

Schedule management : an object oriented approach

Citation for published version (APA):
Wolf, G. (1991). Schedule management : an object oriented approach. (Computing science notes; Vol. 9122).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ba9cd29b-3a95-45dc-83f1-7e58000c80ba

Eindhoven University of Technology

Department of Mathematics and Computing Science

Schedule Management:
an Object Oriented Approach

by

G. Wolf

Computing Science Note 91/22
Eindhoven, September 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Schedule Management: an Object Oriented Approach

G. Wolf (1.9.91)

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. In this paper we consider resource-constrained time-dependent scheduling systems,
Le. decision support systems with time as the important planning component. Instead of dealing
with optimalization aspects of the planning problem, we concentrate on schedule management,
i.e. stepwise planning with respect to primitive functions, like handling single decisions or
constraints.

The design of these systems is based on a mathematical model, giving a formal characteriza­
tion of a class of scheduling problems and allowing generic descriptions of scheduling objects like
processors, operations, decisions and constraints. The model is applied to various scheduling
problems, like resource constrained project scheduling, car routing, the construction of time
tables both for schools and for nursery in hospitals.

An object oriented implementation of the model, based on the natural hierarchy of scheduling
problems, tUrns out to lead to a clear separation between the generic and the domain specific
components of the schedule manager, minimizing redundant code and resulting in software with
a high degree of maintainability.

Keywords. Decision Support System, Scheduling, Object Oriented Design.

1

1. Introduction

Software for decision support systems is very sensitive to change requests. A minor
change in the underlying model or in the limiting conditions can make it necessary to
redesign the whole system. There are hardly reusable components. The claim for a
more flexible DSS-design is uttered by many authors [2,6,10,20J.

The reason for this inflexibility can be found among others in the fact, that conven­
tional DSS-systems are dominated by the algorithmic aspect. Although it is stated,
that the software components of a DSS should relate to both information management
and optimalization [3,6,16]' more attention is paid to the latter aspect, especially in the
first design phase. Mostly mathematicians working in the field of operations research
were involved in the software development. In spite of the mathematical relevance of
algorithmic aspects, the software dealing with it plays an inferior role related to other
software components like the management of decisions and the user interface.

In view of the fact, that software maintainability is our highest objective in this
paper, the following requirements can be formulated:

- the software should contain reusable modules, that can be applied to a wider class of
planning problems;

- the software architecture should allow a clear separation between the generic compo­
nents and the domain specific components of the software;

- the software should be a platform with respect to the implementation for both generic
algorithms (simulated annealing, genetic algorithms, etc.) [IJ and powerful domain
specific optimalization procedures;

- the software should be flexible with respect to changes in the (domain specific) model
and it should be easy to add or to change constraints.

Although several attempts have been made to increase flexibility of optimalization
components by using general search methods applicable in a wide range of planning
situations [10J, we concentrate in this paper on data manipulation aspects, particularly
oriented towards scheduling problems. The basic system functionality is schedule ma­
nagement. Primitive functions should be provided to support stepwise planning [15J.
The user should have among others the possibility to add (and delete) scheduling ob­
jects like "decisions" and "constraints"; the system should calculate the consequences
of user actions and check feasibility. Optimalization is not relevant in this context.

Scheduling is the allocation of resources overtime to perform certain tasks [5J. Sche­
duling problems can be formulated as sequencing problems with time as the important
planning component. Moreover, we require that all feasibility constraints and schedule
evaluation criteria can be expressed as measures of time. The class of these scheduling
problems is rather extensive and does include job-shop planning, car routing, school
time tables and time tables for nursery in hospitals. We will give a formal definition
of this class. Although several scheduling models exist [5,9,13]' which are suitable to
formulate optimalization problems, they are not flexible enough for our purposes.

Because we need the flexibility of generic models as well as the power of problem
specific models, modelling on more abstraction levels is necessary. This implies a soft­
ware architecture consisting of generic and domain specific modules [20J. A specific

2

schedule manager is built up by linking the generic modules with the relevant group of
domain specific modules.

Because of our high requirements for software maintainability, system implementa­
tion is based on an object oriented design [17,19]. The use of object oriented techniques
for DSS-software has been up to now rather limited [8,12]. There are however many
reasons, that plead for their application:

- the concept of encapsulation, to specify objects both by their attributes and by their
methods, is a powerful mechanism to represent scheduling objects like processors,
operations, decisions and constraints;

- the concept of inheritance (and abstract datatyping), to formalize IS-A relationships
between classes and subclasses, is necessary to represent the natural hierarchy of
scheduling problems and scheduling objects to get a clear separation between the
generic and the domain specific components;

- polymorphism, i.e. the possibility to use object methods in different subclasses under
the same name, but with specific functionalities, will enlarge the flexibility of the
software.

2. Notations

We will follow some notational conventions:

A""B
[A -+ B]
A*
peA)

set A and set B are equivalent (of equal power);
the set of functions from A to B;
the set of strings of elements from set A;
the powerset of A (set of all subsets of A);

U (A(i) I P(i)) : the union of all sets AU), for which P(i) holds;

~ (aU) I P(i)) : the sum of all a(i), for which P(i) holds.;

Let Time be a finite interval on the real axis. With B(Time) we denote the set
algebra generated by subintervals of Time.

