

IFM2005 doctoral symposium on integrated formal methods,
Eindhoven, The Netherlands, November 29, 2005
Citation for published version (APA):
Romijn, J. M. T., Smith, G., & Pol, van de, J. C. (Eds.) (2005). IFM2005 doctoral symposium on integrated formal
methods, Eindhoven, The Netherlands, November 29, 2005. (Computer science reports; Vol. 0529). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/32455145-7c6f-49c7-a752-26c5ae8e8cbf

IFM2005

Doctoral Symposium on

Integrated Formal Methods

Judi Romijn
Graeme Smith

Jaco van de Pol
(editors)

The IFM2005 doctoral symposium on integrated formal methods is sponsored by IPA, the institute
for Programming Research and Algorithmics.

ii

Table of Contents

Preface . v

Session 1

Building verification condition generators by compositional extension . 1
Arthur van Leeuwen

Semiring neighbours: An algebraic embedding and extension of neighbourhood logic 6
Peter Höfner

Linking π-calculus and B-method . 14
Damien Karkinsky

Noninterference for sequential and multi-threaded languages . 19
Thuy Duong Vu

Session 2

Real-time system verification techniques based on abstraction/deduction and model checking . . . 26
EunYoung Kang

Discrete simulation of behavioural hybrid process calculus . 33
Tomas Krilavičius and Helen Schonenberg

Formal verification of Chi models using PHAVer . 39
Ka Lok Man and Ramon Schiffelers

Session 3

An automated test generation process from UML models to TTCN-3 . 50
Jens Calamé

Analysis and implementations of MSC specifications . 55
Carsten Kern

Frameworks based on templates for rigorous model-driven development . 62
Nuno Amálio

Session 4

A passive Dolev-Yao intruder that reads xor . 69
Mohammad Torabi Dashti

Component-interaction automata for specification and verification of component interactions . . . 71
Pavĺına Vařeková and Barbora Zimmerova

Application of rewriting techniques to verification problems . 76
Adam Koprowski

iii

iv

Preface

The conference on Integrated Formal Methods is held for the fifth time, this time at the Technische
Universiteit Eindhoven (the Netherlands). The conference addresses the integration of formal meth-
ods (semantics, methodologies, and/or verification algorithms), and attempts to provide meaningful
and effective answers to questions regarding inter-model consistency, completeness and correctness of
implementations.

The first IFM doctoral symposium was organised in 2004 at the University of Canterbury (Kent,
UK) as an event preceding the main IFM2004 conference. This was clearly appreciated as quite a
few Ph.D. students participated. There are not so many opportunities in this research area for Ph.D.
students to present their work outside a regular conference setting, and without being forced to write
full-fledged papers. We felt that this initiative deserved to be continued, and organized a doctoral
symposium for IFM2005 as well, taking place on Tuesday, November 29, 2005.

The IFM2005 doctoral symposium has attracted no fewer than 20 submissions, and we were able
to invite 13 quality presentations, from the Netherlands as well as surrounding countries such as
the United Kingdom, Germany and France, and even the Czech Republic. This proceedings contains
the abstracts of presentations on such diverse subjects as semantical integration, issues in theorem
proving, timed and hybrid approaches, and the combination of formal methods with cryptography.
Undoubtedly, these promising young researchers will contribute to a lively symposium, and will ben-
efit themselves from the experience of presenting their work in public, getting feedback from their
colleagues and attending the invited tutorial and the main conference.

We thank the research school IPA for sponsoring the doctoral symposium.

Judi Romijn, Graeme Smith, Jaco van de Pol

November 2005

v

vi

Building Verification Condition Generators by Compositional

Extension

A. J. van Leeuwen
Department of Information and Computing Sciences, Utrecht Univ.

October 13, 2005

Abstract

Current mechanizations of programming logics are often in the form of verification condi-
tion generators. These frontends to a prover translate a program and assertions into condi-
tions that when proven state that the program fulfils its assertions. Traditional verification
condition generators are monolithic encapsulations of a programming language’s semantics.
This makes it hard to build such verification generators when designing a new language, or
when extending a language. Therefore we propose a more compositional method of building
verification condition generators, using ideas from monadic denotational semantics and from
generic programming. Our technique allows us to extend an existing verification condition
generator to handle new language constructs, but also to add extensions at another level, such
as an ability to generate validation traces. Furthermore, it allows us to weaken the logic, to
do light weight verification and possibly making the verification conditions decidable. We ex-
plain the technique through an example, extending a simple while language with a construct
for exception handling. This construct not only needs an extension to the logic, but also a
change of its structure.

1 Introduction

Development and maintenance of the implementation of realistic programming logics is known to
be hard. There are few methods of dealing with the changes that are incurred by changing the
language or the addition of features. Implementing these changes is a dangerous and error prone
process that can easily introduce inconsistencies in the logic.

Logics underlying imperative languages are usually syntax driven and implemented as a recur-
sive function over the target program [5]. While this is a straightforward method of implementing
these logics, it leads to monolithic programs that cannot be altered or extended easily.

We demonstrate a technique that enables us to change and extend the implementation of a logic
in a modular way, that is without directly tampering with the code of the existing implementation
of a logic. Our approach has a number of advantages. First and foremost is the advantage that it
is safer. Second, it allows engaging and disengaging alterations at will. Thus we can always fall
back on the existing implementation. Third, it enables us to easily create a set of related partial
logics, each of which can be used separately for light weight verification.

Our technique uses ideas from generic programming and monadic denotational semantics to
represent a syntax driven logic. Generic programming abstracts from datatypes, and these tech-
niques can thus be used to abstract from the actual implementation of the abstract syntax used to
represent programs. The main use we make is that of a generic fold, which we assume to be easily
specified. This allows us to decouple the recursion scheme from the calculation of the semantics.

Monadic denotational semantics has been introduced as a method of separating concerns in
denotational semantics [11, 1]. The key idea is to choose an abstraction for the domain of the
semantics such that different computations in that domain can be combined in one standard
fashion. By relying on that combination method, a certain independence of the domain results.

1

Stmt → Variable := Expr
| if Expr then {Stmt } else {Stmt }
| inv Expr while Expr do {Stmt }
| Stmt ;Stmt

Figure 1: Simple imperative language L

pre (x := e) q = q[e/x]
pre (S1; S2) q = pre (S1) (pre (S2) q)
pre (if g then {S1} else {S2}) q = if g then pre (S1) q else pre (S2) q
p = pre (S) i
i ∧ ¬g ⇒ q
i ∧ g ⇒ p
pre (inv i while g do {S}) q = i

Figure 2: Derivation rules for pre

Thus, given a monadic domain, we can hide those aspects that do not affect a specific part of the
logic. This allows us to keep the code of the base logic unchanged despite adding to the underlying
structure, which normally would affect the implementation of each rule in the logic.

2 Implementing a logic

Consider the simple imperative language L in shown in figure 1. For simplicity, we will assume
that all statements terminate. The construct inv i while g do S is a simple while loop where i
is a candidate invariant specified by the programmer.

We will specify a verification condition generator for the logic of this language in terms of
a predicate tranformer logic [3]. A predicate transformer is a function that takes a predicate
and a statement in a language, and returns a predicate transformed according to the semantics
of that statement. In the most wellknown instantion, this function takes postconditions into
preconditions, such that p = pre P q ⇒ {p}P{q} where {p}P{q} is a Hoare-triple stating that
pre- and postcondition p and q are valid for statement P . Figure 2 shows rules that specify how
the value of pre can be computed. Note that the value is only valid if the additional conditions
that occur in the calculation for the while rule also hold.

This specification is syntax driven: for each production rule in the syntax, there is one rule
specifying how to calculate pre. Therefore, calculating the value of pre (S) q given a statement
S and a post-condition q is a matter of recursing over the structure of S. Some rules emit extra
verification conditions that should also be collected, thereby resulting in the term verification
condition generator for the implementation of pre. The straightforward implementation of such a
verification condition generator would compute both the precondition and collect the verification
conditions. Let us name the function pvcg Given a program s, a post-condition q and an initially
empty list of verification conditions, pvcg s q [] woulrd return a tuple (p, vcs) where vcs is a list
of verification conditions and p is pre (s) q. Its type would therefore be pvcg :: Stmt → Expr →
[Expr] → (Expr , [Expr]).

While straightforward, such code is not easily changed. However, as it is syntax derived, the
way to implement it as a fold over the abstract syntax can be easily seen: it involves making
a separate function for each nonterminal in the abstract syntax, and passing those functions as
arguments to the fold.

This decouples the recursion from the calculation of the precondition and the other verification
conditions. Unfortunately the code then still strongly depends on the exact structure of the
domain. We can improve on that.

2

pvcg Assign x e = λq → return (subst (x , e))
pvcg Seq p s1 p s2 = λq → p s2 q >>= λp′ → p s1 p′ >>= λp → return p
pvcg IfThenElse g s1 s2 = -- similar to others
pvcg InvWhile i g p body = λq → p body i >>= λp →

record (i ∧ ¬ g → q) >>= λ →
record (i ∧ g → p) >>= λ →
return i

pvcg = foldStmt (pvcg Assign, pvcg Seq , pvcg IfThenElse, pvcg InvWhile)

Figure 3: Folded monadic implementation of a vcg for L

pvcg Raise ′ = λq → return false
pvcg TryCatch ′ p s1 p s2 = λq → p s1 q
pvcg = foldStmt (pvcg Assign, pvcg Seq , pvcg IfThenElse, pvcg InvWhile,

pvcg Raise ′, pvcg TryCatch ′)

Figure 4: Initial extension of pvcg from L to L1

Looking at the type of the implementation, Stmt → Expr → [Expr] → (Expr , [Expr]), we see
that it takes a statement and an expression and returns a new expression, if we ignore the fact that
we also thread the collection of other verification conditions through the calculation. However,
using monads, we can abstract from that threading.

A monad can be taken to represent a computation over a value, such as collecting conditions
alongside a predicate. We have two functions for monads, return to inject values into computations,
and >>= to sequentially combine a computation over a value with a function taking that value and
returning a new computation.

We can state the implementation’s type as Stmt → Expr → m Expr , where the monad m
abstractly represents the act of collecting the side conditions. Using a fold and monads, the code
for the verification condition generator would then look somewhat like that in figure 3. Note that
we assume a function record that will record verification conditions in values of type m (), and
that we use the abstract sequential combination of computations as opposed to explicit threading
of values.

3 Modifying a logic

Modifying a straightforward implementation as a recursive function involves changing the entire
function. Modifying the implementation in 3 involves changing only those functions affected.
Furthermore, as we abstract from the structure of the domain in 3, it is possible to change that
independently.

Suppose we add exception handling to our language, adding raise and try {Stmt } catch {Stmt }.
We will need to write new rules to handle the new constructs. We assume that expressions do not
in themselves raise exceptions. Now, if we postulate that no valid program may execute raise,
and simply take the precondition of a try {s1 } catch {s2 } block to be that of s1 , we get the
simple implementation in figure 4.

This code, while reusing the old code, is not entirely satisfactory. A more satisfactory imple-
mentation would actually handle the exceptions. This requires making a distinction between the
postcondition in the normal case, and the postcondition in the exceptional case. Our technique
can handle that, with ease! Assume our computational monad m not only records verification con-
ditions, but also stores the current postcondition for the exceptional case, with functions getPostE
and setPostE to access that postcondition. Then we can write our verification condition generator
as in figure 5. Note that adding the possibility for expression to raise an exception would involve
adding invocations to getPostE in the appropriate places.

3

pvcg Raise = λq → getPostE
pvcg TryCatch p s1 p s2 = λq → getPostE >>= λq ′ → p s2 q >>= λp′ →

setPostE p′ >>= λ → p s1 q >>= λp →
setPostE q ′ >>= λ → return p

pvcg = foldStmt (pvcg Assign, pvcg Seq , pvcg IfThenElse, pvcg InvWhile,
pvcg Raise, pvcg TryCatch)

Figure 5: Full pvcg for L1 using code from L

Note that we have left the method of specifying the monad encapsulating the domain implicit.
One way of specifying this monad is by directly choosing one. While this works, it involves
replacing the entire monad upon changes. Much nicer would be the ability to just add aspects
to the existing monad. Traditional approaches of combining monads are the use of distributive
laws over monads [7] or the use of monad transformers [4, 10]. We have chosen to use another
approach, that of monadic coproducts [9].

A monad forms a computational layer over a certain value. If we want to combine compu-
tational actions from different monads, we can put multiple computational layers over a value.
However, when choosing one particular layering of monads for the combined monad, in general
one loses the >>= function. In a monadic coproduct we do not chose one particular layering but
rather all possible layerings of two monads. Unfortunately, this denotes a largely redundant com-
putational structure, as one is interested in computational actions rather than in layers of possible
computational actions. The trick is to identify the actual computational actions, and quotient
the coproduct’s structure so that each actual computational action is only represented once in the
coproduct.

To construct a monadic coproduct, one needs finitary layered monads, that is monads for
which the behaviour on infinite objects is determined by its behaviour on finite objects, and for
which it is possible to determine if the monadic value is in the range of the return function. The
latter requirement allows us to distinguish between layers in which an action has been performed
and layers which may be safely ignored, and therefore allows us to actually calculate the required
quotient. Fortunately, many practical monads have these properties.

4 Research direction

Given this implementation method for verification condition generators, a number of research
paths remain. Not only do we want a more compositional way of implementing a verification
condition generator, we also want to formally verify said generator, as for example Homeier and
Martin described [5]. One hypothesis we have is that our approach makes it possible to not
only reuse exsiting code, but also to reuse proofs so that proving e.g. soundness for a changed
verification condition generator need not be done from scratch.

Another research path is that of combining this method of specifying a logic with the existing
methods of building monadic interpreters and compilers, so that when designing a language one can
declaratively specify syntax and semantics, and get a complete implementation of the language,
including a proofsystem, for free.

5 Related Work

The usefulness of monads for programming language semantics was already realized by Moggi and
Cenciarelli [11, 1], and then expanded upon by Espinosa, Liang and Hudak [4, 8, ?]. Monads were
applied to proving properties over programs by Jacobs and Poll [6] and more recently by Schröder
and Mossakowski [13]. Our approach differs from these in that instead of specifying a logic that
is independent of the underlying monad, we use the monad to implement a logic, and instead of

4

developing one single monad that captures the entire semantics of a single programming language,
we intend to combine semantical aspects into such a monad.

The use of folds in our approach is reminiscent of attribute grammars [12]. For our purposes
we would need a method of introspection on the grammar rules, so that we can perform the
modifications that we described. The first class attribute grammars by De Moor, Backhouse and
Swierstra [2] may well fit the bill. The methods of composing these grammars also suggest another
approach to specifying the semantics.

6 Conclusion

We have shown a technique to deal with changes of and extensions to the implementation of a
verification condition generator. This technique provides for a method of modular development of
the verification condition generator in the face of changing requirements. Preliminary experiments
have shown that the technique may work. We believe it is worth further investigation.

References

[1] P. Cenciarelli and E. Moggi. A syntactic approach to modularity in denotational semantics.
In CTCS 5. CWI, 1993.

[2] O. de Moor, K. Backhouse, and S. D. Swierstra. First class attribute grammars. Informatica:
An International Journal of Computing and Informatics, 24(2):329–341, June 2000. Special
Issue: Attribute grammars and Their Applications.

[3] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Texts and
Monographs in Computer Science. Springer Verlag, Berlin, 1990.

[4] D. Espinosa. Semantic Lego. PhD thesis, Columbia University, 1995.

[5] P. V. Homeier and D. F. Martin. Trustworthy tools for trustworthy programs: A verified
verification condition generator. In TPHOLS 1994, number 859 in LNCS, pages 269–284,
Malta, 1994. Springer-Verlag.

[6] B. Jacobs and E. Poll. A monad for basic java semantics. In T. Rus, editor, AMAST 2000,
number 1816 in LNCS, pages 150–165. Springer, 2000.

[7] D. J. King and P. Wadler. Combining monads. In J. Launchbury and P. M. Sansom, editors,
Proceedings of the Glasgow Workshop on Functional Programming, Workshops in Computing
Series, Glasgow, July 1992. Springer Verlag.

[8] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In
POPL’05, pages 333–343, New York, NY, USA, 1995. ACM Press.

[9] C. Lüth and N. Ghani. Composing monads using coproducts. In ICFP’02, pages 133–144,
New York, NY, USA, 2002. ACM Press.

[10] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113,
University of Edinburgh, 1989.

[11] E. Moggi. Computational lambda-calculus and monads. In LICS’89, pages 14–23. IEEE
Computer Society Press, Washington, DC, 1989.

[12] J. Paakki. Attribute grammar paradigms — a high-level methodology in language implemen-
tation. ACM Computing Surveys, 27(2):196–255, 1995.

[13] L. Schröder and T. Mossakowski. Monad-independent dynamic logic in hascasl. Journal of
Logic and Computation, 14(4):571–619, 2004.

5

Semiring Neighbours:

An Algebraic Embedding and Extension of

Neighbourhood Logic

Peter Höfner

Institut für Informatik, Universität Augsburg
D-86135 Augsburg, Germany

hoefner@informatik.uni-augsburg.de

Abstract. In 1996 Zhou and Hansen proposed a first-order interval logic
called Neighbourhood Logic (NL) for specifying liveness and fairness of
computing systems and also defining notions of real analysis in terms of
expanding modalities. After that, Roy and Zhou presented a sound and
relatively complete Duration Calculus as an extension of NL.
We present an embedding of NL into an idempotent semiring of intervals.
This embedding allows us to extend NL from single intervals to sets
of intervals as well as to extend the approach to arbitrary idempotent
semirings. We show that most of the required properties follow directly
from Galois connections, hence we get the properties for free. As one
important result we get that some of the axioms which were postulated
for NL can be dropped since they are theorems in our generalisation. At
the end of the paper we shortly present some possible applications for
neighbours beyond intervals. Here we discuss for example reachability in
graphs and applications for hybrid systems.

1 Introduction and related work

Chop-based interval temporal logics, such as ITL [4] and IL [2] are useful for the
specification and verification of safety properties of real-time systems. In these
logics, one can easily express a lot of properties such as

”if φ holds for an interval, then there is a subinterval where ψ holds“.

As it is shown in [13], these logics cannot express all desired properties. E.g.,
(unbounded) liveness properties such as

”eventually there is an interval where φ holds“

is not expressible in these logics. Surprisingly, these logics cannot even express
state transitions. That is why in Chapter 9 of [13] extra atomic formulas are
introduced. As it is shown there the reason is that the modality chop ⌢, is a
contracting modality, in the sense that the truth value of φ⌢ψ on [b, e] only
depends on subintervals of [b, e]:

φ⌢ψ holds on [b, e] iff
there exists m ∈ [b, e] such that φ holds on [b,m] and ψ holds on [m, e].

6

Hence Zhou and Hansen proposed a first-order interval logic called Neighbour-
hood Logic (NL) in 1996 [14]. This first-order logic was proposed for specifying
liveness and fairness of computing systems and also defining notions of real
analysis in terms of expanding modalities. In 1997 Roy and Zhou presented a
sound and relatively complete Duration Calculus as an extension of NL [11].
They had already shown that the basic unary interval modalities of [5] and the
three binary interval modalities (C, T and D) of [12] could be defined in NL.

In this paper, we present an embedding of NL into the semiring of intervals
presented e.g. in [8]. This embedding allows us to extend NL from single intervals
to sets of intervals as well as to extend the approach to arbitrary idempotent
semirings. Because of work done in [14] it is also an extension of [5] and [12].
In Section 4 we show that most of the required properties follow directly from
Galois connections, hence we get the properties for free. As one important result
we get that some of the axioms which were postulated for NL can be dropped
since they are theorems in our generalisation. At the end of the paper we briefly
present some possible interpretations of neighbours in other models. Here we
discuss for example reachability in graphs and applications for hybrid systems.
Due to lack of space all proofs are skipped. They can be found in [7].

2 About Neighbourhood Logic

In [14] Zhou and Hansen introduce left and right neighbourhoods as primitive
intervals to define other unary and binary modalities of intervals in a first-order
logic. For this, we need intervals as carrier sets. That is why we define intervals
over a poset of timepoints in the usual way as

[b, e]
def
= {x : b ≤ x ≤ e} , where b ≤ e,

b, e, x ∈ Time and (Time,+, 0) is a monoid. Furthermore, we postulate a sub-
traction − on Time satisfying for any interval [b, e] the equations e− b ≥ 0 and
e− b = 0 ⇔ e = b. Hence, it is possible to calculate the length l of the interval
[b, e] as e − b. Additionally, Time has to be cancellative w.r.t. +. E.g. one can
use IR, the set of real numbers, as Time.
The two proposed simple expanding modalities �lφ and �rφ are defined as
follows:

�lφ holds on [b, e] iff there exists δ ≥ 0 such that φ holds on [b− δ, b],

�rφ holds on [b, e] iff there exists δ ≥ 0 such that φ holds on [e, e+ δ],

where φ is a formula of NL, which is either true or false.1 With �r(�l) one
can reach the left (right) neighbourhood of the beginning (ending) point of an
interval:

z }| {z }| {

φ �lφ
� �� �

a b e

z }| {z }| {
�rφ φ

� �� �

b e c

where a = b − δ where c = e + δ

1 The exact definition of the syntax can be found in, e.g., [14, 7].

7

In contrast to the chop operator the neighbourhood modalities are expanding
modalities, i.e., they are not contracting operators. Thus �l and �r depends
not only on subintervals of an interval [b, e], but also on intervals ”outside“. In
[14] it is shown that the modalities of [5] and [12] as well as the chop operator
can be expressed by the neighbourhood modalities.

3 Embedding Neighbourhood Logic into semirings

First, we repeat the basic definitions of semirings and related algebraic structures
and operators. More details about semirings, domain semirings, etc. can be found
in [6, 1, 3].

A semiring is a quintuple (S,+, ·, 0, 1) such that (S,+, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · is distributive over + and S is strict,
i.e., 0 · a = 0 = a · 0. The semiring is idempotent if + is, i.e., a + a = a. On

idempotent semirings the relation a ≤ b
def
⇔ a + b = b is a partial order, called

the natural order on S. The definition implies that 0 is the least element and
+ and · are isotone with respect to ≤. If S has a greatest element we denote it
by ⊤. An important semiring is REL, the algebra of binary relations over a set
under relational composition.

A test semiring is a pair (S, test(S)), where S is an idempotent semiring and
test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval [0, 1] of S such that 0, 1
∈ test(S) and join and meet in test(S) coincide with + and ·. This definition
corresponds to the one in [10]. We will use a, b, c . . . and x, y, z for arbitrary
S-elements and p, q, r, . . . for tests. By ¬ we denote complementation in test(S);
implication p→ q = ¬p+ q obeys its standard laws.

A domain semiring is a pair (S, p), where S is a test semiring and the domain
operation p: S → test(S) satisfies

a ≤ pa · a (d1), p(p · a) ≤ p (d2).

The relevant consequences are shown in [1]. In particular, domain is universally
disjunctive and hence p is strict, i.e., p0 = 0. Furthermore we can expand (d1)
to the equation a = pa · a (d1’). A corresponding codomain operation q : S →
test(S) can defined analogously. S is called a bidomain semiring if there are
domain and codomain operations. In bidomain semirings we have the following
separability property:

aq · pb ≤ 0 ⇔ aq · b ≤ 0 ⇔ a · pb ≤ 0 . (sep)

In [8] we showed that the structure INT = (P(I),∪, ;, ∅, 1l) is an idempotent

semiring, where I
def
= {[b, e] : b ≤ e, b, e ∈ Time} is the set of all intervals,

; : P(I) × P(I) → P(I) defines the elementwise interval composition and 1l
def
=

{[b, b] : b ∈ Time} is the neutral element with respect to multiplication. The
definition of interval composition says that [a, b] ; [c, d] is defined if and only if
b = c, i.e., iff the interval [c, d] is part of the “right neighbourhood” of [a, b],

8

or, symmetrically, iff [a, b] is part of the “left neighbourhood” of [c, d]. Here the
domain (codomain) characterises the starting points (end points) of intervals,
i.e., for x ∈ P(I)

px = {[b, b] : [b, e] ∈ x} and xq = {[e, e] : [b, e] ∈ x} .

These operators imply the following view of the neighbourhood modalities.

�rφ holds on {[b, e]} ⇔ ∃ [u1, u2] ∈ Iφ : [b, e] ; [u1, u2] is defined
⇔ {[b, e]}q ≤ p(Iφ),

In general we have for �lφ and �rφ the following equivalences:

�lφ holds on x ∈ P(I) iff px ≤ Iφq ,

�rφ holds on x ∈ P(I) iff xq ≤ p Iφ .

As a first result we show that at least one of the eight axioms, which are
postulated in [14] can be dropped and is in fact a theorem in bidomain semirings.
More simplifications on calculations are given in Section 4 after introducing a
general form of neighbourhoods.

Lemma 3.1 �(φ∨ψ) ⇔ �φ∨ �ψ, where � is �r or �l. Hence Axiom 4 of
[14] is a conclusion.

Now we will discuss the box operators �lφ
def
= ∼ �l∼φ and �r

def
= ∼ �l∼φ

of Zhou and Hansen in detachment and bidomain semirings, respectively. Here,
∼ is the negation of truth values, i.e., ∼(true) = false and ∼(false) = true. In
[13, 14] it is denoted as usual by ¬. But this symbol clashes with the negation
symbol of tests. The meaning of �lφ (�rφ) is:

�lφ(�rφ) holds on [b, e] ⇔ φ holds on all neighbours left (right) of [b, e] .

In bidomain semirings we get a generalised form by:

�lφ holds on x ∈ P(I) iff (Iφ)q ; px ≤ 0 and
�rφ holds on x ∈ P(I) iff xq ; p(Iφ) ≤ 0 .

In [14] the authors introduce the composed neighbourhood modalities �r �lφ

and �l �rφ and called them converses. But these are very unhandy in calcula-
tions and we show that they are again diamonds closely related to �l and �r.
We want to illustrate the meaning of �r �lφ. Here, we have that either [a, e] is
a postfix of [b, e] or, if a ≤ b, [b, e] is a postfix of [a, e]:

z }| {

| {z }

�r �lφ
� � � �

b a e

φ

z }| {

| {z }

�r �lφ
� �� �

a b e

φ

where a = e− δ.

9

Now we have a look at �r �lφ using domain and codomain.

�r �lφ holds on x ⇔ xq ≤ p(I
�lφ

)

⇔ xq ≤ p{[b, e] : p{[b, e]} ≤ Iφq}
⇔ xq ≤ Iφq ,

�l �rφ holds on x ⇔ px ≤ pIφ .

We see that �r �lφ and �l �rφ can be as easily expressed as the single diamonds
introduced above. The four neighbourhood operators (�l, �r, �l �r, �r �l)
represent all combinations for comparing domain and codomain and therefore
motivate the generalised definition in the next section.

4 Generalised Neighbourhoods and some Properties

Starting with the definitions of neighbourhoods given in Section 3 and motivated
by NL we give general definitions, which work on bidomain semirings.

Definition 4.1 Let S be a bidomain semiring and x, y ∈ S. Then
(i) x is a left neighbour of y (or x ≤ �

η
ly for short) iff xq ≤ py,

(ii) x is a right neighbour of y (or x ≤ �
η

ry for short) iff px ≤ yq,
(iii) x is a left boundary of y (or x ≤ �

β
ly for short) iff px ≤ py,

(iv) x is a right boundary of y (or x ≤ �
β

ry for short) iff xq ≤ yq.

We will see below that the notation using ≤ is justified. Now we have a closer
look at the definition and its interpretation in INT. For example (i) describes the
situation, where for each element [a, b] of x there exists at least one interval in y
with starting point b. Hence �rφ holds on x if and only if x is a left neighbour
of Iφ (x ≤ �

η
lIφ). The change in direction (left, right) follows from the point of

view. �rφ starts with an interval of x and has a look at elements of Iφ at its right,
whereas our definitions start at Iφ. Starting at our definitions of neighbours and
borders we calculate an explicite form of these operations.

Lemma 4.2 Neighbours and boundaries can be expressed explicitly by

�
η

ly = ⊤ · py , �
η

ry = yq · ⊤ ,

�
β

ly = py · ⊤ , �
β

ry = ⊤ · yq .

If there is a complementation function on S, which satisfies a = a, a+a = ⊤
and a ≤ b ⇔ b ≤ a, we define perfect neighbours and perfect boundaries.

Definition 4.3 Let S be a complement bidomain semiring and x, y ∈ S.
(i) x is a perfect left neighbour of y (or x ≤ �η ly for short) iff xq · py ≤ 0,
(ii) x is a perfect right neighbour of y (or x ≤ �η ry for short) iff yq · px ≤ 0,
(iii) x is a perfect left boundary of y (or x ≤ �β ly for short) iff px · py ≤ 0,
(iv) x is a perfect right boundary of y (or x ≤ �β ry for short) iff xq · yq ≤ 0.

By (iii) and (iv) we have an additional extension of NL. These two definitions
define ”box-operators“ for the converses of neighbourhood modalities, which are
not defined in the semantics of NL given in [13]. To justify the definitions above
we have

10

Lemma 4.4 Each perfect neighbour (boundary) is a neighbour (boundary).

We can characterise the box operations, like neighbours/boundaries, in an ex-
plicit form.

Lemma 4.5 Perfect neighbours and perfect boundaries have the following ex-
plicit forms:

�η ly = ⊤ · ¬p(y) , �η ry = ¬(y)q · ⊤ ,

�β ly = ¬p(y) · ⊤ , �β ry = ⊤ · ¬(y)q .

To reduce calculations we introduce ⊡ and ⊡ as parameters, which can be
instantiated by either �

η
l, �

η
r, �

β
l or �

β
r and �η l, �η r, �β l or �β r, respectively. If

the ”direction“ of ⊡ or ⊡ is important we use formulas like ⊡l and ⊡r where
only one degree of freedom remains.
Boxes and diamonds are connected via the de Morgan duality

⊡y = ⊡y,

hence they form proper modal operations. Additionally, it follows that diamonds
and boxes are lower and upper adjoints of Galois connections:

⊡lx ≤ y ⇔ x ≤ ⊡ry , ⊡rx ≤ y ⇔ x ≤ ⊡ly .

By the Galois connections and de Morgan dualities we get many properties
of (perfect) neighbours and (perfect) boundaries for free. For example we have,
with x ⊓ y = x+ y,

Corollary 4.6

(i) ⊡ and ⊡ are isotone.
(ii) ⊡ is distributive and ⊡ is conjunctive,

i.e., ⊡(x+ y) = ⊡x+ ⊡y and ⊡(x ⊓ y) = ⊡x ⊓ ⊡y.
(iii) We also have the cancellative laws

⊡l ⊡r x ≤ x ≤ ⊡r ⊡lx and ⊡r ⊡l x ≤ x ≤ ⊡l ⊡rx .

In sum, all theorems given in [13, 11, 14] hold in the generalisation, too. Most of
them are already proved by the Galois connection and the Corollary above.

Lemma 4.7

(i) �
η

l �
η

ry = �
η

ly and �
η

r �
η

ly = �
η

ry.
(ii) �

η
l �

η
ry ≤ �η l �

η
ry and �

η
r �

η
ly ≤ �η r �

η
ly.

(iii) �η l�
η

ry = �η ry and �η r�
η

ly = �η ly

Lemma 4.7.(ii) is the same as Axiom 6 of [14], which is now a theorem. There
are many more simplifications and extensions for NL which we do not discuss
here.

11

Interpretation in other models

We generalised NL to arbitrary bidomain semirings. Thus we are able to adopt
the theory to other areas. Bidomain semirings having applications in computer
science are for example

– REL, the algebra of binary relations over a set under relational composition,
– LAN, the algebra of formal languages under language concatenation, and
– PAT, the algebra of sets of graph paths under path fusion.

More semirings and applications can be found e.g. in [1, 6]. In all these semi-
rings we can interpret (perfect) neighbours and (perfect) boundaries. In PAT for
example, �

η
rT is the set of all paths which can be reached from the paths in T .

In contrast to this, �η rT is the set of all paths which can only be reached from
T .

In a discrete semiring S, i.e., test(S) = {0, 1}, like LAN, all diamonds (�
η

l,

�
η

r, �
β

l, �
β

r) are the same and all boxes collapses, too. We have

⊡L =

{

0 if L = ∅
⊤ otherwise,

⊡L =

{

⊤ if L = ⊤
0 otherwise.

Based on INT we presented an embedding of the Duration Calculus in idem-
potent semirings in [8]. Here we can adopt the theory, too. In [7, 9] we introduced
an algebra of processes, where processes are sets of trajectories. These models are
a first step towards the description of hybrid systems in an algebraic manner.
The right neighbour �

η
r characterises properties of trajectories which will be

reached in the future. More informations concerning more details about the in-
terpretations of neighbours/boundaries as well as interpretations in other models
can be found in [7].

5 Conclusion and Outlook

In this paper we started with the Neighbourhood Logic developed by Zhou and
Hansen. We showed that we can embed NL into the theory of semirings. With
the help of the embedding we showed that at least two axioms can be dropped
in the definition of NL and that neighbours can be expressed in a much more
general framework. Therefore we presented neighbours and boundaries in bido-
main semirings and presented important Galois connections. At the end we gave
a short discussion for further applications of the generalised version of NL.

Möller developed the theory of Lazy semirings and we presented an algebra
for hybrid systems in [9]. Thus we want to adapt and, if necessary, modify the
neighbours and boundaries to Lazy semirings. Then we have a further application
for NL in a theory where we can express unlimited processes.

Acknowledgements I am very grateful to Bernhard Möller for his valu-
able comments and remarks, especially concerning the explicit formulations of
neighbours. Many useful comments were also provided by Kim Solin.

12

References

1. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM
Transaction on Computational Logic, 2004.

2. B. Dutertre. Complete proof systems for first-order interval temporal logic. In
IEEE Press, editor, Tenth Annual IEEE Symb. on Logic in Computer Science,
pages 36–43, 1995.

3. J.S. Golan. The Theory of Semirings with Applications in Mathematics and The-
oretical Computer Science. Longman, 1992. ISBN 0-582-07855-5.

4. J.Y. Halpern, B. Moszkowski and Z. Manna. A Hardware Semantics based on
Temporal Intervals. In: Diaz J. (editors) ICALP’83, Lecture Notes in Computer
Science 154.:278–291. Springer, Berlin, 1983.

5. J.Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals.
Proceedings of the First IEEE Symposium on Logic in Computer Science. IEEE
Press, Piscataway, NJ, 279–292.

6. U. Hebisch, and H.J. Weinert. Semirings - Algebraic Theory and Applications in
Computer Science. World Scientific, Singapur, 1998. ISBN 981-02-3601-8.

7. P. Höfner. Semiring Neighbours. Technical Report 2005-19, Universität Augsburg,
2005.

8. P. Höfner. From Sequential Algebra to Kleene Algebra: Interval Modalities and
Duration Calculus. Technical Report 2005-05, Universität Augsburg, 2005.

9. P. Höfner and B. Möller. Towards an Algebra of Hybrid Systems. Proceedings
of the 8th International Conference on Relational Methods in Computer Science
(RelMiCS 8), February 2005.

10. D. Kozen. Kleene algebra with tests. Trans. Prog. Languages and Systems, 19(3):
427–443, 1997.

11. S. Roy and C.C. Zhou. Notes on Neighbourhood Logic. Technical Report 97, The
United Nations University UNU/IIST, February 1997.

12. Y. Venema. A Modal Logic for Chopping Intervals. J. of Logic and Computation
1(4):453–476, 1990.

13. C.C. Zhou and M.R. Hansen. Duration Calculus – A Formal Approach to Real-
Time Systems. Springer, Monographs in Theoretical Computer Science, 1996.

14. C.C. Zhou and M.R. Hansen. An Adequate First Order Interval Logic. Lecture
Notes in Computer Science, 1536:584–608, 1998.

13

Linking π-calculus and B-Method

Damien Karkinsky

School of Electronics and Physical Sciences,
University of Surrey, Guildford, Surrey GU2 7XH

d.karkinsky@surrey.ac.uk

Abstract. The approach we consider in this paper is an integration of
the π-calculus and the B-Method. In order to be able to reason about
specifications based on both these notations we need common semantics.
We illustrate an approach which enables the interpretation of a B ma-
chine as a π labelled transition system so that we can consider parallel
combinations of π-calculus processes and B machines. The benefit of this
work is the extension of B machines with instantiation and π-calculus
dynamic reconfiguration capabilities.

1 Introduction

We are interested in combinations of formal methods which consider the state
and dynamic requirements of a system. We recognise that many such combina-
tions already exist, including, CSP || B [7] and Circus [2], but we are concerned
with a state description, being accessed and updated by control components with
dynamically reconfigurable interconnections. Our work is motivated by what we
see in object-oriented modelling where object instantiation and dynamically re-
configurable interconnection are essential paradigms. For example, an object
instance can be created with a unique reference. This reference can be used by
other objects to communicate with the instance, but we must be careful to con-
trol the way the instance is updated and read by objects. Our aim is to provide
a formal framework which supports this kind of interaction so that the integrity
of each active object is preserved, and so that we can reason about the overall
behaviour of the system.
The approach we consider in this paper is a combination of the π-calculus [6]
and the B-Method [1]. In order to be able to reason about specifications based
on both these notations we need common semantics. We illustrate an approach
which enables the interpretation of a B machine as a π labelled transition system
so that it can be integrated into parallel combinations with π-calculus processes.
As a result, this work naturally extends B machines with instantiation and π-
calculus dynamic reconfiguration capabilities.
This paper is organised as follows. A short overview of each method is presented
in the following Section. Section 3.1 presents a standard LTS interpretation for
machines, which we make use of in the π-semantics for B machines in Section
4.

14

2 Background

The π-calculus syntax is based on an infinite set of names N , which can repre-
sent both values and channels for communication. This allows the treatment of
channels as values in communications over other channels.
Structurally the π-calculus is very minimal, containing constructs for; an inac-
tive process 0, concurrent execution P1 | P2 (where each P is a π processes),
external choice P1 + P2, channel scoping (ν v)(P) where the scope of channel
v is P , infinite replication !P , and action prefix π.P . Action prefixes can be; in-
put a(w), output aw , or internal actions τ , each of which can be guarded using
matching, which is not considered in this paper. The names a,w are members
of N .
The syntax is given an operational semantics which is defined in terms of three
binary relations on π processes a structural congruence (≡π), a reduction re-

lation (−→), and a labelled transition relation (
α

−→). A full definition of these
relations can be found in [6]. They define; communication between concurrent
agents as binary and synchronous, and support processes generating fresh chan-
nels at runtime and extruding them outside their scope through output actions.
In our paper, we use two extensions to the core π-calculus syntax presented
above. First, is the variant construct case o of [l1 . P1; . . . ln . Pn] which
evolves to Pi for 1 ≤ i ≤ n whenever o matches the label li . This construct
was originally introduced for the study of π with respect to object oriented lan-
guages (see [6]p252). Second, is a form of indexing called pseudo-application; the
expression P = (x).Q denotes an abstraction of the definition of agent Q where
x might be a free name. Given a name v , Q{v

/x} is an instance of P where v is
substituted for every free occurrence of x therefore, we can denote Q{v

/x} with
P〈v〉.
The B -method is a first order predicate calculus language with set theory. The
main specification construct is a MACHINE [1] consisting of an initialisation
and a set of operations(in this paper restricted to ones without I/O and guards).
An example machine LightSwitch, is defined in [4] with initial state nn = 0 and
two operations: on =̂ PRE nn = 0 THEN nn := 1 END , and an inverse of
on, called off .

3 Preliminary labelled transition system

We define LTSM to be a labelled transition system for a given B machine M , as
follows.

Definition 3.1.

LTSM = (ST⊥M , OPERATIONS , INITM , −→M)

ST⊥M is the state space of M together with a divergent state ⊥. OPERATIONS

is a set of labels one for each operation of the machine. INITM is a set of initial
states from STM . −→M is a set of triples from (ST⊥M ×OPERATIONS × ST⊥M)

15

containing the state transitions of the operations.
A distinguishing feature of LTSM is that STM is a set of valuations satisfying
the machine invariant. A valuation is a total function from the VARIABLES of
the machine to the value domain for the B language which we call DB . The set
of valuations INITM and the transition relation −→M are defined in [5], using
predicates abt(S) (aborting) and prd(S) (pre & post) defined for machine state-
ments S , in [1]. We can show that LTSM is consistent with failure & divergence

semantics for action systems [4] with guards set to true.

4 Π style labelled transition system for B-Machines

This section explains how LTSM can be integrated with the π operational seman-
tics. Firstly, the labels of a variant construct are matched with the OPERATIONS

labels of LTSM . For example, π variant labels representing the B operations on

and off are on 〈∗〉 and off 〈∗〉 respectively and define VM = {on 〈∗〉, off 〈∗〉}1.
The ∗ means there is no I/O. Labels can be sent on given channels, such as z ,
from the π-specifications to an instance of LightSwitch machine e.g. zon 〈∗〉.
The channel z can be viewed as a reference to a B object.
Secondly, we extend the state-space STM (without ⊥) adding points of machine
activity: BEGIN is the point when M is not initialised, READY - ready to exe-
cute an operation, and for each operation of M , BODYopi

, is when opi is being
executed. If IS = {BEGIN , READY ,BODYop1

, . . . , BODYopn
} then the

extended state-space is given by the following definition:

Definition 4.1. STπ = IS × STM .

Since the state of the variables of M is not important at point BEGIN we denote
(BEGIN , val) for any val as (BEGIN).
Thirdly, we define a system of π-processes [[s]]〈z 〉 where [[s]] denotes a process
abstraction parameterised by channel z and s ∈ STπ. We define the behaviour
of [[s]]〈z 〉 using reduction and labelled transition rules in Def 4.2. This defines
how a B object interacts with a π-environment.

Definition 4.2. Given LTSM and a channel z ,

1 : [[(BEGIN)]]〈z 〉 (−→)+ [[(READY , val1)]]〈z 〉 iff val1 ∈ INITM

2 : [[(READY , val)]]〈z 〉
z l
−→ [[(BODYop(l), val)]]〈z 〉

3 : [[(BODYop(l), val)]]〈z 〉 (−→)+ [[(READY , val1)]]〈z 〉

iff (val , op(l), val1) ∈−→M and val1 6= ⊥

4 : [[(BODYop(l), val)]]〈z 〉 −→ Ω if (val , op(l),⊥) ∈−→M

where op(l) ∈ OPERATIONS and l ∈ VM

1 VM is a variant type derived from the machine signature and used in the type-
checking of π-agents. The type system we use is [6]p289.

16

PSfrag replacements

z on 〈∗〉

z
o
n

〈
∗
〉

z off 〈∗〉

z
o
ff

〈
∗
〉

[[(BEGIN)]]〈z 〉

[[(READY , {(nn, 0)})]]〈z 〉

[[(READY , {(nn, 1)})]]〈z 〉

[[(BODYon , {(nn, 0)})]]〈z 〉

[[(BODYon , {(nn, 1)})]]〈z 〉

[[(BODYoff , {(nn, 0)})]]〈z 〉

[[(BODYoff , {(nn, 1)})]]〈z 〉

Ω

(τ)+

(τ)+

(τ)+

τ

τ

τ

Fig. 1. π LTS of LightSwitch

Within the π-calculus every reduction matches with a τ action up to structural
congruence see [6]p51. Thus, we can restate reduction rules in Def 4.2.(1, 3, 4)
as labelled transition rules where each reduction is replaced with a τ transition.
Def 4.2.1 represents the initialisation of the machine. Def 4.2.2 represents receiv-
ing an operation call along channel z . It can be shown that [[(READY , val)]]〈z 〉
has the same transitions as the following process abstraction if channel getop is
instantiated with z .

