 s 9 13 16 18 20 26 28 33 36 39 
3 6 10 11 14 19 21 26 27 34 37 40 
3 6 10 11 16 18 20 30 31 32 35 38 
3 7 8 12 14 19 21 29 31 33 36 39 
3 5 9 13 15 17 22 29 30 34 37 40 
4 5 10 12 14 18 22 23 26 29 33 34 
4 6 8 13 15 19 20 24 27 30 32 34 
4 7 9111617212528313233 
4 6 8 13 16 17 21 23 26 29 36 37 
4 7 9 11 14 18 22 24 27 30 35 37 
4 5 10 12 15 19 20 25 28 31 35 36 
4 7 9 11 1S 19 20 23 26 29 39 40 
4 5 10 12 16 17 21 24 27 30 38 4() 

4 6 S 13 14 18 22 25 2B 31 38 39 

(8, 18,2,9,3) (16,14,4,5,1) 

(4,20,4,10,2) (18,18,0,3,1) 

(9,18,0,9,4) (18 I 20 I 0 I 0 r 2) 

(18, 12,9,0, 1) (27, 12,0,0, 1) 

(0, 12,0, 18, 10) (0,36,0,0,4) 

(8,8,0,20,4) (6,12,12,10,0) 

(10,8, 18,4,0) (0, 16,6, 12,6) • 

10 !S Ul 17 21 22 24 2B 32 35 38 
B 9 10 14 19 23 24 32 33 34 39 
7 12 15 16 19 23 24 30 31 35 39 
8 10 13 17 18 20 21 30 32 37 39 
9 12 14 18 20 21 22 28 31 34 39 
9 12 13 15 17 18 23 31 36 37 38 
5 10 11 14 16 18 24 33 36 37 38 
4 II 15 IS 20 22 24 29 34 35 36 
2 5 6 11 16 20 25 30 35 37 39 
2 4 7 12 13 22 25 29 33 38 39 
8 9 13 15 19 21 25 ;;a 30 33 36 
5 6 10 17 19 21 25 29 34 35 36 
6 10 11 16 19 22 26 28 31 34 37 
5 7 15 17 19 22 26 29 30 32 37 
3 6 8 11 14 21 26 29 31 38 39 
3 7 9 13 20 23 26 29 32 34 36 
4 6 12 14 20 24 26 28 30 33 36 
s s 1 a 23 25 26 20 32 35 38 
3 11 12 13 14 20 27 28 32 35 38 
5 8 9 16 17 19 27 29 31 33 38 
4 5 11 12 15 23 27 32 33 34 37 
5 a 10 u 1• 23 21 30 31 35 36 
3 6 16 IS 21 22 27 28 29 30 33 

l 2 3 1 a 11 25 21 28 31 34 31 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 16 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 s 11 13 11 ia t9 23 24 29 39 40 
B 10 12 14 15 16 20 23 25 28 37 40 
3 4 9 11 14 17 22 23 25 34 38 40 
3 5 6 13 15 20 22 24 25 32 33 40 
1 2 4 14 16 10 19 21 25 31 36 40 
2 7 10 11 17 20 21 23 26 31 35 40 
2 5 8 12 13 16 21 24 26 30 30 40 
1 3 8 9 12 10 19 22 26 33 37 40 
6 8 II 12 16 17 22 27 32 39 40 
4 7 9 13 14 21 24 27 29 35 40 
1 7 10 15 18 19 20 27 30 34 40 
2 3 4 5 9 10 15 26 27 28 36 40 

20 29 30 31 32 33 34 35 36 37 38 39 

9 10 15 16 17 21 22 24 28 32 35 38 
6 8 9 10 14 19 23 24 32 33 34 39 
4 7 12 15 16 19 23 24 30 31 35 39 
3 0 10 13 11 1e 20 21 30 32 31 39 
7 9 12 14 10 20 21 22 28 31 34 39 
2 9 11 15 17 18 20 23 ll 35 36 37 
3 5 10 11 14 16 18 24 33 36 37 38 
2 4 12 13 15 18 22 24 is 3:4 36 38 
I 2 5 6 12 13 16 25 30 37 38 39 
I 2 4 7 11 20 22 25 29 33 35 39 
6 7 10 13 15 19 21 25 28 30 34 36 
3 5 8 9 17 19 21 25 29 33 35 36 
4 9 11 ~16 19 22 26 28 31 33 37 
2 7 15 17 19 22 26 29 30 32 37 
1 6 B 11 14 21 26 29 31 38 39 
1 7 9 13 20 23 26 29 32 34 36 
l 6 12 14 20 24 26 28 30 33 36 
4 5 8 7 8 23 25 26 28 32 35 38 
2 3 11 12 13 14 20 27 28 32 35 38 
4 5 6 10 16 17 19 27 29 31 34 38 

4 5 11 12 15 23 27 32 33 34 37 
5 8 10 13 14 23 27 30 31 35 36 
3 6 16 1S 21 22 27 28 29 30 33 

1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 1e 24 26 21 29 30 31 32 

u 14 1s 16 11 1e 25 21 33 34 Js 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 11 13 17 18 19 23 24 29 39 40 
e 10 12 14 1s 16 20 23 25 .za 31 40 
3 4 9 11 14 17 22 23 25 34 38 40 
3 5 6 13 15 20 22 24 25 32 ll 40 
I 2 4 14 16 18 19 21 25 31 36 40 
2 7 10 12 13 17 21 23 26 31 38 40 
2 5 8 11 16 20 21 24 26 30 35 4() 

1 3 6 10 12 18 19 22 26 34 37 4() 

6 7 8 11 12 16 17 22 27 32 39 40 
6 7 9 13 14 21 24 27 29 35 40 
7 a 9 15 rn 19 20 21 30 n 40 

2 3 4 5 9 10 15 26 27 28 36 40 
28 29 30 31 32 33 34 35 36 37 38 39 



86 

9 10 15 16 17 21 22 24 28 32 35 3B 
7 8 9 14 15 19 23 24 30 32 33 39 
4 6 10 12 16 19 23 24 31 34 35 39 
3 8 10 13 17 18 20 21 30 32 37 39 
7 9 12 14 18 20 21 22 28 31 34 39 
3 9 !1 14 15 17 18 23 31 36 37 38 
2 5 10 12 13 16 18 24 33 36 37 38 
2 -.4 11 15 18 20 22 24 29 34 35 36 
1 2 5 6 11 16 20 25 30 35 37 39 
l 3 4 7 11 14 22 25 29 33 38 39 
6 a a 10 13 19 21 25 28 33 34 36 
3 5 7 15 17 19 21 25 29 30 35 36 
• 7 11 15 16 19 22 26 28 30 31 37 
2 5 6 10 17 19 22 26 29 32 34 37 
1 2 6 8 12 13 21 26 29 31 38 39 
1 3 7 9 13 20 23 26 29 32 34 36 

6 12 14 20 24 26 28 30 33 36 
6 7 8 23 25 26 28 32 35 38 

1l 12 13 14 20 27 26 32 35 38 
a a 16 17 19 21 29 31 33 38 

4 s 11 12 15 23 27 32 33 34 37 
s a 10 13 1• 23 21 30 31 35 36 
3 6 16 !B 21 22 27 28 29 30 33 

1 2 3 7 8 17 25 27 28 31 34 37 
9 JO 11 12 IS 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 11 13 17 18 19 23 24 29 39 40 
8 10 12 14 15 16 20 23 25 28 37 40 
2 4 g 12 13 17 22 23 25 34 38 40 
3 5 6 13 15 20 22 24 25 32 33 40 
1 2 4 14 16 18 19 21 25 31 36 40 
2 7 10 11 17 20 21 23 26 31 35 40 
3 s a 11 14 16 21 24 26 30 3e 40 
1 3 8 9 12 18 19 22 26 33 37 40 
6 1 8 11 12 16 17 22 27 32 J9 40 
4 6 7 9 13 14 21 24 27 29 35 40 
1 6 7 10 15 18 19 20 27 30 34 40 
2 3 4 5 9 10 15 26 27 28 36 40 

28 29 30 31 32 33 34 35 36 37 38 39 

9 10 15 16 17 21 22 24 28 32 35 38 
6 8 9 10 12 19 23 24 33 34 35 39 

7 14 15 16 19 23 24 30 31 32 39 
a 10 12 13 11 10 21 30 31 3S 39 
9 12 14 18 20 21 22 28 31 34 39 
9 13 15 17 18 20 23 31 32 36 37 
5 10 11 16 18 20 24 33 35 36 37 
4 11 14 15 18 22 24 29 34 36 38 
2 5 6 11 14 16 25 30 37 38 39 
2 4 7 13 20 22 25 29 32 33 39 
8 9 13 15 19 21 25 28 JO 33 36 
4 5 16 17 19 21 25 29 31 35 36 
6 10 11 16 19 22 26 28 31 34 37 
5 8 9 17 19 22 26 29 32 33 37 
3 6 8 l1 20 21 26 29 31 35 39 
3 7 9 12 13 23 26 29 34 36 38 
• 6 12 14 20 24 26 28 30 33 36 
5 6 7 a 23 25 26 28 32 3S 3& 
3 1l 12 13 14 20 27 28 32 JS 38 
6 7 10 15 17 19 27 29 30 34 38 
4 5 11 12 15 23 27 32 33 34 37 
5 8 10 13 14 23 27 30 31 35 36 
3 6 16 18 21 22 27 28 29 30 33 

1 2 3 1 a 11 25 21 2a 31 34 31 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 !B 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 s 11 13 17 18 19 23 24 29 39 40 
a 10 12 14 1s 16 20 23 2s 2s 37 40 
3 4 9 11 17 20 22 23 25 34 35 40 
3 5 6 12 13 15 22 24 25 33 38 40 
1 3 6 10 14 18 19 21 25 34 36 40 
2 7 10 11 14 17 21 23 26 31 38 40 
2 s a D 16 20 21 24 26 Jo 32 40 

2 7 12 15,18. 19 22 26 30 37 40 
7 8 11 12 16 17 22 27 32 39 40 
6 7 9 13 14 21 24 21 29 35 40 
4 a 9 16 1a 19 20 21 31 33 40 

2 3 4 5 9 10 15 26 27 28 36 40 
26 .29 30 31 32 33 34 35 36 37 38 39 

9 10 15 16 17 21 22 24 28 32 35 38 
7 8 9 12 IS 24 30 33 35 39 

6 10 14 16 24 31 32 34 39 
8 10 II 17 18 20 21 30 35 37 39 
9 12 14 18 20 21 22 28 31 34 39 
9 12 13 15 17 18 23 31 36 37 38 
5 10 11 14 16 IS 24 33 36 37 38 
4 13 15 18 20 22 24 29 32 34 36 
2 5 6 13 16 2() 25 30 32 37 39 
3 4 7 12 13 22 25 29 33 38 39 
7 13 15 16 19 21 25 28 30 31 36 
5 6 10 17 19 2l 25 29 34 35 36 
g 9 10 11 19 22 26 28 33 34 37 
5 7 15 17 19 22 26 29 JO 32 37 
2 6 8 11 14 21 26 29 31 38 39 
3 7 9 11 20 23 26 29 34 35 36 
4 6 12 14 20 24 26 28 30 33 36 

