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Chapter 1Introdution
1.1 Geometri networksA network is, informally speaking, a olletion of \objets" with ertain \on-netions" between the objets. An obvious example of a network is a omputernetwork. Here the objets are omputers and there is a onnetion between twoomputers if there is a physial able onneting them. Other obvious examplesare road or railway networks. In the latter type of network the objets are thestations, and the onnetions are the traks onneting the various stations.There are also many other types of networks, however, where the onnetionsdo not neessarily have a physial realization. For example, in soial sienes onestudies soial networks, where the objets ould be people and two people areonneted if they have a ertain soial relationship| see Figure 1.1. Anotherexample is formed by biologial networks suh as neural networks, gene regulatorynetworks or protein-protein interation networks| see Figure 1.2.Sometimes networks an be rather small|the network in Figure 1.1 for exam-ple is quite small|but sometimes they an also be huge, like the Internet (whihhas more than 500 million hosts) and the webgraph|a graph whose nodes or-respond to stati pages on the web and whose ars orrespond to links betweenthese pages|whih has billions of pages that are onneted by billions of links.For example, in 2003 Google searh engine indexed 1.6 billions of URLs and thisinreased to 4.2 billions in 2004.From these examples it is lear that networks form a fundamental model in avariety of appliation areas. It is not surprising therefore, that there has been a lot
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Figure 1.1: The network of interations between major haraters in the novelLes Miserables by Vitor Hugo, divided into 11 ommunities represented by di�erentolors [NG04℄.of researh on designing, analyzing, and optimizing networks. The mathematialonept orresponding to networks are graphs. (In the sequel, we will use theterms graph and network interhangeably.) A graph G is a pair (V;E) where V isa (usually �nite) set of nodes and E ⊂ V ×V is the set of onnetions between thenodes. Based on the network, we an make the graph (edge/vertex) weighted ordireted/undireted. For example for a graph whih models a road network, theweight of an edge an represent the length of the road. Also by making it diretedwe an show one-way or two-way roads.In some appliations it is relevant to assume that the set of verties of thegraph is a subset of a metri spae and the weight of eah edge in the graph isthe distane between its endpoints. A metri spae is de�ned as a set where adistane between elements of the set is de�ned. The distane funtion d (alled ametri) should be non-negative, symmetri, have d(x; y) = 0 if and only if x = y,and satisfy the triangle inequality. Obviously any set of points in the plane withthe Eulidean distane as a distane funtion makes a metri spae. As a moreomplex example, for eah graph G(V;E) with positive edge weights, we an easilyde�ne a distane funtion (or metri) d suh that (V;d) makes a metri spae. To



1.2 t-Spanners 3

Figure 1.2: A yeast protein interation network [MS02℄.this end, we de�ne the distane between eah pair (u; v) ∈ V 2 as the length of theshortest path between u and v in G. We all (V;d) the metri spae indued bythe graph G.A geometri network omes from adding geometry to a network. More pre-isely, if the vertex set of the network is a subset of d-dimensional Eulidean spae,and the metri is the Eulidean metri, then the network is a geometri network.Geometri networks model naturally (at least approximately) many real-life net-works, suh as road networks, railway networks, and so on. In this ase we anuse geometri properties to design or analyze a network. In this thesis we alwaysonsider undiret geometri networks, unless expliitly stated otherwise.1.2 t-SpannersWhen designing a network for a given set V of points, several riteria an betaken into aount. In many appliations it is important to ensure a fast on-netion between every pair of points in V . For this it would be ideal to havea diret onnetion between every pair of points|the network would then be aomplete graph|but in most appliations this is unaeptable due to the highosts. This leads to the onepts of spanners, as de�ned below. Spanners wereintrodued by Peleg and Sh�a�er [PS89℄ in the ontext of distributed omputingand by Chew [Che86℄ in a geometri ontext.Let V be a subset of a metri spae and for eah u and v in V , let d(u; v)denote the distane between u and v in the metri spae. The aim is to design anetwork whih ensures a \fast" onnetion between eah pair of points but with



4 Chapter 1 Introdutiona sub-quadrati number of edges. Note that the number of edges in the ompletegraph is quadrati in the number of verties. To obtain a \good" graph with asub-quadrati number of edges we have to allow a (hopefully short) detour betweenpairs of points. For example, instead of asking for a diret onnetion betweeneah pair of points, we are allowed to have a small detour. The length of the detouris given by a real number t > 1. Given the parameter t, a onnetion between uand v in the graph G is \good" if the distane between u and v in the graph G,denoted by dG(u; v), is at most t times the distane between u and v. We allsuh a path a t-path between u and v in the graph G. The ratio dG(u; v)=d(u; v)is alled the dilation between u and v in G. A graph G is a t-spanner of its vertexset if the dilation between eah pair of verties in G is bounded by t. Figure 1.3is an example of 1:5-spanner on 532 US ities.

Figure 1.3: A 1:5-spanner networks on 532 US ities [NS07℄.Here is the formal de�nition of t-spanner.De�nition 1.2.1 (t-spanner of a point set) A graph G(V;E) is a t-spanner of V ,for a real number t > 1, if for eah pair of points u; v ∈ V , we have thatdG(u; v) ≤ t · d(u; v):The dilation, or streth fator, of a network G(V;E) is the minimum t for whih Gis a t-spanner of V . When a geometri graph satis�es the t-spanner ondition, weall it a geometri t-spanner.



1.2 t-Spanners 5Intuitively, the t-spanner property is stronger than the graph onnetivity prop-erty, i.e. we should not only have a path between eah pair of points in the graphbut also the length of the path should be lose to the distane between the pair ofpoints. The parameter t deides how lose the t-spanner approximates the om-plete graph. In other words, the loser t is to one, the loser the t-spanner is tothe omplete graph.We an easily extend De�nition 1.2.1 to a t-spanner of a given graph. Reallthat for any two verties u and v in a graph G with positive edge weights, dG(u; v)denotes the distane between u and v in the graph V , that is, the length of theshortest path between u and v in G.De�nition 1.2.2 (t-spanner of a graph) Let G(V;E) be a graph with positive edgeweights. A graph G′(V;E′) on the same vertex set but with edge set E′ ⊆ E is at-spanner of G if for eah pair of verties u; v ∈ V we have thatdG′(u; v) ≤ t · dG(u; v):By omparing De�nition 1.2.1 and De�nition 1.2.2 one an see two di�erenes.First, a t-spanner of a given graph G is a subgraph of G. Therefore omputing at-spanner of a graph G is sometimes alled a pruning of G. The seond di�ereneis that, to hek the t-spanner ondition, the distane between eah pair in thet-spanner is ompared to the distane between them in the input graph. Note thatin De�nition 1.2.2 it is not neessary that the verties of the input graph belongto a metri spae. Instead we use the metri spae indued by the input graph tomeasure the distane between them.A t-spanner on a point set V|whih is subset of a metri spae|an be seenas a t-spanner of the omplete graph on V , denoted by G(V ), where the weightof eah edge in the omplete graph is the distane between its endpoints.The main question in designing t-spanners is whether spanners exist that have\good" properties. The desirable properties are the following:Size: The number of edges in the graph. This is the most important measure-ment and generating spanners with a small, ideally near-linear, size is desirable.The fat that geometri spanners with a near-linear number of edges and smalldilation exist has made the onstrution of spanners one of the fundamental toolsin the development of approximation algorithms for geometrial problems.Degree: The maximum number of edges inident to a vertex. This propertyhas been shown to be useful in the development of approximation algorithms[GLNS02a, Yao82℄ and for the onstrution of ad ho networks [ALW+03, Li03℄where small degree is essential in trying to develop fast loalized algorithms.Weight: The weight of a network G(V;E) is the sum of the edge weights.(Reall that for geometri graphs the weight of an edge is simply the Eulideandistane between its two endpoints.) The best that an be ahieved is a onstant



6 Chapter 1 Introdutiontimes the weight of the minimum spanning tree, denoted wt(MST (V )). Lowweight spanners have found appliations in areas suh as metri spae searh-ing [NP03, NPC02℄|see Setion 1.3.2|and broadasting in ommuniation net-works [FPZW04℄|see Setion 1.3.3. Also, it has been used in the onstrution ofseveral approximation algorithms, see [CL00, RS98℄.Spanner diameter: De�ned as the smallest integer D suh that for any pair ofverties u and v in V , there is a t-path in the graph between u and v ontainingat most D edges. For wireless ad ho networks it is often desirable to have smallspanner diameter sine it determines the maximum number of times a messagehas to be transmitted in a network. If a graph has spanner diameter D then it issaid to be a D-hop network.It has been shown that for any set V of n points in R
d and for any �xed t > 1there exists a t-spanner with O(n) edges, onstant degree, and whose total weightis O(wt(MST (V ))) [DN97, NS07℄. Arya et al. [AMS99℄ designed a randomizedalgorithm whih generates a t-spanner of expeted linear size and expeted loga-rithmi spanner diameter.Note that some of the above properties are ompeting, e.g., a graph withonstant degree annot have onstant spanner diameter, and a graph with smallspanner diameter annot have a linear number of edges [ADM+95℄.In most ases we are interested in t-spanners, where t is lose to 1. Morepreisely, we are interested in shemes where we an speify any t > 1 and thenobtain a spanner of dilation t. To emphasize the fat that t is lose to 1, we willsometimes speak about (1 + ")-spanners instead of t-spanners.1.3 Why spanners?Spanners for omplete graphs as well as for arbitrary weighted graphs �nd applia-tions in robotis, network topology design, distributed systems, design of parallelmahines, and many other areas. Reently spanners found interesting pratial ap-pliations in areas suh as metri spae searhing [NP03, NPC02℄ and broadastingin ommuniation networks [ALW+03, FPZW04, Li03℄.Several well-known theoretial results also use the onstrution of t-spannersas a building blok. For example, Rao and Smith [RS98℄ made a breakthroughby showing an optimal O(n logn)-time approximation sheme for the well-knownEulidean traveling salesperson problem, using t-spanners (or banyans). Simi-larly, Czumaj and Lingas [CL00℄ showed approximation shemes for minimum-ostmulti-onnetivity problems in geometri graphs. The problem of onstrutinggeometri spanners has reeived onsiderable attention from a theoretial perspe-tive, see [ADD+93, ADM+95, AMS99, BGM04, DHN93, DN97, DNS95, GLN02,Kei88, KG92, LL92, LNS02, Sal91, Vai91℄, the surveys [Epp00, GK07, Smi00℄ and



1.3 Why spanners? 7the book by Narasimhan and Smid [NS07℄. Note that signi�ant researh has alsobeen done in the onstrution of spanners for general graphs, see for example, thebook by Peleg [Pel00℄ or the reent work by Elkin and Peleg [EP04℄ and Tho-rup and Zwik [TZ01℄. In this setion we mention some of the appliations oft-spanners.1.3.1 Approximate minimum spanning treeThe problem of �nding a minimum weight spanning tree (MST) of a given graphhas reently attrated a lot of attention. There are linear time algorithms for om-puting MST in a randomized expeted ase model [KKT95℄ or with the assumptionthat edge weight are integers [FW94℄. For deterministi omparison-based algo-rithms, slightly superlinear bounds are known [GGST86℄.In the geometri ase, for any dimension d, one an �nd a minimum spanningtree of a set of n points in O(n2) time by onstruting the omplete graph andomputing all the edge weights (=pairwise distanes) in O(n2) time, and thenrunning any MST algorithm (suh as Prim's algorithm). Most of the faster al-gorithms for the geometri ase use a simple idea: �nd a sparse subgraph of theomplete graph whih ontains an MST, and then ompute an MST of this sparsesubgraph. In the plane, the Delaunay graph is the appropriate graph to use sineit only has O(n) edges and an be onstruted in O(n logn) time [SH75℄. It isnot helpful in higher dimensions beause the Delaunay graph an have a quadratinumber of edges [Eri01℄.Salowe [Sal91℄ showed that if G′ is a (geometri) t-spanner of a graph Gand wt(MST (G)) denotes the weight of the minimum spanning tree of G, thenwt(MST (G′)) ≤ t · wt(MST (G)). Using this result, we an use any (sparse)t-spanner of a graph to ompute an approximate minimum spanning tree of thegraph. For more details about approximating the minimum spanning tree see thesurvey by Eppstein [Epp00℄.1.3.2 Metri spae searhingThe problem of \approximate" proximity searhing in metri spaes is to �nd theelements of a set whih are \lose" to a given query under some similarity riterion.Similarity searhing has beome a fundamental omputational task in a variety ofappliation areas, inluding multimedia information retrieval, pattern reognition,omputer vision and biomedial databases. In suh environments, an exat mathhas little meaning, and proximity/distane onepts (similarity/dissimilarity) aretypially muh more fruitful for searhing. In all of these appliations we have ametri whih shows the similarity between objets. The smaller the distane isbetween two objet, the more similar they are | see [ZADB06℄ for more details.



8 Chapter 1 IntrodutionA typial query q is:
• �nd all elements in the database whih are within distane r from q.
• �nd the k losest elements to q in the database.If the database ontains n elements, we an answer a query by performing O(n)distane omputations. But evaluating distanes is expensive and the goal is toredue the number of distane evaluations. In general, there are several methods toredue the number of distane evaluations, see the survey [CNBYM01℄. A widelyused tehnique for this is AESA [Rui86℄. The main drawbak of this tehnique isthat it omputes all pairwise distanes and stores them in a matrix whih requiresa lot of spae.Navarro et al. [NPC02℄ used a t-spanner as a data struture for metri spaesearhing to redue the spae needed for the AESA. The key idea is to regardthe t-spanner as an approximation of the omplete graph of distanes among theobjets, and to use it as a ompat devie to simulate the large matrix of distanesrequired by suessful searh algorithms suh as AESA. The t-spanner propertyimplies that we an use the shortest path in the t-spanner to estimate any distanewith bounded error fator t.They propose several t-spanner onstrution, update, and searh algorithmsand experimentally evaluated them. The experiments show that their tehniqueis ompetitive against urrent approahes, and that it has a great potential forfurther improvements.1.3.3 Broadasting in ommuniation networksWireless networks onsist of a set of wireless devies (alled nodes) whih arespread over a geographial area. These nodes are able to perform proessing aswell as ommuniating with eah other. The nodes an ommuniate via multi-hop wireless hannels: a node an reah all nodes inside its transmission regionwhile nodes far away from eah other ommuniate through intermediate nodes.Wireless ommuniation networks have appliations in various situations suh asemergeny relief, environmental monitoring, and so on.There are two ommon types of wireless networks: sink-based networks andad ho networks. In a sink-based network, like ellular wireless networks, there isone or multiple sink nodes whih are in harge of olleting data from all nodesand managing the whole network. On the other hand, in ad ho networks thereare no suh sink nodes and all nodes are equal in terms of ommuniation andnetwork management.Energy onsumption and network performane are the most ritial issues inwireless ad ho networks, beause wireless devies are usually powered by batteriesonly and have limited omputing apability and memory.



1.3 Why spanners? 9A wireless ad ho network is modeled by a set V of n wireless nodes distributedin a two-dimensional plane. Eah node has the same maximum transmission rangeR whih, by a proper saling, we an assume that all nodes have the maximumtransmission range to be equal to 1. These wireless nodes de�ne a unit disk graph,denoted by UDG(V ), in whih there is an edge between two nodes if the Eulideandistane between them is at most 1. The most ommon power-attenuation modelin the literature laims that the power needed to support a link (u; v) is ‖uv‖�,where ‖uv‖ is the Eulidean distane between u and v and � is a real onstantbetween 2 and 5 depending on the wireless transmission environment. So thepower onsumption of a network is a funtion of the weight of the network. Theminimum possible weight for a onneted network is the weight of a minimumspanning tree, however, this might have low performane.Several graph theoretial models are used to design ad ho networks with lowenergy onsumption and good performane|see [Wat05℄. Using a low weightt-spanner of the unit disk graph is one of the ways|see [ALW+03℄. This givesus more exibility to onstrut a network whih has low energy onsumption aswell as good performane, like bounded degree. Note that in ad ho networks, anetwork with small node degree, has a better hane to has small interferene.1.3.4 Proteins visualizationOne of the most important open problems in bioinformatis is the problem ofprotein folding. A protein is a long hain of moleules alled amino aids. Innature there exist 20 di�erent amino aids and several experiments show that the3D-struture of a protein is ompletely determined by the sequene of amino aids.The protein-folding problem is the problem of determining the 3D-strutureof a protein given its amino aid sequene. Various omputational methods havebeen applied to takle the protein-folding problem, with varying suess. Amongthese are neural networks, approximation algorithms, metaheuristis, branh-and-bound, distributed systems and omputational geometry.Nowadays, using high omputing power and large sale storage, researhersare able to omputationally simulate the protein-folding proess in atomisti de-tails. Suh simulations often produe a large number of folding trajetories, eahonsisting of a series of 3D onformations of the protein under study. As a re-sult, e�etively managing and analyzing suh trajetories is beoming inreasinglyimportant.Reently, Russel and Guibas [RG05℄ suggested using geometri spanners formapping a simulation to a more disrete ombinatorial representation. They ap-ply geometri spanners to disover the proximity between di�erent segments ofa protein aross a range of sales, and trak the hanges of suh proximity overtime. This makes the task of understanding and exploring the spae of protein



10 Chapter 1 Introdutionmotions easier. Using their struture it is possible to visualize proteins in mo-tion whih none of the ommonly used software pakages suh as RasMol [Ras℄,ProteinExplorer [Mar02℄, or SPV [GP97℄ have been able to ahieve.
1.4 Thesis overviewIn this thesis we onsider several problems related to the design and analysis ofgeometri networks.In Chapter 2, we introdue the onept of region-fault tolerant spanners forplanar point sets, and prove the existene of region-fault tolerant spanners of smallsize. For a geometri graph G on a point set V and a region F , we de�ne G⊖F tobe what remains of G after the verties and edges of G interseting F have beenremoved. A C-fault tolerant t-spanner is a geometri graph G on V suh that forany onvex region F , the graph G⊖F is a t-spanner for G(V )⊖F , where G(V )is the omplete geometri graph on V . Fault-tolerant spanners provide high levelsof availability and reliability in network onnetions. These networks keep theirgood properties, even after some part of the network is destroyed e.g. by a naturaldisaster.We prove that any set V of n points admits a C-fault tolerant (1 + ")-spannerof size O(n log n), for any onstant " > 0; if adding Steiner points is allowed thenthe size of the spanner redues to O(n), and for several speial ases we show howto obtain region-fault tolerant spanners of size O(n) without using Steiner points.We also onsider fault-tolerant geodesi t-spanners : this is a variant where, for anydisk D, the distane in G⊖D between any two points u; v ∈ V \ D is at most ttimes the geodesi distane between u and v in R

2 \ D. We prove that for anypoint set V we an add O(n) Steiner points to obtain a fault-tolerant geodesi(1 + ")-spanner of size O(n). These results are based on [AdBFG07℄.In appliations|think of road networks, for instane|a spanner network issometimes expanded by adding one or more extra onnetions. The main questionis then how to do the expansion suh that the resulting network is as good as pos-sible. In Chapter 3 we study a problem of this type. In partiular, we onsider theproblem of adding an edge to a given network suh that the dilation of the resultingnetwork is minimized. We present one exat algorithm and several approximationalgorithms. The best approximation algorithm omputes a (2 + ")-approximationof the optimal solution in O(nm+n2 logn) time using O(n2) spae, where n is thenumber of verties and m is the number of edges in the input network. For thespeial ase, when the dilation of the input network is onstant, we an improvethe approximation fator to 1 + " and the running time to O(n2). These resultsare based on [FGG05a℄.



1.4 Thesis overview 11Chapter 4 studies the problem of dilation optimal edge deletion. More preiselywe are given a geometri network in the plane and we want to �nd an edge inthe network suh that its removal minimizes, or maximizes, the dilation in thenetwork. An obvious appliation is when we want to remove some onnetions inan existing network, e.g. due to budget onsideration, and we want to know whihedges should be removed to minimize the e�et on the quality of the network.We solve the problem in the restrited ase when the network is a simple yle.A randomized algorithm is presented whih, given a yle on a set of n points,omputes in O(n log3 n) expeted time, the edge of the yle whose removal resultsin a polygonal path of smallest possible dilation. It is also shown that the edgewhose removal gives a polygonal path of largest possible dilation an be omputedin O(n log n) time. If the input yle is a onvex polygon, the latter problem anbe solved in O(n) time. Finally, it is shown that given a yle C, for eah edge eof C, a (1− ")-approximation to the dilation of the path C \ {e} an be omputedin O(n logn) total time. These results are based on [AFK+07℄.In Chapter 5 we present algorithms for omputing the spanner diameter ofa t-spanner. This is the �rst algorithm for omputing spanner diameter of a t-spanner, to the best of our knowledge. The time omplexity of the most eÆientalgorithm is O(D·mn), where n is the number of verties,m is the number of edgesand D is the spanner diameter of the input graph, and it requires O(n) spae. Wealso ompare the running time of the presented algorithms experimentally. Theseresults are based on [FG06℄.The empirial study of algorithms is a rapidly growing researh area. Imple-menting algorithms and testing their performane shows their eÆieny in pratieand bring the algorithms to the pratial stage. In Chapter 6 we experimentallystudy the performane and quality of the most ommon t-spanner algorithms forpoints in the Eulidean plane. The experiments are disussed and ompared tothe theoretial results and in several ases we suggest modi�ations that are im-plemented and evaluated. The quality measurements that we onsider are thenumber of edges, the weight, the maximum degree, the spanner diameter and thenumber of rossings. We ompare the running times of the algorithms and suggestsome improvements. This is the �rst time an extensive omparison has been madebetween the onstrution algorithms of t-spanners. These results are based on[FG05℄ and [FG07℄.Finally in Chapter 7 we onlude the thesis and state some open problems.
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Chapter 2Region-Fault TolerantSpanners
2.1 IntrodutionAs we mentioned before, geometri networks have appliations in VLSI design,teleommuniations, robotis and distributed systems. The major issues withdesigning suh a network are performane and reliability. The spanner oneptaptures the performane when short onnetions between the points are impor-tant. The main question is then whether spanners exist that have a small dilationand a small, ideally near-linear, number of edges. Other desirable properties of aspanner are for example that the total weight of the edges is small, or that themaximum degree is low. As disussed in the introdution, suh spanners do indeedexist: it has been shown that for any set P of n points in the plane and for any�xed " > 0 there exists a (1 + ")-spanner with O(n=") edges, O(1=") degree, andwhose total weight is O(wt(MST (P ))="4), where wt(MST (P )) is the weight of aminimum spanning tree of P [DN97, NS07℄.Reliability is onerned with the fat that in many appliations the nodesand/or links in a network may fail. In a omputer network, for instane, nodesmay fail beause omputers an rash, and in a road network links may fail beauseroads an beome inaessible due to aidents or maintenane. A network isreliable when it retains its good properties even after some nodes or links fail.With respet to spanners this means there should still be a short path betweenany two nodes in what remains of the spanner after the fault.



14 Chapter 2 Region-Fault Tolerant SpannersFault-tolerant spanner were introdued by Levopolous et al. [LNS98℄. In thispaper and a follow-up paper [LNS02℄ they showed the existene of k-vertex (or:k-edge) fault-tolerant geometri spanners with O(nk logn) edges. This was im-proved by Lukovszki [Luk99℄, who presented a fault-tolerant spanner with O(nk)edges, whih is optimal. Later Czumaj and Zhao [CZ03℄ showed that a greedy ap-proah produes a k-vertex (or: k-edge) fault-tolerant geometri (1 + ")-spannerwith degree O(k) and total weight O(k2 ·wt(MST (P ))); these bounds are asymp-totially optimal.The papers on fault-tolerant spanners mentioned above all onsider faults thatan destroy an arbitrary olletion of k verties or edges. For geometri spanners,however, it is natural to onsider region faults : faults that do not destroy anarbitrary olletion of verties and edges, but faults that destroy all verties andedges interseting some geometri fault region. This is relevant, for instane, whenthe spanner models a road network and a natural (or other) disaster makes all theroads in some region inaessible. This is the topi of this hapter: we study theexistene of small spanners in the plane1 that are tolerant against region faults.Before we present our results, let us de�ne region-fault tolerane more preisely.Let F be a family of regions in the plane, whih we all the fault regions. Fora fault region F ∈ F and a geometri graph G on a point set P , we de�ne G⊖F tobe the part of G that remains after the points from P inside F and all edges thatinterset F have been removed from the graph|see Figure 2.1. (For simpliity weassume that a region fault F does not ontain its boundary, i.e. only verties andedges interseting the interior of F will be a�eted.)
F

Figure 2.1: The input graph G and a fault region F , the graph G⊖F , and thegraph G(P )⊖F .De�nition 2.1.1 An F-fault tolerant t-spanner is a geometri graph G on P suhthat for any region F ∈ F , the graph G⊖F is a t-spanner for G(P )⊖F , where
G(P ) is the omplete geometri graph on P .1The onepts and many of the results arry over to d-dimensional Eulidean spae. However,we feel the onept is mainly interesting in the plane, so we on�ne ourselves to the planar asein this hapter.



2.1 Introdution 15We are mainly interested in the ase where F is the family C of onvex sets.2We shall also onsider the ase where we are allowed to add Steiner points to thegraph. In other words, instead of onstruting a geometri network for P , we areallowed to onstrut a network for P ∪Q for some set Q of Steiner points. Thenwe say that a graph G on P ∪ Q is a C-fault tolerant Steiner t-spanner for P if,for any F ∈ C and any two points u; v ∈ P \ F , the distane between u and v in
G⊖F is at most t times their distane in G(P )⊖F .We also study another variant of region-fault tolerane. In this variant werequire that the distane between any two points u; v in G⊖F is at most t timesthe geodesi distane between u and v in R

2 \ F . Note that the geodesi distanein R
2 \F|that is, the length of a shortest path in R

2 \F|is never more than thedistane between u and v in G(P )⊖F . We all a spanner with this property an
F-fault tolerant geodesi t-spanner. It is not diÆult to show that �nite size F-faulttolerant geodesi spanners do not exist unless we are allowed to use Steiner points.Even in the ase of Steiner points, �nite size F-fault tolerant geodesi spannersdo not exist when F is the family C of all onvex sets. Hene, we restrit ourattention to D-fault tolerant geodesi spanners, where D is the family of disks inthe plane.We obtain the following results.

• In Setion 2.2 we present a general method to onvert a well-separated pairdeomposition (WSPD) [CK93℄ for P into a C-fault tolerant spanner for P .We use this method to obtain linear-size C-fault tolerant (1 + ")-spannersfor points in onvex position and for points distributed uniformly at ran-dom inside the unit square, and to obtain linear-size C-fault tolerant Steiner(1 + ")-spanners for arbitrary point sets.
• In Setion 2.4 we onsider two speial ases, fat triangulations and polygonalregion faults with limited number of edge diretions, for whih linear-size
C-fault tolerant spanners an be obtained.

• In Setion 2.5 we study small C-fault tolerant (non-Steiner) spanners forarbitrary point sets. By ombining a more relaxed version of the WSPDwith ideas from �-graphs [Kei88℄, we show that any point set P admits a
C-fault tolerant (1 + ")-spanner of size O(n logn).

• In Setion 2.6 we address a slightly di�erent problem. Instead of designinga C-fault tolerant spanner, it is also interesting to hek whether an existingnetwork is C-fault tolerant or not. In Setion 2.6 we give an algorithm whih,given a graph G, heks whether it is fault tolerant under onvex region faults.2It is easy to see that there are no small region-fault tolerant t-spanners with respet to non-onvex faults: if HH denotes the family of regions that are the union of two half-planes, then
G(P ) is the only HH-fault tolerant t-spanner for P , for any �nite t.



16 Chapter 2 Region-Fault Tolerant Spanners
• In Setion 2.7 we study the geodesi ase. We show that for any set P of npoints there exists a D-fault tolerant geodesi Steiner (1 + ")-spanner with
O(n) edges and O(n) Steiner points.2.2 Construting C-fault tolerant spanners usingthe WSPDIn this setion we show a general method to obtain a C-fault tolerant spannerfrom a well-separated-pair deomposition of a point set P . Although in generalthe spanner an have 
(n2) edges, we show that for some speial ases a smallerbound an be proven. We also show how to use the approah to obtain smallSteiner spanners. Before we start we prove a general lemma showing that, whenonstruting C-fault tolerant spanners, we an in fat restrit our attention to half-plane faults. This lemma will also be used in later setions. Let H be the familyof half-planes in the plane.Proposition 2.2.1 A geometri graph G on a set P of points in the plane is a

C-fault tolerant t-spanner if and only if it is an H-fault tolerant t-spanner.Proof. Obviously a graph is H-fault tolerant if it is C-fault tolerant. To provethe other diretion assume that G is an H-fault tolerant t-spanner and that F ∈ Cis an arbitrary onvex region fault. We need to prove that between every pair ofpoints u; v ∈ P \ F there is a path in G⊖F of length at most t times the length ofthe shortest path in G′ = G(P )⊖F .
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()Figure 2.2: Illustration of the Proposition 2.2.1If u and v are not onneted in G′ we are done. Otherwise, let �(u; v) be ashortest path between u and v in G′, see Figure 2.2(a). We laim that for everyedge (p; q) in �(u; v) there is a path in G⊖F of length at most t · ‖pq‖. Sinethe edge (p; q) lies outside F and F is onvex, there must be a half-plane h that
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Figure 2.3: De�nition of well-separated pair.ontains F but does not interset (p; q), see Figure 2.2(b). Sine G is an H-faulttolerant t-spanner there is a path �(p; q) between p and q in G⊖h of length atmost t · ‖pq‖. Furthermore, sine F ⊂ h the path �(p; q) also exists in G⊖F , seeFigure 2.2(). The laim and, hene, the lemma follows.2.3 Well-separated pair deompositionThe well-separated pair deomposition (WSPD) was developed by Callahan andKosaraju [CK95℄. This powerful data struture has been used to solve a widevariety of geometri problems like N -body problems (used in astronomy, moleulardynamis, uid dynamis and plasma physis), surfae reonstrution [FR02℄ andmany more appliations. We briey review this deomposition here beause wewill use it in the next hapters.De�nition 2.3.1 [CK95℄ Let s > 0 be a real number, and let A and B be two �nitesets of points in R
d. We say that A and B are well-separated with respet to s,if there are two disjoint d-dimensional balls CA and CB , having the same radius,suh that1. CA ontains A,2. CB ontains B, and3. the minimum distane between CA and CB is at least s times the radiusof CA|see Figure 2.3.The parameter s will be referred to as the separation onstant. The next lemmafollows easily from De�nition 2.3.1.



