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Schedule Management: an Object Oriented Approach 

G. Wolf (1.9.91) 

Department of Mathematics and Computer Science, 
Eindhoven University of Technology, 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

Abstract. In this paper we consider resource-constrained time-dependent scheduling systems, 
Le. decision support systems with time as the important planning component. Instead of dealing 
with optimalization aspects of the planning problem, we concentrate on schedule management, 
i.e. stepwise planning with respect to primitive functions, like handling single decisions or 
constraints. 

The design of these systems is based on a mathematical model, giving a formal characteriza­
tion of a class of scheduling problems and allowing generic descriptions of scheduling objects like 
processors, operations, decisions and constraints. The model is applied to various scheduling 
problems, like resource constrained project scheduling, car routing, the construction of time 
tables both for schools and for nursery in hospitals. 

An object oriented implementation of the model, based on the natural hierarchy of scheduling 
problems, tUrns out to lead to a clear separation between the generic and the domain specific 
components of the schedule manager, minimizing redundant code and resulting in software with 
a high degree of maintainability. 

Keywords. Decision Support System, Scheduling, Object Oriented Design. 
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1. Introduction 

Software for decision support systems is very sensitive to change requests. A minor 
change in the underlying model or in the limiting conditions can make it necessary to 
redesign the whole system. There are hardly reusable components. The claim for a 
more flexible DSS-design is uttered by many authors [2,6,10,20J. 

The reason for this inflexibility can be found among others in the fact, that conven­
tional DSS-systems are dominated by the algorithmic aspect. Although it is stated, 
that the software components of a DSS should relate to both information management 
and optimalization [3,6,16]' more attention is paid to the latter aspect, especially in the 
first design phase. Mostly mathematicians working in the field of operations research 
were involved in the software development. In spite of the mathematical relevance of 
algorithmic aspects, the software dealing with it plays an inferior role related to other 
software components like the management of decisions and the user interface. 

In view of the fact, that software maintainability is our highest objective in this 
paper, the following requirements can be formulated: 

- the software should contain reusable modules, that can be applied to a wider class of 
planning problems; 

- the software architecture should allow a clear separation between the generic compo­
nents and the domain specific components of the software; 

- the software should be a platform with respect to the implementation for both generic 
algorithms (simulated annealing, genetic algorithms, etc.) [IJ and powerful domain 
specific optimalization procedures; 

- the software should be flexible with respect to changes in the (domain specific) model 
and it should be easy to add or to change constraints. 

Although several attempts have been made to increase flexibility of optimalization 
components by using general search methods applicable in a wide range of planning 
situations [10J, we concentrate in this paper on data manipulation aspects, particularly 
oriented towards scheduling problems. The basic system functionality is schedule ma­
nagement. Primitive functions should be provided to support stepwise planning [15J. 
The user should have among others the possibility to add (and delete) scheduling ob­
jects like "decisions" and "constraints"; the system should calculate the consequences 
of user actions and check feasibility. Optimalization is not relevant in this context. 

Scheduling is the allocation of resources overtime to perform certain tasks [5J. Sche­
duling problems can be formulated as sequencing problems with time as the important 
planning component. Moreover, we require that all feasibility constraints and schedule 
evaluation criteria can be expressed as measures of time. The class of these scheduling 
problems is rather extensive and does include job-shop planning, car routing, school 
time tables and time tables for nursery in hospitals. We will give a formal definition 
of this class. Although several scheduling models exist [5,9,13]' which are suitable to 
formulate optimalization problems, they are not flexible enough for our purposes. 

Because we need the flexibility of generic models as well as the power of problem 
specific models, modelling on more abstraction levels is necessary. This implies a soft­
ware architecture consisting of generic and domain specific modules [20J. A specific 
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schedule manager is built up by linking the generic modules with the relevant group of 
domain specific modules. 

Because of our high requirements for software maintainability, system implementa­
tion is based on an object oriented design [17,19]. The use of object oriented techniques 
for DSS-software has been up to now rather limited [8,12]. There are however many 
reasons, that plead for their application: 

- the concept of encapsulation, to specify objects both by their attributes and by their 
methods, is a powerful mechanism to represent scheduling objects like processors, 
operations, decisions and constraints; 

- the concept of inheritance (and abstract datatyping), to formalize IS-A relationships 
between classes and subclasses, is necessary to represent the natural hierarchy of 
scheduling problems and scheduling objects to get a clear separation between the 
generic and the domain specific components; 

- polymorphism, i.e. the possibility to use object methods in different subclasses under 
the same name, but with specific functionalities, will enlarge the flexibility of the 
software. 

