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Summary 

Injection moulding is a widely spread production process for large series of 
geometrically complex thin-walled products. As modifications of the mould 
are expensive and time consuming, mould designers need to know in advance 
w hether the moulding process will run correctly for a certain design. A pro
duction process running without problems, however, does not automatically 
ensure a sufficient product quality. Given the high demands that must be 
met nowadays, it is important to estimate the properties of the product and 
its dimensional accuracy and stability in advance. This requires an integral 
approach to the simulation of injection moulding. With the aid of a com
puter program that is based on this approach, mould shape and processing 
conditions can be optimised with respect to product quality, reducing the 
time spent on both mould design and iterative modification and on product 
test ing. 

In this thesis an integral analysis of the moulding process and the result
ing product properties will be presented. Properties like the distribution 
of molecular orientation, density, material distribution in MCIM (multi
component injection moulding), degree of conversion in (R)RIM, SRIM and 
RTM (reinforced and structural reactive injection moulding and resin trans
fer moulding) and also the fibre orientation in reinforced systems are the 
result of the entire thermomechanical history for every material particle. 
Therefore, it is essential to incorporate a sufficiently accurate numerical 
method to approximate material derivatives. Particle tracking can be used 
to evaluate the accuracy of the method employed. 

This study focusses on the computation of shrinkage, warpage and elastic 
recovery of amorphous thermoplastics. The density is described by a history 
dependent model, called the KAHR model. Although in general the com
puted pressure distribution during the post-filling and cooling stages highly 
depends on the computed density, the computation of the density distri
bution can be decoupled from the pressure calculation. Residual stresses 

lX 



x Summary 

originate from two main effects. The flow induced stresses are built up dur
ing the filling and post filling stage of the process, and correspond with the 
orientation of the macromolecules. This orientation is (partly) ffozen-in and 
gives rise to anisotropy of the thermal, mechanica! and optical behaviour, 
and causes a diminished long term dimensional stability because of elastic 
recovery. Since the orientation hardly influences the flow, a decoupled ap
proach can be employed for the computation of this stress. In this study 
a compressible Leonov model is used. The thermally and pressure induced 
stress es (or thermal stresses for short) are built up mainly during the post
filling and cooling stages, and are caused by inhomogeneous cooling and 
a varying pressure in time, resulting in a differential shrinkage across the 
thickness of the product. This stress distribution is computed using a multi
mode Maxwell model, which is a linearisation of more advanced viscoelastic 
models like the Leonov model mentioned. The thermal stress is generally 
an order of magnitude higher than the flow induced stress, and is the main 
cause of warpage of the product. A two-shot moulding process ·is modelled 
to illustrate this effect. It can be concluded that warpage of the product, 
mainly caused by asymmetrical cooling of the second shot, can be prevented 
in this special case by using different holding pressures for the two distinct 
shots of the process. 

The numerical analyses are validated bath experimentally a:p.d by using 
analytical solutions. Density and dimensional stability measurements re
ported in literature are all performed on simple rectangular strips, so a two 
dimensional model is sufficient for this part of the validation. For the two
shot moulding experiments, however, a more complex geometry is chosen, 
requiring a 2!D approach for the analyses. This approach is employed for the 
development of the simulation code Vlp (which stands for Polymer Process
ing & Product Properties Prediction Program) at CPC (Centre f0r Polymers 
and Composites). Based on a parent program, that, finally, resulted in in
jection moulding simulation software like "POMO" and "Inject-3", VIp has 
become a validated, flexible and accurate simulation code of practical use 
for high-end applications. 



Notation 

Operators and functions 
V 1/m gradient operator 

V* 1/m gradient operator with respect to the midplane 

Vo 
à 
AC 
Ad 
A-d 

A-1 

If 

1/m 

1/s 

a·b 
tr(A) -

exp(a) -
[, 

Subscripts 
a 

c 

i 

gradient operator with respect to reference state 

material derivative 

conjugation 

deviatoric part 

deviatoric part of inverse 

inverse 
third invariant 

dot product 

trace 

convection diffusion operator 

element nodal point number 

convected quantity 

time step number 

xi 



xii Notation 

j mode number. 

n dimension number 
C Cross model parameter 

L 

M 

K 
ó 

00 

Leonov model parameter 

Maxwell model parameter 

Voigt model parameter 

KAHR model parameter 

equilibrium behaviour 

List of symbols 
a Pa used in incremental formulation of thermal stress 
a• Pa component in stiffness matrix 

ap pressure dependent shift factor of relaxation times 
of ó (KAHR model) 

ar temperature dependent shift factor of relaxation 
times 

ao m 3/kg first temperature fit parameter (Tait model) 

aom m 3 /kg first temperature fit parameter melt state (Tait 
model) i 

aos m 3/kg first temperature fit parameter solid state (Tait 
model) 

ai m 3/(kgK) second temperature fit parameter (Tait model) 

aim m 3 /(kgK) second temperature fit parameter melt Jtate (Tait 
model) 

ais m 3 /(kgK) seGond temperature fit parameter solid state (Tait 
model) 

b 1/Pa fit parameter in expression for ap (KAHR model) 

b Pa used in incremental formulation of thermal stress 
b. Pa component in stiffness matrix 

Cp Jj(kgK) heat capacity at constant pressure 



Notation xiii 

C1 first constant in WLF shift factor 

C2 K second constant in WLF shift factor 

C3 1/K first constant in Arrhenius shift factor 

e J/kg specific internal energy 

h m local thickness 
i time step number (subscript) 

J mode number 

k Poisson ratio 
l m length 

m number of modes 
p Pa pressure in polymer melt 

Patm Pa atmospheric pressure 

Pe Pa pressure prescribed at gate 
ph Pa opposite of hydrostatic stress 

q m2/s volume flux per unit of length (line gates) 

r m local coordinate in radial direction in runner 
r' m variable of integration for integrals across radius 

r1i J/(kg s) specific heat source 

s m local coordinate along centre line of runner 

so K/Pa fitted constant value of ~ (Tait model) 

t s time 
t' s variable of integration in time integrals 

t" s variable of integration in time integrals 

D..t s time step 

u unknown in example convection diffusion equation 
vr m/s velocity in radial direction in runner 
VS m/s velocity parallel to centre line of runner 

v" 3 m/s velocity in local thickness direction 

x fit parameter in expression for aó (KAHR model) 

x~ m local coordinate in thickness direction 
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Wj weight factor for mode j 

Za m thickness coordinate in fibre direction (shell ele-
ment) 

ZTg m thickness coordinate at glass transition 

Bm Pa pressure parameter for melt state (Tait 1 model) 

Bs Pa pressure parameter for solid state (Tait model) 

Bo Pa first fit pressure parameter (Tait model) 

Bom Pa first fit parameter in expression for Bm 

Bos Pa first fit parameter in expression for Bs 

Bi 1/K second pressure parameter (Tait model) 

B1m 1/K second fit parameter in expression for If m 

Bis 1/K second fit parameter in expression for B s 

c m/N compliance of mould 

Ga material independent constant (Tait model) 

Co m2/N linear stress optical coefficient 

D diffusion coefficient in general convection diffusion 
equation 

F right hand side in general convection diffusion 
equation 

Fn mn+l/Pas terms in expression for fiuidity S 

Fr term in expression for Éhz 
G N/m2 constant shear modulus 

G' Njm2 storage shear modulus 

G" N/m2 loss shear modulus 

a• N/m2 deviatoric strain coefficient in deviatoric stress ex-
pression 

Ha J/(smK) heat transfer coefficient from product :imrface to 
ambient air 



Q 
R 
s 
Se 

T 

TR 
Tr 

Ta 

Te 

Tg 

T9o 

r+ 
m 

r-m 

J/(smK) 

J/(smK) 

J/(smK) 

m 2/N 
m2/N 
m2/N 
m2/N 
N/m2 

Pa 

m 
m 3/(Pas) 

m 4 /(Pas) 

K 
K 
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K 

K 
K 

K 

K 
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Notation xv 

heat transfer coefficient from "top" surface of 
product to mould 

heat transfer coefficient from "bottom" surface of 
product to mould 

heat transfer coefficient from product to mould for 
runner 
storage compliance (Voigt model) 

loss compliance (Voigt model) 

instantaneous compliance (Voigt model) 

creep compliance for mode j (Voigt model) 

constant bulk modulus 

volumetrie strain coefficient in hydrostatic pres
sure expression 

interpolation function for nodal point a, shell ele
ments 
total volume flux (runners) 

runner diameter 
fluidity, defined for cavity 

fluidity, defined for runner 

temperature 

mould wall temperature for runner 

reference temperature 
ambient air temperature 

injection temperature 

glass transition temperature 

fit parameter representing the glass transition 
temperature at zero pressure {Tait model) 

mould temperature at "top" surface of product 

mould temperature at "bottom" surface of prod
uct 
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T+ w K mould wall temperature at "top" surface of prod-
uct 

T-
w K mould wall temperature at "bottom" : surface of 

product 

0: 1/K thermal expansion coeflicient 

O:m 1/K thermal expansion coeflicient polymer melt 

as 1/K thermal expansion coeflicient solid polymer 

a+ m position of first solidification front in thickness di-
rection 

0: m see a+, but now for the second solidification front 
o:s m see o:+, but now for the solidification front in the 

runner 
~a 1/K difference in thermal expansion coeflicient between 

melt and solid state 

f3 parameter defining the width of the spectrum of 
volume relaxation times (KAHR model) 

p• Pa/K temperature coeflicient in hydrostatic pressure ex-
pression 

'Y 1/s shear rate 

". Pa coeflicient for ó in hydrostatic pressure expression 

'Yr l/s shear rate in runner 

'Tl l/s first component of shear rate with respéct to base 
Or:: 

'12 1/s second component of shear rate with respect to 
base Oe 

ó normalised deviation of v from equilibrium 
êh volumetrie linear strain 
(Kj s reduced creep compliance for deviatoric strain, 

mode j (Voigt model) 

(Mj s reduced relaxation modulus for deviatoric stress, 
mode j (Maxwell model) 



r/r 

r/rO 

r/C 

r/O 

r/K 
() 

v 

p 

Ps 
p* 

To 
<P1 

</J2 

x 

s 

Pas 

Pas 

Pas 

Pas 

Pas 

Pas 

1/K 

1/Pa 

1/Pa 

1/Pa2 

1/Pa 

1/Pa 

Jf(Kms) 

m 3 /kg 

kg/m3 

kg/m3 

kg/m3 

s 

m 

N otation xvu 

reduction factor for uji at t = ti 
response function of the bulk relaxation spectrum 
below T9 (KAHR model) 

isoparametric coordinates 

dynamic shear viscosity 

viscosity of viscous part (Leonov model) 

reference viscosity for viscous part (Leonov model) 

shear rate independent viscosity (7-constant Cross 
model) 

reference viscosity 

shear viscosity (Voigt model) 

fit parameter in expression for ar8 (KAHR model) 

isothermal compressibility coefficient 

pseudo-compressibility 

coefficient in equation for /::i,.K, 

difference in isothermal compressibility coefficient 
between melt and solid state 
pressure independent part of /::i,.K, 

heat conduction coefficient in thickness direction 

specific volume 

density 

density at product surface 

reduced density 

reference relaxation time 
first rotation of fibre base 

second rotation of fibre base 

variable of integration for integrals along the 
thickness 
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r, 
re 
rR 
ro 

r+ 
r_ 

(!'- Pa 

if n 

h J/(m2 s) 

f N/kg 

ii* 
il, m 
f).ü m 
/).il,! m 
/:). i],l m 

v m/s 
V* m/s 

if* m/s 

x m 
xf m 
xi m 

boundary at the flow front 

boundary at the gate 

boundary of the runner in radial direction 

boundary where polymer is in contact with the 
mould at the edges of the midplane or ('dead end" 
of runner 
"top" surface of the product 

"bottom" surface of the product 

integration constant 

covariant base vectors 

heat flux vector 

specific body forces 

unit outward normal 
displacement vector 

incremental displacement vector 

incremental displacement of third fibre base vector 

incremental displacement in reference surface 

velocity vector 

velocity parallel to midplane of thin-walled geom-
etry 

velocity parallel to midplane of thin-walled geom-
etry averaged across the thickness 

position vector 

third fibre base unit vector (shell element) 

position vector nodal point a (shell element) 

Finger tensor 

Finger tensor corresponding to F e 

Finger tensor corresponding to F e 
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1 

1/s 
1/s 
1/s 

L 1/s 
Le 1/s 
Lp l/s 
Rfg 

l/s 
1/s 

J/(Kms) 

N/m2 

N/m2 

N/m2 

N/m2 

Finger tensor corresponding to F P 

rate of deformation tensor 

N otation xix 

rate of deformation tensor corresponding to Le 

rate of deformation tensor corresponding to Lp 

deformation tensor 
elastic part of deformation tensor 

elastic part of deformation tensor with volumetrie 
effects excluded 
plastic part of deformation tensor 

second order unity tensor 

velocity gradient tensor 

elastic part of velocity gradient tensor 

plastic part of velocity gradient tensor 

transformation tensor from fibre base to global 
base 
transformation tensor from fibre base to lamina 
base 
transformation tensor from global base to lamina 
base 
spin tensor corresponding to Le 

spin tensor corresponding to Lp 

Linear strain tensor 
Linear strain tensor caused by creep 

Heat conduction tensor 

Cauchy stress tensor 

elastic part of Cauchy stress tensor (Leonov 
model) 

viscous part of Cauchy stress tensor (Leonov 
model) 

Cauchy stress tensor without incorporation of the 
incremental strain of the current time step 
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Pa 

.Ó.f 

.6.€ 

q Pa 

B 1/m 
1) 1/s 
L 1/s 
M Pa 
Rc1 

]3,rPf 

initial stress 

incremental linear strain components 

incremental linear strain components with respect 
to covariant base 
Cauchy stress components 

strain displacement matrix 

rate of deformation matrix 

velocity gradient matrix 

stiffness matrix 

transformation matrix from covariant base to larn
ina base 
transformation matrix from incremental fibre ro
tations to incremental fibre displacements 



Chapter 1 

Introduction 

The injection moulding process will be shortly described to illustrate the 
complex thermomechanical history that rnaterial particles experience during 
rnoulding. The scientific and industrial relevance of the numerical sirrmlation 
of injection moulding as well as the concept of high precision in relation to 
injection moulded parts are indicated. The state of the art is described with 
respect to the numerical simulation of the process. Finally, the objectives 
and methodologies employed in this study are presented. 

1.1 Injection moulding 

The process 

Injection moulding is one of the most commonly used processes for the pro
duction of large series of polymer products. The main reason is that this 
moulding process hardly dictates any geometrical limitations for product de
sign, giving rise to a substantial integration: parts that have to be assembled 
when more conventional production techniques are applied, can be unified 
into one single product using injection moulding. 

The main parts of an injection moulding machine are shown schemati
cally in figure 1.1. Here the process will be described for injection moulding 
of thermoplastic amorphous materials. For semi-crystalline materials and 
thermosets the process is similar. Powder {or granules) of the moulding ma
terial is fed via a hopper {1) into an extruder (2), that consists of a screw, 
rotating inside a heated (4) barrel, where the material melts and is trans
ported towards the mould (3). During the transport, mixing takes place to 
homogenise the materials temperature. The melt is stored in front of the 

1 



2 Ghapter 1 

Figure 1.1: Schematic layout of an injection moulding machine 

screw, that is meanwhile moving backwards against the so-called back pres
sure, exerted via a hydraulic cylinder at the end of the screw. When enough 
material is molten, the screw is moved forward by the same hydraulic cylin
der. Since generally backwards flow into the screw channel is prevented by 
a non-return valve (not indicated), the melt is pushed forward and fills the 
mould at a typical high speed of 0.5 m/s. As the mould is co@led (5), the 
material solidifies, and its density increases. In order to prevent shrinkage of 
the product, the material is put under a high pressure (packing and holding 
stage), until the gate solidifies and no more material can be injected. This 
point defines the start of the cooling stage. When the product has acquired 
enough stiffness, the mould is opened and the product is ejected. In the 
meantime the extruder has plasticised a new batch of material and the cycle 
can be repeated. 

High precision 

Typical injection moulded products are parts such as car bumpers and dash
boards, housings and elements of electric and electronic devices and all kinds 
of objects for domestic application. During the last decade, injection mould
ing is more and more applied to products that require high dimensional and 
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optica! accuracy, for example compact disc player lenses and glass fibre con
nectors. Precision of an injection moulded product can be defined as the 
dimensional accuracy and stability in time. It depends on the distribution 
of a number of typical properties throughout the product, most of which are 
a result of the complex thermomechanical history of the material. All recent 
studies are limited to amorphous thermoplastics since effects like the de
gree of crystallinity, or shrinkage as a result of chemica! reaction, still need 
a lot of research before they can be modelled accurately. For amorphous 
thermoplastics the following effects are of major infl.uence on precision: 

Volume relaxation An amorphous polymer is defined to be in the fluid 
state, when its typical volume relaxation times are much shorter than the 
process time. As generally relaxation times increase with decreasing tem
perature, a temperature region can be defined where relaxation and process 
times are comparative, followed by a region where this volume relaxation is 
much slower than the process. The intermediate region is called the glass 
transition region. In the lower temperature region the polymer is called to 
be in the glassy state. There is a noticeable decrease of the thermal ex
pansion coefficient t tf., during the transition, although it does not become 
zero, since only a part of the volume relaxation behaviour is affected (see 
figure 1.2, curve 1). This part adapts only very slowly to changing condi
tions, but it still will tend to reach the equilibrium situation (curve 2). This 
shrinkage effect is called physical ageing (curve 5). Cooling of the polymer at 
higher rates (a decrease in process time) shifts the transition region to higher 
temperatures (curve 3). Relaxation times increase with increasing pressure. 
This implies that the temperature region where glass transition takes place 
is a function of the local pressure (see curve 4). Finally, the relaxation times 
are a function of the deviation of the density from its equilibrium value, 
which makes the behaviour non-linear. 

Orientation Due to deformation of the polymer melt during injection and 
packing, the macromolecules, that initially are in a random coil conforma
tion, tend to stretch and orient. When the flow stops, they try to regain their 
original conformation. This relaxation is hindered due to the rapid cooling 
and part of the orientation is frozen-in. As deformation and temperature are 
functions of space and time, this gives rise to a complex distribution of the 
so-called flow-induced stress. The tendency of the macromolecules to regain 
their random coil conformation does not disappear when T9 is passed; only 
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t 
ll 

T-
Figure 1.2: Specific volume (v) for an amorphous polymer as a function of tem

perature (T); 1: cooling at zero pressure; 2: equilibrium behaviour at 
zero pressure; 3: cooling at high speed, zero pressure; 4: cooling at high 
pressure; 5: physical ageing 

the rate at which this process continues is lowered several decades. This leads 
to undesired anisotropic deformation of the product during its lifetime. This 
elastic recovery, which can be looked upon as creep caused by the frozen-in 
stress (see Struik, 1990, part 2), should be minimised for a dimensionally 
stable product. 

Temperature- or pressure-induced residual stress When a cross sec
tion of a thin walled product is considered, every material particle experi
enced its own temperature and pressure history. Some particles solidified 
under higher pressure or at higher cooling rates than others. Consequently 
the strain during solidification varied across the thickness. Combined with 
the fact that not all material solidified at the same time, this results into 
a stress distribution across the thickness. This not only causes shrinkage 
after demoulding hut, in case of unbalanced mould wall temperatures, also 
leads to warpage of the product. As this temperature or presshre induced 
residual stress is usually much higher than the fiow-induced stress, the Jatter 
are of minor influence on warpage after demoulding, but may dominate, as 
mentioned earlier, the dimensional stability. 
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Adsorption of fluids Some polymers, like for in.stance nylon, may adsorb 
liquids (like water) up to even ten volume percent, causing an expansion of 
the product. As this effect mainly depends on the type of polymer and liquid, 
and cannot be altered significantly by the processing conditions, no attempt 
is made to model this phenomenon here. It is clear that these materials 
should be disregarded when high precision is required. 