Let A be an entitytype with attributes A" ... , Am i.e. A "" A, x ... x An, and let
tEA be an entity of that type. With Ai(t) we denote the projection of t to Ai.

3. A basic general model

We restrict ourselves to resource-constrained time-dependent planning problems with
the property, that schedules can be represented as Gantt charts. This problem class is
very wide and includes the general jobshop problem, car routing and the construction
of time tables both for schools and for nursery in hospitals.

3

Existing models for scheduling problems are either too specific with regard to constraints
[5,9,13] or too general to be powerful enough to characterize the time aspects of sche­
duling problems properly [10,14]. For this reason we present in this section a basic
general model to characterize our problem class; extensions and problem specific in­
terpretations follow later. Our object definitions (see section 7) will be based on this
model.

3.1. Scheduling problems

A class of scheduling problems can be characterized by the following tuple

(P,O,D,pr,op,S,f,g,tmax) with

- P, the set of all possible processors (or resources);

- 0, the set of all possible operations (or tasks) to be assigned to processors;

- D, the set of all possible decisions; we have D = D+ U Do, with D+ being the set of
decisions, that assign an operation to a processor (real decisions) and Do being the
set of decisions, that put a processor in the waiting state (idle decisions);

- the function pr D -+ P assigning the processor, involved in a decision;

- the function op D+ -+ ° assigning the operation, involved in a real decision;

S, the set of all possible states, that a processor can have with the function
80 : P -+ S assigning the initial states;

- the function f : D X S -+ S describing a state tran8ition, being the effect of a
decision with respect to a processor;

- the function g : D X S -+ R+ to determine the duration, that a certain' decision will
be active;

- tmax , a positive real number, defining the scheduling interval Time = (0, tmax].

3.2. Schedules

Scheduling problems are distinguished from other planning problems by the aspect
of time. All time aspects should be handled in the generic part of the system.

Let Pi be a processor from a finite subset of P and let {dij }j:1,ni be a finite sequence
of decisions with respect to Pi. The decision di,j is effectuated at the time ti,j and is
active till ti,j+t, the time, that the next decision with respect to Pi will be effectuated.
We call tiJ a decision-point. Let Si,j be the state of processor Pi after decision di,i
(j > 0). Then we have the following equations

8i,0 = 80(Pi)

Si,j = f(8i,j-1, di,j) (j > 0)

ti,j = ti,j-1 + g(8i,j-2, di,j-tl (j > 1) .

4

We call Sfin(Pi) = Si,n; the final state of processor Pi, which is the state after the last
decision.

We can define a schedule as a tuple (Ps, as, Fs) with

- Ps a finite subset of P,

a s a finite subset of 0,

- a function Fs : Ps -+ D* assigning a finite sequence of decisions to every processor
of Ps,

Fs Pi >-+ {di,j}j=l,n; (Pi E Ps; di,j E D) with

pr(di,j) = Pi, (op(d;,j) E as or di,j E Do) and

L (g(dij, Sij) I 0 < j $ ni) $ tmax .

As a consequence of this definition only one operation at a time can be allocated to
a processor, whereas more processors can be assigned to the same operation simulta·
neously.

3.3. Constraints

Constraints are used to define the feasibility of schedules. It is important to have
the flexibility to add and to change constraints dynamically. To realize this we should
represent planning knowledge and especially constraints declaratively in a domain in­
dependent way. Several ideas and concepts going in this direction, can be found in the
literature [7,11,12,20].

Although we assume a certain homogeneity with respect to scheduling objects like
resources, operations and decisions, this is not the case with constraints. On the do·
main specific level various subclasses (types) of constraints may be defined (deadline
constraints, precedence constraints, etc.). It is therefore important to distinguish which
properties are adherent to constraint classes and which to constraint instances.

We distinguish hard and weak constraints. The feasibility of a schedule with respect
to hard constraints is guaranteed by the schedule manager, where as violations of weak
constraints are only signalized to the user, who is ultimately responsible for feasibility.
The hardness of a constraint is specified on instance level.

We require, that constraint violations can be expressed by time intervals, denoting
the period, when the constraint is violated or when decisions should be effectuated to
undo the constraint violation. This is just a generalization of the convention to specify
constraints by Boolean functions. This is done for the following reasons:

- the time aspect of the constraint violation is more emphasized, which is rather im·
portant for scheduling problems;

we have a measure of infeasibility with respect to constraints, which is important for
weak constraints;

5

- a wide class of schedule quality measures can be formulated as simple expressions of
critical regions, belonging to the same class of constraints (make span, earliness and
tardiness for the job-shop problem, etc.).

Now we come to a formal definition of constraints. Let Sch be the set of all schedules
with respect to a certain problem class. We define a constraint-type c by its specific
domain and its evaluator, i.e. a pair (Ze, evale) with Ze a set and evale a (penalty)
function with

evale : Sch x Ze _ B(Time) .