2. Notations 

We will follow some notational conventions: 

A""B 
[A -+ B] 
A* 
peA) 

set A and set B are equivalent (of equal power); 
the set of functions from A to B; 
the set of strings of elements from set A; 
the powerset of A (set of all subsets of A); 

U (A( i) I P( i)) : the union of all sets AU), for which P( i) holds; 

~ (aU) I P(i)) : the sum of all a(i), for which P(i) holds.; 

Let Time be a finite interval on the real axis. With B(Time) we denote the set 
algebra generated by subintervals of Time. 

Let A be an entitytype with attributes A" ... , Am i.e. A "" A, x ... x An, and let 
tEA be an entity of that type. With Ai(t) we denote the projection of t to Ai. 

3. A basic general model 

We restrict ourselves to resource-constrained time-dependent planning problems with 
the property, that schedules can be represented as Gantt charts. This problem class is 
very wide and includes the general jobshop problem, car routing and the construction 
of time tables both for schools and for nursery in hospitals. 
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Existing models for scheduling problems are either too specific with regard to constraints 
[5,9,13] or too general to be powerful enough to characterize the time aspects of sche­
duling problems properly [10,14]. For this reason we present in this section a basic 
general model to characterize our problem class; extensions and problem specific in­
terpretations follow later. Our object definitions (see section 7) will be based on this 
model. 

3.1. Scheduling problems 

A class of scheduling problems can be characterized by the following tuple 

(P,O,D,pr,op,S,f,g,tmax ) with 

- P, the set of all possible processors (or resources); 

- 0, the set of all possible operations (or tasks) to be assigned to processors; 

- D, the set of all possible decisions; we have D = D+ U Do, with D+ being the set of 
decisions, that assign an operation to a processor (real decisions) and Do being the 
set of decisions, that put a processor in the waiting state (idle decisions); 

- the function pr D -+ P assigning the processor, involved in a decision; 

- the function op D+ -+ ° assigning the operation, involved in a real decision; 

S, the set of all possible states, that a processor can have with the function 
80 : P -+ S assigning the initial states; 

- the function f : D X S -+ S describing a state tran8ition, being the effect of a 
decision with respect to a processor; 

- the function g : D X S -+ R+ to determine the duration, that a certain' decision will 
be active; 

- tmax , a positive real number, defining the scheduling interval Time = (0, tmax]. 

3.2. Schedules 

Scheduling problems are distinguished from other planning problems by the aspect 
of time. All time aspects should be handled in the generic part of the system. 

Let Pi be a processor from a finite subset of P and let {dij }j:1,ni be a finite sequence 
of decisions with respect to Pi. The decision di,j is effectuated at the time ti,j and is 
active till ti,j+t, the time, that the next decision with respect to Pi will be effectuated. 
We call tiJ a decision-point. Let Si,j be the state of processor Pi after decision di,i 
(j > 0). Then we have the following equations 

8i,0 = 80(Pi) 

Si,j = f( 8i,j-1, di,j) (j > 0) 

ti,j = ti,j-1 + g(8i,j-2, di,j-tl (j > 1) . 
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We call Sfin(Pi) = Si,n; the final state of processor Pi, which is the state after the last 
decision. 

We can define a schedule as a tuple (Ps, as, Fs) with 

- Ps a finite subset of P, 

a s a finite subset of 0, 

- a function Fs : Ps -+ D* assigning a finite sequence of decisions to every processor 
of Ps, 

Fs Pi >-+ {di,j}j=l,n; (Pi E Ps; di,j E D) with 

pr(di,j) = Pi, (op(d;,j) E as or di,j E Do) and 

L (g( dij, Sij) I 0 < j $ ni) $ tmax . 

As a consequence of this definition only one operation at a time can be allocated to 
a processor, whereas more processors can be assigned to the same operation simulta· 
neously. 

3.3. Constraints 

Constraints are used to define the feasibility of schedules. It is important to have 
the flexibility to add and to change constraints dynamically. To realize this we should 
represent planning knowledge and especially constraints declaratively in a domain in­
dependent way. Several ideas and concepts going in this direction, can be found in the 
literature [7,11,12,20]. 

Although we assume a certain homogeneity with respect to scheduling objects like 
resources, operations and decisions, this is not the case with constraints. On the do· 
main specific level various subclasses (types) of constraints may be defined (deadline 
constraints, precedence constraints, etc.). It is therefore important to distinguish which 
properties are adherent to constraint classes and which to constraint instances. 

We distinguish hard and weak constraints. The feasibility of a schedule with respect 
to hard constraints is guaranteed by the schedule manager, where as violations of weak 
constraints are only signalized to the user, who is ultimately responsible for feasibility. 
The hardness of a constraint is specified on instance level. 

