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Abstract 

A mathematical model is analysed of a kettledrum, consisting of a hard-walled open ended finite 
cylinder, closed by an ideal membrane, connected to a semi-infinite space by a hard-walled 
flange, and provided with a small vent hole in the bottom. The primary aim of the analysis is to 
detennine the spectrum of the kettledrum, i.e. the eigenfrequencies. These frequencies are com
plex because due to the radiation to infinity any unforced solution will decay in time. By decom
posing the acoustic field into circumferential Fourier components (m-modes, where m is an 
integer) the problem is reduced to a quasi two-dimensional problem perm. By means of suitable 
Greens functions the field inside and outside the cylinder are written as a function of the motion 
of the membrane, so that the membrane equation, including the field pressure difference as a forc
ing term, can be written as an integra-differential equation. Its solution can formally be written as 
a sum of vacuum modes, by which the equation can be rewritten as a matrix equation, which is 
then solved numerically by iteration, applying standard eigenvalue techniques. 

From the studied examples it is found that two types of modes can be distinguished: vacuum 
mode-like, and cavity mode-like. This is not a strict classification. When we vary a problem 
parameter a mode may go over from one type into another. A property of these vacuum-type 
modes is that the membrane vibrations are relatively strong so that the energy is radiated away 
quickly, whereas with the cavity-type mode the motion is trapped in the cavity, with a relatively 
long decay time. 
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1. Introduction 

A theoretical analysis of the acoustics of a musical instrument is an intrinsically difficult prob

lem. This is not because the basic mechanisms are unknown or poorly understood, but because 

the sound produced is meant to be perceived by human ears, rather than measuring instruments. 

Not only are human ears extremely sensitive, with their range (in acoustic energy) spanning a 

ratio of the order of 1014
, but also is the appreciation of beauty in a very subtle and subjective 

manner dependent on the spectral components of the sound in a way not easily represented by a 

formula. 

This observation couldn't be more true for the kettledrum, the instrument that will be considered 

in the present report. The basic mechanisms (vibrating flanged membrane, resonating cavity) are 

known for more than a century ([1]), but still sound quality aspects as pitch and decay time are 

affected by secondary resonances and dissipation, which are all known in principle ([2]), but 

unknown in any practical situation. 

Therefore, it is both impossible and useless to model a kettledrum theoretically: we do not really 

know what to model, and if we had a model the results would be as difficult to interpret as a real 

experiment. So the crucial first step to understand the acoustics of a kettledrum and to bring order 

in experimental results is to model the basic elements in such a way, that we can quantify (numer

ically) our qualitative knowledge, predict trends, and assist our intuition in those cases where a 

subtle interaction between equally important effects occurs. 

The present report deals with such a model of a kettledrum, describing the vibrations of a circular 

homogeneous flanged membrane backed by a cylindrical cavity in a medium of air. The cavity is 

hard-walled and has a small opening in the bottom. In vacuum the modes of vibration of the 

membrane would be independent of the presence of a cavity. With air the frequencies of these 

vacuum-modes are decreased by the air loading (although there is an additional effect of increas

ing by the presence of the cavity), while at the same time these modes decay in time by the effect 

of radiation of acoustic energy out to infinity. A further effect of the cavity is a coupling of the 

membrane vibration with the cavity modes. 

The rotational symmetry, the cylindrical kettle geometry, and the artefact of the flange are 

simplifications made to further assist use of the model: they allow a much more detailed 

mathematical analysis, making the numerical solution efficient, compact, and fast, so that tracing 

the spectrum as a function of various parameters is possible even on a small computer. Alterna

tives, without these simplifications, are in principle possible, but only at the expense of expensive 

very massive, cumbersome, program packages, only executable at high speed computers. Another 

approximation, exploiting a small air/membrane density ratio, is reported in [3], but this is not 

applicable here, since this ratio is not small. The approximation of a small membrane-wave 

velocity/sound speed ratio, including a compact source (small ratio of membrane 

diameter/acoustic wave length), which is essentially the approximation in [4,5], is only useful in a 
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proper matched asymptotic expension setting. We have not exploited that funher, but found the 
present approach the best combination of flexibility and accuracy, as experiments have confirmed 
[6]. 

