EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A typechecker for bijective pure type systems

Citation for published version (APA):
Poll, E. (1993). A typechecker for bijective pure type systems. (Computing science notes; Vol. 9322).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://research.tue.nl/en/publications/1dc94008-948b-4ff8-8cd0-8a562d7f49dd

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Typechecker for Bijective Pure Type Systems
by

Ernk Poll
93/22

Computing Science Note 93/22
Eindhoven, June 1993



COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review,

Copies of these notes are available from the
author.

Copies can be ordered from:

Mrs. M. Philips

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

ISSN 0926-4515

All rights reserved
editors:  prof.dr.M.Rem
prof.dr.K.M.van Hee.



A Typechecker for Bijective Pure Type Systems

Erik Poll*

Abstract. A typeinference algorithm is given, which closely follows to the type derivation
rules for Pure Type Systems. Soundness and completeness of the algorithm are proved for
a large class of Pure Type Systems, which includes all systems in Barendregt’s A-cube.

* supported by the Dutch organization for scientific research (NWO).



1 Introduction

For a Pure Type System (PTS) (see [Bar92]) the central notion is that of type assignment. Every
PTS comes with its typing relation F, defined by a set of inference rules. Type judgements are of
the form " F a: A ~ in context I" the term a has type A — where I' is a list of type assignments
to variables.

For an implementation of a PTS a reasonably efficient type-checker is needed. (If a type-checker
reduces types to their normal forms we do not consider it to be ’reasonably efficient’.) It is not
difficult to define a type-checker that closely follows the type inference rules (see {Pol92]). Proving
soundness of this algorithm is easy, but all attempts at proving completeness have so far failed.

Instead of type judgements of the form

zit Ay, eniAn P at A
we consider more informative judgements of the formn
ey A s, L, enAnisy H oa A

These judgements do not only involve the types of terms but also the types of these types. In this
new typing relation a term has exactly the same types as in the old typing relation.

As for the oniginal typing relation, for the new typing relation b there is a natural typechecking
algorithm which closely follows the type inference rules. For this typechecking algorithm soundness
and completeness can be proved by straightforward induction proofs for a large class of PTS,
which we call the bijective PTS (definition 3.5 on page 9). The bijective PTS are a subclass of the
functional PTS. It includes all functional PTS with rules of the form (s1, s2, s2), and hence all
systems in Barendregt’s A-cube.

In the next section we recall the definition of a PTS given in [Bar92] and discuss the problem
of typechecking PTS.

Then, in section 3, a new typing relation is introduced, with judgements of the form
z1:A1:81,. ., &0 Ay 8, b a: A s Two versions of this typing relation are given: one that can
be used for ali functional PTS () and one that can only be used for the bijective PTS ().

In section 4 a syntax-directed version b-peq of the typing relation Iy, is defined (definition 4.1).
This typing relation gives a sound and complete typechecking algorithm for all strongly normalising
bijective PTS.

In section 5 a syntax-directed version of the typing relation by for functional PTS is defined,
for which proving completeness is a problem unfortunately.

Finally, in the last section, the main steps leading from the original typing relation to the
syntax-directed one are outlined, and we sketch how the typechecker can be extended to include
other primitives, such as ¥, +, or x-types.

All the proofs that the different typing relations are equivalent are by induction on derivations
and are given in the appendices.



2 Pure Type Systems

Definition 2.1. [Pure Type System]
A Pure Type System (PTS) is a triple (S, 4, R) with

¢ S is a set of symbols called the soris
e A CSx.5, asetof azioms.
e B CSx8x 8, asetof rules

Definition 2.2, [terms and contexts]
Given a PTS (S, 4, R), the collection of terms M and contexts I' is given by

Mu=x| s| (MM)| (Az:M. M)| (Tz:M. M)
FPo=e | Na:'M

where z is a variable and s is a sort.
Convention s, 51, s, etc. range over S; a, b, A, B, a’, etc. range over terms.

Definition 2.3. [typing relation I" - b : B]
For each PTS (S, A, R), a typing relation & is defined. For type judgements of the form '+ b : B
we have the following inference rules

(axziom) ek st s if(s:s')Ye A
vartable) _fhA:s z fresh
( Ne:Abax: A
(weakening) r l_Fbﬂ; _BA I—Fb}_' g 5 x fresh

I'rA:sy Nz:AbF B:ss
I'F({z:A B):ss

(formation) if (51,82,53) E R

Ne:Arb:B I'-(Hz:A B):s
FE{(Az:A.b): ([Iz:A. B)

(abstraction)

F'Fbé:(He:A B) INFa:A
I'-ba: B[z :=d]

(application)

I'-b:B I'rB:s B~§B
I'eb:. B

(conversion)

where s ranges over sorts, i.e. s € §, and ~ is f-equality.

The most important subclass of PTS is that of the funclional PTS. Most — if not all — PTS that
are of practical interest are functional PTS.

Definition 2.4. A PTS (8, A, R) is called functional (or singly sorted) iff

(s:s)edAn(s:s")c A = s =s"
($1,82,53) E RA(s1,80,55) ER = s3=3s

i

!
a
The distinguishing property of these PTS is that the type of a term i1s unique up to S-equality:

Lemma. [unicity of types for F : UT¢]
For functional PTS: ¢f THb- B and '+ b - B', then B~ B'.



2.1 Typechecking Pure Type Systems
Two typechecking problems can be distinguished

e 't b . B? ~ the type checking problem —
given a context I and terms b and B decide whether I' + & : B derivable or not.

e I'F b:7 - the type inference problem -
given a context I" and a term b, find a term B such that "+ & : B, or report failure if no such
B exists,
For functional PTS finding a single type for b suffices, as it is unique modulo 5. For non-
functional PTS there may be several S-equivalence classes of types for b, in which case we
would want to find a representative of each one.

The second i1s the more general of the two problems: if we can solve I' b : 7 we can also solve
I'Fb: B?. On the other hand, it is difficult to imagine a solution for I' - b : B? which does not
also provide a way tosolve ' b: 7,

The remainder of this section concerns our motivation for considering a new typing relation.
We discuss the natural type inference algorithm for functional PTS defined in [Pol92], and the
problem encountered for this algorithim, which is that nobody has been able to prove completeness.
For the new typing relation introduced in the next section, we will not have this problem.

The obvious way to solve I"F &:7 is to try to construct a type derivation for b guided by
the shape of b. Here we run into the problem that that the PTS inference rules are very non-
deterministic: there can be many derivations for I'F b: B, let alone for I'F 4 : 7. The source of
this non-determinism is the conversion rule, which can be used at any point in a derivation. {The
weakening rule also introduces non-determinism, but this can easily be eliminated by restricting
the weakening rule to variables and sorts, as in the Fy4-weakening rute helow).

