

A typechecker for bijective pure type systems

Citation for published version (APA):
Poll, E. (1993). A typechecker for bijective pure type systems. (Computing science notes; Vol. 9322).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1dc94008-948b-4ff8-8cd0-8a562d7f49dd

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Typechecker for Bijective Pure Type Systems

by

Erik Poll

Computing Science Note 93/22
Eindhoven, June 1993

93/22

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A Typechecker for Bijective Pure Type Systems

Erik Poll*

Abstract. A type inference algorithm is given, which closely follows to the type derivation
rules for Pure Type Systems. Soundness and completeness of the algorithm are proved for
a large class of Pure Type Systems, which includes all systems in Barendregt's A-cube.

* supported by the Dutch organization for scientific research (NvVO).

1 Introduction

For a Pure Type System (PTS) (see [Bar92]) the central notion is that of type assignment. Every
PTS comes with its typing relationi-, defined by a set of inference rules. Type judgements are of
the form r I- a : A ~ in context r the term a has type A - where r is a list of type assignments
to variables.

For an implementation of a PTS a reasonably efficient type-checker is needed. (If a type-checker
reduces types to their normal forms we do not consider it to be 'reasonably efficient'.) It is not
difficult to define a type-checker that closely follows the type inference rules (see [PoI92]). Proving
soundness of this algorithm is easy, but all attempts at proving completeness have so far failed.

Instead of type judgements of the form

xl:A1, ... ,xn:An 1- a:A

we consider more informative judgements of the form

Xl: Al : 51, ... ,Xn : An: Sn H-- a: A : s

These judgements do not only involve the types of terms but also the types of these types. In this
new typing relation a term has exactly the same types as in the old typing relation.

As for the original typing relation, for the new typing relation I/- there is a natural typechecking
algorithm which closely follows the type inference rules. For this typechecking algorithm soundness
and completeness can be proved by straightforward induction proofs for a large class of PTS,
which we call the bijective PTS (definition 3.5 on page 9). The bijective PTS are a subclass of the
functional PTS. It includes all functional PTS with rules of the form (5,,5,,5,), and hence all
systems in Barendregt's A-cube.

In the next section we recall the definition of a PTS given in [Bar92] and discuss the problem
of typechecking PTS.

Then, in section 3, a new typing relat,ion is introduced, with judgements of the form
Xl : AI: 81, ... , Xn : An: 8 n I\- a: A : 8. Two versions of this typing relation are given: one that can
be used for all functional PTS (I-r) and one that can only be used for the bijective PTS (I-b).

In section 4 a syntax-directed version I- bsd of the typing relation I/-b is defined (definition 4.1).
This typing relation gives a sound and complete typechecking algorithm for all strongly normalising
bijective PTS.

In section 5 a syntax-directed version of the typing relation I-r for functional PTS is defined,
for which proving completeness is a problem unfortunately.

Finally, in the last section, the main steps leading from the original typing relation to the
syntax-directed one are outlined, and we sketch how the typechecker can be extended to include
other primitives, such as E, +, or x-types.

All the proofs that the different typing relations are equivalent are by induction on derivations
and are given in the appendices.

2

2 Pure Type Systems

Definition2.1. [Pure Type System]
A Pure Type System (PTS) is a triple (5, A, R) with

• 5 is a set of symbols called the sorts
• A ~ S x S , a set of axioms.
• R ~ S x S x S , a set. of rules

Definition 2.2. [terms and contexts]
Given a PTS (5, A, R), the collection of terms M and contexts r is given by

M::=xl sl (MM) I (-'x:M.M)1 (Ilx:M.M)
r ::=, I r,x:M

where x is a va.riable and s is a. sort.

Convention 5 , 51,5', etc. range over S; Q, h, A, B, aI, etc. range over terms.

Definition 2.3. [typing relation r I- b : B]
For each PTS (5, A, R), a typing relation I- is defined. For type judgements of the form r I- b: B
we have the following inference rules

(a.xiom)

(variable)

(weakening)

(formation)

ff-S:S'

rl-A:s

rl-b:B r1-A:8
r,x:Al-b:B

r I- A : s, r, x : A I- B : 82

r I- (Ilx:A. B): S3

(b
.) r,x:Al-b:B rl-(llx:A.B):s

a strae/wn
r I- (Ax:A. b): (Ilx:A. B)

(application)

(convel"sian)

rl-b:(Ilx:A.B) rl-a:A
r I- ba : B[x :- a]

rl-b:B rl-B':s B""B'
rl-b:B'

where 5 ranges over sorts, i.e. 5 E 5, and := is ,6-equality.

if(s:S')EA

x fresh

;1: fresh

The most important subclass of PTS is that. of the functional PTS. Most - if not all - PTS that
are of practical interest are functional PTS.

Definition 2.4. A PTS (5, A, R) is called fllnctional (or singly sorted) iff

(8: 8') E AI\(S: s") E A ==> s' =' S"

(Sl,S~,S3) E R/\ (5t,S2,5;) E R ==> 53 == s~

The distinguishing property of these PTS is that the type of a. term is unique up to j1-equality:

Lemma. [unicity of types for I- : UTe]
For functional PTS: if r I- b : Band r f- b: B', then B "" B'.

3

2.1 Typechecking Pure Type Systems

Two typechecking problems can be distinguished

• r I- b : B? - the type checking problem -
given a context rand t.erms band B decide whether r J-- b : B derivable or not.

• r I- b : ? - the type inference problem -
given a context r and a term b, find a term B such that r I- b : B, or report failure if no such
B exists.
For functional PTS finding a single type for b suffices, as it is unique modulo {1. For non­
functional PTS there may be several ;3-equivalence classes of types for b, in which case we
would want to find a representative of each one.

The second is the more genera} of the two problems: if we can solve r J-- b : ? we can also solve
r I- b : B? On the other hand, it is difficult to imagine a solution for r r b : B? which does not
also provide a way to solve r I- b:?

The remainder of this section concerns our motivation for considering a new typing relation.
We discuss the nat.ural type inference algorithm for functional PTS defined in [PoI92], and the
problem encountered for this algorithm, which is that nobody has been able to prove completeness.
For the new typing relation introduced in the next section, we will not have this problem.

The obvious way to solve r r b :? is to try to construct a type derivation for b guided by
the shape of b. Here we run into the problem that that the PTS inference rules are very non­
deterministic: there can be many derivations for r I- b : B, let alone for r I- b : ? The source of
this non-determinism is the conversion rule, which can be used at any point in a derivation. (The
weakening rule also introduces non-determinism, but this can easily be eliminated by restricting
the weakening rule to variables and sorts, as in t.he I-sd-weakening rule below).

Despite this non-determinism, it. is not difficult to define a natural type inference algorithm
which tries to construct a particular type derivat.ion, by only doing conversions

• to test if a type reduces to a sort
• to test if the types of a function and its argument match

But then we are implementing the following syntax-directed system r-sd (sd for syntax-directed) :
instead of I-

(axiom)

(variable)

fl-sd S : S'

r I-,d A : 5 5 ~f s
r, x: A t-sd x : A

if(s : s') E A

x fresh

(weakening) r I-,d b : B r r,d A : SB 5 --*iJ s x fresh and b a variable or sort
r,X:Ar,d b :

rl-,dA:Sl Sl~iJSl

(Jormation) r, x : A t-sd B : S2 52 ----it j3 82

r r ,d (n x : A. B) : 83

r, x : A I-,d b: B
(abstraction) r I-,d (llx:A. B): 5 5 ~iJ S

r I-,d (.\x:A. b): (llx:A. B)

r I-,d b: C C ~wh (llx:A'. B)
r I-,d a : A A", A' (application) r I-,d ba : B[x :- aJ

if(sl,s2,s3) E R

Here ----itj3 denotes ,a-reduction and -wh denotes weak-head reduction. Note that the weakening
rule is restricted to variables and sorts. This means that in derivations weakening is postponed as
much as possible. The sha.pe of a term b determines a unique I-sd-type derivation for b.

4

If our algorithm implements f-sd instead of f-, we want to know if f-sd and f- are equivalent.
This means we have to prove

soundness: r I-,d c: C = r I- c : C
completeness: r I- c : C = (3C' '" C. r I-,d c : C')

It is easy to prove soundness. However, proving completeness is a problem. This means it is not
known if for a functional PTS the algorithm can always find a type for a typeable term. (For
non-functional PTS completeness fails; see [Po]92] for a counterexample.)