The essence of the model adopted, and the corresponding mathematical analysis, has already 
been published in [6]. In this reference one may find also the (very favourable) comparison with 
experiments. Our analysis adds to these results: the effect of the bottom opening, a very detailed 
analysis of a central integral greatly improving the efficiency of the calculations, and (in the 
presentation of the results) a more careful treatment of the cavity-modes. In [6] all the modes are 
considered to be variations of vacuum-membrane modes. We will show that there are also modes 
close to cavity modes, which were, indeed, actually not taken into consideration in the com
parison with experiments. 

Acknowledgements 
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2. The Model 

An inviscid, compressible, stationary, and unifonn medium, provided with a cylindrical coordi

nate system (r, a,z), allows acoustic perturbations described by (cf. [7,8]) 

v2 <~>- _I az <I>= o 
c~ 'dt 2 

(2.1) 

in the half space z > L and in the cylinder r < a , 0 < z < L. See figure 1. <1> is the velocity poten

tial, Ca = ('YPa I Pa)'h, Pa• and Pa are the mean sound speed, pressure and density respectively, 

withy the specific-heat ratio (for airy= 1.4). The pressure perturbation is given by 

(2.2) 

Between cylinder and halfspace, at z = 0, r S a, a membrane of surface density a is stretched 

with unifonn tension T, allowing linear deflections z = L + Tt(r, 9,t) described by 

2 d2 
T Vo 11- a - 2 T1 = p(r, 9,L+ ,t)-p(r, 9,L-,t) 

dt 
(2.3) 

where the right hand side denotes the pressure difference across the membrane. Naturally, Vo 

denotes the two-dimensional gradient in the plane z = L. From continuity of particle displace

ment, the vertical velocities of air and membrane must match, so that 

a a at Tt(r, 9,t) = dz <!>(r, 9,L,t) (2.4) 

(for 0 s r S a) both for z = L+ and z = L-. The propagation speed eM of the {transversal) waves 

in the membrane is given by 

Except for a small opening z = 0 , r < d in the bottom of the cylinder, the boundaries are hard 

walls, giving the boundary conditions 

d 
a_;-<1>=0 at z=L, r>a 

and z=O, d<r<a 

d 
dr <1> = 0 at r =a , 0 < z < L. 

The bottom opening is modelled as a small (d << any acoustic wave length) orifice in an 

infinitely thin wall, so that the diffraction effects are acoustically equivalent to a dipole source, of 

which the strength is detennined by the incompressible flow through the orifice (the inner region 

in a matched asymptotic expansion fonnulation). This flow is on its tum driven by the pressure of 

the incident acoustic wave. The resulting relation, which goes back to Rayleigh and can be found 

in for example [7], is one between the rate of change of volume velocity through and the pressure 
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at the hole: 

Pa d l1td a 
p(O,t) = 

2
d dt i l dz ell(r, e,O,t) r dr da (d ~ 0). I 

As we do not accept sources at infinity radiating inwards we have for r ~ oo, z ~ oo the radiation 
condition of only outward radiating waves (Sommerfeld's condition for harmonic waves, causal
ity condition for initial value problems). As is customary with diffraction problems with sharp 
edges ([9]), the solution of the problem may be not unique without additional constraints describ
ing the behaviour near the edge: the so-called edge condition. Without this condition non
acceptable solutions may be added to the sought solution by allowing point or line sources at 
these edges. This edge condition is therefore usually fonnulated as the finiteness of energy stored 
in any finite neighbourhood of the edge. Especially near the edge of the membrane r = a , z = L 
we may have to take some care; that is: the anticipated series expansion of the solution will have 
to converge fast enough. Unfortunately, the numerical procedure we adopt does not give us very 
much handles to control this property of the solution. On the other hand, however, it is common 
practice that this type of numerical approach selects "automatically" the solution with the correct, 
i.e. mildest, singularity. So we will not consider this point here any further. The solutions we are 
interested in are free vibrations, i.e. without a source non-zero for all t. Since the problem is 
linear we may consider these solutions per frequency, so we set 

ell(r, e,z,t) = cll(r, e,z) e-io:Jl 

and similarly for p and 11· For convenience, the exponent e-io:Jl will be suppressed throughout 
from here on in the fonnulas. It appears that only discrete values of the frequency ro are possible. 
The corresponding solution will be called a mode or eigensolution. The modal frequency may 
also be called eigenfrequency or resonance frequency. It is this frequency which is usually of pri
mary interest since it is in a musical context the most important property of the vibration. Note 
that, due to the loss of energy by radiation into the far field, a mode decays in time. This implies 
that the frequency ro is a complex number with lm(ro) < 0. Furthennore, we will always assume 
Re(ro) > 0. 

