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Chapter 1

Introduction

1.1 Introduction

Supply Chain Management was one of the most popular management topics of
the 1990s and it continues to receive a lot of attention in the �rst decade of the
21st century. In a typical supply chain (represented in Figure 1.1), raw materials
are purchased, items are produced in one or more factories, shipped to ware-
houses for intermediate storage, and then shipped to retailers or customers.
The supply chain is composed of suppliers, production facilities, warehouses,
distribution centers and retail outlets. Also the raw materials, work-in-process
inventories and �nished products are part of the supply chain. Supply Chain
Management can be de�ned as "a set of approaches utilized to e¢ ciently inte-
grate suppliers, manufacturers, warehouses and stores, so that merchandise is
produced and distributed at the right quantities, to the right locations, and at
the right time, in order to minimize system-wide costs while satisfying service
level requirements" (Simchi-Levi et al., 2000).

During the 1990s, companies increasingly operated at a global level result-
ing in intense competition. The �erce competition on the global market forced
companies to engage in opportunities for cost reduction. However, after many
years of reducing costs in manufacturing operations through strategies as Just-
In-Time manufacturing, lean manufacturing, kaizen, total quality management,
and many others, the point was reached in the late 1980s that almost no fur-
ther cost savings could be realized in the manufacturing operations. Gradually,
companies became aware of the fact that the e¤ective management of the entire
supply chain would be the next step they had to take in order to reduce their
costs, improve their customer service levels and ultimately increase their market
share and pro�ts (Simchi-Levi et al., 2000). This was the start of Supply Chain
Management.

Soon after its emergence, Supply Chain Management became very popular,
both in the business world as in the scienti�c community. Many companies
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Raw Production Warehouses                     Customers &
Materials facilities retailers

Raw Production Warehouses                     Customers &
Materials facilities retailers

Figure 1.1: An example of a supply chain

started supply chain improvement projects. The majority of these projects
was characterized by an important role for information technology systems,
e.g. electronic data interchange, collection of point-of-sale data or e-commerce
applications. Also, software companies spent considerable e¤ort on the develop-
ment of decision-support systems for Supply Chain Management, e.g. Advanced
Planning Systems (APS). It is questionable, however, whether many companies
were able to realize the goal of integrated control of the entire supply chain.
In our opinion, a lot of companies were not able to e¤ectively implement the
ideas of Supply Chain Management into their day-to-day operations. We deem
that many opportunities are not taken and considerable improvements can be
realized if companies would take full leverage of the potential of Supply Chain
Management. In this thesis, we generate knowledge on the integration of control
decisions in supply chains. This knowledge may help companies to improve the
management of their supply chains.

Meanwhile, Supply Chain Management also provided numerous challenging
research opportunities for the scienti�c community, in particular in the �eld
of Operations Management. The number of contributions in the literature is
enormous. A handbook edited by De Kok and Graves (2003) presents an exten-
sive overview of the most important research topics in this �eld, ranging from
the design of supply chains, over coordination, to supply chain operations. In
their contribution to the handbook, Fleishmann and Meyr (2003) identify the
following two aspects of supply chain planning:

� Integral planning of the entire supply chain. The supply chain should be
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Figure 1.2: Focus on production-inventory system

considered as a whole in the planning process and the interdependencies
between the various activities should be taken into account.

� True optimization of decisions. The planning process should be based on a
proper de�nition of alternatives, objectives and constraints and use (exact
or heuristic) optimization algorithms.

Fleishmann and Meyr (2003) observe that the postulates of integral planning
and true optimization are hardly compatible in view of the complexities that are
typically encountered in a real-life supply chain. They suggest to use hierarchical
planning concepts that decompose the overall planning task into partial tasks
as a practical compromise between both postulates. Well-known hierarchical
production control approaches are Hax and Meal (1975), Bertrand et al. (1990),
Lambrecht et al. (1998), Schneeweiss (1999) and De Kok and Fransoo (2003).

In this thesis, we do not attempt to develop planning approaches for entire
supply chains consisting of many stages. Instead of trying to study the integra-
tion between many di¤erent stages in the supply chain, we focus in this thesis
on the integration between two speci�c stages in the supply chain: a production
system and an inventory system. We consider the study of this production-
inventory (PI) system to be a �rst step towards the integration of supply chains
consisting of multiple stages. Figure 1.2 shows our focus on a PI system in the
context of a multi-stage supply chain.

In particular, we investigate a multi-product, multi-machine PI system that
is characterized by:
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Replenishment orders Demand orders

Raw
material
supply

Production of
orders

Order
delivery

Inventory
Demand
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Figure 1.3: Production-inventory system

� relatively high and stable demand;

� uncertainty in the precise timing of demand;

� variability in the production process;

� job shop routings;

� considerable setup times and costs.

Figure 1.3 depicts this PI system. In this thesis, we develop control ap-
proaches for this PI system that are based on an integrated view of the PI
system and that take into account the interdependencies between the inventory
system and the production system. The objective of the control approaches
is to minimize the sum of setup costs, work-in-process holding costs and �nal
inventory holding costs, while target customer service levels are satis�ed. By
limiting our scope and focusing on one particular stage in the supply chain, we
strive to combine the postulates of integral planning and true optimization.

Complex manufacturing systems that are characterized by job shop routing
structures, variability and uncertainty in demand and production processes play
an important role in several supply chains. Typically, this type of manufactur-
ing system can be found in the middle of the supply chain where processed raw
materials (steel, plastics, etc.) are transformed into parts or components. In
later steps of the supply chain, these parts or components are assembled into
end products. In this thesis, we consider situations where the demand for the
parts is relatively high and stable, but the precise timing of the demand is not
known in advance. This leads to a stationary demand process with variability
in the interarrival times. Inventory is carried because of two reasons. Firstly,
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job shop like manufacturing systems are notorious for their low delivery perfor-
mance (long and unreliable throughput times) if they operate at high levels of
capacity utilization. Therefore, a bu¤er is necessary to ensure fast and reliable
supply to downstream stages in the supply chain. Secondly, job shop manufac-
turing systems are typically characterized by substantial setup times and costs.
For economic reasons, the products are produced in batches. Unavoidably, this
results in cycle stocks. PI systems with these speci�c characteristics can be
encountered in many real-life supply chains, typically in the capital goods man-
ufacturing industry. The following case descriptions provide insight in the type
of PI system that is studied in this thesis.

Company A produces parts for the aircraft assembly industry, such as special
screws, pins, guards and spacers. Stoop (1996) and Stoop and Bertrand (1997)
present a method for short term performance evaluation and diagnosis for this
company. The sales of the company are based on contracts in which the annual
demand volume is speci�ed. The precise timing of the demand, however, is not
known in advance. To ensure fast and reliable delivery of the parts, demand
is satis�ed from stock. Inventory management generates replenishment orders
that are manufactured-to-order by the production system. The layout of the pro-
duction process is functionally oriented, with work centers that are specialized
in a speci�c metal removing operation, such as turning, milling, drilling and
benchworking. Most products have a speci�c sequence of manufacturing steps.
The demand for the products is recurrent, but not high enough to organize pro-
duction in dedicated production lines. Therefore, di¤erent products are produced
in the same work center. This leads to job shop type routings. The work centers
are not very �exible since they are characterized by considerable setup times and
costs. Based on cost and capacity considerations, the products are produced in
batches. This results in signi�cant cycle stocks. Currently, the management
sets the production batches based on an EOQ approach that ignores the dynamic
interaction between the inventory control decisions and the performance of the
production system.

We believe that signi�cant savings can be achieved by considering the PI sys-
tem integrally, and by simultaneously determining the inventory and production
control decisions.

Company B serves the o¤-highway vehicles market which includes rough-
terrain cranes, o¤-highway trucks, excavators, etc. One of its plants serves the
OEM (original equipment manufacturer) market with drive-train components,
such as transmissions, torque converters, axles and brakes. Lambrecht et al.
(1998) and Vandaele et al. (2000) report on the implementation of ACLIPS,
a hierarchical procedure for job shop scheduling problems in this company. We
consider a subdepartment of this plant in which a small number of parts are
made-to-stock. Afterwards, these parts are assembled-to-order. The production
system consists of a number of functionally organized machines (presses, lathes,
sawing machines, etc.), on which multiple products are produced. Each part
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has a speci�c routing through the manufacturing system, which leads to a job
shop routing structure. The production system is characterized by its stochas-
tic nature, due to di¤erent kinds of variability and disruptions. Also, there are
signi�cant setup times involved when changing over the machines. Because the
setups are performed manually, they are costly in terms of direct labor so that
setup costs are considerable. Nowadays, the company uses ACLIPS to determine
the production lot sizes. The lot sizing module in ACLIPS is based on a queueing
network model of the production system in which the average and variance of
the waiting times are expressed as a convex function of the lot sizes. A straight-
forward optimization routine is used to determine the lot sizes that minimize
the throughput times. By sensibly setting the production lot sizes, the task of
scheduling the production orders is greatly enhanced. The scheduling procedure
in ACLIPS is an extension of the shifting bottleneck-procedure that can deal with
non-standard issues that are relevant from a real-life perspective. Lambrecht et
al. (1998) and Vandaele et al. (2000) present results on the improvements that
are realized by using ACLIPS for production planning and scheduling. They es-
timate that about 85% of the improvement is due to better lot sizing and 15% to
improved scheduling.

Although the results of the implementation of ACLIPS in this company
are impressive, we believe that (at least for this make-to-stock subdepartment)
additional cost savings can be achieved by simultaneously optimizing the pro-
duction and inventory control decisions. In order to integrate production and
inventory control decisions, the decision-support system should be extended so
that also the stock points are included. Moreover, the current implementation
of ACLIPS is focussed on throughput time minimization. Obviously, this is a
very important issue. However, in a make-to-stock setting it is usually possible
to compensate for long throughput times by increasing the safety stocks. Such
a policy may be interesting if the inventory costs for a particular item are low
(e.g. when the item is very cheap). On the contrary, it is usually not e¢ cient
to have high stocks for very expensive items. Also, we observed signi�cant dif-
ferences in the setup costs for di¤erent products, which should be re�ected in
the lot sizing decision. Therefore, we believe that it is wise to simultaneously
consider cost and time issues when making lot sizing decisions.

These two real-life examples indicate that it is worthwhile to investigate the
control of multi-product, multi-machine PI systems that are characterized by job
shop routings and variability in the demand and production process. The goal
of this thesis is to develop control approaches for this PI system that integrate
production and inventory control decisions. Such approaches are denoted as
integrated control approaches. The research is exploratory in nature and aims
at identifying promising control approaches for this type of PI systems and
the conditions in which they are applicable. To the best of our knowledge, no
contributions are known in the literature for this speci�c PI system. Therefore,
our research is relevant from a scienti�c point of view. The research is also
relevant from a managerial point of view, because integrated control approaches
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may yield considerable improvements over current practice, as is illustrated with
the real-life cases.

1.2 Two control approaches

In this research, we investigate the coordination of production and inventory
control decisions for the multi-product, multi-machine PI system described
above. To the best of our knowledge, no control approaches have been devel-
oped for this speci�c PI system. In our research, we develop control approaches
that explicitly take into account the dynamic interactions between the inventory
system and the production system. Due to these complex interactions, however,
it turns out that it is impossible to exactly analyze the PI system. The di¢ cul-
ties that arise when analyzing the PI system are discussed later. The analytical
intractability of the PI system makes it impossible to develop optimal control
policies. Therefore, we develop heuristic approaches for the integrated control
of the PI system. More speci�cally, we study two control approaches that are
based on distinctive control principles. An essential characteristic of both con-
trol approaches is that the principles upon which they are based make sense in a
real-world setting. As such, we mimic the decision-making process of a manager
facing a similar problem in a real-life situation, but unlike a manager we use
state-of-the-art scienti�c methods to solve the problem. The main di¤erence be-
tween the proposed control approaches is the level of detail in the coordination
of production and inventory control decisions.

The �rst approach, called Coordinated Batch Control (CBC), uses statistical
inventory control policies for the management of the inventory system. The
replenishment orders are generated by the inventory management and produced
by the production system. The lot size of the replenishment orders determines
the timing of order arrivals at the production system. Furthermore, the lot size
also determines the production batch size since there is no grouping of orders
at the production facility and no transfer batching. In the production system,
the orders compete for capacity at the work centers. The orders are sequenced
using a myopic sequencing rule. In this research, we use the simple and easy to
analyze First-Come-First-Serve (FCFS) priority rule. It is well-known that the
use of other sequencing rules may considerably improve the performance of the
production system (see e.g. Baker 1984), but such policies are much harder to
analyze.

From the results of the approximate queueing models by Karmarkar et al.
(1985), Karmarkar (1987) and Lambrecht et al. (1998) it is known that a convex
relationship exists between the batch sizes and the order throughput times.
Therefore, the amount of work-in-process and the required safety stocks depend
on the lot sizes. Furthermore, the cycle stocks and the setup costs are also
determined by the lot sizes. Clearly, the total costs depend signi�cantly on the
choice of the lot sizes. The CBC strategy tries to minimize the system-wide costs
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by cleverly setting the lot sizes of the products. In the decision-making process,
the dependencies between the di¤erent products are taken into account, as well
as the dynamic interactions between the inventory system and the production
system. Therefore, we call this approach Coordinated Batch Control.

The second approach, Cyclical Production Planning (CPP), approaches the
problem from a very di¤erent angle. A detailed production schedule is at the
centre of this approach. The schedule prescribes the sequence in which the orders
are produced on the work centers, and this sequence is repeated at regular
time intervals (hence the name cyclic production planning). The schedule is
determined so that the total costs are minimized. The main advantage of the
use of a schedule is that �ow of the orders through the production system is
controlled better, which results in more reliable throughput times. A drawback
of this approach is that the production frequencies of the di¤erent products need
to be matched in order to make a cyclic production schedule. Hence, there is
less �exibility in setting the lot sizes, which may result in higher costs. In this
research, this is particularly true because we assume a common cycle production
plan in which all products are produced once during every cycle. Another
drawback of this approach is that the production sequence speci�ed in the cyclic
schedule must be followed strictly. This policy reduces the �exibility to respond
to disturbances caused by the variability in the demand and production process,
which may lead to a less e¤ective use of the available production capacity.

The use of cyclical production schedules, however, has become increasingly
popular in real-life production systems because of the many organizational ben-
e�ts that can be associated with their application. The bene�ts have been
described extensively in the literature, see e.g. Campbell and Mabert (1991),
Loerch and Muckstadt (1994), Bowman and Muckstadt (1995) and Schmidt et
al. (2001). Firstly, cyclical production plans are signi�cantly simpler to de-
scribe, understand and implement than many other scheduling methods. There
is no need for dispatching decisions, since the sequence is �xed. The �xed se-
quence also makes the communication between di¤erent work centers on the
shop �oor easier. Furthermore, cyclical production planning facilitates related
planning activities such as work force planning, raw material delivery, shipment
of �nished products and scheduling of preventive maintenance. Next, cyclical
production planning allows concentrating e¤orts to reduce setup times on the
combination of operations that occur in the sequence. Finally, the use of cyclical
production plans provides discipline and stability on the work �oor. In a real-
life implementation, Schmidt et al. (2001) observed that the increased stability
provided by cyclical planning enables managers to move from using reactive
control to using proactive control. In proactive control, managers can antici-
pate on problems rather than react to them. Proactive control is usually more
e¤ective and leads to sustainable performance improvement.

Since the two control strategies are based on very di¤erent principles, the
performance of both approaches can be very di¤erent. Performance measures
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that are of interest include the total relevant costs, the average and variability
of order throughput times, the required safety stocks, etc. In our exploratory
research, we attempt to generate insights in the performance of both control
strategies under a variety of conditions. Both strategies are tested on an ex-
tensive test bed that contains a large number of problem instances, chosen to
represent a range of PI systems that may be encountered in real-life. Using sys-
tematic simulation experiments, we try to determine for both approaches the
characteristics of the situations that in�uence the performance. The goal of this
research topic is to provide insights and guidelines for the performance of both
control strategies in speci�c situations.

1.3 Position of research in the scienti�c litera-
ture

In this section, we position our research in the scienti�c literature on Supply
Chain Management. We restrict ourselves to a discussion of the scienti�c lit-
erature from the Operations Management and Operations Research discipline.
The last decade of the 20th century appeared to be very productive for Supply
Chain Management research. A typical feature of Supply Chain Management is
that it considers the supply chain as a whole. As such, the research into Supply
Chain Management also takes an integrated view of the di¤erent stages (pro-
duction facilities, stock points, distribution centra, etc.) in the supply chain.
Traditional research in the �eld of Operations Management and Operations Re-
search, however, typically considered the di¤erent stages in the supply chain in
isolation: e.g. production control, inventory theory, etc. This thesis focuses on
the control of PI systems. Two main traditional research themes that are of
particular relevance for this topic are production unit control and goods �ow
control. The relationship between production unit control and goods �ow con-
trol is graphically represented in Figure 1.4.

The �rst research theme is concerned with the control of the production
units. Production unit control can be de�ned as "the coordination of supply
and production activities in manufacturing systems to achieve a speci�c de-
livery �exibility and delivery reliability at minimum costs" (Bertrand et al.,
1990). Production unit control is mainly concerned with the e¢ cient and ef-
fective management of the available production resources. Much research has
been carried out in the �eld of production unit control, for all kinds of pro-
duction systems: job shops, batch �ow, worker-paced line �ow, machine-paced
line �ow and continuous, automated, rigid �ow (see e.g. the product-process
matrix in Silver et al. (1998)). A typical feature of the research in this area is
that the process of incoming orders is taken as given. The goal of production
control is then to accept orders, place the required production and procurement
orders and adjust (if necessary) and allocate the production capacity for the
manufacturing steps (Bertrand et al., 1990). The textbooks of Burbidge (1971),
Bertrand et al. (1990), Hopp and Spearman (1996) and Vollman et al. (1997)
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Figure 1.4: Relationship between production unit control and goods �ow control
(Bertrand et al., 1990)

provide a good introduction into the �eld of production unit control. The re-
search on multi-machine manufacturing systems that are characterized by job
shop routings and variability in demand and production processes is concerned
with several issues. We brie�y present the most relevant topics and the most
important contributions:

� The selection of the most appropriate sequencing and due date assignment
rules. See e.g. Kanet and Hayya 1982, Bertrand 1983a-b or Baker 1984.
The research in this area is concerned with identifying those sequencing
and due date assignment rules that result in the best performance of the
job shop. The performance of the job shop is expressed in di¤erent per-
formance measures, such as the mean and standard deviation of lateness.
Typically, the research is based on a simulation study in which di¤erent
rules are compared.

� The selection of lot sizes that result in the best performance of the job
shop. Some of the most important contributions in this area are Bertrand
(1985), Karmarkar et al. (1985) and Lambrecht et al. (1998). The research
on this topic is based on a queueing network representation of the job
shop. The queueing network model is used to approximately determine
the impact of lot sizing decisions on the performance of the job shop in
terms of throughput times, work-in-process levels, etc. An optimization
routine is then used to identify those lot sizes that minimize a certain
objective function, which may consist of the total relevant costs or the
weighted average throughput times.

� Analyzing the behavior of schedules in a stochastic environment. This
body of research is concerned with the impact of variability on the perfor-
mance of a given schedule. Leon et al. (1994) investigate the development
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of robust schedules, which are de�ned as schedules that are insensitive
to unforeseen shop �oor disturbances. They develop robustness measures
that are implemented in a genetic algorithm that allows generating ro-
bust schedules. Bowman and Muckstadt (1993) model cyclic schedules as
Markov chains and use ergodic theory to analyze and improve the per-
formance of cyclic schedules in environments with machine breakdowns,
yield losses and other sources of variability. A drawback of their approach
is that the state space of the Markov chain models can grow so large for
many practical problems that exact analysis is impractical. Zhang and
Graves (1997) investigate the behavior of cyclic schedules in a stochas-
tic environment characterized by random machine failures. In particular,
Zhang and Graves try to �nd those schedules that are the least disturbed
by occurrences of machine breakdowns.

� Making trade-o¤s between di¤erent tactical capacity control options. Bow-
man and Muckstadt (1995) present a production control approach for
cyclically scheduled production systems, which is based on the Markov
chain model presented in Bowman and Muckstadt (1993). The produc-
tion management can delay the release of material to the �oor and increase
production in a cycle (with overtime) to anticipate on demand and to avoid
overtime in future cycles. The proposed control approach seeks a trade-o¤
between inventory holding costs and overtime costs.

The second main research theme is concerned with the coordination of the
di¤erent production units in the supply chain, as well as the coordination of
demand (or sales) with production. These coordination activities are referred
to as goods �ow control. In the short term, the goods �ow control function
controls the inventory in the stock points via the release of work orders to the
production units. This activity is also referred to as �materials management�. In
the long term, goods �ow control also controls the available production capacity
and the production levels (Bertrand et al., 1990). The research in this area is
mainly concerned with the materials management aspect by focussing on the
inventory management. Especially for the case of a single stock point, there is a
vast literature on available techniques and methods. Lee and Nahmias (1993),
Silver et al. (1998) and Scarf (2002) provide an extensive overview of the state
of the research in this �eld. More recently, research e¤orts in the area of inven-
tory management shifted towards models of �multi-echelon�inventory systems,
which can be used to optimize the deployment of inventory in the entire supply
chain. A review of the literature on multi-echelon inventory theory is provided
in Axsäter (1993), Federgruen (1993), Diks et al. (1996), Van Houtum et al.
(1996), Silver et al. (1998) and De Kok and Graves (2003). A typical feature of
the research on inventory management is that it does not take into account the
interactions between the inventory control and the production units that are
responsible for the replenishment of the inventories. Usually, the production
process is modeled through a replenishment lead time that can be deterministic
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or stochastic, but that is assumed to be independent of the production unit
control. In another line of research, the �nite nature of the available production
capacity is modeled by imposing a constraint on the amount of items that can
be produced on a resource in a discrete time interval, called the �bucket�(see
e.g. Tempelmeier and Derstro¤, 1996). The so-called �Planned Lead Time�ap-
proach for the Supply Chain Operations Planning (SCOP) problem proposed
by De Kok and Fransoo (2003) also belongs in this category. None of these ap-
proaches takes into account the dynamic interactions between inventory control
and production control.

From the following examples, however, it can be observed that in an inte-
grated supply chain the production unit control and the goods �ow control are
heavily interdependent. Firstly, in a supply chain the inventory management
generates replenishment orders in order to satisfy the demand with a certain
service level. The replenishment orders are produced by the production system.
Clearly, the arrival process of orders at the production system is determined by
the inventory control policy in place, so that the production unit control is de-
pendent on the goods �ow control. Secondly, the inventory management installs
safety stocks as a bu¤er against uncertainties in the demand and the replenish-
ment lead times. Obviously, the replenishment lead times are in�uenced by the
production unit control, which indicates that the goods �ow control depends on
the production unit control.

It is clear from the examples above that the dynamic interaction between
the inventory and production control has a considerable in�uence on the per-
formance of the PI system. Since the goal of Supply Chain Management is
to minimize the system wide costs, the interdependency between production
unit control and goods �ow control should be taken into account when mak-
ing control decisions at each level. Therefore, one of the challenging research
opportunities in the �eld of Supply Chain Management research is to integrate
production unit control and goods �ow control decisions.

In its simplest form, the research into the well-known Economic Lot Schedul-
ing Problem (ELSP) can be seen as a �rst attempt into the coordination of
inventory control decisions and production control decisions. The ELSP in-
vestigates a production system characterized by a single work center in which
several items with di¤erent deterministic demand rates are produced. The pro-
duction system is characterized by deterministic production rates, setup times
and setup costs. Moreover, the available production capacity is limited. The
goal of the ELSP is to determine a production schedule that is feasible with
respect to the available production capacity and that minimizes the sum of the
setup and inventory holding costs. Usually, cyclical production schedules are
proposed. According to Elmaghraby (1978), the ELSP "is a time-honored prob-
lem that �has been around�since 1915". Well-known early work on the ELSP
include Maxwell (1964) and Elmaghraby (1978). Since then, many researchers
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have studied the ELSP, the most cited contributions include Dobson (1987),
Zipkin (1991) and Bourland and Yano (1997). Also, extensions of the ELSP has
been investigated.

� A �rst extension studies the case of time-varying deterministic demand,
also referred to as the Capacitated Lot Sizing Problem (CLSP). The ex-
tensive contributions in this �eld have been reviewed by De Bodt et al.
(1984), Thizy and Van Wassenhove (1985), Bitran and Matsuo (1986),
Bahl et al. (1987) and Maes and Van Wassenhove (1988).

� Secondly, the ELSP has been extended to situations with more than one
work center. Several researchers have investigated �ow shop production
systems, here we mention only the most important contributions. Szen-
drovits (1975) presents a model for a single product, multi-stage �ow shop.
His model assumes that a uniform lot size is manufactured through the dif-
ferent operations with a single setup at each stage, and that transportation
of sub-batches allows an overlap between successive operations in order to
reduce the total manufacturing cycle time. El-Nadjawi and Kleindorfer
(1993) study common cycle solutions for deterministic, multi-stage, multi-
product �ow shops. They assume that a given, �xed production sequence
is maintained at all stages. Under this assumption, an optimizing frame-
work is developed that considers the costs of setups, work-in-process in-
ventory and �nished goods inventory. The framework determines a jointly
optimal common cycle time and production schedule (starting and �nish-
ing times of the orders). Dobson and Yano (1994) study a similar problem,
but they explicitly take into account the sequencing aspect of the problem.
For job shop production systems a small number of contributions are avail-
able. Dauzère-Péres and Lasserre (1994) present an integrated model for
job-shop lot sizing and scheduling in a situation with deterministic time-
varying demand. They only consider non-cyclical production schedules.
Ouenniche and Boctor (1998) present heuristics to determine common cy-
cle production plans for deterministic, multi-machine, multi-product job
shop production systems. Later, their approach has been extended to a
multiple cycle approach (Ouenniche and Bertrand, 2001). Finally, Hennet
(2001) also presents a common cycle approach for integrated lot sizing and
scheduling multiple products in a job shop. He presents a decomposition
approach in which a �normalized�scheduling problem is solved �rst. After
this, the optimal lot sizes can be computed using an EOQ-type formula.
The �normalized�schedule is obtained by ignoring the setup times, which
are assumed to be negligible compared to the processing times.

� A third extension investigates the ELSP with stochastic demand, setup
times and processing times. This problem is denoted as the Stochastic
Economic Lot Scheduling Problem (SELSP). Three main approaches have
been developed for the SELSP. Winands et al. (2005) present an excel-
lent survey of the research on the SELSP. They classify the contributions
according to two critical elements of a production plan: the sequencing
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and the lot sizing policy. The production sequences can be �xed or set
dynamically. If a �xed production sequence is used then the length of the
production cycle can either be �xed or dynamic. A �xed cycle length can
only be attained if the production and setup times are deterministic. The
lot sizes can either be based on the complete state of the system, i.e. global
lot sizing, or only on the stock level of the product currently setup, i.e.
local lot sizing. This leads to six categories. Figure 1.5, reproduced from
Winands et al. (2005), presents the main contributions on the SELSP.
Sox et al. (1999) also review the literature on SELSP.

In this thesis we study a multi-product, multi-machine PI system that is
characterized by stochastic demand, setup times and processing times. The goal
is to determine a control strategy that minimizes the sum of the setup costs,
work-in-process costs and �nal inventory costs, while customer service levels are
satis�ed. The problem studied in this thesis is very similar to the SELSP, except
for the layout of the manufacturing system. The SELSP is concerned with a
single server production system, while we study a multi-machine production
system with job shop routing structure. Therefore, the problem studied in this
thesis can be seen as a multi-machine extension of the SELSP. Our research aims
at exploring two di¤erent control approaches for this multi-machine version of
the SELSP: CBC and CPP. Both control approaches can be positioned in the
classi�cation proposed by Winands et al. (2005). The �rst approach, CBC, is a
policy characterized by dynamic production sequences and local lot sizing. The
second approach, CPP, is a strategy with �xed production sequences and with
local lot sizing. It is clear from this classi�cation, that both strategies take a
very di¤erent approach to the control of the PI system. The goal of our research
is to explore the performance of both strategies for a wide diversity of settings.
It is interesting to note that Winands et al. (2005) observe that for the SELSP
most contributions focus on a single class of policies, without comparing the
proposed policy with other strategies. They suggest that research should pay
more attention on the comparison of di¤erent strategies. In particular, they
state that one should not only make a comparison within a particular class of
policies, but also between di¤erent classes. Clearly, this is precisely the goal
of our research: we develop two di¤erent strategies, both from di¤erent classes,
and we investigate their performance on a wide range of problem instances. In
this way, we try to generate insights in the suitability of the two strategies for
speci�c situations.
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Figure 1.5: Overview of literature on SELSP (Winands et al. 2005)
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1.4 Research objective, methodology and ques-
tions

The objective of this thesis is to develop two control strategies (CBC and CPP)
for a multi-product, multi-machine PI system with job shop routing structure
and variability in the demand interarrival times, setup times and processing
times. Moreover, the goal of our research is to explore the performance of CBC
and CPP in a variety of realistic problem settings. Based on this exploration,
recommendations can be made for the application of the control strategies.

In order to attain these objectives, we should design our research project.
One important part of the design is the choice of the research methodology.
The selected research methodology can be described as �axiomatic, quantita-
tive model based research� (Bertrand and Fransoo, 2002). This approach as-
sumes that a quantitative model can explain (part of) the behavior of the real-
life production-system and that this model can capture (part of) the decision-
making problems faced by the managers of this real-life PI system. The research
is axiomatic in the sense that it is entirely based on the study of an idealized
model of the PI system. Idealized models only include those aspects of the prob-
lem that are assumed to be relevant and the model is formulated independently
of any particular real-life instance of the problem. The goal of the idealized
model is to grasp the essential trade-o¤s in the problem, and to leave out the
rest.

Our choice for an axiomatic, quantitative model based approach is motivated
by the following arguments:

� this research approach is commonly used for research on similar systems
(see literature review in Section 1.3);

� a model-based approach allows for creating a laboratory setting in which
there is perfect control over the conditions of the experiments, so that the
performance of the strategies can be directly related to the characteristics
of the PI system;

� a model-based approach is very well suited for the comparison of many
instances of the PI system under study, especially compared to empirical
research methods (e.g. case study research) that would be tremendously
time-consuming if a large number of settings should be investigated.

The main drawback of the axiomatic, quantitative model based approach is
that it is based on the assumption that the model can capture the most relevant
aspects of the problem situation under study. This assumption need not hold
and in that case the relevance of the results of our study for real-life situations
would be questionable. The signi�cant number of contributions that follow a
quantitative modeling approach for similar settings, however, gives us su¢ cient
con�dence to apply this methodology to the problem under study.
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To achieve the goals of our research, several issues should be dealt with.
Now, we present an overview of the research topics that are discussed in this
thesis. We structure the topics through the use of research questions that guide
the research activities. We also discuss the steps that are followed to answer
the research questions1 . This thesis is mainly concerned with the following two
research questions:

Research question 1 : How can the CBC strategy and the CPP strategy be
operationalized?

This research question is concerned with the problem of how the CBC and
CPP strategy, which are currently only de�ned in a conceptual way, can be
applied to the speci�c situation under study. In particular, this research question
is concerned with the transformation of the control strategy into tactical and
operational control decisions which are required for the execution of the strategy.
The next steps are followed to solve this research question:

1. Our research is based on a quantitative modeling approach. Therefore,
we �rst develop a quantitative model that represents the PI system under
study.

2. In the second step, we extensively study previous research on the control
of systems that are similar to the speci�c PI system under study. The
contributions studied in this step are also based on quantitative models.
Furthermore, standard mathematical techniques are studied in order to
understand the assumptions and mechanisms of the control approaches
presented in the literature.

3. In the third step, we use formal mathematical methods to develop decision-
support systems for determining the control decisions for both control ap-
proaches (CBC and CPP). Our research reveals that the PI system under
study is too complex to be analyzed and optimized exactly. Therefore,
the decision-support systems are based on approximate analytical mod-
els or simulation models. The approximate analytical models are based
on queueing theory, renewal theory, statistical inventory theory or math-
ematical programming. The development of the decision-support systems
is mainly an engineering task, since we predominantly use existing, state-
of-the-art mathematical techniques.

4. In the fourth step, we investigate whether it is justi�ed to use the devel-
oped decision-support tools. This step is required since the approximative
nature of the models that are embedded in the decision-support systems
may result in suboptimal control decisions. In order to assess the quality
of the decisions proposed by the decision-support systems, an extensive
simulation study is conducted.

1The steps in this section on methodology do not correspond to the structure of the re-
mainder of this thesis. For the sake of readability, the chapters in this thesis are structured
di¤erently.
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Note that this part of the research is necessarily technical in nature, since it
is concerned with the development and testing of the decision-support systems.

Research question 2 : What are the characteristics of the instances of the
PI system for which CBC outperforms CPP in terms of relevant costs, and vice
versa ?

This research question investigates the relationship between the performance
of CBC and CPP and the speci�c characteristics of the PI system. In this thesis,
we try to specify the conditions for which one control strategy outperforms the
other, using the following methodology:

1. Firstly, we develop a test bed that consists of a large number of instances
of the PI system. We de�ne several experimental factors that determine
the performance of the control approaches. The factors are varied over
several levels that are chosen to represent a large variety of realistic PI
systems.

2. Secondly, we perform a systematic simulation study in which the perfor-
mance of both control approaches is tested. We use simulation because
no exact analytical models are available to estimate the performance of
the control strategies in the PI system under study. Simulation is chosen
as an alternative for the exact analytical model, because it is currently
the most accurate estimation method that is available for evaluating the
performance of the PI system.

3. Thirdly, we use standard statistical techniques to relate the performance
of the control strategies to the characteristics of the PI system.

By answering these two research questions, we realize the objectives of our
research. Figure 1.6 summarizes the steps followed in this research. In the next
section, we present the outline of the remainder of this thesis.

1.5 Outline of the thesis

This thesis is structured in three parts. Part I and Part II are concerned with
research question 1. Part I shows how the CBC strategy is operationalized in
our research, while Part II deals with the same issue for the CPP strategy.
In Part III, research question 2 is answered by comparing the CBC and CPP
strategy in an extensive simulation study.

Part I, on the CBC strategy, consists of four chapters. Chapter 2 provides
more details on the CBC strategy and shows how the strategy is operationalized
in our research. Chapter 2 is also an introduction to the remainder of Part I.
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Figure 1.6: Flowchart of steps in research

In Chapter 3, a decision-support system based on an approximate analytical
model is developed. Chapter 4 presents two decision-support systems that are
based on simulation optimization. In the last chapter of Part I, Chapter 5, the
developed decision-support systems are thoroughly tested in a simulation study.

Part II, on the CPP strategy, is composed of three chapters. Chapter 6
introduces the CPP strategy in more detail and provides an outlook to the
remaining chapters in Part II. Chapter 7 proposes a decision-support system
that is based on a deterministic model of the PI system. Part II is concluded
with Chapter 8, in which the proposed decision-support system is tested.

Part III contains the �nal part of our research. In Chapter 9, the performance
of the CBC and CPP strategy is compared in an extensive simulation study.
Moreover, the performance of both methods is related to the characteristics
of the PI system. Based on the insights of the comparison, recommendations
are made for the application of the strategies. Chapter 10 presents a real-life
industrial problem. This numerical example based on real-life data highlights
some of the most important �ndings of our research. Chapter 11 concludes this
thesis with a summary of the main insights and a discussion of further research
opportunities.
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Chapter 2

Introduction to
Coordinated Batch Control

2.1 Introduction

This chapter is an introduction to Part I on the Coordinated Batch Control
(CBC) strategy1 . Part I deals with the operationalization of the CBC strategy,
i.e. we show the speci�c details of how we implemented the CBC strategy in
this research. Moreover, we develop and test decision-support systems that allow
optimizing the production and inventory control decisions. The decision-support
systems are based on the state-of-the-art of the mathematical techniques that
are currently available. No new mathematical techniques are being developed.
Therefore, the results in this �rst part on CBC are basically engineering results.
The scienti�c contribution of this thesis lies in the comparison of the two control
strategies (CBC and CPP) that are investigated, not in the development of
new mathematical methods to analyze and optimize the performance of the
PI system. However, in order to make an insightful comparison between the
two control concepts, we need high quality implementations of the concepts.
Therefore, a considerable part of this thesis is devoted to the development and
testing of decision-support systems for the two control concepts.

Before we start developing the decision-support systems (in Chapters 3 and
4), we �rst provide some background information on the PI system and the
CBC strategy. This introductory chapter is structured as follows. Section 2.2
presents the production-inventory (PI) system that is the object of our research
attention. After this, Section 2.3 shows the speci�c implementation of the CBC
strategy. It appears that the performance evaluation and optimization of the
CBC strategy in this PI system is a non-trivial task. Section 2.4 is devoted
to the topic of performance evaluation. The problems that are encountered
when evaluating the performance of the PI system are discussed. Alternative

1The content of Part I has appeared in Van Nyen et al. (2005a-b).
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approaches for evaluating the performance are presented. Next, Section 2.5
shows why the optimization of the performance of the CBC strategy is complex.
Some directions for coping with this problem are given. Finally, Section 2.6
summarizes the main ideas of this section and outlines the remainder of Part I.

2.2 Integrated PI system

In this section, we discuss in detail the integrated PI system that will be studied
in this thesis. The PI system was already represented in Figure 1.2. We also
introduce the notation that will be used throughout this thesis. In particular,
we provide the notation for the input variables. The notation for the decision
variables, performance measures and endogenous variables will be introduced
when it is used.

In the PI system, several products are produced to stock. The number of
products is denoted as K. The demand for the products is satis�ed from stock.
We assume that the demand for product k that arrives to the inventory points
is a stationary renewal process. The stationary renewal process represents the
situation in which the volume of the demand for a certain product is -more or
less- known, but there is uncertainty about the precise timing of the demand
arrivals. This corresponds to the case where the management has solved the
capacity planning issue by allocating a certain demand volume to the produc-
tion system that has a given amount of production capacity available. In the
stationary renewal process, the demand interarrival times A0k are stochastic vari-
ables with a known expectation E [A0k] and squared coe¢ cient of variation (scv)
c2 [A0k]. The demand size (number of product units requested per demand) is
equal to one. Demand that cannot be satis�ed directly from inventory is back-
ordered. The production-inventory management has to ensure that a target
customer service level is attained. In this research, we use the �ll rate as the
measure for customer service. The �ll rate is a service measure that is used
frequently in real-life and can be de�ned as the fraction of the demand that is
satis�ed directly from the inventory (Silver et al., 1998). We assume that the
target �ll rate �k is exogenously determined, e.g. by the management of the PI
system. The cost considerations that are related to the choice of a target �ll
rate are not considered in this thesis.

The inventory management generates replenishment orders for the di¤erent
products in order to satisfy the demand. Every time a replenishment order for
product k is generated, a �xed cost ok is incurred due to the costs of order
processing, order handling, etc. The items for product k that are in the �nal
stock point have a unit value of vk. A carrying charge, denoted as r, is incurred
per amount of money that is kept in inventory per unit of time. Similar to Zipkin
(1986), in our integrated PI system the replenishment orders are made-to-order
by the production system. Therefore, the replenishment orders are equivalent
to production orders.
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The production orders are manufactured in the production system that con-
sists of several functionally oriented workcenters. The number of work centers
is denoted as M . We assume there is ample supply of raw material. Each of
the work centers performs operations for a number of di¤erent products. The
work centers are modeled as single machines that are continuously available.
The machines can process only one product at a time. Each of the products can
have a speci�c serial sequence of production steps, which results in a job shop
routing structure. The routing structure is denoted as follows: rk (i; j) = 1 if
in the routing of product k, work center i is followed by work center j; else
rk (i; j) = 0. Furthermore, rk (0; j) = 1 indicates that work center j is the �rst
operation in the routing of product k. Finally, rk (i; 0) = 1 indicates that work
center i is the last operation in the routing of product k. Each production step
of a product requires a di¤erent work center. The production orders for di¤erent
products compete for capacity at the di¤erent work centers. The sequencing of
production orders depends on the control policy in place, see the discussion of
both control policies for more details. Before the production of an order for
product k at a work center j can start, a machine setup has to be performed.
This machine setup takes a certain time Ljk and cost sjk. The setup costs
can be summed over all work centers in the routing of product k, so that the
total setup cost for one production order of product k is sk. The setup times
and costs are sequence independent and lot size independent. After the setup,
the processing of the production order starts. The time required to process the
entire production order is proportional to the size of the production order. The
production time for one unit of product k on work center j is given by P 0jk.
The manufacturing process is subject to variability: setup times and process-
ing times are stochastic variables with a known expectation and scv: denoted

as E [Ljk], c2 [Ljk], E
h
P 0jk

i
and c2

h
P 0jk

i
. When the production of the entire

batch is completed at a certain work center, the batch is transported to the next
work center in the routing of the product. The transportation batch size equals
the production batch size. When the processing of the entire batch is �nished
at the last operation in the routing of a product, the batch is transported to
the stock point. We assume that the transportation times are negligible. Sub-
stantial setup costs and setup times have as result that the products are made
in batches. We assume that there is no grouping of orders in the production
system, so that the size of the production batches is fully determined by the
replenishment decisions made by the inventory management.

Table 2.1 summarizes the notation of the input parameters and variables as
well as the mathematical operators used throughout this thesis2 . By specifying
the values of these variables and parameters, an instance of the PI system is
fully de�ned. The notation for decision variables, performance measures and
endogenous variables is introduced where it is used.

2The use of an accent in a variable indicates that the variable is on the item level, e.g. A0k
represents the time between two demands for a single item of product k. Later, the accent
will be dropped and this indicates that the variable is on the batch level, e.g. A0k represents
the interarrival time between two successive arrivals of production batches for product k.
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Inventory system
K : number of products
k = 1; :::;K : product index
A0k : interarrival time between two successive

demands for product k (stochastic variable)
�k : target �ll rate of product k
ok : ordering costs incurred for one order of product k
vk : end value of one item of product k in �nal inventory

(e/item)
r : carrying charge (e/e/time)

Production system
M : number of work centers
j = 1; :::;M : work center index
P 0jk : unit processing time for one item of product k on

work center j (stochastic variable)
Ljk: : setup time for a production order of product k on

work center j (stochastic variable)

rk (i; j) =

8<: 1, if work center j is the successor of work center i
in the routing of product k
0, otherwise

rk (0; j) =

8<: 1, if work center j is the �rst operation in the routing
of product k
0, otherwise

rk (i; 0) =

8<: 1, if work center i is the last operation in the routing
of product k
0, otherwise

sk : setup costs incurred for one order of product k
vjk : value of one item of product k at workcenter j (e/item)

Mathematical operators
E [X] : expected value of a stochastic variable X
�2 [X] : variance of a stochastic variable X

c2 [X] = �2[X]
E2[X] : squared coe¢ cient of variation (scv) of a

stochastic variable X
(X)

+ = max (0; X)

(X)
� = max (0;�X)

Table 2.1: Notation for input variables, parameters and mathematical operators
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2.3 Coordinated Batch Control

We implement the CBC strategy as follows. We use statistical inventory control
policies for generating replenishment orders. In this research, periodic review,
order-up-to (Rk; Sk) inventory policies are used to control the inventory and
to generate replenishment orders for every product. The inventory position of
product k is periodically reviewed, with intervals of length Rk. The replenish-
ment orders are generated according to an order-up-to policy. The size of the
orders is determined as the di¤erence between the order-up-to level Sk and the
inventory position of product k at the review moment. Therefore, the order size
is equal to the demand during the common cycle. It is well-known that periodic
review policies result in reliable and predictable order arrivals to the production
facility. The replenishment orders are manufactured by the production system.
We assume that the orders are not collected or grouped. Consequently, a re-
plenishment order is equivalent with a production order. Hence, the choice of
the review periods also determines the long-run average production batch size.
In the production system, the orders for di¤erent products compete for capac-
ity at the work centers. In our implementation, the orders are sequenced using
the simple and easy to analyze First-Come-First-Serve (FCFS) priority rule3 .
Before the production can start, a setup is performed.

This strategy corresponds to the case where the decision-maker determines
the tactical medium-term production and inventory control decisions (review
periods, production lot sizes and order-up-to levels), while the day-to-day se-
quencing decisions are left to the shop �oor. In this way, a considerable amount
of �exibility is left to the shop �oor control, which can be used to improve
resource utilization, order throughput times, due date performance, etc.

In this implementation of the CBC strategy, the decision-maker can only
in�uence the parameters of the inventory policy (the review periods Rk and the
order-up-to levels Sk). The decision-maker faces the non-trivial task to set the
tactical control parameters such that the total relevant costs are minimized while
customer service level constraints must be satis�ed. To some extent, the task of
the decision-maker is simpli�ed by the following observation, similar to the safety
stock independence property de�ned by Gudum and the Kok (2002). Given that
the inventory points are controlled by periodic review (R,S) policies with full
backordering, the size and the timing of replenishment orders is determined by
the review periods, not by the order-up-to levels. In an integrated PI system,
this implies that the arrivals of production orders to the production system,
as well as the processing times of the production orders at the di¤erent work
centers are determined by the review intervals and not by the order-up-to-levels.
Therefore, the throughput times of the orders do not change if the order-up-
to levels are modi�ed. Consequently, a change in the order-up-to levels only

3 In this research, we use a FCFS sequencing rule because it eases the analysis. The use of
other sequencing rules may improve the performance of the job shop (see e.g. Baker 1984),
but those rules are much harder to analyze. It would be interesting to investigate through
simulation the impact of other sequencing rules on the performance of CBC.
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in�uences the �ll rates. This property is illustrated in Figure 2.1. More details
can be found in Appendix I.

Figure 2.1: Illustration of safety stock independence property

The main consequence of this observation is that for a given set of review
periods, denoted as R = fR1; :::; RKg, the order-up-to levels S = fS1; :::; SKg
can be tuned so that the desired service levels are realized. Therefore, the main
task of the decision-maker is to determine the review periods R that result in
minimal total costs. Setting the order-up-to levels so that the target �ll rates are
attained -for a given set of review periods R- turns out to be a minor problem.

Unfortunately, �nding the optimal review periods that minimize the total
relevant costs appears to be a complex task for two reasons:

1. It is not possible to exactly analyze the performance of the PI system
for a given set of review periods (at least not given the current state of
mathematical techniques). At best, estimation methods can be developed.
Hence, we have a serious problem with evaluating the performance of the
PI system.
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2. Even if were possible to exactly analyze the performance of the PI system,
then still it would be hard to �nd the optimal review periods. The number
of possible combinations for the review periods is very large, even for mod-
erate problem sizes. This seriously complicates the task of optimizing
the review periods.

In the next two sections, both issues are discussed in more detail.

2.4 Performance evaluation

Given the current state of mathematical techniques, it is not possible to exactly
analyze the performance of the PI system under the CBC strategy. Subsection
2.4.1 gives the reasons why this is not possible. In Subsection 2.4.2, we discuss
two alternative approaches that allow estimating the performance of the PI sys-
tem. Subsection 2.4.3 presents in more detail one of these alternative estimation
methods, namely simulation. Simulation will be used as our laboratory setting
of the PI system under study. It is shown in detail how a three-stage simulation
model can be used to evaluate the performance of the PI system.

2.4.1 Reasons

The main reasons why the development of an exact analytical model of the PI
system under study is impossible are:

1. In an integrated PI system the arrival process of orders to the production
system is determined by the placement of orders by the inventory points.
Obviously, the order throughput times, and thus the replenishment lead
times, are in�uenced by the order arrival process. Therefore, the replen-
ishment lead times depend on the placement of the orders by the inventory
management. Standard techniques for modeling replenishment lead times
in the inventory models assume that the lead times are generated by some
process independent of the placement of the replenishment orders (Zip-
kin, 1986). To the best of our knowledge, no inventory model exists that
takes into account the interdependence between the generation of replen-
ishment orders and the replenishment lead times. The model of Smits et
al. (2004) can be considered as a �rst attempt to approximately analyze
this interdependence for the special case of a single machine PI system,
where the inventory is controlled with (R, S) inventory policies. Their
approach cannot be extended, however, to the multi-machine PI system
under study.

2. The multi-machine production system characterized by job shop routings
can be modeled as an open queueing network. Typically, the interar-
rival times and the processing times of the production orders have a non-
Markovian distribution. To the best of our knowledge, no mathematical
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techniques are presently available to exactly determine the performance
measures (e.g. distribution of throughput times) of an open queueing net-
work with non-Markovian arrival and processing times. In case the FCFS
priority rule is used at the work centers, the performance of the produc-
tion system can be approximately analyzed using the queueing network
analyzer developed by Whitt (1983).

3. For the estimation of the average �nal inventory and to set the safety
stocks in order to satisfy the service level requirements, the distribution of
the demand during the lead time should be known. Except for some spe-
ci�c instances, this distribution is analytically intractable (Zipkin, 1986).
Bagchi et al. (1984) give an overview of the instances for which the dis-
tribution is tractable.

2.4.2 Alternative approaches

For the reasons above, it turns out to be impossible to develop an exact analyt-
ical model for the performance of the integrated PI system under study. There-
fore, we need to use other approaches in order to evaluate the PI system under
study. Basically, two approaches are possible: approximate analytical models
and simulation models. Both approaches are estimation methods, rather than
exact methods. This implies that both methods give approximate results on the
performance of the PI system.

A �rst approach would be to use approximate analytical models to estimate
the performance of the PI system. For the PI system under study, an approxi-
mate analytical model could be developed by considering a simpler version of the
system under study (e.g. a deterministic system) or by using approximations
that circumvent the three problems sketched above. Unfortunately, most often
little is known about the estimation quality of the approximate models. More-
over, there are no tight bounds on the performance of the PI system. Therefore,
the accuracy of the estimates obtained from such models is usually question-
able. The main advantage of an approximate analytical model is that it can be
evaluated fast.

Simulation models are computer programs that numerically evaluate the per-
formance of a model of the PI system and that gather data during the simulation
in order to estimate the desired performance measures. Law and Kelton (2000)
provide an extensive overview of simulation. The main advantage of simulation
is that it provides relatively accurate estimates for the performance measures of
interest. An additional advantage is that simulation models can capture much
more modeling detail. Unfortunately, this degree of accuracy is obtained at the
expense of large amounts of computing e¤ort. This makes simulation a valid
approach for estimating the performance measures for a given set of control
decisions. The optimization of the production and inventory control decisions,
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however, requires the evaluation of a large number of settings for the control
decisions. Therefore, the optimization of control decisions with simulation usu-
ally requires large amounts of computation time, which often makes simulation
optimization prohibitively expensive and/or slow.

Figure 2.2 summarizes the performance of exact analytical models, approx-
imate analytical models and simulation models in terms of computation time
and accuracy.

Figure 2.2: Exact analytical models, approximate analytical models and simu-
lation models compared in terms of accuracy and computation time

2.4.3 Simulation model as representation of reality

As discussed in the previous section, the performance evaluation of PI system
is problematic: no exact analytical models can be developed with the current
mathematical techniques. This poses a great problem for our research: how
can the performance of the PI system for a given set of control decisions be
determined accurately ?

Figure 2.2 shows that simulation is an accurate (but slow) alternative for an
exact analytical model. In this research, we will use simulation as the method
to estimate the performance of the PI system. The simulation model of the PI
system is considered as a representation of the reality we want to study. As
such, the simulation model is the laboratory setting of the PI system under
study.

In the remainder of this subsection, we discuss a three-stage simulation pro-
cedure that allows estimating the performance of the PI system, for a given
vector of review periods R = fR1; :::; Rk; :::; RKg. In particular, the simulation
procedure allows estimating for a given set of review periods:
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� the vector of order-up-to levels S = fS1; :::; Sk; :::; SKg that ensure that
the target customer service levels �k are satis�ed for k = 1; :::;K;

� the total relevant cost TRC (R);

� other relevant performance measures of the PI system, e.g. throughput
times, utilization levels, etc.

The three-stage simulation procedure is represented in Figure 2.3. In the
�rst phase, we simulate a system with review periods R and initial order-up-to
levels S0 =

�
S01 ; :::; S

0
k; :::; S

0
K

	
. Since there is no accurate method to set the

initial order-up-to levels, the �ll rates observed in the simulation may be lower
than the target �ll rates. Given that the target �ll rate must be satis�ed, this
leads to infeasibility of the proposed solution

�
R;S0

�
. Also, it may happen

that the realized �ll rates are higher than the target �ll rates. Obviously, this
leads to a solution that is unnecessarily expensive. For these reasons, we add
a second step to the procedure in which the order-up-levels are tuned using
a technique developed by Gudum and De Kok (2002). This second step is
based on the observation that a change in the order-up-to levels only in�uences
the �ll rates. In the third and �nal step of the procedure, we simulate the
system again with the review periods R and the adjusted order-up-to levels
S0 = fS01; :::; S0k; :::; S0Kg. In this simulation experiment, the �ll rates of all
products satisfy the �ll rate requirements. This simulation experiment is used
to estimate the desired performance measures. Appendix I discusses the three
phases of the procedure in more detail.