A proof of completeness by induction on the derivation r f- c : C fails in the abstraction rule:

Suppose the last step in the derivation of r I- c : C is the abstraction rule. Then
c == (Ax: A. b), C == (11 x: A. B) and the laBt step in the derivation is

r,x: A I- b: B rl- (11x:A. B): 8
r I- (>.x:A. b): (11x:A. B)

By the induction hypot.hesis r, x : A I-,d b: B' for some B' '" Band r I-,d (11 x: A. B) : S
for some S '" 8. However, t.he type B' found for b can be different from B (but j3-equivalent
to B), and we do not. know if r I-,d (11,,: A. B') : S' for some S'.

Basically, the problem is the ,vay in \vhich the subformula property fails for the abstraction rule:
a type derivation for (AX: A. b) in context r contains a sub-derivation of a term ~ (fl x: A. B) ~
which is not a subtenn of (Ax: A. b).

An alternative abstraction rule, which is equivalent with the original abstraction rule, is

rl-A:s l r,x:Al-b:B r,x:AI-B:82 ·f() R
rl-(>.x:A.b):(11x:A.B) 1 81,S2,S3 E

For this abstraction rule we have the same problem, this time caused by the premiss r, x : A f- B : 82

instead of the premiss r I- (11 x: A. B) : s.

In section 6 two type checking algorithms are mentioned which successfully avoid this prob­
lem by relaxing the condition r f- (fl x: A. B) : s, or rather the condition r, x : A f- B : 52 in the
alternative abstraction rule given above.

We avoid the problem by considering derivations for judgements of the form r f- a : A : 5, as
explained in the next section.

5

3 Type-kind derivations

Instead of judgements of the form

xl:A!, ... ,xn:An I- a:A

we consider judgements of the form

These judgements not only give the type of a term, but also the type of its type, which we call its
kind. For example, in the judgement above s is the kind of a and each Si is the kind of Xi.

The notion of kind is related to the notion of degree - defined in [dB80] for the AUTOMATH
languages and in [Bar92) for the A-cube - in that terms with the same kind have the same degree.

Contexts are now of the forIll
D ::= < I D,x:A:s

In contexts both the type and the kind of a variable are registel'ed.

\'-'e have to be careful for non-functional PTS! Here a variable x of type A may have more
than Olle kind s. It may be essential for different occurrences of x to have different kinds, 80 that
by fixing the kind for x some terms are no longer typeable. Later an example will be given that
shows that for non-functional PTS our new t.yping relation is not equivalent to the original typing
relation.

It turns out that, when deriving the type of a term, we can derive its kind at the same time
at little extra cost. Some f---inference rules t.hat derive a type B for a term b, could also produce
the type of this B:

(uari"bl e)
rl-A:s

r,x:Al-x:A

(b)
r, x : A I- b : B r I- (II x : A. B) : S3

a straction r I- (Ax:A. b): (IIx:A. B)

but here the type s of A and the type S3 of (fl x: A. B) are not passed on in the conclusion. Also,
kinds cannot be large terms; by the following lemma the kind of a term is always a sort.

Lemma3.1. [correctness of types]
If r I- b : B then r I- B : s for some s E 5 or B E 5 .

So the extra amount of information carried around in I--derivations in comparison to I--derivations
is small.

A problem is not all terms that have a type also have a kind. If r I- b : Band B E 5, then
there may not be a type for B, and hence no kind for b. This is solved by introducing a new "sort"
T, which acts as the type for hitherto untypeahle sorts:

DefillitioIl3.2. [Sr ,AT]
Given a PTS (5, A, R) we define

Sr = 5 U {T}

AT = AU{(s: T) Is E 5 /\~(3,,(s: s') E A)}

So for all s E S there is a Sf E ST snch that (s : Sf) E AT. For functional PTS this Sf is unique,
i.e. AT is a function from 5 to 5T. For functional PTS we write AT(S) for the s' E Sr for which
(s : s') E AT.

Convention s, Sl, Sl, etc. range over ST (and not just S).

6

Replacing all judgements of the form r I- b : B by judgements .1 I- b : B : • in the PTS
inference rules, we get the following typing relation 1-(. t-r is defined for arbitrary PTS, but only
for functional PTS will it be equivalent to the original typing relation f-- (hence the subscript f for
functional):

Definition 3.3. [L1l- r b: B : sJ

(axiom)

(variable)

(weakening)

(formation)

(abstraction)

(application)

(con Vel' sian)

Lll-r A : 81 : s~
Ll, x: A: 81 t-c x : A : 81

.11-, b : B : s L11-r A : s, : s;
L1,x:A:s,1-r b: B: s

L\ t-r A : 81 : s; Ll, x: A: 81 1-[B : s:! : s~

L11-r (Ilx :A. B): S3 : AT('3)

Ll B-r A : 81 : S'l L1, x: A: 81 I--r b : B : 8'2

Lll-r (h:A. b): (Ilx:A. B): 83

Lll-r b: (Ilx:A. B): S3

Lll-, a : A : s,
Lll-r B[x := aJ : s, : s;
Ll i-r ba : B[x :- aJ : S2

L11-r b : B : s Lll-r B' : • : s' B '" B'
Lll-r b : B' : s

if (s : s') E A

x fresh

x fresh

if (s,,',,'3) E R

if(."s"s3) E R

Compared with the original typing rules, the major differences are in the abstraction and the
application rule. These are discussed below. For all other rules there is a one-to-one correspondence
between the premisses in the B-r-rule and the corresponding r-rule.

Note that the conversion rule changes the type of a term, but not it.s kind. This is because in
functional PTS the kind of a term is unique (not. just unique up to tJ-equality).

For functional PTS, I-r is equivalent with r:

Theorelu 3.4. [soundness and completeness I-r]
For all functional PTS

r I- b : B => (3s E Sr. f 1-, b : B : s)

L1i-,b:B:s => ILlll-b:B 1\ {lLlII-B:s V (B:S)EAT\A)

where ILlI is defined by {ILl,X:A
1
:\

and f is defined by { -, 4£ (,
r,x:. r,x:A:s if r I- A: s.

Proof. See appendix D: lemmas D.1, D.7 and D.S. o

For non-functional PTS there can be terms that are typeable using r, but that are not typeable
using 1-[, as shown in the following example.

7

Consider the non-functional PTS

s = {*, 01, 02}, A = {*: 01, *: O,}, R = {(Ol, 0" 02)}

f f- (AX '*. x) : (Il x '*. *) is derivable. To derive this we have to derive f f- (Ilx '*. *) : 0,. To
derive f r (II x : *. *) : °21 the first occurrence of * has to be typed Oland the second occurrence
of * IHl.S to be typed 02:

f- (Ax,*. x): (Ilx,*. *)

Both occurrences of * in (n x: *. *) stem from occurrences of x in (Ax: *. x). If the kind of x is fixed
in a context x : * : D j , then both occurrences of * will have the same type 0i. As a consequence,
(Ax '*. x) cannot be typed using 1-,:

f. 1-[*: D i : T x: *: 0, 1-[x: *: D, () ????
0,,° 1 ,8 E R .

f 1-, (Ax:>. x): (Ilx.* *) S

This type derivation fails because there is no kind Di for x such that (Dil Dil s) E R for some s.

As mentioned earlier 1 the main differences between f- and I-r are in the abstraction and the
application rule.

The abstraction rule
In the I-r-abstraction rule we save work. Unfolding the r-fol'mation rule in the I--abstraction rule
we get

r f- A : 51 r, x : A f- B : s,
r,>:: A f- b: B r f- (Ilx:A. B): S3 (Sl,S2,S3) E R

r f- P>::A. b): (Ilx:A. B)

In this derivation, in order to type (Ax: A. b), the terms b, A and B are typed.
In the rr-abstraction rule

LI,x:A:sll-, b: B: 82 LlI-, A: Sl : 5; () R
LlI-r (Ax:A. b): (Ilx:A. B): S3 Sj,8"S3 E

Here only b and A have to be typed. A separate type derivation for B is no longer needed,
because by typing b we also obtain t,he type of B. Remember that in section 2.1 it was the premiss
r, x: A I- B : 82 in the abstraction rule that. caused the problem in the unsuccessful completeness
proof.

