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Summary
Some general remarks for experimental designs are made. The general statistical methodology
of analysis for some special designs is considered. Statistical tests for some specific designs
under Normality assumption are indicated. Moreover, nonparametric statistical analyses
for some special designs are given. The method of determining the number of observations
needed in an experiment is considered in the Normal as well as in the nonparametric situation.
Finally, the special topic of designing an experiment in order to select the best out of k(? 2)
treatments is considered.
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1. Introduction

In various fields of industrial investigation or biological and agricultural research the ob
servational data are of a variable nature. Even when the conditions of an experiment are
kept constant as much as possible the outcome or response variable will vary from one trial
to another. This variability is indicated by the term:

experimental error

or error. A perfect repetition of a treatment to experimental units is in practice impossible.
There is always some variation in the effect of the same treatment applied to different exper
imental units. This difference is due to heterogeneity of the material, errors of observation,
but also the failure to repeat the treatment exactly. Division of the material and allocation to
the different treatments in a random way is therefore of essential importance. A completely
randomized design is a plan for collecting data in which a random sample is selected from
each treatment, and the samples are normally supposed to be independent.
However, this kind of error is often only a small part of the variability. The main reasons for
variability are often uncontrolled instruments or environmental factors like

temperature

humidity

pressure

pollution

etc. Statistical designs of experiments and corresponding statistical parametric or nonpara
metric methods of analysis cal~ help us to draw conclusions from data with random fluctua
tions.
In order to achieve that the variability is of a random nature a good design is important.
Replication and randomization are, besides the use of blocks, two principal aspects of design
ing an experiment. Often the responses in an experiment are subject to sources of variation
in addition to the treatments under study. Suppose for instance that in a field experiment a
research worker is studying the yield resulting from four varieties of wheat. If the experimen
tal area is divided into a number of smaller areas of equal size, the blocks or replications, and
each of these blocks are divided into a number of plots (units), then randomization within
each block is carried out and we have in this case a so-called 'randomized block design'. A
randomized block design is a plan for collecting data in which each of k treatments is mea
sured once in each of b blocks. The order of the treatments within the blocks is random.
In this report general concepts and ideas of statistical aspects of experimental designs are
considered and discussed. A good design of an industrial or scientific experiment is essential
for correct and efficient investigation. A correct design makes it possible to draw correct and
justified conclusions.
For answering questions data have to be collected from experimental units. For industrial
experiments machines, ovens and other similar objects form experimental units. For agricul
tural experiments equal sized plots of land, a single or a group of plants, a single or a group
of animals are used as experimental units.

1



About sixty years ago the main principles of experimental design were formulated at Rotham
sted Experimental Station in United Kingdom. The pioneer in this field was Ronald A. Fisher.
He published the results in his book 'The Design of Experiments' in 1935. In 1966 the 8-th
edition appeared. During the period after the appearance of Fisher's book on experimental
design an impressive stream of papers and books dealing with design of experiments and the
corresponding parametric and nonparametric statistical analysis have been published. The
corresponding parametric analysis is indicated by the name 'analysis of variance'. Why do we
find so many uses of statistics in the analysis of a design? Because many of the decisions we
make are based on uncertain data. Moreover, there is a need for greater efficiency. Finally,
there is also a need for more complex experiments. Not only one factor is of interest, often
a large number of factors and their possible interactions are important and have possibly
influence on the response variable. Most people are poor at measuring and distinguishing
between large number of factors. A statistical design in which the factors can simultaneously
be varied is of great importance. Statistics is not just a set of techniques, it is an attitude
of mind in approaching data. In particular it acknowledges the uncertainty and variability
in data and data collection. Statistics is making decisions in the face of this uncertainty.
Designing experiments in a statistically sound way and the corresponding parametric or non
parametric statistical analysis are of vital importance for good decision making.
Before collecting data and analysing these data it is important to give careful thought to the
proper design of an experiment. A project has in general three phases:

the experiment

the design

the analysis.

A first question is: 'What is the goal of the experiment?' The experiment includes a state
ment of the problem to be solved.
The purpose of an experiment is the responsibility of the research worker, not of the statis
tician. The research worker has to answer the question: 'What is he going to do with the
results of the experiment?'
It is necessary to define the dependent or response variable and the independent variables
or factors which may affect the response variable. Are the factors qualitative or quantita
tive? Can they held constant? Are the levels of the factors certain fixed values or are they
a random choice from a population of all possible levels? Experimentation, designing a good
experiment and an adequate statistical inference are essential features of general scientific
and industrial methodology. A proper design, such that the interpretation of the data can
be done in a valid way, is essential.
There are many books written on designing experiments. To mention a few: Kempthorne
(1952), Cochran and Cox (1957), Federer (1955), Montgomery (1984), Cox (1966). The last
mentioned book is well-known and is mainly dealing the fundamental concepts of with de
signing an experiment. It can be seen as a basic guide-line for experiments design. The other
books are mainly dealing with the analysis of experiments.
It is the purpose of the next chapter of this report to present the fundamental concepts in the
design of experiments. In later chapters also the analysis will be indicated. Chapter 3 is deal
ing with special designs as Incomplete Block Designs and Fractional replication. Chapter 4 is
dealing with the required number of observations under the Normality assumption, whereas
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Chapter 5 presents a nonparametric approach. Chapter 6 gives an analysis, parametric and
nonparametric, of a number of problems. Chapter 7 presents the selection problem: design
and analysis. Finally, in Chapter 8 a number of remarks are made.
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2. General remarks

In this chapter we shall describe general concepts and general designs as Randomized Blocks,
Latin Squares and Factorial Designs.
Large uncontrolled variation is common in biological sciences. For this reason effects of treat
ments under investigation are often masked by fluctuations outside the experimenter's control
and the designing of experiments is an essential part of scientific research in order to make
it possible to draw valid conclusions in an efficient way.
Let us take the following example. In an agricultural experiment one wants to compare differ
ent varieties (treatments in general). The experimental area is divided into plots of equal size
(experimental units or units in general) and the varieties are assigned randomly to the plots.
In general, neighbouring plots tend to give yield more alike than distant plots. It is possible
that there is a systematic variation across the field. A different year or a different field may
produce substantial different results. The uncontrolled variation is often large compared with
the treatment effects. It is essential in most cases (or always (!» to plan a good experiment
in order to detect differences in treatment effects while so much variation associated with the
experimental units is present.
For a good experiment it is required that the experimental units receiving treatment Tl differ
in no systematic way from the experimental units receiving treatment T2 • In this way it is
possible to estimate the true treatment effect of Tl minus T2 without a systematic error. In
this context the key word is

randomization.

Randomization makes it possible that possible differences in experimental units are randomly
divided to the treatments. The influence of this error is measured by the so-called standard
error. It is the magnitude of the random errors in the estimate of the treatment contrast.
In fact, the standard error of the difference between two treatments Tl and T2 is equal to
(T(n!l + n2"l)t, where ni is the number of observations (experimental units) of Ti(i = 1,2).
The standard error tends to zero if 111 and 112 tend to infinity. The number of experimental
units is important in order to get a sufficiently small standard error. However, too many
units has a disadvantage that small treatment effects may be detected, which are generally
of no practical importance. Then the investment in time and energy was too large.
From a practical point of view an important remark is that the whole experiment must
be relatively simple. The reason is the fact that in most cases the experiment has to be
carried out by unexperienced people, unexperienced in statistical principles and therefore
not conscious of the importance of a statistically correct execution of the experiment. For
instance the fact that randomization is of vital importance, is not always realized.
We assume that the treatment effects add on to the experimental unit term and that the
effect of a treatment is constant during the whole experiment.
Usually, when the numbers of units for treatments T1 and T2 are equal, the difference between
T1 and T2 is estimated by the difference of the means of all observations on T1 and T2 ,

respectively.
Moreover, it is of course not allowed that an experimental unit is affected by the treatment
applied to the other experimental units. In other words, it is supposed that there is no
interference between different experimental units. One has to be careful when an experimental
unit is used different times (overflow effect), or if different experimental units are in physical
or psychological contact (dependency). In agricultural experiments guard rows are left out of
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consideration. In psychological experiments using a person several times, it is possible that
the response is dependent on the whole sequence of situations that have preceded it.
The precision (or standard error) can be improved by taking more experimental units. An
alternative is to improve the design of the experiments. This aspect can be illustrated by a
simple (but practically important) situation, namely the comparison of just two treatments
T1 and T2 • The main aspect of this situation will be the design. The statistical analysis of
the data is closely related to the design. That's the reason we shall also give the analysis.
Using this situation we shall discuss the three basic principles of experimental design, namely

replication

- randomization

blocking

Replication is the repetition of the basic experiment. It provides an estimate of the experi
mental error. Then it is possiule to investigate a possible statistical significance of a difference
in treatments. If 0'2 is the variance of the data and there are n replicates, then the variance
of the sample mean is O'f = "': ' so a more precise estimate of the mean of Y is possible. In
general: More replications increase the accuracy of estimates of the treatment effects or more
replications result in more accurate conclusions. If a treatment is allocated to r experimental
units in an experiment, it is said to be replicated r times (not: r - 1). If in a design each of
the treatments is replicated r times, the design is said to have r replications.