2.5 Performance optimization

In order to �nd the optimal review periods, the usual Operations Research ap-
proach is to develop an exact analytical model of the PI system. The analytical
model expresses the performance of the system in terms of the review periods.
An optimization method can then be used to determine the review periods that
minimize the total relevant costs. Unfortunately, such an approach does not
work for the integrated PI system under study, because no exact analytical
model for the performance of such a system can be developed. In the previous
section, we presented simulation as an accurate alternative for evaluating the
performance of the PI system. Then, would it not be possible to use simulation
based methods to search for the optimal review periods?

Recently, there has been considerable research attention on the topic of sim-
ulation optimization, see e.g. Law and Kelton (2000). Since simulation is an
accurate estimation method, these recent advances are promising. Unfortu-
nately, the accurate estimates are obtained at the expense of large amounts of
computing e¤ort. Since the optimization of the review periods requires the eval-
uation of many di¤erent choices for the review periods, simulation optimization
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R S0

Simulation with initial order-up-to levels

Fine-tuning the order-up-to levels

R S0 trace

R S’

Simulation with adjusted order-up-to levels

TRC(R)

Figure 2.3: Outline of simulation procedure for performance evaluation

requires massive amounts of computing time. Therefore, it is often not possible
to use simulation optimization to optimize the review periods, because it would
be too slow or too time consuming.

The reason why a large number of di¤erent settings for the review periods
should be evaluated follows from the fact that the review periods of all prod-
ucts should be determined simultaneously. Because the di¤erent products are
produced in the same production system, the optimal review periods of the dif-
ferent products are interdependent. This interaction between products makes
the search space for �nding the optimal set of review periods R very large. Sup-
pose that the review period of each product can take V di¤erent values. The
number of products is denoted as K. Then the number of possible combina-
tions for the review periods of the di¤erent products equals V K . Even for small
problem sizes, this leads to a very large number of possible combinations. Let
e.g. V = 4 and K = 10, then the number of possible combinations is equal to
1,048,576. Given that a simulation run of the PI system with 10 products and
5 machines takes about 2.5 minutes on an Intel Pentium 4 - 2.00 GHz, it would
take almost �ve year to completely enumerate and evaluate all combinations.
Moreover, the computation times exponentially increase when the number of
options or the number of products increase. Even if search techniques are used
that are more e¢ cient than complete enumeration, the computation times of
simulation optimization tend to be very high.
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For this reason, we proceed as follows. First, we develop an approximate
analytical model of the PI system. This approximate model captures the essen-
tial characteristics of the PI system, while it can be evaluated and optimized
very fast. Using the approximate analytical model, near-optimal review periods
can be determined. After this, we develop two simulation optimization meth-
ods. These methods use simulation to search for the optimal review periods.
Simulation optimization is used to improve the solution that is obtained with
the approximate analytical model. The solution of the approximate analytical
model provides the simulation optimization methods with a good starting solu-
tion, i.e. it brings the simulation optimization methods in the region close to
the optimum. From that point on, the accurate but slow simulation techniques
are used to improve the starting solution. In this way, the computation times
of the simulation optimization methods are considerably reduced.

2.6 Summary and outline

This chapter discussed how the CBC strategy will be studied in this thesis.
First, we presented the details of the PI system that our research will focus upon.
After this, it was shown how the CBC strategy is implemented. The inventory
of every product is controlled using periodic review, order-up-to policies. The
inventory policy parameters (review period length and order-up-to level) may
di¤er between products. At the end of a review period, a replenishment order
is generated according to an order-up-to policy. The replenishment orders are
produced in the production system where the batches of the di¤erent products
are sequenced according to a FCFS priority rule. We observed that for a given
set of review periods, a change in the order-up-to levels only has an e¤ect on the
�ll rates. Therefore, the main task of the decision-maker is to select the optimal
review periods that minimize the total relevant costs. The order-up-to levels can
be tuned afterwards so that the target �ll rates are satis�ed. The determination
of the optimal review periods appeared to be a non-trivial task since it is not
possible to exactly evaluate the performance of this CBC strategy for a given
choice of review periods and because the search space is very large. We decided
to use a simulation model for evaluating the performance of the PI system.
This simulation model is considered a representation of reality and functions as
a laboratory setting. Simulation is an accurate, but slow estimation method.
For this reason, it is well suited for the estimation of the performance of the
PI system, but less for optimization purposes. On the contrary, approximate
analytical models are usually less accurate than simulation, but much faster.
The speed of evaluation makes it easier to optimize the approximate analytical
models.

In the remainder of this part on CBC, we develop three decision-support
systems that are based on approximate analytical models and/or simulation op-
timization. The goal of the decision-support systems is to �nd the review periods
that optimize the total relevant costs. The �rst decision-support system, which
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is presented in Chapter 3, is based exclusively on an approximate analytical
model. The second and third decision-support system, developed in Chapter
4, use simulation optimization to improve the solution that is obtained from
the approximate analytical model. All of these methods are heuristic methods:
none of them guarantees to �nd the optimal set of review periods. The methods
merely attempt to get as close as possible to the (unknown) optimum. There-
fore, Chapter 5 is entirely devoted to testing the performance of the developed
decision-support systems.
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Chapter 3

A decision-support system
based on an approximate
analytical model for
Coordinated Batch Control

3.1 Introduction

In this chapter, we present a decision-support system based on an approximate
analytical model for the CBC strategy. The decision-support system searches
for the review periods that minimize the total relevant costs of the PI system
under study. As was explained in Chapter 2, the exact analytical evaluation
of the objective function is mathematically intractable. Therefore, we rely on
estimation methods to evaluate and optimize the objective function. In this
chapter, we optimize the problem under consideration using an approximate
analytical model. The main advantage of an approximate analytical model is
the relatively low amount of computation time required. Obviously, the price of
the gain in speed is a certain degree of inaccuracy. Therefore, the performance
of the decision-support system will be tested extensively in Chapter 5.

The remainder of this chapter is organized as follows: Section 3.2 presents
the approximate analytical model that is used to estimate the performance of
the PI system for a given set of decision variables. Section 3.3 shows how the ap-
proximate analytical model can be optimized using a greedy search algorithm.
Finally, Section 3.4 discusses how the approximate analytical model and the
optimization are used in the decision-support tool. Before we start the develop-
ment of the approximate analytical model, we �rst present an overview of the
literature that is relevant for the remainder of this chapter.

To develop our approximate analytical model, we integrate models from pro-

37
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duction control theory and inventory theory. Following the basic idea of Zipkin
(1986), we represent the inventory of each product by a standard model from in-
ventory theory and the production system by a standard open queueing network
model. Next, we link these submodels. This approach ensures that the essential
characteristics of the PI system are captured, while the approach is rather simple
and computationally tractable. Our model di¤ers from Zipkin�s model in several
ways. Firstly, we consider periodic review (R,S) policies, instead of continuous
review (s,Q) policies. Secondly, we use the �ll rate as measure of customer ser-
vice, instead of a backorder cost. Thirdly, our multi-machine production facility
is modeled as a general open queueing network, instead of an open Jackson net-
work (Jackson, 1957, 1963). The general open queueing network model allows
us to account more accurately for the e¤ect of batching decisions on the arrival
and production processes (and thus on order throughput times). In particular,
the queueing network model takes in account the variability of the arrivals and
production processes and its impact on the throughput times.

The models used to represent the stock points are standard inventory models,
as they can be found in well-known textbooks on inventory control, such as Silver
et al. (1998).

The model of the production system is a general multi-product, multi-
machine, open queueing network model, that is based on the work of Vandaele
(1996) and Lambrecht et al. (1998). They present a lot sizing procedure for
job shop production systems using general open queueing networks. Their ap-
proach was implemented in a large Belgian metalworking company (Vandaele
et al. 2000), which shows that the methodology can be applied successfully to
real-world problems. The performance analysis of the general open queueing
network is done by queueing network analyzers based on the parametric de-
composition method. The parametric decomposition was developed in the late
seventies and early eighties, amongst others by Reiser and Kobayashi (1974),
Kuehn (1976), Shanthikumar and Buzacott (1981) and Whitt (1983). In the
late eighties, Bitran and Tirupati (1988) re�ned the earlier methods by including
the phenomenon of interference among products and its e¤ect on the departure
process. They also provide an extensive review of the literature on network
analyzers. In the mid-nineties, Whitt (1994) extended the approximations of
Bitran and Tirupati (1988) for the characterization of the departure process
of each customer class from a multi-class single server queue with unlimited
waiting space and FCFS priority. Also, Whitt (1995) introduced variability
functions that address long-range variability e¤ects in a network of queues. An
introduction to the parametric decomposition approach is given in Suri et al.
(1993).

Finally, the inventory models and the model of the production system are
linked using elements of renewal theory. Cox (1962) and de Kok (1991a) give
an overview of renewal theory.
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3.2 Approximate analytical model

In this section, we present the approximate analytical model that forms the basis
for the decision-support tool. The approximate analytical model computes for
a given vector of review periods R = fR1; :::; Rk; :::; RKg :
1. the vector of order-up-to levels S = fS1; :::; Sk; :::; SKg which ensures that

the target customer service levels are satis�ed.
2. the total relevant cost TRC (R) that corresponds to the choice of control

parameters R.

The approximate analytical model consists of a model of the cost components
and a model for the physical performance measures of the PI system. Both
models are discussed successively.

3.2.1 Modeling the cost components

Below we present analytical expressions for the three cost components: �xed
ordering and setup costs, work-in-process inventory holding costs and �nal in-
ventory holding costs. Also, an analytical expression for the total relevant costs
is provided. All costs are measured per unit of time.

1. Fixed ordering and setup cost. In a periodic review policy, a replenishment
order for product k is placed every Rk time units. Consequently, the
number of orders placed per time unit is given by R�1k . Therefore, the
total ordering and setup costs per time unit for product k are given by:

SCk (Rk) =
ok + sk
Rk

(3.1)

2. Work-in-process inventory holding cost. Little�s law states that the av-
erage amount of work-in-process is equal to the average throughput time
E [Tjk (R)] multiplied by the customer arrival rate E�1 [A0k]. Hence, we
can use Little�s law (Little, 1961) to compute that the average number
of items of product k at work center j equals E[Tjk(R)]

E[A0
k]

. Note that the

throughput times Tjk are a function of the vector of review periods R.
Multiplying the average work-in-process at machine j with the holding
cost vjkr and summing over all machines leads to the total work-in-process
inventory holding cost per time unit for product k:

WIPCk (R) =
MX
j=1

E [Tjk (R)]

E [A0k]
vjkr (3.2)

3. Final inventory holding cost. Approximately, the �nal inventory for prod-
uct k consists of half the average order quantity plus the safety stock
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ssk (R) (Silver et al., 1998)1 ;2 . Note that the safety stock ssk is a func-
tion of the vector of lot sizes R. Multiplying the average amount of �nal
inventory with the inventory holding cost vkr gives the �nal inventory
holding cost per unit of time for product k:

FICk (R) =

�
Rk

2E [A0k]
+ ssk (R)

�
vkr (3.3)

4. Total relevant cost. The total relevant cost for product k is simply the
sum of the three cost components. Clearly, the total relevant cost TRC
for the whole PI system is given by the sum over all products of the total
relevant cost per unit of time for each product k:

TRC (R) =
KX
k=1

(SCk +WIPCk + FICk) (3.4)

Observe that one can easily compute most of the cost components if the
review periods for all the products R are given. However, two variables - the
expected throughput times at the work centers E [Tjk (R)] and the safety stock
ssk (R) - cannot be computed analytically, for the reasons mentioned in Chapter
2. Therefore we rely on approximations for E [Tjk (R)] and ssk (R) to evaluate
the cost of a given solution TRC (R). In the next section, we present a ap-
proximate model of the physical PI system that allows to estimate the expected
throughput times and the safety stocks.

3.2.2 Approximate model of the physical PI system

In this section, we present a model to estimate the performance measures of the
physical PI system for a given vector of review periods for all products R. We
determine the following characteristics of the PI system:

A. the expectation and scv of the order interarrival times and order produc-
tion times;

B. the expectation and variance of order throughput times in the production
system;

C. the order-up-to levels and corresponding safety stocks for the stock points.

1The approximation proposed by Silver et al. (1998) may result in serious estimation errors,
especially when service levels are low. Van der Heijden and De Kok (1997) present numerical
results on the estimation error as well as several approximation methods that are more accurate
than the Silver et al. approximation. More information on accurate approximation methods
can be found in De Kok (1991b).

2The assumption that successive orders cannot cross, which is made in this approximation,
is satis�ed since the production system sequences the orders with the FCFS rule.
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A. Characteristics of production orders

In this subsection we analyze the generation of replenishment orders at the
stock points. Replenishment orders are generated to satisfy the demand with
a target �ll rate. As mentioned before, in a make-to-order setting, the gen-
eration of a replenishment order results in a production order to be produced
by the manufacturer. Therefore, we can derive the characteristics of the pro-
duction orders by analyzing the characteristics of the replenishment orders. In
our model, we determine two main characteristics of the production orders: the
time between two successive order arrivals (referred to as the interarrival time)
and the processing time of the order. In accordance with the parametric decom-
position approach that is used for the performance analysis of the production
system, we con�ne ourselves to the determination of the �rst two moments of
the interarrival and processing times, which are denoted as:

� A0k : interarrival time of production orders of product k to the production
system (stochastic variable)

� Pjk : total processing time (including setup time) of production orders of
product k at work center j (stochastic variable)

In the CBC strategy, the replenishment orders are generated using a pe-
riodic review, order-up-to inventory (Rk; Sk) policy. A replenishment order is
generated at every review moment, i.e. every Rk time units. Consequently, the
expected interarrival time between production orders for product k is given by:

E [A0k] = Rk (3.5)

Since the time between two review moments is a constant, the variance and
scv of the interarrival times of production orders is zero:

�2 [A0k] = c
2 [A0k] = 0 (3.6)

In a (Rk; Sk) policy, the size of the replenishment order is equal to the
demand during the previous review period. Since our model is characterized by
stochastic demand interarrival times, the production orders are of variable size
which we denote here by Nk. By applying limiting results from renewal theory,
Cox (1962) shows that the number of arrivals in a review period is approximately
normally distributed with expectation and variance:

E [Nk] =
Rk

E [A0k]
(3.7)

�2 [Nk] �
Rk�

2 [A0k]

E3 [A0k]
=
Rkc

2 [A0k]

E [A0k]
(3.8)
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Consequently, the expected net processing time E
h
Pnetjk

i
(setup time not

included) of a production order of product k at work center j is given by:

E
h
Pnetjk

i
= E [Nk]E[P

0
jk] =

Rk
E [A0k]

E[P 0jk]

In order to �nd the total expected processing time (setup time included), we
add the expected setup time E [Ljk] to the expected net processing time:

E [Pjk] =
Rk

E [A0k]
E[P 0jk] + E [Ljk] (3.9)

The processing times of single items are assumed to be i.i.d. (identically
and independently distributed) stochastic variables. In the case of a (Rk; Sk)
inventory policy, the variance of the net processing time of a production order
(setup times not included) equals the variance of the sum of a variable number
of variable processing times. Consequently, the variance of the net processing

times of orders for product k at work center j, denoted here by �2
h
Pnetjk

i
is

given by the following formula (see e.g. Silver et al. 1998 or Ross 1996) :

�2
h
Pnetjk

i
= E [Nk]�

2
h
P 0jk

i
+ E2

h
P 0jk

i
�2 [Nk]

) �2
h
Pnetjk

i
� Rk
E [A0k]

�2
h
P 0jk

i
+ E2

h
P 0jk

i Rkc2 [A0k]
E [A0k]

, �2
h
Pnetjk

i
� Rk
E [A0k]

c2
h
P 0jk

i
E2
h
P 0jk

i
+ E2

h
P 0jk

i Rkc2 [A0k]
E [A0k]

, �2
h
Pnetjk

i
�
�
c2
h
P 0jk

i
+ c2 [A0k]

� RkE2 hP 0jki
E [A0k]

We assume that the processing times are independent from the setup times.
Therefore, the variance of the total processing times, including setup time, of
orders for product k at work center j is then given by:

�2 [Pjk] �
�
c2
h
P 0jk

i
+ c2 [A0k]

� RkE2 hP 0jki
E [A0k]

+ �2 [Ljk]

, �2 [Pjk] �
�
c2
h
P 0jk

i
+ c2 [A0k]

� RkE2 hP 0jki
E [A0k]

+ c2 [Ljk]E
2 [Ljk]

Finally, these formulas can be used to calculate the scv of the total processing
times of production orders for product k at work center j:

c2 [Pjk] �

�
c2
h
P 0jk

i
+ c2 [A0k]

� RkE2 hP 0jki
E [A0k]

+ c2 [Ljk]E
2 [Ljk]�

Rk
E [A0k]

E[P 0jk] + E [Ljk]

�2 (3.10)
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B. Throughput times in job shop

In this subsection, we compute the expectation and variance of the throughput
times through the job shop. In general, the arrival and production processes of
the orders are non-Markovian processes. This implies that standard queueing
results on product-form networks (Jackson 1957 1963, Kleinrock 1975, Kelly
1979), cannot be used to �nd performance measures. Instead, we use approxi-
mative techniques that were developed by Whitt (1983) to analyze general open
queueing networks. The queueing network analyzer developed by Whitt (1983)
is based on the parametric decomposition approach.
The parametric decomposition approach follows a three-step procedure to

compute the performance measures for the queueing network. In the �rst step,
the interaction between di¤erent work centers in the queueing network is an-
alyzed. Next, the network is decomposed into subsystems of individual work
centers for which performance measures are computed using two-parameter ap-
proximations. Finally, the results for the individual work centers are combined
to obtain estimates for the performance of the whole network. Below, we present
each of the three steps in detail.

Step 1: Interaction between di¤erent work centers In this �rst step
of the parametric decomposition approach, we analyze the interaction between
di¤erent work centers in the queueing network.

If work center j is part of the routing of product k, then the expected
interarrival time of production orders to work center j, denoted as E [Ajk], is
equal to the expected interarrival time of production orders to the production
system, denoted as E [A0k]. This property is due to the �conservation of �ow�
in the queueing network and holds on the condition that a production order
visits a work center at most once in its routing.

Next, the expected aggregate interarrival time of production orders to work
center j, denoted as E [Aj ], can be computed from the expression for the aggre-
gate arrival rate (E [Aj ])

�1 of production orders to work center j:

(E [Aj ])
�1
=

KX
k=1

E�1 [Ajk] (3.11)

Now, we compute the expected aggregate production time at a work center
j, denoted as E [Pj ], by taking the weighted average of the expected order
production times. The weight for the component process of product k is given
by the relative share fjk of order arrivals of product k in the total arrivals to
work center j.

E [Pj ] =
KP
k=1

fjkE [Pjk]

and
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fjk =
E [Aj ]

E [Ajk])

E [Pj ] =

KX
k=1

E [Aj ]

E [Ajk]
E [Pjk] (3.12)

Dividing the expected aggregate production time by the expected aggregate
interarrival time at work center j gives the utilization �j of work center j. After
some rewriting, it appears that the utilization of work center j is the sum of the
capacity utilization of all products. Note that �j denotes the gross utilization
level of the work center, which includes capacity utilization by setups.

�j =
E [Pj ]

E [Aj ]
=

1

E [Aj ]

KX
k=1

E [Aj ]

E [Ajk]
E [Pjk] =

KX
k=1

E [Pjk]

E [Ajk]
=

KX
k=1

�jk (3.13)

The expression for the scv of the aggregate production time is derived from
the second moment of the aggregate production process, which can be computed
by taking the weighted expectations of the second moments of the component
processes:

c2 [Pj ] =
E [Aj ]

E2 [Pj ]

KX
k=1

�
E2 [Pjk]

E [Ajk]

�
c2 [Pjk] + 1

��
� 1 (3.14)

In the queueing network, the departure process of orders for product k leav-
ing a work center constitutes the arrival process to the next work center in the
routing of product k. Therefore, the scv of the interarrival times of orders for
product k at a work center is equal to the scv of the interdeparture times of
production orders for product k leaving the previous work center j in the rout-
ing of product k. The interdeparture times of production orders for product k
leaving work center j is denoted as Djk. However, the arrival process of orders
to a work center consists of both internal arrivals (from other work centers in
the production system) and external arrivals (replenishment orders generated
by the inventory management). Since the products have a �xed routing through
the production system, the arrivals of orders for product k are either external
arrivals, or internal arrivals. Then the scv of arrivals of orders of product k to
work center i is given by:
c2 [Aik] = c

2 [A0k] rk(0; i) for external arrivals,
and

c2 [Aik] =
MP
j=1

c2 [Djk] rk (j; i) for internal arrivals;

where:
rk(0; i) = 1 if work center i is the �rst work center in the routing of product

k, and rk(0; i) = 0 otherwise.
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rk(j; i) = 1 if work center i is the successor of work center j in the routing
of product k, and rk(0; i) = 0 otherwise.

This allows us to write that the scv of the interarrival times of orders of
product k at work center i equals:

c2 [Aik] = c
2 [A0k] rk(0; i) +

MP
j=1

c2 [Djk] rk (j; i)

where rk(j; i) = 1 if work center i is the successor of work center j in the
routing of product k, and rk(0; i) = 0 otherwise.

Based on the application of limiting theorems, Whitt (1994) shows that the
following expression is a good approximation for the scv of the departure process
of an order of product k leaving work center j:

c2 [Djk] � �2jkc2 [Pjk]+fjk
P
l 6=k
�2jlf

�1
jl

�
c2 [Ajl] + c

2 [Pjl]
�
+
�
1� 2�jk�j + �2jk

�
c2 [Ajk]

This approximation is an extension of the approximations developed by Bitran
and Tirupati (1988). Combining these expressions results in the following sys-
tem of linear equations:

c2 [Aik] = c
2 [A0k] rk(0; i)

+
MP
j=1

24 �2jkc
2 [Pjk] + fjk

P
l 6=k
�2jlf

�1
jl

�
c2 [Ajl] + c

2 [Pjl]
�

+
�
1� 2�jk�j + �2jk

�
c2 [Ajk]

35 rk (j; i) (3.15)

This system of linear equations can be solved using e¢ cient standard proce-
dures, see e.g. Press et al. (2002).

Once the scv of interarrival times are known for all products and for all work
centers, an approximation for c2 [Aj ], the scv of the aggregate arrival process
at work center j, can be obtained by a formula due to Albin (1981, 1984) and
Whitt (1982, 1983). This formula is based both on limiting theorems and on
extensive simulation experiments.

c2 [Aj ] = wj

KX
k=1

fjkc
2 [Ajk] + 1� wj (3.16)

In this formula wj is a weighting function depending on �j and n
�
j :

wj =
h
1 + 4

�
1� �j

�2 �
n�j � 1

�i�1
n�j =

�
KP
k=1

f2jk

��1



46 Part I. Coordinated Batch Control

Step 2: Performance measures for individual work centers In the sec-
ond step of the parametric decomposition approach, the network of interrelated
work centers is decomposed into individual work centers. Based on the expres-
sions for the expectation and scv of the aggregate arrival and production process,
we derive approximations for the expectation and variance of the waiting times
per work center.
To obtain approximations for the expected waiting times E [Wj ], several

approximation methods are available. Approximations for the expected wait-
ing time in a GI/G/1 queueing system include Kraemer and Langenbach-Belz
(1976), de Kok (1989), Buzacott and Shanthikumar (1993). Whitt (1993)
presents an approximation for the performance characteristics of a GI/G/m
queueing system. As proposed by Whitt (1983) we use an adaptation of the
Kraemer and Langenbach-Belz formula for the expected waiting time in a GI/G/1
queueing system:

E [Wj ] �
(c2 [Aj ] + c

2 [Pj ])

2

�j
(1� �j)

E [Pj ] g (3.17)

where g � g(�j ; c2 [Aj ] ; c2 [Pj ]) is de�ned as:

g(�j ; c
2 [Aj ] ; c

2 [Pj ]) =

(
exp

h
� 2(1��j)

3�j

(1�c2[Aj ])
2

(c2[Aj ]+c2[Pj ])

i
; c2 [Aj ] < 1

1; c2 [Aj ] � 1:

An approximate expression for �2 [Wj ], the variance of the waiting times, is
due to Whitt (1983):

�2 [Wj ] = E
2 [Wj ] c

2 [Wj ] (3.18)

where:

c2 [Wj ] =
c2 [CDj ] + 1� P (Wj > 0)

P (Wj > 0)

P (Wj > 0) � �j +
�
c2 [Aj ]� 1

�
�j
�
1� �j

�
h
�
�j ; c

2 [Aj ] ; c
2 [Pj ]

�
h
�
�j ; c

2 [Aj ] ; c
2 [Pj ]

�
=8>><>>:

1 + c2 [Aj ] + �jc
2 [Pj ]

1 + �j (c
2 [Pj ]� 1) + �2j (4c2 [Aj ] + c2 [Pj ])

; c2 [Aj ] � 1
4�j

c2 [Aj ] + �2j (4c
2 [Aj ] + c2 [Pj ])

; c2 [Aj ] > 1:

c2 [CDj ] � 2�j � 1 +
4
�
1� �j

�
d3j

3 (c2 [Pj ] + 1)
2

d3j =

� �
2c2 [Pj ] + 1

� �
c2 [Pj ] + 1

�
; c2 [Pj ] < 1

3c2 [Pj ] (1 + c
2 [Pj ]); c2 [Pj ] � 1
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Next, the expectation and variance of the throughput time of a production
order of product k at work center j can be approximated as:

E [Tjk] � E [Wj ] + E [Pjk] (3.19)

�2 [Tjk] � �2 [Wj ] + �
2 [Pjk] (3.20)

Step 3: Performance measures for the combined network In the third
step of the parametric decomposition approach, the throughput times for the
complete production system are estimated by assuming every work center to be
independent of the others. Then the expectation and variance of the throughput
times can be found by adding up the approximations for the throughput times
at individual work centers over the complete routing of production orders. Ob-
viously, the assumption that work centers behave as if they were independent of
each other is not valid in the general case since this only holds for product-form
networks. However, it is common that queueing network analyzers make this as-
sumption (Whitt, 1983). Then, the expectation and variance of the throughput
times of orders for product k through the job shop are:

E [Tk] �
MX
i=0

MX
j=1

E [Tjk] rk (i; j) (3.21)

�2 [Tk] �
MX
i=0

MX
j=1

�2 [Tjk] rk (i; j) (3.22)

The double summation signs in the formulas (3.21) and (3.22) allow for
counting over the complete routing of orders for product k.

C. Order-up-to levels and safety stocks

In this subsection, we compute the order-up-to levels so that the �ll rate re-
quirements are satis�ed. The computation is based on standard results from
inventory theory, see e.g. Silver et al. (1998). First, we characterize the cus-
tomer demand during the order throughput time Tk and the review period Rk.
Note that the demand during the order throughput time and the review period
is a stochastic variable, denoted here by XTk+Rk

k . The expectation and the
second moment of the customer demand during the order throughput time and
the review period are given by the formulas (3.23) and (3.24). The derivation
of these formulas is shown in Appendix II.

E
h
XTk+Rk

k

i
� E [Tk] +Rk

E [A0k]
(3.23)
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E

��
XTk+Rk

k

�2�
� �2[Tk]+(E[Tk]+R2

k)
2

(E[A0
k])

2 + (E [Tk] +Rk)

�
E
h
(A0

k)
2
i

(E[A0
k])

3 � 1

E[A0
k]

�
+

�
E
h
(A0

k)
2
i�2

2(E[A0
k])

4 �
E
h
(A0

k)
3
i

3(E[A0
k])

3

(3.24)

For the special case of Poisson demand (i.e. exponentially distributed inter-
arrival times A0k) the variance of X

Tk+Rk

k reduces to:

�2
h
XTk+Rk

k

i
� �2 [Tk]

(E [A0k])
2 + (E [Tk] +Rk)

1

(E [A0k])
(3.25)

Now that we have found an approximation for the expectation and variance
of the demand during the replenishment lead time and the review period, we
can determine the order-up-to level Sk:

Sk = E
h
XTk+Rk

k

i
+ ssk (3.26)

The safety stock ssk can be computed as:

ssk = zk�
h
XTk+Rk

k

i
(3.27)

In this formula, zk is the so-called safety factor that is based on the target
�ll rate �k and the distribution of the demand during the order throughput time
and the review period (also called �lead time demand�). In order to determine
zk, the distribution of the lead time demand should be determined. Bagchi et al.
(1984) present an overview of the instances for which the distribution of lead
time demand can be determined analytically. Except for these special cases,
however, the distribution of the demand during the order throughput time and
the review period is intractable (Zipkin, 1986). Since in general our model does
not correspond to the special cases mentioned in Bagchi et al. (1984), we have
to rely on approximations. The choice of probability density functions to model
the lead-time demand is the subject of considerable debate among researchers.
In particular, the use of the normal distribution is an important issue. Some
researchers consider the impact of using other distributions than the normal to
be quite small (e.g. Fortuin, 1980). Others believe that the use of the normal
distribution may lead to serious errors in safety stocks and service levels (e.g.
Eppen and Martin, 1988). Tyworth and O�Neill (1997) review the literature on
this subject.

In our research, we use the normal approximation for the lead time demand.
For the case of normal distributed demand, Silver et al. (1998, p.736) present
an accurate and easy to implement approximation method to compute zk. The
approximation method involves the computation of only one fraction, so it is
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very fast. The choice for the normal approximation is motivated by the follow-
ing considerations. Firstly, the availability of a very fast approximation method
to compute zk in the case of normal distributed lead-time demand is an advan-
tage. In a later stage in the research, the approximate analytical model will be
optimized so that zk needs to be computed many times (between 30,000 and
50,000 times per problem instance). Secondly, in view of the approximation
errors that may result from the use of Whitt�s queueing network analyzer (see
e.g. Van Nyen et al. (2004) for simulation results), the estimates for the mean
and variance of the lead time demand may su¤er from a considerable degree of
inaccuracy. Based on this observation, we expect that the use of a more accurate
distribution function to model the lead time demand would not lead to consid-
erable improvements in the estimation quality of the overall model. Finally, we
checked the approximation using a rule of thumb which states that the nor-

mal distribution is usually an adequate approximation as long as c2
h
XTk+Rk

k

i
� 0:25 (Silver et al. 1998). When c2

h
XTk+Rk

k

i
> 0:25, another distribution -

such as the gamma distribution - should be considered. See Burgin (1975) for
more details on the use of the gamma distribution for inventory control. We

checked c2
h
XTk+Rk

k

i
for the optimal solution of all instances in the numerical

study (see Chapter 5), and found that the inequality c2
h
XTk+Rk

k

i
� 0:25 was

satis�ed in all cases. This is due to the fact that in the experiments we have
renewal demand (the order size of the customer demands is equal to one), which
results in rather small variability of the lead time demand. Based on this result,
we may expect that the use of the normal approximation is justi�ed.

As an alternative to the normal distribution, we could have opted to �t a
mixed-Erlang distribution on the �rst two moments of the lead time demand.
Extensive numerical studies by De Kok have revealed that the use of mixed-
Erlang distributions leads to more accurate results. Contrary to the mixed-
Erlang approximation, the normal distribution does not prohibit negative lead
time demand. By consequence, the normal approximation tends to be less ac-
curate than a mixed-Erlang approximation. See Van der Heijden en De Kok
(1997) for some numerical results. Similar to the normal approximation, the
mixed-Erlang distribution is relatively easy to implement. The mixed-Erlang
approach uses a bisection procedure to �nd the order-up-to level that corre-
sponds to the target �ll rate. Although the bisection procedure is reasonably
fast, it is slower than the normal approximation which involves only the com-
putation of a fraction, see Silver et al. (1998). A good overview of two-moment
�tting of mixed-Erlang distributions is given in Tijms (1990), Janssen (1998)
and Smits (2003).

In this section, we presented an approximate analytical model to estimate
several characteristics of the PI system under study. More speci�cally, we de-
rived approximations for the expected throughput times E [Tjk] of production
orders at the di¤erent machines and the required safety stocks ssk at the stock
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points. Given a vector of review periods R, one can use the approximate an-
alytical model to compute the order-up-to levels S that satisfy the target �ll
rates, the physical characteristics of the PI system and the total relevant costs
TRC. In the next section, we show how the review periods that minimize the
total relevant costs can be found.

3.3 Optimization of the approximate analytical
model

In Section 3.2, we presented an approximate analytical model to estimate the
cost of a given set of review periods R. In this section, we try to �nd the
vector of review periods that minimizes the total relevant costs TRC (R) es-
timated using the approximate analytical model. The vector that minimizes
TRC (R) is called the vector of optimal review periods, denoted as R� =
fR�1; :::; R�k; :::; R�Kg. Hence, the optimal total relevant costs TRC� can be
found by: TRC� = TRC (R�).

We decided to use a greedy search algorithm to optimize the objective func-
tion. The algorithm of choice is the univariant search parallel to the axes (USPA)
algorithm, see e.g. Tempelmeier (2003). The USPA algorithm works as follows.
Suppose we start with the initial solution R0. To guarantee that R0 is a feasible
solution, the review periods R0k are set to a large number. Then USPA �xes all
review periods but one and performs a direct search along this variable until
the minimum of the objective function in the current direction is found. This
minimum is then used as the starting point for the next iteration. Again, all
review periods but one are �xed and a direct search is performed. This process
is repeated until the value of the objective function cannot be further improved
in any direction parallel to the axes. The �nal solution R� cannot be improved
in any direction parallel to the axes and is the solution proposed by the USPA
heuristic. Notice that this heuristic need not end in a local optimum, nor in the
global optimum. For pseudo-code of the USPA algorithm, we refer to Figure
3.1. In the implementation, a step size of 100 minutes is used. The choice of
the step size has a small impact on the total cost of a solution since we may
expect that the objective function is �at around the optimum3 .

Because of the heuristic nature of the USPA algorithm, there is no guarantee
for its optimization performance. As mentioned before, the USPA algorithm
may get stuck in suboptimal solutions. In particular, this may occur when the
objective function is multimodal. In order to check the optimization quality of
USPA, we compare the performance of USPA to the performance of Simulated
Annealing (SA). SA is a general optimization technique for multimodal functions
(Eglese 1990, Aarts et al. 1997). SA is developed especially to avoid getting

3We tested the step size by optimizing a set of 240 instances (see Chapter 5 for more details
on the test bed), with step size = 100 and with step size = 10. The di¤erence in the total
costs was negligible: 0.01% on average, with a maximum of 0.21% on this set of instances.
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Select a feasible initial solution R0;
Set R0 := R0 and R� := R0;
Evaluate cost of R0;
Set k := 1;
Set New_Optimum_Found := TRUE;
Repeat while New_Optimum_Found= TRUE
{
Set New_Optimum_Found := FALSE;

Set R0k := R
�
k + STEP ;

Evaluate cost of R0;
Repeat while TRC (R0) < TRC (R�)
{

Set R�k := R
0
k;

Set New_Optimum_Found:= TRUE;
Set R0k := R

�
k + STEP ;

Evaluate cost of R0;
}

Set R0k := R
�
k � STEP ;

Evaluate cost of R0;
Repeat while TRC (R0) < TRC (R�)
{

Set R�k := R
0
k;

Set New_Optimum_Found:= TRUE;
Set R0k := R

�
k � STEP ;

Evaluate cost of R0;
}

if k = P then set k := 1;
else set k := k + 1;

}

Figure 3.1: USPA algorithm in pseudo-code
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Select a feasible initial solution R0;
Set R0 := R0 and R� := R0;
Evaluate cost of R0;
Set initial temperature � := TRC(R0);

Repeat until � <
TRC(R0)
5000

{
Set repetition counter r := 0;
Repeat until r >MaxRepetition
{

Generate solution R", neighbour of R0;
Evaluate cost of R";
Calculate � := TRC (R")� TRC (R�);
if � < 0, then R� := R" and R0 := R";
else if random(0; 1) < exp

���
�

�
then R0 := R";

r := r + 1;
}
� := � � CoolFactor;

}

Figure 3.2: Simulated annealing in pseudo-code

trapped in a local optimum. For this reason, one can expect that SA performs
better than USPA when the objective function is multimodal. We use SA to
optimize all problem instances in the test bed that is described in Chapter 5.
Figure 3.2 gives the pseudo-code for the SA algorithm used in our research.
The implementation is similar to the SA algorithm proposed by Ouenniche and
Boctor (1998).

Some attention should be given to the speci�c characteristics of the imple-
mentation, in particular to the:

� selection of the initial solution R0;

� parameter selection: initial temperature � , stopping criterion, cooling pa-
rameter CoolFactor and maximum number of repetitions on same tem-
perature r;

� choice of the neighborhood structure.

In order to guarantee a feasible initial solution R0, the review periods are set
to a large number. The initial temperature � is set equal to the cost of the initial
solution: � := TRC(R0). The search is stopped when the temperature � drops
below TRC(R0)=5000. For the cooling parameter CoolFactor and the maxi-
mum number of repetitions on same temperature r, we consider two di¤erent
settings. The �fast�setting has CoolFactor = 0:99 and r = 50, while the �slow�
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dTRC (in %) min. avg. max.
neighb. 1 - fast 1.2 48.1 397.5
neighb. 1 - slow 0.0 2.8 27.4
neighb. 2 - fast 0.0 0.1 0.3
neighb. 2 - slow -0.1 0.0 0.1

Table 3.1: Relative di¤erence in total relevant costs between SA and USPA

pNI min. avg. max.
neighb. 1 - fast 2.6 3.4 5.2
neighb. 1 - slow 44.5 60.2 92.2
neighb. 2 - fast 2.6 3.4 5.2
neighb. 2 - slow 44.5 60.2 92.2

Table 3.2: Proportion of number of iterations for SA and USPA

setting has CoolFactor = 0:995 and r = 100. It is clear that the fast setting has
less iterative improvement steps, which results in a shorter computation time,
but also in a lower optimization performance. Furthermore, we consider two dif-
ferent neighborhood structures. Both neighborhood structures �rst randomly
select a product k. Next, a new review period R00k is generated randomly, while
the review periods of the other products are kept to their original value. Thus,
a neighbor solution R" of R0 = fR01; :::; R0k; :::; R0Kg is generated by randomly
selecting R

00

k and R" =
n
R01; :::; R

00

k ; :::; R
0
K

o
. In the �rst neighborhood struc-

ture a neighbor is generated by randomly selecting R
00

k 2 [0;H]. The second
neighborhood structure generates neighbors by selecting R

00

k 2
h
R0
k

2 ; 2R
0
k

i
. The

main idea of the second neighborhood structure is to generate solutions that are
close to the best solution that is found so far.

The two options for the parameter setting and the neighborhood structure
lead to four di¤erent variants of the SA algorithm. We use these four variants to
optimize all instances in the test bed described in Chapter 5. Table 3.1 presents
the optimization performance of the algorithms by comparing the obtained to-
tal costs for the SA algorithm and the USPA algorithm. De�ne the relative
di¤erence in the obtained total relevant costs dTRC between SA and USPA as
follows:

dTRC =
TRCSA � TRCUSPA

TRCUSPA
� 100% (3.28)

Table 3.2 shows the proportion pNI of the number of iterations (denoted as
NI) between SA and USPA:

pNI =
NISA

NIUSPA
(3.29)
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Tables 3.1 and 3.2 show that the USPA algorithm performs very well com-
pared to SA, both in terms of optimization quality and computation time. Table
3.1 reveals that the optimization performance of SA with the �rst neighborhood
function and parameter setting �fast�is low compared to the USPA algorithm
(dTRC can become as high as 397.5%), while the required computation time is
on the average 3.4 times as high as the computation time of the USPA algo-
rithm. When we allow SA to make more improvement steps (parameter setting
�slow�), the optimization performance improves (maximum of dTRC = 27:4) at
the expense of an increase in the computation time (pNI = 60:2 on the average).
Based on these results, we conclude that USPA outperforms SA with neighbor-
hood structure 1, in terms of optimization performance and computation time.
The use of the second neighborhood function leads to a large improvement in
the optimization quality of the SA algorithm. For the parameter setting �fast�,
dTRC is 0:1% on the average with a maximum of 0:3%. For the parameter set-
ting �slow�, dTRC is 0:0% on the average with a maximum of 0:1%. For 16 of
the instances, SA with parameter setting �slow�realizes an improvement over
the USPA algorithm. However, the realized improvement is small: the mini-
mum of dTRC is �0:1% on this set of experiments. The computation time of
SA algorithm with neighborhood structure 2 is similar to SA with neighborhood
structure 1. Hence, SA takes (much) more time to realize results that are similar
-in terms of total relevant costs- to the results of USPA.

We can conclude that the performance of the USPA algorithm is satisfac-
tory: the solutions obtained by USPA are comparable to those generated by SA
with neighborhood structure 2 in terms of total relevant costs, while the time
required to obtain the solutions is lower. Finally, we refer the interested reader
to Appendix III for some further results on the unimodality of the objective
function.

3.4 Outline of decision-support system

In this chapter, we presented an approximate analytical model, that allows
estimating the total relevant costs of the PI system under study for a given
selection of review periods. We also showed that a simple heuristic, called the
USPA algorithm, can be used to �nd the review periods R� that minimize the
total relevant costs. The approximate analytical model also provides an estimate
for the order-up-to levels S0 that ensure that the target �ll rate is realized.

Because of the approximate nature of the analytical model used for op-
timizing the review periods, the resulting order-up-to levels and performance
measures may be inaccurate. Therefore, we use the simulation procedure that
was introduced in Appendix I to evaluate the performance of the PI system
given the optimized review periods R�. In this simulation procedure, the order-
up-to levels are tuned based on the outcome of a single simulation experiment.
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This ensures that the target �ll rates are satis�ed. After tuning the order-up-
to levels, another simulation experiment is executed in order to estimate the
performance measures of the PI system.

Figure 3.3 presents the outline of the decision-support system. In essence,
the decision-support system is a three-phase procedure. In �rst phase, the opti-
mization phase, we use the approximate analytical model and the optimization
routine to determine near-optimal review periods R� and initial order-up-to lev-
els S0. The second phase of the heuristic uses simulation techniques to tune the
order-up-to levels. Note that the review periods R� are not altered in this step.
Finally, in the third phase of the heuristic, the costs and operational character-
istics (�ll rates, throughput times, etc.) are estimated with simulation, given
R� and the tuned order-up-to levels S�.

In short, the proposed decision-support system uses an approximate ana-
lytical model to set the review periods and a simulation procedure to set the
order-up-to levels and to estimate the performance of the PI system. It is impor-
tant to note that the review periods, which are determined with the approximate
analytical model, are not changed later in the simulation procedure. Therefore,
the optimization of the review periods is fully based on the approximate ana-
lytical model. In the next chapter, we develop simulation based optimization
methods. These methods use simulation experiments to iteratively improve the
initial solution that is obtained with the approximate analytical model. At the
expense of considerable computation time, the solution from the approximate
analytical model is improved.
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Figure 3.3: Outline of decision-support system for CBC based on approximate
analytical model (AAM)



Chapter 4

Two decision-support
systems based on
simulation optimization for
Coordinated Batch Control

4.1 Introduction

In the previous chapter, we developed a decision-support system based on an ap-
proximate analytical model to optimize the review periods for the CBC strategy.
In this chapter, we develop two additional decision-support systems for the CBC
strategy. The decision-support systems developed in this chapter are based on
simulation optimization techniques. Simulation optimization is used to improve
the solution that is obtained from the decision-support system based on the
approximate analytical model. In Chapter 5, we investigate the performance
improvement that is realized by the use of simulation optimization techniques.

Simulation is an accurate method for evaluating the performance of manu-
facturing systems that are too complex to be analyzed analytically. However,
in order to optimize the review periods it is insu¢ cient to merely evaluate the
performance of the PI system for a given choice for the review periods. This
leads to the merging of optimization and simulation technologies. The result
of this merger is called simulation optimization. In general, these techniques
do not guarantee that the optimum is found, so they should be interpreted as
�optimum-seeking�methods. It is however common to call these methods �opti-
mization methods�(see e.g. Law and Kelton, 2000) and therefore we follow this
convention.

In this chapter, we present the technical details of the simulation optimiza-
tion techniques that are used to optimize the PI system under study. Later

57
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on, in Chapter 5, we use the techniques described in this chapter to optimize
a number of problem instances. This allows to assess the optimization quality
and the required computation time.

This chapter is organized as follows. Section 4.2 gives some background
information on simulation optimization. Section 4.3 gives an outline of the
decision-support systems. Section 4.4 describes an optimum-seeking method
based on the Univariant Search Parallel to the Axes (USPA) algorithm. Section
4.5 presents the optimum-seeking method OptQuestTM . Finally, Section 4.6
summarizes the main ideas of this chapter.

4.2 Background on simulation optimization

Simulation optimization can be de�ned as "the process of �nding the best values
of some decision variables for a system where the performance is evaluated based
on the output of a simulation model of this system" (Olafsson and Kim, 2002).
Several other authors present similar de�nitions, e.g. Swisher et al. (2000), Fu
(2001), April et al. (2003).

Simulation optimization is an area that has experienced rapid growth in
recent years, both in the academic world and in real-life settings (April et al.,
2003). Law and Kelton (2000), Fu (2001), Olafsson and Kim (2002) and April et
al. (2003) observe that many simulation software vendors have now integrated
optimum-seeking packages into their simulation software. This is a signi�cant
change from 1990, when none of the simulation software packages included
such functionality. The evolution is due to the exponential increase of com-
putation power of PCs and recent advances in optimization search techniques,
mainly in the �eld of metaheuristics. Examples of well-known simulation pack-
ages that have added optimization functionality are ArenaTM and Enterprise
DynamicsTM . More examples can be found in Appendix IV.

Simulation optimization involves two important parts: generating candidate
solutions and estimating their objective function value. The technique that is
used to generate candidate solutions determines the e¤ectivity and the e¢ ciency
of the optimization. Many optimization techniques are available nowadays. We
refer the reader to Law and Kelton (2000), Swisher et al. (2000), Fu (2001),
Olafsson and Kim (2002) and April et al. (2003) for an overview of the tech-
niques. The goal of an optimum-seeking method is to orchestrate the simulation
of a sequence of system con�gurations so that a system con�guration is eventu-
ally obtained that provides a near-optimal solution (Law and Kelton, 2000). We
stress that the methods are "optimum seeking" methods since there is -usually-
no guarantee for the optimality of the solutions found.

In a rather limited number of cases, simulation optimization has been applied
to production and inventory control problems. To the best of our knowledge,
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none of these contributions are closely related to the problem under study.
We summarize some contributions in the �eld of simulation optimization for
production and inventory control in Appendix V.

4.3 Outline of decision-support systems

Figure 4.1, which is based on Law and Kelton (2000), gives an outline of the
decision-support systems based on simulation optimization. The outline is valid
for both of the decision-support systems. The decision-support systems are
based on the so-called black-box approach for simulation optimization. The
black-box approach consists of an optimum-seeking method that is used for
generating candidate solutions and a simulation model that is used for esti-
mating the objective function value of the candidate solutions. Two di¤erent
optimum-seeking methods are used to generate new candidate solutions (i.e. a
new vector of review periods R). These methods are discussed later. We use
the three-step simulation procedure that was discussed in Chapter 2 to evaluate
the cost of the candidate solutions.

The optimization process starts with an initial vector of review periods R0

that is evaluated by the simulation model. In the implementation, the initial
solution R0 is obtained from the decision-support system based on the approxi-
mate analytical model presented in Chapter 3. Simulation optimization is then
used to improve this initial solution. The simulation optimization procedure
iterates between the optimum-seeking phase and the simulation phase. In the
simulation phase, the performance of a candidate solution is evaluated. In the
optimum-seeking phase, new candidate solutions are generated, based on the
output of previous simulation runs. This iterative process continues until the
stopping rule is satis�ed. The candidate solution with the best performance is
the proposed solution. Note that there is no guarantee for the optimality of this
solution.

In the next sections, we introduce two decision-support systems based on
simulation optimization. Both decision-support systems are based on the black-
box approach that is sketched above. For both decision-support systems, the
performance of the candidate solutions is evaluated using the three-step simu-
lation procedure, which was presented in Chapter 2. The two decision-support
systems only di¤er in the optimum-seeking methods that are used to generate
the candidate solutions.

� USPA-SO. The �rst technique is a modi�cation of the Univariant Search
Parallel to the Axes (USPA). This simple algorithm was already used to
optimize the approximate analytical model in Chapter 3. Extensive tests
showed that the performance of the USPA algorithm was very good, both
in terms of quality of the obtained solutions as in terms of the number of
iterations that is required to obtain these solutions. The latter is obviously
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Figure 4.1: Outline of decision-support systems for CBC based on simulation
optimization (black-box approach)
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a great bene�t when using simulation to evaluate candidate solutions. One
of the drawbacks of USPA is that it may get stuck in a locally optimal
solution, or -even worse- in a suboptimal solution. In particular, this may
occur when the objective function is multimodal.

� OptQuestTM . We do not know beforehand whether the objective function
to be optimized is unimodal or multimodal. Therefore, we also develop a
decision-support system based on an optimum-seeking method for multi-
modal problems. Several methods are available; we opted for the com-
mercially available optimization tool called OptQuestTM . OptQuestTM

seems to become a standard in simulation optimization as it is imple-
mented in many simulation software packages, e.g. ArenaTM , Enterprise
DynamicsTM and SIMUL8TM (see Appendix IV). A main drawback of
OptQuestTM is that this technique -roughly stated- randomly samples
the search space. If the number of candidate solutions generated by
OptQuestTM is low (which is the case in our experiments since the com-
putation times are very high), this random sampling method may not be
very e¤ective.

We remark that -to the best of our knowledge- there is no literature on how
the simulation optimization methods should be applied to the problem under
study or to related problems. In the implementation, we therefore make some
arbitrary choices that are based on trial-and-error experiments for some test
problems.

4.4 USPA-SO

In this section, we present an optimum-seeking method based on the USPA
algorithm. The USPA algorithm was already described in the previous chap-
ter. However, for the sake of self-containedness of this chapter, we repeat the
description here. Figure 4.2 presents pseudo-code of USPA. Suppose we start
with the initial solution R0. Then USPA �xes all review periods but one and
performs a direct search along this variable until the minimum of the objective
function in the current direction has been found. This minimum is then used as
the starting point for the next iteration. Again, all review periods but one are
�xed and a direct search is performed. This process is repeated until the value
of the objective function cannot be further improved in any direction parallel
to the axes. The �nal solution cannot be improved in any direction parallel to
the axes and is the solution proposed by the USPA heuristic. Notice that this
heuristic need not end in a local optimum, nor in the global optimum.

In order to optimize the review periods, we propose an optimum-seeking
method in which USPA is executed three times (three optimization phases).
We denote this optimum seeking method as USPA-SO, where SO stands for
Simulation Optimization. Pseudo-code for the optimum-seeking method USPA-
SO is given in Figure 4.3. The solution of one phase is used as an input for the
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Select an initial solution R0;
Set R0 := R0 and R� := R0;
Evaluate cost of R0 with simulation;
Set k := 1;
Set New_Optimum_Found := TRUE;
Repeat while New_Optimum_Found = TRUE
{
Set New_Optimum_Found := FALSE;

Set R0k := R
�
k + STEP ;

Evaluate cost of R0 with simulation;
Repeat while TRC (R0) < TRC (R�)
{

Set R�k := R
0
k;

Set R0k := R
�
k + STEP ;

Evaluate cost of R0 with simulation;
Set New_Optimum_Found := TRUE;

}

Set R0k := R
�
k � STEP ;

Evaluate cost of R0 with simulation;
Repeat while TRC (R0) < TRC (R�)
{

Set R�k := R
0
k;

Set R0k := R
�
k � STEP ;

Evaluate cost of R0 with simulation;
Set New_Optimum_Found := TRUE;

}

if k = P then set k := 1;
else set k := k + 1;

}
Return R�

Figure 4.2: Univariant search parallel to the axes (USPA)
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Iteration 1:
- Select an initial solution R0;
- Set STEP := 2500
- Execute USPA algorithm
- Set R�;1 := R�

Iteration 2:
- Set R0 := R�;1

- Set STEP := 500
- Execute USPA algorithm
- Set R�;2 := R�

Iteration 3:
- Set R0 := R�;2

- Set STEP := 100
- Execute USPA algorithm

Return R�

Figure 4.3: Optimum-seeking method USPA-SO

next phase. In each optimization phase a di¤erent step size is used. The step
sizes are chosen so that at the start of the search process the step size is large (in
order to avoid getting trapped in local minima and to speed up the optimization
process), while at the end the step size is small (so that the optimum can be
approached as close as possible). The values of the step sizes are chosen by
trial-and-error, and are set respectively to 2500, 500 and 100 minutes1 .

In order to reduce the required computation time, the number of subruns Q
in the simulation evaluation is limited to �ve. This limited number of subruns
may result in less reliable point estimates for the total costs. Therefore, we
provide con�dence intervals for the estimates in Chapter 5. These con�dence
intervals show that the point estimates are still accurate.