(getop).getop(o).case o of [1 ≤ i ≤ n, opi 〈∗〉 . [[(BODYopi
, val)]]〈getop〉;]

This justifies the input action z l as an appropriate labelled action.
Def 4.2.3 is a correct execution of the corresponding operation. Def 4.2.4 repre-
sents calling an operation outside its pre-condition, where Ω is a constant agent
that can perform an infinite number of τ actions. Notice that after initialisation
one non-divergent transition of LTSM is decomposed into an input action fol-
lowed by a positive finite number of τ transitions in the π LTS2.
Considering machine LightSwitch, using Def 4.2 we can generate the π-calculus
LTS in Fig 4. We can also instantiate the abstraction [[(BEGIN)]] as a regu-
lar π-agent within π-specifications. However, we only wish to consider instances
where the machine is executed concurrently with other agents. For example,

!(ν z)(createM 〈z 〉.0 | [[(BEGIN)]]〈z 〉) (1)

2 This consideration, on one side, is imposed by the granularity of π-actions and
becomes important in machines with I /O .

17

The agent above can be interpreted as an infinite collection of machine instances.
It can be shown that each B instance has its own unique reference channel that
becomes available after interaction on createM .

5 Discussion

The work [8], that relates the π-calculus and Object-Z, differs to our approach in
several respects. In [8] the specifications are a mixture between a control model
and a state model of a given system. Pi/Object-Z (PiOZ) class definitions are
given in terms of simple Object-Z schemas and π-like process definitions. We use
the standard π-calculus whereas, they change the syntax and interpretation. For
example, channels are viewed as state variables, and action prefixing is replaced
with sequential composition of processes. Secondly, their interpretation of an
operation call is the execution of a process, whereas ours is a labelled action.
The motivation behind separating π-calculus and B descriptions cleanly came
from the CSP‖B approach [7]. In CSP‖B a B machine is owned by a specific
CSP controller and the specification cannot evolve dynamically so that another
process can take over control of the B machine. The benefit of the approach
presented here is that we have a clearer way of passing control over B objects
from one π-calculus controller to another.
Although this paper considered machines without I /O the approach can be ex-
tended to accommodate it. The extension requires that output from the machine,
is transmitted separately from operation calls and temporary channels can be
established during each operation call.
We are currently developing a trace based/assertional verification method which
can be used to show divergence freedom properties over the machine instances.

References

1. Abrial J-R. The B-Book, Assigning Programs to Meanings Cambridge University
Press 1996.

2. Cavalcanti A., Sampaio A., and Woodcock J.: Refinement of Actions in Circus, In
REFINE’02, FME Workshop, Copenhagen (2002).

3. Dijkstra E. W. A Discipline of Programming Prentice-Hall Inc, 1976.
4. Morgan C.C. On wp and CSP In W.H.J. Feijen, A.J.M. van Gasteren, D Gries and

J.Misra, editors, Beauty is our business: a birthday salute to Edsger W. Dijkstra.
Springer 1990.

5. Karkinsky D. Using B-Method and π-calculus (in preparation), 2006
6. Sangiorgi D., Walker D. The π-calculus, A Theory of Mobile Processes Cambrige

University Press 2001.
7. Schneider, S., Treharne, H.: CSP Theorems for Communicating B Machines. In

Proceedings of IFM 2004, LNCS 2999, Springer-Verlag, University of Kent, 2004.
8. Taguchi K., Dong J. S., Ciobanu G. Relating π-calculus to Object-Z p97-106 ICECCS

2004.

18

Noninterference for sequential and
multi-threaded languages

Thuy Duong Vu

Programming Research Group, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

tdvu@science.uva.nl

Abstract. Several definitions of noninterference for sequential program-
ming languages have been introduced. Unfortunately, these definitions
appear confusing when parallelism is introduced in the languages. We
propose a method to verify noninterference in both sequential and multi-
threaded programming languages. Noninterference is defined in the set-
ting of Basic Polarized Process Algebra (BPPA), a natural candidate
for the specifications of sequential and multi-threaded program seman-
tics [Bergstra, Loots in 2002], [Bergstra, Middelburg in 2004]. More pre-
cisely, a program is secure if its behavior cannot be interfered with its
high-security (or implicit) actions. Our definitions of noninterference are
simple, and satisfy certain desirable properties.

1 Introduction and related works

In 2002, Bergstra and Loots introduced Basic Polarized Process Algebra (BPPA)
[4], an algebraic theory about sequential program behaviors. Later, Bergstra and
Middelburg [3] proposed an extension of BPPA, called thread algebra, as a frame-
work for the description and analysis of multi-threaded strategic interleaving. It
has been outlined in [4, 3] how and why these algebras are natural candidates
for the specifications of sequential and multi-threaded program semantics. This
paper considers noninterference for sequential and multi-threaded languages, in
which program behaviors are described in the setting of BPPA.

Noninterference [7] is a property of secure information flow [2, 6] that charac-
terizes programs whose execution does not reveal information about secret data.
More precisely, program variables are classified into two disjoint security levels
“low-security” and “high-security”. We say that such a program is noninterfer-
ent if observations of the initial and final values of low (or public) variables do
not provide any information about the initial values of high (or secret) variables.

Although this problem has been studied for several decades, most of the previ-
ous approaches for sequential and multi-threaded languages have been syntactic
in nature, often using the so-called type system technique to analyze program
texts [14, 13, 12, 10, 5] (for an overview, see [11]). However, such type systems
are imprecise and complicated. Furthermore, they reject many secure programs,
even for simple programming languages.

19

Some recent approaches [9, 1] consider security in various logical forms, lead-
ing to a characterization using Hoare triples. These approaches give a more
precise characterization of security than the previous ones. But, they still have
limitations. For instance, for programs with iteration or recursion, determin-
ing security would require complex computations, which makes this checking
unattractive in practice. Moreover, both classes of approaches have problems
when parallelism is introduced in the languages. Therefore, they are not suitable
candidates when dealing with multi-threading.

In this paper, we first formulate the notion of noninterference given by
Goguen and Meseguer [7] for polarized processes in BPPA, using input-output
transformations. This definition is precise. However, the checking of this non-
interference would require complex computations. To simplify this checking, we
propose several definitions of noninterference based on program behaviors. Infor-
mally speaking, a program is secure if its behaviors cannot be interfered with high
(or implicit) actions. We extend BPPA to Secure Basic Polarized Process Algebra
(SBPPA) with an internal action t, the hiding and abstraction operators. We de-
fine branching bisimulation for polarized processes which classifies processes that
behave the same, from the view of non-internal actions. Using this bisimulation
equivalence, we define behavioral noninterference (BNI) for polarized processes
in BPPA. We prove the soundness theorem: If a process is behaviorally nonin-
terferent then it is noninterferent. In the setting of thread algebra, we present
a strategic interleaving operator for multi-threaded systems, called cyclic inter-
leaving with persistence to turn a thread vector of arbitrary length into a single
thread (assuming that a thread is a process). The advantage of this operator,
in comparison with the operators defined in [3], is that branching bisimulation
is a congruence with respect to this operator. We prove that the definition of
noninterference based on input-output transformations satisfies separability [8].
We also consider compositionality and decompositionality of polarized processes
under cyclic interleaving with persistence. It turns out that our definition of be-
havioral noninterference is closed under this operator. Furthermore, it satisfies
a decompositional property for finite processes.

2 Secure Basic Polarized Process Algebra (SBPPA)

2.1 Primitives of BPPA and input-output transformations

Let Σ be the set of basic actions. Each basic action is supposed to return a
boolean value after its execution. Basic Polarized Process Algebra (BPPA) is
defined with the following meaning:

– Termination, denoted by S, yields successful terminating behavior.
– Deadlock, denoted by D, represents inaction behavior.
– Postconditional composition: The process P � a � Q, where a ∈ Σ, first

performs a and then proceeds with P if true was returned and with Q
otherwise.

20

– Action prefix: For each a ∈ Σ and process P ,

a ◦ P = P � a � P.

Let BPPAΣ be the set of finite processes which are made from S and D by means
of a finite number of applications of postconditional compositions. To define
infinite processes in BPPA we require a sequence of its finite approximations.
For every n ∈ N, the approximation operator πn : BPPAΣ → BPPAΣ is defined
inductively by

π0(P) = D,
πn+1(S) = S,
πn+1(D) = D,
πn+1(P � a � Q) = πn(P) � a � πn(Q),

A projective sequence is a sequence (Pn)n∈N such that for each n ∈ N,

πn(Pn+1) = Pn.

We now give a brief introduction about input-output transformations based on
polarized processes. Let Var be the set of program variables. Suppose that upon
the execution of a program, the value of a program variable is stored in a memory.
A state space V is a deterministic space whose components are memories. For a
state space V and an action a, the operation effecta(−) : V → V that changes
the memories due to the execution of a is so-called effect operation, while the
operation ya(−) : V → {true, false} that determines the boolean reply ya(v)
produced when a is performed in a state of V , is called yield operation. Let
D represent a failure value that can’t be computed. A function P • (−) : V →
V ∪{D} which represents what P computes on input v in V is defined inductively
as follows.

1. D • v = D,
2. S • v = v,
3. (a ◦ P) • v = P • effecta(v),
4. P � a � Q • v = (a ◦ P) • v if ya(v), otherwise (a ◦Q) • v .

We take P • v = D in order to express that the computation produces no result.
In other words, P • v = D precisely if for all n ∈ N, πn(P) • v = D. For a
space V = [V1, V2] with V1, V2 subspaces of V , and a value v = [v1, v2] ∈ V , v|Vi

denotes the value vi when we project v into Vi.

2.2 SBPPA

Secure Basic Polarized Process Algebra (SBPPA) is an extension of BPPA with
an internal action t, the hiding and abstraction operators. Furthermore, the set
Σ of basic actions is restricted to the set Σs of secure actions.

We suppose that program variables are classified into two security classes
VarL (low or public) and VarH (high or secret) (VarL ∩ VarH = ∅). Moreover,
a deterministic state space V consists of two subspaces: low (or public) VL and

21

high (or secret) VH . Each component of VL stores the value of a low variable,
and each component of VH stores the value of a high variable in a program. Let
var(V) and var(a) denote the set of program variables whose values are stored in
V and the set of program variables occurring in a, respectively. We assume that if
var(a) * var(V) then effecta(v) = v and ya(v) = false for all v ∈ V . Furthermore,
if V = [V1, . . . , Vn] and var(a) ⊆ var(Vi) for some i then effecta([v1, . . . , vn]) =
[v1, . . . , effecta(vi), . . . , vn] and ya([v1, . . . , vn]) = ya(vi). A basic action is secure
if effecta(v)|VL

= effecta(v|VL
) for all v ∈ V . A secure action is implicit if it has

effect or yield on VH , i.e. effecta(v)|VH
6= v|VH

or ya(v) 6= ya(v|VL
). Let Σs and

H be the set of secure and implicit actions, respectively.
Let P be a polarized process. If P = P1 �a�P2 then P1, P2 are successors of

P . A process Q is a descendant of P in a set T of processes if there is a sequence
P = P0, P1, . . . , Pn = Q with n ≥ 0 such that for all 0 ≤ i ≤ n, Pi ∈ T, and
for all 0 ≤ i < n, Pi+1 is a successor of Pi. A polarized process P is divergent
if it has a descendant Q that diverges immediately, i.e., there is an infinite
sequence Q0, Q1, . . . with Q0 = Q such that for all n ∈ N: Qn = Qn+1 � t � Q′

or Qn = Q′ � t � Qn+1 for some process Q′. A t-tree of P is a set t-tree(P)
of processes containing P in which a process cannot be a descendant of itself.
Moreover, if Q1 is a process in t-tree(P) and Q1 6= P , then there exist processes
Q and Q2 in t-tree(P) such that Q = Q1 � t � Q2 or Q = Q2 � t � Q1. A
process Q is a leaf of t-tree(P) if Q = S or Q = D or Q = Q1 � a � Q2 with
Q1, Q2 /∈ t-tree(P). A branching bisimulation relation B is a symmetric binary
relation on processes in SBPPA satisfying:

1. If (P,Q) ∈ B and P = S, then there exists a finite t-tree(Q) such that for
every leaf Q′ of t-tree(Q): (P,Q′) ∈ B and Q′ = S.

2. If (P,Q) ∈ B and P = P1 � a � P2 then either:
(a) a = t, and (P1, Q), (P2, Q) ∈ B, or:
(b) there exists a finite t-tree(Q) such that for every leaf Q′ of t-tree(Q):

(P,Q′) ∈ B, and Q′ = Q′
1 � a � Q′

2 with (P1, Q
′
1), (P2, Q

′
2) ∈ B.

Two processes P and Q are branching bisimilar, denoted by (P -b Q), if there
is a branching bisimulation relation B such that (P,Q) ∈ B.

We now introduce the notions of the hiding and abstraction operators. The
hiding operator tH : BPPA → SBPPA renames all implicit actions to the basic
internal action t:

tH(S) = S,
tH(D) = D,
tH(P � a � Q) = tH(P) � t � tH(Q) for a ∈ H,
tH(P � a � Q) = tH(P) � a � tH(Q) otherwise.

While the abstraction operator τH : SBPPA → BPPA removes these implicit
actions from a process:

τH(S) = S,
τH(D) = D,
τH(P � t � Q) = τH(P) for a ∈ H,
τH(P � a � Q) = τH(P) � a � τH(Q) for a /∈ H.

22

3 Thread algebra

Thread algebra is an extension of BPPA, which is designed for strategic interleav-
ing of parallel processes. A thread is considered as a polarized process. A thread
vector is a sequence of threads. Strategic interleaving operators turns a thread
vector of arbitrary length into a single thread. This single thread obtained via
a strategic interleaving operator is also called a multi-thread. Thread algebra
is meant to specify the collection of strategic interleaving operators, capturing
some essential aspects of multi-threading. In this section we introduce the cyclic
interleaving with persistence operator, denoted by ‖Φ

csi for some Φ ⊆ Σ, which is
a slight modification of the cyclic interleaving operator (‖csi) given in [3]. This
operator invokes rotation of a thread vector only in the case that the current
action is not in the set Φ ⊆ Σ. Let 〈〉 denote for the empty sequence, 〈x〉 stand
for a sequence of length one, and α y β for the concatenation of two sequences.
We assume that the following identity holds: α y 〈〉 = 〈〉 y α = α. The axioms
for ‖Φ

csi are given as follows:

‖Φ
csi (〈〉) = S
‖Φ
csi (〈S〉 y α) = ‖Φ

csi (α)
‖Φ
csi (〈D〉 y α) = SD(‖Φ

csi (α))
‖Φ
csi (〈x � a � y〉 y α) = ‖Φ

csi (〈x〉 y α) � a� ‖Φ
csi (〈y〉 y α) for a ∈ Φ

‖csi (〈x � a � y〉 y α) = ‖csi (α y 〈x〉) � a� ‖Φ
csi (α y 〈y〉) otherwise

for Φ ⊆ Σ. If Φ = ∅ then ‖Φ
csi=‖csi . The auxiliary deadlock at termination

operator SD which turns termination into deadlock, is defined as follows.

SD(S) = D
SD(D) = D
SD(x � a � y) = SD(x) � a � SD(y)

4 Noninterference and behavioral noninterference

Informally speaking, a program behavior P is noninterferent (NI) if its low out-
put does not depend on its high input. Formally, a process P ∈ NI if for all
inputs v1, v2 ∈ V such that v1|VL

= v2|VL
,

(P • v1)|VL
= (P • v2)|VL

.

Now we define behavioral noninterference (BNI) for processes in BPPA. This
definition essentially says that a process is secure if its actions are secure, and it
cannot be interfered with implicit actions. In other words, its behavior from the
view of non-implicit actions, is always the same whatever the returned boolean
value after the execution of an implicit action is. In other words, its behavior
from the view of non-implicit actions, is always the same whatever the returned
boolean value after the execution of an implicit action is. Thus, if we rename
all implicit actions of this process, then the obtained process must be branching
bisimilar to its abstraction of implicit actions. Formally, a polarized process
P ∈ BNI if σ(P) ⊆ Σs and tH(P) -b τH(P).

23

5 Some results of our work

In this section, we present a few results of our work.
Theorem 1. (Soundness) Let P be a polarized process. Then P ∈ BNI ⇒ P ∈
NI.

Proof. This follows from the fact that (P • v)|VL
= τH • v|VL

for all v ∈ V .

Theorem 2. (Separability) Let Pi (1 ≤ i ≤ n) be polarized processes such
that var(Pi) ∩ var(Pj) = ∅ for all i, j ∈ [1..n] and i 6= j, Then for every Φ ⊆ Σ,

∀i(1 ≤ i ≤ n) : Pi ∈ NI ⇒‖Φ
csi (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) ∈ NI.

Proof. This follows from the assumption that if V = [V1, . . . , Vn] and var(a) ⊆
var(Vi) for some i then effecta([v1, . . . , vn]) = [v1, . . . , effecta(vi), . . . , vn] and
ya([v1, . . . , vn]) = ya(vi).

Theorem 3. (Congruence) Let Pi and Qi (1 ≤ i ≤ n) be non-divergent po-
larized processes such that Pi -b Qi. Then for any Φ such that t ∈ Φ:

‖Φ
csi (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) -b‖Φ

csi (〈Q1〉 y 〈Q2〉 y · · · y 〈Qn〉).

Proof. Let B be a binary relation defined as follows. For non-divergent processes
P and Q, (P,Q) ∈ B if there are non-divergent sequences α and β with the
same length n for some n ∈ N such that P =‖Φ

csi (α), Q =‖Φ
csi (β), and for all i:

αi -b βi. It is not hard to see that B is a branching bisimulation.

Theorem 4. (Compositionality) Let Pi (1 ≤ i ≤ n) be polarized processes
such that tH(Pi) are non-divergent. Then for any Φ ⊇ H,

∀i(1 ≤ i ≤ n) : Pi ∈ BNI ⇒‖Φ
csi (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) ∈ BNI.

Proof. This follows from Theorem 3.

Proposition 1. (Decompositionality) Let Pi (1 ≤ i ≤ n) be finite polarized
processes in which the termination is either S or D. Then for any Φ ⊇ H,

‖Φ
csi (〈P1〉 y 〈P2〉 y · · · y 〈Pn〉) ∈ BNI ⇒ ∀i(1 ≤ i ≤ n) : Pi ∈ BNI.

Proof. This can be proven by induction on the length of processes.

5.1 Concluding remarks and future works

We have addressed a new approach to verify noninterference for sequential and
multi-threaded languages. Our definitions of noninterference have been defined
in the setting of BPPA and Thread Algebra. We have shown that these def-
initions satisfy certain desirable properties. Since the definition of behavioral
noninterference seems to be strict, we are working on some loose variants of
BNI. Furthermore, our work can be extended to the work on recent object-
oriented programming languages such as C] or Java. Moreover, we only cover
the extension of the simplest interleaving strategy called cyclic interleaving of
[3]. Other plausible interleaving strategies can also be adapted the feature of the
cyclic interleaving with persistence operator defined in this paper.

24

References

1. G. Barthe, P.R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In IEEE Computer Security Foundations, volume 17, pages 100–114,
2004.

2. D.E. Bell and L.J. La Padula. Secure computer system: mathematical foundations
and model. Tech. Rep. M74-244, MITRE Corporation, Bedford, Massachussets,
1973.

3. J. Bergstra and C.A. Middelburg. Thread algebra for strategic interleaving. Com-
puting Science Report 04-35, Department of Mathematics and Computing Science,
Eindhoven University of Technology, 2004.

4. J.A. Bergstra and M.E. Loots. Program algebra for sequential code. J. Logic
Algebr. Programming, 51:125–156, 2002.

5. G. Boudol and I. Castellani. Noninterference for concurrent programs and thread
systems. Theoretical Computer Science, 281:109–130, 2002.

6. D.E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

7. J. Goguen and J. Meseguer. Secure policies and security models. In IEEE Symp.
on Security and Privacy, pages 11–20, 1982.

8. J.L. Jacob. Separability and the detection of hidden channels. Information Pro-
cessing Letters, 34:27–29, 1990.

9. R. Joshi and K. Leino. A semantics approach to secure information flow. J. of Sci.
Comput. Programming, 37:113–138, 2000.

10. A.C. Meyers. Jflow: Practical mostly-static information flow control. In ACM
Symp. on Principles of Programming Languages, pages 228–241, 1999.

11. A. Sabelfeld and A. Myers. Language-based information flow security. IEEE J. on
Selected Areas in Communications, 21(1):5–19, 2003.

12. G. Smith and D. Volpano. Secure information flow in multi-threaded imperative
languages. In POPL’98, volume 29, pages 355–364, 1998.

13. D. Volpano and G. Smith. A type approach to program security. In M. Bidoit and
M. Dauchet, editors, TAPSOFT’97, volume 1214 of LNCS, pages 607–621, 1997.

14. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
J. of Computer Security, 4(3):167–187, 1996.

25

Real-time system verification techniques based

on abstraction/deduction and model checking

EunYoung Kang

LORIA-INRIA, France
Technical University of Delft, The Netherlands

Eun-Young.Kang@loria.fr

Abstract. Our research focuses on verification techniques for real-time
systems based on predicate abstractions. These techniques aim to com-
bine abstract interpretation, model checking, and theorem proving in or-
der to obtain a powerful and highly automatic verification environment
for real-time systems. One drawback of current real-time model checking
approaches is the limited size of the systems that can be analyzed. For
the computation of finite abstractions in the way of infinite-state sys-
tems analysis, we propose an Iterative-Abstract-Refinement algorithm.
Using our algorithm, we can reduce the aforementioned drawbacks as-
sociated with the application of real-time model checking such as the
limited applicability due to state space explosion characteristics

1 Introduction

The automatic verification problem for finite-state real-time systems has been
considered and solved [1, 2, 16]. In many cases, theoretically optimal algorithms
are known [4, 18]. Unfortunately, even if these algorithms are fully automatic,
they are confronted with the state-explosion problem. They are typically expo-
nential in the number and maximum values of clocks.

On the other hand, deductive techniques can in principle be used to verify
infinite-state systems, based on suitable sets of axioms and inference rules. Al-
though they are supported by theorem provers and interactive proof assistants,
their use requires considerable expertise and tedious user interaction.

Abstract interpretation [8] provides a different approach to computing finite-
state abstractions. For instance, predicate abstraction [10, 17] is a well known
approach; given a transition system and a finite set of predicates, this method
determines a finite abstraction, where each state of the abstract state space is a
truth assignment to the abstraction predicates.

Model checking and abstraction/deductive techniques are therefore comple-
mentary. We propose an efficient scheme by combinations of those approaches
that should give rise to powerful verification environments. For example, a theo-
rem prover can be used to verify that a finite-state model is a correct abstraction
of a given system, and properties of that finite-state abstraction can then be es-
tablished using model checking. It relies on the fact that most properties can
be shown correct without the need to maintain precise timing information for

26

the system. A complex set of timed states can be safely abstracted by a simpler
(abstract) one.

In general, the relationship between concrete and abstract models that un-
derlies abstract interpretation is described by a Galois connection. The abstract
domain is that Boolean lattice whose atoms are the set of predicates true or
false of a set of states in a concrete model. The model obtained by abstraction
w.r.t. this lattice exhibits at least behaviours of the concrete system; it may also
include some bahaviours that have no counterpart in the concrete system.

The idea is to reduce the number of states of a model by abstracting away
behaviours not essential to the verification. The genetic techniques are known
as incremental abstraction refinement [6] and counterexample-guided abstrac-
tion refinement [7]. We have studied and partially formalised a variant that
combines several techniques [7, 6], with some modifications. Abstraction can be
constructed manually to exploit the structure of the model under consideration.

The idea is to perform an initial over-approximating abstraction of the model
and then check for two requirements: (1)-the conformance between an abstract
model and its concrete model, and (2)-the required property. If the abstract
model conforms to its concrete model and the properties of interest can be
successfully verified (or a positive result) over the abstract model, they also hold
of the concrete system as well.

Otherwise, either the abstract model is not the correct representation of its
concrete model or a negative result may be spurious (caused by extra states
added during the over-approximation). In this case, we iteratively concretize (or
refine) the abstract model in order to construct stronger invariants and rule out
some of their extra behaviours until a positive or true negative result is obtain.
We call such a concretization process an abstraction-refinement, and we call the
model resulting from the abstraction-refinement a complete model

Our idea for advances in the size of systems that can be analyzed by using
several abstraction methods is not the first. A comparison with similar work on
abstract interpretations, approximations for real-time systems [9] and predicate
abstractions appears in the section 3.

2 Approach and proposed solution

We have proposed a tool supported methodology based on the combination of
abstract/deductive and real-time model checking techniques. In order to make
our approach more concrete, we present one algorithm, called Iterative-abstract-

refinement algorithm (IRA) to verify a rich class of safety and liveness properties
of a timed system based on computing a finite abstraction of the system by succ
essive abstraction-refinement.

Figure 1 shows models over an abstract, a complete, and a concrete domain.
The abstract model shown in Fig.1.(a) cannot guarantee whether the abstract
model-(a) is able to verify given properties and preserve every possible behaviour
of a concrete model-(c). The model of Fig.1.(b) has been obtained by abstraction-

refinement ; it is complete for verifying the properties of the concrete model-(c).

27

2

3

1

0

real (infinite) domain(b) (c)

complete model

complete domain

concrete model

(a) abstract domain

abstracted model

abstract
interpretation

refinement of
abstraction

concretizsation
abstraction

interpretation
abstract

refinement of
abstraction

backward process

forward process

forward/backward process

Fig. 1. Abstract, complete, and concrete models

We expect to obtain a complete model-(b) from an abstract model-(a) using
IRA.

In this paper, we will use eXtended Timed automata Graphs [3] as the for-
malism to represent (concrete) timed system-(c), and Predicate Diagrams for
Timed systems [14] as the way of presenting predicate abstraction for XTG.

The input to IRA consists of three parameters; the XTG representing the
concrete system, the property to be verified, and a finite set of predicates to be
used for refinements. For the sake of efficiency we require predicates (Boolean
expressions) over a set of configurations of XTG that are constraints, invariants,
guards, locations and transitions of XTG.

Our methodology is based on abstraction-refinement framework. IRA has
two (forward/backward) processes. An initial abstraction PDT can be obtained
from the XTG by a backward step. This backward step (process) is performed
by selecting a set of XTG configurations and considering them as predicates of
PDT. Starting from the initial PDT, IRA iterates forward process until PDT is
complete:

Backward process: direction (c) to (a) A trivial and potentially incomplete
PDT is extracted from XTG by Boolean abstraction. Its atoms are the sub-
set of given predicates over a set of XTG configurations and properties of
interest as well.

Forward process: direction (a) to (b) IRA picks a PDT and – if the PDT
appears to be complete – infers successful verification and preservation, or
– if the PDT is not complete – enforces completeness by two operations: a
splitting operation and an excluding operation

1. A splitting operation is done while IRA checks correctness of preservation in
the way of conformance checking between a PDT and XTG.

– If IRA fails to prove conformance then IRA does splitting the PDT w.r.t
predicates in order to enrich the PDT and also to add details in the PDT.

28

success?
spurious

CE ?

N

prove
proof

obligations

conformance
checking

conform ?

completeness checking

model

checkingto
verify

property

Y

analyse
the CE

N

Y
done

XTG

generate

initial

PDT

N

excluding operation

splitting operation

PDT refine the

Y

backward
process

forward
process

Fig. 2. Overview of IRA

– During the operation, a set of proof obligations (a number of verification
conditions expressed in first-order logic) are proved in order to eliminate
extra duplicated relations (paths) among PDTs caused by splitting. This
is continued until the PDT conforms to XTG.

2. An excluding operation is done after model checking (or after conformance

checking).
– If we limit ourselves to univeral properties, then if a property fails in the

PDT we can generate a counterexample trace in the PDT and attempt
to find a corresponding concrete trace in XTG.

– If one exists then the property is false in XTG and the verification fails
(true negative result is obtain). Otherwise the abstract counterexample
is spurious and abstraction is too coarse so we refine it by excluding

some abstracted bogus transition-relations that are not present in XTG
(found by analysing the counterexample).

– We then recheck the property. This is continued until either the property
is verified or a concrete conterexample found.

Figure 2 shows the overall framework. The above approach is tested in [14] and
partially validated. The main contribution up to now is that we have identified a
suitable format that serves as an interface between deductive and model checking
techniques, intended for the verification of real-time systems. We also have es-
tablished a set of verification conditions that are sufficient to prove conformance

between PDT and XTG.
However, it still lacks automation both in the computation of abstraction and

in identifying the predicates for splitting. Moreover, We have not fully validated
the above approach, for instance, our experiment in [14] does not consider a
spurious counterexample trace upon failure during model checking procedure,
thus any counterexample-guided abstraction refinement method does not really
used during the execution of the abstraction-refinement procedure. Considering
such current weakpoints and comparing with other related work in the next
section, we will discuss future work at the end of this paper.

29

3 Related work

The techniques described in this paper can be viewed in an abstract interpre-
tation sense as a combination of abstraction, operation on an abstract domain
and concretization. Our refinement bears resemblance to refinement as in the B
method [6]. It allows one to enrich a model in a step by step approach. Refine-
ment provides a way to construct stronger invariants and also to add details in
a model. It is also used to transform an abstract model into a more concrete
version by modifying the state description.

Halbwachs [11] successfully applies abstract interpretation to synchronous
reactive systems as a way of state space exploration. But he does not consider
abstractions over control information (only data information is abstracted). Dill
and Wong-Toi [9] use both over- and under-approximations as abstractions, and
for finite-state systems, automatically determine whether there are reachable
violating sates. Their refinements are different than ours. They refine (over-
approximations only) the set of reachable states on paths to violating states.
However their techniques are limited to proving invariants.

Predicate abstraction has emerged as a fruitful basis for software verifica-
tion. Based on predicate abstraction, Namjoshi and Kurshan [15] compute finite
bisimulations of timed automata. However, currently it is unclear whether their
approach is applicable in practice.

Our basic assumption undeliying predicate abstraction is that for the verifica-
tion of a given property, the state space of an XTG can be partitioned into finitely
many equivalence classes. For example, the precise amount of time elapsed in a
transition does not really matter as long as the clock values are within certain
bounds and similarly, the precise values of the data can be abstracted with the
help of predicates that indicate characteristic properties.

Predicate abstraction also underlies tools such as slam [5] and blast [12]
that compute abstraction refinements on the basis of spurious counter-examples
provided by model checking. They refine abstractions in such a way that the
spurious counter-example is avoided.

In symbolic model checking for real-time systems, difference bound matri-
ces (DBM) are used to represent a set of state spaces (regions) over real vari-
ables. The representation we use is rather tailored to IRA approaches, since
it is able to efficiently deal with the two (splitting/excluding) operations re-
quired for such approaches. For those operations it is not necessary to have a
canonical model available. In IRA, the represented region is the consequence of
repeated abstraction-refinement by splitting PDT and excluding its abstracted
bogus transition-relations.

Our early work on combining tools for abstract interpretation and state space
exploration has been reported in [13]. However, extra steps used in the algorithm
proposed there often fail to significantly reduce the state space.

30

4 Further work

In IRA, the predicates are assumed to be given by the user, or they are extracted
syntactically from the system description. It is obviously difficult for us to find
the right set of predicates. We are investigating further heuristics to be able to
discover automatically all the needed predicates for the practical algorithm.

We abstract from the precise amount of time that may elapse in a time-
passing transition. Thus, we cannot easily verify properties that describe the
timing behavior of a system. We intend to study two possible solutions to this
problem, either by using a timed temporal logic (TLTL) or by introducing aux-
iliary clocks during verification. In any case, we would want to take advantage
of model checking tools for real-time systems.

Besides, we aim at reducing the number of verification conditions that users
have to discharge with the help of a theorem prover in order to establish confor-

mance. It will be interesting to restrict attention to specific classes of systems
that give rise to decidable proof obligations.

We are also interested in adding counterexample-guided abstraction refine-
ment method in slam and blast to IRA and validating a full scheme proposed
in Figure 2.

Although IRA for now shows that we have not reached the ideal combining al-
gorithm yet, it clearly helps in identifying opportunities for proper incorporation
of abstraction/deduction and model checking for real-time systems in practical
situations.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104:2–34, 1993.

2. R. Alur and D. Dill. The theory of timed automata. Theoretical Computer Science,
(126):183–235, 1994.

3. M. Ammerlaan, R. Lutje Spelberg, and W.J. Toetenel. XTG – an engineering
approach to modelling and analysis of real-time systems. In Proceedings of the
10th Euromicro Workshop on Real-Time Systems, pages 88–97. IEEE press, 1998.

4. Tobias Amnell and many others. Uppaal: Now, next, and future. In F. Cassez
et al., editor, Modeling and Verification of Parallel Processes, LNCS(2067):99-124.
Springer-Verlag, Berlin, 2001.

5. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Principles of Programming Languages (POPL 2002):1–3, 2002.

6. Dominique Cansell and Dominique Mery. Tutorial on the event-based B method.
Technical report, LORIA-INRIA, 2004.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In 12th CAV00, LNCS(1855):154–169. Springer-Verlag,
2000.

8. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2-3):103–179, 1992.

9. D. Dill and H. Wong-Toi. Verification of real-time systems by successive over and
under approximation. In 7th CAV95, LNCS(939):409–422. Springer-Verlag, 1995.

31

10. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In 9th
CAV97, LNCS(1254):72–83. Springer-Verlag, 1997.

11. N. Halbwachs. Delay analysis in synchronous programs. In CAV93, LNCS(697).
Springer-Verlag, 1993.

12. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth McMillan.
Abstractions from proofs. In 31st POPL. ACM Press, 2004.

13. EunYoung Kang. Parametric analysis of real-time embedded systems with abstract
approximation interpretation. In 26th ICSE, 2004.

14. EunYoung Kang and Stephan Merz. Predicate diagrams for the verification of
real-time system. In 5th AVoCS05, ENTCS, 2005.

15. K. Namjoshi and R.Kurshan. Syntactic program transformations for automatic
abstraction. LNCS(1855):435–449, 2000.

16. S.Tripakis. The Formal Analysis of Timed Systems in practice. PhD thesis, Uni-
versity of Joseph Fourrier de Grenoble, 1998.

17. Y.Kesten and A.Pnueli. Modularization and abstraction: The keys to practical
formal verification. In 23th MFCS98, LNCS(1450):54-71. Springer-Verlag, 1998.

18. S. Yovine. Kronos: A verification tool for real-time systems. Springer International
Journal of Software Tools for Technology Transfer, 1997.

32

Discrete Simulation of
Behavioural Hybrid Process Calculus

Tomas Krilavičius? and Helen Schonenberg

Formal Methods and Tools, Univ. of Twente, 7500AE Enschede, The Netherlands,
(T.Krilavicius, M.H.Schonenberg)@cs.utwente.nl,

WWW home page: http://www.cs.utwente.nl/~krilaviciust

Abstract Hybrid systems combine continuous-time and discrete be-
haviours. Simulation is one of the tools to obtain insight in dynamical sys-
tems behaviour. Simulation results provide information on performance
of system and are helpful in detecting potential weaknesses and errors.
Moreover, the results are handy in choosing adequate control strategies
and parameters.

In our contribution we report a work in progress, a technique for simu-
lation of Behavioural Hybrid Process Calculus, an extension of process
algebra that is suitable for the modelling and analysis of hybrid systems.

1 Introduction

The growing interest in hybrid systems both in computer science and control
theory has generated a new interest in models and formalisms that can be used to
specify and analyse such systems. A prominent framework for hybrid systems is
provided by the family of hybrid automata models (hybrid automata [1], hybrid
behavioural automata [2], hybrid input/output automata [3]). More recently
process algebraic models have been put forward as a vehicle for the study of
hybrid systems [4,5,6,7].

Simulation is a de facto standard tool in both academia and industry for
analysis of hybrid systems. It helps to detect potential weaknesses and errors,
and provides information on performance of system. There is a number of simu-
lation tools which provide various facilities for analysis of hybrid systems. Hybrid
χ [6] provides facilities for simulation of hybrid process calculus. HyVisual [8]
is a Java based visual modeller and simulator for hierarchical continuous-time
dynamical and hybrid systems. Dymola1, Stateflow/Simulink [9] and 20-
Sim2 provide industrial strength facilities for simulation of non-causal object
oriented simulation language ModelicaTM [10], hierarchical formalism and bond
graphs [11], respectively.

? Work is partially done in the framework of the HYCON Network of Excellence,
contract number FP6-IST-511368*.

1 See http://www.Dynasim.se.
2 http://www.20sim.com/

33

http://www.Dynasim.se
http://www.20sim.com/

We report a work in progress, a technique for simulation of Behavioural Hy-
brid Process Calculus (BHPC) [7]. BHPC is a process calculus that extends the
standard repertoire of operators that combine discrete functional behaviour with
features to also represent and compose continuous-time behaviour. Dynamic be-
haviour is represented by the evolution of variables, which are typically defined
in terms of differential equations. Following [12], behaviour can be simply seen
as the set of all allowed real-time evolutions, or trajectories, of the system vari-
ables. The operational semantics of the calculus defines the transitions for the
simulator. An adapted version of the expansion law from [13] is used to solve
parallel composition. As a first step towards simulation of entire BHPC, we pro-
pose a discrete simulator. It abstracts from the continuous-time behaviour and
uses operational semantics rules and the expansion law to determine the next
simulation step. We design it in such a way that it should be easy extendible to
hybrid simulation.

2 Behaviour Hybrid Process Calculus

In this section we introduce main concepts of Behavioural Hybrid Process Cal-
culus. See [7] for the details and proofs.

Trajectories. The continuous behaviour of hybrid systems can be seen as the set
of continuous-time evolutions of system variables. We will call them trajectories.
We assume that trajectories are defined over bounded time intervals (0, t], and
map to a signal space to define the evolution of the system. The signal space (W)
specifies the potentially observable continuous behaviour of the system. Compo-
nents of the signal space correspond to the different aspects of the continuous
behaviour, like temperature, pressure, etc. They are associated with trajectories
qualifiers that identify them.

Hybrid Transition System. We define a hybrid transition system as a collection
HTS = 〈S, A,→,W, Φ,→c〉, where S is a state space. The discrete transition
relation →⊆ S × A × S defines discrete changes annotated by actions (a ∈ A).
The continuous-time transition relation →c⊆ S×Φ×S links continuous changes
to trajectories (ϕ ∈ Φ).

Language. We introduce a language for defining hybrid processes.

B ::= 0 | a . B | [ϕ] . B |
⊕
i∈I

Bi | B ‖H
A B | P

Action-prefix a.B defines a process that starts with action a and afterwards
engages in B. Silent actions[13] (denoted τ) are used to specify nondeterministic
behaviour.

Trajectory-prefix [ϕ].B models the behaviour of a process that executes a
continuous trajectory ϕ and then continues as B.

Superposition
⊕

i∈I Bi is a generalised operator on sets of behavioural
expression. For action prefixes the interpretation of the operator is the same

34

as the ordinary choice operator Σ from classical process algebras. However, the
choice among trajectories is made at the moment when the trajectories start
bifurcating.

Parallel composition B1 ‖H
A B1 specifies the behaviour of two parallel

processes. The operator explicitly attaches the sets of synchronising action names
A and of synchronising trajectory qualifiers H. Synchronisation on actions has
an interleaving semantics. Trajectory-prefixes can evolve in parallel only if the
evolution of coinciding trajectory qualifiers is equal.

Recursion allows to define processes in terms of each other, as in the equa-
tion B , P , where B is the process identifier and P is a process expression that
may only contain actions and signal types of B.

One of the main tools to compare systems is a strong bisimulation. The
bisimulation for continuous dynamical systems is presented in [14]. The process
algebraic version is discussed in [13]. A strong bisimulation for hybrid transi-
tion systems requires both systems to be able to execute the same trajectories
and actions and to have the same branching structure. Strong bisimulation for
BHPC is a congruence relation w.r.t. all operations defined above. See [7] for
details.

BHPC is an assembly language for a modelling of hybrid systems. We add
auxiliary constructs to increase usability of the language.

We introduce parametrised action-prefix av . B(v) ,
⊕

v∈V av . B(v) for con-
venience (as in [13, 53–58]).

We will use a symbolic trajectory-prefix, which extends a notion of ordinary
trajectory-prefix by providing a set of continuous behaviours conforming to the
certain conditions. We will define a set of trajectory-prefixes [f | Φ] . B(f) ,⊕
ϕ∈Φ

([ϕ] . B(ϕ)) where Φ is a set of trajectories and f is a trajectory variable for

a trajectory. Furthermore, we will use [t1, . . . , tm | Φ ↓ Pred ⇓ Predexit] to define
extended version of set of trajectory-prefixes, where t1, . . . , tm are trajectory
qualifiers, which can be used to access corresponding parts of trajectories. Two
types of restrictions on the set of trajectories are used: ↓ states restrictions on the
whole duration of trajectories and ⇓ define the exit conditions, i.e., restrictions
on the end-points.

Sometimes it is useful to check some conditions explicitly, and if they are not
satisfied, to stop the progress of process. With the guard construct 〈Pred〉 . B,
these conditions can be given as a predicate.

Idling in BHPC is defined as idle =
[
t
∣∣ ṫ = 0

]
, where t is a reserved variable.

It does not manifest any observable behaviour, but reacts as soon, as it is invoked
by another process, which communicates with the process, which follows the
idling period.

Application of BHPC. Bouncing ball [7] is a simplified model of an elastic ball
that is bouncing and losing a fraction of its energy with every bounce. The
altitude of the ball is h, and v is a vertical speed, c is a coefficient for the lost
energy. The ball moves according to the flow conditions and at the bounce time
the variables are reassigned. In BHPC it can be defined in the following way:

35

BB(h0, v0) ,
[
h, v

∣∣ Φ(h0, v0)
w� h = 0

]
. BB(0,−c ∗ v)

Φ(h0, v0) = {h, v : (0, t] → R | h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

Symbolic trajectory-prefix
[
h, v

∣∣ Φ(h0, v0)
w� h = 0

]
defines the dynamics of the

ball until the bounce, and then the process continuous recursively calling itself
with updated continuous variables BB(0,−c ∗ v). We extend the given specifica-
tion by adding discrete actions to sense the elasticity of the bounce and increase
the ball’s kinetic energy, and a compensating controller (CC).

BB(h0, v0) ,
[
h, v

∣∣ Φ(h0, v0)
w� h = 0

]
. bounce(c : [0, 1]).[

h, v
∣∣ Φ(0,−cv)

w� v = 0
]

. push(v : R) . BB(h, v)

CC(v0) , idle . bounce(c : [0, 1]) . idle . push ((1− c) v0) . CC ((1− c) v0)

Sys(h0, v0) , BB(h0, v0) ‖v
push,bounce CC(v0)

3 Simulating BHPC

As the first step, we will focus on the simulation of discrete behaviour of BHPC.
Discrete simulation can give a lot of valuable insight on the system. It helps to
detect potential deadlocks. Discrete abstraction of the system can be verified and
error-traces can be used in an hybrid simulator to investigate potential faults.
Moreover, it comes handy in the early stages of modelling or prototyping.

To get discrete abstraction we make some choices concerning continuous-time
behaviours. We discuss diverse choices for the operators individually.

– Parametrised action-prefix is left unchanged, only the parameters related
with trajectories are ignored.

– We will interpret (symbolic) trajectory-prefix as a special type of action-
prefix. Several options are possible. It can be seen as a silent (unobservable)
action, just like the τ action described in [13]. A special action can be in-
troduced to denote any trajectory-prefix. Then trajectory-prefixes can be
treated like ordinary action-prefixes.

– Guard is treated as usually, but with all trajectories-related predicates eval-
uated to true or false, depending on the simulation purpose.

– With the trajectory-prefix reduced to a discrete action, the superposition
operator is equal to the choice operator from ordinary process algebra.

– Without the set of synchronising trajectory qualifiers, the parallel composi-
tion operator from BHPC becomes equal to the parallel composition operator
from ordinary process algebra.