• 5 6 1 8 23 2s 26 2a 32 35 38 
2 3 11 12 13 14 20 27 26 32 35 38 
• 5 8 9 16 17 19 27 29 31 33 30 
1 4 s 11 12 15 23 21 32 33 34 37 
1 s 8 10 13 14 n 21 30 31 35 36 
2 3 6 16 18 21 22 27 28 29 30 33 
1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 11 13 17 18 1'9 23 24 29 39 40 
8 10 12 14 15 16 20 23 25 2S 37 40 
2 4 9 11 14 17 22 23 25 34 38 40 
3 5 6 11 15 20 22 24 25 33 35 40 
1 3 8 9 14 18 19 21 25 33 36 40 
2 7 10 13 17 20 21 23 26 31 32 40 
3 s a 12 13 16 21 24 26 30 Ja 40 

4 12 16 1B 19 22 26 31 37 40 
a 11 12 16 11 22 21 32 39 40 
7 9 13 14 21 24 27 2:9 35 40 
7 10 15 18 19 20 27 30 34 40 

2 3 4 5 9 10 1 s 26 27 28 36 40 
26 29 30 31 32 33 34 35 36 37 38 39 

10 12 14 16 17 20 22 24 28 32 35 38 
4 7 9 10 15 16 23 24 32 33 37 39 
4 8 11 12 14 19 23 24 30 34 35 39 
2 3 11 13 17 18 21 22 31 32 38 39 
1 a 10 12 13 11 10 20 30 36 37 39 

10 11 14 15 18 20 21 23 28 31 34 37 
2 5 14 16 18 19 21 24 29 31 35 36 
3 5 9 15 18 20 22 24 29 33 34 38 
2 8 10 11 13 14 19 25 28 33 36 38 

2 5 6 9 21 22 25 30 34 35 39 
4 6 9 16 17 20 25 29 35 36 37 
3 5 13 14 21 23 25 29 32 33 37 
5 9 12 16 19 22 26 28 31 34 37 
3 6 7 9 12 15 26 31 36 38 39 
6 a 14 11 19 22 26 29 30 32 37 
2 7 11 13 20 23 26 29 30 34 38 
4 5 11 15 21 24 26 28 30 33 36 
5 6 7 a 23 2S 26 28 32 35 38 

l 7 9 13 15 20 21 27 2S 30 32 35 
1 s 6 8 !I 16 19 27 31 32 33 39 
4 6 7 10 12 17 19 27 29 33 34 38 
1 4 a 10 u 15 23 21 29 31 Js 36 
2 3 6 12 16 18 22 27 28 30 33 36 
1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9 13 17 18 19 23 24 29 39 40 
7 8 II 12 15 16 21 22 25 28 39 40 
3 s 10 15 16 17 19 23 25 31 38 40 

6 7 13 14 20 22 24 25 30 33 40 
2 4 12 15 18 19 20 25 34 36 40 
s 9 12 11 20 21 23 26 :n JS 40 
6 8 10 13 16 21 24 26 32 36 40 
3 7 10 11 18 19 22 26 33 37 40 
7 9 11 14 17 22 23 27 32 34 40 
S 6 11 12 13 1S 24 27 35 38 40 
4 8 9 14 16 1B 21 27 30 37 40 
3 4 5 10 14 20 26 27 26 2:9 40 

28 29 30 31 32 33 34 35 36 37 38 39 

9 10 15 16 17 21 22 24 20 32 35 38 
6 7 10 12 15 19 23 24 30 34 35 39 

8 9 14 16 19 23 24 31 32 33 39 
8 10 11 17 18 20 21 30 35 37 39 

7 9 12 14 18 20 21 22 28 31 34 39 
2 9 13 15 17 18 20 23 31 32 36 37 
2 s 10 11 14 16 18 24 33 36 37 38 
3 • 12 13 15 18 22 24 29 34 36 38 
1 3 5 6 12 13 16 25 30 37 38 39 
1 . 2 4 7 13 20 22 25 29 32 33 39 
4 7 13 15 16 19 21 25 28 30 31 36 
2 8 9 17 19 21 25 29 33 35 36 
6 9 10 H 19 22 26 28 33 34 37 
3 7 15 17 19 22 26 29 30 32 37 
l 6 8 11 14 21 26 29 31 38 39 
1 7 9 11 20 23 26 29 34 35 36 
l 4 6 12 14 20 24 26 28 30 33 36 
• 5 6 1 a 23 2s 26 28 32 35 38 
2 3 11 12 13 14 20 27 28 32 35 38 
4 5 6 10 16 17 19 27 29 31 34 38 
1 4 5 11 12 15 :13 27 32 33 34 37 
I 5 8 10 13 14 23 27 30 31 35 36 
2 3 6 16 1e 21 22 21 20 29 30 33 
1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 11 13 17 18 19 23 24 29 39 40 
a 10 12 14 15 10 20 23 2s 2s 37 40 
2 4 9 11 14 17 22 23 25 34 38 40 
3 s 6 11 15 20 22 24 25 33 35 40 
l 3 6 10 14 18 19 21 25 34 36 40 
3 7 10 12 13 17 21 23 26 31 38 40 
2 s 8 13 16 20 21 24 26 30 32 40 
l 4 12 16 18 19 22 26 31 37 40 
6 a 11 12 16 11 22 27 32 39 40 
4 7 9 13 14 21 24 27 29 35 40 
1 8 9 15 18 19 20 27 30 33 40 
2 3 4 5 9 10 15 26 27 28 36 40 

28 29 30 31 32 33 34 35 36 37 38 39 

10 12 14 16 17 20 22 24 28 32 35 38 
s 7 9 10 15 22 23 24 32 33 34 39 
4 a 11 12 14 19 23 24 Jo 34 35 39 
3 e 10 13 11 rn 21 22 31 32 36 39 
2 7 11 12 13 17 18 20 30 37 38 39 

10 11 14 15 18 20 21 23 28 31 34 37 
. 2 5 14 16 18 19 21 24 29 31 35 36 

3 4 9 15 16 18 20 24 29 33 37 38 
2 8 10 11 13 14 19 25 28 33 36 38 

2 4 6 9 16 21 25 30 35 37 39 
5 6 9 17 20 22 25 29 34 35 36 
3 s 13 14 21 23 25 29 32 33 37 
5 9 12 16 19 22 26 28 31 34 37 
3 6 7 9 12 IS 26 31 36 38 39 
6 8 14 17 19 22 26 29 30 32 37 
1 a 10 13 20 23 26 29 30 34 36 
4 5 11 15 21 24 26 28 30 33 36 
5 6 7 B 23 25 26 28 32 35 38 
7 9 13 15 20 21 27 28 30 32 35 
5 6 8 11 16 19 27 31 32 33 39 
6 7 10 12 17 19 27 29 33 34 38 
2 4 11 13 15 23 27 29 31 35 38 
3 6 12 16 18 22 27 28 30 33 36 

1 2 3 / a 17 2s 21 2e 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 -39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9 13 17 18 19 23 24 29 39 40 
7 8 11 12 15 16 21 22 25 28 39 40 

S 10 IS 16 17 19 23 25 31 38 40 
6 7 13 14 20 22 24 25 30 33 40 
2 4 12 15 18 19 20 25 34 36 40 
a 9 12 11 20 21 23 26 31 35 40 

6 11 13 16 21 24 26 32 38 40 
7 10 11 lS 19 22 26 33 37 40 

4 9 11 14 16 17 23 27 32 37 40 
5 8101213152427353640 

'1 8 9 14 18 21 22 27 30 34 40 
2 4 5 10 14 20 26 27 28 29 40 

28 29 30 31 32 33 34 35 36 37 38 39 
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10 12 14 16 17 20 22 24 28 32 35 38 10 12 14 16 17 20 22 24 28 32 35 38 10 12 14 16 17 20 22 24 28 32 35 38 
5 7 10 15 16 19 23 24 30 32 34 39 5 7 10 15 16 19 23 .24 30 31 35 39 s 7 10 15 16 19 23 24 31 32 33 39 
4 8 11 12 14 19 23 24 31 33 35 39 4 8 11 12 14 19 23 24 32 33 34 39 4 8 11 12 14 19 23 24 30 34 35 39 
l 0 10 13 17 18 21 22 30 32 37 39 3 8 10 1.3 17 18 21 22 30 31 3$ 39 3 a 10 13 11 rn 21 22 31 32 36 39 
2 7 II 12 13 17 18 20 31 36 38 39 2 7 11 12 13 17 18 20 32 36 37 39 7 11 12 13 17 18 20 30 37 38 39 

10 11 14 15 18 20 21 23 28 31 34 37 10 11 14 15 18 20 21 23 28 31 34 37 w 11 14 15 18 20 21 23 28 31 34 37 
2 5 9 14 18 21 22 24 29 33 35 37 2 5 9 14 18 21 22 24 29 33 34 38 2 5 9 14 18 21 22 24 29 34 35 36 
3 '4 9 15 16 18 20 24 29 34 36 38 3 4 9 15 16 18 20 24 29 35 36 37 3 4 9 15 16 1S 20 24 29 33 37 38 
7 8 10 13 14 19 20 25 28 30 33 36 7 8 10 13 14 19 20 25 28 30 33 36 7 8 10 1J 14 19 20 25 2$ 30 33 36 
I 2 4 6 9 12 15 25 35 '36 37 39 4 6 9 11 16 25 34 36 38 39 l' 4 6 9 12 15 25 35 36 37 39 
3 5 6 14 16 1'i 19 25 29 32 36 37 6 10 17 19 22 25 29 33 35 37 3 6 14 16 17 19 25 29 32 36 37 
I 3 5 10 13 21 23 25 29 33 34 JS 5 13 14 15 23 25 29 31 36 38 1 s 10 13 21 23- 25 29 33 34 38 
4 5 9 12 16 19 22 26 2B 31 34 37 9 12 16 19 22 26 2a 31 34 37 4 12 16 19 22 26 28 31 34 37 
I 3 6 7 9 11 22 26 30 34 38 39 3 6 7 9 12 21 26 30 35 37 39 7 9 11 22 26 31 33 38 39 
2 6 8 10 17 19 22 26 29 31 33 3B 6 8 12 17 19 20 26 29 30 34 3B a 10 11 19 22 26 29 30 34 Ja 
1 2 8 11 13 20 23 26 29 30 35 37 2 8 10 13 21 23 26 29 32 33 37 B 11 13 20 23 26 29 31 35 36 
I 4 5 11 1S 21 24 26 28 30 33 3£ 4 5 II 15 21 24 26 28 30 33 36 5 11 15 21 24 26 28 3(} 33 36 
4 5 6 7 a 23 25 26 20 32 35 3B 5 6 7 a 23 25 26 28 32 35 38 6 7 8 23 25 26 28 32 35 38 
2 3 9 II 13 15 21 27 28 32 35 38 3 9 11 13 15 21 27 28 32 35 38 9 11 13 15 21 27 28 32 JS 38 
1 5 6 a 9 16 21 27 31 32 33 39 5 6 8 9 15 22 27 31 32 33 39 6 a 9 16 21 27 30 32 34 39 
4 6 7 12 17 19 20 27 29 30 34 35 6 7 14 16 17 19 27 29 31 32 36 7 12 17 19 20 27 29 31 .)3. 35 
l 4 7 13 14 15 23 27 29 31 32 36 4 7 11 13 20 23 27 29 30 34 35 7 13 14 15 23 27 29 30 32 37 
2 3 6 12 16 18 22 27 28 30 33 36 2 3 6 12 16 18 22 27 28 30 33 36 6 12 16 18 22 27 28 30 33 36 
1 2 3 7 s 11 2s z1 za 31 34 31 I 2 3 7 8 17 25 27 28 31 34 37 1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 9 10 11 12 IB 24 26 27 29 30 31 32 9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 13 14 15 16 17 18 25 27 33 34 35 39 13 14 15 16 17 18 25 27 33 34 JS 39 
19 20 21 22 23 24 25 26 36 37 38 39 19 20 21 22 23 24 25 26 36 37 38 39 19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9 13 17 10 19 23 24 29 39 40 l 6 9 13 17 16 19 23 24 29 39 40 I 6 9 13 17 18 15} 23 24 29 39 40 
7 a 11 12 1s 16 21 22 2s w 39 •o 7 s 11 12 1$ 16 2:1 42 25 28 39 40 7 S 11 12 1S 16 21 22 25 28 39 40 
2 4 9 14 16 17 21 23 25 31 38 40 2 4 9 14 15 17 22 23 25 32 37 40 5 9 15 17 20 22 23 25 31 35 40 
3 5 6 13 15 20 22 24 25 30 35 40 2 4 6 12 13 20 21 24 25 33 35 40 4 6 13 14 16 21 24 25 30 38 40 
1 2 4 II IS 19 20 22 25 33 34 40 1 3 5 t6 ta 19 20 21 25 3o 34 40 2 4 11 18 19 20 22 25 33 34 40 
3 7 9 12 15 17 20 23 26 32 37 40 3 7 9 11 16 17 20 23 26 31 38 40 a 9 12 14 17 21 23 26 32 37 40 
2 6 0 12 13 u 21 24 26 32 36 40 6 7 10 13 15 22 24 26 32 36 40 6 ; :~ :~ :~ ~ ;~ ;} i~ ~ :~ l 3 1 10 16 18 19 21 26 31 36 40 2 8 11 14 18 19 22 26 31 36 40 1 3 
5 a 9 10 ll 17 22 23 27 34 35 40 8 9 10 12 17 21 23 27 34 35 40 7 9 10 11 16 17 23 27 34 38 40 
4 6 7 10 11 13 16 24 27 33 38 40 6 8 11 13 14 16 24 27 30 30 40 6 8 10 11 13 22 24 27 33 35 40 
1 5 8 12 14 15 18 19 27 30 37 40 4 7 10 12 15 18 19 27 33 37 40 5 a 12 14 1s rn 19 21 31 36 40 
2 3 4 s 10 14 20 26 27 28 29 40 2 3 4 5 10 14 20 26 27 28 29 40 2 3 4 5 10 14 20 26 27 28 29 40 

