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A Typechecker for Bijective Pure Type Systems 

Erik Poll* 

Abstract. A type inference algorithm is given, which closely follows to the type derivation 
rules for Pure Type Systems. Soundness and completeness of the algorithm are proved for 
a large class of Pure Type Systems, which includes all systems in Barendregt's A-cube. 

* supported by the Dutch organization for scientific research (NvVO). 



1 Introduction 

For a Pure Type System (PTS) (see [Bar92]) the central notion is that of type assignment. Every 
PTS comes with its typing relationi-, defined by a set of inference rules. Type judgements are of 
the form r I- a : A ~ in context r the term a has type A - where r is a list of type assignments 
to variables. 

For an implementation of a PTS a reasonably efficient type-checker is needed. (If a type-checker 
reduces types to their normal forms we do not consider it to be 'reasonably efficient'.) It is not 
difficult to define a type-checker that closely follows the type inference rules (see [PoI92]). Proving 
soundness of this algorithm is easy, but all attempts at proving completeness have so far failed. 

Instead of type judgements of the form 

xl:A1, ... ,xn:An 1- a:A 

we consider more informative judgements of the form 

Xl: Al : 51, ... ,Xn : An: Sn H-- a: A : s 

These judgements do not only involve the types of terms but also the types of these types. In this 
new typing relation a term has exactly the same types as in the old typing relation. 

As for the original typing relation, for the new typing relation I/- there is a natural typechecking 
algorithm which closely follows the type inference rules. For this typechecking algorithm soundness 
and completeness can be proved by straightforward induction proofs for a large class of PTS, 
which we call the bijective PTS (definition 3.5 on page 9). The bijective PTS are a subclass of the 
functional PTS. It includes all functional PTS with rules of the form (5,,5,,5,), and hence all 
systems in Barendregt's A-cube. 

In the next section we recall the definition of a PTS given in [Bar92] and discuss the problem 
of typechecking PTS. 

Then, in section 3, a new typing relat,ion is introduced, with judgements of the form 
Xl : AI: 81, ... , Xn : An: 8 n I\- a: A : 8. Two versions of this typing relation are given: one that can 
be used for all functional PTS (I-r) and one that can only be used for the bijective PTS (I-b). 

In section 4 a syntax-directed version I- bsd of the typing relation I/-b is defined (definition 4.1). 
This typing relation gives a sound and complete typechecking algorithm for all strongly normalising 
bijective PTS. 

In section 5 a syntax-directed version of the typing relation I-r for functional PTS is defined, 
for which proving completeness is a problem unfortunately. 

Finally, in the last section, the main steps leading from the original typing relation to the 
syntax-directed one are outlined, and we sketch how the typechecker can be extended to include 
other primitives, such as E, +, or x-types. 

All the proofs that the different typing relations are equivalent are by induction on derivations 
and are given in the appendices. 
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2 Pure Type Systems 

Definition2.1. [Pure Type System] 
A Pure Type System (PTS) is a triple (5, A, R) with 

• 5 is a set of symbols called the sorts 
• A ~ S x S , a set of axioms. 
• R ~ S x S x S , a set. of rules 

Definition 2.2. [terms and contexts] 
Given a PTS (5, A, R), the collection of terms M and contexts r is given by 

M::=xl sl (MM) I (-'x:M.M)1 (Ilx:M.M) 
r ::=, I r,x:M 

where x is a va.riable and s is a. sort. 

Convention 5 , 51,5', etc. range over S; Q, h, A, B, aI, etc. range over terms. 

Definition 2.3. [typing relation r I- b : B] 
For each PTS (5, A, R), a typing relation I- is defined. For type judgements of the form r I- b: B 
we have the following inference rules 

(a.xiom) 

(variable) 

(weakening) 

(formation) 

ff-S:S' 

rl-A:s 

rl-b:B r1-A:8 
r,x:Al-b:B 

r I- A : s, r, x : A I- B : 82 

r I- (Ilx:A. B): S3 

( b 
.) r,x:Al-b:B rl-(llx:A.B):s 

a strae/wn 
r I- (Ax:A. b): (Ilx:A. B) 

(application) 

(convel"sian) 

rl-b:(Ilx:A.B) rl-a:A 
r I- ba : B[x :- a] 

rl-b:B rl-B':s B""B' 
rl-b:B' 

where 5 ranges over sorts, i.e. 5 E 5, and := is ,6-equality. 

if(s:S')EA 

x fresh 

;1: fresh 

The most important subclass of PTS is that. of the functional PTS. Most - if not all - PTS that 
are of practical interest are functional PTS. 

Definition 2.4. A PTS (5, A, R) is called fllnctional (or singly sorted) iff 

(8: 8') E AI\(S: s") E A ==> s' =' S" 

(Sl,S~,S3) E R/\ (5t,S2,5;) E R ==> 53 == s~ 

The distinguishing property of these PTS is that the type of a. term is unique up to j1-equality: 

Lemma. [unicity of types for I- : UTe] 
For functional PTS: if r I- b : Band r f- b: B', then B "" B'. 
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2.1 Typechecking Pure Type Systems 

Two typechecking problems can be distinguished 

• r I- b : B? - the type checking problem -
given a context rand t.erms band B decide whether r J-- b : B derivable or not. 

• r I- b : ? - the type inference problem -
given a context r and a term b, find a term B such that r I- b : B, or report failure if no such 
B exists. 
For functional PTS finding a single type for b suffices, as it is unique modulo {1. For non­
functional PTS there may be several ;3-equivalence classes of types for b, in which case we 
would want to find a representative of each one. 

The second is the more genera} of the two problems: if we can solve r J-- b : ? we can also solve 
r I- b : B? On the other hand, it is difficult to imagine a solution for r r b : B? which does not 
also provide a way to solve r I- b:? 

The remainder of this section concerns our motivation for considering a new typing relation. 
We discuss the nat.ural type inference algorithm for functional PTS defined in [PoI92], and the 
problem encountered for this algorithm, which is that nobody has been able to prove completeness. 
For the new typing relation introduced in the next section, we will not have this problem. 

The obvious way to solve r r b :? is to try to construct a type derivation for b guided by 
the shape of b. Here we run into the problem that that the PTS inference rules are very non­
deterministic: there can be many derivations for r I- b : B, let alone for r I- b : ? The source of 
this non-determinism is the conversion rule, which can be used at any point in a derivation. (The 
weakening rule also introduces non-determinism, but this can easily be eliminated by restricting 
the weakening rule to variables and sorts, as in t.he I-sd-weakening rule below). 

Despite this non-determinism, it. is not difficult to define a natural type inference algorithm 
which tries to construct a particular type derivat.ion, by only doing conversions 

• to test if a type reduces to a sort 
• to test if the types of a function and its argument match 

But then we are implementing the following syntax-directed system r-sd (sd for syntax-directed) : 
instead of I-

(axiom) 

(variable) 

fl-sd S : S' 

r I-,d A : 5 5 ~f s 
r, x: A t-sd x : A 

if(s : s') E A 

x fresh 

(weakening) r I-,d b : B r r,d A : SB 5 --*iJ s x fresh and b a variable or sort 
r,X:Ar,d b : 

rl-,dA:Sl Sl~iJSl 

(Jormation) r, x : A t-sd B : S2 52 ----it j3 82 

r r ,d (n x : A. B) : 83 

r, x : A I-,d b: B 
(abstraction) r I-,d (llx:A. B): 5 5 ~iJ S 

r I-,d (.\x:A. b): (llx:A. B) 

r I-,d b: C C ~wh (llx:A'. B) 
r I-,d a : A A", A' (application) r I-,d ba : B[x :- aJ 

if(sl,s2,s3) E R 

Here ----itj3 denotes ,a-reduction and -wh denotes weak-head reduction. Note that the weakening 
rule is restricted to variables and sorts. This means that in derivations weakening is postponed as 
much as possible. The sha.pe of a term b determines a unique I-sd-type derivation for b. 
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If our algorithm implements f-sd instead of f-, we want to know if f-sd and f- are equivalent. 
This means we have to prove 

soundness: r I-,d c: C = r I- c : C 
completeness: r I- c : C = (3C' '" C. r I-,d c : C') 

It is easy to prove soundness. However, proving completeness is a problem. This means it is not 
known if for a functional PTS the algorithm can always find a type for a typeable term. (For 
non-functional PTS completeness fails; see [Po]92] for a counterexample.) 