Operational semantics for the language already define the transitions the sim-
ulator can take, only parallel composition requires additional reshaping. It is
provided by the expansion law [7], which expresses parallel composition as a
superposition of processes.

36

4 Future Plans

Future plans for the simulation of BHPC and the calculus include several direc-
tions.

The discrete simulator is being designed in such a way that extending it
to the hybrid simulation should be doable without completely reshaping the
discrete simulation part. Principally, it means adding support for continuous-
time behaviour: interpretation of trajectory qualifiers, interface to solvers, etc.

Moreover, we are building the current tool not as a prototype of an in-
dustrial tool, but more as a hybrid ”sand-box”, a place to experiment with
BHPC and related developments. Consequently, the architecture and imple-
mentation of the tool are being designed in such a way that it is easy to ac-
commodate the changes in the calculus and to test the algorithms developed
for hybrid systems in BHPC framework. Adaptable and well documented in-
terfaces for ODE/DAE solvers should be provided for experimenting with dif-
ferent approaches for continuous-time behaviour simulation. Co-simulation also
takes place in the plans. Theoretical and practical issues of the co-simulation
of BHPC and Simulink3 are explored as a part of WP3 of HYCON4. Further-
more, the means to export a restricted subset of BHPC to ModelicaTM [10] are
investigated.

Examination of different simulation results visualisation techniques are of
interest too. Just ordinary graphs (plots) usually used to display continuous-
time simulation results do not provide sufficient information about switching
behaviour. Event-traces and the message sequence charts [15] are appropriate
and even beneficial when discrete behaviour should be visualised. However both
techniques become inadequate when combination of continuous-time and discrete
behaviour should be visualised. It calls for a combination of the aforementioned
techniques or even new unconventional approaches.

One more interesting development of BHPC is model-based testing of hybrid
systems [16]. In model-based testing we use a formal specification (a model) of
the desired behaviour of the system under test (SUT). The model is used to
select the input for the SUT. The model is also used to check the correctness
of the output of the SUT after a certain input. One of the great advantages
of model-based testing is that tools can explore the model and automatically
generate and execute tests cases from the model. BHPC and the simulation
tool can be extended to generate required information for a well-known on-the-
fly testing tool TorX [17], and in combination with it form a hybrid systems
testing framework.

5 Results

In this paper we proposed a simulation technique for Behavioural Hybrid Process
Calculus. The calculus and transitions system were introduced, operators for the
3 http://www.mathworks.com/products/simulink/.
4 WP3, HYCON, http://wp3.hycon.bci.uni-dortmund.de/.

37

http://www.mathworks.com/products/simulink/
http://wp3.hycon.bci.uni-dortmund.de/

calculus were explained. We focussed discussion on the discrete simulation of
selected operators, by abstracting from the continuous-time behaviour so that
all operators from our calculus have corresponding interpretation in ordinary
process algebra. The expansion law is used to resolve parallel composition. The
operational semantics defines the possible transitions for the simulator.

The work in progress will have to evaluate the conceptual and practical im-
plications of our approach. Currently we are developing techniques and tools for
discrete and hybrid simulation of the calculus.

Acknowledgements. The authors thank H. Brinksma for his comments.

References

1. Alur, R., Courcoubetis, C., Henzinger, T., Ho, P.H.: Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In Grossman,
R.L., Nerode, A., Ravn, A.P., Rischel, H., eds.: Hybrid Systems. Volume 736 of
LNCS., Springer (1993) 209–229

2. Julius, A.: On Interconnection and Equivalence of Continuous and Discrete Sys-
tems: A Behavioral Perspective. PhD thesis, SSCG, Univ. of Twente (2005)

3. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and
Computation 185 (2003) 105–157

4. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Technical report, Dept.
of Math. and Comp. Science, Tech. Univ. of Eindhoven (TU/e), Eindhoven (2003)

5. Bergstra, J., Middelburg, C.: Process algebra for hybrid systems. Technical report,
Dept. of Math. and Comp. Science, Tech. Univ. of Eindhoven (TU/e), Eindhoven
(2003)

6. van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and con-
sistent equation semantics of hybrid chi. Report CS-Report 04-37, Tech. Univ. of
Eindhoven (TU/e), Eindhoven (2004)

7. Brinksma, E., Krilavičius, T.: Behavioural hybrid process calculus. Technical
Report TR-CTIT-05.45, CTIT, University of Twente (2005)

8. Lee, E., Zheng, H.: Operational semantics of hybrid systems. In: Hybrid Systems:
Computation and Control. LNCS (2005) 25–53

9. Hamon, G., Rushby, J.: An operational semantics for Stateflow. In Wermelinger,
M., Margaria-Steffen, T., eds.: FASE 2004. LNCS (2004) 229–243

10. Modelica Association: Modelica - A Unified Object Oriented Language for Physical
Systems Modeling: Language Specification. (2005)

11. van Amerongen, J., Breedveld, P.: Modelling of physical systems for the design
and control of mechatronic systems. Annual Reviews in Control 27 (2003) 87–117

12. Polderman, J., Willems, J.C.: Introduction to Mathematical Systems Theory: a
behavioral approach. Springer (1998)

13. Milner, R.: Communication and concurrency. Prentice-Hall, Inc. (1989)
14. van der Schaft, A.: Bisimulation of dynamical systems. In Alur, R., Pappas, G.J.,

eds.: HSCC. Volume 2993 of LNCS., Springer (2004) 555–569
15. ITU-T: Recommendation Z.120. Message Sequence Charts. Technical Report Z-

120, Int. Tel. Union, Genève (2000)
16. Berkenkötter, K., Kirner, R.: Real-Time and Hybrid Systems Testing. In: Model-

based Testing of Reactive Systems. Volume 3472 of LNCS. Springer (2005) 355–387
17. Bohnenkamp, H., Belinfante, A.: Timed testing with TorX. In: Formal Methods

Europe. Volume 3582 of LNCS., Springer (2005) 173 – 188

38

���������
	�������������������������! #"$�%�&�('$)	+*-,$*.�+�$/1032546�37�

8:9<;�9>=@?BA7C>DE9<DE9<F�9)G.HJILKNM�OQPNOQRTS
U�KVALWXILY[Z\OQA@]^ALK_Z\O`RTSTK_a+bcYBd
e
O`HJILALY\PNY\fBbBC>UgKNALWLILY[ZBOQAhC>e(ILO�i^OjakILO`RTPl?mALWLS

npo 9qPr9qst?BA7CXRQ9qRQ9qIh9qSTHJILK_M7O`PVO`RTS`umv$aTwLOB9qALP

xgy�z�{�|�}Q~T{
�L�Q�h�J�j�`���q�g�X�Q�����\�.�������g�����������������������g�����q���������>�����j�������Q�`�������
�Q�q�� ����T�

���¡�£¢k�¤����¥Q¦+�� ������E���7�J�j�`���q���l�j�l �������§�¨7�Q�����> ��Q�����T�l
©>�q�`���ª�£«��Q�+©>�¬�J��
�`���q�®�l�j�l ������������g���������������� ��Q��)���.�J�j�`���q�¯���` ����g�� °�j§L�L�Q�� ��°���`���q�� ����T�±���.�
 ������j�j���<�¯���` ����g�� °�����Q���`�q�r�7¢k�r���ª¥Q¦+�� ����T�(���.����²[��¦��ª¥¡¦��� ����T�`�h�Q�����Q���¤³`���l ����Q�
���j�j���<�(���` ����g�� °�g�¡�������±¢T�r���ª¥¡¦+�� ��q���� ��J������§µ´V�(��Q���h²Q��²[�r�+�[©X���`�r��¦r�����[�
 ��Q�
 ��°���Q���q�� ��q�����<���T�#�¬ ��g�J�j�`���q�(���j ��T�g�� °�j�¶���Q�¯ ��Q�µ�����q�� ����T���[�r N©L�����±�J�j�`���q�
���` ����g�� °�����¡�· ��Q�>�����Q�+���X�J�j�`���q�·´l¸T¨:���j ��T�g�� °�7 ��Q�� X�����>�Q�����·������ ��Q��¢k�¤����¥`
¦+�� ����T�� ��J���¡¹�ºh»B¼.�r�)�½¹\�T�ª�j�Q�+���°���`º��j�`���q��»)�` ��T�g�� ��T�
¼��r���ª�<�J�r�¤�¤§�´N�· ��Q��¦+�����
�l ��¡�j�J�m©L�� ��°���`���q�� ����®�¾��²[��¦��ª¥Q¦+�� ����T�� ��±�¿�q���`�+���
�J�`�j���q�^´�¸�¨3���` ����g�� ����m�
���¡�¿�Q����¹�ºh»B¼.�r�� ���¢T�r���ª�À�¿²`���T²[�¤�� ��q�r��§

Á Â�Ã¯ÄLÅ�Æ±Ç¬È�É7ÄLÊ�Æ¿Ã
ËµÌ¡ÍpÎrÏ�Ð$Ñ¤Ì[Ñ�ÒrÓ�Ô(ÑµÎrÓ�Õ¶Î¤ÓTÑ°Ó�Ö`Òµ×(Ð[Ø`Ô(×�ÏÀÖ$Ù�Ú¶Ó�ÎrÓ�Ò¤ÚpÓ¿Ð[Ì¡Ö¶×�Ô®Ï�Û�Ñµ×jÖ¶Ð�Û�ØjÖQÒrÎ¤Ø`Ü)Ý_Þ�ßhà�×�ÖmÐ
Û�Ø`Ô®Õpá[Ò¤Ó�ÎµÑ¤Û�Ï<Ó�Ö¶Û�Ó®ÝVßhâ¶à7Ù�Ø`Î¤Ü�Ð�ã¡ÏÀÓ�ÙµÑ7Ô®Ó�Ó�Ò�ä¶×jÖ¶Ð�Ù7Ó�ÍmÓ�Ü<ÏÀÓ�ã`Ó·Ò¤Ú¶×�Ò�×gå½Ø`Î¤Ô(×�ÜÀÏ�Ñ°Ô5ÒrÚ¶×JÒ
ÏÀÖ`ÒrÓ�æ`Îr×�Ò¤Ó�Ñ�Ò¤ÚpÓ)Þ�ßç×�ÖmÐ¿ßhâ·Ù�Ø`Î¤Ü�Ð·ã¡Ï<Ó�ÙµÑ�Ï�Ñ�×�ãJ×jÜ<á¶×jÍpÜÀÓ>Û�ØjÖQÒrÎ¤ÏÀÍpá[ÒrÏ<Ø`Ö�Ò¤ØJÙh×�Î�ÐpÑ�ÏÀÖ`ÒrÓ�æ`Îr×�è
Ò¤ÏÀØjÖ(Øjå\Ò¤ÚpÓ�Þ�ß6×�Ö¶Ð�ßhâ¯Ô®Ó�Ò¤ÚpØ[ÐpÑ�äjÒrÓ�Û�ÚpÖ¶ÏÀéQápÓTÑ�ä¡×�Ö¶Ð¿ÒrØQØ`ÜÀÑ�êLëhÚpÓµÚ¡Ì¡ÍpÎ¤Ï�Ð®ì£å½Ø`Î¤Ô(×�ÜÀÏ�Ñ°Ô
í<î+ï ÏÀÑhÑ¤á¶Û�Ú^×¿å½Ø`Î¤Ô(×�ÜÀÏ�Ñ°Ô�ê>ð
Ö�ÒrÚpÓ
Ø`ÖpÓ�Ú¶×�ÖmÐ�ä¡ÏqÒµÛ�×jÖ^Ð[ÓT×�Ü\Ù�Ï<Ò¤Ú�Û�ØjÖQÒrÏ<Ö¡ápØ`á¶Ñ�èVÒ¤ÏÀÔ®Ó·Ñ¤Ì[Ñ�è
Ò¤Ó�Ô(Ñ�äBÕpÏÀÓ�Û�Ó�Ù�ÏÀÑ¤Ó�×�ñ®Ö¶Ó�Ý_ò)óEô
à�Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ�ämÔ®Ï<õ¡ÓTÐ�Ü<Ø`æjÏ�ÛgÐ[Ì¡Ö¶×jÔ¯Ï�Û�×jÜ)Ý_öE÷.Þ�à�Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ�ä
ÜÀÏ<ÖpÓT×�ÎhÛ�Ø`Ô¯Õ¶Ü<Ó�Ô¯Ó�ÖQÒr×�ÎrÏ<Ò�Ì$ÝN÷Xßhà+ä[×jÖ¶Ð±Ú¡Ì¡ÍpÎrÏÀÐ±Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ�Í¶×jÑ¤Ó�Ð(Ø`Ö^Ñ¤Ó�Ò�Ñ)Øjå.ØjÎ�Ð[ÏÀÖ¶×�ÎrÌ¯ÐpÏqå�è
å½Ó�ÎrÓ�ÖQÒrÏÀ×jÜBÓTéQá¶×JÒrÏ<Ø`Ö¶Ñ7á¶Ñ°ÏÀÖpæ(Ð[Ï�Ñ¤Û�ØjÖQÒ¤ÏÀÖ¡ápØjámÑ)å½á¶Ö¶Û+ÒrÏ<Ø`Ö¶ÑhÏ<Ö�Û�Ø`Ô�ÍpÏÀÖ¶×�Ò¤ÏÀØjÖ�Ù�Ï<Ò¤Ú£×jÜ<æ`Ó�ÍpÎ�×�Ï�Û
Û�Ø`Ö¶Ñ°Ò¤Î�×�ÏÀÖ`Ò�Ñ¿Ý½Ò¤ÚpÓ(Þ�ß�×jÕpÕpÎrØ`×`Û�Úmà+ê¿ð
Ö�Ò¤ÚpÓ®ØjÒ¤ÚpÓ�Î·Úm×�Ö¶Ð�ä.ÏqÒgÛ�×jÖ�Ð[ÓT×�Ü�Ù�Ï<Ò¤Ú¾Ð[Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�è
Ó�ã`Ó�ÖQÒ�Ñ¤Ì¡Ñ°Ò¤Ó�Ô(Ñ�äpÙ�Ï<Ò¤Ú¶Øjá[Ò�Û�ØjÖQÒrÏ<Ö¡ápØ`á¶ÑhãJ×�ÎrÏÀ×jÍpÜ<ÓTÑ�ØjÎµÐpÏqø\Ó�ÎrÓ�ÖQÒ¤Ï�×�Ü�Ó�éQá¶×�Ò¤ÏÀØjÖ¶Ñ�ä¶×�ÖmÐ�Ù�ÏqÒrÚ
Ú¡Ì¡ÍpÎ¤Ï�Ð(Ñ¤Ì¡Ñ°Ò¤Ó�Ô(Ñ�Ï<Ö�Ù�ÚpÏÀÛ�Ú±ÐpÏÀÑrÛ�Ø`Ö`ÒrÏ<Ö¡ápÏ<Ò¤ÏÀÓ�Ñ>Òr×jùjÓµÕpÜ�×jÛ�Ó�Ý½Ô(×jÏ<ÖpÜÀÌpà�Í¡Ì¯Ô¯ÓT×�Ö¶Ñ)Ø�å�×jÛ�Ò¤ÏÀØjÖ¶Ñ
Ý�ÒrÚpÓ�ßhâ¬×jÕpÕpÎrØ`×jÛ�ÚBà+ê�ëhÚpÓ®Ï<ÖQÒrÓ�Ö¶Ð[ÓTÐ¬á¶Ñ¤Ó¯Ø�å�Ú¡Ì¡ÍpÎrÏÀÐ¬ìtÏ�Ñ
å½ØjÎ·Ô®Ø¡ÐpÓ�ÜÀÏ<Öpæmä.Ñ¤Ï<Ô¿ápÜÀ×�Ò¤ÏÀØjÖ�ä
ãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ.äQ×jÖ¶Ð�ÎrÓ�×jÜqèVÒ¤ÏÀÔ®Ó�Û�ØjÖQÒrÎ¤Ø`ÜNêXûlÒrÑ�×jÕpÕpÜÀÏÀÛ�×JÒ¤ÏÀØjÖ$Ð[ØjÔ(×jÏ<Ö$Îr×jÖpæjÓTÑ>å½ÎrØjÔüÕpÚ¡Ì¡Ñ¤Ï�Û�×�Ü
ÕpÚpÓ�ÖpØjÔ®Ó�Ö¶×päpÑ¤á¶Û�Ú£×jÑ�Ð[ÎrÌ±å½ÎrÏ�Û+Ò¤ÏÀØjÖ.ä[Ò¤Ø(Ü�×�ÎræjÓ�×�Ö¶Ð�Û�ØjÔ®ÕpÜÀÓ�õ�Ô(×�Ö¡á[å_×`Û+ÒrápÎ¤ÏÀÖpæ±Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ�ê
ëhÚpÓhÚpÏ�Ñ�ÒrØjÎrÌgØ�åBÒ¤Ú¶Ó�ì^å½Ø`Î¤Ô(×jÜ<Ï�Ñ°Ô#Ðp×JÒrÓ�ÑLÍ¶×`Û�ù�éQápÏqÒrÓµÑ°Ø`Ô®Ó�ÒrÏ<Ô®Ó`êXûlÒ>Ùh×jÑXØ`Î¤ÏÀæjÏÀÖ¶×�ÜÀÜÀÌgÐ[Ó�è
Ñ¤Ï<æ`ÖpÓ�Ð¯×jÑ>×�Ô®Ø[Ð[Ó�Ü<ÏÀÖpæg×�ÖmÐ¯Ñ¤ÏÀÔ�ápÜ�×JÒrÏ<Ø`Ö¿Ü�×�Öpæ`á¶×�æ`Ó7å½ØjÎ>Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ®Ø�å�Ð[Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�èlÓ�ã`Ó�ÖQÒ�ä
Û�Ø`ÖQÒ¤ÏÀÖQá¶Øjá¶Ñ°èNÒrÏ<Ô®ÓgØ`Î
Û�ØjÔ�Í¶Ï<ÖpÓTÐ£Ð[Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�èlÓ�ã`Ó�ÖQÒ+ý�Û�Ø`Ö`ÒrÏ<Ö¡ápØ`á¶Ñ°èNÒrÏ<Ô®Ó�Ô®Ø¡ÐpÓ�Ü�Ñ�ê�ëhÚ¶Ógú¶Î�Ñ�Ò
Ñ¤Ï<Ô¿ápÜÀ×�Ò¤Ø`Î í þTï äXÚpØJÙ�Ó�ãjÓ�Î�ä�Ùh×jÑ�Ñ¤ápÏ<Ò¤Ó�Ð�ÒrØ¬Ð[ÏÀÑrÛ�ÎrÓ�ÒrÓ�èlÓ�ã`Ó�ÖQÒ�Ô¯Ø[Ð[Ó�ÜÀÑgØjÖpÜÀÌjê�ëhÚ¶Ó±Ñ°ÏÀÔ�ápÜ�×Jè
Ò¤Ø`ÎgÙh×jÑgÑ¤á¶Û�Û�Ó�ÑrÑ�å½á¶Ü<ÜÀÌ�×jÕpÕpÜÀÏ<ÓTÐçÒ¤ØE×�Ü�×�ÎræjÓ(Ö¡ápÔ¿ÍmÓ�ÎgØ�å�ÏÀÖ¶Ð[á¶Ñ°Ò¤ÎrÏÀ×jÜ)Û�×`Ñ°ÓTÑ�äLÑ¤á¶Û�Ú%×jÑg×jÖ
ÏÀÖ`ÒrÓ�æ`Îr×�Ò¤Ó�Ð�Û�Ï<Î�Û�ápÏ<Ò
Ô(×jÖQápå_×jÛ+ÒrápÎrÏ<Öpæ�ÕpÜÀ×jÖQÒ�ä\×(ÍpÎrÓ�Ù7Ó�ÎrÌjäm×jÖ¶Ð�ÕpÎrØ[Û�Ó�ÑrÑµÏÀÖ¶Ð[ámÑ�ÒrÎ¤Ì$ÕpÜ�×�ÖQÒrÑ

î

39

i

s041934

s041934

í �kï ê¬÷�×JÒrÓ�ÎTä�ÒrÚpÓ±Ú¡Ì¡ÍpÎrÏÀÐ¾Ü�×�Öpæ`á¶×�æ`Ó±×�Ö¶Ð%Ñ¤ÏÀÔ�ápÜ�×JÒrØjÎgÙ7Ó�ÎrÓ±Ð[Ó�ã`Ó�ÜÀØjÕBÓ�Ð í � ä�� ï ê��pØjÎ�Ò¤ÚpÓ
ÕpápÎrÕBØ`Ñ¤Ó�ØjåmãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ.äkÒ¤ÚpÓ�Ð[Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�èVÓ�ãjÓ�ÖQÒLÕ¶×�Î¤Ò�Ø�åmÒ¤ÚpÓhÜ�×�Öpæ`á¶×�æ`Ó)Ùh×jÑXÔ(×�ÕpÕBÓ�Ð¯ØjÖQÒrØ
Ò¤Ú¶Ó�ÕpÎ¤Ø[Û�Ó�ÑrÑ7×jÜ<æ`Ó�ÍpÎ�×¿ì��^ÍQÌ�Ô¯ÓT×�Ö¶ÑhØjåL×®Ñ¤Ì¡Ö`Ò�×jÛ�Ò¤Ï�Û�×�Ü\ÒrÎr×jÖ¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ�ê�ëhÚpÓ�Ñ¤Ó�Ô(×�ÖQÒ¤Ï�Û�ÑhØjå
ì���Ùh×jÑgÐ[Ó�ú¶ÖpÓTÐ¾á¶Ñ°ÏÀÖpæ¬×£Ñ°Ò¤Îrá¶Û+ÒrápÎrÓ�Ð¾ØjÕBÓ�Î�×JÒrÏ<Ø`Ö¶×�Ü>Ñ¤Ó�Ô(×jÖ`ÒrÏÀÛ�ÑgÑ°Ò�ÌQÜÀÓ¬ÝNâmð�âpà+ä�ÍpÏÀÑ¤ÏÀÔ�á[è
Ü�×JÒ¤ÏÀØjÖ¾ÎrÓ�Ü�×JÒrÏ<Ø`Ö¶Ñ�Ù�Ó�Î¤Ó±ÐpÓ�ÎrÏ<ã`Ó�Ð�äX×�Ö¶Ð¾×�Ô®Ø[Ð[Ó�Ü7Û�ÚpÓ�Û�ù`Ó�Î�Ùh×jÑ�ÍpápÏÀÜ<Ò í ��ï ê$û�ÖçÒ¤ÚpÏ�ÑgÙh×kÌjä
ãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ6Ø�å�Ð[Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�èlÓ�ã`Ó�ÖQÒ®ì@Ô®Ø[Ð[Ó�ÜÀÑ(Ùh×jÑ®Ô(×`Ð[Ó�ÕmØQÑ¤Ñ¤Ï<Í¶Ü<Ó í
	Tï ê!ëhÚpÓ£Ú¡ÌQÍ¶Î¤Ï�Ð ì
å½ØjÎrÔ(×�ÜÀÏÀÑ¤Ô Ð[Ó�ú¶ÖpÓ�ÐçÏÀÖ í<î�ï ÏÀÖQÒ¤Ó�æjÎ�×JÒ¤ÓTÑ
Ò¤ÚpÓ(Ô®Ø[Ð[Ó�ÜÀÏÀÖpæ�ÜÀ×jÖpæjá¶×jæjÓ®×�Ö¶ÐEÒ¤Ú¶Ó¯ã`Ó�ÎrÏqúBÛ�×JÒrÏ<Ø`Ö
å½ØjÎrÔ(×�ÜÀÏÀÑ¤Ô�ê�ûlÒhÎrÓ�Ñ¤ápÜqÒrÓ�Ð(ÏÀÖ^×gå½ØjÎrÔ(×�ÜÀÏÀÑ¤Ô Ù�ÏqÒrÚ±Ò¤Ú¶Ó
Ñ°Ò¤Î�×�ÏÀæjÚQÒ°å½Ø`Î¤Ùh×�Î�Ð®×�Ö¶Ð(Ó�Ü<Ó�æ`×jÖ`ÒhÑ°Ì¡Ö[è
Òr×�õ$×jÖ¶Ð£Ñ°Ó�Ô(×�ÖQÒ¤Ï�Û�ÑhÒrÚ¶×JÒ
ÏÀÑ
×�Ü�Ñ°Ø®ÚpÏÀæjÚpÜÀÌ�Ñ°ápÏ<Ò¤ÓTÐ$Ò¤Ø±Ö¶ØjÖ[è�Û�Ø`Ô¯Õ¶á[Ò¤Ó�Î�Ñ¤Û�Ï<Ó�ÖQÒ¤Ï�Ñ�Ò�Ñ�ê7û�Ö�Ò¤ÚpÓ
ÎrÓ�Ô(×�ÏÀÖ¶Ð[Ó�Î7Øjå�ÒrÚpÏ�Ñ�Õ¶×�ÕBÓ�ÎTä[Ù7Ó·ámÑ°á¶×jÜ<ÜÀÌ±ÎrÓ�å½Ó�ÎhÒ¤Ø(Ú¡Ì¡ÍpÎ¤Ï�Ð^ì¾×`Ñhì)ê

ð
ÖpÓ¯Ø�å�Ò¤Ú¶Ó¿Ô®Ø`Ñ°Ò�Ñ°á¶Û�Û�ÓTÑ¤Ñ°å½ápÜ�å½ØjÎrÔ®×jÜ<Ï�Ñ¤Ô®Ñ�å½ØjÎ·Ú¡Ì¡ÍpÎ¤Ï�Ð¬Ñ¤Ì[Ñ�ÒrÓ�Ô ãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ£Ï�Ñ
Ò¤ÚpÓ
Ò¤Ú¶Ó�ØjÎrÌEØjå�ÚQÌ¡ÍpÎrÏ�Ð%×�á[ÒrØjÔ(×JÒ�×pê$û�Ö íqî�ï äXå½ØjÎrÔ(×�Ü)Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ¶Ñ�ÍBÓ�Ò�Ù7Ó�Ó�Ö%ì�×jÖ¶Ð¾Ú¡ÌQÍ¶Î¤Ï�Ð
×�ápÒ¤ØjÔ(×�Òr×£Ý½ÏÀÖEÍBØ�ÒrÚEÐ[ÏÀÎ¤ÓTÛ+ÒrÏ<Ø`Ö¶Ñrà�Ú¶×kãjÓgÍBÓ�Ó�ÖEÐ[Ó�ú¶ÖpÓ�Ð�ê
ëhÚpÓ�Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ$å½ÎrØjÔ Ú¡ÌQÍ¶Î¤Ï�Ð
×�ápÒ¤ØjÔ(×�Òr×�Ò¤Ø£ìc×�ÏÀÔ(Ñ·Ò¤Ø¬Ñ¤ÚpØJÙ3Ò¤Úm×JÒ�Ò¤Ú¶Ó(ì6å½Ø`Î¤Ô(×jÜ<Ï�Ñ°Ô ÏÀÑg×�Ò�Ü<ÓT×jÑ°Ò�×`Ñ�Ó�õ[ÕpÎrÓ�ÑrÑ°ÏÀãjÓ®×jÑ
Ò¤Ú¶Ó�Ò¤ÚpÓ�ØjÎrÌ±Ø�åLÚ¡ÌQÍ¶Î¤Ï�Ð^×já[Ò¤Ø`Ô(×JÒr×¶ê>ëhÚpÓ�Ò¤Î�×�ÖmÑ°Ü�×JÒrÏ<Ø`Ö±å½ÎrØjÔ ÝN×(Ñ°á¶Í¶Ñ°Ó�Ò�Ø�åràhì¾ÒrØ(Ú¡ÌQÍ¶Î¤Ï�Ð
×�ápÒ¤ØjÔ(×�Òr×·Ó�Ö¶×jÍpÜÀÓ�ÑLãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ¿Ø�å\ì¬Ñ°ÕBÓ�Û�ÏqúBÛ�×JÒrÏ<Ø`Ö¶ÑLá¶Ñ¤Ï<Ö¶æ·Ó�õ[ÏÀÑ°Ò¤ÏÀÖpæ�Ú¡Ì¡ÍpÎ¤Ï�Ð¯×�á[ÒrØjÔ(×JÒ�×
Í¶×`Ñ°ÓTÐ�ã`Ó�ÎrÏqúmÛ�×JÒrÏ<Ø`Ö±Ò¤Ø¡Ø`ÜÀÑ�ê

ëhÚpÏ�Ñ)Õ¶×jÕmÓ�Î)Ï�Ñ)Ø`Î¤æQ×�ÖpÏ���ÓTÐ¿×`Ñ�å½Ø`Ü<ÜÀØJÙµÑ��â¡ÓTÛ+Ò¤ÏÀØjÖ þ æjÏÀãjÓTÑ>×gÑ¤ÚpØjÎ¤Ò)ÏÀÖ`ÒrÎ¤Ø[Ð[ámÛ+Ò¤ÏÀØjÖ(Øjå�ì)ê
ß�ØjÖ¶ÖpÓ�Û�Ò¤ÏÀØjÖ¶Ñ7ÍBÓ�Ò�Ù7Ó�Ó�Ö^ì%×�Ö¶Ð�Ø�Ò¤Ú¶Ó�Î7å½ØjÎrÔ(×�ÜÀÏÀÑ¤Ô(Ñ)å½ÎrØjÔ-Þ�ßc×jÖ¶Ð$ßhâ^Û�×jÖ�ÍBÓ·å½ØjápÖ¶Ð^ÏÀÖ
â¡ÓTÛ+Ò¤ÏÀØjÖ � ê¯ëhÚpÓ¯Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ£å½ÎrØjÔ ìtÒrØ^Ú¡Ì¡ÍpÎrÏÀÐç×�á[ÒrØjÔ(×JÒ�×±Ï�Ñ�Ð[Ó�ÑrÛ�ÎrÏÀÍmÓTÐ¬ÏÀÖ¾â¡ÓTÛ+ÒrÏ<Ø`Ö
� ê�ëhÚpÓ¿Î¤Ó�ÜÀ×�Ò¤ÏÀØjÖ�ÍBÓ�Ò�Ù7Ó�Ó�Ö£Ú¡Ì¡ÍpÎrÏÀÐ£×já[Ò¤Ø`Ô(×JÒr×(×jÖ¶Ð�ÒrÚpÓgÜÀÏ<ÖpÓT×�Î
ÚQÌ¡ÍpÎrÏ�Ð�û¤ýjð ×�á[ÒrØjÔ(×JÒ�×
Ò¤Úm×JÒ·×jÎ¤Ó�ámÑ°ÓTÐ�å½ØjÎ�Ò¤ÚpÓ¿ãjÓ�ÎrÏ<úmÛ�×�Ò¤ÏÀØjÖ�Ò¤Ø¡Ø`Ü�ò)Ë
ô���Ó�Î¯ÝNòLØjÜÀÌ¡ÚpÓ�Ð[Î�×�Ü�Ë�Ì¡ÍpÎ¤Ï�Ð¬ô�á[Ò¤Ø`Ô®×�Ò¤Ø`Ö
��Ó�ÎrÏ<å½ÌjÓ�Î+àhÏ�Ñ
ÐpÏÀÑrÛ�á¶ÑrÑ¤Ó�Ð£ÏÀÖ�â¡ÓTÛ+Ò¤ÏÀØjÖ��[ê�û�Öçâ¡Ó�Û�Ò¤ÏÀØjÖ � ämÙ7ÓgÒrÎr×jÖ¶Ñ°Ü�×JÒrÓ�×(ìtÑ°ÕBÓ�Û�ÏqúmÛ�×JÒrÏ<Ø`Ö
Ø�å)×�Ù7×�Ò¤Ó�Î°èlÜ<Ó�ãjÓ�Ü�Ô®ØjÖpÏ<Ò¤Ø`Î�ÒrØ^×�Û�ØjÎrÎ¤ÓTÑ°ÕBØjÖmÐ[Ï<Ö¶æ(Ü<ÏÀÖpÓ�×jÎ
Ú¡Ì¡ÍpÎrÏÀÐ¬û¤ýjð#×�á[ÒrØjÔ(×JÒrØjÖ�ä\×�ÖmÐ
á¶Ñ¤Ó
ò�Ë�ô���Ó�Î>ÒrØ�ã`Ó�ÎrÏqå½Ì¯ÕpÎrØjÕBÓ�Î¤Ò¤ÏÀÓ�Ñ�ê��XÏÀÖ¶×�ÜÀÜ<Ì`ä[Ñ°Ø`Ô¯Ó
Û�ØjÖmÛ�ÜÀá¶Ð[ÏÀÖpæ�ÎrÓ�Ô(×�Îrù[Ñ>×�ÎrÓµÔ(×jÐpÓ�ÏÀÖ
â¡ÓTÛ+Ò¤ÏÀØjÖ 	 ê

� ������������Å>Ê�Ç��! #"gÃ�$¿È�"%$&�
û�Ö®Ò¤Ú¶ÏÀÑ>Ñ¤Ó�Û�Ò¤ÏÀØjÖ�äQÙ7Ó�ÍpÎ¤ÏÀÓ#'mÌ�ÏÀÖ`ÒrÎ¤Ø[Ð[ámÛ�ÓhÒ¤Ú¶Óµì¬Ü�×�Öpæ`á¶×�æ`Ójê�ëhÚ¶Ó�Ï<ÖQÒ¤ÎrØ[Ð[á¶Û�Ò¤ÏÀØjÖ(ÕpÎrÓ�Ñ¤Ó�ÖQÒ¤ÓTÐ
ÚpÓ�Î¤Ó�Ï�Ñ�×jÐp×jÕ[Ò¤ÓTÐ�å½ÎrØjÔ íqî+ï ê

ô!ì�ÕpÎ¤Ø[Û�Ó�ÑrÑ�ÏÀÑ7×�ÒrÎ¤ÏÀÕpÜÀÓ&(*)�+-,.+-/10+ä[Ù�Ú¶Ó�ÎrÓ2)^Ð[Ó�ÖpØ�ÒrÓ�Ñ�×�ÕpÎrØ¡Û�Ó�ÑrÑ�ÒrÓ�ÎrÔ$ä3,£Ð[Ó�ÖpØ�ÒrÓ�Ñ)×
ãJ×�ÜÀá¶×JÒrÏ<Ø`Ö�ä�×�ÖmÐ1/@Ð[Ó�ÖpØjÒ¤ÓTÑX×jÖ�Ó�ÖQã¡ÏÀÎ¤Ø`ÖpÔ®Ó�ÖQÒ�êXôtãk×jÜ<ám×JÒ¤ÏÀØjÖ¿ÏÀÑ�×
Õ¶×jÎ°ÒrÏÀ×jÜjå½ápÖmÛ+Ò¤ÏÀØjÖ¿å½ÎrØjÔ
ãJ×�ÎrÏÀ×jÍpÜÀÓ�ÑLÒrØgãJ×�ÜÀápÓ�Ñ�êLâ[ÌQÖQÒ�×jÛ+ÒrÏÀÛ�×�ÜÀÜ<Ì`ä`×�ãJ×jÜ<á¶×�Ò¤ÏÀØjÖ®Ï�Ñ)Ð[Ó�ÖpØ�ÒrÓ�Ð®Í¡Ì¯×�Ñ°Ó�Ò)Ø�å�Õ¶×jÏ<Î�Ñ5476985:;
< 8=+?>�>�>?+@6BA1:; < ABC`äjÙ�Ú¶Ó�ÎrÓD69E�Ð[Ó�ÖpØjÒ¤ÓTÑ)×�ãJ×�ÎrÏÀ×jÍpÜÀÓ�×�Ö¶Ð < E.ÏqÒ�Ñ>ãJ×�ÜÀápÓ`êLëhÚ¶ÓµÓ�Ö¡ã¡Ï<ÎrØjÖ¶Ô¯Ó�ÖQÒ
/�ÏÀÑL×
Ò¤ápÕ¶Ü<Ó�ÝGFH+JIK+@LD+@MN+@O�à+ä`Ù�ÚpÓ�ÎrÓPF¯äQI�ä=LçÐ[Ó�ÖpØjÒ¤Ó7Ò¤Ú¶ÓhÑ¤Ó�Ò�ØjåBÛ�Ø`ÖQÒ¤ÏÀÖQá¶Øjá¶Ñ�ãJ×�ÎrÏÀ×jÍpÜ<ÓTÑ�ä
Ò¤Ú¶Ó¬Ñ°Ó�Ò±Ø�åSR�á¶Ô¯Õ¶Ï<Öpæ ãk×jÎ¤Ï�×�Í¶Ü<ÓTÑ�ä7×�Ö¶Ð Ò¤ÚpÓ¬Ñ¤Ó�Ò±Øjå�×jÜ<æ`Ó�ÍpÎ�×�Ï�Û^ãk×jÎ¤Ï�×�Í¶Ü<ÓTÑ�ä�Î¤ÓTÑ°ÕBÓ�Û�Ò¤ÏÀãjÓ�ÜÀÌjä
T Ï�Ñ(×¾Ñ°Ó�Ò(Ø�å·Û�Úm×�ÖpÖpÓ�ÜÀÑ�ä�×jÖ¶ÐUO Ð[Ó�Ö¶Ø�Ò¤ÓTÑ(×çÎ¤ÓTÛ�ápÎ�Ñ°ÏÀãjÓ^ÕpÎrØ¡Û�Ó�ÑrÑ®Ð[Ó�ú¶Ö¶ÏqÒrÏ<Ø`Ö�Ý_Õ¶×�Î¤Ò¤Ï�×�Ü
å½ápÖ¶Û�Ò¤ÏÀØjÖçå½ÎrØjÔ ÎrÓ�Û�ápÎ�Ñ°ÏÀØjÖ�ãk×jÎ¤Ï�×�Í¶Ü<ÓTÑ·Ò¤Ø�ÕpÎrØ¡Û�Ó�ÑrÑ·Ò¤Ó�Î¤Ô(Ñ�à+ê±ëhÚpÓ(ãJ×�ÜÀá¶×�Ò¤ÏÀØjÖV,6×jÖ¶Ð�Ò¤ÚpÓ
Ó�Ö¡ã¡ÏÀÎ¤Ø`ÖpÔ®Ó�ÖQÒ&/(ä�ÒrØjæ`Ó�Ò¤Ú¶Ó�Î¿ÐpÓ�ú¶ÖpÓ^Ò¤Ú¶Ó^ãJ×�ÎrÏ�×�ÍpÜÀÓ�ÑgÒ¤Ú¶×�Ò¯Ó�õ¡Ï�Ñ°Ò¿ÏÀÖ:Ò¤Ú¶Ó^ì�ÕpÎ¤Ø[Û�Ó�ÑrÑ�×�ÖmÐ
Ò¤Ú¶Ó·ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Û�Ü�×jÑrÑ°ÓTÑ>ÒrØ¯Ù�Ú¶ÏÀÛ�Ú^Ò¤ÚpÓ�Ì±ÍBÓ�ÜÀØjÖpæmêXû�Ö$ì)äpÒ¤ÚpÓ�Î¤Ó·ÏÀÑ7ÒrÚpÓ�ÕpÎrÓ�Ð[Ó�ú¶ÖpÓ�Ð^ãJ×�ÎrÏÀ×jÍpÜÀÓ
WJXZY\[^] Ð[ØjÔ£ÝG,�à+ä[ÒrÚ¶×JÒ�Ð[Ó�ÖpØ�ÒrÓ�ÑhÒrÚpÓgÛ�á¶Î¤ÎrÓ�ÖQÒ�Ý½Ô®Ø[Ð[Ó�Ü�à7Ò¤ÏÀÔ®Ójê

ò>ÎrØ[Û�Ó�ÑrÑ�ÒrÓ�ÎrÔ(Ñ�×jÎ¤Ó�Ò¤ÚpÓ&_ Û�ØjÎrÓa``Ó�ÜÀÓ�Ô®Ó�ÖQÒrÑ�Ø�å.Ò¤ÚpÓ·ì¬å½Ø`Î¤Ô(×�ÜÀÏ�Ñ°Ô�ê�ëhÚpÓ
Ñ¤Ó�ÒhØ�å�Õ¶Î¤Ø[Û�ÓTÑ¤Ñ
Ò¤Ó�Î¤Ô(ÑPb#ÏÀÑ�ÐpÓ�ú¶ÖpÓTÐ$ÍQÌ±Ò¤ÚpÓ�å½Ø`Ü<ÜÀØJÙ�Ï<Ö¶æ¯æ`Îr×jÔ®Ô®×jÎ)å½Ø`Î�Ò¤Ú¶Ó·Õ¶Î¤Ø[Û�ÓTÑ¤Ñ7ÒrÓ�ÎrÔ(Ñ�)] b�

þ

40

i

s041934

)���� � ������
	 �� ��� �� � í) ï �����) ��)��Q)���P; �) í ï) ��)�� �) ���������3A ����� �"! A ��#%$7ÝZ)Bà��&('gÝZ)Bà)�* ��+�,.->ÝZ)Bà/�0� í 1 ,325+�4 +65 _7�Z`) ï � �0� í 8 T _7�Z`) ï ��0� í 9;: _7�Z`) ï �
)] b Û�ØjÖ¶Ñ¤Ï�Ñ�Ò�Ñ�Ø�å7×�Ò¤Ø`Ô¯Ï�Û®ÕpÎrØ[Û�Ó�ÑrÑ
Ò¤Ó�Î¤Ô�g×jÛ�Ò¤ÏÀØjÖçÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó<� %�=�>� 	 ä�Ð[Ó�ÜÀ×kÌ

ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó<�Xä�ÏÀÖ¶Û�Ø`Ö¶Ñ°Ï�Ñ°Ò¤Ó�ÖQÒ�Õ¶Î¤Ø[Û�ÓTÑ¤ÑgÒ¤Ó�Î¤Ô?�¿ä>Ð[ÓT×jÐ[ÜÀØ[Û�ù�ÕpÎrØ[Û�ÓTÑ¤ÑgÒ¤Ó�ÎrÔ@�¡ä>Ñ°Ó�Ö¶Ð%ÕpÎrØ�è
Û�ÓTÑ¤Ñ�Ò¤Ó�Î¤Ô��A���B�3A\ä�ÎrÓ�Û�Ó�ÏÀãjÓgÕpÎrØ[Û�ÓTÑ¤Ñ�Ò¤Ó�Î¤ÔC�D� �E! AF�.ápÖ¶×jÎ¤Ì�Ø`ÕmÓ�Îr×�Ò¤ØjÎ�Ñ7hÒ¤ÚpÓ(×�Ö¡Ì£Ð[Ó�ÜÀ×kÌ
ØjÕBÓ�Î�×JÒrØjÎ í¶ï ä�Ñ¤Ï<æ`Ö¶×�ÜXÓ�Ô®Ï�Ñ¤Ñ¤Ï<Ø`Ö¬ØjÕBÓ�Î�×JÒrØjÎ��!ä\æ`á¶×�Î�Ð[Ó�Ð¬ØjÕBÓ�Î�×JÒ¤Ø`Î ;&ä�Ó�ÖmÛ�×�ÕmÑ°ápÜ�×JÒrÏ<Ø`Ö
ØjÕBÓ�Î�×JÒrØjÎ=#%$7ÝVà+ä>ápÎræjÓ�ÖQÒ¯Û�Ø`Ô®Ô�ápÖpÏ�Û�×�Ò¤ÏÀØjÖ:Ø`ÕmÓ�Îr×�Ò¤Ø`ÎA& ' Ý·à�ä>Î¤ÓTÛ�ápÎ�Ñ¤Ï<ã`Ó�Ð[Ó�úmÖpÏqÒrÏ<Ø`ÖG*:ä
R�ápÔ®Õ¬Ó�Ö¶×�ÍpÜÀÏÀÖpæ±ØjÕBÓ�Î�×JÒrØjÎD+ , ->Ý)à�ämãJ×�ÎrÏ�×�ÍpÜÀÓ�ÑrÛ�ØjÕBÓgØ`ÕmÓ�Îr×�Ò¤ØjÎA� í 1 , 2 +H4 +65I� ï �qä\Û�Ú¶×�Ö[è
ÖpÓ�Ü>Ñ¤Û�ØjÕBÓ¯Ø`ÕmÓ�Îr×�Ò¤Ø`ÎJ� í 8 TK� ï ��ä�ÎrÓ�Û�ápÎ�Ñ°ÏÀØjÖçÑ¤Û�ØjÕBÓ¯Ø`ÕmÓ�Îr×�Ò¤Ø`ÎJ� í 9 : � ï �qä.×�ÖmÐEÍpÏÀÖ¶×jÎ¤Ì
ØjÕBÓ�Î�×JÒrØjÎ�Ñ�¿Ñ°ÓTé`á¶Ó�ÖQÒ¤Ï�×�Ü)Û�ØjÔ®ÕBØ`Ñ¤ÏqÒrÏ<Ø`ÖL��ä�×jÜqÒrÓ�ÎrÖ¶×JÒrÏ<ã`Ó±Û�ØjÔ®ÕBØ`Ñ¤ÏqÒrÏ<Ø`Ö¾ØjÕBÓ�Î�×JÒ¤Ø`Î í ï ä�×�ÖmÐ
Õ¶×jÎr×jÜ<ÜÀÓ�Ü�Û�Ø`Ô®ÕmØQÑ°Ï<Ò¤ÏÀØjÖ$ØjÕBÓ�Î�×JÒrØjÎM� �¡ê