4.5 OptQuestTM

OptQuestTM is a commercially available software package for non-convex opti-
mization problems, developed by OptTek Systems, Inc. OptQuestTM was devel-
oped by well-known optimization experts, amongst others by F. Glover, J. Kelly
and M. Laguna. OptQuestTM is rapidly becoming a standard tool for simulation
based optimization, since it is implemented in several of the most used simu-

1The smallest step size is 100 minutes. From tests with the USPA procedure for the
optimization of the approximate analytical model, it appeared that choosing smaller step
sizes does not result in considerable cost savings (see Chapter 3).
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lation software packages, e.g. ArenaTM , Enterprise DynamicsTM , SIMUL8TM

etc.

The exact optimization routines are hidden to the end user, but from the
documentation it can be found that the optimization is based on elements from
scatter search, taboo search and neural networks (OptTek Systems 2003). An
article by Glover et al. (1999) presents more details on the implemented meth-
ods. Here, a brief summary of the main elements is presented.

Scatter search, developed by F. Glover (1977), is designed to operate on a
set of points, called reference points. The approach systematically generates
combinations of the reference points to create new points. In this way it is sim-
ilar to Genetic Algorithm procedures, which also produce new elements based
on the combination of existing elements. For this reason, both techniques can
be classi�ed as "population based" approaches. Scatter search di¤ers from Ge-
netic Algorithm procedures in the way that new elements are generated. While
Genetic Algorithms use randomization to generate new elements, scatter search
exploits knowledge from the search space, high-quality solutions found within
the space and trajectories through the space over time (Glover et al. 1999).

In the OptQuestTM tool, tabu search (Glover and Laguna 1997) is then
superimposed on the scatter search technique to control the composition of
reference points at each stage. The basic feature of tabu search lies in its ability
to use adaptive memory, which is used to take advantage of the search history
in order to guide the solution process. Tabu search operates by identifying key
attributes of moves or solutions, and imposing restrictions on subsets of these
attributes, depending on the search history (Glover et al. 1999).

Finally, OptQuestTM also uses a neural network component to improve its
performance. The neural networks are used as a metamodel, which is an alge-
braic model of the simulation. The goal of the metamodel is to approximate
the objective function that the simulation model represents. In OptQuestTM ,
the metamodel based on neural networks is used to screen out solutions that
are predicted to be inferior compared to the best known solution (April et al.
2003). In this way, the neural networks help to accelerate the search process
by avoiding simulation runs that are likely to be inferior in terms of objective
function value (Glover et al. 1999).

In the OptQuest optimization package, several options are available to con-
trol the optimization process. In our research, we use the standard settings for
the controls. We limited the search space of the optimization routine by allow-

ing the review periods Rk to take only values in the interval Rk 2
�
R0k
2
; 2R0k

�
for k = 1; :::;K. In the experiments with a Simulated Annealing algorithm in
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Chapter 3, we observed that this restriction may result in a considerable im-
provement in the performance of the optimization method. Similarly to the
USPA-SO method, we restrict the review periods to multiples of 100 minutes2 .

In order to reduce the required computation time, the number of subruns
Q in the simulation evaluation is set to �ve. A limited number of subruns may
result in less reliable point estimates for the total costs. Therefore, we provide
con�dence intervals for the estimates in Chapter 5. These con�dence intervals
show that the accuracy of the point estimates is satisfactory. In our experiments,
the optimization process is stopped after 1,000 iterations. Notice that the lim-
itation of the number of subruns increases the number of candidate solutions
that can be evaluated within a certain computation time. As a consequence, the
optimization performance improves. In this way, a trade-o¤ is made between
the accuracy of the results and the optimization quality.

4.6 Summary

In this chapter, we presented two decision-support systems based on simulation
optimization techniques for optimizing the review periods in the CBC strategy.
Starting from the solution obtained with the approximate analytical model,
simulation optimization is used to improve the review periods. The decision-
support system consists of a simulation model and an optimum-seeking method.
In the implementation we use a three-step simulation procedure (see Chapter
2) to evaluate the candidate solutions. The optimum-seeking methods propose
new candidate solutions. Two optimum-seeking methods were presented in this
chapter. The �rst is the USPA-SO algorithm. The second is the commercially
available OptQuestTM algorithm. In the next chapter, the performance of the
three decision-support systems for CBC will be tested.

2From tests with the USPA procedure for the optimization of the approximate analytical
model, it appeared that choosing smaller step sizes does not result in considerable cost savings
(see Chapter 3).
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Chapter 5

A simulation study to test
the decision-support
systems for Coordinated
Batch Control

5.1 Introduction

In this chapter, we test the performance of the decision-support systems that
were developed in Chapters 3 and 4 for the CBC strategy. The decision-support
systems are based on an approximate analytical model (AAM) of the PI system
and on simulation optimization (USPA-SO and OptQuestTM ). We focus in this
chapter on the decision-support system based on the AAM. Since this tool is
fast, it can easily be used to optimize a large variety of instances. The decision-
support systems based on simulation optimization are used as a benchmark.
These decision-support systems use the solution obtained from the AAM as a
starting solution. Therefore, the comparison is aimed at testing whether it is
su¢ cient to use the AAM for setting the review periods or whether we should use
the AAM together with simulation optimization techniques. The performance
of the decision-support system based on the AAM is evaluated on a test bed
consisting of 240 instances of the PI system under study.

The methodology used for testing the decision-support systems warrants
some discussion. First, the optimal solution for the problem under study cannot
be found with the techniques that are currently available. Furthermore, no high-
quality bounds on the optimal costs are known, mainly due to the di¢ culty to
�nd bounds on the waiting times in the production system. Moreover, to the
best of our knowledge, no other control approaches have been developed for the
speci�c PI system under study. Consequently, the performance of our decision-
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support systems cannot be compared to the true optimum, nor to a good bound,
nor to the performance of another control approach reported in the literature.
In short, there exists no good benchmark to test the quality of our techniques.

For these reasons, we constructed our own benchmarks in order to test the
performance of the decision-support system based on the AAM. We use three
criteria: (i) soundness of the proposed solutions; (ii) estimation quality; (iii)
optimization quality. The soundness of the proposed solutions is checked by
studying the response of the tool to changes in the factors. These qualitative
tests allow us to validate whether the behavior of the decisions proposed by the
AAM are in line with what we would expect intuitively. The estimation quality
of the AAM is tested by comparing the estimates with simulation. Finally, the
optimization quality is investigated by comparing the results of the decision-
support system based on the AAM with the results of the decision-support
systems based on simulation optimization. In accordance with the de�nition of
Supply Chain Management given by Simchi-Levi et al. (2000), we focus on the
minimization of the total relevant costs with the constraint that a target cus-
tomer service level should be attained. Therefore, the decision-support systems
are mainly tested on the basis of their performance in terms of realized total
relevant costs.

The remainder of this chapter is organized as follows. In Section 5.2, the
experimental design of the simulation study is discussed. In Section 5.3, insights
are generated on the mechanisms that are embedded in the optimization tools.
In Section 5.4, we investigate the soundness of the solutions proposed by the
AAM. Section 5.5 presents simulation results on the estimation quality of the
AAM. In Section 5.6, the optimization performance of the AAM is compared
to the performance of the two simulation optimization techniques. Finally, in
Section 5.7, we present conclusions on the applicability of the decision-support
systems to the problem under study.

5.2 Experimental design of the simulation study

In the simulation study, we investigate the performance of the decision-support
systems for a range of PI systems. A selection of 240 instances of the PI system
is generated, which represents in a systematic manner a speci�c subset of PI
systems encountered in real-life.

5.2.1 General characteristics of PI system

In this research, we study a small-scale model that consists of 10 products and
5 work centers. The 5 machine, 10 products model represents the complexity
that can be found in real-life production systems and has been used in research
on similar PI systems, see e.g. Ouenniche and Boctor (1998) and Ouenniche
and Bertrand (2001). We assume that the customer demands arrive accord-
ing to a Poisson process. Furthermore, the setup times and processing times
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are exponentially distributed, leading to phase-type production order process-
ing times. These assumptions on the distribution of demand and processing
times are commonly made in simulation research on job shops, see e.g. Kanet
and Hayya (1982) or Bertrand (1983ab). This assumption allows incorporating
all kinds of variability that are present in real production systems: operator
in�uences, machine defects, quality problems, etc.

5.2.2 Factors in simulation study

In the simulation study, we investigate the e¤ect of four factors. We expect that
these factors have a considerable impact on the performance of the PI system.
In this section, these factors are discussed.

A typical feature of the job shop like manufacturing systems studied in this
thesis (and probably of many others) is that the net utilization1 strongly de-
termines the pro�tability of the manufacturing system. Therefore, companies
typically try to operate at high levels of net utilization. It is interesting to dis-
tinguish between the traditional and the modern views of the role of capacity
utilization (Suri and Treville 1993, Hopp and Spearman 1996). Figure 5.1 il-
lustrates the traditional and modern views of capacity planning by plotting the
performance of the manufacturing system as a function of capacity utilization.
The traditional view is based on achieving maximum e¢ ciency by having uti-
lization as close to the capacity limit as possible. In this view, production is
feasible when utilization is below capacity; otherwise it is not. This leads to a
0/1 view of capacity planning. The modern view, on the other hand, is based on
elementary insights from queueing theory (e.g. Hopp and Spearman 1996). In
this view, the responsiveness of the manufacturing system continuously dimin-
ishes as the capacity utilization increases. Based on this modern view, other
performance measures should be considered when making capacity decisions.
Typical examples include the work-in-process inventories, mean and variance of
throughput times, quality, etc. The modern view also illustrates that it is not
possible to attain 100% utilization of the manufacturing system.

Furthermore, job shop like manufacturing systems are typically characterized
by high setup costs and times, usually because of technological or organizational
restrictions. Some examples of setup costs are: labor costs of sta¤ performing
setups, costs due to deterioration of quality after start-up resulting in waste or
rework, etc. Setup time is caused by the activities performed when switching
production from one product to the other, e.g. shutting down, cleaning and
preparing the machines. In this thesis, we explicitly take into account both
aspects of setups. We are aware of the fact that often setup costs are used as
a substitute for setup times, or vice versa. Clearly, this facilitates the decision-
making process. However, we believe it is sensible to investigate both costs

1Net utilization is the fraction of capactity that is used for e¤ective production. It does not
include capacity usage for non-productive activities such as performing set-ups, maintenance,
etc.
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Figure 5.1: Traditional versus modern view of capacity utilization (based on
Hopp and Spearman 1996)

and times because they in�uence the decision-making process through di¤erent
mechanisms. The setup costs have a direct impact on the total relevant costs,
while the setup times have a direct impact on the utilization level of the pro-
duction system. The impact of the utilization level and thus the setup times
on congestion phenomena in the manufacturing system and the related costs is
well-known, mainly from elementary insights in queueing theory (see e.g. Kar-
markar et al. 1985). It is clear that the impact of the setup times on the total
relevant costs is indirect and depends on other variables such as the net uti-
lization of the manufacturing system. Moreover, we distinguish between setup
costs and setup times because there usually is a trade-o¤ between them. For
example, setup times can be reduced by having more sta¤ performing the setup
or by investing in better tools. Finally, we mention that determining the setup
costs is di¢ cult since it usually is not clear which costs should be included and
which not.

In this thesis, we investigate the PI system in isolation. From a supply
chain perspective, however, the delivery performance of the integrated PI system
strongly determines the performance of downstream stages. It is common to
impose target service levels that should be achieved by the integrated PI system,
so as to ensure an overall performance of the supply chain. In this research, we
impose target �ll rates on the integrated PI system. The �ll rate is a commonly
used service level and can be de�ned as the long run fraction of demand that
can be satis�ed directly from stock.

In conclusion, we investigate four factors in this study:

� net utilization of the work centers �net

� average setup times E [Ljk]

� set-up and ordering costs (ok + sk)

� target �ll rates �k
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Factor Levels
�net 0.65, 0.75, 0.85
E [Ljk] randomly generated in the intervals

[30, 60] min. or [90, 180] min.
ok + sk randomly generated in the intervals e [0, 0],

e [6.67, 13.33], e [20, 40] or e [60, 120]);
�k 0.90, 0.98

Table 5.1: Factors and levels in simulation study

Table 5.1 summarizes these factors and also presents the di¤erent levels that
are considered in the simulation study. The levels of the factor �net utilization�
are chosen in a reasonable region. At lower levels of utilization the production
system would not be economically viable. At higher levels, the congestion in
the production facility would become very high. The levels of the factor �setup
times�are chosen such that the ratio of the average setup time to the average
processing time is respectively in the region [6; 60] or [18; 180]. These ratios
are realistic. The setup costs are based on data from real companies, where we
observed values in the interval e [20, 40] and e [60, 120]. Setting the setup costs
to zero is done for testing the importance of the setup costs. The interval e
[6.67, 13.33] was added after we observed considerable performance di¤erences
between the instances with and without setup costs. The levels of the factor
��ll rate�represent a low and a high level, which correspond to current practice
at companies.

5.2.3 Generation of problem instances

The number of combinations that can be made with the levels of the four factors
equals 3 x 2 x 4 x 2 = 48 combinations. We use a procedure presented in Appen-
dix VI to generate �ve basic problem con�gurations. The basic problem con�g-
uration determines some important characteristics of the problem instance: the
routing structure, the processing times, the setup times, the inventory holding
costs, etc. After the generation of the basic problem con�gurations, 48 variants
are made from each of the �ve basic problem con�gurations. The three levels
for the factor "net utilization of the work centers" are generated by adjusting
the average interarrival times of the demand E [A0k]. E.g., if the base case �

net

= 0:65, then the problem instance with �net = 0:85 can be derived by increasing
the demand by multiplying E [A0k] with factor

0:65
0:85 for k = 1; :::; P . The levels for

the setup times and for the setup cost are realized by multiplying the times and
costs in the basic problem con�guration with the required multiplier. E.g., if in
the base case ok + sk 2 [6:67; 13:33]e, then the instance with ok + sk 2 [20; 40]e
can be obtained by multiplying ok + sk by factor three. Finally, the target �ll
rates are set to the required level. In this way, 48 combinations are generated
from the 5 basic problem con�gurations. Therefore, the total simulation study
consists of 5 x 48 = 240 instances.
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Figure 5.2: Histogram of precision of 90% con�dence interval for simulation
estimates TRC

The 240 problem instances are solved with the decision-support system based
on the AAM. Figure 5.2 gives a histogram of the precision of the 90% con�dence
interval for the TRC. The precision can be computed as the width of 90%
con�dence interval divided by the average TRC. As can be seen from the
histogram, the simulation estimates for the total relevant costs are accurate,
since the precision is at most 0.79%.

5.3 Harmonization of decision variables

In this section, we discuss how the decision-support system based on the AAM
modi�es the decision variables in order to minimize the system-wide costs. We
denote this optimization process as harmonization of the decision variables. In
particular, we investigate how the AAM uses the review periods to minimize
the total relevant costs. The goal of this section is to gain insight into the
mechanisms that are embedded in the optimization process.

5.3.1 Comparison with uncapacitated EOQ

The mechanisms behind the selection of the review periods are illustrated by
comparing the detailed output of the optimization tool with the output of a
simple heuristic method for setting the review periods. More speci�cally, we
use the economic order quantity (EOQ) expressed as a time supply (Silver et
al., 1998) to set the review periods for all products k:

REOQk =

s
2 (ok + sk)E [A0k]

vkr
(5.1)
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The EOQ formula completely ignores the impact of the lot sizing decision on
the production system. Therefore, we refer to this method as the uncapacitated
EOQ approach. Hence, it does not take into account the costs that are related to
capacity utilization and throughput times, i.e. work-in-process and safety stock
costs. We use the uncapacitated EOQ approach to solve one basic problem
con�guration, consisting of 48 problem instances of the experimental design. At
the end of this section, the results for all 48 problem instances are summarized.
First we study in detail one speci�c problem instance. This problem instance is
selected because it clearly demonstrates how our heuristic works. In this way,
the reader can gain understanding of the mechanisms that are embedded in the
heuristic.

In Tables 5.2 up to 5.4, we present the detailed results of the decision-support
system based on the AAM and the uncapacitated EOQ method for one speci�c
problem instance. The problem instance is characterized by net-utilization =
0.85, average setup times = 45, average setup and ordering costs = 10 and target
�ll rate = 0.98. From the analysis of the decision variables and the corresponding
performance measures, we learn how the decision-support system works and how
it tries to achieve the minimal total relevant costs. Table 5.2 displays the decision
variables (review periods and order-up-to levels) and the resulting throughput
times, characterized by their expectation E[Tk] and standard deviation �[Tk]. It
can be seen from Table 5.2 that the AAM proposes considerably smaller review
periods than the uncapacitated EOQ method. This is due to the fact that
the EOQ approach does not take into account the high work-in-process costs
that result from large production batches. The order-up-to levels are lowered
accordingly. The results show that the proportion of the review periods of
AAM and EOQ is di¤erent for all products. This indicates that the decision-
support system based on the AAM takes into account the speci�c processing
characteristics of every product when determining the review periods. The
impact of the smaller review periods on the expectation and standard deviation
of the throughput times is high: the expected throughput time decreases by
36.5% on average while the standard deviation of the throughput times decreases
by 42.4% on average.

Table 5.3 shows the impact of the changes in the decision variables on the
relevant costs. Since the solution of the AAM uses smaller review periods, the
setup costs are substantially higher compared to the uncapacitated EOQ solu-
tion (+ 58.4%). However, the review periods chosen by the AAM lead to shorter
and more reliable throughput times, so that the work-in-process costs and the
�nal inventory holding costs decline signi�cantly (-35.8% and -36.5%). Overall,
this leads to a cost decrease realized by the AAM versus the uncapacitated EOQ
approach of 9.0%.

Finally, Table 5.4 gives insight into the mechanisms embedded in the opti-
mization tool. In particular, it shows how the decision-support system harmo-
nizes the review periods of the di¤erent products. We use elementary insights
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AAM EOQ
k Rk Sk E [Tk] � [Tk] Rk Sk E [Tk] � [Tk]
1 3700 665 3784.2 653.1 8157 1326 6718.3 1362.6
2 4800 608 3844.4 865.7 6178 827 5385.9 1307.7
3 4600 657 5107.2 974.5 7449 1028 7812.7 1574.1
4 5400 536 2291 628.9 6359 679 3062.3 1012.5
5 5000 807 3639.5 857 5703 1092 5424.3 1481.8
6 4000 860 5028.4 923.8 7605 1490 8259.6 1539.9
7 5100 561 2781.4 782 7534 825 4045 1185.1
8 7000 574 2422.7 673.6 7289 703 3461.8 1329.2
9 4300 662 4763.3 852.6 7000 1061 7518.3 1472.9
10 3700 411 3455.2 694.8 8095 846 6780.5 1452.2
Avg. 4760 634.1 3711.7 790.6 7136.9 987.7 5846.9 1371.8

Table 5.2: Decision variables and throughput times for one problem instance:
approximate analytical model vs. uncapacitated EOQ approach

AAM EOQ
Prod. OC FIC WIPC OC FIC WIPC
1 8867.4 2526.5 2337.8 4021.7 5475.6 4183.7
2 3790.3 3230.4 2183.1 2945.1 4416.5 3079.6
3 5571.8 3242.3 2867.6 3440.8 5123 4410.6
4 3277.1 2849.1 1257.7 2783 3681.2 1681.3
5 4325.4 4521.5 2909.1 3792.2 6161.7 4257.8
6 8224.6 3579.1 3793.2 4325.6 6332.5 6192
7 4709.4 2842.7 1409.5 3188 4203.9 2050.2
8 3393.5 3581.2 1340.6 3259.2 4523.1 1960
9 4820.3 2670.3 2648 2960.6 4331.3 4224.1
10 6096.1 1877.1 1555.8 2786.5 3929.4 3055.4
Tot. 53076 30920.2 22302.3 33502.6 48178.1 35094.6
Overall 106298.4 116775.2

Table 5.3: Cost components for one problem instance: approximate analytical
model vs. uncapacitated EOQ approach
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from queueing theory to illustrate the trade-o¤s that are made by the AAM.
From elementary queueing theoretical results (see e.g. Hopp and Spearman
1996, van Dijk 1997), we learn that there are four main elements a¤ecting the
expectation of the throughput times E[T] on the machines: (i) the utilization �;
(ii) the variation of the arrivals, measured by their scv c2 [A]; (iii) the expected
processing time E [P ]; (iv) the variation of the processing times, measured by
their scv c2 [P ]. This insight is based on the Kingman (1961) approximation for
the expectation of the throughput times in a GI/G/1 queue:

E [T ] =

�
c2 [A] + c2 [P ]

2

��
�

1� �

�
E [P ] + E [P ] (5.2)

From Table 5.4, it can be seen that the optimization tool adapts the review
periods so that the expectation and the variation of the processing times are
reduced. On the average, the variation of the arrivals is also reduced, although
this e¤ect is less pronounced. These decreases happen at the expense of in-
creased utilization levels. In conclusion, the optimization tool �harmonizes�the
review periods of the di¤erent products so as to obtain the best balance between
utilization and variability.

In the job shop production system under study, the departure process of a
machine is the arrival process to the next machine in the routing of a product.
An elementary approximation, due to Hopp and Spearman (1996), for the scv
of the departure process c2 [D] leaving a queue is:

c2 [D] = �2c2 [P ] +
�
1� �2

�
c2 [A] (5.3)

At the next work center, the arrival streams for di¤erent products are su-
perposed to obtain the aggregate arrival stream. The scv of the aggregated
arrival stream can be approximated with an approximation developed by Whitt
(1982, 1983) and Albin (1981, 1984). See formula (3.16) for more details. From
the approximation for the scv of the departure process, it can be observed that
when the utilization of the machines is high, it is important to achieve low
variation in the processing times in order to obtain an arrival process with low
variability to the next machine. On its turn, the low variability in the arrival
and processing times lead to low throughput times. Table 5.4 learns that the
AAM realizes a low variation in the processing times, while the utilization levels
are high (around 90%). From Table 5.2, it can be seen that the actions taken
by the AAM, based on the mechanisms presented above, result in shorter and
less variable throughput times.

In conclusion, the analysis reveals that the decision-support system based
on the AAM harmonizes the review periods of all products. The results indicate
that the AAM searches for a trade-o¤ between utilization and variability e¤ects.
In this way, it searches for the review periods that minimize the relevant costs.
An important feature of the decision-support system is that it takes into ac-
count the impact of the review periods on the throughput times. Note that the
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AAM EOQ
Workcenter � c2 [A] E [P ] c2 [P ] � c2 [A] E [P ] c2 [P ]
1 0.91 0.7015 582.5 0.046 0.89 0.6735 867.7 0.082
2 0.93 0.6834 547.9 0.047 0.9 0.7526 807.2 0.082
3 0.89 0.6146 1022.6 0.024 0.88 0.5964 1563.9 0.05
4 0.9 0.4963 806.3 0.045 0.88 0.6533 1256.1 0.18
5 0.92 0.691 636.2 0.053 0.89 0.7967 1070.7 0.133
Avg. 0.91 0.637 719.1 0.043 0.89 0.695 1113.12 0.105

Table 5.4: Operational characteristics of production system for one problem
instance: approximate analytical model vs. uncapacitated EOQ approach

mechanisms described above are embedded in the decision-support system using
the advanced queueing theoretical results developed by Whitt (1983, 1994).

Now that we have investigated a problem instance in detail, we summarize
the results for the 48 instances that were solved using the uncapacitated EOQ
method. In 14 out of 48 problem instances, the uncapacitated EOQ approach
resulted into a solution that is infeasible with respect to production capacity.
For the 34 feasible instances, the uncapacitated EOQ solution is on average
5.2% more expensive than the solution of the heuristic. The maximum cost
increase reported on this set of experiments is 10.1%. The conclusion of these
experiments is that the uncapacitated EOQ method may work relatively well
compared to the heuristic, but since the uncapacitated EOQ approach does
not take into account capacity issues, it may result in unnecessarily expensive
solutions or in solutions that are infeasible with respect to production capacity
(and that require capacity expansion in the form of overwork, outsourcing, etc.).

5.3.2 Comparison with capacitated EOQ

In order to avoid that infeasible solutions are obtained, one can add capacity
restrictions to the uncapacitated EOQ method. Doing so, we obtain the follow-
ing mathematical programming problem, which we call the capacitated EOQ
approach:

min
Rk

KP
k=1

�
ok+sk
Rk

+ vkr

2E[A0
k]
Rk

�
subject to:

1.
KP
k=1

�
E[P 0

jk]
E[A0

k]
+

E[Ljk]
Rk

�
� �maxj for j = 1; :::;M

2. Rk > 0 for k = 1; :::;K

(5.4)

The objective function of this mathematical program is identical to the cost
function of the uncapacitated EOQ method. The �rst set of constraints imposes
that the machine utilization must be lower than a maximum allowable utilization
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level �maxj . The second set of constraints states that the review periods should
be strictly positive. Note that the objective function and the constraints are
convex in the review periods Rk. This convex programming problem can easily
be solved to optimality using the commercially available CONOPTTM algorithm
that is embedded in the AIMMSTM optimization software. The CONOPTTM

algorithm attempts to �nd a local optimum satisfying the Karush-Kuhn-Tucker
conditions. It is well known that for convex programming problems a local
optimum is also the global optimum (see e.g. Hillier and Lieberman 2005).

The main di¢ culty that arises with this capacitated EOQ method is the
choice of the maximum allowable utilization level �maxj . For deterministic prob-
lems �maxj is usually chosen so that all production capacity is utilized, i.e.
�maxj = 1. Clearly, in stochastic settings �maxj should be lower than 1 for reasons
of stability. It is, however, not obvious how the precise value of �maxj should be
chosen. If �maxj is chosen too low, this leads to long review periods (in order to
reduce the capacity utilization due to setups) and thus to high cycle stocks. On
the contrary, if �maxj is chosen too high, this results in high congestion, large
amounts of work-in-process, long throughput times and high safety stocks. A
priori, the EOQ model is not able to predict which value of �maxj leads to the
lowest total relevant costs. Therefore, in our experiments we vary �maxj over a
range of reasonable values and observe the resulting total relevant costs. We
use the capacitated EOQ method to solve the 48 problem instances that were
also solved using the uncapacitated EOQ method. The value of �maxj is set to
0.90, 0.95 and 0.99. Let us de�ne the deviation in the total relevant costs TRC
between the capacitated EOQ method and the decision-support system based
on the AAM as:

dcap�eoq =
TRCCAP�EOQ � TRCAAM

TRCAAM
� 100% (5.5)

Tables 5.5 and 5.6 give the minimum, average and maximum of dcap�eoq,
respectively for the instances with setup costs > 0 and the instances with setup
costs = 0. The results are shown for the di¤erent levels of the net utilization of
the machines �net.
The results in Tables 5.5 and 5.6 show that the proposed heuristic always

outperforms the capacitated EOQmethod. The capacitated EOQ approach may
work reasonably well, provided that a good choice is made for �maxj : the lowest
dcap�eoq observed in this set of instances is 1.7%. However, one can also observe
that an inappropriate choice of �maxj may result in a very poor performance: the
maximum of dcap�eoq in this set of instances is 224.5%. As mentioned before,
the EOQ approach does not provide any guideline for choosing the value of
�maxj .

For the instances with setup costs > 0 and �maxj = 0:99, the performance
of the capacitated EOQ method seems reasonable: the average of dcap�eoq is
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�maxj = 0:90 �maxj = 0:95 �maxj = 0:99

min. 1.9 1.9 1.9
�net = 0:65 avg. 3.7 3.7 3.7

max. 5.4 5.4 5.4
min. 1.8 1.7 1.7

�net = 0:75 avg. 5.0 5.0 5.0
max. 7.5 7.5 7.5
min. 5.7 4.2 3.8

�net = 0:85 avg. 25.2 7.8 6.7
max. 80.2 10.7 10.1

Table 5.5: Summary statistics for dcap�eoq, the relative deviation in total costs
between the capacitated EOQ method and the proposed heuristic (instances
with setup costs > 0)

�maxj = 0:90 �maxj = 0:95 �maxj = 0:99

min. 3.3 7.1 121.2
�net = 0:65 avg. 3.8 9.0 157.6

max. 4.6 11.0 224.5
min. 17.5 1.8 71.5

�net = 0:75 avg. 19.2 3.1 84.5
max. 21.2 4.5 96.2
min. 106.8 15.0 11.7

�net = 0:85 avg. 114.6 17.9 13.8
max. 119.1 20.4 16.0

Table 5.6: Summary statistics for dcap�eoq, the relative deviation in total costs
between the capacitated EOQ method and the proposed heuristic (instances
with setup costs = 0)



Chapter 5. Simulation study to test DSS 79

5.1% with a maximum of 10.1%. From the output-analysis, it appears that in
the majority of these instances the capacity constraints are non-binding so that
the solution of the capacitated EOQ method is identical to the solution of the
uncapacitated EOQ method. When �maxj is lowered, the performance of the
capacitated EOQ method degrades for the instances with �net = 0:85. When
�net = 0:85 and �maxj = 0:90, the average of dcap�eoq is 25.2% with a maximum
of 80.2%. For the majority of the instances with �net = 0:65 or �net = 0:75, the
capacity constraints are also non-binding when �maxj = 0:90 and 0:95. Therefore,
in these instances the performance of the capacitated EOQ method is similar to
that of the uncapacitated EOQ method and the capacitated EOQ method with
�maxj = 0:99.

The results for the instances with setup costs = 0 are shown in Table 5.6. It
appears to be even more important to select the appropriate value of dcap�eoq

for the instances with setup costs = 0 than for the instances with setup costs
> 0. For example, when �net = 0:65, the capacitated EOQ method works well
when �maxj = 0:90: the average of dcap�eoq is 3.8% with a maximum of 4.6%.
If �maxj is chosen too high, the performance of the capacitated EOQ method
degrades strongly: for �maxj = 0:99, the average of dcap�eoq is 157.6% with a
maximum of 224.5%. For the instances with �net = 0:75, dcap�eoq drops when
�maxj goes from 0:90 to 0:95. For �maxj = 0:95, the capacitated EOQ method
performs well. A further increases in �maxj leads to a strong increase of dcap�eoq.
For the instances with �net = 0:85, the capacitated EOQ approach performs
rather poorly for all choices of �maxj : the minimum of dcap�eoq reported on this
set of instances is 11.7%, while the maximum is 119.1%.

The main conclusion from these experiments is that the capacitated EOQ
approach is very sensitive to the choice of �maxj . Since the appropriate value
of �maxj depends on the speci�c characteristics of the problem instance, it is
di¢ cult to develop a general rule of thumb for selecting �maxj . The heuristic
proposed in this paper does not su¤er from this de�ciency. The AAM embedded
in the heuristic explicitly models the impact of the review periods on capacity
utilization and on congestion phenomena, taking into consideration the speci�c
characteristics of the problem instance. Therefore, our heuristic is a more robust
and reliable method to set the decision variables.

5.4 Analysis of the solutions: summary

In this section we present a summary of the analysis and interpretation the
solutions proposed by the decision-support system based on the AAM for the
240 instances in the simulation study. This allows us to verify the soundness of
the solutions proposed by the decision-support system. The qualitative analysis
helps to �nd out whether the solutions proposed by the tool are logical and
make sense from a managerial point of view. For the sake of readability, we
only present the main conclusions of the analyses. The detailed results can be
found in Appendix VII.
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We analyzed the main e¤ects of changes in the levels of the factors in the sim-
ulation study. Based on these analyses, we conclude that the decision-support
system responds appropriately to changes in the factors on this set of experi-
ments. For example, we tested whether increases in setup costs or setup times
resulted in increases in the review periods. Furthermore, we tested whether
increases in the levels of the factors led to increases in the total relevant costs.
This analysis led to the conclusion that the decisions proposed by the tool make
sense from a logical point of view. These results provide con�dence for the use
of the tool. It also appeared from the results of the simulation study, that the
setup cost is the dominant factor. The impact of the setup costs on the total
costs is many times higher than that of the other factors (utilization, �ll rate
and setup times) in the study.

When setup costs = 0, review periods are chosen so that about 2/3 of avail-
able capacity is allocated to setups. When setup costs are considerably high,
it seems that the review periods are chosen based on cost considerations only.
Instances that are in between the both extremes show a trade-o¤ between cost
and capacity considerations. These results indicate that a good knowledge of
the cost structure of the PI system is of high importance in order to make con-
trol decisions that minimize the total relevant costs. Unlike other approaches,
our AAM integrates both capacity and cost aspects. Therefore, the AAM is
able to make robust decisions for every instance, regardless of the values of the
di¤erent cost parameters. We also investigated the amount of capacity that is
allocated for setups as a function of the net utilization of the work-centers. In
line with our expectation, the amount of allocated capacity is decreasing as a
function of the net utilization.

Now that we have established that the decision-support system behaves
soundly with respect to changes in the factors on this set of experiments, we
can test whether the optimization performance of the decision-support system
is satisfactory. Therefore, we �rst test the quality of the estimates provided by
the AAM. After this, we compare the optimization performance of the decision-
support system based on the AAM with the performance of the decision-support
systems based on simulation optimization.

5.5 Estimation quality of the AAM

We test the prediction quality of the AAM that is embedded in the decision-
support system. If the prediction quality of the approximate model is satisfac-
tory, then one may expect that the optimization quality of the decision-support
system is good. However, when the AAM wrongly estimates the absolute value
of the costs, but correctly captures the relative behavior of the costs as a func-
tion of the review periods, the optimization process (and the decision-support
system) may still perform well. In the analysis, the main focus is on the es-
timation quality of the AAM for the total relevant costs. The cost criterion
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is important, because the optimization quality of the decision-support systems
will be evaluated in terms of the realized total relevant costs. The choice for
the cost criterion is consistent with the de�nition of Supply Chain Management
given by Simchi-Levi et al. (2000).

In the remainder of this section, we �rst test the approximation errors for
the estimates of the total relevant costs. After this, the estimate of the total
relevant cost is adjusted for the lower bound and the corresponding approxima-
tion errors are computed. Then we search for an explanation for the observed
approximation errors by studying the waiting time estimates. Finally, we inves-
tigate the relationship between the observed errors and the contribution of the
lower bound in the total relevant costs.

5.5.1 Approximation error of total relevant cost estimates

We study the approximation error for the total relevant costs, measured as the
relative di¤erence between the total relevant cost estimates of the AAM and
simulation (SIM) for the solutions proposed by the decision support system
based on the AAM for the 240 instances. The relative approximation error
eTRC can be computed as:

eTRC = TRCAAM (R�)�TRCSIM (R�)
TRCSIM (R�) � 100%

In Figure 5.3, a histogram for eTRC is presented. Since for optimization
purposes mainly the absolute value

��eTRC�� is relevant, we group the positive
and negative intervals with the same absolute value. The frequency of negative
and positive values of eTRC are shown in distinctive colors. From our numerical
results it appears that eTRC is rather small, lying in the range of -17% to 12%
on this set of 240 experiments. From Figure 5.3, it can be seen that for the vast
majority of the instances (more than 92%) the absolute relative approximation
error

��eTRC�� is lower than 10%. Although negative relative di¤erences occur,
in more than 70% of the cases the relative error is positive. A positive relative
error indicates that the AAM overestimates the costs. These relative errors
seem to be acceptable.

5.5.2 Approximation error of total relevant cost estimates
after correction for lower bound

Now, we investigate the added value of the AAM in estimating the costs of a
given solution. A lower bound on the total relevant costs for a given solution
is taken as a benchmark. This lower bound, denoted as TRCLB (R�) and
presented in Appendix VIII, can be considered as a very crude estimate of
the total costs. The lower bound ignores the impact of variability and the
interaction between the products on the costs. On the contrary, the AAM
is precisely developed to estimate the impact of variability and the interaction
between the di¤erent products. Since the AAM takes into account the variability
and interaction e¤ects, we may expect that this model yields estimates that are
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Figure 5.3: Frequency diagram for relative approximation error in total relevant
cost estimates by approximate analytical model (all instances)

(much) more accurate than the estimates provided by the lower bound. We wish
to investigate the contribution of the AAM when estimating the costs of a given
solution. The AAM is used to estimate that part of the total relevant costs, that
cannot be estimated with the lower bound (i.e. the costs due to variability and
interaction). Therefore, the contribution of the AAM in estimating the total
costs can be isolated by subtracting the lower bound TRCLB (R�) from the cost
estimate. The relative approximation error after correction for the lower bound
is measured as:

ecor =
�
TRCAAM (R�)�TRCLB(R�)
TRCSIM (R�)�TRCLB(R�) � 1

�
� 100%

,
ecor = TRCAAM (R�)�TRCSIM (R�)

TRCSIM (R�)�TRCLB(R�) � 100%
(5.6)

The denominator, TRCSIM (R�)� TRCLB (R�), represents the costs that
are due to the variability and the interaction between the products. The
AAM is used to estimate these costs. The numerator of the �rst expression,
TRCAAM (R�)�TRCLB (R�), represents the estimate of the AAM for the im-
pact on the costs of variability and the interaction between products. If the
AAM provides correct estimates, the fraction in the �rst expression would be-
come equal to 1. We normalize the approximation error by subtracting 1 from
this fraction. In this way, a correct estimate has ecor = 0. When the costs are
underestimated by the AAM, then ecor < 0; when they are overestimated, then
ecor > 0.

In Figures 5.4 a-b, we present the results of the analysis. From the analysis
of the �gures we learn that the AAM does not provide very accurate estimates
for the impact of the variability and the interaction between products. The
average absolute approximation error over all instances is as high as 38%. From
Figures 5.4 a-b, it can be observed that the behavior of the approximation error
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Figure 5.4: Frequency diagram for relative approximation error in total relevant
cost estimates by approximate analytical model, after correction for lowerbound
costs: (a) setup costs = 0 - (b) setup costs > 0

is di¤erent for the instances with setup cost = 0 and the instances with setup
costs > 0. Especially in the case of setup costs > 0, the ecor is substantial. The
average absolute error is as high as 46%, but it can mount up to almost 90%.
When setup costs = 0, the absolute approximation errors are lower: about 14%
on average with a maximum of 43%.

In the next subsection, we explore the reasons for the observed estimation
errors of the AAM. After this, we provide an explanation for the observation
that the estimates of the total relevant costs are rather accurate, despite the
fact that the observed estimation errors after correction for the lower bound
ecor are reasonably high.

Approximation error for waiting time estimates

We search for an explanation for the observed inaccuracies in the estimates for
the impact of variability and the interaction on the total relevant costs. One of
the main di¢ culties in the analysis of the PI system is to estimate the expec-
tation and standard deviation of the waiting times in the production system.
However, these estimates are very important since they determine the estimates
for the safety stock costs and the work-in-process costs. We present simulation
results on the approximation errors in the waiting time estimates that are gen-
erated with the AAM. Note that the AAM uses the queueing network analyzer
developed by Whitt (1983, 1994) to estimate the waiting times. The relative
approximation error of the estimates for the expectation and the standard de-
viation of the waiting times is de�ned as:

eE[W ] =
E [W ]

AAM � E [W ]SIM

E [W ]
SIM

� 100% (5.7)

e�[W ] =
� [W ]

AAM � � [W ]SIM

� [W ]
SIM

� 100% (5.8)
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Figure 5.5: Frequency diagram for relative approximation error in waiting time
estimates by approximate analytical model: (a) expected waiting time (b) stan-
dard deviation of waiting times

Figures 5.5 a-b provide frequency diagrams for eE[W ] and e�[W ]. It can
be seen that the estimates provided by the AAM are inaccurate. The average
of eE[W ] and e�[W ] on the test bed (240 instances and 5 machines = 1200
observations) is respectively 34% and 47%. The maximum of eE[W ] and e�[W ]

mounts up to respectively 118% and 122%.

In search for an explanation for the observed estimation errors, we conducted
an systematic simulation study on the performance of Albin and Whitt�s estima-
tion method for the waiting times in a �GI=G=1 queueing system. The results
are presented in Van Nyen et al. (2004). In the simulation study, Albin and
Whitt�s estimation method is used to estimate the waiting times in a multi-
product, single-machine PI system. Albin and Whitt�s estimation method for
waiting times in �GI=G=1 queues is used in the AAM for the superposition of
the arrival processes at a machine, see formula (3.16). The results indicate that
the observed approximation errors are much higher than those reported in the
literature (e.g. in Whitt 1983). Van Nyen et al. (2004) conducted two sets of ex-
periments: one set is characterized by identical arrival processes (135 instances),
while the other set is characterized by non-identical arrivals (45 instances). In
Table 5.7, we show the summary statistics of the observed estimation errors.
The magnitude of the errors reported by Van Nyen et al. (2004) corresponds to
the errors observed in the simulation study in this thesis.

The numerical results in the previous subsection indicate that the AAM does
not provide reliable estimates for the impact on the costs of variability and the
interaction between products. From the results in this subsection, it can be
concluded that the observed inaccuracies are -at least partially- caused by the
waiting time estimates generated by the queueing network analyzer developed
by Whitt (1983). In view of the considerable estimation errors that are observed,
one may wonder how the AAM is able to achieve relatively small approximation
errors for the (uncorrected) total relevant costs, as observed in Section 5.5.1. In
the next subsection, we try to �nd an answer to this question.
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Identical arrivals Non-identical arrivals
Key Measure eE[W ] e�[W ] eE[W ] e�[W ]

Minimum error 8 13 1 14
Average error 34 59 29 56
Maximum error 85 145 114 204

Table 5.7: Summary statistics for approximation errors of Albin & Whitt�s es-
timation method for waiting times in a �GI=G=1 queueing system (reproduced
from Van Nyen et al. 2004)

Approximation error versus contribution of lower bound in total costs

In order to explain why the AAM provides relatively accurate estimates for the
total relevant costs, we plot the absolute value of the approximation error after
correction jecorj versus the relative contribution of the lower bound in the total
costs clb:

clb =
TRCLB (R�)

TRCSIM (R�)
(5.9)

For the case that setup costs = 0, Figure 5.6-a shows no clear relation be-
tween jecorj and clb. The absolute errors are lower than 43 % and in the majority
of the cases they are relatively small compared to the errors observed when setup
costs > 0. The contribution of the lower bound in the total costs lies between
48 and 66 %.

For the cases with setup costs > 0, we can discern two separate regions
in Figure 5.6-b. In the region with clb > 0:85 the value of jecorj can become
very high. However, in this region the largest part of the costs is covered by
the lower bound costs. Since we are concerned with estimating the total costs,
the contribution of the estimate of the AAM is less important in this region.
Therefore the magnitude of jecorj has a relatively small impact on the estimate
of the total costs. This may explain why the estimates of the uncorrected total
costs are relatively accurate, even if jecorj is very high. In the region with
clb < 0:85 the value of jecorj is relatively low (compared to the value of jecorj in
the region with clb � 0:85), so that also in this region the estimates for the total
costs are relatively accurate. In conclusion, the behavior of the approximation
error jecorj as a function of the contribution of the lower bound in the total costs
clb may explain why the estimates of the total costs (before correction for the
lower bound) presented in Section 5.5.1 are relatively accurate.

5.5.3 Conclusions

Our systematic simulation study indicates that serious approximation errors
may result from the use of Whitt�s queueing network analyzer in a PI system.
Van Nyen et al. (2004) tested Albin and Whitt�s approximation method for
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Figure 5.6: Absolute value of relative approximation error of approximate ana-
lytical model after correction for lowerbound versus contribution of lowerbound
in total relevant costs: (a) instances with setup costs = 0 - (b) instances with
setup costs > 0

waiting times in �GI=G=1 queues and found that it is rather inaccurate when
applied to PI systems. The approximation errors of Albin and Whitt�s ap-
proximation method for waiting times in �GI=G=1 queues partially explain the
inaccuracies observed for Whitt�s queueing network analyzer. Unfortunately,
our research does not provide an exhaustive explanation for the observed esti-
mation errors. Moreover, we do not present any improvements in the queueing
network analyzer that may result in more reliable approximations. Therefore,
the contribution of our research is to signal the potential errors that can result
from the application of Whitt�s estimation methods in PI systems, which are
much higher than reported in the literature. Additional research is needed to
improve the approximation methods so that they can be successfully applied
in a manufacturing context. Currently, approximation methods based on the
powerful framework of the Batch Markovian Arrival Process (BMAP) are be-
ing developed, amongst others by Van Vuuren and Adan (2004). Simulation
experiments indicate that these methods are much more accurate than Whitt�s
method.

For two reasons, the observed approximation errors do not lead to the con-
clusion that the decision-support system based on the AAM should not be used
for the optimization of the production control decisions. Firstly, it appears from
the results on estimation errors for the total relevant costs (without correction)
that the errors for the total cost estimates are rather limited on this set of ex-
periments (less than 10% in the majority of the instances with a maximum of
17% on a set of 240 instances). Secondly, when the AAM wrongly estimates
the absolute value of the costs, but correctly captures the relative behavior of
the costs as a function of the review periods, the optimization process may
still perform well. In the next section, we test the optimization quality of the
decision-support system.
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5.6 Optimization quality of the AAM vs. simu-
lation optimization

This section investigates the optimization performance of the three decision-
support systems. The �rst decision-support system was solely based on an
AAM. The other two decision-support systems use simulation optimization tech-
niques to improve the solution obtained from the AAM. The comparison of the
performance of the three decision-support systems allows us to decide whether
we should use the AAM alone or the AAM together with simulation optimiza-
tion techniques in order to determine the review periods for the CBC strategy.
In order to make a fair comparison between the di¤erent methods, the order-
up-to levels are tuned so that all methods achieve the same target �ll rate. The
solutions that are obtained from the decision-support systems based on simu-
lation optimization are considered to be the best possible solutions, given the
techniques that are currently available. Therefore, these solutions can be used
as a benchmark to test the decision-support system based on the AAM. The dif-
ferent decision-support systems are compared in terms of optimization quality
and required computation time.

This section is organized as follows. First, we present the design of exper-
iments that is used to investigate the optimization performance of the AAM.
After this, we present the numerical results that were obtained from the exper-
iments and draw conclusions on the suitability of the proposed AAM. Finally,
we investigate in detail the solutions proposed by the decision-support systems
based on simulation optimization.

5.6.1 Design of experiments

Simulation optimization techniques take very large amounts of computation
time. For this reason, it was not possible to use the simulation based optimiza-
tion techniques for all 240 instances in the experimental design. We selected 15
instances for which we apply simulation optimization techniques. The selected
instances are worst-case instances in the sense that they represent the instances
for which we expect that the AAM does not optimize the costs well.

Now we discuss how the 15 worst-case instances are selected. A �rst criterion
to select the worst-case instances is based on the lower bound that is presented
in Appendix VIII. Figures 5.7 a-b present, respectively for the case with setup
cost = 0 and setup cost > 0, the relative di¤erence dlb between the total relevant
cost of the solution proposed by the decision-support system based on the AAM
TRCAAM (R�) and the lower bound on the total costs TRCLB :

dlb = TRCAAM (R�)�TRCLB

TRCLB � 100%.
First, we consider the instances with setup costs > 0. In this case, the rela-

tive deviation from the lower bound dlb is 20% on the average, with a minimum
of 8% and a maximum of 61%. In more than 90% of the instances, dlb is lower



88 Part I. Coordinated Batch Control

than 30%. Detailed results (not shown here) indicate that dlb decreases when
the setup costs increase. In this section, we use dlb as an indicator for the po-
tential improvement that can be realized when simulation optimization is used.
The instances with the largest potential for improvement, measured by dlb, are
considered as worst-case instances for the optimization quality of the AAM. For
the experiments with the simulation optimization techniques, we select the 10
instances with the largest dlb to be optimized using the two simulation optimiza-
tion techniques. We ensure that only one of the �ve instances with the same
combination of levels of the four factors is selected as a worst-case instance.
For the case that setup costs = 0, dlb is bounded between 91 and 172% on

this set of experiments. The average of dlb is 120% for these instances. From
these results, we may conclude that the lower bound is insu¢ ciently strong to
draw conclusions on the optimization quality of the developed decision-support
system. It does not seem to be justi�ed to use dlb as a criterion to select the
worst-case instances. Therefore, we use another criterion to select the worst-case
instances. Since the optimization quality of the decision-support system based
on the AAM depends on the accuracy of the AAM, we select the 5 instances
with the largest relative di¤erence between the total cost estimated with the
AAM and simulation. This relative estimation error of the AAM is denoted as
eTRC and was discussed in Section 5.5.1. The selected instances are worst-case
instances based on the criterion of estimation quality of the AAM. Again, we
ensure that only one of the �ve instances with the same combination of levels
is chosen. In this way, 15 worst-case instances are selected.

5.6.2 Numerical results on optimization performance

In this section, we discuss the results of the experiments. We compare the three
methods on two performance criteria: optimization quality and the computa-
tion time required to obtain the presented solutions. First, we present numerical
results on the optimization quality. After this, the computation time is investi-
gated.

Optimization quality

Tables 5.8 - 5.11 summarize the numerical results of the simulation optimization
techniques for the 15 worst-case instances. Table 5.8 presents the minimized
total relevant costs that are realized by the decision-support systems based on
the AAM, the USPA-SO algorithm (USPA) and the OptQuest algorithm (OQ).
Moreover, a 90% con�dence interval for the total costs is given. Table 5.9
displays the absolute cost improvement that is realized by the USPA-SO and
the OptQuest algorithm in comparison to the cost of the solution proposed by
the decision-support system based on the AAM.
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Figure 5.7: Histogram of the relative deviation of the total relevant costs of
the solution proposed by the decision-support system based on the approximate
analytical model over the lower bound: (a) instances with setup cost = 0 - (b)
instances with setup cost > 0
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The absolute improvement is given by:

iabs�USPA = TRCAAM (R�)� TRCUSPA (R�) (5.10)

and
iabs�OQ = TRCAAM (R�)� TRCOQ (R�) (5.11)

Table 5.9 also gives 90% con�dence intervals for the absolute improvement.
These are the paired-t con�dence intervals for the di¤erence between the ex-
pected responses of two systems. See Law and Kelton (2000) or Kleijnen and
Van Groenendaal (1992) for more details on paired-t con�dence intervals. Table
5.10 presents the relative improvement of the USPA-SO and OptQuest algorithm
compared to the solution of the AAM. The relative improvement is de�ned as:

irel�USPA =
TRCAAM (R�)� TRCUSPA (R�)

TRCAAM (R�)
(5.12)

and

irel�OQ =
TRCAAM (R�)� TRCOQ (R�)

TRCAAM (R�)
(5.13)

The solution proposed by the AAM is used as a starting solution for the
simulation optimization approaches. The simulation optimization techniques
are then used to improve this initial solution. Therefore, the simulation opti-
mization techniques always �nd a better solution than the AAM. The paired-t
con�dence intervals in Table 5.9 show that all the improvements are signi�cant
on the 90% con�dence level. On this set of 15 experiments, the USPA-SO heuris-
tic achieves on average a 2.0 % improvement over the AAM. The OptQuest
technique achieves a 1.9 % improvement on average. Taking the maximum
improvement for each instance, we see that the solution of our AAM can be im-
proved by 2.5 % on average using simulation based optimization techniques. On
this set of 15 worst-case instances, the maximum improvement is 6.1 %. Based
on these results and given the fact that only worst-case instances are studied,
we claim that the optimization quality of the AAM is satisfactory.