28 29 30 31 32 33 34 35 36 37 38 39 28 29 30 31 32 33 34 35 36 37 38 39 2B 29 30 31 32 33 34 35 36 37 38 39 

10 12 14 16 17 20 22 24 28 32 35 38 10 12 14 16 17 20 22 24 28 32 35 38 10 12 14 16 17 20 22 24 28 32 :JS 30 
4 5 12 15 16 19 23 24 31 32 34 39 4 7 10 11 12 19 23 24 33 34 35 39 5 7 10 15 16 19 23 .24 31 32 33 39 
7 8 10 11 14 19 23 24 30 33 35 39 5 8 14 15 16 19 23 24 30 31 32 39 4 8 11 12 14 19 23 24 30 34 35 39 
2 S 10 11 13 17 IS 22 31 36 38 39 2 8 10 13 17 18 21 22 31 32 36 39 3 8 10 13 17 1B 21 22 31 32 36 39 
2 7 9 12 17 18 20 21 30 35 37 39 3 7 11 12 13 17 18 20 30 37 38 39 2 7 11 12 13 17 1B 20 30 37 38 39 

10 11 14 15 18 20 21 23 28 31 34 37 10 II 14 15 18 20 21 23 28 31 34 37 10 11 14 16 18 20 21 23 28 31 34 37 
3 5 9 14 1S 1e 22 24 29 34 36 38 2 5 9 14 15 18 22 24 29 34 36 38 2 5 9 14 18 21 22 24 29·34 35 36 
3 4 1l 16 18 20 21 24 29 32 33 37 3 4 9 16 18 20 21 24 29 33 35 37 4 9 15 16 18 20 24 29 33 37 38 
5 7 10 13 16 19 20 25 28 31 33 36 7 a 10 u t4 19 20 25 2s 3o 33 36 8 10 13 14 19 20 25 28 30 33 36 
1 3 4 6 9 15 16 25 30 37 38 39 1 2 4 6 9 15 16 25 30 31 38 39 2 4 6 9 16 21 25 30 35 37 39 
3 4 6 12 17 19 20 25 29 34 35 36 2 5 6 16 17 19 2() 25 29 31 35 36 5 6 16 17 19 20 25 29 31 35 36 
1 2 5 11 13 14 23 25 29 33 37 38 1 2 5 13 14 21 23 25 29 32 33 37 3 5 13 14 21 23 25 29 32 33 37 
4 a 9 12 14 19 22 26 28 30 34 37 5 9 12 16 19 22 26 28 31 34 37 5 9 12 16 19 22 26 28 31 34 37 
1 3 6 7 12 13 21 26 31 32 36 39 3 6 7 9 12 21 26 31 35 36 39 3 6 7 9 12 15 26 31 36 38 39 
2 6 7 10 17 19 22 26 29 32 33 37 6 7 10 17 19 22 26 29 32 33 37 6 a 14 11 19 22 26 29 30 32 37 
1 2 8 9 10 21 23 26 29 34 35 36 3 0 10 11 13 23 26 29 3• 36 3B 0 10 11 13 23 26 29 34 36 38 
1 4 5 11 15 21 24 26 28 30 33 36 4 5 11 15 21 24 26 28 30 33 36 5 11 15 21 24 26 28 30 33 36 
4 5 6 7 a 23 25 26 2s 32 35 Ja s 6 7 823252628323538 6 7 s 23 25 26 26 32 35 38 
2 3 9 11 13 15 21 27 28 32 35 38 3 9 11 13 15 21 27 28 32 35 38 9 11 13 15 21 27 28 32 35 38 
1 5 6 8 9 11 22 27 32 33 34 39 6 a 9 11 22 27 32 33 34 39 6 s 9 11 22 27 32 33 34 39 
5 6 a 14 16 11 19 21 29 30 31 38 8 12 14 17 19 27 29 30 34 38 7 10 12 17 19 21 29 33 34 38 
1 7 13 15 20 23 27 29 30 31 35 7 13 15 20 23 27 29 30 31 35 7 13 15 20 23 27 29 30 31 35 
2 6 12 16 18 22 27 28 30 33 36 6 12 16 18 22 27 28 3<l 33 36 6 12 16 18 22 27 2S 30 33 36 
1 3 7 8 17 25 27 28 31 34 37 2 3 7 a 11 2s 21 28 31 34 37 1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 10 11 12 18 24 26 27 29 30 31 32 9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 13 14 15 16 17 18 25 27 33 34 35 39 u 14 15 16 11 1a 25 21 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 19 20 21 22 23 24 25 26 36 37 38 39 19 20 21 22 23 24 25 26 36 37 38 39 

I 6 9 13 17 18 19 23 24 29 39 40 1 6 9 13 17 18 19 23 24 29 39 4Q I 6 9 13 17 18 19 23 24 29 39 40 
7 B 11 12 15 16 21 22 25 28 39 40 7 8 11 12 15 16 21 22 25 28 39 40 7 8 11 12 IS 16 21 22 25 28 39 40 
3 5 10 13 17 21 22 23 25 32 34 40 3 5 9 10 17 21 22 23 25 34 35 40 3 9 10 15 17 22 23 25 34 3$ 40 
2 4 8 9 14 21 22 24 25 33 35 40 3 ~ 6 11 13 14 22 24 25 33 38 40 2 6 11 13 14 22 24 25 33 38 40 
I 2 8 14 15 18 19 20 25 30 36 40 1 3 4 12 15 18 19 20 25 34 36 40 I 4 12 15 18 19 20 25 34 36 40 
3 a 9 12 15 17 20' 23 26 31 38 40 2 8 9 12 15 17 20 23 26 31 38 40 2 9 12 17 20 21 23 26 31 35 40 
2 6 7 11 13 16 20 24 26 30 38 40 6 7 13 16 20 21 24 26 30 32 40 3 7 13 16 20 21 24 26 30 32 40 
I 3 s 11 16 IS 19 22 26 31 37 40 2 8 11 14 18 19 22 26 30 37 40 7 10 11 18 19 22 26 33 37 40 

7 9 11 14 16 17 23 27 32 37 40 7 9 11 14 16 17 23 27 32 37 40 9 11 14 16 17 23 27 32 37 40 
6 8 10 12 13 15 24 27 35 36 40 6 8 10 12 13 15 24 27 35 36 40 6 8 10 12 13 15 24 27 35 36 40 
4 7 10 12 18 19 21 27 33 34 40 5 7 10 16 18 19 21 27 31 33 40 1 5 8 14 16 18 19 21 27 30 31 40 

2 3 4 5 10 14 20 26 27 28 29 40 2 3 4 5 10 14 20 26 27 28 29 40 2 3 4 5 10 14 20 26 27 28 29 40 
28 29 JO 31 32 33 34 35 36 37 38 39 28 29 30 31 32 H 34 35 36 37 JS 39 28 29 30 31 32 33 34 35 36 37 39 39 
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" 9 10 12 17 20 21 23 .26 27 30 31 9 10 12 17 20 21 23 26 27 30 31 s 9 10 12 17 20 22 23 25 27 30 31 
6 B 12 lS 20 22 24 25 27 29 32 6 11 12 18 2:0 22 24 25 27 29 31 5 7 '8 10 18 20 21 24 26 27 29 32 
9 10 11 18 19 22 23 25 28 29 31 8 9 10 18 19 22 23 25 28 29 32 6 9 11 12 18 19 21 23- 26 28 29 31 
6 7 11 17 19 21 24 26 28 30 32 6 7 11 17 19 21 24 26 28 30 32 5 6 7 11 17 19 22 24 25 28 30 32 
4 10 12 14 1 s 22 23 26 28 33 35 4 10 12 14 15 22 23 26 28 33 35 2 4 10 12 14 15 22 23 26 28 33 35 
4 9 11 13 16 18 20 30 31 33 35 4 8 9 13 16 18 20 30 32 33 35 3 4 8 9 13 15 18 20 30 32 33 35 
4 8 9 14 15 17 20 29 32 34 35 4 9 11 14 lS 17 20 29 31 34 35 2 4 9 11 14 16 17 20 29 31 34 35 
-;, 7 10 13 16 21 24 25 28 34 35 3 6 12 13 15 21 24 25 28 34 35 2 6 12 13 16 21 24 25 28 34 35 
3 6 7 14 16 22 24 26 27 33 36 3 6 7 14 16 22 24 26- 27 33 36 3 6 7 14 16 22 24 26 27 ..33 J6 
3 5 a 13 1s 1a 19 30 J2 33 36 3 5 11 13 15 18 19 30 31 33 36 . 2 5 11 13 16 18 19 30 31 33 36 
4 6 12: u 15 21 23 25 27 34 36 4 7 10 13 16 21 23 25 27 34 36 4 7 10 13 15 21 23 25 27 34 36 