The application rule
In the rr-application rule more work has to be done to produce not only the type but also the
kind. The original application rule is

and the new application rule is

r f- b: (Ilx:A. B)
rf-a:A

r f- ba : B[x :- aJ

LlI-, b: (Ilx:A. B): S3

LlI--, a : A : Sl

LlI-, B[l: := aJ : 8, : 5,
LlI-r ba : B[x :- aJ : s,

The extra work is a type derivation for B[x := oj, which is needed to determine the kind of the ap­
plication bo. (It turns out that, for a syntax-directed version o[l-r, the premiss L1 R-r B[x := 0] : 82 : 82
causes the same problem in the proof of completeness that we sketched earlier for 1-. This is dis­
cussed in section 5.)

Fortunately, this extra work can be avoided for a large class of PTS, namely those where given
81 and 83 there is at most one 82 such that (81,82,83) E R. In these PTS the kind of an application
is determined by the kind of the function and the kind of its argument.

8

Definition3.5. A PTS is called bijective iff it is functional and for all 81,82,82,53 E S

So a PTS is bijective iff

(s, s') E A II (5, s") E A
(8"S"S3) E RII(8"S2'S~) E R
(s"S"S3) E RII(s"S~,S3) E R

===> 8' == 8/1

===> 53 == 53

===> 52 == 52

All functional PTS that only have rules of the form (s" S2, S2) are bijective. This means that all
systems in Barendregt's A-cube are bijective.

For bijective PTS, the kind of a term is uniquely determined by the kinds of it subterms. As
a consequence, the premiss .d I-r B[x :::;:: a] : 5'2 : 52 can be omitted in the application rule.

Definition 3.6. [Lll-b b: B : sJ
I-b is defined by the same inference rules as t-r, except for the application rule.

(axiom)

(vaI'iable)

(weakening)

(formation)

(abstraction)

(application)

(conver5ion)

(I-b S : s' : AT(S')

Lll-b A : s, : s\
.d,X:A:51 t-b x: A; 51

LI 1-" b : B : s LI i-b A : s, : s\
LI,x:A:s, i-b b: B: s

.1 &-b A ; 51 : 5~ .1, x; A: 51 t-b B : 82 ; 82

Ll H-b A : 51 : 5~ .1, x: A: 51 I-b b : B : 8'2
LI h (h:A. b): (JIx:A. B): S3

LI i-b b : (JI x: A. B) : S3 Ll i-b 0 : A : 51
LI i-" ba : B[x :- aJ : s,

Lll-b b : B : s Lll-b B' : s : s' B '" B'
Ll i-b b : B' : s

For bijective PTS, H-b is equivalent with 1-:

Theorenl 3.7. [soundness and completeness B- b]
For all bijective PTS

r I- b : B ==> (3s E Sr. t I-b b : B : s)

if(s : s') E A

x fresh

x fresh

LI h b : B : s ==> 1 LlII- b : B II (I LlII- B : s V (B : s) E AT\A)

where 1 Lli and t are defined as in theorem 3.4.

Proof. See appendix B: lemmas B.l, B.6, and B.7. o

The proofs of theorems :3.4 and 3.7 are by induction 011 type derivations, and hence are identical
except when the application rule is involved. An a.lterna.tive to proving theorem 3.7 is proving that
for all bijective PTS Lll-r b : B : s {==;> Ll i-b b : B : s.

9

4 A type-checker for bijective PTS

In this section a. syntax-direct.ed version of i-b is defined, by removing the weakening and conversion
rule.

I-b deals with contexts in the same inefficient way as I- : in every branch of a derivation the
context is broken down to check that it is well-formed. To avoid this a notion of well-formedness
for contexts is introduced and the original axiom and variable rule are replaced by the following
more powerful axiom and variable rules

(axiom) Lll-b,d s : s' : AT (s') if s : s' E A

(variable) LI,x:A:s,LI'l-b'd x: A: s

The conversion rule is a source of non-determinism in I- b . It is distributed over the other rules.
Conversion is only used to test if

• a. type reduces to a sort
• the types of a function and its argument match

The resulting system is syntax-directed: the shape of a term determines which inference rule is
used in the last step of its type derivation, and so there is a unique type derivation for a given
term. As a consequence, the system provides a type inference algorithm.

Definition4.1. [Lll-b,d b: B : s, WF'''dLl]
For Ll I-bsd b : B : 5 we have the following inference rules

(axiom) Lll-bsd 5 : 5' : AT(5') if 5: 5' E A

(variable) Ll,;r:A:5,Ll/ l- bsd ;r: A: 5

Ll, x: A: 51 rbsd B : 52 : 52 52 -"',/3 52

(formation) Lll-bsd A : 51 : 5'1 51 ---""{3 51 if (S1, S2, S3) E R and x fresh

Ll, x: A: 51 I- bsd b : B : 52

(abstraction) Ll I- bsd A : 51 : 5~ 51 /3 51
Lll-b,d (Ax:A. b): (flx:A. B): S3

if (S1, s2, 83) E R and x fresh

Lll-b,d b: C: 83 C ~wh (flx:A'. B)

(application) Lll-bsd a : A : 51 A :::: A'
Lll-b,d ba : B[x :- a] : s,

A context Ll is B-bsd-well-formed - written VVFbsdLl - if it can be derived using the rules

(empty)

(weakening) x fresh

Note that for R-bsd-derivations t,he subformula property holds, i.e. the derivation of Lll-bsd b : B : s
only contains type-kind derivations for subtel'lllS of b.

Theoreln 4.2. [soundness a.nd completeness rbsd]
For all bijective PTS:

Lll-b,d b : B : s 1\ WFb,dLl ==}

Lll-b b : B : s ==}

LI I-b b : B : s

WFb,dLl 1\ (3B' "" B. Lll-b,d b: B' : s)

Proof. See appendix C: lemmas C.l, C.5 and C.G.

10

o

Joining theorems 3.7 and 4.2 yields

Corollary 4.3. [soundness and completeness ofi-bsd w.r.t.I-]
For all bijective PTS:

LI h,d b: B: 5 fI WFb,dLl = ILlI~ b: 8 fI (lLlI~ B: 8 V (8: 5) E AT\A)

r ~ b : 8 = (35 E Sr, B' '" B. t I-b,d b : B' : s)

It is easy to define an algorithm which, given a context L1 and a term u, checks WFbsdLl and
tries to constructs the type derivation for a in context LI, thus finding the type (and the kind) of
a. This does require strong normalisation of ,B-reduction for types, i.e.

r ~ a : A => A is /l-strongly normalising

(or, equivalently, WFb,dLl fI LI ~ a : A : 8 => A is /l-strongly normalising). This is needed to en­
sure that f3 normal forms and weak head normal forms of types can be computed, and that con­
vertibility of types is decidable, so that the premisses 5; ~~ 5;, C ~wh (17 x: A. B) and A '" A'
are decidable.

The algorithm has to choose a correct order in which to check the different premisses of the
rules, so that it nevers attempts to construct a type derivation in a context which may be incorrect.
If.d I-bsd a : A : s and not l-VFbsdLJ, then we do not know if A is strongly normalising. This means
that in the formation and abstraction rules the premisses .:1 t- bsd A : 51 : 5' and 51 -1+13 81 have
to be checked first, and in the the weakening rule the premiss WFb,d LI has to be checked first.

5 Functional PTS

For functional PTS that are not bijective a syntax-directed system can be defined in the same way
as was done in the previous section, this time taking B-r inst,ead of 6- b as the starting point.

DefinitionS.!. [LI h,d b: B : 5, WFr'dLl]
t- fsd and WFfsd are defined a.s i-bsd and WFbsd, except for the application rule, where we have the
following rule instea.d

LI h,d b: C: 83 C ~wh (17x:A'. B)
LI i-r,d a : A : 5, A '" A'
r i-r,d B[x := a] : 5, : 5;
r I-r,d ba : B[x :- a] : 8,

Soundness of this system can be proved for all functional PTS:

However, proving completeness for this system,

LI h b : B : 5 = (3B' '" B. LI I-r,d b: B' : 5),

is a problem. In fact, we now have the same problem with the premiss r I-r B[x := a] : 82 : 82
in the application rule that we sketched in section 2.1 for the premiss r I- (flx:A. B): 5 in the
abstraction rule.