18 Chapter 2 Region-Fault Tolerant SpannersLemma 2.3.2 [CK95℄ Let A and B be two �nite sets of points that are well-separated with respet to s, let x and p be points of A, and let y and q be pointsof B. Then(i) ‖xy‖ ≤ (1 + 4=s) · ‖pq‖, and(ii) ‖px‖ ≤ (2=s) · ‖pq‖.Intuitively, by Lemma 2.3.2, if A and B are well-separated, then the distanebetween a point in A and a point in B is roughly the same as the distane betweenthe two sets A and B. Also the distane between a pair of points whih both liein one of the sets is muh smaller than the distane between the two sets.De�nition 2.3.3 [CK95℄ Let P be a set of n points in R
d, and let s > 0 be a realnumber. A well-separated pair deomposition (WSPD) for P with respet to s isa sequene of pairs of non-empty subsets of P , (A1; B1); : : : ; (Am; Bm), suh that1. Ai and Bi are well-separated with respet to s, for 1 ≤ i ≤ m.2. for any two distint points p and q of P , there is exatly one pair (Ai; Bi)in the sequene, suh that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,The integer m is alled the size of the WSPD.In other words, a well-separated pair deomposition of a point set P onsists of aset of well-separated pairs that over all the pairs of distint points, i.e., any twodistint points belong to the di�erent sets of some pair.Callahan and Kosaraju showed that for any point set in Eulidean spae andfor any onstant s > 0, there always exist a WSPD of size m = O(sdn) and itan be omputed in O(sdn + n logn) time. In the geometri problems, when weneed all point pairs in a set, we an easily use a WSPD of the point set as anapproximation with linear size.2.3.1 Construting a C-fault tolerant spannerCallahan and Kosaraju [CK93℄ showed that the WSPD an be used to obtain asmall (1 + ")-spanner. Similar ideas were used earlier by Salowe [Sal91, Sal92℄ andVaidya [Vai88, Vai89, Vai91℄. To obtain the (1 + ")-spanner one simply omputesa WSPD W with respet to s := 4 + 8=", and then for eah well-separated pair(A;B) ∈ W one adds an arbitrary edge onneting a point from A to a point in B.Unfortunately this onstrution is not C-fault tolerant, beause a fault F andestroy the spanner edge that onnets a pair (A;B), while some other edgesbetween A and B (whih are not in the spanner) may survive the fault. Hene,



2.3 Well-separated pair deomposition 19we need to add more than a single edge for (A;B). Let CH(A) and CH(B) denotethe onvex hulls of A and B, respetively. At �rst sight it seems that adding thetwo outer tangents of CH(A) and CH(B) to our spanner may lead to a C-faulttolerant spanner, but this is not the ase either. Instead, we will triangulate theregion in between the two onvex hulls in an arbitrary manner, as illustrated inFigure 2.4(a).
A B(a) (b)Figure 2.4: (a) Illustrating the onstrution of the WSPD-graph. (b) Points in onvexposition.Let E(A;B) be the set of edges in the triangulation added between CH(A) andCH(B), and let G be the obtained graph with edge set E := P(A;B)∈W E(A;B).Note that any triangulation between CH(A) and CH(B) has the same number ofedges. Throughout the hapter we will use the notation | · | to denote the numberof elements in a set.Lemma 2.3.4 The graph G is a C-fault tolerant (1 + ")-spanner for P of sizeP(A;B)∈W |E(A;B)|.Proof. The size of the graph is obviously P(A;B)∈W |E(A;B)|, so it remains toshow that it is a C-fault tolerant (1 + ")-spanner. Now we observe that for anyhalf-plane h, {(A \ h;B \ h) : (A;B) ∈ W} is a WSPD for P \ h. Hene, byProposition 2.2.1 and the properties of the WSPD it is suÆient to show thefollowing: Let h be a half-plane fault, let u; v be points not in h, and let (A;B) bea pair with u ∈ A and v ∈ B; then there is an edge e ∈ E(A;B) between CH(A)and CH(B) that is outside h.To see this we �rst prove that, given a point set P and a triangulation T ofP , the graph T⊖h is onneted for any half-plane h. Assume without loss ofgenerality that h is below and bounded by a horizontal line. Sine any point ofP\h not on the onvex hull must have an edge onneting it to a point furtheraway from h, we an walk from p away from h along edges of T until we reaha point on the onvex hull of P . Moreover, any two onvex hull points in P\han be onneted by onvex hull edges outside h. It follows that T⊖h is indeedonneted.Now onsider any triangulation T on A∪B that inludes E(A;B). Then T⊖hmust be onneted. Sine u; v 6∈ h, and u ∈ A and v ∈ B, this means there mustbe an edge e ∈ E(A;B) outside h.



20 Chapter 2 Region-Fault Tolerant Spanners2.3.2 Linear-size spanners for speial asesThe method desribed above an be used to get small C-fault tolerant spanners forseveral speial ases. For example, if P is in onvex position then |E(A;B)| ≤ 3for any pair (A;B) in the deomposition, see Figure 2.4(b), so we get:Theorem 2.3.5 For any set P of n points in onvex position in the plane and any" > 0, there exists a C-fault tolerant (1 + ")-spanner of size O(n="2).Next we show that we an also get a C-fault tolerant spanner whose expetedsize is linear if the point set P is generated by piking n points uniformly at randomin the unit square.Lemma 2.3.6 Let P be a set of n uniformly distributed points in the unit squareand A be a sub-square of the unit square. Then the expeted number of points onthe onvex hull of P ∩ A is O(log(n · area(A))).Proof. If n points are uniformly distributed in the unit square then it is knownthat the expeted number of points on the onvex hull of the points isO(logn) [HP98,RS63℄.Now let X be the number of points on the onvex hull of P ∩ A and letY := |P ∩ A|. Clearly EXP[Y ℄ = n · area(A). By the law of total expetation[Ros98, Proposition 4.1℄ if X and Y are two random variables thenEXP[X ℄ = EXP [EXP[X |Y ℄℄ ;thereforeEXP[X ℄ = EXP [EXP[X |Y ℄℄= EXP[O(log(Y ))℄
≤ O (log (EXP[Y ℄)) (Jensen's inequality [Ros98, p. 418℄)= O(log(n · area(A))):Now we ombine the ideas from the previous setion with Lemma 2.3.6 to onstruta (1 + ")-spanner of the uniformly distributed point set P .Theorem 2.3.7 Let P be a set of n points uniformly distributed in the unitsquare U . For any " > 0 there is a C-fault tolerant (1 + ")-spanner of expetedsize O(n="2) for P .Proof. Construt a quadtree partitioning of U into smaller and smaller squares,until eah square has size (side length) roughly 1=√n. So the area of any leaf is



2.3 Well-separated pair deomposition 21roughly 1=n whih means the expeted number of points in a leaf region is O(1).The quadtree has O(n) leaves. Level ` of the quadtree orresponds to a regularsubdivision of U into squares of size 1=2`. One an show that there exists a WSPD
W := {(Ai; Bi)}i of size O(n="2) for P suh that for eah i, the pair (Ai; Bi) eitherorresponds to two squares at the same level, orAi and Bi are both singleton pointsthat lie in nearby ells (or the same ell) of the �nal subdivision. Moreover, if wedenote by n` the number of pairs of the WSPD at level ` of the quadtree, thenn` = O(22`="2). The existene of a WSPD with these properties follows ratherdiretly from the results of Fisher and Har-Peled [FHP05℄. For ompleteness webriey sketh an argument for our setting.For a node � of the quadtree, let P (�) denote the subset of points from P insidethe square orresponding to �. Consider a level ` of the quadtree. For eah pairof nodes �; �′ at level ` suh that the point sets P (�) and P (�′) are well-separatedwhile the point sets of the parents of � and �′ are not well-separated, we put thepair (P (�); P (�′)) into the WSPD. In addition, for eah pair of leaf nodes �; �′suh that P (�) and P (�′) are not well-separated, we put a pair ({p}; {q}) into theWSPD for every pair p ∈ P (�) and q ∈ P (�′). It is easy to verify that this indeedde�nes a WSPD. The bound on the number of pairs added for eah level followsfrom a standard paking argument.Now onsider a square � at level `. By Lemma 2.3.6, beause the area of � is1=22`, the expeted size of the onvex hull of the points in � is O(log(n=22`)).If (A;B) is an arbitrary pair in W whih appears at level ` of the quadtreethen EXP [|E(A;B)|℄ ≤ EXP [|CH(A)| + |CH(B)|℄= EXP [|CH(A)|℄ +EXP [|CH(B)|℄= O(log(n=22`)):ThereforeEXP24 X(Ai;Bi)∈W

|E(Ai; Bi)|35 = X(Ai;Bi)∈W

EXP [|E(Ai; Bi)|℄= 12 lognX̀=1 O
�n` log(n=22`)�= 12 lognX̀=1 O
�(22`="2) log(n=22`)� :



22 Chapter 2 Region-Fault Tolerant SpannersTo bound this summation, we set m := 12 logn and we get:12 lognX̀=1 22` log(n=22`) = mX̀=1 22`(2m− 2`)= 2 mX̀=1 22`(m− `)= 2m−1Xk=0 22(m−k) · k (by setting k = m− `)= 22m+1m−1Xk=0 k22k
≤ 22m+1 ∞Xk=0 k22k= O(n):Hene the expeted size of the generated (1 + ")-spanner is O(n="2).2.3.3 C-fault tolerant Steiner spannersAbove we showed that the WSPD an be used to onstrut C-fault tolerant span-ners of small size when the points are in onvex position or uniformly distributed.For arbitrary point sets, however, the size of the spanner may be 
(n2). In thissetion we will show that if we are allowed to add Steiner points, we an alwaysuse the above method to get a linear-size spanner:Theorem 2.3.8 For any set P of n points in the plane and any " > 0, one anonstrut a C-fault tolerant Steiner (1 + ")-spanner of size O(n="2) by adding atmost 4(n− 1) Steiner points.The idea is to add a set Q of Steiner points to P suh that |E(A;B)| = O(1) forany pair (A;B) in the WSPD of P ∪ Q. Then the theorem immediately followsfrom Lemma 2.3.4.Our method is based on the WSPD onstrution by Fisher andHar-Peled [FHP05℄. Their onstrution uses a ompressed quadtree, whih isde�ned as follows.Let T (P ) be the quadtree on P . We denote the square orresponding to a node� ∈ T (P ) by �(�), and the subset of points from P inside �(�) by P (�). Whensome of the points are very lose together, a quadtree an have superlinear size. A



2.3 Well-separated pair deomposition 23ompressed quadtree T ∗(P ) for P therefore removes internal nodes � from T (P ) forwhih all points from P lie in the same quadrant of �(�). A ompressed quadtreehas at most n−1 internal nodes. Fisher and Har-Peled [FHP05℄ show that one anobtain a WSPD of size O(s2n) for P that onsists of pairs (P (�1); P (�2)) where�1 and �2 are nodes in T ∗(P ).The set Q of Steiner points that we use is de�ned as follows. Let T ∗(P ) bea ompressed quadtree for P . Without loss of generality, we may assume thatno point from P lies on any of the splitting lines. For eah internal node � of
T ∗(P ), we add the four orner points of �(�) to Q. To avoid degenerate ases, weslightly move eah point into the interior of �(�). Note that two (or more) squares�(�1) and �(�2) may share, for instane, their top right orner. In this ase weadd the (slightly shifted) orner point only one. The resulting set Q has size atmost 4(n− 1). The next lemma �nishes the proof of Theorem 2.3.8.

= point from P

= Steiner pointFigure 2.5: Illustration for the proof of Lemma 2.3.9.Lemma 2.3.9 Let T ∗(P ) be a ompressed quadtree for P := P ∪ Q, where theinitial bounding square U is the same as for T ∗(P ), and let � be an internal nodeof T ∗(P ). Then CH(P (�)) has at most four verties.Proof. If the square �(�) ontains zero or one point from P then at most oneSteiner point has been added inside �(�), and the lemma is true. If �(�) ontainstwo or more points then there are two ases, both illustrated in Figure 2.5.Let � be the node of T ∗(P ) suh that P (�) = P (�) ∩ P . Note that the fourshifted orners of �(�) were added as Steiner points to Q. If �(�) = �(�) thenCH(P (�)) is a square. Otherwise, �(�) ⊂ �(�). In this ase CH(P (�)) is formedby three of the four orners of �(�) together with the unique orner of �(�) thatgenerated a Steiner point at some anestor of � in T ∗(P ), see Figure 2.5. Hene,in this ase CH(P (�)) has four verties as well.



24 Chapter 2 Region-Fault Tolerant Spanners2.4 Speial asesIn this setion we present algorithms for onstruting fault tolerant spanners intwo speial ases. In Setion 2.4.1, we give an algorithm that onstrut a C-faulttolerant spanner for any point set whih admits a fat triangulation. Then, inSetion 2.4.2, we onstrut spanners whih are fault tolerant under more limitedregion faults.2.4.1 C-fault tolerant fat triangulationsWe all a triangulation of a point set �-fat if all its triangles are �-fat or, in otherwords, if all angles in the triangulation are at least �. Karavelas and Guibas [KG01℄showed that any �-fat triangulation T of a point set P is a 2�-spanner for P . Tomake the spanner C-fault tolerant, we add some extra edges: we add an edgebetween every pair of points u; v ∈ P suh that there is a path between u and vin T onsisting of two edges.Theorem 2.4.1 Let P be a set of n points in the plane and let T be a �-fattriangulation of P . Then we an augment T with a set of O(n=�) extra edgessuh that the resulting geometri graph is a C-fault tolerant 2�-spanner.Proof. We onnet eah node v to all other nodes within two steps from v. Inother words we add an edge between eah pair of points onneted by a path of twoedges. Let T ′ be the result. Obviously we add at mostPvD ·deg(v) edges, whereD is the maximum degree in the triangulation T and deg(v) is the degree of thenode v of T . Sine for eah triangulation Pv deg(v) ≤ 6n we add O(D · n) edgesto the triangulation T . Note that D = O(1=�) sine T is a �-fat triangulation.Now the laim is that T ′ is a C-fault tolerant 2�-spanner. Using Proposi-tion 2.2.1, it suÆes to show that T ′ is an H-fault tolerant 2�-spanner. Let h bean arbitrary half-plane and p; q ∈ P \ h be two arbitrary points. Karavelas andGuibas [KG01, Theorem 2.1℄ proved that there exist a 2�-path �(p; q) betweenp and q in T zig-zagging above and below the line onneting p to q|see Fig-ure 2.6(a). Note that all the edges in this path interset the segment between pand q.If all the nodes on �(p; q) lies outside h we are done. Otherwise assumep′ ∈ �(p; q) lies inside h and let q1 and q2 be the other endpoints of the two edgeson �(p; q) inident to p′|see Figure 2.6(b). Sine the segment pq lies outside hand any edge on �(p; q) interset pq, the points q1 and q2 lie outside h. Beause weadded edges between pairs within two steps|the dashed edges in Figure 2.6(b)|we an replae the two fat edges (p′; q1) and (p′; q2) with (q1; q2). This way we anobtain a path that stays outside h and with length at most the length of �(p; q).
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(b)Figure 2.6: Illustration for the proof of Theorem 2.4.12.4.2 Limited boundary diretionsNow we put some limitation on the region faults. Let H′ be a family of half-planeswith at most k boundary diretions. By the following proedure, whih uses theWSPD, we an make an H′-fault tolerant (1 + ")-spanner of eah point set P ofn points with O(kn="2) size.Let {di}ki=1 be the set of diretions where the boundary of eah half-plane in
H′ is parallel to one of di's. For eah 1 ≤ i ≤ k assume d(1)i and d(2)i are thetwo diretions perpendiular to di. To onstrut a H′-fault tolerant spanner weompute a WSPD of the point set with respet to s := 4("+2)" . Then for eah pair(A;B) in the WSPD and for eah diretion di, we add two edges, one betweenthe extreme point of A and B in diretion d(1)i and the other between the extremepoints of A and B in diretion d(2)i . See Algorithm 2.4.1 for more details.Algorithm 2.4.1: Bounded-Boundary-diretionsInput: P , " > 0 and a set of diretions {di}ki=1.Output: H′-fault tolerant (1 + ")-spanner G = (P; E).

W := WSPD of P w.r.t. s := 4("+2)" ;1 foreah (A;B) ∈ W do2 for i := 1; 2; : : : ; k do3 Add an edge between extreme points of A and B in diretion d(1)i ;4 Add an edge between extreme points of A and B in diretion d(2)i ;5 end6 end7 return G;8Theorem 2.4.2 Let P be a set of n points the plane and H′ be a family of half-planes with at most k boundary diretions. Then for eah " > 0, we an onstrutan H′-fault tolerant (1 + ")-spanner of size O(kn="2) in O((n logn+kn)="2) time.



26 Chapter 2 Region-Fault Tolerant SpannersProof. Obviously we add at most 2k edges for eah pair in WSPD and thereforethe size of the graph is O(kn="2). Also the time omplexity of the algorithmis straight forward. Therefore to omplete the proof, we show that the graphgenerated by Algorithm 2.4.1 is H′-fault tolerant. To show this, it is suÆient toshow that for eah h ∈ H′ and any (A;B) in the WSPD whih is situated partiallyoutside h, we have an edge outside h whih onnet A to B.Sine A and B are partially outside h, the extreme points of them in at leastone of the diretions perpendiular to the boundary of h is outside h. This meansthat the edges between the extreme points, whih are added by the algorithm, liesoutside h.Remark 2.4.3 At �rst it may seem that we an generalize the results to any familyof onvex polygons with bounded number of edge diretions (for example axis-parallel polygons). However as you an see in Figure 2.7 this is not the ase.
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Figure 2.7: Counterexample for axis-parallel polygonal faults.2.5 C-fault tolerant spanners for arbitrary pointsetsIn this setion we onsider the problem of onstruting a sparse C-fault tolerant(1 + ")-spanner for an arbitrary set P of n points in the plane without using Steinerpoints. The method that was desribed in the previous setion does not guaranteea small spanner in general. Here we will desribe a method that is guaranteed toresult in a spanner of size O(n logn).Throughout this setion d(·; ·) denotes the (Eulidean) shortest distane be-tween two objets (points, disks, et.), and radius(D) denotes the radius of adisk D.



2.5 C-fault tolerant spanners for arbitrary point sets 272.5.1 SSPDs and fault-tolerant spannersThe problem with the WSPD in our appliation is that, even though the numberof pairs in the WSPD is O(n), the total number of points over all the pairs an be�(n2). Therefore we will introdue a relaxed version of the WSPD, the SSPD.De�nition 2.5.1 Let A and B be two sets of points in the plane, and let s > 0 bea onstant. We say that A and B are semi-separated with respet to separationonstant s if there are two disjoint disks DA and DB , suh that(i) DA ontains A and DB ontains B,(ii) d(DA; DB) ≥ s ·min(radius(DA); radius(DB)).Thus we allow the balls DA and DB to be of di�erent sizes and we only requirethat the distane between the disks is large relative to the smaller disk. Note thatusing the same notations we an reformulate the de�nition of well-separated withrespet to s as d(DA; DB) ≥ s ·max(radius(DA); radius(DB)).We now de�ne our SSPD.De�nition 2.5.2 Let P be a set of n points in the plane and let s > 0 be a realnumber. A semi-separated pair deomposition (SSPD) for P with respet to s is aolletion {(A1; B1); : : : ; (Am; Bm)} of pairs of non-empty subsets of P suh that1. Ai and Bi are semi-separated with respet to s, for all i = 1; : : : ;m.2. for any two distint points p and q of P , there is exatly one pair (Ai; Bi) inthe olletion, suh that (i) p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi.The weight of a set A, denoted by |A|, is de�ned as the number of points in A,the weight of a semi-separated pair (A;B) is the sum of the weights of A and B,and the weight of an SSPD is the total weight of all the pairs. Later we will provethat it is possible to ompute an SSPD of weight O(n logn). First, however, wewill show how to use the SSPD to obtain a C-fault tolerant spanner. The idea isto add edges to the spanner for eah pair in the SSPD. Beause the pairs in anSSPD are only semi-separated, however, adding a single edge for every pair doesnot neessarily lead to a good spanner. Therefore we use an idea that is also usedin the onstrution of �-graphs [Cla87, Kei88℄.Consider a pair (A;B) in an SSPD for P . Then there exist two disjoint disksDA and DB that ontain A and B respetively, and for whihd(DA; DB) ≥ s ·min(radius(DA); radius(DB)):Assume without loss of generality that radius(DA) ≤ radius(DB), and let oAdenote the enter of DA|see Figure 2.8(a). The set E(A;B) of edges added tothe spanner for the pair (A;B) is found as follows.
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CH(A ∪ {q1, . . . , qj−1})(b)Figure 2.8: (a) The ones of angle at most � de�ned with respet to oA and A.(b) Illustration for the proof that qj is outside CH(A ∪ {q1; : : : ; qj−1}).1. Partition the plane into k := ⌈2�=�⌉ ones C1; : : : ; Ck, all with apex atoA and with interior angle at most �, where � is a suitable onstant to bespei�ed later. Let B(i) := B ∩Ci denote the subset of points from B insidethe one Ci; here we assume without loss of generality that no point lies onthe boundary between two ones.2. Let CH(A) be the onvex hull of A. For eah B(i), we sort the points inB(i) in order of inreasing distane to oA. Let q1; q2; : : : denote the sortedlist of points. We proess eah point qj in order as follows. Let CH(A′)be the onvex hull of the set A′ = A ∪ {q1; : : : ; qj−1}. We add all edgesbetween qj and the verties of A on CH(A′) for whih the edge does notinterset CH(A′). Next we update CH(A′) by adding the point qj . Afterproessing all points qi ∈ B(i), we have produed a set E(A;B(i)) of edges.The set E(A;B) is simply ∪1≤i≤kE(A;B(i)).Note that in step 2 for eah j, the point qj is outside CH(A ∪ {q1; : : : ; qj−1}).To show this assume that qj is inside CH(A′), for A′ = A ∪ {q1; : : : ; qj−1}. Theray from o = oA to qj intersets an edge of CH(A′)|see Figure 2.8(b). Let aand b be the endpoints of this edge. Note that qj lies inside △oab. On the otherhand, a; b ∈ A ∪ {q1; : : : ; qj−1} and therefore |oa| ≤ |oqj | and |ob| ≤ |oqj |. Thisontradits the fat that qj is inside △oab.By onstrution the edges that we are adding to E(A;B(i)) do not ross. Sinethe number of sets B(i) is O(1=�) and P |B(i)| = |B|, we have:Lemma 2.5.3 |E(A;B)| = O(|A|=� + |B|).To prove that the approah generates a fault-tolerant spanner, we need the follow-ing lemma. Consider the ordered set B(i) of the points in B inside the one Ci.



2.5 C-fault tolerant spanners for arbitrary point sets 29Lemma 2.5.4 Let h be a half-plane fault suh that both A and B(i) have at leastone point outside h. Of all the points in B(i) outside h, let qj be the one withminimum distane to oA. There is an edge in E(A;B(i)) onneting qj to a pointp ∈ A outside h.Proof. By assumption, qj is outside h and there is at least one point from Aoutside h. On the other hand, by the hoie of qj , the points q1; : : : ; qj−1 are allinside h. As mentioned before, qj is outside CH(A ∪ {q1; : : : ; qj−1}) and thereforeqj is a vertex of CH(A ∪ {q1; : : : ; qj}). Let a and b be the neighbors of qj onCH(A ∪ {q1; : : : ; qj}). We have two ases:Case 1: a or b lies outside h. In this ase we are done beause that neighborbelongs to A.Case 2: a and b are inside h. If we extend the edges (qj ; a) and (qj ; b) then theone with apex at qj ontains A ∪ {q1; : : : ; qj−1}. By assumption there exists atleast one point of A outside h and therefore there is at least one point p ∈ A suhthat p 6∈ h and p lies on the onvex hull CH(A ∪ {q1; : : : ; qj−1})|see Figure 2.9.The point p is visible from qj beause all the points on CH(A ∪ {q1; : : : ; qj−1})whih are on the side of line (a; b) ontaining qj are visible from qj . Hene thereis an edge onneting qj to p and so we are done.
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Figure 2.9: Illustrating the proof of Lemma 2.5.4.Let G be the graph obtained after applying the above proedure to every pair(A;B) in the SSPD for the point set P . Next we prove that G is a (1 + ")-spannerif we hoose the separation onstant s and the angle � suitably and, moreover, thatit is C-fault tolerant. For this we will need the following ondition on the strutureof the SSPD (whih will be satis�ed by the SSPD we will onstrut later).Monotoniity ondition: Suppose p; q are two points that are in the same setX of some pair (Ai; Bi) of the SSPD |thus X = Ai or X = Bi|and let (Aj ; Bj)be the unique pair in the SSPD suh that p ∈ Aj and q ∈ Bj , or p ∈ Bj andq ∈ Aj . Then the weights of Aj and Bj are both less than the weight of X .



30 Chapter 2 Region-Fault Tolerant SpannersLemma 2.5.5 If � is hosen suh that os �− sin � > 1=t and the separation on-stant s of the SSPD is taken as s := 3t+1(os �− sin �)t−1 , then the graph G is an H-faulttolerant t-spanner.Proof. Let h be an arbitrary half-plane. To prove the lemma we must show thatfor eah pair of points p; q ∈ P outside h there is a t-path onneting them in G⊖h.Aording to the de�nition of the SSPD there exists a semi-separated pair (A;B)suh that p ∈ A and q ∈ B (or vie versa). The proof is done by indution on themaximum weight of A and B.Base ase: If the maximum weight of A and B is 1, then both sets are singletonsand therefore we must have an edge between them.Indution hypothesis: Assume that the lemma holds for all points in pairs whosemaximum weight is less than k, for some k > 1.Indution step: Suppose the maximum weight of A and B is k. Let DA and DBbe two disks ontaining A resp. B suh thatd(DA; DB) ≥ s ·min(radius(DA); radius(DB))and assume without loss of generality that radius(DA) ≤ radius(DB). Let o = oAdenote the enter of DA.
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Figure 2.10: Illustrating the proof of Lemma 2.5.5.Let Ci be the one with apex o that ontains q. Let q′ be the point in B(i) \ hlosest to o. Aording to Lemma 2.5.4 there is an edge between q′ and somepoint p′ in A outside h|see Figure 2.10. By the indution hypothesis, whih wemay apply beause of the monotoniity ondition, there are t-paths from p to p′and from q′ to q in G⊖h. By onneting these paths using the edge (p′; q′) weobtain a path � in G⊖h. Next we prove that � is a t-path between p and q. Setr := radius(DA) and � := os �− sin �. Note that ‖xy‖ denote the (Eulidean)distane between points x and y.Consider the triangle △oqq′. Sine ∠qoq′ ≤ �, we have
‖qq′‖ ≤ ‖oq‖ − (os � − sin �) · ‖oq′‖:



2.5 C-fault tolerant spanners for arbitrary point sets 31The total length of �, denoted length(�), an now be bounded as follows.length(�) ≤ t · ‖pp′‖+ ‖p′q′‖+ t · ‖qq′‖
≤ 2rt+ (r + ‖oq′‖) + t · (‖oq‖ − (os � − sin �) · ‖oq′‖)= 2rt+ (r + ‖oq′‖) + t(‖oq‖ − r) + tr − t� · ‖oq′‖
≤ 3rt+ (r + ‖oq′‖) + t · ‖pq‖ − t� · ‖oq′‖= t · ‖pq‖+ r(3t+ 1) + (1− t�) · ‖oq′‖:Sine d(DA; DB) ≥ s · r, we have ‖oq′‖ ≥ s · r. Hene, sine � > 1=t we getlength(�) ≤ t · ‖pq‖+ r(3t+ 1) + sr(1− t�)= t · ‖pq‖:This ompletes the proof of the lemma.Now by hoosing � = O(") suitably, we an guarantee that os �− sin � > 1=(1+").This implies s = O(1=") and leads to the following theorem.Theorem 2.5.6 For any set P of n points in the plane and any " > 0, there existsa C-fault tolerant (1 + ")-spanner of P with O((n="3) logn) edges. The spanneran be onstruted in O((n="2) log2 n) time.Proof. By ombining Proposition 2.2.1 and Lemmas 2.5.5, the graph onstrutedby the algorithm is C-fault tolerant. By Lemma 2.5.3 and with the onstrutionalgorithm presented below for onstruting an SSPD of weight O(s2n logn), thesize of the onstruted graph isX(A;B)∈ SSPD |E(A;B)| = X(A;B)∈ SSPD (|A|=� + |B|)

≤ 1� X(A;B)∈ SSPD (|A|+ |B|)= O(s2� n logn)= O( 1"3 n logn):This proves the �rst part of the theorem. To prove the running time, let (A;B)be an arbitrary pair in the SSPD and assume radius(DA) ≤ radius(DB), whereDA and DB are two disks ontaining A and B respetively that satisfy the semi-separated ondition.The �rst step of the algorithm an be done in O(|B| log |B|) time. In theseond step, we an ompute the onvex hull of A in O(|A| log |A|) time. For eah



32 Chapter 2 Region-Fault Tolerant Spannersset B(i), sorting an be done in O(|B(i)| log |B(i)|). For every j, to add the non-rossing edges between qj and the points on CH(A′), it is suÆient to onnet qjto all the points on CH(A′) whih are between the two tangent lines of CH(A′)passing through qj . Therefore the time we need for adding non-rossing edges isproportional to the number of edges times O(logn). Finally we an update CH(A′)in O(logm) time, where m is the number of points on the onvex hull of A′, usingan online onvex hull algorithm|see [PS85, Chapter 3.3.6℄.So in total the time for proessing the pair (A;B) is bounded by
O(|A| log |A|+ |B| log |B|+ |B| log(|A|+ |B|) + |E(A;B)| logn):Hene the total running time is

O

0� X(A;B)∈W

�
|A| log |A|+ |B| log |B|+ |B| log(|A|+ |B|) + |E(A;B)| logn�1A

≤ O

0� X(A;B)∈W

�(|A| + |B|) logn+ |E(A;B)| logn�1A= O(s2n log2 n+ n log2 n)= O(s2n log2 n):As we will see in the next setion, we an ompute the SSPD in O(s2n logn) time,see Lemma 2.5.14, whih proves the time omplexity of the algorithm.2.5.2 Computing an SSPDTo ompute an SSPD for a given point set P , we use a BAR-tree, as introduedby Dunan et al. [DGK01℄. A BAR-tree for a point set P is a BSP-tree with thefollowing properties:1. eah leaf region ontains at most one point from P ,2. the tree has size O(n),3. if we go down two levels in the tree then the size of the subtree redues bya fator of �, for some onstant 1=2 < � < 1, so its depth is O(logn),4. the region R(�) assoiated with an (internal or leaf) node � has aspetratio at most � for some onstant � > 1, that is, there are onentri disksDI ⊂ R(�) and DO ⊃ R(�) with radius(DO) = � · radius(DI).



2.5 C-fault tolerant spanners for arbitrary point sets 33Moreover, BAR-trees only use splitting lines that are horizonal, vertial, or di-agonal, therefore the omplexity of every node (as a polygon) in a BAR-tree isonstant.Let T be a BAR-tree on the point set P . For a node �, we use pa(�) todenote the parent of �, and we use P (�) to denote the subset of points from Pthat are stored in the leaves of the subtree T� rooted at �. The weight of a node� is the number of points in P (�), and is denoted |P (�)|. We say that a node� in T has weight lass `, for some integer `, if and only if |P (�)| ≤ n=2` and
|P (pa(�))| > n=2`. The weight lass of the root is de�ned to be zero. We denotethe olletion of nodes of weight lass ` by N(`). Obviously we have ⌊logn⌋ weightlasses. Note that some of the nodes in the tree may not be in any weight lass;this an happen when the weight of a node � is almost the same as the weightof its parent. For example, this happens when |P (pa(�))| = n=2` for some ` and
|P (�)| = n=2`−1. It an also happen that a node belongs to more than one weightlass, namely when the weight of a node is muh smaller than the weight of itsparent. The following lemma is straightforward.Lemma 2.5.7 Every leaf node is in weight lass `max, where `max = ⌊logn⌋. Fur-thermore, on any root-to-leaf-path there is exatly one node with weight lass `,for any 0 ≤ ` ≤ `max.For a node � ∈ N(`), we de�ne its `-parent to be the node �′ ∈ N(` − 1) that ison the path from the root of T to � (inluding � itself). We denote the `-parentof � by pa(`; �). Observe that � an be its own `-parent, namely when � ∈ N(`)and � ∈ N(`−1). By Lemma 2.5.7, if � ∈ N(`) then one of its anestors (possiblyitself) must be in weight lass `−1, so it must have an `-parent. If � is the `-parentof � then we all � a `-hild of �.For a node � in the BAR-tree, the region orresponding to � is denoted by
R(�) and for a region R, we let diam(R) denote the diameter of the region R. Asmentioned before, all nodes in the BAR-tree have bounded aspet ratio, that is,all aspet ratios are bounded by some �xed onstant �.Lemma 2.5.8 Ifd(R(�);R(�)) ≥ (s+ 1)�2 ·min{diam(R(�));diam(R(�))}then there are two disks D� ⊃ R(�) and D� ⊃ R(�) suh thatd(D� ; D�) ≥ s ·min{radius(D�); radius(D�)}:Proof. Without loss of generality assume diam(R(�)) ≤ diam(R(�)). Let h bea half-plane whih ontains R(�) suh that the distane between h and R(�) isd(R(�);R(�)). Note that the half-plane h an be viewed as a disk with in�nite



34 Chapter 2 Region-Fault Tolerant Spanners
h

DI

Dν

R(µ)

R(ν)

d(
D ν

, h
)

Figure 2.11: Illustrating the proof of Lemma 2.5.8.radius that ontains R(�). Now let D� and DI be two onentri disks suh thatDI ⊂ R(�) ⊂ D� with radius(D�)= radius(DI) = �|see Figure 2.11. It is easyto see that 2 radius(DI) ≤ diam(R(�)) ≤ 2 radius(D�):Then d(D� ; h) = d(DI ; h)− (radius(D�)− radius(DI))= d(DI ; h)− (�− 1) radius(DI )
≥ d(DI ; h)− � · radius(DI)
≥ d(DI ; h)− �2 · diam(R(�))
≥ d(R(�);R(�)) − �2 · diam(R(�)):Therefore by setting D� = h we haved(D� ; D�) ≥ d(R(�);R(�)) − �2 · diam(R(�))
≥ (s+ 1)�2 · diam(R(�)) − �2 · diam(R(�))
≥ s · �2 · diam(R(�))
≥ s · � · radius(DI )= s · radius(D�)
≥ s ·min{radius(D�); radius(D�)}:So we are done.