A proof of completeness by induction on the derivation r f- c : C fails in the abstraction rule: 

Suppose the last step in the derivation of r I- c : C is the abstraction rule. Then 
c == (Ax: A. b), C == (11 x: A. B) and the laBt step in the derivation is 

r,x: A I- b: B rl- (11x:A. B): 8 
r I- (>.x:A. b): (11x:A. B) 

By the induction hypot.hesis r, x : A I-,d b: B' for some B' '" Band r I-,d (11 x: A. B) : S 
for some S '" 8. However, t.he type B' found for b can be different from B (but j3-equivalent 
to B), and we do not. know if r I-,d (11,,: A. B') : S' for some S'. 

Basically, the problem is the ,vay in \vhich the subformula property fails for the abstraction rule: 
a type derivation for (AX: A. b) in context r contains a sub-derivation of a term ~ (fl x: A. B) ~ 
which is not a subtenn of (Ax: A. b). 

An alternative abstraction rule, which is equivalent with the original abstraction rule, is 

rl-A:s l r,x:Al-b:B r,x:AI-B:82 ·f( ) R 
rl-(>.x:A.b):(11x:A.B) 1 81,S2,S3 E 

For this abstraction rule we have the same problem, this time caused by the premiss r, x : A f- B : 82 

instead of the premiss r I- (11 x: A. B) : s. 

In section 6 two type checking algorithms are mentioned which successfully avoid this prob­
lem by relaxing the condition r f- (fl x: A. B) : s, or rather the condition r, x : A f- B : 52 in the 
alternative abstraction rule given above. 

We avoid the problem by considering derivations for judgements of the form r f- a : A : 5, as 
explained in the next section. 
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3 Type-kind derivations 

Instead of judgements of the form 

xl:A!, ... ,xn:An I- a:A 

we consider judgements of the form 

These judgements not only give the type of a term, but also the type of its type, which we call its 
kind. For example, in the judgement above s is the kind of a and each Si is the kind of Xi. 

The notion of kind is related to the notion of degree - defined in [dB80] for the AUTOMATH 
languages and in [Bar92) for the A-cube - in that terms with the same kind have the same degree. 

Contexts are now of the forIll 
D ::= < I D,x:A:s 

In contexts both the type and the kind of a variable are registel'ed. 

\'-'e have to be careful for non-functional PTS! Here a variable x of type A may have more 
than Olle kind s. It may be essential for different occurrences of x to have different kinds, 80 that 
by fixing the kind for x some terms are no longer typeable. Later an example will be given that 
shows that for non-functional PTS our new t.yping relation is not equivalent to the original typing 
relation. 

It turns out that, when deriving the type of a term, we can derive its kind at the same time 
at little extra cost. Some f---inference rules t.hat derive a type B for a term b, could also produce 
the type of this B: 

( uari"bl e) 
rl-A:s 

r,x:Al-x:A 

( b ) 
r, x : A I- b : B r I- (II x : A. B) : S3 

a straction r I- (Ax:A. b): (IIx:A. B) 

but here the type s of A and the type S3 of (fl x: A. B) are not passed on in the conclusion. Also, 
kinds cannot be large terms; by the following lemma the kind of a term is always a sort. 

Lemma3.1. [correctness of types] 
If r I- b : B then r I- B : s for some s E 5 or B E 5 . 

So the extra amount of information carried around in I--derivations in comparison to I--derivations 
is small. 

A problem is not all terms that have a type also have a kind. If r I- b : Band B E 5, then 
there may not be a type for B, and hence no kind for b. This is solved by introducing a new "sort" 
T, which acts as the type for hitherto untypeahle sorts: 

DefillitioIl3.2. [Sr ,AT] 
Given a PTS (5, A, R) we define 

Sr = 5 U {T} 

AT = AU{(s: T) Is E 5 /\~(3,,(s: s') E A)} 

So for all s E S there is a Sf E ST snch that (s : Sf) E AT. For functional PTS this Sf is unique, 
i.e. AT is a function from 5 to 5T. For functional PTS we write AT(S) for the s' E Sr for which 
(s : s') E AT. 

Convention s, Sl, Sl, etc. range over ST (and not just S). 
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Replacing all judgements of the form r I- b : B by judgements .1 I- b : B : • in the PTS 
inference rules, we get the following typing relation 1-(. t-r is defined for arbitrary PTS, but only 
for functional PTS will it be equivalent to the original typing relation f-- (hence the subscript f for 
functional): 

Definition 3.3. [L1l- r b: B : sJ 

(axiom) 

(variable) 

(weakening) 

(formation) 

(abstraction) 

(application) 

(con Vel' sian) 

Lll-r A : 81 : s~ 
Ll, x: A: 81 t-c x : A : 81 

.11-, b : B : s L11-r A : s, : s; 
L1,x:A:s,1-r b: B: s 

L\ t-r A : 81 : s; Ll, x: A: 81 1-[ B : s:! : s~ 

L11-r (Ilx :A. B): S3 : AT('3) 

Ll B-r A : 81 : S'l L1, x: A: 81 I--r b : B : 8'2 

Lll-r (h:A. b): (Ilx:A. B): 83 

Lll-r b: (Ilx:A. B): S3 

Lll-, a : A : s, 
Lll-r B[x := aJ : s, : s; 
Ll i-r ba : B[x :- aJ : S2 

L11-r b : B : s Lll-r B' : • : s' B '" B' 
Lll-r b : B' : s 

if (s : s') E A 

x fresh 

x fresh 

if (s,,',,'3) E R 

if(."s"s3) E R 

Compared with the original typing rules, the major differences are in the abstraction and the 
application rule. These are discussed below. For all other rules there is a one-to-one correspondence 
between the premisses in the B-r-rule and the corresponding r-rule. 

Note that the conversion rule changes the type of a term, but not it.s kind. This is because in 
functional PTS the kind of a term is unique (not. just unique up to tJ-equality). 

For functional PTS, I-r is equivalent with r: 

Theorelu 3.4. [soundness and completeness I-r] 
For all functional PTS 

r I- b : B => (3s E Sr. f 1-, b : B : s) 

L1i-,b:B:s => ILlll-b:B 1\ {lLlII-B:s V (B:S)EAT\A) 

where ILlI is defined by {ILl,X:A
1
:\ 

and f is defined by { -, 4£ (, 
r,x:. r,x:A:s if r I- A: s. 

Proof. See appendix D: lemmas D.1, D.7 and D.S. o 

For non-functional PTS there can be terms that are typeable using r, but that are not typeable 
using 1-[, as shown in the following example. 
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Consider the non-functional PTS 

s = {*, 01, 02}, A = {*: 01, *: O,}, R = {(Ol, 0" 02)} 

f f- (AX '*. x) : (Il x '*. *) is derivable. To derive this we have to derive f f- (Ilx '*. *) : 0,. To 
derive f r (II x : *. *) : °21 the first occurrence of * has to be typed Oland the second occurrence 
of * IHl.S to be typed 02: 

f- (Ax,*. x): (Ilx,*. *) 

Both occurrences of * in (n x: *. *) stem from occurrences of x in (Ax: *. x). If the kind of x is fixed 
in a context x : * : D j , then both occurrences of * will have the same type 0i. As a consequence, 
(Ax '*. x) cannot be typed using 1-,: 

f. 1-[ *: D i : T x: *: 0, 1-[ x: *: D, ( ) ???? 
0,,° 1 ,8 E R . 

f 1-, (Ax:>. x): (Ilx.* *) S 

This type derivation fails because there is no kind Di for x such that (Dil Dil s) E R for some s. 