11

6 Related work

Other type-checking algorithms for Pure Type Systems all involve a way of avoiding the premiss
r, x : A I- B : 82 in the abstraction rule

r I- A : 81 r, x : A I- b : B r, x : A I- B : 8,

r I- (Ax:A. b): (17x:A. B)

One possibility is to consider only PTS where R is such a large subset of S x S x S that we do
not have to know a type 8, of B to decide if (17 x: A. B) can be formed. In [PoI92] Pollack gives a
sound and complete type inference algorithm for all semi-full PTS, which is a generalisation of the
type inference algorithm used in Huet's Constructive Engine for the Calculus of Constructions. A
PTS is semi-full if

'lSI (~S"83(SI,S,,S3) E R) =:. (VS,~S3(81,S"S3) E R)

For these PTS, only a type SI of A and a type B of b - but not the type of this B - have to be
known to decide if the A-abstraction (AX :A. b) is allowed: the rule

r I- A: 81 r, x: A I- b: B B rt {s E 5 I ,~,,(s : s') E A}
r I- (Ax:A. b): (17x:A. B)

is equivalent with the abst.raction rules given above.
For example, for the Calculus of Constructions, the PTS with

this abstraction rule becomes

r I- A : 81 r, x : A I- b : B B 1= 0

r I- (Ax:A. b): (17x:.4. B)

which is in fact the original abstraction rule given in [C1I88) for the Ca.lculus of Constructions.

Jutting proved soundness and completeness for a type inference algorithm for all functional
PTS [vBJ92]. He considers an abstract.ion rule of the form

where 1-1 is a t.yping relat.ion which is more iibel'ai t.han f-. This result, has been extended to all
PTS ill [vBJMP93j.

rbsd does not give a type inference algorithm for all PTS, but it has the advantage that it is
closer to the original PTS t.ype derivation rules than Jutting's algorithm. This makes it easy to
incorporate other type constructors, as is sketched in the next section.

12

7 Conclusions

For bijective PTS the following equivalences have been proved

.ll I-b d ~ ,

For functional PTS we have the following relationships between the different systems

1- J4, I-r ¢= rfsd

The steps leading from the original typing relat.ion 1- to the syntax~directed B-bsd are

1. from I- to I-b: type-kind derivations instead of type derivations, i.e. judgements of the form

xl:Al:S1, ... ,xn:An:sn I- a: A: s

instead of the usual judgements of the form

2. from I-b to H-bsd:

• making the weakening rule redundant" by introducing a notion of well-formedness for
contexts and more powerful axiom and variable rules, and

• getting rid of the conversion rule by distributing it over the other rules.

In the same way sound and complete type-checkers for PTS's extended with more primitives,
such as Cartesian product types, disjoint sum types, E or existentia.l types, can be found. For all
these extensions we run into the same ptoblem as for the I1-types, na.mely that we do not know
how to prove completeness. By considering type-kind derivations this problem is avoided.

For example, for Cartesian products the formation and inttoduction rules are

(x - formation)
r I- A : 8, r I- B : 8,

r I- A x B : 83

r I- a : A r I- b : B r I- A x B : 83
(x - intl'odltct-ion) ------"i7-,:----.7=--T'----,,;---~ r f- (a, b) : A x B

where Rx ~ S3 controls the formation of Cartesian products. If we want to prove completeness of
a type-checker for PTS extended with products, the premiss r f- A x B : 83 in the x-introduction
rule poses the same problem as the premiss r f- (II x: A. B) : 83 in t.he abstraction rule. Fortu­
nately, this premiss is exactly the one that can be omitted in the x-introduction rule for type-kind
derivations:

(, d ') Li i- a : A : 8, Li I- b : B : 8, 'f () R
x - zntro Hctwn Li I- (a, b) : A x B : 83 1 8 1,82, 83 E x

However, the restriction of "bijectivity" has to be extended to Rx: the kind of a pair (a, b) has to
be uniquely determined by the kinds of of the two components, i.e.

and the kinds of the first and second projections of a pair have to be uniquely determined by the
kind of that pair, i.e.

Under these restrictions, removing the weakening and conversion rules as was done for I-b produces
a sound and complete type-checker for bijective PTS's wit.h Cartesian products. This includes all
bijective PTS with Rx <; {(8, 8, 8) I 8 E S}, the most sensible choices for R x ,

13

APPENDICES : proofs of equivalences
Most proofs are uneventful proofs by induction on derivations. The most interesting parts are in
the proofs of lemmas B.l and B.6) the cases where the last step is the application rule.

A Properties of PTS

Convention a-convertible terms are identified.

The following lemmas will be needed. With the exception of lemma A. 7 they are all basic properties
of PTS given in [Bar92].

Lemma A.1. [subject reduct.ion for I- : SHe]
If r I- b : Band b ~~ b', then r I- b' : B.

Lemma A.2. [start lemma for 1-]
(i) If r I- b : B "nd (s : s') E A. then r I- s : 5'.

(ii) If r,x: A,r' I- b: B, then r,x: A,r' I- x: A.

LeuunaA.3. [fl-generat,ion lemma for f-]
Suppose r I- (I7x :A. B) : 83.

Then r I- A : 51 and r, x : A I- B : S2 for some (51, S2, 53) E R.

Lemnla A.4. [sort-generation lemma for 1-]
Suppose r I- 5 : A.
Then A '" s' for some (s : 5') E A.

LenunaA.5. [substitution lemma for 1-]
Suppose r, x: C, r' I- b : B "nd r I- c : C.
Then r, r'[x := c]1- b[,c := c] : B[x := c].

LemmaA.6. [unicity of types for I- : UTe]
For functional PTS: if r I- b: Band r I- b: B', then B", B'.

LemmaA.7.
Suppose A' '" A and r I- A' : C.
Then (A : 5) 'Ie AT \A.

Proof. Suppose towards a contradiction that (.4 : s) E AT \A (so 5 = T).
Then A is a sort., so .4' ~~ A, and by SHe it follows from r I- .4' : C that r I- A : C.
By the lemma A.4 there then is a sort Sf such t.hat 5' ::::: C and (A : Sf) E A.
nut (.4 : s) E AT \A, and we have a cont.radiction. 0

14

B Theorem 3.7 : I- ¢=;> II-b

We now prove theorem 3.7: for all bijective PTS

(3.7.1) rf-b:B =} (38ESr thb:B:8)
(3.7.2) L1l-b b: B: 8 =} 1L1If-b: B II (1L11f- B: 8 V (B: 8) E AT\A)

where I L11 and t are defined as in theorem 3.4.
The first part follows from lemmas B.G and B.7; the second part is proved in the next lemma.

LemmaB.1. For all biject.ive PTS
if L1l-b b : B : s then (i) I L11f- b : B ,and

(ii) 1L11f- B: s V (B: 8) E AT\A.

Proof. By induction 011 the derivation of Li I-b b : B : s. Last step:
Axionl. The last step in the derivation in f I-b S : 5' : AT(S') where s : s' E A.
To prove: (i) f f- s : s'

(ii) f f- 8: AT(S') V (8' : AT(S')) E AT\A
s : s' E A, so [!- s : s'.
If (8' : AT(8')) rt AT\A (.hen (8' : AT(S')) E A and then f f- 8' : AT(8')

Variable. The last step in the derivation is

Li H-b A : 51 : s~
.d., x : A : 51 I-b x : .A : 51

To prove: (i) 1L1I,x: A f- x: A
(ii) 1L1I,x: A f- A: 81 V (A: 8J) E AT\A

By the IH I L11f- A : SI. The f--variable rule gives (i):

The f--weakening rule gives (ii):

I Lllf- A : 81
1L1l,x:Af-x:A

1L1If-A:S 1 1L1If-A:81
ILlI,x: A f- A: 81

Weakening. The last, st.ep in t.he derivation is

To prove: (i) I L1 I, x : A f- b : B

L11-, b : B : 8 L1l-b A : 81 : 8;

L1, x: A : 81 I-b b : B : 8

(ii) I L1 I, x: A f- B : 8 V (B : 8) E AT\A
By the IH I L11f- A : 51 and I L11f- b : B so the f--weakening rule gives (i) :

I L11f- b : B I L11f- A : 81
1L1l,x:Af-b:B

By the IH 1L1If-A: 81 and (1L1If-B: 8V(B: 8) E AT\A).
If (B : 8) rt AT\A then I L11f- B : 8 and t.he f--weakening rule gives (ii)

I L11f- B : 8 I L11f- A : 81
1L1l,x:Af- B:8

15

COllversion. The last step in the derivation is

To prove: (i) 1L11f- b: B

.1 i-b b : B : 5 .1 i-b B' : 5 : 5' B '" B'

.1 i-b b : B' : 5

(ii) I .1 If- B' : 5' V (B' : 5') E AT\A
By the IH I .1 If- B' : 5, so (ii).
By the IH I .1 If- b : B and I .1 If- B' : 5, so the f--conversion rule gives (i):

I .1 If- b : B I .1 If- B' : 5

I L11f-b : B'

Fornlation. The last step in the derivation is

..1 I-b A : 81 : 8~ ..1,;1;: A : 81 rb B : 82 : 8~

L1l-b (llx:A. B): 53: AT(S3)

To prove: (i) 1L11f- (ll,;:A. B): 53
(ii) I .1 If- 53: AT(S3) V (53: AT(S3» E AT\A

By the IH I .1 If- A: Sj and 1.1 Lx: .4 f- B : 5" so the f--formation rule gives (il:

I .1 If- A : Sj I L1 Lx: A f- B : 5,

1.1 If- (llx:A.B): 53

(53: AT(S3» E A or (53 : AT(S3» E AT\A.
If (53: AT(S3» E AT\A then (ii).
If (53: AT(S3» E A then by the f--start lemma(A.2) I .1 If- 53: A T (S3) and hence (ii).