2.5 C-fault tolerant spanners for arbitrary point sets 35Now we onstrut an SSPD S of the point set P using the following algorithm.1. Construt a BAR tree T on P . Let � be the maximum aspet ratio of theregion R(�) for any node � ∈ T . Compute the weight lasses of all nodesin T .2. For eah weight lass ` with 0 ≤ ` ≤ `max do the following: add to S allpairs (P (�); P (�)) suh that(i) �; � ∈ N(`),(ii) d(R(�);R(�)) ≥ (s+1)�2 ·min{diam(R(�));diam(R(�))} and(iii) d(R(pa(`; �));R(pa(`; �))) < (s+1)�2 ·min{diam(R(pa(`; �)));diam(R(pa(`; �)))}.Lemma 2.5.9 S is an SSPD for P with respet to s.Proof. By Lemma 2.5.8, all the pairs reported by the algorithm are semi-separated.The only thing that remains to be veri�ed is that for every pair of points p; q thereis a unique pair (P (�); P (�)) ∈ S suh that p ∈ P (�) and q ∈ P (�), or vie-versa.For any 0 ≤ ` ≤ `max, de�ne �(p; `) and �(q; `) to be the nodes of N(`) onthe searh path to p and q, respetively. Observe that these nodes exist and areuniquely de�ned by Lemma 2.5.7. We have �(p; 0) = �(q; 0) = root(T ), so the setsP (�(p; 0)) and P (�(q; 0)) are the same and therefore not semi-separated. On theother hand, �(p; `max) and �(q; `max) are leaves, and so the sets P (�(p; `max)) andP (�(q; `max)) are singletons and therefore ful�ll ondition (ii) of the algorithm.Hene, there must be a value ` and two nodes �(p; `) and �(q; `) suh that theyful�ll onditions (ii) and (iii) of the algorithm. The region of any node � is on-tained in the region of its parent, whih is easily seen to imply that ` is unique.To bound the weight of the SSPD, we �rst prove two auxiliary lemmas.Lemma 2.5.10 A node � in T an be an `-parent of at most a onstant numberof nodes in T .Proof. Consider a node � ∈ N(`−1) and let �′ be a node suh that � = pa(`; �′).Then �′ is a node in T� (the subtree of T rooted at �) in weight lass `. Note thatno other node than �′ in T�′ an have � as its `-parent. Reall that the weightof a node redues by a fator of � when we go down two levels in a BAR-tree.Sine �′ ∈ N(`), its (normal) parent has weight at least n=2`. On the other hand� ∈ N(`−1), so the weight of � is at most n=2`−1. Hene, the path between � and�′ onsists of at most 2k links, where �k = 1=2. It follows that the total numberof nodes in T that have � as a `-parent is bounded by 22k, whih is a onstantsine k is a onstant.



36 Chapter 2 Region-Fault Tolerant SpannersLemma 2.5.11 Let S(`) be the set of all pairs (�; �) suh that �; � ∈ N(`) andd(R(�);R(�)) < (s+1)�2 · min{diam(R(�));diam(R(�))}, where 0 ≤ ` ≤ `max.Then |S(`)| = O(�4(s+ 1)2 · 2`) andX(�;�)∈S(`)(|P (�)| + |P (�)|) = O
��4(s+ 1)2 · n� :Proof. We reorder the nodes in the pairs (�; �) suh thatdiam(R(�)) ≤ diam(R(�)):We laim that any node � appears in a onstant number of pairs as the �rst elementof the pair. To show this let (�; �) be an arbitrary ordered pair. Let DP (�) bethe smallest enlosing disk of P (�) and let o be its enter. Consider the annulusA between the disks D1 and D2 with enter o and radii r1 := ((s + 1)� + 1) ·radius(DP (�)) and r2 := r1 + radius(DP (�)). Note thatdiam(R(�))=2 ≤ radius(DP (�)) ≤ diam(R(�)):Sine d(R(�);R(�)) < (s+ 1)�2 · diam(R(�))the region R(�) interset D1|see Figure 2.12. Now we have two ases:Case 1: The region R(�) lies partially outside D2. By the Paking Lemma,[DGK01, Lemma 3.2℄ this an happen for O

��2 (r1=(r2 − r1))� = O(�3(s + 1))regions.Case 2: In this ase the region R(�) lies inside D2. Beause the aspet ra-tio of the region R(�) is at most �, there are two disks DI and DO suh thatDI ⊂ R(�) ⊂ DO and area(DO) ≤ �2 · area(DI), where area(A) denotes thearea of the region A. Thereforearea(R(�)) ≥ area(DI)
≥ 1�2 · area(DO)= 1�2 · � (radius(DO))2
≥ 14�2 · � (diam(R(�)))2
≥ 14�2 · � (diam(R(�)))2
≥ �r224�2 · ((s+ 1)�+ 2)2 :On the other hand, the area of D2 is �r22 , whih means we an have at most

O(�4(s+ 1)2) suh regions. Hene in total we an have O(�4(s+ 1)2) pairs that
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DI Figure 2.12: Illustrating the proof of Lemma 2.5.11.have � as the �rst element. Sine |N(`)| = O(2`), we an have O(2`) nodes as the�rst element of the pair so |S(`)| = O(�4(s + 1)2 · 2`). The lemma follows sine
|P (�)| ≤ n=2` for eah � ∈ N(`).Corollary 2.5.12 The number of pairs in the SSPD S generated by the onstru-tion algorithm is O ��4(s+ 1)2 · n�.Proof. By the onstrution algorithm, if (P (�); P (�)) ∈ S and �; � ∈ N(`) then(pa(`; �); pa(`; �)) ∈ S(`− 1). By ombining this with Lemma 2.5.10, we onludethat the number of pairs in S is bounded by O(Plogn`=0 |S(`)|). Using Lemma 2.5.11we have

|S| = O
 lognX̀=0 |S(`)|!= O
 lognX̀=0 �4(s+ 1)2 · 2`!= O
��4(s+ 1)2 · n� :Now we are �nally ready to bound the weight of S.Lemma 2.5.13 For the SSPD S generated by the onstrution algorithm we haveX(�;�)∈S

(|P (�)|+ |P (�)|) = O
��4(s+ 1)2 · n logn� :



38 Chapter 2 Region-Fault Tolerant SpannersProof. Sine the number of weight lasses in T is O(logn) it suÆes to provethat for every �xed ` it holds that:X(�;�)∈S�;�∈N(`)(|P (�)|+ |P (�)|) = O(�4(s+ 1)2n): (2.1)Obviously |P (�)| ≤ |P (pa(`; �))| for eah node �, so we an bound (2.1) byX(�;�)∈S�;�∈N(`)(|P (pa(`; �))|+ |P (pa(`; �))|): (2.2)From the algorithm we know thatd(R(pa(`; �));R(pa(`; �))) < (s+ 1)�2 ·min{diam(R(pa(`; �)));diam(R(pa(`; �)))}:Furthermore, by Lemma 2.5.10 eah node an be an `-parent of a onstantnumber of nodes. Hene, (2.2) an be bounded byX(�;�)∈S(`−1)O(|P (�)| + |P (�)|); (2.3)where S(`− 1) is the set of all pair (�; �) suh that �; � ∈ N(`− 1) andd(R(�);R(�)) < (s+ 1)�2 ·min{diam(R(�));diam(R(�))}:Aording to Lemma 2.5.11 summation (2.3) is O
��4(s+ 1)2 · n�, whih om-pletes the proof of the lemma.Lemma 2.5.14 The SSPD of a set P of n points with respet to a onstant s anbe omputed in O(s2n+ n logn) time.Proof. The BAR tree T and the weight lasses of nodes of T require O(n logn)time to ompute [DGK01℄. Then we make a tree T ′ from T suh that the levelof eah node in T ′ represent its weight lass. We do this by making the followinghanges in T .1. Remove all the nodes � with no weight lass from the tree and onnet thehildren of � (if they exist) to the parent of �.2. If a node appears in k weight lasses (k > 1) then repeat the node k times.



2.6 Testing for C-fault tolerane 39By Lemma 2.5.10, eah node in the tree T ′ has onstant degree and also the depthof the tree is O(log n).Now using an algorithm similar to the algorithm for onstruting a WSPD, wean onstrut a SSPD. That is, for eah internal node � of the tree T ′, run analgorithm �ndpairs(�1; �2), where �1 and �2 are the hildren of �. This algorithmtests whether the pair satis�es ondition (ii) of the onstrution desribed justbefore Lemma 2.5.9. If they do, it reports the node pair. Otherwise it reurses onthe hildren of �1 and �2 i.e. for eah hild �1 of �1 and eah hild �2 of �2 it alls�ndpairs(�1; �2).Now the laim is that the running time of the algorithm is O(m) where m isthe size of the SSPD omputed by the algorithm. We prove this using a similarargument used for the WSPD [Cal95℄. Let the algorithm all �ndpairs(�1; �2),where �1 and �2 are the hildren of a node � in T ′. We de�ne the omputation treeof (�1; �2) to be a tree with root at (�1; �2) whih satis�es the following ondition.A node (�1; �2) is a leaf if it satis�es the ondition (ii) of the onstrution desribedjust before Lemma 2.5.9. Otherwise for eah hild �′1 of �1 and eah hild �′2 of�2, (�′1; �′2) is a hild of (�1; �2). By Lemma 2.5.10, the degree of eah node in theomputation tree is bounded by a onstant. So the time omplexity of eah all of�ndpairs in the algorithm is linear in the number of nodes in the orrespondingomputation tree whih is linear in the number of leaves in the omputation tree.Therefore the total time omplexity is linear in the total number of leaves in theomputation trees whih is the number of pairs that are output.This proves the lemma sine there are O(s2n) pairs in the SSPD aording toCorollary 2.5.12.The following theorem summarizes the results on the SSPD onstrution.Theorem 2.5.15 Given a set P of n points in the plane and s > 0 we an omputean SSPD with respet to s of weight O(s2n logn) in time O(s2n+ n logn).2.6 Testing for C-fault toleraneIn the previous setions we onstruted fault tolerant spanners. However, aninteresting problem is to deide if a given (1 + ")-spanner G is C-fault tolerant ornot. In this setion we give an algorithm whih in O(n5) time using O(n2) spaean �nd the answer, where n is the number of verties of the input graph. Reallthat the faults do not ontain their boundaries.Lemma 2.6.1 Let G(P; E) be a (1 + ")-spanner on a set P of points in the plane.Let H(P ) be the family of all half-planes in the plane suh that the boundary ofeah half-plane in H(P ) passes through at least two points in P . Then the graph



40 Chapter 2 Region-Fault Tolerant Spanners
G is a C-fault tolerant (1 + ")-spanner if and only if it is an H(P )-fault tolerant(1 + ")-spanner.Proof. Obviously a graph is H(P )-fault tolerant if it is C-fault tolerant. Toprove the other diretion assume G is H(P )-fault tolerant. By Proposition 2.2.1 itis suÆient to show that the graph G is an H-fault tolerant (1 + ")-spanner. Leth be an arbitrary half-plane. If the boundary of h passes through at least twoverties of G then h ∈ H(P ) and we are done.Otherwise, if no vertex of G lies on the boundary of h then we expand h,without hanging its boundary diretion, until it meets a vertex u of G. It is easyto see that the expansion an a�et an edge only after h meets one of the endpointsof the edge and therefore in the expanding proess no new edge is a�eted. If theboundary meets no vertex of G during the expansion then all the verties andedges of G are in h and so we are done.Let hu be the new half-plane and assume `u is the boundary of hu. Now werotate the line `u around u until it meets another vertex of G. Note that by thisrotation no new edge is a�eted. If we h′u be the new half-plane then h′u ∈ H(P )and by the assumption the graph G is fault tolerant under h′u. On the other handh and h′u a�et the same parts of G and therefore G is fault tolerant under h too.Theorem 2.6.2 For any (1 + ")-spanner G on a set P of n points in the plane wean deide whether G is a C-fault tolerant (1 + ")-spanner or not in O(n5) timeusing O(n2) spae.Proof. Let H(P ) be the family of half-planes suh that the boundary of a half-plane h ∈ H(P ) passes through at least two verties of G. By Lemma 2.6.1, thegraph G is a C-fault tolerant (1 + ")-spanner if and only if it is an H(P )-faulttolerant (1 + ")-spanner.Obviously the set H(P ) ontains O(n2) half-planes. To test a half-plane h, weompute all-pairs shortest paths in G⊖h whih an be done in O(mn + n2 logn)time using O(m) spae, wherem is the number of edges in G. We also an omputeall-pairs shortest paths in G(P )⊖h in O(n3) time using O(n2) spae. Then usinga na��ve algorithm we an hek if G⊖h is a (1 + ")-spanner of G(P )⊖h in O(n2)time. So in total the heking proedure takes O(n5) time and O(n2) spae.2.7 Fault-tolerant geodesi spannersIn this setion we onsider the problem of onstruting fault-tolerant geodesi(1 + ")-spanners for a set P of n points in the plane. Here we require that betweenany two points u; v ∈ P outside the region fault F , there is a path in G⊖F whose



2.7 Fault-tolerant geodesi spanners 41length is at most t times the geodesi distane between u and v in R
2 \ F . Asremarked in the introdution, �nite size fault-tolerant geodesi spanners do notexist unless we are allowed to use Steiner points. As a simple example, onsider aset P = {p; q} of two points. A spanner G without Steiner points would have toonnet these points by an edge. But this edge an be destroyed by a region faultF , leading to a situation where the distane between p and q in G⊖F is non-�nitewhereas the geodesi distane between p and q in R

2 \ F is �nite.Even if we are allowed to add Steiner points, it is easy to see that �nite sizefault-tolerant geodesi (1 + ")-spanner do not exist when F is the family C of allonvex sets. Hene, we restrit the faults to the family D of disks in the plane.Our method for onstruting a fault-tolerant geodesi spanner works as follows.We �rst augment P with a set of 4(n−1) Steiner points as desribed in Setion 2.2.This way we an get an O(n="2) size WSPD onsisting of pairs (A;B) where theonvex hull of both A and B have at most four verties. Now �x a pair (A;B). Forevery pair of points u; v, where u is a vertex of CH(A) and v is a vertex of CH(B),we will add a olletion of O(1="3) Steiner points with O(1="4) edges betweenthem, to ensure the following: whenever both u and v are outside the fault diskD, there is a path onneting u and v through those Steiner points and outside Dwhose length is at most (1 + ") times the geodesi distane between u and v. Thisis suÆient beause whenever there are points p ∈ A and q ∈ B outside D, thereare onvex hull points u ∈ CH(A) and v ∈ CH(B) outside D. Hene, we an gofrom p to u with a short path (by indution), then from u to v (by onstrution),and then from v to q (by indution).
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Figure 2.13: The Steiner points added for u; v.Next we desribe how to add Steiner points for the pair u; v. Without loss ofgenerality we assume u and v are on a horizontal line at distane 1. Consider a unitsquare plaed suh that uv partitions it into two equal halves. We partition thissquare into a regular (1=")× (1=") grid whose ells have size "× "|we assume forsimpliity that 1=" is an integer|and we put 1="2 equally-spaed Steiner points on



42 Chapter 2 Region-Fault Tolerant Spannerseah grid line, as shown in Figure 2.13. Notie that eah grid ell has 1=" Steinerpoints on eah of its sides, and that we have O(1="3) Steiner points in total. Foreah grid ell we add edges between every pair of Steiner points on its boundary,thus adding O(1="2) edges per ell and O(1="4) edges in total.It remains to prove that for every pair of points, say u and v, we an alwaysget a path whose length is lose to their geodesi distane when we have a diskfault D. This an be argued as follows.Assume without loss of generality that the enter of D lies below (or on) theline through u and v. Then the geodesi between u and v will go around D on thetop side. Let D′ be the disk with the same enter as D but with radius r +√2",where r is the radius of D. Note that D′ may ontain u or v or both.Let �D and �D′ denote the boundary of D and D′, respetively. Beause thediagonal of the grid ells is √2" and we have the same distane between D andD′ we have:Observation 2.7.1 No grid ell an interset both the interior of D and �D′.The geodesi from u to v onsists of a straight line segment onneting u tosome point x on �D, followed by a irular ar along �D from x to some point y,denoted by _xy, followed by a straight line segment onneting y to v. Draw tworays from o, the ommon enter of D and D′, through x and y, and let x′ and y′denote the points where these rays interset �D′. Next, draw the lines tangentto D′ at x′ and y′|these are parallel to ux and yv, respetively|and let u′ andv′ be the intersetion of these lines with the vertial lines through u and v|seeFigure 2.14. Finally, de�ne � to be the path onsisting of the segments uu′ andu′x′, followed by the ar along �D′ from x′ to y′, followed by the segments y′v′and v′v.From � we onstrut a path �′ that uses the edges in our spanner. To this end,let p1; p2; : : : ; pk denote the intersetion points of � with the grid lines, orderedfrom u to v|see Figure 2.14. Note that u′ = p1 and v′ = pk. For eah intersetionpoint pi, let p′i be the losest Steiner point above or on � on the same grid line. Wede�ne �′ to be the path through p′1; : : : ; p′k. Sine eah edge in �′ is inside a gridell interseted by �D′, by Observation 2.7.1, the path �′ does not interset D.It remains to show that �′ approximates the geodesi distane. Firstly weshow the length of the path �, denoted by length(�), is roughly the same as thegeodesi distane between u and v. Reall that we denote the (Eulidean) distanebetween points x and y by ‖xy‖ and also we assumed that ‖uv‖ = 1.Lemma 2.7.2 If  is the geodesi distane between u and v thenlength(�) ≤ �1 + (� + 2)√2"� :
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Figure 2.14: The paths � and �′.Proof. From Figure 2.14, it is lear that ‖uu′‖ + ‖u′x′‖ ≤ ‖ux‖ + √2" and
‖vv′‖+ ‖v′y′‖ ≤ ‖vy‖+√2". Let � = ∠xoy be the smaller angle between ox andoy then we have length( _x′y′) = (r +√2")�= r�+√2"�= length(_xy) +√2"�

≤ length(_xy) +√2�":Thereforelength(�) = ‖uu′‖+ ‖u′x′‖+ length( _x′y′) + ‖y′v′‖+ ‖v′v‖
≤ ‖ux‖+√2"+ length(_xy) +√2�"+ ‖vy‖+√2"
≤  + (2√2 +√2 �)"
≤

�1 + (� + 2)√2"� : (sine  ≥ 1)Note that in the ase when u or v, or both, lie inside D′ the same arguments anbe used.Now we show that �′ approximates �.Lemma 2.7.3 The part of the path � between u′ and v′ intersets at most(2 · length(�) + 1)=" grid ells.Proof. If the path � intersets one ell in eah olumn we are done. Otherwise� interset at least two ells in the same olumn. It is easy to see that the length



44 Chapter 2 Region-Fault Tolerant Spannersof the part of the path � whih lies inside any two onseutive ells in the olumnis at least ". Therefore in total it an interset at most (2·length(�)+1)=" ells.Lemma 2.7.4 length(�′) ≤ (1 + 6") length(�).Proof. Let `i be the length of the part of � inside the ith ell and (p′i; p′i+1) be theedge on �′ in the same ell|see Figure 2.14. Then obviously ‖p′ip′i+1‖ ≤ `i +2"2.Solength(�′) = ‖up′1‖+ k−1Xi=1 ‖p′ip′i+1‖+ ‖p′kv‖
≤ ‖uu′‖+ "2 + k−1Xi=1(`i + 2"2) + ‖v′v‖+ "2=  ‖uu′‖+ k−1Xi=1 `i + ‖v′v‖!+ k−1Xi=1 2"2 + 2"2
≤ length(�) + 2k"2
≤ length(�) + 2(2 · length(�) + 1)" (Lemma 2.7.3)
≤ (1 + 6") length(�): (sine 1 ≤ length(�) ≤ 2)We obtain the following theorem.Theorem 2.7.5 For any set P of n points and any " > 0, there exists a D-fault tol-erant geodesi Steiner (1 + ")-spanner of P with O(n="6) edges that uses O(n="5)Steiner points.Proof. In the proedure of onstruting a D-fault tolerant spanner, we added

O(n) Steiner points to have a WSPD of size O(n="2) suh that the onvex hull ofeah set in the WSPD ontains at most four points. Then for eah pair (A;B) inthe WSPD and for eah pair of points on CH(A) and CH(B), we added O(1="3)Steiner points and O(1="4) edges between them. Therefore in total we added
O(n="5) Steiner points and the graph ontains O(n="6) edges.2.8 Conluding remarksWe introdued the onept of region-fault tolerant spanners for planar point sets,and proved the existene of region-fault tolerant spanners of small size. We showed



2.8 Conluding remarks 45that for any set of n points in the plane, we an onstrut a C-fault tolerant spannerof size O(n logn) in O(n log2 n) time.Our spanner onstrution for arbitrary point sets uses the SSPD, a relaxationof the WSPD. A similar variant with weaker properties, the SSD, was introduedby Varadarajan [Var98℄ who used it to ompute the min-ost perfet mathingfor points in the plane. His algorithm runs in √n phases where eah phase takestime proportional to the weight of the SSD plus the time it takes to omputethe SSD. Sine our SSPD satis�es the onditions of Varadarajan's SSD, and wean ompute it faster, we an improve the running time of the min-ost perfetmathing algorithm from O(n3=2 log5 n) to O(n3=2 log2 n).The main open problem is to determine whether the spanner size for arbitrarypoint sets an be improved to O(n).Another interesting question is how we an improve the C-fault tolerant hek-ing algorithm. Finally, in our approah, we used straight line segments as edgesin our spanners. For geodesi spanners, it is interesting to see what happens if weare allowed to add urved edges.
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Chapter 3Dilation-Optimal EdgeAugmentation
3.1 IntrodutionAfter designing a network, in addition to performing network maintenane, it issometimes desirable to improve its quality. In this hapter we onsider the problemwhen one is given a (geometri) network and the problem at hand is to extendthe network with an additional edge while minimizing the dilation of the resultinggraph. More formally the problem is as follows. Given an edge weighted graphG(V;E) with n verties and m edges, onstrut a graph G′ by adding an edgeto G suh that the dilation of G′ is minimized. The problem was �rst stated byNarasimhan [Nar02℄ and, surprisingly, it has not been studied earlier, to the bestof our knowledge.The results presented in this hapter are summarized in Table 3.1. Note thatsome of the presented bounds hold for any graph with positive edge weights(weighted graphs) while some only hold for Eulidean graphs. Reall from theintrodution that we assume that the vertex set of any graph is a subset of a met-ri spae and for eah pair of verties u and v in the graph, d(u; v) denotes thedistane between u and v in the metri spae. Throughout this hapter G denotesa Eulidean graph while G denotes a graph with positive edge weights.Throughout this hapter we will use Gopt to denote the optimal solution, whiletopt and t denote the dilation of Gopt and the input graph G respetively. Also foreah pair of points u; v ∈ V , ÆG(u; v) denotes the shortest path between u and v



48 Chapter 3 Dilation-Optimal Edge AugmentationInput graph Apx. fator Time omplexity Spae SetionWeighted graph 1 O(n3m+ n4 logn) O(m) Setion 3.2.1Weighted graph 1 O(n4) O(n2) Setion 3.2.1Eulidean graph 1 + " O(n3="d) O(n2) Setion 3.2.2Weighted graph 3 O(nm+ n2 logn) O(m) Setion 3.3Eulidean graph 2 + " O(nm+ n2(logn+ 1"3d )) O(n2) Setion 3.4Eulidean t-spanner 1 + " O(( t7"4 )d · n2) O(n log(tn)) Setion 3.5Table 3.1: Complexity bounds for the algorithms presented in this hapter.in graph G and dG(u; v) denotes the length of ÆG(u; v).3.2 Three simple algorithmsWe onsider the problem of omputing an optimal solution Gopt. That is, weare given a graph G = (V;E), and the aim is to ompute a topt-spanner Gopt =(V;E ∪ {e}).In this setion we present two simple exat algorithms whih work for anyweighted graph and one fast approximation algorithm for geometri graphs.3.2.1 Exat algorithmsA na��ve approah to deide whih edge to add is to test every possible andidateedge. The number of suh edges is obviously �n(n−1)2 − m� = O(n2). Testinga andidate edge e entails omputing the dilation of the graph G′ = (V;E ∪
{e}), denoted the andidate graph or augmented graph. Therefore we brieyonsider the problem of omputing the dilation of a given graph with positiveedge weights. This problem has reently reeived onsiderable attention, see forexample [EW07, AKK+, NS00℄.A trivial upper bound for omputing the dilation of G′ is obtained by omput-ing the length of the shortest paths between every pair of verties in G′. This anbe done by running Dijkstra's algorithm|implemented using Fibonai heaps|ntimes, resulting in an O(mn + n2 logn) time algorithm using O(m) spae. Thisapproah is quite slow and we would like to be able to ompute the dilation moreeÆiently, but no faster algorithm is known for any graphs exept planar graphs,paths, yles, stars and trees [EW07, AKK+, NS00℄.



3.2 Three simple algorithms 49Applying the stated bound gives that Gopt an be omputed in time O(n3(m+n logn)) using O(m) spae.A small improvement an be obtained by observing that when an edge (u; v)is about to be tested, we do not have to do all-pairs-shortest path to omputethe dilation of the augmented graph. Instead, for eah pair of verties x; y ∈ V ,it suÆes to hek whether there is a shorter path between x and y using theedge (u; v). That is, we only have to ompute dG(x; u) + d(u; v) + dG(v; y),dG(x; v) + d(v; u) + dG(u; y) and dG(x; y), whih an be done in onstant timesine the length of a shortest path between every pair of verties in G has alreadybeen omputed (provided that we store this information). So if, as a preproessing,one omputes all-pairs-shortest paths of the input graph G and saves the result ina distane matrix M , then the dilation of the augmented graph an be omputedin O(n2) time. We use Dilation(G;M; x; y) to denote the proedure that, giventhe matrix M and an edge (x; y), omputes the dilation of the graph G ∪ (x; y).See the details of the exat algorithm in Algorithm 3.2.1.Algorithm 3.2.1: ExpandGraphInput: Weighted graph G = (V;E).Output: Weighted graph G′ = (V;E ∪ {e}).M := distane matrix of G ;1 t :=∞;2 foreah (x; y) ∈ V 2 \ E do3 t′ := Dilation(G;M; x; y);4 if t′ < t then5 t := t′ and e := (x; y)6 end7 end8 return G′ = (V;E ∪ {e});9Hene, we have the following result:Lemma 3.2.1 Given a graph G with positive edge weights, an optimal solutionGopt an be omputed in time O(n4) using O(n2) spae.Proof. Solving the all-pair-shortest-path problem requires ubi time and all thedistanes are stored in an n×n matrix. In total O(n2) edges are tested for inser-tion. For eah andidate edge we ompute the length of the shortest path betweenevery pair of points in G, whih an be done in onstant time per andidate asdesribed above.



50 Chapter 3 Dilation-Optimal Edge Augmentation3.2.2 A (1 + ")-approximation for Eulidean graphsIn the previous setion we showed that an optimal solution an be obtained bytesting a quadrati number of andidate edges. Testing eah andidate edge entails
O(n2) distane queries, where a distane query asks for the length of a shortestpath in the graph between two query points. One way to speed up the omputationis to ompute an approximate dilation. The problem of omputing an approximatedilation of a geometri graph was onsidered by Narasimhan and Smid in [NS00℄.They showed the following fat, whih states that the WSPD of the vertex setof any Eulidean graph G an be used to approximate the dilation of G|see alsoSetion 13.2 of [NS07℄.Fat 3.2.2 Let V be a set of n points in R

d and let {(Ai; Bi)}mi=1 be a WSPD forV with respet to separation onstant s := 4(2+ ")=". For eah j with 1 ≤ j ≤ m,let aj be an arbitrary point in Aj , and let bj be an arbitrary point in Bj . For anyonneted Eulidean graph G with vertex set V , the following holds: For eah jwith 1 ≤ j ≤ m, let DG(aj ; bj) be the dilation between aj and bj in G, and lett := max1≤j≤mDG(aj ; bj):Then DG=(1 + ") ≤ t ≤ DG , or equivalently t ≤ DG ≤ (1 + ")t, where DG denotesthe dilation of G.Thus, in order to approximate the dilation of a Eulidean graph, it is suÆientto ompute the dilation between O(n="d) pairs of verties. Moreover, the hoie ofthese verties depends only on the vertex set of the graph, it does not depend onthe edges of the graph. As a result the time to ompute the dilation dereases from
O(n2) to O(n="d), thus the total running time dereases from O(n4) to O(n3="d).Theorem 3.2.3 Given a Eulidean graph G = (V;E) and a real onstant " > 0, onean in O(n3="d) time, using O(n2) spae, ompute a t?-spanner G′ = (V;E ∪ {e})suh that topt ≤ t? ≤ (1 + ") · topt.Proof. The time bound follows from the above disussion. Obviously the dilationof G′, denoted by t?, reported by the algorithm is at least topt. It remains to provethat t? is bounded by (1 + ") · topt.Assume that t is the approximate dilation of G′ and for eah andidate graph
Gi, let ti be its approximate dilation as omputed by the algorithm and let DGibe its exat dilation. Based on the algorithm t = mini ti and from Fat 3.2.2 itfollows that for eah andidate graph Gi, ti ≤ DGi ≤ (1 + ") · ti. Assume thattopt = DGj . Thereforet? ≤ (1 + ") · t ≤ (1 + ") · tj ≤ (1 + ") · DGj = (1 + ") · topt;whih omplete the proof.



3.3 Adding a bottlenek edge 513.3 Adding a bottlenek edgeConsider a graph G = (V;E) with positive edge weights and dilation t. In thissetion we analyze the following simple algorithm: Add an edge between a pair ofverties in G with dilation t. This edge is alled a bottlenek edge of G. We showthat this gives us a 3-approximation of the optimal solution.Let GB be a graph obtained from G by adding a bottlenek edge, and let tBbe the dilation of GB. Note that GB an be omputed in the same time as thedilation of G an be deided, i.e., in O(mn+n2 logn) time for graphs with positiveedge weights.Lemma 3.3.1 Given a graph G with positive edge weights it holds that tB < 3topt:Proof. Reall that t denotes the dilation of G and that Gopt denotes the optimalgraph. Let (x; y) be the edge added to G to obtain Gopt, and let (u; v) be the edgeadded to G to obtain GB, i.e., (u; v) is a bottlenek edge of G, as illustrated inFigure 3.1.
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v() GBFigure 3.1: (x; y) is the optimal edge added to G and (u; v) is a bottlenek edge of G.First note that if topt > t=3 then the lemma holds and we are done. Thus wemay assume that topt ≤ t=3. The proof of the lemma is done by onsidering a pairof verties, denoted (a; b), that are endpoints of a bottlenek edge of GB. Fix apath ÆGopt(a; b). If this path does not inlude the edge (x; y) thendGopt(a; b) = dG(a; b) ≥ dGB
(a; b)and we are done. Therefore, we may assume that the path ÆGopt(a; b) inludes(x; y). Also, we will assume without loss of generality that a shortest path in Goptfrom a to b goes from a to x and then to b via y, otherwise the labels a and b maybe swithed. Note that ÆGopt(u; v) must pass through (x; y) otherwise we havetopt ≥ dGopt(u; v)=d(u; v) = dG(u; v)=d(u; v) = twhih means that t = topt, whih ontradits the assumption that topt ≤ t=3.Furthermore, we assume that a shortest path in Gopt from u to v goes from u tox and then to v via y, otherwise the labels u and v may be swithed.