As mentioned earlier 1 the main differences between f- and I-r are in the abstraction and the 
application rule. 

The abstraction rule 
In the I-r-abstraction rule we save work. Unfolding the r-fol'mation rule in the I--abstraction rule 
we get 

r f- A : 51 r, x : A f- B : s, 
r,>:: A f- b: B r f- (Ilx:A. B): S3 (Sl,S2,S3) E R 

r f- P>::A. b): (Ilx:A. B) 

In this derivation, in order to type (Ax: A. b), the terms b, A and B are typed. 
In the rr-abstraction rule 

LI,x:A:sll-, b: B: 82 LlI-, A: Sl : 5; ( ) R 
LlI-r (Ax:A. b): (Ilx:A. B): S3 Sj,8"S3 E 

Here only b and A have to be typed. A separate type derivation for B is no longer needed, 
because by typing b we also obtain t,he type of B. Remember that in section 2.1 it was the premiss 
r, x: A I- B : 82 in the abstraction rule that. caused the problem in the unsuccessful completeness 
proof. 

The application rule 
In the rr-application rule more work has to be done to produce not only the type but also the 
kind. The original application rule is 

and the new application rule is 

r f- b: (Ilx:A. B) 
rf-a:A 

r f- ba : B[x :- aJ 

LlI-, b: (Ilx:A. B): S3 

LlI--, a : A : Sl 

LlI-, B[l: := aJ : 8, : 5, 
LlI-r ba : B[x :- aJ : s, 

The extra work is a type derivation for B[x := oj, which is needed to determine the kind of the ap­
plication bo. (It turns out that, for a syntax-directed version o[l-r, the premiss L1 R-r B[x := 0] : 82 : 82 
causes the same problem in the proof of completeness that we sketched earlier for 1-. This is dis­
cussed in section 5.) 

Fortunately, this extra work can be avoided for a large class of PTS, namely those where given 
81 and 83 there is at most one 82 such that (81,82,83) E R. In these PTS the kind of an application 
is determined by the kind of the function and the kind of its argument. 
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Definition3.5. A PTS is called bijective iff it is functional and for all 81,82,82,53 E S 

So a PTS is bijective iff 

(s, s') E A II (5, s") E A 
(8"S"S3) E RII(8"S2'S~) E R 
(s"S"S3) E RII(s"S~,S3) E R 

===> 8' == 8/1 

===> 53 == 53 

===> 52 == 52 

All functional PTS that only have rules of the form (s" S2, S2) are bijective. This means that all 
systems in Barendregt's A-cube are bijective. 

For bijective PTS, the kind of a term is uniquely determined by the kinds of it subterms. As 
a consequence, the premiss .d I-r B[x :::;:: a] : 5'2 : 52 can be omitted in the application rule. 

Definition 3.6. [Lll-b b: B : sJ 
I-b is defined by the same inference rules as t-r, except for the application rule. 

(axiom) 

(vaI'iable) 

(weakening) 

(formation) 

(abstraction) 

(application) 

(conver5ion) 

(I-b S : s' : AT(S') 

Lll-b A : s, : s\ 
.d,X:A:51 t-b x: A; 51 

LI 1-" b : B : s LI i-b A : s, : s\ 
LI,x:A:s, i-b b: B: s 

.1 &-b A ; 51 : 5~ .1, x; A: 51 t-b B : 82 ; 82 

Ll H-b A : 51 : 5~ .1, x: A: 51 I-b b : B : 8'2 
LI h (h:A. b): (JIx:A. B): S3 

LI i-b b : (JI x: A. B) : S3 Ll i-b 0 : A : 51 
LI i-" ba : B[x :- aJ : s, 

Lll-b b : B : s Lll-b B' : s : s' B '" B' 
Ll i-b b : B' : s 

For bijective PTS, H-b is equivalent with 1-: 

Theorenl 3.7. [soundness and completeness B- b] 
For all bijective PTS 

r I- b : B ==> (3s E Sr. t I-b b : B : s) 

if(s : s') E A 

x fresh 

x fresh 

LI h b : B : s ==> 1 LlII- b : B II (I LlII- B : s V (B : s) E AT\A) 

where 1 Lli and t are defined as in theorem 3.4. 

Proof. See appendix B: lemmas B.l, B.6, and B.7. o 

The proofs of theorems :3.4 and 3.7 are by induction 011 type derivations, and hence are identical 
except when the application rule is involved. An a.lterna.tive to proving theorem 3.7 is proving that 
for all bijective PTS Lll-r b : B : s {==;> Ll i-b b : B : s. 
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4 A type-checker for bijective PTS 

In this section a. syntax-direct.ed version of i-b is defined, by removing the weakening and conversion 
rule. 

I-b deals with contexts in the same inefficient way as I- : in every branch of a derivation the 
context is broken down to check that it is well-formed. To avoid this a notion of well-formedness 
for contexts is introduced and the original axiom and variable rule are replaced by the following 
more powerful axiom and variable rules 

(axiom) Lll-b,d s : s' : AT (s') if s : s' E A 

(variable) LI,x:A:s,LI'l-b'd x: A: s 

The conversion rule is a source of non-determinism in I- b . It is distributed over the other rules. 
Conversion is only used to test if 

• a. type reduces to a sort 
• the types of a function and its argument match 

The resulting system is syntax-directed: the shape of a term determines which inference rule is 
used in the last step of its type derivation, and so there is a unique type derivation for a given 
term. As a consequence, the system provides a type inference algorithm. 

Definition4.1. [Lll-b,d b: B : s, WF'''dLl] 
For Ll I-bsd b : B : 5 we have the following inference rules 

(axiom) Lll-bsd 5 : 5' : AT(5') if 5: 5' E A 

(variable) Ll,;r:A:5,Ll/ l- bsd ;r: A: 5 

Ll, x: A: 51 rbsd B : 52 : 52 52 -"',/3 52 

(formation) Lll-bsd A : 51 : 5'1 51 ---""{3 51 if (S1, S2, S3) E R and x fresh 

Ll, x: A: 51 I- bsd b : B : 52 

(abstraction) Ll I- bsd A : 51 : 5~ 51 ......... /3 51 
Lll-b,d (Ax:A. b): (flx:A. B): S3 

if (S1, s2, 83) E R and x fresh 

Lll-b,d b: C: 83 C ~wh (flx:A'. B) 

(application) Lll-bsd a : A : 51 A :::: A' 
Lll-b,d ba : B[x :- a] : s, 

A context Ll is B-bsd-well-formed - written VVFbsdLl - if it can be derived using the rules 

(empty) 

(weakening) x fresh 

Note that for R-bsd-derivations t,he subformula property holds, i.e. the derivation of Lll-bsd b : B : s 
only contains type-kind derivations for subtel'lllS of b. 

Theoreln 4.2. [soundness a.nd completeness rbsd] 
For all bijective PTS: 

Lll-b,d b : B : s 1\ WFb,dLl ==} 

Lll-b b : B : s ==} 

LI I-b b : B : s 

WFb,dLl 1\ (3B' "" B. Lll-b,d b: B' : s) 

Proof. See appendix C: lemmas C.l, C.5 and C.G. 
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Joining theorems 3.7 and 4.2 yields 

Corollary 4.3. [soundness and completeness ofi-bsd w.r.t.I-] 
For all bijective PTS: 

LI h,d b: B: 5 fI WFb,dLl = ILlI~ b: 8 fI (lLlI~ B: 8 V (8: 5) E AT\A) 

r ~ b : 8 = (35 E Sr, B' '" B. t I-b,d b : B' : s) 

It is easy to define an algorithm which, given a context L1 and a term u, checks WFbsdLl and 
tries to constructs the type derivation for a in context LI, thus finding the type (and the kind) of 
a. This does require strong normalisation of ,B-reduction for types, i.e. 

r ~ a : A => A is /l-strongly normalising 

(or, equivalently, WFb,dLl fI LI ~ a : A : 8 => A is /l-strongly normalising). This is needed to en­
sure that f3 normal forms and weak head normal forms of types can be computed, and that con­
vertibility of types is decidable, so that the premisses 5; ~~ 5;, C ~wh (17 x: A. B) and A '" A' 
are decidable. 