Relevance of simulations 

In practice much time is spent on the design of the mould, because of its 
major influence on product quality and because it is usually impossible to 
compensate for deficiencies made in the mould design by adjusting process
ing parameters during production. Expensive modifications of the moulds 
are often necessary. Mould designers make use of injection moulding sim
ulation programs in order to prevent these imperfections. Most programs 
are capable of predicting weid line locations and location of air traps, giving 
the opportunity to optimise the locations of gates and air vents. Also the 
filling pressure and the pressure and temperature distributions inside the 
mould during packing and cooling, are estimated in order to evaluate the 
necessary clamping force, machine size and the cycle time. U sually this is 
where for most mould designers the simulation ends. The influence of the 
polymer selected and process conditions chosen on the product properties is 
not predicted by the simulation. Only empirica! rules, of which the valid
ity is severely limited due to the pronounced presence of non-linear effects, 
prevail. They may be sufficient for products with relatively low demands 
on accuracy. However, when high precision is required and product prop
erties like shrinkage, warpage and dimensional stability become important, 
the prediction of these quantities as a function of processing conditions and 
materia:l chosen must form part of the simulations: an integral approach to 
the simulation of injection moulding. 

1. 2 State of the art 

Process simulation 

Since the introduction of the 2!D approach of Hieber and Shen {1980) to 
simulate the filling stage of injection moulding for viscous fluids, this model 
was refined by e.g. Bosbouwers and van der Werf (1988) and Sitters (1988) 
and extended towards the postfilling stage by Chiang et al. (1991b). The 
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thermomechanical behaviour of the mould was first taken into account by 
Chiang et al. (1991a). Since then, the process simulations were extended 
to similar processes like multi-component injection moulding (see e.g. Turng 
et al. (1993) and Zoetelief (1995)), resin transfer moulding (see e.g. Liang 
et al., 1993), orientation of fibres in filled materials (see e.g. Cintra Jr. and 
Tucker III, 1994), gas assisted injection moulding (see e.g. Turng and Wang, 
1991}, processing of semi-crystalline materials (see e.g. Saiu et al., 1992), 
and reactive injection moulding (see e.g. Hayes, 1991). Papathanasiou and 
Kamal (1993) introduced a viscoelastic model to compute the pressure inside 
the cavity during filling and Nguyen and Kamal (1993) gave an extension 
to include the packing stage. Their analyses, however, are still limited to 
the 2! D approximation, neglecting the local phenomena such as junctions 
and corners, as studied by e.g. Akkerman (1993}. All these results eventu
ally could be combined employing a hybrid 2!D - 3D technique. The ever 
increasing computing power of today's computers might even allow a full 3D 
approach in the near future. 

Physical ageing 

In order to describe physical ageing of polymers in terms of volume relax
ation, the pvT model used must include an equilibrium value of the specific 
volume as a function of pressure and temperature, as well as a description 
or the kinetics of the specific volume tending from its momentary value 
towards its equilibrium value. For both aspects: equilibrium values and 
kinetics, structural as well as phenomenological models have been proposed. 

A well-known structural model for the equilibrium behaviour of polymers 
is developed by Simha and Somcynsky (1969) (SS theory), representing a 
large family of lattice models (see e.g. Nies and Stroeks (1990)). Macro
molecules are modelled on a lattice, each segment occupying a site. This 
introduces a structure parameter, being the fraction of unoccupied sites or 
free volume. Several assumptions are made on the interaction between the 
segments. The assumptions eventually lead to the formulation of a parti
tion function in terms of molecular and thermodynamica! quantities, that 
approximates the total number of states that the system can be in. From 
this, an expression for the Helmholtz free energy can be derived, which is 
minimised with respect to the structure parameter, as the ftuid state is at 
equilibrium. 

A successful structural model for the kinetics of physical ageing that is 
associated with the SS theory was developed by Robertson et .al. (1985). 
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From the average free volume and its fl.uctuation, a discrete distribution 
of the free volume is derived for the equilibrium state, defining a discrete 
number of states for the local free volume. By introducing a pressure, tem
perature and/ or structure dependent expression for the transition rate from 
one state to another, a time dependent pvT behaviour can be described. A 
similar theory was developed by Vleeshouwers (1993), based on the model 
of Nies and Stroeks (1990). 

Two phenomenological models that are often used for description of the 
pvT behaviour of polymerie fl.uids are represented by the Tait equation, in 
which a linear temperature dependence and an exponential pressure depen
dence of the density is given (see Zoller (1982) and equation (2.6)) and the 
model of Spencer and Gilmore (1951), which resembles the behaviour of an 
ideal gas. 

A class of phenomenological models for the ageing of polymer glasses 
was proposed by Kovacs et al. (1979). The normalised deviation of the 
specific volume from equilibrium is written as a time integral of the tem
perature history, and later (see Ramos et al., 1988) also of the pressure 
history. The volume relaxation is described by means of a relaxation spec
trum, which is chosen pressure, temperature and structure dependent (see 
also equations (2.10) and (2.11)). 

The main advantage of the use of structural models is that the parame
ters can be given a physical meaning and may be used for the description of 
other properties of the ·material such as the modulus, and allow for an extrap
olation beyond the limit of experimentally accessible value. Besides, they 
may give an insight into the mechanisms governing specific volume (relax
ation). The expressions found are, especially for the relaxation times, often 
similar to those of phenomenological models and, moreover, they are fitted 
on the same experimental data. Therefore, the phenomenological models 
could beneficially be used, especially because they often lead to a better fit 
and require less computing time. Care must be taken in their use, however, 
since extrapolation might be inconsistent with physical laws. 

Resid ual stresses 

Lee et al. (1965) developed a viscoelastic model for the calculation of 
(thermally induced) residual stresses in tempered flat glass. lt was vali
dated experimentally by Narayanaswamy and Gardon (1969) and, in a sub
sequent paper, extended to include structural relaxation (see Gardon and 
Narayanaswamy, 1970). A significant extension since then is the introduc-
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tion of the often dominating influence of the pressure during solidification on 
the stress distribution (see Titomanlio et al. {1987), Brucato et al. {1989) ). 
They employed a viscous-elastic material model. Baaijens (1991) employed 
the model of Lee et al. (1965) with inclusion of the pressure effects, pre
senting a 2 dimensional analysis. Douven (1991) and also Santhanam (1992) 
included this approach into their 2 ~ models enabling the analysis of more 
complex geometries. The computed stresses are systematically overpredicted 
( see also Zoetelief et al. ( 1995)). 

Isayev and Hieber (1980) used the Leonov model for computing flow 
induced residual stresses, caused by the deformation during filling only, em
ploying a l!D approach. Baaijens and Douven (1990) formulated a com
pressible version of the Leonov model, enabling the prediction of the stresses, 
induced during the post-filling stage. This proved to be an essential extension 
of the model. Flaman (1990) applied this model for the prediction of resid
ual birefringence and compared the computed results with me1µmrements. 
Douven (1991) extended the model for the application to 2~D geometries. 
Wimberger-Friedl (1991} made it plausible that cooling stresses during vit
rification may induce a biaxial orientation, which in some cases dominates 
the orientation caused by ( uniaxial shear) flow. Recent studies show that 
the high level of orientation in the surface of the product may be induced 
by these cooling stresses, in stead of the extensional flow in the flow front. 
The application of insulating and active heating layers in the mould wall was 
investigated theoretically and experimentally by Jansen (1993). 

Elastic recovery 

The only reference we could find on the quantitative prediction of elastic 
recovery in injection moulded parts is represented by the work of Struik 
(1990). A number of model experiments are described, that isolate the 
effect of orientation on the dimensional stability of the samples below the 
glass transition temperature. A simple model, that compared well with the 
experiments, is presented. 

Shrinkage and warpage 

The computation of shrinkage and warpage is usually based on the com
puted thermally and pressure induced stress distribution (see Douven (1991), 
Santhanam {1992) and Chiang et al. (1993)). Structural modelling is 
used for the computation of the warped geometry. Aspects likf the flow-

' 
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induced stress contribution, physical ageing and elastic recovery are omitted 
in the analyses. Only Walsh (1993), who computes the strain contributed 
by shrinkage, degree of crystallisation, mold restrictions and orientation (in 
stead of stresses), actually included all factors by employing linear regression 
analysis on the results of a number of moulding experiments. The strains 
thus computed form the input for a structural analysis. 

1.3 Scope of the study 

The main objective of this study is the development and implementation of 
a validated computational method for the simulation of the injection mould
ing process, including the possibility to predict the long term mechanical 
behaviour of the moulded product as a function of polymer properties and 
processing conditions. The method developed must be suitable for the ge
ometrie complexity that is characteristic for injection moulded parts, hut 
can be restricted to thin walled geometries. Validation of the method by 
comparison with analytica! solutions and experimental data is of great im
portance. 

To achieve these objectives, first a mathematical model is derived that 
describes the injection moulding process as well as the relevant mechanica} 
properties of the product based on both balance and constitutive equations 
(Chapter 2). The resulting partial differential equations cannot be solved 
analytically, as they are non-linear, coupled and defined on a geometrically 
complex domain. A finite element model to obtain approximate solutions 
of these differential equations is derived in Chapter 3. Stability and conver
gence of the numerical methods applied are verified by comparing the nu
merical results to analytica! solutions. Most parameters for the rheological 
and thermal behaviour of the moulding material are available from polymer 
manufacturers and from the open literature. The parameters for the time 
dependence of the density were determined by measurements with a thermo
mechanical analyser (TMA). In Chapter 4 these experiments are described 
and all material parameters, necessary in advanced computer models like 
Vip, are summarised. The materials that are characterised are commercially 
available grades of PS and PMMA. To illustrate the predicting capabilities 
of the code developed, in Chapter 5 several cases are studied, each focussing 
on one aspect of high precision and comparing numerical with experimen
tal results. The final chapter summarises the conclusions and gives some 
recommendations for future research. 
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Chapter 2 

Governing equations 

In this chapter, the equations are derived that form the basis of the model of 
the injection moulding process and the properties of the resulting product. 
First the balance equations and constitutive equations are summarised. The 
thin film approximation is introduced in order to simplify the equations. 
Subsequently a full set of equations is derived for the pressure, shear rate, 
velocity and temperature. The equations that describe product properties 
like residual stresses and density distributions are given next and, finally, the 
equations for shrinkage (including physical ageing) and warpage (including 
elastic recovery), resulting from stresses and density distributions, are given. 

2.1 Balance equations 

Conservation of mass, momentum, moment of momentum and energy can be 
expressed by the following equations (Iocal formulation, see e.g. Bird et al. 
{1960) ): 

p+pV·v=O 

V · <Te + P { = pu 

pê u : D - V · h + prh 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where denotes the density, iJ the velocity vector, Dis the rate of deformation 
tensor, u is the Cauchy stress tensor, fis the specific (i.e. per unit mass) 
body force, e is the specific internal energy, h is the heat flux vector and rh 
is the specific heat source. 

11 



12 Chapter 2 

2.2 Constitutive equations 

Constitutive equations are required for u, e and h to solve the balance 
equations. The thermodynamic pressure (representing the resistance against 
statie volume changes) will be chosen as independent variable (see Sitters, 
1988, chap. 2), so one more constitutive equation is needed: the one for the 
specific volume v (the reciprocal value of the density p). It is assumed that 
the specific body forces f and the specific heat source rh can be neglected. 
In the next subsections, the constitutive equations are given for each of the 
quantities v (2.2.1), u (2.2.2), e and h (2.2.3). 

2.2.1 Specific volume 

The specific volume of arnorphous thermoplastics shows non-linear history 
dependent behaviour (see Vleeshouwers, 1993). In th() fluid state the specific 
volume basically equals its thermodynamic equilibrium value, that depends 
on temperature and pressure only. If the temperature or pressure is changed, 
the specific volume approaches its new equilibrium value at a principally 
finite rate. This rate depends on temperature, pressure and on the deviation 
from equilibrium. The latter indicates the existence of a relaxation time and 
the fluid state is defined here as the state for which this relaxation time is 
much shorter than the representative process time. In other wÖrds, in the 
fluid state equilibrium is attained instantly on the time scale of the process. 

Upon cooling, the relaxation time increases. Within the glass transition 
range, the relaxation time becomes comparative to the process time and 
the specific volume lags somewhat behind to changing conditions. As the 
relaxation time depends on pressure and temperature, the value of pressure 
and temperature at which the glass transition takes place depends on the 
process time. For higher cooling rates, for instance, the glass transition 
temperature increases (compare figure 1.2). 

In the glassy state, the relaxation time is high compared to the process 
time but still has a finite value. This causes the so-called physical ageing 
of polymer glasses, a slow change of the specific volume towards its equi
librium value. Experiments show that, after more complex temperature or 
pressure histories, the deviation from equilibrium first may increase, followed 
by a gradual decrease (see Chapter 4). In order to describe this behaviour 
properly, a spectrum of relaxation times rather then one representative time 
proves to be necessary (see Hutchinson and Kovacs, 1976). Besides, it has 
been shown that the relaxation times depend on the deviation frpm equilib-
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rium itself, thus introducing the non-linear behaviour mentioned (see Kovacs 
et al., 1979). 

The specific volume depends on pressure p, temperature T, and its (his
tory dependent) normalised deviation from equilibrium 8: 

v = v(p,T,ó) (2.5) 

Many models assume that ó, and thus v, depends on pressure and temper
ature only. One example is the so-called Tait model (see Zoller, 1982): 

p 
v = (ao + ai(T-T9o))(l - Ga ln(l + B)) 

B = Boexp(-B1T) 

T9 = T9o +sop 

(2.6) 

(2.7) 

(2.8) 

Here Ga is a material independent constant of the value 0.0894. The pa
rameters ao, ai, Bo and Bi are constants, that are different for the melt 
(T > T9 , indexed m) and the solid state (T < T9 , indexed s). The total set 
of parameters aom, aim, Bom, Bim, aos, ais, Bos, Bis, T9o and so are fitted on 
measurements of v, varying the pressure and the temperature. The a param
eters represent the temperature dependence of v at zero absolute pressure. 
The B parameters include the pressure dependence. T90 represents the glass 
transition temperature at zero pressure, which is assumed to be constant in 
this model. Equation (2.6) to (2. 7) do not include the history dependent 
effects mentioned. Therefore, only curves 1 and 4 in figure 1.2 are described 
by the Tait model, while curve 3 is supposed to coincide with curve 1, and 
curve 5 is degenerated to a point. 

An (also phenomenological) model that describes curves 3 and 5 more 
accurately is the so-called KAHR model (after Kovacs-Aklonis-Hutchinson
Ramos (see Kovacs et al. (1979); Greener et al. (1991); Tribone and O'Reilly 
{1989); Ramos et al. (1988)). The specific volume is written as the sum of 
the equilibrium value v00 (i.e. v for t-+ oo) and apart that describes the 
deviation from equilibrium: 

V = V00 (1 + Ö) (2.9) 

By definition v00 depends on temperature and pressure only. Equations (2.6) 
and (2. 7) for the melt are used to describe the equilibrium behaviour v00 

( using the melt constants for above and below T9 ). The normalised deviation 
from equilibrium, ó, is written as: 

t 

ó(t) J (-flaT + flKp}(J(t, f 1
) dt1 (2.10) 

-oo 
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(5(t, t') 

with 

Tö = 
ar& 

ap 

a5 = 

exp [- (/ ~· ri 
Töo ar8 ap a5 

exp(-B (T-Tör)) 

exp(bp) 

(-(1 - x)Bó) 
exp b.a 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

and T = ~f, and p = ~ the time derivative of temperature and pressure, 
respectively, and b.a, b."' the difference in thermal expansion and isothermal 
compressibility between the fluid and the glassy state. Instead of introduc
ing a discrete spectrum of relaxation times, a KWW (Kohlrausdh-Williams
Watts, see Kohlrausch (1847); Williams and Watts (1970)) fractional expo
nential law is used for (ö. The relaxation time Tö is written as a reference 
relaxation time Töo (for T = Tör,P = 0, ó = 0), while shift factors a are 
used for pressure, temperature and structure. The extra material parame
ters are B, b, x and f3 (0:::; f3 :::; 1). The value f3 = 1 corresponds to a single 
relaxation time. The closer f3 is to zero, the wider the relaxation time dis
tribution. The parameter x represents the relative contribution to the shift 
factor of a change in structure parameter ó with respect to the temperature 
contribution. The material parameters can be fitted on measurements of 
v as a function of time for several thermomechanical histories ( see Kovacs 
et al. (1979) and Chapter 4). 

2.2.2 Cauchy stress tensor 

The Cauchy stress tensor is used for the determination of the flow kinematics, 
the residual stresses and elastic recovery after ejection. Residual stresses are 
split into a thermally and pressure induced stress (or thermal stress for short) 
on the one hand, and a flow-induced stress on the other. In principle the 
same constitutive relation could be used for all distinct cases. This would, 
however, be highly impractical and it is unnecessary as well, so for all four 
aspects (the constitutive equation to be used for the momentum equation, 
the thermal stresses, the flow-induced stresses and the elastic recovery) a 
separate constitutive equation is employed that includes all relevant aspects 
with a minimum of computational effort: 
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Computation of fiow kinematics 

The flow during injection moulding is practically always dominated by the 
kinematic boundary conditions: no slip at the mould walls or solidified layers 
and a prescribed flow at the gate. The type of constitutive equation for the 
stress tensor in the momentum equation only marginally influences the flow 
kinematics of the polymer melt, as long as it accurately describes the shear 
viscosity. In order to illustrate this statement, Baaijens and Douven (1990) 
computed the residual stresses in an injection moulded rectangular strip us
ing both a coupled and a decoupled method. The coupled method uses a 
non-linear viscoelastic constitutive equation (Leonov model) for the stress 
tensor in the momentum equation to calculate both kinematics and stresses 
in full interdependence. The decoupled method calculates both quantities in
dependently using for the form er a generalised N ewtonian model (the steady 
state Leonov model). The flow kinematics thus computed is subsequently 
used as input data for the full viscoelastic Leonov model in order to com
pute the stresses. The difference in residual stresses between the coupled 
and the decoupled approach turned out to be less than ten percent. In some 
situations, e.g. at bifurcations, the assumption of the kinematic boundary 
conditions dominating the flow kinematics will be violated. However, given 
the local character of the flow near bifurcations, the decoupled approach will 
still be used because it is much more efficient from a computational point of 
view. 

In the generalised Newtonian model, melt elasticity is neglected, as is 
the bulk viscosity, and the shear viscosity rt only depends on pressure p, 
temperature Tand the deviatoric part of the rate of deformation tensor Dd: 

u = -pI+ud 

ud= 2rtDd 

rt = 11(p, T, D) 

(2.16) 

(2.17) 

(2.18) 

where ud is the deviatoric part of the Cauchy stress tensor. For practical 
reasons a further specification of equation (2.18) is postponed to section 2.3. 

Computation of the flow-induced r.esidual stress 

Flow-induced stresses arise from (mainly shear) deformation of the polymer 
during the filling and postfilling stages of the injection moulding process. In 
Flaman (1990); Baaijens (1991); Douven (1991) it is shown that the com
pressible Leonov model is capable of predicting this type of residual stress 
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with reasonable accuracy. The basic aspects of the model are summarised 
here for reference only. For a more elaborate description the reader is re
ferred to the references above and Akkerman (1993). 