Another observation that can be made concerns the cylindrical symmetry (i.e., periodicity in e). 

In view of this, a solution can always be expanded in a Fourier series in a, say ell = :E ellm e ime. So 
we can always look for modes of the type cll(r,z) eime-io:J~, and count them per m: 

ell = ellmn ' (I) = romn. 
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3. Ideal modes 

3.1. Vacuum modes 

In the absence of air (p4 = 0) the acoustic field vanishes (cp = 0), and the solution reduces to the 

vibmtions of the membrane alone: 

(3.1) 

(3.2) 

where J m is the m-th order Besselfunction of the first kind ([ 10]), with J m(Xmn) = 0. For later use, 

Tl~ is normalized, such that 

a 211: 

f J Tl~(r, e) Tl~)",(r, e)* r de dr = 1 
0 0 

if m = m' and n = n', and zero otherwise. 

3.2. Cavity modes 

(3.3) 

When the density of the membrane tends to infinity, the deflection Tl vanishes, and the cylinder 

field is decoupled from the outer field. In view of the infinite domain and the radiation condition 

this outer field also vanishes, so the solution reduces to the resonances of the cylindrical cavity. 

When the bottom opening is closed (d = 0), these modes are simply 

cl>~(r, 9) = lm(ymn ria) cos(l1tz/L) eim9 (3.4) 

(3.5) 

with n = 1,2,3, ... , l = 0,1,2, ... , andlm'(ymn) =0. (Note thatYml > m, except for Yo1 = 0.) 
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4. Analysis 

4.1. General solution 

The approach of solution we will follow is, as in [6], to describe the acoustic field, both inside the 
cylinder and in the outside region, as if it were driven by the membrane displacements. On the 
other hand, the field just below and above the membrane can be considered as a driving force to 
the membrane (eq. (2.3)). So we can formulate an integral equation for the membrane displace
ments. This equation is then rewritten in matrix form by a suitable expansion in vacuum modes 
11}22. This matrix equation may then be solved numerically. 

A most appropriate way to describe the acoustic field is by means of a Greens function. Define 

(V2 + o:hc'f,) G(r; r') =-4n B(r-r') 

with boundary conditions in the cylinder 

a 
-G· -o at r=a ar Ill-

a az Gm = 0 at z = 0, z = L 

and in the outer region 

a az Gout =0 at z =L. 

The result for Gm. is then ([6]) 

Gm.(r;r')=-.! ~ ~ eim(H') lm(ymnr:a~lm~mnr'la). 
a m=-oon=l (1-m /y-)l,(y_) . 

cos(rmn z<la) cos(rmn.(L-z>)la) 

Ymn sin(ymn Lla) 

where z < =min (z,z'), z > =max (z,z') and Ymn = '}(ymn.) where the complex function 

"t_/..) = ... .Jt2- /..2 ' 

(4.1) 

(4.2) 

with k = roalca, is defined as the following product of principal branch square roots (see figure 2) 

"t_A.) = i ..Ji(A.-k) • ..J-i(A.+k). (4.3) 

The solution G 0111 for the outer region is 

1 n.n/ 1 'JeR-I G (r · r') = - e""' a + - e' a 
out ' R Ji (4.4) 

where 
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R 2 = r 2 + r'2 - 2 r r' cos(9-9') + (z -z')2 

R2 
= r2 + r'2 - 2 r r' cos(0-9') + (z +z' -2L)2 • 

By applying Green's theorem ([7]) we obtain for the outside field a form of the Rayleigh integral 
([7]) 

• 211: a 

cjl(r, e,z) = 4l(l) I J Gout(T, e,z; r',e',L) 1\(r',e') r' dr' d9~ 
1t 0 0 

Similarly, we find for the field in the cavity (note the bottom opening) 

21ta 

cjl(r, e,z) = -41 I I G;n(r, e,z; r',e',L) j.d, cjl(r',e',L) r' dr' d9' 
1t o o az 

21t d 

- -
4
1 J J G;11(r, 9,z; r',e',O) j.a, cjl(r',9',0) r' dr' d9' 
1t o o az 

• 21t a 

=-
4
100 J J Gm(r,9,z; r',9',L) 1\(r',a') r' dr' d9' 

1t 0 0 

1 
+ 

2
1t d Gin(r, 9,z; 0,0,0) cjl(O,O,O). 