The algorithm has to choose a correct order in which to check the different premisses of the 
rules, so that it nevers attempts to construct a type derivation in a context which may be incorrect. 
If.d I-bsd a : A : s and not l-VFbsdLJ, then we do not know if A is strongly normalising. This means 
that in the formation and abstraction rules the premisses .:1 t- bsd A : 51 : 5' and 51 -1+13 81 have 
to be checked first, and in the the weakening rule the premiss WFb,d LI has to be checked first. 

5 Functional PTS 

For functional PTS that are not bijective a syntax-directed system can be defined in the same way 
as was done in the previous section, this time taking B-r inst,ead of 6- b as the starting point. 

DefinitionS.!. [LI h,d b: B : 5, WFr'dLl] 
t- fsd and WFfsd are defined a.s i-bsd and WFbsd, except for the application rule, where we have the 
following rule instea.d 

LI h,d b: C: 83 C ~wh (17x:A'. B) 
LI i-r,d a : A : 5, A '" A' 
r i-r,d B[x := a] : 5, : 5; 
r I-r,d ba : B[x :- a] : 8, 

Soundness of this system can be proved for all functional PTS: 

However, proving completeness for this system, 

LI h b : B : 5 = (3B' '" B. LI I-r,d b: B' : 5), 

is a problem. In fact, we now have the same problem with the premiss r I-r B[x := a] : 82 : 82 
in the application rule that we sketched in section 2.1 for the premiss r I- (flx:A. B): 5 in the 
abstraction rule. 
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6 Related work 

Other type-checking algorithms for Pure Type Systems all involve a way of avoiding the premiss 
r, x : A I- B : 82 in the abstraction rule 

r I- A : 81 r, x : A I- b : B r, x : A I- B : 8, 

r I- (Ax:A. b): (17x:A. B) 

One possibility is to consider only PTS where R is such a large subset of S x S x S that we do 
not have to know a type 8, of B to decide if (17 x: A. B) can be formed. In [PoI92] Pollack gives a 
sound and complete type inference algorithm for all semi-full PTS, which is a generalisation of the 
type inference algorithm used in Huet's Constructive Engine for the Calculus of Constructions. A 
PTS is semi-full if 

'lSI (~S"83(SI,S,,S3) E R) =:. (VS,~S3(81,S"S3) E R) 

For these PTS, only a type SI of A and a type B of b - but not the type of this B - have to be 
known to decide if the A-abstraction (AX :A. b) is allowed: the rule 

r I- A: 81 r, x: A I- b: B B rt {s E 5 I ,~,,(s : s') E A} 
r I- (Ax:A. b): (17x:A. B) 

is equivalent with the abst.raction rules given above. 
For example, for the Calculus of Constructions, the PTS with 

this abstraction rule becomes 

r I- A : 81 r, x : A I- b : B B 1= 0 

r I- (Ax:A. b): (17x:.4. B) 

which is in fact the original abstraction rule given in [C1I88) for the Ca.lculus of Constructions. 

Jutting proved soundness and completeness for a type inference algorithm for all functional 
PTS [vBJ92]. He considers an abstract.ion rule of the form 

where 1-1 is a t.yping relat.ion which is more iibel'ai t.han f-. This result, has been extended to all 
PTS ill [vBJMP93j. 

rbsd does not give a type inference algorithm for all PTS, but it has the advantage that it is 
closer to the original PTS t.ype derivation rules than Jutting's algorithm. This makes it easy to 
incorporate other type constructors, as is sketched in the next section. 
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7 Conclusions 

For bijective PTS the following equivalences have been proved 

.ll I-b d ~ , 

For functional PTS we have the following relationships between the different systems 

1- J4, I-r ¢= rfsd 

The steps leading from the original typing relat.ion 1- to the syntax~directed B-bsd are 

1. from I- to I-b: type-kind derivations instead of type derivations, i.e. judgements of the form 

xl:Al:S1, ... ,xn:An:sn I- a: A: s 

instead of the usual judgements of the form 

2. from I-b to H-bsd: 

• making the weakening rule redundant" by introducing a notion of well-formedness for 
contexts and more powerful axiom and variable rules, and 

• getting rid of the conversion rule by distributing it over the other rules. 

In the same way sound and complete type-checkers for PTS's extended with more primitives, 
such as Cartesian product types, disjoint sum types, E or existentia.l types, can be found. For all 
these extensions we run into the same ptoblem as for the I1-types, na.mely that we do not know 
how to prove completeness. By considering type-kind derivations this problem is avoided. 

For example, for Cartesian products the formation and inttoduction rules are 

(x - formation) 
r I- A : 8, r I- B : 8, 

r I- A x B : 83 

r I- a : A r I- b : B r I- A x B : 83 
(x - intl'odltct-ion) ------"i7-,:----.7=--T'----,,;---~ r f- ( a, b) : A x B 

where Rx ~ S3 controls the formation of Cartesian products. If we want to prove completeness of 
a type-checker for PTS extended with products, the premiss r f- A x B : 83 in the x-introduction 
rule poses the same problem as the premiss r f- (II x: A. B) : 83 in t.he abstraction rule. Fortu­
nately, this premiss is exactly the one that can be omitted in the x-introduction rule for type-kind 
derivations: 

( , d ' ) Li i- a : A : 8, Li I- b : B : 8, 'f ( ) R 
x - zntro Hctwn Li I- (a, b) : A x B : 83 1 8 1,82, 83 E x 

However, the restriction of "bijectivity" has to be extended to Rx: the kind of a pair (a, b) has to 
be uniquely determined by the kinds of of the two components, i.e. 

and the kinds of the first and second projections of a pair have to be uniquely determined by the 
kind of that pair, i.e. 

Under these restrictions, removing the weakening and conversion rules as was done for I-b produces 
a sound and complete type-checker for bijective PTS's wit.h Cartesian products. This includes all 
bijective PTS with Rx <; {(8, 8, 8) I 8 E S}, the most sensible choices for R x , 
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APPENDICES : proofs of equivalences 
Most proofs are uneventful proofs by induction on derivations. The most interesting parts are in 
the proofs of lemmas B.l and B.6) the cases where the last step is the application rule. 

A Properties of PTS 

Convention a-convertible terms are identified. 

The following lemmas will be needed. With the exception of lemma A. 7 they are all basic properties 
of PTS given in [Bar92]. 

Lemma A.1. [subject reduct.ion for I- : SHe] 
If r I- b : Band b ~~ b', then r I- b' : B. 

Lemma A.2. [start lemma for 1-] 
(i) If r I- b : B "nd (s : s') E A. then r I- s : 5'. 

(ii) If r,x: A,r' I- b: B, then r,x: A,r' I- x: A. 

LeuunaA.3. [fl-generat,ion lemma for f-] 
Suppose r I- (I7x :A. B) : 83. 

Then r I- A : 51 and r, x : A I- B : S2 for some (51, S2, 53) E R. 

Lemnla A.4. [sort-generation lemma for 1-] 
Suppose r I- 5 : A. 
Then A '" s' for some (s : 5') E A. 

LenunaA.5. [substitution lemma for 1-] 
Suppose r, x: C, r' I- b : B "nd r I- c : C. 
Then r, r'[x := c]1- b[,c := c] : B[x := c]. 

LemmaA.6. [unicity of types for I- : UTe] 
For functional PTS: if r I- b: Band r I- b: B', then B", B'. 

LemmaA.7. 
Suppose A' '" A and r I- A' : C. 
Then (A : 5) 'Ie AT \A. 