1 2 5 11 14 16 17 19 29 31 34 36 l 2 5 8 14 16 17 19 29 32 34 36 1 3 5 8 14 15 17 19 29 32 34 36 
6 8 10 11 17 22 26 29 35 36 37 38 6 a 10 11 11 22 26 29 Js 36 31 30 6 a io 11 11 u 26 29 35 36 37 3s 
5 7 9 12 18 21 25 30 35 36 37 38 s 7 9 12 lS 21 25 30 35 36 37 38 5 7 9 12 18 21 25 30 35 36 37 38 
5 7 10 11 20 24 27 31 33 34 37 38 5 7 B 10 20 24 27 32 33 34 37 38 5 6 11 12 20 24 27 31 33 34 37 38 
6 8 9 12 19 23 28 32 33 34 37 38 6 9 11 12 19 23 28 31 33 34 37 38 7 8 9 10 19 23 28 32 33 34 37 38 
l 4 7 12 13 22 25 31 32 33 37 39 1 4 7 12 13 22 25 31 32 33 37 39 1 4 7 12 13 21 26 31 32 33 37 39 
2 3 6 10 14 21 26 31 32 34 37 39 2 3 6 10 14 21 26 31 32 34 37 39 2 3 6 10 14 22 25 31 32 34 37 39 
3 4 10 12 16 24 27 29 30 35 37 39 3 4 10 12 16 24 27 29 30 35 37 39 3 4 10 12 16 24 27 29 30 35 37 39 
1 2 6 7 15 23 2B 29 30 36 37 39 2 6 1 15 23 28 29 30 36 37 39 l 2 6 7 1 s 23 28 29 30 36 37 39 
l 4 8 11 14 18 27 28 29 33 37 40 4 a 11 14 10 21 20 29 JJ 37 40 2 3 a 11 u 11 21 20 JO 33 31 40 
2 3 5 9 13 17 27 28 30 34 37 40 3 5 9 13 17 27 28 30 34 37 40 4 5 9 13 18 27 28 29 34 37 40 
1 3 5 11 16 20 25 26 32 35 37 40 3 5 11 16 20 25 26 32 35 37 40 3 5 11 16 20 25 26 32 35 37 40 
2 4 8 9 15 19 25 26 31 36 37 40 4 8 9 15 19 25 26 31 36 37 40 8 9 15 19 25 26 31 36 37 40 
2 3 8 11 14 17 23 24 30 33 38 39 3 8 11 14 17 23 24 30 33 38 39 1 8 11 14 18 23 24 29 33 38 39 
1 4 5 9 13 18 23 24 29 34 38 39 4 5 9 13 18 23 24 29 34 38 39 2 5 9 13 17 23 24 30 34 38 39 
1 2 9 11 15 19 21 22 32 35 38 39 2 9 11 15 19 21 22 32 35 38 39 I 9 11 15 19 21 22 32 35 38 39 
3 4 5 8 16 20 21 22 31 36 38 39 4 5 8 16 20 21 22 31 36 38 39 3 5 e 16 20 21 22 31 36 38 39 
2 3 7 12 13 19 20 21 26 33 38 40 3 7 12 13 19 20 21 26 33 38 40 2 7 12 13 19 20 22 25 33 38 40 
1 4 6 10 14 19 20 22 25 34 38 40 6 10 14 19 20 22 25 34 38 40 I 4 6 10 14 19 20 21 26 34 38 40 
1 3 6 12 15 17 18 24 28 35 38 40 7 10 16 17 18 24 28 35 38 40 1 3 7 10 15 17 18 24 28 35 38 40 
2 4 7 10 16 17 18 23 27 36 38 40 6 12 15 17 18 23 27 36 38 40 2 4 6 12 16 17 18 23 27 36 3B 40 
5 6 9 10 15 16 17 21 25 29 39 40 6 9 10 15 16 17 21 25 29 39 40 5 6 9 10 15 16 17 21 25 29 39 40 
7 8 11 12 15 16 19 22 26 30 39 40 8 11 12 15 16 18 22 26 30 39 40 7 8 11 12 15 16 19 22 26 30 39 40 
5 6 7 s 13 14 19 23 27 31 39 40 5 6 7 3 13 14 19 23 27 31 39 40 5 6 7 e u 14 19 23 21 31 39 40 
9 10 11 12 13 14 20 24 28 32 39 40 9 10 11 12 13 14 20 24 28 32 39 40 9 10 u 12 13 14 20 24 w 32 39 40 

13 14 15 16 l7 18 19 20 21 22 23 24 13 14 15 16 17 18 19 20 21 22 23 24 13 14 15 16 17 l8 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 13 14 15 16 25 26 27 28 29 30 31 32 13 14 15 16 25 26 27 28 29 30 " 32 
17 18 19 20 25 26 27 28 33 34 35 36 17 18 19 20 25 26 27 28 33 34 35 36 17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 21 22 23 24 29 30 31 32 33 34 35 36 21 22 23 24 29 30 31 32 33 34 35 "' 

a 9 10 12 17 20 22 23 25 27 JO 31 8 9 10 12 18 20 21 23 26 27 29 31 a 9 10 12 lB 20 22 23 25 27 29 31 
6 11 12 '16 20 21 24 26 27 29 31 5 7 10 11 17 20 22 24 25 27 30 31 5 7 10 11 17 20 21 24 26 27 30 31 
a 9 10 16 19 21 23 26 28 29 32 6 8 9 12 17 19 22 23 25 28 30 32 6 6 9 12 17 19 21 23 26 28 30 32 
6 7 11 17 19 22 24 25 28 30 32 5 6 1 11 10 19 21 24 26 29 29 32 5 6 7 11 18 19 22 24 25 28 29 32 
4 10 12 14 15 22 23 26 28 33 35 2 4 10 12 14 15 22 23 26 26 33 35 2 4 10 12 14 15 22 23 20 28 33 35 

2 4 a 9 13 16 18 20 30 32 33 35 3 4 9 11 13 15 1B 20 30 31 33 JS 3 4 9 11 u 15 18 20 30 31 33 35 
3 4 9 11 14 15 17 20 29 31 34 35 2 4 a 9 14 16 17 20 29 32 34 35 2 4 8 9 14 16 17 20 29 32 34 35 
1 3 6 12 13 15 21 24 25 28 34 3S 1 3 7 10 13 15 21 24 25 28 34 35 1 3 7 10 13 15 21 24 25 28 34 35 
1 3 6 7 14 16 22 24 26 27 33 36 1 3 6 7 14 16 22 24 26 27 33 36 3 6 7 14 16 22 24 26 27 33 36 
l 3 5 11 l3 15 18 19 30 31 33 36 l 2 5 8 13 16 18 19 30 32 33 36 2 5 8 13 16 18 19 30 32 33 36 
2 4 7 10 l3 16 21 23 25 27 34 36 2 4 6 12 13 16 21 23 25 27 34 36 4 6 12 13 16 21 23 25 27 34 36 
I 2 5 8 14 16 17 19 29 32 34 36 l 3 5 11 14 15 17 19 29 31 34 36 3 5 11 14 15 17 19 29 31 34 36 
6 8 10 11 17 22 26 29 35 36 37 38 6 a 10 11 17 22 26 29 35 36 37 38 8 10 11 17 22 26 29 35 36 37 38 
5 7 9 12 18 21 25 30 35 36 37 38 5 7 9 12 18 21 25 30 35 36 37 38 7 9 12 18 21 25 30 35 36 37 38 
5 7 8 10 20 24 21 32 33 34 37 38 5 6 8 12 20 24 27 32 33 34 37 38 6 8 12 20 24 27 32 33 34 37 38 
6 9 11 12 19 23 2S 31 34 37 38 7 9 10 11 19 23 28 31 33 34 37 38 9 10 11 19 23 28 31 33 34 37 3B 
1 • 7 12 13 21 26 32 33 37 39 2 3 7 12 13 21 26 31 32 33 37 39 3 7 12 13 22 25 31 32 33 37 39 

3 s 10 14 22 25 31 32 34 37 39 1 4 6 10 14 22 25 31 32 34 37 39 4 6 10 14 21 26 31 32 34 37 39 
4 10 12 16 24 27 29 30 35 37 ~9 3 4 10 12 16 24 27 29 30 35 37 39 4 10 12 16 24 27 29 30 35 37 39 
2 6 7 15 23 28 29 30 36 37 9 2 6 7 15 23 2l! 29 30 36 37 39 2 6 7 15 23 28 29 30 36 37 39 
3 8 11 14 17 27 28 30 33 37 40 4 8 11 14 17 27 28 30 33 37 40 8 11 14 lB 27 28 29 33 37 40 
4 5 9 13 18 27 28 29 34 37 40 3 5 9 13 18 27 28 29 34 37 40 5 9 13 17 27 28 30 34 37 40 
3 5 11 16 20 25 26 32 35 37 40 1 3 5 11 16 20 25 26 32 35 37 40 s 11 16 20 25 26 32 35 37 40 
4 8 9 15 19 25 26 31 36 37 40 2 8 9 15 19 25 26 31 36 37 40 8 9 15 19 25 26 31 36 37 40 
4 8 11 14 IS 23 24 29 33 38 39 2 8 11 14 IS 23 24 29 33 38 39 1 8 11 14 17 23 24 JO 33 38 .39 
3 5 9 13 17 23 24 30 34 3B 39 l 5 9 13 17 23 24 30 34 3S 39 2 5 9 13 18 23 24 29 34 38 39 
2 9 11 15 19 21 22 32 35 38 39 1 9 11 15 19 21 22 32 35 38 39 1 9 11 15 19 21 22 32 35 JS 39 
4 5 8 16 20 21 22 31 36 36 39 3 5 8 16 20 21 22 31 36 38 39 3 5 8 16 20 21 22 31 36 38 39 
3 7 12 13 19 20 22 25 33 38 40 1 7 12 13 19 20 22 25 33 38 40 1 7 12 13 19 20 21 26 33 38 40 

6 10 14 19 20 21 26 34 38 40 2 6 10 14 19 20 21 26 34 38 40 2 6 10 14 19 20 22 25 34 38 40 
7 10 16 17 18 24 28 35 38 40 1 8 12 16 17 18 24 28 35 38 40 l 6 12 16 17 18 24 28 35 3S 40 
6 12 IS 17 18 23 27 36 38 40 3 4 1 10 15 11 18 23 21 36 Ja 40 3 7 10 15 17 18 23 27 36 38 40 
9 10 15 16 17 21 25 29 39 40 6 9 10 15 16 17 21 25 29 39 40 "5 6 9 10 15 16 17 21 25 29 39 40 

11 12 15 16 18 22 26 30 39 40 8 11 12 15 16 18 22 26 30 39 40 7 8 11 12 15 16 18 22 26 30 39 40 
5 6 7 8 13 14 19 23 27 31 39 40 6 7 B 13 14 19 23 27 31 39 40 5 6 7 8 13 14 19 23 27 31 39 40 
9 10 11 12 13 14 20 24 28 32 39 40 9 10 11 12 13 14 20 24 28 32 39 40 9 10 11 12 13 14 20 24 28 32 39 40 

13 14 15 16 17 18 19 20 21 22 23 24 13 14 15 16 17 18 19 20 21 22 23 24 13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 13 14 15 16 25 26 27 28 29 JO 31 32 13 14 15 16 25 26 27 28 29 30 31 32 
17 18 19 20 25 26 27 28 33 34 35 36 11 18 19 20 25 26 27 28 33 34 35 36 17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 21 22 23 24 29 30 31 32 33 34 35 36 21 22 23 24 29 30 31 32 33· 34 35 36 
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Here are listed the ten systems of three linked 2 - (16,6,2) designs, 

as promised in Section 4.2. The incidence graphs of these systems, together 

with the point graph of the generalized quadrangle of order (3,5) form the 

eleven 4-colourable strongly regular graphs with parameters (64,18,2,6) of 

Theorem 4 • 3 • 1. 