ôcÔ®ØjÎrÓµÐ[Ó�Ò�×�ÏÀÜ<ÓTÐ®Ó�õ[ÕpÜ�×�Ö¶×�Ò¤ÏÀØjÖ®Ø�å�ìE×jÖ¶Ð¯Ò¤Ú¶Ó�Ñ°Ó�Ô(×�ÖQÒ¤Ï�Û�Ñ�Øjå�ì¬Û�×�Ö(ÍBÓ�å½Ø`ápÖ¶Ð®ÏÀÖ íqî�ï ê

N O Æ¿Ã£Ã��µÉ7Ä�Ê�Æ¿ÃQP ���hÄFR �\��Ã Æ�Ä ���µÅS�Æ¿ÅUT " �ÊVPETWP "gÃ�Ç �

ô�ÑXÔ®Ó�ÖQÒrÏ<Ø`ÖpÓ�Ð¿ÕpÎrÓ�ã¡Ï<Ø`á¶Ñ¤Ü<Ì`äTØ`ÖpÓhØ�åpÒrÚpÓhÔ®Ø`Ñ°ÒXÏÀÔ®ÕmØ`Î°Ò�×�ÖQÒLÛ�ØjÖ¶Û�Ó�Õ[Ò�ÑXØ�åmì$Ï�ÑXÒ¤ÚpÓhÏÀÖ`ÒrÓ�æ`Îr×�è
Ò¤ÏÀØjÖ�ÍmÓ�Ò�Ù�Ó�Ó�Ö±ÒrÚpÓ
Þ�ß ×jÖ¶Ð^ßhâ(Ù7ØjÎrÜ�Ð®ãQÏÀÓ�ÙµÑ�ê�ô�ñ(ÖpÓ�Ñ°Ì[Ñ°Ò¤Ó�Ô®Ñ7×�ÎrÓµÕBØJÙ�Ó�Î°å½á¶Ü¶ÒrØQØ`ÜÀÑ)å½ØjÎ
Ð[ÓTÑ¤Û�Î¤ÏÀÍpÏÀÖpæ(ØjÎ·×�ÕpÕpÎrØkõ[Ï<Ô(×�Ò¤ÏÀÖpæ(Ú¡ÌQÍ¶Î¤Ï�Ð£Ñ°Ì[Ñ°Ò¤Ó�Ô®Ñ¿Ý_Þ�ß�Ù�Ø`Î¤Ü�Ð�ã¡Ï<Ó�ÙµÑrà�ê�X·Ó�ÖpÓ�Îr×jÜ�ÒrÎr×jÖ¶Ñ�è
Ü�×JÒ¤ÏÀØjÖ$Ñ¤Û�Ú¶Ó�Ô®Ó�Ñ�å½ÎrØjÔüÛ�ØjÖQÒ¤ÏÀÖ¡ápØjá¶Ñ°èVÒ¤ÏÀÔ¯Ó·ÕpÏÀÓ�Û�Ó�Ù�Ï�Ñ°Ó�×Jñ(ÖpÓ�Ñ¤Ì¡Ñ°Ò¤Ó�Ô(Ñ7×jÖ¶Ð�ÐpÏÀÑrÛ�ÎrÓ�ÒrÓ�èVÒ¤ÏÀÔ¯Ó
ÕpÏÀÓ�Û�Ó�Ù�Ï�Ñ°Ó·×Jñ(ÖpÓ�Ñ°Ì[Ñ°Ò¤Ó�Ô(Ñ�Ò¤Ø¿ìç×jÎ¤Ó·Ð[Ó�úmÖpÓ�Ð�ä[Ù�Ú¶ÏÀÛ�Ú$Ñ°ÚpØJÙ ÒrÚ¶×JÒ7Ò¤Ú¶Ó�Ñ¤Ó�å½Ø`Î¤Ô(×�ÜÀÏ�Ñ°Ô(Ñ7×�ÎrÓ
Û�ÜÀØ`Ñ¤Ó�ÜÀÌ(ÎrÓ�Ü�×JÒ¤ÓTÐ�ê

ð
Ö%Ò¤Ú¶Ó^ØjÒ¤ÚpÓ�Î�Ú¶×jÖ¶Ð�äLÒ¤Ú¶Ó^Ñ°Ò¤á¶Ð[Ì%ØjåµÚ¡ÌQÍ¶Î¤Ï�Ð%Ñ°Ì[Ñ°Ò¤Ó�Ô®Ñ¿ÏÀÖ Û�Ø`Ô¯Õ¶á[Ò¤Ó�Î¯ÑrÛ�ÏÀÓ�Ö¶Û�Ó�Ýlßhâ
Ù7ØjÎrÜÀÐtã¡Ï<Ó�ÙµÑrà±ÏÀÑ�Ô(×�ÏÀÖpÜ<Ì6å½Ø[Û�á¶ÑrÑ¤Ó�ÐcØ`Ö Ò¤ÚpÓEÒ¤ÚpÓ�ØjÎrÌ6Øjå�Ú¡Ì¡ÍpÎrÏÀÐc×já[Ò¤Ø`Ô(×JÒr×¶ê �pØ`Î¤Ô(×�Ü
Ò¤Î�×�ÖmÑ°Ü�×JÒrÏ<Ø`Ö%å½Î¤Ø`Ô Ò¤ÚpÓ$ÒrÚpÓ�Ø`Î¤Ì%Øjå
Ú¡Ì¡ÍpÎ¤Ï�Ð ×já[Ò¤Ø`Ô(×JÒr×EÒ¤Øçì�Ú¶×jÑ¯ÍBÓ�Ó�ÖtÐ[Ó�ú¶ÖpÓTÐ�ê6ëhÚpÓ
Ò¤Î�×�ÖmÑ°Ü�×JÒrÏ<Ø`Ö(å½Î¤Ø`Ô5Ú¡ÌQÍ¶Î¤Ï�Ð�×já[Ò¤Ø`Ô®×�Òr×gÒ¤Ø¯ì¾×jÏ<Ô(Ñ�Ò¤Ø®Ñ¤ÚpØJÙcÒ¤Úm×JÒ7Ò¤ÚpÓ�ì�å½ØjÎrÔ®×jÜ<Ï�Ñ¤Ô5ÏÀÑh×JÒ
ÜÀÓ�×jÑ°Òµ×jÑhÓ�õ¡Õ¶Î¤ÓTÑ¤Ñ¤Ï<ã`Ó·×`Ñ7Ò¤ÚpÓ�ÒrÚpÓ�Ø`Î¤Ì(ØjåXÚ¡Ì¡ÍpÎrÏÀÐ$×�ápÒ¤ØjÔ(×�Òr×pê

ôµÜÀÜ7×jÍmØJã`Ó�èlÔ®Ó�ÖQÒ¤ÏÀØjÖpÓTÐ¬å½Ø`Î¤Ô(×jÜ�Ò¤Î�×�Ö¶Ñ¤Ü�×JÒ¤ÏÀØjÖmÑgÛ�×jÖ%ÍmÓ(å½Ø`ápÖ¶Ð¾ÏÀÖ í<î+ï ê��¶ØjÎgÏÀÜÀÜ<á¶Ñ°Ò¤Î�×Jè
Ò¤ÏÀØjÖçÕpápÎrÕBØ`Ñ¤Ó�Ñ�ä�Ï<ÖçÒrÚpÏÀÑ�Ñ°ÓTÛ+Ò¤ÏÀØjÖ.ä�Ù�Ó(Ø`ÖpÜÀÌ¬æjÏÀãjÓ¿Ò¤ÚpÓ®ÒrÎr×jÖ¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖçØ�å7Û�ØjÖQÒ¤ÏÀÖ¡ápØjámÑ�èVÒ¤ÏÀÔ®Ó
ÕpÏÀÓ�Û�Ó�Ù�Ï�Ñ°Ó(×Jñ(ÖpÓ(Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ·Ò¤Ø�ì)äX×�Ö¶ÐEÒ¤Ú¶Ó®Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖEå½Î¤Ø`Ô Ú¡ÌQÍ¶Î¤Ï�Ð�×já[Ò¤Ø`Ô(×JÒr×^ÒrØ$ì
Í¡Ì±Ô®Ó�×jÖ¶ÑhØ�åXÒ¤ÚpÓ�ÒrÚpÓ�ÎrÔ®Ø`Ñ°Òr×�ÒhÓ�õp×�Ô®ÕpÜÀÓjê

Y[Z�\]_^a`�bdc�`[e�^ae�f�ghbdcjilknmpo0qrbs^ut
ß�ØjÖQÒrÏ<Ö¡ápØ`á¶Ñ�èVÒ¤ÏÀÔ®ÓgÕpÏÀÓ�Û�Ó�Ù�Ï�Ñ°Ó¯×Jñ(ÖpÓ¿Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ�×jÎ¤Ó¯Ð[Ó�ÑrÛ�ÎrÏÀÍmÓTÐ£Í¡Ìwv Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ
Ø�å)×Jñ(ÖpÓ
Ð[Ï<øBÓ�Î¤Ó�ÖQÒ¤Ï�×�Ü�Ó�éQá¶×�Ò¤ÏÀØjÖ¶Ñx6�Ýzy°à{� | E 6XÝ}y°à�~G�HE}�LÝ}y°à"~�� E� Ýzy°à�� F E 6�Ý}y°àE~�� E �XÝzy°à"~�� E å½Ø`Î�� 6�Ýzy°à�LÝ}y°à��]�� E +
Ù�ÚpÓ�Î¤ÓJ��Ýz��� î + >�>7>7+�vEà·Ï�Ñ·Ò¤ÚpÓ(Ö¡ápÔ¿ÍmÓ�Î�Ø�å)ÒrÚpÓ(Ô®Ø[Ð[Ójê��)×`Û�ÚEÔ®Ø[Ð[Ó��µÏ�Ñ�Ð[Ó�úmÖpÓ�ÐçÏÀÖ
×$Î¤Ó�æjÏÀØjÖ � E�ä�Ù�ÚpÏÀÛ�Ú¾Ï�Ñg×�Û�Ø`ÖQã`Ó�õ¬ÕBØjÜÀÌ¡ÚpÓ�Ð[ÎrØjÖ.ä.æjÏÀãjÓ�ÖEÍ¡Ì�×^ú¶Ö¶ÏqÒrÓ±Ö¡ápÔ�ÍBÓ�Î�Øjå7ÜÀÏ<Ö¶Ó�×�Î
ÏÀÖpÓ�éQá¶×jÜ<Ï<Ò¤ÏÀÓ�Ñ�äjÏÀÖ®Ò¤ÚpÓ
Ï<Ö¶Õpá[Ò+ý�Ñ�Ò�×JÒrÓµÑ°Õ¶×`Û�Ó`êXË�Ó�ÎrÓjä��XÝzy°à]<��� ä 6�Ýzy°à]<� A ä¡×�Ö¶Ð � Ý}y°à]<�E�
Ð[Ó�ÖpØ�ÒrÓ±Ò¤Ú¶Ó�ÏÀÖpÕpá[ÒTä)Ñ�Ò�×JÒrÓ^×�ÖmÐ%Øjá[ÒrÕpá[ÒTä�Î¤ÓTÑ°ÕBÓ�Û�Ò¤ÏÀãjÓ�ÜÀÌjä�×�Ò�Ò¤ÏÀÔ®Ó�y+ê��pápÎ¤Ò¤Ú¶Ó�ÎrÔ¯Ø`Î¤Ó`äU� E�ä

�

41

i

s041934

s041934

�������
�	�

������������
�������

�������

���

���! "#�����$�
��%&�'�

���(�)�

�XÏ<æ`ápÎrÓ î �ô�ÚQÌ¡ÍpÎrÏ�Ð^×já[Ò¤Ø`Ô®×�Ò¤Ø`Ö^Ô®Ø[Ð[Ó�Ü.Ø�åX×¯ÒrÚpÓ�ÎrÔ®Ø`Ñ°Òr×�Ò

×�ÖmÐ��aE�Ð[Ó�ÖpØ�ÒrÓ·Û�ØjÖ¶Ñ°Òr×jÖ`Ò�Ñ�êLû�Ö$Ó�×`Û�Ú�Ô®Ø[Ð[Ójä¡ÒrÚpÓ·Ò¤Î�× R�Ó�Û�Ò¤Ø`Î¤ÏÀÓ�Ñ�Ø�å�Ò¤ÚpÓ�Ñ°Òr×JÒrÓ�ãk×jÎ¤Ï�×�Í¶Ü<ÓTÑ 6
×�ÎrÓµÛ�Ø`ÖQÒ¤ÏÀÖQá¶Øjá¶ÑLå½á¶Ö¶Û+ÒrÏ<Ø`Ö¶Ñ>ØjåBÒrÏ<Ô®Ó`ê>ëhÚpÓ�Ò¤Î�× R�ÓTÛ+ÒrØjÎrÏ<ÓTÑLØ�å\Ò¤ÚpÓ
Ï<Ö¶Õpá[Ò+ýJØjá[ÒrÕpá[Ò)ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Ñ
ÏÀÖ�×¯Ô®Ø[Ð[Ó�Ô(×kÌ±ÍmÓgÐpÏÀÑrÛ�Ø`Ö`ÒrÏ<Ö¡ápØ`á¶Ñ7å½ápÖ¶Û�Ò¤ÏÀØjÖ¶ÑµØ�å.ÒrÏ<Ô®Ó`ê

ß�ØjÖQÒ¤ÏÀÖ¡ápØjámÑ�èVÒ¤ÏÀÔ®ÓEò>óEô Ñ°Ì[Ñ°Ò¤Ó�Ô(Ñ(ámÑ°ÏÀÖpæ%ÒrÚpÓ¾ß7×jÎr×�Ò¤ÚpÓ�Ø¡ÐpØjÎrÌ Ñ°Ø`Ü<ápÒ¤ÏÀØjÖcÛ�Ø`Ö¶Û�Ó�Õ[Ò�ä
Û�×jÖ^ÍBÓ�Ò¤Î�×�ÖmÑ°Ü�×JÒrÓ�Ð�Ò¤Ø®ì:×jÑ7å½Ø`Ü<ÜÀØJÙµÑ�

(+*-,/. W 6 +10$2 3 �
+ 6Q� 6 8�LÝ �5456 x6�� | 4 6;~�� 4 �=~G� 4 + � � F 4 6=~G� 4 �=~ � 4 à
7 êêê
7
Ý �98�6 x6�� | 8 6=~G� 8 �=~�� 8 + � � F 8 6=~G� 8 �=~ � 8 à

0

ëhÚpÓgÑ°Òr×�Ò¤Ó�ãJ×�ÎrÏÀ×jÍpÜÀÓ�Ñ56E×jÎ¤Ó�Ô®Ø[Ð[Ó�ÜÀÓ�Ð�Í¡Ì�Ô®ÓT×�Ö¶Ñ�ØjåhÝ_ÖpØjÖpè R�ápÔ®ÕpÏÀÖpæ¡à�Û�Ø`Ö`ÒrÏ<Ö¡ápØ`á¶ÑhãJ×�ÎrÏqè
×�Í¶Ü<ÓTÑ�ä�Ù�ÏqÒrÚçÏÀÖpÏ<Ò¤Ï�×�Ü>ãJ×jÜ<ápÓ 6 8 ê^ëhÚpÓ(Øjá[ÒrÕpá[ÒgãJ×�ÎrÏ�×�ÍpÜÀÓ�Ñ � ×�ÎrÓ¯Ô®Ø[Ð[Ó�Ü<ÓTÐ�Í¡Ì�Ô¯ÓT×�Ö¶Ñ�Øjå×�ÜÀæjÓ�ÍpÎ�×�Ï�Û�ãk×jÎ¤Ï�×�Í¶Ü<ÓTÑ�ê�ëhÚpÓ¿ÍmÓ�Ú¶×kã¡Ï<Ø`ÎµØ�åU��ÏÀÑ
ÖpØ�Ò�Ñ°ÕBÓ�Û�ÏqúmÓ�Ð�ä\×jÑ�Ï<Ö£ÒrÚpÓ�Ø`Î¤ÏÀæjÏÀÖ¶×jÜ.ò>óEô
Ô®Ø[Ð[Ó�ÜVê)û�Ö�ÒrÚpÓ�ì Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ�äd��Û�Øjá¶ÜÀÐ�Ð[Ó�ÖpØ�ÒrÓ�×¯å½ápÖ¶Û�Ò¤ÏÀØjÖ£Ø�åXÒ¤ÏÀÔ®ÓjämØjÎ �¬Û�ØjápÜ�Ð�ÍmÓ
Ð[Ó�ú¶ÖpÓ�Ð^×jÑ�×�Ö^×jÜ<æ`Ó�ÍpÎ�×�Ï�ÛhãJ×�ÎrÏÀ×jÍpÜÀÓjä¡×�Ö¶Ð^×jÐpÐ[Ï<Ò¤ÏÀØjÖm×�ÜBÓ�éQá¶×JÒrÏ<Ø`Ö¶Ñ)Ñ¤ÕBÓ�Û�Ï<å½Ì¡Ï<Ö¶æ�ÒrÚpÓ
ÍBÓ�Úm×kã`è
ÏÀØjÎ·Ø�å��%Û�ØjápÜ�Ð¬ÍBÓ(×jÐpÐ[ÓTÐ�ê�ëhÚpÓ¯ÍBÓ�Ú¶×kã¡ÏÀØjÎ�×jÑrÑ°Ø[Û�Ï�×JÒrÓ�Ð�ÒrØ$×^Ô®Ø[Ð[ÓJ��ÏÀÑ�Ð[ÓTÑ¤Û�Î¤ÏÀÍmÓTÐ¬Í¡Ì
Ô®Ó�×jÖ¶ÑhØ�åL×(Ð[Ó�Ü�×kÌ(ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó(Ý � E 6 x6w�I| E 6=~G�HEz�=~�� E�+ � � F EG6=~G��E}�=~ �aENà�ê
Y[Z�: ;=<9>@? cBADC e bs^aiECEb�C bs^lt
ëhÚpÏ�Ñ�Ñ°ÓTÛ+ÒrÏ<Ø`Ö®Ñ¤ÚpØJÙµÑ�Ò¤Ú¶ÓhÒ¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ¯Ø�å�×·ÚQÌ¡ÍpÎrÏ�Ð¿×já[Ò¤Ø`Ô®×�Ò¤Ø`Ö¿Ô®Ø[Ð[Ó�Ü¶Ø�åB×·ÒrÚpÓ�ÎrÔ®Ø`Ñ°Òr×�Ò
Ò¤Ø(ì�ê)ëhÚpÓ�Ú¡Ì¡ÍpÎrÏÀÐ$×�á[ÒrØjÔ(×JÒrØjÖ%Ý_×`Ðp×�ÕpÒ¤Ó�Ð^å½ÎrØjÔ í FJï à7Ï�ÑµÑ°Ú¶ØJÙ�Ö^ÏÀÖ��XÏ<æ`ápÎ¤Ó î ê2�>×�ÎrÏÀ×jÍpÜÀÓ
6£ÎrÓ�ÕpÎrÓ�Ñ¤Ó�ÖQÒrÑ�ÒrÚpÓ�Ò¤Ó�Ô¯ÕBÓ�Î�×JÒrápÎrÓjê�ëhÚpÓgÛ�Ø`ÖQÒ¤ÎrØjÜ\Ô®Ø¡ÐpÓ�Ñµ×jÎ¤ÓHG9IE×�Ö¶ÐJGLKEê

û�ÖpÏ<Ò¤Ï�×�ÜÀÜ<Ì`ä�ÒrÚpÓ(ÒrÓ�Ô®ÕmÓ�Îr×�Ò¤ápÎrÓ±ÓTé`ám×�Ü�Ñ þNM Ð[Ó�æjÎrÓ�ÓTÑ�äL×�Ö¶ÐçÒrÚpÓ±ÚpÓT×JÒrÓ�ÎgÏ�ÑgØjø@Ý_Û�ØjÖQÒ¤ÎrØjÜ
Ô®Ø[Ð[ÓOGLK�à+êgëhÚpÓ¿Ò¤Ó�Ô®ÕmÓ�Îr×�Ò¤ápÎrÓgå_×jÜ<Ü�Ñ�×jÛ�Û�ØjÎ�Ð[ÏÀÖpæ(Ò¤Ø^Ò¤Ú¶Ó1'¶ØJÙ#Û�ØjÖmÐ[ÏqÒrÏ<Ø`Ö x6p�QP M > î 6.ê
ô�Û�Û�Ø`ÎrÐ[ÏÀÖpæ(ÒrØ±ÒrÚpÓ\R�á¶Ô¯ÕçÛ�Ø`Ö¶Ð[Ï<Ò¤ÏÀØjÖ�6OR îTS ämÒ¤ÚpÓ¯ÚpÓT×JÒ¤Ó�Î�Ô(×kÌ�æjØ±Ø`ÖE×jÑ·Ñ¤ØQØ`Ö¬×jÑ�Ò¤ÚpÓ
Ò¤Ó�Ô®ÕmÓ�Îr×�Ò¤ápÎrÓhå_×�ÜÀÜÀÑ>ÍmÓ�Ü<ØJÙ îUS Ð[Ó�æjÎrÓ�Ó�Ñ�ê�ëhÚ¶ÓµÏ<Ö¡ãJ×�ÎrÏ�×�ÖQÒ>Û�ØjÖmÐ[ÏqÒrÏ<Ø`Ö�6WV îUF Ó�Ö¶Ñ¤ápÎrÓ�ÑLÒrÚ¶×JÒ
×JÒ�ÒrÚpÓgÜ�×JÒrÓ�Ñ°ÒµÒ¤ÚpÓ�ÚpÓ�×�Ò¤Ó�Î�Ù�Ï<ÜÀÜ.æ`Ø(ØjÖ£Ù�ÚpÓ�Ö�Ò¤ÚpÓ�ÒrÓ�Ô®ÕBÓ�Î�×JÒ¤á¶Î¤Ó�ÓTé`ám×�Ü�Ñ îUF Ð[Ó�æjÎrÓ�ÓTÑ�ê�û�Ö
Ò¤Ú¶Ó�Û�Ø`Ö`ÒrÎ¤Ø`Ü�Ô®Ø[Ð[ÓXG9I�ämÒ¤Ú¶ÓgÚpÓ�×�Ò¤Ó�Î�Ï�ÑµØjÖ.äm×�ÖmÐ$Ò¤ÚpÓ�Ò¤Ó�Ô®ÕBÓ�Î�×JÒrápÎ¤Ó�Î¤Ï�Ñ°ÓTÑµ×jÛ�Û�Ø`ÎrÐ[ÏÀÖpæ¯Ò¤Ø

�

42

i

s041934

Ò¤Ú¶Ó 'mØJÙ�Û�Ø`Ö¶Ð[Ï<Ò¤ÏÀØjÖ x6�� � P M > î 6.ê�ócÚpÓ�Ö�ÒrÚpÓ�Ò¤Ó�Ô®ÕmÓ�Îr×�Ò¤ápÎrÓ
ÎrÏ�Ñ°ÓTÑ�×�ÍBØJãjÓ þpî ÐpÓ�æjÎrÓ�ÓTÑ�ä
Ò¤Ú¶Ó(ÚpÓ�×�Ò¤Ó�Î�Ô(×kÌ£ÒrápÎrÖçØjøXê^Þ�ápÓ®ÒrØ�Ò¤ÚpÓ(ÏÀÖ¡ãJ×�ÎrÏÀ×jÖ`Ò�Û�Ø`Ö¶Ð[Ï<Ò¤ÏÀØjÖ 6 � þjþ ä.×JÒ�ÒrÚpÓ(Ü�×JÒ¤ÓTÑ�Ò
Ò¤Ú¶Ó�ÚpÓ�×�Ò¤Ó�Î�Ù�ÏÀÜÀÜ\Ò¤ápÎrÖ�Ø�øEÙ�ÚpÓ�Ö$Ò¤ÚpÓ�ÒrÓ�Ô®ÕmÓ�Îr×�Ò¤ápÎrÓ�Ó�éQá¶×jÜÀÑ þ`þ Ð[Ó�æjÎrÓ�ÓTÑ�ê

ëhÚpÏ�Ñ>Ô®Ø[Ð[Ó�ÜBÏÀÑ>Ò¤Î�×�Ö¶Ñ¤Ü�×JÒ¤ÓTÐ¿Ò¤ØgìEÑ¤ÕBÓ�Û�Ï<úmÛ�×JÒ¤ÏÀØjÖ¬Ý_Ù�ÏqÒrÚ�Ñ¤ØjÔ®ÓµÑ°ÏÀÔ®ÕpÜÀÏqúmÛ�×JÒrÏ<Ø`Ömà+äQÙ�ÚpÏ�Û�Ú
ÎrÓ�Ñ¤ápÜqÒ�Ñ�×jÑ7å½Ø`Ü<ÜÀØJÙµÑ�

(+*-,/. W 6
+ 6Q� þNM
+ GLK :; x6�� P M > î 6 7 6 V îTF¯í ï í � 6"R îUS ��� ï �5G9I
+ G9I :; x6�� � P M > î 6 7 6 � þjþ¯í ïlí � 6�� þ[î ��� ï �5GLK�LG'K
0P>

� �6Å "gÃQP� �"·ÄLÊ�Æ¿Ã Æ;S O��£Ê%ÄXÆ ��� ��Å>Ê�Ç "gÈ^ÄLÆ;T "·Ä�"
û�Ö¯Ü<Ï<Ò¤Ó�Îr×�Ò¤ápÎrÓjä�Ô(×jÖQÌgÐpÏqø\Ó�ÎrÓ�ÖQÒ>Ú¡Ì¡ÍpÎ¤Ï�Ð�×já[Ò¤Ø`Ô(×JÒr×�Ð[Ó�ú¶ÖpÏ<Ò¤ÏÀØjÖ¶ÑLÓ�õ[ÏÀÑ°Ò�ê�â¡ØjÔ®Ó�Ð[Ó�ú¶ÖpÏ<Ò¤ÏÀØjÖ¶Ñ
ÎrÓ�éQápÏÀÎ¤Ó±Ñ¤ØjÜÀá[Ò¤ÏÀØjÖmÑ�å½ØjÎ�Ò¤ÚpÓ$Û�Ø`Ö`ÒrÏ<Ö¡ápØ`á¶ÑgãJ×jÎ¤Ï�×�ÍpÜÀÓ�ÑgÒ¤Ø¬ÍBÓ^ÐpÏqø\Ó�ÎrÓ�ÖQÒ¤Ï�×�Ü�å½ápÖ¶Û�Ò¤ÏÀØjÖ¶Ñ�äLÓjê æ¶ê
í F ä Skï êtð�Ò¤ÚpÓ�Î(Ð[Ó�ú¶Ö¶ÏqÒrÏ<Ø`Ö¶Ñ(×�ÜÀÜ<ØJÙ ÒrÚpÓ$Ô¯Ø`Î¤Ó$æjÓ�ÖpÓ�Î�×�ÜhÛ�×`Ñ°Ó^Ø�å�Õ¶Ï<ÓTÛ�Ó�Ù�Ï�Ñ¤Ó$Ð[Ï<ø\Ó�ÎrÓ�ÖQÒ¤Ï�×�Ü
å½ápÖ¶Û�Ò¤ÏÀØjÖ¶Ñ�ähÓjê æ¶ê í<îUMkï ê�ö¬Ø`Ñ°Ò®Ú¡Ì¡ÍpÎrÏÀÐ ×já[Ò¤Ø`Ô®×�Òr×¾Ð[Ó�ú¶ÖpÏ<Ò¤ÏÀØjÖ¶Ñ±ÐpØ%ÖpØ�Ò�Ð[Ó�ú¶ÖpÓ£ápÎræjÓ�ÖQÒ
Ò¤Î�×�ÖmÑ°Ï<Ò¤ÏÀØjÖ¶Ñ�ä7ØjÎ(ÒrÚpÓ�Ì Ð[Ó�úmÖpÓ¬ápÎræjÓ�Ö`Ò(ÒrÎr×jÖ¶Ñ¤ÏqÒrÏ<Ø`Ö¶Ñ(ÏÀÖ!×¾Î¤ÓTÑ�ÒrÎ¤Ï�Û+ÒrÏ<ã`Ó$Ùh×kÌjä�×`Ñ(Ï<Ö í<îjî�ï ê
û�Ö í<îTþkï ä�ápÎræjÓ�ÖQÒ
ÒrÎr×jÖ¶Ñ°Ï<Ò¤ÏÀØjÖmÑ
×jÎ¤Ó¯Ð[Ó�ú¶Ö¶Ó�Ð�Ï<Öç×�æ`Ó�ÖpÓ�Îr×jÜ�Ùh×kÌjä\á¶Ñ¤Ï<Ö¶æ^×^ÕpÎ¤ÓTÐ[Ï�Û�×JÒrÓ�ÒrÚ¶×JÒ
Ð[Ó�ú¶ÖpÓ�ÑµÒ¤ÚpÓ¿Ô(×Jõ[Ï<Ô¿ápÔ Ñ°ØaR�ØjápÎrÖ$Ò¤ÏÀÔ¯Ó¿Ï<Ö¬×±Ü<Ø[Û�×�Ò¤ÏÀØjÖ�ämÍpá[Ò·Ï<Ö¶Ñ°Ò¤ÓT×jÐ�ØjåLÏÀÖ¡ãJ×�ÎrÏÀ×jÖ`Ò�Ñµ×�ÖmÐ
'¶ØJÙ Û�Ü�×�á¶Ñ¤Ó�Ñ�ä�Ó�ãjØjÜÀá[ÒrÏ<Ø`Ö¿å½á¶Ö¶Û+ÒrÏ<Ø`Ö¶Ñ)×jÎ¤Ó�á¶Ñ¤Ó�Ð�ê�ócÏ<Ò¤Ú±ÎrÓ�Ñ¤ÕBÓ�Û+Ò�ÒrØ�Ò¤Ú¶ÓµÔ®Ó�×�Ö¶Ï<Öpæ�Øjå=R�á¶Ô¯Õ
Û�Ü�×�ámÑ°ÓTÑ�äTÒ¤Úm×JÒXÐpÓ�ú¶ÖpÓ�Ò¤Ú¶Ó)ÍBÓ�Ú¶×kã¡ÏÀØjÎ.ØjåpÒ¤Ú¶Ó)ãJ×�ÎrÏÀ×jÍpÜÀÓ�Ñ�ÏÀÖ¿×`Û+ÒrÏ<Ø`Ö�Ò¤Î�×�Ö¶Ñ¤Ï<Ò¤ÏÀØjÖ¶Ñ�äTÐpÏqø\Ó�ÎrÓ�Ö¶Û�Ó�Ñ
×�Ü�Ñ¤Ø(Ø¡Û�Û�ápÎ 7Ù�ÚpÓ�ÎrÓgÏÀÖ í FJï ÒrÚpÓ�ãJ×�ÎrÏ�×�ÍpÜÀÓ�ÑµÛ�×�Ö£ÏÀÖ¬ÕpÎrÏ<ÖmÛ�ÏÀÕpÜ<Ó�ÕmÓ�Î°å½Ø`Î¤Ô ×�ÎrÍpÏ<Ò¤Î�×�ÎrÌ%R�ápÔ®Õ¶Ñ
ápÖpÜÀÓ�ÑrÑgÎrÓ�Ñ°Ò¤ÎrÏ�Û+Ò¤ÓTÐ%Í¡ÌEÒrÚpÓ&R�ápÔ®Õ:ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ójä�ÏÀÖ í<îjî+ï ä�ãJ×�ÎrÏÀ×jÍpÜÀÓ�ÑgÏÀÖ:ÕpÎrÏÀÖ¶Û�ÏÀÕpÜÀÓ�ÎrÓ�Ô(×�ÏÀÖ
ápÖ¶Û�Úm×�Öpæ`Ó�Ð^ápÖpÜÀÓ�ÑrÑ�Û�Ú¶×�Öpæ`Ó�Ñh×�ÎrÓ�Ó�Ö[å½Ø`ÎrÛ�Ó�Ð^Í¡Ì(Ò¤ÚpÓ5R�á¶Ô¯Õ�ÕpÎrÓ�ÐpÏÀÛ�×JÒ¤Ó`ê

�µØ`ÖpÓ®Ø�å>ÒrÚpÓ�Ñ¤Ó®ÚQÌ¡ÍpÎrÏ�ÐE×�ápÒ¤ØjÔ(×�Òr×�ÐpÓ�ú¶ÖpÏ<Ò¤ÏÀØjÖmÑ�ÏÀÑ·Ó�õ[ÕpÎrÓ�ÑrÑ¤Ï<ã`Ó�Ó�Ö¶Øjápæ`Ú¬Ò¤Ø$ÍBÓ¯ámÑ°ÓTÐ
×jÑgÒ¤ÚpÓ�Òr×jÎ¤æ`Ó�Ògå½Ø`ÎgÒ¤Ú¶Ó�ÒrÎr×jÖ¶Ñ°Ü�×JÒrÏ<Ø`Ö¾Ø�åµÚ¡Ì¡ÍpÎ¤Ï�Ð¾ì)êçëhÚpÓ�ÎrÓ�å½Ø`Î¤Ó`äXÒ¤ÚpÓ�Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ¾á¶Ñ¤Ó�Ñ
×¯Òr×jÎ¤æ`Ó�Ò�Ú¡Ì¡ÍpÎ¤Ï�Ð�×�á[ÒrØjÔ(×JÒ�×(Ð[Ó�úmÖpÏqÒrÏ<Ø`Ö�ämÛ�×�ÜÀÜ<ÓTÐNT
	��(×�ápÒ¤ØjÔ(×�Òr×pä¶Ù�ÚpÓ�ÎrÓ�Ò¤ÚpÓ�á�Ñ°Òr×jÖ¶ÐpÑ
å½ØjÎ�ápÎ¤æ`Ó�Ö¶Û�Ìjä�ÒrÚ¶×JÒ¿á¶Ñ°ÓTÑ�å½Ó�×�Ò¤ápÎrÓ�Ñ�å½Î¤Ø`Ô Ð[Ï<øBÓ�Î¤Ó�ÖQÒgÚQÌ¡ÍpÎrÏ�Ðç×já[Ò¤Ø`Ô(×JÒr×£ÐpÓ�ú¶ÖpÏ<Ò¤ÏÀØjÖmÑ�ê^û�Ö
Õ¶×jÎ°ÒrÏÀÛ�ápÜÀ×jÎ�äLÒrÚpÓ£Ð[Ó�úmÖpÏqÒrÏ<Ø`Ö6Øjå�ÒrÚpÓ R�ápÔ®Õ6ÕpÎrÓ�ÐpÏÀÛ�×JÒ¤Ó$ÏÀÖtÛ�ØjÔ�Í¶Ï<Ö¶×�Ò¤ÏÀØjÖ:Ù�Ï<Ò¤Ú ×¾Ñ°Ó�Ò¯Øjå
Û�Ú¶×jÖpæjÓT×�ÍpÜÀÓ�ãk×jÎ¤Ï�×�Í¶Ü<ÓTÑhÏÀÑ�Ím×jÑ¤Ó�Ð$ØjÖ í Skï ä¶Ò¤ÚpÓ¿Ñ°Ø`Ü<á[ÒrÏ<Ø`Ö£Û�ØjÖmÛ�Ó�ÕpÒ�Ò¤Ú¶×�Ò�×�ÜÀÜ<ØJÙµÑhÕpÏÀÓ�Û�Ó�Ù�Ï�Ñ°Ó
Ð[Ï<øBÓ�Î¤Ó�ÖQÒ¤Ï�×�ÍpÜÀÓ�å½á¶Ö¶Û+ÒrÏ<Ø`Ö¶Ñ7ÏÀÑ7Í¶×`Ñ°ÓTÐ±ØjÖ íqîTMkï äp×�Ö¶Ð±Ò¤ÚpÓ�Ð[Ó�ú¶ÖpÏ<Ò¤ÏÀØjÖ�Øjå�ápÎræjÓ�ÖQÒ)Ò¤Î�×�ÖmÑ°Ï<Ò¤ÏÀØjÖ¶Ñ
Ùh×jÑLÏÀÖ¶Ñ°Õ¶Ï<ÎrÓ�Ð¿Í¡Ì í<îTþTï êXëhÚ¶ÓµÑ°Ì¡ÖQÒr×�õ�Ø�åBÒ¤ÚpÓ�Ú¡Ì¡ÍpÎrÏÀÐ®×já[Ò¤Ø`Ô®×�Òr×�Ð[Ó�ú¶ÖpÏ<Ò¤ÏÀØjÖ T
	 � Ï�Ñ�æjÏÀãjÓ�Ö
ÏÀÖ¿â¡Ó�Û�Ò¤ÏÀØjÖ � ê î êXâ¡ÓTÛ+ÒrÏ<Ø`Ö � ê þ Ð[Ó�ú¶ÖpÓTÑ�ÒrÚpÓ�Ñ¤Ì¡Ö`Ò�×Jõ�Ø�å[ÒrÚpÓ�Ñ¤ápÍ¶Ñ¤Ó�ÒLì� ��� Øjå[Ò¤ÚpÓ7ì�Ü�×�Öpæ`á¶×�æ`Ó
Ò¤Úm×JÒµÏ�Ñ7Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÓTÐ�ê

� Z�\ ����� C e bs^aiECEb�C A k�� `�c bdc ^a`
ô Ú¡Ì¡ÍpÎ¤Ï�Ðç×�á[ÒrØjÔ(×JÒrØjÖVT
	 � � Ý}*:ä��®ä�ÏÀÖpÏ<Ò�ä�Ï<Ö¡ã�ä�'¶ØJÙ�ä�/(äLÑ¤ØjápÎ�Û�ÓJä�Òr×jÎ¤æ`Ó�Ò�ä�ápÎ¤æ`Ó�ÖQÒ�ä
æjám×�Î�Ð\ä R�ápÔ®Õ.ä��
ä[Ó�ãjÓ�ÖQÒ+àhÛ�ØjÖmÑ°Ï�Ñ�Ò�ÑhØ�å�Ò¤ÚpÓ�å½Ø`Ü<ÜÀØJÙ�Ï<Ö¶æ®Û�ØjÔ®ÕBØjÖpÓ�Ö`Ò�Ñ�

� ô úmÖpÏqÒrÓ:Ñ°Ó�Ò¬Ø�å�Ý½ÎrÓ�×�Ü<èlãk×jÜ<á¶Ó�Ð¶à^ãJ×�ÎrÏÀ×jÍpÜÀÓ�Ñw* � 476 4 +=>�>�>a+�69A C`ä·Ò¤ÚpÓ:Ñ¤Ó�Ò x*K�
4 x6 4 + >7>�> + x6BA.C�Ù�Ú¶ÏÀÛ�Ú�ÐpÓ�ÖpØjÒ¤Ó�Ñ.Ò¤Ú¶Ó)ú¶Î�Ñ°ÒXÐ[Ó�Î¤ÏÀãJ×JÒ¤ÏÀãjÓTÑ�Øjå[Ò¤ÚpÓ7ãJ×�ÎrÏÀ×jÍpÜ<ÓTÑ�Ù�ê Î�ê Ò�ê�Ò¤ÏÀÔ®Ójä

�

43

i

s041934

×jÖ¶Ð�ÒrÚpÓ�Ñ°Ó�ÒE*��.�U476�� 4 + >�>�>J+ 6��A ChÙ�ÚpÏ�Û�Ú¿Ð[Ó�ÖpØ�ÒrÓ�Ñ.Ò¤ÚpÓhÕpÎrÏ<Ô®ÓTÐgãJ×�ÎrÏÀ×jÍpÜÀÓ�Ñ�ÒrÚ¶×JÒ�ÎrÓ�Õ[èÎrÓ�Ñ¤Ó�ÖQÒ�ãJ×�ÜÀápÓ�Ñ�×�Ò�Ò¤ÚpÓgÛ�ØjÖ¶Û�Ü<ámÑ°ÏÀØjÖ$Ø�åL×¯ÐpÏÀÑrÛ�ÎrÓ�ÒrÓ�Û�Úm×�Öpæ`Ójê
� ô úmÖpÏqÒrÓ£Ð[Ï<ÎrÓ�Û�Ò¤ÓTÐ Ô¿ápÜqÒrÏqèlæjÎ�×�Õ¶Ú�Ý �S+#/�à�ä�Ù�ÚpÓ�Î¤Ó � Ð[Ó�ÖpØ�ÒrÓ�Ñ(×çÑ°Ó�Ò®Øjå
ã`Ó�Î¤Ò¤Ï�Û�Ó�Ñ
ÝN×�Ü�Ñ°Ø�Î¤Ó�å½Ó�ÎrÎ¤ÓTÐ¾Ò¤Ø¾×jÑ¯Û�Ø`ÖQÒ¤ÎrØjÜ7Ô¯Ø[Ð[ÓTÑ�Ø`Î¿ÜÀØ[Û�×�Ò¤ÏÀØjÖ¶Ñ�à�×jÖ¶Ð / Ð[Ó�ÖpØjÒ¤ÓTÑ¯×�Ñ°Ó�Ò¯Øjå
ÓTÐ[æjÓTÑ�Ý_Û�ØjÖQÒ¤ÎrØjÜ�Ñ¤Ù�ÏqÒ�Û�ÚpÓ�Ñ�à+ê

� ëhÚ¶Î¤Ó�Ó7ã`Ó�Î¤Ò¤Ó�õgÜÀ×jÍmÓ�Ü<ÏÀÖpæ·å½ápÖ¶Û�Ò¤ÏÀØjÖ¶ÑLÏÀÖpÏ<ÒTä�ÏÀÖ¡ã�äj×�ÖmÐ '¶ØJÙ6Ò¤Úm×JÒ>×jÑrÑ°ÏÀæjÖ�Ò¤Ø�Ó�×`Û�Ú�ÜÀØ[Û�×JèÒrÏ<Ø`Ö��] � ×
ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó>å½Ø`Î�ÏÀÖpÏ<Ò¤Ï�×�ÜpÛ�ØjÖ¶Ð[Ï<Ò¤ÏÀØjÖmÑ�äJÏÀÖ¡ãk×jÎ¤Ï�×�ÖQÒ�Ñ.×�ÖmÐ%'¶ØJÙ:Û�ØjÖ¶Ð[Ï<Ò¤ÏÀØjÖmÑ�ä
ÎrÓ�Ñ¤ÕBÓ�Û+ÒrÏ<ã`Ó�ÜÀÌjêhëhÚpÓ�å½ÎrÓ�ÓgãJ×�ÎrÏ�×�ÍpÜÀÓ�ÑhØjåXÒrÚpÓgÏÀÖpÏ<Ò¤Ï�×�Ü�×jÖ¶Ð�ÏÀÖQãJ×jÎ¤Ï�×�ÖQÒ�ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó�Ñ�×�ÎrÓ
å½ÎrØjÔ *:ê�ëhÚpÓ·å½Î¤Ó�Ó�ãJ×�ÎrÏÀ×jÍpÜ<ÓTÑ7Ø�åXÒ¤ÚpÓ^'¶ØJÙ�ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó�Ñh×jÎ¤Ó·å½ÎrØjÔ *�� x*%ê