Proof. Suppose towards a contradiction that (.4 : s) E AT \A (so 5 = T). 
Then A is a sort., so .4' ~~ A, and by SHe it follows from r I- .4' : C that r I- A : C. 
By the lemma A.4 there then is a sort Sf such t.hat 5' ::::: C and (A : Sf) E A. 
nut (.4 : s) E AT \A, and we have a cont.radiction. 0 

14 



B Theorem 3.7 : I- ¢=;> II-b 

We now prove theorem 3.7: for all bijective PTS 

(3.7.1) rf-b:B =} (38ESr thb:B:8) 
(3.7.2) L1l-b b: B: 8 =} 1L1If-b: B II (1L11f- B: 8 V (B: 8) E AT\A) 

where I L11 and t are defined as in theorem 3.4. 
The first part follows from lemmas B.G and B.7; the second part is proved in the next lemma. 

LemmaB.1. For all biject.ive PTS 
if L1l-b b : B : s then (i) I L11f- b : B ,and 

(ii) 1L11f- B: s V (B: 8) E AT\A. 

Proof. By induction 011 the derivation of Li I-b b : B : s. Last step: 
Axionl. The last step in the derivation in f I-b S : 5' : AT(S') where s : s' E A. 
To prove: (i) f f- s : s' 

(ii) f f- 8: AT(S') V (8' : AT(S')) E AT\A 
s : s' E A, so [ !- s : s'. 
If (8' : AT(8')) rt AT\A (.hen (8' : AT(S')) E A and then f f- 8' : AT(8') 

Variable. The last step in the derivation is 

Li H-b A : 51 : s~ 
.d., x : A : 51 I-b x : .A : 51 

To prove: (i) 1L1I,x: A f- x: A 
(ii) 1L1I,x: A f- A: 81 V (A: 8J) E AT\A 

By the IH I L11f- A : SI. The f--variable rule gives (i): 

The f--weakening rule gives (ii): 

I Lllf- A : 81 
1L1l,x:Af-x:A 

1L1If-A:S 1 1L1If-A:81 
ILlI,x: A f- A: 81 

Weakening. The last, st.ep in t.he derivation is 

To prove: (i) I L1 I, x : A f- b : B 

L11-, b : B : 8 L1l-b A : 81 : 8; 

L1, x: A : 81 I-b b : B : 8 

(ii) I L1 I, x: A f- B : 8 V (B : 8) E AT\A 
By the IH I L11f- A : 51 and I L11f- b : B so the f--weakening rule gives (i) : 

I L11f- b : B I L11f- A : 81 
1L1l,x:Af-b:B 

By the IH 1L1If-A: 81 and (1L1If-B: 8V(B: 8) E AT\A). 
If (B : 8) rt AT\A then I L11f- B : 8 and t.he f--weakening rule gives (ii) 

I L11f- B : 8 I L11f- A : 81 
1L1l,x:Af- B:8 
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COllversion. The last step in the derivation is 

To prove: (i) 1L11f- b: B 

.1 i-b b : B : 5 .1 i-b B' : 5 : 5' B '" B' 

.1 i-b b : B' : 5 

(ii) I .1 If- B' : 5' V (B' : 5') E AT\A 
By the IH I .1 If- B' : 5, so (ii). 
By the IH I .1 If- b : B and I .1 If- B' : 5, so the f--conversion rule gives (i): 

I .1 If- b : B I .1 If- B' : 5 

I L11f-b : B' 

Fornlation. The last step in the derivation is 

..1 I-b A : 81 : 8~ ..1,;1;: A : 81 rb B : 82 : 8~ 

L1l-b (llx:A. B): 53: AT(S3) 

To prove: (i) 1L11f- (ll,;:A. B): 53 
(ii) I .1 If- 53: AT(S3) V (53: AT(S3» E AT\A 

By the IH I .1 If- A: Sj and 1.1 Lx: .4 f- B : 5" so the f--formation rule gives (il: 

I .1 If- A : Sj I L1 Lx: A f- B : 5, 

1.1 If- (llx:A.B): 53 

(53: AT(S3» E A or (53 : AT(S3» E AT\A. 
If (53: AT(S3» E AT\A then (ii). 
If (53: AT(S3» E A then by the f--start lemma(A.2) I .1 If- 53: A T (S3) and hence (ii). 

Abstraction. The last step in the derivation is 

Lll-b A : 81 : 8~ ..1, x: A : 81 rb b : B : 82 

.1 i-b (.\x:A. b): (llx:A. B): S3 

Clearly ((llx:A. B): S3) rf: AT\A, so to pwve: (i) 1L11f- (Ax:A. b): (llx:A. B) 
(ii) 1L11f- (llx:A. B): 53 

By the III 1.1 Lx: A f- b : B and I .1 If- A : Sj. 

Also by the IH 1.11, x: A f- B : 5, V (B: 52) E AT\A. If (B : s,) E AT\A then 52 
(Sj,S2,S3) E R<; A 3, so 52 'F T. Hence 1L1I,x:A f- B: 5,. 
The f- formation rule gives (il: 

I .1 If- A : Sj I L1 Lx: A f- B : 5, 

I .1 If- (ll x: A. B) : 53 

and then the f--abstl'acLion rule gives (ii): 

1L1I,x:Af-b:B 1L11f-(llx:.4.B):s3 
1.1 If- (Ax:A. b): (llx:A. B) 
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Application. The last step in the derivation is 

for some (51,52,53) E R. 

LI h b: (IIx:A. B): 53 

L1l--b a : A : 51 

Lll-b ba : B[x := aJ : 52 

To prove: (i) I Lllf- ba : B[x := aJ 
(ii) I Lllf- B[x := aJ : 5, V (B[x := aJ : 5,) E AT\A 

By the III 

ILlIf-a:A 

ILlIf- b: (IIx:A. B) 

so the f- application rule gives (i): 

By the IH also 

ILlIf-b:(IIx:A.B) ILlIf-a:A 

ILlIf- ba: B[x:= aJ 

I Lllf- A : 51 V (A : sd E AT\A 

1.d1f-(Th:A. B): 53 

(1 ) 
(2) 

(3) 

(4) 

since clearly «IIx: A. B) : 53) rt AT\A. Then by the II-generation lemma for HA.3) it follows 
from (4) that 

l.dlf-A:t l 

l.d I, x : A f- B : t, 

(5) 

(6) 

for some (tl, t" 53) E R. By lemma A.7 it follows from (3) and (5) that I Lllf- A : 51. By UTe then 
51 =:: t1) and since the PTS is bijective, 53 =:: t3. 

Finally, by the f--substitution lemma(A.5) it follows from (1) and (6) that I Lllf- B[x := aJ : 52, 
and hence (ii). 0 

To prove (3.7.1) - "I-:::>h/' - we need the II -generation lemma for I-b (lemma B.5) and unicity 
of types for I-b. 

Lemma B.2. [unicity of types for I-b :UTo-,J 
For bijective PTS : 

(i) if Lll-b b : B : 5 and .d I-b b : B' : 5' then B '" B' and s == 5'. 
(ii) if Lll-b b : B : 5 and .d h, B : S : 5' then s '" S. 

Proof. (i) Suppose Lll-b b : B : sand Lll-b b: B' : 5'. 

Then by the previous lemma I Lllf- b : Band l.d If- b : B'. so by UTe B '" B'. 
Also, by the previous lemma 

ILlIf-B:s V (B:S)EAT\A 

ILlIf- B': s' V IB': 5') E AT\A 

If I Lllf- B : 5, then by lemma A.7 I Lllf- B' : s' and by SRe and UTI- 5 == 5'. 
In the same way, if I L111- B' : 8', then also 5 :;:: 5'. 

Finally. if both (B : 5) E AT\A and (B' : s') E AT\A then s == s' == T. 
(ii) Suppose Lll-b b : B : 5 and Ll h, B : S : s' . 

Then by the previous lemma 

ILlIf-B:5 V (B:5)EAT\A 

I Lllf- B : S 

It then follows from lemma A.7 that I L111- B : 5, and hence by UTf-- 8 -::::= S. 
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For the lI-generation lemma the thinning lemma is required, which in turn requires the following 
start lemma. 