Randomization is of vital importance. Statistical methods require that the observations
or eITors are independently distributed. Randomization usually makes this assumption cor
rect. By randomization we mean that the allocation of the experimental material as well as
the order in which the individual runs or trials of the experiment are to be performed are
randomly performed. See also the instructive Example 5.9 in Cox (1966).
By proper randomization, the effects of possible extraneous factors will also be averaged out.
This aspect can easily be illustrated in the example to be given for the comparison of two
treatments.
The randomization of treatments can be realized as follows. Random numbers are drawn with
the aid of a table with random digits (random tables) or computer. For t treatments we need
at random numbers, where a equals the number of times a treatment occurs in the whole
experiment (or in a part of the experiment). Ranking the random numbers in increasing
order, produces a random permutation of the treatments. It is clear that for each experiment
we need new random digits. Using the same random digits for different experiments is a very
bad attitude.
To use a systematic pattern is also very dangerous. The same order (Tl, T2 ) for each block
can be totally wrong. For instance, when T1 and T2 are measured after each other and a dif
ference in time has influence. Also a system of ordering (Tll T2 ), (T2 , T1 ), (Tll T2 ), (T2 , T1 ), ...

can be very dangerous, when this pattern coincides with some pattern in the uncontrolled
variation in an agricultural field experiment.
As a conclusion, we can formulate that randomization makes it possible that unbiased esti
mates of the treatment effects, unbiased estimate of the error variance, and exact significance
tests concerning the treatment effects can be obtained.
Blocking is a cornerstone of experimental design. It provides a method in order to increase
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the precision of an experiment, or more precisely a larger precision with the same number of
observations. Reducing the error can be done by making experimental units homogeneous.
This can be achieved by forming the experimental units into several homogeneous groups,
usually called blocks, allowing variation between the blocks. A block is a portion of the
experimental material that is more homogeneous than the whole collection of material.
All these aspects can be illustrated in the next example of the comparison of just two treat
ments T1 and T2 •

If there are 20 experimental units, then 10 units can be randomly allocated to T1 and the
rest to T2 • The effect of this uncontrolled variation on the error of the treatment comparison
can be reduced by obtaining pairs of units as alike as possible. We suppose that there is no
systematic difference between the first and the second unit in a pair. The two units in a pair
are expected to give as nearly as possible identical observations in the absence of treatment
differences. The correct procedure is to randomize the order of T1 and T2, independently for
each pair. The succes of 'paired comparisons' depends on an efficient pairing of the units.
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3. Special designs

Let us consider the following situation. One wants to investigate the systematic difference
between two methods T1 and T2 for determining the fat content of rats. One has the impres
sion that the two methods have the same standard deviation. One has a population of rats
(adults, and of the same sex) for the experiment. Now, one has two different designs.

The first design DAis to draw randomly 2n rats from the population and allocate ran
domly n rats to T1 and the rest to T2 • This design is called a complete randomized design.
The responses are indicated by

Yn , Y12, ... ,Y1n (for TI)

two mutually independent samples of size n.
Under the assumption of Normality wit.h expectations 0:1 and 0:2 and with common variance
O'~ the suitable test statistic for testing the null hypothesis

against the alternative hypothesis

1S

n { n n }with fi. = ~ L:l'ij (i = 1,2) and 51 = 2n1_2 L:(Y1j - Yd2+L:(Y2j - Y2.)2 .
;=1 j=l ;=1

Under Ho the statistic TA has a i-distribution with 2n - 2 degrees of freedom.

The second design DB is the design with paired observations. From the population of rats a
random sample of n rats are drawn. Both treatments (in random order) are applied to each
of the n rats. Per rat the difference V of treatment T1 minus treatment T2 is determined.
We suppose that the Vj (j = 1,2, ... , n) are independently Normally distributed with mean
Qo(= EV) and variance 0'1. The relevant test statistic for Ho : 0:0 = 0 against H o : Qo i= 0 is

with
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2 1 ~ - 25B = -- L.,,(Vj - 11) .
n - 1 j=1

The test statistic TB has under JIo a t-distribution with n - 1 degrees of freedom.
The numerators of both test statistics are of equal merit, for ao = al - a2 and application
of the prescription if to the 217, observations will give the same result as the prescription
¥t. - Y2 ..
But the denominators are totally different.
For the design DA, the complete randomized design, there are two components in the vari
ability of fat contents:

error of measurement

variability of fat content of the rats.

For the design DB, with paired observations, only the error of measurement is present. By
taking differences the influence of fat content has been eliminated.
Suppose the variance of the error of measurements is O"~, then ~5~ has expectation ~0"1 =
~20"~ for difference has variance O"~ + O"~ = 20"~. For design DA the denominator (besides
the square root) ~5~ has expectation ~O"~ = ~(O"~ + O"~), with O"~ the variance of the rat
population.
We have

2 2
-(0"2 + 0"2) > _0"2 if and only if O"p2 > 0 .n m p n m

From this it follows that under the alternative hypothesis using DB the null hypothesis will
be rejected sooner than using DA. The influence of the difference in critical values (for 2n - 2
and 2n degrees of freedom) is not so important.
For the two designs D A and DB the confidence intervals for al - a2 with confidence level
0.95 have expected midpoints al - 02 == 00 and lengths

{
2 2}~

LA = 2t2n-2jO.975 ;,5A

and

{
I 2}}

LB = 2tn -ljO.975 ;,5B ,

respectively, with P(Tm :::; tmjl-oy) = 1 - ')', where Tm has a t-distribution with m degrees of
freedom. In general, 25~ >> 5~ and the difference between t2n-2jO.975 and t n - 1jO.975 is not
so large, which is illustrated in next table.
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n t2n-2;0.975 tn -1jO.975

2 4.303 12.706
3 2.776 4.303
4 2.447 3.182
5 2.306 2.776

10 2.101 2.262
20 2.025 2.093
30 2.002 2.045
40 1.994 2.023
00 1.960 1.960

If 81 > 51 then DAis less efficient than DB for n > 2. Certainly, for n ~ 5 or 10 the
difference between the critical values becomes rather small.

Example
Using design DB the following numerical results are given

Treatment Diff.
1 2 v

15.4 16.1 -0.7
15.4 16.5 -0.1
15.9 15.5 0.4
16.7 17.6 -0.9
16.0 17.6 -1.6
17.4 18.5 -1.1
17.2 17.9 -0.7
17.3 18.3 -1.0
15.5 17.9 -2.4
16.0 16.0 0.0

From the results it follows th'lt

v = -0.81

10

l)Vj - v)2 = 5.929 ,
;=1

thus

2 5.929
sB = -- = 0.659 .

9

We get for testing Ho : ao = 0 the test statistic

-0.81
tB = = -3.155

y'0.659!1O
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and Ho is rejected, because t9;0.975 = 2.262 and thus t9;0.025 = -2.262. An estimate for O'~ is
equal to 0.~59 = 0.330.
Now we can estimate O'~ as if the observations have been obtained using design DA. The
statistics ~(Yli - fi.)2 and ~(Y2j_1T2.)2 are now stochastically dependent (for Y1i and Y2j are
belonging to the same rat), but the expectation of both sums is 90'~. The unbiased estimate
of O'~ is equal to

{8 {2836.33 - (162.8)2 j10 +2965.19 - (171.9)2 j10} = 1.349 .

Thus an estimate of O'~ is equal to

1.349 - 0.330 = 1.019 .

From this it follows that ('y = .05):

DA DB
o-m = .574 o-m = .574
o-p = 1.000
0-A = 1.1G1 GB = .812
LA = 2 * 2.101 * .519 LB = 2 *2.262 * .257
= 2.18 = 1.16
'ConLint.' ConLint.
(-1.90, .28) (-1.39, -.23)

Substitution in tA should give 1.850 with probability of exceedance less than .10 assuming
the t-distribution holds (which is not true).

An interesting question is 'What number of observations for D A leads to the same length of
the confidence interval?' The requirement is (neglecting the difference in critical values):

2S~ 2 * 1.349
-2 = =4.09
SB 0.659

as many observations for DA. Thus 10 rats for DB and 2 *40 = 80 rats for DA. The relative
efficiency of DA (relative with respect to DB) is estimated by ~g = l.