A constraint instance of type c can be defined as a pair (ze, hd) with Ze E Ze and hd,
being a Boolean to specify the hardness of a constraint instance.

Evaluation of the penalty function evale for a particular constraint instance and
schedule will produce a subset of the scheduling interval Time to indicate the time
period, when the constraint is violated or when decisions should be effectuated to undo
the constraint violation. This time period, which we call the critical region, can be
represented as a finite set of disjunct intervals. The critical region can be empty in the
case of feasibility or contain just the whole time interval as extreme cases.

In the Section 4 this definition will be illustrated by a variety of examples.

3.4. Quality measures

Beside constraints, that define the feasibility of schedules, there are quality measures
for comparison of schedules. These criteria are often defined as penalty functions,
mapping a schedule to a real value [13]. It makes sense to couple quality measures
to constraints or sets of constraints by measuring the extent of violation with respect
to these constraints. For the most common quality measures (make span, total or
weighted tardiness, etc.) corresponding constraints can be defined.

The relation between constraints and quality measures will be formalized by the
following definition. A quality measure can be defined by a pair (Glisi,agg) with Glist
being a finite list of constraints and agg being a real (aggregate) function defined on
the set of strings of real numbers

agg : R* - R.

Examples of such aggregate functions are sum(X), max(X), variance(X), etc. with
X a sequence of reals.

The constraint list mentioned above will contain often all constraint instances of a
certain type, but this is not necessary.

Given a particular schedule a quality value q with respect to a quality measure
(Glisi, agg) can be calculated by applying the specified aggregate function to the list of
the lengths of the critical time regions, defined by the constraint evaluation functions
corresponding to the specified list of constraints (see fig. 3.1); the length of an element
of B(R) is defined by its Lebesque measure fl..

6

Sch

Clist 1
(B(R))*

q

R*

Fig. 3.1. Calculation of the quality value of a schedule.

For example we can define the make span of a schedule for the job-shop problem by
(virtual) deadline constraints (with deadlines equal to zero) and the aggregate function
giving the maximum of a string of real numbers.

3.5. Extended schedules

Let (P, 0, D, pr, op, S, f, g, tmax) be a class of scheduling problems and let C be the
set of all possible constraints for this class. We define an extended schedule by a tuple
(P"O"F"C"Qs) with (P"O"Fs) being a schedule, Cs a subset of C and Qs a set
of quality measures with c E C s for every constraint instance c being involved in Q s

(Le. c an element of some Clist with (Clist,agg) E Qs).

3.6. Expressions

In this section we assume a fixed given schedule (P" 0" Fs). The set Ds of decisions
involved is determined by

Ds = {di,j I di,j = (FS(Pi))j, Pi E Ps, 0 < j ::; nil .

We can now introduce some expressions, that are needed in the following paragraphs:

- the start time of decision di,j:

start(di,j) = I: (g(Si,k-l, di,k) I 0 < k < j) (j > 1)

start(di,l) = 0

- the end time of decision di,j:

{
start(di,j) + g(Si,j-l,di,j)

end(di j) =
, start(di,j+1) (j < nil

- the activity interval of decision di,j:

interval(di,j) = (start(di,j), end(di,j)]

- the time period, when processor p executes operation 0:

pr-op-set(p,o) = U(interval(di,j) I pr(di,j) = p, Op(di,j) = 0, di,j E Ds)

7

- the executing period of operation 0:

op-exec-set(0) = U (pr-op-set(pi, 0) I Pi E Ps)

- the start time of operation 0:

{
min(start(di,j) I op(di,j) = 0, di,j E Ds)

start-op(0) =
tmax

- the end time of operation 0:

{
max(end(di,j) I Op(di,j) = 0, di,j E Ds)

end-op(o) =
tmax

- the finishing time of procesor p:

end-pr(p) = L(g(di,j,Si,j-l) I pr(di,j) = p, di,j E Ds)

- the allocation of processor p to operation 0 at time t:

busy(p, 0, t) = { :
if t E pr-op-set(p, 0)

otherwise

- the cummulative activity time of decision di,j at time t:

if t 2: end(di,j)

if op-exec-set(0) ,p 0

otherwise

if op-exec-set(0) ,p 0

otherwise

!
end(di,j) - start(di,j)

dur(di,j,t) = ~ - start(di,j) if start(di,j) < t < end(di,j)

otherwise

- the cummulative allocation time of processor p to operation 0 at time t:

pr-op-dur(p,o,t) = 'L(dur(di,j,t) I pr(di,j) = p, OP(di,j) = 0, di,j E Ds)

8

4. Domain specific interpretations of the generic model

In this section we give domain specific interpretations of the model. The basic model
may be extended with domain specific parameters. We specify attributes of the rele·
vant entities and give specifications of the relevant functions. Constraints are defined
by their specific domain and their evaluators (see section 3.3).

4.1. Job-shop

Problem description:

We consider general job-shop scheduling with job splitting and preemption. Opera­
tions (tasks) may be allocated several times to processors (resources). An operation
has a size, i.e. the total resource capacity necessary to complete the task. Processors
can execute operations with different speeds. To execute operations certain abilities
of processors are required. The sequence of task execution is restricted by precedence
constraints. Deadline and release time constraints are· related to the finishing and
starting times of operations. Processors are only at certain time windows available.