Despite this non-determinism, it is not difficult to define a natural type inference algorithm
which tries to construct a particular type derivation, by only doing conversions

e to test if a type reduces to a sort
e to test if the types of a function and its argument match

But then we are implementing the following syntax-directed system bgy (sq for syntax-directed) :
mstead of F

(aziom) ehggs:s if{s:s)e A

F"SdA:S S—»gs

Ner:Ablbgz A @ fresh

(variable)

Fl—sd[}:B F"sdA:S S—'ri-las
FNae:Abg b B

{weakening) z fresh and b a variable or sort

F‘—SdA.'Sl 51—-*2-551
(formation) I 2 :Abgq Bisa  Sa—pgsy  if (s1,82,83) ER
TFhea (fTz:A B):s3

Nz At b B
(abstraction) ['Feq (Hz:A.B):'S 8§ —ps
Tl (Az A D) (Hz: A B)

Dhsg b C C —n (T2: A" B)
Mhgga:A A~ A

licati
(application) Ik ba: B[.’U = a]

Here —5 denotes F-reduction and —wy, denotes weak-head reduction. Note that the weakening
rule is restricted to variables and sorts. This means that in derivations weakening is postponed as
much as possible. The shape of a term b determines a unique Fgq-type derivation for b.



If cur algorithm implements ¢y instead of b, we want to know if +¢4 and I are equivalent.
This means we have to prove

soundness : INbgye: C=TItFec:C
completeness: I'Fe:C = (A0 ~C. MFyge:C)

It is easy to prove soundness. However, proving completeness is a problem. This means it is not
known if for a functional PTS the algorithm can always find a type for a typeable term. (For
non-functional PTS completeness fails; see [Pol92] for a counterexample.)

A proof of completeness by induction on the derivation ' ¢ : € fails in the abstraction rule:

Suppose the last step in the derivation of I F ¢ : C is the abstraction rule. Then
e=(Az:A. b), C=(ITz:A. B) and the last step in the derivation is
e :AFb:B 't (Hx:A B):s
F'E(Az:A by (ITz:A. B)

By the induction hypothesis I'z : Abgq b: B for some B’ v Band I'byy (IF2: 4. B): S
for some S ~ s. However, the type B’ found for b can be different from B (but S-equivalent
to B), and we do not know if I' by ([f2: A. B') 1 5 for some 5'.

Basically, the problem is the way in which the subformula property fails for the abstraction rule:
a type derivation for (Az:.4. b) in context I’ contains a sub-derivation of a term — ([Tz:A. B) -
which is nof a subterm of (Axz: 4. b).

An alternative abstraction rule, which is equivalent with the original abstraction rule, is

I'tA:sy TNa:AFb:B TIz:AFB:s
Ih{Az:Ab): (Tz: A B)

if (81,82,83) € R

For this abstraction rule we have the same problem, this time caused by the premiss ',z : A+ B : 59
instead of the premiss I' F {(ITz: 4. B) : s.

In section 6 two type checking algorithms are mentioned which successfully avoid this prob-
lem by relaxing the condition I' = ([Tx: A. B) : s, or rather the condition Iz : A+ B : s3 in the

alternative abstraction rule given above.
We avoid the problem by considering derivations for judgements of the form ' a : A : 5, as
explained in the next section.



3 Type-kind derivations

Instead of judgements of the form
21:An, e A Foat A
we consider judgements of the form
zy:ALs, 2 Anisy F oaiAcs

These judgements not only give the type of a term, but also the type of its type, which we call its
kind. For example, in the judgement above s is the kind of @ and each s; is the kind of z;.
The notion of kind is related to the notion of degree — defined in [dB80] for the AUTOMATH
languages and in [Bar92] for the A-cube — in that terms with the same kind have the same degree.
Contexts are now of the form
A= e|djaiAs

In contexts both the type and the kind of a variable are registered.

We have to be careful for non-functicnal PTS! Here a variable 2 of type A may have more
than one kind s. It may be essential for different occurrences of x to have different kinds, so that
by fixing the kind for z some terms are no longer typeable. Later an example will be given that
shows that for non-functional PTS our new typing relation is net equivalent to the original typing
relation.

It turns out that, when deriving the type of a term, we can derive its kind at the same time
at little extra cost. Some F-inference rules that derive a type B for a term b, could also produce
the type of this B:

I'FA:s
Ne: Az A
Fie:Avrb:B I'tE(llx:A B):s3
T (Ar:Ab):(Tz:A. B)

(variable)

{abstraction)

but here the type s of A and the type s5 of (z: A. B) are not passed on in the conclusion. Also,
kinds cannot be large terms; by the following lemma the kind of a term is always a sort.

Lemma 3.1. [correctness of types]
Ifrrbo:Bilhen 'FB:s forsomese S orBES .

So the extra amount of information carried around in k-derivations in comparison to F-derivations
is small.

A problem is not all terms that have a type also have a kind. If I' -6 : B and B € S, then
there may not be a type for B, and hence no kind for b. This is solved by introducing a new ”sort”
T, which acts as the type for hitherto untypeable sorts:

Definition 3.2, [Sr,Ar]
Given a PTS (S, A, R) we define

S =S5U{T}
Ar=AU{(s: T)|seSA(T(s:5) e A)}

So for all s € S there is a 5" € St such that (s : s") € Ar. For functional PTS this s' is unique,
i.e. At is a function from § to Sr. For functional PTS we write Ar(s) for the s’ € St for which
(s:s") € Ar.

Convention s, s1, s/, etc. range over St (and not just §).



Replacing all judgements of the form I' - b : B by judgements A F & : B : 5 in the PTS
inference rules, we get the following typing relation b¢. by is defined for arbitrary PTS, but only
for functional PTS will it be equivalent to the original typing relation + (hence the subseript f for
functional):

Definition3.3. [AFr b: B : s
(axiom) ebis:s: Ar(s) if{s:s)e A

Al A:s sl
Az Aisikiz: A5

z fresh

(variable)

Absb:B:s Aby A:s s}

{weakening) Az A ¥ b Ds x fresh

Al A:s1:8) Az Aisiby Bisassh

Al (Hx: A B):s3: Ar(s3) if (51,82,53) € R

(formation)

Abr Arsy sy Az Adis kb B s

(abstraction) AT O A D) (Te A B) 5 if ($1,82,83) € R
Abp b (fTz A B) @ s3
.. Abpa: A5
{application) Aby Ble = a] 1 s 1 5
Akpba: Ble = a) : sq
. Abib:B:s Ay B :s:s B~§
(conversion)

Abli b B s

Compared with the original typing rules, the major differences are in the abstraction and the
application rule. These are discussed below. For all other rules there is a one-to-one correspondence
between the premisses in the F¢-rule and the corresponding F-rule.

Note that the conversion rule changes the type of a term, but not its kind. This is because in
functional PTS the kind of a term is unique (not just unique up to S-equality). .

For functional PTS, F; is equivalent with |:

Theorem 3.4. [soundness and completeness k]
For all functional PTS

I'bb:B = (Is€ 8. IFb:B:s)
Abeb:B:s = |AFb:B A (|AIFB:s v (B:s)€ Ar\A)

€
||, 2: A

where | A| is defined by {|43 . 4|:1|

= C

- . E.
end I" is defined by{p?-’ll = [Mz:A:s IFA:s

Proof. See appendix D: lemmas D.1, D.7 and D.&. m|

For non-functional PTS there can be terms that are typeable using b, but that are not typeable
using Fr, as shown in the following example.