(4.5) 

(4.6) 

It may be noted that Gm(r; 0) is symmetric (only m = 0 modes), and singular in r = 0, which is 
indeed a result of the fact that this expression is, with respect to the effect of the orifice, approxi

mate and only valid ford << a , d << c4 /ro, and I r I >> d. Furthermore, since the second term of 
O(d) is a correction, the value cjl(O) to be substituted is effectively the one obtained for d = 0. So 
we end up with 

• a211: [ 
cjl(r, a,z) =-

4
100 J J 1\(r',O') Gm(r, 9,z; r',a',L) + 
1too 

~ Gi.n(r,a,z; 0) Gm(O; r',e',L)J r' dr' de'. 

After substitution in eq. (2.3) we finally obtain the equation for 1l 

2 21ta 
n2 2 ro Pa I J [ 1 , TvoT\+ro 0'1\=--

4
- G0u~(r,9,L;r,9,L) 

1t 0 0 

(4.7) 

+ Gu.(r, a.L; r',a',L) + 2~ G,.(r, a,L; 0) G,.(O; r',a',L)] ~(r' ,9') r' dr' d9'. (4.8) 

Substitute the expansion 
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- - (4.9) 
m'=-oon'=l 

into eq. (4.8), multiply left- and righthand side by Tl~(r, e)* r, and integrate over the membrane 

surface to obtain 

[ G ..,(r, e,L ; r',ll' ,L) + Gm(r, e,L ; r', e',L) + ::... G;, (r, e,L ; 0) G;,(O; r', e',L) l 
• Tl~),.,(r',e') Tl~(r, e)* r' r dr' de' dr de. 

We further evaluate 

211: a 

J J Gin(r, e,L; 0) Tl~(r, e)* r dr de= 8 .../; &>,m Xon s,. 
0 0 

where Sp,q = 1 if p = q and 0 otherwise, and 

so that 

oo oo 21ta2lta d 
l: l: am'n' J J J J 2 Gi,.(r, e,L; 0) Gin(O; r',e',L) • 

m'=-- n'=l 0 0 0 0 1t 

• Tl~),.,(r',e') Tl~(r, e)* r' r dr' de' dr de= 

Next we have 

00 00 21ta21ta 

l: 2, am'n' J J J J Gin(r,9,L; r',e',L)· 
m'=-00 n'=l 0 0 0 0 

·Tl~),.,(r',e') Tl~(r, e)* r' r dr' de' dr de= 

00 

4 o:l Pa a L amn• Xmn Xmn• Cmnn' ' 
n'=l 

where 
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oo cotg('Ynm" Lla) 
Cnmn' = L 2 2 2 2 2 2 · 

n"=l 'Ynm"(Xmn -Ymn") (Xmn' -Ynm") (1-m IYmn") 

For the final tenn, with Gold• we use the representation 

G ( L 1 "' L) 2 ilcR01a 
out r, e, ; r ,o, = Ro e 

_ 2i -J I.J o(I.Rola) 
- a o y(J.) dl. 

2i oo • "'H') -J Alm"(Arla) lm"(Ar'la) =- L erm ~ dJ. 
a m"=-- 0 y(A.) 

where R5 = r 2 + r'2 - 2rr' cos(e-e'), and the complex A. integration contour is indented under 

around the branch cut from A.= k (see figure 2). Then we have 

002 p oo 00 2~~: a 2~~: a -T L L am'n' J J J J Gold(r,a,L; r',e',L)· 
1t m'=-oon'=l 0 0 0 0 

• 1'\~)",(r',e') Tt~(r, 0)* r' r dr' de' dr de= 

-- 2i ro2 a Pa L anm' Xnm Xmn' lmnn• 
n' = 1 

with 

Altogether we have the (infinite) set of equations 

where ro, and a corresponding vector (aml>amz, ... ), is to be found. This set of equations can be 
cast in matrix fonn as follows 

[ :~.] 
2 

&m =Am(k) 8m 

where am= (aml ,am2•am3•··y and Am(k) = (Amnn•(k)) with 

1 4Pa a [ 2d ] if n = n' : Amnn = -2---- Cmnn -tilmnn -- 8o,mS~ 
Xmn 0' 1ta 
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Note that (Amnn' Xmn I Xmn') is symmetric. 