52 Chapter 3 Dilation-Optimal Edge AugmentationAs a �rst step we bound the distane between the endpoints of the bottlenekedge u and v. This is done by bounding the length of the path in G between xand y as follows, see Figure 3.1.dG(u; v) ≤ dGopt(u; v)− d(x; y) + dG(x; y)
≤ topt · d(u; v)− d(x; y) + t · d(x; y)
≤ t3 · d(u; v)− d(x; y) + t · d(x; y)< t3 · d(u; v) + t · d(x; y):Sine dG(u; v) = t · d(u; v) it follows thatd(u; v) < 3=2 · d(x; y): (3.1)Also, t · d(u; v) = dG(u; v)
≤ dG(u; a) + dG(a; b) + dG(b; v)
≤ dG(u; a) + t · d(a; b) + dG(b; v)whih implies that t · (d(u; v)− d(a; b)) ≤ dG(u; a) + dG(b; v); (3.2)and dG(a; u) + 2d(x; y) + dG(v; b) ≤ dG(a; x) + dG(x; u) + 2d(x; y)+dG(v; y) + dG(y; b)= dGopt(a; b) + dGopt(u; v)

≤ topt(d(a; b) + d(u; v)); (3.3)whih gives thatdG(a; u) + dG(v; b) ≤ topt(d(a; b) + d(u; v))− 2d(x; y): (3.4)By putting together (3.2) and (3.4) we havet(d(u; v)− d(a; b)) ≤ dG(a; u) + dG(v; b)
≤ topt(d(a; b) + d(u; v))− 2d(x; y)< topt(d(a; b) + d(u; v));whih implies that d(a; b)(topt + t) > d(u; v)(t− topt)



3.3 Adding a bottlenek edge 53and d(a; b) > t− topttopt + t · d(u; v) > t− t3t3 + t · d(u; v) = 12 · d(u; v): (3.5)Now we are ready to put together the results:tB · d(a; b) = dGB
(a; b)

≤ dG(a; u) + d(u; v) + dG(v; b)< dG(a; u) + 32 d(x; y) + dG(v; b) (from (3.1))< dG(a; u) + 2d(x; y) + dG(v; b)
≤ topt (d(a; b) + d(u; v)) (from (3.3))< 3topt · d(a; b): (from (3.5))This ompletes the proof of the lemma sine tB < 3topt.We onlude by stating the main result of this setion followed by a lowerbound for the bottlenek approah.Theorem 3.3.2 Given a graphG = (V;E) with positive edge weights, a tB-spannerG′ = (V;E∪{e}) with tB < 3topt an be omputed in O(mn+n2 logn) time using

O(m) spae.The following observation by Gr�une [Gr�u05℄ shows that the upper bound statedin Lemma 3.3.1 is tight, even for Eulidean graphs.Observation 3.3.3 ([Gr�u05℄) For for any 0 < " < 2, there exists a Eulidean graph
G suh that (3− ") · topt ≤ tB.Proof. Choose the value of � suh that sin(�2 ) = "′ = "=(4− "). We onstruta graph G whih inludes seven points p1; : : : ; p7 along two line segments (p1; p4)and (p4; p7), where the angle between the two segments is �. Put two point p2 andp3 on segment (p1; p4) suh that ‖p1p2‖ = d, ‖p2p3‖ = ` and ‖p3p4‖ = 1, whered := 2(1− "′)(1 + "′)(3− "′) and ` := (1− "′)2(1 + "′)(3− "′) :Also we put points p5 and p6 on segment (p4; p7) with similar interdistanes|seeFigure 3.2(a).Now onsider the graph G on V := {p1; : : : ; p7} with edge setE := {(pi; pi+1); i = 1; : : : ; 6}:We have the following observations.
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() G′Figure 3.2: The graph G, where tB=tP gets arbitrarily lose to 3.1. The dilation of G is 1="′ whih is attained by pairs (p1; p7), (p2; p6) and(p3; p5). So we an hoose (p1; p7) as a bottlenek edge. Note that by movingp2 and p3 a little bit the dilation between p2 and p6 and the dilation betweenp3 and p5 will derease and (p1; p7) will be the only bottlenek edge.2. If we insert the bottlenek edge (p1; p7) in G, see Figure 3.2(b), the dilationof GB does not hange beause the length of the new path onneting p3 andp5 passing through p1 and p7 is equal to2 (`+ d+ (1 + `+ d) sin(�=2)) = 2�1− "′1 + "′ +�1 + 1− "′1 + "′� · "′�= 2whih is the same as dG(p3; p5). So tG = tB = 1="′.3. If G′ attained by adding the edge (p2; p6) to the graph G, see Figure 3.2(),then the dilation of G′ is taken by the pairs (p1; p7) and (p3; p5) whih isequal to tG′ = `+ (1 + `)"′"′ = d+ (1 + `)"′(1 + `+ d)"′ = "′ + 1"′(3− "′) :Sine topt ≤ tG′ we havetBtopt ≥ tBtG′= 1="′("′ + 1)=("′(3− "′))= 3− "′"′ + 1= 3− " (sine "′ = "4− ")whih implies the observation.



3.4 A (2 + ")-approximation for Eulidean graphs 553.4 A (2 + ")-approximation for Eulidean graphsIn the remainder of the hapter we will develop approximation algorithms for Eu-lidean graphs. In this setion we present a fast approximation algorithm whihguarantees an approximation fator of (2+"). The algorithm is similar to the algo-rithms presented in Setion 3.2 in the sense that it tests andidate edges. Testing aandidate edge entails omputing the dilation of the input graph augmented withthe andidate edge. The main di�erene is that we will show, in Setion 3.4.1, thatonly a linear number of andidate edges need to be tested to obtain a solution thatgives a (2 + ")-approximation, instead of a quadrati number of edges.Moreover, in Setion 3.4.2 we show that the same approximation bound anbe ahieved by performing only a linear number of shortest path queries for eahandidate edge. The andidate edges are seleted by using the well-separated pairdeomposition|see Setion 2.3.3.4.1 Linear number of andidate edgesIn this setion we show how to obtain a (2 + ")-approximation in ubi time. Asmentioned above, the algorithm is similar to the algorithm presented in Setion 3.2in the sense that it tests andidate edges. Here we will show that only a linearnumber of andidate edges is needed to be tested to obtain a solution that gives a(2 + ")-approximation.The approah is straight-forward, see Algorithm 3.4.1. First the algorithmomputes the length of the shortest path in G between every pair of points in V .The distanes are saved in a matrix M . Next, the well-separated pair deompo-sition of V is omputed. Note that, in line 5, the andidate edges will be hosenusing the well-separated pair deomposition. In line 6, the funtion Dilationreturns the dilation of the graph Gi(V;E ∪ {(ai; bi)}), i.e., in lines 5{8, a andi-date edge is tested by omputing the dilation of G with the andidate edge (ai; bi)added to G. Reall that Dilation uses the distane matri M to answer suh aquery in quadrati time. Next, we bound the running time of the approximationalgorithm and then prove the approximation bound.Lemma 3.4.1 Algorithm 3.4.1 requires O(n3="2d) time and O(n2) spae.Proof. The omplexity of all lines of the algorithm is straight-forward to al-ulate. Reall that line 1 requires O(mn + n2 logn) time and quadrati spae,and line 2 requires O(n="2d + n logn) time aording to Setion 2.3. Beausek = O(n="2d), the time needed for lines 4{10 is O(n="2d) times the omplexity ofDilation whih is O(n2). Thus summing up we get O( n"2d · n2), as stated in thelemma.



56 Chapter 3 Dilation-Optimal Edge AugmentationAlgorithm 3.4.1: Approximate ExpandGraphInput: Eulidean graph G = (V;E) and a real onstant " > 0.Output: Eulidean graph G′ = (V;E ∪ {e}).M := distane matrix of G ;1
{(Ai; Bi)}ki=1 := WSPD of the point set V with respet to s = 256="2;2 t :=∞;3 for i := 1; 2; : : : ; k do4 Selet arbitrary points ai ∈ Ai and bi ∈ Bi;5 ti := Dilation(Gi;M; ai; bi);6 if ti < t then7 t := ti and e := (ai; bi)8 end9 end10 return G′ = (V;E ∪ {e});11 It remains to analyze the quality of the solution obtained from algorithm 3.4.1.We need to ompare the graph resulting from adding an optimal edge to G andthe graph G′ resulting from Approximate ExpandGraph. Let e = (a; b) bean optimal edge and let (Ai; Bi) be the well-separated pair suh that a ∈ Ai andb ∈ Bi. At �rst sight, it seems that the edge (ai; bi) tested by the algorithm shouldbe a good andidate. However, the separation onstant of our well-separated pairdeomposition only depends on " whih implies that the shortest path between aand ai, and between b and bi ould be very long ompared to the distane betweena and b. In Lemma 3.4.2, we show the existene of a \short" edge e′ that is agood approximation of the optimal edge and then, in Lemma 3.4.3, we show thatApproximate ExpandGraph omputes a good approximation of e′.Let �G(p; q) denote the set of point pairs (u; v) in V suh that(p; q) ∈ ÆG∪{(p;q)}(u; v):That is, �G(p; q) is the set of point pairs for whih a shortest path between themin G ∪ {(p; q)} passes through (p; q). When it is lear whih graph we are talkingabout, we use �(p; q) instead of �G(p; q).Lemma 3.4.2 For any given onstant 0 < � ≤ 1, there exists a pair p; q ∈ V ofthe graph G suh that for every pair (u; v) ∈ �(p; q) it holds that ‖uv‖ ≥ �2 ‖pq‖,and the dilation of G ∪ {(p; q)} is bounded by (2 + �) · topt.Proof. The proof is done in two steps. First a point pair pj ; qj ∈ V is seleted thatful�lls the �rst requirement of the lemma. Then, we prove the seond requirement,i.e., the dilation of G ∪ {(pj ; qj)} is bounded by (2 + �) · topt.Consider an optimal solution G1 = G ∪ {(p1; q1)}, with dilation t1 = topt. If

‖uv‖ ≥ �2 · ‖p1q1‖ for every point pair (u; v) ∈ �(p1; q1) then j = 1, i.e., we have



3.4 A (2 + ")-approximation for Eulidean graphs 57found the point pair we are searhing for. Otherwise, let e2 = (p2; q2) denotethe losest pair in �(p1; q1), and ontinue the searh for (pj ; qj). See Figure 3.3for an illustration. Note that there exists a point pair (u; v) ∈ �(p1; q1) suhthat ‖uv‖ < �2 · ‖p1q1‖, otherwise j = 1. And sine ‖p2q2‖ ≤ ‖uv‖ for every(u; v) ∈ �(p1; q1) we have ‖p2q2‖ < �2 · ‖p1q1‖.We de�ne e3 in a similar way, that is, if for eah point pair (u; v) ∈ �(p2; q2) itholds that ‖uv‖ ≥ �2 · ‖p2q2‖ then we have found the point pair (pj = p2; qj = q2)that we are searhing for. Otherwise, let e3 = (p3; q3) denote the losest pair in�(p2; q2).We ontinue to de�ne the vertex pairs e4; : : : ; ej and the orresponding graphs
G4; : : : ;Gj until we �nd a point pair (pj ; qj) for whih there is no vertex pair ej+1suh that (pj+1; qj+1) ∈ �(pj ; qj) and ‖pj+1qj+1‖ < �2 · ‖pjqj‖. Based on theonstrution we have one basi property: for eah i,

‖pi+1qi+1‖ < �2 · ‖piqi‖:This omplete the �rst part of the proof.
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Figure 3.3: Illustrating the proof of Lemma 3.4.2.For the seond part, we laim that Gj has dilation at most (2+�) · topt. Beforewe ontinue we need to prove:dGi(pi+1; qi+1) ≤ topt · ‖pi+1qi+1‖: (3.6)The inequality is obviously true for i = 1. For i > 1 it holds that
‖pi+1qi+1‖ < ‖p2q2‖whih implies that (pi+1; qi+1) =∈ �(p1; q1) sine (p2; q2) is the losest pairin �(p1; q1). This, in turn, implies thatdG(pi+1; qi+1) = dG1(pi+1; qi+1) ≤ topt · ‖pi+1qi+1‖:



58 Chapter 3 Dilation-Optimal Edge AugmentationSine G is a subgraph of Gi, the length of the shortest path in Gi between pi+1 andqi+1 must be bounded by the length of the shortest path in G between pi+1 andqi+1, whih is bounded by topt · ‖pi+1qi+1‖. Thus, inequality (3.6) holds.We ontinue with the seond part of the proof. It will be shown that for everypair u; v ∈ V it holds that dGj (u; v)
‖uv‖ < (2 + �) · topt:Note that G1 is the graph G augmented by the optimal edge.If (u; v) =∈ �(p1; q1) then we are done sine dGj (u; v) ≤ dG(u; v) = dG1(u; v).Otherwise, if (u; v) ∈ �(p1; q1), the following holds (see Figure 3.3 for an illustra-tion):dGj (u; v) ≤ dG1(u; v)− ‖p1q1‖+ (dG1(p2; q2)− ‖p1q1‖) + · · ·+ (dGj−1(pj ; qj)− ‖pj−1qj−1‖) + ‖pjqj‖< topt · ‖uv‖ − ‖p1q1‖+ (topt · ‖p2q2‖ − ‖p1q1‖) + · · ·+ (topt · ‖pjqj‖ − ‖pj−1qj−1‖) + ‖pjqj‖ (f. (3.6))= topt · ‖uv‖ − 2‖p1q1‖+ ((topt − 1) · ‖p2q2‖) + · · ·+ ((topt − 1) · ‖pjqj‖) + 2‖pjqj‖< topt · ‖uv‖+ (topt − 1)(‖p2q2‖+ : : :+ ‖pjqj‖)(sine ‖pjqj‖ < ‖p1q1‖)< topt · ‖uv‖+ topt · jXi=2 ��2�i−2‖p2q2‖(sine ‖pi+1qi+1‖ ≤ (�2 ) · ‖piqi‖)

≤ topt · ‖uv‖+ topt · ‖uv‖ · j−2Xi=0 ��2�i (sine ‖p2q2‖ ≤ ‖uv‖)= 2topt · ‖uv‖+ topt · ‖uv‖ · j−2Xi=1 ��2�i
≤ 2topt · ‖uv‖+ topt · ‖uv‖ · � ·

j−2Xi=1 12i (sine � ≤ 1)< (2 + �) · topt · ‖uv‖This onludes the lemma.In the previous lemma we showed the existene of a \short" andidate edge(p; q) for whih the resulting graph has small dilation. Note that algorithm Ap-proximate ExpandGraphmight not test (p; q). However, in the following lemma



3.4 A (2 + ")-approximation for Eulidean graphs 59it will be shown that algorithm Approximate ExpandGraph will test an edge(a; b) that is almost as good as (p; q).Lemma 3.4.3 For any given onstant 0 < " ≤ 1 it holds that the graph G′ returnedby algorithm Approximate ExpandGraph has dilation at most (2 + ") · topt:Proof. Aording to Lemma 3.4.2, for eah 0 < � ≤ 1 there exists an edge (p; q)suh that for every pair (u; v) ∈ �(p; q) it holds that ‖uv‖ ≥ �2 ‖pq‖, and thedilation tH of H = G ∪ {(p; q)} is bounded by (2 + �) · topt. Let (Ai; Bi) be thewell-separated pair omputed in line 2 of the algorithm suh that p ∈ Ai andq ∈ Bi. Aording to De�nition 2.3.3 suh a well-separated pair must exist. Next,onsider the andidate edge (ai; bi) tested by the algorithm, suh that ai; p ∈ Aiand bi; q ∈ Bi. For simpliity of writing we will use a and b to denote ai and birespetively.Our laim is that the dilation of G′ := G ∪{(a; b)} is bounded by (1+ "=4) · tH .Before we ontinue to prove the laim, we show thatdG(a; p) = dH(a; p) and dG(b; q) = dH(b; q): (3.7)Lemma 3.4.2 states that if (x′; y′) ∈ �(p; q) then
‖x′y′‖ ≥ ("=8)‖pq‖:But by Lemma 2.3.2 the distanes ‖ap‖ and ‖bq‖ are less than2s‖pq‖ = "2128‖pq‖;whih is less than ("=8)‖pq‖ sine " ≤ 1. As a onsequene (a; p) =∈ �(p; q)and (b; q) =∈ �(p; q), thus (p; q) =∈ ÆH(a; p) and (p; q) =∈ ÆH(b; q). Hene, theequation (3.7) holds, whih we will need below.To prove the laim, we show that the dilation between any pair of points in G′is bounded by (1 + "=4) · tH . Let x and y be arbitrary points of V . We have twoases:Case 1: (x; y) =∈ �(p; q).In this ase we are done, sinedG′(x; y) ≤ dG(x; y) = dH(x; y):Case 2: (x; y) ∈ �(p; q).Consider the length of the path in G′ between x and y as illustrated in Fig-
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p

q

a

b

x

yFigure 3.4: Illustrating the proof of Lemma 3.4.3.ure 3.4. Without loss of generality we have:dG′(x; y) ≤ dG(x; p) + dG(p; a) + ‖ab‖+ dG(b; q) + dG(q; y)= dG(x; p) + dH(p; a) + ‖ab‖+ dH(b; q) + dG(q; y) (f. (3.7))
≤ dG(x; p) + ‖ab‖+ dG(q; y) + tH · (‖pa‖+ ‖bq‖)
≤ dG(x; p) + (1 + 4s ) · ‖pq‖+ dG(q; y) + 4tHs · ‖pq‖ (Lemma 2.3.2)
≤ dH(x; y) + 8tHs · ‖pq‖
≤ dH(x; y) + 64tH"s · ‖xy‖ (Lemma 3.4.2)= dH(x; y) + "4 · tH · ‖xy‖:Therefore the dilation between x and y in G′ is:dG′(x; y)

‖xy‖ ≤ dH(x; y)
‖xy‖ + ("=4)tH‖xy‖

‖xy‖ ≤
�1 + "4� · tH :Finally, aording to Lemma 3.4.2 and by setting � := "=4 it holds thattH ≤ (2 + "=4) · topt:This ompletes the lemma sine (2 + "=4)(1 + "=4) < (2 + ").We may now onlude this setion with the following theorem.Theorem 3.4.4 Given a Eulidean graph G = (V;E) in R

d one an in O(n3="2d)time, using O(n2) spae, ompute a t′-spanner G′ = (V;E ∪ {e}), wheret′ ≤ (2 + ") · topt.



3.4 A (2 + ")-approximation for Eulidean graphs 613.4.2 Speeding up algorithm 3.4.1In the previous setion we showed that a (2 + ")-approximate solution an beobtained by testing a linear number of andidate edges. Testing eah andidateedge entailsO(n2) shortest path queries for omputing the dilation of the andidategraph. One way to speed up the omputation is to ompute an approximatedilation. As in Setion 3.2.2 we will use Fat 3.2.2 by Narasimhan and Smid [NS00℄.We will use their idea to speed up line 6 of Approximate Expandgraphfrom O(n2) to O(n="d), i.e., we hek a linear number of pairs in order to om-pute an approximate dilation using Fat 3.2.2. There will be two main hanges inthe Approximate ExpandGraph algorithm; two well-separated pair deompo-sitions will be omputed and the omputation of the dilation will be di�erent, seeAlgorithm 3.4.2. Instead of omputing the exat dilation of G with the andidateedge (ai; bi) added to G, we ompute the approximate dilation. This is done by aall to Approximate Dilation, or ApproxDilation for short, with parametersM , S and (ai; bi). The ApproxDilation algorithm is stated in more detail below.Note that the number of point pairs in S is bounded by O(n="d).Algorithm 3.4.2: Approximate ExpandGraph2(G; ")Input: Eulidean graph G = (V;E) and a real onstant " > 0.Output: Eulidean graph G′ = (V;E ∪ {e}).M := distane matrix of G;1
{(Cj ; Dj)}j̀=1 := WSPD of the set V with respet to s′ = 4(1 + ")=";2
S := ∅;3 for j := 1; 2; : : : ; ` do4 Selet an arbitrary point j of Cj and an arbitrary point dj of Dj ;5 Add (j ; dj) to S;6 end7 t :=∞;8
{(Ai; Bi)}ki=1 := WSPD of the set V with respet to s = 256="2;9 for i := 1; 2; : : : ; k do10 Selet an arbitrary point ai of Ai and an arbitrary point bi of Bi;11 ti := ApproxDilation(M;S; ai; bi);12 if ti < t then13 t := ti and e := (ai; bi);14 end15 end16 return G′ = (V;E ∪ {e});17Theorem 3.4.5 Given a Eulidean graph G = (V;E) and a real onstant " > 0 onean in O(nm+ n2(logn+ 1="3d)) time, using O(n2) spae, ompute a t′-spanner

G′ = (V;E ∪ {e}) suh that t′ ≤ (2 + ") · topt.



62 Chapter 3 Dilation-Optimal Edge AugmentationAlgorithm 3.4.3: ApproxDilationInput: Distane matrix M , a set S of point pairs and point pair (a; b).Output: Approximate dilation.foreah (x; y) ∈ S do1 dx;y := min {M [x; y℄;M [x; a℄ + ‖ab‖+M [b; y℄;M [x; b℄ + ‖ba‖+M [a; y℄};2 tx;y := dx;y=‖xy‖;3 end4 return maxx;y tx;y;5Proof. The omplexity of all lines of the algorithm 3.4.2, exept line 12, is asin Lemma 3.4.1. Lines 1{9 require O(mn + n2 logn + n="2d) time. It remainsto onsider line 12 of the algorithm. Note that the number of times line 12 isexeuted is O(n="2d). Proedure ApproxDilation performs O(n="d) shortest-path queries, instead of O(n2), thus the total time needed by line 12 is O( n"2d · n"d ).Summing up the running times gives the stated time omplexity.In Lemma 3.4.3 it was proven that the solution returned by algorithm Ap-proximate ExpandGraph had a dilation that was at most a fator (2 + ")worse than the dilation of an optimal solution. Sine the modi�ed algorithm doesnot ompute the exat dilation of a andidate graph, but instead omputes a(1 + ")2-approximate dilation it is not hard to verify that the same arguments asin Lemma 3.4.3 an be applied to prove that the algorithm Approximate Ex-pandGraph2 returns a graph with dilation at most (1+ ")2 · (2+ ") · topt. Setting" = min{"=10; 1}, onludes the proof of the theorem.3.5 A speial ase: G has onstant dilationIn the speial ase when the dilation of the graph G is known to be onstant thereare well-known tools that we an use to derease both the time omplexity and thespae omplexity of the algorithms and improve the approximation fator. Themain idea is to use the following fat by Gudmundsson et al. [GLNS02b℄ whihenable us to ompute an approximate dilation of a andidate graph in linear time.Fat 3.5.1 ([GLNS02b℄) Let V be a set of n points in R
d, let t > 1 and 0 < " ≤ 1be real numbers, and let G = (V;E) be a t-spanner for V . In

O
�m+ nt5d"2d (logn+ (t=")d)�time, we an preproess G into a data struture of size O((t3d="2d)n log(tn)) suhthat for any two distint points p and q in V , a (1 + ")-approximation to the



3.5 A speial ase: G has onstant dilation 63shortest-path distane between p and q in G an be omputed in time O�(t5="2)d�.The query struture in Fat 3.5.1 is denotedM ′ and is onstruted by algorithmQueryStruture. We have to use a modi�ed version of ApproxDilation, de-noted ApproxDilation2, that takes the query struture M ′ as input instead ofthe matrixM . The (exat) shortest path distane queries using M in ApproxDi-lation are replaed in ApproxDilation2 by performing approximate shortestpath distane queries using M ′.Next we state the main algorithm. Reall that the parameter t is a onstantand an upper bound on the dilation of the input graph G. Also note that thisalgorithm only needs one well-separated pair deomposition.Algorithm 3.5.1: Approximate ExpandGraph3(G; t; ")Input: Eulidean t-spanner G = (V;E) and two real onstants t > 1 and" > 0.Output: Eulidean graph G′ = (V;E ∪ {e}).M ′ := QueryStruture(G; t; ") using Fat 3.5.1;1
{(Ai; Bi)}ki=1 := WSPD of V with respet to s = 8(t+ 1)=";2
S := ∅;3 for j := 1; 2; : : : ; k do4 Selet an arbitrary point aj of Aj and an arbitrary point bj of Bj ;5 Add (aj ; bj) to S;6 end7 t :=∞;8 for i := 1; 2; : : : ; k do9 ti := ApproxDilation2(M ′;S; ai; bi);10 if ti < t then11 t := ti and e := (ai; bi);12 end13 end14 return G′ = (V;E ∪ {e});15Lemma 3.5.2 Approximate ExpandGraph3 runs in O((t7="4)d · n2) time anduses O((t3="2)d n log(tn)) spae.Proof. The time omplexity of lines 1{3 is dominated by line 1, thus O(m +n(t5="2)d(logn+(t=")d)) time. Lines 10{13 is exeuted O((t=")dn) times, and eahiteration requires O((t=")dn · (t5d="2d)) time aording to Fats 3.2.2 and 3.5.1.Summing up the time bounds gives the time bound stated in the lemma.The spae bound follows sine the approximate distane orale stated inFat 3.5.1 only uses O((t3="2)d n log(tn)) spae, instead of the quadrati spaeneeded earlier.



64 Chapter 3 Dilation-Optimal Edge AugmentationNow, we show that this algorithm omputes a (1 + ")-approximation of theoptimal solution. Note that in Approximate ExpandGraph3 the separationonstant depends both on " and t whih is the main di�erene ompared to theprevious algorithms. This allows us to improve the approximation fator.Lemma 3.5.3 Let G = (V;E) be a Eulidean graph with onstant dilation t and apositive real onstant ", and let {(Ai; Bi)}ki=1 be a well-separated pair deomposi-tion of V with respet to s = 8(t+1)=". For every pair (Ai; Bi) and any elementsa1; a2 ∈ Ai and b1; b2 ∈ Bi, let G1 = (V;E∪{(a1; b1)}) and G2 = (V;E∪{(a2; b2)}),and let t1 and t2 denote the dilation of G1 and G2, respetively. It holds thatt1 ≤ (1 + ")t2.Proof. It suÆes to prove that for every pair of points (u; v) ∈ �(a2; b2) thereexists a path in G1 of length at most (1 + ") · dG2(u; v). Reall that �(p; q) is theset of point pairs for whih a shortest path between them in G ∪ {(p; q)} passesthrough (p; q). Without loss of generality we may assume that the shortest pathbetween u and v in G2, goes from u to a2 and to v via b2. We have:dG1(u; v) ≤ dG(u; a2) + dG(a2; a1) + ‖a1b1‖+ dG(b1; b2) + dG(b2; v)
≤ dG(u; a2) + t‖a2a1‖+ ‖a1b1‖+ t‖b1b2‖+ dG(b2; v)
≤ dG(u; a2) + 4ts ‖a2b2‖+ (1 + 4=s) · ‖a2b2‖+ dG(b2; v)< dG(u; a2) + ‖a2b2‖+ dG(b2; v) + 8ts ‖a2b2‖= dG2(u; v) + t"t+ 1‖a2b2‖< (1 + ") · dG2(u; v):In the seond inequality we used Lemma 2.3.2, in the �fth inequality we used thefat that s = 8(t+1)=" and in the �nal step we used that dG2(u; v) ≥ ‖a2b2‖ sine(u; v) ∈ �(a2; b2). The lemma follows.Lemma 3.5.4 Algorithm Approximate ExpandGraph3 returns a graph withdilation at most (1 + ")3 · topt.Proof. Assume that topt is the dilation of an optimal solution G ∪ {(p; q)}, andlet G′ with dilation tC be the output of the algorithm 3.5.1.We will use the same notations as in the algorithm. For eah i let t∗i be the(exat) dilation of Gi = G ∪ {(ai; bi)}. Aording to Fat 3.2.2, for eah i,t∗i ≤ ti ≤ (1 + ")2 · t∗i :Let (Aj ; Bj) be the pair in the well-separated pair deomposition suh thatp ∈ Aj and q ∈ Bj , or p ∈ Bj and q ∈ Aj . From Lemma 3.5.3 it follows that



3.6 Conluding remarks 65t∗j ≤ (1 + ") · topt. As a result it follows thattC ≤ tj ≤ (1 + ")2 · t∗j ≤ (1 + ")3 · topt:Therefore topt ≤ tC ≤ (1 + ")3 · topt whih ompletes the lemma.The following theorem follows by setting " = min{'=15; 1} and ombiningLemmas 3.5.2 and 3.5.4.Theorem 3.5.5 Let V be a set of n points in R
d, let t > 1 and ' > 0 bereal numbers, and let G = (V;E) be a geometri t-spanner of V . One an in

O((t7='4)d · n2) time, using O((t3=')d n log(tn)) spae, ompute a t′-spanner
G′ = (V;E ∪ {e}) suh that t′ ≤ (1 + ') · topt.3.6 Conluding remarksWe onsidered the problem of adding an edge to a Eulidean graph suh that thedilation of the resulting graph is minimized, and gave several algorithms. Ourmain result is a (2 + ")-approximation algorithm with running time

O
�nm+ n2(logn+ 1="3d)�using O(n2) spae.Several problems remain open.1. Is there an exat algorithm with running time o(n4) using linear spae?2. Can we ahieve a (1 + ")-approximation within the same time bound as inTheorem 3.4.5?3. A natural extension is to allow more than one edge to be added. Can wegeneralize our results to this ase?AknowledgementsWe would like to thank Ren�e van Oostrum for fruitful disussions during the earlystages of this work, Mohammad Ali Abam for disussions about Setion 3.2.2,Sergio Cabello for simplifying the algorithm in Setion 3.5 and Ansgar Gr�une forObservation 3.3.3.Finally, we thank the anonymous referees for many insightful omments andsuggestions on how to improve the journal version of this hapter.
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Chapter 4Dilation-Optimal EdgeDeletion
4.1 IntrodutionGiven a (geometri) network, a natural question to ask is what happens to thequality of the network when some onnetions are removed. In ase some links ina traÆ network have to be shut down (e.g., due to budget onsiderations), wemay want to know whih edges of the network should be removed so as to notderease the quality of the new network too muh. Alternatively, we may want toknow the most ritial edge in the network, i.e., the edge whose removal ausesthe largest possible derease in the quality of the new network.In this hapter, we onsider a simple variant of this problem: The initial net-work is a polygonal yle C in the plane, and we have to remove one single edgefrom C. We measure the quality of the resulting polygonal path � by its dilation(or streth fator) D�.Reall that the dilation between two distint verties x and y of the path � isde�ned as

D�(x; y) := d�(x; y)
‖xy‖ ;where d�(x; y) denotes the Eulidean length of the subpath of � onneting x andy, and ‖xy‖ denotes the Eulidean distane between x and y. For onveniene wede�ne D�(x; x) := 1. The dilation between two sets X and Y of verties of � is



68 Chapter 4 Dilation-Optimal Edge Deletionde�ned as
D�(X;Y ) := max{D�(x; y) | x is a vertex of X , y is a vertex of Y };the dilation of a set X of verties of � is de�ned as

D�(X) := D�(X;X);and the dilation of the path � is de�ned as
D� := D�(�) = max{D�(x; y) | x and y are verties of �}:Reently the problem of onstruting minimum-dilation networks on a givenpoint set has attrated a lot of attention. Klein and Kutz [KK07℄ showed thatonstruting a geometri network on a point set in the plane using a given numberof edges suh that the network has minimum dilation is NP-hard. The problemis NP-hard even for more spei� ases like minimum dilation spanning tree orminimum dilation path, see [CHL07℄ and [GKM07℄. Minimum dilation stars is thease whih we an onstrut in polynomial time, see [EW07℄.All the above problems want to onstrut a network from srath but in manyappliations we already have a network and the problem at hand is to extend/prunethe network suh that the dilation of the resulting network is minimized. InChapter 3 we saw that in the ase of adding an edge, the optimal edge, i.e. thenew edge whih minimize the dilation of the network, an be omputed in O(n4)time, where n is the number of nodes in the network. There are also severalapproximation algorithms whih run faster. However, the problem of omputingthe edge in the network whose removal minimizes/maximizes the dilation of theresulting network was not studied before, to the best of our knowledge.The problem we onsider is the following: We are given a polygonal yle

C = (p0; : : : ; pn−1; p0) whose n verties p0; : : : ; pn−1 are points in the plane. Wewant to determine the edge e of C for whih the dilation of the polygonal path
C \ {e} is minimized or maximized. In other words, if we denote by �i (for0 ≤ i < n) the polygonal path obtained by removing the edge (pi; pi+1) from C(where indies are to be read modulo n), then our goal is to ompute

D
min
C := min0≤i<nD�iand

D
max
C := max0≤i<nD�i :It is known that omputing the dilation of a path, or even approximatingit, need 
(n logn) time, see [NS07, Theorem 13.1.3℄. Therefore using a na��vealgorithm whih heks all the edges of the yle takes 
(n2 logn) time to omputethe optimal edge in the yle.



4.2 Dilation-minimal edge deletion in a yle 69A summary of our results and the organization of the rest of this hapter arein the following.In Setion 4.2, we onsider the dilation-minimal edge deletion problem andpresent a randomized algorithm for the problem. We start in Setion 4.2.1 by de-sribing an approah of [AKK+℄ to estimate the dilation of a polygonal path. Theseideas will play a entral role in the algorithm we give in Setion 4.2.2 for solving adeision problem assoiated with the problem of omputing Dmin
C

; the algorithmsolving this deision problem runs in O(n log2 n) expeted time. In Setion 4.2.3,we give a simple randomized approah whih redues the problem of omputing
Dmin

C
to an expeted number of O(logn) deision problems of Setion 4.2.2. Thus,this redution inurs a logarithmi slowdown of the deision proedure.In Setion 4.3, we onsider the dilation-maximal edge deletion problem andpresent a O(n logn) time algorithm for the problem. We �rst show that for two�xed verties x and y of C, it is easy to determine the largest possible dilationbetween them if one edge is removed from C. We then show that, in order toompute Dmax

C
, it suÆes to onsider pairs (x; y) of verties whose distane is atmost twie the losest-pair distane in the vertex set of C. Sine there are only

O(n) suh pairs (x; y), this leads to an eÆient algorithm for omputing Dmax
C

.Finally, we present an algorithm that omputes in O(n logn) total time an ap-proximation to the dilation of eah path Pi, as well as an approximation of Dmin
Cin Setion 4.4. The algorithm uses Fat 3.2.2 whih states that the well-separatedpair deomposition an be used to redue the problem of approximating the dila-tion of a Eulidean graph to the problem of omputing the shortest-path distanesbetween O(n) pairs of verties. This result, together with the observation that forany two verties x and y of C, the sequene D�0(x; y); : : : ;D�n−1(x; y) ontainsonly two distint values, leads to an O(n logn){time algorithm that approximatesthe dilation of eah path �i as well as the minimum dilation Dmin

C
.