Consider the non-functional PTS
§={*0,,02}, A={x:0, %:02}, R={(0, 0z, Us)}

ek (Az:*. 2)  (fTz:*. ) is derivable. To derive this we have to derive ¢ (Tz:%. %) : Oy. To
derive € b (ITz: . %) : Do, the first occurrence of * has to be typed [); and the second occurrence
of * has to be typed O
Fx:0; z:xkF=*:0
P R B (Tx:%. %) 0g
F(Az:* 2): (Te:+. %)

Both occurrences of * in (/7 :#. ) stem from occurrences of z in (Az:*. z). If the kind of z is fixed
In a context x : % : O;, then both occurrences of * will have the same type 0;. As a consequence,
(Az:x. z) cannot be typed using by:

e 00T zo#:0; b zox:0;

e bp (Arc+ ) : (Ta:+ %) : s

This type derivation fails because there is no kind O; for  such that (D;, 0, s) € R for some s.

(01,0, 0) € R

(0;,0;, 5) € R?777

As mentioned earlier, the main differences between F and k¢ are in the abstraction and the
application rule.
The abstraction rule
In the Fy-abstraction rule we save work. Unfolding the F-formation rule in the F-abstraction rule

we get
F'rA:sy Tae:AFB:ss

Iz AFb:B ' (Hz:A B):s3 {s1,52,53) E R
FE{(Az:A.8):({Tz:A. B)
In this derivation, In order to type (Aa:A. B), the terms b, A and B are typed.
In the Fp-abstraction rule
Ax:Asikib:Bisy Abr A:is sy
Al (Az: A8 (Tz:A. B) : 53

(s1,52,53) ER

Here only b and A have to be typed. A separate type derivation for B is no longer needed,
because by typing b we also obtain the type of B. Remember that in section 2.1 it was the premiss
I''z: AF B :sqin the absiraction rule that caused the problem in the unsuccessful completeness
proof. '

The application rule

In the F¢-application rule more work has to be done to produce not only the type but also the
kind. The original application rule is

FEb:(Tz:A. B)
MFa: A
I'tba: Blz = dq

and the new application rule is
Ak b: (e A B):s3
Ablra:A:s
Al Blz:=a] 5215
AFsba:Blz:=d]:s
The extra work is a type derivation for B[z := a], which is needed to determine the kind of the ap-
plication ba. (It turns out that, for asyntax-directed version of by, the premiss A by Bz :=a] : 53 : 54
causes the same problem in the proof of completeness that we sketched earlier for . This is dis-
cussed in section 5.)
Fortunately, this extra work can be avoided for a large class of PTS, namely those where given
51 and s3 there is at most one s» such that (s, 50, s3) € R. In these PTS the kind of an application
is determined by the kind of the function and the kind of its argument.

'
2
2



Definition 3.5. A PTS is called bijective iff it is functional and for all sy, 59,55,83 € §

(81,83,33)ER/\(Sl,S’Z,Sa)ER — 52555 .
So a PTS is bijective iff
(s,s)EANn(s,5")E A = 5’ = 5"
(51,89, 83) € RA(81,82,54) E R = 53 = &4
(81,52,53) € RA (5,55, 83) E R = 52 = ),

All functional PTS that only have rules of the form (sy, sz, 52) are bijective. This means that all
systems in Barendregt’s A-cube are bijective.

For bijective PTS, the kind of a term is uniquely determined by the kinds of it subterms. As
a consequence, the premiss A by Br := a] : 52 : 85 can be omitted in the application rule.

Definition3.6. [AFy b: B : 5
Fy, is defined by the same inference rules as by, except for the application rule,

{aziom) eby 508 Ar(s) if(s:s"Yed
y Abp A sy o8 X
(variable) Az AsFos ATs z fresh
. Abyb:B:s Aby Ais) s
o fresl
(weakening) Az As Fob B s z fresh
) ) Abp Aisp s A Aisiby Brsssh
(formation) AT, (To A B) rs5 - A (53) if (s1,82,83) E R
. AbpAdrsy sy AziAdisiby b Bisa |
(abstraction) Aty Oz A D) (T2 4 B) 5 if (s1,82,83) € R
] . . Abp b (Tx:A By:s3 Abpa:Ais, ..,
(application) Ay, ba: Ble =4 s if (81,89,83) € R
(conversion) Aby,b:B:s Aty B :s:s B~B

AL b:B s
For bijective PTS, F}, 1s equivalent with F:

Theorem 3.7. [soundness and completeness by
For all byjective PTS

Ftb:B = (Is€S.TH,b:B:s)
Abpb:B:s == A B A (|JAFB:s v (B:s)€ AT\ A)
where | A| and I' are defined as in theorem 8.4.

Proof. See appendix B: lemmas B.1, B.6, and B.7. m]

The proofs of theorems 3.4 and 3.7 are by induction on type derivations, and hence are identical
except when the application rule is invelved. An alternative to proving theorem 3.7 is proving that
for all bijective PTS Ak b:B:s < Ab,b: B:s.



4 A type-checker for bijective PTS

In this section a syntax-directed version of by, is defined, by removing the weakening and conversion
rule.

t, deals with contexts in the same inefficient way as F : in every branch of a derivation the
context is broken down to check that it is well-formed. To avoid this a notion of well-formedness
for contexts is introduced and the original axiom and variable rule are replaced by the following
more powerful axiom and variable rules

(aziom) Abpas:sAr(sy ifs:s'e A
vartable) A, z:A:s, AN bpqz:A:s
(

The conversion rule is a source of non-determinism in F. It is distributed over the other rules.
Conversion is only used to test if

e a type reduces to a sort
» the types of a function and its argument match

The resulting system is syntax-directed: the shape of a term determines which inference rule is
used in the last step of its type derivation, and so there is a unique type derivation for a given
term. As a consequence, the system provides a type inference algorithm.

Definition4.1. [AFp,b: B s, Whad]
For A Fypeq b: B : s we have the following inference rules

{axiom) Abpsg s:8 1 AT(5) ifs: s A
variable) AwiAis Ay A:s
(
A e Aisy Frad B.:SBZS‘Q Sy —5 89
. . ’
(formation) Abpsa A5 05 S1 —p 51 if (s1,82,83) € R and # fresh

A l—bsd (HCLA B) 83 A‘r(Sa)

Azx:A:s bpgb: B s

(abstraction) Abpsa A: 5 s S1 g 81 if (51, 52, 83) € R and  fresh
i Al_bsd ()\:LAb)(Hl!A B)Z.S‘g
Abpeg b:C 183 C —run (Tz: A" B)
(application) Abpsaa:A:s A4 if (51,59,s3) € R

Al ba: Blz = a] @ 59
A context A is Fpgq-well-formed — written WF,e A — if it can be derived using the rules

(empty) WFpsqe€

T’VFbsd./_\ ﬂ“bsdAZSiS‘ S—.-q;s

Whadd, 2 A:s z fresh

(weakening)

Note that for bpgq-derivations the subformula property holds, 1.e. the derivation of A b q b: B @ s
only contains type-kind derivations for subterms of b.