Randomized Blocks
A natural generalization of paired comparisons is to consider the situation with t(> 2) treat
ments. If there are t treatments we can make blocks of size t. The units in each block are
expected to give as nearly as possible the same observations if the treatments are equivalent
(in their effect). The order of treatments is randomized within each block. Each treatment
occurs once in each block and the randomizations for the blocks are independent. The compar
ison of the treatments will take place within blocks, so the effect of variations between blocks
is eliminated, so far as treatment comparisons are concerned. The general idea of grouping
is frequently used in simple experiments as well in more complicated designs. As comparison
of treatments takes place within blocks and the effect of constant differences between blocks
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is eliminated, a good grouping of experimental units into block is of fundamental importance.

Latin Squares and Graeco-Latin Squares
A natural extension of the randomized block design is the Latin Square. In the randomized
block design there is one system of grouping. It might happen that there are systematic
differences between the units within blocks. Then we should have two sytems of grouping,
into blocks and into order within blocks. We would wish to balance out both systematic
variations. A restriction which limits the use of Latin Squares is that the number of blocks
(rows) and the number of experimental units in a block (columns) are equal. Assume this
number is equal to k. Then a Latin Square is a design in which k2 units are divided in three
ways into k classes of k elements, such that the divisions are pairwise orthogonal (propor
tional representation). In each row and each column each treatment is present once and only
once.
The following example has three treatments indicated with the Latin characters A, Band
C (e.g. industrial processes). There are two kinds of blocking: one corresponding with rows
(e.g. Location) and one corresponding with columns (e.g. Days).

Day
123

1
Location 2

3

A B C
B C A
C A B

The Latin Square can be used when the experimental units are simultaneously grouped in
two ways. If the experimental units are grouped in three ways, then a Graeco-Latin Square
is suitable. For k = 3 we have

Day
1 2 3

1 A,a B,(3 C,'Y
Location 2 C,(3 A,'Y B,a

3 B,'Y C,a A,(3

For example: The Latin characters A, Band C correspond with observers and the Greek
characters a, f3 and 'Y correspond with three industrial processes. Each observer measures
only one process on each day. The Greek characters are situated such that each observer
occurs once in combination with each industrial process, whereas each observer measures
once in each day and once at each location.
For both kinds of squares the arrangement of treatments (persons, processes, locations, days)
should be determined by randomization.

Concomitant observations
In order to reduce error or to increase precision not only grouping into blocks can be used, but
also the use of concomitant or supplementary observations. Then with each main observation
for which we try to find the treatment effects, for each experimental unit we have one (or
more) concomitant observations. The condition is that the value for any unit must be unaf
fected by the particular assignment of treatments to units actually used. This can be realized
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by observing the concomitant variable before the treatment is applied, or before the effect of
the treatment has had time to develop. Examples of concomitant variables are the yield of
a variety of wheat on a plot in previous years, or the weight of the heart of an experimental
animal use in a biological assay. Also the weight at the start of a diet experiment may be
important for an efficient analysis. The proper technique of analysis for such an experiment is
the analysis of covariance. For a simple model it is often possible to find the effects graphically.

Factorial designs and Fractional factorial designs
Up to now we have considered experiments for which one factor (e.g. variety) is investigated.
There are situations for which we wish to investigate simultaneously the effect of several fac
tors. For instance, in a production process we are interested in the influence of temperature,
pressure, proportions of reactants, humidity, and the concentration of a chemical component
on the yield per time unity. Each treatment is a combination of these five factors, or more
accurately a combination of one level from each factor, where a factor level is an investigated
fixation of the concerned factor. If k factors are varied each on two levels, it results in 2le

treatments. The investigation of all these treatments in one experiment is called a factorial
experiment, or a 2le-factorial experiment. Analogously, there are 3le , 23 *3, ...-factorial exper
iments. Let us consider the following agricultural experiment. We want to investigate the
yield per plot of wheat in dependence of the following four factors: variety (3 levels: varieties
A, B and C), nitrogeneous fertilizer N (2 levels: no, yes), phosphate P (2 levels: no, yes) and
potash J( (2 levels: no, yes). This is a factorial experiment with four factors, one factor at 3
levels and three factors at 2 levels. We have in short a 3 *23-factorial experiment.
\Ve have assumed that each combination of factor levels is used the same number of times.
Such an experiment is called a complete factorial experiment. A special class of incomplete
experiments is the class of fractional factorial experiments. This class of fractional factorial
experiments is of special use when the number of factors is not small, and a large number of
observations (experimental units) is not attainable.
A simultaneous investigation of the 4 factors in the example mentioned before has the fol
lowing essential advantage. Main effects of the factors as well as the interactions (two-factor,
three-factor interaction,... ) can be estimated, and tested under assumption of normality of
error. Four- and higher order interactions are normally difficult to interpret. That's the
reason that high order interactions are not taken into the model, but are also used for es
timating the error variance. Besides this advantage of simultaneous investigation of two or
more factors, is the economic advantage. A 24-factorical experiment with 3 replications re
quires 24 * 3 == 48 experimental units. A (not recommended) alternative is to use ~ = 12
units for the investigation of each factor. The main effect of each factor can be investigated
by comparison of 6 units on the one (low) level with 6 units on the other (high) level. In
the factorial experiment the estimation of a main effect is based on the comparison of 24
units on the low level with 24 units on the high level. So the accuracy is much larger, not
to mention the fact that in the factorial experiment information concerning interactions can
be obtained. That's to say the examination of the extent to which the effect of one factor is
different for different levels of another factor. When interaction is present, the estimate we
obtain of one factor if the levels chosen for the other two factors happen to be totally different
from those of final practical interest, may be quite misleading. Moreover, if the goal is to find
the best combination of treatment combinations, the investigation of factors separately does
not produce relevant information. As a conclusion we can state that factorial experiments
have, compared with the one factor at a time approach, the advantages of greater precision
for estimating overall factor effects, and the possibility of getting information about possible
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interactions. It is clear that a large number of factors results in a very large experiment,
which is in general not desirable. Fractional factorial experiments can give a way out for
moderate values of k.
Factors can be classified as follows. Firstly, factors can represent treatments applied to the
units, and factors which represent a classification, outside the investigator's control, of the
units into different types. Secondly, we can represent the factors as (1) quantitative factors
(e.g. temperature, pressure), (2) specific qualitative factors (e.g. varieties, different produc
tion processes representing qualitatively different methodologies), and (3) sampled qualitative
variables, for which the levels are sampled from a population of levels (e.g. 5 persons from
a population, 7 monsters from a population of raw material). With quantitative factors
the methodology of response curves or response surfaces relating the true treatment effect
to the quantitative carrier variables defining the factor levels. The absense of interaction
between two quantitative factors means that the response surface is oriented in such a way
that the effect of changing one factor is the same for all levels of the other factor. With
specific qualitative factors we can work with main effects and interactions. The main effect
of a factor TI gives us the differences in mean observation between the different levels of TI

averaged over all levels of the other factors. The two-factor interaction between TI and T2

examines whether, averaged over all levels of the remaining factors, the difference between
levels of T I is the same for all levels of T2 or vice versa. Similarly, a three-factor interaction
between TIl T2 and T3 examines whether, averaged over all levels of the remaining factors,
the two-factor interaction between TI and T2 has the same pattern for all levels of T3 or,
equivalently, whether the two-factor interaction between T2 and T3 has the same pattern for
all levels of TI , or equivalently, whether the two-factor interaction between TI and T3 has the
same pattern for all levels of T2. Analogously for more factor interactions. We have already
remarked that these many-factor interactions are very rarely of direct practical use.
For a sampled qualitative factor, the interaction of another contrast with it determines the
error, when the other contrast is to be estimated for the whole (infinite) population oflevels
of this (sampled) qualitative factor.
In planning a factorial or fractional factorial experiment some practical steps can be consid
ered. The first step is to make a list of factors of possible interest. This can be seen as a
kind of brain storming. Then, in order to make the experiment practically realistic, one has
to conclude which factors have to be included in the experiment. Then we have to consider
at how many levels each factors should have to appear.
In order to investigate whether a quantitative factor has influence, the use of two levels (the
difference as large as possible) is often sufficient. If one wants to have some estimate of the
shape of the response curve, then three levels should be used. In this way it is possible to
see whether the effect is non-linear. Then it can be seen whether an optimum is within the
levels or outside the area of experimentation. More than three levels is for most situations
not of practical interest. The response curve must be very complicated, will the use of the
four or more levels be profitable.
In a small factorial experiment randomized blocks and Latin squares can be used in order to
reduce the effect of a controlled variation.
The choice of the number of observations is of course an interesting topic. In the next chapter
we will make some comments on it.
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4. The number of observations: Normal distribution

