

Questions to Robin Milner : a responders commentary

Citation for published version (APA):
Roever, de, W. P. (1986). Questions to Robin Milner : a responders commentary. (Computing science notes;
Vol. 8611). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1cfa6e9f-175a-4ab9-b5a4-834bc2f5407f

R F.: D
£11

CSH

Questions to Robin Milner
A responders commentary

by

w.P. de Roever

Questions to Robin Milner
A responders commentary

by

w.P. de Roever

&'.11

INFORMATION PROCESSING 86, H.-J. Kugler (ed.)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1986

51S

QUESTIONS TO ROBIN MILNER - A RESPONDER'S COMMENTARY

WilIem-P_ DE ROEVER
Eindhoven University of Technology
P.B. 513, 5600 MB Eindhoven, The Netherlands

1. Point of Departure

As a responder to Robin Milner's "Process con
structors and interpretations" I find myself in a some
what awkward position. We all love Robin for his es
sential contributions to concurrency in particular and
computer science in general. Personally I regard him
as the main researcher responsible for acceptance of
the field of semantics, proof theory, and verification
of concurrent programs as a scientific discipline in its
own right based on techniques derived from logic and
mathematics, and introducing new concepts of com
parable profundity when required. This implies that
I very much would like to voice constructive techni
cal comments on his present contribution to IFIP'86.
However, my present orientation in computer science
doesn't enable me to contribute to his work along
technical lines. On the other hand, criticizing his
work is a precarious affair. Because of its rigor and
elegance, technically speaking little remains to be crit
icized. Any criticism on his work tends therefore to
be judged from this perspective, and puts the critic
in the eyes of many an eminent scholar rather in the
position of the accused. The only remaining solution
for me is to try to put his work in perspective, as be
fitting someone who had to agree to respond prior to
knowing the technical details of the material he had
to respond to. Therefore I've chosen the following
procedure: I shall try to view Robin's work through
the eyes of some scholars who do eminent yet differ
ently directed research in the field of concurrency, and
whose contributions do not tend to occur often among
Robin's lists of favorite references.

These scholars do not emphasize the question as
to the nature of a concurrent process mathematically
speaking, or the question which mathematical princi
ples arise out of such a formal characterization of the
true nature of such a process. Rather they address
questions such as:

- How does one convince oneself and others that a
process does what it is supposed to do according to
its specification (a posteriori verification)?

- How does one design processes in order to make

them meet their specification (the verify-while
develop paradigm)?

- How does one convince oneself and others that
a process is correctly refined and/or implemented
(the hierarchical decomposition paradigm)?

- What sense does it make to specify concurrent pro
cesses in terms of atomic actions which in any real
ity of programming aren't atomic at all?

Do there exist notions of specification based on
nonatomic reasoning which can be carried across
levels of implementation?

In my opinion it would be a sign of that maturity
of the field which is exemplified by Robin Milner's
work, when comparison between and integration of
different points of view could be freely discussed at
this meeting.

As point of departure I quote a remark in a recent
keynote address (at the 5th FST and TCS Conference,
New Delhi) by one of Robin's compatriots:

"Theorists should look at a restricted class
of problems which professional programmers
come face to face with and not work in ab
straction and total generality."

And as questions which are not raised in Robin's
works, but which are essential from the perspective of
the above quotation for the theory of concurrency, I
shall pose the following ones:

- The two languages versus a single language ques
tion, inspired by Amir Pnueli's work.

The atomicity versus hierarchical decomposition
question, inspired by Leslie Lamport's work.

And, since Robin urgently asked me to do so, I
have also tried to formulate some technical questions
concerning his approach:

Some technical questions pertinent to the present
paper, inspired by the work of Jan Bergstra & Jan
Willem Klop.

Obviously, neither Pnueli, nor Lamport, nor
Bergstra & Klop carry any responsibility for any mis
conceptions of mine concerning either their own or
Robin's work.