4.2. Numerical method 

The numerical approach adopted is one in which use is made of the shape the final equation has 
in matrix fonn, namely that of an eigenvalue problem. If Am(k) is independent of k, the eigen

values Jlt,Jlz, ... of this Am would yield the solutions ki =eM I Ca 111. This observation suggests the 
iterative scheme 

1. calculate eigenvalues (Jlj) of Am(k11 ) 

2. calculate the corresponding k j = CM I Ca ll r 
3. select the j = jo where lk11 -kj

0 
I is minimal, and set kn+t = kj

0 

4. return to 1 until I k11 -kn+tl is small enough. 

To control the iteration, a relaxation parameter11 e [0,1) is introduced: kn+l =11 k11 + (1-T])kio· 

To accelerate the convergence, the present iteration is written as an Atkinson iteration ([11]), giv
ing the terms every other iteration an extra correction by extrapolation: 

kn+2 := kn - (kn+l - kn)2 I (kn+2- 2 kn+l + k,.). 

Since the calculation of the integrallmnn' is particularly expensive, these integrals are not recalcu
lated every iteration, but only every fourth step, and at each other step the matrix elements are 

only updated approximately. For the same reason, the integral/mnn' is analysed carefully (the 
results of which are presented in the next paragraph) so that, together with the saving of the 

expensive Besselfunction evaluations, the integrals lmnn' are calculated efficiently. 

For the calculation of the eigenvalues use is made of the public domain package "EISPACK". 

Theory and description of in- and output may be found in [12,13]. 

4.3. Analysis of lmnn' 

A direct numerical integration of 

requires a relatively large interval of integration, especially when the index n or n' is large. To 
facilitate the numerical integration we therefore propose the following reformulation. 



ObseiVe that 

ln('A.)=l (H~1>('A)+H~>(') .. )) 
2 

111 (A) H~ >(A,) is integrable in 'A= 0 

Hi1>(A,) - ei'- ('A-+ oo) 

H~>('A) - e....;;. ('A-+ oo) 

Hi1>(it) = 2 (-i)n+l K11(t) (t > 0) 
1t 

f 11 (it) = i" 111(t) 

where H~1> and H~) are Hankel functions, and / 11 and K11 are modified Besselfunctions of the first 

and second kind ([10]). 

We split up the integrand in a part convergent in the upper and one convergent in the lower com

plex half plane, and deform the contours of integration accordingly, taking into account the 

branch cut of y, and a pole in 'A= Xnm if n = n'. 

I , = oo l l..lm('A) (H~1>('A) + H~>('A)) d'A 

nmn [z l('A)('A2-x~)('A2-x~·) 
= _ 2i j t 111(t) Kn(t) dt 

7t 1 ...Jt2 +k2 (t2 +x~)(t2 +x~~) 

+ k 'Aln('A)H~l)('A) d'A 

! 1'('A)('A2 -~mn)('A2 -X~') 

The integration contour, defonned into the upper half plane, runs from 'A= 0 to A.= i, then back to 

'A= k, to 'A = i, and further to 'A = i oo (see figure 3). The point 'A = i is rather arbitrarily selected 

such, that the contour will not be close to a singularity if Xmn < Re(k ). 

After having noted that 

t 111 (t) K 11(t)-+ f (t-+ oo) 

we may transfonn the c5 -behaviour at infinity of the t-integral to linear behaviour near the origin 
by: t = z-'h. 
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Finally, we can remove the square root singularity in A= k. 

k Al,.f'A) m.no .. ) Re(k) k • 

J 2 2 2 2 dA = J + I <ut.) dA 
i 1(A) (A - Xmn) (A - Xmn') i Re(k) 

and each integral can be written as 

with 

~ (91 -So) Jl G ln(G) K,(G) dh 
1t o (G 2+x;,.)(G2+x;,.,) 

A= i G = k sin 9 • so that 1(A) = k cos 9 , 

9= So +h(9t-9o). 
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5. Numerical examples 

To illustrate the present theory, we calculated for a typical kettledrum the spectrum as a function 

of the problem parameters tension, volume, and hole diameter. These examples are primarily 

meant for illustration, and to visualize trends and coupling mechanisms. 

The parameter values for cavity, membrane, and air are, to ease a comparison, the same as in [6], 

and given by 

membrane diameter = 2a = 0.656 m 

membrane density = cr = 0.2653 kg 1m2 

membrane tension = T = 3990 Nlm 

kettle volume = na2 L = 0.14 m3 

air density = Pa = 1.21 kg 1m3 

air sound speed = Ca = 344.0 mls 

hole diameter = 2d = 0.028 m 

(We note that we found a discrepancy with [6] with respect to the vacuum modes, so, assuming a 

printing error, we changed the reported cr = 0.262 into 0.2653.) 