Abstraction. The last step in the derivation is

Lll-b A : 81 : 8~ ..1, x: A : 81 rb b : B : 82

.1 i-b (.\x:A. b): (llx:A. B): S3

Clearly ((llx:A. B): S3) rf: AT\A, so to pwve: (i) 1L11f- (Ax:A. b): (llx:A. B)
(ii) 1L11f- (llx:A. B): 53

By the III 1.1 Lx: A f- b : B and I .1 If- A : Sj.

Also by the IH 1.11, x: A f- B : 5, V (B: 52) E AT\A. If (B : s,) E AT\A then 52
(Sj,S2,S3) E R<; A 3, so 52 'F T. Hence 1L1I,x:A f- B: 5,.
The f- formation rule gives (il:

I .1 If- A : Sj I L1 Lx: A f- B : 5,

I .1 If- (ll x: A. B) : 53

and then the f--abstl'acLion rule gives (ii):

1L1I,x:Af-b:B 1L11f-(llx:.4.B):s3
1.1 If- (Ax:A. b): (llx:A. B)

16

T. But

Application. The last step in the derivation is

for some (51,52,53) E R.

LI h b: (IIx:A. B): 53

L1l--b a : A : 51

Lll-b ba : B[x := aJ : 52

To prove: (i) I Lllf- ba : B[x := aJ
(ii) I Lllf- B[x := aJ : 5, V (B[x := aJ : 5,) E AT\A

By the III

ILlIf-a:A

ILlIf- b: (IIx:A. B)

so the f- application rule gives (i):

By the IH also

ILlIf-b:(IIx:A.B) ILlIf-a:A

ILlIf- ba: B[x:= aJ

I Lllf- A : 51 V (A : sd E AT\A

1.d1f-(Th:A. B): 53

(1)
(2)

(3)

(4)

since clearly «IIx: A. B) : 53) rt AT\A. Then by the II-generation lemma for HA.3) it follows
from (4) that

l.dlf-A:t l

l.d I, x : A f- B : t,

(5)

(6)

for some (tl, t" 53) E R. By lemma A.7 it follows from (3) and (5) that I Lllf- A : 51. By UTe then
51 =:: t1) and since the PTS is bijective, 53 =:: t3.

Finally, by the f--substitution lemma(A.5) it follows from (1) and (6) that I Lllf- B[x := aJ : 52,
and hence (ii). 0

To prove (3.7.1) - "I-:::>h/' - we need the II -generation lemma for I-b (lemma B.5) and unicity
of types for I-b.

Lemma B.2. [unicity of types for I-b :UTo-,J
For bijective PTS :

(i) if Lll-b b : B : 5 and .d I-b b : B' : 5' then B '" B' and s == 5'.
(ii) if Lll-b b : B : 5 and .d h, B : S : 5' then s '" S.

Proof. (i) Suppose Lll-b b : B : sand Lll-b b: B' : 5'.

Then by the previous lemma I Lllf- b : Band l.d If- b : B'. so by UTe B '" B'.
Also, by the previous lemma

ILlIf-B:s V (B:S)EAT\A

ILlIf- B': s' V IB': 5') E AT\A

If I Lllf- B : 5, then by lemma A.7 I Lllf- B' : s' and by SRe and UTI- 5 == 5'.
In the same way, if I L111- B' : 8', then also 5 :;:: 5'.

Finally. if both (B : 5) E AT\A and (B' : s') E AT\A then s == s' == T.
(ii) Suppose Lll-b b : B : 5 and Ll h, B : S : s' .

Then by the previous lemma

ILlIf-B:5 V (B:5)EAT\A

I Lllf- B : S

It then follows from lemma A.7 that I L111- B : 5, and hence by UTf-- 8 -::::= S.

17

(1)

(2)

o

For the lI-generation lemma the thinning lemma is required, which in turn requires the following
start lemma.

LemmaB.3. [start lemma for I-bJ
If LI I-b b: B : sand (s: s') E A. then LI I-b s: s' : AT(S').
If LI,x:A:s,LI'l- b b: B: s then LI,x:A:s,LI'h x: A: s.

Proof. Induction on the derivation of .::1 I-b b ; B : 5 and .::1, x: A: 5, .::1' I-b b : B : s.

Lemma B.4. [thinning lemma for I-bJ
Suppose LI' I-b b : B : s, LI' <;; LI and LI I-b a : A : s'.
Then LI I-b b : B : s.

o

Proof. Induction on the derivation of Ll i-b
applied is the axiom or variable rule.

a : A : 5. The start lemma is used if the last rule
o

LemluaB.5. [ll-generation lemma for I-b)
Let.::1 I-b (llx:A. B): 53: s~. Then there are 51, 5~, 5'2 and 5; 5"Uch that
(51,5'2,53) E R, ..1l-b A: 51: 5'1 and d,a::.4: 51 H-b B: 5'2: 5;.

Proof. Any derivation of Ll 6- b (fl x: A. B) : 53 : 5~ ends with the format.ion rule followed by zero
or more uses of t.he conversion rule and/or the weakening rule:

..1', x : A : 51 I-b B : 52 : 5; .::1' I-b A : 51 : 5~

LI' I-b (IIx:A. B): s: s' }

(weakening/ c0l1ve1'5ion)

Lli-L (IIx:A. B) :S3 :s~

where (51,5'2,5) E R.
The weakening rule does not affect the type 5 of (ll x: A. B), and the conversion rule only

,B-converts it. So 53 -:::::::- 5, and since 5 and 53 are bot.h sorts, 53 == 5.

L1' ~.:1, so by the thinning lemma for I-b: .d., x : A: sll-b B: 52: s; and Lll-b A: 51: s~. 0

To prove (3.7.1) : for all bijective PTS

where f is defined by { ._ c = f
r,x:A t,x:A:s ifr~A:s

we first prove

Leuuua B.B. For bijective PTS

r ~ b : B =:- (38 E Sr. I' h b : B : s)

{
E -

where I' is defined by r, x : A ;;;
,
r,;z:: A: S ifr I-b A : s : s'

By UTI-b(lemma B.2) this defines a unique r. vVe have to use r instead of r as defined in
theorem 3.4 for the proof La run smoothly. In the next. lemma lemmas B.l and B.6 will be used to
prove that t and r are the same.

18

Proof. By induction on the derivation of r I- b : B. Last step:
Axiom. So t I- s : Sf, where s : s' E A. Then by the I-b-axiom rule "(I-b s : s' : AT (s').
Variable. The last step in the derivation is

r I- A : 5,
r,x:Al-x:A

To prove: (35 E fiT. r, x : A I-b x : A : 5).
By the IH there is a. s~ such that r I-b A : 51 : s~.
Then r, x: A = r, x : A : 81, and the I-b-variable rule gives

r I-b A : 51 : s~
r, x: A : 5, I-b x : A : 5,

Weakening. The last step in the derivation is

r f- b : B r f- A : 5,
r,x:Al-b:B

To prove: (35 E fiT. r, x : A h, b : B : 8).
By the IH there are 5 and 5'1 such that r I-b b : B : 5 and r 1-" A : 51 : 5;.
Then r, x : .4 == r~ x : A : SI, and t.he I-b-weakening rule gives

r h, b : B : 5 r I-b A : 5, : 5;

r, x : A : 51 h b : B : 5

COllversion. The last. step in the derivation is

r f- b : B r I- B' : 5' B:::: B'

rl-b:B'

To prove: (35 E fiT. r h, b: B' : 5).
By the IH there are saBel 8" such that r I-b b : B : sand r I--b Bf : s' : S". To use the rb­

cOllversion rule \ve have to prove s' == s.