3 4 5 9 13 2 5 9 13 3 5 9 13 3 7 !S 16 7 15 16 
3 4 6 10 14 l 6 10 14 3 6 10 14 5 9 10 11 9 10 11 

I 2 4 7 l1 15 l 2 7 ! l 15 l 2 4 7 11 15 3 5 6 8 14 5 6 B 14 
1 2 3 8 12 16 2 8 12 16 1 2 J 8 12 16 4 6 7 9 13 4 6 7 9 13 
1 6 7 8 9 13 6 8 9 13 l 6 7 8 9 13 4 10 12 14 16 4 10 12 14 16 
2 5 7 B 10 14 s 8 10 14 2 s 7 8 10 14 l 8 11 12 !3 15 B ll 12 13 15 
3 5 6 B 11 15 5 6 8 11 15 3 5 6 B 11 15 2 3 4 5 12 13 2 3 4 5 12 13 
4 5 6 7 12 16 5 6 7 12 16 4 5 6 7 12 16 2 4 6 11 14 15 2 4 6 11 14 15 
1 5 10 11 12 13 10 ll 12 13 l 5 10 11 12 13 2 6 8 10 13 16 2 6 8 10 13 16 
2 6 9 11 12 14 6 9 11 12 14 2 6 9 11 12 14. 2 7 a 9 12 14 2 7 8 9 12 14 
3 7 9 10 12 15 3 7 9 10 12 15 3 7 9 10 12 15 3 4 8 9 10 15 3 4 e 9 10 15 
4 8 9 10 11 16 4 8 9 10 11 16 4 8 9 10 11 16 3 6 9 11 12 16 3 6 9 11 12 16 
1 5 9 14 15 16 1 5 9 14 15 16 1 5 9 14 15 16 3 7 10 11 13 14 3 7 10 ll 13 14 
2 6 10 13 15 16 2 6 10 13 15 16 2 6 10 13 15 16 4 5 7 8 11 16 4 5 7 8 11 16 
3 7 ll 13 14 16 7 11 13 14 16 3 7 11 13 14 16 5 6 7 10 12 15 5 6 7 10 12 15 
4 8 12 13 14 15 4 8 12 13 14 15 4 8 12 13 14 15 5 9 13 14 15 16 5 9 13 14 15 16 

2 3 4 6 11 16 3 4 6 11 16 4 6 11 16 1 2 3 6 11 13 3 6 11 13 
1 3 4 5 12 15 3 4 8 9 15 4 8 9 15 I 2 5 12 14 15 5 12 14 15 
1 2 4 8 9 14 2 4 5 12 14 2 4 5 12 14 1 3 4 5 7 10 4 5 7 10 
1 2 3 7 10 13 2 3 7 10 13 2 3 7 10 13 1 4 9 11 15 16 4 9 11 15 16 
1 5 7 8 11 16 5 6 e 10 16 5 6 8 10 16 I 6 1 8 12 16 6 7 8 12 16 
2 6 7 8 12 15 5 9 10 11 15 2 5 10 11 15 1 8 9 10 13 14 8 9 10 13 14 
3 5 6 7. 9 14 8 10 11 12 14 3 8 10 11 12 14 2 3 5 B 9 16 3 5 8 9 16 
4 5 6 8 10 13 4 5 7 B 11 13 4 7 8 11 13 2 4 6 9 10 12 4 6 9 10 12 
1 6 9 10 12 16 l 7 9 11 12 16 1 9 11 12 16 2 4 7 13 14 16 4 7 !3 14 16 
2 5 9 10 11 15 2 6 7 8 12 15 2 6 7 8 12 15 2 7 8 10 11 15 8 10 11 15 
3 8 10111214 3 5 6 7 9 14 3 5 6 7 9 14 3 4 8 11 12 14 4 8 ll 12 14 
4 7 9 11 12 13 4 6 9 10 12 13 4 6 9 10 12 13 3 6 10 14 15 16 6 10 14 15 16 
l 6 11131415 l 6 11 13 14 15 1 6 11 13 14 15 3 7 9 12 13 15 7 9 12 13 15 
2 s 12 13 14 16 2 8 9 13 14 16 2 8 9 13 14 16 4 5 6 e 13 15 4 s 6 8 13 15 
3 8 9 13 15 16 3 5 12 13 15 16 3 5 12 13 15 16 5 6 7 9 11 14 5 6 9 11 14 
4 7 10 14 15 16 4 7 10 14 15 16 4 7 10 14 15 16 5 10 11 12 13 16 s 10 11 12 13 16 

2 3 4 7 12 14 6 10 12 5 11 12 1 2 6 7 10 14 6 9 14 16 
I 3 4 8 ll 13 4 6 B 11 12 1 4 5 6 9 11 1 2 9 12 13 16 2 7 10 12 13 
l 2 4 5 10 16 2 9 12 13 15 l 2 10 11 14 16 4 6 8 9 14 16 6 7 8 10 14 
l 2 3 6 9 15 2 6 7 14 16 1 2 s 8 13 15 4 8 10 12 13 4 8 9 12 13 16 
l 5 6 8 12 14 1 4 5 7 9 10 1 4 7 8 10 12 I 4 6 12 15 l 3 4 13 14 15 
2 5 6 7 11 13 2 3 7 8 9 !l 2 3 6 6 9 10 1 4 5 11 13 14 4 5 6 11 12 
3 6 7 8 10 16 3 4 6 7 13 15 3 4 5 8 14 16 2 3 8 13 14 15 3 6 8 12 15 
4 5 7 8 9 15 3 4 9 12 14 16 3 4 10 11 13 15 2 5 6 8 11 12 5 8 l 1 13 14 
1 7 9 10 11 14 1 3 10 11 15 16 1 3 6 7 15 16 3 7 8 9 11 3 8 10 11 16 
2 8 9 10 12 13 2 4 5 8 15 16 2 4 9 12 15 16 5 6 10 15 16 1 5 7 8 9 15 
3 5 9 11 12 16 5 6 9 11 13 16 5 6 10 12 14 15 2 3 4 10 !l 16 2 3 4 7 9 11 
4 6 10 11 12 15 5 7 11 12 14 15 6 8 11 12 13 16 2 4 5 7 9 15 2 4 s 10 15 16 
l 7 12 13 15 16 1 3 5 B 13 14 1 3 9 12 13 14 3 5 6 9 10 13 3 5 6 7 13 16 
2 8 11 14 15 16 2 4 10 11 13 14' 2 4 6 7 13 14 3 5 7 12 14 16 3 5 9 10 12 14 
3 5 10 13 14 15 6 8 9 10 14 15 5 7 9 10 13 16 6 7 11 13 15 16 6 9 10 11 13 15 
4 6 9 13 14 16 7 8 10 12 13 16 7 8 9 11 14 15 9 10 11 12 14 15 7 11 12 14 15 16 
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2 3 15 16 l 3 7 15 16 1 3 7 15 16 2 3 7 15 16 3 4 5 9 13 
2 5 9 10 1 l 1 5 9 10 l1 1 5 9 10 11 5 9 10 11 3 4 6 10 14 
3 5 6 a 14 l 5 6 8 14 l 5 6 8 14 3 5 6 8 14 2 4 11 15 
4 6 7 9 13 l 4 6 7 9 13 1 4 6 7 9 13 4 6 1 9 13 2 3 12 16 
4 10 12 14 16 l 4 10 12 14 16 1 4 10 12 14 16 4 10 12 14 16 l 6 7 8 9 13 

1 8 11 12 13 15 l 8 11 12 13 15 1 8 11 12 13 15 8 11 12 13 15 2 5 1 8 10 14 
2 '3 4 5 12 13 2 3 4 s 12 13 2 3 4 s 12 13 3 4 s 12 13 3 s 6 8 ll 15 
2 4 6 11 14 15 2 .4 6 11 14 15 2 4 6 11 14 15 4 6 11 14 15 4 5 6 7 12 16 
2 6 8 10 13 16 6 8 10 13 16 2 6 8 10 13 16 6 8 10 13 16 l 5 10 11 12 13 
2 7 8 9 12 14 7 8 9 12 14 2 7 8 9 12 14 7 8 9 12 14 2 6 9 11 12 14 
3 4 8 9 10 15 4 8 9 10 15 3 4 a 9 10 15 4 8 9 10 15 3 7 9 10 12 15 
3 6 9 11 12 16 3 6 9 11 12 16 3 6 9 ll 12 16 6 9 11 12 16 4 8 9 10 11 16 
3 7 10 11 13 14 3 7 10 II 13 14 3 7 10 11 13 14 7 10 11 13 14 1 5 9 14 15 16 
4 5 7 8 11 16 4 5 7 8 11 16 4 5 7 a 11 16 5 7 8 11 16 2 6 10 13 15 16 
5 6 7 10 12 15 5 6 7 10 12 15 5 6 7101215 6 7 10 12 15 3 7 11 13 14 16 
5 9 13 14 15 16 5 9 13 14 15 16 5 9 13 14 15 16 9 13 14 15 16 4 8 12 13 14 15 

2 6 ll 13 3 6 11 13 2 6 ll 13 2 3 6 II 13 3 4 6 11 16 
2 12 14 15 5 12 14 15 2 5 12 14 15 2 5 12 14 15 l 3 4 8 9 15 
3 4 5 7 10 4 5 7 10 3 4 5 7 10 3 4 5 7 10 2 4 5 12 14 

I 4 9 !! 15 16 I 4 9 11 15 16 l 4 9 ll 15 16 4 9 !! 15 16 2 3 7 10 13 
1 6 7 B 12 16 l 6 7 8 12 16 l 6 7 8 12 16 6 7 8 12 16 5 6 8 10 16 
1 8 9 10 13 14 1 8 9 10 13 14 1 8 9 10 13 14 B 9 10 13 14 2 5 9 10 11 15 
2 3 5 8 9 16 2 3 5 8 9 16 2 5 8 9 16 2 3 5 8 9 16 3 8 10 11 12 14 
2 6 9 10 12 2 4 6 9 10 12 2 6 9 10 12 2 4 6 9 10 12 4 5 7 8 II 13 
2 4 7 13 14 16 2 4 7 13 14 16 2 7 13 14 16 2 4 7 13 14 16 l 7 9 11 12 16 
2 7 8 10 II 15 2 7 8 10 ll 15 2 8 10 !l 15 2 7 8 10 ll IS 2 6 7 a 12 15 
3 4 8 !! 12 14 3 4 e 11 12 14 3 4 6 11 12 14 3 4 8 11 12 14 3 s 6 7 9 14 
3 6 10 14 15 16 3 10 14 15 16 3 6 10 14 15 16 3 6 10 14 IS 16 4 6 9 10 !2 13 
3 7 9 12 13 IS 3 9 12 !3 15 3 7 9 12 13 15 3 7 9 12 13 15 1 6 11 13 14 IS 
4 s 6 8 13 IS 4 5 6 8 13 IS 4 s 6 8 13 15 4 5 6 8 13 IS 2 8 9 13 14 16 
s 6 7 9 11 14 5 6 7 9 !l 14 5 6 7 9 II 14 5 6 7 9 11 14 3 5 12 13 lS 16 
5 10 !l 12 13 16 s 10 11 12 13 16 s 10 11 12 13 16 5 10 11 12 13 16 4 7 10 14 IS 16 