4.2 Dilation-minimal edge deletion in a yleIn this setion, we give an algorithm whih given a polygonal yle C, omputes theedge whose removal generates a path whih has minimum dilation among all thepaths generated by removing an edge from C. The algorithm starts with removinga random edge from C and omputes the dilation � of the generated path. Thenit uses a deision algorithm whih for eah edge e in the yle C, deides whetherthe dilation of the path C\{e} is less than �. Then it piks one of the edges whoseremoval generates a path with dilation less than � and assigns the dilation of thepath to �. It repeats the proedure until no edge in the yle generates a pathwith dilation less than �.



70 Chapter 4 Dilation-Optimal Edge Deletion4.2.1 Estimating the dilation of a polygonal pathOur algorithm for omputing the edge of a polygonal yle whose removal mini-mizes the dilation of the resulting path uses as a subroutine parts of the algorithmof [AKK+℄ that deides if the dilation of a polygonal path is less than some giventhreshold � > 1. We desribe those parts of this algorithm whih are relevant forus. Let � = (p0; : : : ; pn−1) be a polygonal path whose n verties are points in theplane and let � ≥ 1 be a real number. Without loss of generality we assume p0 isthe origin. The idea is to use a lifting transformation that rephrases the deisionproblem, i.e., the problem of deiding if D� < �, into a point-one inidene-problem in R
3.We denote the �rst and last verties of a polygonal path � by f(�) and l(�),respetively. Thus, f(�) = p0. For eah vertex p of �, we de�ne the weight of pto be !�(p) := d�(p; f(�))=�:We map eah vertex p = (xp; yp) of � to the pointh�(p) := (xp; yp; !�(p)) ∈ R

3:Let C denote the three-dimensional oneC := {(x; y; z) ∈ R
3 | z =px2 + y2}:We map eah vertex p of � to the oneC�(p) := C ⊕ h�(p) = {+ h�(p) |  ∈ C}:Note that we an reformulate the de�nition of C�(p) asC�(p) := �(x; y; z) | z − !�(p) =q(x− xp)2 + (y − yp)2� ; (4.1)and therefore C�(p) is the graph of the bivariate funtion fp(q) = ‖pq‖ + !�(p)for q ∈ R

2. If p and q are verties of �, then we say that p is before q on �, ifd�(p; f(�)) < d�(q; f(�));this will be denoted as p <� q. We then get the following lemma.Lemma 4.2.1 For any two verties p and q of � with p <� q, we have
D�(p; q) < � if and only if h�(q) lies below C�(p).



4.2 Dilation-minimal edge deletion in a yle 71Proof. By straightforward algebrai manipulation, see Figure 4.1 for an illustra-tion, we have
D�(p; q) < � ⇐⇒ d�(q; p)

‖qp‖ < �
⇐⇒ d�(f(�); q)− d�(f(�); p)

‖qp‖ < �
⇐⇒ d�(f(�); q)� − d�(f(�); p)� < ‖qp‖
⇐⇒ !�(q)− !�(p) < ‖qp‖
⇐⇒ !�(q)− !�(p) <q(xq − xp)2 + (yq − yp)2: (4.2)By ombining Equations 4.1 and 4.2 omplete proof of the lemma.

p0

p1

p2

p3x
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z

hΠ(p1)

hΠ(p2)

hΠ(p3)

Figure 4.1: Illustration of the Lemma 4.2.1.If X and Y are subsets of the vertex set of �, then we say that X is beforeY on �, if d�(x; f(�)) < d�(y; f(�)) for all x ∈ X and all y ∈ Y ; this willbe denoted as X <� Y . For any subset X of the vertex set of �, we de�neC�(X) := {C�(p) | p ∈ X} and h�(X) := {h�(p) | p ∈ X}:The lower envelope of a set S of bi-variate funtions is de�ned as the point-wiseminimum of all funtions that belong to S. Namely, the lower envelope of the setS = {f1; : : : ; fn} an be de�ned as the following funtion:
LS(x; y) := min1≤k≤n fk(x; y);



72 Chapter 4 Dilation-Optimal Edge Deletionwhere fk(x; y) := (fk(x; y) if (x; y) belongs to the domain of fk+∞ otherwise.Lemma 4.2.1 immediately gives the following result.Lemma 4.2.2 For any two subsets X and Y of the vertex set of � with X <� Y ,we have
D�(X;Y ) < � if and only if h�(Y ) lies below LC�(X).The minimization diagram of C�(X), i.e., the projetion of the lower envelope

LC�(X) onto the xy-plane, is the additively weighted Voronoi diagram1 V�(X) ofX with respet to the weight funtion !�. If the point y of Y is loated in theVoronoi region of the point x of X , then h�(y) is below LC�(X) if and only ifh�(y) is below C�(x).This yields an eÆient algorithm to verify if D�(X;Y ) < � for two subsetsX and Y of the vertex set of � having the property that X <� Y : The Voronoidiagram V�(X) an be omputed in O(|X | log |X |) time, .f. [For87℄. Withinthe same time bound, this diagram an be preproessed into a linear size datastruture that supports O(log |X |)-time point-loation queries, .f. [Kir83℄. Thisstruture an now be queried with eah point y of Y to determine whih point xof X ontains y in its Voronoi ell. One this is known, the hek if h�(y) is belowC�(x) an be performed in O(1) time. The total running time of this algorithmis O((|X |+ |Y |) log |X |).4.2.2 The deision problemLet C be a polygonal yle on a set of n verties in the plane and let � > 1 be areal number. In this setion, we present an algorithm that deides for eah edge eof C, whether or not the dilation of the polygonal path C \ {e} is less than �. We�rst desribe the overall approah. Then, we give two implementations that yieldrunning times of O(n log3 n) and O(n log2 n), respetively.For a yle C = (p0; p1; : : : ; pn−1; p0), we all pi+1 the suessor of pi in C (whereindies are to be read modulo n) and denote it by su(pi). If R = (r1; : : : rm)and Q = (q1; : : : ; qn) are two polygonal paths having the property that q1 = f(Q)is the suessor of l(R) = rm in C, then we denote the onatenation of R and Qby R ⊕Q. Thus, R⊕Q is the polygonal path (r1; : : : ; rm; q1; : : : ; qn).In order to failitate a reursive approah, we will onsider the following moregeneral problem: Assume that (the vertex set of) C is partitioned into two polyg-onal paths T (the top) and B (the bottom) suh that DT < �. We want to deide1It's de�ned just like the usual Voronoi diagram, but eah site has a weight, and the distaneto a site is the usual Eulidean distane plus the site weight.



4.2 Dilation-minimal edge deletion in a yle 73for eah edge e of B, i.e., any edge e on the yle C with both endpoints in B,whether or not the dilation of C \ {e} is less than �. If we take T = ∅ then weobtain the original problem.The details of the deision algorithm are presented in Algorithm 4.2.1.Algorithm 4.2.1: Deision-AlgorithmInput: Paths T and B and � > 1.Output: yes or no for every edge of B.if |B| = 2 then1 return yes for the edge in B;2 else3 l := the last vertex of B; /* in ounterlokwise order along C */4 r := the �rst vertex of B; /* in ounterlokwise order along C */5 m := the middle vertex of B;6 Br := the part of the path B between r and m;7 Bl := the part of the path B between su(m) and l;8 if DT⊕Br < � then Deision-Algorithm(T ⊕Br; Bl; �);9 else return no for eah edge e of Bl;10 if DBl⊕T < � then Deision-Algorithm(Bl ⊕ T;Br; �);11 else return no for eah edge e of Br;12 end13 The orretness of the algorithm is obvious. We will show below that after apreproessing step taking O(n log2 n) expeted time, we an deide in O(|B| logn)time if DT⊕Br < � and DBl⊕T < �, where |B| denotes the number vertieson B. The expeted running time t(n) of the algorithm an therefore be written ast(n) = O(n log2 n) + r(n) where the funtion r satis�es the reurrener(b) ≤ 2 · r(b=2) +O(b logn):This implies that t(n) = O(n log2 n).Figure 4.2 illustrates the reursion tree of the algorithm. The nodes of the treeare labeled aording to a breadth-�rst searh (BFS) numbering where the �rst(left) hild of a node orresponds to the reursive all in line 11 and the seond(right) hild orresponds to the reursive all in line 9. Later, we will refer to areursive all orresponding to the node with BFS-number i as the i-th step ofthe reursion. For eah node i, the urrent top and bottom paths are denotedby Ti and Bi, respetively. These paths an be omputed as follows. Assumethat the polygonal yle C is given by the array C[0; : : : ; n℄ and that B onsistsof b verties. Then B1 = C[0; : : : ; b − 1℄ and T1 = T . For i ≥ 1, if Bi = C[l; r℄,then B2i := C[l; l + ⌊ r−l2 ⌋℄, B2i+1 := C[l + ⌊ r−l2 ⌋ + 1; r℄, T2i := B2i+1 ⊕ Ti, and
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G11Figure 4.2: The reursion tree. Note that G2i := B2i+1 and G2i+1 := B2i.T2i+1 := Ti⊕B2i. Observe that eah top hain Tj is the onatenation of O(logn)many bottom hains.A �rst implementationWe will show that after an O(n log2 n){time preproessing, we an deide if(i) DT⊕Br < � and (ii) DBl⊕T < � in O(|B| log2 n) time. Later, we will givea faster implementation. Sine (ii) is symmetri to (i), we only show how todeide whether or not (i) holds.Suppose we have a polygonal path T ′ with DT ′ < � that is given as a list ofk polygonal paths (B′1; : : : ; B′k) suh that f(B′i+1) is the suessor of l(B′i) in theyle C, for 1 ≤ i < k. Thus, we have T ′ = B′1 ⊕ : : :⊕B′k. Given a new polygonalpath B′ with f(B′) = su(l(T ′)) in C, we want to deide if DT ′⊕B′ < �.Observe that DT ′⊕B′ < � if and only if(a) DT ′ < �,(b) DB′ < �, and() DT ′⊕B′(T ′; B′) < �.We are given that (a) holds. Using the algorithm of [AKK+℄ we an deide in
O(|B′| log |B′|) expeted time whether or not (b) holds. Thus, it remains to showhow to verify whether or not () holds.Obviously, DT ′⊕B′(T ′; B′) < � if and only if DT ′⊕B′(B′i; B′) < � for eah i



4.2 Dilation-minimal edge deletion in a yle 75with 1 ≤ i ≤ k. Sine B′i <T ′⊕B′ B′, we know from Lemma 4.2.2 that
DT ′⊕B′(B′i; B′) < � if and only if hT ′⊕B′(B′) lies below LCT ′⊕B′ (B′i):Assume that for eah path B′i, we have the total aumulated saled length`i := iXj=1 dB′j (l(B′j); f(B′j))=�and the additively weighted Voronoi diagram VB′i(B′i) that has been augmentedwith a data struture to support point-loation queries in tlo time per query.Reall that VB′i(B′i) is the projetion of the lower envelope LCB′i (B′i) onto thexy-plane. It is de�ned with respet to the weights!B′i(p) = dB′i(p; f(B′i))=�:Sine !T ′⊕B′(p) = !B′i(p) + `i−1for all p ∈ B′i, we have!T ′⊕B′(p)− !T ′⊕B′(q) = !B′i(p)− !B′i(q)for all p; q ∈ B′i. It follows that the diagram VB′i(B′i) is also the projetion of thelower envelope LCT ′⊕B′(B′i).The assoiated point-loation struture of B′i an therefore be used to deter-mine for eah point b′ in B′, the point t in B′i that ontains b′ in its Voronoi ell inVT ′⊕B′(B′i). One this is known for eah point b′ in B′, we an hek if hT ′⊕B′(b′)is below CT ′⊕B′(t). To this end, we ompute the weights !T ′⊕B′(t) = !B′i(t)+`i−1and !T ′⊕B′(b′) = !B′(b′) + `k.The overall running time of this approah (exluding the preproessing time)is O(k|B′|tlo).In our appliation, the relevant paths B′i are the bottom paths Bi that appear inthe reursive alls (see Figure 4.2 and the disussion after that). As a onsequene,k = O(log n), |T ′ ⊕ B′| ≤ n, and we an preompute the required information in

O(n log2 n) time by omputing all the diagrams VBi(Bi) along with the point-loation data strutures. Sine tlo = O(logn), it follows that the overall runningtime of this approah (after O(n log2 n) preproessing time) is O(|B′| log2 n). Withthis implementation, Algorithm 4.2.1 runs in O(n log3 n) expeted time.A faster implementationIn the i-th step of the reursion, we split Bi (almost evenly) into B2i and B2i+1,and ompute the diagrams VB2i (B2i) and VB2i+1(B2i+1). We then loate eah



76 Chapter 4 Dilation-Optimal Edge Deletionpoint b of B2i in VB2i+1(B2i+1) to determine whih point t of B2i+1 ontains b inits Voronoi ell in VB2i+1(B2i+1). We store t in a table Tb assoiated with b underthe key 2i+1 that identi�es the set B2i+1. In the same way, we loate eah pointb of B2i+1 in VB2i(B2i) and store the orresponding point t of B2i in a table Tbassoiated with b under the key 2i.Sine we perform exatly one point-loation query for eah point b of B1 oneah level of the reursion tree, the table Tb has O(logn) entries. We an thereforeuse the onstrution of [FKS84℄ to store Tb in a perfet-hash table of size O(logn)that supports O(1) aess time. Note that in the omplexity model of [FKS84℄,it is assumed that the entries ome from a �nite universe and the algorithm isable to randomly aess eah memory loation in onstant time. Reall thatthe onstrution of [FKS84℄ is randomized and builds the hash table in O(logn)expeted time.The total time we spend on eah level of the reursion tree is O(n logn), sothe total expeted preproessing time is O(n log2 n) and the total time we spendfor answering point-loation queries is O(n log2 n).In order to determine for a point b′ of B′, where B′ ⊆ B1, whih point t of B′iontains b′ in its Voronoi ell, we �nd the index j for whih B′i = Bj . Then weretrieve the entry with the key j from Tb′ . This is exatly the point t of Bj thatontains b in its Voronoi ell in VBj (Bj).It follows that tlo = O(1), so that the overall running time of this approah(after O(n log2 n) preproessing time) is O(|B′| logn). With this implementation,Algorithm 4.2.1 runs in O(n log2 n) expeted time.4.2.3 The optimization algorithmWe now present our algorithm that omputes, for a given polygonal yle C ona set of n points in the plane, the value of Dmin
C

in O(n log3 n) expeted time.Clarkson and Shor [CS88℄ used a similar randomized approah to ompute thediameter of a point set. The main idea is to hek all the edges in the yle in arandom order. We start with a random edge e1 ∈ C and ompute the dilation ofthe path C\{e1}, using the algorithm of [AKK+℄, and assign this value to �. Thenwe run Algorithm 4.2.1 to see for eah edge e of the yle C whether the dilationof the path C \ {e} is less than �. We store with eah edge e of C a Boolean ag,denoted by flag(e), whih is true if and only if the dilation of the path C \ {e}is less than �. For any edge e with flag(e) = true, we ompute and assign thedilation of C \ {e} to � and update ags same as before. For more details seealgorithm 4.2.2.The orretness of the algorithm follows from the fat that it returns� = min1≤i≤nD�i = D
min
C ;



4.3 Dilation-maximal edge deletion in a yle 77Algorithm 4.2.2: Optimization AlgorithmInput: A yle C on a set of n points.Output: Dmin
C

.
{ei}i := random permutation of the edges of C;1 � := the dilation of the path C \ {e1};2 Run Algorithm 4.2.1 and for eah edge e of C, update flag(e);3 for i = 2; 3; : : : ; n do4 if flag(ei) = true then5 � := the dilation of the path C \ {ei};6 Run Algorithm 4.2.1 and for eah edge e of C, update flag(e);7 end8 end9 return �;10where �i is the polygonal path obtained by removing ei from C.Clearly, line 1 takes O(n) time. The algorithm of [AKK+℄ and, therefore,line 2, takes O(n logn) expeted time. Eah time we run Algorithm 4.2.1, wespend O(n log2 n) expeted time. Observe that we run this algorithm one inline 3 and, moreover, in lines 4{9 eah time the dilation of �i is less than theurrent value of �. In the latter ase, we also spend O(n logn) expeted time toompute the dilation of �i. Sine the edges of C are in random order, the values

D�1 ; : : : ;D�n are in random order as well. At the start of the i-th iteration oflines 4{9, the value of � is equal to min1≤j<i D�j . Thus, D�i < � if and only if
D�i is the minimum of the set {D�j | 1 ≤ j ≤ i}. It follows that D�i < � withprobability 1=i. Using the linearity of expetation, it follows that the expetednumber of times that lines 6 and 7 are performed is equal toPni=2 1=i = O(logn).Thus, the overall expeted running time of our algorithm is O(n log3 n).Theorem 4.2.3 Given a polygonal yle C on n verties in the plane, we anompute Dmin

C
in O(n log3 n) expeted time.4.3 Dilation-maximal edge deletion in a yleLet C = (p0; : : : ; pn−1; p0) be a polygonal yle whose verties p0; : : : ; pn−1 arepoints in the plane. Reall from Setion 4.1 that �i (for 0 ≤ i < n) denotes thepolygonal path obtained by removing the edge (pi; pi+1) from C, d�i(x; y) denotesthe length of the subpath of �i between x and y, D�i(x; y) = d�i(x; y)=‖xy‖denotes the dilation between x and y in �i, and D�i denotes the dilation of �i.In this setion, we will give an algorithm that omputes

D
max
C = max0≤i<nD�i :



78 Chapter 4 Dilation-Optimal Edge DeletionLet L be the total length of the edges of C. We de�ne �(p0) := 0 and�(pi) := �(pi−1) + ‖pi−1pi‖ for 1 ≤ i < n:Thus, �(pi) is the length of the path (p0; : : : ; pi) and the shortest-path distanedC(pi; pj) between pi and pj in the yle C is given bydC(pi; pj) = min(|�(pi)−�(pj)|; L− |�(pi)−�(pj)|):Consider two distint verties x and y of C. We obtain the largest dilationbetween x and y in any path �i, by deleting an arbitrary edge on the shorter ofthe two paths in C between x and y. Thus, the following lemma holds.Lemma 4.3.1 Let x and y be two distint verties of C. Thenmax0≤i<nD�i(x; y) = max(|�(x) −�(y)|; L− |�(x) −�(y)|)
‖xy‖ ≥ L2‖xy‖ :The next lemma states that the losest pair in the vertex set of C an be usedto obtain a 2-approximation to Dmax

C
.Lemma 4.3.2 Let (p; q) be a losest pair in the vertex set of C. Then

D
max
C ≤ 2 · max0≤i<nD�i(p; q):Proof. Let j be an index suh that Dmax

C
= D�j and let x and y be two vertiesof C suh that D�j = D�j (x; y). Then

D
max
C = d�j (x; y)

‖xy‖ ≤ L
‖pq‖ :By Lemma 4.3.1, we have L

‖pq‖ ≤ 2 · max0≤i<nD�i(p; q):Thus, by omputing the losest pair (p; q) in the vertex set of C and then us-ing Lemma 4.3.1 to ompute max0≤i<n D�i(p; q), we obtain a 2-approximationto Dmax
C

. We now show that a simple extension leads to an algorithm that om-putes the exat value of Dmax
C

.Let S be the set of all pairs (x; y) in the vertex set of C for whih x 6= y and
‖xy‖ ≤ 2‖pq‖. The following lemma states that it suÆes to onsider the elementsof S to ompute Dmax

C
.



4.3 Dilation-maximal edge deletion in a yle 79Lemma 4.3.3 We have
D
max
C = max(x;y)∈S max0≤i<nD�i(x; y):Proof. It is lear that

D
max
C = maxx; y verties of C

max0≤i<nD�i(x; y) ≥ max(x;y)∈S max0≤i<nD�i(x; y):Let j be an index suh that Dmax
C

= D�j and let x and y be two verties of C suhthat D�j = D�j (x; y). If we an show that (x; y) ∈ S (i.e., ‖xy‖ ≤ 2‖pq‖), thenthe proof is omplete. By Lemma 4.3.1, we haveL2‖pq‖ ≤ max0≤i<nD�i(p; q):It follows that L2‖pq‖ ≤ max0≤i<nD�i(p; q)
≤ maxx; y verties of C

max0≤i<nD�i(x; y)= D
max
C= D�j (x; y)= d�j (x; y)
‖xy‖

≤ L
‖xy‖ :This implies that ‖xy‖ ≤ 2‖pq‖.The disussion above leads to Algorithm 4.3.1 for omputing the value of Dmax

C
.By Lemma 4.3.1, eah value omputed in line 7 of Algorithm 4.3.1 is equalto max0≤i<n D�i(x; y). By Lemma 4.3.3, the largest of the values omputed inline 9 is equal to Dmax

C
. This proves the orretness of the algorithm. To analyzethe running time of the algorithm, it is lear that lines 1{3 takes O(n) time. Thelosest-pair omputation in line 4 takes O(n logn) time; see [Smi00℄. In [LS95℄, itis shown that the size of the set S is O(n). It is also shown there that if the pointsin the vertex set of C are stored in two lists X and Y , where the points in X aresorted by x-oordinates and the points in Y are sorted by y-oordinates, and ifthere are ross-pointers between these two lists, then the set S an be omputedin O(n) time. Therefore, line 5 takes O(n logn) time. In lines 6{8, the algorithmspends O(1) time for eah element of S. Sine the size of S is O(n), the total timefor lines 6{8 is O(n). Thus, the total time of the algorithm is O(n logn).



80 Chapter 4 Dilation-Optimal Edge DeletionAlgorithm 4.3.1: Critial EdgeInput: A yle C = p0; p1; : : : ; pn−1; p0.Output: Dmax
C

.�(p0) := 0;1 for i := 1; 2; : : : ; n− 1 do �(pi) := �(pi−1) + ‖pi−1pi‖;2 L := �(pn−1) + ‖pn−1p0‖;3 (p; q) := the losest pair in the vertex set of C;4 S := the set of all pairs (x; y) in the vertex set of C for whih x 6= y and5
‖xy‖ ≤ 2‖pq‖;foreah (x; y) ∈ S do6 tx;y := max(|�(x) −�(y)|; L− |�(x) −�(y)|)=‖xy‖;7 end8 return maxx;y tx;y;9 If the yle C is a onvex polygon, then we an improve the running time: In[LP78℄, it is shown that the losest pair an be omputed in O(n) time. Sine C isa onvex polygon, we an obtain the lists X and Y in O(n) time. It follows thatthe entire algorithm runs in O(n) time.The following observations lead to an alternative O(n){time algorithm for thease when C is a onvex polygon. The Delaunay triangulation DT of the vertex setof C an be omputed in O(n) time, see [AGSS89℄. This implies that the losestpair an be omputed in the same time bound. We show that DT an be usedto ompute the set S in O(n) time. A proof of the following lemma an be foundin [DDS92℄.Lemma 4.3.4 Consider the Delaunay triangulation DT of the vertex set of C, andlet x and y be two distint verties that are not onneted by an edge in DT . Thenthere exists a path (x = x0; x1; x2; : : : ; xk = y) in DT , suh that1. for eah i with 0 ≤ i < k, ‖xixi+1‖ < ‖xy‖ and2. for eah i with 0 ≤ i ≤ k, ‖xxi‖ < ‖xy‖.Let (p; q) be the losest pair in the vertex set of C and let d := 2‖pq‖. Let DT ′be the subgraph of DT onsisting of all edges having length at most d. Lemma 4.3.4implies that we obtain the set S (i.e., all pairs of points whose distane is at most d)by performing a BFS from eah vertex x of DT until we reah a vertex y suhthat ‖xy‖ > d. The total time for this is proportional to the size of S, whih weknow to be O(n).Theorem 4.3.5 Given a polygonal yle C on n verties in the plane, we anompute Dmax

C
in O(n log n) time. If C is a onvex polygon, Dmax

C
an be omputedin O(n) time.



4.4 (1 + ")-Approximation algorithm 814.4 (1 + ")-Approximation algorithmConsider again the polygonal yle C = (p0; : : : ; pn−1; p0) whose verties are pointsin the plane. Let " > 0 be a onstant. In this setion, we show that an approxi-mation to the dilation of eah path �i (0 ≤ i < n), as well as an approximation to
Dmin

C
, an be omputed in O(n logn) total time. We use Fat 3.2.2 to approximatethe dilation of the paths. By Fat 3.2.2, in order to approximate the dilation ofa Eulidean graph, it is suÆient to ompute the dilation between O(n) pairs ofverties. Moreover, the hoie of these verties depends only on the vertex set ofthe graph, it does not depend on the edges of the graph.In a preproessing step, we ompute a WSPD {(Aj ; Bj)}mj=1, where m = O(n),for the vertex set {p0; : : : ; pn−1} of the yle C, with respet to s := 4(2+")=". Wean do this in O(n logn) time. For eah j with 1 ≤ j ≤ m, we pik an arbitrarypoint aj in Aj , and an arbitrary point bj in Bj . Our algorithm will ompute, foreah i with 0 ≤ i < n, the valueti := max1≤j≤mD�i(aj ; bj):Reall that, by Fat 3.2.2, D�i=(1 + ") ≤ ti ≤ D�i , whih means that ti is a(1 + ")-approximation of D�i .Lemma 4.4.1 Let t∗ := min(t0; t1; : : : ; tn−1). Then

Dmin
C(1 + ") ≤ t∗ ≤ D

min
C :Proof. Let i be an index suh that t∗ = ti and let j be an index suh that

Dmin
C

= D�j . Then t∗ = ti ≤ tj ≤ D�j = D
min
Cand

D
min
C = D�j ≤ D�i ≤ (1 + ")ti = (1 + ")t∗:We remark that, by a similar argument, the value t∗∗ := max(t0; t1; : : : ; tn−1)an be shown to satisfy

Dmax
C(1 + ") ≤ t∗∗ ≤ D

max
C :In other words, the algorithm that will be presented below an also be used toompute an approximation to Dmax

C
in O(n logn) time. We have seen in Se-tion 4.3, however, that the exat value of Dmax

C
an be omputed within the sametime bound.



82 Chapter 4 Dilation-Optimal Edge DeletionAs mentioned above, our algorithm omputes ti for i = 0; 1; : : : ; n − 1. Thena��ve algorithm takes O(n2) time to ompute the approximation beause we test
O(n) andidate edges and for eah one we spend O(n) time to approximate thedilation of the path. But we an improve the running time using the followingalgorithm.The main idea is to maintain, for the urrent value of i, the m dilations
D�i(aj ; bj) (1 ≤ j ≤ m) in a balaned binary searh tree T . Observe that, for any�xed index j, the value of D�i(aj ; bj) hanges at most twie when i is inreasedfrom 0 to n− 1. More preisely, when we move from testing the edge (pi−1; pi) totesting the edge (pi; pi+1), the value of D�i(aj ; bj) is di�erent from D�i−1(aj ; bj)only if aj = pi or bj = pi. In other words, when we test (pi; pi+1), the dilationof all pairs remains the same exept the pairs for whih one of the points in thepair is the same as pi. As a result, the total number of updates in T will be atmost 2m. So to maintain the searh tree T , in total, we need O(m logm) time.For the details of the algorithm see Algorithm 4.4.1.Now we show the orretness and ompute the time omplexity of the algo-rithm. Let � denote the path (p0; p1; : : : ; pn−1). Reall the relation <� of Se-tion 4.2.1. We may assume without loss of generality that aj <� bj for eah jwith 1 ≤ j ≤ m.In the preproessing steps, we ompute, in O(n) time, the values�(pi) = d�(p0; pi) (0 ≤ i < n)and the total length L of the yle C. Observe that, for 0 ≤ i < n, the distaned�i(aj ; bj) between aj and bj in the path �i satis�esd�i(aj ; bj) = � �(bj)−�(aj) if i = n− 1 or pi <� aj or bj <� pi+1,L− (�(bj)−�(aj)) otherwise. (4.3)Using (4.3) we an ompute the dilation between eah pair of points in on-stant time. Then, in O(n logn) time, we an ompute the WSPD and selet therepresentatives for eah pair in the WSPD. In the �nal part of the preproessingstep, we ompute, for eah i with 0 < i < n, the setSi := {j | 1 ≤ j ≤ m; aj = pi or bj = pi}:Obviously, all these sets an be omputed in O(m) = O(n) time. Note that Siontains all indies j suh that the pairs (aj ; bj) should be updated in step i.The orretness of the algorithm follows from Lemma 4.4.1 and the disus-sion above. We have seen already that the preproessing step, i.e. lines 1{10,takes O(n log n) time. Lines 11{16 take O(m logm) = O(n logn) time. The totaltime for lines 17{25 is proportional to Pn−1i=1 (|Si|+ 1) logm ≤ (2m + n) logm =
O(n log n):



4.4 (1 + ")-Approximation algorithm 83Algorithm 4.4.1: Approximate Minimal DeletionInput: Cyle C = p0; p1; : : : ; pn−1; p0 and a real onstant " > 0.Output: Path � = C \ {e}.�(p0) := 0;1 for i := 1; 2; : : : ; n− 1 do �(pi) := �(pi−1) + ‖pi−1pi‖;2 L := �(pn−1) + ‖pn−1p0‖;3
{(Ai; Bi)}mi=1 := WSPD of the point set P := {p0; : : : ; pn−1} with respet to4 s = 4(2 + ")=";for i := 1; : : : ;m do5 Selet arbitrary points ai ∈ Ai and bi ∈ Bi;6 if ai 6<� bi then swith ai and bi;7 end8 for i := 1; 2; : : : ; n− 1 do Si := {j | 1 ≤ j ≤ m; aj = pi or bj = pi};9 Initialize an empty balaned binary searh tree T (e.g., a red-blak tree);10 for j = 1; 2; : : : ;m do11 Dj := D�0(aj ; bj); /* Using (4.3) */12 Insert Dj into T ;13 end14 t0 := the maximum element in the tree T ;15 t = t0; e = (p0; p1);16 for i = 1; 2; : : : ; n− 1 do17 foreah j ∈ Si do18 Delete Dj from the tree T ;19 Dj := D�i(aj ; bj); /* Using (4.3) */20 Insert Dj into T ;21 end22 ti := the maximum element in the tree T ;23 if ti < t then t := ti; e := (pi; pi+1);24 end25 return C \ {e};26Theorem 4.4.2 Given a polygonal yle C = (p0; : : : ; pn−1; p0) on n verties inthe plane and a onstant " > 0, in O(n logn) time, we an ompute a sequenet0; : : : ; tn−1; t∗ of real numbers, suh that

DPi(1 + ") ≤ ti ≤ DPifor eah i = 0; 1; : : : ; n− 1 and
Dmin

C(1 + ") ≤ t∗ ≤ D
min
C :



84 Chapter 4 Dilation-Optimal Edge Deletion4.5 Conluding remarksReently, there has been a fair amount of work on the problem of omputing theoptimal dilation of a given (geometri) graph [CHL07, EW07, GKM07, KK07℄.In this hapter we onsidered a variation of the problem where we are given apolygonal yle and are supposed to hoose one edge to remove suh that theresulting polygonal path gives the smallest (or the largest) possible dilation.A straightforward and hallenging open problem is to generalize the results tomore general Eulidean graphs. In that ase it is also interesting to see how wean generalize the results when we want to remove more than one edge.AknowledgmentsWe would like to thank Hee-Kap Ahn, Christian Knauer, Mihiel Smid and YajunWang, the o-authors on this hapter and Jan Vahrenhold for fruitful disussionson the subjet.