By lemmaB.l (r I- B: s V (B: 5) E AT\A). Since also rf- B': 8', it follows by lemmaA.7
that r I- B : s. Then by SRI-(lemma A.l) a common reduct of Band B' has both type sand s',
so by UTf-(lemma A.G) 8' == 8.

The I-b-conversion rule now gives

r I-b b : B : 8 r I-b B' : 8 : Sa B:::: B'

r I-b b : B' : 8

FOl'luation. The last step in the derivation is

r f- A : 8, r, x : A I- B : 52

r I- (JIx:.4.B): 83

To prove: (35 E fiT. rl-b (fh::A.B): 83: 5).
By the IH r I-b A : 51 : 5; and r,;r : A I--b B : 8'2 : 52 for some 5; and 52<
Then r, x: A =- r, x : A : 81, and the B-b-formation rule gives

r I-b A : 51 : s; r, x : A : 8} I-b B : 82 : s2
r I-b (JIx:A. B): 83: AT(S3)

19

Abstraction. The last step in the derivation is

r, x : Arb: B r r (II x: A. B) : 83
r r (AxA. b): (IIx:A. B)

To prove: (38 E Sr. ri-b (Ax:A. b): (IIx:A. B): 8).
By the III there are 52 and 5~ such that

r, x : A I-b b : B : 8,

rh (IIx:A. B): 83: 8~

(1)

(2)

By the II-generation lemma for I-b (lemma B.5) it follows from (2) that there are 81, 8~, t, and
t~ with (81, t" 83) E R such that

r I-b A : 51 : 5~

r) x : A : 51 I-b B : t2 : t~

From (3) it follows that r, x : A = r, x : A : 81.
By UTo-o(lemma B.2) it follows from (1) and (4) that t2 = 8,.
Now the I-b-abstraction rule gives

r i-b .4. : 81 : 8~ r, x : .4. : 81 i-b b : B : 8,

r i-b (,\x:A. b): (IIx:A. B): S3

Application. The last st.ep in the derivation is

rrb:(IIx:.4..B) rra:.4.

r r bo : B[x :_ oj

To prove: (38 E Sr. r I-b ba: B[x := aJ : s).
By the IH there are S3 and Sl such that

r R-b a : A : 51

rh b: (IIx:A. B): 83

(3)

(4)

(1)

(2)

If there is an 52 such that (51) 52, 83) E R) then we can use the i--b-application rule to derive
r I-b ba: B[x := oJ: 8, from (1) and (2).

So) to prove: 3~:l(81)52,53) E R.
By lemma B.1 (i-b=}r) it follows from (1) and (2) that

r r A : 81 V (A: sd E AT\A

r r (IIx:A. B): 83

since clearly «II x: A. B) : 83) ~ AT\A.
By the II-generation lemma for r(A.3) it follows from (4) that

r r A : t1

r,x: ArB: 8,
for some (t1' 52,83) E R. If we can prove 81 == I.) then we are done.

(3)

(4)

(5)

(6)

By lemmaA.7 it follows from (3) and (5) that rr A: 81. By UT,(IemmaA.6) thent1 =81.
o

20

The two ways to extend I--contexts to rb-contexts defined in theorem 3.4 and the previous
lemma are the same:

Lel111llH B. 7. r == f

Proof. Induction on r. The base case - r == (: - is trivial
Suppose r == r'! x : A. Then r' ~ A == t', x : A : s if r I- A : s

r',x: A == P,x: A: s if3",['l- b A: s: s'
By the IH [' == 1', and by lemmas B,! and B,6

r f- A : s <=} 3",[, I-b A : s : s'

2!

o

C Theorem 4.4 : if-b-<==?if-b,d

vVe now prove theorem 4.2: for all bijective PTS

Ll h"d b : B : s 1\ W Fb,d Ll = Lll-b b : B : s

Lenllna C.l. For bijecl.ive PTS

Lll-b b: B: s =;. (3B':::: B. Lll-b,d b: B': s)

Proof. By induction on t.he derivation of.d I-b b : B : s.
Last step:
Axioln, Variable. The conclusions of the I-b-axiom and variable rule are instances of the corre­
sponding I-bsd-inference rules, so the induction step is trivial.
Conversion. The last step in the derivation is

L1 I-b b : B : s LJ t-b H' : s : Sf B '::::' B'

Lll-b b : B' : s

To prove: 3B" :: B'. L1 B- bsd b: BIf : s.
By IH(Lll-b b : B : s) there is a B" :::: B such that Lll-b,d b: B" : s.
But then also Bf! ::: 8', so we are done.
FOl'lllation. The last step in the derivation is

.do I-b A : 81 : s~ Ll, x: A : 51 I-b B : 82 : s~

Ll h (JIx:A. B): S3: AT(S3)

By the IH there are S, :::: 8, and S, :::: s, such that

(S"8,,S3) E R

Li, x: A : 81 t-bsd B : 5'2 : 82 and L1l--bsd A : 51 : s;. So by the rbsd-formation rule

Ll, x : A : 81 I-bsd B : 5h : 82 S'2 ----'-(3 82

L1 B-bsd A : 51 : s'} 51 ----:"'(3 81

Abstraction. The last step in the deriva.tioll is

Lll-b A : 8, : 8; Ll, x: A : 8, I-b b : B : s,
Lll-b (A,<::A. b): (JIx:A. B): 83

By the IH there a.re 51 ::: 81 and B' ::::::: B such t.hat
Ll, x: A : 81 I-bsd b: B' : 82 and Lll-bsd A : 51 : s~. So by the I-bsd-abstraction rule

Ll, x : A : 81 I-bsd b : B' : 82

Ll I---bsd .4 : 51 : S'1 51 ~(3 81

Ll i-b,d (,,,":.4. b): (JIx:A. B'): 83

and (JI x: A. B') :::: (JI,": A. B).
Application. The last step ill the derivation is

Lll-" b: (JIx:A. B): 53

Lll-b a : A : 8,

Lll-b ba : B[x := a] : 8,
By the IH there are C :::: (JI x: A. B) and A" :::: A such that
.d. rbsd b : C : S3 and .d. B-bsd a : A" : SI.

C::::::: (JIx:A. B), so there exist terms A' and 8' such that A'::::::: A, 8'::::::: Band
C ---l+wh (JIx:A'. 8'). Then by the B-bsd-application rule

C~wh(JIx:A'.B')

Lll-b.,d ba : B'[x :- a] : 8,
and B'[x := a] :::: B[x := a]. 0

22

In order to prove

(1)

we first prove

(2)

where WFbLl is defined as follows:

(empty) WFb f

WhLl Ll t-b A : 5 : s'
WFbLl,X: A: 5

if x is Ll-fresh (weaken)

Once we have proved (2L proving WFbLl ~ WFbsdLl- and hence (1) - will be simple.
Before we prove (2); some \York has to be done.

Lemma C.2. For all bijective PTS

Proof. By induction on the derivat.ion of Lll-b b : B : 5. Last step:
Axiom. The last step in the deriva.tion is f B-b S : 5' : AT(5'), and the empty context is well-formed
: WFbf.
Variable. The last step in the derivation is

.J I-b A : 51 : 5;

Ll, J! : A. : 51 R-b x : A : 51

By the HI WFbLl, so by WFJ,-weakening rule

WFbLl Ll t-b A : 5, : s;
ll'FbLl, x : A ; 51

Weakening. The last. step in t.he derivation is

Ll B-b b : B : 5 Ll B-b A : s 1 : s~

Ll,:" : A : 8, I-b b: B : 8

By the IH WFbLl, so by WFJ,-weakening rule

Conversion, Forluation, Abstraction, Applicatioll In these cases the induction step is triv­
ial: none of these rules extend the cont.ext, so VVFbLl follows immediately from t.he induction
hypothesis. 0

Lemma C.3. For bijective PTS,' Ll t-b b : B : s =? I Lli == Ll, with 08 defined in lemma B.6.

(Recall that by lemma B. 71 Lli == I LlI, with 05 defined in theorem 3.4)

Proof. In view oflemmaC.2 it suffices to prove that for bijective PTS: WFbLl =? ILlI == Ll.
This is proved by induction on d. The base case - Ll == f - is trivia.l.