Theorem4.2. [soundness and completeness by
For all bijective PTS:

Abpa b B s A Whygd = Aky,b:B:s
Abpb:B. s — WFbSdA/\(HB':B‘./_\I-bsdb:B':s)

Proof. See appendix C: lemmas C.1, C.5 and C.6. 0
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Joining theorems 3.7 and 4.2 yields

Corollary 4.3. [soundness and completeness of Fpeq w.r.t. H]
For all bijective PTS:

Abpg b Bis A WhygA == |A|Fb:B A (|A|FB:s V (B:s)€ AT\ A)
Frb:B = (IscSr,B ~B. I'kuab:B :5)

It is easy to define an algorithm which, given a context A and a term a, checks Wkys9 A and
tries to constructs the type derivation for a in context A, thus finding the type (and the kind) of
a. 'This does require strong normalisation of S-reduction for types, i.e.

ff'ba:A = Ais f-strongly normalising

{or, equivalently, WFyeqAA A a: A:s = Ais f-strongly normalising ). This is needed to en-
sure that # normal forms and weak head normal forms of types can be computed, and that con-
vertibility of types is decidable, so that the premisses S; —+4 8;, C —rwy ({Tr:A. B) and A ~ A’
are decidable.

The algorithm has to choose a correct order in which to check the different premisses of the
rules, so that it nevers attempts to construct a type derivation in a context which may be incorrect.
If Abpsg a: A s and nol Wigq A, then we do not know if A is strongly normalising. This means
that in the formation and abstraction rules the premisses A Fpgg A : S5 @ s and S} —3 51 have
to be checked first, and in the the weakening rule the premiss WFeq 4 has to be checked first.

5 Functional PTS

For functional PTS that are not bijective a syntax-directed system can be defined in the same way
as was done in the previous section, this time taking by instead of F|, as the starting point.

Definition 5.1, [A g b: B 15, Whad]
Fea and Whg are defined as bygq and WL, except for the application rule, where we have the
following rule instead

Abpg b:C ;53 C —yn (Hx: A, B)

Abpaa: A s A~ A

I'beg Bl i=a] i 550 8%

I'Fiq ba: Blz :=a] : 52

Soundness of this system can be proved for all functional PTS:
Alpg b B:sA Whgy = AFrb: B:s
However, proving completeness for this system,
Al b:B:s = (A8~ B. Abpg b: B : 3),

is a problem. In fact, we now have the same problem with the premiss I” by B[z := a] : s2 : s
in the application rule that we sketched in section 2.1 for the premiss I'+ (/Tz:A. B) : s in the
abstraction rule.

11



6 Related work

Other type-checking algorithms for Pure Type Systems all involve a way of avoiding the premiss
I.z: At B :syn the abstraction rule

e A:sy Dz AFb: B I''z:AF B:sy
'k (Az:Ab): (Hz- A B)

if (51, 50,53) € R

One possibility is to consider only PTS where I? is such a large subset of § x § x § that we do
not have to know a type sy of B to decide if ({Tz: A. B) can be formed. In [Pol92] Pollack gives a
sound and complete type inference algorithm for all semi-full PTS, which is a generalisation of the
type inference algorithm used in Huet’s Constructive Engine for the Calculus of Constructions, A
PTS is semi-full if

Vs, (3sq,8a(51,52,83) € R) = (Vs,353(51,52,53) € R)

For these PTS, only a tvpe 5, of A and a type B of & — but not the type of this B - have to be
known to decide if the A-abstraction (Ax:A. b) is allowed: the rule

IF'tA:si INz:Abb:B Bg{se§|-3(s:5)c A} .
I'E{dz:A b): (Hz:A. B) if (51,80,83) € R

15 equivalent with the abstraction rules given above.
For example, for the Calculus of Constructions, the PTS with

5={+0} A={(x:0)} R={(s1,52,82)]|51.52€ 5}

this abstraction rule becomes

'tA:sy INe:AFb:B B#DO
FFAz:A D) (Tx: A B)

which is in fact the original abstraction rule given in [C1188] for the Calculus of Constructions.

Jutting proved soundness and completeness for a type inference algorithm for all functional
PTS [vBJ92]. He considers an abstraction rule of the form

''trA:sy INe:AFb:.B Nz:AF| B:sy
FE(Az:A b)) (Hx:A. B)

if (81,82,83) € R

where F, is a typing relation which is more liberal than F. This result has been extended to all
PTS in [vBIMP93].

Fhsq does not give a type inference algorithm for all PTS, but it has the advantage that it is
closer to the original PTS type derivation rules than Juiting’s algorithm. This makes it easy to
incorporate other type constructors, as is sketched in the next section.

12



7 Conclusions

For bijective PTS the following equivalences have been proved

3.7 4.2
[ = by, &= by

For functional PTS we have the following relationships between the different systems
3.4
F &= F = Fgd
The steps leading from the original typing relation b to the syntax-directed bFypqq are
1. from F to ky: type-kind derivations instead of type derivations, i.e. judgements of the form
z1:A1:81,.. ., 8, Apis, F oatAcs
instead of the usual judgements of the form
r1:dy, oo p Ay Fat A

2. from kb, to Fpgq:
+ making the weakening rule redundant, by introducing a notion of well-formedness for
contexts and more powerful axiom and variable rules, and
e getting rid of the conversion rule by distributing it over the other rules.

In the same way sound and complete type-checkers for PTS’s extended with more primitives,
such as Cartesian product types, disjoint sum types, L or existential types, can be found. For all
these extensions we run into the same problem as for the IT-types, namely that we do not know
how to prove completeness. By considering type-kind derivations this problem is avoided.

For example, for Cartesian products the formation and introduction rules are

I'FA:s; I''FB:ss
' Ax B:ss

I'ta:A T'bb:B I'FAxB:s3
I (a,b): Ax B

(x — formation) if (s1,52,83) € Ry

(x — introduction)

where Ry C 8% controls the formation of Cartesian products. If we want to prove completeness of
a type-checker for PT'S extended with products, the premiss I'F A x B : 53 in the x-introduction
rule poses the same problem as the premiss '+ (Hz:A. B) : s3 in the abstraction rule. Fortu-
nately, this premiss is exactly the one that can be omitted in the x-introduction rule for type-kind
dertvations:

Fa:A:sy AFb:B: 39
AF (a,b): Ax B:s3

(x — introduction) if (81,89,83) € Ry

However, the restriction of "bijectivity” has to be extended to I, the kind of a pair (a, b) has to
be uniquely determined by the kinds of of the two components, i.e.

(51,82,53) € By A(s1,52,53) €E Ry = s3 =}

and the kinds of the first and second projections of a pair have to be uniquely determined by the
kind of that pair, i.e.

(51,52,53) € Ry A(s],55,s3) € Ry = 1 =s| Asz = sy

Under these restrictions, removing the weakening and conversion rules as was done for by, produces
a sound and complete type-checker for bijective PTS’s with Cartesian products. This includes all
bijective PTS with R, C {(s,5,5) | 5 € 8§}, the most sensible choices for R.