The deformation F = (Vox)c is multiplicatively split into an elastic {F e) 
and a plastic (F p) part: F = F e • F p· The volume change corresponding 

to the plastic part is taken zero, i.e. ii'P = det(Fp) = 1 and, consequently, 
If = If e = det(F e)· Subsequently, the volumetrie contribution to F e is 
separated from the deviatoric part by: 

{2.19) 

The associated Finger tensors are: 

(2.20) 

The velocity gradient tensor is defined as L = (VV)c = F · F-1 . The Cauchy 
stress tensor is considered to be the sum of an elastic and a viscous part: u 
= u e + uv. The elastic stress is split in to a hydrostatic part and a deviatoric 
part (equation (2.21)). For the deviatoric viscous part of u equation (2.23) 
is employed. Adopting multiple modes (mL), the deviatoric elastic part is 
given by equation {2.22). For each mode j the Finger tensor Bej is solved 
from equation {2.24). Dpj is given by equation (2.25). 

O' - -pi+ CT~+ O'v (2.21) 
fflL 

ud 2: -d (2.22) B· e TLj eJ 
j=l 

O'v = 211rDd (2.23) 

Bej = d - - de {L - Dpj) · Bei + Bej · (L Dpj) (2.24) 

Dpi 1 cd - -d) 
4TLj Bej - Bej {2.25) 

Time-temperature superposition is applied, assuming thermorheologically 
simple behaviour, which leads to the following expressions for the Leonov 
viscosities 1}Lj and relaxation times TLj ( elastic part) and the viscosity "lr 
( viscous part) respectively: 

(2.26) 

"lr(p, T) = aTL (p, T)rJro (2.27) 



Governing equations 17 

where viscosities 'f/LjO and relaxation times 'TLjo are determined at a refer
ence temperature (TLr) and pressure. Note that no vertical shift factor is 
incorporated in 'f/Lj and 'f/r· For the Leonov shift factor ar1, the classica! 
WLF (Williams-Landel-Ferry, see Williams et al. (1955)) equation is used: 

_ (-cLI(T-TLr)) 
arL - exp T T 

CL2 + - Lr 
(2.28) 

A pressure dependence of arL is incorporated by means of the pressure de
pendent reference temperature TLr = TLr(p 0) +sop, using the pressure 
dependence of Tg (see Hieber, 1987). Material parameters 'f/Ljo, 'TLjQ, 'f/ro, 
cL1 and CL2 can be determined by oscillatory shear experiments (see e.g. 
Douven, 1991). Below Tg, the deformation is considered zero and relaxation 
times are taken infinite. In other words, the stress present when passing the 
glass transition temperature is frozen in permanently. 

Computation of the thermally and pressure induced residual stress 

These stresses arise from the inhomogeneous cooling of the product in combi
nation with the pressure that is applied during cooling. Unlike flow-induced 
stresses, thermal stresses are not caused by large deformations and, conse
quently, a linear thermoviscoelastic model is used. A forma! derivation of this 
model is given in Douven (1991), appendix D. Here, only a straightforward 
derivation is given. 

The Cauchy stress· tensor is split into a hydrostatic pressure and a devi
atoric part: 

(2.29) 

An expression for the hydrostatic pressure ph(T, v) can be derived from 
equation (2.9), substituted into the continuity equation (2.1): 

v voo J -+--
ll Voo 1 + Ó 

. J 
/'i,ooP + 1 + ó 

tr(D), 

{2.30) 

(2.31) 

where a 00 , K,00 are the thermal expansion coefficient and the isothermal com
pressibility coefficient, respectively, for the equilibrium behaviour, defined as 

O:'oo = v~ C';;) P' /'i,oo = - v~ C';;) T · (2.32) 
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For small deformations, the rate of deformation tensor D can be approx
imated by è, with e = 1/2[(Vu) + (Vü)c] and ü the total displacement 
field. When no relevant temperature and pressure effects exist for t s 0, the 
hydrostatic pressure ph(t) can be written as: 

h (t) Jt ( O:oo r" J 1 t ( . )) dtl 
p = K

00 
+ K

00 
( 1 + 8) - K

00 
r ê 

0 

(2.33) 

When there are no deformation effects before t = 0 and thermorheologically 
simple material behaviour is assumed, the deviatoric part of the Cauchy 
stress tensor is written as: 

ffiM t 

ud = 2 L J GMj(Mj(t,nèddt' 
j=lo 

where the reduced relaxation modulus (Mj is defined as: 

(Mj(t, t') exp (- j r~. dt
11

) 

tl J 

(2.34) 

(2.35) 

Analogous to the non-linear viscoelastic Leonov model, time-temperature su
perposition is applied to describe the pressure and temperature dependence 
of the Maxwell viscosities 'f/Mj and relaxation times TMf 

(2.36) 

where 'f/Mjo, TMjO are values for the modal shear viscosities and relaxation 
times at a reference temperature and pressure. Again no vertical shift factor 
is incorporated in 'r/Mj· For temperatures above T9, the WLF equation is 
used to describe the time-temperature shift function arM for Shear behaviour 
while below T9 an Arrhenius expression is chosen: 

arM exp (- -CM1(T-TMr)) 
CM2+T-TMr 

arM = exp(-CM3(T-TMr)) 

(T 2: T9 ), 

(T < T9 ). 

(2.37) 

(2.38) 

Pressure dependence is incorporated in arM like in arL as described previ
ously. To incorporate the effect of physical ageing on the shear modulus (see 
e.g. Struik (1978)), a 8-dependence in the shift factor could be introduced, 
like e.g. in equation (2.15). However, no attention is paid to this effect in 
this study. As shown by Douven (1991) this Maxwell model cani be seen as 
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a linearised Leonov model. As the Leonov parameters are determined by 
linear viscoelastic measurements, the values of the parameters of the linear 
Maxwell model, indexed M, are equal to the corresponding parameters of 
the non-linear Leonov model, indexed L. Parameter CM3, which is missing 
in the temperature shift function in the Leonov model, is determined by 
additional linear viscoelastic measurements below T9 (see Douven {1991), 
Zoetelief et al.). 

A viscous-elastic model (see appendix C) for the deviatoric stress can be 
derived from the present model taking G Mj 'f/Mj/TMj = G /mM, TMj --+ oo 
for T ::; T9 and G Mj = 0, TMj = 0 for T > T9 into equations (2.34), (2.35). 
Here G is a constant shear modulus for the solidified polymer and zero for 
the polymer melt. The hydrostatic stress can be modelled similarly, taking 
Tfi --+ oo for T::; T9 , and 715 = 0 for T > T9 in equation (2.12). 

The right hand sides second term of equation (2.33) incorporates vis
coelasticity of the bulk modulus, as it forms the history dependent part of 
the volumetrie strain. 

Computation of elastic recovery 

Struik (1990) has shown that dimensional instability due to internal stresses 
can be conceived of as creep as a consequence of these stresses. He performed 
a number of experiments on several amorphous thermoplastics to establish 
the infiuence of stress and deformation above T9 on the dimensional stability 
below T9 • Af ter annealing, rod shaped samples were twisted or uniaxially 
strained at a temperature above T9 under a constant stress or constant de
formation rate. Within 10 minutes the samples were cooled to a temperature 
below T9 and the stress was removed. Three types of experiments were per
formed. First, the stress level per sample was kept constant, but varied 
from sample to sample adjusting the temperature, while the total deforma
tion and deformation time was kept the same. Second, the stress level was 
kept the same for all samples, hut the total deformation varied. Third, the 
deformation rate was kept constant under an increasing stress. For tensile 
and shear stresses below 8 M Pa it was concluded that the dimensional in
stability is determined by the stress acting on the material when passing 
the glass transition temperature. The stress and temperature history before 
that point in time proved to be irrelevant. When the material is more than 
5 to 15 K below the deformation temperature, the strains after unloading 
are governed by the compliance of the material at that temperature as a 
function of time, and by the internal stress present when passing the glass 
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transition. This creep behaviour can be modelled using a linear viscoelas
tic isotropic model when the occurring stresses are below the linearity limit 
of the material under consideration and the temperature of the material is 
below its glass transition temperature. 

It could be concluded that the frozen-in stress, caused by deformation 
during the filling and packing stage, is the origin of elastic recovery after 
ejection of the product. This recovery can be described by the compliance 
of the material and the (constant) frozen-in flow-induced stress. Only the 
reversible part of the deformation above Tg can lead to the creep effect, so 
only the elastic part of equation (2.21) is considered as an extra load after 
demoulding. 

Rather than a constitutive equation for the stress in terms of deformation, 
here an equation for the strain is given in terms of stress. The volumetrie 
part of the strain is governed by the KAHR model (equation (2.9)) and the 
mass balance (equation (2.1)). The deviatoric part of.the strain is described 
by a generalised Voigt model (see Ferry, 1980). 

(2.39) 

with Jj the (shear) creep compliance of mode j, Jg the instantaneous com
pliance and 'f/K the viscosity incorporating viscous flow. The expression for 
(Kj is similar to (Mj, given by equation (2.35): 

(2.40) 

Again thermorheologically simple material behaviour is assumed, leading to 
the following expression for viscosity, relaxation time and shear compliance: 

J . _ TKj 
3-

'f/Kj 

(2.41) 

(2.42) 

As equation (2.39) is only valid below Tg, arK is only specified for this 
temperature range: 

(T < T9 ). (2.43) 
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Although usually creep experiments are performed to find the relevant ma
terial parameters, here the same viscoelastic measurements are employed, 
that are used for determining the parameters of the Maxwell model ( equa
tion (2.34)). The procedure is elucidated in Chapter 4. 

2.2.3 Heat conduction and internal energy 

The constitutive equations used for the thermal properties are: 

h = -À·VT (2.44) 

À À(p, T) 

'Î' p . T ( öp) . (2.45) e Cp +2P+2 öT P p p p 

Cp Cp(p, T) 

where Cp is the thermal capacity at constant thermodynamic pressure and 
À is the thermal conductivity tensor. Equation 2.44 is known as Fourier's 
law. Equation (2.45) is derived in e.g. Sitters (1988). Chiang et al. {1991b) 
proposed the following equation for cp: 

(2.46) 

2.3 Thin film. approximation 

In this study only thin-walled products are considered, fed by a runner sys
tem. In this section only the cavity is considered. Runners and runner-like 
product parts are treated in appendix E. The set of equations given in the 
previous sections can be written with respect to a local base, shown in fig
ure 2.1. The typical flow kinematics justify the following assumptions, which 
will be used to simplify the set of equations: 

1. The inertial and body forces are negligible compared to the viscous 
forces. 

2. The product can be dp,scribed by a combination of thin flat geometries. 

3. The specific heat source is negligible. 

Based on these basic assumptions, the following remarks can be made: 

1. The pressure is constant across the wall thickness. 
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2. The velocity in thickness direction is negligible compared to the veloc
ity parallel to the midplane. 

3. The velocity gradient parallel to the midplane is negligible compared 
to the velocity gradient in the perpendicular direction. 

4. For computation of the stress tensor in the balance equation, elonga
tional flow is negligible compared to shear flow. 

5. Thermal conduction parallel to the midplane is negligible compared to 
the conduction in thickness direction. 

6. The extra pressure drop due to sudden changes in thickness or at junc
tions and corners is negligible. 

r 

Figure 2.1: Definition of local coordinates, domains and boundaries for cavîties 

It is possible to use the shear rate i' in stead of Dd in the constitutive 
relations, with 

1 

f)iJ* 1 i'= -e, _ äx3 , 
(2.47) 
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where V* indicates the velocity parallel to the midplane (see figure 2.1) and x~ 
is the local thickness coordinate. The steady state Leonov model is employed 
to specify equation (2.18) (see Douven, 1991): 

fflL ( 2 ) L 'T/LjaTL (2.48) 'T/ = 'T/roarL + 
j=l J1+4(i'TLjarL) 2 

(-CL1(T-TLr)) (2.49) arL = exp 
CL2 +T-TLr 

Tg T9o +sop (2.50) 

with 'T/ro the viscosity at T9o for the viscous part of the deformation, 'T/Lj 
the viscosity for mode j and TLj the corresponding relaxation time. An 
alternative model for the shear viscosity is the 7-constant Cross model. 

11(p, T, i') 

'T/C = 

'T/c(p, T) 

1 + (11c(p,T)i'/Tco)( 1-n) 

(
-cc1(T-Tcr - sop)) 

'T/coexp 
cc2 +T-Tcr 

(2.51) 

Using the three assumptions and the constitutive equations (2.16), (2.17), 
(2.44) and (2.45), the balance equations can be rewritten as (see e.g. Sitters 
(1988); Boshouwers and van der Werf (1988); Douven (1991)): 

(2.52) 

(2.53) 

(2.54) 

Especially the second assumption is not valid in the flow front region. 
Therefore, special attention could be paid to the flow kinematics in this 
region as it is not dominated by shear but contains a major elongational 
component, affecting the internal stress state. Material derivatives are in
fluenced as well, as particles from the care region end up at the mould wall. 
This is depicted in figure 2.2a, where the mould walls have the relative veloc
ity opposite to the average front velocity, and solidified layers are omitted. 

The model applied for the flow front is depicted in figure 2.2b. All elon
gational flow is neglected, which may lead to serious errors in the prediction 
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of the flow-induced stress at the very surface layer of products1 (see Jansen, 
1993). The residence time in the front region is assumed to be zero for all 
particles. As a consequence the flow-front is considered to be isothermal. Al
though the residence time in the flow front does influence the exact location 
where particles end up in the product, the gradient in flow direction of the 
relevant quantities is relatively small, so that incorporation of the residence 
time, although quite well possible (see Zoetelief, 1995) does not have the 
highest priority. Given the position of entrance into the front region, the 
position where the particle exits is based on the local velocity profile (indi
cated on the left in figure 2.2b) and the mass balance. The material that 
comes into contact with the cold mould cools from the temperature of the 
core at a high rate. Incorporation of this effect is important for an accurate 
prediction of the density distribution. 

Figure 2.2: Left (a): Schematic illustration of the flow front kinematics. Right (b): 
Illustration of the front model applied 

2.4 Resulting set of equations 

Given the assumptions of the thin film approximation, the set of balance and 
constitutive equations can be simplified. This results in a full set of equations 
for quantities related to the process, like pressure, temperature and velocity, 
equations for the structure parameters, like density and residual stresses and 
the final product properties, like warpage and elastic recovery. 

1 Wimberger-Friedl (1995) showed that the high level of stress may also be caused by 
the "squeeze flow" or unidirectional shrinkage in thickness direction, that occurs during 
solidification of the ~urface layers. 
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Pressure 

Integration of the equations (2.53h along the x~ coordinate yields: 

{)il* ~ ( x3V*p + if) (2.55) 

where i!* is an integration constant. Integration of equations (2.55) along x~ 
leads to: 

(2.56) 

(2.57) 

where a-, a+ are the positions of the solidification fronts. The constant i!* 
can be determined as follows, using: 

(n= 0,1,2) 

and the assumption that il* ( a+) = 0, i!* can be written as: 

.,,.. F1-n* c --vp 
Fo 

and consequently 
xe 

il*(x3) = j ~ ( x - ~~) dxV*p 

Integration of equation (2.60) over h leads to: 

~ a+ J V* dx = J V* dx -SV*p, 
~ a-

p2 
S= F2- - 1 

Fo 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

Similarly, integration of the continuity equations 2.52 over the total thickness 
yields: 

h 

~:dx=- j 
_l!. 

2 

p -dx 
p 

(2.62) 
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The second term of equation (2.62) equals the relative velocity of the two 
mould walls in x~ direction ~~, due to mould elasticity and is written as: 

ah_ ahap _ 
0

ap 
at-apat- at (2.63) 

with C the compliance of the mould. Substitution of (2.61 h into {2.62) 
yields: 

(2.64) 

Finally, equations (2.30) and {2.64) give: 

h h 

-V·. (sV•p) + 1 Kooi>dx + cZ = 1 (<>oot+ 1!0) dx (2.65) 

-2 -2 

Of course boundary conditions are required to solve these equations. For 
the injection area of the cavity (re, figure 2.1), either a volume flux, or a 
pressure can be prescribed. The volume flux is usually prescribed during 
filling, resulting in a inhomogeneous Neumann boundary condition for the 
pressure equation, based on equation (2.61). 

q = sîJ*p· n* (2.66) 

Here q(X*, t) denotes a prescribed volume flux per unit of length, ii is the 
unit outward normal of Oc, with Oc the filled area of the midplane. When, 
during filling, the maximum machine pressure is reached, this pressure must 
be used as a boundary condition, which results into a Dirichlet boundary 
condition: 

p=pe (2.67) 

During packing and holding the pressure is prescribed at re· During cooling 
the boundary condition at re equals the one for ro (see below). At the flow 
front r f, i.e. the interface between polymer and air inside the cavity, the 
pressure équals the ambient pressure Patm: 

P = Patm (2.68) 
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On r 0 the volume flux through the boundaries is zero. Using equation (2.61), 
this results into a homogeneous Neumann boundary condition: 

V*p · fi* = o (ro) (2.69) 

Solution of equations (2.65) gives the pressure field inside the mould. The 
velocity field can be computed using equations (2.52) and (2.60) To compute 
the coefficients, the temperature field must be known. This can be computed 
sol ving the temperature equation, formulated below. 

Temperature 

For the cavity, the temperature equation reads (see equation {2.54)): 

a (À äT ) r· T ( op) . . 2 
--g -g +pep +- - p=rrr 

OX3 OX3 p äT p 
(2.70) 

Boundary conditions and initial values are required to solve this convection
diffusion equation. During filling, the polymer is in contact with the air at 
the flow front (r f). Here a zero heat flux is prescribed: 

V*T. fi* = o. (2.71) 

This boundary condition is, although far from realistic, also used for r o due 
to lack of actual data here. During filling, packing, holding and cooling, 
the polymer is in contact with the mould at the top (r +) and bottom (r _) 
plane. Here either the (mould) temperature is prescribed (Dirichlet bound
ary condition) or the heat flux into the mould (Biot boundary condition): 

T = T;j; or À~ = H:ti(T T;f;,) (r+) (2.72) 
UX3 

äT 
T = T;;; or 8xE = H;(T T;;;) (r-) (2.73) 

3 

Here T;};, T;;; are mould wall temperatures, r;:;, T;;; are the temperatures 
of the medium in the cooling channels and H-;!;;, H;;,, are the effective heat 
transfer coefficients from polymer to cooling medium. These parameters 
change when the product is ejected from the mould and cooled by the air: 

T = Ta or À;; = Ha(T-Ta) (r+, r-) (2.74) 
3 

Here Ta is the ambient temperature and Ha is the heat transfer coefficient 
from polymer to air. At the injection area (re) the temperature is set to the 
injection {or entrance) temperature Te: 

T =Te (re) (2.75) 
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Density 

Given the solutions of equations {2.65) and (2.70), equation {2.10) can be 
solved. Since the coefficients in the pressure and temperatme equations 
depend on density, these equations are coupled. Initially all: material is 
above the glass transition temperature, so the initial value for 8 is zero. 
Solution of equation (2.10) yields the density distribution across the entire 
product as a function of time. 

Thermally and pressure induced stress 

The thermal stresses can be calculated using equations (2.33) and (2.34), 
given the pressure of the fluid and the entire temperature history. A viscous
elastic approximation can be applied instead using equation {C.l). After 
ejection, equation (2.2) is solved, assuming l = ii = Ö and substituting 
for the stress tensor either equations {2.33) and (2.34) or equation (C.l). 
Sufficient kinematic constraints must be prescribed to prevent rigid body 
motion and rotation. The boundary load is assumed zero. In Chapter 3 it 
will be shown that, from the computed displacement field, the strains and 
stresses can be computed. 