Domain specific model parameters:

A - a set of abilities.

Processors:

id : identifier
abi/set : set of abilities
speed : executing velocity

P "" N X P(A) X R+

Operations:

id identifier
req-abi/set : set of required abilities
sue processing capacity

0"" N X P(A) X R+

Real decisions:

pr : processor reference
op : operation reference
time: duration

9

Idle decisions:

pr : processor reference
wait: waiting time

States (of a processor):

exectime : the total executing time of a processor
(till a decision point)

Initial state (of a processor):

so(p) = 0 'ip E P

State transition:

f(state,dec) = {
exectime(state) + time(dec)

exectime(state)

Duration of decision:

g(state, dec) = {

Constraints:

time(dec)

waite dec)

if dec E D+

if dec E Do

- release time constraints: Zc = 0 X R+

if dec E D+

if dec E Do

evalc(sch, 0, rl) = {t E Time I t < rl} n op-exec-set(0)

- deadline constraints: Zc = 0 X R+

evalc(sch, 0, dl) = {t E Time It> dl} n op-exec-set(0)

- tasks should be completed: Zc = 0

let compl(0) be the completed part of an operation:

comp/(o) = 'L(pr-op-dur(Pi,o,tmax) • speed(Pi) I Pi E Ps)
and let a = tm • x • compl(o)/size(o)

evalc(sch, 0) = { 0
(a, tmaxl

if compl(0) 2': size(0)

otherwise

10

- avoiding superfluous task execution: Zc = a

evalc(sch, a) = ap-exec-set(a) n
{t E Time I L,(pr-ap-dur(p;, a, t) * speed(p;) > size(a) I p; E Ps)}

- required processor abilities for task execution: Zc = P x a

evalc(sch, p, a) := { 0
pr-ap-set(p, a)

if abilset(p) n req-abilset(a) cF 0

otherwise

- generalized precedence constraints: Zc = a x a x R+

evalc(sch, aI, a2, waiting) := {t E Time I t < end-ap(all + waiting}

n {t E Time It> start-ap(a2)} with al cF a2

- processor unavailability: Zc = P X B(Time)

evalc(sch,p,periad) := periadn (U (pr-ap-set(p, ak) I ak E as))

4.2. Car routing

Problem description:

Cargo (operations) has to be transported by trucks (processors) from one location
to another. Transport time is dependent on the distance of the locations, the speed
of a truck and the loading resp. unloading time. The amount of cargo that is trans­
ported simultaneously is restricted by a maximum volume, which is truck specific.
Starting points may be different. Loading or unloading is only possible in specific
time windows.

Domain specific model parameters:

L - a set of locations.
dist : L x L -+ R+ a distance function.

Processors:

id
start-lac
speed

: car-identifier
: start location
: speed of the truck

maxvalume : maximal total volume

11

Operations:

id : cargo-identifier
from-loc : place of depart
to-Ioc : destination
load-time: time to load or to unload
volume : volume of the cargo

O""NxLxLxR+xR+

Real decisions:

pr : processor reference
op : operation reference
loading: loading or unloading

D+ "" P X ° X {T,1-}

Idle decisions:

pr : processor reference
wait: waiting time

States (of a processor):

loc : the location of the truck
vol : the total volume of the cargo

S""LxR+

Initial state (of a processor):

so(p) = (start-Ioc(p),O) 'tip E P

State transition:

(Jrom-Ioc(op(dec», vol (state) + volume(op(dec»),
if dec E D+, loading(dec) = T

I(state, dec) = (to-loc(op(dec», vol(state) - volume(op(dec»),
if dec E D+, loading(dec) = 1-

state if dec E Do

12

Duration of decision:

dist(loe(state),from-Ioc(op(dec» * speed(pr(dec»
+ load-time(op(dec») if dec E D+, loading(dee) = T

g(state, dec) = dist(loe(state), to-Ioc(op(dec)) * speed(pr(dec»
+ load-time(op(dec») if dec E D+, loading(dee) = -L

wait(dee) if dec E Do

Constraints:

- an operation is executed by one processor only: Ze = 0

{

op-exee-set(o)
evale(seh, 0) = o

if #{i I pr-op-set(pi,o) # 0} > 1

otherwise

- operations should be completed: Ze = 0

evale(seh, 0) = { 0
(0, tmax]

if op-exec-set(0) # 0

otherwise

- release time constraints: see job-shop

- deadline constraints: see job-shop

- loading/unloading is not allowed in certain time periods: Ze = L X B(Time)

evale(seh,loe,period) =period n (U(end(di,j) -loadtime(op(di,j», end(di,j)] I

di,j E D+, (from-Ioc(op(di,j» = loe) V (to-Ioc(op(di,j» = loc»)

- trucks should not be overloaded: Zc = p

evalc(sch,p) = U(interval(di,j) I di,j E D+, pr(di,j) = p, VOl(Si,j) > supvol)