Chapter 5Computing SpannerDiameter
5.1 IntrodutionThe diameter of an unweighted undireted graph is the length of the longest short-est path. When studying the diameter of a graph, the length of the path is usuallythe number of edges/links along the path. More preisely, for a graph G(V;E), thediameter of G, denoted by diam(G), is equal to maxx;y∈V dG(x; y) where dG(x; y)is the shortest path length between x and y in G. To ompute the diameter of agraph G, it is suÆient to ompute all-pairs-shortest paths whih an be done in
O(mn + n2 log n) time using O(m + n) spae where n is the number of vertiesand m is the number of edges of the input graph.Now suppose we have a geometri t-spanner. Then normally we would measurethe length of a path as the sum of its edges lengths. We would then de�ne thediameter of the spanner as the maximum distane between any two points. This,however, is not very useful: in a geometri t-spanner, the diameter is at most ttimes the geometri diameter and sine t is small (say (1 + ") for some " lose to0) this is not very informative. Sometimes, however, the number of links on a pathalso plays a role. Consider for instane the network of some airline. We would liketo have a short onnetion between every pair of airports, but we would also liketo have as few stopovers as possible. Also in appliations involving wireless ad honetworks it is often desirable to have small spanner diameter sine it determinesthe maximum number of times a message has to be transmitted in a network.This leads us to the following de�nition of diameter where we onsider the number



86 Chapter 5 Computing Spanner Diameterof links on a path as its length, but we restrit our attention to paths that arerelatively short in the weighted sense. More formally, the diameter is de�ned asfollows:De�nition 5.1.1 The diameter (or spanner diameter) of a t-spanner G(V;E) is thesmallest integer D suh that for every pair of verties u and v in V , there exists at-path between u and v in G whih ontains at most D edges.In other words, we have both an upper bound on the path length and an upperbound on the number of links on the path.As far as we know there is no known algorithm to ompute the spanner diameterof a t-spanner. In this hapter we present a dynami programming approah. InChapter 6 we will study this quality riterion when building t-spanners.In this hapter we assume that G(V;E) is a t-spanner of V where (V;d) is ametri spae. Reall that a t-path between two verties u and v in G is a path oflength at most t · d(u; v).5.2 Dynami programming approahLet G(V;E) be a t-spanner of V . For eah p and q in V , let Æ≤kG (p; q), or Æ≤k(p; q) ifthe graph is lear from the ontext, denote the shortest path between p and q in Gwith at most k edges, if suh a path exists. In the ase when we have more than onesuh path we onsider the path with the smallest number of edges. Also assumethat d≤kG (p; q), or for short d≤k(p; q), is the length of Æ≤k(p; q). If there is no pathbetween p and q whih ontains at most k links then we set d≤k(p; q) to ∞. Forsimpliity we set d≤k(p; p) = 0 for eah vertex p ∈ V and every integer k. Notethat if d≤k(p; q) ≤ t · d(p; q) then there exists a t-path between p and q whihontains at most k links. So by De�nition 5.1.1, the diameter of G is the smallestinteger k suh that d≤k(p; q) ≤ t · d(p; q), for every pair of verties p and q in V .To ompute the diameter of a t-spanner it is suÆient to ompute d≤k forevery k and for every pair of verties in the graph. Obviously for eah pair p andq in V we have d≤k(p; q) = min(i+j=kr∈V )nd≤i(p; r) + d≤j(r; q)o :In the next lemma we will show how to derease the number of paths we need toexamine.Lemma 5.2.1 Let G(V;E) be a graph, let p and q be any two verties of G andlet k ≥ 2 be an integer. If i′ and j′ are two arbitrary positive integers suh that



5.2 Dynami programming approah 87i′ + j′ = k thenmin(i+j=kr∈V )nd≤i(p; r) + d≤j(r; q)o = minr∈V nd≤i′(p; r) + d≤j′ (r; q)o :Proof. Obviously the left-hand side of the equality is at most equal to the right-hand side. To prove the opposite inequality, assume i and j are two arbitrarypositive integers suh that i + j = k. The laim is that for eah summationd≤i(p; r) + d≤j(r; q) there exist r′ ∈ V suh thatd≤i(p; r) + d≤j(r; q) ≥ d≤i′(p; r′) + d≤j′(r′; q):Without loss of generality we assume i′ < i. So j′ > j and for eah pair ofverties (x; y) we have d≤j′ (x; y) ≤ d≤j(x; y). Now there are two ases:Case 1: Æ≤i(p; r) ontains at most i′ edges. In this ase we are done beaused≤i(p; r) = d≤i′(p; r) and d≤j(r; q) ≥ d≤j′(r; q).Case 2: Æ≤i(p; r) ontains more than i′ edges. Let r′ be the i′th node inÆ≤i(p; r) starting from p and let � be the sub-path of Æ≤i(p; r) between r′ and r,see Figure 5.1 for an illustration. Note that � is the shortest path between r′ andr with at most i− i′ edges andd≤i(p; r) = d≤i′(p; r′) + d≤i−i′(r′; r):Now let �′ be the path generated by onatenating � and Æ≤j(r; q). Clearly �′

p
q

r

r
′

i′th point from p

Π

Π
′Figure 5.1: Illustrating the proof of Lemma 5.2.1.is a path between r′ and q whih ontains at most i− i′ + j edges. Therefored≤i(p; r) + d≤j(r; q) = d≤i′(p; r′) + d≤i−i′(r′; r) + d≤j(r; q)

≥ d≤i′(p; r′) + d≤i−i′+j(r′; q)= d≤i′(p; r′) + d≤j′(r′; q):The laim and, hene, the lemma follows.



88 Chapter 5 Computing Spanner DiameterBy replaing i′ by k − 1 and j′ by 1 we have the following orollary.Corollary 5.2.2 Let G(V;E) be a graph and let p and q be two verties of G. Forevery integer k ≥ 2 we haved≤k(p; q) = minr∈V nd≤k−1(p; r) + d≤1(r; q)o :To ompute the diameter of a t-spanner G, we ompute d≤k(p; q) for eah kusing Corollary 5.2.2. We start with k = 1. Obviously for all edges (p; q) in thegraph G, d≤1(p; q) = d(p; q) and d≤1(p; q) = ∞ otherwise. Then we an omputed≤k using d≤1 and d≤k−1. We ontinue onstruting d≤k, for k = 2; 3; : : :, untilfor every pair of verties (p; q), the value of d≤k(p; q) is at most t · d(p; q). Fordetails see Algorithm 5.2.1.Algorithm 5.2.1: DiameterInput: G(V;E) and t > 1.Output: Spanner diameter of G(V;E).foreah (p; q) ∈ V 2 do1 if (p; q) ∈ E then d≤1(p; q) := d(p; q);2 else d≤1(p; q) := ∞;3 end4 k := 1;5 ag:=true;6 while ag =true do7 k := k + 1;8 ag:=false;9 foreah (p; q) ∈ V 2 do10 d≤k(p; q) := minr∈V nd≤k−1(p; r) + d≤1(r; q)o;11 if d≤k(p; q) > t · d(p; q) then ag:=true;12 end13 end14 return k;15 The following orollary follows immediately from Algorithm 5.2.1.Corollary 5.2.3 The diameter of a t-spanner G with n verties an be omputedin O(D · n3) time using O(n2) spae, where D is the diameter of G.We an improve the running time to O(log(D) ·n3) using the following trik. InAlgorithm 5.2.1 we ompute d≤k+1 using d≤k and d≤1. By Lemma 5.2.1 we anompute d≤2k using d≤k. So instead of omputing d≤k, for every k between 1 and



5.2 Dynami programming approah 89
D, we ompute d≤2i for 0 < i ≤ ⌈logD⌉. Clearly for i = ⌈log(D)⌉, we have a t-pathwith at most i links between every pair of verties. To �nd the exat diameter, weperform a binary searh on the interval (2i−1; 2i℄. More preisely, we ompute d≤kfor k = 2i+2i−12 , whih is the middle point of the interval (2i−1; 2i℄, using d≤2i−1and d≤2i−2 whih have already been omputed. If for all pairs (p; q) the value ofd≤k(p; q) is at most t times d(p; q) then we limit the new interval to (2i−1; k℄ andontinue the searh. Otherwise, we ontinue the searh on (k; 2i℄. We have thediameter when the length of the searhing interval is 1. See Algorithm 5.2.2 formore details.Algorithm 5.2.2: Diameter2Input: G(V;E) and t > 1.Output: Spanner diameter of G(V;E).foreah (p; q) ∈ V 2 do1 if (p; q) ∈ E then d≤1(p; q) := d(p; q);2 else d≤1(p; q) := ∞;3 end4 k := 0;5 ag:=true;6 while ag =true do7 ag:=false;8 k := k + 1;9 foreah (p; q) ∈ V 2 do10 d≤2k (p; q) := minr∈V nd≤2k−1(p; r) + d≤2k−1(r; q)o;11 if d≤2k(p; q) > t · d(p; q) then ag:=true;12 end13 end14 Ib := 2i−1; Ie := 2i;15 while Ie 6= (Ib + 1) do16 Im := (Ib + Ie)=2; j := Ib − Im;17 foreah (p; q) ∈ V 2 do18 d≤Im(p; q) := minr∈V nd≤Ib(p; r) + d≤j(r; q)o;19 if d≤Im(p; q) > t · d(p; q) then ag:=true;20 end21 if ag = true then Ib := Im else Ie := Im;22 end23 return Ie;24



90 Chapter 5 Computing Spanner DiameterIt is easy to see that Algorithm 5.2.2 needs to ompute d≤k for O(log(D))values of k whih means the time omplexity of the algorithm is O(log(D) · n3).Note that the spae omplexity of the algorithm inreases to O(log(D) · n2) sinewe need to save all the distanes d≤2i generated in the �rst loop of the algorithm.The following orollary immediately follows from Algorithm 5.2.2.Corollary 5.2.4 The diameter of a t-spanner G with n verties an be omputedin O(log(D) · n3) time using O(log(D) · n2) spae, where D is the diameter of G.5.3 Improving the omplexity boundsWith some modi�ations we an redue the running time to O(D ·mn) whih ismuh faster for t-spanners with a small number of edges. On line 11 of Algo-rithm 5.2.1, we ompute the minimum over all r ∈ V , but if r is not adjaent toq, then d≤1(r; q) = ∞ and obviously we do not need to hek r. In the modi�a-tion, to ompute d≤k(p; q), we ompute the minimum over the verties whih areadjaent to q. Therefore for a pair (p; q) we need O(deg(q)) time to ompute theminimum, where deg(q) is the degree of q. Therefore the total running time is
O

0�D ·
X(p;q)∈V 2 deg(q)1A = O

0�D ·
Xp∈V Xq∈V deg(q)1A= O

0�D ·
Xp∈V 2m1A= O(D ·mn):Algorithm 5.3.1 uses O(n2) spae sine the path lengths are stored in a matrix.However, by proessing one node at a time, we an replae the matrix by an array.More preisely, for eah vertex p ∈ V , we ompute the radius of G from p. Theradius of G from a node p is de�ned as the minimum integer Dp suh that for anynode q ∈ V , there is a t-path between p and q in G whih ontains at most Dpedges. After all the verties have been proessed, the largest radius will be thediameter of G.Theorem 5.3.1 The diameter of a t-spanner G with n nodes and m edges an beomputed in O(D ·mn) time using O(n) spae, where D is the diameter of G.



5.4 A �nal approah 91Algorithm 5.3.1: Diameter3Input: G(V;E) and t > 1.Output: Spanner diameter of G(V;E).foreah (p; q) ∈ V 2 do1 if (p; q) ∈ E then d≤1(p; q) := d(p; q);2 else d≤1(p; q) := ∞;3 end4 k := 1;5 ag:=true;6 while ag =true do7 k := k + 1;8 ag:=false;9 foreah (p; q) ∈ V 2 do10 d≤k(p; q) := minr is adjaent to qnd≤k−1(p; r) + d(r; q)o;11 if d≤k(p; q) > t · d(p; q) then ag:=true;12 end13 end14 return k;155.4 A �nal approahIn Algorithm 5.3.1, we updated d≤k for every pair of verties p and q in V . Thiswas done by omputing d≤k−1(p; r)+d≤1(r; q) for every vertex r ∈ V adjaent to q.However, the shortest path between p and r of at most k − 1 edges, Æ≤k−1(p; r),may ontain less than k − 1 edges. We observe that we do not need to hekthe path in this ase sine this will give us the shortest path between p and qontaining at most k − 1 edges { whih already has been omputed.In this setion we proess all pairs (p; q) suh that Æ≤k−1(p; q) ontains exatlyk − 1 edges instead of heking all pairs. It is obvious that the rest of the entriesof d≤k are the same as the orresponding entries in d≤k−1.To do this, let Sk−1 be the set of all pairs (p; q) ∈ V 2 suh that Æ≤k−1(p; q)ontains exatly k − 1 links. For eah pair (p; q) ∈ Sk−1 we hek whether wean add an edge to Æ≤k−1(p; q), from one of its endpoints, suh that the resultingpath forms a shorter path between its endpoints. More preisely, for eah pair(p; q) ∈ Sk−1 and for every adjaent node of p, say r, we hek if there is a shorterpath between r and q via p. In the ase that d≤k(q; r) > d≤k−1(p; q)+d(p; r), weupdate d≤k(q; r) and add (q; r) to Sk. We do the same for all adjaent nodes of q.For more details see Algorithm 5.4.1.In the worst ase the set Sk may ontain all the pairs of verties whih means we



92 Chapter 5 Computing Spanner Diameterneed O(mn) time to ompute d≤k. This gives us an algorithm, alledDiameter4,with running time O(Dmn), and spae omplexity O(n2). Note that the spaeomplexity an be improved toO(n), sine the verties an be proessed iteratively.We denote this spae improved version of Diameter4 by Diameter4i. Eventhought the omplexity bounds of Diameter4 and Diameter4i are idential tothe bounds of the algorithm in Setion 5.3 we believe that this approah will bemore eÆient in pratie. This is also supported by the experiments performed inthe next setion.Algorithm 5.4.1: Diameter4Input: G(V;E) and t > 1.Output: Spanner diameter of G(V;E).foreah (p; q) ∈ V 2 do1 if (p; q) ∈ E then2 d≤1(p; q) := d(p; q);3 Add (p; q) to S1;4 else d≤1(p; q) := ∞;5 end6 k := 1; ag:=true;7 while ag =true do8 k := k + 1;9 foreah (p; q) ∈ V 2 do d≤k(p; q) := d≤k−1(p; q);10 ag:=false;11 foreah (p; q) ∈ Sk−1 do12 foreah vertex r adjaent to p do13 if d≤k(r; q) > d≤k−1(p; q) + d(p; r) then14 d≤k(r; q) := d≤k−1(p; q) + d(p; r);15 Add (r; q) to Sk;16 if d≤k(r; q) > t · d(r; q) then ag:=true;17 end18 end19 foreah vertex r adjaent to q do20 if d≤k(r; p) > d≤k−1(p; q) + d(q; r) then21 d≤k(r; p) := d≤k−1(p; q) + d(q; r);22 Add (r; p) to Sk;23 if d≤k(r; p) > t · d(r; p) then ag:=true;24 end25 end26 end27 end28 return k;29



5.5 Experimental results 935.5 Experimental resultsWe implemented Diameter2, Diameter3, Diameter4 and Diameter4i|theversion of Diameter4 whih use linear spae|and ompared their running timeson three di�erent t-spanners on planar point sets: greedy-graphs, �-graphs andWSPD-graphs. These spanners range from very sparse graphs with onstant de-gree to muh denser graphs with linear degree. The theoretial diameter of thespanners are also di�erent. The properties of these spanners are disussed in de-tail in Chapter 6. The experiments were done on uniformly distributed point setsrange from 100 to 10,000 points.Algorithm Diameter2 (Algorithm 5.2.2) is the slowest algorithm as its
O(log(D) · n3) theoretial bound shows. Sine its running time depends on Dit performs better for graphs with small diameter, see Figure 5.2. For example, fora t-spanner with 2K verties, Diameter2 needs about 4K seonds to ompute thediameter of a greedy-graph. This time dereases to 3K seonds for �-graphs and1K seonds for WSPD-graphs. Note that diameter of greedy-graphs, �-graphs andWSPD-graphs are 102, 26 and 3 respetively. The experiments also show that therunning time of diameter2 is independent of the number of edges of the inputgraph.
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40000 80002000 6000 10000(b) Uniform distribution, t = 1:1.Figure 5.2: Comparing the running times of the diameter algorithms for di�erent graphs.For Diameter3 the experiments show that the number of edges is the mostimportant variable in the running time. For example for a 2-spanner on a set of4K points, diameter3 needs 1000 seonds to ompute the diameter of greedy-graphs and the time dereases to roughly 600 seonds for �-graphs and WSPD-graphs. For smaller values of t, this order hanges: for t = 1:1, the algorithmneeds 5K seonds to ompute the diameter of WSPD-graphs and this dereasesto 1000 seonds for greedy-graphs and �-graphs. Note that, in general, when we



94 Chapter 5 Computing Spanner DiameterDiameter2 Diameter3 Diameter4 Diameter4iGreedy-graph �-graph WSPD-graph Greedy-graph �-graph WSPD-graph Greedy-graph �-graph WSPD-graph Greedy-graph �-graph WSPD-graph100 0.2 0.1 0.03 0.02 0.03 0.03 0.04 0.06 0.07 0.01 0.02 0.04500 31 9.9 4 1.5 3.1 7.5 4 6.8 10.8 0.48 2.1 101000 327 195 59.3 12.3 29.6 69.7 31.4 52.2 83.3 3.1 15.3 672000 2702 1445 254 118 196 471 226 301 484 23 95 4134000 1057 1256 5265 1544 1822 4548 200 576 26356000 3196.5 3848 13571 510.5 1654 76038000 7228 9131 65360 1192 3552 16301Table 5.1: The running of diameter algorithms (in seonds) on 1.1-spanners on uniformlydistributed point sets.derease t, the diameter dereases and the size of the graph inreases. As onean see in Figure 5.2, by dereasing t, the running time of Diameter3 improvedslightly on WSPD-graphs but the improvement is onsiderable for greedy-graphsand �-graphs.Algorithm Diameter4 has the same behavior as Diameter3 and shows asmall improvement when we have very dense graphs. However the improvementon the O(n)-spae version of the algorithm, or Diameter4i, is onsiderable. Ituses roughly one-third of the time needed for Diameter4 and, for example, toompute the diameter of a 2-spanner with 4K verties, it needs 75, 250 and 430seonds for greedy-graphs, �-graphs and WSPD-graphs, respetively. Note thatthe algorithm Diameter4 needs 900 seonds to ompute the diameter of greedy-graphs and this time inreases to 1200 seonds for �-graphs and WSPD-graphs.The experiments indiate that the improvements to Algorithm Diameter4make a onsiderable di�erene, see Table 5.1. However, to verify this we wouldneed to perform tests on muh larger point sets.5.6 Conluding remarksIn this hapter we gave several algorithms to ompute the spanner diameter of at-spanner. The fastest algorithm runs in O(D ·mn) time using O(m + n) spae,where D is the diameter, m is the size and n is the number of verties of the inputgraph. All the algorithms work for general, not neessarily geometri, t-spanners.An obvious open question is if there are faster algorithms for geometri t-spanners.Also in the analysis of the last algorithm we used the obvious O(n2) bound forthe size of Sk, the set of point pairs whih the shortest path between them withat most k links ontains exatly k edges. It would be nie if a more intelligentanalysis would show a better bound on the number of suh pairs in the graph.
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Chapter 6Experimental Study ofGeometri Spanners
6.1 IntrodutionThe problem of onstruting spanners has reeived onsiderable attention froma theoretial perspetive, see [ADD+93, ADM+95, AMS99, BGM04, CDNS95,DHN93, DN97, DNS95, GLN02, Kei88, KG92, LL92, LNS02, Sal91, Vai91℄, thesurveys [Epp00, GK07, Smi00℄, and the reent book by Narasimhan andSmid [NS07℄, but almost no attention from a pratial or experimental perspe-tive [NP03, SZ04℄.In this hapter we onsider the most well-known algorithms for the onstru-tion of t-spanners in the plane: variants of greedy spanners, variants of �-graphs,spanners onstruted from the well-separated pair deomposition (WSPD), skip-list spanners, sink spanners and some hybrid algorithms. The quality measure-ments used in the literature is the number of edges, the weight, the maximumdegree, the spanner diameter and the number of rossings. We study eah of thealgorithms independently, but also in ombination with eah other. To the best ofour knowledge, this is the �rst time an extensive experimental study has been per-formed on the onstrution of t-spanners. Navarro and Paredes [NP03℄ presentedfour heuristis for point sets in high-dimensional metri spae (d = 20) and showedby empirial methods that the running time was O(n2:24) and the number of edgesin the produed graphs was O(n1:13). In [SZ04℄ Sigurd and Zahariasen onsid-ered the problem of onstruting a minimum weight t-spanner of a given graph,but they only onsidered sparse graphs of small size, i.e., graphs with at most 64



98 Chapter 6 Experimental Study of Geometri Spannersverties and with average vertex degree 4 or 8.The hapter is organized as follows. We �rst briey go through the desirableproperties for t-spanners. In Setion 6.2 we desribe the implemented algorithmstogether with the theoretial bounds and implementation details. Finally, wedisuss possible improvements and future researh.Throughout the hapter t will be assumed to be a small onstant. In theexperiments we used values of t between 1.05 and 2.6.1.1 Spanner propertiesAs input we are given a set P of n points in the plane and a real value t > 1. Theaim is to ompute a t-spanner for P with some good properties. Reall from theintrodution that the properties that we onsider are:Size: The number of edges in the graph. This is the most important measure-ment and all the implemented algorithms produe spanners with O(n) edges.Degree: The maximum number of edges inident to a vertex.Weight: The weight of a Eulidean network G is the sum of the edge weights.The best that an be ahieved is a onstant times the weight of the minimumspanning tree, denoted wt(MST (P )).Spanner Diameter: De�ned as the smallest integer D suh that for any pair ofverties u and v in P , there is a path of length at most t · ‖uv‖ between u andv ontaining at most D edges. We implemented the algorithm in Chapter 5 toompute the spanner diameter of the t-spanners. Throughout the hapter we willsimply refer to the spanner diameter, by the diameter.Reall that some of the above properties are ompeting, e.g., a graph withonstant degree annot have onstant spanner diameter, and a graph with smallspanner diameter annot have a linear number of edges [ADM+95℄.
6.2 Spanner onstrution algorithmsHere we give a short desription of eah of the implemented algorithms togetherwith their theoretial bounds. For a detailed desription of eah of the algorithmsonsidered in this setion please refer to the reent book by Narasimhan andSmid [NS07℄. A summary of the theoretial bounds an be found in Table 6.1.



6.2 Spanner onstrution algorithms 996.2.1 The original greedy algorithm and an improvementThe greedy algorithm was disovered independently by Bern in 1989 and Alth�oferet al. [ADD+93℄. Sine then the greedy algorithm has been subjet to onsiderableresearh [Cha94, CDNS95, DHN93, DN97, GLN02, Soa94℄. The original algorithmstarts with the omplete graph G while maintaining a partial spanner graph G′ of G.All the edges of G are sorted with respet to their length in inreasing order. Nextthe edges are proessed in sorted order. Proessing an edge (u; v) entails a shortestpath query in G′ between u and v. If there is no t-path between u and v (a pathof length at most t · ‖uv‖) in G′ then (u; v) is added to G′ otherwise it is disarded.The time omplexity of the original greedy algorithm is O(n3 logn) and it uses
O(n2) spae. The graph onstruted using the greedy algorithm will be alled agreedy graph.Algorithm 6.2.1: Org. GreedyInput: P and t > 1.Output: t-spanner G′ = (P; E ′).Construt the omplete graph of P , denoted G = (P; E);1 Sort the edges in E by inreasing weight; /*ties are broken arbitrarily */2

E ′ := ∅;3
G′ := (P; E ′);4 foreah (u; v) ∈ E do /* in sorted order */5 if ShortestPath(G′; u; v) > t · ‖uv‖ then E ′ := E ′ ∪ {(u; v)};6 end7 return G′ = (P; E ′);8Theorem 6.2.1 The greedy graph is a t-spanner of P with O( nt−1 ) edges, O( 1t−1 )maximum degree and total weight O( 1(t−1)4 ·wt(MST (P ))), and an be omputedin time O(n3 logn).Note that a trivial 
(n) lower bound on the diameter of a greedy graph is obtainedby plaing n points on a line.The greedy approah an also be used to prune a given t-spanner G = (P; E),that is, instead of onsidering the edges in the omplete graph (see Algorithm 6.2.1),the algorithm only onsiders the edges in E . In this hapter we also perform ex-periments using the pruning tool in ombination with the other algorithms, seeSetion 6.3.8.ImprovementAs mentioned above the running time of the implemented algorithm is O(n3 logn),whih is very slow when performing experiments with up to 13,000 points. We use



100 Chapter 6 Experimental Study of Geometri Spannersa speed-up strategy that turned out to derease the running time onsiderably inpratie. The original algorithm performs a shortest path query for eah pair ofpoints to hek if there is a t-path between the two points or not. But there aretwo simple observations:1. We only need to know if there is a t-path between the two points, we do notneed to �nd a shortest path (or even a path).2. The algorithm only adds O(n) edges to the graph in total, so only a smallnumber of hanges are made to the graph during the exeution.Therefore, we use a matrix to save the length of the shortest path between eahpair of points and update it only when we need to, thus it is not always up to date.Instead of omputing a shortest path for eah pair (line 6 of Algorithm 6.2.1), we�rst hek the matrix to see if there is a t-path or not and if the answer is no, thenwe do a shortest path query and update the matrix whih enables us to answerthe distane query orretly, see Algorithm 6.2.2 for more details.Algorithm 6.2.2: Imp. GreedyInput: P and t > 1.Output: t-spanner G′ = (P; E ′).foreah (u; v) ∈ P 2 do Weight(u; v) :=∞;1 Construt the omplete graph of P , denoted G = (P; E);2 Sort the edges in E by inreasing weight; /*ties are broken arbitrarily */3
E ′ := ∅;4
G := (P; E ′);5 foreah (u; v) ∈ E do6 if Weight(u; v) ≤ t · ‖uv‖ then7 Disard (u; v);8 else9 Compute single-soure shortest path with soure u;10 foreah w ∈ P do update Weight(u;w) and Weight(w; u);11 if Weight(u; v) ≤ t · ‖uv‖ then Disard (u; v);12 else E ′ := E ′ ∪ {(u; v)};13 end14 end15 return G′(P; E ′);16 With these hanges, the spae omplexity of the original greedy algorithminreases by a onstant fator, but the gain in running time is onsiderable. Weounted the number of shortest path queries that this algorithm performs in theexperiments and surprisingly it seems that only O(n) shortest path queries isperformed. More details an be found in Setion 6.3.9.



6.2 Spanner onstrution algorithms 101Conjeture 6.2.2 Algorithm 6.2.2 performs O(n) shortest path queries.ImplementationThe implementations of the two algorithms are straight-forward. The shortestpath queries are done by using the Dijkstra funtion in LEDA.6.2.2 The approximate greedy algorithmEven though the improved algorithm is faster than the original greedy algorithmthe running time is still 
(n2 logn), thus any approah that an speed-up thealgorithm would be of great interest. The running time is mainly due to the fatthat �(n2) shortest path queries needed to be answered in a graph with O(n)edges, eah of whih ould take O(n logn) time. Das and Narasimhan [DN97℄showed how to use lustering to speed up shortest path queries. The approximategreedy algorithm starts with a pt=t′-spanner G′ with O(n) edges and onstantdegree generated by an O(n logn)-time algorithm. Note that this network maynot have small weight. Then it omputes a√tt′-spanner of G′ using an approximatevariant of the greedy algorithm. To obtain G = (P; E) from G′ the approximategreedy algorithm starts with E = ∅ and adds all the short edges (i.e. those oflength at most D=n, where D is the distane between the farthest pair of points)to E . For the remaining edges, the algorithm sorts them by inreasing weight andproesses them in logn phases. Proessing an edge e = (u; v) entails a shortestpath query whih is answered by performing an approximate shortest path queryon a \luster graph" H , whih is simultaneously maintained. The luster graphH has the following properties:1. distanes in H \losely" approximate distanes in the urrent graph G.2. every vertex in H has bounded degree, and3. \speialized" shortest path queries in H an be answered in onstant time.Algorithm 6.2.3 gives a sketh of the approximate greedy algorithm. For more de-tails see [DN97℄ or [NS07℄. The time omplexity of this algorithm is O(n log2 n).Note that the graph generated by this algorithm is an approximate version of thegraph generated by the original greedy algorithm sine the algorithm prunes agraph with a linear number of edges and answers shortest path queries approxi-mately.Gudmundsson et al. [GLN02℄ later improved the running time to O(n logn)(using the algebrai deision tree model extended with indiret addressing) butthe modi�ed version is quite involved and therefore we deided to only implementthe above version. The following theorem states the theoretial bounds.



102 Chapter 6 Experimental Study of Geometri SpannersAlgorithm 6.2.3: Apx. GreedyInput: P , t > 1, t′ ∈ (1; t), � > 1.Output: t-spanner G = (P; E).Construt a bounded-degree pt=t′-spanner G′(P; E ′);1 Sort the edges in E ′ by inreasing weight; /*ties are broken arbitrarily */2 D := maximum length of any edge in E ′;3
E0 := edges of E ′ having length in (0; D=n℄;4
E := E0;5
G := (P; E);6 for k := 1 to ⌈log� n⌉ do7 Construt luster graph H of G;8

Ek := sorted sequene of edges of E ′ having length in (�k−1D=n; �kD=n℄;9 foreah (u; v) ∈ Ek do /* in sorted order */10 if ShortestPath(H;u; v;√tt′‖uv‖) = false then11
E := E ∪ {(u; v)};12 Update luster graph H ;13 end14 end15 end16 return G = (P; E);17Theorem 6.2.3 The approximate greedy graph is a t-spanner of P with O( n(t−1)3 )edges, O( 1(t−1)3 ) maximum degree and weight O( 1(t−1)4 · wt(MST (P ))), and anbe omputed in time O( n(t−1)7 logn).ImplementationThe initial pt=t′-spanner G′ was onstruted using the sink-spanner algorithm(Setion 6.2.6). This guarantees that the number of edges is O(n) and that thegraph has onstant degree. For the ShortestPath proedure we implementeda variant of Dijkstra's algorithm whih answers shortest path queries in onstanttime in the luster graph. The query time an be ahieved sine the maximumdegree of the luster graph is onstant and there is a onstant upper bound B onthe number of edges along a shortest path in the luster graph, thus we may disardany path ontaining more than B edges in the priority queue. The bound B anbe obtained by hoosing the size of the lusters in the luster graph appropriately.



6.2 Spanner onstrution algorithms 1036.2.3 The �-graph algorithmThe �-graph was disovered independently by Clarkson [Cla87℄ and Keil [Kei88℄.Keil only onsidered the graph in two dimensions while Clarkson extended hisonstrution to also inlude three dimensions. Later Ruppert and Seidel [RS91℄and Alth�ofer et al. [ADD+93℄ de�ned the �-graph for higher dimensions.Initially we set � suh that t = 1os �−sin � . For eah point u ∈ P onsider knon-overlapping ones, Ci; 1 ≤ i ≤ k, with angle � = 2�=k and with apex u. Foreah one Ci we add an edge between u and the point within Ci whose orthogonalprojetion onto the bisetor of Ci is losest to u. Note that instead of the bisetorof Ci, we an use any line in the one passing through the apex of the one. Inour implementation we use one of the boundary lines of the one instead of thebisetor.Algorithm 6.2.4: �-graphInput: P and t > 1.Output: t-spanner G = (P; E).Set � suh that t = 1=(os � − sin �);1 k := 2�=�;2
E := ∅;3 foreah u ∈ P do4 Consider k non-overlapping ones C1; : : : ; Ck with angle � and with5 apex at u;foreah one Ci do6 v := the point within Ci whose orthogonal projetion onto the7 bisetor of Ci is losest to u;

E := E ∪ {(u; v)};8 end9 end10 return G = (P; E);11Theorem 6.2.4 The �-graph is a t-spanner of P for t = 1os �−sin � with O(n=�)edges and an be omputed in O(n logn� ) time.Note that even though the \out-degree" of eah vertex is bounded by k the \in-degree" ould be linear. Finally, by plaing n points on a line it follows thatthe diameter of the �-graph is 
(n). Also by plaing n − 1 points on a ir-le and one point on the enter of the irle, we have a �-graph with weight
(n · wt(MST (P ))).