Computation times

In general, simulation optimization techniques are time consuming compared to
analytical models. Here, we present numerical results on the computation times
that were required to obtain the results that are presented above. The simulation
based optimization techniques required large amounts of computation time for
these small-scale test problems: the OptQuest algorithm was stopped after 1000
iterations, resulting in the solutions presented in Tables 5.8 - 5.10. The USPA-
SO algorithm used a variable number of iterations to achieve the results in
Tables 5.8 - 5.10: on average 123, with a minimum of 80 and a maximum
of 185. Depending on the problem instance, one iteration takes about 2.5 to 4
minutes on an Intel Pentium 4 - 2.00 GHz. processor. On average, the OptQuest
algorithm took about 54 hours to �nd the solutions presented in Tables 5.8
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Exp. nr. TRCAAM CI (90%) TRCUSPA CI (90%) TRCOQ CI (90%)
1 172843.8 �142.2 169700.5 �361.4 170462.7 �167.7
2 166937.9 �96.2 164988.8 �201.4 163182.4 �76.7
3 180776.0 �102.9 179496.9 �152.6 175361.6 �195.5
4 308863.3 �169.5 305763.6 �379.7 303366.3 �293.6
5 193689.6 �216.8 187546.9 �419.5 191255.4 �395.4
6 119521.1 �197.5 118594.7 �469.1 118768.7 �328.8
7 103428.2 �90.1 101259.9 �119.9 101309.4 �120.5
8 139734.6 �239.2 135119.1 �589.0 138166.8 �311.6
9 292435.2 �188.7 290025.9 �279.5 286411.8 �212.2
10 98308.4 �47.7 95414.6 �50.3 95801.9 �64.7
11 21316.6 �31.7 21027.7 �75.6 20899.5 �63.9
12 26897.1 �52.7 26503.7 �59.9 26105.3 �61.8
13 6883.8 �8.3 6755.4 �9.2 6752.2 �11.4
14 8690.8 �14.6 8510.0 �18.8 8665.6 �16.3
15 13561.9 �34.1 12729.0 �36.2 13189.4 �35.7

Table 5.8: Total relevant costs realized by approximate analytical model and
simulation optimization techniques (USPA-SO and OptQuest)

Exp. nr. iabs�USPA CI (90%) iabs�OQ CI (90%)
1 3139.2 �285.1 2376.8 �147.3
2 1934.8 �278.7 3741.4 �247.8
3 1342.4 �107.4 5477.4 �67.4
4 3048.6 �308.5 5446.0 �321.9
5 6109.6 �535.6 2401.0 �458.6
6 1044.8 �333.2 870.4 �256.3
7 2158.4 �116.3 2109.2 �89.5
8 4560.2 �654.3 1512.2 �596.7
9 2369.8 �411.3 5983.8 �492.6
10 2885.4 �60.4 2498.1 �22.2
11 254.9 �52.3 383.1 �74.5
12 358.3 �76.1 756.8 �115.0
13 134.1 �8.2 137.4 �6.4
14 191.3 �15.5 23.3 �7.8
15 844.0 �37.9 383.6 �35.8

Table 5.9: Absolute improvement realized by simulation optimization techniques
(USPA-SO and OptQuest) compared to approximate analytical model
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Exp. nr. irel�USPA (%) irel�OQ (%)
�
irel�USPA; irel�OQ

�+
1 1.8 1.4 1.8
2 1.2 2.2 2.2
3 0.7 3.0 3.0
4 1.0 1.8 1.8
5 3.2 1.3 3.2
6 0.8 0.6 0.8
7 2.1 2.0 2.1
8 3.3 1.1 3.3
9 0.8 2.1 2.1
10 2.9 2.5 2.9
11 1.4 2.0 2.0
12 1.5 2.9 2.9
13 1.9 1.9 1.9
14 2.1 0.3 2.1
15 6.1 2.7 6.1
Avg. 2.0 1.9 2.5

Table 5.10: Relative improvement realized by simulation optimization tech-
niques (USPA-SO and OptQuest) compared to approximate analytical model

- 5.10. The USPA-SO algorithm gives comparable results in a much shorter
amount of time: about 6.5 hours on average. The AAM, however, is many
times faster than the simulation based techniques: it takes about 8 minutes on
average to �nd solutions that are only slightly worse than the solutions found
by the simulation based optimization techniques. Note that these computation
times would increase sharply if the number of products and/or work centers
increases.

Conclusion on the optimization performance of the AAM

In conclusion, we can state that the AAM performs satisfactory on this set
of experiments: it takes a fraction of the time required by simulation based
optimization techniques to �nd solutions that are only slightly worse in terms
of total costs. Based on these results, we propose to use the AAM for the
optimization of the decision variables for the CBC strategy.

5.6.3 Detailed analysis of solutions

Table 5.11 presents detailed results on the review periods, order-up-to levels and
work center utilization for every problem instance solved using simulation based
optimization. The �rst column gives the instance number. The next columns
present the relative di¤erence for a certain variable between the simulation based
optimization techniques and the AAM. The second and third column present the
relative di¤erence between the average of the review periods over all products.
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% di¤. in avg. % di¤. in avg. % di¤. in avg. % improvement
review periods order-up-to levels utilization level in total costs

Exp.nr. USPA OQ USPA OQ USPA OQ USPA OQ
1 2.4 6.5 2.2 3.3 -0.5 -0.5 1.8 1.4
2 4.9 6.8 5.6 6.3 -0.7 -1.0 1.2 2.2
3 3.3 6.3 3.9 3.9 -0.1 -0.3 0.7 3.0
4 4.6 10.1 5.2 7.7 -0.2 -0.2 1.0 1.8
5 2.6 8.7 -1.0 4.0 -0.3 -0.6 3.2 1.3
6 -3.8 -1.4 -2.3 -1.2 0.4 0.2 0.8 0.6
7 7.7 8.7 4.7 5.1 -1.2 -1.6 2.1 2.0
8 -8.4 -1.7 -6.0 -1.6 0.7 0.1 3.3 1.1
9 9.5 5.3 8.6 2.7 -0.6 -0.4 0.8 2.1
10 1.7 1.5 -2.6 -1.4 0.0 -0.3 2.9 2.5
11 -3.4 2.2 -1.7 -0.9 1.7 -0.7 1.4 2.0
12 -1.5 2.6 -1.2 -1.6 0.8 -0.5 1.5 2.9
13 4.1 4.5 0.0 0.0 -0.6 -1.1 1.9 1.9
14 -0.8 2.0 -1.9 0.1 0.1 -0.6 2.1 0.3
15 -2.4 3.0 -4.8 -1.4 1.0 -0.6 6.1 2.7

Table 5.11: Relative di¤erence in average review periods, order-up-to levels,
utilization and total relevant costs for simulation optimization vs. approximate
analytical model

The fourth and �fth column give the relative di¤erence between the average
order-up-to levels. The sixth and seventh column give the relative di¤erence
in the average of the utilization of the work centers in the production system.
Finally, the eighth and ninth column repeat the relative improvement iUSPA

and iOQ that is obtained using simulation optimization.

From the analysis of Table 5.11, gives insight on how the three optimization
techniques work. Surprisingly, no clear patterns appear in the numerical results
in Table 5.11. The relative cost improvement does not seem to be directly
related to the relative di¤erence in the average review periods and order-up-to
levels. Take e.g. instance 4 where the OptQuest algorithm increases the average
review periods by 10.1%, while the USPA-SO algorithm proposes an increase
of 4.6%. For this instance the relative improvement realized by the OptQuest
algorithm is 1.8% while the relative improvement for the USPA-SO algorithm
is 1.0%. One might postulate that larger di¤erences in the review periods lead
to larger cost improvements. However, this postulate is contradicted by e.g.
instances 9 and 15. In instance 9, the USPA-SO algorithm increases the review
periods by 9.5% leading to a cost saving of 0.8%, while the OptQuest algorithm
increases the lot sizes by only 5.3% leading to a larger cost saving of 2.1%. In
instance 15, the USPA-SO algorithm obtains a cost improvement of 6.1%, the
largest observed on this set of experiments, by reducing the review periods only
slightly (-2.4% on average). Furthermore, it can be observed that a substantial
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cost improvement can be realized by the harmonization of the review periods,
even if the utilization remains almost unchanged. This can e.g. be seen from
instance 10 where the utilization does not change for the USPA-SO algorithm,
but the costs improve with 2.9%. From this analysis, we conclude that there
is no direct relation between the average review periods, order-up-to levels,
machine utilization and the relative cost improvement.

This conclusion leads to the obvious question how the relative cost improve-
ment is realized by the simulation based optimization techniques. We believe
that the answer lies in the harmonization mechanisms that were described in
Section 5.3. Similar to the AAM, the simulation based optimization techniques
�harmonize�the review periods of the di¤erent products so as to obtain the best
balance between utilization and variability. Both simulation based optimization
techniques seek the best possible trade-o¤ between the utilization of the ma-
chines, variation of the arrivals, average processing times and variation of the
processing times. In this way, it is possible that relatively small di¤erence in
the average review periods can lead to relatively large cost savings.

There is no clear pattern in the di¤erences in optimization performance
between the USPA-SO and the OptQuest algorithm. Both simulation based
optimization techniques may get stuck into a suboptimal solution, as can be
observed in Tables 5.8 - 5.10. For some instances TRCUSPA < TRCOQ, which
implies that the OptQuest algorithm got stuck into a suboptimal solution. If
TRCUSPA > TRCOQ, then the USPA-SO algorithm stopped in a suboptimal
solution. In our opinion, this is caused by the fact that both simulation based
optimization techniques are heuristics without any performance guarantee. The
USPA-SO algorithm can get stuck into a suboptimal solution when it cannot
�nd a local improvement parallel to the axes. This may occur when the ob-
jective function is multimodal. On the contrary, the OptQuest algorithm uses
metasearch heuristics in order to avoid local optima. Basically, the OptQuest
algorithm samples the search space. The sampling method helps to avoid local
optima, but there is no guarantee that the method eventually �nds the global
optimum. It seems that the reason why one technique performs better than
the other in some cases and does not in other, lies in the heuristic nature of
both search methods. Further research is required to investigate the exact rea-
sons for the di¤erence in performance between both methods. Furthermore, the
application of other simulation based search techniques (e.g. Response Surface
methods, Kleijnen and Van Groenendaal 1992) could generate valuable insights.

5.7 Conclusions

In this chapter, we tested the performance of the decision-support systems that
were proposed in Chapter 3 and 4 to optimize the review periods for the CBC
strategy. In this research, three decision-support systems were developed to
set the review periods: the �rst decision-support system is based on an AAM
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of the PI system, while the other two approaches (OptQuest and USPA-SO)
use simulation optimization techniques to improve the solution of the AAM.
Based on an extensive, systematic simulation study consisting of 240 instances
of the PI system, we were able to test and compare the performance of the three
approaches.

First, we investigated the mechanisms that are embedded in the optimization
process of the AAM. From the detailed analysis of a speci�c problem instance,
it appeared that the AAM harmonizes the review periods of the di¤erent prod-
ucts. The review periods are adjusted so as to obtain the best balance between
utilization and variability.

Secondly, we analyzed the solutions that are generated by the AAM for the
240 instances in the simulation study. Based on this analysis, we conclude that
the decision-support system responds appropriately to changes in the factors.
The decisions proposed by the tool make sense from a logical point of view.
These results provide con�dence for the use of the tool. Based on the results
of our simulation study, we conclude that the setup cost is the dominant factor
in the study. Note that the setup cost parameters in the simulation study are
based on real-life situations. The impact of the setup costs on the total costs
is many times higher than that of the other factors (utilization, �ll rate and
setup times) in the study. When setup costs = 0, review periods are chosen
so that about 2/3 of available capacity is allocated to setups. However, this
fraction is decreasing as a function of the net utilization of the work centers.
When setup costs are considerably high, it seems that the review periods are
chosen based on cost considerations only. Instances that are in between the
both extremes show a trade-o¤ between cost and capacity considerations. These
results indicate that a good knowledge of the cost structure of the PI system is
of high importance in order to make control decisions that minimize the total
relevant costs. Unlike other approaches, our AAM integrates both capacity and
cost aspects. Therefore, the AAM is able to make robust decisions for every
instance, regardless of the values of the di¤erent cost parameters.

Thirdly, we tested the estimation performance of the AAM. It appeared that
the estimates of the total relevant costs are acceptable (< 10% in 90% of the
cases, with a maximum error of 17%) for this set of experiments. However,
when the total cost estimates are corrected for the lower bound on the costs,
the performance of the AAM degrades signi�cantly. It seems that the AAM
makes considerable estimation errors, especially in the estimates of the waiting
times. It appears from our study that the considerable estimation errors only
have limited impact on the estimates for the total costs. This is caused by the
fact that the quality of the estimates increases when the contribution of lower
bound in the total costs decreases. In this way, relatively accurate estimates for
the total relevant costs (without correction for the lower bound) can be realized.

Finally, we tested the optimization quality of the AAM and compared it to
the simulation optimization techniques. In particular, we compared the opti-
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mization quality of the AAM with the simulation optimization techniques. It
appeared that the optimization quality of the AAM is satisfactory on this set
of experiments: only moderate improvements could be realized with the sim-
ulation based techniques. Moreover, the moderate improvements are realized
at the expense of large amounts of computation time: the USPA-SO algorithm
is about 50 times slower than the AAM, while the OptQuest algorithm used
about 400 times more computation time ! For this reason, we propose to use
the AAM for the optimization of the review periods for the CBC strategy. The
experiments indicate that the optimization quality is good and the computation
times are acceptable. For instances in which small relative cost savings are im-
portant in absolute terms, it may be worthwhile to use simulation optimization
techniques. The increase in computation time will then be outweighed by the
cost improvements that can be realized by simulation optimization.
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Chapter 6

Introduction to Cyclical
Production Planning

6.1 Introduction

This chapter introduces Part II, in which we investigate the Cyclical Production
Planning (CPP) strategy in detail. The approach followed here is similar to our
approach of the CBC strategy. In this introductory chapter, we discuss in
detail how we operationalized the CPP strategy. Subsequently, we develop and
test a decision-support system that is based on our speci�c implementation of
CPP. Chapter 7 presents a decision-support system for the CPP strategy. In
order to make an insightful comparison between the CBC and CPP strategy,
the implementation of both strategies needs to result in low cost solutions,
for a given strategy. To check whether the proposed decision-support system
is e¤ective in optimizing the control decisions, the tool is thoroughly tested
in an extensive simulation study. For the development of the decision-support
system we make use of available mathematical techniques, hence this part mainly
contains engineering results.

In the remainder of this introductory chapter, we �rst present how we op-
erationalized the CPP strategy. In particular, Section 6.2 discusses the speci�c
details of our implementation of CPP and the decision variables that can be
controlled by the decision-maker. Section 6.3 shows that the performance of the
PI system cannot be analyzed exactly. Some alternative methods for evaluating
the performance of the PI system are presented. Next, Section 6.4 provides in-
sight in the complexity of the optimization problem faced by the decision-maker.
Finally, Section 6.5 presents a summary of this chapter and an outlook to the
other chapters of Part II.

99
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6.2 Cyclical Production Planning

CPP is based on a detailed cyclical production schedule, which is a detailed
production plan for all products on all machines, that is repeated over time. Our
implementation of CPP is based on the common cycle approach (Elmaghraby
1978). This approach is based on the following assumptions:

� All products have the same cycle length, hence the name �common�cycle.

� The products are manufactured exactly once during this common cycle.

� The common cycle repeats itself and the processing sequence, i.e. the
order in which the products are produced on the work centers, is �xed
and remains the same during every cycle.

The common cycle approach is the most basic cyclic approach for production
planning. As such, it is a good starting point for our exploration of the CPP
strategy. If the simple common cycle approach appears to be promising, more
advanced cyclic approaches (powers-of-two, multiple cycle, etc.) can be devel-
oped in order to improve the performance of CPP. These advanced approaches
allow for more freedom in setting the review periods of the products, which
results in a better performance. See Chapter 11 for a detailed treatment of the
suggestions for further research.

Because CPP �xes the processing sequences on the work centers, it is a more
detailed control approach than CBC. Since the processing sequences are followed
strictly, the production unit control has less �exibility to respond to disturbances
caused by the variability in demand and production. The reduction in �exibility
leads to a less e¤ective use of the available production capacity. However, it may
also lead to a higher predictability of the throughput times, which in turn may
lead to lower safety stocks. Moreover, it also facilitates planning activities such
as personnel planning, materials planning and work center preparation.

6.2.1 Details of implementation

In our implementation of the CPP strategy, the PI system operates as follows.
At the starting moment (time = 0), the on-hand inventory and the inventory
position for product k is equal to the order-up-to level Sk. Demand for the
products arrives and is satis�ed from stock. Demand that cannot be ful�lled
from stock is backordered. At the end of each common cycle (at time cR, where
R denotes the common cycle length and c = 1; 2; 3; :::), replenishment orders are
generated for all products according to an order-up-to policy. The size of the
replenishment orders is the di¤erence between the order-up-to level Sk and the
inventory position. Therefore, the size of the order is equal to the demand during
the previous production cycle. The replenishment orders are manufactured by
the production system according to a cyclical production schedule. When the
processing of the production order of product k is entirely �nished (after a
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Sk
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Figure 6.1: Dynamic behavior of net inventory and inventory position of product
k for deterministic PI system (starting from time = 0)

throughput time Tk) the �nished goods are moved to the stock point, increasing
the amount of on-hand inventory. The same steps are repeated over and over
again at the end of each common cycle. In Figure 6.1, the dynamic behavior
of the on-hand inventory and the inventory position of product k is graphically
represented for a deterministic version of the PI system.

The production system operates in the following way. At the end of a com-
mon cycle, replenishment orders are generated for all products. These replen-
ishment orders are the production orders that are produced by the production
system according to a cyclical production plan. The cyclical production plan
consists of a �xed processing sequence for every work center, which states the
order in which the products are produced on the work center. Every product
occurs once in the processing sequence. The processing sequence is followed
strictly1 . When a work center becomes available, it performs the setup for the
next product in the sequence. When the setup is �nished, there are two options.
Assume that product k is the next product in the processing sequence of the
work center.
(i) If there is a production order for product k in the queue in front of the

work center, the work center starts processing this order. If there is more than
one production order for product k in the queue, the order that arrived �rst is
processed.
(ii) If there is no production order for product k in the queue, the work

center becomes idle and waits until a production order for product k arrives1. If

1One exception to this rule is the -rare- case in which a product has no demand during the
previous production cycle. Consequently, there is no production order for this product in the
current production cycle. If this should happen, we ignore the product and jump immediately
to the next product in the processing sequence.
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an order for product k arrives, the work center reactivates and starts processing.
When all the products in the processing sequence of a work center have

been processed, the work center starts processing again the �rst product in
the sequence. The same sequence is repeated time after time, hence the name
�Cyclical�Production Planning.

6.2.2 Decision variables

In this implementation of the CPP strategy, the decision-maker can in�uence
the following variables: the common cycle length, the order-up-to levels and
the processing sequences for the di¤erent work centers. The decision-maker has
the complex task to set these variables such that the total relevant costs are
minimized, while the target �ll rates are satis�ed. Similar to the CBC strategy,
the task of the decision-maker is made easier by the observation that a change
in the order-up-to levels only impacts the realized �ll rates. Again, this is so
because a change in the order-up-to levels does not change the size or the timing
of the replenishment orders. As a result of this observation, the main task of
the decision-maker is to determine the common cycle length and the processing
sequences. After this, the SSAP procedure (see Appendix I) can be used to
determine the appropriate order-up-to levels.

Finding the optimal common cycle length and the optimal processing se-
quences for the stochastic PI system under study appears to be a non-trivial
task for two reasons (which are similar to the case of CBC):

1. It is not possible to exactly analyze the performance of the PI system
for a given common cycle length and given processing sequences (at least
not given the current state of mathematical analysis). At best, estimation
methods can be developed. Therefore, the performance evaluation of the
PI system is non-trivial.

2. The number of possible combinations for the common cycle length and
processing sequences is very large, even for small problem sizes. This
seriously complicates the task of optimizing the common cycle length
and processing sequences.

The next two sections focus on these two problems. Section 6.3 is concerned
with the performance evaluation of the PI system for a given set of control
decisions (common cycle length and processing sequences). Section 6.4 discusses
the problems concerning the optimization of the performance of the PI system.

6.3 Performance evaluation

Similar to CBC, it is not possible to exactly analyze the performance of the
PI system for a given common cycle length and processing sequences (at least
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not with the current state of mathematical techniques). In this section, we
give the reasons why this is not possible. After this, we discuss two alternative
approaches that allow estimating the performance of the PI system. Subsection
6.3.3 presents in more detail one of these alternative estimation methods, namely
simulation. As in Part I, we will use a simulation model as a laboratory setting
for the PI system under study.

6.3.1 Reasons

There are three main reasons why it is not possible to develop an exact analytical
model for the PI system controlled with the CPP strategy. The �rst and the
third reason are identical to those for the CBC strategy. We repeat them for
matter of completeness. The second reason is similar to that for the CBC
strategy. It is di¤erent in view of the �xed processing sequences that are used
in the CPP strategy.

1. In an integrated PI system the arrival process of orders to the production
system is determined by the placement of orders by the inventory points.
Obviously, the order throughput times, and thus the replenishment lead
times, are in�uenced by the order arrival process. Therefore, the replen-
ishment lead times depend on the placement of the orders by the inventory
management. Standard techniques for modeling replenishment lead times
in the inventory models assume that the lead times are generated by some
process independent of the placement of the replenishment orders (Zip-
kin, 1986). To the best of our knowledge, no inventory model exists that
takes into account the interdependence between the generation of replen-
ishment orders and the replenishment lead times. The model of Smits et
al. (2004) can be considered as a �rst attempt to approximately analyze
this interdependence for the special case of a single machine PI system,
where the inventory is controlled with (R, S) inventory policies. Their
approach cannot be extended, however, to the multi-machine PI system
under study.

2. The multi-machine production system characterized by job shop routings
can be modeled as an open queueing network with cyclic processing se-
quences. Typically, the interarrival times and the processing times of the
production orders have a non-Markovian distribution. To the best of our
knowledge, no mathematical techniques are presently available to exactly
analyze the performance measures (e.g. distribution of throughput times)
of such a queueing system.

3. For the estimation of the average �nal inventory and to set the safety
stocks in order to satisfy the service level requirements, the distribution of
the demand during the lead time should be known. Except for some spe-
ci�c instances, this distribution is analytically intractable (Zipkin, 1986).
Bagchi et al. (1984) give an overview of the instances for which the dis-
tribution is tractable.



104 Part II. Cyclical Production Planning

6.3.2 Alternative approaches

Since it appears to be impossible to exactly analyze the performance of the
PI system under study, we have to rely on approximate methods. Similar to
the case of CBC, two approaches are possible: approximate analytical models
and simulation models. As mentioned before, both approaches are estimation
methods, rather than exact methods.

In case of the CPP strategy, we were not able to develop an approximate
analytical model that takes into account the stochastic nature of the PI sys-
tem. Note that the approximate method based on Whitt�s queueing network
analyzer (Whitt 1983) that was developed for evaluating the CBC strategy can-
not be used here because this approach does not support the �xed processing
sequences that are typical for CPP. Although Smits et al. (2004) present an
approximate analysis of a single machine PI system with cyclic processing se-
quences, no stochastic models are known for the multi-machine PI system with
CPP. The main di¢ culty in analyzing the CPP strategy lies in the estimation
of the throughput times of the replenishment orders in the production system.
Because of the job shop routing structure, the �xed processing sequences and
the variability in the setup and order processing times, it is very di¢ cult to de-
termine the characteristics of the arrival and departure processes of the orders
at the work centers. Since these characteristics are required to estimate the
waiting times, it is di¢ cult to obtain estimates for the waiting times and the
throughput times in the production system.

Instead of a stochastic approximate analytical model, we develop a deter-
ministic version of the PI system under study. In a deterministic model of the
PI system, we ignore the fact that the demand interarrival times, processing
times and setup times are stochastic variables. However, the accuracy of the
deterministic model for estimating the performance of the stochastic PI system
is not known beforehand and needs to be investigated. The main advantage
of the deterministic model is that it can be evaluated fast. This enhances the
optimization of the decision variables.

Another alternative would be to build a simulation model of the PI system
with CPP. Implementing such a simulation model is not too di¢ cult for the
CPP strategy. As mentioned before, simulation gives accurate estimates for the
performance measures, at the expense of considerable computation time. There-
fore, simulation is a valid approach for estimating the performance measures if
the common cycle length and processing sequences are given. However, the op-
timization of the common cycle length and the processing sequences requires
the evaluation of a very large number of settings. Because a very large number
of instances needs to be evaluated, simulation optimization is prohibitively ex-
pensive in terms of computation time, even for small problems. In our research,
a considerable number of problem instances need to be solved. Therefore, we
cannot use simulation optimization.
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6.3.3 Simulation model as representation of reality

To the best of our knowledge, no exact or accurate approximate analytical
models are available for the PI system with CPP. Hence, simulation is the most
accurate estimation method currently available. This justi�es the use of a simu-
lation model as our representation of the PI system under study. The simulation
model is used as our laboratory setting of the PI system. The estimates obtained
from the simulation model will be used to test the decision-support system for
CPP and to compare the performance of CBC and CPP.

Implementation of simulation model

The simulation model for CPP is based on the three-phase simulation procedure
for the CBC strategy, as described in Appendix I. The simulation procedure for
CPP consists of the same three steps, but the simulation model that is used
in the �rst and the third step of the three-phase procedure is adjusted for the
di¤erences in the control strategy.

The CPP strategy is implemented according to the description of CPP, see
Section 6.2. Comparing the implementation of the simulation model for CPP
and CBC, we observe three di¤erences.

� In the CPP strategy, the production orders are generated at the end of the
common cycle, while in the CBC strategy (Rk; Sk) inventory policies are
used. Both strategies make use of order-up-to policies. So, the inventory
policy of CPP operates basically in the same way as the (Rk; Sk) policies.
However, in the CPP strategy, the inventory position of all products is
reviewed at the same moment, and orders for all products are generated
simultaneously. Therefore, in the CPP strategy the review period of all
products is identical and equal to the common cycle length. In the CBC
strategy, each product k can have an individual review period Rk so that
the timing of the order generation is di¤erent for every product.

� In the CPP strategy, the sequencing of production orders is determined
by a �xed processing sequence instead of the FCFS rule that is used in
the CBC strategy.

� In the CPP strategy, we assume that for the �rst operation in the routing
of a product, work-in-process costs are only incurred for the processing
of the order (no waiting time costs). This assumption is justi�ed since
the repetitive nature of CPP allows for the just-in-time delivery of raw
material and components. In the CBC strategy, work-in-process costs
are incurred from the moment that the replenishment order is generated.
The non-repetitive nature of the production in the CBC strategy does not
allow for the just-in-time delivery of the raw materials and components.
Furthermore, if we would charge work-in-process costs in the CPP strategy
starting from the moment that the orders are generated, then the orders
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that are scheduled at the end of the common cycle (so they have a late
start of the �rst operation) have very high work-in-process costs at the
�rst operation. Clearly, such a policy would not allow us to make a fair
comparison between CBC and CPP. Therefore, we decided to charge the
work-in-process costs from the moment that the production is started.

After implementing these three di¤erences in the simulation code, the code
was veri�ed using tracing. We found that the simulation model is a valid rep-
resentation of a PI system controlled with the CPP strategy.

Stability of solution

An additional problem in the case of CPP is the stability of a solution. Unlike for
CBC, the stability of a schedule can not be guaranteed by keeping the utilization
of the work centers below 100%. By strictly following the processing sequence
in CPP, production capacity may be wasted. For example, it may happen that
work center j is idle, but that the production order for the next product k in
the processing sequence is still being processed at the previous work center i in
its routing. Since the processing sequence must be followed strictly, the work
center j will remain idle until the production of the order for product k on
work center i is entirely �nished. In this way, production capacity is lost on
work center j. For the stochastic PI system under study, it is not possible to
determine in advance how much production capacity is lost because of the use
of �xed processing sequences.

Essentially, three situations can occur. These three situations are depicted
in Figure 6.2. In Figure 6.2, the evolution of the work-in-process as a function
of time is shown. We plot a moving average of the work-in-process so that small
variations are cancelled out. The total time is divided in di¤erent subruns, each
subrun is relatively long.

� In case (a), there are small variations in the work-in-process inventories,
which is normal in view of the stochastic nature of the simulation. There
is su¢ cient production capacity. This situation is denoted as stability.

� In case (b), there are large variations in the work-in-process inventories
between the di¤erent subruns. The �uctuation of the inventories indicates
that the production system is congested for a very long period of time
and that the production system has insu¢ cient capacity to return to the
�normal�situation. This situation is -strictly speaking- feasible, since the
inventories do not drift to in�nity and the production system has su¢ cient
capacity to return eventually to a �normal� situation. We denote this
situation as near-instability. Near-instability is undesirable because it is
characterized by high costs and by unpredictable performance. Therefore,
we try to avoid near-instability. In this research, we do this by putting
a constraint on the allowable variation in the total relevant costs of the
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di¤erent subruns. Since the work-in-process and throughput times are
strongly varying in a near-instable situation, the total relevant costs are
also strongly varying. By putting a constraint on the allowable variation
in the total relevant costs of the di¤erent subruns, near-instable solutions
are removed. In the implementation, we use the precision of the 90%
con�dence interval as a measure for the variation in the total relevant
costs.

� In case (c), the work-in-process is continuously increasing which indicates
that there is insu¢ cient production capacity. This situation is referred
to as instability. Clearly, instable solutions are not allowable and should
be removed. In this research we use the number of production orders in
the system as a measure for the instability of a solution. If the number
of production orders in the system becomes too large, this indicates that
the production system has insu¢ cient capacity to manufacture all orders
that are generated by the inventory system.

Figure 6.2: Work-in-process as a function of time: (a) stability - (b) near-
instability - (c) instability

6.4 Performance optimization

The number of combinations of the decision variables is very large. Suppose
that the common cycle length can take V values, the number of products per
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work center equals K and the number of work centers equalsM . The number of
combinations for the sequence of the products on a single work center equals K!.
Hence, the number of combinations for the sequence of the products on the M
machines is given by (K!)M . Then the number of possible combinations of the

decision variables (common cycle length + sequences) is given by V
h
(K!)

M
i
.

Even for small problems the number of combinations becomes very large. Sup-
pose that V = 4, K = 4 andM = 4. Then the number of possible combinations
is equal to 1,327,104. Suppose that a simulation run of the PI system with 4
products and 4 machines takes about 1 minutes on an Intel Pentium 4 - 2.00
GHz computer. Then it would take almost 2.5 year to completely enumerate
and evaluate all combinations. Clearly, the number of combinations increases
exponentially when the number of products or machines increases, e.g. when
V = 4, K = 5 and M = 4; the number of combinations becomes 829,440,000 so
that it would take about 1578 years to evaluate all possible combinations with
a simulation model. It is obvious that the optimization of such PI systems with
simulation is extremely time consuming, even with e¢ cient search techniques.

Because of the very high computation times required for simulation opti-
mization, we prefer to use a deterministic model for the optimization of the
common cycle length and the sequencing decisions. In the next chapters of Part
II, we will present a decision-support system for CPP that is based on a deter-
ministic model and a simulation model. We use the deterministic model to fastly
determine the near-optimal common cycle length and the sequencing decisions.
After this, a simulation model is used to check if the solution proposed by the
deterministic model is feasible in a stochastic setting. If not, a new solution is
generated with the deterministic model. Again this solution is checked with the
simulation model. This process continues until a feasible solution is found.

6.5 Summary and outline

In this chapter, we presented the implementation of the CPP strategy. We
assume a common cycle during which every product is produced once. The
inventory position of all products is reviewed at the end of the common cycle and
replenishment orders are generated with order-up-to policies. The replenishment
orders are produced in the next production cycle. In the production system,
all work centers have a �xed processing sequence that determines the order in
which the products are produced. This processing sequence is followed strictly.
The main task of the decision-maker is to determine the common cycle length
and the processing sequences, such that the total relevant costs are minimized.
After this, the Safety Stock Adjustment Procedure (SSAP) can be used to tune
the order-up-to levels such that the target �ll rates are attained. Similar to the
case of CBC, it is impossible to determine the optimal common cycle length
and processing sequences because of two reasons. The �rst reason is that it is
not possible to develop an exact analytical model of the stochastic PI system
with CPP. Therefore, the performance evaluation of the PI system with CPP
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is non-trivial. The second reason is that the search space for the optimization
is very large, even for small problems. This makes simulation optimization too
time-consuming to be useful.

We propose the following approach for our investigation of the CPP strategy.
A simulation model will be used as representation of reality. The simulation
model is our laboratory setting of the PI system under study, which is used
to evaluate the performance of a given set of control decisions. In order to
optimize the common cycle length and the processing sequences, we develop a
decision-support system that is based on a deterministic model of the PI system
and on a simulation model. The decision-support system is a heuristic method
that attempts to determine the control decisions that minimize the total costs
while the target �ll rates are satis�ed. Because of the heuristic nature of the
decision-support system, the resulting decisions may be sub-optimal. Therefore,
we extensively test the optimization performance of the heuristic.

The remainder of this part on CPP is structured as follows. Chapter 7
presents a decision-support system for CPP. The performance of this decision-
support system is extensively tested in Chapter 8.
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Chapter 7

A decision-support system
based on a deterministic
model for Cyclical
Production Planning

7.1 Introduction

In this chapter, we present a decision-support system to determine the control
decisions for the CPP strategy. As mentioned in the introductory chapter,
the main task of the decision-maker is to �nd the common cycle length and
processing sequences that minimize the total relevant costs. The order-up-to
levels that satisfy the target �ll rates can be tuned afterwards using the SSAP
procedure.

The proposed decision-support system is based on a deterministic model of
the PI system. Assuming that the demand interarrival times, the setup times
and the processing times are deterministic, we show that the problem of �nding
the optimal common cycle length and sequencing decisions can be modeled as a
non-linear mathematical programming problem (NLP). The solutions obtained
from the NLP are tested in a simulation experiment, to check whether they are
stable (see Section 6.3.3 for the criteria used). The decision-support system iter-
ates between solving a NLP and testing the solution in a simulation experiment
until a stable solution is found. Once a stable solution is found, simulation is
used to tune the order-up-to levels (with the SSAP procedure) and to estimate
the performance measures.

The remainder of this chapter is organized as follows. First, we present the
deterministic model of the PI system. After this, we present a heuristic pro-
cedure for approximately solving the deterministic model. In Section 7.4, we

111
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propose a decision-support system for determining the control parameters (com-
mon cycle length, sequencing decisions, order-up-to levels) for the stochastic PI
system. Finally, Section 7.5 summarizes this chapter and looks forward to the
next chapter where we will test the decision-support system.

7.2 Deterministic model

In this section we investigate a deterministic model of the PI system controlled
with the CPP strategy. The deterministic version of the PI system is charac-
terized by deterministic demand interarrival times, setup times and processing

times; i.e. c2 [A0k] = c2 [Ljk] = c2
h
P 0jk

i
= 0. Ouenniche and Boctor (1998)

present a deterministic model of a PI system that is very similar to ours. There-
fore, the deterministic model presented here is based on the work of Ouenniche
and Boctor (1998). However, we make several modi�cations to their model.
These changes will be discussed extensively in the remainder of this section.
We attempt to �nd the control decisions (common cycle length and sequencing
decisions) such that the total relevant costs are minimized for the deterministic
model. The problem of �nding the common cycle length and sequencing de-
cisions for the deterministic PI system can be formulated as a NLP. See e.g.
Winston (1994) or Hillier and Lieberman (2005) for more details on NLPs.

In our implementation of CPP, we assume that a common cycle is used
for all products and that every product is produced once during this common
cycle. Since the demand interarrival times are constant in the deterministic
model, this implies that the production batches are of equal size for consecutive
cycles. Therefore, we develop a production schedule for one common cycle and
this production schedule can be repeated over and over again. This allows to
analyze the deterministic PI system by focussing on one common cycle for which
we try to optimize the control decisions such that the costs per unit of time are
minimized. Since the same schedule is repeated over time, the control decisions
that minimize the costs per unit of time for one common cycle will also minimize
the costs in the long run.

The remainder of this section is organized as follows: �rst, we present a cost
model for the total relevant costs; after this, a formal problem description is
presented.

7.2.1 Modeling the cost components

We present a cost model for the total relevant costs in the deterministic PI
system. The cost model is based on a CPP strategy in which a common cycle is
used for all products. Table 7.1 presents the (additional) notation that is used
in this chapter. The di¤erent cost components are discussed successively.
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Input variables
� : natural time interval
� (k; o) : work center for o-th operation in the routing of product k
K (j) : set of products that are produced on work center j
Kj : number of product types that are produced on work center j
M (k) : set of work centers in the routing of product k
Mk : number of operation types in the routing of product k
Decision variables
R : common cycle length
dj;k : starting time of production for product k on machine j
� : basic period multiplier (integer)

�k;n;j =

8<: 1, if product k occupies the n-th position in the
processing sequence of work center j

0, else
 : slack-time multiplier

Table 7.1: Additional notation

1. Setup and ordering costs. Every product k is ordered and produced once
in a common cycle of length R. Therefore, the total ordering and setup
costs per time unit for product k are given by:

SCk (R) =
ok + sk
R

(7.1)

2. Work-in-process inventory holding costs. Little�s law (Little, 1961) states
that the average amount of work-in-process is equal to the average through-
put time multiplied by the arrival rate. The arrival rate of production
orders for product k is equal to 1

R . Let the throughput time of production
orders for product k at work center j be denoted as E [Tjk (R)]. Note
that this throughput time depends on the common cycle length R. We
can use Little�s law to compute the average number of production batches
for product k at work center j, which equals E[Tjk(R)]

R . Since a produc-
tion batch contains on the average R

E[A0
k]
items of product k, the average

amount of work-in-process at work center j is given by:

WIPjk (R) =
E [Tjk (R)]

R

R

E [A0k]
=
E [Tjk (R)]

E [A0k]
(7.2)

Note that the expected throughput time E [Tjk (R)] is not known yet.
Now we derive expressions for E [Tjk (R)]. We derive separate expressions
for the �rst operation in the routing of a product and for the remaining
operations. The reason for this is explained below.

We assume that for the �rst operation in the routing of a product, work-in-
process costs are only incurred for the processing of the order (no waiting
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time costs). This assumption is justi�ed since the repetitive nature of CPP
allows for the just-in-time (JIT) delivery of raw material and components.
In the CBC strategy, work-in-process costs are incurred from the moment
that the replenishment order is generated. The non-repetitive nature of
the production in the CBC strategy does not allow for the just-in-time
delivery of the raw materials and components. Furthermore, if we would
charge work-in-process costs in the CPP strategy starting from the mo-
ment that the orders are generated, then the orders that are produced
at the end of the common cycle have very high work-in-process costs.
Clearly, such a policy would not allow us to make a fair comparison be-
tween CBC and CPP. Therefore, we decide to charge the work-in-process
costs from the moment that the production is started. Then the period
during which work-in-process costs are incurred is equal to the expected
production time, which is given by:

E
�
T�(k;1);k (R)

�
=

R

E [A0k]
E[P 0�(k;1);k] (7.3)

For the remaining operations in the routing of product k, work-in-process
costs are incurred over the entire throughput time. The throughput time
of operation o in the routing of product k consists of the waiting time in
front of the work center � (k; o) and the processing time at the work center
� (k; o). This is consistent with the CBC strategy. Let d�(k;o);k denote the
starting time of the o-th operation in the routing of product k, which is
performed on work center � (k; o). Figure 7.1 shows that the throughput
time of operation o can be expressed as:

E
�
T�(k;o);k (R)

�
= d�(k;o);k +

R

E [A0k]
E[P 0�(k;o);k]

�d�(k;o�1);k �
R

E [A0k]
E[P 0�(k;o�1);k]

for o = 2; :::;Mk

(7.4)

Based on formulas (7.2), (7.3) and (7.4), the work-in-process costs incurred
by product k per unit of time can be computed as:

WIPCk (R)

= R
E[P 0�(k;1);k]

E2 [A0k]
v�(k;1);kr

+R
MkP
o=2

 
E[P 0�(k;o);k]

E2 [A0k]
�
E[P 0�(k;o�1);k]

E2 [A0k]

!
v�(k;o);kr

+
MkP
o=2

d�(k;o);k � d�(k;o�1);k
E [A0k]

v�(k;o);kr

(7.5)
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Figure 7.1: Starting and �nishing times for two succcessive operations o�1 and
o in the routing of product k

3. Final inventory holding costs. The demand for product k has to be satis-
�ed with target �ll rate �k. Although we consider a deterministic setting
so that �k = 100% is theoretically possible, we use -for consistency- the
same target �ll rate �k in the deterministic model as in the stochastic
model. Products are transferred from the production system to the in-
ventory system when the production of the entire order is �nished. From
Figure 7.2, it can be seen that in steady state the total amount of �nal

inventory during a common cycle of length R equals
�2kR

2

2E [A0k]
. The �nal

inventory holding cost for product k per unit of time is then given by:

FICk (R) =
�2kR

2E [A0k]
vkr (7.6)

Let E [Tk] denote the total throughput time through the production sys-
tem. Figure 6.1 shows that the order-up-to level Sk corresponding to the
target �ll rate �k is given by:

Sk =
E [Tk] +R

E [A0k]
� (1� �k)

R

E [A0k]
=
E [Tk] + �kR

E [A0k]
(7.7)

4. Total relevant costs. The total relevant cost for product k is the sum of
the three cost components. The total relevant cost TRC (R) of the whole
PI system is given by the sum over all products. Then the total relevant
costs TRC (R) per unit of time for a given common cycle of length R are
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(c-1)R cR (c+1)R (c+2)R

kR

R

Sk

kR / E[A’k]

(c-1)R cR (c+1)R (c+2)R

kR

R

Sk

kR / E[A’k]

Figure 7.2: Steady state behavior of on-hand inventory of product k for deter-
ministic PI system

given by:

TRC (R) =
KP
k=1

[SCk (R) +WIPCk (R) + FICk (R)]

,

TRC (R) =
1

R

KP
k=1

(ok + sk)

+R
KP
k=1

�
�2k

2E[A0
k]
vkr +

E[P 0
�(k;1);k]

E2[A0
k]

v�(k;1);kr

�
+R

KP
k=1

MkP
o=2

�
E[P 0

�(k;o);k]

E2[A0
k]

� E[P 0
�(k;o�1);k]

E2[A0
k]

�
v�(k;o);kr

+
KP
k=1

MkP
o=2

(d�(k;o);k�d�(k;o�1);k)
E[A0

k]
v�(k;o);kr

(7.8)

7.2.2 Formal problem statement for deterministic model

In this section we formalize the problem of �nding the optimal common cycle
length and sequencing decisions, under the assumption of constant deterministic
demand interarrival times, setup times and processing times. We present a NLP
that consists of the objective function discussed above and the constraints that
are required to obtain a feasible cyclical production plan. In this NLP, the
decision variables are the common cycle length and the starting times of the
operations dj;k. The starting times of the operations fully de�ne the production
schedule. Note that the decision variables of the NLP are more detailed than
required by our implementation of the CPP strategy in the stochastic setting.
In our implementation of CPP, only the processing sequence are required, not
the precise starting moments of the operations. It is clear that the processing
sequences can be derived from the starting times. In the NLP we use the starting
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times as decision variables because they allow modeling the work-in-process costs
and the constraints on the production schedule.

The problem of determining the sequencing, scheduling and lot sizing de-
cisions that minimize the total relevant costs for the deterministic PI system
under study can be formulated as follows:

minimize
1

R

KP
k=1

(ok + sk)

+R
KP
k=1

264
�2k

2E[A0
k]
vkr +

E[P 0
�(k;1);k]

E2[A0
k]

v�(k;1);kr

+
MkP
o=2

�
E[P 0

�(k;o);k]

E2[A0
k]

� E[P 0
�(k;o�1);k]

E2[A0
k]

�
v�(k;o);kr

375
+

KP
k=1

MkP
o=2

(d�(k;o);k�d�(k;o�1);k)
E[A0

k]
v�(k;o);kr

subject to:

1. d�(k;o�1);k +
E[P 0

�(k;o�1);k]

E[A0
k]

R � d�(k;o);k
for k = 1; :::;K and o = 2; :::;Mk

2. dj;k +
E[P 0

jk]

E[A0
k]
R+ E [Ljl]� dj;l � 
 (2� �k;n;j � �l;n+1;j)

for j = 1; :::;M k; l 2 K (j) k 6= l n = 1; :::;Kj � 1

3. �k;Kj ;j�l;1;j

�
djk +

E[P 0
jk]

E[A0
k]
R� djl + E[Ljl]

�
� R

for j = 1; :::;M k; l 2 K (j) k 6= l

4. dj;k � E [Ljk] �k;1;j for j = 1; :::;M k 2 K (j)

5.
P

k2K(j)
�k;n;j = 1 for j = 1; :::;M n = 1; :::;Kj

6.
KjP
n=1

�k;n;j = 1 for j = 1; :::;M k 2 K (j)

7. R = ��

8. �k;n;j 2 f0; 1g for k = 1; :::;K j 2M (k) n = 1; :::;Kj

9. dj;k � 0 for j 2M (k) k = 1; :::;K

10. int � � 1
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This mathematical program states that the total relevant costs, as discussed
in the previous section, have to be minimized subject to ten sets of constraints.

The constraints (1) state that the processing of a production order can only
start after the processing of the order on the previous work center in the routing
of the product is entirely �nished.

Constraints (2) ensure that there is no overlap in the production and setup
phases of two successive orders in the production sequence of a work center.
The symbol 
 denotes a large positive number. This set of constraints prevents
the next order to start before the processing of the previous order is �nished
and the work center is set up.

Unlike the CBC strategy, the setup of the work center is allowed to take
place before the production order for a product is �nished on the previous work
center in the routing of that product. Such a policy is possible because the
CPP strategy �xes the processing sequence of the products on the work centers,
so that it is precisely known which product will be produced next. By setting
up the work center before the arrival of the production order, the utilization
of the available production capacity is improved. Ouenniche and Boctor (1998)
also make use of the possibility to start the setup of a work center as soon
as it becomes available. This policy is modeled by constraints (1) and (2).
Constraints (1) allow for the production of product k to start on work center
� (k; o) as soon as the production on the previous work center � (k; o� 1) in
the routing is �nished. In constraints (1), there is no obligation for performing
a setup before the processing can start. Constraints (2) ensure that a setup is
performed before production can start. However, this setup can be performed
before the processing of the previous operation is �nished. Moreover, constraints
(2) also enforce that there is no overlap between this setup and the processing
times of the operations.

The constraints (3) state that the time interval between the start of the
setup of the �rst product l in the production sequence of a certain work center
j and the completion of the �nal product k in the sequence of that work center
should be smaller than or equal to the length of the common cycle R. This
constraint ensures that the cyclical production schedule is feasible with respect
to the available production capacity. Ouenniche and Boctor (1998) impose a
more restrictive constraint on the common cycle length: they require that the
completion time of the last operation of every product is smaller than or equal
to the common cycle R. This is modeled using the following set of constraints
(3�) that can replace our set of constraints (3).

3�- O&B. d�(k;Mk);k +
R

E [A0k]
E
h
P 0�(k;Mk);k

i
� R

for k = 1; :::;K
We believe, however, that this constraint is unnecessarily restrictive and

leads to a waste of production capacity. Let us illustrate this with an example,
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see Figures 7.3 and 7.4. Figure 7.3 shows a Gantt-chart for a production system
with 2 products and 3 work centers for a single production cycle. The shaded
areas are the setup times. The numbered blocks are the operations. The number
in the block indicates the product. The routing of product 1 is M1, M2, M3.
The routing of product 2 is M2, M1, M3. As can be seen from the example in
Figure 7.4, the schedule shown in Figure 7.3 can be repeated over time within
the available production capacity. Note that the completion time of the last
operation on work center M3 exceeds the common cycle length R. The model of
Ouenniche and Boctor (1998) would therefore not accept this production plan as
a feasible solution. Nevertheless, Figure 7.4 shows that this solution is a feasible
cyclical production plan. Since the makespan of every individual work center
is smaller than or equal to the common cycle length, the production schedule
can be repeated without capacity problems. Therefore, we conclude that the
approach of Ouenniche and Boctor (1998) eliminates feasible production plans
from the search space, which may lead to suboptimal decisions.

Figure 7.3: An example of a feasible cyclic production schedule for 2 products
and 3 workcenters: a single cycle

Constraints (4) impose that the work center has to be set up before the
production of the �rst product in the production sequence of the work center
can start.

Constraints (5) ensure that every position in the production sequence of a
work center is occupied by precisely one product.

Constraints (6) make sure that every product is assigned to exactly one
position in the production sequence of the work centers in its routing.

Constraints (7) stipulate that the common cycle length is an integer multiple
of certain time interval �. The time interval � is typically chosen as a natural
time period that is easy to manage, e.g. a day or a week. In this way, the
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Figure 7.4: An example of a feasible cyclic production schedule for 2 products
and 3 workcenters: three production cycles

implementation of the cyclic production schedule is facilitated. Instead of using
a time interval � as the basis for the common cycle, Ouenniche and Boctor
(1998) impose that the common cycle is chosen so that a given planning horizon
is an integer multiple of the common cycle. We believe that this is a rather
unnatural approach since it is not clear how the planning horizon should be
chosen. Moreover, their approach results in an unnecessary restriction of the
search space. Finally, this assumption may lead to solutions that are di¢ cult
to implement in real life, e.g. a common cycle of 13.64 hours.

Constraints (8) - (10) are the integer and non-negativity constraints.

By formulating the objective function and the constraints, the deterministic
model of the PI system with CPP is complete. In the next section, we present
a heuristic to solve the deterministic model.

7.3 Optimization of deterministic model

In the previous section, we presented a NLP for �nding the optimal common
cycle length and sequencing decisions for the deterministic PI system. Unfor-
tunately, NLPs are extremely hard to solve and require a prohibitive amount
of computation time even for medium sized problems. Therefore, we present a
heuristic to approximately solve the NLP. The heuristic tries to �nd the control
decisions (common cycle length and starting times) that minimize the total rel-
evant costs. We �rst discuss the main elements of the heuristic. After this, the
heuristic is presented. Finally, we discuss the strengths and weaknesses of the
proposed heuristic.
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7.3.1 Decomposition of problem

The goal of the heuristic is to minimize the total relevant cost. The cost objective
function is repeated here, and it is split in its three main components:

1

R

KX
k=1

(ok + sk) (7.9)

R
KX
k=1

264
�2k

2E[A0
k]
vkr +

E[P 0
�(k;1);k]

E2[A0
k]

v�(k;1);kr

+
MkP
o=2

�
E[P 0

�(k;o);k]

E2[A0
k]

� E[P 0
�(k;o�1);k]

E2[A0
k]

�
v�(k;o);kr

375 (7.10)

KX
k=1

MkX
o=2

�
d�(k;o);k � d�(k;o�1);k

�
E [A0k]

v�(k;o);kr (7.11)

The heuristic is based on the observation that for a given common cycle with
length R0, the �rst two terms in the cost objective function are fully determined.
Only the third cost component has to be minimized. So if a common cycle length
R0 is given, then the remaining problem is to determine a feasible production
schedule that �ts into the common cycle (so that all constraints are satis�ed)
and that minimizes the third cost component. If the common cycle length is
given, then the processing times of all production orders are known. Therefore,
the problem reduces to a variant of the standard job shop scheduling problem.

The job shop scheduling problem is a classical NP-hard combinatorial opti-
mization problem that has received much attention of the research community.
It can be de�ned as determining, for a given set of non-splittable jobs, the exe-
cution sequences and the starting moments so as to optimize a certain objective
function (Ouenniche and Boctor, 1998). Here, the objective is to minimize the
third cost term. The job shop scheduling problem can be formulated as a Mixed
Integer Program (MIP), by �xing the common cycle length R in the NLP for
the entire problem (presented in Section 7.2.2) to the value R0. Compared to
the standard job shop scheduling problem, an additional constraint is that the
schedule must �t into the common cycle with length R0, see set of constraints
(3).
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minimize
KP
k=1

MkP
o=2

(d�(k;o);k�d�(k;o�1);k)
E[A0

k]
v�(k;o);kr

subject to:

1. d�(k;o�1);k +
E[P 0

�(k;o�1);k]

E[A0
k]

R0 � d�(k;o);k for k = 1; :::;K and o = 2; :::;Mk

2. djk +
E[P 0

jk]

E[A0
k]
R0 + E [Ljl]� djl � 
 (2� �k;n;j � �l;n+1;j)

for j = 1; :::;M k; l 2 K (j) k 6= l n = 1; :::;Kj � 1

3. �k;Kj ;j�l;1;j

�
djk +

E[P 0
jk]

E[A0
k]
R0 � djl + E[Ljl]

�
� R0

for j = 1; :::;M k; l 2 K (j) k 6= l

4. djk � E [Ljk] �k;1;j for j = 1; :::;M k 2 K (j)

5.
P

k2K(j)
�k;n;j = 1 for j = 1; :::;M n = 1; :::;Kj

6.
KjP
n=1

�k;n;j = 1 for j = 1; :::;M k 2 K (j)

7. �k;n;j 2 f0; 1g for k = 1; :::;K j 2M (k) n = 1; :::;Kj

8. dk;j � 0 for k = 1; :::;K j 2M (k)

7.3.2 Main elements of heuristic

In the previous subsection, we observed that the NLP reduces to a variant
of the classical job shop scheduling problem when the common cycle is given.
This observation allows us to decompose the problem in a series of job shop
scheduling problems. Then the NLP can be solved with a two-level procedure.
In the �rst level, the common cycle length is varied. In the second level, a
job shop scheduler determines the starting times of the operations, for a given
common cycle length. Figure 7.5 presents this two-level procedure.

Common cycle length

The �rst level of the heuristic is concerned with the determination of the com-
mon cycle length. In this level we assume that the total relevant costs are
unimodal in the common cycle length. This assumption is also used in the solu-
tion procedure proposed by Ouenniche and Boctor (1998). It allows using two
search algorithms for the optimization of unimodal functions. Both algorithms
will be used in the heuristic.
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Figure 7.5: Two-level procedure for solving lotsizing, sequencing and scheduling
problem in deterministic setting

1. Univariant search. Starting from a given solution R0, the common cycle
R0 is increased (decreased) with a certain step size as long as the total relevant
costs decrease. The step size used is the natural time interval �. When the total
relevant costs increase, the search is stopped. The local optimum R� found in
this way is the solution proposed by the heuristic. Figure 7.6 presents pseudo-
code for the univariant search algorithm.
2. Golden section search (Winston, 1994). The procedure starts by specify-

ing an interval that contains the optimum. This interval is called the �interval
of uncertainty�. Through a clever search procedure, the size of this interval is
iteratively decreased while it is ensured that the optimum is contained in the
interval. The procedure ends when the size of the interval is smaller than a
speci�ed precision. In this way, the local optimum can be determined with any
desired precision. In the implementation, we set the precision equal to the nat-
ural time interval �. Moreover, we ensure that the local optimum is a multiple
of �. For pseudo-code of the golden section search algorithm, we refer to Figure
7.7.