2. Questions

2.1 The two languages versus a single language
question - Pnueli's point of view

There are two basically different approaches to
the formalization of programming systems. The first
suggests the use of two languages. One language is the
programming language P which characteristically is
prescriptive, algorithmic and effective in nature. This
is the language in which we program and which should

516 W.-P. de Roever

be understandable and executable by a limited intelli
gence device such as a computer. The second language
is the specification language S, which should be de
scriptive, and powerful enough to express the require
ments of a program without yet specifying how they
are to be implemented. We may distinguish the roles
of the two languages by saying that S should specify
the what while P should specify the how. We refer to
this approach as the two languages approach.

Under the two languages approach, the main
paradigms for the construction of correct programs,
involve relations between the two languages. Thus,
the main formal problems studied are the problems of
verification and construction. In the verification prob
lem we are given two objects, a specification s E S,
and a program pEP, and asked whether they are
consistent, namely, whether the program p satisfies
the specification s. In the construction problem we
are given a specification s E S, and asked to construct
a program pEP that satisfies s. IT the construction
activity is expected to be fully automatic, we refer to
it as program synthesis, while if it is expected to be
carried out by disciplined humans, we refer to it as
development.

An alternative approach tecommends the usage
of a single language. The language should be expres
sive enough in order to specify computational tasks
implicitly, i.e., without actually programming them,
and should have a well identified fragment that can
be effectively and efficiently executed. Under this ap
proach, the process of program construction starts by
specifying the required task in the single language.
The initial specification should emphasize the desired
results or behaviour and pay little attention to the
question of how they are to be algorithmically imple
mented. Then, by a sequence of transformations, the
implicit definition of the required program or package
is gradually transformed into an explicit implementa
tion of the program.

Not too surprisingly, the two languages approach
is compatible with logic as the main formalization
tool, and the single language approach is usually sup
ported by an algebraic framework. This is appropri
ate because the basic structure of logic if founded on
the distinction between syntax and semantics, and the
main relation is the heterogeneous satisfiability rela
tion holding between objects of different kinds, be
tween a model which belongs to the semantic domain
and a formula which belongs to the syntactic domain.
Analogously, the two languages approach to specifica
tion and development of programs, is based on the sat
isfaction relation holding between programs (seman
tics objects in some sense) and specifications, which
typically to this approach are expressed in some logic
of-programs language. Examples of the two languages
approach are Floyd's and Hoare's systems, the weak
est precondition calculus, the JL-calculus for sequential
programs and their corresponding extensions includ
ing temporal logic for concurrent programs.

The algebraic framework, on the other hand, is
based on homogenous relations such as equality or

inclusion between objects of the same kind. Conse
quently, it is an appropriate vehicle to support mean
ing - preserving or equivalence transformations. Suc
cessful examples of the single language approach,
which are usually referred to as algebraic, are the ab
stract data type theory, LCF, and the program trans
formation approach (Burstall, Darlington, etc.) for
sequential programs, and the algebraic approach to
concurrency represented by the work of Milner, Hen
nessy, Bergstra & Klop, etc.

Milner's work has been consistently algebraic,
i.e., strongly a single language approach. This extends
to his LCF work which is based on the thesis that
verification of recursively defined functions is mainly
the establishment of equivalence or inclusion between
an obviously correct but highly inefficient version of
the function (the specification) and a more complex
but also more efficient version which is the one to be
finally used (the implementation). His work on con
currency to which I will summarily refer to as CCS,
contains several very important ideas. Two of these
ideas which are typically algebraic are his notion of se
mantics and the implied notions of specification and
development.

Traditionally, the non-operational semantics of
programming languages had two main roles. The
first was explanatory, that is, explain the meaning
of the new language by mapping it into a better un
derstood and a more familiar mathematical structure.
The second role, usually regarded as secondary, was
to determine which programs should be regarded as
equivalent. This second role is, for example, very im
portant for an optimizing compiler because it defines
the degree of freedom it has in rearranging the pro
gram without changing its declared meaning. Obvi
ously, the explanatory component suggests a mapping
between the programming language and another lan
guage, and is therefore inconsistent with the single
language approach. Indeed, one of the novel ideas in
troduced by Milner in CCS was emphasizing the role
of semantics in identification of equivalent programs,
and actually basing his semantics on the definition
of the equivalence relation between programs, com
pletely discarding the explanatory component. I find
it difficult to argue with this approach, since it is ques
tionable what degree of clarity is gained by mapping
recursive equations of programs into recursive domain
equations.