104 Chapter 6 Experimental Study of Geometri SpannersImplementationTo implement the �-graph algorithm, we need a dynami data struture that,given a one C, an �nd the point within C whose orthogonal projetion onto thebisetor of C is losest to the apex of C in O(logn) time, see [NS07℄ for moredetails. This data struture is implemented using red-blak trees. Sine there isno dependeny between the ones, one an work on one one diretion at a time,whih means that only O(n) work spae is needed.The same edge may be omputed twie during the exeution of the algorithmso one needs to hek that an edge is not added twie to the graph. Using thegraph data struture of LEDA, we need time proportional to the \out"-degree ofthe points in the graph to hek existene of an edge.A problem that we do not onsider in the �-graph implementation is roundingerrors, whih may ause some edges not to be added. For example, if a point lieson the boundary of an, otherwise empty, one then a small rounding error may\move" the point outside the one. One way to get rid of this error is to use exatarithmeti. A di�erent possibility is to allow the ones to slightly overlap.6.2.4 The ordered �-graph algorithmA simple variant of the �-graph that has been shown to have good theoretialperformane is the ordered �-graph by Bose et al. [BGM04℄. An ordered �-graphof P is obtained by inserting the points of P in some order. When a point p isinserted, we draw the ones around p and onnet p to the previously insertedpoint with losest orthogonal projetion in eah one, like the �-graph algorithm.The order is deided as follows. Initially hoose an arbitrary vertex vn∈P andset its order to n, i.e. this is the last point that will be added to the graph. Proessvn by plaing k = 2�=� ones with apex at vn and then adding the edges as inthe �-graph algorithm. In a generi step, assume we proessed i− 1 verties. Inthe ith step, hoose a point with maximum degree from P \{vn; : : : ; vn−(i−1)} andset its order to n − i and then proess vn−i assuming that we have the point setP \{vn; : : : ; vn−(i−1)}. This deides an order on the point set. See Algorithm 6.2.5for more details.Theorem 6.2.5 The ordered �-graph is a t-spanner of P for t = 1os �−sin � with
O(n=�) edges and O( log n� ) degree, and an be omputed in O(n log n� ) time.ImplementationFor the implementation we use a data struture whih is somewhat more ompli-ated than the data struture used for the �-graph, sine we require the struture



6.2 Spanner onstrution algorithms 105Algorithm 6.2.5: Ordered-�-graphInput: P and t > 1.Output: t-spanner G = (P; E).Set � suh that t = 1=(os � − sin �);1 k := 2�=�;2
E := ∅;3 P ′ := ∅;4 for i := 1; 2; : : : ; |P | do5 Pik an unmarked vertex u ∈ P \ P ′ with maximum degree in6

G′ := (P; E);P ′ := P ′ ∪ {u};7 foreah one Ci with apex at u do (See Algorithm 6.2.4)8 v := the point in P \ P ′ within Ci whose orthogonal projetion onto9 the bisetor of Ci is losest to u;
E := E ∪ {(u; v)};10 end11 end12 return G = (P; E);13to allow for deletions. We use k range trees, as suggested by Bose et al. [BGM04℄,one for eah one with apex at the origin. In eah range tree we store all pointsrepresented in the oordinate system of the two boundaries of the one. To �ndthe suitable point in a one with apex at u, it is suÆient to perform a range querywith oordinates of u as keys and hoose the suitable point between the pointsreported by the query. We add one extra pointer to eah node of the range treewhih shows the point with minimum y (or x) oordinate in the subtree. Usingthis pointer, we an �nd the suitable point without going through all reportedpoints of the range query. Eah range query requires O(log2 n) time, so the totaltime omplexity of the implemented algorithm is O(n log2 n) whih is slightly morethan the theoretial time bound but muh simpler to implement.In eah step of the ordered �-graph algorithm the node with maximum degreehas to be seleted. To �nd this point, we used a priority queue of all the points.Initially all the nodes have priority n. When an edge (u; v) is added to the partialspanner graph, the priority of u and v is dereased by 1. The point with minimumpriority in the queue is the point with maximum degree in the graph.There is a major di�erene between the �-graph algorithm and the ordered�-graph algorithm when it omes to the spae omplexity. As mentioned in theprevious setion, one an onstrut the �-graph by working on one one diretionat a time. This is not possible for the ordered �-graph, instead we have to keepall the ones (range trees) in memory. This is due to the fat that the order is not



106 Chapter 6 Experimental Study of Geometri Spannersknown in advane. During the proessing of one node, we need to hek all theones and add edges if neessary, thus �(kn) spae is needed. For small values oft this might ause a major problem. To be more preise, the �-graph algorithmused roughly 2% of the memory when onstruting a 1:05-spanner on a set with10K points, while the ordered �-graph algorithm used almost 85% of the memory.6.2.5 The random ordered �-graph algorithmThe ordered �-graph algorithm inserts points into the graph in a spei� order.However, if the points are proessed in random order then the spanner diameterwill be bounded by O(logn) with high probability [BGM04℄. Unfortunately, thedegree bound does not hold in this ase. There are two reasons why we imple-mented the random ordered �-graph.1. Random ordered �-graphs, skip-list spanners (Setion 6.2.7) and a variantof WSPD-spanner are the only three spanners guaranteed to have boundedspanner diameter. Thus an experimental omparison between the threegraphs is interesting.2. Sine the verties are proessed in random order we may �x a random orderat the beginning whih implies that the algorithm only requires O(n) spae,ompared to O(kn) spae needed in order to onstrut ordered �-graphs.Implementation.The implementation is the same as for the ordered �-graph. We only make arandom permutation on the input point set and then proess the points in theorder they appear in the permutation.6.2.6 The sink-spanner algorithmThe sink-spanner onstrution was de�ned by Arya et al. [ADM+95℄ whih on-strut t-spanners with onstant degree. The main idea is as follows. We startwith a direted √t-spanner with bounded out-degree, denoted −→G . We will use the�-graph whih easily an be seen to have out-degree k, but linear in-degree. Foreah vertex q in −→G , replae every \star" (the subgraph onsisting of all edges in−→G pointing to q) in −→G by a √t-q-sink spanner, see Algorithm 6.2.6 for the details.A √t-q-sink spanner is a direted graph where eah point has a direted √t-pathto q. It an be obtained by proessing eah node q in −→G as follows. Consider allpoints whih have an edge pointing to q. Let Aq be the set of all suh nodes. Wereplae all the edges pointing to q by a √t-path using the partial sink spannerproedure, see Algorithm 6.2.7.



6.2 Spanner onstrution algorithms 107In the partial sink spanner proedure we look at k ones with apex at q andwe partition the points in Aq based on the ones. Let Si be the points in the ithone. For eah one i, add an edge between q and the losest point in Si, say qi,and then reurse on the partial sink spanner proedure on qi and Si \ {qi}. In thease that one one ontains more than half of the points, split the points in theone to two almost equal parts and do the same thing as above. This guaranteesthat the subproblems half in size, thus we get:Theorem 6.2.6 The sink-spanner is a t-spanner for P with O(kn) edges and
O( 1(t−1)2 ) maximum degree, and an be onstruted in time O(kn logn).Algorithm 6.2.6: Sink-SpannerInput: P and t > 1.Output: t-spanner G = (P; E).Compute a direted √t-spanner −→G (P;−→E ) with bounded out-degree;1

E ′ := ∅; −→G′ := (P;−→E ′);2 foreah q ∈ P do3 Aq := all nodes p ∈ P suh that (p; q) ∈ −→E ;4 Call Partial-Sink-spanner(−→G′; q; Aq ;√t);5 end6 return G′ = (P; E ′);7Algorithm 6.2.7: Partial-Sink-SpannerInput: −→G (P;−→E ), a node q, a set of nodes Aq and t > 1.Output: partial q-sink-spanner −→G (P;−→E ).Set � suh that t = 1=(os � − sin �);1 k := 2�=�;2 Consider k non-overlapping ones C1; : : : ; Ck with angle � and apex at q;3 for i := 1; 2; : : : ; k do4 Si := Aq ∩ Ci;5 qi := losest point in Si to q;6
−→E := −→E ∪ {(qi; q)};7 if |Si| ≤ |P |=2 then8 Partial-Sink-Spanner(−→G ; qi; Si \ {qi}; t)9 else10 Split Si \ {qi} to two sets S1 and S2 with almost equal size;11 Partial-Sink-Spanner(−→G ; qi; S1; t);12 Partial-Sink-Spanner(−→G ; qi; S2; t);13 end14 end15 return −→G = (P;−→E );16



108 Chapter 6 Experimental Study of Geometri SpannersImplementationTo onstrut the �rst direted √t-spanner, we used the �-graph algorithm, withthe modi�ation that we add direted edges instead of undireted edges.6.2.7 The skip-list spanner algorithmTo obtain a spanner with bounded spanner diameter, one an use skip-list spannersas suggested by Arya et al. [AMS99℄. The idea is to generalize skip-lists and applythem to the onstrution of t-spanners.To onstrut a t-spanner of P , we onstrut a sequene of subsets of P ,P = P0 ⊇ P1 ⊇ · · · ⊇ Pk = ∅:To onstrut Pi+1, we ip a fair oin for eah element of Pi and then add the pointto Pi+1 if the ip produes heads. The onstrution ends when the set is empty.Now we onstrut a t-spanner using the �-graph algorithm for eah Pi and theunion of all these graphs is the skip-list spanner of P , see Algorithm 6.2.8.Algorithm 6.2.8: Skip-List-SpannerInput: P and t > 1.Output: t-spanner G = (P; E).P0 := P ;1 i := 0;2 while Pi 6= ∅ do3 Pi+1 := {x ∈ Pi| oin ip for x produes heads};4 i := i+ 1;5 end6 i := 0;7 while Pi 6= ∅ do8
Gi(Pi; Ei) := a t-spanner on Pi using the �-graph algorithm;9 end10

E := Si Ei;11 return G = (P; E);12Theorem 6.2.7 The skip-list spanner is a t-spanner for P with O(kn) edges,
O(log n) spanner diameter and an be onstruted in time O(kn logn). All thebounds are expeted with high probability.



6.2 Spanner onstrution algorithms 109ImplementationTo onstrut a skip-list spanner, we onstrut a t-spanner on P using the �-graphalgorithm. Then for eah point in the set we produe a random number between0 and 10,000 using the random soure type in LEDA and remove the point if theoutome is less than 5,000. Then again we onstrut the �-graph on the remainingpoints and we add the generated edges to the previous graph. We ontinue thisproedure until we have no remaining points in the set.6.2.8 The WSPD algorithmConstruting a t-spanner using the WSPD, see Setion 2.3, is surprisingly easy.It is suÆient to ompute a WSPD of P with respet to s = 4(t+ 1)=(t− 1) andthen for every well-separated pair (A;B) in the WSPD an edge is added betweenan arbitrary point in A and an arbitrary point in B.Algorithm 6.2.9: WSPD-graphInput: P and t > 1.Output: t-spanner G = (P; E).
W := the well-separated pair deomposition of P using s := 4(t+1)t−1 ;1
E := ∅;2 foreah (Ai; Bi) ∈ W do3 Selet an arbitrary node u ∈ Ai and an arbitrary node v ∈ Bi;4

E := E ∪ {(u; v)};5 end6 return G = (P; E);7Theorem 6.2.8 The WSPD-graph is a t-spanner for P with O(( tt−1 )2n) edges,
O(log n·wt(MST (P ))) weight and an be onstruted in time O(( tt−1 )2n+n logn).An 
(n) lower bound on the degree and the spanner diameter of a WSPD-graphan be shown by plaing n points on a line with exponentially dereasing interpoint distane from left to right.We also implemented two speial versions of the algorithm to improve thedegree [ADM+95℄ and the spanner diameter [AMS99℄.Improving the degreeWe perform the following modi�ation [ADM+95℄ to the standardWSPD-algorithmto improve the maximum degree. Instead of adding an arbitrary edge, it selets



110 Chapter 6 Experimental Study of Geometri Spannersthe point whih has the smallest maximum degree from eah set and adds an edgebetween them. This does not improve the theoretial upper bound but we werehoping to see some improvements in the experimental bounds. Note also thatthe 
(n) lower bound does not hold for the modi�ed WSPD-algorithm. In theexperiments one an see a small improvement for graphs with t > 1:5, for smallervalues the di�erene is negligible. For t = 1:5 the improvement is roughly a fator1.5 and inreases to about 3 for t = 4.Another way to improve the maximum degree is to selet the point in eah well-separated pair using a weighted randomization. That is, we assign a weight to eahpoint whih is the total number of points minus the number of well-separated pairsthat ontain the point. In other words, points that appear in a smaller number ofwell-separated pairs have greater weight and vie versa. Now we simply selet apoint randomly from eah set based on the weight of the points and then we addan edge between them. Unfortunately, we ould not see any improvements in theexperiments using this approah ompared to the standard approah.Improving the spanner diameterArya et al. [AMS99℄ found a way to bound the spanner diameter of a WSPD-graph. The WSPD is onstruted from the so-alled fair-split tree, and Aryaet al. [AMS99℄ hose a representative point by a searh in the fair-split tree. Fora node u in the split tree, follow the path down the tree by always hoosingthe larger subtree. The point stored at the leaf in whih the path ends is therepresentative point for u. This approah guarantees that the spanner diameterof the onstruted t-spanner is bounded by 2 · logn.ImplementationWe used a split tree for the onstrution of the WSPD. The points stored at a nodeis partitioned into two sets by partitioning the non-empty bounding box along itslongest side into two boxes of equal size. The tree onstrution only requires a fewperent of the total running time in all our tests.To deide in onstant time if two sets are well-separated we save the smallestenlosing irle of the points in eah node. As we mentioned in the note after Def-inition 2.5.1, two sets are well-separated with respet to s if the distane betweenthe smallest enlosing irles is at least s times the maximum radius of the twosmallest enlosing irles.



6.3 Experimental results 1116.3 Experimental resultsIn this setion we disuss the experimental results in more detail by onsideringthe properties of the graphs generated by the algorithms and the running times ofthe algorithms. The known theoretial bounds for the algorithms an be found inTable 6.1. The experiments were done on point sets ranging from 100 to 13,000points with �ve di�erent distributions:
• uniform distribution,
• normal distribution with mean 500 and deviation 100,
• gamma distribution with shape parameter 0.75,
• n=100 uniformly distributed unit squares, eah with 100 uniformly distributedpoints (100-lustered), and
• √n uniformly distributed unit squares, eah with √n uniformly distributedpoints (√n-lustered).In most ases the di�erene between the last two distributions is negligible so wewill refer to both of them as lustered distributions, and the other point sets willbe alled the non-lustered point sets.We produed t-spanners using values of t between 1.05 and 2.- Size Weightwt(MST ) Degree Diameter TimeGreedy-graph O( nt−1 ) O

� 1(t−1)4 � O( 1t−1 ) �(n) O(n3 logn)Apx. greedy-graph O
� n(t−1)3 � O

� 1(t−1)4 � O
� 1(t−1)3 � �(n) O( n(t−1)7 logn)†�-graph O( nt−1 ) �(n) �(n) �(n) O(n lognt−1 )O. �-graph �( nt−1 ) O(n) O
� lognt−1 � �(n) O(n lognt−1 )†WSPD-graph �( n(t−1)2 ) O(logn) �(n) �(n) O(( tt−1 )2n+ n log n)Sink-spanner �( nt−1 ) O(n) O
� 1(t−1)2 � �(n) O(n lognt−1 )Skip-list spanner �( nt−1 )∗ �(n)∗ �(n) O(logn)∗ O(n lognt−1 )∗Table 6.1: Summarizing the known bounds for the algorithms presented in the hapter.The entries marked (*) implies that the values are expeted with high probability. Theentries marked with (†) indiates that the versions implemented in this hapter has anadditional log n-fator in their running times.



112 Chapter 6 Experimental Study of Geometri SpannersSize Degree Weight Diameter Running time(seonds)Min. Aver. Max. Min. Aver. Max. Min. Aver. Max. Min. Aver. Max. Min. Aver. Max.n = 8000, t = 1:5 and uniform distributionOrg. greedy 15060 15100 15128 7 7 8 3 3 3 103 108 111Imp. greedy 15060 15100 15128 7 7 8 3 3 3 103 108 111 213 225 231Apx. greedy 45879 46469 47543 44 47 54 31 32 33 21 22 23 175 182 192�-graph 118402 118509 118646 51 55 59 58 58 58 26 27 28 0.9 1 1.1O. �-graph 125162 132594 147023 39 44 46 211 259 396 20 22 26 10 12 18R. O. �-graph 164860 165064 165289 169 190 200 135 136 138 7 7 8 6.8 6.9 7WSPD 169534917166521734094 124212881326 5657 5733 5788 3 3 3 11.9 12 12.4Skip-list 192203 192379 192506 183 192 197 154 156 156 7 5 8 4.7 4.9 4.9Sink-spanner 115150 115333 115481 44 45 46 58 59 59 24 24.6 25 2.4 2.4 2.4n = 8000, t = 1:1 and lustered distributionOrg. greedy 29603 29680 29769 15 16 17 8.3 8.7 8.9 49 55 68Imp. greedy 29603 29680 29769 15 16 17 8.3 8.7 8.9 49 55 68 531 585 619Apx. greedy 160497 162482 163208 132 141 151 509 533 573 136 137 137.8�-graph 361672 362557 363762 175019332110 5156 5376 5608 6 6 6 3.5 5 4.1O. �-graph 346791 358055 362146 119 122 126 8203 9384 10233 6 6 6 90 136 283R. O. �-graph 389186 394404 399675 177325123012 7129 7585 8012 5 5 5 40 43 46WSPD 352487 353778 355374 174 179 194 721 766 825 5 5 5 2.8 5 6.3Skip-list 531298 536602 541053 234724092496 106921104311311 5 5 5 19 20 21Sink-spanner 215624 216324 216739 121 123 126 340 345 349 7 7 7 9.8 10 10.4Table 6.2: The minimum, average and maximum values.To avoid the e�et of spei� instanes, we ran the algorithms on 5-10 di�erentinstanes and took the average of the results. However, in almost all ases thedi�erene between the minimum value and the maximum value is negligible. Twoexample are given in Table 6.2.6.3.1 Implementation detailsThe algorithms were implemented in C++ using the LEDA 5.01 library [MN00℄.In the ases when LEDA did not ontain the required data struture needed forthe algorithms, we implemented it ourselves.The experiments were performed on an AMD Opteron 250 (2.4 GHz), 1GB L2ahe and 4GB RAM. The OS was Fedora 3.4 and it used g++ 3.4.4 for ompilingthe program using the -O2 option. All sample points sets were generated usingthe NEWRAN03 [Dav05℄ pseudo random number generator.



6.3 Experimental results 1136.3.2 SizeOverall the algorithms an roughly be divided into three groups with respet to thesize of the produed graphs: (1) the greedy algorithms, (2) the (ordered) �-graphstogether with the skip-list spanner and the sink-spanner, and (3) the WSPD-graph.The size of the WSPD-graph is roughly a fator 7 to 13 times greater than the sizeof the (ordered) �-graph whih in turn is roughly a fator 5 to 10 times greaterthan the size of the greedy graph. For the uniform distribution and for t = 2 theresults an be seen in Figure 6.1.
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114 Chapter 6 Experimental Study of Geometri SpannersUniform Normal Gamma Clusteredt = 2Original greedy 11K 11K 11K 11KApproximate greedy 16K 16K 16K 18K�-graph 79K 81K 78K 83KSkip-list 128K 133K 127K 128KSink-spanner 79K 81K 78K 69KO. �-graph 93K 89K 92K 96KRandom O. �-graph 114K 117K 112K 109KWSPD-graph 784K 870K 709K 181Kt = 1:1Original greedy 36K 36K 35K 30KApproximate greedy 852K 894K 809K 162K�-graph 370K 388K 364K 363KSkip-list 587K 621K 575K 537KSink-spanner 413K 432K 403K 216KO. �-graph 390K 402K 399K 358KRandom O. �-graph 519K 545K 506K 394KWSPD-graph 11119K 12822K 9218K 354KTable 6.3: The size of the spanners generated by the algorithms on point set with 8,000points for di�erent distributions.are approximated using a luster graph H . This works well for large values of t,and in theory for any onstant, however, in pratie t beomes too small at somepoint and the error when doing the approximation beomes too large. A notableexeption is that it generates graphs of small size on lustered point sets even forsmall values of t, see Figure 6.2. The main reason being that the approximate
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6.3 Experimental results 115greedy approah heavily relies on the hierarhial luster graph. Intuitively, theerror in a luster graph is smaller for point sets that are lustered.This e�et an only be seen for small t values. We believe this depends online 5 of the Algorithm 6.2.3, i.e., all edges that are shorter than D=n are addedto the graph, where D is the length of the longest edge. For lustered sets thereare many \short" edges thus the number of short edges will dominate the totalnumber of edges.The �-graph and its variants all produed graphs of similar size (within afator of 2). Furthermore, the di�erenes in size between the graphs produed fordi�erent distributions is very small, usually within 10%.In general the WSPD algorithm produes very dense t-spanners, see Table 6.3,but it was expeted to perform slightly better on lustered sets sine it uses alustering approah. However, the improvement was greater than predited, seeFigure 6.3(a). On lustered sets the WSPD algorithm produed graphs where thenumber of edges is omparable, or even smaller, to the number of edges in the(ordered) �-graph, see Figure 6.3(b).
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0 140002000 4000 6000 8000 10000 12000(b) Clustered point sets.Figure 6.3: Size of the generated graphs for t = 1:1.6.3.3 DegreeAs in the previous setion the algorithms an roughly be divided into three groupsdepending on the maximum degree of the generated graphs. The �rst group pro-dued graphs whose maximum degree has a very small dependeny on n, or evenno dependeny. This group ontains the (approximate) greedy algorithm, the sink-spanner algorithm and the (ordered) �-graph algorithms. Reall from Table 6.1



116 Chapter 6 Experimental Study of Geometri Spannersthat the maximum degree of the (approximate) greedy graphs and the sink-spanneris bounded by a funtion that only depends on t. This was also learly observedin the experiments, see Figure 6.4.
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0 140002000 4000 6000 8000 10000 12000(b) Same diagram as in (a), but the WSPD-algorithms results is omitted.Figure 6.4: Maximum degree for uniform distribution point sets and t = 2.In the tests the greedy algorithm produed graphs with degree roughly 5, 7and 23 for t = 2, t = 1:5 and t = 1:05 respetively and the bounds are about thesame for all the test sets. The degree of the graphs generated by the approximategreedy algorithm also onverge to a onstant but it is slightly more than the degreeof greedy-graphs for large values of t. However for small values of t the degree ofthe approximate greedy-graph inrease rapidly but it still onverges to a onstant,see Figure 6.4 and Figure 6.5(a). For example, for uniformly distributed pointsets with t = 2 and t = 1:1 the degree of the graph generated by the approximategreedy algorithm is 12 and 400 respetively, see Table 6.4.Surprisingly, both the ordered �-graphs and the �-graphs had very low degreeon uniformly distributed point sets. For example, for t = 1:5 the maximum degreefor both seems to onverge to approximately 50, whih is roughly the same asthe maximum degree for the approximate greedy and the sink-spanner. For non-lustered sets the degree of the (ordered) �-graphs inreases very slowly withrespet to the number of points, for example for the uniform distribution theordered �-graph has degree 24 for 100 points and the degree then slowly inreasesto 31 for 10,000 points. The ordered �-graph generally performs slightly betterthan the �-graph.However, for lustered sets the results hange unexpetedly. The degree ofthe �-graph deteriorates rapidly and the degree varies highly between di�erentinstanes, see Table 6.2. The random ordered �-graphs and skip-list spanners alsohave larger degree on lustered point sets, see Figure 6.6. The ordered �-graph



6.3 Experimental results 117Uniform Normal Gamma Clusteredt = 2Original greedy 5 5 5 5Approximate greedy 11 11 12 12�-graph 38 39 41 357Skip-list 132 131 128 421Sink-spanner 33 32 32 39O. �-graph 30 31 31 32Random O. �-graph 131 129 131 430WSPD-graph 617 589 573 115WSPD-graph- Mindeg1 590 544 557 115WSPD-graph- Mindeg2 615 590 575 115t = 1:1Original greedy 17 16 17 16Approximate greedy 403 396 399 141�-graph 144 145 141 1933Skip-list 470 471 478 2409Sink-spanner 142 143 143 124O. �-graph 130 141 137 122Random O. �-graph 461 439 463 2512WSPD-graph 5192 5993 4938 179WSPD-graph- Mindeg1 5191 5991 4901 179WSPD-graph- Mindeg2 5193 5992 4941 179Table 6.4: The maximum degree of the spanners generated by the algorithms on sets with8,000 points for di�erent distributions.
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118 Chapter 6 Experimental Study of Geometri Spannersit have almost the same size for uniform and lustered point sets but the maxi-mum degree inreases rapidly on lustered point sets (exept for the sink-spanner).Again it seems that the experiments supports the theory stated in Theorem 6.2.5sine the ordered �-graph has O(k logn) degree.The seond group of algorithms ontains the skip-list spanner and the randomorder �-graph. No sub-linear upper bound is known on the maximum degree of thegraphs produed by these algorithms. One an observe that the maximum degreeslowly inreases when the size of the graphs inreases. As an example, for t = 1:5the maximum degree starts at approximately 50 for n = 100 and then steadilyinreases to roughly 200 for n = 13K. Intuitively the expeted maximum degreeof the skip-list spanner should be O(logn) times higher than the maximum degreeof the �-graph sine the expeted number of rounds the �-graph is produed whenonstruting the skip-list spanner is O(logn).
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6.3 Experimental results 119believed would improve the degree bound in pratie. However, the experimentsshow that the improvements are negligible, see Figure 6.4(a) and Table 6.4.6.3.4 WeightReall that theoretially the weight of the greedy graph and the approximategreedy graph is bounded by O(wt(MST )) while the weight of the WSPD-graphis O(logn · wt(MST )) and the weight of the (ordered) �-graph, sink spannerand skip-list spanner is only bounded by O(n · wt(MST )). So the fat that theweight of the greedy graphs in our experiments is muh less than the weight ofthe other graphs is hardly surprising. For t = 2 the weight of the greedy graph isapproximately 2 times wt(MST ) and for t = 1:1 and t = 1:05 the fators are 10and 18 respetively, as an be seen in Figure 6.7-6.9. For the lustered sets thebounds are even slightly better, see Table 6.5.Uniform Normal Gamma Clusteredt = 2Original greedy 2 2 2 2Approximate greedy 4 4 4 3�-graph 32 33 32 359O. �-graph 165 94 172 1302Random O. �-graph 80 77 74 750Skip-list 86 86 83 946Sink-spanner 33 33 32 46WSPD-graph 1953 2033 1383 233t = 1:1Original greedy 11 11 10 9Approximate greedy 1441 1333�-graph 327 327 311 5376O. �-graph 840 634 886 9384Random O. �-graph 727 675 649 7585Skip-list 815 770 738 11042Sink-spanner 403 380 357 345WSPD-graph 70470 64810 41314 766Table 6.5: The weight of the spanners generated by the algorithms for di�erentdistributions.Even though the WSPD-graph has an O(logn ·wt(MST )) bound the observedweights in the experiments are very large. Its behavior is similar to the degree ofthe WSPD-graph. For small values of t it shows a linear dependeny on n andthe weight of the minimum spanning tree, see Figure 6.8(a), and for larger valuesof t it seems to onverge slowly, see Figure 6.7(a). Just as for the degree, theWSPD-algorithm performs very well on lustered sets and its weight almost seems
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(b) Same diagram as (a), but the results gen-erated by the WSPD-algorithm is omitted.Figure 6.7: Weight/wt(MST ) of the generated graphs.to onverge to a large onstant times the weight of the minimum spanning tree forlarge sets, see Figure 6.9. For example for t = 1:05 the ratio was bounded by 900and for t = 2 it was bounded by 230. However, to verify the theoretial boundsexperimentally muh larger points sets would have to be onsidered.
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0 140002000 4000 6000 8000 10000 12000Figure 6.9: Weight/wt(MST ) for lustered sets and t = 1:1.not been able to answer, neither through the experiments nor in theory, is if theexpeted weight of the �-graph for uniform point sets is bounded by a onstanttimes the wt(MST )? For lustered sets the weight of the �-graph is almost linearwith respet to the number of lusters and its weight is highly dependent on thedi�erent instanes, see Figure 6.9 and Table 6.2.One would expet a similar behavior for the ordered �-graph but the weight ofthe ordered �-graph is muh higher than both the greedy graph and the �-graph.The ratio between the weight of the ordered �-graph and the weight of the min-imum spanning tree is almost a linear funtion with respet to the number ofpoints up to 10K points before it starts to level out. Note that the number ofedges produed by the �-graph and the ordered �-graph is very similar for allvalues on t and n. However, it is easily observed that on average the edges inthe ordered �-graph are muh longer than the edges in the �-graph. This followsimmediately from the onstrution sine the �-graph always adds edges to thelosest point in P , while the ordered �-graph only an add edges to the points inP that have already been proessed. Moreover the behavior of the weight of theordered �-graph is unpreditable and seems to be highly dependent on the spei�instanes, see Figure 6.7(b) and Table 6.2.The weight of the graphs generated by the (random/ordered) �-graph and theskip-list spanners inrease rapidly on lustered point sets, see Table 6.5.6.3.5 Spanner diameterDue to the high time omplexity to ompute the spanner diameter of a graph weould only ompute the diameter for graphs with up to 8,000 points. To omputethe spanner diameter of the graphs we implemented the algorithm suggested inChapter 5.