� ô�Ö¬Ó�ÐpæjÓgÜ�×�ÍBÓ�ÜÀÏ<Ö¶æ®å½ápÖ¶Û+ÒrÏ<Ø`Ö R�ápÔ®Õ.ämÒ¤Úm×JÒ
×`Ñ¤Ñ¤Ï<æ`Ö¶ÑhÒrØ±Ó�×`Û�Ú$ÓTÐ[æjÓ��] /5×±Ñ¤Ó�Ò�Øjå
ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Ñ�Ý
	G*�à)Ù�ÚpÏ�Û�Ú$×jÎ¤Ó�×�ÜÀÜ<ØJÙ7Ó�Ð(Ò¤Ø(Û�Ú¶×�Ö¶æjÓ�×�Ö¶Ð^×\R�á¶Ô¯Õ£Û�ØjÖ¶Ð[Ï<Ò¤ÏÀØjÖ^Ù�ÚpÏ�Û�Ú
Ï�Ñµ×¯ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó�Ù�ÚpØQÑ°Ó·å½ÎrÓ�Ó�ãJ×�ÎrÏÀ×jÍpÜ<ÓTÑ�×�ÎrÓ�å½ÎrØjÔ *���*��Nê

� ô�Ö�Ó�Ð[æ`Ó
Ü�×�ÍBÓ�ÜÀÏ<Ö¶æ¿å½á¶Ö¶Û+ÒrÏ<Ø`Ö^æ`á¶×�Î�Ð\ä¡Ò¤Ú¶×�Òµ×jÑrÑ°ÏÀæjÖ¶Ñ�ÒrØ¿ÓT×jÛ�Ú$Ó�Ð[æ`Ó�] / ×�æ`á¶×�Î�Ð
Ù�Ú¶ÏÀÛ�Ú�Ï�Ñ�×¿Õ¶Î¤ÓTÐ[ÏÀÛ�×JÒrÓ·Ù�Ú¶Ø`Ñ¤Ó
å½ÎrÓ�Ó�ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Ñh×jÎ¤Ó·å½ÎrØjÔ *:ê

� ô�Ö�ÓTÐ[æjÓµÜ�×�ÍBÓ�ÜÀÏÀÖpægå½ápÖmÛ+Ò¤ÏÀØjÖ^ápÎræjÓ�ÖQÒ] / ; 4�Ò¤ÎrápÓ=+�å_×�Ü�Ñ°Ó C`ä`Ò¤Ú¶×�Ò7×jÑrÑ¤Ï<æ`Ö¶Ñ�ÒrØ�Ó�×`Û�Ú
ÓTÐ[æjÓ�×gÍBØ¡ØjÜÀÓ�×jÖ .ÒrÎ¤á¶Ó�å½Ø`Î7×jÖ�ápÎræjÓ�Ö`Ò7Ó�Ð[æ`Ójä¡×�Ö¶Ð±å_×�Ü�Ñ°Ó
å½ØjÎh×gÖ¶ØjÖpÓ�èVápÎræjÓ�ÖQÒ�Ó�ÐpæjÓjê

� ôcú¶ÖpÏ<Ò¤Ó�Ñ¤Ó�Ò � ØjåBÓ�ãjÓ�ÖQÒ�Ñ�äQ×�Ö¶Ð(×jÖ¯ÓTÐ[æjÓ�Ü�×�ÍBÓ�ÜÀÏÀÖpæ�å½ápÖ¶Û�Ò¤ÏÀØjÖ(Ó�ãjÓ�ÖQÒ] / ; �%ÒrÚ¶×JÒ
×`Ñ¤Ñ¤ÏÀæjÖ¶Ñ�Ò¤Ø(ÓT×jÛ�Ú$Ó�Ð[æ`Ó�×�Ö$Ó�ãjÓ�ÖQÒ�ê

��Ñ¤á¶×�ÜÀÜÀÌjäh×�Ö Ó�Ð[æ`Ó��£ÏÀÑ±Î¤Ó�ÕpÎ¤ÓTÑ°Ó�ÖQÒ¤Ó�Ð6×jÑ��<� Ý��B+����Àà�ä7Ù�Ú¶ÏÀÛ�ÚtÏÀÐpÓ�ÖQÒ¤Ï<ú¶Ó�Ñ�×çÑ¤Øjá¶ÎrÛ�Ó
ÜÀØ¡Û�×JÒrÏ<Ø`Ö��] ��×�Ö¶Ð(×·Ò�×�ÎræjÓ�Ò>Ü<Ø[Û�×�Ò¤ÏÀØjÖ����] �(êLëhÚpÏ�Ñ>ÎrÓ�ÕpÎrÓ�Ñ¤Ó�ÖQÒ�×JÒ¤ÏÀØjÖ®Û�×jÖpÖpØjÒ>ÍmÓµámÑ°ÓTÐ
ÏÀÖ$Û�×jÑ¤Ó�Ø�åXÔ�ápÜ<Ò¤Ï<èlÓ�Ð[æ`Ó�Ñ�Ý½Ô¿ápÜqÒrÏ<Õ¶Ü<Ó�Ó�ÐpæjÓ�Ñ7Ù�Ï<Ò¤Ú^Ò¤ÚpÓ�Ñr×�Ô®Ó�Ñ°Ø`ápÎrÛ�Ó
ÜÀØ[Û�×�Ò¤ÏÀØjÖ^×jÖ¶Ð(Ò�×�ÎræjÓ�Ò
ÜÀØ¡Û�×JÒrÏ<Ø`Ömà+êçë.ØçÐ[Ó�×jÜ�Ù�Ï<Ò¤Ú%ÒrÚpÓ�Ñ¤ÓjäLÒ�Ù7Ø�×`ÐpÐ[Ï<Ò¤ÏÀØjÖ¶×jÜ>å½ápÖmÛ+Ò¤ÏÀØjÖmÑ¯×jÎ¤Ó^Ð[Ó�ú¶Ö¶Ó�Ð ®å½ápÖmÛ+Ò¤ÏÀØjÖ
Ñ¤ØjápÎ�Û�Ó] /U; � ÎrÓ�ÒrápÎrÖ¶Ñ�ÒrÚpÓ�Ñ¤ØjápÎ�Û�Ó�ÜÀØ[Û�×�Ò¤ÏÀØjÖ�Ø�åp×�æ`Ï<ã`Ó�Ö�ÓTÐ[æjÓ`äT×jÖ¶Ð�å½ápÖ¶Û�Ò¤ÏÀØjÖ�Ò�×�ÎræjÓ�Ò]
/ ; � ÎrÓ�Ò¤á¶Î¤Ö¶Ñ�ÒrÚpÓ�Òr×jÎ¤æ`Ó�Ò�Ü<Ø[Û�×JÒ¤ÏÀØjÖ$Ø�å�×¯æjÏÀãjÓ�Ö^ÓTÐ[æjÓ`ê

� Z�: ��� k t�� ����� C ` �ae C!�Uk
ëhÚpÓ Ñ¤ápÍ¶Ñ¤Ó�Òçì� � � Ø�å®ÒrÚpÓ ì ÜÀ×jÖpæjá¶×jæjÓ¾ÒrÚ¶×JÒçÏÀÑ¬Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÓTÐ3Û�ØjÖmÑ°Ï�Ñ�Ò�Ñ¬Øjå±ÕpÎ¤Ø[Û�Ó�ÑrÑ°ÓTÑ
(*)�+ ,.++ÝNÐ[ØjÔ¬ÝG,�à#" 4 WJXZY\[C=+JIK+ � + MN+ � à 0+ä�Ù�ÚpÓ�Î¤Ó�)] b � � Û�ØjÖ¶Ñ¤ÏÀÑ°ÒrÑXØjå¶Ò¤Ú¶Ó7æ`á¶×�Î�Ð[ÓTÐ�×JÒrØjÔ®Ï�Û
ÕpÎrØ[Û�Ó�ÑrÑ\ÒrÓ�ÎrÔ®Ñ7�æ`á¶×�Î�Ð[Ó�Ð�×`Û+ÒrÏ<Ø`Ö�ÕpÎ¤ÓTÐ[Ï�Û�×JÒrÓ���; � j��� � 	 äJæ`á¶×�Î�Ð[ÓTÐ�Ñ°Ó�Ö¶ÐM��; � ��� � A ä
æjám×�Î�Ð[Ó�Ð�Î¤ÓTÛ�Ó�ÏÀãjÓ � ;�[� �F! A ä`ÐpÓ�Ü�×kÌgÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó[��äQÛ�Ø`Ö¶Ñ°Ï�Ñ°Ò¤Ó�ÖQÒ>Ð[ÓT×jÐ[ÜÀØ[Û�ùgÕpÎrØ¡Û�Ó�ÑrÑ�Ò¤Ó�ÎrÔ�¡ä�×�ÖmÐgæjám×�Î�Ð[Ó�Ð�ÏÀÖ¶Û�ØjÖ¶Ñ¤ÏÀÑ°Ò¤Ó�ÖQÒXÕpÎrØ[Û�ÓTÑ¤Ñ.Ò¤Ó�Î¤Ô ��;�gä�Ò¤ÚpÓ7ápÖ¶×jÎ¤Ì�ØjÕBÓ�Î�×JÒrØjÎ�Ñ�ÒrÚpÓh×�Ö¡Ì�Ð[Ó�è
Ü�×kÌ í�ï ä¡ÎrÓ�ÕBÓ�ÒrÏqÒrÏ<Ø`Ö%$¡äQÓ�Ö¶Û�×�Õ¶Ñ¤ápÜ�×JÒrÏ<Ø`Ö�#s$�Ý\à+ä¡ápÎræjÓ�ÖQÒ�Û�Ø`Ô¯Ô¿ápÖpÏ�Û�×�Ò¤ÏÀØjÖ�& ' ÝBà)×�Ö¶Ð^R�á¶Ô¯Õ
Ó�Öm×�ÍpÜÀÏ<Ö¶æ + , ->ä>×�Ö¶ÐçÒrÚpÓ^Í¶Ï<Ö¶×jÎ¤ÌçØjÕBÓ�Î�×JÒrØjÎ�ÑgÑ¤Ó�éQápÓ�ÖQÒrÏÀ×jÜ�Û�Ø`Ô®ÕmØQÑ°Ï<Ò¤ÏÀØjÖ ��ä>×jÜqÒrÓ�ÎrÖ¶×JÒrÏ<ã`Ó
Û�Ø`Ô®ÕmØQÑ°Ï<Ò¤ÏÀØjÖ í ï äp×jÖ¶Ð$Õ¶×�Î�×�ÜÀÜ<Ó�Ü�Û�ØjÔ®ÕBØ`Ñ¤ÏqÒrÏ<Ø`Ö�� �¡ê2�¶ØjÎrÔ(×�ÜÀÜ<Ì`äKb � �®ÏÀÑ�Ð[Ó�ú¶ÖpÓTÐ^Í¡Ì.

b� ��� � � �� ���5;?� ���5;@� ������ 	���P;@�M� �B� A ���P;@�D� � ! A � í b� � � ï�&$ b� ��� ��+ , -)Ý b ��� à/� b� ��� � b ���� b � � í ï b � � � b� ��� � � b� ��� �# $ Ý b ��� à��& ' Ý b � �Qà
�

44

i

s041934

û�Ö�ì ���¿ÕpÎ¤Ø[Û�Ó�ÑrÑ°ÓTÑ�äjÒ¤ÚpÓ�Î¤Ó�×�ÎrÓµÖpØ®Ð[Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Ñ
Ý_Ð[Ø`Ô¬Ý ,�à � F �N4 WJXZY\[Ckà+ä¡ÖpØ
×�ÜÀæjÓ�ÍpÎ�×�Ï�Û�ãJ×�ÎrÏ�×�ÍpÜÀÓ�Ñ�Ý LG� � à�ä¶×�Ö¶Ð^ÖpØ(ÎrÓ�Û�ápÎrÑ¤ÏÀØjÖ�ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Ñ�ÝGOL� � à+ê

û�Ö¾ì)ä�ÒrÚpÓ(æjá¶×jÎrÐEØjÕBÓ�Î�×JÒrØjÎ�Û�×jÖ�ÍBÓ(×�ÕpÕpÜÀÏÀÓ�Ð�Ò¤Ø£×�ÎrÍpÏ<Ò¤Î�×�ÎrÌ�ÕpÎ¤Ø[Û�Ó�ÑrÑ�ÒrÓ�ÎrÔ(Ñ�ê±â¡ÏÀÖ¶Û�Ó
Ï<Ò
Ï�Ñ�ÖpØjÒ
ÕBØ`ÑrÑ°ÏÀÍpÜÀÓgÒrØ±Ò¤Î�×�ÖmÑ°Ü�×JÒrÓ�Ò¤ÚpÓ¿æjá¶×jÎrÐ�Ø`ÕmÓ�Îr×�Ò¤Ø`Î�ÏÀÖE×±æ`Ó�ÖpÓ�Îr×jÜ�Ù7×kÌ`ä¶ÒrÚpÓ�Õ¶Î¤Ø[Û�ÓTÑ¤Ñ
Ò¤Ó�Î¤Ô(Ñ.Ò¤Ø·Ù�ÚpÏ�Û�ÚgÒ¤Ú¶Ó�æ`á¶×�Î�Ð�ØjÕBÓ�Î�×JÒrØjÎXÛ�×�Ö¿ÍmÓh×�Õ¶ÕpÜ<ÏÀÓ�Ð¿×�ÎrÓ)ÎrÓ�Ñ°Ò¤ÎrÏÀÛ�Ò¤ÓTÐ�Ò¤Ø
Ò¤ÚpÓ�Û�ØjÖ¶Ñ¤ÏÀÑ°Ò¤Ó�ÖQÒ
Ð[ÓT×jÐ[ÜÀØ[Û�ùBä�Ò¤Ú¶Ó)×jÛ�Ò¤ÏÀØjÖ�ÕpÎrÓ�Ð[Ï�Û�×�Ò¤Ó`äTá¶Ö¶Ð[Ó�Ü�×kÌ`×jÍpÜÀÓ>Ñ°Ó�Ö¶Ð�×�Ö¶Ð�á¶Ö¶Ð[Ó�Ü�×kÌ`×jÍpÜÀÓ�Î¤ÓTÛ�Ó�ÏÀãjÓ�Õ¶Î¤Ø[Û�ÓTÑ¤Ñ
Ò¤Ó�Î¤Ô(Ñ�ê

� Z Y � ?/C `�f�� CEbdc ^�`
û�Ö íqî�ï ämÙ�ÓgÐpÓ�ú¶ÖpÓ¿×¯å½ØjÎrÔ®×jÜ�Ò¤Î�×�ÖmÑ°Ü�×JÒrÏ<Ø`Ö�å½ÎrØjÔ ì� � � Ò¤Ø T
	 � ×�á[ÒrØjÔ(×JÒ�×pê>ûlÒ�Ï�ÑµÕ¶Î¤ØJã`Ó�Ð
Ò¤Úm×JÒ�×�Ö¡Ì£ÒrÎr×jÖ¶Ñ¤ÏqÒrÏ<Ø`Ö�Øjåh×�ìcÔ®Ø[Ð[Ó�Ü�Û�×�ÖçÍBÓ±Ô®Ï<Ô®Ï�Û�ùjÓ�Ð�Í¡Ì�×$ÒrÎr×jÖ¶Ñ°Ï<Ò¤ÏÀØjÖçÏÀÖ�ÒrÚpÓ±Û�Ø`Î°è
ÎrÓ�Ñ¤ÕmØ`Ö¶Ð[ÏÀÖpæEÚ¡Ì¡ÍpÎrÏÀÐ6×�á[ÒrØjÔ(×JÒrØjÖ Ô®Ø[Ð[Ó�Üh×jÖ¶Ð6ãQÏ�Û�Ó$ãjÓ�ÎrÑr×pê%ëhÚpÏ�Ñ®ÏÀÖ¶Ð[Ï�Û�×JÒrÓ�Ñ¿Ò¤Úm×JÒ®Ò¤ÚpÓ
Ò¤Î�×�ÖmÑ°Ü�×JÒrÏ<Ø`Ö¬ÏÀÑ�Û�ØjÎrÎ¤ÓTÛ+ÒTê�â¡Ï<ÖmÛ�Ó(×�Ô(×jÖQám×�ÜXÒ¤Î�×�Ö¶Ñ¤Ü�×JÒ¤ÏÀØjÖEÏÀÑ�ã`Ó�ÎrÌ^ÒrÏ<Ô®Ó(Û�Ø`Ö¶Ñ¤ápÔ®Ï<Öpæ�×�ÖmÐ
Ó�ÎrÎrØjÎ¤èVÕpÎrØjÖ¶Ójä[ÒrÚpÓ¯Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ¬Úm×jÑ
ÍmÓ�Ó�Ö�×já[Ò¤Ø`Ô(×JÒ¤ÓTÐ¬Í¡Ì�Ï<Ô®ÕpÜÀÓ�Ô®Ó�Ö`ÒrÏ<Ö¶æ$Ï<Ò�á¶Ñ°ÏÀÖpæ^Ò¤ÚpÓ
ÕpÎrØjæ`Îr×jÔ¯Ô®ÏÀÖpæ�Ü�×�Ö¶æjá¶×jæjÓ�ò>ÌQÒ¤ÚpØ`Ö í<î7�Jï ê

� � ��Å>Ê��¬ÉP"·ÄLÊ�Æ¿Ã Æ;S � Ñ°ápÍ P����µÉµÊ��¬ÉP"·Ä�Ê�Æ¯ÃQP ÈQPLÊ�Ã�$��
	��� �µÅ
ò)Ë
ô���Ó�Î$ÝNòLØjÜÀÌ¡ÚpÓ�Ð[Î�×�Ü�ËµÌ¡ÍpÎrÏÀÐ:ô�á[Ò¤Ø`Ô(×JÒ¤Ø`Ö ��Ó�ÎrÏ<å½ÌjÓ�Î+à í<î���ï Ï�Ñ¯×£Ò¤Ø¡Ø`Ü)å½Ø`Î¿×�Öm×�ÜÀÌ ��Ï<Ö¶æ
ÜÀÏ<ÖpÓT×�Î�ÚQÌ¡ÍpÎrÏ�Ð�û¤ýjð�è�×�á[ÒrØjÔ(×JÒ�×pê�ûlåpÙ7Ó>Î¤ÓTÑ�ÒrÎ¤Ï�Û+Ò.Ò¤ÚpÓ�Ü<ÏÀÖpÓ�×jÎ.Ú¡Ì¡ÍpÎrÏÀÐ�û¤ý`ð�èl×já[Ò¤Ø`Ô®×�Òr×�Ò¤Ø�Ò¤ÚpÓ
Û�Ü�×jÑrÑLØ�å\ÜÀÏ<ÖpÓT×�Î�Ú¡Ì¡ÍpÎrÏÀÐ¯û¤ýjð�è�×�ápÒ¤ØjÔ(×�Òr×µÙ�Ï<Ò¤Ú¶Øjá[Ò)ÏÀÖpÕpápÒ)ãJ×�ÎrÏÀ×jÍpÜ<ÓTÑL×�Ö¶Ð¯Ù�Ï<Ò¤ÚpØ`á[Ò)ØjápÒ¤Õpá[Ò
ãJ×�ÎrÏÀ×jÍpÜÀÓ�Ñ�äJÒ¤ÚpÓ�Ö®Ò¤ÚpÏ�Ñ)Û�ÜÀ×`Ñ¤Ñ>Ø�å\Ü<ÏÀÖpÓ�×jÎ>Ú¡Ì¡ÍpÎ¤Ï�Ð¯û¤ýjð�è�×�á[ÒrØjÔ(×JÒ�×·ÏÀÑ>×�Ñ¤ápÍ\Û�Ü�×jÑrÑ�Ø�å\ÒrÚpÓ T
	 �
×�ápÒ¤ØjÔ(×�Òr×$×jÑ�Ð[Ó�úmÖpÓ�ÐçÏÀÖ%â[Ó�Û+ÒrÏ<Ø`Ö � ê î ê¯ô
Ñ�×�Û�ØjÖmÑ°ÓTé`á¶Ó�Ö¶Û�Ójä\Ò¤Ú¶Ó(ì � �$Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ¶Ñ
Ò¤Úm×JÒ±Û�×jÖ ÍBÓ£ãjÓ�ÎrÏ<ú¶Ó�Ð á¶Ñ°ÏÀÖpæ¾ò)Ë
ô���Ó�Î®×jÎ¤Ó$ÎrÓ�Ñ°Ò¤ÎrÏÀÛ�Ò¤Ó�Ð:Ò¤ØçÒ¤Ú¶Ø`Ñ¤Ó�Ñ¤ÕBÓ�Û�Ï<úmÛ�×JÒ¤ÏÀØjÖmÑ�ÒrÚ¶×JÒ
ÎrÓ�Ñ¤ápÜqÒ¿Ï<Ö T
	��E×já[Ò¤Ø`Ô(×JÒr×¬Ù�ÏqÒrÚ:Ü<ÏÀÖpÓT×�Î¯Ï<Ö¡ãJ×�ÎrÏÀ×jÖQÒ�×�Ö¶Ð 'mØJÙ-Û�ØjÖmÐ[ÏqÒrÏ<Ø`Ö¶Ñ�äL×jÖ¶Ð%ÜÀÏ<Ö¶Ó�×�Î
R�ápÔ®Õ Û�ØjÖ¶Ð[Ï<Ò¤ÏÀØjÖmÑ�äµÙ�Ú¶Ó�ÎrÓE×%ÜÀÏ<ÖpÓT×�Î$Û�ØjÖmÑ�ÒrÎr×jÏ<ÖQÒ�Ï�Ñ�Ð[Ó�ú¶ÖpÓTÐ ×jÑ^×:Û�Ø`Ö¶Ñ°Ò¤Î�×�ÏÀÖ`Ò^ØJãjÓ�Î±×
Ñ¤Ó�Ò±Ø�å�ãJ×�ÎrÏ�×�ÍpÜÀÓ�ÑJ* Ò¤Ú¶×�Ò�Ï�Ñ(Ø�å�Ò¤Ú¶Ó£å½ØjÎrÔ�� E�� E � E ~ ��� M ä�Ù�Ï<Ò¤Ú � E +V�]�� ä � E]*:äL×�Ö¶Ð��] 4�R%+ � + �1CQêN�pápÎ¤Ò¤ÚpÓ�Î¤Ô®Ø`Î¤Ó`ä.ÒrÚpÓ�ì ���¬Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ¶Ñ�×�ÎrÓ±Î¤ÓTÑ�ÒrÎ¤Ï�Û+ÒrÓ�Ð�Ò¤Ø
Ò¤Ú¶Ø`Ñ¤Ó¯Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ¶Ñ�Ò¤Úm×JÒ�Î¤ÓTÑ°á¶ÜqÒ�Ï<ÖVT
	 � ×�ápÒ¤ØjÔ(×�Òr×^Ù�ÚpÏÀÛ�ÚçÐ[Ø$ÖpØ�Ò�Û�Ø`Ö`Ò�×�ÏÀÖEápÎræjÓ�ÖQÒ
Ò¤Î�×�ÖmÑ°Ï<Ò¤ÏÀØjÖ¶Ñ�ê�ëhÚpÏ�Ñ
Î¤ÓTÑ�ÒrÎ¤Ï�Û+ÒrÏ<Ø`Ö£ÏÀÑ
ÍmÓTÛ�×já¶Ñ°Ó¿Ï<Ö¬Ò¤ÚpÓ¯Ñ°Ó�Ô®×jÖQÒ¤Ï�Û�Ñ
Ø�å�Ò¤Ú¶Ó T
	 � Ð[Ó�ú¶ÖpÏ<Ò¤ÏÀØjÖ�ä
Ò¤Î�×�ÖmÑ°Ï<Ò¤ÏÀØjÖ¶Ñ�Û�×�Ö�ÍBÓgápÎræjÓ�ÖQÒTäpÙ�ÚpÏÀÜ<ÓgÏÀÖ$Ò¤ÚpÓ�Ü<ÏÀÖpÓ�×jÎµÚ¡Ì¡ÍpÎ¤Ï�Ð$û¤ýjð�è�×�á[ÒrØjÔ(×JÒ�×päQÒ¤Î�×�ÖmÑ°Ï<Ò¤ÏÀØjÖ¶Ñ
Û�×jÖpÖpØjÒhÍBÓ�ápÎræjÓ�Ö`ÒTê

�µØjÒ¤Ó�Ò¤Úm×JÒµÏÀÖ í<î�ï ä[Ò¤Ú¶Ó·ÎrÓ�Ü�×JÒrÏ<Ø`Ö^ÍBÓ�Ò�Ù7Ó�Ó�Ö^ÜÀÏÀÖpÓ�×jÎ�ÚQÌ¡ÍpÎrÏ�Ð�û¤ý`ð�èl×já[Ò¤Ø`Ô®×�Òr×¿×�Ö¶ÐNT
	 �
×�ápÒ¤ØjÔ(×�Òr×¿Ú¶×jÑhÍBÓ�Ó�Ö^å½Ø`Î¤Ô(×jÜ<Ï���ÓTÐ�ê

� O�"�P�� P�Ä�È�Ç�����Ä ���@R "·Ä��µÅ��B #���&�\ T Æ¿Ã£Ê�ÄLÆ�Å
ëhÚpÓ·ãjÓ�Î¤Ï<úmÛ�×�Ò¤ÏÀØjÖ±Øjå�×¿ì� � � Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ^á¶Ñ°ÏÀÖpæ®ò)Ë
ô���Ó�Î7Ï�Ñ7Ï<ÜÀÜÀá¶Ñ�ÒrÎr×�Ò¤ÓTÐ±Í¡Ì(Ô®Ó�×�ÖmÑ�Øjå
×�Ö(Ó�õp×�Ô®ÕpÜÀÓa�ÒrÚpÓ�Ùh×JÒrÓ�Î¤èVÜÀÓ�ã`Ó�Ü[Ô®ØjÖ¶ÏqÒrØjÎTäjÙ�ÚpÏ�Û�Ú±Ï�Ñ�Òr×jùjÓ�Ö¿å½ÎrØjÔ í<î � ï ê ��ÏÀÎ�Ñ�ÒTäjÒrÚpÓµÙh×JÒ¤Ó�Î°è
ÜÀÓ�ãjÓ�ÜLÔ¯Ø`ÖpÏ<Ò¤ØjÎ�Ï�Ñ·Ô®Ø¡ÐpÓ�ÜÀÓ�Ðçá¶Ñ¤Ï<Öpæ$ì� ��� ê®ëhÚpÓ�Ö¾Ù7Ó�ÒrÎr×jÖ¶Ñ¤ÜÀ×�Ò¤Ó¿Ò¤ÚpÓ(ì ��� Ñ°ÕBÓ�Û�ÏqúmÛ�×JÒrÏ<Ø`Ö
Ò¤Ø¬×¬ÚQÌ¡ÍpÎrÏ�Ðç×já[Ò¤Ø`Ô(×JÒ¤Ø`Ö T
	 � ê£â¡ÏÀÖ¶Û�Ó±Ò¤ÚpÓ±Ø`Í[Òr×jÏ<Ö¶Ó�Ð¾Ú¡Ì¡ÍpÎ¤Ï�Ð¾×�á[ÒrØjÔ(×JÒrØjÖ T
	 � ÏÀÑg×
ÜÀÏ<ÖpÓT×�Î�ÚQÌ¡ÍpÎrÏ�Ð�û¤ýjð�è�×�á[ÒrØjÔ(×JÒrØjÖ�ä�ÏqÒXÏÀÑ.ÕmØQÑ¤Ñ¤Ï<Í¶Ü<Ó)Ò¤Øµã`Ó�ÎrÏqå½Ì·ÕpÎrØjÕBÓ�Î¤Ò¤ÏÀÓ�Ñ�Øjå¡Ò¤ÚpÏ�Ñ�×já[Ò¤Ø`Ô(×JÒ¤Ø`Ö
Ô®Ø[Ð[Ó�Ü�á¶Ñ¤ÏÀÖpæ±ò)Ë
ô���Ó�Î�ê

	

45

i

s041934

ëhÚpÓ)Ùh×JÒrÓ�Î¤èVÜÀÓ�ã`Ó�ÜJÏÀÖ�×hÒ�×�Öpù�Ï�Ñ.Û�Ø`ÖQÒ¤ÎrØjÜÀÜ<ÓTÐ�ÒrÚpÎrØjápæ`Úg×�Ô®ØjÖpÏ<Ò¤Ø`Î�äkÙ�ÚpÏ�Û�ÚgÛ�Ø`Ö`ÒrÏ<Ö¡ápØ`á¶Ñ¤Ü<Ì
Ñ¤Ó�Ö¶Ñ¤Ó�Ñ�Ò¤Ú¶Ó·Ùh×JÒrÓ�Î¤èVÜÀÓ�ã`Ó�Ü\×�Ö¶Ð±Ò¤ápÎrÖ¶Ñ�×¿ÕpápÔ®Õ�ØjÖ$×�Ö¶Ð^Ø�øLêLócÚpÓ�Ö$Ò¤Ú¶Ó·Õ¶ápÔ®Õ^Ï�ÑhØ�øLä¡Ò¤ÚpÓ
Ùh×JÒ¤Ó�Î°èlÜÀÓ�ãjÓ�ÜpÏ�Ñ�Ð[Ó�ÖpØ�ÒrÓ�Ð�ÍQÌ¯ÒrÚpÓ
ãJ×jÎ¤Ï�×�ÍpÜÀÓ � ä[Ð[ÎrØjÕ¶Ñ)ÍQÌ þ ÕmÓ�ÎhÑ¤Ó�Û�ØjÖ¶Ð �`Ù�ÚpÓ�Ö±ÒrÚpÓ�Õpá¶Ô¯ÕÏ�ÑµØjÖ.äpÒ¤Ú¶Ó�Ùh×JÒ¤Ó�Î°èlÜÀÓ�ãjÓ�Ü�Î¤Ï�Ñ¤Ó�ÑµÍ¡Ì î ÕmÓ�Î·Ñ¤Ó�Û�ØjÖ¶Ð�êhëhÚ¶Ó�ÎrÓgÏÀÑ
×®Ò¤ÏÀÔ®Ó�Ð[Ó�ÜÀ×kÌ$Ø�å þ Ñ¤Ó�Û�ØjÖ¶ÐpÑ
ÍBÓ�Ò�Ù7Ó�Ó�Ö:Ò¤ÚpÓ�Ò¤ÏÀÔ¯Ó^Ò¤Úm×JÒ�ÒrÚpÓ$Ô¯Ø`ÖpÏ<Ò¤ØjÎ¯Ñ°ÏÀæjÖm×�Ü�Ñ�Ò¤ØçÛ�Ú¶×�Ö¶æjÓ(ÒrÚpÓ^Ñ°Òr×�Ò¤á¶Ñ¿Ø�å�ÒrÚpÓ�Õpá¶Ô¯Õ
×�ÖmÐ(Ò¤ÏÀÔ®Ó·Ò¤Ú¶×�Ò7ÒrÚpÓ�Û�Ú¶×�Ö¶æjÓ�ÍBÓ�Û�ØjÔ®Ó�Ñ7Ó�øBÓTÛ+Ò¤ÏÀãjÓ(Ý½Ò¤ÚpÏ�ÑhÏÀÑ7Ô®Ø[Ð[Ó�ÜÀÓ�Ð^Í¡Ì®Ò¤ÚpÓ�ãJ×�ÎrÏ�×�ÍpÜÀÓ\6\à+ê
û�ÖpÏ<Ò¤Ï�×�ÜÀÜ<Ì�ÒrÚpÓhÙ7×�Ò¤Ó�Î°èlÜ<Ó�ãjÓ�Ü`Ï�Ñ î ×jÖ¶Ð�ÒrÚpÓhÕpápÔ®Õ¿Ï�ÑXÒ¤á¶Î¤ÖpÓTÐgØ`Ö�êXëhÚ¶Ó�Ùh×JÒrÓ�Î¤èVÜÀÓ�ã`Ó�ÜQÔ¯Ø`ÖpÏ<Ò¤ØjÎ
Ï�ÑhÔ¯Ø[Ð[Ó�Ü<ÓTÐ$Ï<Ö�ì ���®×jÑ7å½ØjÜÀÜÀØJÙµÑ�

(+*-,/. W 6�+ �
+ 6Q� M + � � î� x6Q� î� � $pÝ�Ý x� � î 7 � � îUM®í ï�í � V îUM ; 4 6 C% 6w� M ��� ï à�)Ý x� � î 7 6 � þ í ï�í 6XV þ ; 4 � C^�ÒrÎ¤á¶ÓD��� ï à�)Ý x� � P þ 7 � V � í ï�í � � � ; 476�C 6�� M � � ï à�)Ý x� � P þ 7 6 � þ í ï�í 6XV þ ; 4 � C^�ÒrÎ¤á¶ÓD��� ï à
à

0

ëhÚpÏ�Ñ�Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖgÏ�Ñ.Ò¤Î�×�Ö¶Ñ¤ÜÀ×�Ò¤ÓTÐ�Ï<ÖQÒrØ
×�Ú¡Ì¡ÍpÎrÏÀÐg×já[Ò¤Ø`Ô(×JÒ¤Ø`Ö&T
	 �päJÙ�ÚpÏ�Û�ÚgÏÀÑXÑ¤ÚpØJÙ�Ö
ÏÀÖ��XÏÀæjápÎrÓ þ ê

ëhÚpÓ(ÏÀÖpÕpá[Ò�Ü�×�Ö¶æjá¶×jæjÓ¯Ø�å�ò)Ë�ô���Ó�Î�Ï�Ñg×�Ñ°Ò¤Î�×�ÏÀæjÚQÒ°å½Ø`Î¤Ùh×�Î�Ð�Ò¤Ó�õ¡Ò¤á¶×jÜ>Î¤Ó�ÕpÎrÓ�Ñ¤Ó�ÖQÒr×�Ò¤ÏÀØjÖ
Ø�å�ÜÀÏ<Ö¶Ó�×�Î)ÚQÌ¡ÍpÎrÏ�Ð®û¤ýjð�è�×�á[ÒrØjÔ(×JÒ�× í<î7�Jï ê ��Ñ¤ÏÀÖpæ�×gÛ�Ø¡ÐpÓ�èlæjÓ�Ö¶Ó�Î�×JÒ¤Ø`Î�ä�Ò¤ÚpÓ�Û�Ø[Ð[ÓµÙ�ÚpÏ�Û�Ú±Û�×jÖ
ÍBÓ·ámÑ°ÓTÐ$×`Ñ7Ï<ÖpÕ¶á[Ò�å½ØjÎµò�Ë�ô���Ó�Î�Ï�Ñ�×�á[ÒrØjÔ(×JÒrÏÀÛ�×�ÜÀÜ<Ì(æ`Ó�ÖpÓ�Îr×�Ò¤Ó�Ð±å½Î¤Ø`Ô5Ò¤Ú¶Ó�Ü<ÏÀÖpÓ�×jÎ�Ú¡ÌQÍ¶Î¤Ï�Ð
û¤ýjð�è�×�ápÒ¤ØjÔ(×�Ò¤ØjÖ�Ô¯Ø[Ð[Ó�ÜNê

ëhÚpÓgÑr×Jå½Ó�Ò�Ì(Õ¶Î¤Ø`ÕmÓ�Î°Ò�Ì®ÒrÚ¶×JÒ�ÒrÚpÓ�Ù7×�Ò¤Ó�Î¤èlÜ<Ó�ãjÓ�ÜBÚ¶×`Ñ7Ò¤Ø®ÍmÓ�ù`Ó�Õ[Ò�ÍBÓ�Ò�Ù7Ó�Ó�Ö î R � R îkþÚ¶×`Ñ¿ÍBÓ�Ó�Ö ã`Ó�ÎrÏqú¶ÓTÐ:á¶Ñ¤ÏÀÖpæçò�Ë�ô���Ó�ÎTê ò)Ë
ô���Ó�Î®Î¤Ó�ÕmØ`Î°ÒrÓ�Ð¾ÒrÚ¶×JÒ®Ò¤Ú¶ÏÀÑ®Ñr×Jå½Ó�Ò�Ì%Õ¶Î¤Ø`ÕmÓ�Î°Ò�Ì
ÚpØ`ÜÀÐpÑ¿ÏÀÖt×jÜ<ÜhÜÀØ¡Û�×JÒrÏ<Ø`Ö¶Ñ�ê¾û�Ö íqî�ï ä>Ù7Ó$Ú¶×kãjÓ$×£Ò¤Ú¶Ó�ØjÎrÓ�Ô ÒrÚ¶×JÒ(Ñ°Òr×JÒrÓ�Ñ¿Ò¤Úm×JÒ¯Ò¤ÚpÏ�Ñ(Ñ¤×�å½Ó�Ò�Ì
ÕpÎrØjÕBÓ�Î¤Ò�ÌE×�Ü�Ñ¤Ø$Ú¶ØjÜ�ÐpÑ�Ï<Ö¾ÒrÚpÓ(Ú¡Ì¡ÍpÎ¤Ï�Ð¾×�á[ÒrØjÔ(×JÒrØjÖVT
	��¶ê^â¡ÏÀÖ¶Û�Ó(Ù7Ó(ÕpÎrØJãjÓ�ÐEÒ¤Úm×JÒ�×�Ö¡Ì
Ò¤Î�×�ÖmÑ°Ï<Ò¤ÏÀØjÖ�Ø�å>×®ì ���±Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ¬Û�×�Ö�ÍmÓ�Ô¯ÏÀÔ®ÏÀÛ�ù`Ó�Ð�Í¡Ì�×¯Ò¤Î�×�Ö¶Ñ¤ÏqÒrÏ<Ø`Ö�Ï<Ö£ÒrÚpÓ�Û�ØjÎrÎ¤Ó�è
Ñ¤ÕmØ`Ö¶Ð[ÏÀÖpæ±Ú¡Ì¡ÍpÎ¤Ï�Ð£×�ápÒ¤ØjÔ(×�Ò¤ØjÖ�T 	���×�ÖmÐ�ãQÏ�Û�Ó�ãjÓ�Î�Ñr×päpÏ<Ò
Û�×jÖ£ÍmÓ¯Û�Ø`Ö¶Û�ÜÀá¶Ð[ÓTÐ$Ò¤Ú¶×�Ò�Ò¤Ú¶ÏÀÑ
Ñr×Jå½Ó�Ò�Ì�ÕpÎ¤Ø`ÕmÓ�Î°Ò�Ì±×jÜÀÑ¤Ø®ÚpØjÜ�ÐpÑhÏÀÖ$Ò¤ÚpÓ�Ø`Î¤ÏÀæjÏÀÖ¶×�Ü\ì ���®Ñ°ÕBÓ�Û�ÏqúBÛ�×JÒrÏ<Ø`Ö�ê

� O Æ¿Ã�ÉD �ÈQPLÊ�Æ¯ÃQP "gÃ�Ç S`È^ÄLÈ�Å �@R Æ�Å��
ëhÚpÏ�Ñ�Õ¶×jÕmÓ�ÎµÕpÎrÓ�Ñ¤Ó�ÖQÒrÑ7ÒrÚpÓgÔ(×�ÏÀÖ¬×jÑ¤ÕmÓTÛ+Ò�Ñ�Ø�åXÒ¤ÚpÓ¿Û�ápÎrÎ¤Ó�ÖQÒ�Ñ°Òr×�Ò¤á¶ÑµØ�åLÒ¤ÚpÓ�ì:å½ØjÎrÔ®×jÜ<Ï�Ñ¤Ô$ê
ûlÒ�ÏÀÜ<ÜÀá¶Ñ°Ò¤Î�×JÒrÓ�Ñ·Ò¤Úm×JÒgÒrÚpÓ±ì å½ØjÎrÔ(×�ÜÀÏÀÑ¤Ô Ï�ÑgÛ�Ü<ØQÑ°Ó�Ü<Ì�Î¤Ó�ÜÀ×�Ò¤Ó�Ð�ÒrØ£Ø�Ò¤Ú¶Ó�Î�å½Ø`Î¤Ô(×�ÜÀÏ�Ñ°Ô(Ñ·å½ÎrØjÔ
Þ�ß!×jÖ¶Ð�ßhâ�ê

ó�ÓµÐpÓ�ÑrÛ�ÎrÏ<ÍBÓhÒ¤ÚpÓhÒrÎr×jÖ¶Ñ¤ÜÀ×�Ò¤ÏÀØjÖ¯Ø�å�×·Ñ¤ápÍ¶Ñ¤Ó�Ò>ØjåBì�ÒrØ�ÚQÌ¡ÍpÎrÏ�Ð¯×já[Ò¤Ø`Ô(×JÒr×
ÒrÚ¶×JÒ>Ó�Ö¶×�ÍpÜÀÓ�Ñ
ãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ¯Ø�å\ì¬Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ¶Ñ�ámÑ°ÏÀÖpæ�Ó�õ[Ï�Ñ�ÒrÏ<Ö¶æ�ÚQÌ¡ÍpÎrÏ�Ð¿×já[Ò¤Ø`Ô®×�Òr×�Í¶×`Ñ°ÓTÐ�ã`Ó�ÎrÏqúBÛ�×JÒrÏ<Ø`Ö
Ò¤Ø¡Ø`ÜÀÑ�ê�ö£Ø`Î¤Ó�ØJãjÓ�Î�ä�Ù�ÓhÐ[Ï�Ñ¤Û�á¶Ñ¤Ñ.Ò¤Ú¶Ó�ÎrÓ�Ü�×JÒrÏ<Ø`ÖgÍmÓ�Ò�Ù�Ó�Ó�ÖgÚ¡Ì¡ÍpÎrÏÀÐ�×�á[ÒrØjÔ(×JÒ�×�×�ÖmÐ�Ò¤Ú¶Ó�ÜÀÏ<Ö¶Ó�×�Î
Ú¡Ì¡ÍpÎ¤Ï�Ð¿û¤ýjð ×já[Ò¤Ø`Ô®×�Òr×
Ò¤Úm×JÒ>×�ÎrÓhá¶Ñ°ÓTÐgå½Ø`ÎLÒ¤ÚpÓ�ã`Ó�ÎrÏqúBÛ�×JÒrÏ<Ø`ÖgÒrØQØ`Üpò)Ë
ô���Ó�ÎµÝ_òLØjÜÀÌ¡ÚpÓ�ÐpÎr×jÜ
ËµÌ¡ÍpÎrÏ�Ð^ô�á[Ò¤Ø`Ô®×�Ò¤Ø`Ö ��Ó�Î¤Ï<å½ÌjÓ�Î�à�êLô
Ñµ×¯Û�×jÑ¤Ó�Ñ�Òrá¶Ð[Ì`ä[Ù�Ó·Ò¤Î�×�ÖmÑ°Ü�×JÒrÓ·×¯ì%Ñ°ÕBÓ�Û�ÏqúBÛ�×JÒrÏ<Ø`Ö^Øjå
×gÙh×JÒrÓ�Î¤èVÜÀÓ�ã`Ó�ÜmÔ¯Ø`ÖpÏ<Ò¤ØjÎ�Ò¤Ø®×¯Û�ØjÎrÎrÓ�Ñ¤ÕmØ`Ö¶Ð[ÏÀÖpæ�Ü<ÏÀÖpÓT×�ÎhÚ¡ÌQÍ¶Î¤Ï�Ð(û¤ýjð@×já[Ò¤Ø`Ô(×JÒ¤Ø`Ö�ä[×�Ö¶Ð±á¶Ñ°Ó
ò)Ë
ô���Ó�ÎhÒ¤Ø®ãjÓ�Î¤Ï<å½Ì±ÕpÎrØjÕBÓ�Î¤Ò¤ÏÀÓ�Ñ�ê