Orientation or flow-induced stress 

The flow-induced stress is computed using equations (2.21) to (2.25). After 
substitution of 2.25, equation (2.24) can be written as: 

d - - de 
L · Bej + Bej · L -

1 [- - 1 - --1 - ] 
ZTLj Bej · Bej - 1- 3(tr(Bej) - tr(Bej ))Bej . (2.76) 

As an initial value, the solution for isothermal stationary flow is taken (see 
e.g. Akkerman, 1993). Elongational flow effects are neglected, so the influ
ence of the fountain flow on orientation is not taken into account. Also the 
influence of cooling stresses before and during glass transition (which can be 
regarded as a squeeze flow, see equation (C.2)) on the degree of orientation 
is, although proven important (see Wimberger-Friedl, 1991, 1994), neglected. 
From the results of Tas (1994) it is known that the Leonov model poorly pre
dicts the elongational viscosity at high shear rates for poly-ethylene. Models 
that perform better, such as Phan-Thien-Tanner, need separate elongational 
flow experiments to fit all parameters. However, these are not yet available 
for the material used in this study. 
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The shear rate is, with respect to the local base Oe, written as: 

. Öv~ 
'Y2 = .!l e. 

vX3 
(2. 77) 

From the equations (2.55) and (2.59) shear rates can be computed from the 
pressure gradient. Matrix L.d is written as: 

[ 
0 0 71 l 

=L.= ~ ~ ~ (2.78) 

Let Bk1(= Bik) denote the components of the tensor Bej with respect to 
local base Oe, then equation (2.76) can be written as: 

Èn = 271B13 1 [1 2 2 2 1 ] 'TLi 2(Bn + B12 + B13 - 1) - 6FrB11 (2.79) 

Ê22 = . 1 [1 2 2 2 1 ] 272B23 - TLj 2(B12 + B22 + B23 - 1) - 6FrB22 (2.80) 

È33 1 [1 2 2 2 1 ] 
TLj 2(B13 + B23 + B33 - 1) - 6FrB33 (2.81) 

71B23 + 72B13 

1 [ 1 1 ] 
TLj ·2(B12(Bn + B22) + B13B23) - 6FrB12 (2.82) 

i'1B33 

1 [ 1 1 ] -- -(B13(B11 + B3s) + B12B2s) - 6FrB13 
TLj 2 

(2.83) 

È23 = i'2B33 

1 [ 1 1 ] 
TLj 2(B2s(B22 + B3s) + B12B1s) - 6FrB23 (2.84) 

with 

Fr Bu + B22 + B33 - (2.85) 

(B11B22 + BnBss + B22B33 - Bf2 - Bf3 - B~3) (2.86) 

The stationary solution is taken as an initial condition. After solution of this 
set of equations, Bej is substituted into equation (2.22) and gives the elastic 
part of the deviatoric stress tensor. In order to determine the viscous part, 
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an expression for Dd, the deviatoric part of the deformation rate tensor with 
respect to local base Oi;, must be known: 

(2.87) 

Equation (2.21) then finally gives the total stress tensor that is due to fiow
induced orientation. 

Shrinka.ge and warpage 

A no-slip condition is prescribed in all cases at the mould walls r _, r +. For 
geometrically complex products, this constrained quench assumption can be 
justified. Also for rectangular products this assumption is valid when the 
fluid core of the product is still under a sufliciently high hydrostatic pressure 
to ensure enough friction at the walls. Only when the pressure is zero and 
the product is not completely solidified, and after complete solidification, 
the no-slip condition may have to be abandoned. Little is known, however, 
on the friction between product and mould wall. Besides, the typical stress 
distribution across the thickness, that corresponds to the incorporation of 
boundary slip, has never been observed experimentally in injection moulded 
products (see Brucato et al., 1989). 

After demoulding, the momentum equation is solved again (see sec
tion 2.4) and from the computed displacements and rotations (or warpage), 
strains and thus shrinkage can be evaluated. 

Creep 

The stress tensor, as given in equation (2.21), forms the input for equa
tion (2.39) at ejection of the product. It is assumed that, after demoulding, 
the frozen-in stress remains constant. Thus the latter equation can be writ
ten as: 

(2.88) 

with te the moment of ejection and (Kj as given by equation (2.40). From 
the computed (extra) strains an (extra) displacement field can be evaluated. 
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2.5 Discussion 

Given the equations of balance and the constitutive equations for the Cauchy 
stress tensor, density, heat flux and internal energy, a set of equations is 
derived to describe the injection moulding process and the formation of the 
structure and the mechanical properties of the moulded product. 

Three constitutive equations are proposed for the Cauchy stress tensor. 
Following a decoupled approach, a generalised Newtonian model is used in 
the momentum equation. A compressible Leonov model is employed for the 
computation of the fl.ow-induced residual stress. This stress is taken as an 
external load for the computation of creep after demoulding, modelled by a 
multi-mode Voigt model. A linearised version of the Leonov model is used for 
the calculation of thermal residual stress, leading to shrinkage and warpage. 

The set of equations is simplified, employing the thin film approxima
tion. This leads to equations for pressure, shear rate, velocities, tempera
ture. Equations for pressure and temperature are coupled via the density 
and the viscosity. After solution of these equations, pressure, temperature 
and density are used as input data for the computation of thermally and 
pressure induced stress, shrinkage and warpage, fl.ow-induced residual stress 
and elastic recovery. 
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Chapter 3 

N umerical Methods 

In this chapter, the numerical methods are described that are applied to 
solve the equations, derived in Chapter 2. In section 3.1 an operator splitting 
technique is proposed for the approximation of material derivatives, resulting 
in an additional pure convection equation. As the transient equations cannot 
be solved analytically, they are discretised in time (3.2). Several equations 
are coupled, so an iterative procedure is required for this, which is elucidated 
in section 3.3. Finally, a description of the spatial discretisation is given, 
which leads to a finite element formulation of the equations (section 3.4). 

3.1 Operator splitting 

Since all terms of the temperature equation (2.70), except for the mate
rial derivatives, depend on the local thickness coordinate only, an operator 
splitting technique seems useful for the solution of these equations. For de
scription of this method, a general convection-diffusion equation, defined for 
a two dimensional space, is treated (see also Press et al., 1988, Chap. 19). 
Starting from: 

-V·DVu+u F 

the convection-diffusion equation can be written as: 

au 
at 
Cu 

= Cu 

Ciu = -v·Vu 
C2u = V · DVu + F 

33 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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The operator splitting technique applied consists of subsequent solution of: 

au 
at 
au 
at 

(3.6) 

(3.7) 

The initial value for (3.6) equals that for the original equation (2.70). Only 
boundary conditions at inflow boundaries are required. The initial value for 
equation (3. 7) is the solution of equation (3.6), which will be referred to as 
the convected value of u, denoted by Uc. 

3.2 Tempora! discretisation 

The relevant equations are solved for a number of discrete moments in time 
ti. The velocity field V* is assumed to be constant du;ring a time step b.ti = 
ti - ti- l and is evaluated at ti. All material derivatives are assumed to be 
constant as well and are approximated by: 

• Ui - Uc 
Ui~ _fl_t_ 

Time dependent domain 

(3.8) 

During filling, the domains Üc and Ür change in time. Suppose the averaged 
speed IV'*! is known at the flow front r f (see figure 2.1) at ti-1· The location 
of this front at ti is estimated by taking the enveloping curve of all "circles" in 
the midplane with IV'* 1 times ( ti - ti-1) as a radius and with their midpoints 
located on the front at ti-1· For the first time step, the average front velocity 
can be derived from the boundary conditions (2.66). For every following time 
step, these equations are evaluated at the front. 

Convection equations 

Despite of the higher accuracy of a Crank Nicholson method ( see Zoetelief, 
1995), the convection equation (3.6) is solved using an Euler implicit scheme: 

(3.9) 

It is assumed that pressure and temperature fields are sufficiently "smooth", 
so that the e:ffects of numerical dispersion and di:ffusion are limited. This 
choice reduces memory requirements and increases the speed of the code. 
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Pressure and temperature equations 

The pressure and temperature equations (2.65), (2.70) are discretised us
ing an Euler implicit scheme. The coefficients are evaluated at the current 
time step ti and therefore the equations have to be solved iteratively (see 
section 3.3). 

Application of time discretisation and operator splitting to the pressure 
equation (2.65) leads to: 

with Pc the solution of 

op 
= 

8t 

h 

~t j (a00 (T 
h 

-2 

cPi-1 
D.t 

Ö - Óc ) 
Te) + 1 + t5 +Pc K.oo dx + 

(3.10) 

(3.11) 

(see the next section for the treatment of Öc). Boundary conditions of equa
tion (3.10) are listed in Chapter 2. For equation (3.11) the boundary con
dition at the gates is the local pressure at the previous time step. No other 
boundary conditions are required, not even on the flow front as the pressure 
is assurned to be constant across the gap width. The initial condition is the 
pressure distribution at t = ti-1 · 

After time discretisation and incorporation of the operator splitting tech
nique, the resulting equations for the temperature are: 

fJ ( ~ ) Ti [ 1 ( fJp ) (p )] . 2 Te ( ) - 8xä >. 8xä + D.t pep + p ~ P - Pc = rn +pep D.t 3.12 

with Te the solution of 

8T 
ät 

-V'. V*T i (3.13) 

Boundary conditions of equation (3.12) are listed in Chapter 2. At the 
inflow boundaries, the boundary condition for equation (3.13) is the injection 
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temperature. The initial value is '.Zi-1· As indicated in section 2.3, the 
flow front boundary needs special treatment in order to incorporate the 
convection from the core to the surface. For convenience treatment wîll be 
postponed to section 3.4. The initia! condition for equation (3.13) is Ti-I, 
the temperature at the previous time step. 

Density equation 

Although other solution methods exist (see e.g. Hussain et al., 1990), the 
fractional exponential formulation of the relaxation time spectrum in the 
KAHR model (equation (2.11)) is approximated by a discrete spectrum: 

m.s 
LWj 1. (3.14) 
j=l 

This enables an incremental formulation of Óji = Ój(ti), the contribution to 
ó for relaxation time j at ti. 

Óji = (óJi Ójc + 

(óji Î (-6.a'Îi, + D,.,.,pi) Wj exp (-T ~:;) dt' 
t;-1 t' 

(3.15) 

(,;, = exp (-} !: ) (3.16) 

Application of the trapezium rule for numerical integration and substitution 
of equation (2.12) leads to: 

I Ó.ti ( ' • ) ( 1 
(5JiÓjc + 2 -6.aTi + Ó.1)'.Pi Wj 1 + (óji) (3.17) 

exp [- 6.ti ( 1 + _1_)] 
2TójO ar8 iapiaói ar8i-1api-1aói-1 

{3.18) 

As (~Ji depends on ó(ti) itself, equation (3.17) has to be solved iteratively. A 

Picard iteration scheme is used. The time derivatives T, pare approximated 
by equation (3.8). 

The term Óc could be computed applying equation (3.11), hut now for ó 
in stead of p. However, when ó 'f:. 0 (so there may be a V*ó 'f:. 0), the material 
is more or less solidified, so V* is ( almost) z.ero. Thus the convective term 
becomes negligible. 
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Thermal stress equation 

For temporal discretisation of equations (2.33) and (2.34) it is assumed that 
time derivatives are constant during a time step. Like for Óji in the previous 
section, an incremental formulation can be given for the hydrostatic and 
deviatoric parts of the stress tensor. Discretization of equation (2.33) and 
application of the trapezium rule for numerical integration results in: 

Pi Pi-1 + {3. l:l.Ti + 1• l:l.oi - K•tr(l:l.ëi) (3.19) 

13• - -+--1 (<-"tooi Oooi-1) 
2 r;,ooi r;,ooi-1 

(3.20) 

'Y. - 1 ( 1 1 ) 
2 r;,ooi(l + Ói) + r;,ooi-1(1 + Ói-1) 

(3.21) 

K• 1 ( 1 1 ) (3.22) = -+--
2 r;,ooi r;,ooi-1 

where l:l.Ti, l:l.ói, l:l.ëi are the change in T, ó, ê respectively during time step 
l:l.ti for the particle under consideration. Discretization of equation (2.34), 
again in combination with the application of the trapezium rule, leads to: 

mM ffiM 

2:: uji L (kii uji-1 + 20• l:l.ef (3.23) 
j=l j=l 

m 
c· 2:: 2 (1 + (kji) (3.24) 

j=l 

(kJi [ l:l.ti ( 1 1 ) l (3.25) = exp --- --+ 
2TMjO arMi arMi-1 

The expression for the total Cauchy stress tensor at ti can be summarised 
as: 

m 

-(Pi-1 + 13• l:l.Ti + 1• l:l.oi)I + L Ckji uji-1 
j=l 

(3.26) 

(3.27) 

Equation (3.26) can be written with respect to local base 0 15 , thus eliminating 
the incremental strain component l:l.E33 : 

T q 

M l:l.~ + fl 
[uu 0-22 cr12 0-23 cr13], 

(3.28) 

(3.29) 
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a• b• 0 0 0 

b• a• 0 0 0 

M = 0 0 c· 0 0 

0 0 0 c· 0 

0 0 0 0 c· 

ai1 + ! {a33 a33) 

a22 + ! (a33 - u33) 

ai2 

a23 

ai3 

a33 - a33 b 
.6.e33 = A - -:- (.6.eu + .6.e22), 

a a 
3K• +4G• 

3 
a 

3K• - 2c• 
3 

b2 
a- ---:---, 

a 
A2 

A b 
b. = b- -a· 

{3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Four cases can be distinguished with respect to the local boundary condi
tions: 

1. "Constrained quench" with fluid core - All strain components 
are zero, except for €33, which must obey: 

(3.38) 

The corresponding Cauchy stress component equals -p, which is gov
erned by equation (2.65). 
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2. "Constrained quench" with solid core - The only difference with 
case 1 is that instead of a33 = -p, equation (3.39) is used, which can 
be derived from equation (3.33) and equation (3.38) and the fact that 
0-33 is constant across the thickness: 

h/2 

f a33 /adx 
-h/2 

0-33 = h/2 

f 1/àdx 
-h/2 

(3.39) 

3. "Free quench" inside the mould - All strain components still equal 
zero, except €33. In this case l733 -Patm (the atmospheric pressure) 
is used. 

4. "Free quench" outside the mould - All strain components may be 
non-zero. They are derived from the change in the displacement field 
!:lui during time step !:lti, which is approximated by solving equa
tion (2.2), after substitution of equation (3.28), using a finite element 
method (see section 3.4) 

All stress components, other than a33, are determined using equations (3.28) 
to (3.37). 

Flow induced stress 

At each time step, equations (2.79) to (2.84) are solved for all material 
particles in the fluid state, and the deviatoric part of the stress tensor is 
updated using equation (2.21). When a particle solidifies during a time 
step !:lti, the stress at ti-1 is frozen in permanently. Equation (3.8) can be 
applied to approximate the material derivatives of Bk1, but the convective 
term proved to be negligible. Due to numerical inaccuracies, det(Bkl) may 
deviate from 1 after some time steps. Therefore, B33 is recomputed from 
the other components every time step. 

Elastic recovery 

Division of the time integral in equation (2.88) into apart before ti-1 and a 
part from ti-1 to ti yields: 

e~(ti) =ud [J9 + ti/1JK + I: J; (1 
J=l 

(3.40) 
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Application of the trapezium rule for numerical integration to the expression 
for (K j results in: 

( 
l:l.tk l:l.tk ) (Kj(tk, tk-1) = exp -. +-
TK · TK· 

J t=tk J t=tk-1 

(3.41) 

3.3 Iteration methods 

Every time step, the pressure and temperature fields are initially estimated 
from the previous time step. For the first time step, they are based on 
boundary and initial conditions. During filling the values at new nodes are 
extrapolated from the nodes at the previous flow front. The pressure gradient 
and shear rate are not computed from the estimated pressure and temper
ature f:ields but are estimated just like these fields: although discontinuities 
in cavity thickness may introduce some serious errors in these estimations, 
convergence is generally better applying this method. From these estima
tions, the coefficients of the pressure and the temperature equations (3.10) to 
(3.13) can be derived. An approximate solution is computed using finite ele
ment methods (see section 3.4), enabling recalculation of the coefficients and 
solution of the equations (Picard iteration scheme). Convergence is checked, 
using the deviation between two subsequent iterations, with respect to com
puted pressure, temperature and velocity. The first iteration, V* is taken the 
null vector in equations (3.11) and (3.13). This improved the stability of the 
Picard iteration method. A poor estimate of the velocity field appeared to 
lead to even worse convected pressure and temperature fields. 

As mentioned in section 3.2 a separate Picard iteration scheme is em
ployed for the computation of Óji (equation (3.17)). 

3.4 Spatial discretisation and FE formulation 

The equations for pressure ( (3.10), temperature ( (3.12), the convection equa
tions ((3.11), (3.13) and the equations for warpage ((2.2), (3.28)) are solved 
employing finite element methods to compute approximate solutions. 

Pressure equation 

As the pressure is assumed constant across the thickness of the product, 
a mesh is defined on the midplanes of the (filled part of the) cavity. Bi
quadratic nine-noded quadrilateral surface elements are applied,to describe 
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the pressure field for the midplanes. Although quadrilaterals limit the flex
ibility during meshing, this element type was chosen because of its good 
convergence when refining the mesh, yielding an accurate approximation of 
the pressure gradient (see appendix A). The accuracy of this gradient is im
portant, as it determines the accuracy of the velocity field ( equation (2.60)) 
and also of the material derivatives (equation (3.11)). At junctions and sharp 
corners of the midplanes, the pressure gradient is defined for every plane sep
arately. Thus the velocity is always parallel to the midplane, which is again 
important for computation of the material derivatives via equation (3.11). 

Equation (3.10) is a second order elliptic differential equation for the 
pressure. The solution is approximated using the Galerkin finite element 
method, as implemented in the finite element package SEPRAN (see Se
gal, 1993). The coefficients are determined in the vertices of the elements 
only, and interpolated to the midpoints. As the region Oc for which equa
tions (3.10) is defined, change in time, local remeshing is required every time 
step. In appendix B this technique is described. 

Temperature equation 

In every vertex of the quadratic pressure elements a gridline is defined in 
thickness direction. In the case that the boundary conditions at r+ and 

are equal (symmetrical case), only half the thickness is discretised by the 
grid line. In this case the gridline is split into two parts: one for the solidified 
layer, and one for the fluid layer. In the asymmetrical case, a third part is re
served for the second solidified layer. The number of grid points in each part 
is equal for every grid line and independent of the thickness of the solidified 
layer. Figure 3.1 illustrates this. When the material is completely solidified, 
the grid points are spread evenly over the grid line. Linear line elements are 
used to describe the temperature across the thickness. Equation (3.12) is 
a second order elliptical differential equation. An approximate solution for 
this equation is computed using the Galerkin finite element method. 

Convection equation 

Given the velocity in all grid points, for each grid plane in the fluid layer the 
convection equation is solved (see figure 3.1). The solution field is approx
imated by bilinear elements. A SUPG finite element method is employed, 
using the time dependent upwind parameter according to (Zoetelief, 1995, 
app. B). After the convection equation is solved, the typical fountain flow 
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Grid line 
Solid Layer 

Fluid Layer 

Midplane Nodal Point 

Grid Point 

Figure 3.1: Definition of grid lines in thickness direction (asymmetrical case) 

at the flow front is incorporated. For all grid lines at the flow front, data 
at grid points where V* < iÏ* are overwritten by interpolated data of the 
corresponding positions where V* > ff* (see also end of section 2.3 and fig
ure 2.2b). 