LemmaB.3. [start lemma for I-bJ 
If LI I-b b: B : sand (s: s') E A. then LI I-b s: s' : AT(S'). 
If LI,x:A:s,LI'l- b b: B: s then LI,x:A:s,LI'h x: A: s. 

Proof. Induction on the derivation of .::1 I-b b ; B : 5 and .::1, x: A: 5, .::1' I-b b : B : s. 

Lemma B.4. [thinning lemma for I-bJ 
Suppose LI' I-b b : B : s, LI' <;; LI and LI I-b a : A : s'. 
Then LI I-b b : B : s. 

o 

Proof. Induction on the derivation of Ll i-b 
applied is the axiom or variable rule. 

a : A : 5. The start lemma is used if the last rule 
o 

LemluaB.5. [ll-generation lemma for I-b) 
Let.::1 I-b (llx:A. B): 53: s~. Then there are 51, 5~, 5'2 and 5; 5"Uch that 
(51,5'2,53) E R, ..1l-b A: 51: 5'1 and d,a::.4: 51 H-b B: 5'2: 5;. 

Proof. Any derivation of Ll 6- b (fl x: A. B) : 53 : 5~ ends with the format.ion rule followed by zero 
or more uses of t.he conversion rule and/or the weakening rule: 

..1', x : A : 51 I-b B : 52 : 5; .::1' I-b A : 51 : 5~ 

LI' I-b (IIx:A. B): s: s' } 

(weakening/ c0l1ve1'5ion) 

Lli-L (IIx:A. B) :S3 :s~ 

where (51,5'2,5) E R. 
The weakening rule does not affect the type 5 of (ll x: A. B), and the conversion rule only 

,B-converts it. So 53 -:::::::- 5, and since 5 and 53 are bot.h sorts, 53 == 5. 

L1' ~.:1, so by the thinning lemma for I-b: .d., x : A: sll-b B: 52: s; and Lll-b A: 51: s~. 0 

To prove (3.7.1) : for all bijective PTS 

where f is defined by { ._ c = f 
r,x:A t,x:A:s ifr~A:s 

we first prove 

Leuuua B.B. For bijective PTS 

r ~ b : B =:- (38 E Sr. I' h b : B : s) 

{ 
E -

where I' is defined by r, x : A ;;; 
, 
r,;z:: A: S ifr I-b A : s : s' 

By UTI-b(lemma B.2) this defines a unique r. vVe have to use r instead of r as defined in 
theorem 3.4 for the proof La run smoothly. In the next. lemma lemmas B.l and B.6 will be used to 
prove that t and r are the same. 
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Proof. By induction on the derivation of r I- b : B. Last step: 
Axiom. So t I- s : Sf, where s : s' E A. Then by the I-b-axiom rule "( I-b s : s' : AT (s'). 
Variable. The last step in the derivation is 

r I- A : 5, 
r,x:Al-x:A 

To prove: (35 E fiT. r, x : A I-b x : A : 5). 
By the IH there is a. s~ such that r I-b A : 51 : s~. 
Then r, x: A = r, x : A : 81, and the I-b-variable rule gives 

r I-b A : 51 : s~ 
r, x: A : 5, I-b x : A : 5, 

Weakening. The last step in the derivation is 

r f- b : B r f- A : 5, 
r,x:Al-b:B 

To prove: (35 E fiT. r, x : A h, b : B : 8). 
By the IH there are 5 and 5'1 such that r I-b b : B : 5 and r 1-" A : 51 : 5;. 
Then r, x : .4 == r~ x : A : SI, and t.he I-b-weakening rule gives 

r h, b : B : 5 r I-b A : 5, : 5; 

r, x : A : 51 h b : B : 5 

COllversion. The last. step in the derivation is 

r f- b : B r I- B' : 5' B:::: B' 

rl-b:B' 

To prove: (35 E fiT. r h, b: B' : 5). 
By the IH there are saBel 8" such that r I-b b : B : sand r I--b Bf : s' : S". To use the rb­

cOllversion rule \ve have to prove s' == s. 

By lemmaB.l (r I- B: s V (B: 5) E AT\A). Since also rf- B': 8', it follows by lemmaA.7 
that r I- B : s. Then by SRI-(lemma A.l) a common reduct of Band B' has both type sand s', 
so by UTf-(lemma A.G) 8' == 8. 

The I-b-conversion rule now gives 

r I-b b : B : 8 r I-b B' : 8 : Sa B:::: B' 

r I-b b : B' : 8 

FOl'luation. The last step in the derivation is 

r f- A : 8, r, x : A I- B : 52 

r I- (JIx:.4.B): 83 

To prove: (35 E fiT. rl-b (fh::A.B): 83: 5). 
By the IH r I-b A : 51 : 5; and r,;r : A I--b B : 8'2 : 52 for some 5; and 52< 
Then r, x: A =- r, x : A : 81, and the B-b-formation rule gives 

r I-b A : 51 : s; r, x : A : 8} I-b B : 82 : s2 
r I-b (JIx:A. B): 83: AT(S3) 
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Abstraction. The last step in the derivation is 

r, x : Arb: B r r (II x: A. B) : 83 
r r (AxA. b): (IIx:A. B) 

To prove: (38 E Sr. ri-b (Ax:A. b): (IIx:A. B): 8). 
By the III there are 52 and 5~ such that 

r, x : A I-b b : B : 8, 

rh (IIx:A. B): 83: 8~ 

(1 ) 

(2) 

By the II-generation lemma for I-b (lemma B.5) it follows from (2) that there are 81, 8~, t, and 
t~ with (81, t" 83) E R such that 

r I-b A : 51 : 5~ 

r) x : A : 51 I-b B : t2 : t~ 

From (3) it follows that r, x : A = r, x : A : 81. 
By UTo-o(lemma B.2) it follows from (1) and (4) that t2 = 8,. 
Now the I-b-abstraction rule gives 

r i-b .4. : 81 : 8~ r, x : .4. : 81 i-b b : B : 8, 

r i-b (,\x:A. b): (IIx:A. B): S3 

Application. The last st.ep in the derivation is 

rrb:(IIx:.4..B) rra:.4. 

r r bo : B[x :_ oj 

To prove: (38 E Sr. r I-b ba: B[x := aJ : s). 
By the IH there are S3 and Sl such that 

r R-b a : A : 51 

rh b: (IIx:A. B): 83 

(3) 

(4) 

(1 ) 

(2) 

If there is an 52 such that (51) 52, 83) E R) then we can use the i--b-application rule to derive 
r I-b ba: B[x := oJ: 8, from (1) and (2). 

So) to prove: 3~:l(81)52,53) E R. 
By lemma B.1 ( i-b=}r ) it follows from (1) and (2) that 

r r A : 81 V (A: sd E AT\A 

r r (IIx:A. B): 83 

since clearly «II x: A. B) : 83) ~ AT\A. 
By the II-generation lemma for r(A.3) it follows from (4) that 

r r A : t1 

r,x: ArB: 8, 
for some (t1' 52,83) E R. If we can prove 81 == I.) then we are done. 