Starting times

In the second level of the procedure we use a job shop scheduler to �nd a feasible
schedule that minimizes the relevant costs. The schedule determines the starting
times of the operations. The job shop scheduler used in the implementation is
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Select an initial common cycle length R0;
Set R0 := R0 and R� := R0;
Solve scheduling problem and determine cost of R0;

Set R0 := R� +�;
Solve scheduling problem and determine cost of R0;
Repeat while TRC (R0) < TRC (R�)
{

Set R� := R0;
Set R0 := R� +�;
Solve scheduling problem and determine cost of R0;

}

Set R0 := R� � �;
Solve scheduling problem and determine cost of R0;
Repeat while TRC (R0) < TRC (R�)
{

Set R� := R0;
Set R0 := R� � �;
Solve scheduling problem and determine cost of R0;

}

Figure 7.6: Pseudo-code for univariant search algorithm

based on random sampling. The scheduler randomly generates a large number of
feasible schedules. The proposed solution is the schedule that has the lowest cost
and that satis�es all the constraints. The main idea of this approach is that a
certain fraction of all solutions have a cost that is relatively close to the optimal
cost. By randomly sampling a large number of schedules, the probability is high
that we can �nd a schedule with a cost that is close to the optimal cost.

A random schedule is made by randomly generating a sequence for the jobs
on the work centers. Next, the jobs are assigned a starting time using a heuris-
tic rule: the jobs are allowed to start as early as possible, but they have to
satisfy all the precedence constraints1 . The heuristic policy is in line with our
implementation of the CPP approach in which the production of an order is
also started as soon as possible (see Section 6.2). After the schedule is gener-
ated, the cost of every schedule is evaluated. This procedure is repeated a large
number of times (5,000,000 times in the implementation) and the schedule with
the lowest cost is selected. Schedules that do not satisfy the constraints in the
MIP (e.g. on the makespan) are eliminated.

We tested the performance of the scheduling method based on random sam-
1This policy does not necessarily minimize the cost of the schedule; if one is concerned

with the minimization of the costs the scheduling problem can be formulate and solved as a
LP problem.
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Initialize interval of uncertainty
�
RLB ;RUB

�
Solve scheduling problem for RLB and determine TRC

�
RLB

�
;

Solve scheduling problem for RUB and determine TRC
�
RUB

�
;

Do while RUB �RLB > �
{
Set R0 := RLB +

�
0:382

�
RUB �RLB

��
;

Solve scheduling problem and determine TRC (R0);
Set R00 := RLB +

�
0:618

�
RUB �RLB

��
;

Solve scheduling problem and determine TRC (R00);

If TRC (R0) � TRC (R00)
{

Set RUB := R00;
}
If TRC (R0) � TRC (R00)
{

Set RLB := R0;
}

}

Set R� := RUB �RUB mod (�);

Figure 7.7: Pseudo-code for golden section search
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pling, by comparing it with a Simulated Annealing algorithm for a limited num-
ber of test problems. The implementation of the Simulated Annealing algorithm
uses the neighborhood function proposed by Ouenniche and Boctor (1998). The
performance of both scheduling methods appeared to be equivalent. The ad-
vantage of the scheduler based on random sampling is that (i) it is easy to
implement; (ii) constraints are easily incorporated by rejecting solutions that
do not satisfy the constraints; (iii) it has only one control parameter, the number
of randomly generated schedules. The latter advantage is very important since
it makes the job shop scheduling method considerably easier to tune, especially
when compared to scheduling methods based on local search algorithms that
usually require a lot of tuning.

Other job shop scheduling methods can be embedded in the heuristic, if de-
sired. Vaessens et al. (1996) present an overview of solution methods for job
shop scheduling problems with an emphasis on local search. They also compare
the computational performance of the various methods in terms of their e¤ective-
ness and e¢ ciency on a standard set of problem instances. Well-known job shop
scheduling approaches that are included in the overview are simulated annealing
algorithms (van Laarhoven et al., 1992), taboo search algorithms (Nowicki and
Smutnicki, 1996) and the shifting bottleneck heuristic (Adams et al., 1988) and
its extensions (Balas and Vazacopoulos, 1998).

Cut-o¤ rule

The heuristic uses the following observation to cut-o¤ parts of the search inter-
val. If for a certain common cycle length R0 no feasible schedule exists, then
all common cycles with length R" < R0 are also infeasible. This is due to the
fact that the proportion of setup times to processing times increases when the
common cycle is decreased. As a result, there is less slack capacity available so
that the scheduling problem becomes more di¢ cult. Therefore, if for a given
common cycle length no feasible schedule exists, then all smaller common cycles
are also infeasible. Remark that this property assumes that we can determine
with certainty that no feasible schedule exists for a given common cycle length.
In the implementation, however, we use a heuristic scheduling method to decide
whether a common cycle length is infeasible. This implies that the cut-o¤ rule
based on the described property is a heuristic rule.

7.3.3 Outline of heuristic

Now, we present the heuristic that is used to solve the NLP described in Section
7.2.2. The heuristic consists of six steps.

1. Determine a starting solution for the common cycle using the uncapac-
itated lower bound presented in Appendix IX. The starting solution is
RULB�CPP , which is de�ned in formula (A-33).
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2. Use the job shop scheduler to �nd the starting times that minimize the
cost term

KX
k=1

MkX
o=2

�
d�(k;o);k � d�(k;o�1);k

�
E [A0k]

v�(k;o);kr (7.12)

and that form a schedule that �ts into the common cycle RULB�CPP . The
feasibility of a schedule can be veri�ed by checking whether all constraints
in the mathematical program are satis�ed. If no such schedule can be
found, the starting solution RULB�CPP is considered to be infeasible; go
to step 4. Else, the starting solution is feasible; go to step 3.

3. Use the univariant search algorithm and the job shop scheduler to search
for a common cycle R� and corresponding starting times that locally mini-
mize the total relevant costs TRC. The schedule must �t into the common
cycle R�. The feasibility of a schedule can be veri�ed by checking whether
all constraints in the mathematical program are satis�ed. The step size
that is used in the implementation for the adjustment of the common cycle
is equal to the natural time period � = 100 minutes.

The common cycle R� found by the univariant search algorithm and the
corresponding starting times are the solution proposed by the heuristic.

4. Set the common cycle to the maximum allowed cycle length Rmax. In the
implementation, the maximum allowed cycle length is 525,000 minutes (1
year). Go to step 5.

5. Use the job shop scheduler to �nd the starting times that minimizes the
cost term

KX
k=1

MkX
o=2

�
d�(k;o);k � d�(k;o�1);k

�
E [A0k]

v�(k;o);kr (7.13)

and that form a schedule that �ts into the common cycle Rmax. The fea-
sibility of a schedule can be veri�ed by checking the constraints in the
mathematical program. If a feasible schedule is found, go to step 6. Else,
if no feasible schedule is found, the problem instance is considered to
be infeasible since the cut-o¤ rule implies that no feasible solutions for
R0 < Rmax can be found. The problem instance cannot be solved using
the common cycle method.

6. Use the golden section search algorithm to �nd the common cycle R�

and corresponding schedule that locally minimize the total relevant costs
TRC. The schedule must �t into the common cycle R�. The feasibility
of a schedule can be veri�ed by checking whether all constraints in the
mathematical program are satis�ed. The starting interval of uncertainty is
given by

�
RULB�CPP ;Rmax

�
. The common cycle is restricted to multiples

of the natural time period � = 100 minutes.

The common cycle R� found by the golden section search and the corre-
sponding starting times are the solution proposed by the heuristic.
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7.3.4 Discussion of the heuristic: strengths and weak-
nesses

The proposed optimization procedure is based on several heuristic arguments:

� it is assumed that the objective function is unimodal in the common cycle
length;

� a heuristic job shop scheduler is used;

� a heuristic rule is used to cut-o¤ non-feasible regions.

As a result, it is likely that the solutions proposed by the heuristic are
suboptimal solutions. Therefore, an extensive study is conducted in the next
chapter to test the optimization quality of the heuristic.

Our heuristic has some additional advantages over the heuristic developed
by Ouenniche and Boctor (1998). Our heuristic:

� provides a method to check the feasibility of a problem instance;

� is relatively easy to implement using standard optimization routines;

� allows a better utilization of the available production capacity (due to
changes in the constraints on the makespan of the schedule);

� proposes common cycle lengths that are a multiple of a natural time pe-
riod, which leads to solutions that are easier to implement in real-life.

7.4 Stochastic PI system

In this section, we propose a decision-support system to generate cyclical pro-
duction plans for the original, i.e. stochastic, version of the PI system. The
decision-support system is used to determine the common cycle length and the
processing sequences that (approximately) minimize the total relevant costs,
while target �ll rates are satis�ed. It is based on the deterministic model and
on a simulation model of the PI system. The deterministic model is used to
propose a common cycle length and processing sequences, which are tested for
feasibility and stability in the simulation model. To cope with the impact of
variability, the heuristic for solving the deterministic model is slightly adjusted.

This section is organized as follows: �rst we make an extension of the heuris-
tic for the deterministic model. After this, we present a decision-support tool
for making the control decisions for the stochastic PI system with CPP.
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7.4.1 Extension of deterministic model to include slack-
time

In this subsection we show how the deterministic model can be extended to
cope with the e¤ects of variability. In the previous section, we showed how
a deterministic model can be used to determine a cyclical production sched-
ule. Since this schedule is based on a deterministic model, all batch processing
times are equal to their expectation. Suppose that the common cycle length
and processing sequences based on the deterministic model are used in a sto-
chastic setting. Then the processing times of the batches may di¤er from their
expected value because of the variability in the interarrival times, setup times
and processing times. In turn, the variation in the batch processing times causes
the starting and �nishing times of the operations to be di¤erent from the start-
ing and �nishing times in the schedule that is obtained with the deterministic
model. Sometimes, the operations can start and �nish ahead of the starting
and �nishing times anticipated by the deterministic model. Most frequently,
however, the starting and �nishing times will be delayed compared to the de-
terministic schedule because of knock-on e¤ects. Therefore, in the long run, the
average makespan of the operations will be longer than the makespan of the
deterministic schedule. See Ivanescu et al. (2002) and Ivanescu (2004) for a
discussion of this e¤ect. They also present a regression-based model to estimate
the makespan of a set of jobs.

In particular, the expected time interval between the start of the setup of
the �rst product in the production sequence of a certain work center and the
completion of the �nal product in the sequence of the same work center will ex-
ceed the length of the same interval in the deterministic schedule. The increase
in this interval may result in the near-instability or instability of the proposed
cyclical production schedule if the average length of this interval is close to or
longer than the common cycle length. When the average length of this interval
is longer than the common cycle, the production system has insu¢ cient capac-
ity in the long term which results in the instability of the proposed solution.
If the average length of the interval is close to the common cycle length, there
is -strictly speaking- su¢ cient capacity in the long run. However, if the length
of the interval approaches the common cycle length, this will lead to steep in-
creases of the congestion in the production system. As a result, the workload
of the production system will increase sharply. Moreover, the workload will be
very high for long periods of time before it eventually decreases. This results in
high �uctuations in the �nal inventory and work-in-process costs. As mentioned
before, we refer to this situation as �near-instability�because of the high �uctu-
ations in the costs. We de�ned measures for the near-instability and instability
of a schedule in Section 6.3.3. These measures can be used to exclude instable
of near-instable schedules from the set of potential the solutions.

One may wonder how it is possible to develop a schedule based on a determin-
istic model that is stable in a stochastic setting. It appears that slack-time allows
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Routing structure P1 M1, M2, M3
P2 M2, M1, M3
P3 M3

Processing sequence M1 P1, P2
M2 P2, P1
M3 P3, P1, P2

Table 7.2: Routing structure and processing sequences for example with 3 prod-
ucts and 3 workcenters

for coping with the variability in the processing times. Slack-time is planned
idle time that is present in the schedule and that can be used as a bu¤er against
variability in the demand and production process. In the problem under study,
slack-time is naturally present in the deterministic schedule because it is not
possible to make a tight schedule (e.g. as a consequence of the complex routing
structure, the common cycle length or the processing sequences). See Figure 7.8
for an example. Table 7.2 gives the routings for the products and the processing
sequences. The numbered double arrows represent slack-time. Slack-time 1 is
caused by precedence constraints in the routing of product 2. Slack-time 2 and
3 result from the choice of the common cycle length, which leads to unused
production capacity. Slack-time 4 is a consequence of the processing sequence
on work center M3 (P3, P1, P2). Observe that if the processing sequence on
M3 would be (P3, P2, P1) a feasible production schedule with less slack-time
would result. However, it may occur that the available slack-time is insu¢ cient
to ensure a stable schedule. In this case, the available slack-time should be real-
located or extra slack-time should be added in order to obtain a stable schedule
in the stochastic setting. In this way, a robust schedule is created. By robust it
is meant that the performance of the schedule remains high in the presence of
disturbances due to the variability in the demand and the production process.
This de�nition corresponds to the de�nition of robustness by Leon et al. (1994).

The problem we are faced with is how to determine the robustness of a given
schedule. To the best of our knowledge, little is known about this complex
problem. For the special case in which a single disruption occurs within the
planning horizon, Leon et al. (1994) develop an exact measure for the robustness
of a schedule. For the more general case in which multiple disruptions may
occur, they develop several surrogate measures of robustness. These measures
were tested in a simulation study. From this simulation study, it appeared that a
good measure can be based on average slack-time that is present in the schedule.
Such a measure is then applied in a robust scheduling method based on genetic
algorithms. Unfortunately, their approach does not provide any guidelines on
how the slack-time should be positioned in the schedule.

Based on the results of Leon et al. (1994), we propose to improve the
robustness of a schedule by inserting additional slack-time. Our method is to
add slack-time at the end of the production cycle. By inserting the slack at
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Figure 7.8: An example of slack-time in a cyclic production schedule for 3
products and 3 workcenters

the end of the schedule we ensure that the slack capacity is positioned where
the problems come to the surface. Moreover, this approach has the advantage
that it is very easy to implement. We acknowledge that sometimes problems
may be avoided by cleverly positioning the slack capacity at critical points in
the schedule. However, because little is known about how to identify -a priori-
these critical points in the schedule, we do not consider the option of cleverly
positioning the available slack-time.

In the implementation, the additional slack-time is inserted by adjusting
constraint (3) in the NLP presented in Section 7.2.2. This set of constraints en-
sures that the time interval between the start of the setup for the �rst operation
in the processing sequence of a work center and the �nishing time of the last
operation in the sequence is smaller than or equal to the common cycle length
R. For the sake of clarity, the original constraint is repeated here:

3 - old. �k;Kj ;j�l;1;j

�
djk +

E[P 0
jk]

E[A0
k]
R� djl + E[Ljl]

�
� R

for j = 1; :::;M k; l 2 K (j) k 6= l
(7.14)

As mentioned above, the average length of this time interval in the stochas-
tic setting will be larger than the length of this interval in the deterministic
setting, which may cause infeasibility or instability. By adding slack-time to the
schedule, we can cope with the e¤ects of variability. Suppose that the amount
of slack-time that is added to the schedule is a fraction  of the common cycle
length R, with 0 �  � 1. Then the amount of slack in the schedule is at least
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R. We can add this slack-time R to the schedule by imposing that the inter-
val between the start of the setup of the �rst operation and the end of the last
operation is smaller than (1� )R. In schedules that satisfy this restriction,
the minimal amount of slack is R. In the NLP, we can add the slack-time by
modifying the set of constraints (3). The new set of constraints (3�) becomes:

3�- new. �k;Kj ;j�l;1;j

�
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jk]
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k]
R� djl + E[Ljl]

�
� (1� )R

for j = 1; :::;M k; l 2 K (j) k 6= l
(7.15)

Because of the changes in the constraints, we need to adjust the heuristic
described in Section 7.3.3. The new set of constraints is easily implemented in
the job shop scheduler embedded in the heuristic by eliminating all schedules
that violate the constraints (3�).

7.4.2 Outline of decision-support system

The control decisions (common cycle length, production sequences and order-
up-to levels) for the stochastic PI system controlled using a CPP strategy can
be found by the following four-step procedure. The main idea is that the deter-
ministic model is used to determine the common cycle length and sequencing
decisions (see Section 7.3.3). Then the simulation model is used to determine
whether the proposed solution is stable in the stochastic environment, to tune
the order-up-to levels and to generate estimates for the performance measures
(see Section 6.3.3). If the current solution is not stable, a new NLP with extra
slack-time is solved and the solution is again checked and tuned with simulation.
This process continues until a stable solution is found for the stochastic setting
or until it is decided that it is not possible to �nd a stable cyclical production
plan. Figure 7.9 graphically represents the decision-support system.

1. Generate a starting solution (common cycle + sequencing decisions +
initial order-up-to levels) with the heuristic for the deterministic model
with  = 0. If no solution can be found, stop. The problem instance has
no CPP solution. Else, go to step 2.

2. Simulate the starting solution. If the starting solution is stable, stop.
The solution for the problem instance is found. Use the SSAP procedure
to tune the order-up-to levels and perform a simulation experiment to
estimate the performance measures. Else, go to step 3.

3. Add extra slack-time to the schedule (in the implementation we use a step
size of 2.5 % for the slack-time multiplier ). Change the set of constraints
(3") in the NLP. Use the heuristic for the deterministic model to generate
a solution (common cycle + sequencing decisions + initial order-up-to
levels). If no solution can be found, stop. The problem instance has no
CPP solution in the stochastic setting. Else, go to step 4.
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4. Simulate the solution generated in step 3. If this solution is stable, stop.
The solution for the problem instance is found. Use the SSAP procedure
to tune the order-up-to levels and perform a simulation experiment to
estimate the performance measures. Else, return to step 3.

7.5 Summary

In this chapter, we proposed a decision-support system for the CPP strategy.
The decision-support system is based on a deterministic model of the PI system.
It is used to determine the common cycle length and processing sequences that
(approximately) minimize the total relevant costs. A simulation procedure is
then used to check whether the proposed solution is stable in a stochastic setting.
If not, extra slack-time is added in the schedule and the common cycle length
and processing sequences are reoptimized. If the proposed solution is stable,
the SSAP procedure is used to tune the order-up-to levels such that the target
�ll rates are satis�ed. Finally, the performance measures are estimated with
simulation.

In the next chapter, the decision-support system will be applied to an ex-
tensive set of test problems so that its performance can be assessed.
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Figure 7.9: Outline of decision-support system for CPP based on deterministic
model



Chapter 8

A simulation study to test
the decision-support system
for Cyclical Production
Planning

8.1 Introduction

In this chapter, we investigate whether it is justi�ed to use the proposed decision-
support system to determine the production and inventory control decisions for
the CPP strategy. The performance of the decision-support system is tested on
the same test bed as the CBC strategy. For a full description of the test bed,
we refer to Section 5.2. Similar to the case of CBC, it appears to be di¢ cult
to �nd good benchmarks that allow testing the quality of the decision-support
system. Therefore, we propose the use of several criteria.

First, we test the optimization quality of the heuristic for the determinis-
tic PI system. We assess the performance of the heuristic by comparing the
costs of the proposed solution to a lower bound. After this, we investigate the
performance of the decision-support system for the stochastic setting. We use
several criteria. First, we test whether the response of the decision-support
system to changes in the levels of the factors makes sense from a logical point
of view. After this qualitative test, we quantify the estimation quality of the
deterministic model that is embedded in the decision-support system. This
analysis is performed by comparing the cost and throughput time estimates of
the deterministic model with the estimates obtained from simulation. Finally,
the optimization performance of the decision-support system is tested by com-
paring the costs of the proposed solution to a lower bound on the total costs.
Unfortunately, there exist no models in the literature that can be used as a

135
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benchmark for our implementation. Therefore, we were not able to compare
the proposed decision-support system to any other heuristic that is based on
cyclical production plans for a stochastic setting. In particular, we were not
able -because of limited time- to develop a decision-support system based on
simulation optimization.

8.2 Deterministic PI system

In this section, we investigate the optimization quality of the heuristic for the
deterministic version of the PI system. The heuristic was presented in Section
7.3. We use the heuristic to solve the 240 instances in the test bed presented in
Section 5.2. In the experiments presented in this section, we assume that the
demand interarrival times, setup times and processing times are deterministic:

c2 [A0k] = c
2 [Ljk] = c

2
h
P 0jk

i
= 0 for k = 1; :::;K and j = 1; :::;M .

The optimization quality is tested by comparing the cost of the proposed
solution TRC� to the capacitated lower bound on the optimal costs, denoted
as TRCCLB�CPP . For the derivation of this capacitated lower bound, see Ap-
pendix IX. The deviation from the capacitated lower bound gives an indication
of the optimization quality and can be computed as:

dLB =
TRC� � TRCCLB�CPP

TRCCLB�CPP
� 100% (8.1)

Figure 8.1 presents a histogram for dLB for all the instances. In 60% of the
instances, dLB is less than 10%. This indicates that the optimization quality of
the heuristic procedure seems to be satisfactory for these instances. However,
for a considerable part of the instances, dLB is very high. In particular, for
one of the �ve basic problem con�gurations in the test bed no feasible solutions
were found for the instances with �net = 0:85 . It seems that for these instances
no feasible cyclical production plans can be determined (at least not with our
heuristic). The infeasible solutions have dLB = 1 and they make up for the
the majority of instances with dLB > 200%.

In order to identify the causes for the observed spread in dLB , we investigate
the in�uence of the di¤erent factors on dLB . We carried out an analysis of vari-
ance using the statistical package StatGraphics. The results from the analysis
of variance indicate that the following factors have a signi�cant impact on dLB

(at the 95% con�dence level):

� setup costs;

� net utilization;

� interaction between setup costs and net utilization;
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Figure 8.1: Deviation of total relevant costs of heuristic solution from capaci-
tated lower bound (deterministic setting, all instances)

� basic problem con�guration of instances.

The results of the analysis may indicate that the optimization quality of the
heuristic depends on the level of these factors. If this would be the case, then
the use of the heuristic would not be justi�ed for certain levels of these factors.
However, the observed e¤ects may also occur because the lower bound becomes
weaker as a function of the factors. Unfortunately, we cannot test the exact
cause of the observed e¤ects since it is not possible to compute the optimal
costs. Therefore, we use qualitative arguments to postulate that the observed
e¤ects are due to the lower bound that becomes weaker as a function of the
factors.

In the remainder of this section, we study dLB for the factors that have a sig-
ni�cant impact on dLB . We qualitatively discuss the reasons for the degradation
of the lower bound as a function of the factors.

8.2.1 Setup costs

In Figures 8.2 a-d, dLB is shown respectively for the instances with setup costs
= 0, average setup costs = 10, average setup costs = 30 and average setup costs
= 90. Figures 8.2 b-d show that the optimization performance is relatively good
for the instances with setup costs > 0. In the majority of the instances, dLB

is below 10%. Furthermore, it can be seen that dLB increases when the setup
costs decrease. This may be due to two di¤erent causes: (i) the optimization
performance of the heuristic degrades when the setup costs decrease; or (ii)
the lower bound becomes weaker when the setup costs decrease. We use the
following arguments to postulate that the observed e¤ect is due to the lower
bound that becomes weaker when the setup costs decrease.
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When the setup costs decrease, the common cycle length that corresponds
to the lower bound costs, denoted as RCLB�CPP , becomes smaller until the
capacity bound is reached (see formula (A-35) in Appendix IX). The reduction
of the common cycle length leads to a higher proportion of the setup times
to the processing times. This may have two consequences for the costs of a
feasible solution. Firstly, because the proportion of setup times to processing
times increases, there is less idle time available. This makes it more di¢ cult
to �nd a feasible production schedule that �ts in the common cycle length
RCLB�CPP . For this reason, the costs related to the schedule (work-in-process
costs) increase. Since the lower bound does not take into account these costs,
the lower bound becomes weaker when the setup costs decrease. Secondly, it
may occur that it is not possible to determine a feasible production schedule that
�ts into RCLB�CPP . In this case, it is required to increase the common cycle
length to decrease the number of setups and to free up additional production
capacity. By making more production capacity available, it may be possible to
�nd a feasible production schedule. However, the increase of the common cycle
length results in an increase of the cycle related costs (�nal inventory costs,
work-in-process costs). The lower bound does not take into account these costs,
and therefore the lower bound becomes weaker when the setup costs decrease.

8.2.2 Net utilization

In this subsection, we analyze the impact of the factor �net utilization�on dLB .
Figures 8.3 a-c present histograms of dLB for the di¤erent levels of the net
utilization �net. At moderate levels of capacity utilization (�net = 0:65 and
�net = 0:75), the optimization quality seems to be reasonable for a majority of
the instances. However, dLB rises as the net utilization increases. The following
reasoning explains why the lower bound becomes weaker when �net rises.

Our arguments are based on the observation that the proposed lower bound
ignores the interaction between the di¤erent products. The interaction between
products in the production system causes waiting times, since production orders
must wait for the work centers to become available. Also, because of the strict
cyclical production schedule that is followed at the work centers, production
capacity is wasted. This may lead to the need to free up additional production
capacity by increasing the common cycle length in order to obtain a feasible
production schedule. Because of the costs related to the waiting times and the
increase of the common cycle length, the costs of the (feasible) optimal solution
are higher than the costs of the (infeasible) lower bound solution. When the net
utilization of the production system increases, the e¤ect of the waiting times and
the necessity to increase the common cycle length become stronger. Therefore,
the di¤erence between the costs of the feasible, optimal solution and the lower
bound costs will increase when the net utilization of the work centers increases.
Consequently, the lower bound becomes weaker when the net utilization of the
work centers increases.
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Figure 8.2: Deviation of total relevant costs of heuristic solution from capaci-
tated lower bound: deterministic setting with (a) setup costs = 0 - (b) average
setup costs = 10 - (c) average setup costs = 30 - (d) average setup costs = 90
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Figure 8.3: Deviation of total relevant costs of heuristic solution from capaci-
tated lower bound: deterministic setting with (a) �net = 0.65 - (b) �net = 0.75
- (c) �net = 0.85
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8.2.3 Interaction setup costs and net utilization

From the analysis of variance we learned that the interaction between setup
costs and net utilization has a signi�cant impact on dLB . In particular, we
expect that the instances with high setup costs and low net utilization have a
low dLB . Hence, we expect that the heuristic performs well in these instances.
Figures 8.4 a-c show dLB for the instances with setup costs > 0 and �net =
0.65, 0.75 and 0.85 respectively. When �net = 0.65, the heuristic seems to be
successful in optimizing the NLP: in about 98% of the instances the dLB is
less than 5% and the maximum deviation observed on this set of experiments
is 5.3%. Figure 8.4-b for the instances with �net = 0.75 indicates that dLB

increases slightly when �net increases. The optimization performance remains
satisfactory, however. In about 96% of the instances, dLB is lower than 10%.
The maximum of dLB on this set of experiments is 15.1%. When �net increases
from 0.75 to 0.85, we observe a strong rise in dLB . In 20% of the instances,
it was even impossible to �nd a CPP solution at all. The average of dLB for
the instances with a feasible solution was as high as 68.6%, with a maximum of
436.6%.

For the instances with setup costs = 0, shown in Figures 8.5 a-c, the impact
of increases in the net utilization is much stronger than in the case of setup
costs > 0. If �net = 0.65, then dLB lies in the interval from 20 to 52%. When
�net increases to 0.75, then dLB increases as well. In this case, dLB ranges from
29 to 101%. Finally, if �net = 0.85, then the minimum of dLB is 110%, while
for several instances no feasible solutions were found at all. These increases
are much stronger than what was observed for the instances with setup costs
> 0. The combination of the two factors appears to be much stronger than
the individual factors. This can be explained as follows. For the instances with
setup cost = 0, the total relevant costs of the lower bound are proportional
to the common cycle length (see formula (A-36) in Appendix IX). Therefore,
the capacitated lower bound makes the common cycle length RCLB�CPP as
small as possible so as to reduce the cycle related costs while it ensures that the
capacity constraints are not violated. From the derivation of the capacitated
lower bound (in Appendix IX), it can be seen that for setup costs = 0, the
capacity constraint is binding for at least one work center. On the other hand,
the heuristic searches for a feasible production schedule that satis�es all the
constraints in the NLP. Therefore, the common cycle of the feasible solution is
typically (much) longer than RCLB�CPP . The amount by which the common
cycle is increased depends on the net utilization. The higher the net utilization,
the more di¢ cult it is to obtain a feasible schedule. Therefore, the common cycle
needs to be longer, which results in higher costs and a larger deviation from the
lower bound. Based on these qualitative arguments, we expect that the e¤ect
of the interaction between setup costs and net utilization on dLB is caused by
the lower bound that becomes weaker.
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Figure 8.4: Deviation of total relevant costs of heuristic solution from capac-
itated lower bound: deterministic setting, instances with setup costs > 0 (a)
�net = 0.65 - (b) �net = 0.75 - (c) �net = 0.85
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Figure 8.5: Deviation of total relevant costs of heuristic solution from capac-
itated lower bound: deterministic setting, instances with setup costs = 0 (a)
�net = 0.65 - (b) �net = 0.75 - (c) �net = 0.85
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problem con�guration min dLB (%) avg dLB (%) max dLB (%)
1 1 1 1
2 10.6 145.2 436.6
3 7.7 22.7 79.9
4 7.2 15.7 51.8
5 6.8 10.9 28.3

Table 8.1: Key statistics for deviation of total relevant costs of heuristic solu-
tion from capacitated lower bound for di¤erent basic problem con�gurations:
deterministic setting, instances with setup costs > 0 and net utilization of work
centers = 0.85

8.2.4 Basic problem con�guration

The test bed contains �ve basic problem con�gurations, each with 48 instances.
The basic problem con�guration determines amongst others the routing struc-
ture, the setup times and the processing times of the problem instance (see
Section 5.2.3 for details on the generation of the basic problem con�gurations).
The analysis of variance indicates that dLB depends signi�cantly on the ba-
sic problem con�guration. We illustrate this by presenting, in Table 8.1, the
key statistics of dLB for the instances with setup costs > 0 and net utilization
= 0.85, split out for the �ve basic problem con�gurations. For basic problem
con�guration #1, it was not possible to �nd feasible solutions at all. These
infeasible instances represent 20% of the instances with setup costs > 0 and net
utilization = 0.85 (about 7% of total number of instances). At �rst sight, it may
seem surprising that it is not possible to �nd feasible solutions for a particular
instance.

A small-scale example may provide some insight in the reasons of this infea-
sibility. Figure 8.6 presents a schedule for a two product, three work center PI
system. We assume that there are no setup times, so the blocks in the Gantt-
chart indicate the net processing times of the operations. The net utilization
of the work centers is 60% for work center M2 and 80% for work centers M1
and M3. The routing of product 1 is M1, M2, M3 and the routing of product 2
is M3, M1. Although there is su¢ cient capacity available, it is not possible to
develop a feasible cyclical production schedule (i.e. that satis�es the constraints
of the NLP in Section 7.2). In the schedule in Figure 8.6 there is insu¢ cient
capacity on work center M1. No other schedules that satisfy all constraints can
be developed. An analysis of the example learns that the speci�c characteristics
of this instance result in the infeasibility. In particular, the large processing
times of product 1 on work center M2 and of product 2 on work centers M1 and
M3, combined with the routing structure of the products, make it impossible to
�nd a feasible schedule.

Now, suppose that we split the activities of both products in two. In this
way, we obtain the four product, three work center PI system in Figure 8.7.
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Figure 8.6: Infeasible cyclical production schedule for a 2-product, 3-work center
PI system with su¢ cient production capacity

The routing of product 1 and 3 is M1, M2, M3 and the routing of product 2
and 4 is M3, M1. Again, the net utilization of the work centers is 60% for work
center M2 and 80% for work centers M1 and M3. Remarkably, it is now possible
to develop a feasible cyclical production schedule. An analogy can explain this
observation. Suppose we want to �ll a bowl with stones. The larger the stones
are, the more empty space there is in the bowl. If we would �ll the bowl with
sand instead of stones, much less empty space would be left in the bowl. This
is similar to our scheduling problem. The smaller the processing times of the
operations are (while utilization levels remain the same), the easier it becomes
to make a tight production schedule. Based on this observation, we expect
that dLB will decrease sharply if the number of products increases, while the
net utilization remains the same. More precisely, we expect that dLB will go
down when the relative contribution of the di¤erent products to the work center
utilization decreases.

Apart from the infeasibility of basic problem con�guration #1, we also ob-
serve from Table 8.1 that the di¤erences between the maximum values of dLB

can be very high. For basic problem con�guration #2, the maximum of dLB

is as high as 436.6%, whereas for basic problem con�guration #5 this is only
28.3%. From this analysis it can be concluded that the routing structure and
the speci�c demand interarrival times, setup times and processing times have a
strong in�uence on dLB . For some instances, it is very di¢ cult to �nd a schedule
that is feasible with respect to the available production capacity. The reasons
for this are similar to the reasons why some instances cannot �nd a feasible so-
lution at all. In order to �nd a feasible schedule in such situations, the common
cycle length must be made very large in order to reduce the number of setups
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Figure 8.7: Feasible cyclical production schedule for a 4-product, 3-work center
PI system with su¢ cient production capacity

and to obtain more available production capacity. The increase of the common
cycle length results in a strong rise of the cycle related costs (�nal inventory
costs and work-in-process costs). Since the lower bound ignores the interaction
between products and its impact on the schedule, it does not take into account
this e¤ect. Obviously, this leads to solutions that are characterized by a very
high dLB .

8.2.5 Conclusions

In this section, we compared the total relevant costs of the solution proposed
by the heuristic with a lower bound on the costs. The deviation of the costs
of the solution from the lower bound, denoted as dLB , is an indicator for the
optimization performance of the heuristic. We found that in about 60% of the
instances, dLB is less than 10%. We further analyzed the behavior of dLB as
a function of the factors in the experimental design. An analysis of variance
learned that dLB is signi�cantly determined by the setup costs, the utilization
level, the interaction between setup costs and utilization level, and by the speci�c
basic problem con�guration of the instance. Based on qualitative arguments,
we postulate that the observed patterns in dLB are mainly caused by the lower
bound that becomes weaker when the setup costs decrease and the net utilization
of the work centers increases. The basic problem con�guration of an instance
also determines the quality of the lower bound. Therefore, we expect that the
performance of the proposed heuristic does not considerably deteriorate as a
function of the factors in the simulation study. Based on these observations, we
propose to use the heuristic described in Section 7.3 to minimize the costs of
the deterministic version of the PI system under study.
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8.3 Stochastic PI system

In this section, we investigate the stochastic version of the PI system. We use
the decision-support system for the stochastic PI system, proposed in Section
7.4 to solve the 240 instances in the test bed. The test bed was already described
in Section 5.2. In these experiments, the demand interarrival times, setup times
and processing times are stochastic variables.

We proceed as follows. First, we discuss some di¢ culties that were encoun-
tered when generating the solutions. Next, we assess whether the response of
the decision-support system to changes in the levels of the factors makes sense
from a logical point of view. After this, we measure the estimation quality of
the deterministic model that is used in the decision-support system. Finally, the
optimization performance of the decision-support system is tested by comparing
the costs of the proposed solution to the capacitated lower bound on the total
costs.

8.3.1 Generation of solutions

We use the decision-support system to generate control decisions (common cycle
length and sequencing decisions) for the 240 instances in the test bed. For two of
the �ve basic problem con�gurations in the test bed, no feasible CPP solutions
were be found when �net = 0:85. These instances represent about 13% of the
total number of instances in the test bed. Moreover, an analysis of the proposed
solutions learned that some of the proposed solutions were inconsistent. In
particular, we checked for two types of inconsistencies:

� The cost of a speci�c instance should be lower than the cost of all instances
that have similar characteristics, but that have higher levels of the factors
in the experimental design (i.e. higher setup costs, higher target �ll rates,
higher net utilization, higher setup times);

� The common cycle length of a speci�c instance should be smaller than the
common cycle length of all instances with similar characteristics but with
higher setup costs.

We found that 26 instances were inconsistent, which represents about 11%
of the total number of instances. Based on some trial-and-error experiments
with the parameters in the decision-support system, we found that the para-
meter setting of the step size for the slack-time multiplier  (set initially to
2.5%) caused some of the problems observed above. The slack-time multiplier
indicates the minimum amount of slack-time that is present in the schedule.
In the decision-support system, the slack-time multiplier is used to put extra
slack-time in the schedule in order to cope with the e¤ects of variability. For
more details on the slack-time multiplier, see Section 7.4.1. In the implemen-
tation of the decision-support system, the value of the slack-time multiplier is
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increased in steps of 2.5%. In response to an increase in the slack-time multi-
plier, the decision-support system typically increases the common cycle length
in order to raise the amount of slack-time in the schedule. For some instances,
an increase in the slack-time multiplier of 2.5% results in very strong rises in
the common cycle length (in order to obtain a feasible solution). This results
in very sharp increases in the costs. Moreover, for some instances, no feasible
solution can be found at all. Therefore, we adjusted the value of the slack-time
multiplier  to 0.5% and repeated the instances with inconsistencies. Repeating
the experiments with  = 0:5% resulted in a reduction of the number of incon-
sistent instances from 26 to 6. Also, we repeated one set of infeasible instances.
The other set was infeasible in the deterministic setting, so there is no hope
for �nding a feasible solution for the stochastic setting. The decision-support
system now found feasible solutions for the set of instances that were initially
infeasible.

Remarkably, we still observed inconsistencies in 6 instances (2.5% of total
number of instances) after the adjustment of . In order to �nd the reason for
the observed inconsistencies, we plotted the total relevant costs as a function of
the common cycle length for several instances. The cost estimates are based on
a deterministic setting. We repeated this experiment with di¤erent seed values
for the random number generator of the job shop scheduler. Here we present
the results for an instance that is characterized by net utilization = 0.75, setup
costs = 0, average setup times = 135 and target �ll rate = 0.90. The plots are
shown in Figures 8.8 and 8.9.

As can be seen from Figure 8.8, the objective function contains a local op-
timum at R = 8300. A detailed analysis learns that the same schedule is used
in the interval [5500; 8200] and another schedule in the interval [8300; 14000].
The same schedule is used in the interval [8300; 14000] because the schedule is
interesting from a cost perspective. However, when the common cycle length
further decreases (R < 8300) this schedule becomes infeasible with respect to
the available production capacity. At that moment, the decision-support system
generates another schedule, which initially had a higher cost. As the common
cycle further decreases, the cost also decreases which leads to a new (local) op-
timum. Eventually, at R = 5400 the new schedule also becomes infeasible. No
feasible schedules were found for R < 5400.

Figure 8.9 presents a plot for the same problem instance, but with a di¤erent
seed value for the random number generator of the job shop scheduler. Similar to
before, the same schedule is used in the interval [8200; 14000]. Because di¤erent
seed value are used, this schedule di¤ers from the schedule corresponding to
Figure 8.8. The total costs are almost similar for both cases. Figure 8.9 shows,
however, that no feasible schedule is found for common cycle lengths R < 8200.
In this case, the objective function is characterized by a single local optimum
at R = 8200.



Chapter 8. Simulation study to test DSS 149

Figure 8.8: Relevant costs in function of common cycle length for a speci�c
problem instance (deterministic setting - seed value 1)
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Figure 8.10: Histogram of precision of 90% con�dence interval for simulation
estimates TRC

From the analysis of Figures 8.8 and 8.9, we expect that the optimization of
the deterministic PI system using the procedure proposed in Section 7.3, may
be complicated because of the multimodality of the objective function, as well
as the heuristic nature of the job shop scheduler. Both characteristics may lead
to suboptimality of the proposed solutions. Remarkably, our test experiments
for the deterministic setting in Section 8.2 did not reveal any inconsistencies in
terms of total costs or common cycle lengths that may have indicated potential
problems in the optimization process. Moreover, the optimization performance
appeared to be reasonable in the majority of the instances. Since we only en-
counter inconsistencies in a limited number of instances (2.5%), we continue to
use the proposed decision-support system. In order to evaluate the soundness
of the proposed decisions, we extensively test the performance of the decision-
support system in the stochastic setting in the next sections.

Figure 8.10 gives a histogram of the precision of the 90% con�dence interval
for the TRC for all 224 feasible problem instances. The precision can be com-
puted as the width of the 90% con�dence interval divided by the average TRC.
Since the precision of the simulation estimates is below 1.0%, the simulation
estimates can be considered to be accurate.

8.3.2 Analysis of the solutions: summary

In this subsection, we summarize the analysis of the main e¤ects of the di¤erent
factors in the experimental design on the decision variables and the total relevant
costs. The complete results of the analysis can be found in Appendix X. We
investigate whether the decision-support system generates solutions that make
sense. In particular, it is tested whether the decision-support system acts in a
logical way in response to changes in the levels of the factors that are included
in the experimental design. For instance, it is tested whether increases in the
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levels of the factors lead to an increase in the total costs. Furthermore, we
test whether increases in the setup costs lead to increases in the common cycle
length. Except for the inconsistencies mentioned in the previous section, it
seems that the behavior of the costs and the decision variables (review periods
and order-up-to levels) as a function of the factors makes sense from a logical
point of view. The observed e¤ects are in line with the expected behavior. We
conclude that the decision-support system responds sensibly to changes in the
factors studied in the experimental design, except for a very small number of
instances.

Furthermore, we analyzed the contribution of the lower bound to the total
costs. We observed that this contribution is very high, especially when setup
costs > 0. This implies that the impact of variability is very limited in these
instances. The contribution is much higher than in the CBC strategy, which in-
dicates that the CPP strategy reduces the variability in the PI system compared
to the CBC strategy. By assigning �xed processing sequences, the CPP strat-
egy seems to realize a considerable reduction of the variability in the production
system so that the production system behaves more or less as a deterministic
system.

Now that we have found that the decision-support system generates solu-
tions that appropriately take into account changes in the factors, we further
investigate the optimization quality of the decision-support system.

8.3.3 Estimation quality of the deterministic model for
stochastic PI system

In this section, we test whether the total costs of the deterministic model are
a good estimate for the total costs of the stochastic PI system. If this is the
case, one may expect that the cost-optimal solution of the deterministic model
is relatively close to the cost-optimal solution of the stochastic PI system. If
the deterministic model does not accurately estimate the absolute value of the
total costs, but correctly estimates the relative behavior as a function of the
decision variables, one may still expect that the optimization quality of the
decision-support system is satisfactory. In this section, we focus on the solutions
provided by the decision-support system. Note that these solutions need not be
the optimal solutions.

In Figure 8.11, we present the approximation error for the total relevant
costs, measured as the relative di¤erence between the estimates of the deter-
ministic model (DET) and simulation (SIM). The simulation model is used to
generate cost estimates for the solutions proposed by the decision-support sys-
tem. The 16 instances that do not have a feasible solution are excluded from
the analysis. The relative estimation error eTRC can be computed as:

eTRC =
TRCDET (R�)� TRCSIM (R�)

TRCSIM (R�)
� 100% (8.2)



152 Part II. Cyclical Production Planning

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

-30 - -25% -25 - -20% -20 - -15% -15 - -10% -10 - -5% -5 - 0%

eTRC

re
la

tiv
e 

fr
eq

ue
nc

y

Figure 8.11: Frequency diagram for relative estimation error of total relevant
cost estimates by deterministic model compared to simulation (stochastic set-
ting, all instances)

It appears that eTRC lies in the range of -25.3% to -0.2% on this set of
224 instances. Obviously, all di¤erences are negative since the deterministic
model always underestimates the costs of the stochastic setting. From Figure
8.11, it can be seen that for the majority of the instances (92%) the absolute
relative approximation error

��eTRC�� is lower than 10%. This indicates that the
estimation quality of the deterministic model is relatively good, for the solutions
obtained from the decision-support system.

In Figures 8.12 a-d, the relative estimation error is split out for the instances
with the same average setup costs. From these �gures, it can be seen that the
estimation performance improves when the average setup cost increases. In the
case of average setup cost > 0, the absolute estimation error is at most -7%,
which indicates that the system is highly predictable and the impact of the
variability on the total relevant costs is very limited on this set of experiments.
This phenomenon can be explained by the fact that when the average setup
cost are high, the common cycle is typically very long. The longer the common
cycle, the larger are the production batch sizes and the less variable are the
batch processing times and -as a consequence- the throughput times. Moreover,
the higher the common cycle length, the higher is the amount of idle time in
the schedule. This idle time serves as a bu¤er against variability so that the
impact of variability on the schedule diminishes. Consequently, the schedule as
it is proposed by the heuristic for the deterministic setting is a good predictor
for the schedule in the stochastic setting. Therefore, the total relevant costs
obtained from the deterministic model are also a good estimate for the relevant
costs in the stochastic setting for the solutions proposed by the decision-support
system, for this set of problem instances.

This observation is supported by Figures 8.13 a-b, in which we present fre-
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Figure 8.12: Frequency diagram for relative estimation error of total relevant
cost estimates by deterministic model compared to simulation: (a) average setup
costs = 0 - (b) average setup costs = 10 - (c) average setup costs = 30 - (d)
average setup costs = 90 (stochastic setting)
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Figure 8.13: Frequency diagram for relative estimation error of expected
throughput time estimates by deterministic model compared to simulation: sto-
chastic setting, instances with (a) setup costs = 0 - (b) setup costs > 0

quency diagrams for the estimation errors for the expected throughput times
of the production orders of all products. The estimation error is measured as
the relative deviation eE[T ] of the estimate by the deterministic model from the
simulation estimate:

eE[T ] =
E [Tk]

DET � E [Tk]SIM

E [Tk]
SIM

� 100% (8.3)

From the Figures 8.13 a-b, it can be seen that the estimates of the throughput
times are relatively accurate, especially when the setup costs > 0. If the setup
costs > 0, then the average estimation error is -4% with a minimum of -33%.
When the setup costs = 0, the relative estimation errors are moderate (-7%
on average with a minimum of -35%). The relative frequencies of eE[T ] in the
interval [�35%;�20%] are too small to be visible in Figure 8.13-b. Again, all
estimation errors are negative, due to the fact that the deterministic model
always underestimates the expected throughput times in a stochastic setting.
Because of the relatively accurate throughput time estimates, the deterministic
model can accurately estimate the total relevant costs for the solutions proposed
by the decision-support system.

8.3.4 Optimization quality for stochastic PI system

In this section we test the optimization performance of the decision-support
system for the stochastic PI system by comparing the total relevant costs of
the proposed solutions with a capacitated lower bound. The capacitated lower
bound is presented in Appendix IX and was already used to test the optimiza-
tion performance of the heuristic procedure for the deterministic PI system (in
Section 8.2). The deviation of the cost of the solution proposed by the decision-
support system TRCSIM (R�) from the capacitated lower bound TRCCLB�CPP

gives an indication of the optimization quality and can be computed as:
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Figure 8.14: Deviation of total relevant costs of heuristic solution from capaci-
tated lower bound: stochastic setting, all instances

dLB =
TRCSIM (R�)� TRCCLB�CPP

TRCCLB�CPP
� 100% (8.4)

The comparison with the capacitated lower bound allows us to assess whether
the solutions proposed by the decision-support system are acceptable from a cost
perspective. The �ndings are very similar to the results for the deterministic
system. Obviously, the deviation from the lower bound is always higher in the
stochastic setting than in the deterministic setting since the lower bound ignores
the impact of the variability on the total relevant costs.

Figure 8.14 presents a histogram for dLB for all instances. In about 60%
of the instances, the deviation from the lower bound is less than 20%. This
indicates that the optimization quality of the decision-support system proce-
dure seems to be relatively good for these instances, keeping in mind that the
lower bound ignores the impact of the variability and the interaction between
products. However, dLB can become excessively high (up to 1538%) in some
instances. Moreover, in about 7% of the instances no feasible solution could
be found. In order to �nd out what is happening in these cases, we conducted
some additional analyses to investigate the factors that in�uence dLB . In order
to identify these factors, we conducted an analysis of variance using the statis-
tical package StatGraphics. Similar to the deterministic case, the analysis of
variance shows that the following factors have a signi�cant impact on dLB (at
the 95% con�dence level):

� setup costs;

� net utilization;
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� interaction between setup costs and net utilization;

� basic problem con�guration of instances.

These results may indicate that the optimization quality of the decision-
support system depends on the factors. If this would be the case, then the use
of the heuristic would not be justi�ed for certain levels of the factors. Similar
to the deterministic case, we postulate that the observed e¤ects are due to the
lower bound that becomes weaker as a function of the factors. The arguments
used in the deterministic case still hold for the stochastic case. Moreover, the
variability results in an increase in dLB compared to the deterministic case.

Figures 8.15 a-d present frequency diagrams for dLB for the di¤erent levels
of the setup costs. In 7% of the instances no feasible CPP solutions are found.
All of these instances have �net = 0:85 and belong to the same basic problem
con�guration. For the instances with setup costs > 0, the optimization perfor-
mance seems reasonable. In the majority of the instances, dLB is below 20%.
From the histograms in Figure 8.15, it appears clearly that dLB rises when the
setup costs decrease. If the setup costs = 0, then dLB is very high. In this case,
dLB ranges from 106% to 1538%. Using the same arguments as in Section 8.2,
we expect that the observed behavior of dLB is due to the fact that the lower
bound becomes weaker when the setup costs decrease. We also observe that the
increase in dLB is much stronger in the stochastic case than in the deterministic
case, especially for the instances with setup costs = 0. This can be explained
by the following arguments. When the setup costs decrease, the common cycle
length and the size of the production batches also decreases. The smaller the
production batches, the higher the variability in the interarrival times and the
processing times. Moreover, the smaller the production batches are, the more
setups are necessary. This leads to a higher capacity utilization. From elemen-
tary insights in queueing theory (see e.g. Van Dijk, 1997), it is known that the
combined e¤ect of increases in the variability and utilization leads to strong in-
creases in the total costs. The lower bound ignores the impact of variability and
can utilize all the available production capacity (no congestion e¤ects). There-
fore, it can operate with smaller production batches which reduces the cycle
related costs. Therefore, the di¤erence between the feasible, optimal solution
for the stochastic case and the lower bound solution will increase sharply when
the setup costs decrease. As in queueing theory, the impact of the utilization
on the costs of the optimal solution is non-linear. Therefore, we expect that the
degradation of the quality of the lower bound is non-linear as the setup costs
decrease.

Similar to the deterministic case, the analysis of variance shows that the net
utilization has a signi�cant in�uence on dLB . Moreover, the analysis indicates
there is a signi�cant interaction e¤ect between the setup costs and the net
utilization. In Figures 8.16 a-d and 8.17 a-d, we plot the histograms of dLB
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Figure 8.15: Deviation of total relevant costs of heuristic solution from lower
bound: stochastic setting with (a) setup costs = 0 - (b) average setup costs =
10 - (c) average setup costs = 30 - (d) average setup costs = 90
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Figure 8.16: Deviation of total relevant costs of heuristic solution from lower
bound: stochastic setting, instances with setup costs > 0 (a) �net = 0.65 - (b)
�net = 0.75 - (c) �net = 0.85

for the di¤erent levels of capacity utilization, respectively for the instances with
setup costs > 0 and setup costs = 0. We observe that dLB increases as the net
utilization increases, for both sets. For the instances with setup costs > 0 and
�net = 0.65 or 0.75, dLB is relatively small. For the instances with �net = 0.65,
dLB is less than 20% in all instances, dLB is 5% on average and the maximum
deviation is 14%. For the instances with �net = 0.75, dLB is less than 20% in
93% of the instances, dLB is 10% on average and the maximum deviation is
45%. When the utilization increases, dLB rises as well. For the instances with
�net = 0:85, the observed deviations are higher: only in 45% of the instances
dLB is less than 20%, the average of dLB is 84% with a maximum of 740%.
Moreover, in 20% of the instances no feasible CPP solution is found. Based
on the same arguments as in Section 8.2 (�nding a feasible schedule becomes
harder if net utilization increases), we expect that the observed behavior of dLB

is due to the fact that the lower bound becomes weaker when �net increases.

For the instances with setup costs = 0, we observe a strong increase in dLB

as the net utilization increases. As mentioned before, dLB is very high for all
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Figure 8.17: Deviation of total relevant costs of heuristic solution from lower
bound: stochastic setting, instances with setup costs = 0 (a) �net = 0.65 - (b)
�net = 0.75 - (c) �net = 0.85

instances, because the lower bound is very weak when setup costs = 0. The
observed pattern is caused by the same reasons as in the deterministic case.
Again, the higher the net utilization, the more di¢ cult it becomes to make a
feasible production schedule. Since the lower bound does not take this e¤ect
into account, the lower bound becomes weaker as the net utilization increases.