Shrinkage and warpage 

The geometry is discretised by bilinear shell elements, of which the vertices 
1 

coincide with the (biquadratic) pressure elements (see also Hughes and Liu 
(1981), Dvorkin and Bathe (1984) and Douven (1991)). Isoparametric coor
dinates (i, (2, (3 E [-1, l] are introduced. Coordinate (3 coincides with the 
local thickness or fibre direction of the shell (see figure 3.2). The mapping 
to the physical shell domain is described by: 

4 

x I: (Nax! + Nazax!) (3.42) 
a=l 

where x is the position vector of an arbitrary point in the physical shell 
domain, x! is the position vector at the reference plane (i.e. (3 = 0) for 
element node a and x! is the unit vector representing the fibre direction at 
node a. The interpolation functions Na and Za are defined as: 

1 
4(1 + (1a(1}(l + (2a(2), (3.43) 

ha 
2 

Za (3.44) 
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Fîgure 3.2: Definîtion of isoparametric coordinates and the numbering of vertices 
and midside nodes 

with ha the thickness in fibre direction at node a and ( 1a, ( 2a the isoparamet
ric coordinates of node a. The displacement field ü and also the incremental 
displacements llü are interpolated similar to x. The nodal fibres are assumed 
to be inextensible. 

A lamina is a surface for which (3 is constant. lntegration over a lamina 
is done by four point Gaussian quadrature. In every integration point a 
Cartesian vector base Oei is defined with e{, ëJ tangent to the lamina (see 
figure 3.2). In every nodal point a local Cartesian vector base Oei is de
fined with e{ in fibre direction (indicated in the same figure), which will be 
used as a reference frame for rotation increments about ë{, ë'~ ( fl</>2, fl</>1 
respectively). These rotation increments are related to the incremental fibre 
displacement flüf according to the linearised equation: 

[ 
flüf . ë{ l [-1 0 l [ l flüf. ë~ = 0 -1 ~4>1 

J\ ... ! ... f 0 0 </>2 
uU · €3 

(3.45) 

(see figure 3.3 for sign conventions). Thus the third rotation is eliminated as 
a degree of freedom. The (incremental) nodal displacements are defined with 
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Figure 3.3: Definition of kinematics and sign conventions at a nodal point 

respect to the global base Oe. Three rotation tensors R91 e:ien (global 
to lamina), Rfg = ënëfi (fibre to global), Rf1 = ë~ë'!: (fibre to iamina) are 
defined to transform vectors from one base to another. 

A strain displacement relation is required to solve the momentum equa
tion in terms of incremental displacements with respect to global base ë'n,: 

4 4 T 
IJ6JJ = L IlailCf a = L Ila [ ily~ ily! ] {3.46) 

a=l a=l 

The matrix Il is derived-as follows. The incremental strain components with 
respect to the covariant reference frame 0 9 , with ffn = gfn, are approximated 
by the linearised form: 

il A 1 (8ilü -+ 8ilü -+ ) 

êmn = 2 éJ(m · 9n + B(n · 9m (m,n = 1,2,3) 

Using equation (3.42} for ilü, this can be written as: 

4 
A A 1 "'(N A -l - N A -J -u.êmn = 2 L..J a,mu.Ua · Yn + Za a,mu.Ua · Yn + 

a=l 

Na,nilü~ · §m + ZaNa,nilu! · §m) 

(3.47) 

(3.48) 
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4 T 

= L ~";n flJ.J a (3.49) 
a=I 

(m,n = 1,2,3) 

where (.),n at. To prevent locking of the element in the case of thin 
shells, Dvorkin and Bathe (1984) proposed the following interpolation of the 
transverse incremental strains D.€13, Llê23: 

Llê13 ~ (1 - (2)Llêf3 + ~ {l + (2)D.ê~ (3.50) 

Ll.€23 = ~(1 - (1)Llêfs + ~(1 + (1}Lltfs (3.51) 

where e.g. D.êt3 is evaluated according to equation (3.48) in point A (see 
figure 3.2). A transformation matrix E~n = ëfn ·fin is used to transform the 
strains LlÊmn from the covariant base 0 9 to the lamina base Oei: 

(3.52) 

This results in the following expression for [j: 

bi 0 0 b4 0 0 
0 b2 0 0 b5 0 

E b2 bi 0 b5 b4 0 (3.53) 
bÎ3 b~3 b~3 b~3 b23 5 b~3 
bl3 

1 
b13 2 bp bà3 b13 

5 bà3 

with 

bi { Na,n n = 1,2,3, 
(3.54) 

(Naza),(n-3) n = 4,5,6. 

Following Hughes and Liu (1981), the shear correction factor K,!,2 , with 
K,sh 5/6, is used for bf3 to bg3 and bt3 to b~3 . 

The partial element matrices k!b, the left hand side columns Ll4! and the 
right hand sides Llr~ (a, b = 1, 2, 3, 4, no summation) can now be written 
as: 

1 1 1 

k!b = j j q~ j Er ME bJ d(3 q b d(1 d(2 (3.55) 
-1-1 -1 

D.de -a = [Llil!i · ë1 Llil!i · ë1 Llil!i · ë1 D.</Jia Ll</J2a]T (3.56) 
1 1 1 

Llre = - j j q~ j Erq_J d(3 d(1 d(2 (3.57) -a 

-1-1 -1 
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with 

{3.58) 

[ 
R9

1 
032 l Q = 

- a 033 JJ/I JJ,lf>f . 
(3.59) 

In the case of stiffeners or ribs being present in the geometry, the sixth degree 
of freedom is not eliminated in the nodes located at the junctions. For these 
nodes .6.4~, q a become: 

Elastic recovery 

(3.60) 

(3.61) 

The model chosen for elastic recovery is such that cases where cooling is 
asymmetrical, or cases with kinematic boundary conditions restricting the 
recovery processes cannot be studied. A different approach would be the ad
dition of the computed flow-induced residual stress tensor to the initial stress 
tensor oJi-l in equation (3.27) every time step. However, the geometry and 
conditions of the cases studied in this work are such, that equation (3.40) of 
the original approach can be solved on anode-by-node basis, saving consid
erable computing time. 

3.5 Discussion 

For the resulting set of equations of Chapter 2, numerical solution procedures 
were developed and tested for convergence and stability. The numerical 
methods were, if not already available, implemented in the SEPRAN finite 
element package (see Segal, 1993) by Caspers et al. (1994b). 
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Material Characterisation 

Two materials are used in this study. One is a polymethylmethacrylate 
(PMMA), Plexiglas 7H from Röhm, and the other is a polystyrene (PS), 
Styron 678E from Dow Chemical. Their rheological and thermal properties 
are discussed in this chapter. 

4.1 Rheology 

PMMA 7H In order to compute the flow kinematics during filling, the 
shear viscosity must b.e known as a function of shear rate, temperature and 
pressure. Experimental data were obtained from Schennink (1991), who 
performed small-amplitude oscillatory shear experiments (Rheometrics Dy
namic Spectrometer RDS-II) for several temperatures and frequencies. An 
oscillatory shear strain was imposed on the sample, while measuring the re
sulting torque and the phase difference between the strain and the torque. 
The result is plotted in figure 4.1, where w denotes the angular frequency 
and 'f/* the dynamic viscosity. Applying the Cox-Merz rule, w can be read 
as the shear rate i' and r1* as the steady state shear viscosity 'f/· 

A fit using the 7-constant Cross model (equation (2.52)) is shown in 
figure 4.1 as well, of which the parameters are listed in table 4.1. The 
fit deviates from the experimental values for low temperatures and high 
frequencies, as the model does not incorporate the second plateau found 
experimentally. The pressure dependence of the viscosity, not available from 
the experimental data, is taken equal to the T9 pressure dependence (see s0 

in table 4.1). 

47 
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102-~~~...,__~~~ ............ ~~~~-~~............, 
1~1 

,, 1~ 1~ 1~ 
ro[radls) 

Figure 4.1: Experimental (x) and fitted (lines) viscosity of PMMA at (from top 
to bottom) 402.6, 412.8, 422.9, 433.2, 442.5, 452.8, 463.7, 473.7, 483.5, 
493.6, 503.6, 513.8 and 523.0 K (Schennink (1991)) 

PMMA 7H 

7JCO lûij Pas 75.0 
Ter K 483 
n - 0.21 

rco 104 8 12 
cc1 - 17.6 

ccz K 215 
so 10-7 K/Pa 3.0 

Table 4.1: Parameters of 7-constant Cross model, eq. (2.52) 

PS 678E The rheological behaviour for the computation of the flow kine
matics is described by the steady state Leonov model (see equation (2.48)), 
and the compressible Leonov model (equations (2.21) to (2.25)) is used for 
the computation of flow induced stresses, applying the decoupled approach. 
The parameters as determined by Douven (1991) are listed in table 4.2. The 
corresponding fit on the oscillatory shear experiments, shifted to the refer
ence temperature TLr 462K, is shown in the lower plots of figure 4.2. 
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o~--~-~~ .............. ~ 
10·5 100 105 1010 

105 -----~--~------' 
10·5 100 105 1010 

red. angular freq. [rad/s] red. angular freq. [rad/s] 

1010r----~-------i 

o~--~--~--~ 
10~ 1~ 1~ 1~0 

10°~--~--~--~ 
105 1010 

red. angular freq. [rad/si red. angular freq. [rad/s) 

Figure 4.2: Experimenta,l (dots) and fitted (lines) loss angle and dynamic modulus 
for PS 678E; top: Maxwell model, TMr 363K; bottom: Leonov model, 
TLr 462K (Douven (1991)) 

The parameters for the multi-mode Maxwell model, describing the vis
coelastic behaviour for the thermal stess analysis (see equation (2.34)), are 
also taken from Douven and are listed in table 4.3. The corresponding fit on 
the master curve of the oscillatory torsion experiments ( reference tempera
ture TMr = 363K) is shown in the upper plots of figure 4.2. The parameters 
for the Voigt model (equation (2.39)), listed in table 4.4, are derived from 
the same experiments that resulted into the Maxwell parameters. From the 
measured dynamic modulus and loss angle the shear storage modulus G' and 
the loss modulus G" are computed. From these quantities the storage com
pliance J' and loss compliance J" can be derived (see Ferry, 1980). The value 
of the instantaneous compliance J9 is chosen 10-9 . Although the material is 
not crosslinked, the shear viscosity T]K is taken infinite in order to make the 
behaviour at low frequencies somewhat more realistic. Note that the viscous 
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PS 678E 1JrO = 2.05 Pas 
J TLjO s 1]Lj0 Pas 
1 2.250 6.011 ·103 

2 1.965 .10-1 5.639 ·103 

3 1.175 .10-2 7.402 ·102 

4 7.872 .10-4 6.499 ·101 

5 5.472 .10-5 8.616 
6 4.140 .10-6 2.335 

Table 4.2: Linear viscoelastic parameters used in the Leonov model, eqs. (2.21) to 
(2.25) 

PS 678E 
j TMjO S GMJ Pa 
1 4.769 .10-8 6.919 · 107 

2 2.498. 10-6 5.958 · 107 

3 1.178. 10-4 1.203. 108 

4 6.660 .10-3 2.220 · 108 

5 3.000 .10-1 3.433 · 108 

6 4.996 9.136. 107 

Table 4.3: Linear viscoelastic parameters used in the Maxwell model; eq. (2.34) 

'O 
~1 
Q) 

? 
Zl 0.5 
Sl 

100 105 1010 

red. angular freq. [rad/s] 

. 
""') 

10-10~--~--~--__, 
10-5 100 105 1010 

red. angular freq. [rad/s] 

Figure 4.3: Experimental (dots) and fitted (Iines) loss angle and dynamic compli
ance for PS 678E; TKr = 363K 
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PS 678E 
Jq = 10-1:1 Pa- 1 

f/K = oo Pas 

J TKjO S J· Pa- 1 
J 

1 1.351. 10-9 5.429. 10-11 

2 2.519. 10-8 6.008 . 10-11 

3 4.976. 10-1 7.337. 10-11 

4 1.174. 10-5 1.281 . 10-10 

5 2.694. 10-4 1.951 . 10-10 

6 6.928. 10-3 5.355. 10-10 

7 2.645 .10-1 2.049. 10-9 

8 3.858 .10° 2.728. 10-9 

9 8.338·102 1.576. 10-6 

Table 4.4: Linear viscoelastic parameters used in the Voigt model, eq. (2.39) 

.... 
<IJ 

PS 678E 
Leo nov Maxwell Voigt 

CL! - 10.45 CAfl - 30.60 
CL2 K 150.36 CAf2 K 51.36 

CM3 K-1 0.6242 CK3 K-1 0.6242 
TLr K 462 TMr K 363 TKr K 363 

Table 4.5: Parameters for the tirne-ternperature shift functions 

10-2'-----~-~-~---' 
350 400 450 500 550 

temperature [KJ 
340 350 360 

temperature [KJ 

Figure 4.4: Experirnental (x) and fitted (lines) horizontal shift factor for PS 678E; 
left: fiuid behaviour, Tr = 462K ; right: solid behaviour, Tr 363K 
(frorn Douven (1991)) 
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behaviour is described by the high compliance and relatively long relaxation 
time of the ninth mode. Figure 4.3 shows the corresponding fit at TKr = 
363K. The shift factors for the three models are listed in table 4.5. The WLF 
fit ( equations (2.28) and (2.37)) for the fluid behaviour and the Arrhenius 
fit (equation (2.38)) for the solid behaviour are shown in figure 4.4. 

4.2 Specific volume 

The parameters of the Tait model (equation (2.6)) can be determined by 
a least-squares fit on pvT data, i.e. measurements of specific volume for 
several pressures and temperatures. The rates at which pressure and tem
perature are varied during these measurements is chosen low to ensure that 
an equilibrium state is reached. The parameters of the KAHR model (2.9) 
are fitted on the results of a number of measurements of the length or volume 
of a sample during and after certain well defined pressure and temperature 
histories. 

PMMA 7H Tait model parameters - The pvT behaviour was mea
sured by Nies (1991) with an apparatus similar to the one described by Zoller 
et al. (1976). Density changes were measured as a result of changes in tem
perature and pressure. The sample is cooled at a low rate and ;under a low 
pressure to the minimum temperature. Then the pressure is applied in sev
eral steps, while the volume change is measured for each step. Subsequently 
the pressure is removed, the temperature is increased to the next level and 
a new pressure cycle is started. Results of these measurements are shown 
in figure 4.5, together with the fitted pvT behaviour according to the Tait 
model (2.6), of which the parameters are shown in table 4.6. The deviating 
data points in the high temperature range were left out from the fitting pro
cedure. Not only was the apparatus not calibrated for high temperatures, 
hut also material degradation is likely to occur there. 

KAHR model parameters - Parameters Lla and Ll;;, (equation (2.10)), 
of which the latter is chosen pressure dependent according to 

(4.1) 

can be determined from the pvT measurements shown in the previous para
graph ( see table 4. 7). They are not determined from the raw data, but de
rived from the Tait fit. A thermomechanical analyser (TMA, see appendix D) 
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7H pvT TMA 
melt glass melt glass 

ao 10- m /kg 8.643 8.643 8.824 8.824 
ai 10-7 m3 /(kgK} 5.85 1.53 5.85 2.89 
Bo 108 Pa 2.6 3.0 2.6 4.3 
B1 10-3 oc-1 3.9 -1.3 3.9 5.5 
Tgo K 355 384 
So 10-7 K/Pa 3.0 3.0 

Table 4.6: Tait model parameters, eq. (2.6), from pvT experiments and from TMA 
experiments via the KAHR model (see text) 

9.6 

9.4 

8.6 

8.4 

8.~ 350 400 450 500 
temperature [KJ 

l8! 
lil 

Il lil l8! 

1111 Il l8! 

Il Il Il 

Il Il 1111 

Il Il 8 

l8! 8 

1111 

550 

Figure 4.5: Experimental (x) and fitted (lines) pvT behaviour of PMMA. The ex
periments with an extra circle are left out from the fit. 

was used to verify the value of Ll.a. The temperature was prescribed to cycle 
twice between 418 K and 318 Kata rate of 1/60 K/s. The result of this 
experiment is plotted in figure 4.6. Within the glass transition range some 
hysteresis may be expected, due to ageing effects. The hysteresis shown in 
figure 4.6 is, however, due to the fact that during cooling the sample tem
perature is slightly above the temperature measured by the thermocouple. 
During heating the opposite is true, which results in a horizontal shift of 2.5 
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15.15~--~--~--~--~--~--~ 

15.1 

I f 15.05 

15 

14.9:JOO 
320 340 360 380 400 420 

temperature [KJ 

Figure 4.6: Length of PMMA sample as a function of temperature. 

K between the cooling and heating curves. There is also a vertical shift of 
the curves between the first and the second heating and cooling cycle, which 
is due to creep (0.0064 mm). It was found that creep is significant only 
above 400 K. The expansion coefficients are hardly different during cooling 
and heating for both cycles. From figure 4.6 the expansion coefficients are 
found as listed in table 4. 7. There is a significant deviation between the 

PMMA 7H pvT TMA 

Om 10-4 K-1 6.8 5.9 
Os 10-4 K-1 1.8 2.1 
.6.o 10-4 K-1 5.0 3.8 
.Ó.KQ 10-10 Pa-1 2.0 

K1 10-19 Pa-2 4.5 

Table 4.7: Thermal expansion coefficients and isothermal compressibility coeffi
cients of PMMA 7H from both pvT and TMA experiments 

coefficients obtained from the pvT and the TMA measurements. One reason 
is that maximum temperature during the TMA experiments was 418 K to 
prevent creep effects, while 489 K was reached during the pvT measure
ments. If only data up to 418 K are incorporated in the fitting procedure 
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of the Tait equation on the pvT data, am = 6.37 10-4 K-1 is found, a value 
which is much closer to the value obtained from the TMA measurements. 
This is caused by a slight increase of gr with temperature above T9 • The 
difference in a 8 may be due to viscoelasticity of the bulk modulus and the 
relatively poor fit of the Tait equation. The results from the TMA compare 
best with literature data for different PMMA's (see Greiner and Schwarzl 
(1984): O!m 5.76 10-4 K- 1, O!s = 2.4 10-4 K-1, Ll.a = 3.32 10-4 K-1; 

McKinney and Simha (1977): 2.35 10-4 K-1 ~ Ll.a ~ 3.110-4 K-1; VDMA 
(1979): O'.m 5.86 10-4 K- 1 ,as = 1.78 10-4 K-1,Ll.a = 3.08 10-4 K-1). 

The glass transition temperature is also different for the pvT (355 K) and 
the TMA data (375 K). This is most likely caused by the poor fit for the 
solid behaviour of the Tait equation. 