23

Suppose Ll == Ll', x : A : s. Then
WFbLJ.', x: A: s

~ {def WFb}
3" W hLl' 1\ Ll' i-b A : s : s'

~ {IH}
3" WFbLl' 1\ Ll' i-b A : s : s' 1\ I Ll' I == Ll'

~

3" Ll' I-b A : s : s' 1\ I Ll' I == Ll'
~ {defI'}

I Ll' I, x : A == I Ll' I, x : A : s 1\ I Ll' I == Ll'
~ {def II }

I Ll', x: A: s 1== Ll', x: A: s

Using this lemma, SR can now be siphoned over from f- to &-1:,:

LelnnlaCA. [type reduction for t-b: TRI- b]

For bijective PTS: if Ll i-b b : B : s "" d B -f 8' th", Ll i-b b : 8' : s .

Proof. Suppose B -f B' and Ll i-b b : 8 : s.
First we prove LJI-b b : B' : s' for some s':

Lll-b b : B : s
~ {lemma B.l : i-b ~ f-}

I Lllf-b : B 1\ (I Lllf- B : s V B E S)
~ {B ~f B' ,so B 'i S }

I Lllf- b : B 1\ I Lllf- B : s
~ {SRf-(lemma A.I)}

I Lllf- b : B 1\ I Lllf- 8' : s
=> {I--conversion rule}

I Lllf- b : B'
~ { lemma B.6: f- ~ I-b }

I Llll-b b : B' : s' for some s'
By lemma C.3, Lll-b b : B : s ~ I Lli == Ll.

So it follows from Lll-b b : B : s that Ll I-b b : B' : s' for some s'.
Finally, by UT .. , (lemma B.2) , part (i), it follows that s' == s.

Using T RI-b we ca.n now prove

Lenllua C.5. For bijective PTS

Proof. By induction on t.he derivat.ion of Lllf---bsd b : B : s we prove

Last step:
Axiolll. The last step in the derivation is L1 H-bsd S : s' : AT{S'), where s : s' E A.

By the start lemma for i-b (lemma B.3) and lemma C.2: WFbLl ~ Ll i-b s : s' : AT(S').
Variable. The last step in the derivation is d,;1.: : A : 5, il' I--bsd x : A : s .

By the start lemma for H-b (lemm3 B.:3) and lemma C.2 :
WFbL)" x : A : 8,,d' => Ll, x : A : 5, il' rb x : .4 : s.

Forluatioll. The last step in the derivation is

D, x : A : 81 J- bsd B : 5'2 : 8~ 5'2 --,tf3 8']

Li rbsd A : 51 : 8; 51 ---'+f3 81

Lll-b,d (Jlx :A.B) : 83: AT(S3)

24

o

o

Toprove: WFbLl =;. Lll-b(fIx:A.B):53:AT(83).
By the IH: WFbLl, x: A : 5, =;. Ll, x : A : 8, I-b B : 5, : 5;

WFbLl =;. Lll-b A : 5, : 5;
Assume WFbLl. Then Lll-b A : 5, : 5;, by T Ro-o(lemma C.4) Ll i-b A : 5, : 5; and so WFbLl, x : A : 8,.
Then also by the IH : Ll, x : A : s, I-b B : 52 : 5\.
By TRt-b(lemma C.4) : LJ, x: A : 51 rb B : 52 : s;, and finally by the rb-formation rule

.::1, x : A : 51 rb B : 52 : s; Ll I-b A : 51 : s~

Ll R-b (fIx:A. B): 53: AT(53)

Abstraction. The last step in the derivation is

Ll, x: A : 51 J- bsd b: B : 8'}

Lll-bsd A : SI : si SI ~f3 51

Lll-b,d (h:A. b): (fIx:A.B): 53

Toprove: WFbLl =;. Lll-b (.\x:A.b):(fIx:A. B):53·
By the IH : WFcLl, x: A : 5, =;. Ll,:c: A : 5, I-b b : B : 5,

WFbLl =;. Llh,A:5, :8; •
Assume WFbLl. Then Ll R-b A : 5, : 5'" by T Ro-,(lemma C.4): Lll-b A : 8, : 5; and so WFbLl, x : A : 8,.
Then also by the III: Ll,x: A: 5, R-b b: B: 5,.

By TRt-b(lemmaC.4): Llrb A: 81 : s~, and then by the I-b-formation rule

Ll, x: 11 : 51 t-b b : B : 52 Lll-b A : 81 : s;
Ll R-b (.\x:A. b): (fIx:A. B): 53

Application. The last step in the derivation is

Lll-b,d b: C: 53 C --"'"h (fIx:A'. B)
Ll t-bsd a : A : 51 A ::::: .4'
Lll-b,d ba : B[x :- aJ : 5,

To prove: WFbLl =;. Ll h, ba : B[:c := aJ : 8,.
By the IH: WFbLl =;. Ll h, b : C : 53

WFbLl => L.\ f-b a : A : 51

Assume WFcLl. Then by the III : Lll-b b: C: 53 and Ll R-b a : A : 8,.

Let A" be a common reduct. of A and A'.
Then by T RJ- b : Ll t-b b : (fl x: A". B) : 83 and Ll I--b a : A" : 51) SO by the I-b-appiication rule

Lll-b b: (fIx :A". B) : 83

.Do I-b (I. : A" : 51

Lll-b ba : Blx := aJ : 8,

Finally, we still have to prove Ll h, b: B: 5 =;. WFc'dLl.

Lelnnla C.6. For all bijective PTS .- Li l-b b: B : s => WFbsdLi.

o

Proof. By lemma C.2 it suffices to proof WFbLl =;. WFb,dLl. This is proved by induction on the
structure of Li. The ca.se Li =: f is trivial. Suppose Li == Li', x: A: s. Then

WFbLi', x : A : s
~ {definition Wh}

3" WhLl' /\ Ll' I-b A : S : 5'
==? {Ill}

3" Wh,dLl' /\ Ll' I-b A : s : s'
==? {lemma C.I : h, =;. R-b,d}

3s,~1 WFbsdLi' 1\ Li' ~bsd A : 5 : s' 1\ S -8 5
~ {definit.ion WPb ,,,}

WFbsdLi',X: A: s
o

25

D Theorem 3.4: f- -¢::::::} 1/--,

We now prove theorem 3.4: for all functional PTS

r I- b : B =;. (3s E Sr. t I-, b : B : s)
L1I-, b: B: s =;. 1L111-b: B A (I L1 II- B: s V (B: s) E AT\A)

This is proved in the same way theorem 3.7 was proved in appendix B. Only when the application
rule is involved is there any difference. This main difference is in the first half: in the proof of
lemma D.7 a substitution lemma for 1-((lemma D.G) is required to deal with the application rule.

LemrnaD.1. For all functional FTS

L1l-r b: B: s =;. 1L1ll-b: B A (I L1 II- B: s V (B: s) E AT\A)

Proof. By induction on the c1erivat,ion of d 1-[b : B : s. Only if the last step is the application
rule is there any difference with the proof of lemma B.l.
Application. The last st.ep in the derivation is

L1 i-, b: (flx:A. B): S3

L1 f a : A : 51

L1l-r B[x := oj : s, : s~
L1I-, ba : B[x :_ oj : s,

To prove: (i) 1 L111- bo : B[x := aJ
(ii) 1 L111- B[x := aJ : s, V (B[x:= oJ: S2) E AT \A

By the JH 1 L111- B[x := aJ : s" so (ii) holds.
By the JH 1 L111- b : (fl x: A. B) and 1 L111- a : A, so the I- applicat.ion rule yields (i):

1L1ll-b:(Jlx:A.B) 1L1ll-a:,4
1 L111- ba : B[x := aJ

Leuuna D.2. [unicity of types for rr :lJTi- f l
(i) if L1I-, b : B : sand L1l- r b : B' : s'
if L1I-, b : B : sand L1 i-r B : S : s' then s == S.

Proof. Exactly as lemma 13.2.

Lelllllla 0.3. [start lemma for I-r 1
If L1I-, b: B : sand (s : s') E A, Ihe1l L11-, s : s' : AT(S').

If L1, x :,4: s, L1' 1-[b : B : s then L1, x: A: s. L1' 1-, x : ,4 : s.

Proof. Exactly as lemma B.3.

Lemma 0.4. [thinning lemma for 1-,1
Suppose L1' I-, b: B : s, L1' <; L1 and L1 i-, u :.4 : s'.
Then L1 i-, b : B : s.

Proof. Exactly as lemma 13.4.

LenuuaD.5. [II-generation lemma for I-r]
Let Lll-r (J/x:A. B) : S3 : s~. Then there are SI, S~, S2 and si such thai
(81) s2) S3) E R, Lll-r A : 81 : s; and Ll, x: A: S1 I-r B : S'2 : si·

Proof. Exactly as lemma. B.5.