- trucks should return to their starting points: Ze = P

let returntime(p) be the time necessary to return from the final location back to
the starting point:

returntime(p) = speed(p) * dist(loC(SJin(P», start- loc(p))

and let a = maximum(O, tmax - returntime(p»

eva((seh, p) = { 0
(a, tmax]

if loe(sJin(P» = start-Ioc(p)

otherwise

13

- two (or no) decisions are related to a processor and an operation: Zc = P X 0

{

pr-op-set(p,o) if #{(i,j) I di,j E D+, pr(di,j) = p, Op(di,j) = o} i 2
evalc(sch, p, 0) = .

f/J otherwise

- cargos should be loaded before being unloaded: Zc = P X 0

pr-op-set(p,o) if 3i,il,}Z : j, < j2, di,jl'di,j, E D+,

evalc(sch, p, 0) =

4.3. Time tables for schools

Problem description:

pr(di,j, = pr(di,j,) = p, op(di,j,) = op(di,j,) = 0,

(loading(di,j') = .L V loading(di,j,) = T)

otherwise

Weekly time tables for schools are considered. Classrooms (operations) are to be
allocated to courses (processors) at certain time units. Allocation time is constant.
It is assumed, that the allocation of teachers and classes to courses is not effectuated
by a decision, since this is no scheduling problem. One should care, that teachers,
classes and classrooms cannot be allocated to different courses simnltaneously. How­
ever more than one class can participate in one course simultaneously. A classroom
has a capacity, that has to correspond to the size of the classes.

Domain specific model parameters:

J{

M
- a set of classes.
- a set of teachers.

- maximal number of lessons in a week.

Processors:

id
teacher

course-identifier
teacher of the course

cl asses set of classes participating in the course
subject subject of the course
students: number of participating students
lessons : number oflessons weekly

P ~ N X M X P(K.) X N X N X N

Operations:

id classroom-identifier
capacity: capacity of the classroom

P~NxR+

14

Real decisions:

pr : processor reference
op : operation reference

Idle decisions:

pr : processor reference

Do'" P

States (of a processor):

exectime : the number of lessons executed

Initial state (of a processor):

so(p) = 0 lip E P

State transition:

f(state, dec) = {
exectime(state) + 1

exectime(state)

Duration of decision:

g(state, dec) = 1

that means: interval(d;,j) = (j - 1,jJ

Scheduling interval:

(0, tmaxJ = (0, nmaxJ

Constraints:

- teachers are indivisible: Zc = M

if dec E D+

if dec E Do

evalc(sch,m) = U«(j -l,jJ I #{i I teacher(pr(d;,j)) = m} > 1)

- classes are indivisible: Zc = J(

evalc(sch, k) = U «(j - 1, jJ I #{ ilk E classes(pr(d;,j))} > 1)

15

- classrooms are indivisible: Ze == 0

evalc(sch,o) == U((j -1,jll #{i I (ap(d;,j» == a} > 1)

- restricted classroom capacity: Ze = 0

evale(sch,a) == U(interval(di,j) I d"j E D+, ap(d"j) = 0,

students(pr(d;,j» > capacity(0»

- not too many lessons for a course: Zc == p

evale(sch, p) = U (interval(di,j) I di,j E D+, pre di,j) == p,

exectime(Si,j) > lessons(p))

- enough lessons for a course: Ze == P

evale(sch,p) = U (interval(d;,j) I di,j E Do, pr(di,j) == p,

(lessons(p) - execiime(si,j)) > (nmax - j))

- teachers unavailability: Ze = M X B(Time)

evale(sch, m,periad) :== period n (U (pr-op-set(p;, Ok) I Pi E Ps , ok E Os,

teacher(Pi) == m))

4.4. Time tables for nursery staff

Problem description:

Duty rosters for nursery staff in hospitals for a fixed time period is considered. Nurses
(processors) can be on or off duty. To be on duty is the only operation. Nurses have
different maximal working hours and different functions (sets of abilities). A certain
minimal crew is required, which is time dependent and which is expressed in numbers
of necessary functions (abilities).

Domain specific model parameters:

A - a set of abilities.

Processors:

id : identifier
abilset : set of abilities

16

suptime : maximal working time

P "" N X peA) X R+

Operations:

id : identifier (constant)

o "" {ot} (singular set)

Real decisions:

pr : processor reference
op : operation reference
time: duration

Idle decisions:

pr : processor reference
wait: waiting time

Do"" P X R+

States (of a processor):

exectime : the total executing time of a processor
(till a decision point)

Initial state (of a processor):

so(p) = 0 'Ip E P

State transition:

f(state, dec) = {
exectime(state) + time(dec)

exectime(state)

Duration of decision:

{
time(dec)

gestate, dec) =
wait(dec)

if dec E D+

if dec E Do

17

if dec E D+

if dec E Do

Constraints:

- maximal working times for nurses: Zc = P

evalc(p) = {t E Time I pr-op-dur(p, ot, t) > suptime(p)} n pr-op-set(p, 01)

- minimal crew requirements: Zc = B(Time) X P(A) X N

evalc(sch,period, req-abi/set, min-charge) := period n

{t E Time I min-charge> #{i I busY(Pi, ot, t), abi/set(pi) n req-abi/set fo 0}

- processor unavailability: see job-shop

18

5. System functionality and user actions

A prototype is implemented based on our model with a primitive user interface.
This system supports step-wise planning. The user can perform user actions by evo­
king interactively primitive functions like adding or deleting "scheduling objects" like
processors, operations, decisions or constraints. The system will evaluate these user
actions, compute their consequences and do some feasibility checking.