6 r 10 14 1 2 6 9 14 16 10 14 l 2 6 9 14 16 8 9 11 
2 9 12 13 16 I 2 7 10 12 13 2 9 12 13 16 2 7 10 12 13 4 6 9 11 

4 6 8 9 14 16 4 6 7 8 10 14 6 8 9 14 16 6 7 8 10 14 2 10 11 14 16 
4 7 8 10 12 13 4 8 9 12 13 16 4 7 a lO 12 13 8 9 12 13 16 2 9 12 13 15 
1 3 4 6 12 15 I 3 4 13 14 15 l 3 4 13 14 15 3 4 6 12 15 4 7 8 10 12 
I 4 s 11 13 14 1 4 5 6 ll 12 1 4 5 6 11 12 I 4 5 11 13 14 3 5 6 10 12 
2 3 8 13 14 15 2 3 6 8 12 15 2 3 6 8 12 IS 2 3 8 13 14 15 4 9 12 14 16 
2 5 6 8 11 12 2 5 8 11 13 14 2 5 8 11 13 14 2 s 6 8 11 12 4 10 11 13 15 
l 3 8 10 11 16 1 3 7 8 9 11 l 3 8 10 11 16 1 3 7 B 9 II 3 5 8 13 14 
1 5 7 8 9 15 l 5 8 10 15 16 l s 7 8 9 15 1 5 8 10 15 16 4 6 7 13 14 
2 3 4 7 9 11 2 3 4 10 II 16 2 3 4 7 9 11 2 3 4 10 II 16 5 7 9 10 13 16 
2 4 5 10 15 16 2 4 5 7 9 15 2 4 5 10 lS 16 2 4 5 7 9 15 5 7 11 12 14 lS 
3 5 6 9 10 13 3 5 6 7 13 16 3 5 6 9 11 13 3 5 6 7 13 16 l 3 6 7 15 16 
3 s 7 12 14 16 3 5 9 10 12 14 3 5 7 12 14 16 3 5 9 10 12 14 2 4 5 8 15 16 
6 7 11 13 15 16 6 9 10 11 13 15 6 7 11 13 15 16 6 9 10 11 13 15 6 8 9 10 14 IS 
9 10 I! 12 14 15 7 !ll 12 14 15 16 9 10 ll 12 14 15 7 11 12 14 15 16 6 8 ! I 12 13 16 
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* and D4, which are Here we give the 2- (71,15,3) designs 07, o;, o; 
constructed in Section 6.1. Together with their duals 

2 - (71,15,3) designs of Theorem 6.1.5. 

they form the eight 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 2 3 16 17 18 19 20 21 22 23 24 25 26 27 

'2 3 28 29 30 31 32 33 34 35 36 37 38 39 
4 s 16 17 28 29 40 41 42 43 44 45 46 47 
4 5 18 19 30 31 48 49 50 51 52 53 54 55 
6 7 16 17 30 31 56 57 58 59 60 61 62 63 
6 7 18 19 28 29 64 65 66 67 68 69 70 71 
8 9 20 21 32 33 40 41 48 49 56 57 64 65 
8 9 22 23 34 35 42 43 so 51 58 59 66 67 

10 11 20 21 34 35 44 45 52 53 60 61 68 69 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 40 41 50 51 60 61 70 71 
12 13 26 27 38 39 42 43 48 49 62 63 68 69 

1 14 15 24 25 38 39 44 45 54 55 S6 57 66 67 
1 14 15 26 27 36 37 46 47 52 S3 58 59 64 6S 
2 4 6 20 22 36 38 40 42 52 54 56 58 68 70 
2 4 6 21 23 37 39 41 43 53 55 57 59 69 71 
2 5 7 20 22 37 39 44 46 48 50 60 62 64 66 
2 5 7 21 23 36 38 45 47 49 51 61 63 65 67 
2 a 10 24 26 2s 30 40 46 48 54 59 61 67 69 
2 a 10 25 21 29 31 41 47 49 55 58 Go 66 68 
2 9 11 24 26 29 31 43 45 51 53 56 62 64 70 
2 9 11 2S 27 28 30 42 44 50 52 57 63 65 71 
2 12 14 16 18 32 34 40 44 51 55 59 63 64 68 
2 12 14 17 19 33 35 41 45 50 54 58 62 65 69 
2 13 15 16 18 33 35 42 46 49 53 57 61 66 70 
2 13 15 17 19 32 34 43 47 48 52 56 60 67 71 
3 4 7 24 27 32 35 40 42 53 55 60 62 65 67 
3 4 7 25 26 33 34 41 43 52 S4 61 63 64 66 
3 5 6 24 27 33 34 44 46 49 51 56 58 69 71 
3 5 6 25 26 32 35 45 47 48 so S7 59 68 70 
3 8 11 16 19 37 38 41 44 49 52 59 62 67 70 
3 8 11 17 18 36 39 40 45 48 53 58 63 66 71 
3 9 10 16 19 36 39 43 46 51 54 57 60 65 68 
3 9 10 17 18 37 38 42 47 50 55 56 61 64 69 
3 12 lS 20 23 29 30 40 47 51 S2 57 62 66 69 
3 12 15 21 22 28 31 41 46 50 53 56 63 67 68 
3 13 14 20 23 28 31 43 44 48 55 S8 61 65 70 
3 13 14 21 22 29 30 42 4S 49 54 59 60 64 71 
4 8 13 18 23 2S 30 34 37 45 46 56 62 65 68 
4 8 13 19 22 24 31 35 36 44 47 S7 63 64 69 
4 9 12 18 21 26 30 33 39 44 47 58 60 67 70 
4 9 12 19 20 27 31 32 38 45 46 59 61 66 71 
4 10 15 16 21 25 28 3S 38 48 51 58 62 64 71 
4 10 15 17 20 24 29 34 39 49 50 59 63 65 70 
4 !! 14 16 23 26 28 32 36 49 50 56 60 66 69 
4 11 14 17 22 27 29 33 37 48 51 57 61 67 68 
s 8 12 16 22 26 29 35 39 52 55 56 61 6S 71 
5 B 12 17 23 27 28 34 38 53 54 57 60 64 70 
s 9 13 16 20 25 29 32 37 53 54 58 63 67 69 
5 9 13 17 21 24 28 33 36 52 55 59 62 66 68 
s 10 14 18 20 26 31 34 36 41 42 57 62 67 71 
5 10 14 19 21 27 30 35 37 40 43 56 63 66 70 
5 11 15 18 22 25 31 33 38 40 43 59 60 65 69 
5 11 15 19 23 24 30 32 39 41 42 58 61 64 68 
6 8 15 18 21 27 29 32 36 43 44 50 54 61 62 
6 8 15 19 20 26 28 33 37 42 45 51 55 60 63 
6 9 14 18 23 24 29 35 38 41 46 48 S2 60 63 
6 9 14 19 22 25 28 34 39 40 47 49 53 61 62 
6 10 13 16 23 27 31 33 39 40 4S so S2 64 67 
6 10 13 17 22 .26 30 32 38 41 44 51 S3 65 66 
6 11 12 16 21 24 31 34 37 42 47 48 54 6S 66 
6 11 12 17 20 25 30 35 36 43 46 49 55 64 67 
7 8 14 16 20 24 30 33 36 43 47 so 53 68 71 
1 e 14 11 21 25 31 32 39 42 46 s1 52 69 10 
7 9 15 16 22 27 30 34 36 41 45 48 5S 69 70 
7 9 15 17 23 26 31 35 37 40 44 49 54 68 71 
7 10 12 18 22 24 28 32 37 43 45 49 52 57 58 
7 10 12 19 23 25 29 33 36 42 44 .48 53 S6.,59 
7 11 13 18 20 27 28 35 39 41 47 51 54 sfi 59 
7 11 13 19 21 26 29 34 38 40 46 50 55 57 58 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 
2 3 16 17 18 19 20 21 22 23 24 25 26 27 

1 2 3 28 29 30 31 32 33 34 35 36 37 38 39 
4 5 16 17 28 29 40 41 42 43 44 45 46 47 
4 18 19 30 31 48 49 so 51 52 53 54 55 
6 16 17 30 31 S6 57 58 59 60 61 62 63 
6 7 18 19 28 29 64 65 66 67 68 69 70 71 
8 9 20 21 32 33 40 41 48 49 56 57 64 65 

1 8 9 22 23 34 3S 42 43 50 51 58 59 66 67 
10 11 20 21 34 35 44 45 52 53 60 61 68 69 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 40 41 50 51 60 61 70 71 
12 13 26 27 38 39 42 43 48 49 62 63 68 69 
14 15 24 2S 38 39 44 45 54 55 56 57 66 67 

1 14 15 26 27 36 37 46 47 52 53 58 59 64 65 
2 4 6 20 22 36 38 40 42 52 54 56 58 68 70 
2 4 6 21 23 37 39 41 43 53 55 57 59 69 71 
2 5 7 20 22 37 39 44 46 48 so 60 62 64 66 
2 5 7 21 23 36 38 45 47 49 51 61 63 65 67 
2 8 10 24 26 28 30 40 47 48 SS 59 60 67 68 
2 8 10 25 27 29 31 42 45 50 53 57 62 65 70 
2 9 11 24 26 29 31 43 44 51 52 56 63 64 71 
2 9 11 25 27 28 30 41 46 49 54 58 61 66 69 
2 12 14 16 18 32 34 40 44 50 54 59 63 6S 69 
2 12 14 17 19 33 35 42 46 48 52 57 61 67 71 
2 13 15 16 18 33 35 41 45 51 55 58 62 64 68 
2 13 lS 17 19 32 34 43 47 49 53 56 60 66 70 
3 4 7 24 27 32 35 40 42 53 55 61 63 64 66 
3 4 7 25 26 33 34 41 43 52 54 60 62 65 67 
3 5 6 24 27 33 34 44 46 49 51 57 59 68 70 
3 5 6 25 26 32 35 45 47 48 so 56 58 69 71 
3 8 11 16 19 37 38 41 45 48 52 59 63 66 70 
3 6 11 17 18 36 39 43 47 so 54 57 61 64 68 
3 9 10 16 19 36 39 40 44 49 53 58 62 67 71 
3 9 10 17 18 37 3B 42 46 51 55 56 60 65 69 
3 12 15 20 23 29 30 43 44 48 55 58 61 6S 70 
3 12 15 21 22 28 31 41 46 50 53 56 63 67 68 
3 13 14 20 23 28 31 40 47 51 52 57 62 66 69 

13 14 21 22 29 30 42 45 49 54 59 60 64 71 
8 12 18 21 27 31 33 38 44 47 58 60 66 71 

4 8 12 19 23 24 30 34 36 45 46 56 62 64 69 
4 9 13 18 20 26 31 32 39 45 46 59 61 67 70 
4 9 13 19 22 25 30 35 37 44 47 57 63 65 68 
4 10 14 16 23 26 29 33 37 49 50 56 61 66 68 
4 10 14 17 21 25 28 34 39 48 51 58 63 64 70 

11 15 16 22 27 29 32 36 48 51 57 60 67 69 
11 15 17 20 24 28 35 38 49 50 59 62 65 71 