F

46

i

s041934

6w� M ä
WJXZY\[� M
� � î ä

6�� þ ä
Ý-4�� � +��=6 C=+°Ò¤ÎrápÓTà�ä

�

� 8 � 4 � � ä

� 8 � �zy��
'¶ØJÙ% x6w� î 7 x� � P þ 7 � VU� 7 xWJXZY\[� î

Ï<Ö¡ã.��=6�� î 7 � � ��P þ 7 � V �

� 8 � �zy 8
'mØJÙ% x6Q� î 7 x� � î 7 � � îTM 7 xWJXZY [� î

ÏÀÖQã.��=6w� î 7 � � � î 7 � � îTM � 8 ��� � � ä
6�� þ ä

Ý@4�� � +��=6 C +�Ò¤ÎrápÓkà+ä
�

� 8 � �}y 4
'¶ØJÙ% x6�� î 7 x� � î 7 6 � þ 7 xWJXZY\[� î

ÏÀÖ¡ã.��=6w� î 7 � � � î 7 6 � þ

� 8 � �}y �
'¶ØJÙ% x6w� î 7 x� ��P þ 7 6 � þ 7 xWJXZY\[� î

Ï<Ö¡ã.��a6Q� î 7 � � � P þ 7 6 � þ

� 8 � 8 � � ä� � îUM ä
Ý-476�+	� � +	�a6�C=+ 6 �3� M à�ä

�

� 8 � þ�
 � ä� � �[ä
Ý@4 6�+�� � +��=6 C + 6��F� M à+ä

�

�XÏÀæjápÎrÓ þ UX·Ó�ÖpÓ�Îr×�Ò¤ÓTÐ�Ùh×JÒrÓ�Î¤èVÜÀÓ�ã`Ó�Ü\Ô®ØjÖpÏ<Ò¤Ø`Îµ×�á[ÒrØjÔ(×JÒrØjÖ�ê

S

47

i

s041934

ô�Ñ�×jÖç×jÜqÒrÓ�ÎrÖ¶×JÒrÏ<ã`Ó�ÒrØ�×jÖ¶×�ÜÀÌ3��Ó¯ìcÑ°ÕBÓ�Û�ÏqúmÛ�×JÒrÏ<Ø`Ö¶Ñ·á¶Ñ°ÏÀÖpæ�Ú¡Ì¡ÍpÎ¤Ï�Ðç×�á[ÒrØjÔ(×JÒ�×�Í¶×`Ñ°ÓTÐ
ãjÓ�Î¤Ï<úmÛ�×JÒ¤ÏÀØjÖ¾ÒrØ¡ØjÜ�Ñ�äLì�Ñ¤ÏÀÔ�ápÜ�×JÒrØjÎ�Ñ�Û�×jÖ:ÍBÓ^á¶Ñ¤Ó�Ð%Ò¤Ø�Ñ¤ÏÀÔ�ápÜ�×JÒrÓ�ì�Ñ¤ÕBÓ�Û�Ï<úmÛ�×JÒ¤ÏÀØjÖmÑ�ê���Ó�è
Û�Ó�ÖQÒ¤ÜÀÌjäp×(Ñ¤ÌQÔ¿ÍmØ`Ü<Ï�Û�Ñ°ÏÀÔ�á¶ÜÀ×�Ò¤ØjÎhÚ¶×`ÑhÍmÓ�Ó�Ö£Ð[Ó�ãjÓ�ÜÀØjÕBÓ�Ð�å½ØjÎ�ì�ê

÷�ÏÀùjÓ�ÏÀÖ�ô�ß7ò í<î 	Tï ×�Ö¶Ð�ËµÌ[ò�ô í<îUFkï ä¶×®Ñ¤Ó�ÒµØ�åXÍ¶×jÑ¤Ï�Û�ÒrÓ�ÎrÔ(ÑgÝ½ÏÀÖ£×¯Ñ¤ápÍ¶Ñ¤Ó�ÒµØjåXìLà7Ú¶×jÑ
ÍBÓ�Ó�Ö¾Ð[Ó�ú¶ÖpÓ�Ð�ÏÀÖ`ÒrØ^Ù�Ú¶ÏÀÛ�Ú¾×�ÜÀÜ�Û�ÜÀØ`Ñ¤Ó�Ð£ÒrÓ�ÎrÔ(Ñ¯Ý_Ø�å�Ò¤ÚpÓ(Ñ¤ápÍ¶Ñ¤Ó�Ò�Ø�å)ìLà·Û�×�Ö�ÍmÓ®ÎrÓ�Ù�ÎrÏqÒ¤Ò¤Ó�Ö
á¶Ñ¤Ï<Ö¶æ^ìtÕpÎrØjÕBÓ�Î¤Ò¤ÏÀÓ�Ñ�ê�ëhÚ¶ÏÀÑ�Ï�Ñ�Ñ°ØjèlÛ�×�ÜÀÜ<ÓTÐ�Ó�ÜÀÏ<Ô®ÏÀÖ¶×JÒrÏ<Ø`Ö�ä�Ù�ÚpÏ�Û�ÚEÏ�Ñ�×±á¶Ñ¤Ó�å½ápÜ>Ñ°Ò¤Ó�Õ¬å½Ø`Î�×jÜqè
æjÓ�ÍpÎ�×�Ï�Û±×�Ö¶×jÜ<Ì[Ñ¤ÏÀÑ�ä�ÍBÓ�Û�×já¶Ñ¤Ó^Ï<Ò¯ÎrÓ�Ðpá¶Û�ÓTÑgÒrÚpÓ£Û�ØjÔ®ÕpÜÀÓ�õ[Ï<Ò�Ì¾Ø�å
Ñ¤ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ¶Ñ$Ý½Ù�Ï<Ò¤Ú¶Øjá[Ò
ÎrÓ�Û�á¶ÎrÑ¤Ï<Ø`Ö^ãJ×jÎ¤Ï�×�ÍpÜÀÓ�Ñ�à7Í¡Ì�ÒrÎr×jÖ¶Ñ°å½ØjÎrÔ¯ÏÀÖpæ¯Ò¤Ú¶Ó�Ô Ï<ÖQÒrØ±Ñ°ÏÀÔ®ÕpÜ<Ó�Îµå½Ø`Î¤Ô(Ñ�ê7ëhÚpÓ�Ó�ÜÀÏ<Ô®ÏÀÖ¶×JÒrÏ<Ø`Ö
ÎrÓ�Ñ¤ápÜqÒ·×�ÜÀÜ<ØJÙµÑhÒrØ±Ó�ÜÀÏÀÔ¯ÏÀÖ¶×�Ò¤ÓgÒrÚpÓ�Õm×�Î�×�ÜÀÜ<Ó�Ü.Û�Ø`Ô¯ÕBØ`Ñ¤Ï<Ò¤ÏÀØjÖ�å½ÎrØjÔ Ô®×jÖ¡Ì^ìtÑ°ÕBÓ�Û�ÏqúmÛ�×JÒrÏ<Ø`Ö¶Ñ�ä
×�ÖmÐEÏ<Ò�Û�×jÖçÍBÓ(ÎrÓ�æ`×jÎrÐpÓ�Ð¬×`Ñ�×�ÕpÎ¤Ó�ÕpÎrØ¡Û�Ó�ÑrÑ°ÏÀÖpæ$Ñ�ÒrÓ�Õçå½ØjÎ�ÒrÚpÓ(Ü<ÏÀÖpÓT×�ÎrÏ �T×JÒ¤ÏÀØjÖtÝ�ÒrÎr×jÖ¶Ñ�å½Ø`Î°è
Ô(×JÒrÏ<Ø`Ö^ØjåL×¯ÎrÓ�Û�á¶ÎrÑ¤Ï<ã`Ó·Ñ¤ÕBÓ�Û�Ï<úmÛ�×JÒ¤ÏÀØjÖ$ÏÀÖ`ÒrØ®Ü<ÏÀÖpÓ�×jÎhå½ØjÎrÔ±à7Ø�å�ì%Õ¶Î¤Ø[Û�ÓTÑ¤Ñ¤Ó�Ñ�ê

� É ��Ã�Æ�R #�µÇN$=T ��Ã®ÄEP
ëhÚpÓ�×já[Ò¤Ú¶ØjÎ�Ñ�Ù�Ø`ápÜ�Ð^ÜÀÏÀùjÓ�ÒrØ(Ò¤Ú¶×jÖpù��¶ê�ß
ê ö:ê��h×�Ó�Ò¤Ó�Ö.ämÞ¿ê ô�êmãJ×�Ö��7Ó�Ó�ù\ämö%ê ôgê���Ó�ÖpÏ<Ó�ÎrÑ
×�ÖmÐ��mê ��ê	��Ø¡Ø[Ðp×^å½ØjÎ�ÒrÚpÓ±Ñ°á¶ÕmÓ�Î¤ã¡Ï�Ñ°ÏÀØjÖçØ�åhØjápÎgò)Ú�ê Þ5Î¤ÓTÑ°ÓT×�Î�Û�ÚEÙ7ØjÎrù\ê��¶ápÎ¤Ò¤ÚpÓ�Î¤Ô®ØjÎrÓjä
Ù7Ó
ÒrÚ¶×�Ö¶ù
��ØjÜ<å�ëhÚpÓ�ápÖ¶ÏÀÑrÑ°Ó�Ö$å½ØjÎ�ÕBÓ�Î¤å½ØjÎrÔ¯ÏÀÖpæ¯Ò¤Ú¶ÓgÛ�×jÑ¤Ó�Ñ�Òrá¶Ð[Ìjê

� � S ��Å ��Ã�ÉP� P
í<î�ï ö¬×jÖ�ä�®ê ÷)ê<ä�â[Û�Ú¶Ïqø\Ó�ÜÀÓ�Î�Ñ�ä���ê ��ê Ëgê� �¶ØjÎrÔ®×jÜLâ[ÕmÓTÛ�Ï<úmÛ�×�Ò¤ÏÀØjÖ�×jÖ¶Ð¬ô�Ö¶×�ÜÀÌ[Ñ°Ï�Ñ·Ø�å)ËµÌQè

ÍpÎrÏÀÐ�â¡Ì[Ñ�ÒrÓ�Ô(Ñ�ê#ò>Ú¶Þ Ò¤ÚpÓTÑ°Ï�Ñ�ä��>ÏÀÖ¶Ð[ÚpØJã`Ó�Ö �µÖ¶Ï<ã`Ó�Î�Ñ°Ï<Ò�Ì6Øjå�ë.ÓTÛ�ÚpÖpØ`Ü<Ø`æjÌ�ÝNë.Ø6ÍmÓ
×jÛ�Û�Ó�Õ[Ò¤ÓTÐ¶à

í þkï ��×jápÔ®Ø`Ñ¤ù¡ÏNä X¯êÀä\ô�Ü<ÍBÓ�Î¤ÒrÑ�ä�ó3ê�Eô#Þ
Ï�Ñ¤Û�Î¤Ó�Ò¤Ó�è �>ã`Ó�ÖQÒ·â¡ÏÀÔ�á¶ÜÀ×�Ò¤ØjÎ�å½ØjÎ�â¡Ì[Ñ�ÒrÓ�Ô(Ñ �>Ö[è
æjÏÀÖpÓ�Ó�ÎrÏ<Öpæmê�ò>Ú¶Þ�ÒrÚpÓ�Ñ¤Ï�Ñ�äd�)Ï<Ö¶ÐpÚpØJãjÓ�Ö%��ÖpÏ<ã`Ó�Î�Ñ°Ï<Ò�Ì(Ø�å�ë�Ó�Û�ÚpÖpØ`Ü<Ø`æjÌ¬Ý îUS S�F à

í �Jï ãJ×�Ö���Ó�Ó�ù\ä�Þ�ê ôgêÀä>ãJ×�Ö6Ð[Ó�ÖtË�×�Ô�ä>ô�ê<ä��µØQØ[Ðp×¶ä��¶ê �µê�5ö£Ø[Ð[Ó�ÜÀÜ<ÏÀÖpæç×�Ö¶Ð:Û�ØjÖQÒ¤ÎrØjÜ
Ø�åµÕ¶Î¤Ø[Û�ÓTÑ¤Ñ�Ï<ÖmÐ[á¶Ñ°Ò¤ÎrÌçÍm×JÒrÛ�Ú ÕpÎ¤Ø[Ð[ámÛ+Ò¤ÏÀØjÖ:Ñ¤Ì[Ñ�ÒrÓ�Ô(Ñ�êEû�Ö î �JÒ¤Ú ë�ÎrÏ<Ó�ÖpÖpÏ�×�Ü)óçØjÎrÜ�Ð
ß�ØjÖ¶æjÎrÓ�ÑrÑ�Øjå�ÒrÚpÓgû�ÖQÒ¤Ó�Î¤Öm×JÒ¤ÏÀØjÖm×�Ü �pÓTÐ[Ó�Î�×JÒrÏ<Ø`Ö^ØjåLô�á[Ò¤Ø`Ô®×�Ò¤Ï�Û�ß�ØjÖQÒ¤ÎrØjÜVä��h×�Î�Û�Ó�Ü<Ø`Ö¶×
Ý þ M MQþ à�ß7Þµè��µð·ö%ê

í ��ï ���×�ÍpÏ��×�Ö.ä X¯ê�Eô ÷.×jÖpæjá¶×jæjÓg×jÖ¶ÐEâ¡ÏÀÔ�ápÜ�×JÒrØjÎ
å½ØjÎ�ËµÌ¡ÍpÎrÏÀÐ�â¡Ì[Ñ�ÒrÓ�Ô(Ñ�ê�ò)Ú¶Þ�ÒrÚpÓ�Ñ¤Ï�Ñ�ä�>ÏÀÖ¶Ð[Ú¶ØJãjÓ�Ö �µÖ¶Ï<ã`Ó�Î�Ñ°Ï<Ò�Ì(Ø�å�ë.ÓTÛ�ÚpÖpØ`Ü<Ø`æjÌ¬Ý îTS S�S à
í � ï ãJ×�Ö��7Ó�Ó�ù\ä¶Þ�ê ôgêÀä��µØQØ[Ðp×¶ä��mê ��ê ¯÷.×�Ö¶æjá¶×jæjÓ�Ñh×jÖ¶Ð�×�ÕpÕpÜÀÏ�Û�×JÒrÏ<Ø`Ö¶Ñ�ÏÀÖ�ÚQÌ¡ÍpÎrÏ�Ð^Ô®Ø[Ð¡è

Ó�ÜÀÜÀÏ<Öpæ$×�Ö¶ÐEÑ°ÏÀÔ�ápÜ�×JÒrÏ<Ø`Ö hòLØ`Ñ¤ÏqÒrÏ<Ø`ÖpÏ<Ö¶æ(Ø�å7ß�ÚpÏVê·ß�ØjÖQÒrÎ¤Ø`Ü��>Ö¶æjÏÀÖpÓ�Ó�Î¤ÏÀÖpæ±ò>Î�×jÛ�Ò¤Ï�Û�Ó��
Ý þ M M�M à Fpî�� Spî

í �Jï �7Ø`Ñ�ä2��êÀä���ÜÀÓ�Ï R�Ö�ä��mê �¶ê ë�ê �pØ`Î¤Ô(×jÜhâ¡ÕBÓ�Û�ÏqúBÛ�×JÒrÏ<Ø`Ö6×jÖ¶Ð ô�Ö¶×�ÜÀÌ[Ñ°Ï�Ñ�Øjå�û�Ö¶Ð[ámÑ�ÒrÎ¤Ï�×�Ü
â¡Ì[Ñ°Ò¤Ó�Ô(Ñ�ê>ò>Ú¶Þ3Ò¤ÚpÓTÑ°Ï�Ñ�äd�)Ï<ÖmÐ[ÚpØJãjÓ�Ö%��ÖpÏÀãjÓ�Î�Ñ¤ÏqÒ�Ì(ØjåLë�Ó�Û�ÚpÖ¶ØjÜÀØjæjÌ¬Ý þNM�M`þ à

í
	Tï �7Ø`Ñ�ä3��êÀä���Ü<Ó�Ï R�Ö�ä��mê �¶ê ë�ê �ôµápÒ¤ØjÔ(×�Ò¤Ï�Û�ã`Ó�ÎrÏqúmÛ�×JÒrÏ<Ø`Ö±Ø�åL×�Ô(×�Ö¡á[å_×`Û+ÒrápÎ¤ÏÀÖpæ¯Ñ°Ì[Ñ°Ò¤Ó�Ô�ê
��Ø`ÍmØjÒ¤Ï�Û�Ñµ×jÖ¶Ð�ß�Ø`Ô®Õpá[Ò¤Ó�Î�û�ÖQÒ¤Ó�æ`Îr×�Ò¤ÓTÐ^ö¬×jÖ¡á[å_×jÛ�Ò¤ápÎrÏ<Ö¶æ�� �çÝ þNM M�M à îUF � �BîTS F

í FJï ËµÓ�ÖK��ÏÀÖpæ`Ó�ÎTä\ë�ê ôgê��ëhÚ¶ÓgÒ¤Ú¶Ó�ØjÎrÌ�Ø�å)Ú¡Ì¡ÍpÎrÏÀÐE×�á[ÒrØjÔ(×JÒ�×pê·û�Ö¬û�Ö¶×�Ö.ä�ö%ê<ä���ápÎ�Ñ¤Ú¶×�Ö�ä
��êÀä¡Ó�ÐpÑ�ê ���Ó�ÎrÏ<úmÛ�×�Ò¤ÏÀØjÖ±Øjå�Þ
ÏÀæjÏ<Òr×�Ü\×�ÖmÐ(ËµÌ¡ÍpÎrÏÀÐ�â[Ì¡Ñ°Ò¤Ó�Ô(Ñ�ê ��ØjÜÀápÔ®Ó î 	 M Ø�å��
ô�ë�ð

îUM

48

10i

s041934

ô
â[û�â¡Ó�ÎrÏ<ÓTÑD� \ß�Ø`Ô¯Õ¶á[Ò¤Ó�Î
×�ÖmÐ¬â¡Ì[Ñ�ÒrÓ�Ô(Ñ�â[Û�Ï<Ó�Ö¶Û�Ó`ê�â[ÕpÎ¤ÏÀÖpæ`Ó�Î¤è ��Ó�Î¤Ü�×�æmä �µÓ�Ù��>Ø`Î¤ù
Ý þ M M�M à þ � � �[þ S`þ

í SJï ôµÜÀápÎTä �gê<ä�ËµÓ�ÖK��ÏÀÖpæ`Ó�ÎTä�ë�ê ôgêÀäXË�Ø¶äLòLê Ë�ê �ôµá[ÒrØjÔ(×JÒrÏÀÛ(Ñ¤Ì¡Ô�ÍBØjÜÀÏÀÛ®ã`Ó�ÎrÏqúBÛ�×JÒrÏ<Ø`Ö�Øjå
Ó�Ô¿ÍmÓTÐpÐ[ÓTÐ�Ñ¤Ì¡Ñ°Ò¤Ó�Ô(Ñ�ê�û ���a�:ë�Îr×jÖ¶Ñr×jÛ+ÒrÏ<Ø`Ö¶Ñ�Ø`Ö^â¡Ø�å�Ò�Ùh×�ÎrÓ��)ÖpæjÏÀÖpÓ�Ó�Î¤ÏÀÖpæ����¬Ý îUS�Sa� à
îUF¶î �pþNMpî

í<îUMJï ãJ×�Ö%Ð[Ó�Î�â[Û�Ú¶×Jå�ÒTä.ôgê �mê<äLâ[Û�Ú¡ápÔ(×jÛ�ÚpÓ�Î�ä�mê ö:ê ôµÖ¾û�ÖQÒ¤ÎrØ[Ð[á¶Û+ÒrÏ<Ø`ÖEÒrØ£ËµÌ¡ÍpÎrÏÀÐçÞ�ÌQè
Ö¶×jÔ¯Ï�Û�×jÜ�â¡Ì[Ñ�ÒrÓ�Ô(Ñ�ê ��ØjÜÀápÔ®Ó þ � î Ø�å�â[ÕpÎ¤ÏÀÖpæ`Ó�Î(÷�ÓTÛ+Ò¤á¶Î¤Ó��µØjÒ¤ÓTÑ¿ÏÀÖ ß�ØjÖQÒ¤ÎrØjÜh×�ÖmÐ
û�Ö[å½Ø`Î¤Ô(×JÒrÏ<Ø`Ö�âpÛ�ÏÀÓ�Ö¶Û�Ó�Ñ�ê)â¡ÕpÎrÏ<Öpæ`Ó�Î�Ý þ M M�M à

í<îjî�ï ËµÓ�ÖK��ÏÀÖpæ`Ó�ÎTä�ë�ê ô�ê<ä.Ë�Ø¶ä�òLê ËgêÀä�ó�Ø`Öpæ�è�ë�ØjÏVä\Ë�ê %ô#á¶Ñ¤Ó�Î�æjápÏ�Ð[Ó¿Ò¤Ø����
	�����Lêgû�Ö
�XÏ<Î�Ñ°Ò�û�ÖQÒ¤Ó�ÎrÖ¶×�Ò¤ÏÀØjÖ¶×jÜ�ß�ØjÖ[å½Ó�Î¤Ó�Ö¶Û�Ó�Ø`Ö¬ë.Ø¡ØjÜ�Ñµ×jÖ¶Ð�ôµÜÀæjØjÎrÏ<Ò¤ÚpÔ(Ñhå½Ø`Î�Ò¤ÚpÓ®ß�ØjÖ¶Ñ°Ò¤Îrá¶Û+è
Ò¤ÏÀØjÖ�×�ÖmÐ^ô�Ö¶×�ÜÀÌ[Ñ°Ï�ÑhØ�å�â¡Ì[Ñ�ÒrÓ�Ô(Ñhë�ô�ß7ô·â\ê¶÷�ÓTÛ+ÒrápÎ¤Ó �µØjÒ¤ÓTÑhÏ<Ö¬ß�ØjÔ®Õpá[ÒrÓ�Î�â[Û�Ï<Ó�Ö¶Û�Ó
îUM¶îUS ä[â[ÕpÎ¤ÏÀÖpæ`Ó�ÎP��Ó�ÎrÜ�×�æ�Ý îUS�S �`à �mî � 	¡î

í<îTþkï �µÏ�Û�Ø`Ü<ÜÀÏÀÖ�ä���êÀä`ð
Ü<ÏÀãjÓ�Î¤ØmäTô�ê<äQâ¡Ïqå_×jù¡ÏÀÑ�ä �¶êÀä��>ØJã¡Ï<ÖpÓ`ä�â\ê �ôµÖ¿×jÕpÕpÎrØ`×`Û�Ú
ÒrØµÒrÚpÓ7ÐpÓ�ÑrÛ�ÎrÏ<Õ[è
Ò¤ÏÀØjÖ%×jÖ¶Ð¾×�Ö¶×jÜ<Ì[Ñ¤ÏÀÑ·Ø�åhÚ¡Ì¡ÍpÎ¤Ï�ÐçÑ°Ì[Ñ°Ò¤Ó�Ô(Ñ�ê(û�Ö góçØjÎrù[Ñ°ÚpØ`ÕEØ`Ö¾ëhÚ¶Ó�ØjÎrÌ£Ø�å�ËµÌ¡ÍpÎrÏ�Ð
â¡Ì[Ñ°Ò¤Ó�Ô(Ñ�ê.Ý îTS SQþ à î���S �Bî 	 F

í<î7�Jï ò>ÌQÒrÚpØjÖ$Ù�Ó�Í¶Ñ¤ÏqÒrÓa(Ý þ M M �`à>ÚQÒ¤Ò¤Õ �ýjýJÙ�Ù�Ù�ê Õ¡ÌQÒ¤ÚpØ`Ö�ê ØjÎræ¶ê
í<î���ï �pÎrÓ�ÚmÑ°Ó`äAX¯ê ò�Ë�ô���Ó�Î ôµÜÀæjØ`Î¤Ï<Ò¤Ú¶Ô¯Ï�ÛçãjÓ�Î¤Ï<úmÛ�×�Ò¤ÏÀØjÖ@Ø�å®Ú¡ÌQÍ¶Î¤Ï�Ð�Ñ°Ì[Ñ°Ò¤Ó�Ô(Ñ�Õ¶×`Ñ�Ò

ËµÌ[ë�Ó�Û�Ú�ê�û�Ö:ö£Ø`Îr×jÎ¤ÏVä�ö:ê<ä�ëhÚpÏÀÓ�ÜÀÓjä�÷>êÀäXÓ�ÐpÑ�ê ®ËµÌ¡ÍpÎrÏ�Ð:â¡Ì[Ñ�ÒrÓ�Ô(Ñ�(ß�ØjÔ®Õpá[Ò�×JÒrÏ<Ø`Ö
×�ÖmÐ%ß�Ø`ÖQÒ¤ÎrØjÜVä F ÒrÚ¾û�Ö`ÒrÓ�ÎrÖ¶×JÒrÏ<Ø`Ö¶×�Ü�óçØjÎrù[Ñ°Ú¶ØjÕ�ê ��Ø`Ü<ápÔ®Ó �a�¶î7� Øjåh÷.Ó�Û+ÒrápÎrÓ��µØ�ÒrÓ�Ñ
ÏÀÖ¬ß�Ø`Ô®Õpá[Ò¤Ó�Î
â[Û�Ï<Ó�Ö¶Û�Ó`ê�â[ÕpÎ¤ÏÀÖpæ`Ó�Î¤è ��Ó�Î¤Ü�×�æ$Ý þNM�M �`à þ � F �[þ=	 �

í<î � ï ôµÜÀápÎTä ��êÀä�ß�Ø`ápÎ�Û�Øjá¶ÍmÓ�Ò¤Ï�Ñ�ä·ß
êÀä�Ë
×�ÜÀÍQÙh×jÛ�ÚmÑ�ä ��ê<ä·ËµÓ�Ö ��ÏÀÖpæjÓ�Î�ä�ë�ê ôgêÀä
Ë�Ø¶ä·òLê Ë�ê<ä
�µÏ�Û�Ø`Ü<ÜÀÏÀÖ�ä���êÀä�ð
Ü<ÏÀãjÓ�Î¤ØmäBô�ê<ä.â[Ïqå_×jùQÏ�Ñ�ä�¶êÀä��>ØJãQÏÀÖpÓ`ä.â\ê çëhÚpÓ®×�ÜÀæjØjÎrÏ<Ò¤ÚpÔ®Ï�Ûg×�Ö¶×jÜ<Ì[Ñ¤ÏÀÑ
Ø�åLÚ¡Ì¡ÍpÎ¤Ï�Ð$Ñ°Ì[Ñ°Ò¤Ó�Ô(Ñ�ê�ëhÚpÓ�Ø`Î¤Ó�Ò¤Ï�Û�×�Ü�ß�Ø`Ô®Õpá[Ò¤Ó�Î�â[Û�ÏÀÓ�ÖmÛ�Ó �����¾Ý îUS S �jà � �Q� �

í<î7�Jï X¯ê �¶Î¤Ó�Ú¶Ñ°Ó= ÷.×jÖpæjá¶×jæjÓ ð
ãjÓ�Îrã¡Ï<Ó�Ù ã\ê M ê þ ê þ ê î å½ØjÎ&ò)Ë
ô���Ó�Î ãBê M ê þ ê þ ä
Ù�Ù�Ù�ê Û�Ñ�ê Îrá�ê ÖpÜ�ý�æ`ØjÎ�×�Ö[å�ê�Ý þ M Ma� à

í<î 	Tï �h×�Ó�Ò¤Ó�Ö.ä �¶ê�ß
ê ö:ê<äkóçÓ�Ï R�ÜÀ×jÖ¶Ð�ä�ó3ê òLê >ò)Î¤Ø[Û�Ó�ÑrÑ.ôµÜÀæjÓ�ÍpÎ�×pê���Ø`Ü<á¶Ô¯Ó îUF ØjåBß7×�Ô¿ÍpÎ¤Ï�Ð[æ`Ó
ë�Îr×`Û+ÒrÑ�Ï<ÖgëhÚpÓ�ØjÎrÓ�ÒrÏÀÛ�×�Ü`ß�ØjÔ®ÕpápÒ¤Ó�ÎLâ[Û�ÏÀÓ�ÖmÛ�Ójê`ß7×jÔ�ÍpÎrÏ�Ð[æjÓ �µÖ¶Ï<ã`Ó�Î�Ñ°Ï<Ò�Ì
ò)Î¤ÓTÑ¤Ñ�äkß7×jÔ¿è
ÍpÎrÏÀÐpæjÓjä ��ÖpÏ<Ò¤Ó�Ð���ÏÀÖpæQÐ[ØjÔ Ý îUS�S M à

í<îUFJï ß�ápÏ R�ÕmÓ�ÎrÑ�ä\òLê �mê ÷)ê<ä���Ó�ÖpÏÀÓ�Î�Ñ�ä¶ö%ê ôgê�®Ë�Ì¡ÍpÎ¤Ï�Ð�ÕpÎrØ[Û�Ó�ÑrÑ�×�ÜÀæjÓ�ÍpÎ�×pê��`ØjápÎrÖ¶×jÜ�Ø�å�÷�Ø`æjÏ�Û
×�ÖmÐ$ô�Ü<æ`Ó�ÍpÎ�×�Ï�Û·ò>ÎrØjæjÎ�×�Ô®Ô®ÏÀÖpæ����çÝ þ M M �jà îUS¶î �[þ � �

îjî

49

i

s041934

An Automated Test Generation Process from UML Models

to TTCN-3

Jens R. Calamé
Centrum voor Wiskunde en Informatica, Amsterdam; jens.calame@cwi.nl

Abstract

Conformance testing is a rigorous approach to validate, whether an implementation
matches its specification. For this validation, test cases have to be developed from the
specification of the system under test (SUT). In this paper, an automated process is provided,
which generates TTCN-3 tests from a UML specification. This process makes use of formal
methods and the test generator TGV which is based on the enumeration of the state-space
of an SUT. Enumerating the state-space of a data-oriented system is a notable challenge,
since input and output data from large or infinite domains leads to a state-space explosion.

In the area of model-checking, the approach of data abstraction has been developed to
control this problem. In this work, the approach is applied to test generation. A specification
is first abstracted with respect to its input and output data, to mitigate the problem of state
space explosion due to action parameters. Since information about concrete data is missing
now, conditions can become nondeterministic. Thus, the generated test case contains all the
relevant traces from the original system as well as additional, spurious traces, introduced by
nondeterminism. With constraint-solving, we search for possible test data and automatically
filter out these spurious traces.

The general question, followed in my research, is how to support a fully automated test
generation process with the means of formal methods. This work has up to now mainly been
done in the scope of the ITEA project TT-Medal (Test and Testing Methodologies for Advanced
Languages, see www.tt-medal.org) in cooperation with a number of European partners like
Fraunhofer FOKUS, DaimlerChrysler and Nokia. Project results have been published as project
deliverables. Furthermore, results of the work for TT-Medal have been published as a technical
report [3] and as a conference paper [4].

In this paper, I will first give an overview of the test generation process, as it is planned to
result from my research. Then, the actual state of my research is worked out in greater detail
and compared to related works. Finally, I give an outlook on the further ideas, which still have
to be worked out.

1 Main Ideas

The test generation process is depicted in figure 1. It ideally begins from a system specification
in the Unified Modeling Language (UML) and ends in the execution of test cases in the test
implementation language TTCN-3 (Testing and Test Control Notation, version 3). In a first
step, the UML models for static and dynamic aspects of a system specification, i.e. the definition
of datatypes and of system behavior, are transformed to a formal specification in µCRL. This
formal model is then transformed into an abstracted one, which is an over-approximation of the
original specification. From this abstract specification, abstract test cases are generated by the

50

System
Specification

(UML)

Test Purpose

Abstract
System

Specification

Parameterized
Test Case
in Execution

System
Specification
(formal)

Rule System
for Data
Selection

Abstract
Test Case

Enumerative
Test Generation Parameteriz.

Test Case
(TTCN-3)

Figure 1: The test generation process

test generator TGV. This generation process is guided by a test purpose. The abstract test
cases are available as input-output labeled transition systems (IOLTSs) in Aldébaran and have
to be transformed to parameterizable test cases in TTCN-3 before test execution. Still, the test
cases are based on the over-approximated specification, so they can contain behavior which is
impossible due to the original system specification. To filter out this behavior and to determine
useful test data, a rule system has been generated in parallel to the actual test generation, which
can be queried before or during test execution.

All steps in the test process from the specification to the generation of the rule system and
the test cases in TTCN-3 are fully automated by tools. Only the system specification and the
test purpose have to be provided by the software engineer as input for the tools. While test
execution also happens automatically, test data selection based on the rule system and test case
parameterization are still manual work. It is planned to automatize this step in future. The
same holds for the transformation of UML models to a formal specification.

2 Actual Status

Up to this moment, the generation of tests from a formal µCRL specification has been developed
(see http://www.cwi.nl/ calame/dataabstr.html). In µCRL [2], the system under test (SUT)
is described as a linear process equation. This process specifies a set of transitions and for each
transition a condition, an action label and the next state of the system. The actions can carry
data parameters, which can be variable. From this specification, an IOLTS must be generated
to serve as an input for the test generator. This tool, TGV [9], then examines the state space
of the SUT to generate test cases. Since the examination of the whole state space is very costly,
TGV is guided by a so-called test purpose. This is a sketch, which limits the search for test cases
to certain aspects of the SUT’s behavior, e.g. the main risks of the system.

The difficulty is that the state space of a system cannot simply be generated if its specification
allows variables of a large or infinite, for instance numerical, domain. The result would be an
infinite or at least very large state space. For this reason, we had to employ data abstraction [4, 8].
Doing so, input and output variables are reduced to a chaotic value T. By replacing any of these
variables by T, we reduce the resulting state space to a finite one, while at the same time, we do
not imply anything about the interaction between the SUT and its environment. T is introduced
for each of the existing datatype D by defining a new datatype DT which contains TD and a

51

lifting function κ : DT → D for all original values from D. Then, all parameters appearing in
the specification are re-typed with the new chaotic datatypes. While constant values stay the
same, being lifted with κ, variables are replaced by the T-value according to their type. This
leads to a three value logic in the guards, which can also become chaotic now. This is solved by
introducing another function may : BoolT → Bool, which returns true not only for κ(true), but
also for TBool. This leads to a safe over-approximation of the original system, in which more
behavior is possible than in the original system.

Test cases are generated from this over-approximation. Since the test cases may also contain
behavior, that is originally not possible, we have to take care, that no false test verdicts are
assigned during test excution. Furthermore, we have to find test data, which is applicable to
execute the test. We achieve this by using constraint-solving. Therefore, the original system
specification is, transition by transition, transformed into rules of a Prolog system. Each rule
is defined as a 3-ary function with the name of the transition’s action. Its parameters are the
system’s actual state, its state after the transition and a possible set of action parameters. These
three parameters are defined as structures, so that the actual number of state variables in the
system or of action parameters does not interfere with the rule’s arity. The body of the rule
is defined by the transition’s guard, which must be satisfied to execute the action in the SUT.
Having defined these rules, a query is generated for each test case. Such a query can be defined in
a way that it provides all relevant data parameters (input as well as output parameters), which
are needed to instantiate and execute the test case under consideration. In its body, this rule
conjuncts all action invocations as they are defined in one trace of the test case to either a pass
verdict (the implementation conforms its specification) or an inconc verdict (specification and
tets case do not match). For more than one trace, one can define separate queries. If there is
a solution for a trace, values for the data parameters are returned. Using these values, the test
case can be instantiated and executed.

The previous paragraph described the static use of queries on the rule system. We have, in
theory, also developed an algorithm for dynamic querying. In principle, this algorithm works
as follows: One trace of the test case is pre-solved statically, then the test case is instantiated
and executed. If now at some point, the SUT does not react in the predicted way, this does
not necessarily mean a fault, but can also be allowed nondeterministic behavior. In this case,
the test system dynamically tries to find another trace to a pass verdict in the test case under
consideration of the SUT’s last reaction. If such a trace can be found, the test case is re-
instantiated and executed further. If only a trace to an inconc verdict can be found instead, it
unveils a mismatch between the test case and the SUT’s specification. In this case, the inconc
verdict is assigned to the test execution and the test stops. If no matching trace can be found
at all, the test ends with a fail verdict. In this case, the implementation does not match its
specification.

In addition to the above-mentioned work on data abstraction and constraint solving for test
generation, some work has already been done on the transformation of parameterizable test cases
to TTCN-3. Therefore, a mapping of µCRL datatypes to TTCN-3 datatypes and of abstract
test cases as IOLTSs to TTCN-3 test cases has been made, but is still ongoing work.

We have evaluated our approach to test generation on the Common Electronic Purse Spec-
ifications (CEPS) [5]. They define a protocol for electronic payment using a multi-currency
smart-card. Such a card has a number of slots, each corresponding to one currency and a bal-
ance. The functionality of this card, like loading and paying, is defined in the CEPS. We have
written a specification for the inquiry and load functionality of CEPS in µCRL and applied our
approach of data abstraction on it. This was necessary, since the card functionality strongly
depends on datatypes with a numerical domain. We have then generated the rule system as
well as test cases for the load transaction of the card. The state space generation for CEPS and

52

the state space reduction took 16 minutes 5 seconds on a cluster of five 2.2GHz AMD Athlon
64 bit single CPU computers with 1 GB RAM each (operating system: SuSE Linux 9.3, kernel
2.6.11.4-20a-default). Using TGV, we generated two test cases without loops: one of 594 states
with 597 transitions and another one of 109 states with 111 transitions. Test case generation took
0.65 seconds and 0.42 seconds, respectively, on a workstation with one 2.2GHz AMD Athlon XP
32 bit CPU and 1 GB main memory (operating system: Redhat Linux Fedora Core 1, kernel
2.4.22-1.2199.nptl).

3 Future Work

Several theoretical as well as practical aspects of this work require further consideration and
research. On the practical side, they are mainly related to the UML- and TTCN-3 integration
of the test generation approach. The dynamic constraint solving approach has yet been worked
out only theoretically, so that a practical realization and experiments are necessary here. Fur-
thermore, TTCN-3 test cases are already generated, but they cannot yet be executed since an
implementation under test or at least an appropriate simulation of one is missing. It is planned
to execute the test cases in parallel to a simulation of the SUT’s specification. Therefore, an
execution environment for µCRL specifications must be provided which can be connected to a
TTCN-3 test system. Furthermore, data selection and test case parameterization are planned to
be at least tool-supported, but ideally fully automatized. The last practical aspect, which has
to be examined, is the use of UML models of the SUT instead of formal models. In order to do
so, UML must be restricted and formalized like it has been done in the projects Agedis [1] and
Omega [11]. Then it is planned to provide an automatized transformation from UML to µCRL.

On the theoretical level, several questions have not yet been answered. The correct handling
of internal τ -steps of an SUT is, for instance, not completely resolved. We are working on the
level of black-box testing, so that internal τ -steps do not appear in the test cases. However, they
must be part of the query on the rule system, since they also drive the evolution of the SUT’s state
during execution. Furthermore, the effect of data abstraction on suspension traces in the SUT
has not yet been investigated. Finally, it must be proven, that the presented approach generates
a complete set of test cases. This means that if an SUT does not conform its specification there
is a test which can find this failure.

4 Related Work

The closest to our approach is symbolic test generation [7, 10, 12]. This method works directly on
higher-level specifications given as input-output symbolic transition systems (IOSTSs) without
enumerating their state space. Given a test purpose and a specification, their product is built.
The coreachability analysis is in these cases over-approximated by Abstract Interpretation [6].

The purpose and usage of abstraction techniques in our approach is conceptually different
from the one of symbolic test generation, since we use a data abstraction that mitigates infinity
of external data. This enables us to use existing enumerative test generation techniques for
the derivation of abstract test cases which are then instantiated with concrete data derived by
constraint solving. In the symbolic test generation approach, approximate coreachability analysis
is used to prune paths potentially not leading to pass-verdicts. Both approaches are valid for
any abstraction leading to an over-approximation of the SUT’s behavior. They both also employ
constraint solving to choose a single testing strategy during test execution, so that more case
studies are needed to conclude which approach is more suitable for which class of systems.

53

References

[1] Automated Generation and Execution of Test Suites for DIstributed Component-based Soft-
ware (AGEDIS). http://www.agedis.de.

[2] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langeveld, B. Lisser, and J.C. van de Pol.
µcrl: a toolset for analysing algebraic specifications. In G. Berry, H. Comon, and A. Finkel,
editors, Proceedings of the 13th Conference on Computer Aided Verification (CAV’01), pages
250–254. Springer-Verlag, 2001.

[3] Jens R. Calamé. Specification-based test generation with tgv. Technical Report SEN-R0508,
Centrum voor Wiskunde en Informatica, May 2005. ISSN 1386-369X.

[4] Jens R. Calamé, Natalia Ioustinova, Jaco van de Pol, and Natalia Sidorova. Data abstraction
and constraint solving for conformance testing. In Proc. of the 12th Asia Pacific Software
Engineering Conference (APSEC 2005). IEEE Computer Society, To appear 2005.

[5] CEPSCO. Common Electronic Purse Specifications, Technical Specification, May 2000.
Version 2.2.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL ’77:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238–252, New York, NY, USA, 1977. ACM Press.

[7] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic spec-
ifications. In J. Grabowski and B. Nielsen, editors, FATES 2004, number 3395 in LNCS,
pages 1–15. Springer-Verlag, 2005.

[8] N. Ioustinova, N. Sidorova, and M. Steffen. Synchronous closing and flow abstraction for
model checking timed systems. In Proc. of the Second Int. Symposium on Formal Methods
for Components and Objects (FMCO’03), volume 3188 of LNCS. Springer, 2004.

[9] C. Jard and T. Jéron. TGV: theory, principles and algorithms, a tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Software Tools
for Technology Transfer (STTT), 6, October 2004.

[10] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approx-
imate analysis. In 11th Int. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’05)Volume 3440 of LNCS, Edinburgh (Scottland), April 2005.

[11] Correct Development of Real-Time Embedded Systems (Omega). http://www-
omega.imag.fr.

[12] Eléna Zinovieva-Leroux. Méthodes symboliques pour la génération de tests de systèmes
reactifs comportant des données. PhD thesis, Université de Rennes, 2004.

54

Analysis and Implementations of MSC Specifications

Carsten Kern

Lehrstuhl für Informatik II, RWTH Aachen, Germany
kern@informatik.rwth-aachen.de

Abstract. In this paper we consider the formal model of (compositional) Message Sequence
Graphs – (C)MSGs for short – which provide a standardized modeling language for specify-
ing communication protocols. We are mainly interested in detecting classes of implementable
protocols and therefore define properties on (C)MSGs that ensure their implementability.
The implementation of a CMSG in our context means to deploy the model of communicat-
ing finite-state machines for constructing automata which recognize (up to synchronization
messages) the same language as a given (C)MSG. These syntactic properties can be checked
by our tool MSCan. To our knowledge there is no other tool that provides a protocol de-
signer with a likewise great variety of facilities to analyze (C)MSGs. The complexity of
algorithms for testing the membership of a CMSG to a certain property class ranges from
PTIME to CO-NP completeness. Because of this discrepancy in complexity we group the
property classes into two inclusion hierarchies. The first one is a property hierarchy and
the second one is a language hierarchy which identifies equivalent property classes. Using
the results of these diagrams eases the verification of protocol characteristics. For the final
phase of system design we also introduce an implementation of the very important class of
local-choice CMSGs, exhibiting the nice property of deadlock freedom.