These primitive functions are grouped with respect to the relevant object classes.
After the choice of the relevant class (schedule, processor, etc.) the user may evoke a
function (find, insert, etc.). The system will execute that function and perform state
transitions if necessary.

A transaction is a sequence of user actions followed by a commit. After a commit
command all constraint instances will be evaluated resulting in a set of critical regions.
Moreover quality values will be calculated for all defined quality measures. In the case
that any hard constraint is violated all actions performed since the last commit are
rolled back.

Grouping of user actions by means of the transaction concept is necessary, because
a single user action may result in an infeasibile schedule (some decisions may be effec­
tuated at the same time involving different processors). To avoid the violation of hard
constraints, eventually constraint checking should be done with respect to more than
one user action.

With respect to the scheduling objects processor, operation, decision and constraint
the following primitive functions are defined:

find, insert, update, delete

With the function find a specific object instance is made current within his class.
Several options of this command are possible: find direct, find first, find next, find last
and find previous. Direct search is always based on the object identifier. Sequential
se.arch for processors, operations and constraints is based on the order of the object

identifiers; sequential search for decisions is based on the chronological order of their
decision points. By means of the options find within processor, find within operation
and find within constraint type the search process for decisions or constraints may be
restricted.

The functions update and delete are related to scheduling objects, which are made
current by previous find functions. When processors or operations are deleted, all
related decisions and constraints are removed from the schedule as a side effect.

The function insert is rather obvious for processors and operations. To insert a
constraint instance the relevant constraint type should be specified by the user. Before
inserting a decision, first a processor, an operation and an decision should be made cur­
rent by appropriate find functions. The new decision is inserted chronologically after
the current decision and is related to the current processor and the current operation.

With respect to schedules we have the following primitive functions:

load, save, show, commit

With the function show the schedule will be represented on the screen. With the
function load and save schedules can be loaded from or written to files, specified by
the user.

19

By executing the function commit constraint instances will be evaluated and all
previous user actions may be rolled back if any hard constraint is violated (see above).

It is important to observe, that the system can be used to manipulate decisions as
well as processors, operations and constraints dynamically. The distinction between
strategic, tactical and operational planning [4J is less strict in this context.

6. Architecture and implementation

6.1. Architecture

The architecture of a specific DSS is defined by an hierarchy of modules. On the
top level we have generic modules. In these modules the superclasses of all scheduling
objects (resource, decision, constraint, etc.) including their operators are defined. Only
those attributes and methods that are common for all subclasses are defined here. Also
time handling, schedule evaluation and feasibility checking belong to this level.

On a lower level we have domain-specific modules, containing the definitions of all re­
levant sub-classes of scheduling objects, with their specific attributes and operators. For
example, in the job-shop case we can distinguish various constraints, like precedence-,
deadline- and release time constraints. Also problem specific optimalization routines
could be defined in these modules eventually.

Constraint types are defined in separate modules. This makes it possible to change
and add constraint-types easily. As a consequence constraint types can be used in
several planning situations.

A problem-specific DSS is generated by linking the generic modules with the relevant
domain-specific modules.

Finally object-instances are supplied by the end user by means of the primitive ac­
tions, described in the last section. It is important to observe, that the manipulation of
object instances by the end-user is related to decisions as well as to resources, operations
and constraints.

The classification of "stakeholders" [20J involved in the development and the use of
DSS in three groups (toolsmith, designer and manager) corresponds with the different
levels of abstraction in the DSS-architecture: generic modules (superclasses), domain
specific modules (subclasses) and object instances. Each group is on exactly one ab­
straction level involved in the development or the use of the system.

6.2. Implementation

A set of modules is implemented in C++ resulting in decision support systems for
several planning problems [18J. These systems run on UNIX and have the basic func­
tionality as described in the last section.

To have a simple measure of the reusability of a certain DSS, we take the ratio of
generic software within the whole system. As module size we use the number of lines of
pure source code. Table 6.1 shows reusability factors of systems for different planning
situations, depending on the number of implemented constraints (indicated by #c).
The numbers are smoothed to eliminate the influence of the order of the constraints.
Furthermore we consider all modules as specific, that can be used in several but not

20

#c jobshop car-routing time-tables time-tables
for schools for nursery

0 0.66 0.68 0.69 0.73
1 0.63 0.66 0.66 0.70
2 0.61 0.64 0.63 0.67
3 0.59 0.62 0.61 0.64
4 0.57 0.60 0.59 -

5 0.55 0.58 0.57 -

6 0.53 0.56 - -

7 0.52 0.54 - -

8 0.51 - - -

Table 6.1. Reusability factors

all planning situations. Especially this applies to modules describing constraint-types.
Though matters are rather simplified, the table gives a rough idea, in how far our
approach can lead to software reusability and code reduction.