(3) 

(4) 

(5) 

(6) 

By lemmaA.7 it follows from (3) and (5) that rr A: 81. By UT,(IemmaA.6) thent1 =81. 
o 
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The two ways to extend I--contexts to rb-contexts defined in theorem 3.4 and the previous 
lemma are the same: 

Lel111llH B. 7. r == f 

Proof. Induction on r. The base case - r == (: - is trivial 
Suppose r == r'! x : A. Then r' ~ A == t', x : A : s if r I- A : s 

r',x: A == P,x: A: s if3",['l- b A: s: s' 
By the IH [' == 1', and by lemmas B,! and B,6 

r f- A : s <=} 3",[, I-b A : s : s' 

2! 

o 



C Theorem 4.4 : if-b-<==?if-b,d 

vVe now prove theorem 4.2: for all bijective PTS 

Ll h"d b : B : s 1\ W Fb,d Ll = Lll-b b : B : s 

Lenllna C.l. For bijecl.ive PTS 

Lll-b b: B: s =;. (3B':::: B. Lll-b,d b: B': s) 

Proof. By induction on t.he derivation of.d I-b b : B : s. 
Last step: 
Axioln, Variable. The conclusions of the I-b-axiom and variable rule are instances of the corre­
sponding I-bsd-inference rules, so the induction step is trivial. 
Conversion. The last step in the derivation is 

L1 I-b b : B : s LJ t-b H' : s : Sf B '::::' B' 

Lll-b b : B' : s 

To prove: 3B" :: B'. L1 B- bsd b: BIf : s. 
By IH(Lll-b b : B : s) there is a B" :::: B such that Lll-b,d b: B" : s. 
But then also Bf! ::: 8', so we are done. 
FOl'lllation. The last step in the derivation is 

.do I-b A : 81 : s~ Ll, x: A : 51 I-b B : 82 : s~ 

Ll h (JIx:A. B): S3: AT(S3) 

By the IH there are S, :::: 8, and S, :::: s, such that 

(S"8,,S3) E R 

Li, x: A : 81 t-bsd B : 5'2 : 82 and L1l--bsd A : 51 : s;. So by the rbsd-formation rule 

Ll, x : A : 81 I-bsd B : 5h : 82 S'2 ----'-(3 82 

L1 B-bsd A : 51 : s'} 51 ----:"'(3 81 

Abstraction. The last step in the deriva.tioll is 

Lll-b A : 8, : 8; Ll, x: A : 8, I-b b : B : s, 
Lll-b (A,<::A. b): (JIx:A. B): 83 

By the IH there a.re 51 ::: 81 and B' ::::::: B such t.hat 
Ll, x: A : 81 I-bsd b: B' : 82 and Lll-bsd A : 51 : s~. So by the I-bsd-abstraction rule 

Ll, x : A : 81 I-bsd b : B' : 82 

Ll I---bsd .4 : 51 : S'1 51 ~(3 81 

Ll i-b,d (,,,":.4. b): (JIx:A. B'): 83 

and (JI x: A. B') :::: (JI,": A. B). 
Application. The last step ill the derivation is 

Lll-" b: (JIx:A. B): 53 

Lll-b a : A : 8, 

Lll-b ba : B[x := a] : 8, 
By the IH there are C :::: (JI x: A. B) and A" :::: A such that 
.d. rbsd b : C : S3 and .d. B-bsd a : A" : SI. 

C::::::: (JIx:A. B), so there exist terms A' and 8' such that A'::::::: A, 8'::::::: Band 
C ---l+wh (JIx:A'. 8'). Then by the B-bsd-application rule 

C~wh(JIx:A'.B') 

Lll-b.,d ba : B'[x :- a] : 8, 
and B'[x := a] :::: B[x := a]. 0 
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In order to prove 

(1 ) 

we first prove 

(2) 

where WFbLl is defined as follows: 

(empty) WFb f 

WhLl Ll t-b A : 5 : s' 
WFbLl,X: A: 5 

if x is Ll-fresh (weaken) 

Once we have proved (2L proving WFbLl ~ WFbsdLl- and hence (1) - will be simple. 
Before we prove (2); some \York has to be done. 

Lemma C.2. For all bijective PTS 

Proof. By induction on the derivat.ion of Lll-b b : B : 5. Last step: 
Axiom. The last step in the deriva.tion is f B-b S : 5' : AT(5' ), and the empty context is well-formed 
: WFbf. 
Variable. The last step in the derivation is 

.J I-b A : 51 : 5; 

Ll, J! : A. : 51 R-b x : A : 51 

By the HI WFbLl, so by WFJ,-weakening rule 

WFbLl Ll t-b A : 5, : s; 
ll'FbLl, x : A ; 51 

Weakening. The last. step in t.he derivation is 

Ll B-b b : B : 5 Ll B-b A : s 1 : s~ 

Ll,:" : A : 8, I-b b: B : 8 

By the IH WFbLl, so by WFJ,-weakening rule 

Conversion, Forluation, Abstraction, Applicatioll In these cases the induction step is triv­
ial: none of these rules extend the cont.ext, so VVFbLl follows immediately from t.he induction 
hypothesis. 0 

Lemma C.3. For bijective PTS,' Ll t-b b : B : s =? I Lli == Ll, with 08 defined in lemma B.6. 

(Recall that by lemma B. 71 Lli == I LlI, with 05 defined in theorem 3.4 ) 

Proof. In view oflemmaC.2 it suffices to prove that for bijective PTS: WFbLl =? ILlI == Ll. 
This is proved by induction on d. The base case - Ll == f - is trivia.l. 
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Suppose Ll == Ll', x : A : s. Then 
WFbLJ.', x: A: s 

~ {def WFb} 
3" W hLl' 1\ Ll' i-b A : s : s' 

~ {IH} 
3" WFbLl' 1\ Ll' i-b A : s : s' 1\ I Ll' I == Ll' 

~ 

3" Ll' I-b A : s : s' 1\ I Ll' I == Ll' 
~ {defI'} 

I Ll' I, x : A == I Ll' I, x : A : s 1\ I Ll' I == Ll' 
~ {def II } 

I Ll', x: A: s 1== Ll', x: A: s 

Using this lemma, SR can now be siphoned over from f- to &-1:,: 

LelnnlaCA. [type reduction for t-b: TRI- b ] 

For bijective PTS: if Ll i-b b : B : s "" d B -f 8' th", Ll i-b b : 8' : s . 

Proof. Suppose B -f B' and Ll i-b b : 8 : s. 
First we prove LJI-b b : B' : s' for some s': 

Lll-b b : B : s 
~ {lemma B.l : i-b ~ f-} 

I Lllf-b : B 1\ (I Lllf- B : s V B E S) 
~ {B ~f B' ,so B 'i S } 

I Lllf- b : B 1\ I Lllf- B : s 
~ {SRf-(lemma A.I)} 

I Lllf- b : B 1\ I Lllf- 8' : s 
=> {I--conversion rule} 

I Lllf- b : B' 
~ { lemma B.6: f- ~ I-b } 

I Llll-b b : B' : s' for some s' 
By lemma C.3, Lll-b b : B : s ~ I Lli == Ll. 

So it follows from Lll-b b : B : s that Ll I-b b : B' : s' for some s'. 
Finally, by UT .. , ( lemma B.2 ) , part (i), it follows that s' == s. 

Using T RI-b we ca.n now prove 

Lenllua C.5. For bijective PTS 

Proof. By induction on t.he derivat.ion of Lllf---bsd b : B : s we prove 

Last step: 
Axiolll. The last step in the derivation is L1 H-bsd S : s' : AT{S'), where s : s' E A. 

By the start lemma for i-b (lemma B.3) and lemma C.2: WFbLl ~ Ll i-b s : s' : AT(S'). 
Variable. The last step in the derivation is d,;1.: : A : 5, il' I--bsd x : A : s . 

By the start lemma for H-b (lemm3 B.:3) and lemma C.2 : 
WFbL)" x : A : 8,,d' => Ll, x : A : 5, il' rb x : .4 : s. 