We require, that constraint violations can be expressed by time intervals, denoting 
the period, when the constraint is violated or when decisions should be effectuated to 
undo the constraint violation. This is just a generalization of the convention to specify 
constraints by Boolean functions. This is done for the following reasons: 

- the time aspect of the constraint violation is more emphasized, which is rather im· 
portant for scheduling problems; 

we have a measure of infeasibility with respect to constraints, which is important for 
weak constraints; 
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- a wide class of schedule quality measures can be formulated as simple expressions of 
critical regions, belonging to the same class of constraints (make span, earliness and 
tardiness for the job-shop problem, etc.). 

Now we come to a formal definition of constraints. Let Sch be the set of all schedules 
with respect to a certain problem class. We define a constraint-type c by its specific 
domain and its evaluator, i.e. a pair (Ze, evale) with Ze a set and evale a (penalty) 
function with 

evale : Sch x Ze _ B(Time) . 

A constraint instance of type c can be defined as a pair (ze, hd) with Ze E Ze and hd, 
being a Boolean to specify the hardness of a constraint instance. 

Evaluation of the penalty function evale for a particular constraint instance and 
schedule will produce a subset of the scheduling interval Time to indicate the time 
period, when the constraint is violated or when decisions should be effectuated to undo 
the constraint violation. This time period, which we call the critical region, can be 
represented as a finite set of disjunct intervals. The critical region can be empty in the 
case of feasibility or contain just the whole time interval as extreme cases. 

In the Section 4 this definition will be illustrated by a variety of examples. 

3.4. Quality measures 

Beside constraints, that define the feasibility of schedules, there are quality measures 
for comparison of schedules. These criteria are often defined as penalty functions, 
mapping a schedule to a real value [13]. It makes sense to couple quality measures 
to constraints or sets of constraints by measuring the extent of violation with respect 
to these constraints. For the most common quality measures (make span, total or 
weighted tardiness, etc.) corresponding constraints can be defined. 

The relation between constraints and quality measures will be formalized by the 
following definition. A quality measure can be defined by a pair (Glisi,agg) with Glist 
being a finite list of constraints and agg being a real (aggregate) function defined on 
the set of strings of real numbers 

agg : R* - R. 

Examples of such aggregate functions are sum(X), max(X), variance(X), etc. with 
X a sequence of reals. 

The constraint list mentioned above will contain often all constraint instances of a 
certain type, but this is not necessary. 

Given a particular schedule a quality value q with respect to a quality measure 
(Glisi, agg) can be calculated by applying the specified aggregate function to the list of 
the lengths of the critical time regions, defined by the constraint evaluation functions 
corresponding to the specified list of constraints (see fig. 3.1); the length of an element 
of B( R) is defined by its Lebesque measure fl.. 
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Sch 

Clist 1 
(B(R))* 

q 

R* 

Fig. 3.1. Calculation of the quality value of a schedule. 

For example we can define the make span of a schedule for the job-shop problem by 
(virtual) deadline constraints (with deadlines equal to zero) and the aggregate function 
giving the maximum of a string of real numbers. 

3.5. Extended schedules 

Let (P, 0, D, pr, op, S, f, g, tmax) be a class of scheduling problems and let C be the 
set of all possible constraints for this class. We define an extended schedule by a tuple 
(P"O"F"C"Qs) with (P"O"Fs) being a schedule, Cs a subset of C and Qs a set 
of quality measures with c E C s for every constraint instance c being involved in Q s 

(Le. c an element of some Clist with (Clist,agg) E Qs). 

3.6. Expressions 

In this section we assume a fixed given schedule (P" 0" Fs). The set Ds of decisions 
involved is determined by 

Ds = {di,j I di,j = (FS(Pi))j, Pi E Ps, 0 < j ::; nil . 

We can now introduce some expressions, that are needed in the following paragraphs: 

- the start time of decision di,j: 

start( di,j) = I: (g( Si,k-l, di,k) I 0 < k < j) (j > 1) 

start(di,l) = 0 

- the end time of decision di,j: 

{ 
start(di,j) + g(Si,j-l,di,j) 

end(di j) = 
, start(di,j+1) (j < nil 

- the activity interval of decision di,j: 

interval( di,j) = (start( di,j), end( di,j)] 

- the time period, when processor p executes operation 0: 

pr-op-set(p,o) = U(interval(di,j) I pr(di,j) = p, Op(di,j) = 0, di,j E Ds) 
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- the executing period of operation 0: 

op-exec-set( 0) = U (pr-op-set(pi, 0) I Pi E Ps) 

- the start time of operation 0: 

{ 
min(start(di,j) I op(di,j) = 0, di,j E Ds) 

start-op( 0) = 
tmax 

- the end time of operation 0: 

{ 
max(end(di,j) I Op(di,j) = 0, di,j E Ds) 

end-op(o) = 
tmax 

- the finishing time of procesor p: 

end-pr(p) = L(g(di,j,Si,j-l) I pr(di,j) = p, di,j E Ds) 