7. Object definitions

In this section we give some relevant object definitions based on our model by means
of a pseudo-language. We will define both generic and domain specific object classes
with respect to the job-shop problem. The definitions are simplified for the sake of
clearness.

7.1. Object representation

To describe our objects and to write pseudocode we use in this paper a fictive pascal­
like object-oriented pseudolanguage. To define classes we have in this language struc­
tures called objects. Objects are comparable with records, with the difference that
object-components can be both attributes and object-methods (functions or procedu­
res):

object figure
size: integer;
colour: colourtype;
method moveto(x,y: integer);
method draw

end;

21

To define subclasses we can construct hierarchies of objects. An object is denoted
as descendant of an other object in a hierarchy by specifying the name of the ancestor
in parentheses (after the object name); attributes and methods of the higher class are
inherited:

object triangle(figure)

If in the declaration of an object the name of a method is followed by the keyword
virtual, this means that this method can be used in different subclasses under the same
name, but with specific functionality (polymorphism). The semantics of such a method
are not determined until run-time, when the method is invoked (dynamic binding).

We use the pseudo language structure list of to specify sequences of elements of a
certain type

reaLsequence = list of real

Moreover, we assume the following type as predefined

interval = record
left, right: real;

end;

7.2. Generic object classes

In this section we define the generic object classes:

schedule = object
sch.processors : list of processor;
sch.operations : list of operation;
sch.decisions : list of decision;
sch.constraints: list of constraint;
method schedule.evaluate: boolean;
method schedule.show;

end;

scheduling.object = object
sJd : integer; ('object identifier')
method sJnsert (s: schedule); virtual;
method s.delete (s: schedule); virtual;
method s..retrieve (s: schedule); virtual;
method s.update (s: schedule); virtual;

end;

processor = object (scheduling.object)
pJnitstate: state;

end;

operation = object (scheduling.object)
end;

22

state = object
state_time: real;
method state_transition (dec: decision); virtual;
method state-show; virtual;

end;

decision = object (scheduling_object)
d_pr : processor;
d--<>p : operation;
d-.State : state;
djdle : boolean;
method d_getduration: real; virtual;
method d_getdecisionpoint: real;
method d_evaluate;

end;

real_decision = object (decision)
end;

idle_decision = object (decision)
end;

timeJegion = object
criLtimeset = list of interval;
method critJength: real; ('totallength*)

end;

constraint = object (scheduling object)
c..hard : boolean;
c..critreg : timeJegion;
method c..evaluate (s: schedule); virtual;
method c-.Show --<:riticalJegion;

end;

quality-measure = object (scheduling object)
qJist : list of constraint; ('list of constraints')
q_value : real;
method q_aggregate (rlist: list of real): real; virtual;
method q_calculate_value (s: schedule);

end;

One of the most important methods is the function schedule_evaluate belonging to
the object-class schedule, which checks the feasibility of a schedule by evaluating all its
constraints. Constraint evaluation on its turn is performed by the method c_evaluate
belonging to the object-class constraint. The semantics of the latter method are not
determined until run-time, when the method is invoked and the constraint is initialized.
This property is called dynamic binding and it is above all this property, which makes
it possible to treat constraints so generically.

23

7.3. Domain specific object classes (job-shop)

In this subsection we define the domain specific object classes for the job-shop pro­
blem.

ability = (al, ... ,an);

rcps_processor = object (processor)
p_abilset : set of ability;
p.speed : real;

end;

rcps_operation = object (operation)
o.abilset : set of ability;
o-size

end;
: real;

rcps.real.decision = object (real_decision)
d_duration: real; ('duration of assignment')
method d_getduration: real; virtual;

end;

rcpsjdle_decision = object (idle_decision)
d_waiting: real; ('waiting time')
method d.getduration: real; virtual;

end;

rcps.st ate = object (state)
busy time: real;
method state_transition (dec: decision); virtual;
method state.show; virtual;

end;

deadline_constraint = object (constraint)
cop : rcps_operation;
cdeadline : real;
method c_evaluate (s: schedule); virtual;

end;

precedence_constraint = object (constraint)
copl, c.op2 : rcps_operation;
c_waiting : real
method cevaluate (s: schedule); virtual;

end;

24

availability _constraint = object (constraint)
c_pr : reps_processor;
dntervals : list of interval;
method cevaluate (s: schedule); virtual;

end;

8. Conclusions and extensions

Although scheduling problems vary a lot with respect to their optimalization aspect,
they have much more in common, when we restrict ourselves to stepwise planning.
When designing a decision support system in a more generic way, we should start
therefore with components for pure schedule management. Algorithmic components
may be implemented later in layers on top of the basic software. This may be the
case both for flexible generic optimization procedures (like simulated annealing) as for
powerful problem specific algorithms.

In view of the natural hierarchy of scheduling problems, an object oriented imple­
mentation seems to be suitable. It leads to a clear separation between the generic and
the domain specific components of the schedule manager, minimizing redundant code
and resulting in software with a high degree of maintainability and modularity.