The precision of the estimators of the treatment effects depends (among other things, like
the design of the experiment and the error variation which is a function of the variability of
the experimental material, the accuracy of the experimental work, and of the measurements)
on the number of experimental units. If it is practically possible, given the design and the
material, to increase the number of units (which is not always the case in practice), then we
can make the precision of our estimates sufficiently high. The addition of 'sufficiently' means
that we are in practice not interested in detecting differences which are not technically of
interest. A difference that is statistically significant does not include a technically significant
difference. Trying to get a too high precision is then waisting energy, time and money.
Suppose we have t treatments Ti, 12, ... ,Tt . The t!'ue treatment effects are indicated by
ai, a2, ... , O't and we are interested in the contrasts (comparisons of the treatment effects) like
a1 - 0'2,0'2 - 0'3, i (0'1 +0'2 +03) - ~ ( 0'4 +0'5), etc. The sum of the coefficients of these linear
combinations of the true treatment effects is equal to zero.
The error in the estimated contrast is the difference between the true and the estimated
contrast. The average error is zero. As a measure of precision we define the standard error:

where Ii is the particular contrast and c,; the corresponding estimator. If for example an
unbiased estimator Cl = al - (/2 of ~/l = 0:1 - 02 is build up by the mean of nl independent
observations minus the mean of a different (independellt) set of n2 independent observations,

then the standard error is equal to {1I11+ n21
} L,., with (J" the residual standard deviation.

The two-sample case
Let us consider in more detail the design of the comparison of two independent samples of
independent observations. These observations correspond with two Normal random variables
with parameters (O'l,(J"n and (02,(J"~), respectively. Thus given are

Assume that the total number of observations 111 +112 = 2n is given by limits of costs.
The problem is to determine 111 and n2, given 711 + 112 = 211 (71 known integer larger than or
equal to 1), such that

is minimal.
If (J"~ = (J"i = (J"2 (unknown), then

(1 1)- + (J"2
- 111 2n - 111

14



and this is minimal for

=
-(2n - n1)2 + ni

ni(2n - n1)2

= 0,

which can easily be seen. From tllis it follows that nl = n = n2 is the best choice for the
sample sizes and var (li - 1'2.) = ~lT2.

If O"~ = j2O"i (with f > 0), then

and this is minimal for

-(2n - nl)2 +pni
ni(2n - nI)2

= 0 ,

which can easily be verified.
The numerator is equal to zero for

2n - n1---=f

or

The best choice for the sample sizes is

2n 2n 2nf
nl =-- and n2 = 2n - -- =-- .

f+1 f+1 f+1

If n1 is not an integer, then rcunding off into two directions furnishes the optimal integer nl
(and n2 =2n - n1).
For the variance of Yl. - f 2. we get
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= (1 +1+12
(J +1)) O'~

2n 211,1

For f = 1 we get the expression for O'~ =d = 0'2.

Now we shall determine 11,1 = n2 = 11, for two independent samples from distributions with
equal known variance 0'2 such that the power of the i-test for two samples for testing

against

is at least 1 - {3.
The test statistic is

which can be written as

(1'1. - ad - CY2. - 02) + 01 - 0'2

(Jj!

= X+ 0,

where X has (under Ho as well as under JId a standard Normal distribution and

~ = (a1 - (2)O'-1 fi. The power of the test is equal to

with Ul-oy defined by P(X ~ U1-"Y) = 1 - /'.
The power requirement

P(x +0 ~ UI-OY) = P(x ~ Ul-"Y - 0) ~ 1 - {3

is fulfilled for

16



or

6 ~ U1-"Y - u{3 = U1-"Y +U1-{3 •

From this it follows that

or

2 (0'1 - 02)-2
n ~ (U1-"Y +U1-(3) aJ2, •

Let us consider the situation of unknown a and a two-sided alternative. It is possible to put
a requirement on the confidence intcl'Yal for 01 - 02.

A two-sided confidence interval for 01 - 02 equals

We can state the requirement

P(2t2n-2;1-hSj'f $ L) ~ 1 - f3 .

The left-hand side can be \\"ritten as (with t := t 2n-
2
;1-b)

= P (2 < (!:-) 2n(n - 1))
X2n-2 - a 4t2 .

From the probability requircmcnt it follows that

(L) 2 n(n - 1) 2
-;; 4t2 ~ X2n-2jl-Jj .

17



It is not possible to solve for n, because X~n-2;1-.13 as well as t2n-2;1-~-Y are functions of the
sample size n. A trial and error method will be satisfactory. If a is known it is sufficient to
express the length of the confidence interval as a factor times the known a.

One sample of paired observations
We assume that one sample of n independent paired observations

is given. Define Xi = Y1i - Y2i (i = 1,2, ... ,n). We assume that X1,X2 , ••• ,Xn are mutually
independent, identically distributed Normal random variables with expectation a and known
variance a 2 •

The problem is to determinc thc sample size n such that the testing of

Ho : a = ao

against

has a power of at least 1 - f3.
The test statistic

T=X

is N(a, C7:).
Under Ho we have

or

(
X-ao c-ao)

Pao a/Vii ~ a/vn =I .

Thus

c- ao
a/Vii = Ul--y

or

a
c= ao+ ViiU1--y.

The power of the test is

18



= P(x ~ -0 +U1-"Y)

with

From the probability requirement

it follows that

Then

satisfies the requirement. From this it follows that

or

For given 7 and f3 and the difference 0:1 - 0:0 expressed as a multiple times (1, the needed
sample size can be found. In most cases rounding-off upwards will be necessary to get an
integer value for the sample size n.
For a left-hand sided alternative the quantity 6 is negative, but the same formula for n (with
only the absolute value of 0:1 - 0:0 of interest) can be used.
For two-sided testing of

Ho : 0: = 0:0

against the two-sided alternative
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HI: a =I ao

using the test statistic X, H 0 will be rejected if

The power of this test against an alternative a = al is equal to

= 1- P(lx + 61 < vI-b)

::: 1 - P(-u 1 - 0 < v < 1/ 1 - 6) .I-p' A 1-:j")'

The requirement that the power has to be at least 1 - f3 leads to

P(-ub - 6 < X < u1_ b - 8) = f3 .

If fJ is positive and sufficiently large, then P(x ~ -u1_ b - IS) can be neglected. Thus the
requirement reduces to

P(x < u1-h - 6) = f3 .

From this it follows that

or

If 6 is negative and sufficiently large, then

f3 = P(-u1-h - 8 < X < -0 + lI1-h)
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~ P(-U 1 - 0 < V) .l-i'Y A

Thus

or

Thus combining the two results:

which gives

Often a rounding-off to above is necessary to guarantee that the power is at least 1 - p.
The case that u is unknown and has to be estimated by 52 (the pooled variance estimator;
see section 3) can be dealed with in an analogous manner. The only difference is u to be
changed into tn-l'

A different approach is to put the requirement that

P(2tn - l;l-h In ~ L) 2: 1 - ;3 .

The left-hand side can be written as follows

P(2fn - lil-h In ~ L)

_P(2 < n(n - 1) (L) 2)
- Xn-l - 4t2 ;; ,

where t = tn-lil-~'Y' The quantities t and X~-l depend on n, so it is not possible to solve
explicitely for n, but a trial and error method will work in practice to determine the required
n. Often a rounding-off to above will be necessary.
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5. The number of observations: Nonparametric situation

In this chapter we shall discuss the problem of determining the number of observations in some
nonparametric situations. In other words for some familiar nonparametric or distribution-free
tests we shall determine the minimal sample size such that the tests have power of at least
1 - f3 against alternatives that differ sufficiently from the hypothesis being tested. In our
discussion we shall consider the Sign Test, the \Vilcoxon Signed Rank Test and the Wilcoxon
Two-Sample Rank Test.
Our starting point is a ,-level test \vith test statistic 1'. In the classical situation we had to
determine the sample size such that the requirement is met that the power against a param
eter value (which differs from the null hypothesis) is sufficiently large. In the nonparametric
situation there is in general not such a parameter. That is the reason we have to use a
different approach. This approach is presented by Noether (1987).
We suppose that l' is (approximately) distributed as N(J-L(1'), 0"2(1')). Under Ho we have
J-L = J-Lo(1') and 0" = 0"0(1').
For an upper-tailed test the critical region is defined by

l' > J-Lo(1') + u1-oyO"o(T) ,

and the power against the alternative lla is given by

= p ( > J-Lo(1') - 11(1') + -1)
X - pO"o(T) U1--yP

with P = :.F{)) and P(X s; U1-oy) = 1 - ,.
The requirement that the pmver of the test must be equal to 1 - f3 is met if

J-Lo(T) - J-L(T) -1
pO"o(T) +U1-oyP = ul3( = -ul-l3)

or if

J-L(T) - J-Lo(T)
0"0(1') = U1-oy + pUl-{3 •

With

Q(T) := {J-L(T) - J-Lo(T)}2
0"0(1')

the requirement is fulfilled if
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We assume that p = 1. This is for instance true for shift alternatives. For alternatives that
are close to the null hypothesis this assumption is in general approximately correct. We get

and we can solve for the number of observations. For the one-sample problem discussed in

the previous chapter we have the test statistic T =Y = ~t Ii and QCfr) = (:iJ*f, and
i=l

solving for n gives the same result we got in the previous chapter.