13



APPENDICES : proofs of equivalences

Most proofs are uneventful proofs by induction on derivations. The most interesting parts are in
the proofs of lemmas B.1 and B.G, the cases where the last step is the application rule.

A Properties of PTS

Convention w-convertible terms are identified.

The following lemmas will be needed. With the exception of lemma A.7 they are all basic properties
of PTS given in [Bar92)].

Lemma A.1. [subject reduction for F : SRy]
frrb:Bandb—gh' then 'Hb : B.

Lemma A.2. [start femma for H]
() IfFEb: B and{(s:s')€ A then 't 5.5,
(ii) If Mo A, T"F b B, then Fya: A/ F a2 A

Lemma A.3. [/]-generation lemma for F]
Suppese ' (Tx:A. B) : s3.
Then 'FA:s) end I'yz: AF B :sa for some (sy,52,53) € R.

Lemma A.4, [sort-generation lemma for ]
Suppose ' s : A.
Then A~ s for some (s:58) € A.

Lemma A.5. [substitution lemma for ]
Suppose Nyx . C,\I"Fb:Band 'k c: C.
Then I Mz :=¢| F bla :=¢] : Blx :=¢].

Lemma A.6. [unicity of types for b : UT]
For functional PTS: if ' b:-Band 't b: B, then B~ B".

Lemma A.7.
Suppose A'~Aand '+ A" : C.
Then (A:s) & AT\ A.

Proof. Suppose towards a contradiction that (A4 :5) € AT\ A (so s = T).

Then A is a sort, so A" —3 A, and by SR it follows from '+ A" : C that ' 4 : C.

By the lemma A .4 there then is a sort s such that " ~ C and (4 :¢") € A.

But (A:s) € Ar\ A, and we have a contradiction. a
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B Theorem 3.7 : F «<— -,

We now prove theorem 3.7: for all bijective PTS

(3.7.1) FT'tb:B = (3se 8. 'k, b:B:s)
(3.72) Abpb:B:s = |AFb:B A (|AFB:s Vv (B:s)€ AT\A)

where |A| and I" are defined as in theorem 3.4,
The first part follows from lemmas B.6 and B.7; the second part is proved in the next lemma.

LemmaB.1. For all bijective PTS
ifAbp b: B s then (i)]|AlFV:B | and
(ii)|AlFB s v (B:s)e Ar\A.

Proof. By induction on the derivation of Ak, b: B : s. Last step:
Axiom. The last step in the derivation in ¢ by, s : 5" 1 A7(s") where s : ' € A.
To prove : (i)ek s:s
(ii)ebs: Ar{s') Vv (8 Ar(s")) € AT\ A
s:s €A soet 54
If (s' : AT(¢')) & AT\ A then (s’ : Ar(s")) € A and then ¢ F s’ . Ar(s')
Variable. The last step in the derivation is

Aty Aisyis)
ArrAisibpzAs

To prove: (1) |Al,z- Arz: A
(i) |Al,z: A+ A:sp V (A:s)) € AT\A
By the I |A|- A : s;. The F-variable rule gives (i):

[AlFA: s
|Al,z:AFz: A

The F-weakening rule gives (i1):

|/_\|"AI.51 |.ﬂ|f*AIS;
|ALz:AFA:s

Weakening. The last step in the derivation is

Abyb:B:s Ak, A:sy s8]
Ae:A:siF,b:B:s

Toprove: (i) |A|,z: AFb: B
(i) |Al,z:AF B:s v (B:s)c AT\ A
By the TH | Al A : 51 and | Aj- b : B so the F-weakening rule gives (i) :
|AlFb: B {AlFA:5
|A,z: AFb: B

By the IH |A|F A : s and (A B:s V(B :s) e A\ A).
If (B :5) ¢ AT\ A then | Al B : s and the F-weakening rule gives (ii)
|AlFB:s [AFA:s
|Al,z: AFB:s
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Conversion. The last step in the derivation is

Abpb:B:s Ay B :s5:5 B~F
Abyb: B s

To prove : {i) |A|Fb: B
(i) |AlFB s v (B :5)e Ar\4
By the IH |A|F B’ : s, so (ii).
By the IH |A|Fb: B and |A|F B’ : 5, so the F-conversion rule gives (i):

|AFb:B |AFB s
|AlFb: B

Formation. The last step in the derivation is

AbyAisy s8] A,e:A:s by Biss:sh
= 192, cCR
Al {(Hz: A B) 53 Av(ss) (s1,82,83)

To prove : (i) { Al (Hx:A. B):s3
(i) [ AJF 53 Ar(ss) V (s3: Ar(s3) € AT\ A
By the IH [A|F A : 5 and |A],z: AF B : s», so the F-formation rule gives (i}:

|AFA:s; |Al,z: AF B:s
tAR (Tz: A.B) : s3
(s3: Ar(s3)) € A or (s3: A7(s3)) € AT\ A.
If (s3 : At(s3)) € AT\ A then (ii).

If (83 : AT(s3)) € A then by the H-start lemma(A.2) | Al 83 @ A7 (s3) and hence (ii).
Abstraction. The last step in the derivation is

Aby Aisyis) Az:A:siky,b:B s

R
AF, (Ae A b)) (lIz: A B) s (s1,52,53) €

Clearly (({Izx:A. B) : 53) € AT\ A, s0 to prove : (i) |Al-{Az: 4. b): (Hz:A. B)
(i) 1A (Hz:A B):s3
By the IH A, w: AF b: B and [A|F A4: s,
Also by the TH |A|,2: A+ B:s2 V (B:3s:) € Ar\A. If (B:52) € Ar\ A then s, = T. But
{51,80,83) ERC A 50 8y # T. Hence |A|,x: AF B : s9.
The - formation rule gives (i):

|AFA:5 [Al,z:AF B:sa
| AF (T2 A B) : s3

and then the F-abstraction rule gives (ii):

|Al,z:AFE: B | ([Tz:A B):s3
|AlF (Az: A b): (Tx: A B)
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Application. The last step in the derivation is
Ab,b:(Hz:A B):s;3
Abpa: A s
AWy ba: Bla:=a]: sy

for some (s1,52,83) € R.
To prove : (i) |A|F ba: B[z .= ¢]
(i) |AalF Blz:=a]:s2 V (Blz:=4q] : s3) € AT\ A
By the 1H
|AlFa: A (1)
1A b: (Tz:A. B) (2)
so the F application rule gives (i):
|AlFb: ([Hz:A. B) |AlFa:A4
| AlF ba : Bz = ¢]

By the IH also
|AFA: sV (A:s)€ AT\A (3
| AR (Hx:A. B): s3 (4)
since clearly (({Ta:A. B) : s3) € At\ A. Then by the [7-generation lemma for F(A.3) it follows
from (4) that
|AIF At (5)
|Al,e: AF B g (6)
for some (t1,12, s3) € 2. By lemma A.7 it follows from (3) and () that | A A : 5. By UT} then
51 =3, and since the PTS is bijective, 53 = t5.