- the allocation of processor p to operation 0 at time t: 

busy(p, 0, t) = { : 
if t E pr-op-set(p, 0) 

otherwise 

- the cummulative activity time of decision di,j at time t: 

if t 2: end(di,j) 

if op-exec-set( 0) ,p 0 

otherwise 

if op-exec-set( 0) ,p 0 

otherwise 

! 
end(di,j) - start(di,j) 

dur(di,j,t) = ~ - start(di,j) if start( di,j) < t < end( di,j) 

otherwise 

- the cummulative allocation time of processor p to operation 0 at time t: 

pr-op-dur(p,o,t) = 'L(dur(di,j,t) I pr(di,j) = p, OP(di,j) = 0, di,j E Ds) 
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4. Domain specific interpretations of the generic model 

In this section we give domain specific interpretations of the model. The basic model 
may be extended with domain specific parameters. We specify attributes of the rele· 
vant entities and give specifications of the relevant functions. Constraints are defined 
by their specific domain and their evaluators (see section 3.3). 

4.1. Job-shop 

Problem description: 

We consider general job-shop scheduling with job splitting and preemption. Opera­
tions (tasks) may be allocated several times to processors (resources). An operation 
has a size, i.e. the total resource capacity necessary to complete the task. Processors 
can execute operations with different speeds. To execute operations certain abilities 
of processors are required. The sequence of task execution is restricted by precedence 
constraints. Deadline and release time constraints are· related to the finishing and 
starting times of operations. Processors are only at certain time windows available. 

Domain specific model parameters: 

A - a set of abilities. 

Processors: 

id : identifier 
abi/set : set of abilities 
speed : executing velocity 

P "" N X P(A) X R+ 

Operations: 

id identifier 
req-abi/set : set of required abilities 
sue processing capacity 

0"" N X P(A) X R+ 

Real decisions: 

pr : processor reference 
op : operation reference 
time: duration 
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Idle decisions: 

pr : processor reference 
wait: waiting time 

States (of a processor): 

exectime : the total executing time of a processor 
(till a decision point) 

Initial state (of a processor): 

so(p) = 0 'ip E P 

State transition: 

f(state,dec) = { 
exectime( state) + time( dec) 

exectime( state) 

Duration of decision: 

g( state, dec) = { 

Constraints: 

time(dec) 

waite dec) 

if dec E D+ 

if dec E Do 

- release time constraints: Zc = 0 X R+ 

if dec E D+ 

if dec E Do 

evalc( sch, 0, rl) = {t E Time I t < rl} n op-exec-set( 0) 

- deadline constraints: Zc = 0 X R+ 

evalc( sch, 0, dl) = {t E Time It> dl} n op-exec-set( 0) 

- tasks should be completed: Zc = 0 

let compl( 0) be the completed part of an operation: 

comp/(o) = 'L(pr-op-dur(Pi,o,tmax ) • speed(Pi) I Pi E Ps) 
and let a = tm • x • compl(o)/size(o) 

evalc( sch, 0) = { 0 
(a, tmaxl 

if compl( 0) 2': size( 0) 

otherwise 
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- avoiding superfluous task execution: Zc = a 

evalc( sch, a) = ap-exec-set( a) n 
{t E Time I L,(pr-ap-dur(p;, a, t) * speed(p;) > size( a) I p; E Ps)} 

- required processor abilities for task execution: Zc = P x a 

evalc( sch, p, a) := { 0 
pr-ap-set(p, a) 

if abilset(p) n req-abilset( a) cF 0 

otherwise 

- generalized precedence constraints: Zc = a x a x R+ 

evalc( sch, aI, a2, waiting) := {t E Time I t < end-ap( all + waiting} 

n {t E Time It> start-ap( a2)} with al cF a2 

- processor unavailability: Zc = P X B(Time) 

evalc(sch,p,periad) := periadn (U (pr-ap-set(p, ak) I ak E as)) 

4.2. Car routing 

Problem description: 

Cargo (operations) has to be transported by trucks (processors) from one location 
to another. Transport time is dependent on the distance of the locations, the speed 
of a truck and the loading resp. unloading time. The amount of cargo that is trans­
ported simultaneously is restricted by a maximum volume, which is truck specific. 
Starting points may be different. Loading or unloading is only possible in specific 
time windows. 

Domain specific model parameters: 

L - a set of locations. 
dist : L x L -+ R+ a distance function. 