5 8 13 16 22 27 28 34 39 52 55 56 61 65 71 
5 8 13 17 20 24 29 33 37 53 54 58 63 67 69 
5 9 12 16 23 26 28 35 38 53 54 57 60 64 10 
5 9 12 17 21 25 29 32 36 52 55 59 62 66 68 
5 10 15 18 20 26 30 34 36 41 42 57 63 66 71 
5 10 15 19 22 25 31 33 38 40 43 59 61 64 69 
s 11 14 18 21 27 30 35 37 40 43 56 62 67 70 
5 11 14 19 23 24 31 32 39 41 42 58 60 65 68 
6 8 lS 18 23 25 29 35 39 40 46 49 52 60 63 
6 8 15 19 21 26 28 32 37 42 44 51 54 61 62 
6 9 14 18 22 24 29 34 38 41 47 48 53 61 62 
6 9 14 19 20 27 28 33 36 43 45 50 55 60 63 
6 10 13 16 2.1 24 31 35 36 43 46 48 54 65 66 
6 10 13 17 23 27 30 32 38 41 44 50 52 64 67 
6 11 12 16 20 25 31 34 37 42 47 49 55 64 67 
6 11 12 17 22 26 30 33 39 40 45 51 53 65 66 
7 8 14 16 20 25 30 32 38 43 46 51 53 68 71 
7 8 14 17 22 26 31 35 36 41 44 49 55 69 70 
7 9 15 16 21 24 30 33 39 42 47 50 52 69 70 

9 1 S 17 23 27 31 34 37 40 45 48 54 68 71 
10 12 18 22 24 28 32 37 43 4S 49 52 S7 58 
10 12 19 20 27 29 35 39 41 47 51 54 56 59 
11 13 18 23 25 28 33 36 42 44 48 53 56 59 
11 13 19 21 26 29 34 38 40 46 50 55 57 58 
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3 4 5 6 7 8 9 10 !I 12 13 14 15 
3 16 17 18 19 20 21 22 23 24 25 26 27 

1 2 3 28 29 30 31 32 33 34 35 36 37 38 39 
4 5 16 17 28 29 40 41 42 43 44 45 46 47 
4 5 18 19 30 31 48 49 50 51 52 53 54 55 
6 7 16 17 30 31 56 57 58 59 60 61 62 63 
6 7 18 19 28 29 64 65 66 67 68 69 70 71 
B 9 20 21 32 33 40 41 48 49 56 57 64 65 
8 9 22 23 34 35 42 43 50 51 58 59 66 67 

10 11 20 21 34 35 44 45 52 53 60 61 6s 69 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 42 43 48 49 62 63 68 69 
12 13 26 27 3B 39 40 41 50 51 60 61 70 71 

I 14 15 24 25 38 39 46 47 52 53 58 59 64 65 
1 14 15 26 27 36 37 44 45 54 55 56 57 66 67 
2 4 6 24 26 32 34 44 46 48 50 56 58 68 70 
2 4 6 25 27 33 35 45 47 49 51 57 59 69 71 
2 5 7 24 26 33 35 40 42 52 54 60 62 64 66 
2 5 7 25 27 32 34 41 43 53 55 61 63 65 67 
2 8 10 16 18 36 38 41 45 51 55 58 62 64 68 

8 10 17 !9 37 39 43 47 49 53 56 60 66 70 
9 11 16 18 37 39 40 44 50 54 59 63 65 69 
9 11 17 19 36 38 42 46 48 52 57 61 67 71 

12 14 20 22 28 30 42 45 51 52 56 63 65 70 
2 12 14 21 23 29 31 40 47 49 54 58 61 67 68 
2 13 15 20 22 29 31 41 46 48 55 59 60 66 69 
2 13 15 21 23 28 30 43 44 50 53 57 62 64 71 
3 4 20 23 36 39 44 46 49 51 60 62 65 67 
3 4 7 21 22 37 38 45 47 48 so 61 63 64 66 
3 5 6 20 23 37 38 40 42 53 55 56 58 69 71 
3 5 6 21 22 36 39 41 43 52 54 57 59 68 70 
3 8 11 24 27 28 31 42 4 7 50 55 57 60 65 68 
3 8 11 25 26 29 30 40 45 48 53 59 62 67 70 
3 9 10 24 27 29 30 41 44 49 52 58 63 66 71 
3 9 10 25 26 28 31 43 46 51 54 56 61 64 69 
3 12 15 16 19 32 35 41 47 50 52 56 62 67 69 
3 12 15 17 18 33 34 43 45 48 54 58 60 65 71 
3 13 14 16 19 33 34 40 46 51 53 57 63 66 68 
3 13 14 17. 18 32 35 42 44 49 55 59 61 64 70 
4 8 12 16 20 24 28 32 36 53 54 59 61 66 71 
4 8 12 17 23 26 29 34 39 52 55 57 63 64 69 
4 9 13 16 21 25 28 33 37 52 55 58 60 67 70 
4 9 13 17 22 27 29 35 38 53 54 56 62 65 68 
4 10 14 18 22 24 30 32 38 40 43 57 60 67 69 
4 10 14 19 21 26 31 34 37 41 42 59 62 65 71 
4 11 15 18 23 25 30 33 39 41 42 56 61 66 68 

11 15 19 20 27 31 35 36 40 43 58 63 64 70 
8 13 18 21 24 31 35 39 45 46 56 63 67 71 
8 13 19 22 26 30 33 36 44 47 58 61 65 69 

5 9 12 18 20 25 31 34 38 44 47 57 62 66 70 
5 9 12 19 23 27 30 32 37 45 46 59 60 64 68 
5 10 15 16 23 24 29 35 37 48 51 57 61 65 70 
5 10 15 17 20 26 28 33 38 49 50 59 63 67 68 
5 11 14 16 22 25 29 34 36 49 50 56 60 64 71 
5 11 14 17 21 27 28 32 39 48 51 58 62 66 69 
6 8 14 18 20 27 29 33 37 43 46 50 52 61 62 
6 8 14 19 23 25 28 35 38 41 44 48 54 60 63 
6 9 15 18 21 26 29 32 36 42 47 51 53 60 63 
6 9 15 19 22 24 28 34 39 40 45 49 55 61 62 
6 10 12 16 22 27 31 33 39 42 44 48 53 64 67 
6 10 12 17 21 25 30 35 36 40 46 50 55 65 66 
6 11 13 16 23 26 31 32 38 43 45 49 52 65 66 
6 11 13 17 20 24 30 34 37 41 47 51 54 64 67 
7 8 15 16 21 27 30 34 38 42 46 49 54 69 70 
7 8 15 17 22 25 31 32 37 40 44 51 52 68 71 
7 9 14 16 20 26 30 35 39 43 47 48 55 68 71 
7 9 14 17 23 24 31 33 36 41 45 50 53 69 70 
7 10 13 18 23 27 28 34 36 !10 47 48 52 56 59 
7 10 13 19 20 25 29 32 39 42 45 so 54 57 58 
7 11 12 18 22 26 28 35 37 41 46 49 53 57 58 
7 11 12 19 21 24 29 33 38 43 44 51 55 56 59 

4 5 6 7 8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 
28 29 30 31 32 33 34 35 36 37 38 39 

4 5 16 17 28 29 40 41 42 43 44 45 46 4 7 
4 5 18 19 30 31 48 49 50 51 52 53 54 55 
6 7 16 17 30 31 56 57 58 59 60 61 62 63 
6 7 18 19 28 29 64 65 66 67 68 69 70 71 

1 8 9 20 21 32 33 40 41 48 49 56 57 64 65 
1 a 9 22 23 34 35 42 43 so s1 s0 59 66 67 

10 II 20 21 34 35 44 45 52 53 60 61 68 69 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 42 43 48 49 62 63 68 69 

1 12 13 26 27 38 39 40 41 50 51 60 61 70 71 
1 14 15 24 25 38 39 46 47 52 53 58 59 64 65 

14 15 26 27 36 37 44 45 54 55 56 57 66 67 
4 6 24 26 32 34 44 46 48 50 60 62 64 66 

2 4 6 25 27 33 35 45 47 49 51 61 63 65 67 
2 5 7 20 24 34 36 40 47 51 54 56 58 68 70 

5 7 21 25 35 37 41 46 50 55 57 59 69 71 
8 10 16 18 37 38 42 45 51 52 56 62 64 71 

2 8 10 17 19 36 39 43 44 50 53 57 63 65 70 
2 9 11 16 27 28 38 40 48 53 55 58 63 66 69 
2 9 11 17 26 29 39 41 49 52 54 59 62 67 68 
2 12 14 18 22 30 32 40 42 44 54 59 61 65 69 
2 12 14 19 23 31 33 41 43 45 55 58 60 64 68 
2 13 15 20 22 28 30 43 47 48 52 57 60 67 7! 
2 13 15 21 23 29 31 42 46 49 53 56 61 66 70 
3 4 7 22 26 32 39 43 45 49 53 56 58 69 71 
3 4 7 23 27 33 38 42 44 48 52 57 59 68 70 
3 5 6 20 22 36 39 41 42 52 55 61 63 64 66 
3 5 6 21 23 37 38 40 43 53 54 60 62 65 67 
3 a 11 24 26 29 31 42 47 s1 ss 57 60 65 69 
3 8 11 25 27 28 30 43 46 50 54 56 61 64 68 
3 9 10 18 25 30 37 41 44 47 49 58 60 66 70 
3 9 10 19 24 31 36 40 45 46 48 59 61 67 71 
3 12 15 16 18 32 34 41 46 51 53 57 63 67 68 
3 12 15 17 19 33 35 40 47 50 52 56 62 66 69 
3 13 14 16 20 28 34 45. 49 50 55 59 62 65 70 
3 13 14 17 21 29 35 44 48 51 54 58 63 64 71 
4 8 12 16 20 25 29 33 36 53 54 59 60 66 71 
4 8 12 17 21 24 28 32 37 52 55 58 61 67 70 
4 9 13 16 19 23 34 37 39 47 54 57 61 64 69 
4 9 13 17 18 22 35 36 38 46 55 56 60 65 68 
4 10 14 20 23 24 29 30 38 41 50 56 63 67 69 
4 10 14 21 22 25 28 31 39 40 51 57 62 66 68 
4 11 15 18 20 26 31 35 37 40 43 59 63 64 70 
4 11 15 19 21 27 30 34 36 41 42 58 62 65 71 
5 8 13 18 20 27 31 33 39 44 46 58 62 67 69 
5 8 13 19 21 26 30 32 38 45 47 59 63 66 68 
5 9 12 22 24 27 29 30 35 45 53 57 62 64 70 
s 9 12 23 25 26 28 31 34 44 52 56 63 65 71 
5 10 15 16 22 26 29 33 37 48 50 58 61 65 68 
5 10 15 17 23 27 28 32 36 49 51 59 60 64 69 
5 11 14 16 19 25 32 35 39 42 48 56 60 67 70 
5 11 14 17 18 24 33 34 38 43 49 57 61 66 71 
6 8 15 16 23 24 30 35 39 40 44 49 55 68 71 
6 8 15 17 22 25 31 34 38 41 45 48 54 69 70 
6 9 14 16 21 26 30 33 36 43 46 51 52 69 70 
6 9 14 17 20 27 31 32 37 42 47 50 53 68. 71 
6 10 12 18 21 27 29 34 39 43 47 48 55 56 59 
6 10 12 19 20 26 28 35 38 42 46 49 54 57 58 
6 11 13 18 23 25 29 32 36 40 45 50 52 57 58 
6 11 13 19 22 24 28 33 37 41 44 51 53 56 59 
7 8 14 18 23 26 28 35 36 41 47 48 53 61 62 
7 8 14 19 22 27 29 34 37 40 46 49 52 60 63 
7 9 15 18 21 24 28 33 39 42 45 50 54 60 63 

9 15 19 20 25 29 32 38 43 44 51 55 61 62 
10 13 16 24 27 31 32 35 41 43 52 54 65 66 

7 10 13 17 25 26 30 33 34 40 42 53 55 64 67 
7 11 12 16 21 22 31 36 38 44 47 49 50 64 67 
7 11 12 17 20 23 30 37 39 45 46 48 51 65 66 
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(A}ij 

(bij} 

!.. l (A) ~ ••• ~ An (A) 

A!&>B 

diag Ca1, •.• , an) 

I or In 

J 

< u1, ... ,u > 
n .L 

< u1, ... ,un > 

G 

a(G) 

y(G) 

w(G) 

t..
1 

(G) ~ ••• ~ Xn (G) 

fi(G) 

L(G) 

D(G,G
1

) 

Kn 

KR.,m 
p(x,y) 

k 
pij(x,y) or pij 

/..(e1 ,e2l 

pijk(L,x,y) 

lZ 

lN 

lF q 
PG(n,q) 

AG(n,q) 

NOTATIONS 

hermitian transpose of matrix A. 

ij-th entry of matrix A 

matrix with entries bij" 

eigenvalues (if real) of matrix A. 