Finally, by the F-substitution lemma(A.5} it follows from (1) and (6) that | A lF B[z := a] : 59,
and hence (ii}. o

To prove (3.7.1) - "F=F,” — we need the [7-generation lemma for ky, (lemma B.5) and unicity
of types for Fy.

Lemma B.2, [unicity of types for by, :{UTq ]
For bijective PTS :
(JifAbyb:B:sand Ay b B ¢ then B~ B ands=s'.
(fi)if Ay b B:sand A, B:S: ¢ thens~S.
Proof. (i) Suppose Aty b:B:sand Abp b: B : 6.
Then by the previous lemma{A|Fb: B and |AlFb: B, soby UTL B~ B’
Also, by the previous lemima
|AFB:s vV (B:s)€ AT\ A

|AFB 5" v (B :s') € AT\ A
If |A]F B :s, then by lemma A7 |A|F B 15" and by SRy and UTL s =",
In the same way, if |A|F B : ¢, then also s = &'
Finally, if both (B : s} € A7\A and (B’ : s') € Ar\A then s=s =T.
(1) Suppose Abpb:B:sand Ak, B:5:6 .

Then by the previcus lemma

fAlFB:s v (B:s)e AT\ A (1)
[AFB:S (2)
It then follows from lemma A.7 that | A|F B : s, and hence by UTj. s~ 5. a
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For the [T-generation lemma the thinning lemma is required, which in turn requires the following
start lemma.

Lemma B.3. [start lemma for k]
IfAFLb:B:sand(s:8')€ A, then A, 55 : Ar(s).
FAzAs, A bpb:Bisthen Ajx:Ais, ANy A:s.

Proof. Induction on the derivation of A b, b: B:sand A, z:4:5, Ak, b: B :s. O

Lemma B.4. [thinning lemma for ]
Suppose A’ Fpb:B:s, AACAand Abpa: A,
Then Avrp b: B s.

Proof. Induction on the derivation of A ¥ @ : A : s. The start lemma is used if the last rule
applied is the axiom or variable rule. O

LemmaB.5. [I]-generation lemma for ¥
Let AV, (T2:A. B) :s3:55. Then there are s, s), s2 and sy such that
(51,82,83) ER, Aby A:isy 8] and A w45 bp B 5ot sl

Proof. Any derivation of A by, ([Tx:A. B): 53 s5 ends with the formation rule followed by zero
or more uses of the conversion rule and/or the weakening rule:

ANz Aisiby Bispish Aby, Ais:s)
A'by (Tz:A.B):s: 4

{(weakening/conversion)

Aby, (Hx:A B):s3:sh

where (s1,82,58) € I

The weakening rule does not affect the type s of (ITx : A. B}, and the conversion rule only
B-converts it. So s3 =~ 5, and since s and s3 are both sorts, 33 = s.

A C A, so by the thinning lemma for by A,z A sy by Bise sy and Aby A:sy i8], O

To prove (3.7.1) : for all bijective PTS
Fr6:8 = (Ise Sr. I'Fpb: B s)

where I' is defined by{r-;-f4 - }'.z, 4 PR As
xt A = Max:As i :

™y

we first prove
LemmaB.6. For bijective PTS

'cb:B = (HSEST.FI-bb:B:s)

onl
11
™

wherefz’sdeﬁnedby{fwx:A =T,z2:4A:s ifThyAis:s

By UTi (lemmaB.2) this defines a unique 7. We have to use I instead of I' as defined in

theorem 3.4 for the proof Lo run smoothly. In the next lemma lemmas B.1 and B.6 will be used to
prove that I" and I' are the same.
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Proof. By induction on the derivation of I" = b : B. Last step:
Axiom. So et 5 : 8, where 5 : 5' € A. Then by the Fy-axiom rule € by, 5 : 8" 1 Ar(s').
Variable. The last step in the derivation is

k4 :s5
Fz: Atz A
Toprove: (Is€ St . Iz:Abyz:A:s)
By the IH there is a s7 such that Iy A : s 57,
Then Iz: A=1I",z: A: s, and the by-variable rule gives
Thy A:s) s
Tox:A:sibpz:A:sy

Weakening. The last step in the derivation is

6B IM'EA:s
lNa:AFb: B

To prove : (HSESr.F,;L‘:AI—bb:B:s)._ B
By the IH there are s and s{ such that by b: B :sand 'k, A5y 2 sf.
Then INa:A=1,2:4: s, and the Fy-weakening rule gives

Th,b:B:5 Th,A:is 18
Toa:Ad:s, b, b:B:s

Conversion. The last step in the devivation is

F'+b:B r+pB:§ B~KH
Ireb: B

To prove : (ds € St Th,b:B :s).

By the TH there are s and s such that Tk, b: B :s and T by, B’ : s’ : 5. To use the Fy-
conversion rule we have to prove s’ = s.

By lemmaB.1 (MF'FB:s vV (B:s) € Ar\ A). Since alse I'+ B’ : &', it follows by lemma A.7
that '+ B : 5. Then by SRy (lemma A.1) a common reduct of B and B’ has both type s and ¢,
so by UT.(lemma A.6) 5" = s.

The Fp-conversion rule now gives

Tr,b:B:s T+,B :5:5" B~B
Thob:B :s

Formation. The last step in the derivation is

I'F4:5; Fa:Ar- B: sy
ME{Hz:AB): 3

(SlaSQ:SS) = n

To prove :  (ds € Sr. Thy, (Hx:A.B):s3:s).
By the IH Iy, A sy :s) and [ya: A by B : sy sh for some 5] and s5.
Then INa: A=,z 4 s, and the b -formation rule gives

ThoAisyis) Toa:A:s) by Bisatsh
Ty (Tz: A B):s3: At(s3)
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Abstraction. The last step in the derivation 1s

Fe:Avb:B IF{llz:A B):s3
F'e(de:A b0): (Tz: A B)

To prove : (3s € Sr. T by (Az: A b) : (T2 A. B) : 5).
By the IH there are s; and s§ such that
Iz Ak, b:B: s (1)
Ty, (Tz:A. B) 8354 (2)
By the [I-generation lemma for by, (lemma B.5) it follows from (2) that there are sy, s}, t2 and
ty, with (s1,%2,s3) € R such that
Thy, A:sy:s) (3)
Toz:A:si by Bity:th (4)
From (3) it follows that T, A=T,2: A : 5.
By UTy, (lemma B.2) it follows from (1) and (4] that ¢3 = sa.
Now the b-abstraction rule gives
ThoA:s1:s) T,x:A:sibpb:B s,
Th,(Az:A.b): (Tz:A. B) : 53

Application. The last step in the derivation 1s

I'bb:{(lfz:A. BY I'Fa:A
' ba : Blz := ¢

To prove : (Is € S7. T Fy, ba: Blz 1= a] : 5).
By the IH there are s3 and s; such that
Thpa:A4:5 (1)