122 Chapter 6 Experimental Study of Geometri SpannersNote that most of the algorithms that we implemented may produe graphswhose spanner diameter is �(n). The only known algorithms that produe graphswith smaller diameter are the skip-list spanner a variant of WSPD-algorithm with
O(log n) diameter and the random ordered �-graph whih was shown to have
O(log n) diameter with high probability [AMS99, BGM04℄.As expeted the greedy graphs had the highest diameter, see Figure 6.10. Thisfollows from the fat that the greedy graph has fewer edges than the other graphsand the greedy approah favors short edges and avoids adding long edges. Thediameter of a 2-spanner generated by the greedy algorithm (uniform distribution)is about 17 for a set with 100 points and it reahes 142 for a set with 8,000 points.The diameter seems to depend linearly on the size of the input set. Also thediameter hanges slightly depending on the di�erent distributions, for t = 1:1 andn = 8; 000 the diameter varies between 54 for the normal distribution to 70 for thegamma distribution.
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6.3 Experimental results 123Uniform Normal Gamma Clusteredt = 2Original greedy 142 109 155 164Approximate greedy 67 51 72 72�-graph 34 28 36 11O. �-graph 23 21 23 11Random O. �-graph 8 8 8 8Skip-list 8 8 8 8Sink-spanner 27 25 26 13WSPD-graph 4 3 4 7WSPD-graph (Min. diam.) 6 5 6 8t = 1:1Original greedy 57 54 70 55Approximate greedy 7 7�-graph 14 13 16 6O. �-graph 13 12 14 6Random O. �-graph 6 6 6 5Skip-list 5 5 6 5Sink-spanner 11 11 13 7WSPD-graph 5WSPD-graph (Min. diam.) 5Table 6.6: The diameter of the spanners generated by the algorithms on point set with8,000 points for di�erent distributions.almost the same and sometimes even lower for non-lustered distributions.Finally, the WSPD-graph has very low diameter and it onverges fast. Thisfollows from the simple fat that the WSPD-graph is very dense, whih intuitivelyimplies that it will have a small diameter. The diameter of a 2-spanner on a setwith 100 points (uniform distribution) is 3 and it inreases to 4 for a point set with8,000 points. In the lustered sets, the diameter is slightly higher, between 3 and8, probably beause the number of edges in these graphs are smaller ompared tothe graphs for the non-lustered sets. An oddity is that the modi�ed WSPD algo-rithm whih improves the spanner diameter of the generated graphs has slightlyhigher diameter ompared with the standard WSPD-graphs, see Figure 6.10(a) orTable 6.6.6.3.6 Maximum and average dilationOne of the spanner properties is the real dilation of the generated graphs. In Fig-ure 6.11 one an observe that there is a large disrepany between the algorithms.The original greedy algorithm generate graphs with maximum dilation equal to t,or very lose to t, for all the tested instanes.
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0 2000 4000 6000 8000 10000(b) Clustered distribution and t = 1:1.Figure 6.11: Maximum dilation of generated graphs.Sine the approximate greedy algorithm approximates the greedy spanner themaximum dilation is slightly smaller than for the greedy. In general we ould seethat the greedy spanner had a maximum dilation that was roughly 30% largerthan the maximum dilation of the approximate greedy spanner.The WSPD-graph and the (random/ordered) �-graphs produe graphs withonsiderably smaller dilation, see Table 6.7. For example, for uniformly distributedpoint sets using t = 1:5 the (random/ordered) �-graphs and the WSPD-graph hadmaximum dilation 1.25, while the approximate greedy and the original greedy hadmaximum dilation 1.36 and 1.5, respetively.t = 2 t = 1:1n 500 1000 2000 4000 8000 500 1000 2000 4000 8000Org. greedy 1:99 2 2 2 2 1:1 1:1 1:1 1:1 1:1Imp. greedy 1:99 2 2 2 2 1:1 1:1 1:1 1:1 1:1Apx. greedy 1:68 1:68 1:68 1:68 1:68 1:07 1:07 1:07 1:07�-graph 1:18 1:2 1:21 1:23 1:22 1:02 1:02 1:03 1:03 1:03O. �-graph 1:37 1:4 1:43 1:46 1:47 1:06 1:07 1:07 1:07 1:07R. O. �-graph 1:35 1:38 1:42 1:41 1:47 1:06 1:06 1:07 1:07 1:07Skip-list 1:17 1:18 1:21 1:21 1:21 1:02 1:02 1:03 1:03 1:03Sink-spanner 1:19 1:19 1:21 1:23 1:23 1:03 1:03 1:03 1:03 1:04WSPD-graph 1:35 1:39 1:44 1:49 1:47 1:04 1:04 1:05 1:05 1:05Table 6.7: The maximum dilation of graphs generated by di�erent algorithms on uniformlydistributed point sets.Finally, the �-graph, skip-list spanner and sink-spanner had the smallest max-imum dilation, approximately 1.13 for t = 1:5. It is interesting to note that eventhough the size of the WSPD-graph is muh greater than the size of the �-graph



6.3 Experimental results 125the maximum dilation of the WSPD-graph is learly greater than the maximumdilation of the �-graph.The di�erene between the di�erent approahes is, more or less, the same forall input instanes, the results for lustered point sets are shown in Figure 6.11(b).During the experiments we also measured the average dilation. This is a prop-erty that has not been onsidered previously. However, it might be of interest toknow that the average dilation in the graphs is usually extremely small. Even fort = 2 the average dilation for all graphs, exept the (approximate) greedy graph,is less than 1.01. For the greedy graph the average dilation is 1.19 for t = 2 and1.1 for t = 1:5.6.3.7 CrossingsThe last property we disuss is the number of rossings in the generated graphs.Obviously this is highly dependent on the number of edges, therefore it is notsurprising that the greedy graph is superior to the other graphs and it is the onlygraph with a reasonable number of rossings. The experiments ould only bedone on sets with up to 2,000 points sine the number of rossings is bounded by
O(m2) where m is the number of edges in the graph. For t = 1:5 and n = 2; 000the number of rossings in the greedy graph is on average 94. Also the number ofrossings seems to inrease linearly with respet to the number of points whih issurprisingly low. For t = 1:1 the number of rossings for n = 100, 500 and 2,000is on average 397, 2,750, and 12,411.We did some initial experiments with the other algorithms but the number ofrossings were very high. For example for t = 1:1 and n = 100 the �-graph has2,437 edges and 300K rossings! Thus if the number of rossings is a priority tothe user then the only option is to use the greedy algorithm.6.3.8 The hybrid algorithmsDuring the experiments it rapidly beame lear that the greedy algorithm produedgraphs whose size, weight, maximum degree and number of rossings are superiorto the graphs produed from the other approahes. However the running timeof the greedy algorithm is O(m · n logn), where m is the number of edges in theoriginal graph. Sine the input is a set of n points we have to onsider the ompletegraph, thus m = �(n2). A way to improve the running time while, hopefully, stillobtaining high-quality graphs is to �rst ompute a t�-spanner G of the input setand then ompute a (t1−�)-spanner of G using the greedy pruning algorithm with0 < � < 1. The dilation of the resulting graph is bounded by t� · t1−� = t.The t�-spanner an be onstruted using (ordered) �-graphs or WSPD-graphs,ensuring that the number of edges is O(n), and onsequently the total running



126 Chapter 6 Experimental Study of Geometri Spannerstime would derease to O(n2 logn).A seond reason why we onsider hybrid algorithms is the fat that the (or-dered) �-graphs and the WSPD-graph atually have muh smaller dilation thanthe spei�ed t-value. For example for t = 2 the greedy graph has dilation lose to 2while the ordered �-graph and the WSPD-graph has dilation 1.4 and the �-graphhas dilation 1.2. For t = 1:1 the �-graph has dilation 1.02, the ordered �-graphhas dilation 1.06 and the WSPD-graph has dilation 1.04, see Figure 6.11. By �rstproduing the (ordered) �-graph or the WSPD-graph we use the fat that theyan be onstruted fast and the number of edges remaining is linear. Sine theirdilation in pratie is very small it leaves a lot of freedom for the greedy algorithmto produe a t-spanner with good properties.This approah has another advantage whih is that the parameter � an beadjusted to �t the appliation. If � is hosen to be lose to zero then the resultinggraph is very similar to the greedy graph but the gain in running time is small.If � is hosen lose to 1 then the algorithm is faster but the quality of the graph isworse. We test three hybrid algorithms, �-graph algorithm plus greedy pruning(Hybrid1), ordered �-graph algorithm plus greedy pruning (Hybrid2) and WSPDalgorithm plus greedy pruning (Hybrid3). The test are performed using threevalues of �, 0.1, 0.5 and 0.9. To optimize the omplexity of the hybrid algorithmswe used the improved greedy algorithm (see Algorithm 6.2.2) for the pruning step.Note that the di�erene between the graphs generated by the (ordered) �-graphalgorithms and the WSPD algorithm is very big but the pruning step redues thegap between them. Thus the graphs generated by the hybrid algorithms havealmost the same properties no matter whih algorithms we use as a �rst step, seeTable 6.8. Therefore, for the rest of this setion, we only onsider the Hybrid1
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6.3 Experimental results 127t = 2n = 8000 Greedy Hybrid1 Hybrid2 Hybrid3Uni. Clus. � Uni. Clus. Uni. Clus. Uni. Clus.0:1 12K 11K 12K 11KSize 11K 11K 0:5 17K 15K 17K 15K 17K 15K0:9 41K 33K 38K 32K 43K 35K0:1 5.6 5 5.6 5.8Degree 5.2 5.2 0:5 8.2 7.8 8.2 7.8 8 8.20:9 19.2 18.4 17.2 16.8 18.8 18.60:1 2.1 1.9 2.1 1.9Weight 2 1.8 0:5 3.5 3 3.5 3 3.5 30:9 12.7 10.7 12 11 14.3 11.50:1 135 143 135 100Diameter 142 164 0:5 100 84 101 79 99 560:9 53 26 53 27 46 210:1 1.9 1.9 1.9 1.9Max. dilation 2 2 0:5 1.5 1.4 1.57 1.55 1.55 1.530:9 1.3 1.28 1.43 1.42 1.39 1.44Running time 0:1 108 109 208 53in seonds 197 168 0:5 140 95 148 133 174 61(Imp. greedy) 0:9 428 223 404 262 522 121Table 6.8: The properties and running time of the hybrid algorithms. Note how the valueof � inuenes the properties and running time of the hybrid algorithms.algorithm.One should note that for � = 0:1, the hybrid algorithms generate graphs whihare very lose to the greedy graph, see Table 6.8. The larger � value we hoose the
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128 Chapter 6 Experimental Study of Geometri Spannerslarger is the di�erene between the greedy graph and the graph generated by thehybrid algorithms. For example for t = 2 and � = 0:9, the generated graph is evenworse than the approximate greedy-graph. However for small t-values, the hybridalgorithm generates a graph with smaller size than the approximate greedy-graph.The hybrid algorithms are in general not very sensitive to the distribution ofthe input points. The running times for the hybrid algorithms are dependent onthe value of �. For small � values the dependeny is almost linear on the numberof points and for large � values the dependeny on n inreases, see Figure 6.12.This is beause the largest fration of the time is needed for the pruning stepwhih inreases when we have small t values. By inreasing �, less time is neededto build the initial graph while more time is needed for the pruning proess, seeFigure 6.13. However, the added time spent on pruning results in a better qualitynetwork, i.e. small size, low degree and low weight.6.3.9 Number of shortest path queriesIn Setion 6.2.1 we onjetured that the improved greedy algorithm only performsa linear number of shortest path queries. As an be seen in Figure 6.14, theexperiments strongly support the onjeture. The number of performed shortestpaths queries is even smaller than the number of shortest paths queries performedby the hybrid algorithms. This is important sine the hybrid algorithm onlyperforms O(n) shortest paths queries, one for eah edge in the initial graph. Bydereasing t, the number of shortest path queries inreases but it still shows alinear dependeny on n, and the dependeny on t is small.
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6.3 Experimental results 129n = 8000 Uniform Normal Gamma Clusteredt = 2Improved greedy 26K 31K 32K 52K� = 0:1 26K 26K 26K 42KHybrid1 � = 0:5 29K 29K 29K 38K� = 0:9 48K 49K 48K 54K� = 0:1Hybrid2 � = 0:5 29K 29K 29K 37K� = 0:9 45K 45K 44K 52K� = 0:1 27K 31K 29KHybrid3 � = 0:5 31K 32K 30K� = 0:9 52K 52K 45Kt = 1:1Improved greedy 51K 54K 55K 97K� = 0:1 26K 53K 52K 86KHybrid1 � = 0:5 65K 66K 65K 104K� = 0:9 127K 130K 125K 171K� = 0:1Hybrid2 � = 0:5� = 0:9� = 0:1Hybrid3 � = 0:5� = 0:9 130K 130K 95KTable 6.9: The number of the shortest path queries performed by the improved greedyalgorithm and hybrid algorithms.The number of shortest paths queries inreases slightly for lustered point setsbut it is still linear, see Figure 6.15(b). This is somewhat surprising sine thesize of the greedy graph is smaller for lustered point sets than for non-lusteredpoint sets.For example, to onstrut a 2-spanner on a set of 8K uniformly distributedpoints, the improved greedy algorithm performed approximately 26K shortest pathqueries while the original algorithm performs roughly 32 million queries. For lus-tered point sets with the same size the number of shortest path queries inreasesto 52K, see Table 6.9.To see the reason for this, we partition the shortest path queries performedby the improved greedy algorithm into two sets. The �rst set ontains all thequeries whih results in adding an edge to the graph. The seond set ontains theremaining queries. That is, these queries our when the value in the weight matrix(see Algorithm 6.2.2) is not properly updated. Instead a query is performed, butsine no edge is added the graph already ontains a t-path. This means that if theentries in the weight matrix is far from the real shortest paths then the size of theseond shortest path query set inreases.
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0 2000 4000 6000 8000 10000 12000 14000(b) t = 2.Figure 6.15: Comparing the number of shortest paths queries performed by the improvedgreedy algorithm.The size of the greedy-graph, and therefore the number of shortest paths queriesin the �rst set, is almost the same for lustered and non-lustered point sets. Sothe di�erene in the number of queries between lustered and non-lustered pointsets omes from the seond set of queries.In lustered point sets, when an edge onnets two points in the same luster,it hanges the path lengths between points whih lie within the same luster. Butwhen it omes to an edge whih onnet two lusters, espeially when the lustersare not onneted, it a�ets the shortest path lengths of a muh wider range. Thismeans, in the lustered point sets the size of the seond shortest path query set ismuh larger than in the non-lustered ase.Another interesting observation omes from omparing the size of the greedygraphs with the number of shortest path queries performed by the improved greedyalgorithm. For non-lustered point sets with 8K points and for t = 2 the numberof shortest paths queries is at most a fator 3 times the number of edges and inthe lustered points sets, this inreases to 5, see Table 6.3 and Table 6.9. Byadding an edge to the graph, we atually update the graph and it might hangethe length of many shortest paths but the experiments show that on average theimproved greedy algorithm performs roughly 5 shortest path queries per edgewhih is surprisingly small.6.3.10 Running timeIn this setion we study the running times of the implemented algorithms. We�rst onsider their behavior on uniformly distributed sets, and then we point outthe di�erenes for di�erent distributions.



6.3 Experimental results 131Uniform distributionThe running times of all the implemented algorithms (exept the original greedyalgorithm) for t = 2 and t = 1:1 are depited in Figure 6.16.We start with the greedy approahes. As the theoretial bounds suggest, theoriginal greedy algorithm has the highest time omplexity of all the implementedalgorithms and it learly shows in the experiments, see Table 6.10. As an example,onstruting a greedy 2-spanner on a set of 4K uniformly distributed points, theoriginal greedy algorithm required 12K seonds while the improved algorithm onlyneeded roughly 34 seonds.Using the improved algorithm we are able to onstrut greedy graphs for muhlarger points sets. For instane for a set of 10K points we an onstrut a 2-spannergreedy graph in about 300 seonds.Based on the experiments, the running time of the improved greedy algorithmis omparable to the running times of the hybrid algorithms using � = 0:5 for t = 2and the algorithm performs even better for smaller values of t, see Figure 6.12 forn = 4000 n = 8000Uni. Nor. Gam. Clus. Uni. Nor. Gam. Clus.t = 2Org. greedy 12273 12755 11844 9205Imp. greedy 34 39 38 28 197 237 214 168Apx. greedy 26 26 24 12 93 93 84 52�-graph 0.3 0.3 0.3 0.2 0.9 0.6 0.7 0.6O. �-graph 3.4 3.4 3 7 13 7 7 19R. O. �-graph 1.8 1.8 1.8 3 4.6 4.7 4.6 8WSPD-graph 2.7 3.7 3 0.6 11 10 12 1.6Skip-list 1.2 1.2 1.1 1 2.9 2.6 2.8 2.4Sink-spanner 0.7 0.7 0.7 0.6 1.4 1.4 1.4 1.2t = 1:1Org. greedy 42198 45334 41810 29361Imp. greedy 103 115 110 111 524 570 519 585Apx. greedy 515 592 398 28 1513 1717 1271 128�-graph 2.3 2.4 2.2 1.6 5.4 5.7 5.2 3.9O. �-graph 23 22.5 22 42 63 73 64 136R. O. �-graph 10.6 11 10.8 16 27.6 28.5 27.3 42WSPD-graph 20 23 21 1 53 66 58 5Skip-list 12 13 11 8 28 30 26 20Sink-spanner 9.5 9.4 8 3.7 19.6 21 19.7 10Table 6.10: The running times are shown in seonds for the algorithms with di�erentdistributions.
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O(n log n). However, the di�erene in their atual running times is quite sub-stantial and for some a bit surprising. The �-graph algorithm is superior to theothers with respet to the running time. For sets ontaining 10K points and fort between 1.5 and 2 the �-graph was onstruted in less than two seonds. Fort = 1:1 the running time inreased to approximately 6 seonds, whih is to beexpeted sine its running time is highly dependent on the value of 1=(t−1)2. Thefastest algorithms after the �-graph onstrution were the sink-spanner algorithm,the skip-list spanner algorithm and the random ordered �-graph algorithm whihbasially are all modi�ed �-graph algorithms. Again for 10K points they requireda ouple of seonds for t = 2 and approximately half a minute for t = 1:1. Thesealgorithms almost show a linear time behavior in our experiments, see Figure 6.17.For uniformly distributed point sets the running times of the ordered �-graphalgorithm and the WSPD algorithm learly show a superlinear behavior but theyare still fast enough to handle 8K points with t = 1:1 in roughly one minute. Forsmaller values of t and larger point sets the ordered �-graph algorithm ran intomemory problems. The simpli�ed version that we implemented uses 
( 2�� n logn)spae (instead of 
( 2�� n) spae) and for small values of t and large values of n thisfuntion grows rapidly.
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0 2000 4000 6000 8000 10000 12000 14000(b) Uniform distribution, t = 1:1.Figure 6.17: The running time for the O(n log n)-time algorithms in the experiments forUniform distributions.The approximate greedy algorithm works well for large values of t, however,when t dereases the running time deteriorates rapidly. It is omparable to therunning time of the improved greedy algorithm for t = 2 and even slower fort = 1:1, see Figure 6.16. Thus, even if the theoretial bound on the running timeof the implemented algorithm is O(n log2 n) it seems that the onstant hidden inthe O-notation is so large that for points sets up to 13K points the atual runningtime is muh worse than what we would expet. Reall that the onjeturedrunning time of the improved greedy algorithm is O(n2 logn).Other distributionsMost of the algorithms perform slightly better on the lustered point sets, exeptthe WSPD-algorithm and the approximate greedy algorithm whih both show aonsiderable improvement. For example, to onstrut a 2-spanner on a uniformlydistributed set whih ontains 8K points, the WSPD algorithm needs roughly 11seonds while the orresponding running time for the lustered set is about 1.6seonds. For t = 1:1 the improvement is even bigger; 53 seonds ompared to 2.5seonds, see Figure 6.18(a). TheWSPD algorithmwas expeted to perform slightlybetter for lustered sets sine it uses a lustering approah, but the improvementwas greater than predited. Espeially for small values of t the algorithm performsbetter, it is even omparable to the �-graph algorithm for the lustered set with10K points and t = 1:1.As you an see in Figure 6.18(b), a similar observation an be made for theapproximate greedy algorithm where the orresponding running times for t = 1:1and n = 8K are 1500 seonds and 128 seonds. As for the WSPD-approah the
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6.4 Conluding remarks 135the uniform set is approximately 33K while it is about 57K for the lustered set.The number of lusters is 100, with 100 points per luster. From the experimentsit follows that the number of shortest-path queries performed between two pointswithin the same luster of uniformly distributed points is approximately 300. Sinethere are 100 lusters the number of shortest path queries needed for the \intra-luster" edges in the lustered set is approximately 30K. These queries are allperformed on very small graphs and are therefore proessed extremely fast. Nextapproximately 27K \inter-luster" queries are performed. We believe that thesmaller number of \inter-luster" queries together with the fat that the 2-spannerof the lustered set is slightly smaller than for the uniform set explains why therunning times for the two di�erent distributions are almost idential.6.4 Conluding remarksIn short the onlusions from the experiments are as follows:
• The greedy graph has surprisingly good quality when it omes to the numberof edges, the weight, the degree and the number of rossings. The diameterof the greedy graph is onsiderably higher than the diameter of the othergraphs.
• The improved greedy algorithm worked muh better than expeted and itwould be very interesting if one ould prove that the improved greedy algo-rithm has an expeted running time of O(n2 logn).
• The WSPD-algorithm produes graphs with unexpetedly poor quality fornon-lustered sets. For lustered sets the results are muh better; the weightand degree of the WSPD-graph are onsiderably smaller than the weight anddegree of the (ordered) �-graphs. The weight and the degree of the WSPD-graphs seem to onverge for very large data sets. However, to answer thisonjeture we need to perform tests on muh larger sets.
• The approximate greedy algorithm performs worse than expeted in mostases, even though the theoretial bounds are very good.
• The �-graph onstrution algorithm is the fastest algorithm, however if itis important to obtain a high quality network then the improved greedyalgorithms seems to be the most suitable hoie.
• We also tested three hybrid algorithms eah one being a ombination of a fast,but with low quality, algorithm and greedy pruning. The graphs generatedby these three hybrid algorithms have roughly the same properties as thegreedy graph. We also have a parameter � for these algorithms whih we anadjust based on the appliation. The higher � we hoose the higher di�erene



136 Chapter 6 Experimental Study of Geometri Spannersbetween the greedy graph and the graph generated by hybrid algorithms butlower time to onstrut the spanner.The main question that remains to be answered experimentally is the depen-deny on the number of dimensions, i.e. how the algorithms and the quality ofthe produed graphs depends on the number of dimensions. Also it is interestingto improve the running time of the improved greedy algorithm. We an obtain animprovement by using algorithms whih perform shortest path queries faster. Soone parameter whih ould be used to measure the eÆieny of all the algorithmsis the number of shortest path queries performed by an algorithm.The experiments show that the weight of the �-graph is very small for non-lustered sets. Proving, or disproving, that the expeted weight of the �-graph issmall for uniform distributions is an interesting and hallenging open question.AknowledgementsWe would like to thank the anonymous reviewers for omments on an earlier versionof this hapter.



Chapter 7Conlusions
In this thesis we onentrated on geometri spanner networks. The area attrated alot of attention in past few years [Epp00, GK07, NS07, Smi00℄ and �nds appliationin several branhes like robotis, network topology design, metri spae searhingand bioinformatis. Below we briey disuss the most important results from thethesis and the most interesting open problems that remain.One of the major issues in designing a network is reliability. Reliability isonerned with the fat that in many appliations the nodes and/or links in anetwork may fail. A network is reliable, or fault-tolerant, when it retains its goodproperties even after some nodes or links fail. With respet to spanners this meansthere should still be a short path between any two nodes in what remains of thespanner after the fault. The problem of designing k-vertex (or: k-edge) fault-tolerant geometri spanners, faults that an destroy an arbitrary olletion of kverties or edges, was studied before [CZ03, LNS98, LNS02, Luk99℄. For geometrispanners, however, it is natural to onsider faults that destroy all verties and edgesinterseting some geometri fault region. This is relevant, for instane, when thespanner models a road network and a natural (or other) disaster makes all theroads in some region inaessible.In Chapter 2 we introdued region-fault tolerant spanners and we proved thatany planar point set admits a sparse t-spanner, of near-linear size, whih is faulttolerant under any onvex region fault; for several speial ases or by adding Steinerpoints we ould improve the size to linear. The main problem whih remains openis whether one an improve the spanner size for arbitrary point sets to linear. Wealso onsidered fault-tolerant geodesi t-spanners: this is a variant where, for anydisk D, the distane between any two points outside D in the remaining graph is



138 Chapter 7 Conlusionsat most t times the geodesi distane between them in R
2 \ D. We proved thatfor any point set we an add Steiner points to obtain a fault-tolerant geodesit-spanner of linear size. It would be interesting to generalize the problem to thease when we have urves as the edges in a network instead of lines. It would alsobe interesting to have a fast algorithm whih heks whether a given network isfault tolerant under any onvex region fault or not. Using a simple trik we obtainan algorithm whih in O(n5) time using O(n2) spae an �nd the answer for anetwork with n verties.Given a geometri network, natural questions to ask are how we an improvethe quality of the network by adding one or more edges. Similarly, one an askhow we an remove an edge from the network suh that the quality of the networkdoes not derease too muh. In the ase of extending the network, we studied theproblem of �nding the additional edge while maximizing the improvement, whihin our ase means minimizing the dilation of the resulting graph. Chapters 3addressed the problem of optimal edge augmentation of a given geometri network.The main results are an exat algorithm and several approximation algorithms.The main approximation algorithm �nds a (2 + ")-approximation of the optimaledge. A hallenging open problem is to improve the approximation fator of theapproximation algorithms to 1 + " with the same time omplexity. Also, is itpossible to �nd an exat algorithm whih solves the problem in o(n4) time usinglinear spae?In Chapter 4 we onsidered the problem of �nding/deiding an optimal edgedeletion in a simple ase. We showed that given a polygonal yle in the plane,in near-linear expeted time we an ompute the edge of the yle whose removalresults in a polygonal path of smallest possible dilation. It is also shown thatthe edge whose removal gives a polygonal path of largest possible dilation anbe omputed in near-linear time; when the yle is onvex then we an �nd theedge in linear time. Generalizing the results to more general Eulidean graphs isa hallenging open problem.The spanner diameter of a t-spanner is the smallest integer D suh that forany pair of verties, there is a t-path in the graph between them ontaining atmost D edges. As far as we know there is no known algorithm to ompute thespanner diameter of a t-spanner. In Chapter 5 we presented several algorithms,using a dynami programming approah, for omputing the spanner diameter ofa given t-spanner. The fastest algorithm omputes the spanner diameter of at-spanner with n verties and m edges in O(D ·mn) time using O(m + n) spae,where D is the spanner diameter of the input network. The algorithms are purelyombinatorial and do not take advantage of the fat that the graphs are embeddedin Eulidean spae. An interesting problem is to improve the omplexity boundsin the geometri ase.



139The empirial study of algorithms is a rapidly growing researh area. Imple-menting and doing experiments on algorithms shows their eÆieny in pratieand brings the algorithms to the pratial stage. In Chapter 6, we ompared themost well-known geometri t-spanner algorithms (in 2-dimension) experimentally.The experiments ompared the quality of the generated graphs, like size, weight,maximum degree and diameter as well as the running time. We showed that thegreedy algorithm generates graphs with surprisingly good quality when it omesto the number of edges, the weight, the degree and the number of rossings. How-ever, the greedy algorithm is very slow; we gave several speedup strategies for thegreedy algorithm. The �-graph algorithm is the fastest algorithm for onstrutingt-spanners. The major open problem is to investigate the e�et of the number ofdimensions on the quality of the graphs and the running time of the algorithms.
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Summary
A Theoretial and Experimental Study ofGeometri NetworksA geometri network on a set V of points in d-dimensional Eulidean spae is aweighted undireted graph G(V;E) with vertex set V suh that the weight of anedge is the Eulidean distane between its endpoints. We say that the geometrinetwork G(V;E) is a t-spanner of V , for a t > 1, if for eah pair of points u and v inV there exist a path in G between u and v of length at most t times the Eulideandistane between u and v. The dilation, or streth fator, of a geometri graph Gis the minimum t for whih G is a t-spanner. We an easily extend the de�nitionof a t-spanner of a point set to a t-spanner of a weighted graph. A graph G′(V;E′)on the same vertex set but with edge set E′ ⊆ E is a t-spanner of G(V;E) if foreah pair of verties u; v ∈ V there exist a path in G′ between u and v of lengthat most t times the length of the shortest path between u and v in G.This thesis ontains theoretial and experimental results on geometri net-works. In the theoretial part, we introdue the onept of region-fault tolerantspanners for planar point sets, and prove the existene of region-fault tolerantspanners of small size. For a geometri graph G on a point set V and a regionF , we de�ne G⊖F to be what remains of G after the verties and edges of Ginterseting F have been removed. A C-fault tolerant t-spanner is a geometrigraph G on V suh that for any onvex region F , the graph G⊖F is a t-spannerfor G(V )⊖F , where G(V ) is the omplete geometri graph on V . We prove thatevery set V of n points admits a C-fault tolerant (1 + ")-spanner of size O(n logn),for any onstant " > 0. If adding Steiner points is allowed then the size of thespanner an be redued to O(n), and for several speial ases we show how toobtain region-fault tolerant spanners of O(n) size without using Steiner points.We also onsider fault-tolerant geodesi t-spanners ; this is a variant where, for anydisk D, the distane in G⊖D between any two points u; v ∈ V \ D is at most ttimes the geodesi distane between u and v in R

2 \ D. We prove that for anypoint set V we an add O(n) Steiner points to obtain a fault-tolerant geodesi(1 + ")-spanner of size O(n). 151



152 SummaryWe also inlude some results on optimal edge augmentation and optimal edgedeletion on geometri networks. The goal is to add/remove an edge to/from agraph suh that the dilation of the resulting graph is minimized. In edge augmen-tation ase, we present one exat algorithm and several approximation algorithms.The best approximation algorithm omputes a (2 + ")-approximation of the opti-mal solution in O(nm+ n2 logn) time using O(n2) spae, where n is the numberof verties and m is the number of edges in the input network.For the speial ase, when the dilation of the input network is onstant, we animprove the approximation fator to 1 + " and the running time to O(n2). Forthe problem of dilation optimal edge deletion, we solve the problem in a restritedase, when the network is a simple yle. A randomized algorithm is presentedwhih, given a yle on a set of n points, omputes in O(n log3 n) expeted time,the edge of the yle whose removal results in a polygonal path of smallest possibledilation. It is also shown that the edge whose removal gives a polygonal path oflargest possible dilation an be omputed in O(n logn) time. If the input yleis a onvex polygon, the latter problem an be solved in O(n) time. Finally, it isshown that given a yle C, for eah edge e of C, a (1 − ")-approximation to thedilation of the path C \ {e} an be omputed in O(n logn) total time.Computing the spanner diameter of a t-spanner is another problem whih isaddressed in this thesis. We present an algorithm whih omputes spanner diam-eter of a t-spanner with n verties and m edges in O(D ·mn) time using O(m+n)spae, where D is the spanner diameter of the input network.Finally, we experimentally study the performane and quality of the most om-mon t-spanner algorithms for points in the Eulidean plane. The experiments aredisussed and ompared to the theoretial results and in several ases we suggestmodi�ations that are implemented and evaluated. The quality measurementsthat we onsider are the number of edges, the weight, the maximum degree, thespanner diameter and the number of rossings. We ompare the running time ofthe algorithms and suggest some improvements. This is the �rst time an extensiveomparison has been made between the onstrution algorithms of t-spanners.
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نقطه O(n) کردن اضافه با یا خاص حا¯ت برخی در پایاست. محدب، شکل به ناحیهای خرابی هر تحت که
داد. کاهش O(n) به را یالها تعداد میتوان اشتاینر(۶)

نهایی هدف میشود. ارائه هندسی شبکههای در یال بهینه(۷) کاهش افزایش/ زمینه در نتایجی همچنین
در تأخیر که نحوی به شود حذف شبکه از یال یک یا اضافه شبکه به یال یک که است آن زمینه این در
برای تقریبی الگوریتم چند و دقیق الگوریتم یک یال، بهینه افزایشِ حالت در شود. کمینه حاصل شبکه
در بهینه یال برای ۲)-تقریب + ") یک تقریبی، الگوریتم سریعترین است. شده ارائه بهینه یال محاسبه
و رئوس تعداد n آن در که میکند، محاسبه حافظه فضای O(n۲) از استفاده با O(mn+ n۲ logn) زمان
به را تقریب ضریب میتوان باشد ثابت ورودی شبکه در تأخیر که حالتی در است. شبکه یالهای تعداد m

داد. کاهش O(n۲) به را اجرا زمان و ۱+ "

شده بررسی باشد صفحه در دور(۸) یک ورودی گراف که حالتی در مسأله یال بهینه کاهش حالتِ در
آن حذف که را یالی صفحه، در رأس n با دور یک برای که است شده ارائه تصادفی الگوریتم یک است.

میکند. محاسبه O(n log۳ n) زمان در را میکند ایجاد حاصل مسیر تاخیر در افزایش کمترین
نتیجه است. شده پرداخته آن به پایاننامه این در که است دیگری مسأله t-پوشش یک قطر(۹) محاسبه
با O(D ·mn) زمان در را یال m و رأس n با t-پوشش یک قطر که است الگوریتمی قسمت این در اصلی

است. نظر مورد شبکه قطرِ D آن در که میکند محاسبه حافظه فضای O(m+ n) از استفاده
شبکههای و شدهاست انجام t-پوششها ساختن برای مطرح الگوریتمهای روی آزمایشاتی نهایت، در
انجام بررسی طبق شدهاست. مقایسه هم با الگوریتمها این اجرای زمان و الگوریتمها این توسط شده تولید

است. t-پوشش سازنده الگوریتمهای روی وسعت این با تجربی بررسی اولین این شده،

Steiner point(۶)
optimal edge augmentation/deletion(۷)

cycle(۸)
diameter(۹)



هندسی شبکههای روی تجربی و نظری مطالعه یک

فرشی محمّد

چکیده
یک از است عبارت (Rd) حقیقی d-بعدی فضای در نقاط از V مجموعه یک روی هندسی(۱) شبکه یک
u بین اقلیدسی فاصله با گراف در (u; v) یال هر وزن که V رئوس مجموعه روی جهتدار غیر وزندارِ گرافِ
یک ازای به مینامند، V مجموعه برای t-پوشش(۲) یک را G(V;E) هندسی شبکه است. برابر ،|uv| یا ،v و
مسیر کوتاهترین طول dG(u; v) که ،dG(u; v) ≤ t · |uv| ،V در v و u رأس دو هر ازای به اگر ،t > ۱
ضریب یا تأخیر(۳) را است t-پوشش یک G شبکه آن ازای به که t کوچکترین است. G گراف در v و u بین
t-پوشش به میتوان راحتی به را نقاط مجموعه یک برای t-پوشش تعریفِ مینامند. G شبکه کشش(۴)
،E′ ⊆ E ،G(V;E) گراف برای t-پوشش یک را G′(V;E′) گراف داد. تعمیم وزندار گرافِ یک برای

.dG′(u; v) ≤ t · dG(u; v) ،V در v و u رئوس از زوج هر ازای به اگر مینامند
نظری، قسمت در است. هندسی پوششهای روی تجربی و نظری نتایج سری یک شامل پایاننامه این
ثابت و میشود تعریف صفحه روی نقاط مجموعه برای (۵) ناحیهای خرابیهای تحت پایا پوششهای مفهوم
کم یالهای تعداد با محدب ناحیهای خرابیهای تحت پایا پوششهای نقاط، از مجموعه هر برای میشود
G⊖ F کنید فرض صفحه، از F ناحیه یک و صفحه از V نقاط مجموعه روی G گراف برای است. موجود
G گراف میآید. بدست میگیرند قرار F ناحیه در که G یالهای و رئوس تمام حذف از که باشد گرافی
G ⊖ F ِ گراف ،F محدب ناحیه هر ازای به اگر مینامند محدب خرابیهای تحت پایا t-پوشش یک را
قسمت این در اصلی نتیجه است. V روی کامل گراف Gc(V ) که باشد Gc(V ) ⊖ F برای t-پوشش یک
میکند ایجاد یال O(n logn) با پوششی صفحه، از نقطه n از متشکل مجموعه هر برای که است الگوریتمی

geometric network(۱)
t-spanner(۲)
dilation(۳)

stretch factor(۴)
region fault tolerant spanners(۵)
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