Sign Test
Assume one sample of independent observations is given: YllY2 , ... , Yn • The associated con
tinuous random variable has median m. We want to test the null hypothesis

Ho : rn =rno,

with rno known. Subtractillg mo from the n obscrvaJions ]fo changes into

Ho : rn = o.

The Sign Test, which can be applied, has the followir,g test statistic

T = #{Y > O}.

Defining

p= P(Y > 0)

then

1
/-leT) = np, /-lo(T) = - n

2

and

By the assumption of continuity we have Po(Y =0) =0, and Po(Y > 0) = !.
To meet the power requirement we get

or
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Against a known alternati\'c IIa : p(> ~) the required sample size can be determined. A

choice of p can be based on past experience. A different possibility is to put ~~~~~~ = c, then

G = c thus p = C~l'

For the Sign Test: p = yn(~p) = 2y'p(1- p) < 1 for p i= ~, so the determined sample size

is conservative.
IT information on p, and thus on p, is available, then sometimes an improved estimate can be
given, using pU1-{3 instead of U1-{3 in the formula for n.

Wilcoxon Signed Rank Test
Given are n independent observations

from a continuous symmetric random variable. Suppose the distribution is symmetric about
the unknown location parameter 1n. 'Ve wish to test the null hypothesis

Ho : m = 0

versus the alternative hypothesis

HI: m > O.

It is possible to apply the \Yilcoxon Signed Rank Test. The test statistic T is defined as
follows. The absolute values of the n observations are ranked in increasing order of magnitude.
The test statistic T is defined as the sum of the ranks associated with the positive observations.
Under Ho the statistic T is asymptotically (for n -+ (0) Normally distributed with

n

ET = ~ L: i = ~n(n + 1)
i=l

and

n

var T = ~ L: i 2 = 2\11(n +1)(2n + 1) .
i=l

These expressions can easily be derived by noticing that under Ho the statistic T can be
n

written as L: ZiR(fi) where R(1i) is the rank of 1i (after ranking the absolute values of
i=l

the n observations) and the Zi are independent and identically distributed random variables
with P(Zi = 1) = P(Zi = 0) = ~ so that E(Zd = ~ and var (Zi) = 1. Since T is a linear
combination of these variables, its exact mean and variance are easily determined under Ho.
lt can be seen that

24



the number of positive Walsh averages, for a rank R I associated with the smallest positive

b . Y h 1 1 1 Y1+YR Y2 +YR YR +YRo servatlOll R 1 means t at t le R I 'Va S 1 averages ~,~, ... , 1 2 1 = YR1 are
positive. If the rank of the second positive observation YR2 is equal to R2 then the number
of Walsh averages is increased with R 2, etc.
Now, we can write

peT) = JL(L :E Tij) ,
l$i$.i$n

where

Tij = {

We define

1 if

o if

l'i+y.
, 3 > 0

l'i~y.
, 3 < 0

2 .

PI = P(Yi > 0)

P2 = P(Yi +l'j > 0) (i 1: j)

so

and

Under Ho we get
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PI = ~

P2 = P(Yi +Yj > 0)

00 00

= f f fy( u)fy(r)dudv
-00 -tl

00

= f {l- Fy(-v)}Jy(v)dv
-00

00

= f Fy(v)fy(v)dv
-00

From this it follows that

Q(T) = {np1 + ~n(n-l)]J2 -In(11~+ 1)}2
[i4n(n +1)(2n +1)]2"

for sufficiently large n. The power requirement results in

or

_ 1( + )2( 1)-2n - 3 '111-')' '111-/3 ]J2 - 2 .

In practice we can make a choice of ])2 based on the ratio r = 'im-~':F7.;;+

get P2 = "~1 .

We see that the required sample size for the Sign Test is smaller than the size for the Wilcoxon
Signed Rank Test if and only if (approximately)

1( + )2( 1 )-2 1( )2(. 1)-2:4 '111-')' '111-/3 PI - 2 < 3 '111-')' + '111-/3 ]J2 - 2

or
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or

For a number of distributions PI and P2 can be determined and the tests can be compared.

The two-sample test of Wilcoxon
The test of Wilcoxon for two independent samples

drawn from continuous distributions to test the null hypothesis

against the alternative that Y2-obscrvations would tend to be larger than YI-observations.
To detect this alternative we want to reject lIo when the sum ranks of Y21, Y22 , ••• , Y2n in the
combined sample are large in some sense. However, instead of measuring the tendency of the
sum of Y -ranks to be large, we use the statistically equivalent test statistic of Mann-Whitney.
The test statistic of Mann-Whitney U is defined as

m n

u =2:2:Dij ,
i=1 j=1

where the indicator random variables are defined as

D .. = {1 if Y2j > }'ii
tJ 0 if Y2j < I'ii

for all i and j. In words: U is defmed as the llumLer of times a YI-observation precedes a Y2 

observation in the combined G~'dered arrangement of the two samples into a single sequence
of N = Tn +n variables increasing in magnitude.
We get

00 tI=! ! !y2 (v)fYl(U)dudv
-00 -00

00

= ! FY1(V)fY2(V)dv .
-00

Then
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m n

E{U} = LLE(Dij)
i=l j=l

=mnp.

Under Ho : 'FY1(X) = Fyz(x) for all x' we get

00

p = ! FY1(V)fYl(V)dv
-00

The null and alternative hypothesis can be formulated more precisely as p = l versus p > l.
Thus

Eo{U} = lmn.

For the variance var U we get

var U = var{L L Dij}
j

m

=L L var Dij +2:2: 2: cov (Dij, Dile )+
i j i=ll:$jik:$n

n

+LL L cov(Dij,Dhj )+
j=ll:$#h:$m

+L L L L co\' (Dij , Dhk) .
l:$i;th:$m l:$j#:$n

The random variables Dij are Bernoulli variables with

var Dij = p - p2 = p( 1 - p)

COV(Dij, Dhk) = 0 for i i= 11, and j i= k
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where

00

= J{1-FY2(X)}2fy1(x) dx
-00

and

00

= JFfl(X)fY2(X)dx .
-00

From this it follows

var U = mnp(l - p) +mn(n - l)(Pl _ p2)+

'When Fy2(x) = Fy1(x), thus under Ho, it can easily be proved that Pl = ~ = P2" Then

varoU = l12mn(N +1) "

With

m = f Nand n = (1 - J)N

we find

_ 12{f(1 - J)N 2p - ~f(l - f)N2p
- f(l - f)N2(N +1)

~ 12Nf(1- J)(p-!? "

Thus the power requirement gives the next result

A t" t f - P(Y2>Yl) . t" t f - rn es Ima eo r - P(Y2<Yd gIves an es Ima eo p - rH"
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6. Analysis of variance and nonparametric analysis of some specific designs

In this chapter the analysis of some designs will be indicated. In many experiments the
assumption of Normality is quite commonly made for the data analysis. However, there are
experimental situations where this Normality assumption is not realistic. Nonparametric
methods are methods for which the validity does not depend on the underlying distribution
of the observations.The purpose of this chapter is to give an overview of a number of classical
tests in some specific designs, side by side by a more or less comparable nonparametric analy
sis. For more detailed information we refer to Van del' Laan and Verdooren (1987). In general
we shall suppose that the observations have been drawn from continuous distributions, hence
ties will occur with probability zero.

6.1. Two treatments with shift alternatives

Under Normality
Given are two independent samples of independent observations XI, X 2 , ••• , X m and Yb Y2 , ... , Yn

with

and

To test the null hypothesis

Ho : III = 112

against III : III - 112 -# O,lll -112 > 0 or fli - fl2 < 0 the t-test for two samples can be used.