Two types of experiments were performed to fit the KAHR parameters 
Tóo, /3, (} and x in equation {2.13) and (2.15). A contraction experiment 
starts at a temperature above T9 • Subsequently the sample is cooled down 
(at 1/60K/s) toa temperature below T9 . Then the temperature is kept con
stant and the sample length is measured as a function of time. A memory 
experiment starts with a contraction experiment, followed by an increase 
in temperature (at 1/60 K/s) toa temperature still below T9 • Again the 
sample length is measured as a function of time. Note that the expansion 
experiment, as proposed by Greener et al. (1991), is omitted here. Given the 
accuracy of the TMA, the experiments would take too long, as the starting 
temperature must be chosen significantly below T9 and the sample length 
must be at its equilibrium value. Besides, expansion during injection mould
ing is unlikely to take place. The parameter b in equation (2.14) is computed 
from the pressure dependence ofT9 , taken from the Tait fit. Figure 4.7 shows 
a typical result of a contraction experiment. The sample length is converted 
into the KAHR parameter ó by fitting the straight part of the curve above 
T9 • This straight line is shifted horizontally to cross the curve at its start
ing point to correct for the temperature induced hysteresis effect mentioned 
earlier. The line represents the length 100 as a function of temperature, and 
is used in the following (approximate) equation for ó, which can be derived 
from equation (2.9): 

Ó = 3(1 -100 ) 

Zoo 
(4.2) 

This is clone for every experiment separately. The results are used to fit the 
KAHR parameters 750, /3, (} and x in equation (2.13), (2.15), employing a 
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Figure 4.7: Typical result from contraction experiment (full line) and the corre
sponding equilibrium length (dashed line) 
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Figure 4.8: Experimental results (symbols} and fit (full lines) for the contraction 
and memory experiments 
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Levenberg-Marquardt method (see MATLAB, 1992). Figure 4.8 shows the 
results for the contraction and memory experiments in terms of 6, together 
with the fit by the KAHR model. The KAHR parameters found are listed 
in table 4.8. The fit of the contraction experiments is relatively good. The 
memory experiments are fitted somewhat worse. This may inf:l.uence the 
predictive quality of the model concerning volume relaxation at elevated 
temperatures after physical ageing at lower temperatures. 

Having all parameters of the KAHR model, the double domain Tait 
model can be fitted on predictions of the first model, using isobars that 
result from cooling at 25 K / s at several pressure levels. The corresponding 
parameters are listed in table 4.6 under TMA. 

• PMMA 7H 
Too 10- s 0.260 
f3 - 0.272 
(} 0.903 
b 10-6 Pa-1 0.272 
x - 0.144 

Table 4.8: KAHR model parameters, eqs. (2.12) to (2.15} 

PS 678E Tait model parameters - The pvT behaviour was measured 
and fitted by Flaman {1990). The corresponding Tait parameters are sum
marised in table 4.9. The KAHR parameters were not determined for PS 
678E. 

4.3 Thermal capacity and heat conduction 

PMMA 7H Both the heat capacity and heat conduction data are taken 
from the literature (VDMA {1979)), although these data were measured for 
a different type of PMMA. The heat capacity is assumed to be pressure 
independent and is fitted to equation (2.46). The parameters for PMMA 7H 
are listed in table 4.10. An average value of 0.19 W/Km is taken for ,\. 

PS 678E Equation (2.46) is used to describe Cp for PS as well. The pa
rameters, taken from Douven (1991), are listed in table 4.10. The thermal 
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conductivity À of PS 678E is taken the constant value of 0.17 W/m2K (see 
Flaman, 1990). 

PS 678E melt glass 
ao 10-4 m;-,/kg 9.758 9.758 
ai 10-7 m3 /(kgK) 5.8 2.3 
Bo 108 Pa 2.4 3.5 
B1 10-3 oc-1 3.6 3.0 
T9o K 373 
so 10-7 K/Pa 5.1 

Table 4.9: Tait model parameters, eq. (2.6) 

PMMA 7H PS 678E 

Cp1 J/(kgK) 1780 1730 
Cp2 J/(kgK2 ) 3.8 2.1 
Cp3 J/(kgK) 170 172 
Cp4 K-1 0.075 0.155 
Cp5 K 371 359 

Table 4.10: Parameters for cv, eq. (2.46) 

4.4 Discussion 

In this chapter, the rheological and thermal properties, required as input for 
the simulation of injection moulding, can be described by a set of models, of 
which the parameters were fitted on experimental data. The quality of the 
fits on rheological data is sufficient, except for the lack of experimental data 
for the viscosity at higher pressures. The incompatibility of the pvT and the 
TMA experiments shows that the characterisation of the specific volume is 
not straightforward. Finally, there is no data available on the influence of 
orientation on the heat conduction coefficient. 
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Characteristic results 

In this chapter several cases are presented, that are characteristic for the 
applicability and accuracy of the models developed. Numerical results are 
compared with experimental results if available. In the first section, 5.1, this 
comparison is made for the computed density distribution (cases A to E). 
Also the influence of (accelerated) physical ageing on the density distribu
tion is studied (case F). The results for the residual stress distribution are 
presented in sections 5.2 (cases G to J, thermal stresses) and 5.3 (case K, 
flow-induced stresses). The model for thermal stress was already validated 
by Zoetelief et al. ( 1995) for standard injection moulding of a relatively 
simple strip. Here, the two-shot moulding process is chosen as an example 
to illustrate the build-up of thermally induced residual stresses. The flow
induced residual stress is computed for a case studied earlier by Flaman 
(1990) and Douven (1991). Finally, in section 5.4 the model for elastic re
covery is applied fora case (L), which was also studied by Schennink (1993). 

5.1 Density distribution 

Geometry, processing conditions and material parameters 

The density distributions of injection moulded PMMA strips were measured 
by Wimberger-Friedl and de Bruin (1993) and by Kapteijns (1993) for sev
eral sets of processing conditions, using a Schlieren optical technique. In 
figure 5.1 the product geometry is shown. The thickness of the rectangular 
part is 2 mm. The thickness of the divergent part varies bilinearly from 1.86 
mm at the line of symmetry to 2 mm at the upper and lower edges to obtain 
a straight flow front at the end of this part. The gate is located at the 10 
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41 
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Figure 5.1: Geometry of the test strip, with P3 and P4 the position oftwo pressure 
transducers 

mm long edge on the left. The syrnbols P3 and P4 indicate the positions of 
two pressure transducers. Following Flaman (1990) the compliance of the 
mould is set to 2.3 · 10-13 m/N. 

The cases A to E are taken from Wirnberger-Friedl and de Bruin (1993) 
and case F corresponds to BK12 of Kapteijns (1993). The injection (or 
entrance) temperature Te was set to 523 K in all cases. Mould temper
ature Tm and flow rate Q are given in table 5.1. From the experimen-

Case A B B- B+ D E F 
Tm K 303 333 333 333 303 363 333 
Q 10-6 m3/s 7.63 7.63 7.63 7.63 1.27 7.63 25.43 

Table 5.1: Processing conditions for cases A, B, B-, B+, D and E 

tal results it was concluded that the material at the surface of the prod
uct did not solidify instantly (see Wimberger-Friedl and de Bruin (1993)). 
Therefore, a Biot boundary condition (see equation (2.72)) is employed for 
the temperature equation (2.70). The heat transfer coeffi.cient chosen is 
Hj. = H;;;, = 3 · 103 J / ( smK), so that the position of the peaks in the gap
wise density distributions found numerically coincided more or less with the 
experimental ones (see e.g. figure 5.4). Unfortunately the pressure measure
ments, required as a boundary condition during the postfilling stage, were 
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not available for all cases. However, for the cases A, B and Ethe hydraulic 
back pressure was equal during the experiments. Consequently, the neces
sary, prescribed pressure at the gate Pe is taken from experiment B for the 
three cases mentioned. No holding pressure is applied for case D. The cases 
B- and B+ correspond with an descending and ascending holding pressure 
in time. The prescribed non-zero holding pressure profiles are shown in 
figure 5.2. 
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Figure 5.2: Prescribed holding pressures (i.e. after filling) at the gate for cases A, 
B, E, B- and B+ 

The 7-constant Cross model (equation (2.52)) is used to describe the 
shear viscosity q as a function of shear rate, temperature and pressure 
(table 4.1). The heat capacity Cp is modelled using equation (2.46) and 
the parameters from table 4.10. The thermal conductivity >. is chosen 
0.19 W/(m2 K). The specific volume v is modelled by the KAHR model 
(equation (2.9}}, using the parameters from table 4.6 for the equilibrium 
behaviour, .6.a from the TMA experiments and .Ö.ti:o, 1'1:1 from the pvT ex
periments (tab Ie 4. 7). The remaining KAHR parameters are taken from ta
ble 4.8. The relaxation spectrum is discretised according to equation (3.14) 
with the number of discrete relaxation times mó = 8. To reduce the com
putational effort, a decoupled approach can be employed to compute the 
specific volume v, by using the Tait equation (2.6) for both the melt and 
the solid state in the pressure and temperature equations (2.65), (2.70) and 
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Figure 5.3: Measured (symbols) and computed (lines) pressure history at the gate 
(x), at P3 (o) and P4 ( +) for case B 

recompute the specific volume by the KAHR model afterwards. Therefore, 
the Tait model was fitted on the numerical isobaric cooling experiments at 25 
K/s using the KAHR model (see table 4.6 under TMA for the parameters). 
In general, the computed pressure and temperature during the postfilling 
stage is highly sensitive to the specific volume behaviour of the material 
used. In one case, that could be considered as being representative for all 
other cases studied, the decoupled approach resulted nevertheless in devia
tions in predicted pressure, temperature and density distributions that were 
within a few percent only of the results of the fully coupled calculations. 
Therefore, the decoupled approach is used in all cases presented here. 

Results 

In figure 5.3 both the experimental and the computed pressure histories at 
the gate and at positions P3 and P4 are shown for case B. The filling pressure 
is overestimated by the model (not indicated). Reduction or omission of the 
pressure dependence of the viscosity (i.e. 0 ~ s0 < 3.0 in equation (2.52)) 
only marginally lowers the viscosity and thus the predicted filling pressure. 
The pressure during the postfilling stage is clearly underpredicted by the 
model. The use of the Tait parameters from the pvT measurements (see 
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table 4.6) instead of those from the TMA experiments does not improve 
the results significantly. Variation of the heat transfer coefficient or of the 
heat conduction coefficient has hardly any effect on the computed pressure 
history. The deviation from the experimental curves remains unexplained. 
Figure 5.4 shows the experimental and the computed distribution across 
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Figure 5.4: Measured (symbols) and computed (lines) reduced density distributions 
across the (normalised) thickness at 8, 28 and 107 mm from the gate 
(case B) 

the normalised thickness of the reduced density p* = p - Ps for case B 
at several positions along the flow path, with Ps the density at the sur
face (z = h/2). The density is only computed for half the gap width as 
the problem is symmetrical. Qualitatively the agreement is satisfactory, 
quantitatively there are still serious discrepancies, as could be anticipated 
from the poor prediction of the pressures. The typical density distribu
tion can be explained by the pressure during vitrification. Near the gate 
the pressure is high during solidification of the entire thickness, except for 
the thin surface layers that solidify during filling. At the end of the flow 
path, the solidification starts at the wall when the holding pressure is al
ready partially applied as cooling is delayed by the Biot boundary condi
tion. The maximum pressure is lower than at the gate and drops to zero 
during the solidification. Although the absolute value of the density (not 
shown here) is not accurately predicted, the difference between minimum 
and maximum values corresponds well with the experiments. As mentioned 



64 Chapter 5 

2.5 

2 

1.5 
x 
Ox 

.,;t oX 

0.5 + 0 
x 

x x x x 
\ + 0 
~ 0 0 0 0 
0. 

-0.5 + 
+ + + + + 

-1 

-1.5 

-2 

-2.~1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
2zih [-! 

Figure 5.5: Measured (symbols) and computed (lines) reduced density distributions 
across the ( normalised} thickness at 8 ( x), 28 ( o) and 107 ( +) mm from 
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Figure 5.6: As figure 5.5, but now for case B+ 
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above, the difference between numerical and experimental results may be 
explained by a rather poor prediction of the pressure history and the rough 
estimate of the heat transfer and heat conduction coefficient, governing the 
temperature history, which in this case leads to solidification of the core 
under zero pressure. The absolute value of the density at the surface (z = 
h/2) found numerically is not constant, hut varies from 1171.3 kg /m3 at 8 
mm from the gate to 1170.3 kg/m3 at 107 mm. 

Packing pressure The dominating influence of the pressure on the density 
distribution is illustrated by figures 5.5 and 5.6, showing the experimental 
and computed reduced density distributions for cases B- ( descending holding 
pressure) and B+ (ascending holding pressure) at 8, 28 and 107 mm from 
the gate. The results for case B- show that the density gradient along the 
flow path is smaller than for the previous case, for the experiments as well as 
for the simulations. Again a rather poor prediction of the pressure history 
leads to exaggerated density gradients in gapwise direction. For case B+ the 
holding pressure obviously did not reach the end of the cavity and was very 
small at 28 mm from the gate, both for the experiments and the simulations, 
so the qualitative agreement can be judged to be satisfactory. 

Injection speed Wimberger-Friedl and de Bruin (1993) stated that the 
different surface and core densities at the end of the cavity are caused by the 
fact that during filling the solidified layer thickness remains (almost) zero, so 
that the surface solidifies under pressure. Case D, for which a low injection 
rate and zero holding pressure was prescribed, was chosen to make sure that 
the surface would solidify under zero pressure. The results are shown in 
figures 5.7, 5.8. The relatively high computed density gradients in thickness 
direction are caused by an overestimated filling pressure. The relatively 
narrow density peak at the gate is in agreement with the experiments. This 
effect is caused by the removal of the pressure after filling ( causing remelting 
of the solidified layer near the gate) in combination with a slower layer growth 
due to convective heat transport. The effect found experimentally of a higher 
density at the surface than in the core near the gate is predicted as well and 
is caused by a delayed solidification of the surface. The opposite of this effect 
is found only numerically at 48 and 108 mm from the gate. This is caused 
by a higher cooling rate at the surface than in the core ( compare lines 1 and 
3 in :figure 1.2). 
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Figure 5. 7: Measured reduced density distributions across the (normalised) thick
ness at 8 (full line), 28 (dotted line), 48 (dashed line) and 108 (dash
dotted line) mm from the gate (case D) 
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Mould temperature Cases A, B and E are compared to assess the influ
ence of the mould temperature on the resulting density distribution (fig
ure 5.9). The decreasing maximum density with increasing mould tem
perature found experimentally is hard to explain, since a higher formation 
pressure and lower cooling rate are in favour of the opposite effect. The 
simulations predict this decrease in peak height close to the wall with in
creasing wall temperature correctly. The computed average density (not 
shown here) increases, however, with increasing mould temperature, which 
contradicts independent measurements of the gapwise averaged density (see 
Wimberger-Friedl and de Bruin (1993)). 
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Figure 5.9: Measured (symbols) and computed (lines) reduced density distributions 
across the (normalised) thickness at 28 mm from the gate for cases A 
(x), B (o) and E (+) 

Ageing Kapteijns (1993) extended the experiments to study the effect of 
accelerated ageing on the density distribution. The samples were aged for 
one hour at 333 K and at 363 K (see figure 5.10). The average density 
decreased during ageing, further away from its equilibrium. This effect is 
caused by a relaxation of the pressure induced densification, which is faster 
than the normal volume relaxation towards equilibrium. A U-shaped profile 
resulted after the ageing at the highest temperature, for which no explana
tion has been found yet. In figure 5.11 the corresponding computed density 
distributions are plotted. Besides the fact that the absolute values are dif-
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Figure 5.10: Measured density distributions across the (normalised) thickness at 27 
mm from the gate (case F): unaged (full line), after 1 hour at 333 K 
(dashed line) and after 1 hour at 363 K (dash-dotted) 
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ferent (which could be caused by the different expansion coefficient am from 
the pvT and the TMA experiments), the relaxation of the pressure induced 
densification is apparently not present in the simulations, as the average 
density increases. This may be caused by the fact that the pressure during 
cooling is underestimated by the model, so that part of the cross section 
solidified under zero pressure. As can be seen in figure 5.12, which shows 
the gap-wise averaged density evolution at the gate at 343 K, the temporary 
expansion and the following contraction towards the equilibrium density can 
be predicted qualitatively for higher pressures. 

1154.5 
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1154 
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Figure 5.12: Computed averaged density evolution at the gate (case F) 

5.2 Thermally induced residual stress 

Zoetelief et al. (1995) showed that the multi-mode Maxwell model is capable 
of predicting the thermal residual stresses for injection moulded products, 
although it tends to overpredict the measured values. Here, a two-shot 
moulding process is taken as an example, because the asymmetrical cooling 
of the product often leads to severe warpage. This process starts with a 
regular injection moulding cycle, in which the first shot is moulded. However, 
the product is not ejected, hut one rnould half is removed to make place 
for a new one, that doubles the thickness of the original cavity. During 
the replacement of the mould half, one side of the product is cooled by 
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air. Depending on the kinematic boundary conditions, thermal stresses may 
equilibrate. The new cavity, of which the walls are formed by the new mould 
half on one side and the first shot on the other, is filled by the second shot. 

Geometry, processing conditions and material parameters 

Figure 5.13 shows the product geometry used. The product thickness is 1.5 
mm. From previous numerical studies (see Ramaekers (1992) and Caspers 

30mm P2 P3 P4 

m 
30mm 

Figure 5.13: Geometry of the test product after the first (left) and aft~r the second 
shot 

et al. (1994a)) it was concluded that of all processing conditions, the level 
of the holding pressure is of major influence on the distribution of thermally 
induced residual stress and consequently on the resulting warpage. Main 
difference with the present study is that, in stead of a line gate, here the 
cavity is fed by a runner. The runner itself, however, is not modelled here, 
( although incorporation is quite possible, see appendix E) hut is replaced by 
a "circular line gate" at position Pl. Four cases are studied. For the first 
case (G) the hydraulic back pressure was chosen 5 ·107 Pa for both the first 
and second shot. The first shot of case H was the same as that of case G. 
During the second shot, however, no holding pressure was applied. For case 
I there was no packing of the first shot, but conditions for the second shot 
were equal to those of case G. For case J finally, no holding pressure was 
applied during both shots. The holding pressure is prescribed until the gate 
solidifies. In figure 5.14 the pressure histories at Pl are shown for cases G to 
J. The other processing conditions were the same for all cases and are listed 
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in table 5.2. A heat transfer coefficient of H"Ji = H; = 3 · 103 J/(smK) is 
assumed. For both the first and the second shot the mould is not opened 
until the product is completely solidified. 
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Figure 5.14: Pressure as a function of time at Pl for both sequential injection 
moulding cycles for case G (top left) case H (wp right), case I (bottom 
left) and case J 

K 1 ~75 10-6 m3 /s 

Table 5.2: Processing conditions for the cases G, H, 1 and J 

The material used is PS 678E. Viscosity data are taken from table 4.2 
(steady state Leonov model, equation (2.48)). The specific volume is de
scribed by the double domain Tait equation (2.6) of which the parameters 
are listed in table 4.9. Heat capacity is described by equation (2.46) and the 
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corresponding parameters can be found in table 4.10. A constant value of 
0.17 W/(m2 K) is taken for the heat conduction coeffi.cient À. The Cauchy 
stress tensor for the computation of thermal stresses is described by the 
Maxwell model, presented in subsection 2.2.2. The parameters of this model 
are listed in tables 4.3 and 4.5. Since the pvT behaviour is described by the 
Tait model, the index oo and the second right-hand-side term should be re
moved from equation (2.33). Thus the effect of the viscoelastic bulk modulus 
is neglected. From preliminary investigations it was found that incorpora
tion of the KAHR model hardly affects the computed stress distribution in 
similar cases, although they tend to become flat ter. 