In this paper we made a simplification by assuming only two levels of abstraction.
The classification tree of scheduling problems has in fact more levels, which should
reflect in the system architecture. Software modules should correspond always to a
specific node in that tree. Another simplification is the assumed homogeneity of re­
sources, operations and decisions, which may be not always realistic.

We have to emphasize again, that the optimality of schedules is not an objective in
this paper. Important is the optimality of the software in the sense of maintainability,
flexibility and reusability.

References

[IJ Aarts, E.H.L., A.E. Eiben, K.M. van Hee (1989), A General Theory of Genetic
Algorithms, Computer Science Notes, Eindhoven University of Technology.

[2J Alter, S.1. (1980), Decision Support Systems: Current Practice and Continuing
Chalenges, Addison-Wesley.

[3J Anthonisse, J.M., J.K. 1enstra, M.W.P. Savelsbergh (1988), Behind the Screen:
DSS from an OR point of View; Decision Support Systems 4, Elsevier Science
Publishers (North-Holland).

[4J Anthony, R.N. (1965), Planning and Control Systems: A Framework for Analysis;
Harvard University Press, Studies in Management Control, Cambridge Mass.

[5J Baker, K.R. (1974), Introduction to Sequencing and Scheduling, J.Wiley, New
York.

[6J Bennet, J.L. (ed.) (1983), Building Decision Support Systems, Addison-Wesley.

25

[7] Bonczek, R.H., C.W. Holsapple, A.B. Whinston (1983), Specification of Modelling
Knowledge in Decision Support Systems; Processes and Tools for Decision Support
(Ed. H.G.Sol), North-Holland Publishing Company.

[8] Bots, P.W.G., A. Verbraeck (1989), Object Oriented Task Description: Concepts,
Tools and Applications; paper presented at the Session on Object Oriented Ap­
proaches in Information System Design, at the 15th IFIP WG 8.1 meeting, June
7th, 1989, in Sesimbra, Portugal.

[9] Coffman, E.G. (1976), Computer and Job Shop Scheduling Theory, J. Wiley, New
York.

[10] Eiben, A.E., K.M. van Hee (1990), Knowledge Representation and Search Methods
for Decision Support Systems; Data, Expert Knowledge and Decisions (eds. 'vV.
Gaul, M. Schader), NATO ASI Series, Vol. F61, Springer-Verlag.

[ll] Fox, M.S. (1983), Constraint Directed Search: A Case Study of Job Shop Schedu­
ling; PhD Thesis, Computer Science Dept., Carnegie Mellon University.

[12] Fox, M.S., S.F. Smith (1984), ISIS - a Knowledge-based System for Factory Sche­
duling; Expert systems, Vol. 1, No. 1.

[13] French, S. (1982), Sequencing and Scheduling, J.Wiley, New York.

[14] Hee, K.M. v., A. Lapinski (1989), OR and AI Approaches to Decision Support
Systems; Decision Support Systems Vol. 4.

[15] Jansen, A., L. Klieb, C. Noorlander, G. Wolf (1990), 'PLATE', a Decision Support
System for Resource Constrained Project Scheduling Problems, Designing Decision
Support Systems Notes, NFl 11.90/03, Eindhoven University of Technology.

[16] Keen, P.G.W., M.S. Scott Morton (1978), Decision Support Systems: an Organi­
zational Perspective, Addison-Wesley.

[17] Kim, W., F.H. Lochovsky (Eds.) (1989), Object-Oriented Concepts, Databases
and Applications; ACM Press, Addison-Wesley.

[18] Litjens, R.T.J. (1991), Een objectgeorienteerde benadering van algemene roos­
terproblemen; Master Thesis, Computer Science Dept., Eindhoven University of
Technology.

[19] Meyer, B. (1988), Object Oriented Software Construction, Prentice-Hall.

[20] Spraque, R.H., E.D. Carlson (1982), Building Effective Decision Support Systems,
Prentice-Hall.

26

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89{2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T M.Aerts
K.M. van Hee

89/13 A.T M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymotphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise fonnal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA. data manipulatie taal.

Optimal se gmentati ons.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
PM.E. De Bra
K.M. van Hee

90/10 MJ. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

DecompoSition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 RP. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 RC. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91113 F. Rietman

91/14 P. Lemmens

. Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance AnalysiS of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. MarceJis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Gcldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
LJ. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of aritlunetica1 expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query ,Solving, p. 35.

Som~ categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a"Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p.

,
A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compoSitional proof system for dynamic proces
creation, p. 24.

	Abstract
	1. Introduction
	2. Notations
	3. A basic general model
	3.1 Scheduling problems
	3.2 Schedules
	3.3 Constraints
	3.4 Quality measures
	3.5 Extended schedules
	3.6 Expressions
	4. Domain specific interpretations of the generic model
	4.1 Job-shop
	4.2 Car routing
	4.3 Time tables for schools
	4.4 Time tables for nursery staff
	5. System functionality and user actions
	6. Architecture and implementation
	6.1 Architecture
	6.2 Implementation
	7. Object definitions
	7.1 Object representation
	7.2 Generic object classes
	7.3 Domain specific object classes (job-shop)
	8. Conclusions ans extensions
	References