Nonparametric analysis
Given are two independent samplcs of independent obbcrvations XI, X 2 , ... , X m and Yb Y2 , ••• , Yn
from populations with continuous distribution functions F and G, respectively. To test the
null hypothesis

Ho : F= G

against one- or two-sided alternatives the two-sample test of Wilcoxon can be applied. The
test is sensitive to shift alternatives.
The condition of independency of the continuous observations is a sufficient one. The de
termination of the distribution of the test statistic TV of Wilcoxon under Ho is only based
on the property that the ranks of the X -observations can be considered as a random sample
without replacement of size m flOIll the set {1, 2, ... , N = m +n}. From this it follows that
the test of Wilcoxon can be applied in the situation where a treatment A is applied to m
objects, randomly drawn from a population of N objects, and a different treatment B to the
remaining n objects.
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6.2. More than two treatments with shift alternatives

Under Normality
Given are k(> 2) independent samples of independent observations Xi1, Xi2, ... , Xini (i =
1,2, ,k) from a classification A with classes A ll A2: ... ,AIe • Assume Xii"" N(lti,a2), j =
1,2, , ni. To test the null hypothesis

Ho : 1t1 = 1t2 = ... = Pie

against H l : 'at least one pair of p's is unequal' the analysis of variance F-test can be used.
The test statistic is

MSA 1e-1
F = MSE Ho FN _ 1e

Ie SS 1 SSE
with N ="'"' ni, M SA = --"-. ,AISE = -.-- and the Sum of Squares of A equals

~ k-l J\'-k
1=1

and the Sum of Squares of Error equals

Ho is rejected for sufficiently large yalues.

Nonpammetric analysis
Given are k(> 2) independcllL samples of independent observation XillXi2 ... ,Xin, (i =
1,2, ... , k) drawn from populations with continuous distribution functions Fi. To test

it is possible to apply the test of Kruskal-\Vallis with test statistic

K = 12{N(N +1)}-1 2:= ni(Ri. - .k..)2 ,
i

where Rij is the rank of Xij in the combined sample of N observations. The test is sensitive
to shift alternatives.

6.3. More than two treatments with ordered alternatives
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Under Normality
For the case of k independent samples we are interested in the comparison of k(> 2) ordered
levels Zl,Z2, ... ,Zk of a quantitative treatment.4. \Ve assume JLi = <p(Zi), i = 1,2, ... ,k, and
wish to test

Ho : <p(z) = f30 + f31z

against the alternative hypothesis H 1 : '<p(z) is more complex than linear'.
We define the sum of squares for the linear trend of A, denoted by S S L, as

The test statistic is

SSA - SSL
(k - 2)MSE '

which is under Ho distributed as F~-=-~. Sufficicutly large values lead to rejection of Ho.

Nonpammetric analysis
It is possible to consider in the k-sample situation an ordered alternative

with at least one strict inequality sign for at least one x. Two possible tests are suggested:
the test of Jonckheere-Terpstra and Chacko-Shorack, respectively. In the case of regular
shifts (horizontal distances between the distribution functions are more or less equal) the test
of Jonckheere-Terpstra is recommended. In the case of (strong) irregular shifts the test of
Chacko-Shorack is preferable. The test statistic T of Jonckheere-Terpstra is defined as

where Tij is the number of cases that an observation from sample i is smaller than an obser
vation from sample j (1::; i < j ::; k). For large values of ni is T under Ho approximately
Normally distributed with

ET = ~(N2 - Lnn
i

and
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The test statistic of Chacko-Shorack can be determined as follows. Under Ho one expects
roughly fl. :::; 1'2. :::; ... :::; Tk. (the lower case character l' is the outcome of the same capital
character R; see Section 6.2). If this is not so for a pair, then the members of such a pair
are put together (with sample size ui) and again the average rank is computed. We continue
with this operation, until

where ft. (i = 1,2, ... ,1) arc the average ranks of the ultimate groups with nt observations.
The test statistic is

R"* - 12 ~ * {l""* 1(1\T )}2- N(N + 1)~ nj Lj. - 2 . +1 .

For large values of nl = n2 = ... = 11k we have approximately

1c

P(I<* ~ c) = L:Pi,kP(;\L1 ~ c) ,
i=2

where some Pi.le can be found in the next table.

k

2 3 4 5 6
2 1.. !.!. ~ ~

~ 24 V 360
3 1 5

6 f 2
1
4 194 24 1

1
2 114

;)
120 4

1
8

6 7?ri

6.4. Two treatments in randomized blocks of size two (orthogonal design)

Under Normality
In a block Bj of size 2 (j = 1,2, ... , b) two treatments .41 and A 2 are assigned at random to
the units of the block. We assume

l'ij = ai + f3j +Eij (i = 1, 2;j = 1,2, ... , b) ,

where ai is the expected effect of Ai, f3j is the expected effect of Bj and Ei/S are independent
N(O, (72) random variables.
To test

against HI : al ::j:. a2 the test statistic M~~ can be used, where MSA = ~:1 with SSA =

b-1t (2;:l'i j)2 - (2bt 1 (~)ij) 2 and MSE = ~::f with
1=1 3 t,)
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SSE = ~1i~ - i~ (~Yij) 2 - SSA .
• ,3 3'

Under Ho :~~ is distributed as FLI' Large values lead to rejection of Ho.

Nonparametric analysis
Assume b independent pairs of observations (XI, 1'1), (X2,1'2), ... , (XI., 1'1.) are given. A pair
is for instance the result of two treatments applied in a block. To test

R o ; P(Xi > Yi) = P(Xi < Yi) =! for all i

against HI ; Ho is not true, the Sign test can be used. In general a more powerful test is the
Wilcoxon Signed Rank test. With this test the null hypothesis Ho: 'Zi = Xi-Yi(i = 1,2, ... ,b)
is symmetrically distributed around zero.' can be tested.

6.5. More than two treatInents in randomized blocks (orthogonal design)

Under Normality
t

Given are b blocks Bj(j = 1,2, .."b) of size I>nij. In each block t(> 2) treatments
i=1

AI, A2 , ••• , At are applied at random, treatl1lent Ai in block B j is allotted at random to
mii units. We consider an orthogonal design, thus the relation mij = mi.m.j/m.. holds. The
model is

}ijk = Ui + /3i +Eijk (i = 1,2, ... , t; j = 1,2, .. " b; k = 1,2, ... , mij)

with Ui the expected effect of Ai, /3j that of Bj and Eijk are i.i.d. N(O, (12) r.v.
To test H 0 : u1 = u2 = ... = 0t the test statistic is

T = MSA
MSE

with

MSA = SSA
t - 1

S S A = 2: (2: Yiik) 2 / mi, _ ~ (2: 1'ij k) 2
"le m., "le• 3, ',3.

MSE = (m.. - t - b+1)-1SEE

SSE = 2: li~k - 2: (2: l'ijk) 2 /m.j - SSA .
i,j,le i i,k
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Under H o the statistic T is distributed as F~~.:-t-b+1' Large values ofT lead to rejection of Ho.

Nonparametric analysis
To test the null hypothesis of no treatment effect, the observations Yijk within block Bj are
ranked in increasing order of magnitude with ranks 1,2, ... , m.j (j = 1,2, ... , b). These ranks
are Rijk. The test statistic is defined as

Q. ~ 12N {~m';(m;+ I)} -,~mi.' {Ri" -!~ ",,;(m.; + I)r
with Ri.. the sum of the ranks for treatment Ai. Qo has under Ho asymptotically a X~-l

distribution. The condition of the approximation and the treatment of ties can be found in
Benard and Van Elteren (1953).
If mij =1 for all i and j, the test statistic Q0 simplifies to the test statistic of Friedman.
An alternative procedure based on standardized ranks has been proposed by De Kroon and
Van der Laan (1983). They suggested as test statistic

with

and

Under Ho the statistic Q has asymptotically (for m.j -+ oc) a XLl-distribution.

6.6. More than two treatments in randomized blocks and ordered alternatives
(orthogonal design)

Under Normality
As described in Section 6.3 we are interested in the investigation of a quantitative treatment
A with levels Zt, Z2, ... , Zt. 'Ve consider a randomized block design with one observation per
cell and the model

Xij = J.t +Qi + {3; +Bii' (i = 1, 2, ... , t; j = 1, 2, ... , b) ,

where J.t is the general mean, O'i is the deviation from J.t for treatment Ai, Pi that of block
Bj(I: Qi = 0 =I: (3;) and Eij are LLd. .N(O, 0 2 ) r.v..

i ;

To test Ho: '4>(z) = 'Yo; + 'YlZ in block j' against lI1 : '4>(z) is more complex than linear', we
start with the computations as described in Section 6.5 for m = l.
The test statistic is
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SSA - SSL
(t - 2)MSE

with

SSL = {~bzl- :t(~bZi)2}-l{~ZiXij - :t(~bZi)(~Xij)}2
I I t,' t t,'

and has under Ho a Ftt~2l)(b_lrdistribution. Large values lead to rejection of Ho.