Results 

In figure 5.15 the computed pressure histories at Pl, P2, P3 and P4 are 
shown for case G. The holding pressure is computationally maintained until 
the gate freezes of. This takes langer for the second shot as it is cooled on 
one side by the (insulating) first shot. This lower cooling rate results also 
into a lower filling pressure of the second shot (not indicated). 
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( dash-dotted) and P4 ( dotted) for both sequentia! injection moulding 
cycles for case G 
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Figure 5.16 shows the computed temperature distribution after packing 
and before and after opening the mould for the first and the second shot. 
The first shot shows an asymmetrical temperature distribution after removal 
of one mould half, due to the cooling by the (relatively cold) air. After 
the second shot has been injected, the first shot is heated to above the 
glass transition temperature. During cooling, the temperature distribution 
becomes symmetrical. 
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Figure 5.16: Computed temperature distribution at various stages of the two-shot 
moulding process at P3 (case G). Left: first shot after packing (full 
line), before ejection ( dashed line) and after removal of the mould half 
to be replaced (dash-dotted). Right: second shot after packing (full 
line) before ejection ( dashed line) and after ejection ( dash-dotted) 

For the stress computation it is assumed that during the switch of one of 
the mould halves, stresses cannot equilibrate, although the geometry would 
allow this. The computed stress distributions at P3 after filling and after 
packing of the first shot, before and after filling and after packing of the 
second shot and after ejection of the total product are shown in figure 5.17 for 
case G. For the upper two plots the multi-mode Maxwell model is used, the 
lower two plots are according to the viscous-elastic model ( see appendix C), 
using a constant modulus of 906 · 106 N/mm2 for the solid state. The severe 
asymmetry of the resulting stress profile is caused by the erasure of part of 
the thermal stress in the first shot, the higher pressure during solidification 
of the second shot, and the asymmetrie cooling of this shot. 

For the computation of the resulting warpage, all displacements and ro
tations at P2 were prescribed zero. As the rotation around the normal of 
the midsurface is eliminated (see equation (3.45)), an additional degree of 
freedom of a neighbouring node was fixed as well. The warpage as a result of 
the thermal stresses is shown in figure 5.18 for cases G to J. Due to the use 
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Figure 5.17: Same as figure 5.16 but now for the plain stress. Top: multi-mode 
Maxwell model; bottom: viscous-elastic model (see appendix C) 

of a runner instead of a line gate, the product is warped in both directions 
The results for cases H and I show that the curvature of the product can 
change sign, depending on the level of holding pressures. However, when the 
holding pressure of both shots is chosen equal, this does not result into a 
warpage free product, as shown by cases G and J. 

Although the stress profiles are rather different when the viscous-elastic 
approximation is employed, the resulting warpage is hardly different for case 
G. The computed normal displacement at P4 was 2.49 mm in the viscoelastic 
case, where for the viscous-elastic case 2.50 mm was found. Also case H is 
rather insensitive to the model used (-5.11 mm for the viscoelastic model 
and-5.73 mm for the viscous-elastic approach). However, the viscous-elastic 
model leads to a doubled displacement at P4 for case I (4.03, 8.65 mm). 
Also for case J the difference is significant (-3.53, 0.13 mm respectively). 
The difference is mainly caused by the entirely different stress relaxation 
behaviour in the first shot when it is heated by the second shot. 



Characteristic results 75 

Figure 5.18: Computed normal displacements for (from top to bottom) cases G, H, 
I and J 

To assess the influence of the kinematic boundary conditions while one of 
the mould halves is being replaced, three additional cases were studied, which 
are all based on case G, employing the viscous-elastic approach. When, 
during the switch of the mould half, shrinkage was allowed for in both the 
length and width directions of the product, (all rotations are still prescribed 
zero), the resulting normal displacement at P4 became -0.55 mm in stead 
of 2.50 mm. When shrinkage was only allowed for in the width direction 
of the product between the first and second shot, this displacement became 
2.62 mm, which, unlike the totally constrained and the previous case, was 
the maximum absolute value. When only shrinkage in the length direction 
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of the product was allowed for, this led to -1.66 mm displacement, again the 
absolute maximum value, hut in opposite direction. 

5.3 Flow-induced residual stress 

The experimental results for case K, for which the flow-induced residual 
stresses are calculated, are taken from Flaman (1990). The product geometry 
is equal to that of cases A to F. The material used is PS 678E, so the 
material parameters are equal to those of cases G to J. The parameters for 
the Leonov model (equations (2.21) to (2.25)) are listed in table 4.2. The 
processing conditions are listed in table 5.3. The pressure at the gate, which 
is prescribed during holding, is shown in figure 5.19. Again the heat transfer 
coefficient is chosen 3 · 103 J / { smK). 

KIQ 
" 7.62 

10-6 m 3 /s 

Table 5.3: Processing condîtions for case K 

Results 

The measured and the computed pressure histories at the gate, at P3 and 
P4 are shown in figure 5.19. Like for case B, the filling pressure is over
estimated and the postfilling pressure is underestimated. The flow-induced 
stresses cannot be measured directly, but can be assessed by measurement 
of the birefringence. The stress-optical coefficient of PS ( correlating the 
stress tensor and the refractive index tensor) in the glassy state is about 400 
times lower than in the molten state. Therefore, the contribution to birefrin
gence of thermal stresses can be neglected compared to that of flow-induced 
stresses. From Wimberger-Friedl (1991), Chapter 3, it is known that thermal 
stresses at and above T9 may induce extra orientation (and birefringence). 
It is assumed that this extra contribution can be neglected compared to 
the orientation induced by flow during filling and packing. From the flow
induced residual stress distribution, the birefringence is computed using (see 
Janeschitz-Kriegl (1983) ): 

(5.1) 



0 

0 

+ 

+ 

2 4 

0 

+ 

6 
time[s] 

0 

Characteristic results 77 

0 

0 

0 

+ 

+ 
+ 

8 10 12 

Figure 5.19: Computed (lines) and measured (symbols) pressure histories at the 
gate (x), at P3 ( o) and at P4 ( +) (case K) 

with Co the linear stress optica! coefficient, au the stress in flow direction 
and a 33 the stress in thickness direction. The stress optical coefficient is 
taken -4.8 10-9 m 2 /N in accordance with Flaman (1990). The build-up of 
the birefringence distribution at 25 mm from the gate is shown in figure 5.20, 
where the distributions after filling, after packing and the residual distribu
tion are plotted. The computed and measured gapwise residual birefringence 
distribution at 25, 41, 60 and 110 mm from the gate is shown in figure 5.21. 

The predictions are remarkably accurate ( especially compared to similar 
calculations performed by Flaman (1990) and Douven (1991)), except for 
the distribution at 25 mm from the gate. This deviation is located only 
at the peak caused by the flow during holding, so it cannot originate from 
the three dimensional character of the flow, nor by the omittance of the 
convective term in equation (2.24). However, the computed birefringence 
distribution at the same distance from the gate, but more near the edge of 
the product does correspond to the birefringence distribution, found exper
imentally. Some asymmetry during the postfilling of the strip might be the 
cause of the deviation. 
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Figure 5.20: Computed birefringence across the thickness at 25 mm from the gate 
after filling (full line), after packing (dashed) and residual distribution 
( dash-dotted) (case K) 
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Figure 5.21: Measured and computed (full lines) residual birefringence across the 
thickness at 25 (x), 41(o),60 (+)and 110 (*)mm from the gate (case 
K) 
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5.4 Elastic recovery 

Volume relaxation and elastic recovery are the most important factors gov
erning the dirnensional stability. Case L, known as PS9 in Schennink (1993), 
frorn which the experimental data are taken~ is used to illustrate this. 

Geometry, processing conditions and material parameters 

The same geornetry of cases A to F is used. The processing conditions 
are listed in table 5.4. The pressure history, prescribed at the gate during 
the holding stage, is shown in figure 5.22 (upper full line). The material 
parameters and models used are the same as those of case G to J. The 
parameters for the Voigt model are listed in table 4.4 and 4.5. 

Results 

Te K Trn 
473 328 

K Q 
7.63 

10-

Table 5.4: Processing conditions for case L 

Figure 5.22 shows the pressure history at the gate and at P3 and P4. Again 
the filling pressure is overpredicted while the pressure during cooling is un
derpredicted. The dimensional change of the length of this part was mea
sured as well as of the width (i.e. not the thickness hut the perpendicular 
direction) at 75 and 110 mm from the gate. The storage temperature chosen 
was 343 K. At this storage temperature, the strain due to volume relaxation, 
computed using the KAHR model, is approximately 1·10-3 on the time scale 
studied, which is negligible compared to the strain caused by elastic recov
ery. The measured and computed strain as a function of time is shown in 
figure 5.23. The computed strain compares well with the experimental val
ues, only the time scale differs one decade. When the storage temperature 
is chosen 20 K lower, the strain due to volume relaxation is still approxi
mately 1 · 10-3 , while the computed strain caused by elastic recovery is two 
orders smaller than that. This effect was measured as well. This means 
that the dimensional stability at temperatures close to T9 is governed by 
elastic recovery, while at lower temperatures the volume relaxation becomes 
dominant. 
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Figure 5.22: Measured and computed (lines) pressure as a function of time at the 
gate (x), at P3 (o) and P4 ( +) (case L) 
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Figure 5.23: Measured (symbols) and computed (lines) strain due to recovery of the 
length of the rectangular part {x), of the width at 75 (o) and 110 ( +) 
mm from the gate (case L) with a storage temperature of 343 K 
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5.5 Discussion 

The simulation code developed is capable of predicting the pressure history 
inside the mould. However, all cases show a structural overprediction of 
the filling pressure and an underprediction of the pressure history during 
cooling. The former may be improved by measurement of the pressure de
pendence of the viscosity more accurately. The latter is highly sensitive to 
the (modelled) pvT behaviour, hut also the computed temperature history 
is important. The interpolation at each time step to the modified grid along 
the thickness of the product ( due to a new solidified layer thickness, see 
figure 3.1), introduces some numerical diffusion, leading to faster cooling. 
But most important is the lack of accurate data for the heat conduction 
tensor À and the heat transfer coefficient Hm. The latter may be obtained 
by modelling the thermal behaviour of the mould. 

It has been shown that usage of the KAHR model can help to interpret 
the density distributions found experimentally in injection moulded parts 
and that this model is able to predict these distributions at least qualita
tively. The effects of accelerated ageing on the density distribution can be 
predicted as well, except for the U-shaped density profile found experimen
tally after extreme ageing. There is no physical explanation for this particu
lar profile yet. Also it was shown that the determination of the parameters of 
the KAHR model using a thermomechanical analyser, gives relatively good 
results. Accuracy can be improved by employing dilatometry. It was found 
that an accurate prediction of pressure and temperature histories is essential 
for a reliable prediction of the density distribution and volume relaxation. 

U nfortunately no experimental results were available to validate the pre
dicted thermal stress distributions, nor the resulting warpage. The warpage 
of a layered two-shot moulded part can be manipulated by the level of the 
holding pressure for both shots. The warpage is also governed by the exact 
kinematic boundary conditions between the first and second shot. It has 
been shown that the use of a viscous-elastic model in stead of the multi
mode Maxwell model may lead to entirely different stress distributions and 
warpage. 

The compressible Leonov model predicted, using a stress optical law, the 
birefringence found experimentally in polystyrene injection moulded strips 
remarkably well. The birefringence as computed by Douven (1991) was a 
factor three larger for the case studied, while the material parameters used 
were the same. This discrepancy may be explained by the different numerical 
methods used. The influence of the cooling stresses on birefringence, hut also 
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on orientation (see Wimberger-Friedl (1991)) is apparently not present in the 
case studied. 

The effects of elastic recovery can be predicted by the Voigt model with 
its material parameters fitted on linear viscoelastic measurenjlents. How
ever, the time scales of the experimental and the computed results differ one 
decade. A deviation of 3.5 to 4 K between the temperature during the rhe
ological characterisation and the temperature during recovery could explain 
this difference. Extra creep experiments may give the explanation. 
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Concluding discussion 

An integral approach is described for the development of a computational 
method for the simulation of the injection moulding process, including the 
prediction of long term mechanica! behaviour of the moulded product as a 
function of processing conditions and polymer properties. Stability and con
vergence of the numerical methods applied are validated. The methods are 
implernented into a computer program (Vip) and the results are compared 
with experimental data. Precision of an injection moulded product, being 
defined as a desired distribution of a number of properties as a function of 
time, can be predicted by the program for amorphous thermoplastics, for 
which density, orientation and thermally induced residual stress distribu
tions determine the dimensional accuracy and stability. The predictions are 
in satisfactory agreement with experimental results. 

The general conclusions drawn from the study can be summarised as: 

• Given the 2~D approximation, the use of higher order elements for the 
spatial discretisation of the pressure field is essential for an accurate 
computation of the velocity field as input for the evaluation of material 
derivatives. 

• The history dependent KAHR model applied for the specific volume 
in combination with the Leonov model for flow-induced residual stress 
and the Voigt model for elastic recovery enables the prediction of the 
dimensional stability for amorphous thermoplastics. At temperatures 
close to the glass transition temperature, the dimensional stability is 
governed by elastic recovery. At lower temperatures, volume relaxation 
becomes dominant. 

83 
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• An important parameter that determines the pressure field during the 
holding and cooling stages of the injection moulding process besides 
viscosity is the density as a function of pressure, temperature and time. 
If the history dependency of the density is neglected, the predicted 
pressure is hardly different. This enables a decoupled approach for the 
computation of density distributions. 

• All effects found experimentally concerning the density distribution in 
injection moulded parts, can be predicted qualitatively by the KAHR 
model used in this study. 

• The incorporatio'l of viscoelasticity in the model for the bulk-modulus 
is of minor influence on the computed residual thermal stress distribu
tion. 

• The computed residual thermal stresses and the resulting warpage of 
layered two-shot moulded parts can be manipulated by the level of 
the holding pressure for both shots. However, the exact kinematic 
boundary conditions for the first shot during the replacement of one 
mould half are also of major influence on the computed stresses and 
warpage. 

Based on these results, the following recommendations and considera
tions concerning future research in this field can be given: 

• The 2~D approximation excludes the possibility to predict local prod
uct properties like sink marks and, more important, severely limit the 
accuracy of the particle tracking method. To improve this, a full 3D 
analysis must be considered. Extension of the existing model towards 
reaction injection moulding requires the incorporation of gravity and 
inertia forces, as the viscosities are generally much lower for reactive 
materials. For that reason a full 3D approach may be necessary, in 
combination with a spectra! element method (see e.g. Timmermans 
(1994)). 

• The predictive capability of the model in terms of pressure, temper
ature and product properties can be improved when the thermal be
haviour of the mould is incorporated in to the model. However, the 
improvement may be limited, due to a lack of accurate experimental 
validation techniques. 
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• The computed orientation distribution in the moulded product enables 
the incorporation of anisotropy in material properties like heat conduc
tion and elasticity modulus. A precise experimental validation of this 
will, however, again be complex. 

• The present model can be (and partially is) extended to simulate sim
ilar processes like resin transfer moulding, compression moulding and 
gas-assisted injection moulding. 

For resin transfer moulding the ftuidity in the pressure equation is re
placed by a permeability tensor. Material properties of the resin are 
averaged by volume with those of the porous medium. Depending on 
the viscosity of the resin and the permeability of the medium, incorpo
ration of gravity may be important. As the resin is usually a thermoset, 
also heat of reaction and the infiuence of degree of reaction on material 
properties have to be modelled. 

For compression moulding a term must be added to the pressure equa
tion to account for the changing gap width. In reality the front prop
agation is governed by the relative velocity of the mould halves, hut a 
user defined average front propagation, from which the change in gap 
width and time step are computed, seems preferable for the sirnulation. 

The modelling of gas-assisted injection rnoulding requires the incor
poration of an accurate particle tracking technique ( see e.g. Zoetelief 
(1995)) as well as a model to compute the resulting wall thickness. 

• The incorporation of crystallisation kinetics into the existing model 
would strongly irnprove its practical relevancc. Since shear-induced 
crystallisation has appeared to be an important aspect, however, the 
major problem will be the formulation of an accurate model and more
over the determination of its parameters. 



86 Chapter 6 



Appendix A 

Accuracy of pressure 
element 

A.1 Description of a test case 

The following test case is used to establish to what extent natural boundary 
conditions are obeyed using subsequently four different element types ( see 
figure A.l). 

Figure A.l: Domain and boundary definition for the test case 

6.p = 0 

p=O 
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(f2) (A.l) 

(r f) (A.2) 
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äp --·n an 0 (ro) (A.3) 

8
P·n=l an (re) (A.4) 

with n the outward normal vector of the boundary. The radii Ri, R 2 are 
1.0, 2.0 respectively. The analytica! solution for this problem is: 

p = ln(2) - ln ( J x2 + y2) (A.5) 

- 1 l'VPI = - Jx2 + ';;2 
(A.6) 

</> = arctan (;) (A.7) 

where </> 7r is the angle of Vp with the x-direction. 

A.2 Results 

Four element types are used to solve the test case: 3-node triangles (lt), 
4-node quadrilaterals (lq), 6-node triangles ( qt) and 9-node quadrilaterals 
{ qq). In order to make a good comparison the number of elements is chosen 
in such a way that the total number of degrees of freedom is equal for the 
different types of elements. The error made in the quantities defined in 
equations A.5 to A. 7 is calculated by: 

N 

L(ui - Ui exact)
2 

êu = 
N 

(A.8) 

with N the number of nodal points. See table A. l for the results. Comparing 
the linear element types, only the length of the gradient is somewhat better 
for the quadrilateral. The use of the 6-node triangle reduces ép to a sixth 
and EtJ> to a fourth. The use of the 9-node quadrilateral reduces Ep to a fifth, 
EIVPI toa third and E<f> to a tenth! 

The mesh is refined to check the convergence of the element types ( see 
table A.2). For the linear element types the mesh refinement reduces êp to 
a fourth and EIV*pl, êtJ> to a third. For the quadratic element types the mesh 
refinement reduces Ep toa twelfth and EIV*pl' E<f> toa fourth. 
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mesh type lüxlü lt lüxlü lq 5x5 qt ' 5x5 qq 
fp 1.31 . 10-3 1.31. 10-3 2.30 .10-4 2.39. 10-4 

êlV*pl 1.23. 10-2 1.02. 10-2 1.01. 10-2 3.23. 10-3 

frj> 3.53. 10-2 3.59 .10-2 8.43 .10-3 3.62. 10-3 

Table A.l: Summary of the results for the four element types, 100 degrees of free
dom 

mesh type 20x20 lt 20x20 lq lüxlü qt lüxlü qq 
fp 3.22. 10-4 3.22. 10-4 1.93. 10-5 2.12. 10-5 

êlV*pl 4.39 .10-3 3.57. 10-3 2.29. 10-3 7.62. 10-4 

frj> 1.28. 10-2 1.31. 10-2 1.97. 10-3 4.81. 10-4 

Table A.2: Summary of the results for the four element types, 400 degrees of free
dom 

A.3 Discussion 

Four different element types are used to solve a second order differential 
equation. The test case has shown that the solution is the most accurate 
when quadratic triangles are used. However, the derived quantities IV*pl 
and <P are better when biquadratic elements are used, while the solution is 
almost just as good. As these quantities are used as input data for particle 
tracking, the biquadratic element is preferred. 
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Appendix B 

Remeshing technique 

This appendix describes the method employed to propagate the flow front 
during the filling of a cavity, meshed with bilinear elements. Front propaga
tion is based on the method used by Sitters (1988) and is extended here for 
the use of quadrilateral elements. 

The method is based on the assumption that every material point on the 
flow front can be seen as a source, with a strength that is proportional to the 
magnitude of the local gap-wise averaged velocity or volume flux per unit of 
length along the front. When the location of the new front is determined, 
local remeshing is performed by subdividing partially filled elements in filled 
and empty ones. 