Kronecker product of mat.rices A and B. 

diagonal matrix with diagonal entries a 1 , ••. ,an. 

n x n identity matrix. 

all-one matrix. 

n x n all-one matrix. 

all-one vector. 

length of vector u. 

linear span of vectors u1 , ••• ,un. 

orthogonal complement of< u1 , ••• ,un >. 

complement of graph G. 

size of largest clique of G. 

chromatic number of G. 

size of largest coclique of G. 

eigenvalues of G. 

multiplicity of eigenvalue >..i(G). 

line graph of G. 

incidence structure formed by G and G1, seep. 17. 

complete graph on n vertices. 

complete bipartite graph on R. + m vertices. 

distance between vertices x and y, see p. 79. 

intersection numbers of a graph, seep. 51 and p. 81. 

distance between elements of an n-gon, see p. 52. 

see p. 58. 

integers. 

positive ·integers. 

field with q elements. 

n-dimensional projective geometry over lFq. 

n-dimensional affine geometry over JFq. 

1 if i = j; 0 if i ~ j. 

lower integer part of real number x. 

upper integer part of real number x. 



adjacency matrix 

adjacent vertices 

balanced incomplete block design 

bipartite graph 

block 

block design 

block graph 

cauchy inequalities 

chromatic number 

circuit 

class graph 

Clebsch graph 

clique 

coclique 

colour class 

colourable, t

colouring 

complement of a graph 

complement of an inc. structure 

complete graph 

complete y-partite graph 

component 

connected graph 

cycle, n-

degenerate design 

degree 

derived design 

design 

design, t-

design, t - (v·,k,A) 

diameter 

disconnected graph 

disjoint union of graphs 

distance in a graph 

distance in a generalized n-gon 

INDEX 

79 distance regular graph 

79 dual of an incidence structure 

83 edge 

80 eigenvalues of a graph 

82 

83 

35 

8 

80 

79,81 

35 

39 

80 

80 

element of a generalized n-gon 

embeddable 

empty incidence structure 

equivalent blocks 

equivalent points 

flag 

(generalized) n-gon 

(generalized) hexagon 

(generalized) polygon 

(generalized) quadrangle 

80 geometric graph 

80 Gewirtz graph 

80 girth 

79 graph 

83 graph, 40-

79 Higman-Sims technique 

80 Hoffman-Singleton graph 

79 imprimitive str. reg. graph 

79 incidence 

81 incidence graph 

83 incidence matrix 

81 incidence structure 

83 induced configuration 

83 induced subqraph 

83 independent set of vertices 

83 interlacing eigenvalues 

79 intersection numbers of a design 

79 intersection numbers of a graph 

79 joint vertices 

79 lattice graph 

52 length of a circuit 

101 

51 

83 

79 

15,80 

52 

83 

82 

34,65 

65 

82 

50 

53 

50 

84 

52 

42 

79 

79 

76 

10 

42 

37,82 

82 

46,83 

80,82 

82 

58 

80 

80 

7 

31 

51 

79 

82 

79 
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length of a path in a graph 79 quasi-symmetric 2-design 

length of a path in a gen. n-gon 52 regular graph 

line graph 67,84 residual design 

linked 2 - (16,6,2) designs 45 Schlllfli graph 

new block 68 Shrikhande graph 

new point 68 singular values 

null graph 79 special block 

order of a generalized n-gon 

oval 

parameters of a t-design 

parameters of a partial geometry 

parameters of a str. reg. graph 

partial geometry 

partial subgeometry 

path in a generalized n-gon 

path in a graph 

Petersen graph 

point 

point graph 

primitive str. reg. graph 

pseudo-geometric graph 

50 

70,78 

83 

84 

strongly regular graph 

subconstituent 

subdesign 

subgraph 

81 substructure 

84 symmetric 2-design 

84 thick generalized n-gon 

52 tight interlacing 

79 triangular graph 

82 type I, II block 

82 valency 

52,84 vertex 

37,82 void graph 

52 

35 

81 

83 

26 

cover 

5 

69 

81 

82 

83 

80 

82 

83 

50 

7 

82 

65 

81 

79 

79 
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SAMENVA'l'TING 

Matrices en eigenwaarden zijn al vaak benut bij het bestuderen van 

eindige grafen en incidentiestructuren (designs). Dit gebeurt ook in dit 

proefschrift. Het uitgangspunt is een stelling over de eigenwaarden van ge

partitioneerde matrices. Het toepassen van deze stelling op matrices geas

socieerd met graf en of designs levert grenzen voor de grootte van deelgra

f en, de afmetingen van subdesigns en de doorsnijdingsgetallen van designs. 

Bet geval dat deze grenzen worden bereikt wordt ook behandeld. De genoemde 

stelling geeft bovendien aanleiding tot een nieuw bewijs voor de ongelijk

heden van A.J. Hoffman, betreffende de eigenwaarden van gepartitioneerde 

matrices. Deze ongelijkheden leveren grenzen voor het kleuringsgetal van 

een graaf. Mede dankzij die grenzen is het mogelijk alle 4-kleurbare sterk 

reguliere grafen te bepalen. 

De behandeling van het bovenstaande gebeurt in de eerste vier hoofd

stukken. Hoofdstuk 5 behandelt de ongelijkheid t s s 3, alsook het geval 

vangelijkheid,voor veralgemeende zeshoeken van de orde (s,t), s ~ 1. Dit 

gebeurt met behulp van eigenwaardetechnieken. Dezelfde methode toegepast op 

veralgemeende vierhoeken levert nieuwe bewijzen voor een aantal bekende 

stellingen. 

Met de hulp van eigenwaardemethoden kan men richtlijnen opstellen voor 

het construeren van designs en grafen met speciale eigenschappen. Langs 

deze weg worden er in Hoofdstuk 6 nieuwe 2-designs en sterk reguliere gra

fen geconstrueerd. 
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STELLINGEN 

Stel men wil boodschappen overseinen die gevormd warden met letters uit een 

alfabet A van n letters genummerd van 1 t/m n, waarvan sommige paren letters 

met elkaar verwarbaar zijn. Beschouw een nxn matrix M over een willekeurig 

lichaam, die voldoet aan (M) i, i 'f 0 voor i = 1, .•• , n en (M)i ,j = 0 als de 

ie en je letter van A niet verwarbaar zijn. Dan is de Shannon capaciteit 

van A, die een maat is voor de hoeveelheid foutloos overseinbare informatie, 

ten hoogste gelijk aan de rang van M. 

Ref.: Willem Haemers, An upperbou'nd for the Shannon capacity of a graph, 

Proc. Conf. Algebraic Methods in Graph Theory, Szeged, 1978 (te 

verschijnenl. 

2 

Het antwoord op de vragen van Probleem I, 2 en 3 uit [2) is ontkennend. 

Ref.: [1) Willem Haemers, On some problems of Lovasz concerning the 

Shannon capacity of a graph, IEEE Trans. Information Theory ~ 

(1979) 231 - 232. 

[2] Laszlo Lovasz, On the Shannon capacity of a graph, IEEE Trans. 

Information Theory 25 (1979) 1 - 7. 

3 

Zeals bekend verscheen een speciaal geval van de stalling van Turan reeds 

als opgave 28 in het tiende deel van "Wiskundige Opgaven met de Oplossingen" 

(1910). De aldaar afgedrukte oplossing is echter onjuist. 

4 

Er bestaat geen stark reguliere graaf met 49 hoekpunten en graad 16. 

Ref.: F.C. Bussemaker, w. Haemers, R. Mathon & H.A. Wilbrink, The non

existence of a strongly regular graph with parameters (49, 16, 3, 6l 

(in voorbereiding). 



5 

Het is bekend dat de verbindingsmatrix van een sterk reguliere graaf soms 

tevens de incidentiematrix van een symmetrisch 2-design is. Het is mogelijk 

dat op deze manier twee niet isomorfe grafen isomorfe 2-designs opleveren. 

Dit is echter niet mogelijk als een van de grafen een automorfismegroep 

heeft van oneven orde. Met de resultaten van het onderstaande rapport vo:gt 

hieruit dater tenminste 15531 niet isomorfe 2-(36, 15, 6) designs zijn. 

Ref.: F.C. Bussemaker, R. Mathen & J.J. Seidel, Tables of ·two-graphs, 

T.H.-rapport (in voorbereiding). 

6 

Voor het bestaan van een 3-(,k2-,k+1,k,2)design is nodig dat k-3 een twaalvoud 

is. 

7 

Als er voor n > 1 een projectief vlak van de orde 22n-l bestaat, dan bes~aat 
er een "near-square A-linked design" met 24n-2 2" punten en A • 24"-2 - 3.2 3n-2 + 

- 2n-l+l, en is dus het antwoord op de eerste vraag van het Probleem uit §9 

van onderstaand artikel, bevestigend. 

La at 

Ref.: D.R. Woodall, Square A-linked designs, Proc. London Math. Soc. 20 

(1970) 669 - 687. 

8 

~ -- (0s* Be) (B* <s der hermi·tl.'sch M ~ geconjungeerde van B) een hermitische 

matrix zijn met grootste eigenwaarde A+ en kleinste eigenwaarde A-. 

Veronderstel B heeft afmetingen mxn en gemiddelde rijsom r. Dan geldt 

-A+A- <: r 2m/n. 

9 

Beschouw een rechthoekig veld, betegeld met een eindig aantal rechthoekige 

tegels. Een tegel heet zuiderbuur van een andere tegel als de noordkant van de 

eerste op dezelfde lijn ligt als de zuidkant van de andere tegel. Een noord

zuid pad is een rijtje tegels waarbij elke tegel (behalve de eerste) zuiderbuur 

is van zijn voorganger. Analoog is een oost-west pad gedefinieerd. Er geldt nu 

dat elk paar tegels op een noord-zuid pad of op een cost-west pad ligt. 



10 

De enige samenhangende planaire ster~ reguliere grafen zijn: 

DO 
11 

Meetkundig inzicht is een van de meest toepasbare dingen die men zich 

binnen de wiskunde kan verwerven. Daarom is het treurig dat het gewijzigde 

onderwijsprogramma het ruimtelijk voorstellingsvermogen van de doorsnee 

middelbare-school-verlater in tien jaar tijd met ongeveer een dimensie heeft 

doen dalen. 

Eindhoven, 30 oktober 1979 W.H. Haemers. 