Furthermore, we notice that the increase in dLB is stronger for the instances
that simultaneously have low setup costs and high net utilization. This interac-
tion e¤ect can be explained using the following arguments. Low setup costs lead
to smaller batch sizes and thus to higher variability in the arrival and processing
times and to higher setup capacity utilization. Clearly, this leads to higher costs
in the stochastic setting. The impact of the variability and setup utilization on
the total costs will be higher when the net utilization of the work center is
already high. This leads to an interaction e¤ect between setup costs and net
utilization. From queueing theory, it is known that the impact of utilization
on the costs of the optimal solution is non-linear. Therefore, the quality of the
lower bound reduces non-linearly as the utilization of the work centers increases
and the setup costs decrease.

Finally, the analysis of variance indicates that the speci�c characteristics of
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problem con�guration min dLB (%) avg dLB (%) max dLB (%)
1 1 1 1
2 25.9 577.1 1537.6
3 8.8 86.9 264.5
4 8.3 59.0 194.8
5 7.8 74.0 248.1

Table 8.2: Key statistics for deviation of total relevant costs of heuristic solution
from lower bound for di¤erent basic problem con�gurations: stochastic setting,
instances with setup costs > 0 and �net = 0:85

a basic problem con�guration signi�cantly determine dLB . Table 8.2 presents
key statistics of dLB for instances with setup costs > 0 and �net = 0:85, sep-
arately for the di¤erent basic problem con�gurations. Table 8.2 is similar to
Table 8.1, in which key statistics of dLB are presented for the deterministic
setting. Obviously, dLB is (much) higher in the stochastic setting than in the
deterministic setting, because of the impact of variability on the total costs. As
in the deterministic setting, the di¤erences between the di¤erent basic prob-
lem con�gurations are apparent. For basic problem con�guration 1, it was not
possible to �nd feasible solutions at all. For basic problem con�guration 2, we
found feasible solutions for all instances, but dLB can be as high as 1537.6%.
For the other instances, we also found feasible solutions, with maxima of dLB

that are much lower than the maximum of dLB for basic problem con�guration
2. We expect that these e¤ects are mainly caused by the same reasons as in the
deterministic setting, see Section 8.2.

Based on this analysis, we draw the same conclusion as in the deterministic
setting. In the majority of the cases (about 60%), dLB is relatively small (<
20%) which indicates that the optimization performance of the decision-support
system seems to be satisfactory in these instances. Obviously, the heuristic na-
ture of the optimization procedure leads to a certain degree of suboptimality.
An analysis of variance indicated that dLB signi�cantly increases as the setup
costs decrease and the net utilization of the work centers increases. Moreover,
dLB is signi�cantly a¤ected by the interaction e¤ect between setup costs and net
utilization and also by the speci�c characteristics of the basic problem con�g-
uration. Based on qualitative arguments, similar to those for the deterministic
case, we expect that the observed patterns in dLB are caused by the lower
bound that becomes weaker. We expect that the performance of the proposed
decision-support system does not deteriorate as a function of the factors. Based
on these observations, we propose to use the decision-support system described
in Section 7.4 to minimize the costs of the stochastic version of the PI system
under study.
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8.4 Conclusions

In this chapter, we investigated the performance of the decision-support system
for the CPP strategy. The decision-support system is used to determine the
common cycle length, sequencing decisions and order-up-to levels that approxi-
mately minimize the total relevant costs while target �ll rates are satis�ed. The
performance of the decision-support system is tested on an extensive test bed
consisting of 240 instances.

First, the heuristic for the deterministic PI system was investigated. The
heuristic was tested by comparing the total relevant costs of the solution with a
capacitated lower bound. In about 60% of the cases, the deviation from the lower
bound is relatively small (< 10%). Since the lower bound does not take into
account the interaction between the products and its impact on the total relevant
costs, this deviation seems to be acceptable. For several instances, however, we
observed very large deviations from the lower bound. An analysis of variance
indicated that the deviation from the lower bound is signi�cantly determined
by the setup costs, the net utilization, the interaction between setup costs and
net utilization and by the basic problem con�guration of the problem instance.
Based on qualitative arguments, we postulate that the observed e¤ects are due
to the fact that lower bound becomes weaker. We expect that the performance
of the proposed heuristic procedure does not deteriorate as a function of factors
mentioned above. Based on these observations, we propose to use the heuristic
procedure described in Section 7.3 to minimize the costs of the deterministic
version of the PI system.

In the next section, we investigated the decision-support system for the sto-
chastic PI system. This decision-support system is based on the heuristic for
the deterministic PI system. In the �rst subsection, we studied some instances
that contained inconsistencies in terms of realized costs or decision variables.
It appeared that the multimodality of the objective function and the heuristic
nature of the job shop scheduler led to suboptimality of the proposed solutions.

The second subsection studied the behavior of the costs and the decisions
(common cycle length and order-up-to levels) proposed by the decision-support
system when the levels of the factors in the numerical study are changed. We
investigated whether the proposed decisions make sense from a logical point of
view, by comparing the expected behavior to the observed behavior. Based on
the observations, it can be concluded that the decision-support system behaves
sensibly with respect to changes in the factors studied in the experimental de-
sign, except for a small number (2.5%) of instances. This allows us to use the
decision-support system to optimize the control decisions for the CPP strategy.
We also investigated the contribution of the lower bound in the total costs. We
observed that the contribution of the lower bound was remarkably high, espe-
cially for the instances with setup costs > 0. For these instances, the PI system
seems to operate more or less as a deterministic system. We expect that by
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imposing a �xed processing sequence, the variability in the production system
is considerably reduced.

In the third subsection, the estimation quality of the deterministic model
that is embedded in the decision-support system for the stochastic setting is
tested. We test whether the deterministic model is a good predictor for the
stochastic PI system. We investigated the estimation quality for the solutions
provided by the decision-support system. By comparing the cost estimate of
the deterministic model with simulation, it appeared that for the majority of
the instances (92%) the absolute relative approximation error is lower than
10%. The estimates of the deterministic model for the throughput times of the
production orders also appeared to be very reliable on this set of instances. The
simulation study revealed that the relative estimation error increases when the
setup costs decrease.

In the fourth subsection, we tested the optimization performance of the
decision-support system for the stochastic PI system. We compared the costs
of the solution proposed by the decision-support system with a capacitated
lower bound. In the majority of the cases (about 60%), the deviation from the
lower bound is relatively small (< 20%) so that the optimization performance
of the decision-support system seems to be satisfactory for these instances. The
behavior of dLB seems to be similar to the deterministic setting. The absolute
value of dLB , however, is higher in the stochastic case because of the impact of
variability on the total costs. An analysis of variance showed that the deviation
from the lower bound was signi�cantly a¤ected by the setup costs, the net
utilization of the work centers, the interaction between setup costs and net
utilization and by the speci�c characteristics of the basic problem con�guration.
We used qualitative arguments -similar to those for the deterministic case- to
postulate that the observed e¤ects are caused by the lower bound that becomes
weaker and not by an deterioration of the optimization performance of the
decision-support system. Based on these observations, we concluded that it is
acceptable to use the decision-support system to determine the control variables
(common cycle length, sequencing decisions and order-up-to levels) of the CPP
control strategy in the stochastic setting.
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Chapter 9

A simulation study to
compare Coordinated Batch
Control and Cyclical
Production Planning

9.1 Introduction

In the previous chapters, we developed decision-support systems for two control
strategies (CBC and CPP) for the PI system characterized by job shop routings
and stochastic demand interarrival times, setup times and processing times. The
decision-support tools were developed to determine production and inventory
control decisions that approximately minimize the total relevant costs for a given
control strategy. The decision-support tools ensure that the customer service
level is satis�ed for both control strategies. Therefore, the control strategies
are equal from the point of view of a customer who is only interested in the
achieved delivery performance. However, from the perspective of the production
and inventory management, both strategies may di¤er strongly in terms of cost
performance, utilization of the available production capacity, throughput times,
etc.

In this chapter, we compare the CBC and CPP control strategies based on
an extensive simulation study. The simulation study allows comparing both
approaches in terms of the realized performance measures. We compare the
approaches mainly in terms of their cost performance, since this is in real-life
situations the predominant performance measure. Other performance measures
will be used to explain the observed phenomena. Note that the observed per-
formance of the control strategies depends on the speci�c implementation of
the strategies. Based on the observations from the simulation study, we specify
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guidelines for the application of each of the control strategies in real-life situa-
tions. The test bed is the same as the one used in Chapters 5 and 8. For details
on the experimental design, we refer the reader to Chapter 5.

The design of our simulation study may di¤er from the design of other sim-
ulation studies. Typically, a simulation study is used to test an hypothesis that
is formulated beforehand. In this exploratory study, however, we were not able
to put forward hypotheses. Therefore, we use the simulation study to make
observations. Afterwards, we try to give an explanation of these observations.
Hence, our research approach is deductive, rather than inductive.

The organization of this chapter is consistent with the design of the simula-
tion study. First, we make observations on the performance di¤erence between
both methods. In particular, we investigate the impact of the factors in the
simulation study (net utilization, setup costs, setup times and �ll rates) on the
di¤erences in the cost performance between CBC and CPP. After this, we give
an explanation for the observed cost di¤erences. Next, we present guidelines for
the application of CBC and CPP in speci�c situations. This chapter ends with
a summary of the main �ndings.

9.2 Observations on the cost performance

In this section, we compare the CBC and the CPP control strategy in terms of
the realized total relevant costs, denoted respectively as TRCCBC and TRCCPP .

In this thesis, we opted to investigate the performance di¤erence between
both strategies in relative terms. Clearly, the absolute di¤erence may also be a
relevant criterion. Especially in the case that the total relevant costs are high,
a small relative di¤erence may represent a considerable amount of money. We
de�ne the relative di¤erence between the total relevant costs of both control
strategies as:

dTRC =
TRCCPP � TRCCBC

TRCCBC
� 100% (9.1)

It can be seen from formula (9.1) that dTRC > 0 indicates that the CPP
strategy has higher costs than the CBC strategy, while dTRC < 0 indicates that
CPP outperforms CBC.

Figure 9.1 presents a histogram for the value of dTRC for the 240 instances
in the simulation study1 . In about 62% of the instances, the CPP strategy
outperforms the CBC strategy. The cost di¤erence typically is between -10%
and 0%, with a maximum improvement realized by the CPP strategy of -14%.

1A paired-t test (Law and Kelton, 2000) shows that all observed di¤erences, except for
one, are signi�cantly di¤erent from zero with 95% con�dence.
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Figure 9.1: Relative di¤erence in total relevant costs between CPP and CBC
strategy (all instances)

In the remaining 38% of the instances, the CBC strategy realizes lower costs
than the CPP strategy. The di¤erence in costs can become very high: up to
705%. Furthermore, in 7% of the instances no feasible solution was found for
the CPP strategy.

The relative improvement realized by the CPP strategy may seem rather
small in terms of total costs (-14% at most). However, as was already mentioned
in Chapter 1, the cyclical nature of the CPP strategy facilitates related planning
activities such as personnel planning, work center preparation and materials
planning. The bene�ts associated with the improvements in the related planning
activities are not captured in our model. Therefore, we speculate that the real
bene�ts of the implementation of CPP may be higher than those observed in
our simulation study.

In order to determine which factors in�uence dTRC , we carried out an analy-
sis of variance using the statistical package StatGraphics. The analysis of vari-
ance reveals that the following factors have a signi�cant e¤ect on dTRC at the
95% con�dence level:

� net utilization;

� setup costs;

� interaction between setup costs and net utilization;

� basic problem con�guration (which determines the characteristics of a
problem instance; see Section 5.2 for details on the generation of the basic
problem instances).
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Figure 9.2: Relative di¤erence in total relevant costs between CPP and CBC
strategy: (a) net utilization of workcenters = 0.65 - (b) net utilization of work-
centers = 0.75 - (c) net utilization of workcenters = 0.85

In the remainder of this section, we illustrate dTRC for the signi�cant factors
in the experimental design. We end this section with a summary of the main
�ndings.

9.2.1 Net utilization

Figures 9.2 a-c present the impact of the net utilization of the work centers
�net on dTRC . The �gures show that dTRC rises when �net increases. This
means that the performance of the CPP strategy degrades relative to the CBC
strategy, when �net increases. For �net = 0:65, CPP outperforms CBC in about
78% of the instances. When �net rises, this percentage drops: for �net = 0:75,
CPP achieves lower costs than CBC in 74% of the cases; and for �net = 0:85,
CPP outperforms CBC in only 35% of the instances. Interestingly, for all levels
of �net, one can observe both low and high values of dTRC .

9.2.2 Setup cost

This subsection investigates the impact of the setup costs on dTRC . Figures 9.3
a-d show that there is a large di¤erence in dTRC between the instances with
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Figure 9.3: Relative di¤erence in total relevant costs between CPP and CBC
strategy: (a) setup cost = 0 - (b) avg. setup cost = 10 - (c) avg. setup cost =
30 - (d) avg. setup cost = 90

setup costs = 0 and setup costs > 0.

For the instances with setup costs = 0, dTRC is positive in about 90% of the
cases. This indicates that in the majority of the cases with setup costs = 0, the
CBC strategy outperforms the CPP strategy.

For the instances with setup costs > 0, the situation is completely di¤erent.
In this case, dTRC is negative in about 80% of the instances, which indicates
that in the majority of the cases the CPP strategy achieves lower costs than
CBC. Figures 9.3 c-d show that dTRC decreases slightly when the setup costs
increase. This implies that the performance of CPP improves when the setup
costs increase.

9.2.3 Interaction between net utilization and setup costs

The analysis of variance indicated that the interaction between net utilization
and setup costs has a signi�cant impact on dTRC . This interaction can be seen
from Figures 9.4 a-c and Figures 9.5 a-c, in which histograms for dTRC are
given for instances with respectively setup costs = 0 and setup costs > 0 and
split out for the di¤erent levels of net utilization. The �gures indicate that
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Figure 9.4: Relative di¤erence in total relevant costs between CPP and CBC
strategy: instances with setup cost = 0 and (a) net utilization = 0.65 - (b) net
utilization = 0.75 - (c) net utilization = 0.85

dTRC increases as the net utilization rises. However, the increase in dTRC is
more pronounced for the instances with setup costs = 0, than for instances with
setup costs > 0. This indicates that there is an interaction e¤ect between the
net utilization and the setup costs.

Table 9.1 presents more detailed results on the interaction e¤ect. It provides
key statistics of dTRC for the all the levels of the setup costs and net utilization
�net. Column 1 gives a description of the instances. Columns 2-4 present the
minimum, average and maximum of dTRC observed in the test bed. Columns
5-6 show the relative number of cases for which CPP outperforms CBC and
vice versa. Columns 5-6 show that the number of instances for which CBC
outperforms CPP increases as the net utilization increases and the setup costs
decrease. A further examination reveals that the impact of increases in the net
utilization is higher when the setup costs are low. For example, if setup costs
= 90 and �net = 0:65, then the CPP strategy outperforms the CBC strategy in
all instances. As the net utilization rises to �net = 0:85, then the performance
of CPP degrades compared to CBC: CPP outperforms CBC in 60% of the
instances. The same e¤ect happens for e.g. setup costs = 10. As �net = 0:65,
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Figure 9.5: Relative di¤erence in total relevant costs between CPP and CBC
strategy: instances with setup cost > 0 and (a) net utilization = 0.65 - (b) net
utilization = 0.75 - (c) net utilization = 0.85
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min. avg. max. rel. # instances with
dTRC dTRC dTRC dTRC < 0 dTRC � 0
(%) (%) (%) (%) (%)

avg. set-up cost = 0
�net = 0:65 -1 17 51 10 90
�net = 0:75 -3 37 109 10 90
�net = 0:85 26 NA 1 0 100

avg. set-up cost = 10
�net = 0:65 -11 -8 -5 100 0
�net = 0:75 -14 -7 8 85 15
�net = 0:85 -13 NA 1 30 70

avg. set-up cost = 30
�net = 0:65 -11 -8 -5 100 0
�net = 0:75 -12 -8 -5 100 0
�net = 0:85 -13 NA 1 50 50

avg. set-up cost = 90
�net = 0:65 -11 -8 -5 100 0
�net = 0:75 -12 -9 -5 100 0
�net = 0:85 -14 NA 1 60 40

Table 9.1: Key statistics for relative deviation of total relevant costs beween
CPP and CBC strategy split out for set-up costs and net utilization of work-
centers

then the CPP strategy outperforms the CBC strategy in all instances. If the net
utilization increases to �net = 0:85, then performance of CBC improves relative
to CPP. In this case, however, the performance degradation of CPP is much
stronger, since now CPP outperforms CBC in only 30% of the instances. These
examples clearly illustrate the impact of the interaction between net utilization
and setup costs on dTRC .

9.2.4 Basic problem con�guration

The analysis of variance revealed that dTRC depends on the speci�c basic prob-
lem con�guration of the problem instances. See Section 5.2 for a description of
how these basic problem con�gurations were generated in this study. Table 9.2
presents summary statistics of dTRC for the �ve basic problem con�gurations
in test bed and for the three levels of �net. Column 1 gives a description of the
instances. Columns 2-4 present the minimum, average and maximum of dTRC

observed in the test bed. Columns 5-6 show the relative number of cases for
which CPP outperforms CBC and vice versa.

An analysis of Table 9.2 shows that dTRC di¤ers widely between the di¤erent
basic problem con�gurations. For the instances with basic problem con�gura-
tion 1 - 2, it appears to be very di¢ cult (or even impossible) to �nd feasi-
ble, low-cost schedules at high levels of capacity utilization. For example, if
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rel. # instances with
min. dTRC avg. dTRC max. dTRC dTRC < 0 dTRC � 0

(%) (%) (%) (%) (%)
�net = 0:65
con�g. 1 -11 2 51 75 25
con�g. 2 -9 3 41 75 25
con�g. 3 -10 -4 12 75 25
con�g. 4 -10 -3 14 75 25
con�g. 5 -11 -6 3 88 12

�net = 0:75
con�g. 1 -12 16 109 63 27
con�g. 2 -11 11 91 69 21
con�g. 3 -10 1 30 75 25
con�g. 4 -12 -5 11 81 19
con�g. 5 -14 -6 15 81 19

�net = 0:85
con�g. 1 1 1 1 0 100
con�g. 2 4 298 705 0 100
con�g. 3 -10 25 97 50 50
con�g. 4 -14 3 40 63 27
con�g. 5 -14 7 54 63 27

Table 9.2: Key statistics for relative di¤erence in total relevant costs between
CPP and CBC strategy split out for net utilization of workcenters and basic
problem con�guration

�net = 0:85, then CBC outperforms CPP in all instances of the basic problem
con�gurations 1 and 2. For con�guration 1, no feasible CPP solutions could be
found; while for con�guration 2, the performance di¤erences can become very
large. For instances with basic problem con�gurations 3 - 5, it is possible to
�nd feasible and relatively low-cost schedules even if the net utilization is high.
In about 60% of the instances of con�gurations 3 - 5, CPP outperforms CBC
when �net = 0:85.

9.2.5 Summary

In this section we investigated the relative di¤erence in performance between
CBC and CPP. Both strategies were compared in terms of total relevant costs.
The performance of the instances was tested in a simulation study consisting of
240 instances. In about 62% of the instances, the CPP strategy outperformed
the CBC strategy. In the remaining 38% of the instances, the CBC strategy
realizes lower costs than the CPP strategy. An analysis of variance revealed that
the following factors have a signi�cant impact on the performance di¤erence
between CPP and CBC in this set of experiments:

� net utilization;
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� setup costs;

� interaction between setup costs and net utilization;

� basic problem con�guration.

In the next section, we search for an explanation for these observations.

9.3 Explanation for observations

In this section, we try to explain the observations from Section 9.2. In particular,
we search for the mechanisms through which the signi�cant factors in�uence the
di¤erence in performance between CPP and CBC.

9.3.1 Cost di¤erence as a function of work center utiliza-
tion

In the CPP strategy, production capacity may be wasted because a �xed pro-
duction sequence is used at the work centers. We expect that this is a strong
disadvantage of the CPP strategy, especially when high utilization levels must
be achieved. In this case, the CPP strategy has to lengthen the common cycle
in order to reduce the number of setups, and to free up production capacity
as a compensation for the wasted capacity. This may lead to considerable cost
increases. Since the CBC strategy does not waste any production capacity, we
presume that the di¤erence in performance between CPP and CBC increases as
the utilization rises. We test this presumption by plotting dTRC as a function
of the average utilization2 of the work centers in case of the CBC strategy3 .

Figure 9.6 supports our presumption: dTRC is clearly increasing as a function
of the utilization of the work centers. CPP outperforms the CBC strategy as
long as the utilization levels are relatively low (<85%). Further increases in the
utilization result in an exponential degradation of the performance of the CPP
strategy.

9.3.2 Di¤erence in review periods as a function of utiliza-
tion

In this subsection, we investigate the relationship between the utilization level
of the work centers and the di¤erence between the review periods of the CBC

2The utilization of a work center consists of the net utilization and the utilization for
setups.

3 In order to obtain a clear �gure, we removed 13 observations with a very high dTRC

(>100%). These 13 observations are characterized by high levels of capacity utilization for
the CBC strategy (�CBC > 90%). The instances for which no feasible solution was found for
the CPP strategy are also omitted.
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Figure 9.6: Workcenter utilization for CBC versus relative di¤erence in total
relevant costs between CPP and CBC strategy

strategy and the common cycle length of the CPP strategy. As the utilization
level of the work centers increases, then it becomes increasingly di¢ cult for the
CPP strategy to �nd a feasible cyclical production schedule because production
capacity is wasted (see Section 8.2.4 for a detailed discussion of this phenom-
enon). We presume that, in response to the capacity losses, the CPP strategy
needs to increase its common cycle length so that less setups are performed and
more capacity is available. In this way, the CPP strategy can compensate for
the waste of production capacity.

In Figure 9.7, we test this presumption by plotting the relative di¤erence
between the common cycle length of CPP and the average of the review periods
of CBC as a function of the utilization level of the work centers in case of CBC4 .
The relative di¤erence between the common cycle length RCPP and the average
of the review periods RCBCk is denoted as dR and can be computed as:

dR =
RCPP � 1

K

PK
k=1R

CBC
k

1
K

PK
k=1R

CBC
k

� 100% (9.2)

Figure 9.7 supports our presumption. The CPP strategy uses common cycle
lengths that are strictly larger than the average review periods for CBC. When
the utilization increases, both strategies need to increase the review periods

4We removed the same outliers as in Figure 9.6.
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Figure 9.7: Workcenter utilization for CBC versus relative di¤erence between
common cycle and average review period

(CBC) or common cycle length (CPP) in order to free up production capacity
that is used to compensate for the capacity losses. The CBC strategy does not
waste production capacity because the FCFS rule is used to sequence the orders
at the work centers. Moreover, the CBC strategy has more degrees of freedom in
setting the review periods, since these may di¤er between the di¤erent products.
Therefore, the CBC strategy can operate with much shorter review periods than
the CPP strategy. Especially when the utilization becomes high (>85%) the
CPP strategy needs strong increases in the common cycle length to obtain a
feasible schedule.

Remarkably, there is a strong similarity between Figures 9.6 and 9.7. Figure
9.6 presents dTRC as function of utilization, while Figure 9.7 presents the re-
lationship between dR and the utilization. The similarity between both �gures
may indicate that there is a relationship between dTRC and dR. In the next
subsection, we will investigate this relationship.

9.3.3 Cost components as a function of di¤erence in re-
view periods

In order to relate the di¤erences between the average of the review periods and
the common cycle length to the performance of the PI system in terms of costs,
we plot the di¤erent cost components as a function of dR. We de�ne the cost
di¤erences for the setup costs, work-in-process costs and �nal inventory costs
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Figure 9.8: Relative di¤erence in costs between CPP and CBC as a function of
relative di¤erence in common cycle and average review period: (a) total relevant
costs - (b) setup costs - (c) work-in-process costs - (d) �nal inventory holding
costs

as:

dSC =
SCCPP � SCCBC

SCCBC
� 100% (9.3)

dWIPC =
WIPCCPP �WIPCCBC

WIPCCBC
� 100% (9.4)

dFIC =
FICCPP � FICCBC

FICCBC
� 100% (9.5)

Figures 9.8 a-d5 plot the cost di¤erences for the di¤erent cost components
as a function of dR.

Figure 9.8-a shows that dTRC increases almost linearly as a function of dR,
as could be expected from the observations in the previous subsections. When
dR < 50%, CPP typically outperforms the CBC strategy. For larger values of
dR, the performance of CPP degrades.

5Again, we removed the same outliers as in Figure 9.6.
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From the analysis of the data in Figures 9.8 b-d, we learn why CPP outper-
forms CBC (and vice versa). Figure 9.8-b shows the di¤erence in setup costs
between CPP and CBC as a function of dR. The common cycle used by CPP is
larger than the average review periods in all instances. Consequently, the CPP
strategy performs less setups. Therefore, CPP incurs less setup costs than CBC,
so dSC < 0. As dR increases, there are less setups performed in the CPP strat-
egy compared to the CBC strategy which causes dSC to decrease as a function
of dR.

Figure 9.8-c shows that the di¤erence in work-in-process costs is increasing
in dR. For dR < 50%, dWIPC < 0 for most instances. At �rst sight, it may
seem strange that larger batch sizes (since dR > 0) lead to lower work-in-process
inventory costs. However, for the CPP strategy work-in-process costs are only
incurred from the moment that the production of the �rst operation is started.
This is possible for CPP because the repetitive nature of the production schedule
allows for the just-in-time delivery of the raw materials. Moreover, the cyclical
production schedule ensures that the throughput times of the orders, measured
from the moment that the production of the �rst operation is started, are rel-
atively short. The throughput times are short because the decision-support
system for CPP determines a production schedule that minimizes the work-in-
process costs. On the contrary, the CBC strategy has the disadvantage that the
waiting times can be considerably high, mainly because a myopic sequencing
rule (FCFS) is used. This explains why the work-in-process costs can be lower
for the CPP strategy, even if the average size of the production orders is larger
than in case of CBC. This e¤ect is one of the main advantages of CPP over CBC:
our simulation results show that by using a cleverly chosen, �xed sequence at
each work center, the work-in-process inventories can be reduced considerably.
Obviously, as dR and the batch sizes further increase, the advantage of CPP over
CBC diminishes. Eventually, the work-in-process costs of CPP become (much)
larger than those of CBC because the di¤erence in the batch sizes becomes very
large.

Figure 9.8-d shows that the �nal inventory costs increase almost linearly in
dR. As the common cycle becomes larger, more cycle stock is kept at the stock
points. Therefore, the related costs increase. For some instances with dR < 30%,
CPP has lower �nal inventory costs than CBC. Since the common cycle length
of CPP is larger than the average of the review periods of CBC (dR > 0), the
cycle stock is typically larger under CPP than under CBC. Therefore, the lower
�nal inventory costs in case of CPP must be caused by considerable decreases
in the safety stocks. In the next subsection, we search for the causes of the
observed reductions in the safety stocks.

9.3.4 Causes for reduction in safety stocks

From standard inventory theory (e.g. Silver et al. 1998), it is known that if the
�ll rate is used as the service measure, then the required safety stocks reduce if
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(i) the amount of cycle stock increases; (ii) the standard deviation of the demand
during the replenishment lead time and the review period decreases; (iii) the
target �ll rate decreases. Since the target �ll rate is an input variable in our
simulation study, it cannot cause di¤erences in the required safety stocks. The
other two reasons, however, may cause the observed reductions in the safety
stocks.

First, Figure 9.7 shows that the common cycle used by CPP is typically
larger than the average of the review periods for the CBC strategy. Therefore,
CPP operates with higher cycle stocks than CBC, which reduces the required
safety stocks.

Secondly, reductions in the safety stocks may be caused by a lower standard
deviation of the demand during the lead time and the review period, denoted

as XTk+Rk

k . Formula (3.25) gives an approximation for �2
h
XTk+Rk

k

i
in case of

Poisson demand. For convenience, we repeat this formula. This formula shows
that a lower standard deviation of the lead time demand can be realized by
reductions in the expectation E [Tk] and variance �2 [Tk] of the order throughput
times.

�2
h
XTk+Rk

k

i
=

�2 [Tk]

(E [A0k])
2 + (E [Tk] +Rk)

1

(E [A0k])
(9.6)

Figures 9.9 a-b show the impact of CBC and CPP on the expectation and
scv of the throughput times observed in the simulation study. Figure 9.9-a
presents a frequency diagram for the relative di¤erence dE[Tk] in the average
throughput times between CPP and CBC for all products k = 1; :::;K. Figure
9.9-b shows a frequency diagram for the relative di¤erence dc

2[Tk] in the scv of
the throughput times between CPP and CBC for all products k. Furthermore,
we also de�ne the relative di¤erence in the expected throughput times averaged
over all products, denoted as dE[T ]. These relative di¤erences can be computed
as:

dE[Tk] =
E[Tk]

CPP � E[Tk]CBC
E[Tk]CBC

� 100% (9.7)

dc
2[Tk] =

c2[Tk]
CPP � c2[Tk]CBC
c2[Tk]CBC

� 100% (9.8)

dE[T ] =
1

K

KX
k=1

E[Tk]
CPP � E[Tk]CBC
E[Tk]CBC

� 100% (9.9)

From Figure 9.9-a, it can be seen that in 80% of the cases the CPP strategy
results in increases in the expected throughput times. This is mainly caused
by the fact that all replenishment orders are generated at the beginning of the
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Figure 9.9: Relative di¤erence in expectation E[Tk] and scv c2[Tk] of throughput
times between CPP and CBC

common cycle. Most products have to wait a considerable time before their
production can start. Moreover, the batch sizes are larger in CPP, which also
leads to increases in the throughput times. However, Figure 9.9-b shows that
in all cases the variability (measured by the scv) is reduced considerably: in
85% of the instances the reduction in the scv is between 90 and 100%. This
indicates that CPP achieves a very strong reduction of the variability in the
throughput times by using a carefully determined, �xed processing sequence on
the work centers. In general, the CPP strategy realizes longer, but more reliable
throughput times. The strong reduction of the variability of the throughput
times is major advantage of CPP over CBC. Note that the predictability of
throughput times is of major importance in real-life competitive environments.

The increases in E[Tk] and the decrease in c2[Tk] have an opposing e¤ect
on the safety stocks. Figure 9.10 shows the relationship between di¤erences in
the expected throughput times dE[T ] and di¤erences in the �nal inventory costs
dFIC . The simulation results in this �gure indicate that when the di¤erence in
the expected throughput times dE[T ] are moderate, then the reduction of c2[Tk]
results in decreases in the �nal inventory costs. Especially when the target �ll
rate is high, the reduction in c2[Tk] leads to decreases in the �nal inventory costs.
When dE[T ] increases, the performance of CBC in terms of �nal inventory costs
strongly improves relative to the CPP approach.

9.3.5 Mechanisms of impact of factors on dTRC

In Section 9.2, an analysis of variance revealed that the following factors have
a signi�cant impact on dTRC in this set of experiments:

� net utilization;

� setup costs;

� interaction between setup costs and net utilization;
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Figure 9.10: Relative di¤erence in �nal inventory costs between CPP and CBC
versus relative di¤erence in expected throughput times between CPP and CBC

� basic problem con�gurations.

In Section 9.3.3, Figure 9.8-a showed that dTRC increases almost linearly
as a function of the di¤erence between the common cycle length for CPP and
the average review period for CBC, denoted as dR. Section 9.3.3 also discussed
the mechanisms through which dR in�uences dTRC . These mechanisms were
illustrated in Figures 9.8 c-d.

We expect that the impact of the signi�cant factors on dTRC can be explained
by the impact of the factors on dR. Let us now explain how the factors in�uence
dR.

Figure 9.7 shows that dR is low if there is su¢ cient production capacity. This
is the case if the net utilization is low and/or the setup costs are high. In this
situation, there is su¢ cient capacity so that CPP can make a feasible cyclical
production schedule without large increases in the common cycle length. Let
us now consider what happens if the net utilization increases and/or the setup
costs decrease. First, if the net utilization increases, then the total utilization
increases as well. Secondly, as the setup costs decrease, it is interesting from a
cost perspective to shorten the review periods (CBC) or common cycle length
(CPP). The reduction in the review periods/common cycle length should re�ect
a trade-o¤ between the work-in-process costs, �nal inventory costs and setup
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costs. As a result of the shorter review periods/common cycle length, more
setups are performed and the utilization of the work centers increases. Clearly,
the interaction between the factors (net utilization and setup costs) ampli�es
the impact on the utilization of the work centers. As the utilization of the
work centers increases, there is less unused capacity available. This makes it
more di¢ cult for the CPP strategy to determine a feasible cyclical production
schedule, especially because this strategy wastes production capacity by using
�xed processing sequences. Therefore, the CPP strategy typically needs a larger
common cycle length than the CBC strategy, so that less setups are performed
and extra production capacity is available. This is re�ected in the increase of
dR.

Finally, we observed strong di¤erences between the di¤erent basic problem
con�gurations. It appeared that for some con�gurations, it is much easier to
�nd a feasible cyclical production schedule than for others. In particular, the
amount of capacity that is wasted by the CPP strategy depends strongly on
the speci�c characteristics (routing structure, batch processing times, etc.) of
the problem instance. This observation was discussed in detail in Section 8.2.4.
As a result, the increase in dR as a reaction to increases in the utilization level
depends strongly on the basic problem con�guration.

The arguments above explain how the signi�cant factors (net utilization,
setup costs, interaction between net utilization and setup costs, basic problem
con�guration) in�uence dR. Section 9.3.3 already explained the relationship
between dR and dTRC . This completes our explanation of the impact of the
signi�cant factors on dTRC .

In the next section, we summarize the main �ndings and we give some guide-
lines for the application of CBC and CPP.

9.4 Guidelines

In the previous sections, we observed considerable di¤erences in the performance
of the CBC strategy and the CPP strategy. We also searched for an explanation
for the observed performance di¤erences. Using the �ndings from the simulation
study, we formulate some guidelines for the application of CBC and CPP in
speci�c situations.

We found that CPP can outperform the CBC strategy because it typically
operates with a longer common cycle so that less setup costs are incurred, while
the work-in-process costs and the �nal inventory holding costs are kept under
control. The work-in-process costs can be low in case of CPP because the repet-
itive nature of the production schedule allows for the just-in-time delivery of
raw material. Furthermore, by strictly following the production schedule the
throughput times (as soon as the production is started) are short, which also
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results in low work-in-process costs. The CPP strategy operates with higher
cycle stocks because the common cycle is longer than the average review peri-
ods in CBC. However, the CPP strategy typically needs less safety stocks so
that the total �nal inventory costs are kept under control. The reduction in the
safety stocks is realized by (i) higher cycle stocks and (ii) a reduction of the
standard deviation of the demand during the order throughput time and the
review period. This standard deviation depends on the expectation and vari-
ance of the throughput times. We observed that the expected throughput times
typically increase for CPP compared to the CBC strategy because the orders for
all products are generated at the start of the common cycle. However, the use
of a strict processing sequence results in a strong reduction in the variability of
the throughput times. The reduction in the variability of the throughput times
results in lower safety stocks and lower �nal inventory costs, especially when
target �ll rates are high.

However, it also appears that the CPP strategy is vulnerable to increases in
the utilization of the work centers. Because the CPP strategy wastes production
capacity by strictly following a target production sequence, the performance of
this strategy degrades signi�cantly when the utilization of the work centers
increases. We expect that this is a signi�cant drawback of the CPP approach
when applied in a real-life setting. In real-life, the net utilization determines the
realized turnover of the production system and thus the pro�tability. In order to
operate at high levels of capacity utilization, the CPP strategy has to lengthen
the common cycle. Especially when the utilization of the work centers is high,
considerable increases in the common cycle are required. The increase in the
common cycle length leads to higher cycle stocks and larger production batches.
Consequently, the �nal inventory costs and the work-in-process costs increase.
The CBC strategy uses a FCFS priority rule to sequence the production orders
at the work centers. No production capacity is wasted so that the CBC strategy
can operate at high levels of capacity utilization with review periods that are
much smaller than the common cycle for CPP. Because of this reason, the CBC
strategy typically outperforms the CPP strategy when the utilization of the work
centers is high. This occurs when the net utilization of the work centers is high
and/or when the setup costs are low. The typical characteristics of a problem
instance, re�ected in the basic problem con�guration, also have a signi�cant
impact on the amount of capacity that is wasted by the CPP strategy. Therefore,
these characteristics also signi�cantly in�uence the di¤erence in performance
between CBC and CPP.

Based on these insights, we can formulate some guidelines for the application
of CPP and CBC for the control of the type of PI system under study. These
guidelines are based on the observations from the simulation study and depend
therefore on the speci�c implementation of the strategies. The CPP strategy
can be expected to outperform the CBC strategy when:

� Su¢ cient production capacity is available to compensate for the capacity
that is wasted by strictly following the production sequence. Typically,
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this is the case when the net utilization of the production system is low
and/or the setup costs are high.

� Reductions in the work-in-process inventories result in large cost savings.
This may occur when work-in-process holding costs are high. We remark
that reductions in the work-in-process inventories can be realized only if
su¢ cient production capacity is available.

� Reliable throughput times are required, e.g. because target �ll rates are
high.

The CBC strategy typically outperforms the CPP strategy when:

� The utilization of the work centers is high. In this case the CBC strategy
makes better use of the available resources than CPP. This may occur
when the net utilization is high and/or the setup costs are low.

� Work-in-process inventories are relatively cheap.

� The reliability of the throughput times is of less concern. This may be the
case when the target �ll rates are low.

The simulation results also indicate that the speci�c characteristics of a sit-
uation have an important impact on the performance of both control strategies.
We found considerable di¤erences in the performance of CPP and CBC for the
di¤erent basic problem con�gurations in the test bed. Each basic problem con-
�guration was characterized by a di¤erent routing structure and by di¤erent
average demand interarrival times, setup times, processing times as well as by
di¤erences in the cost parameters. This observation implies that the guidelines
that are presented above can be used as a �rst indication of the suitability of a
certain control strategy, but that detailed investigation of the speci�c situation
is required to determine which strategy performs best. The decision-support sys-
tems presented in this thesis can be used as a tool to investigate the performance
of both control strategies in speci�c problem settings.
Finally, we remark that the in�uence of the basic problem con�guration on

the performance of the control strategies is typically caused by the nature of
the scheduling problem. The nature of the scheduling problem depends on the
speci�c processing characteristics of the products, such as the size of the pro-
duction orders, the routing structure, the setup times, etc. In our simulation
study, these characteristics are determined by the basic problem con�gurations,
which were randomly generated (see Section 5.2). In a real-life setting, however,
the product mix evolves over time so that production management can decide
which products are produced in the production system. If the production man-
agement can decide which products to add to the product mix, it would be
wise to select those products whose production characteristics nicely �t with
the characteristics of the other products. In this way, it is possible to obtain a
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mix of products for which it is possible to generate a tight production schedule.
We speculate that this would enhance the performance of the CPP strategy and
-to a lesser extent- of the CBC strategy.

9.5 Summary

In this chapter, we investigated the relative di¤erence in performance between
CBC and CPP, denoted as dTRC . Both strategies were compared in terms of
total relevant costs. The performance of the instances was tested in a simulation
study consisting of 240 instances.
In about 62% of the instances, the CPP strategy outperformed the CBC

strategy. The cost di¤erence typically is between -10% and 0%, with a maximum
improvement realized by the CPP strategy of -14%. In the remaining 38% of
the instances, the CBC strategy realizes lower costs than the CPP strategy. The
cost di¤erence can become very high on this set of experiments: up to 705%.
Furthermore, in 7% of the instances no feasible solution was found for the CPP
strategy.

Based on the outcome of the simulation experiments, an analysis of variance
revealed that the following factors have a signi�cant impact on dTRC :

� net utilization;

� setup costs;

� interaction between setup costs and net utilization;

� basic problem con�guration.

In our experiments, we observed that the relative performance of CPP im-
proves when the setup costs increase and the net utilization decreases. The
interaction e¤ect between setup costs and net utilization results in a strong
degradation of the performance of the CPP strategy as the setup costs decrease
and the net utilization increases. Finally, we observed large di¤erences in dTRC

for the �ve di¤erent basic problem con�gurations of our test bed. This shows
that the speci�c characteristics of a problem instance strongly determine the
performance of both control strategies.

On this set of experiments, we observed that dTRC was proportional to the
di¤erence between the average review periods (CBC) and the common cycle
length (CPP), denoted as dR. The factors mentioned above have an in�uence
on dR through their impact on capacity utilization. At low levels of capacity
utilization, we observed that dR is low, which indicates that the CPP and CBC
strategy operate with comparable review periods and common cycle lengths. In
situations where the CBC strategy operates at higher levels of capacity utiliza-
tion (because net utilization increases and/or setup costs decrease), it becomes
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more di¢ cult for the CPP strategy to �nd a feasible cyclical production sched-
ule, mainly because production capacity is wasted by strictly following a target
processing sequence. In these cases, the CPP strategy needs to increase the
common cycle length to free up production capacity that is used to compensate
for the loss of capacity. This leads to increases in dR and to higher costs. The
speci�c characteristics of a problem instance (the so-called basic problem con-
�guration) have a strong in�uence the magnitude of this e¤ect. Therefore, the
characteristics of the problem instance also signi�cantly determine dTRC .

Based on the insights obtained from the simulation study, we formulated
guidelines for the application of CPP and CBC. The CPP strategy can be
expected to outperform the CBC strategy when:

� Su¢ cient production capacity is available to compensate for the capacity
that is wasted by strictly following the production sequence. This may
occur when the net utilization of the production system is low and/or the
setup costs are high.

� Work-in-process costs are relatively high and su¢ cient capacity is available
so that considerable work-in-process inventory reductions can be realized.

� Reliable throughput times are required, e.g. because target �ll rates are
high.

The CBC strategy typically outperforms the CPP strategy in the opposite
cases. Since the speci�c characteristics of a problem instance have a considerable
impact on the performance of the control strategies, we recommend using the
decision-support systems to evaluate the performance of the strategies.



Chapter 10

A real-life industrial
problem

10.1 Introduction

In this chapter, we apply the proposed decision-support systems to a numerical
example that is based on data from a real-life company. The numerical example
will highlight some of the most important insights of our research.

This chapter starts with a brief description of the company. After this, we
present four di¤erent approaches for the control of the PI system. Next, we
present and discuss the results of the numerical example. We conclude this
chapter with a summary.

10.2 Company description

In Chapter 1, we introduced company B. Company B is a manufacturer of o¤-
highway vehicles. In one of its plants, drive-train components for the OEM
market are developed and produced. In this section, we investigate one of the
manufacturing subdepartments of this plant. The subdepartment produces 12
di¤erent parts on 10 machines, including a press, a lathe, a sawing machine, etc.
The parts produced in the subdepartment are used to assemble transmissions,
torques, axles, etc. The company provided us with data on demand rates,
processing times, availability of the machines, routing structures, etc. Moreover,
they also provided cost information on raw materials, labor, setups, etc. For
the sake of con�dentiality, we cannot present details of the data.

In order to be able to use our decision-support systems to determine the pro-
duction and inventory control decisions for this data set, we made the following
assumptions:

187



188 Part III. CBC versus CPP

� demand is for a single item of a part (renewal demand assumption), not
for a number of items of a part (compound renewal demand);

� demand interarrival times, setup times and processing times are exponen-
tially distributed;

� the machines are continuously available (the availability of the machines
is represented by adjusting the setup times and processing times);

� setup costs are calculated as the setup time x direct labor costs for per-
forming the setups;

� our decision-support systems use the �ll rate as a measure for the service
level, while company B measures its service level on a time dimension
(amount of orders on time).

10.3 Control strategies

We designed a simulation experiment in which the production and inventory
control of this real-life PI system is investigated. The control of the system is
based on the CBC and the CPP control strategy. In order to implement these
strategies, we need to determine the required control decisions.

For the CBC strategy, we use three di¤erent methods to determine cost-
e¢ cient review periods.

� The �rst method is the decision-support system based on the approximate
analytical model that was proposed in Chapter 3. This method is denoted
as CBC-AAM.

� The second method is the capacitated EOQ method that was introduced
in Section 5.3.2. In this experiment, �max is set to 0.99. However, the ca-
pacity constraints turned out to be non-binding for this problem setting, so
that the results are equivalent with those obtained from the uncapacitated
EOQ approach. This method is denoted as CBC-EOQ.

� The third method is also based on the approximate analytical model pro-
posed in Chapter 3. Instead of minimizing the total relevant costs, the
third method tries to minimize a weighted average of the throughput times.
This is the objective function of the ACLIPS method that is proposed by
Lambrecht et al. (1998) and that is currently used in Company B. This
method is denoted as CBC-TPT.

For the CPP strategy, we use the decision-support system that is developed
in Chapter 7 to set the common cycle length and the sequencing decisions. This
method is denoted as CPP.
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TC SC FIC WIPC SC
FIC+WIPC

CBC-AAM 16344 8655 4165 3525 1.1
CBC-EOQ 17241 5751 5305 6185 0.5
CBC-TPT 23046 18701 2310 2036 4.3
CPP 19684 9482 4026 6176 0.9

Table 10.1: Total relevant costs split out in components for four control ap-
proaches

TC SC FIC WIPC
CBC-AAM 100 100 100 100
CBC-EOQ 105 66 127 175
CBC-TPT 141 216 55 58
CPP 120 110 97 175

Table 10.2: Normalized total relevant costs split out in components for four
control approaches

10.4 Results

In this section, we present the results of the numerical example. We focus
on two performance measures: total costs and throughput times. Subsection
4.1 discusses the cost performance of the four methods, while Subsection 4.2
discusses the throughput time performance.

10.4.1 Cost performance

Table 10.1 presents the total relevant costs that result from each of the control
approaches. The total costs are split out in its main components: setup costs
(SC), �nal inventory costs (FIC) and work-in-process costs (WIPC). Table 10.2
presents the normalized costs. The costs of the CBC-AAM approach are used
as the point of reference. The results in the tables indicate that the CBC-
AAM approach outperforms the other approaches. The CBC-EOQ approach,
however, performs only slightly worse (+5%). The CPP approach results in
considerably higher costs (+20%). Finally, the CBC-TPT approach is much
worse than the CBC-AAM approach: its total costs are 41% higher.

Let us now discuss the performance di¤erence between the di¤erent methods.
We start by analyzing the performance di¤erence between the CBC-AAM and
CPP strategy. In this speci�c setting, the CPP strategy is outperformed by the
CBC-AAM approach. Because there is only a single instance, it is di¢ cult to
give the precise reason for the performance di¤erence. It appears that the CBC-
AAM strategy is characterized by relatively high utilization levels on machines
nr. 3 and 8 (see Table 10.5). In the experiments described in Chapter 9 of this
thesis, high levels of capacity utilization for the CBC strategy led to common
cycle lengths for the CPP strategy that were much higher than the average of the
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product CBC-AAM CBC-EOQ CBC-TPT CPP
1 146.2 92.0 70.3 27.2
2 83.6 72.1 28.3 27.2
3 99.8 78.4 35.4 27.2
4 121.7 87.3 59.5 27.2
5 90.1 65.6 91.6 27.2
6 23.2 37.0 9.4 27.2
7 154.7 136.4 120.0 27.2
8 13.3 31.2 6.1 27.2
9 9.4 18.1 4.7 27.2
10 19.3 26.4 9.2 27.2
11 24.4 26.9 12.0 27.2
12 68.4 54.2 23.9 27.2
min 9.4 18.1 4.7 27.2
avg 71.1 60.5 39.1 27.2
max 154.7 136.4 120.0 27.2

max/min 16.4 7.5 25.3 1

Table 10.3: Review periods (in days) for all products for four control approaches

review periods for the CBC strategy (see Figure 9.7). Table 10.3 shows, however,
that for this problem instance the common cycle length in case of CPP is 27 days,
while the average of the review periods for CBC is 71 days. This is remarkable,
since in none of our experiments we observed that the common cycle length was
lower than the average of the review periods. We expect that this observation
can be explained by considering the ratio of the maximum review period over the
minimum review period. The ratio is as high as 16 for the CBC-AAM strategy.
This indicates that there are very large di¤erences in the review periods of the
products, which can only be caused by large di¤erences in the characteristics
of the products. It is obvious that if there are very large di¤erences between
the products, a common cycle strategy (characterized by ratio 1) is not cost
e¤ective. Furthermore, this observation suggests some interesting directions for
further research. Firstly, it indicates that it would be worthwhile to investigate
problem instances that are characterized by strong di¤erences between products.
Secondly, this observation implies that it is necessary to extend the common
cycle CPP approach to a multiple cycle approach, in which there are more
degrees of freedom in setting the review periods of the di¤erent products. We
will further discuss this issue in the next chapter (Section 11.3).

Secondly, we compare the performance of the integrated (CBC-AAM and
CPP) and the non-integrated methods (CBC-EOQ and CBC-TPT). To this end,
we consider the ratio of the setup costs to the �nal inventory costs and the work-
in-process costs, which is shown in Table 10.1. Remarkably, the two integrated
control approaches have a ratio close to one. This indicates that they have made
a trade-o¤ between the setup costs on the one hand, and the �nal inventory
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and work-in-process costs on the other hand. The non-integrated approaches
are characterized by ratios which are very di¤erent from one. The CBC-EOQ
approach balances the setup costs and the cycle stock costs. However, the
EOQ approach does not take into account the �nal inventory costs and the
work-in-process costs. This leads to a ratio of 0.5 < 1. Notice that the safety
stocks are negative in this case, since FIC < SC. It is remarkable that the EOQ
approach has a very good cost performance, since it ignores a considerable part
of the costs. In our opinion, the performance of the solution provided by the
EOQ approach may be due to chance. For instance, if the work-in-process costs
would be higher (e.g. because the holding cost parameter is higher or because
throughput times are longer) or if the safety stock costs would be higher (e.g.
because the �ll rate is higher), then the performance of the EOQ method would
degrade considerably. Because of its lack of robustness, we recommend against
using the EOQ approach for setting the review periods of the CBC strategy.

Finally, we turn our attention to the CBC-TPT approach. The CBC-TPT
approach minimizes the throughput times in the production system. Table 10.1
shows that this leads to low work-in-process costs, which could be expected
from e.g. Little�s law. This approach also leads to low �nal inventory costs.
This is partly due to the fact that the review periods of the CBC-TPT ap-
proach are considerably smaller than those of the CBC-AAM and CBC-EOQ
approach, which leads to lower cycle stocks. Moreover, less safety stocks are
required because the throughput times are shorter. However, short review pe-
riods also lead to high setup costs. When optimizing the review periods, the
CBC-TPT approach ignores the setup costs. This leads to setup costs that are
more than twice as high as those of the CBC-AAM strategy. Because of the
very high setup costs, the total cost performance of the CBC-TPT method is
weak (+41% compared to CBC-AAM). This shows that it is important to take
into account the total cost structure of the PI system when making production
and inventory control decisions.

10.4.2 Throughput time performance

In this section, we analyze the throughput time performance that is achieved
by each of the control approaches. Table 10.4 presents the average, standard
deviation and coe¢ cient of variation of the throughput times, averaged over the
12 products.

Firstly, we observe that the CBC-TPT approach, which aims at minimizing a
weighted sum of the throughput times, e¤ectively realizes the shortest average
throughput times. The average of E [Tk] is 10.1 days, which is considerably
lower than the average throughput times of the other approaches.

Secondly, the observations in Chapter 9 indicated that the CPP approach
results in very reliable throughput times because a well-chosen, �xed processing
sequence is used at the machines. Table 10.4 shows that the same holds for this
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avg. E[Tk] avg. �[Tk] avg. c[Tk]
CBC-AAM 17.1 2.9 0.18
CBC-EOQ 25.8 4.9 0.21
CBC-TPT 10.1 2.1 0.21
CPP 30.5 1.2 0.04

Table 10.4: Average, standard deviation and coe¢ cient of variation of through-
put times (in days) averaged over 12 products for di¤erent control approaches

CBC-AAM CBC-EOQ
mach. � c2 [Aj ] E [Pj ] c2 [Pj ] � c2 [Aj ] E [Pj ] c2 [Pj ]
1 10.24 0.53 3965.97 0.03 10.64 0.56 3129.65 0.08
2 34.06 0.25 3823.96 0.06 32.24 0.29 6991.08 0.07
3 88.41 0.55 3266.28 0.04 86.04 0.67 4435.79 0.15
4 60.29 0.25 2656.31 0.03 57.40 0.59 4201.83 0.06
5 18.08 0.64 5024.09 0.03 18.26 0.65 3900.65 0.06
6 21.25 0.54 784.93 0.05 21.19 0.65 1092.37 0.25
7 40.98 0.63 1747.00 0.03 40.95 0.69 2782.27 0.11
8 87.20 0.21 3316.27 0.18 87.19 0.38 4754.18 0.61
9 55.80 0.28 2122.22 0.04 54.82 0.79 2989.46 0.12
10 76.74 0.52 2918.26 0.03 76.01 0.63 4144.50 0.15
avg. 49.31 0.44 2962.53 0.05 48.47 0.59 3842.18 0.17

Table 10.5: Operational characteristics of production system: CBC-AAM vs.
CBC-EOQ

real-life example: the average of c [Tk] is 0.04, which is considerably smaller than
the coe¢ cient of variation realized by the other approaches. This observation
is of great importance for many real-life settings where delivery reliability is an
important performance measure.