Forluatioll. The last step in the derivation is 

D, x : A : 81 J- bsd B : 5'2 : 8~ 5'2 --,tf3 8'] 

Li rbsd A : 51 : 8; 51 ---'+f3 81 

Lll-b,d (Jlx :A.B) : 83: AT(S3) 
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Toprove: WFbLl =;. Lll-b(fIx:A.B):53:AT(83). 
By the IH: WFbLl, x: A : 5, =;. Ll, x : A : 8, I-b B : 5, : 5; 

WFbLl =;. Lll-b A : 5, : 5; 
Assume WFbLl. Then Lll-b A : 5, : 5;, by T Ro-o(lemma C.4) Ll i-b A : 5, : 5; and so WFbLl, x : A : 8,. 
Then also by the IH : Ll, x : A : s, I-b B : 52 : 5\. 
By TRt-b(lemma C.4) : LJ, x: A : 51 rb B : 52 : s;, and finally by the rb-formation rule 

.::1, x : A : 51 rb B : 52 : s; Ll I-b A : 51 : s~ 

Ll R-b (fIx:A. B): 53: AT(53) 

Abstraction. The last step in the derivation is 

Ll, x: A : 51 J- bsd b: B : 8'} 

Lll-bsd A : SI : si SI ~f3 51 

Lll-b,d (h:A. b): (fIx:A.B): 53 

Toprove: WFbLl =;. Lll-b (.\x:A.b):(fIx:A. B):53· 
By the IH : WFcLl, x: A : 5, =;. Ll,:c: A : 5, I-b b : B : 5, 

WFbLl =;. Llh,A:5, :8; • 
Assume WFbLl. Then Ll R-b A : 5, : 5'" by T Ro-,(lemma C.4): Lll-b A : 8, : 5; and so WFbLl, x : A : 8,. 
Then also by the III: Ll,x: A: 5, R-b b: B: 5,. 

By TRt-b(lemmaC.4): Llrb A: 81 : s~, and then by the I-b-formation rule 

Ll, x: 11 : 51 t-b b : B : 52 Lll-b A : 81 : s; 
Ll R-b (.\x:A. b): (fIx:A. B): 53 

Application. The last step in the derivation is 

Lll-b,d b: C: 53 C --"'"h (fIx:A'. B) 
Ll t-bsd a : A : 51 A ::::: .4' 
Lll-b,d ba : B[x :- aJ : 5, 

To prove: WFbLl =;. Ll h, ba : B[:c := aJ : 8,. 
By the IH: WFbLl =;. Ll h, b : C : 53 

WFbLl => L.\ f-b a : A : 51 

Assume WFcLl. Then by the III : Lll-b b: C: 53 and Ll R-b a : A : 8,. 

Let A" be a common reduct. of A and A'. 
Then by T RJ- b : Ll t-b b : (fl x: A". B) : 83 and Ll I--b a : A" : 51) SO by the I-b-appiication rule 

Lll-b b: (fIx :A". B) : 83 

.Do I-b (I. : A" : 51 

Lll-b ba : Blx := aJ : 8, 

Finally, we still have to prove Ll h, b: B: 5 =;. WFc'dLl. 

Lelnnla C.6. For all bijective PTS .- Li l-b b: B : s => WFbsdLi. 

o 

Proof. By lemma C.2 it suffices to proof WFbLl =;. WFb,dLl. This is proved by induction on the 
structure of Li. The ca.se Li =: f is trivial. Suppose Li == Li', x: A: s. Then 

WFbLi', x : A : s 
~ {definition Wh} 

3" WhLl' /\ Ll' I-b A : S : 5' 
==? {Ill} 

3" Wh,dLl' /\ Ll' I-b A : s : s' 
==? {lemma C.I : h, =;. R-b,d} 

3s,~1 WFbsdLi' 1\ Li' ~bsd A : 5 : s' 1\ S -8 5 
~ {definit.ion WPb ,,,} 

WFbsdLi',X: A: s 
o 
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D Theorem 3.4: f- -¢::::::} 1/--, 

We now prove theorem 3.4: for all functional PTS 

r I- b : B =;. (3s E Sr. t I-, b : B : s) 
L1I-, b: B: s =;. 1L111-b: B A (I L1 II- B: s V (B: s) E AT\A) 

This is proved in the same way theorem 3.7 was proved in appendix B. Only when the application 
rule is involved is there any difference. This main difference is in the first half: in the proof of 
lemma D.7 a substitution lemma for 1-( (lemma D.G) is required to deal with the application rule. 

LemrnaD.1. For all functional FTS 

L1l-r b: B: s =;. 1L1ll-b: B A (I L1 II- B: s V (B: s) E AT\A) 

Proof. By induction on the c1erivat,ion of d 1-[ b : B : s. Only if the last step is the application 
rule is there any difference with the proof of lemma B.l. 
Application. The last st.ep in the derivation is 

L1 i-, b: (flx:A. B): S3 

L1 .... f a : A : 51 

L1l-r B[x := oj : s, : s~ 
L1I-, ba : B[x :_ oj : s, 

To prove: (i) 1 L111- bo : B[x := aJ 
(ii) 1 L111- B[x := aJ : s, V (B[x:= oJ: S2) E AT \A 

By the JH 1 L111- B[x := aJ : s" so (ii) holds. 
By the JH 1 L111- b : (fl x: A. B) and 1 L111- a : A, so the I- applicat.ion rule yields (i): 

1L1ll-b:(Jlx:A.B) 1L1ll-a:,4 
1 L111- ba : B[x := aJ 

Leuuna D.2. [unicity of types for rr :lJTi- f l 
(i) if L1I-, b : B : sand L1l- r b : B' : s' 
if L1I-, b : B : sand L1 i-r B : S : s' then s == S. 

Proof. Exactly as lemma 13.2. 

Lelllllla 0.3. [start lemma for I-r 1 
If L1I-, b: B : sand (s : s') E A, Ihe1l L11-, s : s' : AT(S'). 

If L1, x :,4: s, L1' 1-[ b : B : s then L1, x: A: s. L1' 1-, x : ,4 : s. 

Proof. Exactly as lemma B.3. 

Lemma 0.4. [thinning lemma for 1-,1 
Suppose L1' I-, b: B : s, L1' <; L1 and L1 i-, u :.4 : s'. 
Then L1 i-, b : B : s. 

Proof. Exactly as lemma 13.4. 

LenuuaD.5. [II-generation lemma for I-r] 
Let Lll-r (J/x:A. B) : S3 : s~. Then there are SI, S~, S2 and si such thai 
(81) s2) S3) E R, Lll-r A : 81 : s; and Ll, x: A: S1 I-r B : S'2 : si· 

Proof. Exactly as lemma. B.5. 
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Lenlnla D.6. [substitutioll lemma for t-r] 
Suppose Ll, x: C : s, Ll' h b : B : s' and Ll h c : C : s. 
Then Ll, Ll'[x := CJI-, b[x := cJ : B[x := cJ : s'. 

Proof. By induction on the derivation of il, x: C : 5, il' I-r b : B : 5'. 

LelumaD.7. For functional PTS 

where F is defined by { r .1: ~r .. 4 . 
1 X. 1 X .... 5 ijFI-,A:s:s' . 

N.B. In lemma B.6 r is defined differently, viz. in terms of I-b instead of I-r. 

o 

Proof. By induction on the derivation of r r b : B. Only if the last step is the application rule 
is there any difference \\'ith the proof of lemma B.6. 
Application. The last step in the derivation is 

r r b : (fl x:.4. B) r r a : A 

r r ba : B[x := aJ 

To prove: (3s E Sr-. F h ba : B[x := aJ : s). 
By the IH there are S3 and 51 such t.hat 

FI-r b: (flx:A. B): S3 

F i-r a : A : s, 
(1 ) 
(2) 

By the J1-genera.t.ion lemma for 1-[ it follO\vs from (1) that there are it 1 ti 152 and 5~ with 
(t11 52, 53) E R such t.hat. 

FI-,A:t1:t; 

r, x : A : tl 1-[ B : s:! : 5; 

By UT .. , t, == S" so by the substitution lemma for h it follows from (2) and (4) that 

Now by the 1-[ application rule 

F i-, B[x := aJ : s, : s; 

Fh b: (l],::A. B): S3 

FK-,a:A:s 1 

FI-, B[x:= aJ: s,: s; 
r h ba : B[x :- aJ : s, 

(3) 

(4) 

o 

LemluaD.8. The two ways to extend r~contexts to I-r~contexts used in theorem 3.4 and the pre­
vious lemma are the same, i.e. r == f. 

Proof. Exactly a." lemma B.7. o 
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