1 Introduction

The complexity of today’s software systems is increasing rapidly and so is the need for the em-
ployment of formal methods to guarantee their reliability. It is desirable to apply formal methods
already in the early stages of system design to avoid costly and extensive reimplementation and
redesign. When developing communicating systems, it is a widespread design practice to start
with drawing scenarios showing the intended interaction of the system in mind. Message Sequence

Charts (MSCs), a modeling language at a high level of abstraction, provide a prominent notion
to further this approach. They are widely used in industry, standardized [ITU98,ITU99], and sim-
ilar to UML’s sequence diagrams [Ara98]. An MSC depicts a single partially ordered execution
sequence of a system. Moreover, it defines a collection of processes, which, in its visual repre-
sentation, are drawn as vertical lines and interpreted as time axes. An arrow from one line to
a second corresponds to the communication events of sending and receiving a message. But the
MSC standard does not only allow to specify single scenarios. To make MSCs a flexible specifica-
tion language, it also supports choice, concatenation, and iteration, which gives rise to Message

Sequence Graphs (MSGs). To ease a protocol designer’s life our goal was, on the one hand, to
provide an analysis tool [MSC05] offering a great variety of properties that may be checked for
given CMSGs to ensure important protocol characteristics. In chapter 2 the most important of
these properties will be described. On the other hand we built inclusion hierarchies for relating
these properties and finding classes of equal expressiveness. These hierarchies will be introduced
in chapter 3. As the implementation of a protocol is the final step in a protocol-design cycle we
propose an implementation for the very important class of local-choice CMSGs in chapter 4 and
close with a short section on the tool’s web page in chapter 5.

2 CMSGs and their properties

In the following we define the most important objects we are going to deal with throughout this
paper, namely compositional Message Sequence Charts and Message Sequence Graphs.

55

Definition 1 (Compositional Message Sequence Chart). A compositional Message Sequence

Chart M consists of:

– a finite, non-empty set of processes P,

– a finite, non-empty set of events E =
⊎

p∈P

Ep = S] R, occurring on the processes and being

divided into send events (S) and receive events (R),

– a function t labeling the events

t : E → Act , t(e) :=

{

p!q , if e ∈ Ep ∩ S (process p sends a message to q)
p?q , if e ∈ Ep ∩ R (process p receives a message from q)

– a partial and injective function m : S −→ R matching send events to receive events of the

correct type (Note: not every send event needs to have a corresponding receive event and vice

versa), and

– a partial order < ⊆ E × E on the events.

This definition can easily be extended to message contents but for the sake of brevity we omitted

them here. We call a CMSC an MSC if m is total and bijective.

CMSCs usually describe a single execution of a system. If we want to specify the system itself we
need (compositional) Message Sequence Graphs.

Definition 2 (Compositional Message Sequence Graph). A Compositional Message Se-

quence Graph G consists of:

– a graph 〈V, R〉 (V 6= ∅ , R ⊆ V × V),
– a non-empty set of start nodes V

0 ⊆ V , a set of end nodes V
f ⊆ V , and

– a function λ that assigns a CMSC to each node of the graph.

If, in the CMSG definition, λ maps to the set of MSCs than we call it an MSG.

But using MSGs for protocol design easily leads to problems. There is, for example, no possibil-
ity to create an MSG for the famous alternating-bit protocol [Tan03]. Thus we will use CMSGs
throughout this paper to avoid such problems.
The following definition will be used in the subsequent subsection for describing global communi-
cation behavior of CMSGs.

Definition 3 (Communication Graph (cf. [Gen05])). The communication graph of a CMSC

M = 〈P , E, C, t, m, <〉 is defined as the digraph containing a node for each active process (i.e., a

process with at least one event) in M and there is an edge from node p to node q whenever there

is at least one send event on process p with type p!q and one receive event on process q with type

q?p.

2.1 CMSG-Properties

If we design systems, their underlying protocols usually have to fulfill properties like, for example,
“sending a message always expects an acknowledgement of the receiver”also known as the regu-

larity-property. In this section we want to itemize further examples of important characteristics
of protocols. We will describe most of them intuitively because formal definitions would be too
involved.

– general case: The general case has no restrictions regarding communication behavior.
– globally cooperative: A CMSG G is called globally cooperative if every CMSC labeling a

cycle in G has got a connected communication graph. This property assures that on these cycles
every process participating in the communication interacts with all others from time to time.
This requirement seems to be essential for allowing synchronization between the autonomous
processes.

56

– regular: This property restricts the cycles of G to have strongly connected communication
graphs and thus ensures that for each sent message the receipt of an acknowledgement becomes
possible.

– locally cooperative: This property changes the focus from globally observable behavior to
local characteristics checking nodes and pairs of nodes instead of strongly connected graph
components.

– local-choice: This property assures that in choice nodes, i.e., in nodes which possess more
than one direct successor, a group of processes (weak local-choice) or even a single process
(strong local-choice) may choose the next node to enter. After the choice has been made this
information is passed to the other processes. The local-choice property will play an important
role at implementing CMSGs in chapter 4.

– local: The local property checks the local-choice property not only for each branching node
but for all nodes contained in the graph. As with local-choice we distinguish between the weak
and the strong version of locality.

The weak versions of local and local-choice, of course, induce some kind of non-determinism into the
protocol because different processes may select different successor nodes for system continuation.

In figure 2, on page 5, we present an overview over the complexity for checking the properties
we just introduced.

3 Property and Language Hierarchy

3.1 Property Hierarchy

Due to the huge complexity gap between the property classes concerned with local characteristics
of CMSGs and the ones describing global communication structures, we introduce a property
hierarchy which depicts the inclusion relation of our syntactic properties. A diagram like this
eases the analysis of systems in the way that if easy-to-check (according to figure 2) properties
are disproved for a certain CMSG the designer would not have to check for properties higher in
the inclusion hierarchy or vice versa if a harder-to-check property would be verified for the given
CMSG all properties in the inclusion relation lying beneath it would automatically hold.
On the left side of figure 1 we see the property hierarchy for the properties from chapter 2.1.

1

2 3

4 5

67

1

2 3

4 5

67

1,2,3,4

5

7 6

Property

Hierarchy

Language

Hierarchy

Compressed

Language Hierarchy

1: strong local

2: strong local-choice

3: weak local

4: weak local-choice

5: locally cooperative

6: regular

7: globally cooperative

Fig. 1. CMSG-property and language hierarchy

Theorem 1 (cf. [Ker05]). The previously introduced properties obey the strict (,i.e., “ (”) in-

clusion hierarchy depicted on the left side of figure 1.

57

3.2 Language Hierarchy

Now we want to detect classes of properties which can be proved to be equivalent. For that purpose
we define the language a CMSG is describing.

Definition 4. The language L(G) described by a CMSG G is the set of all MSCs representing

the accepting paths of G. (A path in a CMSG G is called accepting if it starts in a start node of
G and ends in one of its end nodes.)

Moreover two CMSGs G and G
′ are said to be equivalent if they describe the same language, i.e.,

if L(G) = L(G′). Now we can specify the language classes we have proved to be equivalent.

Definition 5. Language classes:

θ − locCMSG := {L(G) |G is a θ local CMSG} θ ∈ {weak , strong}
θ − lcCMSG := {L(G) |G is a θ local-choice CMSG} θ ∈ {weak , strong}

In the following we present the results we have achieved so far describing the center and the right
part of figure 1.

Theorem 2 ([Ker05]). Every weak, respectively strong local-choice CMSG G = 〈V, R, V
0
, V

f
, λ〉

can be transformed into an equivalent weak, respectively strong local CMSG G
′ of size O(|V |).

Then it directly follows from theorem 2 and figure 1:

Corollary 1 ([Ker05]).

– strong − lcCMSG = strong − locCMSG

– weak − lcCMSG = weak − locCMSG

A second transformation relates weak and strong locality.

Theorem 3 ([Ker05]). Every weak local CMSG G = 〈V, R, V
0
, V

f
, λ〉 can be transformed into

a strong local CMSG of size O(|V |2).

From theorem 3 and figure 1 it directly follows:

Corollary 2 ([Ker05]).

– weak − locCMSG = strong − locCMSG

Using the transformations from theorems 2 and 3 we are able to construct strong local out of weak
local choice CMSGs and hence to eliminate the non-determinism resulting from the weak versions
of the properties, namely weak locality and local-choice. This result is important if one wants to
implement CMSGs. If a given CMSG fulfills the weak local-choice property without satisfying the
strong version, then there is at least one branching node on which two distinct processes may decide
on the further progress of the system. If these processes make different choices the implementation
may run into a deadlock. Thus it is desirable to eliminate such behavior whenever this is possible.
Our transformation algorithms resolve the problem by transforming the weak property versions
into the strong ones. In the next section we will concentrate on an implementation for local-choice
CMSGs keeping the results from this section in mind.

4 CMSG implementations

The main goal of defining the properties from section 2.1 is to identify classes of implementable
(C)MSGs. Implementability in this context means that the CMSG can be transformed into com-
municating automata which represent the processes in the CMSCs exchanging messages among
each other. For this purpose we deploy the formal model of communicating finite-state machines

(CFMs).

58

Definition 6 (Communicating Finite-State Machines). A Communicating Finite-State Ma-

chine over a process set P is defined as: A = 〈(Ap)p∈P ,Sync, F 〉.

– For every p ∈ P, the CFM A possesses a finite automaton Ap = 〈Sp, sp,−→p〉 over the finite,

non-empty set of actions Actp with:
• a finite, non-empty set Sp of local states,
• a starting state sp ∈ Sp and
• a transition relation −→p ⊆ Sp × Actp × Sync × Sp describing the state changes of Ap

(Sync is a finite set of synchronization messages for synchronizing the local automata. It

is basically needed for deadlock prevention.)
– and a set of global final states F ⊆

∏

p∈P

Sp.

Note 1. The local automata communicate with each other over error-free fifo channels while the
CFM changes from a configuration to another by letting one automaton perform a write or read to
or from one of its channels. The CFM begins in a starting configuration where all local automata
are situated in their start state and all buffers are empty and ends in a final configuration, i.e.,
a state from F is reached and all buffers are empty again. We call a configuration of a CFM a
deadlock if there is no possibility to reach a final configuration.

Having an autonomous automaton for each process results in a problem. Without synchronization,
the automata do not know about the other automatas’ choices and thus may run into different
branches of the CMSG resulting in a deadlock of the system. Hence, for implementing CMSGs,
we have to use the set of synchronization messages Sync.
In general deadlocks result from the discrepancy between the global control of the CMSG switching
from node to node and the local autonomous processes not being aware of the graph’s choice. But if
we require the local-choice property a CMSG becomes implementable without deadlocks ([Ker05]).

Theorem 4 ([Ker05]). Let G be a strong local-choice CMSG, then G is implementable without

deadlocks.

Combining this result and the results from figure 1 yields the following:

Corollary 3 ([Ker05]). Every (weak and strong) local and local-choice CMSG G is implementable

without deadlock.

Finally we want to present an overview of the complexity classes and some implementability results
from [GMSZ02], [GKM04] and [Ker05]. We divided the implementability property into normal and
deadlock-free implementability.

Property Complexity Implementability/
Deadlock Freedom

local polynomial time YES/YES

local-choice polynomial time YES/YES

locally coop. polynomial time YES/ ?

regular Co-NP complete YES/NO

globally coop. Co-NP complete YES/NO

general case ≥ CO-NP complete NO/NO

Fig. 2. Complexity classes an implementability results (cf. [GMSZ02], [GKM04], [Ker05])

5 Additional Information and Acknowledgement

As we already mentioned, in addition to our theoretical results, we implemented a tool named
MSCan which provides possibilities for specifying and analyzing CMSGs. For further information
on this project please consult the tool’s web page:

http://www-i2.informatik.rwth-aachen.de/MSCan

I am deeply grateful to Benedikt Bollig for supervising this work.

59

6 Future Work

As part of my future work, we plan to conduct research on quantitative extensions of Message
Sequence Charts (MSC) and Message Sequence Graphs (MSG). We intend to focus in particular
on Life Sequence Charts (LSC, cf. figure 3). One of the drawbacks of MSCs and MSGs is that these
formalisms do not provide ample means to distinguish between what “must” happen and what
“may” happen in a communication systems’ behaviour. This shortcoming hampers the specification
of scenarios for realistic system design. LSC diminish these problems by allowing to distinguish
between mandatory, optional, and illegal or forbidden behavior which must, may and must not

occur, respectively.
The quantitative extensions of Message Sequence Charts include modeling events that appear

with a certain probability distribution as well as unreliable channels where messages can get
lost with a given likelihood. LSCs do only exhibit possibilities for describing system behavior
qualitatively but in this way will be extended to cope with quantitative system aspects. These
extensions need not be restricted to the LSC body but might also be integrated into the LSCs
head where the preconditions of the chart are constituted. These prerequisites have to be fulfilled
to execute the LSC body. We also anticipate an extension of MSGs where we model the different
transition probabilities for changing from one node to another, especially in branching nodes.

These extensions need to be formally defined, and must be equipped with a rigid semantics. To
that purpose it is planned to investigate extensions of partial-order models (e.g., event structures
and pomsets) as well as tree- and trace-based models. Like in the reported work in this paper,
elementary properties of such quantitative LSCs/MSCs will be defined and classified. The relation
with existing probabilistic extension of statecharts will be studied. The ultimate goal is to come to
define a framework in which probabilistic scenarios can be used to synthesize system components
in a semi-automated manner.

Display Control Unit Wheel Sensor Break

wheel blocks

adjust break power

inform driver

Fig. 3. small LSC for the antiblock system

References

[Ara98] João Araújo. Formalizing sequence diagrams. In Proceedings of the OOPSLA’98 Workshop on
Formalizing UML. Why? How?, 1998.

[Gen05] B. Genest. Compositional Message Sequence Charts (CMSCs) Are Better to Implement Than
MSCs. In TACAS, pages 429–444, 2005.

[GKM04] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem for a class of communicating automata
with effective algorithms. unpublished manuscript, 2004.

[GMSZ02] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-
checking and realizability. In Proceedings of ICALP 2002, volume 2380 of Lecture Notes in
Computer Science. Springer, 2002.

[ITU98] ITU-TS Recommendation Z.120 Annex B: Formal Semantics of Message Sequence Charts, 1998.

60

[ITU99] ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.
[Ker05] C. Kern. MSCan – Ein Tool zur Analyse von Message Sequence Charts. Master’s thesis, Dept.

of Computer Science, RWTH Aachen, Germany, August 2005.
[MSC05] MSCan. MSCan – Message Sequence Chart analysis tool web page, 2005.

http://www-i2.informatik.rwth-aachen.de/MSCan/.
[Tan03] A. S. Tanenbaum. Computer Networks. Prentice-Hall International, fourth edition, 2003.

61

Frameworks based on templates for rigorous model-driven

development

Nuno Amálio

Dept. of Computer Science, University of York, YO10 5DD, UK
namalio@cs.york.ac.uk

November 7, 2005

Abstract

The engineering of systems that are acceptably correct is a hard problem. On the one hand,
semi-formal modelling approaches that are used in practical, large-scale system development,
such as the UML, are not amenable to formal analysis and consistency checking. On the
other hand, formal modelling and analysis requires a level of competence and expertise that
is not common in commercial development communities, and formal approaches are not well
integrated with the rest of the development process. The thesis presented here proposes an
approach to build engineering environments (or frameworks) for rigorous model-driven devel-
opment (MDD) that combines semi-formal notations with formal modelling languages. The
approach proposes a formal template language to capture patterns of formal development and
enabling an approach to formal proof with templates (meta-proof). This allows the develop-
ment of catalogues of patterns (represented as templates) and meta-theorems for frameworks.
The thesis develops a framework for the combined use of UML and the formal language Z.

1 Introduction

Model-driven development (MDD) is an approach that elects models, rather than code, as primary
artifacts of software development, using them for description and analysis of software systems.
Models can be built to describe succinctly the domain and required behaviour of a system, being
useful in the stages of construction and maintenance of software. The analysis of models uncovers
flaws and brings up fundamental issues related with the requirements and design of the system.
It is in the early stages of development, when code does not yet exist, that model analysis is most
rewarding, exposing problems that cost much more if not discovered until later.

Software engineering practice relies on semi-formal techniques for MDD. These techniques
are based on diagrammatic-based notations (e.g. UML) to describe different aspects of systems.
They are called semi-formal because the notations have a formal syntax, but no formal semantics.
Semi-formal notations have a graphical nature and this makes them appealing: they are intuitive,
providing good sketches of different aspects of systems that are easily assimilable. Moreover, semi-
formal notations, such as UML and entity-relationship diagrams, are defacto modelling idioms
among software engineers. However, these notations lack a formal semantics and this constitutes
a serious limitation: models expressed in these notations are likely to be ambiguous, inconsistent
and not amenable to mechanical semantic analysis, and tool support becomes limited to superficial
syntactic analysis and transformations. The problem with the semantics is aggravated by the
fact that these notations have, in fact, many semantic interpretations: the choice of semantics
becomes a matter of convenience, developers use one semantics or the other depending on the
kind of problem at hand.

62

Formal techniques, on the other hand, are substantially less used in practice. Formal modelling
languages (e.g. Z, B, CSP, Alloy) are based on mathematics and formal logic and they embody
years of research and best practice in formal development. The models resulting from formal
languages are precise, unambiguous, and amenable to formal analysis. However, formal modelling
and analysis requires a level of competence and expertise that is not common in commercial
development communities, and formal approaches are not well integrated with the rest of the
development process.

There have been numerous attempts to introduce formal techniques in mainstream modelling
practice, by using them combined with semi-formal notations. This work is a step in the right
direction, but is has just touched the surface, much more is yet to be done. Some approaches define
a semantics for the semi-formal notations in a mathematical formalism, making the resulting
models unambiguous, but they don’t explore the semantics for analysis; sometimes the chosen
formalism is not the most suitable for analysis, or the semantics is too complex, compromising
the extension of the work. Other approaches propose a translation from diagrams into a formal
modelling language, thus giving a precise semantics to the diagrams, and making available the
analysis mechanism of the formal language, but giving no support whatsoever to the analysis
itself; to explore analysis one is required to be an expert in the use of the formal language. Other
approaches spend effort in developing yet another special-purpose formal language, rather than
building on existing mature work. Most approaches don’t take into account the multiple-semantics
of semi-formal notations (e.g.UML), defining one single semantics; however, developers may want
alternative semantics for certain high-level modelling concepts, even within the same development;
if one is to cope with this feature a flexible and practical approach to define semantics of semi-
formal notations is required.

The doctoral thesis will propose an approach to build environments (or frameworks) to support
MDD and that are designed to address the needs of one specific problem domain [1]. The approach
aims at engineering systems that are acceptably correct, and so to allow engineers to build, analyse
and refine models of software systems in a sound but practical way. The approach proposes
frameworks that combine formal and semi-formal methods with the diagrams acting like a graphical
interface for the formality that lies underneath. The aim is to hide the formality as much as
possible, but this is not always possible; sometimes one expert in the formal technique is required,
but non-experts can still participate and engage in model-development by drawing diagrams.
By designing frameworks targeted to specific problem domains, the multi-semantic interpretation
problem of semi-formal notations is addressed: in one framework the diagrams have one semantics,
the one suitable to models problems of a certain domain. The approach puts a strong emphasis
on patterns as a key to enhance the practicality of frameworks. To represent patterns of formal
development, the thesis proposes the formal template language (FTL), which enables an approach
to proof with template representations [5]. This allows not only the representation of patterns of
formal development (e.g. a model structure), but also to reason about these representations using
meta-proof (e.g. calculating a pre-condition or proving an initialisation theorem).

State1

State2

State3

Z Semantic Domain

UML+Z Model

Class Diagram

State Diagram

Object1 Object2

Object Diagram / Snapshot

Class1 Class2

Figure 1: Models in the UML + Z framework.

To evaluate the approach, the thesis
develops one framework for the modelling
general sequential systems following the
object-oriented paradigm. This framework
uses the formal specification language Z
and the UML, and so it is called UML + Z

(figure 1).
In the rest of this paper we discuss FTL

and meta-proof. Then we discuss the mod-
elling, analysis and refinement components
of the UML + Z framework.

63

2 FTL and Meta-proof

Often, computer scientists find the need to represent sentences of some language that have a par-
ticular form and that cannot be represented in the language itself. Templates are representations
of these generic sentences, which, upon instantiation, yield specific language sentences.

The thesis presents a formal language to express templates, FTL [5]. The language is simple:
essentially all it does is text substitution. It is also general in the sense that it can be applied to
any formal language; so far it has been used with Z.

For example, we can use FTL to capture the state of a Z promoted ADT [11]:

�
P � == [

�
ids � :

� �
ID � ;

�
st � :

�
ID � 7→

�
S � | dom

�
st � =

�
ids �]

This introduces five parameters, P , ids , ID , st and S , which are to be replaced by some text
values when instantiated. This template can be instantiated to yield:

Bank == [accounts :
�

ACCID ; accountSt : ACCID 7→ Account | dom accountSt = accounts]

Any formal sentence or sentences of some formal language (here Z) can be represented as
templates expressed in FTL. Is it possible to reason (or do proof) with these template represen-
tations? If it would be possible, that would have substantial practical value. It would mean that
reuse could be brought to the level of proofs: meta-theorems for certain templates would be proved
once, but could be applicable every time those templates are instantiated. This approach of proof
with templates is called meta-proof. First, the practical value of meta-proof is motivated with an
example.

In Z, the introduction of a description of the state space of an abstract data type (ADT), such
as Bank above, into a specification, entails a demonstration that the description is consistent: at
least one state satisfying the description does exist. This involves defining the initial state of the
ADT (the so-called initialisation) and proving that the initial state does exist (the initialisation
theorem). The initialisation of Bank assumes that in the initial state there are no accounts:

BankInit == [Bank ′ | accounts ′ = ∅ ∧ accountSt ′ = ∅]

To demonstrate the consistency of Bank , one is required to discharge the conjecture `? ∃ BankInit •
true, which is automatically discharged in the Z/Eves theorem prover [9].

This proved theorem applies to the Bank ADT only. The question is: does it apply to all
promoted ADTs that are similar in form to Bank? And if it does, can this result be proved once
and for all, so that developers don’t have to do it again and again?

The empty initialisation of a promoted ADT and the associated conjecture is represented with
templates :

�
P � Init == [

�
P � ′ |

�
ids � ′ = ∅ ∧

�
st � ′ = ∅]

`? ∃
�

P � Init • true

This meta-conjecture is true for all well-formed instantiations of these templates, that is,
instantiations that result in type-correct Z sentences. The argument is as follows. For all well-
formed instantiations, P holds a name; id and st hold names of variables of type set and these
two names must be distinct; and ID and S must be names referring to sets. If we expand the
template schemas above using the laws of the schema calculus, and apply the one-point rule, we
get the formula

`? dom ∅ = ∅ ∧ ∅ ∈
�

ID � ∧ ∅ ∈
�

ID � 7→
�

S �

which is true for any well-formed instantiation of ID and S . We have just established a meta-

theorem: the initialisation conjecture of all promoted ADT with empty initialisation that are
instantiations of these templates is true. This gives us a nice property of true by construction:

64

pending

invoiced

invoice()

Figure 2: The UML class diagram of the trivial ordering system and the UML state diagram for
the class Order .

whenever these templates are instantiated to build promoted ADTs, their initialisations are true

by appeal to this meta-theorem.
The argument outlined in this meta-proof is rigorous and valid, but it is not formal. To follow

a formal approach towards meta-proof, a formal semantics has been given to the language [5].
This allows the definition of proof rules for Z template expressions, which are proved by appeal to
the semantics of the language [5].

3 Modelling

The modelling component of frameworks is defined following denotational semantics [10]. A cat-
alogue of templates captures the structure of the semantic domain; every formal sentence that
makes the framework’s models is generated by instantiating a template from the catalogue. A set
of diagram types constitutes the syntactic domain; every diagram of the framework’s models is
an instance of these diagram types. Finally, there is the semantic mapping, which maps diagrams
into templates instantiations.

For the UML + Z framework, the thesis builds a Z semantic domain for object-oriented (OO)
models [2], which expresses typical OO structures, such as class, association, and systems, the
concept of inheritance (or class specialisation), and the UML idioms of composition and association
class. The thesis will also present the modelling catalogue of UML + Z , which includes templates
that capture the sentences of the Z semantics domain and meta-theorems. The UML+Z framework
is illustrated for a simple example. The semantic mapping of UML + Z is left for future work.

Figure 3 presents the class diagram of a simple ordering system and the state diagram of
the class Order . The Z representation of these diagrams is obtained by instantiating templates
of the UML + Z catalogue. For example, to represent the class Order , we need to generate
its Z intensional definitions (types, state space, initialisation, operations and finalisation, see [2]
for details) by instantiating templates with information coming from the diagrams. The Z type
representing the possible values of the state diagram for Order is obtained as follows:

�
Cl � ST ::=

�
initSt ��� |

�
oSt ��� OrderST ::= pending | invoiced

The state space of Order is defined by instantiating the template of state intension for classes with
a state diagram:1

�
Cl �

state :
�

Cl � St

� �
at � :

�
atT ���

�
ICL �

Order

state : OrderSt

quantity : �
true

1Note that the attribute quantity comes from the class diagram and state from the state diagram.

65

The initialisation is also defined by instantiating the initialisation template for such classes:

�
Cl � Init

�
Cl � ′

� �
in � ? :

�
inT � �

state ′ =
�

initSt �

� �
at � ′ = �

ival ���

OrderInit

Order ′

quantity? : �
state ′ = pending

quantity ′ = quantity?

To consistency of Order is checked by using the meta-theorems of the UML + Z catalogue.
The initialisation conjecture of classes such as Order is simplified to:

`? ∃ � �
in � ? :

�
inT ��� •

�
ICL � [� �

at � :=
�

ival � �] � ∧
�

ival � ∈
�

atT ���
The instantiation of this template for Order gives:2

`? ∃ quantity? : � • quantity? ∈ �
And this is trivially true: the state of Order is consistent. Note that in this case all we get from
meta-proof is a simplification, the nice property of true by construction cannot be obtained.

The full specification of the trivial ordering system is given in [3].

4 Analysis

The analysis component defines an approach to analyse the framework’s models. The thesis
will propose an approach to analyse UML + Z models based on formal proof and Catalysis [6]
snapshots [4]: snapshot-based validation.

Figure 3: An Order associated with
two products.

Snapshots are object diagrams that describe states of
the modelled system and these states can be represented in
the Z OO semantic domain as an instance of the Z model.
The approach uses snapshots and formal proof to test the
model: we prove that there is a state of the modelled system
satisfying the snapshot (an existence proof). Snapshots can
be used to describe one single state or a state transition, and
they can describe either states or transitions that should
be accepted by the system (positive testing) or those that
should not be accepted by the system (negative testing).

In the trivial Bank System, the customer has a very specific requirement: each order must
reference only one product. To test this requirement we can draw a snapshot describing a system
state that should not be accepted by the model of the system (figure 3): an order referring to two
products. This snapshot is represented in Z as:

StSnap1
System

orders = {oO1} ∧ orderSt = {oO1 7→ O1}

products = {oPX , oPY } ∧ productSt = {oPX 7→ PX , oPY 7→ PY }

references = {oO1 7→ oPX , oO1 7→ oPY }

(Here, System is the Z schema that defines the system as whole, see [2] for details.)
This state should not be accepted by the system, thus we prove the conjecture (the negation

of the positive case):

2The conjecture to prove without the use of meta-theorems would be, ∃OrderInit • true.

66

`? ¬ (∃ StSnap1 • true)

And this conjecture is true (we have proved it in Z/Eves [9]), meaning that the state described by
the snapshot is not accepted by the model of the system.

5 Refinement

The refinement component defines a strategy to refine models built using the framework, and
includes a catalogue of model transformations (refactorings).

The thesis will present a strategy to refine UML+Z models, based on the theory of refinement
for Z, and some example model transformations. The idea is to explore FTL and meta-proof to
capture refactorings and to substantially reduce the proof overhead associated with these transfor-
mations. The process is similar to the one followed in modelling: (a) refactorings and associated
correctness conjectures are captured with templates; (b) meta-proof is applied upon these rep-
resentations to simplify (and in some cases fully prove) those correctness conjectures. This will
allow model transformations to be carried our by instantiating templates: the associated correct-
ness proofs can then be simplified to smaller proofs after applying the associated meta-theorems.
The refinement component of UML + Z is still under development.

6 Related Work

The work presented here borrows ideas from several sources. The idea of frameworks that are
customised to problem domains is inspired in the work of Michael Jackson [7, 8], who advocates
that different problems demand different methods and the use of different concepts and notations.

Catalysis [6], the modelling method based on the UML, has many features that are analogous
to the approach presented here. The method presents the ideas of model frameworks and tem-
plates to make models reusable assets, model system states by using object-diagrams (snapshots),
model refinement with UML diagrams, and the idea of defining semantics of UML constructs
adapted to the context in which they are used. However, in Catalysis this is done informally.
The approach presented here tries to take similar ideas into development, but within a formal
framework. Moreover, the template notation used in Catalysis has less features than FTL (only
parameters; FTL has choice and lists), and it is not defined formally.

7 Conclusions

The thesis outlined here proposes an approach to build frameworks for rigorous MDD. These
frameworks combine semi-formal and formal modelling languages. Associated with this approach,
is a formal template language (FTL) enabling meta-proof, which allows the representation of
patterns of formal modelling and proof as templates. FTL allows the factoring of model-level defi-
nitions to the meta-level and formal proof with template representations (meta-proof) to establish
meta-theorems that are proved once and used every time the associated templates are instantiated.

The approach presented here offers the following benefits:

• FTL and meta-proof helps to make formal methods more practical. FTL allows the factoring
of patterns of formal modelling and proof to the meta-level, so that the same effort can be
reused. In UML + Z , all Z is generated by template instantiation, so that the specifier
doesn’t have to come up with a proper specification structure again and again; this process
can also be made automatable. The developer’s effort in terms of proof can also be reduced;
conjectures expressing certain desired properties are simplified and in some cases fully proved,
so that the developer either has a simpler verification task or doesn’t have any task at all.

67

• The emphasis on template patterns and frameworks tailored to problem domains foster
knowledge reuse. MDD frameworks encapsulate valuable modelling knowledge and expe-
rience about the domain in the form of patterns (captured with templates); this grows as
the framework is applied to more problems. The same body of work can be reused and
adapted to meet the needs of other problems (either within the same framework, or for new
frameworks exploring new problem domains).

The aim is to make the formal language hidden to the user as much as possible. In UML + Z

this could not be fully achieved. At least one expert is required to write Z operation specifications
and invariants that are not expressible in terms of UML diagrams. Nevertheless, the UML + Z

framework allows non-Z experts to engage in the modelling and analysis effort, by drawing class,
state and object diagrams, and yet offering the benefits of formal development.

References

[1] N. Amálio. Frameworks based on templates for rigorous model-driven develpment. PhD thesis,
Department of Computer Science, University of York, 2006. to appear.

[2] N. Amálio, F. Polack, and S. Stepney. An object-oriented structuring for Z based on views.
In H. Treharne et al., editors, ZB 2005: International Conference of B and Z users, volume
3455 of LNCS, pages 262–278. Springer, 2005.

[3] N. Amálio, F. Polack, and S. Stepney. Software Specification Methods: an overview using a

case study, chapter UML + Z : UML augmented with Z. Hermes Science, 2006. to appear.

[4] N. Amálio, S. Stepney, and F. Polack. Formal proof from UML models. In J. Davies et al., ed-
itors, ICFEM 2004: Int. Conference on Formal Engineering Methods, volume 3308 of LNCS,
pages 418–433. Springer, 2004.

[5] N. Amálio, S. Stepney, and F. Polack. A formal template language enabling meta-proof.
submitted, 2005.

[6] D. D’Sousa and A. C. Wills. Object Components and Frameworks with UML: the Catalysis

approach. Addison-Wesley, 1998.

[7] M. Jackson. Formal methods and traditional engineering. The Journal of Systems and

Software, 40(3):191–194, Mar. 1998.

[8] M. Jackson. Problem Frames: Analyzing and structuring software development problems.
Addison-Wesley, 2001.

[9] M. Saaltink. The Z/EVES system. In ZUM’97: The Z Formal Specification Notation, volume
1212 of LNCS. Springer, 1997.

[10] R. D. Tennent. The denotational semantics of programming languages. Commun. ACM,
19(8):437–453, 1976.

[11] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. International
series in computer science. Prentice-Hall, 1996.

Acknowledgements. This work was funded by the Portuguese Foundation for Science and
Technology, grant 6904/2001. The PhD was supervised by Prof. Susan Stepney and Dr. Fiona
Polack, both with the department of Computer Science of the University of York. Some of the
work presented here was supervised by Prof. Augusto Sampaio, during Amálio’s academic visit
to the Federal University of Pernambuco, Brazil, which was was funded by the industrial sponsors
of the department of computer science of the University of York. All funding and supervision is
gratefully acknowledged.

68

� ���������
	����������	����������������� "!#�$�%�'&��(�)�*�+�,!#�.-0/21

3547698;:<:<8;=?>@4BAC8ED'F+G�8EHI67JIF
K�LNMPORQTS�UWVYX[ZW\R]^S

_0`7acb�d�e�f^b
L"X'XcghVYX[ij\kVYljX'mR]^UWUYnpoIX'q$rtsuXcoCvxw�]^rynpiCVYZWzj\jX[ZB{|npVYl}]$\jXc~[nuUYnprIi}]^su�trtZWnpVYljS�VYr$~
ljXc~
�@nu��]k��UYX[~cZWXcV
�EVYX[ZWS�~�]^i��X}\jX[ZWnpoIX[\2{|npVYl�]^ZW�jnpVYZY]^Z��2zjUYXkrt�*���C����ZWrtS�],UYXcVyrt��rt�jUWX[Z�oIX[\�~[rtS�Skzjijnu~�]�VYX[\�S�X[UWUP]^�tX[U��y��ljXkXcghVYXcij\jX[\nuiIVYZWzj\jX[Z|nuU|��rtZWS0]tspsp��UYm�X[~[np�RX[\�nui�VYljX@mjZWrC~[X[UWU$]^su�tX[�jZY]^nu~+s�]^ij�tzR]^�tX@�;K��|��]^ij\�UYzj�jUWX[�hzjXciCVYsp��zjUYX[\�VYr��Rij\]����Cijr�{|i�����]�{<nui�]^i�npS0mjsuXcS0X[iIVP]�VYnurti�rt�*�hlR]^S�nuZ[� U9VYljZWXcX+mR]tUWU�mjZWr^VYrh~crIs��

� ���� '¡9¢�£¥¤¥¦T 9§�¢��
¨y©«ª}¬«ª}x®h¯�°c±�²P°[®h³«¬´®Cµc¬�±¶�·�³R°
µc¸«¬«ª�µ+¹�±�¬«ª�º¼»½·¿¾ ªh¾9°c©«ª}À}±¶º�ª�ÁRÂ¼ÃT®h±�·�³j°
µc¸«¬«ª�µ@®C�°cª�µ,Ä À+Ã0Å¶ÆtÇÈ»½·�²$ÉE®h²
ª^¬�±¶³�É´ºÊ®C¯[Ë�Â¼ÉB±tÌ
¯�µ
Í�Î«°c±¶Ïhµ[®CÎ´©jÍÐ®h²
²
¸«¹�Î«°c·�±h³*¾N¨y©«ª�µcªh»�·u°�·�²�®h²
²
¸«¹�ª^¬Ð°c©´®C°�®hº�º|°c©´ª�¯�µ
Í�Î«°c±¶Ïhµ[®CÎ´©«·�¯�Î«µc·�¹�·u°c·�Ájª�²�¸«²
ª�¬<·�³Ð²
ª�¯^¸½µc·�°WÍ
Î«µc±h°c±�¯�±¶º�²,®Cµcª2®CÉ´²
±¶º�¸½°cª�º�ÍÑ°
µc¸´²P°c�¸«ºT®C³´¬Ò°c©´ª�·�³j°
µc¸«¬«ª�µ�¯^®h³«³«±h°,º�ª^®Cµc³N¹�±Cµcª�É�ÍÒº�±R±hË½·�³«Ï"°c©½µc±¶¸«Ï¶©Ó°c©«ª^·uµ,¬«ª�°[®h·�º�ª�¬
·�¹�ÎEº�ª^¹�ª^³j°[®C°c·�±¶³7¾Ô¨y©«·�²#®h²
²
¸«¹�Î«°c·�±h³*»@©«±tÕ$ª�Á¶ª�µ^»@·�²�³«±h°�°c©«ªÖ¹�±¶²P°�µcªt®hº�·�²P°c·�¯¶¾.¨y©«ª�µcªÑ®CµcªÖ²
ª�Ájª�µ[®hº@Õ$ª^º�º�Â¼Ë½³«±tÕ@³
®C°
°[®h¯cË½²}±¶³Ñ²
ª^¯�¸½µc·�°WÍ�Î´µc±C°c±�¯^±hº�²k°c©´®C°�ª�Ì�Î´º�±¶·�°�®hº�Ï¶ª�É«µ[®h·�¯�Î«µc±hÎBª�µ
°c·�ª�²�±h�°c©«ª�¸«³«¬´ª�µcº�Í�·�³«Ï"¯�µ
Í�Î«°c±¶²PÍ½²P°cª�¹�²�¾�×W³Ñ°c©«·�²
ÎE®CÎBª�µ^»hÕ$ª+ª�Ì�°cª�³´¬�°c©«ªyÎE®h²
²
·uÁjª+À}±¶º�ª�Á�Â¼ÃT®C±�·�³j°
µc¸´¬«ª�µ�Õ@·u°c©�°c©«ª+®IÉE·�º�·u°WÍ�°c±�¯�±¶¹�Î«µcª^©«ª�³«¬2®h³«¬�ª�Ì�Î´º�±¶·�°'°c©«ª@®hº�Ï¶ª�É´µ[®C·�¯
Î«µc±hÎBª�µ
°c·�ª^²+±h�°c©«ª}ØCÙRÚ�±hÎBª�µ[®C°c±hµ^»½Õ@©´·�¯�©"·�²+Õ@·�¬«ª^ºuÍ"¸«²
ª�¬¥·�³"²
ª�¯^¸½µc·�°WÍ�Î«µc±h°c±�¯�±¶º�²�¾

Û ªk¹�±h°c·uÁ¶®C°cª(°c©«·�²$Õ$±Cµ
Ë2É�Í2É«µc·�ª�Ü«Í�¬«ª^²
¯�µc·�É´·�³´Ï�®,Ë½³«±tÕ@³"®C°
°[®h¯cË2±¶³�ÝR©´®h¹�·uµ^Þ ²$°c©½µcª^ª(ÎE®h²
²$Î«µc±h°c±R¯^±¶º9Ä ßÑ®h²[à¶áIÇÈ¾
¨y©«·�²�Î«µc±h°c±�¯�±¶º�®h·�¹�²�®I°,²
©´®Cµc·�³´Ï�®"²
ª�¯�µcª�°�Ëjª�ÍÑ±tÁ¶ª�µ�®"²
ª^®h¹�º�ª^²
²0¯^±h¹�¹�¸«³«·�¯^®C°c·�±¶³Ó¯�©´®h³«³«ª^º¿»�©«ª�³«¯^ª�±h³´ºuÍÑÎE®h²
²
·�Á¶ª
ª^®^Ájª�²
¬«µc±CÎ´Î´·�³´Ï#·�²kÎB±¶²
²
·uÉEº�ª��±hµ}°c©«ª�·�³j°
µc¸«¬´ª�µ^¾0¨y©«ª�Î«µc±h°c±�¯�±¶º�®h²
²
¸«¹�ª^²k°c©´®C°k°c©«ª,Î;®Iµ
°c·�¯�·�ÎE®h³j°c²}©E®�Ájª�®h¯�¯^ª�²
²k°c±#®
¯�±¶¹�¹�¸½°[®C°c·uÁjª0ª^³«¯�µ
Í�Î«°c·�±¶³¥®hº�Ï¶±hµc·u°c©´¹#»E³´®h¹�ª^ºuÍBâ

ã@ä½å¼ã(æ´åÈç%è
è9éêã(æ´å¼ã+ä«åÈç%è
è
×�°+·�¹�¹�ª�¬«·Ê®C°cª�º�Í�·�¹�Î´º�·�ª^²y°c©´®C°@ë æEå¼ã@ä½å¼ã(æ«åÈç.è
è
è9éêã@ä½åÈç%è ¾|¨y©«ª}Î´µc±C°c±�¯^±hº7·�²@®h²y°c©«ª��±¶º�º�±tÕ@·�³«Ï«»«Õ@©«ª�µcª�ìíÕy®h³j°c²
°c±�²
©´®Cµcª,®�²
ª�¯�µcª�°+Ëjª�Í"îïÕ@·u°c©¥ð�¾ ñ

ò ì?ó�ð�â ãkô|õ'å î è
á ò ðÔóöì÷â ãkô|ø|å¼ã(ôTõ�å î è
è
Æ ò ì?ó�ð�â ãkô|ø|å î è

ù ª�µcªÒî�úû®h³«¬?î#üý®CµcªÖÎ«µc·�Áh®C°cªÖË¶ª�Í½²�±¶,ìþ®h³«¬?ð�»@µcª�²PÎ7ª�¯�°c·�Ájª�º�Í¶¾Ôÿ´±hµ"¯�±¶¹�ÎB±¶²
·�³«Ï���� å ¹�ª^²
²c®hÏhªNÆ ·�³ °c©«ª
Î«µc±h°c±�¯�±¶º è »;ì.²
·�¹�Î´º�Í¥¸«²
ª�²(°c©´ª,¯�±¶¹�¹�¸½°[®C°c·uÁjª,Î«µc±hÎBª�µ
°WÍ¥±¶�°c©«ª�ª�³«¯�µ
ÍRÎ´°c·�±¶³Ñ®Cº�Ï¶±hµc·u°c©«¹"¾��k²k®h³�·�¹�Î´º�ª�¹�ª�³j°[®C°c·�±¶³
±¶�°c©«·�²yÎ´µc±C°c±�¯^±hº¼»«°c©«ª}ØhÙjÚ�±hÎBª�µ[®C°c±Cµ@¯t®h³#É7ª0¸«²
ª�¬�®h²+°c©«ª0ª^³«¯�µ
Í�Î«°c·�±¶³"�¸´³«¯�°c·�±¶³7»E·¿¾ ªh¾ ã(æ´åÈç%è�é��	��ç »´Õ@©«·�¯[©¥·�²
®CÎ«ÎE®Cµcª�³R°cºuÍ#¯�±¶¹�¹�¸½°[®C°c·uÁjª¶¾TÝR¸«¯�©�®C³"·�¹�ÎEº�ª^¹�ª^³j°[®C°c·�±¶³7»E©«±tÕ$ª�Ájª�µ^»´·�²yÜ;®�Õ$ª^¬¥®h²y°c©«ª}·�³j°
µc¸«¬«ª�µ@¯^®h³"¬«ª�µc·uÁjª0î å ®h³«¬
²
±�î�úÐ®C³´¬"î#ü è ÉRÍ�¯�±¶¹�Î´¸½°c·�³«Ï	��
 � �� � ���h¾��Tº�ª^®Cµcº�Í#®h³#·�³j°
µc¸«¬´ª�µyÉ;®C²
ª^¬"±¶³�°c©´ªkÉEº�®h¯cË�Â¼ÉB±tÌ�¯�µ
Í�Î«°c±¶ÏCµ[®CÎ´©RÍ
®h²
²
¸«¹�Î«°c·�±h³�·�²@³«±h°(®CÉ´º�ª�°c±��E³«¬¥²
¸«¯[©�®h³�®I°
°[®h¯[Ë;¾