Nonparametric analysis
In Friedman's block design with one observation per cell, we assume

CEai = 0 = "£j3j) with Eij independently and continuously distributed random variables
which are identically distributed in each block. For testing Ho of no treatment effect against
H l : al ::; a2 ::s ... ::s at with at least one strict inequality sign, the test statistic of Page
(1963)

can be used. Ranking within blocks, the same as for Friedman's test. Ho is rejected when Lis
sufficiently large. For large values of b the statistic L has approximately a Normal distribution
with

EL = ~bt(t + 1)2

and

L 1 b(t3 _ t 2
var = 144(t - 1) ) .

6.7. More than one treatment in a Balanced Incomplete Block Design (BIBD)

Under Normality
It is in practice possible that a block can only contain at most k experimental units. A
possible reason may be that blocks with a size larger than k are not homogeneous enough. If
t > k we need a so-called incomplete block design. Suppose that for t treatments in blocks
of size k a design can be constructed for which

- every treatment occurs on r units
- every pair of treatments occurs in Aof the b blocks.
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If b blocks are required, then rt = bk and A( t - 1) = r(k - 1). Such a design (if it exists) is
called a Balanced Incomplete Block Design. Randomization of blocks, treatments and units
is necessary.
To test II0 : a1 = a2 = ... = at we use the test statistic

MSA
T= MSE'

Let Ti be the total of the Yij'S of treatment Ai, Bi be the total of the blocks in which treatment
Ai occurs. Then we define

and

MSA = SSA
t-1

SSA = A~k ~(kQi)2
I

MSE = (tr - t - b+ l)-lSS£

SSE =~li~ - ~ 2;::(Block j)2 - SSA ,
1.3 3

where Block j is the total uf the k observations in block j. T has under Ro a Fi,:-:':t-b+I
distribution.
Large values of T lead to rejection of Ro.

Nonparametric analysis
In a BIBD the rank test of Durbiu can be applied, which is based on the test statistic

12(t - 1)
D = '"{R· - !r(k + 1)}2

rt(k 2 - 1) 7 · 2

with Ri the sum of the ranks for Ai after ranking within blocks where Ai occurs.
The asymptotic distribution of D under JIo is X~-l' The exact distribution can be found in
Van del' Laan and Prakken (1972).

6.8. Interaction in a two-way la~'out

Under Normality
Assume we have two factors A and B, with A on s levels and B on t levels. A complete
factorial experiment of A and B is performed, where each treatment combination has been
executed m(> 1) times. The design is a completely randomized design with stm units.
Let Xijlt be the k-th observation of the treatment combination (Ai,Bj) with the model
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(i = 1,2, ... ,s;j = 1,2, ... ,t; k = 1,2, ... ,m),

where J.l is the general mean, ai is the deviation from the general mean for Ai,f3j that for Bj
and "Iij is the deviation from the general mean due to the non-additivity effect or interaction
effect of Ai and Bj. Then the following holds:
L:ai = 0 = L:f3j and 2:::»'ij = 0 = I:>rii (for all j and i, respectively). The error terms

i j i j

Eij1c are LLd. N(O,0'2) random variables.
To test

Ho : "Iij = 0 for all

the test statistic is

T= MSAB
MSE

with

and j

SSAB

MSE

SSE

1 SSE
st(m - 1)

'" 2 1 ""' ,""' ~ 2= L.", X ij1c - - L.",(L.", Xijk) •
i,i,1c m i,i Ie

T has under Ho a F;:{~2~)1)-distribution with a righthand-sided critical region.

Nonparametric analysis
(Testing against rank-interaction)
The concept of rank-interaction, a nonparametric concept of interaction, has been introduced
by De Kroon and Van del' Laan (1981). In each cell (i,j), a combination of the i-th level of
factor A and the j-th level of factor B, are given m(> 1) observations. The error terms Eij1c

are independently and identically distributed random variables with continuous distribution
functions and E(Eij1c ) = O(i = 1,2, ... ,sij = 1,2, ... ,t and k = 1,2, ... ,m). We wish to

Ho : f31 + 'Yil = f32 + 'Yi2 = ... = f3t + 'Yit for i = 1,2, ... ,s.
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The choice of a test procedure depends on the alternative hypothesis one is interested in.
Depending on which alternatiYe is thought to be important in the practical problem, one can
choose one of three statistics 1',1'1 and 1'2. As an omnibus test we have

•
1'= LKi,

t::::1

where ](i is the Kruskal-Wallis statistic computed for the classification B within class i of
factor A. The test statistc 1'1 is defined to be the Friedman test statistic for the case of s
blocks of ranking over t classes of factor B, each class containing m observations. 1'1 will
be used if differences between the /3/s are interesting. The test statistic T2 = T - T1 can
be used if one is mainly concerned \vith rank-interaction. Roughly speaking rank-interaction
can be understood as the phenomenon where the ranks of the response variable X for the
levels of factor B are different for some levels of factor A. In other words not all deviations
from zero of the 'Yii'S are of interest, but only those deviations that give discordance between
the rankings within the levels of factor A. If the rankings of

{31 + 'Yil,{32 + 'Yi2, ... ,{3t + ~fit (i = 1,2, ... , s)

are not identical for different values of i, we say that rank-interaction B*(A) exists. If these
rankings are identical ("concordance"), rank-interaction B*(A) is said not to exist.
It is also possible to use the statistics 1'1 and 1'2 simultaneously, each at significance level
a/2, rejecting Ho if at least one of the outcomes of 1"1 or 1'2 is larger than or equal to the
corresponding critical value. In this way it is possible to carry out an omnibus test with the
possibility of detecting simulLaneously which component of Ho is not true, This procedure is
somewhat, probably slightly, conservative. For critical values for all three tests and further
details of the various procedures we Iefer to De Kroon and Van del' Laan (1981). Extensive
tables with critical vlaues can be found in Yan der Laan (1987). For power comparisons see
De Kroon and Van del' Laall (1984.).
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7. Design and analysis of selection experiments

In this chapter the design and analysis of selection experiments will be discussed. In prac
tice we are often confronted with the problem of selection. Especially in the field of testing
varieties selection is an essential feature. But also in biology, pharmacology, industry, etc. a
large number of problems are in fact selection problems. For all kind of selection problems
in practice a quantitative methodology of selection is needed. Statistical estimation and hy
potheses testing provide a methodology which can help us to analyse the observations. This
formulation, in terms of estimating parameters and testing statistical hypotheses, does not
exactly suit the objectives of an experimenter in a number of situations.
If an agricultural experimenter is investigating a number k of wheat varieties, characterized
by the population mean yield 0 per plot, he usually wants to select the best variety. The goal
of the experiment is often not to accept or reject the homogeneity hypothesis (equality of the
population means) but to select the best variety, where best is associated with the maximum
value of O. In such an agricultural experiment one would expect that the wheat varieties are
essentially (genetically) different. So one would expect to reject the homogeneity hypothesis if
the sample sizes are sufficiently large. Then we are faced with a result that can not be a final
decision. This makes the test of homogeneity not always realistic. Of course, the method of
multiple comparison and simultaneous confidence intervals can give additional information.
However, selection theory gives in a number of situations a more realistic formulation of the
problem.
We suppose that the k populations aTe described by qualitative variables. Some examples
are the following. In an agricultural experimcnt k varieties of wheat are given. A comparison
is made on the basis of the response: yield pcr acre. In medicine k types of drug are given.
The goal is to select the drug with the maximal number of hours without pain. In chemical
engineering k types of catalyst are investigated with as response variable the number of gal
lons per day.
It is also possible that the populations are described by quantitative variables, for instance
amount of fertilizer, amount of drug, temperature of a reaction, respectively, with the same
response \'ariable as before. \Vhereas statistical selection procedures are developed for finding
the best population for qualitative populations, the response surface analysis is an adequate
technique to find the optimal doses for quantitative variables. For more detail we refer to
Box, Hunter and Hunter (1978).
Assume k('?:. 2) independent NOl'lHal random variables Xl, X 2 , ... , Xle are given. These vari
ables are associated with the k populations and may be sample means. The unknown means
of the k populations are denoted by fh, 02, ... , Ok. The experiments design can be a complete
randomized design with n plots or a randomized complete block design with block size k and
the plots randomly associated to the k populations. The goal is to select the population with
mean 8[k]' where 8[1] ~ 8[2] ~ ... ~ O[Ie] denote the ordered values of 81,82, ... , 8le .
There are two main approaches in the field of selection methodology. These main approaches
are introduced by Robert Bechhofer and Shanti Gupta, respectively. The approach of Bech
hofer is indicated by "Indifference Zone Approach" and the method of Gupta is indicated by
"Subset Selection". The basic papers are Bechhofer (1954) and Gupta (1965), but afterwards
they have published quite a lot of papers in the field of selection. An overview of selection
methods is given in Gupta and Panchapakesan (1979) (which contains already about 750
references), Gupta (ed., 1977), Rizvi (ed., 1985, 1986), Dudewicz and Koo (1982) and Van
der Laan and Verdooren (1989).
The subset selection procedure selects a subset, non-empty and as small as possible, of the k
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populations considered in order to include the best population with the probability require
ment that the probability of a Correct Selection is at least P*. A Correct Selection (CS)
means in this context that the best population is an element of the selected subset. The
subset selection approach has certain advantages in practice. It can be applied to analyse the
data after the experiment has been realized. In the context of this report we are interested
in designing an experiment. That is the reason we shall concentrate on the approach of
Bechhofer: The Indifference Zone approach.