Processors: 

id 
start-lac 
speed 

: car-identifier 
: start location 
: speed of the truck 

maxvalume : maximal total volume 
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Operations: 

id : cargo-identifier 
from-loc : place of depart 
to-Ioc : destination 
load-time: time to load or to unload 
volume : volume of the cargo 

O""NxLxLxR+xR+ 

Real decisions: 

pr : processor reference 
op : operation reference 
loading: loading or unloading 

D+ "" P X ° X {T,1-} 

Idle decisions: 

pr : processor reference 
wait: waiting time 

States (of a processor): 

loc : the location of the truck 
vol : the total volume of the cargo 

S""LxR+ 

Initial state (of a processor): 

so(p) = (start-Ioc(p),O) 'tip E P 

State transition: 

(Jrom-Ioc(op(dec», vol (state) + volume(op(dec»), 
if dec E D+, loading(dec) = T 

I( state, dec) = (to-loc(op(dec», vol(state) - volume(op(dec»), 
if dec E D+, loading(dec) = 1-

state if dec E Do 
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Duration of decision: 

dist( loe( state ),from-Ioc( op( dec» * speed(pr( dec» 
+ load-time(op(dec») if dec E D+, loading(dee) = T 

g( state, dec) = dist(loe( state), to-Ioc( op( dec)) * speed(pr( dec» 
+ load-time(op(dec») if dec E D+, loading(dee) = -L 

wait(dee) if dec E Do 

Constraints: 

- an operation is executed by one processor only: Ze = 0 

{ 

op-exee-set(o) 
evale( seh, 0) = o 

if #{i I pr-op-set(pi,o) # 0} > 1 

otherwise 

- operations should be completed: Ze = 0 

evale( seh, 0) = { 0 
(0, tmax] 

if op-exec-set( 0) # 0 

otherwise 

- release time constraints: see job-shop 

- deadline constraints: see job-shop 

- loading/unloading is not allowed in certain time periods: Ze = L X B(Time) 

evale(seh,loe,period) =period n (U(end(di,j) -loadtime(op(di,j», end(di,j)] I 

di,j E D+, (from-Ioc(op(di,j» = loe) V (to-Ioc(op(di,j» = loc») 

- trucks should not be overloaded: Zc = p 

evalc(sch,p) = U(interval(di,j) I di,j E D+, pr(di,j) = p, VOl(Si,j) > supvol) 

- trucks should return to their starting points: Ze = P 

let returntime(p) be the time necessary to return from the final location back to 
the starting point: 

returntime(p) = speed(p) * dist(loC(SJin(P», start- loc(p)) 

and let a = maximum(O, tmax - returntime(p» 

eva(( seh, p) = { 0 
(a, tmax] 

if loe(sJin(P» = start-Ioc(p) 

otherwise 

13 



- two (or no) decisions are related to a processor and an operation: Zc = P X 0 

{

pr-op-set(p,o) if #{(i,j) I di,j E D+, pr(di,j) = p, Op(di,j) = o} i 2 
evalc( sch, p, 0) = . 

f/J otherwise 

- cargos should be loaded before being unloaded: Zc = P X 0 

pr-op-set(p,o) if 3i,il,}Z : j, < j2, di,jl'di,j, E D+, 

evalc( sch, p, 0) = 

4.3. Time tables for schools 

Problem description: 

pr( di,j, = pr( di,j,) = p, op( di,j,) = op( di,j,) = 0, 

(loading(di,j') = .L V loading(di,j,) = T) 

otherwise 

Weekly time tables for schools are considered. Classrooms (operations) are to be 
allocated to courses (processors) at certain time units. Allocation time is constant. 
It is assumed, that the allocation of teachers and classes to courses is not effectuated 
by a decision, since this is no scheduling problem. One should care, that teachers, 
classes and classrooms cannot be allocated to different courses simnltaneously. How­
ever more than one class can participate in one course simultaneously. A classroom 
has a capacity, that has to correspond to the size of the classes. 

Domain specific model parameters: 

J{ 

M 
- a set of classes. 
- a set of teachers. 

- maximal number of lessons in a week. 

Processors: 

id 
teacher 

course-identifier 
teacher of the course 

cl asses set of classes participating in the course 
subject subject of the course 
students: number of participating students 
lessons : number oflessons weekly 

P ~ N X M X P(K.) X N X N X N 

Operations: 

id classroom-identifier 
capacity: capacity of the classroom 

P~NxR+ 
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Real decisions: 

pr : processor reference 
op : operation reference 

Idle decisions: 

pr : processor reference 

Do'" P 

States (of a processor): 

exectime : the number of lessons executed 

Initial state (of a processor): 

so(p) = 0 lip E P 

State transition: 

f( state, dec) = { 
exectime( state) + 1 

exectime( state) 

Duration of decision: 

g(state, dec) = 1 

that means: interval(d;,j) = (j - 1,jJ 

Scheduling interval: 

(0, tmaxJ = (0, nmaxJ 

Constraints: 