Thirdly, we compare the throughput times realized by the CBC-AAM and
CBC-EOQ approach. It appears that the CBC-AAM method realizes shorter
and more reliable throughput times than the CBC-EOQ method. This observa-
tion can be explained by the results in Table 10.5, which presents the operational
characteristics of the production system. In particular, Table 10.5 gives the uti-
lization level, the scv of the aggregate interarrival time and the expectation and
scv of the aggregate processing time for the di¤erent machines. It appears that
the CBC-AAM method harmonizes the review periods: the scv of the aggregate
interarrival and processing times and the expected aggregate processing times
are reduced considerably for most machines, while the utilization is kept more
or less at the same level. This observation con�rms the results in Chapter 5,
where we discussed the harmonization e¤ect for a single instance in the test bed.



Chapter 10. Industrial problem 193

10.5 Summary

In this chapter we applied four control approaches to a numerical example that
is based on real-life data from Company B. The results of the numerical example
highlighted the most important �ndings of this thesis.
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Chapter 11

Conclusions and
opportunities for further
research

"We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the �rst time."

T.S. Eliot, "Four Quartets"

In this �nal chapter, we look back to the past, to the research that was
carried out in this thesis and its implications; and into the future, to the re-
search opportunities that can be identi�ed based on our exploratory research.
This chapter is organized as follows. First we give an overview of the research
conducted in this thesis. We present the main ideas and most important con-
clusions. After this, we summarize the contributions of our research. The thesis
is ended with several directions for future research.

11.1 Overview of the thesis

In this thesis, we investigated a multi-product, multi-machine production-inventory
(PI) system that is characterized by:

� relatively high and stable demand;

� uncertainty in the precise timing of demand;

� variability in the production process;

195
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� job shop routings;

� considerable setup times and costs.

This type of PI system can be found in the supply chain of capital goods.
Typically, it represents a manufacturer of parts that are assembled in later stages
of the supply chain.

In this thesis we developed control approaches for this PI system, which
integrate production and inventory control decisions. The research aimed at
identifying promising control approaches for this type of PI systems and the
conditions in which they are applicable. To the best of our knowledge, no con-
tributions are available in the literature for this speci�c PI system. Therefore,
our research is relevant from a scienti�c point of view. The research is also rel-
evant from a managerial point of view because it is important to know whether
integrated control approaches yield improvements over distributed control ap-
proaches, which are typically used in real-life nowadays.

The control approaches developed in this thesis are based on an integrated
view of the PI system. The objective of the control approaches is to minimize
the sum of setup costs, work-in-process holding costs and �nal inventory holding
costs, while target customer service levels are satis�ed. Our research revealed
that the exact analysis and optimization of this type of PI systems is impossible.
Therefore, we were restricted to the development of heuristic control approaches.
We proposed two control strategies that are based on distinct control principles.
For each of the control strategies, we developed decision-support systems that
can be used to determine cost-e¢ cient (but not necessarily optimal) control
decisions. An important feature of the developed decision-support systems is
that they take into account the dynamic interactions between the inventory
system and the production system.

Part I of this thesis deals with the �rst approach, called Coordinated Batch
Control (CBC). This strategy uses a periodic review, order-up-to inventory pol-
icy to control the stock points. The replenishment orders generated by this
inventory policy are manufactured by the production system. The CBC strat-
egy integrates production and inventory control decisions by determining cost-
e¢ cient review periods. There is no further integration of control decisions. At
the shop �oor, a myopic rule is used to sequence the orders, which ensures a
certain degree of �exibility for responding to unexpected circumstances. In our
implementation, the orders are sequenced using the First Come First Served
priority rule. The order-up-to levels that satisfy the target �ll rates can easily
be computed using a numerical procedure based on simulation, once the review
periods have been determined.
We developed three decision-support systems for the CBC approach. The

decision-support systems can be used to determine cost-e¢ cient review periods.
The �rst decision-support system is based on an approximate analytical model
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of the PI system. This decision-support system is presented in Chapter 3. In
the approximate analytical model, the inventory system is represented using
standard results from inventory theory; while the production system is modeled
as an open queueing network. Next, the inventory model is linked with the
model of the production system using results from renewal theory. The near-
optimal review periods can be found with an optimization procedure. In this
research, we used a greedy search procedure, called Univariant Search Parallel
to the Axes.
The second and third decision-support system, presented in Chapter 4, use

simulation optimization techniques to determine the near-optimal review peri-
ods. Simulation is an accurate, but time consuming estimation method. In order
to reduce the required computation time, we use the solution obtained from the
approximate analytical model as a starting solution. Two di¤erent simulation
optimization methods are considered. The �rst approach is an extension of the
Univariant Search Parallel to the Axes algorithm. The second approach is the
commercially available OptQuestTM algorithm.
In Chapter 5, the three heuristic decision-support systems for CBC are tested

in an extensive simulation study. The test bed consists of �ve basic problem
con�gurations, which de�ne a routing structure, processing times, demand in-
terarrival times, cost structure, etc. We varied four factors over several levels:
setup costs, setup times, net utilization and target �ll rates. In this way, we
obtained 48 instances based on the same basic problem con�guration. In total
this leads to 5 x 48 = 240 problem instances. The simulation study showed that
the use of simulation optimization to improve the solution obtained from the
approximate analytical model resulted in relatively small cost savings (about
2% on the average on this set of experiments) compared to the solution ob-
tained directly from the approximate analytical model. In view of the large
amount of computation time required for simulation optimization and the rela-
tively small savings that were realized by its use, we decided that the use of the
decision-support system based on the approximate analytical model is justi�ed.
Furthermore, we also tested the estimation quality of the approximate analyt-
ical model. We found that the estimation approximate analytical model was
relatively good on this set of experiments. It appeared that the major source
of estimation errors stems from the use of Whitt�s Queueing Network Analyzer
(1983) for the estimation of the throughput times in the production system.
Finally, we also analyzed the results obtained from the approximate analytical
model. We found that the decision-support system harmonizes the review pe-
riods, i.e. the review periods are set such that a balance is found between the
utilization level of the di¤erent work centers, the variability of the aggregate
interarrival and processing times and the expected aggregate processing times.
Furthermore, the analysis revealed that it is very important to take into account
both capacity and cost considerations when determining the optimal review pe-
riods. Methods that focus on only one of these aspects will fail to generate
robust solutions when applied to a wide variety of problem settings. The results
also indicated that a thorough knowledge of the cost structure of a company
is very important. This implies that sound management accounting techniques
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should be used.

Part II is concerned with the Cyclical Production Planning (CPP) strategy.
This strategy approaches the control of the PI system from a totally di¤erent
angle. In this strategy, a detailed production schedule is used to control the
production system. The schedule prescribes the sequence in which the orders
are produced on the work centers and this schedule is repeated at regular time
intervals (hence the name cyclic production planning). The schedule is deter-
mined such that the total costs are minimized. The stock points are controlled
with periodic review, order-up-to policies. The main advantage of the use of a
production schedule is that �ow of the orders through the production system is
controlled better, which results in more reliable throughput times. A drawback
of this approach is that the production frequencies of the di¤erent products need
to be matched in order to make a cyclic production schedule. Hence, there is
less �exibility in setting the lot sizes, which may result in higher costs. Another
drawback of the CPP approach is that production capacity may be wasted by
strictly following the prespeci�ed processing sequences.
In Chapter 7, we proposed a decision-support system for the CPP strategy.

The decision-support system is based on a deterministic model of the PI system.
The main advantage of such a deterministic model is that it can be evaluated
fast, which facilitates the optimization process. A drawback of the determin-
istic model is of course that it does not capture the stochastic nature of the
production system. We presented a heuristic method to determine the common
cycle length and processing sequences that approximately minimize the total
costs of the deterministic model. This heuristic is based on the decomposition
of the optimization problem in a series of job shop scheduling problems. When
the solution of the deterministic model is used in a stochastic environment, the
solution may be instable or nearly instable. In the decision-support system, a
simulation procedure is used to check whether the proposed solution is stable.
If not, slack-time is added to the schedule and the common cycle length and
processing sequences are optimized again. Slack-time is planned idle time that
is present in the production schedule and that can be used as a bu¤er against
variability. If a stable solution is found, a numerical procedure based on sim-
ulation is used to tune the order-up-to levels such that the target �ll rates are
satis�ed.
In Chapter 8, the decision-support system for CPP is tested in an exten-

sive simulation study. The test bed is identical to the one used for testing
the decision-support systems for the CBC strategy. The analysis of the solu-
tions revealed that the decision-support system behaves sensibly with respect
to changes in the factors studied in the experimental design, except for a small
number (2.5%) of instances. We also investigated the contribution of the lower
bound in the total costs. We observed that the contribution of the lower bound
was remarkably high, especially for the instances with positive (non-zero) setup
costs. For these instances, the PI system seems to operate more or less as
a deterministic system. We speculate that by imposing a well-chosen, �xed
processing sequence, the variability in the production system is considerably



Chapter 11. Conclusions and further research 199

reduced.
Furthermore, the estimation quality of the deterministic model that is em-

bedded in the decision-support system for the stochastic setting was tested. We
investigated the estimation quality for the solutions provided by the decision-
support system. For the majority of the instances (92%), the absolute relative
approximation error is less than 10%. The estimates for the throughput times
are also very reliable on this set of instances. The accuracy of the estimates
may be explained by the reduction in the variability in the system that results
from using a carefully selected, �xed processing sequence.
Finally, we tested the optimization quality of the decision-support system.

We compared the solutions from the decision-support system to a lower bound.
The proposed lower bound ignores the interaction between the di¤erent prod-
ucts and the variability in the PI system. In the majority of the cases (about
60%), the deviation from the lower bound is relatively small (< 20%) so that the
optimization performance of the decision-support system seems to be satisfac-
tory for these instances. An analysis of variance showed that the deviation from
the lower bound was signi�cantly a¤ected by the setup costs, the net utiliza-
tion of the work centers, the interaction between setup costs and net utilization
and by the speci�c characteristics of the basic problem con�guration. We used
qualitative arguments to postulate that the observed e¤ects are caused by the
lower bound that becomes weaker and not by a deterioration of the optimization
performance of the decision-support system. Based on these observations, we
decided that it is acceptable to use the decision-support system to determine the
control variables (common cycle length, processing sequences and order-up-to
levels) of the CPP strategy.

Part III compares the performance of the CBC and the CPP strategy. In
Chapter 9, both strategies are compared in a simulation study consisting of the
same 240 instances as in Chapters 5 and 8. The strategies are compared in
terms of realized total costs. In about 62% of the instances, the CPP strategy
outperformed the CBC strategy. In these instances, the cost di¤erence is mostly
between -10% and 0%, with a maximum improvement realized by the CPP
strategy of -14%. In the remaining 38% of the instances, the CBC strategy
realizes lower costs than the CPP strategy. The performance di¤erence between
CBC and CPP can become very large: up to 705% in our set of experiments.
In 7% of the instances no feasible solution was found for the CPP strategy.
An analysis of variance revealed that the following factors have a signi�cant

impact on the performance di¤erence between CPP and CBC:

� net utilization;

� setup costs;

� interaction between setup costs and net utilization;

� basic problem con�guration.
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The performance of CPP improves when the setup costs increase and the
net utilization decreases. The interaction e¤ect between setup costs and net uti-
lization results in a strong degradation of the performance of the CPP strategy
as the setup costs decrease and the net utilization increases. We observed large
performance di¤erences for the �ve di¤erent basic problem con�gurations of the
test bed, which shows that the speci�c characteristics of the problem instance
strongly determine the performance of both control strategies.
The simulation results show that di¤erence in performance between CBC

and CPP is proportional to the di¤erence between the average review peri-
ods (CBC) and the common cycle length (CPP), denoted as dR. The factors
mentioned above have an in�uence on dR through their impact on capacity uti-
lization. At low levels of capacity utilization, we observed that dR is low, which
indicates that the CPP and CBC strategy operate with comparable review peri-
ods and common cycle lengths. In situations where the CBC strategy operates
at higher levels of capacity utilization (because net utilization increases and/or
setup costs decrease), it becomes more di¢ cult for the CPP strategy to �nd
a feasible cyclical production schedule, mainly because production capacity is
wasted by strictly following a prespeci�ed processing sequence. In these cases,
the CPP strategy needs to increase the common cycle length to free up produc-
tion capacity that is used to compensate for the loss of capacity. This leads to
increases in dR and to higher costs. Also, the speci�c characteristics of a prob-
lem instance (the so-called basic problem con�guration) have a strong in�uence
the magnitude of this e¤ect. Therefore, the characteristics of the problem in-
stance also signi�cantly determine the performance di¤erence between CBC and
CPP.
Based on the insights obtained in this chapter, we formulated guidelines

for the application of CPP and CBC. The CPP strategy can be expected to
outperform the CBC strategy when:

� Su¢ cient production capacity is available to compensate for the capacity
that is wasted by strictly following the production sequence. This may
occur when the net utilization of the production system is low and/or the
setup costs are high.

� Reductions in the work-in-process inventories result in large cost savings.
This may occur when work-in-process holding costs are high. We remark
that reductions in the work-in-process inventories can be realized only if
su¢ cient production capacity is available.

� Reliable throughput times are required, e.g. because target �ll rates are
high.

The CBC strategy typically outperforms the CPP strategy in the opposite
cases. Since the speci�c characteristics of a problem instance have a considerable
impact on the performance of the control strategies, we recommend using the
decision-support systems to evaluate the performance of the strategies.
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Finally, Chapter 10 discussed a numerical example that is based on real-
life data from Company B, which was introduced in Chapter 1. Four di¤erent
control approaches were used to determine the production and inventory control
decisions. The numerical example con�rmed the main �ndings of our research.

11.2 Contributions of the thesis

In this thesis, we investigated the control of a multi-product, multi-machine PI
system characterized by job shop routings and variability in demand interarrival
times, setup times and processing times. To the best of our knowledge, no
scienti�c results are available on the control of this PI system. We classify the
main contributions of our research to the study of this speci�c PI system into
scienti�c contributions and managerial insights.

The main scienti�c contributions of this thesis are:

� We developed a decision-support system for the CBC strategy based on an
approximate analytical model. To this end, we extended the open queue-
ing network model developed by Lambrecht et al. (1998) by including an
inventory model. The queueing network model and the inventory model
were linked using results from renewal theory.

� We presented simulation results on the accuracy of the approximate ana-
lytical model. The results indicate that the accuracy of Whitt�s Queueing
Network Analyzer is questionable for the instances in the test bed.

� We extended the classical Economic Order Quantity formula by adding
capacity constraints on multiple machines.

� We developed decision-support systems for the CBC strategy based on two
di¤erent simulation optimization techniques. To the best of our knowl-
edge, such an approach has not been applied to similar problems before.

� We developed a decision-support system for the CPP strategy based on
a deterministic model of the PI system. To this end, we improved the
problem formulation of Ouenniche and Boctor (1998). We also proposed
a heuristic to solve the deterministic model. Finally, we embedded the
deterministic model in a procedure which aims at generating feasible, cost
e¢ cient cyclical plans for a stochastic setting.

� We compared the performance of our implementations of the CBC and
CPP strategy in an extensive simulation study. This study revealed inter-
esting insights in the suitability of the strategies for a variety of problem
settings. In particular, our research showed that the performance di¤er-
ence depends on the characteristics of the problem setting, so that each
method may outperform the other for speci�c instances. We investigated
the factors that in�uence the performance di¤erence. Based on the insights
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obtained from the simulation study, we presented guidelines for the ap-
plication of both control approaches. The simulation study also identi�ed
valuable opportunities for improving the implementation of the strategies.

The main managerial insights are:

� The simulation results indicate that an integrated control approach, which
takes into account the dynamic interactions between inventory control de-
cisions and production control decisions, may result in considerable cost
savings. We compared an integrated approach and a non-integrated ap-
proach for setting the control decisions of the CBC strategy in a small
number of problem instances. The results indicated that an integrated
approach is a much more robust method to determine the production and
inventory control decisions.

� The simulation results show that it is very important to consider both
capacity and cost issues when making production and inventory control
decisions. This observation also implies that it is necessary to have a good
knowledge of the cost structure of the PI system.

� Cyclical production control approaches are preferred in real-life situations
for several practical reasons, see e.g. Campbell and Mabert (1991). Our
research revealed that it is possible to use cyclical control approaches in a
complex multi-machine PI system characterized by a considerable degree
of uncertainty.

� The simulation results in this thesis indicate that a cyclical control ap-
proach may result in very reliable throughput times. Predictability of
throughput times is of major importance in a competitive environment.

� We provided guidelines for the application of the CBC and CPP control
strategies to speci�c problem settings. The guidelines are based on the
observed behavior of the two strategies in the simulation study.

11.3 Opportunities for further research

Our exploratory research revealed several opportunities for further research on
the control of multi-product, multi-machine PI systems. To the best of our
knowledge, no approaches have been developed in the literature for this partic-
ular PI system, so this may be a fruitful area of research in the future.

We believe there are two main directions for future research in this area.
The �rst line of research is concerned with the control of the same PI system as
the one studied in this thesis. A second line of research may be concerned with
extending the assumptions made in the current model of the PI system. Both
research lines are discussed successively.
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11.3.1 Same assumptions for PI system

The PI system studied in this research is characterized by a job shop routing
structure and stochastic setup, processing and demand interarrival times. We
developed decision-support systems for this speci�c PI system, which are based
on two distinctive control principles: CBC and CPP. Future research may be
directed at improving the control of this speci�c PI system. The directions for
further research can be classi�ed in three themes. The �rst theme considers the
same control strategies (CPP and CBC) with the same operationalization as
in this thesis. The second theme is concerned with investigating new ways to
operationalize the CBC and CPP strategy. Finally, the third research theme
investigates the development of new control strategies.

Same control strategies with same operationalization

The control strategies as proposed and implemented in this thesis can be im-
proved by developing better decision-support systems. The insights generated
in this thesis depend on the speci�c implementation of the strategies. There-
fore it is valuable to attempt to improve the decision-support systems. In this
subsection, we present several directions for improvement. Moreover, valuable
insights may be generated by investigating the performance of the proposed
decision-support system in other settings than the 240 instances studied in this
thesis. We give some ideas for further tests of the proposed decision-support
system.

For the CBC strategy, the decision-support system based on the approximate
analytical model can be improved e.g. by developing more accurate estimation
methods for the throughput times in the production system, by using more accu-
rate inventory models or by using a more accurate distribution function for the
lead time demand. Furthermore, the decision-support system based on simula-
tion optimization may be improved by using di¤erent optimum-seeking methods.
Based on experiments with the approximate analytical model, we expect that
the total relevant costs are unimodal in the review periods. This observation
suggests that the use of gradient-based search methods (e.g. Response Surface
Methods, see Kleijnen en Van Groenendaal 1992) may be successfully applied
for the optimization of the review periods. Also, improvements can be realized
by developing a decision-support system that combines estimates from the ap-
proximate analytical model (as a rough, but fast proxy) and accurate estimates
from the simulation model.

For the CPP strategy, the decision-support system based on the deterministic
model can be improved by using more e¢ cient heuristics for optimizing the
NLP, e.g. by using better job shop scheduling methods. Also, we observed in
a limited number of experiments that the same processing sequences were used
for di¤erent values of the common cycle length. This observation can be used
to develop more e¢ cient heuristics for the optimization of the deterministic
model. E.g. it may be possible to solve the job shop scheduling problem for
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a given common cycle length and then adjust the common cycle length until a
local optimum is reached. At that point, a new cost-e¤ective schedule may be
determined with the job shop scheduler and the common cycle length can be
adjusted again until a local optimum is found. In this way, less CPU intensive
job shop scheduling problems need to be solved, which improves the e¢ ciency of
the heuristic. A variant of this optimization procedure may allow local increases
in the costs when adjusting the common cycle length in order to escape from
local optima. Also, this observation may be useful for the development of a
simulation optimization approach for CPP. It may be possible to e.g. �nd cost-
e¤ective production sequences with a deterministic job shop scheduler and use a
simulation search method to �nd the corresponding near-optimal common cycle
length. Furthermore, instead of using a deterministic model to (approximately)
optimize the control decisions, it may be possible to develop an approximate
stochastic model of the PI system. Apart from the higher accuracy of such a
model (that is what we hope for), an additional advantage may be that such a
model can predict the amount of slack-time that is necessary to obtain a stable
schedule in a stochastic setting.

Also, it would be valuable to test the performance of both approaches in a
wider diversity of problem instances. Additional simulation experiments may
provide deepened insight in the impact of di¤erent factors on the performance
of the PI system. For instance, it may be worthwhile to investigate what hap-
pens if more products are produced in the manufacturing system. Based on our
arguments in Section 8.2.4, we expect that the waste of capacity by the CPP
strategy would be reduced considerably. Therefore, the performance of CPP
may improve compared to the CBC strategy. Also, it may be interesting to
investigate the impact of larger di¤erences in the characteristics of the prod-
ucts. In this case, we expect that the common cycle assumption of the current
implementation of the CPP strategy may be a considerable drawback.

Finally, it would be interesting to investigate the performance of these ap-
proaches in real-life cases. Case-based research is very time-consuming, but
it would de�nitely generate valuable insights on the performance of both ap-
proaches in real-life. In particular, it would be interesting to investigate whether
the di¤erent practical advantages of the CPP approach, which were described
in the literature and summarized in Chapter 1, can be observed in other case
companies.

Same control strategy with di¤erent operationalization

The CBC and CPP strategy may be improved by considering a di¤erent opera-
tionalization. We discuss several alternative operationalizations that may result
in considerable di¤erences in the performance of the PI system.

For the CBC strategy, it may be worthwhile to investigate the use of alterna-
tive sequencing methods (instead of the FCFS rule). It is well-known from the
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literature (see e.g. Conway et al. 1967) that the use of alternative sequencing
rules may result in considerable improvements in e.g. the average and variation
of the throughput times. Such alternative sequencing rules are usually di¢ cult
to evaluate analytically, however, and therefore this research should probably
be based on simulation experiments.

In the current operationalization of the CPP strategy, one of the most re-
strictive assumptions is the common cycle assumption. The common cycle as-
sumption implies that all products are produced with the same frequency. In
case there are considerable di¤erences between products (in terms of demand
rates, production rates, setup times, inventory holding costs, setup costs, ...)
the common cycle approach may be ine¢ cient. In order to improve the cost
performance of CPP in such situations, one can relax the common cycle as-
sumption, but still impose a cyclical production plan. One approach is to use a
multiple cycle method, see e.g. Ouenniche and Bertrand (2001). In the multiple
cycle approach, each product has its own cycle time which is a multiple of a
basic period. Such an approach creates more degrees of freedom in setting the
review periods of the di¤erent products, which may improve the performance
of the CPP strategy. For instance, this additional freedom may result in less
capacity waste since more options are available for making a cyclical schedule.
Note that the well-known powers-of-two approach is a speci�c instance of the
multiple cycle approach. In our opinion, the decision-support system for CPP
presented in this thesis can be extended to a multiple cycle approach similar
to the extension proposed by Ouenniche and Bertrand (2001) for the common
cycle approach of Ouenniche and Boctor (1998).

For both strategies, the use of transfer batching may result in signi�cant
changes. In our research, we observed that the use of the CPP strategy resulted
in a waste of production capacity. This waste was caused by the fact that the
work centers strictly follow a �xed processing sequence, which may result in
idle time when an operation is not �nished on the previous work center as the
next work center becomes available. The waste of production capacity led to in-
creases in the common cycle length, which in turn caused the costs to rise. The
use of transfer batches would allow to start producing much faster, even if the
entire batch is not yet processed on the previous work center. This mechanism
is denoted as �overlapping�. In this way, much less capacity is wasted. There-
fore, we expect that the performance of the CPP strategy would be enhanced
signi�cantly by using transfer batching, especially in cases where the capacity
utilization is high. For the CBC strategy, the potential bene�t of using trans-
fer batching would be the reduction in the throughput times that may result
from its use. This would lead to lower safety stock costs and work-in-process
costs. In view of the impact of capacity utilization on the performance of the
CPP strategy, we speculate that the cost reduction will be higher for the CPP
strategy than for the CBC strategy. Finally, we would like to mention that the
investigation of transfer batching would be quite complicated, since the analy-
sis of such a policy is very complex. See e.g. Van Nieuwenhuyse (2004) who
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presents an approximate analysis for lot splitting in single-product �ow shops.

Di¤erent control strategies

It may be interesting to develop control approaches that are based on di¤erent
principles than the CBC and CPP strategy. The performance of these alter-
native methods should be compared to the performance of the CBC and CPP
strategy.

The PI system studied in this thesis can be considered as the multi-machine
extension of the Stochastic Economic Lot Scheduling Problem (SELSP). As
mentioned in Chapter 1, Winands et al. (2005) present a classi�cation of the
di¤erent control approaches that have been proposed in the literature for the
SELSP. They classify the SELSP approaches according to two criteria: the
processing sequence (�xed or dynamic) and the lot sizing strategy (global or
local). In a global lot sizing strategy, the lot sizing decisions are based on the
total state of the system. Oppositely, a local strategy bases its decisions on the
state of a particular product in isolation of the total state of the system. The
CBC strategy is characterized by dynamic processing sequences and local lot
sizing, while the CPP strategy is characterized by �xed processing sequences
and local lot sizing. This classi�cation reveals that no control approaches with
a global lot sizing strategy were considered in this research. A global lot sizing
strategy has the advantage, compared to a local strategy, that it can react to
changes in the complete state of the system at each point in time. A local
strategy only reacts to changes in the state of a particular product, which may
result in suboptimal decisions. Therefore, it may be worthwhile to develop
control strategies that are based on global lot sizing decisions for the PI system
under study.

Another alternative approach may be to investigate a CONWIP-like con-
trol approach. CONWIP (Hopp and Spearman 1996) is a pull-type production
control strategy in which the work-in-process in the manufacturing system is
kept at a constant level. The main advantage of such an approach is that the
throughput times in the production system become relatively short and stable.
However, the waiting time between the generation of the order and the release
on the shop �oor should also be taken into account. In general, this leads to
increases in the total replenishment lead time of orders (see e.g. Van Ooijen
1996). Therefore, when the PI system is considered as a whole, we expect that
little advantage can be gained from a CONWIP approach.

11.3.2 Di¤erent assumptions for PI system

The research in this thesis is concerned with a speci�c model of the PI system
with a job shop routing structure and stochastic demand interarrival times,
setup times and processing times. See Section 2.2 for the speci�c modelling
details of the PI system. Clearly, some of the assumptions made in the model
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are very restrictive. It may be worthwhile to investigate extensions of the PI
system studied in this paper.

Some of the assumptions that may be changed are:

� Raw material is always available. Clearly, this assumption is not valid in
real-life since the raw materials are supplied by upstream stages in the
supply chain, which are also subject to uncertainty. It may be worthwhile
to investigate the impact of uncertainty in the supply of raw materials on
the performance of the PI system under di¤erent control approaches.

� Machines are continuously available. In this research, we assume that
the machines in the production system are continuously available. In
the current model, breakdowns or preventive maintenance are modeled
implicitly by assuming variation in the setup and processing times. It may
be interesting to explicitly model breakdowns and preventive maintenance
activities, and to investigate the consequences for the performance of the
PI system under di¤erent control strategies.

� Constant, stochastic demand. In this thesis, we assume that demand ar-
rives according to a renewal process. This arrival process is well suited to
model demand for products that are in the mature phase of their product
life cycle, without signi�cant seasonal in�uences. Such products typically
have reliable demand that �uctuates around a certain value. Furthermore,
the renewal demand assumption implies that demand for products arrives
with demand size equal to one. This may occur when there are little or no
�xed costs associated with placing an order. It may be interesting to inves-
tigate other demand processes, we mention two extensions. Firstly, it may
be worthwhile to investigate compound renewal demand. Such a demand
process may result from the batching policy of the customers. Secondly, it
may be interesting to study dynamic demand processes. Dynamic demand
is typically used to model long-term demand variations and/or seasonal
in�uences. Both processes typically have a higher variance in the demand.
This results in considerable �uctuations in the demand for production ca-
pacity. It would be valuable to investigate the performance of CBC and
CPP in such settings and/or to develop alternative control approaches.

� Integrated control. In our research, we compared two integrated control
strategies. The implicit assumption is that the integration of control deci-
sions leads to considerable cost improvements compared to non-integrated
(decomposed) approaches. These improvements justify the use of a more
complicated control procedure. This assumption, however, has not been
investigated rigorously so far for the PI system under study. A small ex-
periment with a capacitated version of the EOQ method in Chapter 5
of this thesis indicated that an integrated approach is characterized by a
better cost performance and by more robust decisions. Based on these pre-
liminary results, it seems to be worthwhile to compare the performance of
decomposed and integrated control approaches in a more systematic way.
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� Centralized decision-maker. In this thesis, we assume that the PI system
is controlled by a centralized decision-maker. The assumption of a central-
ized decision-maker may not hold in some real-world supply chain settings.
In particular, this is the case when the inventory and production system
are controlled and/or owned by separate parties. These parties may be
separate divisions of the same company or di¤erent companies. Typi-
cally, in such a setting the parties have their own, potentially con�icting
objectives. Moreover, the parties may have access to speci�c information
(cost information, process information, etc.), which is hidden for the other
party. Finally, the cost structure of each party may be very di¤erent. We
believe it is valuable to investigate control approaches that explicitly take
into account these characteristics. Van Nyen et al. (2004) make a �rst
contribution to this research topic by studying several types of Vendor
Managed Inventory relationships. A typical feature of Vendor Managed
Inventory is that the vendor/manufacturer manages the inventory of its
customer. In this way, the coordination between inventory management
and production control is facilitated.

� PI system in isolation of other stages in the supply chain. In this research,
we focus on the PI system and ignore its relationship with other stages
in the supply chain. The last, and probably most challenging, extension
would be to investigate the PI system in relation to the other stages in the
supply chain. As mentioned in Chapter 1, considerable research has been
performed on this matter (for an overview see e.g. De Kok and Graves
(2003)), but this research largely fails to take into account the dynamic
interaction between inventory control decisions and production control
decisions. In this thesis, we developed control approaches that explicitly
take into account this dynamic interaction. It would be worthwhile to
investigate whether similar approaches can be developed for a multi-stage
supply chain.

As can be observed, we end this research with more questions than that were
answered in this thesis. Nevertheless, we believe that we have made a valuable
contribution to the understanding of the control of multi-machine, multi-product
PI systems with job shop routing structures and stochastic demand interarrival
times, setup times and processing times.



Appendix I. Simulation
model

This appendix presents the three-phase simulation procedure for evaluating the
performance of the PI system under a CBC strategy, given a certain set of review
periods R = fR1; :::; RKg.

Phase 1: Simulation with initial order-up-to lev-
els

In our research, we use a discrete event simulation model to evaluate the PI
system. From Law and Kelton (2000), we borrow the following description of
discrete event simulation: "Discrete-event simulation concerns the modeling of
a system as it evolves over time by a representation in which the state variables
change instantaneously at separate points in time. These points in time are the
ones at which an event occurs, where an event is de�ned as an instantaneous
occurrence that may change the state of the system." In the PI system under
study, typical examples of events are e.g. the arrival of a demand to an stock
point, the generation of a production order, the start and �nish of the production
of an order on a machine, etc. We use a simulation model that is built in Simula.
Simula is a general-purpose simulation language for discrete event simulation.
For more details on discrete event simulation, as well as a discussion of the
advantages and drawbacks of this estimation technique, we refer the reader to
Law and Kelton (2000, Chapter 1). For more details on Simula, see Birtwistle
et al. (1984).

Statistical analysis methods for the estimation of the steady-state parame-
ters of a system using simulation have been investigated extensively. We refer
the reader to Law and Kelton (2000) and Kleijnen and Groenendaal (1992) for
a discussion of the problems that may arise when estimating steady-state para-
meters using simulation. They also provide an overview of statistically sound
estimation methods. In our research, we use the batch means method with Q
sub runs to �nd performance estimates. The batch means procedure is based on
a single simulation run; therefore it has to go through the warm-up period only
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once so that computation time is gained. The observations during the warm-up
period are deleted. The single simulation run is split into Q sub runs. In the
simulation model of the integrated PI system, the estimates for the relevant cost
components during a sub run q for q = 1; :::; Q are obtained as follows:

1. Fixed ordering and setup costs. The simulation counts the number of
orders that were generated for a certain product k during a simulation
sub run q, denoted as Gkq. Then, the �xed ordering and setup costs for
product k during sub run q are estimated as:

SCkq (Rk) = (ok + sk)Gkq (A-1)

2. Work-in-process inventory holding costs. Little�s law states that the av-
erage amount of work-in-process is equal to the average throughput time
multiplied by the arrival rate (Little, 1961). The arrival rate of a product
is known to be equal to (E [A0k])

�1. The average throughput time of a
production order for product k on work center j can be estimated from
the simulation sub run q. We denote the estimate here as E [Tjkq]. Then
the work-in-process inventory holding costs for product k in the entire
production system during sub run q can be estimated as:

WIPCkq (R) =

MX
j=1

�
E [Tjkq]

E [A0k]
vjkr

�
(A-2)

3. Final inventory holding costs. We estimate the �nal inventory holding
costs by computing the average amount of inventory available at the in-
ventory points. Let IOH(t) denote the amount of inventory available on
hand at time t. Then the total amount of inventory for product k dur-

ing the simulation sub run q of length U is given by

qUZ
(q�1)U

IOHk (t)dt for

q = 1; :::; Q. Using this integral, which can be estimated from the simu-
lation, we estimate the �nal inventory holding costs for product k during
sub run q as:

FICkq (R) =
vkr

U

qUZ
(q�1)U

IOHk (t)dt (A-3)

4. Total relevant cost. The total relevant cost during sub run q is given by
the sum of its components for all products:

TRCq (R) =
KX
k=1

[SCkq (Rk) +WIPCkq (R) + FICkq (R)] (A-4)
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If the length of the sub runs is large enough, the observations during the sub
runs will be approximately uncorrelated. In this way, the batch means method
seeks to obtain Q independent observations for the total relevant costs, denoted
here as TRCq (R) for q = 1; :::; Q. Supposing that the TRCq (R)�s are identi-
cally and independently distributed (i.i.d.) random variables, an approximately
unbiased point estimator for the total relevant cost TRC (R) is given by:

E [TRC (R)] =

QP
q=1

TRCq (R)

Q
(A-5)

and an approximate 100 (1� �) percent con�dence interval is given by:

E [TRC (R)]� tQ�1;1��
2

s
S2 [TRC (R)]

Q
(A-6)

where tQ�1;1��
2
is the upper

�
1� �

2

�
critical point for the t distribution

with Q � 1 degrees of freedom and the sample variance S2 [TRC (R)] can be
computed as:

S2 [TRC (R)] =

QP
q=1

[TRCq (R)� E [TRC (R)]]2

Q� 1 (A-7)

Finally, we mention some technical details of the implementation of the sim-
ulation model. In this research, the number of sub runs Q is equal to 10. The
length of the sub runs U is chosen so that at least 100,000 customer orders
for each product arrive. The length of the sub runs is checked by multiply-
ing the sub run length with factor ten for a selection of worst-case instances.
The worst-case instances are characterized by high utilization levels so that run
lengths are crucial in order to obtain reliable estimates. The comparison of the
simulation results revealed that the increase of the sub run length does not re-
sult in signi�cant changes in the estimates of the performance measures. For the
performance measures, we compute 90% con�dence intervals (� = 0:1). At the
start of the simulation experiment, the review periods are initialized by letting
them start at a random moment in the interval [0;Rk] for k = 1; :::;K; so that
the review periods of the di¤erent products start on di¤erent, randomly chosen
moments. In this way, we try to avoid that special patterns are built into the
order generation process and into the arrival process of orders to the production
system.

The veri�cation of the simulation model was carried out by means of tracing.
The simulation model of the production system was validated by simulating
queueing systems for which analytical results exist. We simulated the following
queueing systems: (i) multiproduct M=M=1 queueing networks for which exact
results are available (Kleinrock 1975, Kelly 1979); (ii) single product, single
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machine Erlang/Erlang/1-queues for which the average waiting times can be
compared with numerical results that are available in Buzacott and Shantikumar
(1993); (iii) repeating the simulation of six �GI=G=1 queueing systems that
were simulated by Albin (1981); (iv) comparing the output of the Simula-model
with the output of a similar simulation model built in Delphi. In conclusion,
we found that our simulation model is a valid representation of a PI system
characterized by job shop routings.

Phase 2: Tuning the order-up-to levels

In the second step of the procedure, we tune the order-up-levels using the safety
stock adjustment procedure (SSAP), based on Gudum and De Kok (2002).
Their procedure allows to compute the order-up-to levels that satisfy the �ll
rate requirements. A basic feature of their technique is that it uses the output
of a single simulation experiment. This feature is interesting, since it avoids that
one has to iteratively (i) adjust the order-up-to levels, (ii) execute a simulation
run, (iii) observe the realized �ll rates; until the realized �ll rates are at least
equal to the target �ll rates.

SSAP builds on an observation, similar to the safety stock independence
property de�ned by Gudum and the Kok. Given that the inventory points are
controlled by periodic review (R,S) policies with full backordering, the size and
the timing of replenishment orders is determined by the review periods, not
by the order-up-to levels. In an integrated PI system, this implies that the
arrivals of production orders to the production system, as well as the processing
times of the production orders at the di¤erent work centers are determined by
the review intervals and not by the order-up-to-levels. This also implies that a
change in the order-up-to levels only in�uences the �ll rates. In conclusion, this
observation states that a given selection of the review periods fully determines
the stochastic behavior of the PI system and that the order-up-to levels can be
adjusted to achieve a certain �ll rate without a¤ecting the behavior of the PI
system. For more details on this observation, see Gudum and De Kok (2002).

In our three-phase simulation procedure, the tuning phase uses a single trace
of the inventory levels of the simulation of the initial solution

�
R;S0

�
. Based

on this trace, SSAP is used to tune the order-up-to levels. Note that we do not
adjust the review periods. The procedure allows setting the order-up-to levels S�

to the lowest possible levels that satisfy the target �ll rates �k for k = 1; :::;K.
This results in the set of production and inventory control decisions (R;S�).
Now we present in detail the SSAP procedure, which is based on Gudum and
De Kok (2002).

First de�ne the �ll rate �k (Sk) as the long term fraction of demand for
product k that can be satis�ed directly from stock, given an order-up-to level
Sk. Then �k (Sk) can be computed as:
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�k (Sk) = 1� lim
t!1

1

t

tX
i=1

Bk (Sk; i)

Dk (i)
= 1� E [Bk (Sk)]

E [Dk]
(A-8)

where

� Bk (Sk; i) = amount of backorders for product k in replenishment cycle i,
given an order-up-to level Sk;

� Bk (Sk) = amount of backorders for product k in an arbitrary replenish-
ment cycle, given an order-up-to level Sk;

� Dk (i) = demand for product k in replenishment cycle i;

� Dk = demand for product k in an arbitrary replenishment cycle.

Computation of �ll rate for arbitrary S 0k
This part shows how the �ll rate �k (S

0
k) corresponding to an arbitrary order-up-

to level S0k can be computed based on a single simulation trace for an arbitrary
initial order-up-to level S0k.

First de�ne:

� Zk(S0k; i) = net stock for product k at beginning of replenishment cycle
i (immediately after arrival of a replenishment order), given an initial
order-up-to level S0k;

� Xk(S0k; i) = net stock for product k at end of replenishment cycle i, given
an initial order-up-to level S0k;

� Ok(i) = order size for product k, generated at the end of replenishment
cycle i using (R,S)-type inventory policy. The generated orders are inde-
pendent of initial order-up-to level S0k. For a formal proof of this property
and more details, see Gudum and De Kok (2002).

Next run a simulation with an initial order-up-to level S0k and make a trace
of Ok(i), Xk(S0k; i) and Zk(S

0
k; i), for i = 1; :::; t. Formula (A-8) shows that

we require E [Bk (S0k)] and E [Dk] to compute the �ll rate �k (S
0
k). It holds for

the (R,S) policy under study that Dk (i) = Ok (i) and thus E [Dk] = E [Ok].
Furthermore, we can compute for an arbitrary S0k:
E [Bk (S

0
k)] = E1 (S

0
k)� E2 (S0k)

where:

� E1 (S0k) = expected amount of backorders at end of an arbitrary replen-
ishment cycle, given an order-up-to level S0k;
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� E2 (S0k) = expected amount of backorders at beginning of an arbitrary
replenishment cycle, immediately after arrival of a replenishment order,
given an order-up-to level S0k;

E1 (S
0
k) and E2 (S

0
k) can be computed from the trace as follows:

E1 (S
0
k) = E

h�
Xk(S

0
k; i) + S

0
k � S0k

��i
= lim

t!1
1
t

tP
i=1

h�
Xk(S

0
k; i) + S

0
k � S0k

��i
and

E2 (S
0
k) = E

h�
Zk(S

0
k; i) + S

0
k � S0k

��i
= lim

t!1
1
t

tP
i=1

h�
Zk(S

0
k; i) + S

0
k � S0k

��i
.

Note that the amount of backorders at the end of an arbitrary replenishment
cycle i, given an order-up-to level S0k can be computed from the trace as:

Bk (S
0
k; i) =

�
Xk(S

0
k; i) + S

0
k � S0k

�� � �Zk(S0k; i) + S0k � S0k�� (A-9)

Based on the above and for large t, one can approximately compute the �ll
rate �k (S

0
k) as:

�k (S
0
k) � 1�

1
t

tP
i=1

h�
Xk(S

0
k; i) + S

0
k � S0k

��i� 1
t

tP
i=1

h�
Zk(S

0
k; i) + S

0
k � S0k

��i
1
t

Pt
i=1Ok (i)

(A-10)

Notice that expression (A-10) can be calculated very fast. Therefore, using
expression (A-10) one can rapidly compute �k (S

0
k) for an arbitrary value of S

0
k,

given a trace of Xk(S0k; i), Zk(S
0
k; i) and Ok (i).

Searching for S�k
The SSAP procedure, represented in pseudo-code in Figure A-1, computes the
order-up-to level S�k that satis�es the target �ll rate �k; i.e.:
S�k = argminS0k [�k (S

0
k) � �k].

This is equivalent to S�k = argminS0k fE [Bk (S
0
k)] � (1� �k)E [Ok]g.

Here we present the idea behind the algorithm.

Suppose a trace of Xk(S0k; i), Zk(S
0
k; i) and Ok (i) is given for t periods,

i.e. i = 1; :::; t. Now set S0k = S0k. Then one can compute �k (S
0
k) using

expression (A-10). Suppose �k (S
0
k) < �k. Then one should reduce the number

of backorders in this trace in order to attain �k. The number of backorders
in this trace is given by

Pt
i=1Bk (S

0
k; i), which can be computed with formula

(A-9).
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Set S0k 8k;
Run a simulation and make a trace of
Ok(i), Xk(S0k; i) and Zk(S

0
k; i) 8k and i = 1; :::; t;

for k = 1 until k = K
{
Set S0k := S

0
k

if �k (S
0
k) > �k then

{
while �k (S

0
k) > �k do

{
S0k := S

0
k � STEP ;

}
}

while �k (S
0
k) < �k do

{

set S0k := S
0
k +

�Pt
i=1 Bk(S0k;i)�(1��k)

Pt
i=1 Ok(i)

N(S0k;S0k)

�
;

compute �k (Sk) with expression (8);
}
S�k := S

0
k;

k := k + 1;
}

Figure A-1: Safety stock adjustment procedure (SSAP)

In order to obtain a �ll rate �k, the number of backorders should at least be
reduced by

Pt
i=1Bk (S

0
k; i)� (1� �k)

Pt
i=1Ok (i) units. Let N

�
S0k; S

0
k

�
denote

the number of replenishment cycles in which demand is backordered, given an
initial order-up-to level S0k and the adjusted order-up-to level S

0
k. Based on

the simulation trace, N
�
S0k; S

0
k

�
can be computed as the number of cycles i for

which it holds that
�
Xk(S

0
k; i) + S

0
k � S0k

��
< 0 and

�
Xk(S

0
k; i) + S

0
k � S0k

��
<�

Zk(S
0
k; i) + S

0
k � S0k
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Phase 3: Simulation with adjusted order-up-to
levels

In the third and �nal phase of the procedure, a simulation experiment is used to
estimate the costs and operational performance characteristics corresponding to
the solution (R;S�). This simulation phase is entirely similar to the �rst simu-
lation phase, described above, except that here we use the adjusted order-up-to
levels. The adjusted order-up-to levels ensure that the �ll rate requirements are
satis�ed. Hence, the costs measured in this simulation experiment represent the
relevant costs of the PI system for a given �ll rate.



Appendix II. Derivation of
�rst and second moment of
X
Tk+Rk
k

In this appendix we derive the �rst and second moment of XTk+Rk

k , the demand
during the review period and the order throughput time. The derivation is
based on results from renewal theory, derived by De Kok (1991a).

First we consider the case of compound renewal demand. Let the stochastic
variable Dk denote the order size of a customer demand and the stochastic
variable NTk+Rk

k the number of customer demands during the replenishment
lead time Tk and the review period Rk. Then it holds that (see e.g. Ross,
1996):
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De Kok (1991a) presents asymptotic approximations for the �rst two mo-
ments of N t

k, for deterministic interval length t. Based on the Arbitrary Point
In Time (APIT) assumption, the �rst and second moment of N t

k are given by:
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Note that in this research Tk + Rk is a stochastic variable since Tk is sto-
chastic. Let FTk+Rk

(t) denote the probability distribution function of Tk +Rk.
Then the �rst and second moment of NTk+Rk

k are given by:
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From formulas (A-11)-(A-12) and (A-15)-(A-16), we determine the �rst and
second moment of XTk+Rk

k :
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The PI system investigated in this thesis is characterized by renewal demand,
rather than compound renewal demand. In this case, it holds that: E [Dk] = 1
and �2 [Dk] = 0. Then the �rst and second moment of X

Tk+Rk

k are given by:
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Let us now consider the special case of Poisson demand (i.e. exponentially
distributed interarrival times A0k). For exponentially distributed interarrival
times it holds that:
E
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Appendix III. Experiments
on the unimodality of
Approximate Analytical
Model

This appendix takes a closer look at the results in Table 3.1 (Chapter 3). From
these results it appears that in the majority of the cases, USPA outperforms
SA. Moreover, in the cases that SA performs better than USPA, the relative
di¤erence in performance is very small (<0.13%). Such a small di¤erence may
be due to the step size used in the USPA algorithm. As mentioned before, SA
is a technique that is developed for the optimization of multimodal objective
functions. USPA, on the other hand, is likely to get stuck into suboptimal
solutions if the objective function were multimodal because of its �greedy�nature.
Hence, one would expect the SA to outperform the USPA algorithm if the
objective function is multimodal. Our results, however, indicate the opposite
(USPA outperforms SA). A possible explanation for this observation is that the
objective function is not multimodal but unimodal. Unfortunately, we were not
able to formally prove the unimodality of the objective function as a function of
the review periods. This is due to the fact that we cannot prove the unimodality
of the work-in-process and �nal inventory holding costs, because of the complex
nature of the mathematical model of the production system.

An additional experiment was conducted in order to test our hypothesis that
the objective function is unimodal. The idea is the following. If the objective
function is not unimodal, it contains multiple local optima. If we use the USPA
algorithm to optimize the objective function, it may occur that the algorithm
gets trapped into a local optimum. However, by coincidence, the USPA algo-
rithm may avoid local optima and end up in the global optimum. By repeating
the experiment with di¤erent starting solutions it is possible to cancel out the
factor �coincidence�. Therefore, if we use the USPA algorithm with a large num-
ber of di¤erent starting solutions to optimize the same problem instance, we
may expect that at least one starting solution ends up in a local optimum if
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the objective function is multimodal. If this occurs, then we can reject our
hypothesis that the objective function is unimodal.

The experiment is conducted as follows. Five problem instances are investi-
gated1 . We randomly generate 100 di¤erent starting solutions for each problem
instance. The USPA algorithm was used to optimize the �ve problem instances
with the 100 di¤erent starting solutions (so there are 500 optimizations in total).

We compare the obtained solutions in terms of the realized total costs. Ta-
ble A-1 presents for each problem instance the relative di¤erence in the total
costs between the least expensive and the most expensive solution (out of the
100 solutions). The observed relative di¤erences are very small: the maximum
relative di¤erence is 0.192% on this set of experiments. However, if the objec-
tive function were unimodal, we would expect the relative di¤erence to be zero
for all problem instances. It is interesting to note that the observed di¤erence
between the smallest and largest optimal review period for a given product on
the set of 100 cases is either 0 or 100 (which is the step size used in the USPA
algorithm) for each of the �ve problem instances. Therefore, we believe that
the small di¤erences in Table A-1 can be explained by the fact that the USPA
algorithm sometimes gets trapped into a suboptimal solution close to the op-
timum. In either way, for none of the 500 cases, the USPA algorithm stopped
in a local optimum that was far away from the global optimum, both in terms
of total costs and decision variables. The numerical evidence suggests that the
objective function is e¤ectively unimodal, but the conducted experiment is not
strong enough to actually prove this property. Further research is needed on
this matter.

Our �ndings are consistent with Lambrecht et al. (1998) who postulate
that the throughput times in a job shop are convex in the lot sizes. Since the
work-in-process inventory holding costs are directly related to the throughput
times (Little, 1961), the postulate of Lambrecht et al. implies that the work-in-
process inventory holding costs are also convex in the lot sizes. Note, however,
that the situation studied by Lambrecht et al. is slightly di¤erent from the
setting investigated here. Firstly, they work with �xed lot sizes, whereas we
have review periods that imply variable lot sizes. Secondly, our model does not
only consider work-in-process inventory holding costs. It also contains setup
and ordering costs and �nal inventory holding costs. For the latter, it is not
possible to prove that they are unimodal.

1Five problem instances are selected out of the 240 instances in the test bed that is described
in Chapter 5. One instance is taken from each basic problem con�guration. Each instance is
characterized by net utilization = 0.65, set-up costs = 0, set-up times 2 [30; 60] and �ll rate
= 0.90.
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Random instance
Rel. di¤. between

min and max TRC (in %)
1 0.033
2 0.018
3 0.192
4 0.069
5 0.000

Table A-1: Test for unimodality of objective function: relative di¤erence be-
tween min and max TRC for 100 di¤erent starting solutions
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Appendix IV. Overview of
simulation optimization
packages

This appendix gives an overview of commercially available simulation optimiza-
tion packages. Table A-2 presents the simulation software products that are
supported by an optimization package. Moreover, it presents the search proce-
dure(s) that are embedded in the optimization package. The table is reproduced
from Law and Kelton (2000).

Package
Simulation software
products supported Search procedures used

AutoStat AutoMod, AutoSched Evolution strategies

OptQuest
Arena, Micro Saint,
Quest, Taylor
Enterprise Dynamics

Scatter search, tabu
search, neural networks

OPTIMIZ SIMUL8 Neural networks

SimRunner2
MedModel, ProModel
ServiceModel

Evolution strategies,
genetic algorithms

WITNESS
Optimizer

WITNESS
Simulated annealing,
tabu search

Table A-2: Simulation optimization packages (Law and Kelton 2000)
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Appendix V. Overview of
literature on simulation
optimization

This appendix reviews the contributions on applications from simulation opti-
mization techniques to production and inventory control problems.

Kleijnen (1993) reports on a decision-support system for a real-life produc-
tion planning problem. The decision-support system is evaluated using a sim-
ulation model. For the optimization, the steepest ascent technique is used.
The resulting response surface methodology is developed theoretically. Kleijnen
and Gaury (2003) present a methodology that uses simulation, optimization,
risk analysis and bootstrapping to determine control decisions for a stochastic
production line with four stations and a single product. They compare sev-
eral pull-type production control systems, focussing on the robustness of the
proposed solutions.

Next, several authors use a simulation optimization technique called �in-
�nitesimal perturbation analysis�(IPA) to optimize production and inventory
control decisions. Glasserman and Tayur (1995) develop a simulation optimiza-
tion approach based on IPA to optimize the optimal base-stock levels in a single
product, multi-echelon capacitated PI system. Kapuscinski and Tayur (1998)
study a single product, single-stage capacitated PI system with stochastic, peri-
odic (cyclic) demand. They develop a method using IPA to compute the optimal
control parameters. Anupindi and Tayur (1998) use IPA to optimize the base
stock levels for di¤erent cost and service objectives in the Stochastic Economic
Lot Scheduling Problem (SELSP). Finally, Gavirneni and Tayur (1999) develop
a solution procedure based on IPA to compute the optimal inventory control pa-
rameters for a stochastic, capacitated PI system in which the customer provides
information about the expected timing of future orders to the supplier.