The Indifference Zone approach is an important approach for designing an experiment. The
goal is to indicate the best population. It provides a value for the common sample size needed
to meet certain probability requirements. A Correct Selection (CS) means in this context
that the best population is indicated. The probability requirement is that the probability of
a CS is at least P*, whenever the best population is at least 6* away from the second best.
The minimal probability P* can only be guaranteed if the common sample size n is large
enough. In the next section this procedure will be described in more detail.

Bechhofer's approach to selection: Indifference Zone procedures
Assume 1.~(?:. 2) independent populations denoted by G = (71"1,71"2, ... , 71"k) are given. The re
lated independent random variables are denoted by Yl , 1'2, ... ,Yk' The random variable 1i has
cumulative distribution function F(y; Bi ) with the unknown real-valued parameter Oi E 0( i =
1,2, ... ,k). Let 0 denote the parameter space {B: 0 = (B l ,02, ... ,Ok);Bi E 0,i =1,2, ... ,k}.
The ranked parameter values are indicated by 0[1] :::; B[2] :::; .. , :::; B[k]' The population asso
ciated with B[i] will be denoted by 7i(i)' Usually in ranking the population 71"j is better than
71"i if OJ > Oi. Then we define the population 71"(lc) associated with O[k] as the best population.
The t(l :::; t < k) best populations are the populations 71"(lc-t+l)' 71"(k-t+2)' ••• , 71"(k)' If there are
more than t contenders because of tics, it is assumed that t of these are appropriately tagged.
The goal of selection considered in this paper is to select an unordered set of t populations
associated with the set {O[k-t+ll' B[Ie-t+ 2], ••• , O[Ie]}' In this context a correct selection means
that the t best populations are selected.
Let Oji denote a measure of distance between the populations x(i) and 71"(j) with 1 :::; i < j :::; k.

In case 0 is a location parameter, 6ji is usually defined as B[j] - B[i]'

The probability requirement that the probability of selecting the t best populations is at least
P* can be written as follm';s. Denoting the probability of a correct selection (CS) using a
selection procedure R by P(C SIR) or P(C S), one can write the probability requirement as
P(CS) ?:. P* for 0 E 0(6*) = {O ; tk-t+l,lc-t ?:. 6*}.

The experimenter has to specify positive constants ,. and P', where P' E ( ( ~ ) -, ,1) .

Usually the selection rule is based on sufficient statistics for B1 , B2 ••• , Ok, These sufficient
statistics are based on samples of common size n from the k populations.
The general problem in this context is to determine the smallest common sample size n for
which

inf P(CS) > P* .
0(6·) -

This condition is called the P*-condition for the probability requirement. The infimum ofthe
P(CS) is evaluated over the subset 0(6*) of the parameter space O. 0(6*) is the so-called
preference zone and OC(0*) is called the indifference zone.
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Let us consider the situation of k Konnal populations with common known variance (12 in
more details. The selection rule R is based on the sufficient statistic Yi for Oi, where Yi
is the mean of a sample of ni independent observation from 1ii(i = 1,2, ... ,k). The goal is
to partition the set G into 2 subsets G1 and G2 with G = G1 U G2 , G1 n G2 = 0, G1 =
{1l"(Ic- t+l), 1l"(Ic-t+2)' ... , 1l"(Ic)} and G2 = {TI(l)' 11"(2)' .•. , TI(k-t)}.
The selection rule R is defined as follows. \Ve determine a subset S c G of size t on the basis
of the sample means. Include in S the populations associated with

where X[l] ~ X[2] ~ ... ~ X[k] are the ranked sample means. The P*-condition is

peGS) = P[S = G110 E nco"')] = P[S = G1IOk-t+l,k-t ~ 0*] ~ P* .

We have for ni = nand }T(i) is the sample mean associated with 1l"(i):

00

~ t ! <p1c-t(z +T){l - <fI(z)}t-ld!J>(z) ,
-00

where <p is the standard Konua1 distribution function and

! * -17=n20(1 .

The minimum of the P(GS) for R is at tained for the so-called Least Favourable Configuration
(LFC) in n(0*), given by

0[1] = ... = O[Ic-t] = O[k-t-t-l] - f" = ... = B[k] - 0" .

The minimum sample size rCI!uired is the smallest integer n for which the P*-condition is
fulfilled.
For the LFC we have

00

PLFC(GS) = t ! <pk-t(z +T){l - <p(z)}t-1d<p(z) ,
-00

which is an increasing function of 7 and tends to 1 as 7 tends to infinity. Hence, there is a
unique smallest value 7 meeting the probability requirement. This value is the solution of
the equation.

42



For the special case t = 1, the rule R selects the population associated with Y[k]' Then for
the P"-condition we have

00

~ / epk-l(Z +7)d<I>(z) ~ P* .
-00

In order to meet the probability requirement in the case t =1 we have to choose:

_ (7(1)2n- .
0"

In order to be sure that the common sample size is large enough to satisfy the probability
requirement, the computed value of 12 is rounded upward if it is not an integer. The quantity
T, which depends on k and P*, can be computed by numerical integration. Some values can
be found in next table.

p~

k .90 .95
2 1.812 2.326
3 2.230 2.710
4 2.452 2.916
5 2.600 3.055
6 2.710 3.159
7 2.797 3.242
S 2.868 3.310
9 2.930 3.3G8

10 2.983 3.418
2·~ 3.391 3.810

Extensive tables for 7 can be found in for instance Gibbons, Olkin and Sobel (1977), Table
A1, for various values of p. and k.
An important function characterizing the "power" of a selection procedure is the Operating
Characteristic curve (OC curve), defLlled as the P(CS) for the Generalized LFC: 0[1] =
9[1e-l] =O[k] - 0, so P(C S) is a function of 6 (besides elk] and n).
The following confidence statement can be made after the experiment has been conducted:

where 9. is the unknown population mean associated with the selected population. This
1

statement can be made provided only 0*n2(1-1 = 7.

Normal populations with unknown (12
Given are k Normal populations with unknown means and U1l1,110Wn equal variances, where
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the common variance (72 is considered as a nuisance parameter. The goal is to select the
best population (associated with elk])' 'Vithout information about (72, it can be seen by in
creasing (72 that there is no common fixed sample size large enough such that the probability
requirement will hold for all possible values of (72. For if the true value of (72 is sufficiently
large, the P(CS) will be arbitrarily close to k-1 , which is smaller than any reasonable value
of P*(k-1 < P* < 1).
It is possible to use a good estimate of 0 2 by pooling the sample variances and use this
estimate as an approximation to 0 2 . Dechhofer, Dunnett and Sobel (1954) and Dunnett and
Sobel (1954) use a two-stage procedure. The first stage is used to estimate (72. The two
stages together are used to reach a final decision. In Gibbons, Olkin and Sobel (1977) tables
can be found that make the execution possible.
The case of unequal unknown variances is investigated by Dudewicz and Dalal (1975). Bech
hofer (1960) and Bechhofer, Santner and Turnbull (1977) discuss two-factor experiments.
Complete factorial experiments are considered in Dudewicz and Taneja (1980), Lun (1977)
and Bechhofer (1977). Selection problems in balanced complete and incomplete block designs
are considered by Rasch (1978).
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8. Final remarks

In 'Design and Analysis of experiments' by Doornbos (1990) one can find a number of general
designs and the correspondillg analyses.
The possibility of combining nunparametric tests for the analysis of factorial designs is dis
cussed in Van der Laan and Weima (1983).
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