- teachers are indivisible: Zc = M 

if dec E D+ 

if dec E Do 

evalc(sch,m) = U«(j -l,jJ I #{i I teacher(pr(d;,j)) = m} > 1) 

- classes are indivisible: Zc = J( 

evalc(sch, k) = U «(j - 1, jJ I #{ ilk E classes(pr(d;,j))} > 1) 
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- classrooms are indivisible: Ze == 0 

evalc(sch,o) == U((j -1,jll #{i I (ap(d;,j» == a} > 1) 

- restricted classroom capacity: Ze = 0 

evale(sch,a) == U(interval(di,j) I d"j E D+, ap(d"j) = 0, 

students(pr( d;,j» > capacity( 0» 

- not too many lessons for a course: Zc == p 

evale( sch, p) = U (interval( di,j) I di,j E D+, pre di,j) == p, 

exectime( Si,j) > lessons(p)) 

- enough lessons for a course: Ze == P 

evale(sch,p) = U (interval(d;,j) I di,j E Do, pr(di,j) == p, 

(lessons(p) - execiime(si,j)) > (nmax - j)) 

- teachers unavailability: Ze = M X B(Time) 

evale(sch, m,periad) :== period n (U (pr-op-set(p;, Ok) I Pi E Ps , ok E Os, 

teacher(Pi) == m)) 

4.4. Time tables for nursery staff 

Problem description: 

Duty rosters for nursery staff in hospitals for a fixed time period is considered. Nurses 
(processors) can be on or off duty. To be on duty is the only operation. Nurses have 
different maximal working hours and different functions (sets of abilities). A certain 
minimal crew is required, which is time dependent and which is expressed in numbers 
of necessary functions (abilities). 

Domain specific model parameters: 

A - a set of abilities. 

Processors: 

id : identifier 
abilset : set of abilities 
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suptime : maximal working time 

P "" N X peA) X R+ 

Operations: 

id : identifier (constant) 

o "" {ot} (singular set) 

Real decisions: 

pr : processor reference 
op : operation reference 
time: duration 

Idle decisions: 

pr : processor reference 
wait: waiting time 

Do"" P X R+ 

States (of a processor): 

exectime : the total executing time of a processor 
(till a decision point) 

Initial state (of a processor): 

so(p) = 0 'Ip E P 

State transition: 

f(state, dec) = { 
exectime( state) + time( dec) 

exectime( state) 

Duration of decision: 

{ 
time(dec) 

gestate, dec) = 
wait(dec) 

if dec E D+ 

if dec E Do 

17 
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Constraints: 

- maximal working times for nurses: Zc = P 

evalc(p) = {t E Time I pr-op-dur(p, ot, t) > suptime(p)} n pr-op-set(p, 01) 

- minimal crew requirements: Zc = B(Time) X P(A) X N 

evalc(sch,period, req-abi/set, min-charge) := period n 

{t E Time I min-charge> #{i I busY(Pi, ot, t), abi/set(pi) n req-abi/set fo 0} 

- processor unavailability: see job-shop 
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5. System functionality and user actions 

A prototype is implemented based on our model with a primitive user interface. 
This system supports step-wise planning. The user can perform user actions by evo­
king interactively primitive functions like adding or deleting "scheduling objects" like 
processors, operations, decisions or constraints. The system will evaluate these user 
actions, compute their consequences and do some feasibility checking. 

These primitive functions are grouped with respect to the relevant object classes. 
After the choice of the relevant class (schedule, processor, etc.) the user may evoke a 
function (find, insert, etc.). The system will execute that function and perform state 
transitions if necessary. 

A transaction is a sequence of user actions followed by a commit. After a commit 
command all constraint instances will be evaluated resulting in a set of critical regions. 
Moreover quality values will be calculated for all defined quality measures. In the case 
that any hard constraint is violated all actions performed since the last commit are 
rolled back. 

Grouping of user actions by means of the transaction concept is necessary, because 
a single user action may result in an infeasibile schedule (some decisions may be effec­
tuated at the same time involving different processors). To avoid the violation of hard 
constraints, eventually constraint checking should be done with respect to more than 
one user action. 

With respect to the scheduling objects processor, operation, decision and constraint 
the following primitive functions are defined: 

find, insert, update, delete 

With the function find a specific object instance is made current within his class. 
Several options of this command are possible: find direct, find first, find next, find last 
and find previous. Direct search is always based on the object identifier. Sequential 
se.arch for processors, operations and constraints is based on the order of the object 

identifiers; sequential search for decisions is based on the chronological order of their 
decision points. By means of the options find within processor, find within operation 
and find within constraint type the search process for decisions or constraints may be 
restricted. 