Pryb:(Tz:A B}:s3 (2)
If there is an sy such that (51,82,83) € IR, then we can use the b-application rule to derive
[Fy ba: B[z := a] : s3 from (1) and (2).
So, to prove : I, (s1, 83, 81) € R.
By lemma B.1 ( b=+ ) it follows from (1) and (2) that
F'FA:s5p vV (A:s1) € AT\ A (3)
PE(z:A.B) 53 (4)

since clearly ({{Tz:A. B):33) ¢ AT\ A.
By the T-generation lemma for F(A.3) it follows from (4) that

F |_ ."‘l : fl (5)
'z AF B s (6)
for some (11,52, 83} € R. If we can prove s; = {; then we are done,

By lemma A .7 it follows from (3) and (5) that '+ A : sy. By UTL(lemma A.G) then t; = 34.
O
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The two ways to extend F-contexts to by-contexts defined in theorem 3.4 and the previous
lemma are the same:

LemmaB.7. T =1

Proof. Induction on I". The base case - I" = ¢ — is trivial.
Suppose '= I,z : A Then Mz A=T"z:A:5s ifI'-4:s
Mz A=T,z:A:s {3, T, A:s ¢
By the IN T = I, and by lemmmas B.1 and B.6

M'rA:s = Tk, A:s5:¢
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C Theorem 4.4 : <=4

We now prove theorem 4.2: for all bijective PTS
Abpab:B:s A WA — Abkp,b:B:s
Lemma C.1. For biective PTS
Abpb:B:s = (AB = B. Abpqg b: B 1 5)

Proof. By induction on the derivation of A4, 5: B : s.

Last step:

Axiom, Variable. The conclusions of the F-axiom and variable rule are instances of the corre-
sponding Fygg4-inference rules, so the induction step is trivial.

Conversion. The last step in the derivation is

AbFL,b:B:s Ab, B :s5:s B~§F
AFyb: B s

To prove : AB” ~ B'. Abq b: B : 5.

By IH(A ¥y b: B : 5) there is a B ~ B such that Abpgg b: B i 5.
But then also B” ~ B, so we are done.

Formation. The last step in the dertvation is

AbpAisiis] Az:A:is by Bisy:sh
Ak (ITe:A.B) 531 Ar(s3)
By the IH there are 57 ~ s1 and S2 ~ s» such that
Az A8 bosg B:S2ishand Al A: 58], So by the Fpea-formation rule
Az A sy Fosa BiSsish, Sy —p s
A l’-bsd A Sl . S'l 51 —=a 8
Abpsg (Hz: A B) 53 Ar(ss)

(51,62,83) ER

Abstraction. The last step in the derivation is
Ab, Aisyis) Ax:A:s by b:B:sy
Aby(Ax:A b)) (Tz: A B) - 53

By the IH there are Sy ~ s; and B’ >~ B such that
Ax:iAisybpsg b B 5o and Ay A S) 0 s S0 by the Fpgq-abstraction rule

Az Ars bFpgab: B s

Abpsg A5 08 51 —p 8

Abpeg (AezA b)) (Tz:A. B') : 53

and (Tz:A. By~ ([Tz:A. B).
Application. The last step in the derivation is
Abyb:({Tz: A B):s3
Abya:i A s (81,62,83) ER
Aty ba: Blz:=d]: s
By the TH there are ¢ ~ ([Tz:A. B) and A” ~ A such that
Al b:C 53 and Abpgg a: AY @ 5.
C ~ (IIz:A. B), so there exist terms A" and B’ such that 4’ ~ A, B ~ B and
C —»wp (Tz: A, B'). Then by the F.q-application rule

Abpea b C 83 C —wh (H:L‘ZA’, B!)
Abpaa:A" sy AT~ A
A ba s B[z :=a] : s2

and B'[z :=a] ~ B[z := a). m|

(s1,82,83) ER
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In order to prove
Abpa b:B:s A Whead = Abyb:B:s (1)
we first prove
Abpab:B:s A WR,A = A, b:B: s (2)
where WF, A is defined as follows:

(emply) Whye

WF,A Ak, A:s:s
WA,z A:s

(weaken) if 2 is A-fresh

Once we have proved (2), proving W, A = WF,aA — and hence {1) - will be simple.
Before we prove (2), some work has to be done.

Lemima C.2. For all bijective PTS
Ab,b:B:s = WHRA

Proof. By induction on the derivation of Akl b: B : 5. Last step:

Axiom. The last step in the derivation is ¢ by, s : s’ Ar(s"), and the empty context is well-formed
: Whye.

Variable. The last step in the derivation is

Al Aisy sy
Az Asikpzi A s

By the IH WFR,A , so by WF,-weakening rule

WFR,A Aby, A:sy s
Wi, A,z:4:8

Weakening. The last step in the derivation is

Abpb:B:s Aby A:ss)
A48, 0: B s

By the IH W, A | so by WE,-weakening rule

WE,A Ak, A:sy s
WA e A5

Conversion, Formation, Abstraction, Application In these cases the induction step is triv-
ial: none of these rules extend the context, so WF,A follows immediately from the induction
hypothesis. m]

Lemma C.3. For bijective PTS : Aby,b:B:.s = |A|= A, with™ as defined in lemma B.6.
(Recall that by lemma B.7|A| = | A|, with  as defined in theorem 3.4 )

Proof. In view of lemma C.2 it suffices to prove that for bijective PTS : WF,A = |A|= A.
This is proved by induction on 4. The base case — A = ¢ — is trivial.
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Suppose A= A" z: A:s Then

Wk A, z: A5
= {def WFb}
I WFEA A Ay Acs s
= {IH}
g WF, A A A by Ais:is’'A WEA’
=
Ay Ars:s A A= A
= {def " }
[A,x:A=[Af,z:A:sA |A]= 4
= {def ||}

|Ae: A s|=A2:A: s

Using this lemma, SR can now be siphoned aver from F to by,

Lemma C.4. [type reduction for by: TRy ]
For bijective PTS - if Abyb:B:sand B—p B then Ak, b: B 15,

Proof. Suppose B —p3 B’ and Ak b: B s,
First we prove Aty b: B’ : & for some s
Abp,b:B:s
= {lemma B.1 : b, = F}
|AalFb:B A (|AFB:sVBES)
{B—s B  ,s0oB¢gS§}
|AlFS: B A |AFB:s
= {SR(lemma A.1)}
|AlFb:BA |AFB s
= {F-conversion rule}
|AFb: B
= {lemmaB.6: F =¥y }
[AlFy b: B - s for some s
By lemmaC.3, Ak, b:B:5 = |_./3|EA.
So it follows from A ¥y b: B ;s that A by b: B &' for some s’
Finally, by UTy-, ( lemmaB.2 ), part (i), it follows that s = s.