Definitions 

Figure B.1 shows the basis mesh, that farms the midplane of the ( empty) 
cavity n. The polymer flows into the cavity through the injection regions 
re. After some time, one or more regions n f c n will be occupied by the 
polymer. The flow front(s) r f divide(s) 11into0.1and0.e, the empty part(s) 
of n (see figure B.2). 

91 
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Figure B.l: Basis mesh Mb with injection boundaries fe 

Figure B.2: Partially filled cavity with flow front f f and filled parts fl1 and empty 
part fle 
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In order to compute the pressure and temperature field in rt f, the basis 
mesh must be modified, so that r I coincides with element edges (see fig
ure B.3). The mesh that coincides with the filled part of the cavity 01 is 

Figure B.3: Subdivided mesh 

(Men) 
111 (Min) 

• (M1e) 
D (Meb) 

called Mt· This mesh can be subdivided into two parts, Mtb and Mtn• 
where M Jb denotes the set of elements that coincide with elements from Mb 
and M Jn is the set of the remaining elements of M f. For the empty part 
of the cavity one can define similar meshes Me, Meb and Men, the set of 
empty elements, the empty elements that coincide with elements frorn Mb 
and the remaining empty elements. The complete mesh Me is defined as 
the set of elements in M J and in Me. 

The filling state of an element is defined by the filling state of its edges. 
As the elernents of Mb may be partially filled, the edges can be partially 
filled as well. To describe this, on each edge a number of edge points is 
defined (see figure B.4), that have their own filling state: empty or full, thus 
defining the filled and empty parts of the edge. 

Front propagation 

It is supposed that the filling state of all edge points of the complete mesh 
Me is known for the previous time step t = ti-1· The source qi-1 in an 
edge point can be interpolated from the source in the nodal points, which is 
given by equation (2.66), hut now defined on '11. An edge point A can be 
filled by another edge point B during a period t:i.ti if their mutual distance 
t:,.AB is less than (qf- 1 - qt_1) t:i.ti. In that case, the source at edge point A 

is increased by qf-1 qt_1 - ~~~. The procedure is done on an elernent-by
element basis on mesh Me and is illustrated by figure B.5. For each element 
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Figure B.4: Definition of edge points 

it starts with the determination of edge points of the element that can be 
filled by the biggest source in the element, then by the biggest but one and 
so on. For each edge it is recorded whether the filling state of any of its edge 
points changed. When no edge point changed its filling state the procedure 
is ended. Since neighbouring elements can alter the filling stage of the edges, 
this procedure has to be repeated until no edge points are filled anymore. 
In practice this takes usually not more than three loops over the elements. 

Figure B.5: The filling of edge points 

The new filling state of the edge points of the complete mesh Me is 
transferred to those of the basis mesh Mb by interpolation. This is done 
only for those edges of Me that coincide with edges of Mb (see figure B.6). 
The filling state of nodal points is copied from its corresponding edge points, 
which all have the same filling state. At this stage all information is available 
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to generate a new complete mesh by copying all elements that are completely 
filled or empty from Mb and by subdividing all partially filled elements into 
subelements to create MJb• Mjn, Meb and Men· This will be the subject 
of the next section. 

-

Figure B.6: Interpolation of edge point data from Me to Mb 

Local remeshing 

The remeshing procedure is performed on an element-by-element basis on 
the basis mesh Mb· To ensure that the number of edges along the boundary 
of the element of the basis mesh remains even after remeshing, a partially 
filled edge is always split into three parts. This is required for remeshing 
with quadrilaterals. If the filling state of the edge points along an edge 
prescribes subdivision into more than three parts, a rearrangement of the 
filling states is made, removing the smallest isolated group of filled or empty 
edge points first, until the filling state changes two times along the edge. 
The case empty-full-empty is excluded, so an edge is empty if its two nodes 
are empty. The filling state of the edge points at element vertices are never 
changed, in order to ensure continuity of the filling state. If, on the other 
hand, the filling state of edge points prescribe a subdivision into only two 
parts, the empty part is split. All these restrictions limit the number of cases 
of remeshing per element that may occur to seven (see figure B.7). Finally, 
figure B.8 shows the new Me at t = ti after remeshing. 
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Figure B.7: The seven cases of the remeshing of a quadrilateral 

Figure B.8: Remeshed domain 0: Mc(ti) 
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Simplified thermal stress 
computation 

Viscous-elastic model 

In this model a zero shear modulus is assumed for the polymer melt and a 
positive constant G for the glassy state. Given a constant thermal expansion 
coefficient a and a constant bulk modulus K, the following model can be 
used to describe this behaviour in the solid phase: 

O' = -phl + O'd 

t 

ph = K j (aT - tr(ë)) dr 

0 

(C.l) 

with e= 1/2((Vü) + (Vü)c), where ü is the displacement field and· denotes 
the time derivative. Equation (C.l) can be derived from equation (2.1), 
similar to equation (2.33). 

Simplified temperature and pressure history 

The cooling process is assumed to take place in five steps. During step one, 
two outer surface layers cool down to mould temperature. Subsequently, 
the "holding" pressure is applied and a second layer solidifies. The pressure 
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is then removed and, in the final step, the core layer solidifies. A no-slip 
boundary condition is assumed. 

The surface layer solidifies under zero pressure. As displacements are 
restricted, a tensile stress will develop (see figure C.la). An expression for 
this stress level is derived as follows. The third vector of the local vector 
base is chosen perpendicular to the midplane of the product. The no-slip 
boundary condition implies: 

en= c22 = 0, 
d 2 

€33 = 3c33 (C.2) 

Substitution of equation (C.2) into equation (C.1) and incorporation of the 
zero normal stress boundary condition for both surfaces of the product lead 
to: 

h d 
-p + 0"33 

-Kaf::..T + Ktr(e) + 2Gcg3 = 0 (C.3) 

Thus the non-zero stress components equal: 

2GKaf::...T 
u11 = u22 = ----

K + G 
(C.4) 

with f::..T the difference between the constant glass transition trmperature 
and the mould wall temperature. When a pressure p is applied,. the overall 
stress level in the fluid layer is decreased by p. For the solid layer, however, 
u11,u22 is decreased only l~kp, with k the Poisson ratio (see figure C.lb), 
while 0"33 = -p. A second layer solidifies (see figure C.lc), resulting in a 
local stress level of: 

2GKaf::...T 
un = u 22 = -p + K + 4/3G (C.5) 

After the pressure is removed (figure C.ld), the core layer will solidify, de
veloping the same tensile stress level as the first layer (figure C.le). The 
stress level in the second layer will only increase p l~k, adding up to: 

2 G Kaf::..T p(l - 2k) 
uu = u22 = K + 4/3G - 1 - k (C.6) 

When the kinematic constraints are removed (see figure C.lf), the thermal 
effect disappears in the expression of the stress distribution. Supposing k 
1/3, the difference between maximum and minimum residual stress equals 
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a (j b (f c 

0 0 - -

-1 0 2z/h 1 -1 0 2z/h 1 0 

a d e a f 

0 0 

-1 0 2z/h 1 -1 0 2z/h 1 -1 0 2z/h 1 
Figure C.l: Development of planar therrnal stress across the reduced thickness for 

a viscous-elastic material (simplified five step constrained quench). 

half of the maximum pressure applied. Brucato et al. (1989) showed that, 
using equations (C.l) and given the pressure history during solidification, 
the residual stress distributîon can be written as: 

1-2k 
1 - k (p(zrg} - p) (C.7) 

with zr
9 

the position in thickness direction of the solidification front in time, 
p(zr

9
) the pressure at that position, and ji the integral of p(zr

9
) across the 

thickness. 
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Appendix D 

Thermomechanical Analyser 

The Thermomechanical Analyser (Perkin Elmer TMA 71 see TMA (1993)) 
measures dimensional changes in one direction of a sample as a function of 
temperature and time. The apparatus consists of a sample tube and a probe 
inside this tube, which are both made of quartz. During operation the probe 
rests on the sample which is placed inside the tube (see figure D). A force of 

To LVDT 

Pro be 

Thermocouple 

Sample 

Sample tube 

Figure D .1: Schematic layout of the sample tube of the Thermomechanical Analyser 
(TMA). 

1 mN is applied to ensure contact between probe and sample, hut preventing 
creep of the sample at high temperatures as much as possible. Inside the 
sample tube a chromel alumel thermocouple is installed for temperature 
registration. A furnace is placed around the tube, enabling temperature 
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control within 4 K (see TMA, 1993). The probe is connected to a LVDT 
(linear variable diff erential transformer) for registration of the expansion 
and contraction of the sample, with a displacement sensitivity of 50 nm. 
The TMA is connected toa computer (Digital DEC station 325c) to control 
the temperature and to store the data automatically. Unfortunately the 
room temperature influences the registered sample length, as it affects the 
LVDT. The measurements are corrected for this effect by measuring the 
room temperature separately. 
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Governing equations for the 
runner systern 

This appendix summarises the formulae given in Chapter 2 for the determi
nation of the pressure and temperature distribution, hut now for the runner 
system and runner like product parts, in order to complete the theoretica! 
description of the code developed. The warpage analysis and the compu
tation of flow-induced stress and elastic recovery are not extended for the 
runners in this study. 

It is assumed that the cross section of these parts is circular, or can 
be modelled as such, taking an equivalent hydraulic radius. In figure E.l 
the local base is shown which is used to rewrite the set of balance (2.1) 
to (2.4) and constitutive equations (2.5), (2.16) to (2.17) and (2.45). The 
assumptions adopted for the runner system are similc...r to those for the thin
walled geometries (see section 2.3). The shear rate that will be used in the 
constitutive relations can be written as: 

'

ov
5 

/ 'Yr = or , (E.l) 

with v 8 the speed along the centre line of the geometry and r the local radial 
coordinate. The balance equations are rewritten as: 

OV8 ovr p 
-+-=-os or p' 

op = !~ (r'f} OV
8

), 

os r or or 
. 1 o ( oT) ·2 

pcpT = ;: or rÀ or + 'f/'Yr 
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(E.3) 

(E.4) 
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Figure E.l: Definition of local coordinates, domains and boundaries for runners 

The flow front region is modelled similar to the model used for the cavity. It is 
assumed that the radius of the runner system is fixed, so it is not a function 
of the internal pressure like the thickness of the cavity (equation (2.63)). 
From equations (E.2) to (E.4) the pressure and temperature equations can 
be derived for the runner system. The pressure equation reads: 

R R ( . ) • 8 ( fJp) J . 1 1 J . ó 1 1 fJs Se Bs + 21f i<i,00pr dr = 27T a 00T + 1 + ó r dr 
0 0 

(E.5) 

Boundary conditions are similar to those for the cavity and are given below 
(see figure E.l): 

8p 
Q = Se- (re) (E.6) 

8s 

P=Pe 

P = Patm 

8p =0 
fJs 

(fo) 

(E.7) 

(E.8) 

{E.9) 

Here r 0 denotes the point on the centre line of a filled runner at a <lead end, 
re is a point on the centre line at the entrance of a runner, r f is a point on 
the centre line where a flow front is located, and Q denotes the total volume 



Governing equations f or the runner system 105 

flux. Equations (E.6) and (E. 7) give possible boundary conditions at the 
gate, while equatîon (E.8) defines the boundary condition at the flow front. 
Finally, equation (E.9) denotes the boundary condition at the <lead ends of 
runners. 

The temperature equation for the runner system can be derived from 
equation (E.4): 

1 ä ( äT) · T (äp) . . 2 
-;_ 8r rÀ 8r + pcpT + p 8T P p = rrYr (E.10) 

and the boundary conditions are: 

8T 
(rR) T Tn or >.

8 
é =HR(T-Tm) 

X3 
(E.11) 

8T 
(rR) T Ta or >. 

0 
é = Ha(T -Ta) 

X3 
(E.12) 

T=Te (re) {E.13) 

where r R is the wall at radius R of the runner, Tn is the temperature of 
the medium in the cooling channels and HR is the effective heat transfer 
coefficient from polymer to cooling medium. 

The numerical solution procedure is completely analogue to that for the 
cavity and is not elaborated here. 
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Samenvatting 

Spuitgieten is een veel toegepaste techniek voor het vervaardigen van grote 
series dunwandige kunststof produkten. De matrijs, waarin de vormholte 
zich bevindt, is vaak complex. Het is duur en tijdrovend fouten in het ma
trijsontwerp later te herstellen. Vandaar dat tijdens het ontwerp met suc
ces gebruik wordt gemaakt van simulatie-programmatuur teneinde het pro
cesverloop te voorspellen en te optimaliseren. Een perfect procesverloop zegt 
echter nog niets over de kwaliteit van de vervaardigde produkten. De steeds 
hoger wordende kwaliteitseisen die aan de veelal technologische produkten 
worden gesteld, maken, het noodzakelijk om voorspelling en optimalisering 
van produkteigenschappen deel te laten uitmaken van het ontwerpproces. 
Dit vraagt om een integrale aanpak van de modelvorming van het spuitgiet
proces. 

Dit proefschrift beschrijft de modelvorming van het vormgevingsproces 
en van de resulterende produkteigenschappen. Veel van deze eigenschap
pen, zoals de ingevroren oriëntatie, de dichtheid, de materiaalverdeling bij 
het meer-componenten spuitgieten (M-CIM), de conversiegraad bij de ver
werking van reactieve materialen ((R)RIM, SRIM en RTM) maar ook de 
vezeloriëntatie in glasvezelgevulde materialen, zijn een gevolg van de to
tale thermomechanische geschiedenis van elk materieel punt. Een voldoend 
nauwkeurige, numerieke methode voor de benadering van materiële tijdsaf
geleiden is dan ook mede bepalend voor de kwaliteit van het model. De 
berekening van stroombanen kan tevens worden gebruikt voor het toetsen 
van de nauwkeurigheid van de gebruikte methode. 

Krimp- en kromtrekgedrag, fysische veroudering en de zogenoemde "elas
tic recovery", of elastische terugvering, zijn de hier voornamelijk bestudeerde 
produkteigenschappen. Ze zijn afhankelijk van de verdeling van de restspan
ningen en de dichtheid in het produkt. De dichtheid wordt beschreven met 
behulp een geschiedenis-afhankelijk model, genaamd het KAHR model. Met 
name het drukverloop tijdens de nadrukfase wordt bepaald door de dichtheid 
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als functie van temperatuur en druk en tijd. Toch blijkt de berekening van 
de dichtheid praktisch te kunnen worden ontkoppeld van de drukberekening 
en kan bovendien de convectieve afgeleide van de dichtheid worden verwaar
loosd. Dit leidt tot een enorme winst in rekentijd. 

De restspanningen kunnen worden onderverdeeld naar hun ontstaans
oorzaak. De stromingsgeïnduceerde spanningen ontstaan tijdens de vul
en de nadrukfase en correleren met de oriëntatie van de makromolekulen. 
Deze oriëntatie wordt (gedeeltelijk) ingevroren en veroorzaakt anisotropie in 
thermische, mechanische en optische eigenschappen. Bovendien leiden deze 
spanningen tot een verminderde dimensiestabiliteit als gevolg van elastische 
terugvering. Omdat de oriëntatie de stroming nauwelijks beïnvloedt, kan ook 
hier een bijzonder effectieve ontkoppelde rekenwijze worden toegepast met 
verwaarlozing van de convectieve afgeleiden. Een compressibel Leonov model 
is gebruikt voor de berekening van deze spanningen. De thermisch en druk 
geïnduceerde spanningen (ook wel thermische spanningen genoemd) ontstaan 
hoofdzakelijk tijdens de navulfase en koelfase en worden veroorzaakt door 
inhomogeen koelen onder een verlopende druk, met als gevolg inhomogene 
krimp over de dikte van het produkt. Een multi-mode Maxwell model (een 
linearisatie van bovengenoemd Leonov model) is gebruikt voor de bereke
ning van thermische spanningen. Deze spanningen zijn vaak een orde groter 
dan de eerdergenoemde stromingsgeïnduceerde spanningen en bepalen het 
kromtrekgedrag van het produkt. Een tweeschotsspuitgietproces is als voor
beeld genomen om het ontstaan van thermische spanningen toe te lichten. 
Uit deze analyse bleek dat het kromtrekken van het produkt als gevolg van 
asymmetrisch afkoelen van het tweede schot kan worden voorkomen door 
verschillende nadrukniveaus te kiezen voor de twee achtereenvolgende spuit
gietcycli. 

De numerieke simulaties zijn gevalideerd aan de hand van experimentele 
resultaten, maar zijn ook getoetst aan analytische oplossingen van vereen
voudigde problemen. De meetresultaten van dichtheidsverdeling en dimen
siestabiliteit, afkomstig uit de literatuur, betreffen uitsluitend rechte strip
pen, waarvoor een twee-dimensionale analyse voldoende zou zijn geweest. De 
geometrie van het tweeschotsprodukt is iets complexer, waardoor hier min
stens een 2~D benadering vereist is. Deze benadering is geïmplementeerd in 
het simulatie programma Vip (een afkorting van Polymer Processing & Prod
uct Properties Prediction Program), dat ontwikkeld is binnen het Centrum 
voor Polymeren en Composieten van de Technische Universiteit Eindhoven. 
Het programma is flexibel met betrekking tot produktgeometrie en materiaal 
modellen, en blijkt praktisch toepasbaar. 
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Stellingen 

behorende bij het proefschrift 

Vip, an integral approach to the 
simulation of injection moulding 

prediction of product properties 

1. Bij de toepassing van de 2~D benadering is het gebruik van hogere
orde elementen voor de druk noodzakelijk om hieruit een snelheidsveld 
te kunnen bepalen dat voldoende nauwkeurig is voor de berekening van 
stroombanen. 

• Dit proefschrift, appendix A. 

2. Bij de berekening van de dichtheidsverdeling met behulp van een ge
schiedenisafhankelijk model is de in dit proefschrift voorgestelde ont
koppelde rekenwijze, van druk en temperatuur enerzijds en dichtheid 
anderzijds, toelaatbaar. 

• Dit proefschrift, hoofdstuk 5. 

3. Voor de voorspelling van geschiedenisafhankelijke produkteigenschap
pen bij de simulatie van het spuitgietproces is de berekening van 
stroombanen essentieel. Bij ontkoppeling van de berekening van pro
cesgrootheden en produkteigenschappen kan echter vaak met het con
vecteren van alleen druk en temperatuur worden volstaan. 

• Dit proefschrift, hoofdstuk 5. 

4. De dimensiestabiliteit van gespuitgiete, amorfe, kunststof produkten 
wordt bij temperaturen dicht bij de glasovergangstemperatuur be
paald door elastische terugvering. Bij lagere temperaturen neemt de 
invloed hiervan af en wordt de bijdrage van volumerelaxatie doorslag
gevend. 

• G.G.J. Schennink, On the dimensional stability of injection moul
ded, amorphous thermoplastic products, Institute for Continuing 
Education, Eindhoven University of Technology, 1993 

• Dit proefschrift, hoofdstuk 5. 



5. 2,3 Megabyte sourcecode is voor één promovendus niet goed beheers
baar, laat staan voor meerdere( n). 

6. Een numerieke simulatie van een experiment moet eveneens reprodu
ceerbaar zijn. 

7. Het slaap- en waakpatroon van een cavia is een eigenschap die te 
benijden valt. Zijn hiermee samenhangende levensverwachting is dat 
echter niet. 

8. Wat in een carpool-car gezegd wordt, is niet bestemd voor daarbuiten. 

9. Het feit dat erg lekker en erg gezond eten zo zelden samen gaan lijkt 
in tegenspraak met de evolutieleer. 

10. Amateur-strijkers lijken vals, blazers zijn het. 

Eindhoven, 29 augustus 1995 Leo W. Caspers 