The functions update and delete are related to scheduling objects, which are made 
current by previous find functions. When processors or operations are deleted, all 
related decisions and constraints are removed from the schedule as a side effect. 

The function insert is rather obvious for processors and operations. To insert a 
constraint instance the relevant constraint type should be specified by the user. Before 
inserting a decision, first a processor, an operation and an decision should be made cur­
rent by appropriate find functions. The new decision is inserted chronologically after 
the current decision and is related to the current processor and the current operation. 

With respect to schedules we have the following primitive functions: 

load, save, show, commit 

With the function show the schedule will be represented on the screen. With the 
function load and save schedules can be loaded from or written to files, specified by 
the user. 
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By executing the function commit constraint instances will be evaluated and all 
previous user actions may be rolled back if any hard constraint is violated (see above). 

It is important to observe, that the system can be used to manipulate decisions as 
well as processors, operations and constraints dynamically. The distinction between 
strategic, tactical and operational planning [4J is less strict in this context. 

6. Architecture and implementation 

6.1. Architecture 

The architecture of a specific DSS is defined by an hierarchy of modules. On the 
top level we have generic modules. In these modules the superclasses of all scheduling 
objects (resource, decision, constraint, etc.) including their operators are defined. Only 
those attributes and methods that are common for all subclasses are defined here. Also 
time handling, schedule evaluation and feasibility checking belong to this level. 

On a lower level we have domain-specific modules, containing the definitions of all re­
levant sub-classes of scheduling objects, with their specific attributes and operators. For 
example, in the job-shop case we can distinguish various constraints, like precedence-, 
deadline- and release time constraints. Also problem specific optimalization routines 
could be defined in these modules eventually. 

Constraint types are defined in separate modules. This makes it possible to change 
and add constraint-types easily. As a consequence constraint types can be used in 
several planning situations. 

A problem-specific DSS is generated by linking the generic modules with the relevant 
domain-specific modules. 

Finally object-instances are supplied by the end user by means of the primitive ac­
tions, described in the last section. It is important to observe, that the manipulation of 
object instances by the end-user is related to decisions as well as to resources, operations 
and constraints. 

The classification of "stakeholders" [20J involved in the development and the use of 
DSS in three groups (toolsmith, designer and manager) corresponds with the different 
levels of abstraction in the DSS-architecture: generic modules (superclasses), domain 
specific modules (subclasses) and object instances. Each group is on exactly one ab­
straction level involved in the development or the use of the system. 

6.2. Implementation 

A set of modules is implemented in C++ resulting in decision support systems for 
several planning problems [18J. These systems run on UNIX and have the basic func­
tionality as described in the last section. 

To have a simple measure of the reusability of a certain DSS, we take the ratio of 
generic software within the whole system. As module size we use the number of lines of 
pure source code. Table 6.1 shows reusability factors of systems for different planning 
situations, depending on the number of implemented constraints (indicated by #c). 
The numbers are smoothed to eliminate the influence of the order of the constraints. 
Furthermore we consider all modules as specific, that can be used in several but not 
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#c jobshop car-routing time-tables time-tables 
for schools for nursery 

0 0.66 0.68 0.69 0.73 
1 0.63 0.66 0.66 0.70 
2 0.61 0.64 0.63 0.67 
3 0.59 0.62 0.61 0.64 
4 0.57 0.60 0.59 -

5 0.55 0.58 0.57 -

6 0.53 0.56 - -

7 0.52 0.54 - -

8 0.51 - - -

Table 6.1. Reusability factors 

all planning situations. Especially this applies to modules describing constraint-types. 
Though matters are rather simplified, the table gives a rough idea, in how far our 
approach can lead to software reusability and code reduction. 

7. Object definitions 

In this section we give some relevant object definitions based on our model by means 
of a pseudo-language. We will define both generic and domain specific object classes 
with respect to the job-shop problem. The definitions are simplified for the sake of 
clearness. 

7.1. Object representation 

To describe our objects and to write pseudocode we use in this paper a fictive pascal­
like object-oriented pseudolanguage. To define classes we have in this language struc­
tures called objects. Objects are comparable with records, with the difference that 
object-components can be both attributes and object-methods (functions or procedu­
res ): 

object figure 
size: integer; 
colour: colourtype; 
method moveto(x,y: integer); 
method draw 

end; 
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To define subclasses we can construct hierarchies of objects. An object is denoted 
as descendant of an other object in a hierarchy by specifying the name of the ancestor 
in parentheses (after the object name); attributes and methods of the higher class are 
inherited: 

object triangle( figure) 

If in the declaration of an object the name of a method is followed by the keyword 
virtual, this means that this method can be used in different subclasses under the same 
name, but with specific functionality (polymorphism). The semantics of such a method 
are not determined until run-time, when the method is invoked (dynamic binding). 