Using TRy, we cail now prove
Lemuma C.5. For bijeciive PTS
Abpaab:B:s A WRA = Aby,b:B:s
Proof. By induction on the derivation of A ke b: B : s we prove
Abpaa b B s = (WA = Ay, b: B :s)

Last step:
Axiom. The last step in the derivation is A bpsg s: 8" @ AT(s"), where s : s/ € A,
By the start lemma for by, (lemma B.3) and lemma C.2: WFR,A = Ak s:5 : Ar(s').
Variable. The last step in the derivation is A,z : A48, A Fpeg 2 : A 5.
By the start lemma for ¥, (lemma B.3) and lemma C.2 :
WA 2:A4:54 = Az A5 A e As
Formation. The last step in the derivation is
Ax:AisFra B:Sai8y, Sy —p 8
Abpg A5 IS’I S —*3 §] (S[,Sg,S;g)ER
Ablpsg (HHz:AB): sz Ar(ss)




To prove : WA = Al (He:A. B): sz : At(s3).
By theIH: WA, z:A:s; = Aa:A:s1 bk, B: 55
WA = Ah,A:Sl :S"l
Assume WF,A. Then Aby, A: S, : 5, by TRy (lemmaCd) Ak A:s) 5] andso WF, A,z A4 s,
Then also by the IH : A, z: A :5 by B: Sy 8.
By TRy (lemmaC.4): A,x: A:s by, B:ss:sh, and finally by the Fy-formation rule

Azr:A:isibyBisarsy Al Ais s
Aby (H2:A. B):s3: Ar(ss)
Abstraction. The last step in the derivation is
Az:A: s Fpg b B s
Abp A: S 18 S1 —a 51 {51,502,83) € R
Albpegg (Az: A DY (Hz:AB) : s3

To prove : WF,A = Aby (Az: A b): ([Tz:A. B) : s3.
BytheIH: W, A, 2:4:5 = Ae:A:s1bpb:B: s
WA = Abp A5 08
Assume W, A. Then Ak A: Sy s}, by TRy (lemmaCA4): A by, A:sy:s) andso WF,A,2: A 5.
Then also by the IH : A,z: A: 5 by b: B s,
By TRy, (lemmma C.4): AkFy, A: s, : s, and then by the Fy-formation rule

AziAisiFpb:B:sy Abg A:sy s8]
Aby (Aa:Ab): (He: A B) 54
Application. The last step in the derivation is

Abpg b:C i3  C —yn (Tx: A B)
Abpga:A:sy A~ A (51,82,83) E R
Al ba s Bl := a] : 54

To prove : WA = Ak ba: Bz :=a]: sa.
By the IH : WFR,A = Ak, b:C: 353
WF,A = AFp,a: A5
Assume WFLA. Then by the IH : At b:C:s3and Abpa: A s,
Let A" be a common reduct of A and A’.
Then by TRy, : A by b: (Hr:4”. B) :s3 and & by, a: A” : 51, so by the ¥y-application rule

Abp b (He:AY. B) 33
Abp,a: A" 5
Al ba: Blz :=aj: s

Finally, we still have to prove Ay b: B s = Whq4.
Lemma C.6. For all bijective PTS : At b: B:s = WF,aA.

Proof. By lemma C.2 it suffices to proof WFR,A = WFyq A This is proved by induction on the
structure of A. The case A = ¢ is trivial. Suppose A= A, 2 : A :s. Then
WFhA, 2z A:s
— {definition WF,}
3o WEAANA L, As: 8
= {IH}
o Whpga A AA L, A5 6
= {lemmaC.1:Fy = bl
35]5 WFosd A AN b A: 55 AS -3 §
= {definition WFpeq}
WFbSdA’,JJ tAs



D Theorem 3.4: - < I

We now prove theorem 3.4: for all functional PTS

I'tb:B = (Is€S.THbh:B:s)
AFb:B:s = |AlFb:B A (|AFB:s Vv {B:s) € A\ A)

This is proved in the same way theorem 3.7 was proved in appendix B. Only when the application
rule is involved is there any difference. This main difference is in the first half: in the proof of
lemma D.7 a substitution lemma for ¢ (lemma D.6) is required to deal with the application rule.

LemmaD.1. for all functional PTS
AFb:B:s = |AlFb: BA(|AIFB s v (B:s) e Ar\A)

Proof. By induction on the derivation of 2 k¢ b : B = s. Only if the last step is the application
rule is there any difference with the proof of lemma B.1.
Application. The last step in the derivation is

Abeb: (Tz: A B): s3
Abpa:A 5

Aby Blz:=a] 152 : 8%
Abyba: Blz:=a]: s

To prove : (i) | A ba : B[z := a] :
(i) {AlF Blz:=a]:s2 V (Blx:=a]:s2) € AT\A
By the IH | A+ B[z := a] : 24, so (ii) holds.
By the IH |A|F b : ([Tz: A. B) and | A|-a: A, so the F application rule yields (i):

|AFb:(ITz:A. B) |AlFa:A
| Al ba : Bz := d]

O
Lemma D.2. [unicity of types for b :{UT} ]
(i)if Abgb:B:sand Abcb: B 1§
fArib:B:sand Aby B:5:8 thens~ 5.
Proof. Exactly as letnuima B.2. O
Lemma D.3. [start lemma for br]
IfFAVcb:B:sand (s:5)€ A, then Abps: s Ar(s).
IfAz Ais, N b B:sthen Ajz:Ais. A'bpaAcs.
Proof. Exactly as lemma B.3. m]
LemmaD.4. [thinning lemma for k]
Suppose A’k b:B:s, ACAand Abpa:A:s.
Then Ak b: B s,
Proof. Exactly as lemmma B.4. m]
Lemma D.5. [[7-generation lemma for k]
Let Abg (Hx:A. B):s3:sy. Then there are 51, s, sa and sy such tha!
(s1,82,83) ER, Abp A:sy s and A, z:A:s) by Bisa:sh
Proof. Exactly as lemma B.5. O
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LemmaD.6. [substitution lemma for k)

Suppose A,z C 5, A b b:B.s and Abyc:C s,

Then A, Az :=Clbpbz:=c]: Blz:=¢]: s

Proof. By induction on the derivation of A,2:C 15, A k¢ b: B : 5. ]
LemmaD.7. For functional PTS

Fr6:B = (IseSr.Thb:B:s)

|
[l
o)

where T' is defined by {

Nz A Tz:A:s iflbfA:s:s .

N.B. In lemma B.6 T is defined differently, viz. in terms of Fy, instead of .

Proof. By induction on the derivation of I' F b : B, Only if the last step is the application rule
is there any difference with the proof of lemma B.6.
Application. The last step in the derivation is

Feb:(He:A. B) I'Fa: A
IFba: Bl :=a

To prove : (ds € St. T by ba : Bz := a] : 5).
By the IH there are sz and s; such that

Theb:(HHz:A. B):s3 (1
Thera:A:s (2)

By the II-generation lemma for by it follows from (1) that there are ¢;, ¢] .53 and sj with
(ty,s2,83) € R such that

Th At 1) (3)
Tox:A:t by Bisa:sh (4)

By UTy, t1 = s1, so by the substitution lemma for b it follows from (2) and (4) that
Ty Ble:=a]: 59 : 5

Now by the br application rule
EE‘[’ b:(IHx:A.B):s3
£ Fea:4d:s)

Pty Ble:=a]:s2:5
MFpba: Blz:=d]:s

2 e

D

LemmaD.8. The two ways to extend b-contexts to br-conlezls used in theorem 3.4 and the pre-
vious lemma are the same, ie. I'=1T.

Proof. Exactly as lemma B.7. D
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