These figures yield 

L =0.4142 m 

CM = 122.6 m/ S 

vacuum modes frequencies 

m n [Hz] 

0 1 143.10 

0 2 328.48 

0 3 514.95 

0 4 701.67 

1 1 228.01 

1 2 417.47 

1 3 605.39 

2 1 305.60 

2 2 500.88 

2 3 691.46 

3 1 379.66 

3 2 580.84 

4 1 451.56 

4 2 658.42 



5 

6 

7 

1 

1 

1 

521.96 

591.26 

659.71 

cavity modes frequencies 

m =0 415.2 

639.6 

m = 1 307.3 

516.6 

m =2 509.8 

657.5 

m =3 701.3 
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Guided by these "ideal" values we found (with a matrix dimension of 6 x 6) the following eigen
frequencies 

m=O 126.883 Hz, t60= 0.787 sec. 

252.315 1.307 

415.298 2.971 

476.693 0.341 

614.132 2.524 

m=1 150.918 9.101 

311.116 326.888 

351.415 1.392 

507.574 64.225 

566.704 0.470 

m=2 227.704 27.980 

412.031 6.191 

524.376 5.422 

600.767 4.822 

690.786 0.880 

m=3 300.174 101.227 

492.940 10.522 

678.371 11.370 

m=4 370.642 385.520 

570.712 23.807 

m=5 439.826 1506.148 

646.494 61.380 

m=6 508.096 1425.619 
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m=1 575.721 2859.600 

We recall that the frequency in Hertz is Re(c.o/27t) = Re(k ca121ta), while t 60 , the time necessary 

for the sound pressure level to be attenuated by 60dB =-20 10Iog(ehn(ro)t60
), is given by 

t60 =-3/Im(ro) 10log(e). 

The very long decay times of some modes are of course due to the idealization of the model: 

inviscid air without any dissipation from humidity, no absorbing walls, ideal membrane, etcetera. 

It may be observed that these long decay times mostly occur for higher m-modes, where it is the 

inefficient radiation of the membrane which holds the vibrational energy in the system (the mem

brane is for not too high frequencies acoustically equivalent to some high order multipole). The 

long decay times occuring ~or lower m-modes indicate a mode close to a cavity resonance mode. 

In this case the energy is trapped in the cavity with only little motion of the membrane. 

In figures 4a- i we have plotted the present spectrum for respectively m = 0 to 7 with tension 

varying between 3000 N lm and 5000 N lm, which are realistic values. We see that in general the 

frequencies of modes close to a vacuum mode increase steadily with tension. A mode close to a 

cavity mode, however, is somewhat reluctant to increase. It seems to be locked until the tension is 

high enough to drag it away from this cavity mode level, and another mode from below takes its 

place. 

This phenomenon is further worked out in figure 5, where form = 1 the modes are traced along a 

very much larger tension range, so that the various levels corresponding to cavity modes are 

clearly distinguishable. 

In the case of a varying volume (figure 6) we see the opposite effect: now the cavity modes are 

directly affected by the change of volume, and so are the corresponding frequencies of our prob

lem, and the other frequencies remain longer near the vacuum mode frequencies. 

In figure 7 we see the effect of the hole in the bottom. It is clear that, at least for the present 

configuration, the difference from the closed bottom case is very small. 
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Complex plane with branch cuts 
and integration contour 
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Figure 3. Complex plane with deformed branch cut 
and modified integration contours 
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Figure 4a. m = 0 modes 
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Figure 4b. m = 1 modes 



-23-

700r-==================~======~------l 

600 

500 

,...., 
N 

I 400 '-' 

::JI 
() 
c 
ClJ 
::J 

300 ()'" 
ClJ 
~ 

u.. 

200 

100 

0~.--.-----~~~---r-~~-+---~.--.----~~~--~~~ 

3000 4000 5000 

Tension [N/m] 

Figure 4c. m = 2 modes 
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Figure 4d. m = 3 modes 
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Figure 4e. m = 4 modes 
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Figure 4f. m = 5 modes 
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Figure 4g. m = 6 modes 
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Figure 4h. m = 7 modes 
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Figure 5. m = 1 modes 
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Figure 6. m = 0-1 modes 
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Figure 7. m = 0 modes 