26

o

o

o

o

o

Lenlnla D.6. [substitutioll lemma for t-r]
Suppose Ll, x: C : s, Ll' h b : B : s' and Ll h c : C : s.
Then Ll, Ll'[x := CJI-, b[x := cJ : B[x := cJ : s'.

Proof. By induction on the derivation of il, x: C : 5, il' I-r b : B : 5'.

LelumaD.7. For functional PTS

where F is defined by { r .1: ~r .. 4 .
1 X. 1 X 5 ijFI-,A:s:s' .

N.B. In lemma B.6 r is defined differently, viz. in terms of I-b instead of I-r.

o

Proof. By induction on the derivation of r r b : B. Only if the last step is the application rule
is there any difference \\'ith the proof of lemma B.6.
Application. The last step in the derivation is

r r b : (fl x:.4. B) r r a : A

r r ba : B[x := aJ

To prove: (3s E Sr-. F h ba : B[x := aJ : s).
By the IH there are S3 and 51 such t.hat

FI-r b: (flx:A. B): S3

F i-r a : A : s,
(1)
(2)

By the J1-genera.t.ion lemma for 1-[it follO\vs from (1) that there are it 1 ti 152 and 5~ with
(t11 52, 53) E R such t.hat.

FI-,A:t1:t;

r, x : A : tl 1-[B : s:! : 5;

By UT .. , t, == S" so by the substitution lemma for h it follows from (2) and (4) that

Now by the 1-[application rule

F i-, B[x := aJ : s, : s;

Fh b: (l],::A. B): S3

FK-,a:A:s 1

FI-, B[x:= aJ: s,: s;
r h ba : B[x :- aJ : s,

(3)

(4)

o

LemluaD.8. The two ways to extend r~contexts to I-r~contexts used in theorem 3.4 and the pre­
vious lemma are the same, i.e. r == f.

Proof. Exactly a." lemma B.7. o

27

,

References

[Barn] H.P. Barendregt. Typed lambda calculi. In D. M. Gabbai, S. Abramsky, and T. S.E.
Maibaum, editors, Handbook 0/ Logic in Computer Science, volume 1. Oxford University Press,
1992.

[vBJ92) Bert van Benthem Jutting. untitled. manuscript, 1993.
[vBJMP93] Bert van Benthem Jutting, James McKinna, and Randy Pollack. Checking algorithms for

Pure Type Systems. draft.
[CH88] Thierry Coquand and Gerard Huet. The Calculus of Constructions. Information and Com­

putation, 76:95-120, 1988.
[dB80] N.G. de Brllijn. A survey of the project AUTOMATH. In J.P. Seldin and J. R. Hindley,

editors, To H. B. Curry: Essays in Combinatm"y Logic, Lambda Calculus and Formalism,
pages 579-606. Academic Press, 1980.

[PoI92] Randy Pollack. Typechecking in Pure Type Syst.ems. In PI"Ocs. Workshop on Types for
Progmms and Proofs, pages 271-288, 1992.

28

In this series appeared:

91/01 D. Alstein

91/02 RP. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 RC.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
I. v.d. Woude

91/11 RC. Backhouse
PJ. de Bruin
G.Malcolm
E.Voennans
I. van der Woude

91/12 E. van der Sluis

91/13 F. RieUnan

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.I.I.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

lmplication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFlCATIEMETHODEN. een ovenicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs.
p.25.

Transfonning Functional Database Schemes to Relational
Representations. p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 1. Coenen
W.-P. de Roever
I.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. V oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
1. Hooman
R. Kuiper

91/26 P. de Bra
G.l. Houben
1. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 I.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 1. Coenen

91/35 F.S. de Boer
I.W. Klop
C. Palamidessi

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

AsynChronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

92/18 RNederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refmemenl, p. 27.

A compositional semantics for fault tolerant real-time
systems. p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic grapbs and related
problems. p. 90.

Conservative fixpoint functions on a graph. p. 25.

Discrete time process algebra. p,45.

The fine-structure of lambda calculus. p. 110.

On stepwise explicit substitution. p. 30.

Calculating the Warshall/Aoyd path algorithm. p. 14.

Composition and decomposition in a CPN model. p. 55.

Demonic operators and monotype factors. p. 29.

Set theory and nominalisation. Part I. p.26.

Set theory and nominalisation. Part II. p.22.

The total order assumption. p. 10.

A system at the cross-roads of functional and logic
programming. p.36.

Integrity checking in deductive databases; an exposition.
p.32.

Interval timed coloured Petri nets and their analysis. p.
20.

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application. p. 16.

92/22 R. Nederpelt A useful lambda notation, p. 17.
F.Kamareddine

92/23 F.Kamareddine Nominalization, Predication and Type Containment, p. 40.
E.Klein

92/24 M.Codish BOttum-up Abstract Interpretation of Logic Programs,
D.Dams p.33.
Eyal Yardeni

92/25 E.Poll A Programming Logic for Fro, p. 15.

92/26 T.H.W.Beelen A modelling method using MOVIE and SimCon/ExSpect,
W.J.J.Stut p. 15.
P.A.C. Verlcoulen

92/27 B. Watson A taxonomy of keyword pattern matching algorithms,
G.Zwaan p.50.

93/01 R. van Geldrop Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

93/02 T. Verhoeff A continuous version of the Prisoner's Dilemma, p. 17

93/03 T. Verhoeff Quicksort for linked lists, p. 8.

93/04 E.H.L. Aarts Deterministic and randomized local search, p. 78.
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten A congruence theorem for structured operational
C. Verhoef semantics with predicates, p. 18.

93/06 J.P. Veltkamp On the unavoidability of metastable behaviour, p. 29

93/07 P.D. Moerland Exercises in Multiprogramming, p. 97

93/08 J. Verhoosel A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDaS, p. 32.

93/09 K.M. van Hee Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

93/10 K.M. van Hee Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

93/11 K.M. van Hee Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

93/12 K.M. van Hee Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

93/13 K.M. van Hee Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

92/22 R. Nederpelt A useful lambda notation, p. 17.
F.Kamareddine

92{l.3 F.Kamareddine Nominalization. Predication and Type Contaimnent, p. 40.
E.Klein

92(1.4 M.Codish Bottum-up Abstract Interpretation of Logic Programs,
D.Dams p.33.
Eyal Yardeni

92/25 E.Poll A Programming Logic for Fro, p. 15.

92(1.6 T.H.W.Beelen A modelling method using MOVIE and SimCon/ExSpect,
W.I.I.Stut p. 15.
P.A.C.Verlmulen

92(1.7 B. Watson A taxonomy of keyword pattern matching algorithms,
G.Zwaan p.50.

93/01 R. van Geldrop Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

93/02 T. Vemoeff A continuous version of the Prisoner's Dilemma, p. 17

93/03 T. Vemoeff Quicksort for linked lists, p. 8.

93/04 E.H.L. Aarts Deterministic and randomized local search, p. 78.
I.H.M. Korst
P.I. Zwietering

93/05 I.C.M. Baeten A congruence theorem for structured operational
C. Vemoef semantics with predicates, p. 18.

93/06 I.P. Veltkamp On the unavoidability of metastable behaviour, p. 29

93/07 P.D. Moerland Exercises in Multiprogramming, p. 97

93/08 I. Vemoosel A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDaS, p. 32.

93/09 K.M. van Hee Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

93/10 K.M. van Hee Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

93/11 K.M. van Hee Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 10 1.

93/12 K.M. van Hee Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

93/13 K.M. van Hee Systems Engineering: a Formal Approach
Part V: SpeCification Language, p. 89.

93/14 I.C.M. Baeten On Sequential CompoSition, Action Prefixes and
I.A. Bergstra Process Prefix, p. 21.

93/15

93/16

93/17

93/18

93/19

93120

93/21

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. de Boer

M. Codish
D. Dams
G. Fill!
M. Bruynooghe

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in ibe DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics wiib predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program­
ming. p. IS.

Freeness Analysis for Logic Programs - And Correct­
ness? p. 24.

	Abstract
	1. Introduction
	2. Pure Type Systems
	2.1 Typechecking Pure Type Systems
	3. Type-kind derivations
	4. A type-checker for bijective PTS
	5. Functional PTS
	6. Related work
	7. Conclusions
	Appendices: proofs of equivalences
	A Properties of PTS
	B Theorem 3.7
	C Theorem 4.4
	D Theorem 3.4
	References