Finally, in a more general context, simulation techniques are applied to op-
timize the design and control of supply chains. Kleijnen (2004) surveys the
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di¤erent simulation tools that are available for supply chain management. Al-
berto et al. (2002) use di¤erent O.R. methodologies, among which simulation
optimization, to optimize the design and management of an industrial plant for
the decontamination and recycling of end-of-life vehicles. Fleischmann et al.
(2003) use an analytic inventory control model and a simulation model to com-
pare alternative channel designs and coordination mechanisms for a closed-loop
supply chain that integrates product returns into business operations, by using
returned products as a source of spare parts. Kleijnen et al. (2003) investigate
a simulation based procedure to make robust strategic design decisions for a
real-life supply chain in the mobile communication industry at Ericsson, Swe-
den. The proposed procedure �rst �nds the important factors using a technique
called �sequential bifurcation�. After this, the controllable factors are optimized
using a procedure that takes into account the robustness of the solution with
respect to the randomness of the environmental factors.



Appendix VI. Generation of
basic problem
con�gurations

This appendix presents the procedure that is used to generate the �ve basic
problem con�gurations. The procedure consists of the following steps.

1. Randomly generate a set of routings. The routing structures are chosen
so that the average number of operations per product equals 3 and the
number of operations per product lies in the interval [2, 4]. Furthermore,
the number of products per work center lies in the interval [4, 8];

2. Allocate to every product k a relative share of capacity utilization of work
center j, denoted as rscujk. We use the capacity utilization pro�les that
are presented in Table A-3. These pro�les depend on the number of prod-
ucts that are produced at a work center j, denoted as Kj ;

3. Randomly draw the demand per unit of time for product k, denoted as

�k = E [A
0
k] from the interval

h
�LB ; �UB

i
. This interval is chosen so that

the expected item production time E
h
P 0jk

i
varies between PLB = 1 min.

and PUB = 5 min. Then �LB and �UB are given by:

�LB =
�netmax

j;k
(rscujk)

PUB = 0:06�net and �UB =
�netmin

j;k
(rscujk)

PLB = 0:1�net. If
�net = 0:85, then the yearly demand lies in the interval [26805, 44676].

4. Calculate the average item processing time for every product k and every
work center j. In this way, a speci�ed amount of production capacity is
assigned to every product, which ensures that the net utilization of every
machine equals the desired net utilization level.

E
h
P 0jk

i
=

rscujk�
net

�k
;

5. Generate randomly the inventory holding cost factor r 2 [0.15, 0.25]
e/(e*year);

229



230 Appendices

# pro�le nr. n Kj ! 4 5 6 7 8
1 0.30 0.30 0.25 0.20 0.17
2 0.28 0.25 0.20 0.17 0.15
3 0.25 0.20 0.17 0.16 0.15
4 0.17 0.15 0.15 0.14 0.12
5 0.10 0.13 0.12 0.11
6 0.10 0.11 0.10
7 0.10 0.10
8 0.10
Total 1 1 1 1 1

Table A-3: Capacity utilization pro�les

6. Generate randomly for every product k:

� the setup and ordering costs for a product k: (ok + sk) 2 e[0, 0] or
e[6.67, 13.3] or e[20, 40] or e[60, 120];

� the end value of a product k: vk 2 e[10, 15];
� the cost of raw material as a fraction [0.35, 0.50] of vk;
� the di¤erence between vk and the cost of raw material is the added
value of the production process. To �nd the echelon value of a prod-
uct k at work center j, denoted as vjk, we distribute the added value
equally over the di¤erent production steps.

7. Generate randomly the expected setup times for every product k and every
machine j in the routing of product k: E [Ljk] 2 [30, 60] min. or [90, 180]
min.

8. The length of a simulation sub run: U = 100; 000 �max
k
E [A0k].



Appendix VII. Analysis of
the solutions for CBC

In this appendix, we analyze the solutions proposed by the AAM. This allows us
to verify the soundness of the solutions proposed by the decision-support system.
Successively, we discuss: the main e¤ects of the factors; the contribution of the
lower bound in the total costs; the allocation of free capacity for setups; the
impact of increasing the setup times on review periods, order-up-to levels and
utilization.

Main e¤ects of factors

Figures A-2 to A-5 show the impact of the four factors on the average costs,
review periods and order-up-to levels. The impact of every factor is discussed
successively.

The impact of increases in the net utilization on the total costs is about 17%
and 19% for changes from 0.65 to 0.75 and from 0.75 to 0.85 respectively. The
increase of the net utilization from 0.65 to 0.75 causes the review periods to
decrease, while they increase when the net utilization is increased from 0.75 to
0.85. The reason for this pattern is to be found in the mechanisms embedded
in the AAM, as described in Section 5.3. When the net utilization goes from
0.65 to 0.75, the review periods are decreased in order to reduce throughput
times, work-in-process costs and �nal inventory holding costs. However, as
the net utilization further increases, the capacity e¤ect starts to dominate the
harmonization e¤ect. The review periods are slightly increased in order to
reduce the impact of the setup times on the capacity utilization. The order-
up-to levels on the contrary, increase steadily when the utilization is increased.
This can be explained by two e¤ects. First, in the experiments, the rise in
the net utilization is caused by increases in the demand rate for the products.
The increased demand rate results in higher demand during a review period
and increased cycle stock. Secondly, the rise in the net utilization increases the
congestion in the system, leading to longer order throughput times and higher
safety stocks.
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Figure A-2: Impact of net utilization on: (a) average costs - (b) average review
periods - (c) average order-up-to levels
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Figure A-3: Impact of target �ll rate on: (a) average costs - (b) average review
periods - (c) average order-up-to levels

When the target �ll rates increase from 90 % to 98 %, the average total costs
increase with 11%. In order to account for the increase in the target �ll rate, the
order-up-to levels are increased. However, the increase in the order-up-to levels
is fairly small. This is due to the fact that the AAM proposes smaller review
periods, which leads to lower cycle stock. Moreover, the order throughput times
are reduced so that less safety stock is required.

The increase of the average setup times from 45 to 135 leads to an increase
in the total costs of 12%. The review periods are raised to mitigate the impact
of the increase in the setup times on the capacity utilization. The increased
review periods lead to lower setup costs, but also to longer throughput times
and higher work-in-process costs. Because of the increases in the review periods
and the throughput times, the order-up-to levels and the �nal inventory costs
increase.

The setup costs appear to be the dominant factor in our experimental design:
when the average setup costs increase from 0 to 10, the average total cost rises
with 156%. Further increases in the average setup costs result in cost increases
of 64 % and 70 %. The review periods and the order-up-to levels increase in
a similar fashion. Note that the parameter values of the setup and ordering
costs are based on real-life data from two metal-working companies. From these
results, it appears that e¤orts to cut setup costs (as advocated by e.g. the Just-
In-Time philosophy) may e¤ectively result in large savings in the overall costs.
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Figure A-4: Impact of avg. setup times on: (a) average costs - (b) average
review periods - (c) average order-up-to levels

Figure A-5 a splits up the total relevant costs into the di¤erent cost components.
For the instances with setup costs = 0, the decision-support system based on
the AAM generates solutions in which the �nal inventory costs (FIC) and the
work-in-process costs (WIPC) are almost balanced, the former being slightly
larger. For the instances with setup costs > 0, the AAM seeks a balance between
the �xed setup costs (SC) on the one hand, and the �nal inventory and work-in-
process holding costs on the other hand. This result is similar to the well-known
Economic Order Quantity model for which the holding costs and �xed ordering
costs are the same under economic order quantity (Silver et al. 1998). Similar
to the instances with setup cost = 0, the �nal inventory costs dominate the
work-in-process costs.

In conclusion, the decision variables (review periods and order-up-to levels)
generated by the decision-support system seem to make sense from a logical
point of view. Based on these observations, it seems that the decision-support
system responds soundly to changes in the factors. Moreover, the behavior of
the costs as a function of the factors also seems reasonable. Based on this analy-
sis, there are no indications that the decision-support system makes irrational
decisions.
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Figure A-5: Impact of avg. setup costs on: (a) average costs - (b) average review
periods - (c) average order-up-to levels

Contribution of lower bound in total costs

From the numerical results it appears that -depending on the problem instance-
a relatively large share of the total relevant costs is contributed by the lower
bound TRCLB (R) to the total costs for a given solution R. The lower bound
is presented in Appendix VIII. This lower bound is based a PI system in which
variability and interaction between products was ignored. We believe it is in-
teresting to investigate the relative contribution in the total costs by the lower
bound. If this share clb is small, then the main part of the total costs is due to
variation and interaction e¤ects. On the contrary, a large value of clb indicates
that only a small fraction of the costs is due to the impact of variability and
interaction between products. The relative share clb can be computed as follows:

clb =
TRCLB (R�)

TRCSIM (R�)
(A-22)

Figures A-6 a-d provide histograms for clb, split out for the di¤erent levels
of the setup cost parameter Ljk. From these �gures, it can be seen that clb

rises when the setup cost parameters are increased. Recall that the setup costs
can be estimated exactly and that they are fully part of the lower bound costs
TRCLB (R�). Therefore, it is not surprising that -ceteris paribus- an increase
in the setup cost parameters Ljk leads to a higher clb. It is, however, remarkable
that clb attains such high values. Even at moderate values of Ljk 2 [6:67; 13:33],
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Figure A-6: Histograms for clb: (a) Ljk = 0 - (b) Ljk 2 [6:67; 13:33] - (c) Ljk
2 [20; 40] - (d) Ljk 2 [60; 120]

clb > 80% in 80% of the instances. This indicates that the PI system behaves
more or less as a deterministic system. This is partly explained by the fact
that an increase in the setup cost parameter results in longer optimal review
periods, so that the variability in the interarrival times and processing times
becomes lower. Clearly, this leads to lower congestion in the production system,
and thus to lower work-in-process inventory and safety stocks. Moreover, the
decision-support system harmonizes the review periods of the di¤erent products
so that the impact of variability and interaction is reduced. Both e¤ects occur
interdependently and limit the impact of variability and interaction between
products, which results in a high clb.

Allocation of free capacity for setups

Now we take a look at the fraction of the free capacity that is allocated for
performing setups. The fraction of time that the work centers are busy (the
total utilization �) is the sum of the fraction of time spent on actual production
(the productive or net utilization �net) and the fraction of time spent on setups
(the setup utilization �set). The free capacity is equal to the production capacity
that is not used for actual production and that can be used for performing
setups. The fraction of free capacity can be computed as 1��net. In the Figure
A-7 a-b, we present histograms for the fraction of free capacity that is used for
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Figure A-7: Frequency diagram of allocation of free capacity for setups: (a)
setup costs = 0 - (b) setup costs > 0

setups, denoted as fset. This fraction can be computed as:

fset =
�set

1� �net (A-23)

Figure A-7 a shows that for the instances with setup costs = 0, fset lies
in the interval 60-74%, the average being 65%. As a rule of thumb, it may
appear that in the case of setup costs = 0 about 23 of the free capacity should be
allocated for setup times. However, from the results in Section 5.6, it appears
that it is not only important to select the right level of capacity utilization. The
numerical results in Table 5.11 indicate that substantial savings can be realized
by harmonizing the review periods, while keeping the capacity utilization more
or less at the same level.

Figure A-7 b shows the case of setup costs > 0. In this case, fset takes
a wide range of values (from 3 to 69%). The average in this case is 24%. In
general, fset is lower than in the case of zero setup costs. This makes sense,
because higher setup costs lead to increases in the review periods and thus to
less setups and lower fset. This observation indicates that the decision-support
system responds soundly to changes in the setup costs.

In the remainder of this section, we take a closer look on the allocation of
free capacity for setups by conducting some additional experiments. First we
compare our results to an upper bound derived by Kuik and Tielemans (1997)
for a single machine model. After this, we look into the behavior of the allocation
of free capacity when the net utilization of the work centers changes.

Upper bound on setup utilization

We searched the literature for scienti�c results on the topic of allocation of
free capacity for setups, since this may be helpful for the interpretation of the
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output of our decision-support system. The only relevant contribution that was
found is Kuik and Tielemans (1997), who present an upper bound on the optimal
fraction of capacity that is used for setups. The upper bound is based on a single
machine model for which the batch sizes are optimized, i.e. the batch sizes are
set so that the expected queueing delay of the batches is minimized. Hence,
the upper bound by Kuik and Tielemans (1997) is developed for a situation
that is somewhat di¤erent than the PI system studied in this thesis. In fact,
our PI system is a generalization of the system studied by Kuik and Tielemans
(1997). The value of the upper bound �set�UB depends on the level of productive
utilization �net and is given by:

�set�UB =
�net (1� �net)
1 + �net

(A-24)

For a derivation of this upper bound, see Kuik and Tielemans (1997). Based
on the derived upper bound, they propose the following rule-of thumb that can
be used for evaluating batching decisions in real-life situations: "Whenever a
batching decision results in a setup utilization of more than 17.5%, a better
batching decision can be made, which will reduce the queueing time" (Kuik and
Tielemans, 1997, p. 178).

In this subsection, we test whether the upper bound holds for the PI system
studied in this research. Our PI system is a generalization of the model studied
by Kuik and Tielemans: we study a multi-machine production system and the
objective function is the sum of setup costs, work-in-process costs and �nal
inventory costs. Contrary, Kuik and Tielemans investigate a single machine
production system and their objective function consists of the expected queueing
delays. Note that the work-in-process costs and the �nal inventory costs in our
model partially depend on the expected queueing delay of the batches.

To check whether the upper bound holds in the PI system under study, we
compute the relative di¤erence between �setj (the setup utilization of work cen-
ter j of the solution proposed by the AAM) and �set�UB (the upper bound on
the setup utilization proposed by Kuik and Tielemans). Note that in the exper-
iments, all work centers have the same net utilization �net. More speci�cally,
we measure the relative di¤erence of the average setup utilization over all work
centers, denoted as dset:

dset =
�set�UB � 1

M

PM
j=1 �

set
j

1
M

PM
j=1 �

set
j

� 100% (A-25)

Figures A-8 a-b, present histograms for dset, respectively for the case of
setup costs = 0 and setup costs > 0.
For the case of setup costs = 0, dset is negative for all instances. This

indicates that the solution proposed by the decision-support system based on
the AAM has a higher average setup utilization than the upper bound, so that
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Figure A-8: Relative di¤erence between upper bound on setup utilization by
Kuik and Tielemans (1997) and average setup utilization over all workcenters
of decision-support system based on approximate analytical model: (a) setup
costs = 0 - (b) setup costs > 0

the upper bound is violated. If we assume that decision-support system gives the
optimal solution, then the upper bound of Kuik and Tielemans (1997) cannot
be generalized to the PI system under study.
For the case of setup costs > 0, dset is negative in about 15% of the instances,

which indicates that the upper bound is violated. Again, this implies that the
upper bound cannot be generalized to the PI system under study. In about
85% of the instances, dset is positive which indicates that the upper bound is
satis�ed in these instances. It appears from our results that the proposed upper
bound is weak for our PI system: the average of dset is 210% on this set of
experiments, with a maximum of 1075%. Based on these results, we conclude
that the upper bound developed by Kuik and Tielemans cannot be generalized
to the PI system under study. Note that this conclusion can be made from the
moment that a single instance violates the upper bound. Consequently, the rule
of thumb stating that performance can be improved whenever setup utilization
is above 17.5% is not valid for the PI system under study.

Setup utilization as a function of net utilization

In this subsection, we investigate the behavior of the setup utilization as the
net utilization of the work centers changes. This allows evaluating whether the
decision-support system appropriately uses the available production capacity.
We conducted the following experiment. We selected one problem instance
from each of the �ve basic problem con�gurations in the simulation study. Each
problem instance was characterized by setup costs (ok + sk) = 0, setup times
E [Ljk] 2 [30; 60] and target �ll rate �k = 0:90. The net utilization �net was
varied from 0.10 up to 0.99 with step size 0.01. This leads to 450 di¤erent
problem instances that are solved with the decision-support system.

Figure A-9 shows the average setup utilization �set = 1
M

PM
j=1 �

set
j as a

function of the net utilization �net. From Figure A-9 it can be seen that �set
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Figure A-9: Setup utilization as a function of net utilization for �ve problem
instances

decreases as a function of �net. The discontinuities in the plots result from
the step size used in the optimization routine. Two regions can be discerned
in Figure A-9. When there is ample free capacity (�net is 0.10 to 0.50), the
amount of capacity dedicated to setup decreases slowly from around 0.40 to
around 0.32. In this way the total capacity utilization increases from about 0.50
to about 0.82. From that point on, the setup utilization decreases more rapidly
as the net utilization increases. This observation is in line with what can be
expected from queueing theory: as the utilization increases the congestion in the
production system increases exponentially. Therefore, when the net utilization
increases, the setup utilization is decreased in order to mitigate the increase
in the total utilization. At higher levels of net utilization, the decrease in the
setup utilization will be higher in order to account for the exponential e¤ect of
the congestion on the performance. In the integrated PI system, however, an
additional e¤ect comes into play. In order to lower the setup utilization, the
review periods should be increased which results in higher cycle stocks. This
puts a limit on the amount by which the setup utilization can be lowered by
adjusting the lot sizes. These observations illustrate the complex trade-o¤ that
should be made by the decision-support system.
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Impact of increasing setup times on review peri-
ods, order-up-to levels and utilization

Next, we turn our attention to the response of the decision-support system based
on the AAM on changes in the setup times. In particular, we investigate the
behavior of the average review periods, order-up-to levels and capacity utiliza-
tion when the setup times are tripled from [30, 60] to [90, 180]. To this end, we
divide for every problem instance the average review period (resp. order-up-to
level) for the case of E [Ljk] 2 [90; 180] by the average review period (resp.
order-up-to level) for the case of E [Ljk] 2 [30; 60]. In this way, 120 observa-
tions of the proportion are obtained. Figures A-10 a-b present histograms of
the proportions, respectively for the instances with setup costs = 0, and setup
costs > 0.

When setup costs = 0 and the setup times are tripled, the decision-support
system proposes to increase the review periods and order-up-to levels with al-
most the same factor as the setup times ([2.7, 3.2] on this set of experiments).
In this way, the fraction of free capacity allocated for setups fset remains almost
unchanged.
For the instances with setup costs > 0, a substantial change in the setup

times has virtually no impact on the average review periods and order-up-to
levels. For the majority of the instances, the proportion lies in the interval
[0.9, 1.3]. Therefore, fset increases with about the same factor as the setup
times. From this observation, we conclude that the cost aspects dominate the
capacity aspects in the optimization process when the setup costs > 0. Finally,
we observe that these observations do not hold when setup costs are very small,
i.e. [6.67, 13.33]. Especially when the net utilization is high (0.85), an increase
in the setup times leads to rises in the review periods and the corresponding
order-up-to levels. In these instances, the capacity aspect dominates the cost
aspect. Again, this indicates that our decision-support system works soundly.

From the results in this subsection and the previous subsection, it appears
that the behavior of the optimized control parameters is rather di¤erent in the
case that setup costs = 0 and the case that setup costs > 0. In the case that
setup costs = 0, the optimization tool focuses more on the capacity utilization
aspect, whereas when the setup costs > 0, the tool is mainly concerned with the
cost aspect. However, there is a region in between where both aspects play a
crucial role. Moreover, it is very di¢ cult, if possible, to know a priori to which
situation a speci�c instance of the PI system corresponds.
The lesson that can be learnt from these observations is that it is very

important to simultaneously take into account cost and capacity issues when
making production and inventory control decisions. Decision support systems
that focus solely on one of these issues are cursed to make errors that can result
in substantial cost increases. However, most decision support systems do focus
either on the capacity aspect or on the cost aspect. Also, these observations
illustrate the importance of a good knowledge of the cost structure of the PI
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Figure A-10: Frequency diagram of proportion of average review periods and
order-up-to levels for setup times [90, 180] over [30, 60]: (a) setup costs = 0 -
(b) setup costs > 0

system. This implies that the use of sound management accounting techniques
is of high importance.

Conclusions

In this appendix, we used the decision-support system based on the AAM to
solve the 240 instances in the test bed. The solutions of the instances were
analyzed and validated on the criterion of "face validity". In particular, we
checked the response of the decision-support system to changes in the factors.
No irregularities were encountered, so that we believe that the decision-support
system based on the AAM responds appropriately to changes in the factors.



Appendix VIII. Lower
bound for CBC

In this appendix we derive a lower bound for the total relevant costs in a PI
system controlled using the CBC strategy. This lower bound can be used as a
benchmark for testing the optimization quality of the proposed decision-support
system. The proposed lower bound TRCLB (R) neglects the impact of the
variability in the system as well as the interaction between di¤erent products.
Both characteristics cause waiting times at the work centers. Hence, by ignoring
these characteristics, the impact of the waiting times on the total costs is not
taken into consideration. Moreover, the waiting times in the production system
and the variability in demand and processing times have an impact on the
required safety stocks. This impact is ignored in the lower bound. In this case,
the following expression is a lower bound on the total costs.

TRCLB (R) =
KP
k=1

"
ok+sk
Rk

+ 1

E[A0
k]

MP
j=1

�
Rk

E[A0
k]
E
h
P 0jk

i
+ E [Ljk]

�
vjkr +

�2kRkvkr

2E[A0
k]

#
where

TRCLB (R) � TRC (R) 8R.

Proof :

The proposed lower bound consists of three terms:

1. Ordering and setup costs. The ordering and setup costs can be computed
exactly as:

SCLBk (Rk) = SCk (Rk) =
ok + sk
Rk

(A-26)

2. Work-in-process costs. The proposed lower bound ignores the impact of
the waiting times on the work-in-process costs. It only takes into consid-
eration the work-in-process costs that are due to net processing times and
setup times. When the waiting times are ignored, the average time an
order for product k spends at machine j is given by :
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Rk

E[A0
k]
E
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P 0jk
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+ E [Ljk].

Clearly, the expression above is a lower bound on the total time an order
spends in a certain production step. Then, we can use of Little�s Law to
compute a lower bound on the average amount of work-in-process that is
present at every production step:
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+ E [Ljk]

�
.

Then, a lower bound for the work-in-process costs for product k in the
entire production system is given by:

WIPCLBk (Rk) =
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E [A0k]
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�
+ E [Ljk]

�
vjkr (A-27)

3. Final inventory holding costs. The lower bound is based on an inventory
model characterized by deterministic demand and zero replenishment lead
times. As can be seen in Figure A-11, a fraction �k of demand is delivered
immediately from stock, which corresponds to the �ll rate constraint in
our model. The bold line in Figure A-11 gives the inventory position
IPk (t) at time t for a target �ll rate �k. It can easily be seen from Figure
A-11 that the order-up-to level S�k corresponding to this service level �k
is given by S�k =

�kRk

E[A0
k]
, where the term Rk

E[A0
k]
gives the total demand over

the review period. The on-hand inventory IOHk (t) at time t equals IOHk (t)

= [IPk (t) ; 0]
+. The total amount of physical stock during a review period

Rk can then be computed as
RkR
0

IOHk (t) = 0:5S�k �kRk =
�2kR

2
k

2E[A0
k]
. Finally,

the expected amount of �nal inventory at an arbitrary moment for this
simple inventory system is given by:

E
�
IOHk

�
= 1

Rk

RkR
0

IOHk (t) =
�2kRk

2E[A0
k]
.

The inclusion of demand variability, non-zero replenishment lead times and
variability in the replenishment lead times will cause the inventory to be
higher than the expected amount of inventory computed here. Therefore,
the expression above is a lower bound for the �nal inventory in the PI
system under study. Then a lower bound on the �nal inventory costs for
a product k in the PI system under study is:

FICLBk (Rk) =
�2kRkvkr

2E [A0k]
(A-28)
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Figure A-11: Inventory system with deterministic demand and zero lead times

Based on the lower bounds for the di¤erent cost components, a lower bound
for the total costs in a PI system with job shop routings and stochastic arrival
and processing times can be computed. When the review period Rk is given, a
lower bound for the total relevant costs of single product k is:

TRCLBk (Rk) =
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(A-29)
For the computation of the lower bound for the entire PI system, we assume

that there is no interaction between the di¤erent products. Therefore, the lower
bound for the total costs of the entire PI system TRCLB (R) is given by the
sum of the lower bounds of the di¤erent products:

TRCLB (R) =
KX
k=1

TRCLBk (Rk) (A-30)

�

TRCLB (R) should be minimized in order to obtain a lower bound. In this
minimization, we can put a constraint on the utilization of the work centers
in order to obtain a stronger bound. Moreover, the review periods should be
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strictly positive. This results in the following mathematical programming prob-
lem:

minimize
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2. Rk > 0 for k = 1; :::;K

Note that both the objective function and the constraints are convex in the
review periods Rk. Hence, the NLP is a convex programming problem. Such
problems can easily be solved to optimality using the commercially available
CONOPT algorithm. The CONOPT algorithm attempts to �nd a local op-
timum satisfying the Karush-Kuhn-Tucker conditions. It is well-known that
for convex programming problems a local optimum is also the global optimum.
See e.g. Hillier and Lieberman (2005) for more details on convex programming
problems.



Appendix IX. Lower bound
for CPP

In this appendix, we derive two lower bounds on the total costs for the PI
system controlled with the CPP strategy: an uncapacitated and a capacitated
lower bound. The uncapacitated lower bound is used in the heuristic procedure
to generate a starting solution, see Section 7.3.3. The capacitated lower bound
is used in Chapter 8 to test the optimization quality of the proposed procedure.

Uncapacitated lower bound

We use the following observation (Ouenniche and Boctor 1998) to formulate a
lower bound on the work-in-process holding costs: no operation o in the routing
of product k can start before the preceding operation o� 1 is �nished entirely.
The minimum delay between the starting times of two successive operations in
the routing of product k is therefore the net processing time of the �rst operation
(setup time not included). This minimum delay corresponds to the situation
where there is no interaction between the di¤erent products in the production
system so that there are no waiting times. This observation can be formulated
as follows:

d�(k;o);k � d�(k;o�1);k �
E[P 0�(k;o�1);k]

E [A0k]
R (A-31)

The minimum delay between the starting moments can be inserted in the
objective function of the NLP presented in Section 7.2.2. This leads to the
following uncapacitated lower bound on the total relevant costs for a given
common cycle of length R:
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In Appendix VIII, we presented lower bounds for the di¤erent cost compo-
nents in case of CBC. It can be veri�ed that if the review period Rk is replaced
by the common cycle length R, then the lower bounds for the setup cost and
inventory holding costs for a product k are similar for CBC and CPP. The lower
bound for the work-in-process costs is di¤erent because in the case of CBC the
setup time is included in the throughput time of an order, whereas for CPP the
setup time is not included. This di¤erence is due to the fact that in the CPP
strategy the setup can take place before the production order has arrived at the
work center.

Based on the lower bound for the total relevant costs for a given R, we can
formulate an uncapacitated lower bound for the total relevant costs TRC in the
PI system controlled with CPP:
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and the common cycle RULB�CPP that corresponds to the uncapacitated
lower bound is:

RULB�CPP =

r
A

B
(A-34)



Appendix IX. Lower bound for CPP 249

Proof:
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Capacitated lower bound

In order to obtain a stronger lower bound, we add capacity constraints to the
uncapacitated objective function (A-32). In this way, we obtain the following
NLP:
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Note that both the objective function and the constraints are convex in the
common cycle length R. Hence, this NLP is a convex programming problem.
Such problems can be solved to optimality using the commercially available
CONOPT algorithm. See e.g. Hillier and Lieberman (2005) for more details on
convex programming problems.

In this particular case, however, we can obtain a simpler and more elegant
solution with the following observation. There are two possibilities for the op-
timum of the NLP:

1. The solution of the unconstrained problem

r
A

B
satis�es the capacity con-

straints. In this case the solution to the constrained problem is equal to

the solution of the unconstrained problem

r
A

B
.
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2. The solution of the unconstrained problem does not satisfy the capacity
constraints. Because of the convexity of the objective function and con-
straints in the single decision variable R, the smallest common cycle length
R0 that satis�es all capacity constraints is the solution to the NLP. R0 can
easily be found by turning the inequalities in the capacity constraints into
equalities:
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In this way, we obtainM values for R. The largest of theseM values is the
common cycle length R0 that satis�es all capacity constraints. Moreover,
it is also the solution to the NLP.

In conclusion, we �nd the common cycle RCLB�CPP that corresponds to
the capacitated lower bound as:
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The capacitated lower bound on TRC, denoted as TRCCLB�CPP , can be
found by plugging the solution from formula (A-35) in the objective function of
the NLP:

TRCCLB�CPP (R) =
A

RCLB�CPP
+BRCLB�CPP (A-36)
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solutions for CPP

In this appendix, we analyze the main e¤ects of the di¤erent factors in the
experimental design on the decision variables (common cycle length and order-
up-to levels) and the total relevant costs. We investigate whether the decision-
support system responds in a logical way to changes in the levels of the factors.
The di¤erent factors in the experimental design are discussed successively. After
this, we present numerical results on the contribution of the lower bound in the
total costs.

Target �ll rates

Figure A-12 a-c shows the impact of an increase in the target �ll rate on the
costs and the decision variables. When the �ll rates increase from 90 % to 98
%, the average total costs increase with 8%. In order to account for the increase
in the �ll rate, the order-up-to levels are increased. However, the increase in
the order-up-to levels is fairly small (+3%). This is due to the fact that the
decision-support system proposes smaller common cycle lengths (-3%), so that
the cycle stocks are lower. Moreover, the shorter common cycle length leads to
shorter order throughput times so that less safety stock is required. Since the
target �ll rate is high (98%), small reductions in the throughput times can lead
to relatively large savings in the safety stocks.

Net utilization

Figures A-13 a-c and A-14 a-c present the impact of increases in the net utiliza-
tion �net on the costs and on the decision variables, respectively for the instances
with setup costs = 0 and setup costs > 0. The basic problem con�guration that
does not have feasible solutions when �net = 0:85 is omitted from the analysis.

When setup costs = 0, the impact of increases in �net on the total costs is
72% and 393% for changes from 0.65 to 0.75 and from 0.75 to 0.85 respectively.
These steep increases can be explained with the following arguments. When
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Figure A-12: Impact of target �ll rate on (a) avg. costs - (b) avg. common
cycle - (c) avg. order-up-to levels (stochastic setting, all instances)

setup costs = 0, low costs can be achieved by using a short production cycle. A
small common cycle leads to short throughput times, low work-in-process costs,
low cycle stock and low safety stocks. We refer to these costs as �cycle related
costs�. For �net = 0:65, small production cycles are used in order to minimize the
costs. Therefore, a considerable amount of production capacity, denoted as �set,
is spent on performing setups: �set = 0:14 on average. This leads to an e¤ective
utilization � of the production system of 0:79. When �net increases, however,
it becomes increasingly di¢ cult to maintain a short common production cycle.
In response to the rise in �net, the common cycle length is increased in order
to reduce the number of setups and to free up production capacity. When �net

increases from 0.65 to 0.75, the number of setups is decreased by lengthening
the common cycle with 56% on average. In this way, the increase in the total
utilization is limited. The total utilization is � = 0:84 and setup utilization
�set = 0:09. When �net increases from 0.75 to 0.85, the common cycle length is
multiplied by factor 4.2 on average. In this way the setup utilization decreases
to �set = 0:03 and the total capacity utilization � = 0:88. We note that the
production system operates with considerable amounts of slack-time, even at
high levels of capacity utilization (1 � � = 0:12 when �net = 0:85). This is -at
least partially- caused by the fact that production capacity is wasted by strictly
enforcing a �xed production sequence on the work centers. It is clear that the
large increases in the common cycle length lead to the strong cost increases that
are shown in Figure A-13 a.
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Figure A-13: Impact of net utilization of work centers on (a) avg. costs - (b)
avg. common cycle - (c) avg. order-up-to levels (stochastic setting, instances
with set-up costs = 0)

When setup costs > 0, the impact of increases in the net utilization �net

on the total costs is less pronounced, but still is considerably high. The total
costs increase with 14% and 68% for changes from 0.65 to 0.75 and from 0.75
to 0.85 respectively. Remarkably, when �net goes from 0.65 to 0.75, the average
common cycle length decreases slightly. This e¤ect can be explained as follows.
When �net = 0:65, the decision-support system searches for a low-cost schedule.
Since setup costs > 0, there will be a trade-o¤ between the cycle related costs
and the setup costs. In order to reduce the cycle related costs, the common cycle
should be made as small as possible. For the setup costs, on the contrary, the
cycle length should be made as large as possible. The decision-support system
makes the trade-o¤ and generates a common cycle length and a production
schedule. In our test bed, the proposed solutions lead to a relatively low level of
capacity utilization when compared to the case of setup costs = 0: � = 0:69 and
setup utilization �set = 0:04 for �net = 0:65. Now we consider the situation that
�net increases from 0.65 to 0.75. Keeping the common cycle unchanged would
lead to increases in the batch sizes and the cycle related costs, while the setup
costs remain unchanged. Therefore, a new trade-o¤ has to be made between
setup costs and cycle related costs. In order to reduce the cycle costs, the
common cycle length should be shortened. Clearly, shortening the cycle length
also increases the setup costs. Therefore, the decision-support system searches
a new balance between cycle related costs and setup costs. In our test bed, this
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Figure A-14: Impact of net utilization of work centers on (a) avg. costs - (b)
avg. common cycle - (c) avg. order-up-to levels (stochastic setting, instances
with setup costs > 0)

led to a decrease in the review periods (-6%) and an increase in the utilization
of the work centers: � = 0:80 and �set = 0:05. When �net further increases
from 0.75 to 0.85, the same trade-o¤ has to be made. In this case, however,
the utilization of the work centers is already high so that (similar to the case
with setup costs = 0) the review periods should be increased in order to free up
production capacity. In the experiments the common cycle is lengthened with
120%, leading to � = 0:88 and �set = 0:03.

Average setup times

Figure A-15 a-c shows the impact of a rise in the average setup times on the total
costs, the average common cycle length and the order-up-to levels. The increase
of the average setup times from 45 to 135 leads to an average increase in the total
costs of 37%. The common cycles are lengthened with 55% to limit the impact
of the increase in the setup times on the capacity utilization. The increased
common cycles lead to lower setup costs, but also to higher cycle related costs.
Because of the increases in the common cycle lengths, the order-up-to levels and
the �nal inventory costs increase.
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Figure A-15: Impact of avg. setup times on (a) avg. costs - (b) avg. common
cycle - (c) avg. order-up-to levels (stochastic setting, all instances)

Setup costs

Finally, we investigate the impact of changes in the setup cost parameters on
the total costs and the decision variables, which is shown in Figures A-16 a-c. In
the starting situation, the setup costs are equal to zero. The decision-support
system proposes solutions that minimize the work-in process costs and �nal
inventory holding costs. Ceteris paribus, increases in the setup cost parameter
(ok + sk) lead to higher setup costs. In order to limit the increase in setup
costs, the common cycle length is lengthened so that less setups are required and
the corresponding costs are limited. The increase in the common cycle length
results in higher cycle related cost. Therefore, the decision-support system seeks
a new trade-o¤ between setup costs and cycle related costs. This leads to longer
common cycles, as can be observed in Figure A-16 b. Moreover, the increases
in the safety stock and the cycle stock lead to higher order-up-to levels when
the setup cost parameters increase. Similar to the experiments for the CBC,
the setup costs seem to have a strong impact on the costs. The average total
cost rises with 54% when the average setup costs increase from 0 to 10. Further
increases in the average setup costs, from 10 to 30 and from 30 to 90, result in
cost increases of 42% and 55% respectively. The average common cycle lengths
and the order-up-to levels also increase steadily.

Finally, we recall that in the test bed six instances were found with incon-
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Figure A-16: Impact of avg. setup costs on (a) avg. costs - (b) avg. common
cycle - (c) avg. order-up-to levels (stochastic setting, all instances)

sistencies. All inconsistencies are characterized by the fact that the decision-
support system proposes to decrease the common cycle length when the setup
cost parameter increases. Obviously, this is erroneous behavior that is caused
by the heuristic nature of the decision-support system. As a result of the inap-
propriate choice for the common cycle length, the total costs decrease in two
instances when the setup costs are increased. Since the number of incorrect
instances is limited (2.5%), we expect that the impact of the incorrect behavior
of the decision-support system on our conclusions is rather limited.

Contribution of lower bound in total costs

Similar to the case of CBC, we observe that -depending on the problem instance-
a relatively large share of the total relevant costs is contributed by the lower
bound TRCULB�CPP (R�) for a given solution R�. The common cycle length
R� is obtained from the decision-support system for the stochastic PI system.
The lower bound is presented in Appendix IX. The uncapacitated lower bound is
based on a PI system in which variability and interaction between products was
ignored. We believe it is interesting to investigate the relative contribution in
the total costs by the lower bound. If this share clb is small, then the main part
of the total costs is due to variation and interaction e¤ects. On the contrary, a
large value of clb indicates that only a small fraction of the costs is due to the
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Figure A-17: Histograms for clb: (a) setup costs = 0 - (b) setup costs > 0

impact of variability and interaction between products. The relative share clb

can be computed as follows:

clb =
TRCULB�CPP (R�)

TRCSIM (R�)
(A-37)

Figures A-17 a-b provide histograms for clb, split out for the instances with
setup costs = 0 and setup costs > 0. The infeasible instances are not included in
the histograms. From these �gures, it can be seen that clb rises when the setup
costs increase. Recall that the setup costs can be estimated exactly and that
they are fully part of the lower bound costs TRCLB (R�). Therefore, it is not
surprising that -ceteris paribus- an increase in the setup costs leads to a higher
clb. It is, however, remarkable that clb attains very high values. When setup
costs > 0, then clb > 90% in all instances. This indicates that the PI system
behaves almost like a deterministic system. Comparing to the case of CBC, we
observe that the values of clb obtained by CPP are much higher than by CBC.
Further analysis reveals that the variability in the throughput times is much
lower in the case of CPP than for CBC. See Figure 9.9 in Section 9.3.4 for more
details on this matter. The results in this section indicate that by using strict
processing sequences, the variability in the production system can be reduced
signi�cantly.
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Summary

In this thesis, we investigate a multi-product, multi-machine production-inventory
(PI) system that is characterized by:

� relatively high and stable demand;

� uncertainty in the precise timing of demand;

� variability in the production process;

� job shop routings;

� considerable setup times and costs.

This type of PI system can be found in the supply chain of capital goods.
Typically, it represents a manufacturer of parts that are assembled in later stages
of the supply chain.

Our exploratory research aims at identifying promising control approaches
for this type of PI systems and the conditions in which they are applicable. The
control approaches developed in this thesis are based on an integrated view of
the PI system. The objective of the control approaches is to minimize the sum
of setup costs, work-in-process holding costs and �nal inventory holding costs,
while target customer service levels are satis�ed. The research reveals that
the exact analysis and optimization of this type of PI systems is impossible.
Therefore, we are restricted to the development of heuristic control approaches.
We propose two control strategies that are based on distinct control principles.
For each of the control strategies, we develop and test decision-support systems
that can be used to determine cost-e¢ cient (but not necessarily optimal) control
decisions.

Part I of this thesis deals with the �rst approach, called Coordinated Batch
Control (CBC). This strategy uses a periodic review, order-up-to inventory pol-
icy to control the stock points. The replenishment orders generated by this
inventory policy are manufactured by the production system. The CBC strat-
egy integrates production and inventory control decisions by determining cost-
e¢ cient review periods. There is no further integration of control decisions. At
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the shop �oor, a myopic rule is used to sequence the orders, which ensures a
certain degree of �exibility for responding to unexpected circumstances.
We develop three decision-support systems for the CBC approach. The �rst

decision-support system is based on an approximate analytical model of the PI
system. In the approximate analytical model, we apply standard results from
inventory theory, queueing theory and renewal theory. The second and third
decision-support system use simulation optimization techniques to determine
the near-optimal review periods.
The three heuristic decision-support systems for CBC are tested in an exten-

sive simulation study. The test bed consists of �ve basic problem con�gurations,
which de�ne a routing structure, processing times, etc. We vary four factors over
several levels: setup costs, setup times, net utilization and target �ll rates. In
this way, we obtain 48 instances based on the same basic problem con�guration,
leading to 5 x 48 = 240 problem instances. The simulation study shows that
the use of simulation optimization resulted in relatively small improvements over
the solution obtained from the approximate analytical model. Since simulation
optimization requires large amounts of computation e¤ort, we decide that the
use of the decision-support system based on the approximate analytical model
is justi�ed.

Part II is concerned with the Cyclical Production Planning (CPP) strategy.
This strategy approaches the control of the PI system from a totally di¤erent
angle. In this strategy, a detailed production schedule is used to control the
production system. The schedule prescribes the sequence in which the orders
are produced on the work centers and this schedule is repeated at regular time
intervals. The time that elapses between the start of two schedules is called the
�cycle time�. The schedule is determined such that the total costs are minimized.
The stock points are controlled with periodic review, order-up-to policies. The
main advantage of the use of a production schedule is that �ow of the orders
through the production system is controlled better, which results in more re-
liable throughput times. A drawback of this approach is that the production
frequencies of the di¤erent products need to be matched in order to make a
cyclic production schedule. Hence, there is less �exibility in setting the lot
sizes, which may result in higher costs. Another drawback of the CPP approach
is that production capacity may be wasted by strictly following the prespeci�ed
processing sequences.
We propose a decision-support system for the CPP strategy which is based

on a deterministic model of the PI system. The decision-support system is used
to determine cost-e¢ cient production plans. We present a heuristic method
to approximately minimize the total costs of the deterministic model. When
the solution of the deterministic model is used in a stochastic environment, the
solution may be instable or nearly instable. Therefore, we use a simulation
procedure to check whether the proposed solution is stable. If not, slack-time is
added to the schedule and deterministic model is solved again.
We test the decision-support system for CPP in an extensive simulation

study. The test bed is identical to the one used in Part I. We test wether the
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decision-support system responds soundly to changes in the factors. Further-
more, we investigate the estimation quality of the deterministic model that is
embedded in the decision-support system. Finally, we test the optimization
quality of the decision-support system. Based on the results of these tests,
we decide that it is acceptable to use the proposed decision-support system to
determine the control variables of the CPP strategy.

Part III compares the performance of the CBC and the CPP strategy. Both
strategies are compared in a simulation study consisting of the same instances
as in Part I and II. We compare the strategies in terms of realized total costs. In
about 62% of the instances, the CPP strategy outperforms the CBC strategy.
In the remaining 38% of the instances, the CBC strategy realizes lower costs
than the CPP strategy. An analysis of variance reveals that the following factors
have a signi�cant impact on the performance di¤erence between CPP and CBC:

� net utilization;

� setup costs;

� interaction between setup costs and net utilization;

� basic problem con�guration.

Based on our investigations, we can provide an explanation for these obser-
vations. The simulation results show that the performance di¤erence is pro-
portional to the di¤erence between the average review periods (CBC) and the
common cycle length (CPP), denoted as dR. The factors mentioned above have
an in�uence on dR through their impact on capacity utilization. At low lev-
els of capacity utilization, we observe that dR is low, which indicates that the
CPP and CBC strategy operate with comparable review periods and common
cycle lengths. In situations where the CBC strategy operates at higher levels
of capacity utilization (because net utilization increases and/or setup costs de-
crease), it becomes more di¢ cult for the CPP strategy to �nd a feasible cyclical
production schedule, mainly because production capacity is wasted by strictly
following a prespeci�ed processing sequence. In these cases, the CPP strategy
needs to increase the common cycle length to free up production capacity that
is used to compensate for the loss of capacity. This leads to increases in dR

and to higher costs. The speci�c characteristics of a problem instance have a
strong in�uence on the magnitude of this e¤ect. Based on the insights obtained
from our research, we formulate some guidelines for the application of CPP and
CBC.
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Samenvatting

Dit proefschrift bestudeert een multi-product, multi-machine productie-voorraad
(PV) systeem dat wordt gekenmerkt door de volgende eigenschappen:

� relatief hoge en stabiele vraag;

� onzekerheid omtrent de precieze timing van de vraag;

� variabiliteit in het productieproces;

� job shop routingstructuren;

� aanzienlijke steltijden en -kosten.

Dit type PV systeem komt o.m. voor in de aanvoerketen van kapitaalgoede-
ren, waar het een typische voorstelling is van een producent van onderdelen die
verderop in de keten geassembleerd worden.

In dit exploratief onderzoek ontwikkelen we beloftevolle beheersingsstrate-
gieën voor dit type PV systeem en gaan we na in welke omstandigheden ze
toepasbaar zijn. De ontwikkelde beheersingsstrategieën zijn gebaseerd op een
geïntegreerde kijk op het PV systeem. Het doel van de beheersingsstrategieën
is het minimaliseren van de som van stelkosten, onderhanden-werk-kosten en
eindvoorraadkosten. Als randvoorwaarde wordt vereist dat minimale klantser-
viceniveaus gehaald worden. Uit ons onderzoek blijkt dat de exacte analyse en
optimalisatie van dit type PV systeem onmogelijk is. Daarom zijn we genood-
zaakt om heuristische beheersingsstrategieën te ontwikkelen. We stellen twee
beheersingsstrategieën voor die gebaseerd zijn op sterk verschillende principes.
Voor elk van deze strategieën ontwikkelen en testen we beslissingsondersteu-
nende systemen dewelke gebruikt kunnen worden om koste¢ ciënte (maar niet
noodzakelijk optimale) beheersingsbeslissingen te genereren.

In Deel I van dit proefschrift wordt de eerste strategie, Coordinated Batch
Control (CBC), behandeld. �Coordinated Batch Control�kan worden vertaald
als �Gecoördineerde Seriegrootte Beheersing�. Deze strategie gebruikt de stan-
daard (R,S) voorraadregel om de voorraadpunten te beheersen. De gegenereerde
aanvulorders worden vervolgens geproduceerd door het productiesysteem. De
CBC strategie integreert productie- en voorraadbeheersingsbeslissingen door
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koste¢ ciënte bestelgroottes te bepalen. Binnen de gekozen (R,S) voorraadregel
worden de gemiddelde bestelgroottes bepaald door de review periodes vast
te stellen. Er is geen verdere integratie van beheersingsbeslissingen. Op de
werkvloer wordt een eenvoudige prioriteitsregel gebruikt om de bewerkingsvolg-
orde van de orders vast te stellen. Dergelijke prioriteitsregels laten een zekere
mate van �exibiliteit toe om te reageren op onverwachte gebeurtenissen.
We ontwikkelen drie beslissingsondersteunende systemen voor de CBC strate-

gie. Het eerste beslissingsondersteunende systeem is gebaseerd op een benaderend
analytisch model van het PV systeem. Het benaderende analytische model
bestaat uit standaardresultaten uit de voorraadtheorie, wachtrijtheorie en ver-
nieuwingstheorie. Het tweede en derde beslissingsondersteunende systeem maakt
gebruik van simulatiegebaseerde optimalisatietechnieken om koste¢ ciënte se-
riegroottes te bepalen.
De drie heuristische beslissingsondersteunende systemen voor CBC worden

uitgebreid getest in een simulatiestudie. Het testbed bestaat uit vijf basis
probleemcon�guraties, dewelke de routingstructuur, bewerkingstijden, etc. van
een probleeminstantie vastleggen. De factoren die bestudeerd worden in deze
studie zijn: stelkosten, steltijden, netto bezettingsgraad en minimaal klantser-
viceniveau. We laten deze vier factoren verschillende waarden aannemen, waar-
door we 48 varianten bekomen van elke basis probleemcon�guratie. Dit leidt
uiteindelijk tot 5 x 48 = 240 probleem instanties. De simulatiestudie toont aan
dat het gebruik van simulatiegebaseerde optimalisatietechnieken leidt tot relatief
kleine verbeteringen t.o.v. de oplossingen gegenereerd met het benaderend ana-
lytisch model. Aangezien simulatiegebaseerde optimalisatietechnieken bijzonder
veel rekentijd vergen, besluiten we dat het gebruik van het benaderend ana-
lytisch model gerechtvaardigd is.

Deel II behandelt de Cyclical Production Planning (CPP) strategie. �Cycli-
cal Production Planning�kan worden vertaald als �Cyclische Productie Plan-
ning�. Deze strategie benadert de beheersing van het PV systeem op een totaal
verschillende manier. De CPP strategie is gebaseerd op een gedetailleerd pro-
ductieplan dat wordt gebruikt om het productiesysteem aan te sturen. Het
productieplan bepaalt de volgorde waarin de orders geproduceerd worden op de
werkplekken. Het plan wordt met een zekere regelmaat herhaald, met een vaste
tussentijd die ook wel �cyclustijd�wordt genoemd. Het productieplan wordt
vastgesteld zodanig dat de totale kosten geminimaliseerd worden. De voor-
raadpunten worden beheerst met periodieke ophoog voorraadregels. Het grote
voordeel van het gebruik van een vast productieplan is dat de doorstroming
van de orders door het productiesysteem beter beheerst kan worden, wat leidt
tot betrouwbare doorlooptijden. Een nadeel van deze aanpak is evenwel dat de
productiefrequenties van de verschillende producten op elkaar afgestemd moeten
worden om een cyclisch productieplan te bekomen. Hierdoor is er minder �exi-
biliteit bij het bepalen van de seriegroottes, wat tot hogere kosten kan leiden.
Een ander nadeel van de CPP aanpak is dat er productiecapaciteit verspild
wordt door strikt de vooropgestelde bewerkingsvolgordes aan te houden.
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We ontwikkelen een beslissingsondersteunende systeem voor de CPP strate-
gie dat is gebaseerd op een deterministisch model van het PV systeem. Het
beslissingondersteunend systeem dient om koste¢ ciënte productieplannen op te
stellen. We tonen hoe een heuristische methode gebruikt kan worden om de
totale kosten voor de deterministische variant bij benadering te minimaliseren.
Deze oplossing wordt vervolgens gebruikt in een stochastische omgeving. Hierbij
kan het optreden dat de voorgestelde oplossing leidt tot het instabiel of bijna-
instabiel gedrag van het PV systeem. Daarom wordt een simulatieprocedure
gebruikt om na te gaan of de voorgestelde oplossing stabiel is in een stochas-
tische omgeving. Indien de voorgestelde oplossing niet stabiel is, dan wordt er
extra tijd toegevoegd aan het productieplan als bu¤er tegen de variabiliteit en
het deterministische model wordt opnieuw doorgerekend.
Omwille van het heuristische karakter van het beslissingsondersteunende sys-

teem wordt het uitgebreid getest in een simulatiestudie. Het testbed is het-
zelfde als in Deel I. We testen of het beslissingsondersteunende systeem ver-
standig reageert op wijzigingen in de factoren. Verder onderzoeken we de schat-
tingskwaliteit van het deterministische model waarop het beslissingsondersteu-
nende systeem is gebaseerd. Tot slot testen we de optimalisatiekwaliteit van het
beslissingsondersteunende systeem. De resultaten van deze tests rechtvaardigen
het gebruik van het voorgestelde beslissingsondersteunende systeem.

In Deel III wordt de prestatie van de CBC en CPP strategie vergeleken.
De vergelijking gebeurt middels een simulatiestudie die bestaat uit dezelfde 240
instanties als in Deel I en II. We vergelijken de strategieën op basis van de
gerealiseerde totale kosten. In ongeveer 62% van de instanties leidt de CPP
strategie tot lagere kosten dan de CBC strategie. In de overige 38% van de
instanties presteert de CBC strategie beter dan de CPP strategie. Een variantie-
analyse toont aan dat de volgende factoren een signi�cante invloed hebben op
het prestatieverschil tussen CPP en CBC:

� netto bezettingsgraad;

� stelkosten;

� interactie tussen stelkosten en netto bezettingsgraad;

� basis probleemcon�guratie.

Op basis van ons onderzoek is het mogelijk om een verklaring te geven voor
deze waarnemingen. De simulatieresultaten tonen aan dat het prestatieverschil
tussen CBC en CPP evenredig is met het verschil tussen de gemiddelde re-
view periode (CBC) en de cyclustijd (CPP). Dit verschil wordt genoteerd als
dR. De signi�cante factoren hebben een invloed op dR via hun impact op de
capaciteitsbenutting. Bij lage capaciteitsbenutting observeren we dat dR klein
is, wat aangeeft dat CPP en CBC opereren met vergelijkbare review periodes
en cyclustijden. In het geval dat de CBC strategie opereert bij een hogere ca-
paciteitsbezetting (bijvoorbeeld omdat de netto bezettingsgraad toeneemt en/of



278 Samenvatting

omdat de stelkosten dalen), dan wordt het moeilijker voor de CPP strategie om
een haalbaar cyclisch productieplan te vinden. De voornaamste oorzaak hier-
van ligt in het feit dat de CPP aanpak productiecapaciteit verspilt door het
strikt volgen van de voorafbepaalde productievolgorde. Bijgevolg moet de CPP
strategie de cyclustijd verlengen om zo extra productiecapaciteit vrij te maken
als compensatie voor het capaciteitsverlies. Dit leidt echter tot een stijging in
dR en tot hogere kosten. De speci�eke eigenschappen van een probleeminstantie
hebben een sterke invloed op de grootte van dit e¤ect. Gebaseerd op deze bevin-
dingen, formuleren we enkele aanbevelingen voor de toepassing van de CPP en
CBC strategie.
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