We use the pseudo language structure list of to specify sequences of elements of a 
certain type 

reaLsequence = list of real 

Moreover, we assume the following type as predefined 

interval = record 
left, right: real; 

end; 

7.2. Generic object classes 

In this section we define the generic object classes: 

schedule = object 
sch.processors : list of processor; 
sch.operations : list of operation; 
sch.decisions : list of decision; 
sch.constraints: list of constraint; 
method schedule.evaluate: boolean; 
method schedule.show; 

end; 

scheduling.object = object 
sJd : integer; ('object identifier') 
method sJnsert (s: schedule); virtual; 
method s.delete (s: schedule); virtual; 
method s..retrieve (s: schedule); virtual; 
method s.update (s: schedule); virtual; 

end; 

processor = object (scheduling.object) 
pJnitstate: state; 

end; 

operation = object (scheduling.object) 
end; 
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state = object 
state_time: real; 
method state_transition (dec: decision); virtual; 
method state-show; virtual; 

end; 

decision = object (scheduling_object) 
d_pr : processor; 
d--<>p : operation; 
d-.State : state; 
djdle : boolean; 
method d_getduration: real; virtual; 
method d_getdecisionpoint: real; 
method d_evaluate; 

end; 

real_decision = object (decision) 
end; 

idle_decision = object (decision) 
end; 

timeJegion = object 
criLtimeset = list of interval; 
method critJength: real; ('totallength*) 

end; 

constraint = object (scheduling object) 
c..hard : boolean; 
c..critreg : timeJegion; 
method c..evaluate (s: schedule); virtual; 
method c-.Show --<:riticalJegion; 

end; 

quality-measure = object (scheduling object) 
qJist : list of constraint; ('list of constraints') 
q_value : real; 
method q_aggregate (rlist: list of real): real; virtual; 
method q_calculate_value (s: schedule); 

end; 

One of the most important methods is the function schedule_evaluate belonging to 
the object-class schedule, which checks the feasibility of a schedule by evaluating all its 
constraints. Constraint evaluation on its turn is performed by the method c_evaluate 
belonging to the object-class constraint. The semantics of the latter method are not 
determined until run-time, when the method is invoked and the constraint is initialized. 
This property is called dynamic binding and it is above all this property, which makes 
it possible to treat constraints so generically. 
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7.3. Domain specific object classes (job-shop) 

In this subsection we define the domain specific object classes for the job-shop pro­
blem. 

ability = (al, ... ,an); 

rcps_processor = object (processor) 
p_abilset : set of ability; 
p.speed : real; 

end; 

rcps_operation = object (operation) 
o.abilset : set of ability; 
o-size 

end; 
: real; 

rcps.real.decision = object (real_decision) 
d_duration: real; ('duration of assignment') 
method d_getduration: real; virtual; 

end; 

rcpsjdle_decision = object (idle_decision) 
d_waiting: real; ('waiting time') 
method d.getduration: real; virtual; 

end; 

rcps.st ate = object (state) 
busy time: real; 
method state_transition (dec: decision); virtual; 
method state.show; virtual; 

end; 

deadline_constraint = object (constraint) 
cop : rcps_operation; 
cdeadline : real; 
method c_evaluate (s: schedule); virtual; 

end; 

precedence_constraint = object (constraint) 
copl, c.op2 : rcps_operation; 
c_waiting : real 
method cevaluate (s: schedule); virtual; 

end; 
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availability _constraint = object (constraint) 
c_pr : reps_processor; 
dntervals : list of interval; 
method cevaluate (s: schedule); virtual; 

end; 

8. Conclusions and extensions 

Although scheduling problems vary a lot with respect to their optimalization aspect, 
they have much more in common, when we restrict ourselves to stepwise planning. 
When designing a decision support system in a more generic way, we should start 
therefore with components for pure schedule management. Algorithmic components 
may be implemented later in layers on top of the basic software. This may be the 
case both for flexible generic optimization procedures (like simulated annealing) as for 
powerful problem specific algorithms. 

In view of the natural hierarchy of scheduling problems, an object oriented imple­
mentation seems to be suitable. It leads to a clear separation between the generic and 
the domain specific components of the schedule manager, minimizing redundant code 
and resulting in software with a high degree of maintainability and modularity. 

In this paper we made a simplification by assuming only two levels of abstraction. 
The classification tree of scheduling problems has in fact more levels, which should 
reflect in the system architecture. Software modules should correspond always to a 
specific node in that tree. Another simplification is the assumed homogeneity of re­
sources, operations and decisions, which may be not always realistic. 

We have to emphasize again, that the optimality of schedules is not an objective in 
this paper. Important is the optimality of the software in the sense of maintainability, 
flexibility and reusability. 
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