ñ

69

1

s041934

s041934

� � ���k¦+§���§�¢������
	�¢�¡�§� ��� �h¢�¡������
�.ÎE®h²
²
·uÁjª�·�³j°
µc¸«¬«ª�µ(©E®C²}®h³�·�³«¯�µcª^®h²
·�³«Ï�²
ª�°k±¶�Ë½³«±tÕ@º�ª�¬«Ï¶ª¶»;Ï¶®C°c©«ª�µcª�¬��µc±¶¹ ®hº�º*ÎE®h²
²
ª�¬Ö¹�ª�²
²c®hÏ¶ª�²k±tÁjª�µ(°c©«ª,¯^±¶¹�Â
¹�¸«³«·�¯^®C°c·�±h³#¹�ª^¬«·�®½¾|¨�±�ª��R¸«·�Î"²
¸«¯[©"®h³#·�³j°
µc¸«¬«ª�µyÕ@·u°c©�°c©«ª(Î7±^Õ$ª�µ+±h�¯^±h¹�Î«µcª^©«ª�³´¬«·�³´Ï,ØCÙRÚ*ª�Ì�Î«µcª�²
²
·�±¶³«²�»«Õ$ªk³«ª^ª�¬
°c±kÎ«µc±tÁ�·�¬«ªy·�°'Õ@·�°c©�®C³�®hº�Ï¶±hµc·�°c©«¹.°c±k¬«ª^¯�·�¬«ª$Õ@©«ª�°c©´ª�µ�®(°cª�µc¹.¯^®h³�ÉBª$¬«ª�µc·uÁjª^¬��µc±¶¹Ô®k²
ª�°9±¶´°cª�µc¹�²'Õ@·u°c©�®Cµ
É´·�°
µ[®Cµ
Í
®CÎ«Î´º�·�¯t®C°c·�±¶³«²@±¶*ØCÙRÚÈ¾ �k²
²
¸´¹�ª�°c©E®I°��ö®h³«¬��ý®Cµcª�²
ª�°c²+±¶�²PÍ½¹0É7±hº�·�¯�°cª�µc¹�²�»´º�·uËjª�� ��� ¾ Û ª0¬«ª �E³«ª

� é�� �
�
!�!
!" �$#&%
� é'�)(
� �!
!
!" (+*,%
� � �.-0/21é3� �$4 �5(6407 8:9;� ñ �!
!
!" =< % ?> 9;� ñ �!
!
!" � %@%
�BA é'�DCE% GF$<IH C ò � # -0/21é � � � #KJ

Û ©«ª^³ 7 � 7 µcª�Î«µcª�²
ª^³j°c²y°c©´ª�¯^®Cµc¬«·�³´®hº�·u°WÍ#±¶�°c©«ª �´³«·�°cª�²
ª�°�� »«Õ$ª0±CÉE²
ª�µ
Ájª}°c©´®C°
F 8 H C ò � 4MLON"P�QSR
=TVU UVUWTYX Z�X [�

P
ò

Ý�±�Õ@©´®C°}¯^®h³�É7ª�¬«ª�µc·�Ájª�¬Ö�µc±¶¹ ®�²
ª�°���±¶9°cª�µc¹�²(Õ@·�°c©Ñ®Cµ
É´·�°
µ[®Cµ
ÍÖ®IÎ´Î´º�·�¯^®C°c·�±¶³«²k±¶'ØhÙjÚ9·�²}¯�±¶³j°[®h·�³«ª�¬Ñ·�³�°c©«ª
²
ª�° N\P
Q]R
^T UVU U_T`X Z�X [� P ¾Ma+®C²
ª^¬"±¶³#°c©«·�²+¿®h¯�°^»½°c©«ª0�±¶º�º�±tÕ@·�³«Ï2®hº�Ï¶±hµc·u°c©´¹ ¬«ª^¯�·�¬«ª�²yÕ@©«ª�°c©«ª�µ(®�°cª�µc¹cbT¯^®h³#ÉBª0¬«ª�µc·�Ájª�¬
�µc±h¹ ®�²
ª�°�� ±h�°cª�µc¹�²@±hµ@³«±h°^â ñ

òed é �f 8'é ñ òá ò ·�gb 9 d +°c©«ª^³h�jikbml@ª�³«¬7¾
Æ òedon é d N � 4qp"p
r ò ·� don é d y°c©´ª�³��3sikbml@ª�³«¬7¾
t òed é don l+Ï¶±h°c±2á

u ±h°cª¥°c©E®I°�°c©«·�²#®hº�Ï¶±hµc·u°c©´¹�·�²�°cª�µc¹�·�³´®C°c·�³«Ï<®h¯�¯^±Cµc¬´·�³«ÏÐ°c±N°c©«ªÖ¬«·�²
¯�¸«²
²
·�±¶³5®IÉ7±^Ájª¶¾%¨y©´ªÑ®hº�Ï¶±Cµc·�°c©«¹�©´®h²�ÉBª^ª�³
·�¹�ÎEº�ª^¹�ª^³j°cª�¬¥·�³�v ��w�x�»´ª�Ì�°cª�³´¬«·�³´Ï�°c©´ªkÎ;®C²
²
·�Ájª0À�±hº�ª�Á�Â¼ÃT®h±�·�³R°
µc¸«¬«ª�µ^»;®C³´¬#°c©´ª�³"²
¸«¯^¯�ª^²
²
�¸«º�º�Í#¸«²
ª^¬#°c±	�´³´¬#°c©«ª
¹�ª�³j°c·�±¶³«ª�¬"ÜE®^Õ÷·�³ÑÝR©E®C¹�·�µ^Þ ²@°c©½µcª�ª�ÎE®h²
²yÎ«µc±h°c±�¯�±¶º7ÉE®h²
ª�¬¥±¶³#ØCÙRÚ�ª�³«¯�µ
Í�Î«°c·�±¶³7¾

y z"¤� 9¤¥¡��|{ ¢�¡�}
Û ª2©´®^Ájª2ª�Ì�°cª^³«¬«ª�¬ ®#ÎE®h²
²
·�Á¶ª�À}±¶º�ª�Á�Â¼Ã|®h±�·�³j°
µc¸´¬«ª�µ,Õ@·u°c© ®¥¬«ª�¯^·�²
·�±¶³ ®hº�Ï¶±hµc·�°c©«¹ï�±hµ�ØCÙRÚTª�Ì�Î«µcª^²
²
·�±¶³«²�¾ ù ®^Á½·�³´Ï
°c©«ª}²c®h¹�ª�ª�Ì�°cª�³´²
·�±¶³#x±Cµ@®h³¥®C¯�°c·uÁjª}·�³j°
µc¸«¬´ª�µ+·�²y³´±C°+²P°
µ[®h·�Ïh©R°c�±hµ
Õy®Cµc¬7»´¬«¸«ªk°c±�°c©«ª}¬«·�~2¯�¸«º�°WÍ�±¶�¯^±¶³«²
·�¬´ª�µc·�³«Ï�°WÍRÎ7ª
ÜE®^Õ÷®C°
°[®h¯cË½²�¾ �k³«±h°c©«ª�µ+x¸½°c¸½µcª}µcª�²
ªt®Cµc¯[©#Õ$±¶¸«º�¬#ÉBª}°c±�º�±�±CË#�±hµ+¬´ª�¯�·�²
·�±h³"Î«µc±�¯�ª�¬´¸½µcª�²+x±hµ+±h°c©«ª�µ@¯�±¶¹�¹�±h³´ºuÍ#¸«²
ª^¬
®hº�Ï¶ª�É«µ[®h·�¯0x¸«³«¯�°c·�±¶³«²+·�³¥¯�µ
Í�Î«°c±¶²PÍ½²P°cª�¹�²�»´²
¸«¯�©¥®h²@À}·�~�ª�Â ù ª�º�º�¹2®h³¥ª�Ì�ÎB±¶³«ª^³j°c·�®C°c·�±¶³7¾

� ���@�@¡��k��¦G���
Ä À+Ã0Å¶ÆtÇûÀ�¾EÀ}±¶º�ª�Á#®h³«¬���¾ �(¾«ÃT®C±«¾G�(³"°c©«ª0²
ª^¯�¸½µc·�°WÍ#±¶�Î´¸½É´º�·�¯0Ëjª�Í�Î«µc±h°c±�¯�±¶º�²�¾��=�M�:�.�K�m�6���
�M�6���^�)���6�0���+�����6�

���K�^�6�0�h»´×Y¨$ÂWáhà å á è â ñ à¶Å)�½á C Å�» ñ àhÅ¶Æ�¾
Ä ßÑ®h²[àháIÇ,�«¾ex|¾;ßÑ®h²
²
ª�Íj¾ �T±h³R°cª�¹�ÎB±hµ[®Cµ
Í¥¯�µ
Í�Î«°c±¶º�±¶ÏhÍBâ �k³Ñ·�³j°
µc±�¬«¸´¯�°c·�±h³*¾k×W³I��¾��«¾�ÝR·�¹�¹�±¶³«²�»*ª�¬«·�°c±hµ^»G�M�6�$�?���¡

¢ �6�m�6�0���g�0� ¢ �?�+£��^¤+�¥ ,�\�K��¦�§0���0�e§m�¡�_���m���
�6�0���+���¨�6���m�$�?��¤+�0�����C»«Î;®CÏ¶ª^²
ñ �½Æ¶àR¾E×ª©M©:©¬«�µcª�²
²�» ñ à¶à¶á�¾

70

Component-Interaction Automata for Specification
and Verification of Component Interactions

[Extended Abstract]

Pavlı́na Vařeková
∗

and Barbora Zimmerova
∗

Faculty of Informatics
Masaryk University in Brno

Czech Republic

{xvareko1,zimmerova}@fi.muni.cz

ABSTRACT
The paper presents an automata-based language,
Component-Interaction automata, designed for specification
of component interactions in hierarchical component-based
software systems. The language aims to provide a direct and
desirable way of modelling component interactions which is
meant to be transparent and understandable thanks to the
orientation to component-based systems and their specifics.
After a brief introduction that identifies the research prob-
lems we discuss related work and identify the main issues
that motivated us to evolve a new language to support the
mentioned purpose. One of the main differences to related
specification languages is that Component-Interaction
automata use a flexible composition of components that
can be parametrized by architecture description of a system
(hierarchical assembly of primitive components) and other
characteristics. Moreover, the model is designed to preserve
all important interaction information to provide a rich base
for further application of formal methods. As a distinct
to related languages (I/O automata, Interface automata,
Team automata) it naturally preserves information about
the components which participated in a synchronization
and about the hierarchical structure of an overall system.
After a definition of the Component-Interaction automata
language, we also discuss possible applications of a model
and domains of future work.

1. INTRODUCTION
With increasing use of component-based and service-
oriented principles in practical software development
process, new issues demanding application of formal meth-
ods in this domain arise. Let us name for instance compo-
nent compatibility, composability, substitutability and re-
finement of two components, checking of temporal proper-
ties of component interactions or issue of assembly strategies
for composing a system satisfying particular properties.

∗The authors have been supported by the grant No.
1ET400300504

For further investigation of mentioned issues, proper speci-
fication of component behaviour and interactions in assem-
bled hierarchical system is indispensable1. The right spec-
ification language should be able to cover all specifics of
component-based systems and to model component interac-
tions without lost of any important information (like which
components participated in the synchronization or how does
the hierarchy of a modelled system look like) and with re-
spect to the architecture of a system2.

In the rest of the paper, we examine some of the cur-
rent specification languages usable for this purpose and af-
ter discussion of their reduced applicability to this con-
text we introduce an automata-based language, Component-
Interaction automata, designed with the primary intention
of specification and verification of component interactions
in component-based software systems.

2. SPECIFICATION LANGUAGES
Generally, there are several groups of languages that can
be used for description of component behaviour and inter-
actions in hierarchical component-based software systems.
The two of them that are the closest to the given purpose
are architecture description languages (ADLs) and formal
automata-based languages.

2.1 Architecture description languages
Architecture description languages, like Wright [2], Dar-
win/Tracta [10, 11], and SOFA [12], allow to specify both
statical (system architecture, bindings among components)
and dynamical (component behaviour, interactions) aspects
of hierarchical component-based systems. These languages
are very close to practice and often address many practical
issues which can arise in real life systems. Additionally, they
use to be supported by tools.

As the languages are oriented more to the practical aspects
of the architecture design, they often fail to be useful when
more formal issues of the model need to be addressed. Sim-

1Let us remark that by a component we mean an encapsu-
lated unit interacting with the environment solely through
its interfaces (provided/required). The interaction among
components is then taken on a client/supplier principle
where the client component requires (through a required in-
terface) a service on the supplier component which provides
it (through a provided interfaces). The service represents a
synchronization point of components’ interaction
2Architecture of a system represents a hierarchical assembly
of a system from primitive components.

71

ilarly in a domain of verification, these languages usually
support verification of only a small fixed set of properties.
They are often limited by the underlying behavioural model
which is usually designed for one particular type of com-
munication and notion of erroneous behaviour and does not
cover some important interaction properties that may arise
through the composition.

2.2 Automata-based languages
Some of the automata-based languages suitable for specifi-
cation of component interactions are I/O automata [9, 8],
Interface automata [5, 6], and Team automata [7, 3]. These
languages are highly formal and general and usually allow
for straightforward application of formal methods and veri-
fication algorithms.

Unfortunately, when we were examining the usability of
these languages for general application of formal meth-
ods for investigation of component interaction properties of
component-based systems, we detected several issues that
reduce the suitability of these languages in this context.

The essential issue is that these languages capture the com-
ponent behaviour only and do not take into account the ar-
chitecture of an overall system which also plays an indispens-
able role in interaction specification. That is restrictive espe-
cially when the interconnection structure of a system differs
from the complete interconnection space determined by the
actions shared among components. For example when we
need to express that two components cannot synchronize in
the composition, even if they share the same action, because
the assembly of a system do not allow them to interact (they
are not connected one to each other).

Next thing to mention is that these automata-based lan-
guages do not naturally preserve some interaction informa-
tion important for formal reasoning about the resulting sys-
tem. That is for instance which primitive components par-
ticipated in an interaction over a particular action, or how
does the hierarchy of a modelled system look like. Addi-
tionally, they are often limited to one strict type of commu-
nication and notion of erroneous behaviour (I/O automata,
Interface automata).

Other issue worth noting is that not every set of components
described in these languages can be composed. There are
several restriction often defined over a disjointness of sets
of input, output and internal actions. That means that
we are for example unable to compose several automata
when some of them contain the same output action (I/O
automata, Interface automata) even if it is quite natural in
practical component-based systems, for instance when two
components are using the same service of another compo-
nent.

In some cases, relabelling and transformation of the compo-
nent automata before each composition would be sufficient
to express desired features. But the price we would have
to pay for it lies in considerable state expanding, untrans-
parency, and uncomfortable use of the model. Moreover,
there are many features (like input enableness at I/O au-
tomata, explicit indication of erroneous behaviour at Inter-
face automata, or lost of information about participants of
a synchronization at Team automata) which would be non-
trivial to overcome.

3. COMPONENT-INTERACTION
AUTOMATA LANGUAGE

The mentioned issues motivated us to evolve a verification-
oriented automata-based formal model, Component-
Interaction automata [4], which combines the benefits of
both architecture description languages and automata-
based languages and is designed with the primary purpose
oriented to component-based systems and their specifics.
The language makes it possible to model all interesting as-
pects of component interactions and to preserve important
interaction information during the composition as well.
One of the essential differences to the previously discussed
languages is that the Component-Interaction automata use
a flexible composition of components with respect to the
architecture description (component assembly) and other
characteristics of a modelled system. The language can
therefore accept an ADL description as an input and respect
it when composing the components what enables it to adopt
most of the benefits of architecture description languages.
On the other hand, it is a formal automata-based model
allowing for direct application of formal methods.

3.1 Definition of a component-interaction
automaton

The language should be defined in a way that it is able to
describe systems composed from components capturing the
information important for detecting all interaction proper-
ties. For capturing the information about interacting com-
ponents of an automaton we among others need to remember
what are the primitive components of the automaton and
how they were composed. Therefore it is necessary to have
each primitive component in the automaton associated with
a unique name. In case of Component-Interaction automata
the names are natural numbers.

Information about the composition order that was used
to compose a particular component is in Component-
Interaction automata preserved within a hierarchy of com-
ponent names. Every hierarchy of component names is an
n-tuple (where n ∈ N) whose items correspond to lower
level hierarchies of component names that can be primitive
or composed. A primitive hierarchy of component names for
a component with a numerical name 1 can take form of (1)
or (((1))) for instance, and a composed hierarchy of compo-
nent names for a composition of components 1 and 2 can
take form of ((1), (2)), (1, (2)), or (1, 2) for instance.

Definition: Hierarchy of component names is

• every tuple H = (n1, . . . , nm), where m ∈ N,
n1, n2, . . . , nm ∈ N, and n1, n2, . . . , nm are pairwise
different; a set of component names corresponding to
H is SH = {n1, n2, . . . , nm}

• every tuple H = (H1, H2, . . . , Hm), where m ∈ N,
H1, H2, . . . , Hm are hierarchies of component names,
and SH1 , SH2 , . . . , SHm are pairwise disjoint; a set
of component names corresponding to H is SH =Sm

i=1 SHi

• nothing else

A set of hierarchies of component names is denoted H.
A hierarchy of component names H ∈ H is called primitive
iff |SH | = 1.

72

Now we can proceed to a definition of component-interaction
automaton that is a labelled transition system (with struc-
tured labels) enriched with a hierarchy of component names
whose composition the automaton represents.

Definition: A component-interaction automaton (or CI au-
tomaton for short) is a 5-tuple C = (Q, Act, δ, I, H) where

• Q is a finite set of states,

• Act is a finite set of actions,
Σ = ((SH∪{−})×Act×(SH∪{−}))\({−}×Act×{−})
is a set of labels called an alphabet,

• δ ⊆ Q× Σ×Q is a finite set of labelled transitions,

• I ⊆ Q is a nonempty set of initial states and

• H ∈ H is a hierarchy of component names.

The labels are triplets of a form (−, a, n2), (n1, a,−), or
(n1, a, n2) and accordingly are of a type input, output, or
internal respectively.

• The input label (−, a, n2) represents that the compo-
nent n2 receives an action a as an input.

• The output label (n1, a,−) represents that the compo-
nent n1 sends an action a as an output.

• The internal label (n1, a, n2) represents that the com-
ponent n1 sends an action a as an output, and syn-
chronously the component n2 receives the action a as
an input.

Example 3.1: Let us consider a simple example from figure 1
(modelled in UML 2.0) capturing a component System con-
sisting of three subcomponents Client1, Client2 and Data-
base. The Database component provides an insert service,
may log the service internally and returns a confirmation of
successful insertion. Both Clinet1 and Client2 request an
insert service first and wait for the confirmation afterwards.

Figure 1: Component model of a simple system

CI automata C1, C2 and C3 for the components Client1,
Client2 and Database, respectively, are in figure 2. An ac-
tion i corresponds to inserting some data to the database,
an action l corresponds to logging some action and d cor-
responds to a confirmation that the action was successfully
performed (done).

C1 : // 076540123 (1,i,−) //
176540123

(−,d,1)
oo

Hierarchy of component names: (1)

C2 : // 076540123 (2,i,−) //
176540123

(−,d,2)
oo

Hierarchy of component names: (2)

C3 : // 076540123 (−,i,3) //
176540123 (3,l,4) //

(3,d,−)
oo 276540123

(4,d,3)
oo

Hierarchy of component names: (3, 4)

Figure 2: CI automata C1, C2 and C3

The simplest form of component-interaction automaton ac-
cording to the hierarchy of component names is an automa-
ton representing one individual component only (with prim-
itive hierarchy of component names).

Definition: A component-interaction automaton
C = (Q, Act, δ, I, H) is primitive iff H is a primitive hierar-
chy of component names.

Example 3.2: Automata C1 and C2 in figure 2 are primitive,
automaton C3 is not.

In some cases it is useful to abstract from an inner hierarchy
of a CI automaton and consider it as a primitive one to make
the system less complex for further verification.

Definition: Let C = (Q, Act, δ, I, H) be a component-
interaction automaton. Then a component-interaction
automaton C′ = (Q, Act, δ′, I, (n)) is primitive to the
component-interaction automaton C iff

• n ∈ N, n 6∈ SH ,

• (q, (n, a, n), q′) ∈ δ′ iff ∃n1, n2 ∈ N : (q, (n1, a, n2), q
′)

∈ δ,

• (q, (−, a, n), q′) ∈ δ′ iff ∃n2 ∈ N : (q, (−, a, n2), q
′) ∈ δ,

• (q, (n, a,−), q′) ∈ δ′ iff ∃n1 ∈ N : (q, (n1, a,−), q′) ∈ δ.

Example 3.3: Considering the automata from figure 2, both
the automaton C1 is primitive to C2, and the automaton C2

is primitive to C1. An example of a CI automaton primitive
to the automaton C3 is in figure 3.

C4 : // 076540123 (−,i,5) //
176540123 (5,l,5) //

(5,d,−)
oo 276540123

(5,d,5)
oo

Hierarchy of component names: (5)

Figure 3: CI automaton C4

73

3.2 Composition of CI automata
Component-interaction automata can be composed to form
a higher level component-interaction automaton. The tran-
sition set of the resulting automaton is defined over a com-
plete transition space representing all potentially feasible
transitions of the system. The complete transition space
for a set of component-interaction automata consists of all
transitions capturing that (1) one of the automata follows
its original transition or (2) two of the automata synchronize
over a complementary transition.

Notation: Let I ⊆ N be a finite set with cardinality m, and
let for each i ∈ I, Qi be a set. Then Πi∈IQi denotes the
set {(qi1 , qi2 , . . . , qim) | (∀j ∈ {1, . . . , m} : qij ∈ Qij) ∧
{i1, i2, . . . , im} = I ∧ (∀j1, j2 ∈ {1, . . . , m} : j1 < j2 ⇒
ij1 < ij2)}. If I = ∅ then Πi∈IQi = ∅.
For j ∈ I, projj denotes the function projj : Πi∈IQi → Qj

for which projj((qi)i∈I) = qj .

Definition: Let S = {(Qi, Acti, δi, Ii, Hi)}i∈I , where I ⊆
N is finite, be a system of component-interaction automata
such that the sets SHi , where i ∈ I, are pairwise disjoint.
Then the complete transition space for S is ∆S = ∆S,old ∪
∆S,new, where

∆S,old = {(q, (o1, a, o2), q
′) | q, q′ ∈ Πi∈IQi,

o1, o2 ∈ N ∪ {−}, ∃j ∈ I :
((projj(q), (o1, a, o2), projj(q

′)) ∈ δj ∧
∧ ∀i ∈ (I \ {j}) proji(q) = proji(q

′))}

∆S,new = {(q, (n1, a, n2), q
′) | q, q′ ∈ Πi∈IQi,

n1, n2 ∈ N,∃j1, j2 ∈ I, j1 6= j2 :
((projj1(q), (n1, a,−), projj1(q

′)) ∈ δj1 ∧
(projj2(q), (−, a, n2), projj2(q

′)) ∈ δj2 ∧
∧ ∀i ∈ (I \ {j1, j2}) proji(q) = proji(q

′))}

Example 3.4: The complete transition space for a set of CI
automata {Ci}i∈{1,2,3} from figure 2 is in figure 4. Every
state (q1, q2, q3) ∈ Q1×Q2×Q3 is represented as a sequence
q1q2q3 for short.

002?>=<89:; (-,d,1)
//

(-,d,2)

��

(3,l,4) ""EE
EE

EE
EE 102?>=<89:;(1,i,-)oo

(-,d,2)

��

(3,l,4)

||yy
yy

yy
yy

001?>=<89:; (-,d,1)
//

(-,d,2)

��

(4,d,3)
bbEEEEEEEE

(-,i,3) ""EE
EE

EE
EE 101?>=<89:;(1,i,-)oo

(-,d,2)

��

(4,d,3)

<<yyyyyyyy

(-,i,3)

||yy
yy

yy
yy(3,d,1)

ttiiiiiiiiiiiiiiiiiiiii

000?>=<89:;
(-,d,1)

//

(-,d,2)

��

(3,d,-)
bbEEEEEEEE

(2,i,3)

����
��
��
��
��
��
��
��
��
��

(1,i,3)

44iiiiiiiiiiiiiiiiiiiii
100?>=<89:;(1,i,-)oo

(-,d,2)

��

(3,d,-)

<<yyyyyyyy

(2,i,3)

��-
--

--
--

--
--

--
--

--
--

-aaBBBBBBBB

010?>=<89:; (-,d,1)
//

(2,i,-)

OO

(3,d,-)

||yy
yy

yy
yy (1,i,3)

**UUUUUUUUUUUUUUUUUUUUU 110?>=<89:;(1,i,-)oo

(2,i,-)

OO

(3,d,-) ""EE
EE

EE
EE

011?>=<89:;
(-,d,1)

//

(2,i,-)

OO

(4,d,3)

||yy
yy

yy
yy

(-,i,3)

<<yyyyyyyy

(3,d,2)

HH��������������������
111?>=<89:;(1,i,-)oo

(2,i,-)

OO

(4,d,3) ""EE
EE

EE
EE

(-,i,3)
bbEEEEEEEE

(3,d,2)

VV--------------------(3,d,1)

jjUUUUUUUUUUUUUUUUUUUUU

012?>=<89:;
(-,d,1)

//

(2,i,-)

OO

(3,l,4)

<<yyyyyyyy
112?>=<89:;(1,i,-)oo

(2,i,-)

OO

(3,l,4)
bbEEEEEEEE

Figure 4: Complete transition space for {Ci}i∈{1,2,3}

Now we can proceed to the composition of a set of CI au-
tomata which is defined in a flexible manner as a CI automa-
ton over the set, and can take several forms for the same set
of CI automata. In particular, the CI automaton over the
set is defined as a product automaton whose transition set
is a subset of a complete transition space. Thanks to this
fact the resulting automaton may consist of only those tran-
sition that are really feasible in a system – according to the
architectural assembly for instance.

Notation: Let I ⊆ N be a finite nonempty set with cardi-
nality m, and {Hi}i∈I be a set. Then (Hi)i∈I denotes the
tuple (Hi1 , Hi2 , . . . , Him), where {i1, i2, . . . , im} = I, and
for all j1, j2 ∈ {1, 2, . . . , m} if j1 < j2 then ij1 < ij2 .

Definition: Let S = {(Qi, Acti, δi, Ii, Hi)}i∈I , where I ⊆
N is finite, be a system of component-interaction automata
such that the sets SHi , where i ∈ I, are pairwise dis-
joint. Then C = (Πi∈IQi, ∪i∈IActi, δ, Πi∈IIi, (Hi)i∈I)
is a component-interaction automaton over S iff δ ⊆ ∆S .

Example 3.5: The CI automaton over the set {Ci}i∈{1,2,3}
can for example take form of an automaton in figure 5. In
this case the selection of a transition set was motivated by
the architectural assembly of a system depicted in figure 1.
The architecture indicates that both Client1 and Client2
components may participate only in internal actions in con-
nection with the Database component. Their external ac-
tions modelled by input and output transitions have to be
removed from the transition space because the architecture
do not enable their delegation out of the System compo-
nent which is modelled by the composition. On contrary,
the Database component may perform all potentially fea-
sible actions (synchronize with Client1, synchronize with
Client2, and let external actions to be delegated out of the
composed system). The diagram in figure 5 depicts the re-
sulting (reachable) transition set (solid lines) in comparison
to the complete transition space (dotted lines). Every state
(q1, q2, q3) ∈ Q1×Q2×Q3 is represented as a sequence q1q2q3

for short.

002?>=<89:;
(3,l,4) ""EE

EE
EE

EE 102?>=<89:;
(3,l,4)

||yy
yy

yy
yy

001?>=<89:;
(4,d,3)

bbEEEEEEEE

(-,i,3) ""EE
EE

EE
EE 101?>=<89:;

(4,d,3)

<<yyyyyyyy

(3,d,1)

ttiiiiiiiiiiiiiiiiiiiii

000?>=<89:;
(3,d,-)

bbEEEEEEEE

(2,i,3)

����
��
��
��
��
��
��
��
��
��

(1,i,3)

44iiiiiiiiiiiiiiiiiiiii
100?>=<89:;aaBBBBBBBB

010?>=<89:; 110?>=<89:;

011?>=<89:;
(4,d,3)

||yy
yy

yy
yy

(3,d,2)

HH��������������������
111?>=<89:;

012?>=<89:;
(3,l,4)

<<yyyyyyyy
112?>=<89:;

Hierarchy of component names: ((1), (2), (3, 4))

Figure 5: CI automaton over the set {Ci}i∈{1,2,3}

74

4. APPLICATION AND FUTURE WORK
The Component-Interaction automata language allows
for a realistic specification of component interactions in
component-based systems with respect to the assembly of
a system, and preserving information about the system hi-
erarchy and primitive components communicating through
the actions. That provides a rich base for application of a
variety of formal methods.

One of the classical applications of formal methods is a
checking of various temporal properties of system behav-
iour. If the system is modelled as a component-interaction
automaton, the behaviour capturing the interaction among
components and architectural levels is captured in (infinite)
traces. Both linear and branching time temporal logics have
proved to be useful for specifying properties of traces. There
are several formal methods for checking that a model of the
design satisfies a given specification. Among them those
based on automata are especially convenient for our model
of Component-Interaction automata. We have experimen-
tally verified several specifications of component-based sys-
tems modelled as component-interaction automata with the
help of a DiVinE model checking tool [1] that supports ver-
ification of LTL properties. Nowadays, we examine which
(temporal) logics could be useful to specify interesting in-
teraction properties.

One of the other issues we are currently addressing is the
definition of refinement relation stating the relationship be-
tween component specification and implementation. We also
study the substitutability of two components and how it can
influence the properties of an overall system. Other inter-
esting issue concerns the varieties of system assemblies and
questions addressing whether there exists any assembly of
the primitive components for which the composed system
satisfies particular properties or which interaction proper-
ties are satisfied in every correct assembly.

5. CONCLUSION
The paper presents a formal verification-oriented automata-
based specification language named Component-Interaction
automata. The language aims to provide a direct and desir-
able way of modelling component interactions in component-
based systems which is meant to be transparent and un-
derstandable thanks to the primary purpose oriented to
component-based systems and their specifics. The model
is inspired by some features of previously mentioned models
and differs in many others. It supports freedom of choosing
the transition set what allows the adjustability according to
the architecture description (inspired by Team automata)
and is based on synchronization of one input and one out-
put action with the same name which becomes internal later
on (inspired by Interface automata).

The model is designed to preserve all important interaction
properties to provide a rich base for further verification. As a
distinct from the discussed models (I/O automata, Interface
automata, Team automata), it naturally preserves informa-
tion about the components which participated in the syn-
chronization and about the hierarchical structure, directly
without renaming that would make the model less readable
and understandable.

6. REFERENCES
[1] Divine – Distributed Verification Environment.

http://anna.fi.muni.cz/divine.

[2] R. J. Allen. A Formal Approach to Software
Architecture. PhD thesis, Carnegie Mellon University,
School of Computer Science, May 1997.

[3] M. Beek, C. Ellis, J. Kleijn, and G. Rozenberg.
Synchronizations in Team Automata for Groupware
Systems. Computer Supported Cooperative Work—The
Journal of Collaborative Computing, 12(1):21–69,
2003.

[4] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova.
Component-Interaction automata as a
verification-oriented component-based system
specification. In Proceedings of SAVCBS’05, pages
31–38, Lisbon, Portugal, September 2005.

[5] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering, pages 109–120.
ACM Press, 2001.

[6] L. de Alfaro and T. A. Henzinger. Interface-based
design. In Proceedings of the 2004 Marktoberdorf
Summer School. Kluwer, 2004.

[7] C. Ellis. Team Automata for Groupware Systems. In
Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work: The
Integration Challenge (GROUP’97), pages 415–424.
ACM Press, New York, 1997.

[8] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, San Mateo, CA, 1996.

[9] N. A. Lynch and M. R. Tuttle. Hierarchical
correctness proofs for distributed algorithms. In
Proceedings of PODC, pages 137–151, April 1987.

[10] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. In
Proceedings of 5th European Software Engineering
Conference (ESEC’95), September 1995.

[11] J. Magee, J. Kramer, and D. Giannakopoulou.
Behaviour analysis of software architectures. In
Proceedings of the 1st Working IFIP Conference on
Software Architecture (WICSA1), February 1999.

[12] F. Plasil and S. Visnovsky. Behavior protocols for
software components. IEEE Transactions on Software
Engineering, 28(11):1056–1076, November 2002.

75

Application of Rewriting Techniques to
Verification Problems

Adam Koprowski

Technical University of Eindhoven
Department of Computer Science

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
A.Koprowski@tue.nl

Abstract. The goal of the project is to employ techniques from term
rewriting to verification problems. The relationship between liveness prop-
erties and termination of term rewrite systems (TRSs) is of particular
interest. The emphasis is on the investigation of such properties for infi-
nite state space systems where standard model checking techniques fail.
Next to developing the necessary underlying theory and performing a
case study analysis, the possibility to automate this approach is of great
importance. In this paper we discuss the motivation of such work, present
the results obtained so far, discuss related work and present plans for the
further research.

1 Motivation

The problem of proving termination of term rewrite systems has been studied
extensively and still attracts a lot of attention of term rewriting community.
Although in general undecidable, for a broad spectrum of term rewrite systems
encountered in practice termination can be proven and a number of techniques
has been developed to serve this goal.1

Apart from the theoretical results, possibility to automate the process of
proving termination of TRSs was always an important issue. A number of tools
for proving termination of TRSs in a fully automated manner has been developed
by different authors and an annual termination competition is being organized
to stimulate further work and improvement in that area.2

Now our main motivation is to make use of the aforementioned results and
develop a method to prove liveness properties by means of TRS termination. The
important point is that particular infinite state space models can be encoded by
means of finite TRSs. Now, since termination proofs do not depend in any way
on exploration of a state space, such problems can be tackled by our approach,
whereas standard model checking approach fails for them. We will present the
motivating example to illustrate our approach in Section 3.4.
1 For an overview of term rewriting in general, and termination of term rewriting in

particular, reader is refereed to, for instance, [5].
2 See http://www.lri.fr/∼marche/termination-competition for more details.

76

2 Related work

The idea of transforming verification problems to problems of termination of
TRSs goes back to Giesl and Zantema. In [1] they presented two such trans-
formations. The first one is sound and complete, that is a termination of the
transformed TRS is equivalent to a liveness question at hand. The second one is
only sound but significantly simpler. In [2] a slightly different setting has been
discussed.

As already remarked in [1] the sound and complete transformation presented
there is by far too complicated to be of practical use – even for simple input
systems termination of transformed TRSs is difficult to show. On the other
hand the preliminary case study conducted by authors revealed that the sound
transformation from [1] is often not strong enough and results in non-terminating
TRSs for problems where liveness do hold. That was the motivation for seeking
an alternative transformation; more powerful, but still suitable for automatic
termination provers. We will present such a transformation in Section 3.2.

3 Preliminary results

After giving some preliminaries in Section 3.1 we present the transformation
from liveness problems to (relative) termination problems of TRSs (3.2). Then
in 3.3 we describe TPA – a tool developed by authors for solving such (relative)
termination problems. In Section 3.4 we illustrate our approach with an example.

3.1 Preliminaries

For a signature Σ and a set of variables V, we denote the set of terms over
Σ and V by T (Σ,V). We denote the set of variables occurring in a term t
by Var(t). A rewrite rule is a pair (`, r), written ` → r, with `, r ∈ T (Σ,V),
` /∈ V, Var(r) ⊆ Var(`). A term rewriting system (TRS) is a set of rewrite rules.
The rewrite relation →R for a TRS R is defined by s →R t if there exists a
rewrite rule ` → r ∈ R, a substitution δ and a context C such that s = C[`δ]
and t = C[rδ]. A TRS R is called terminating (SN(R)3) if there is no infinite
reduction t1 →R t2 →R

For two relations R,S we define R/S ≡ S∗ · R · S∗. We call an infinite
R∪S reduction fair with respect to R if it contains infinitely many R-steps. The
relative termination problem is to decide given two TRSs R,S whether SN(R/S).
Note that SN(R/S) is equivalent to lack of infinite →R ∪ →S reductions fair
with respect to →R.

Let top be a fresh unary symbol in Σ (top /∈ Σ). A term t ∈ T (Σ ∪{top},V)
is called a top term if it contains exactly one instance of the top symbol, at the
root of the term. We denote the set of top terms by Ttop(Σ,V). A TRS over
Σ ∪ {top} is called a top term rewrite system (top TRS) if for all its rules ` → r
either both ` and r are top terms (top rule) or both ` and r do not contain an
instance of the top symbol (non-top rule).
3 It is usual to write SN(R) instead of SN(→R).

77

3.2 Transformation from liveness problems to termination problems

We make a concise presentation of the underlying theory and then present the
transformation. For more elaborate description we refer the reader to [3] and [4].

We extend the notion of liveness as considered in [1] by introducing fairness.
We define liveness with respect to a set of states S, two relations modelling
computations →,

=→ ⊆ S × S, a set of initial states I ⊆ S and a set of good
states G ⊆ S denoted as Live(I,→,

=→, G) to hold iff:

∀t1, t2, . . . :

t1 ∈ I

∀i : ti → ti+1 ∨ ti
=→ ti+1

∀i∃j > i : tj → tj+1

 =⇒ ∃i : ti ∈ G

Now we represent the computation states by terms, so S becomes T (Σ,V)
and I,G ⊆ T (Σ,V). Abstract reduction relations → and =→ now correspond to
rewrite relations of two TRSs over the same signature Σ: R and R=, respectively.
As a shorthand for →R we write → and for →R= we simply write =→. Just like
it is usual to write SN(R) rather than SN(→R), we will write Live(I,R, R=, G)
rather than Live(I,→R,→R= , G).

Given some set of terms P we are going to restrict to the set of good states
being terms not containing an instance of some term from P (we will denote this
set by G(P)). Now we are going to investigate liveness properties of the form:
Live(Ttop(Σ,V), R, R=, G(P)) for some top TRSs R and R=. This is equivalent
to proving that every infinite fair reduction of top terms contains a term which
does not contain an instance of any of the terms from P . Now we will present
a transformation that relates this problem with the (relative) termination of
transformed systems.

Definition 1 (LT) Let R and R= be top TRSs over Σ∪{top} and P ⊆ T (Σ,V).
The transformed systems LT(R) and LT=(R=, P) over Σ ∪ {top, ok, check} are
defined as follows:

LT(R)

` → r for all non-top rules ` → r in R

top(ok(`)) → top(check(r)) for all top rules top(`) → top(r) in R

LT=(R=, P)

` → r for all non-top rules ` → r in R=

top(ok(`)) → top(check(r)) for all top rules top(`) → top(r) in R=

check(p) → ok(p) for all p ∈ P

check(f(x1, . . . , xn)) → f(x1, . . . , check(xi), . . . , xn)
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

f(x1, . . . , ok(xi), . . . , xn) → ok(f(x1, . . . , xn))
for all f ∈ Σ of arity n ≥ 1, 1 ≤ i ≤ n

78

The following theorem from [3] relates relative termination of transformed
systems with the liveness problem they originated from.

Theorem 2 (Soundness) Let R,R= be top TRSs over Σ ∪ {top}, let P ⊆
T (Σ,V). Then:

SN(LT(R)/ LT=(R=, P)) =⇒ Live(Ttop(Σ,V), R, R=, G(P))

It is worth noting that under some mild additional restrictions our transfor-
mation is also complete. For details we again refer to [3].

3.3 Proving (relative) termination automatically

In the preceding section we saw how to transform liveness problems to (relative)
termination problems. To deal with such problems the first author developed
a tool, TPA (Termination Proved Automatically), that aims at solving such
problems in an automated way. It is the first tool that also supports relative ter-
mination of TRSs, which was one of the main motivations to develop it. It uses a
number of termination proving techniques, most notably semantic labelling with
natural numbers, which, for the time being, is used by no other tool. It got 3rd
place in the aforementioned termination competition in 2005. More information
about TPA can be found on its web-page, http://www.win.tue.nl/tpa.

3.4 Example

Example 1 (Cars over a bridge). There is a road with cars going in two direc-
tions. But on their way there is a bridge which is only wide enough to permit
a single lane of traffic. So there are lights indicating which side of the bridge
is allowed to cross it. We want to verify the following liveness property: every
car will eventually cross the bridge. For that clearly we need some assumptions
about the lighting system. We want to be as general as possible so instead of
assuming some particular algorithm of switching lights we just require them to
change in a fair way, that is in the infinite observation of the system there must
be infinitely many light switches. Also we assume that before a light switches
at least one car will pass (otherwise liveness is lost as lights can change all the
time without any cars passing).

This system can be modelled with a unary top symbol whose arguments start
with a binary symbol left or right indicating which side has a green light. The
arguments of left and right start with unary symbols new and old representing
cars waiting to cross the bridge. The constant bot stands for the end of the
queue. New cars are allowed to arrive at the end of the queue at any time. What
we want to prove is that finally no old car remains. The top TRS modelling this
system follows:

(1) top(left(old(x), y)) → top(right(x, y)) (6) top(right(x, bot)) → top(left(x, bot))

(2) top(left(new(x), y)) → top(right(x, y)) (7) top(left(old(x), y))
=→ top(left(x, y))

(3) top(right(x, old(y))) → top(left(x, y)) (8) top(left(new(x), y))
=→ top(left(x, y))

(4) top(right(x, new(y))) → top(left(x, y)) (9) top(right(x, old(y)))
=→ top(right(x, y))

(5) top(left(bot, y)) → top(right(bot, y)) (10) top(right(x, new(y)))
=→ top(right(x, y))

(11) bot
=→ new(bot)

79

We have the following semantics of the rules: (1) − (4) car passes and the
light changes; (5)− (6) : no car waiting, light can change; (7)− (10) car passes,
light remains the same; (11) New car arriving.

By using our approach, in a way described in the preceding sections, the
liveness property stating that every old car can eventually cross the bridge, can
be transformed to a question of relative termination of TRS. This question, in
turn, can be positive answered in a fully automated way by the use of TPA .

4 Conclusions and further research

We presented a framework for verification of liveness properties, that can work
also for infinite state space systems. This method requires the model of the
system to be given as TRS but then the proof that liveness property holds is
delivered automatically by TPA by first transforming the TRS and then proving
termination of the transformed TRS.

Clearly this is just the beginning of the journey and a lot of extensions is
possible, among which the following ones we find particularly interesting and
worth further investigation:

– Clearly our definition of fairness and of liveness problems we are aiming at
could enjoy some generalization. Of particular interest would be the direction
allowing us to deal not only with liveness but also with safety properties.

– Once the framework is mature enough it would be interesting to perform a
case study analysis, on real-life examples.

– Some techniques for proving termination generalize to relative termination
and as such they are used in TPA. But, since relative termination plays an
important role in dealing with liveness with fairness, we believe that further
development of relative termination techniques would be of great interest.

– As soon as such techniques are available implementing them in TPA would
be a natural next step, increasing the applicability of the tool.

References

1. Jürgen Giesl and Hans Zantema. Liveness in rewriting. In Proc. 14th RTA, LNCS
2706, pages 321–336, 2003.

2. Jürgen Giesl and Hans Zantema. Simulating liveness by reduction strategies. Electr.
Notes Theor. Comput. Sci., 86(4), 2003.

3. Adam Koprowski and Hans Zantema. Proving liveness with fairness using rewrit-
ing. In Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005,
Vienna, Austria, September 19-21, 2005, Proceedings, volume 3717 of Lecture Notes
in Computer Science, pages 232–247. Springer, 2005.

4. Adam Koprowski and Hans Zantema. Proving liveness with fairness using rewriting.
Technical Report CSR 05-06, Eindhoven University of Technology, Eindhoven, The
Netherlands, March 2005.

5. TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

80

	Table of contents
	Preface
	Session 1
	Session 2
	Session 3
	Session 4