The second typically algebraic cornerstone of
CCS is the premise that the same language, namely
CCS, should be used for both specification and im
plementation of computational tasks. The difference
between these two uses of the same language lies only
in the degree of effectiveness and efficiency. As in the
LCF case, specifications are distinguished by being
short and obviously correct, while implementations
are expected to be efficient.

\'

Questions to R. Milner 517

Points of Debate:

- The one language approach tends to produce overly
restrictive specifications that describe how the pro
gram should be implemented rather than what it
should do. If one chooses an implementation differ
ent from the one envisioned when writing the spec
ification, then verifying its correctness becomes a
difficult problem of proving the equivalence of two
concurrent programs, and requires complex reason
ing.

This argument applies only if the property at hand
can be specified, indeed, within that one language.
But what to do if this cannot be done, such as spec
ifying mutual exclusion? Mutual exclusion proto
cols represent one of the fundamental problems of
concurrent processing. It seems to me they are dis
carded in your set-up.

- An advantage of the two level approach is that a
certain amount of decidability can be preserved in
the assertion language which is absent in the single
language approach. This aspect of decidability is
especially useful when developing machine-support
systems for program development. How do you, an
expert on such systems, respond to this aspect?

A specification should in general specify a SET of
processes rather than a single one. For example
to specify a process that will do either an 'a' or a
'b' operation we write in CCS 'a + b' which spec
ifies the process that does both. There is no way
to specify the set {a, b}. This has been recently
corrected in Sifakis' work. Relevant to this is also
the fact that Milner's CCS does not have a nat
ural definition of INCLUSION relation that sub
sumes the equivalence relatin. Again Sifakis' recent
work introduced an inclusion between his objects in
his extended language which are really sets of pro
cesses. Hennessy's CCS, which is based on linear
semantics, does have a general notion of inclusion
(or ordering).

- CCS that was suggested as a formalism for dealing
with concurrency translates concurrency away into
non determinism. The equation a II b = ab + ba is
typical to this translation. This is different from the
approach in Petri nets, or from maximal parallelism
as advocated by Salwicki & Miildner.

2.2 The atomicity versus hierarchical decomposi
tion question - Lamport's point of view

One of the paradigms of computer science is hi
erarchical decomposition. Indeed, as some authors ar
gue, every program of any complexity at all should be
developed using this strategy.

Hierarchical decomposition occurs in essentially
two different kinds.

One kind I shall call refinement, and may be char
acterized as decomposition in which the construct to
be composed (= the composee) and the decomposed

construct (= the compos ant) are expressed within
the same semantic framework. This case applies,
e.g., when one is programming using one fixed (wide
spectrum) programming language.

The other kind of hierarchical decomposition,
which I call implementation, is the one which I shaIl
focus on in the remainder of this section. Implemen
tation in my sense is to be distinguished from refine
ment in that composee and composant are expressed
in different semantic frameworks. E.g., the case ap
plies when one is programming an abstract tree ma
nipulation algorithm in a language without pointers,
and this program has to run on a computer with fixed
size words. In case the abstract trees can grow arbi
trarily large, pointers must be used in some form to
implement them, and hence a different formalism is
required for implementation.

Nearer to Robin's subject of research is the case
that one is presented with a program written in CCS
or esp. Now communication in CCS is synchronous.
Yet in networks communication is not synchronous.
So if one wants to consider this CCS program as a
high-level description of some network algorithm, it
has to be implemented within an asynchronous con
text implying a formalism different from ces. A more
practical example of hierarchical decomposition of the
implementation kind is given by the ISO reference
model for networks.

A third example concerns real time. In which
sense is a real time process a process in Robin Milner's
sense? One might wish to simulate clocks within CCS,
communicating their ticks via shared channels to all
processes concerned. To what extent does this help a
programmer having to deal with the protocols of the
already partly standardized ISO-layers just referred
to?

The introduced notion of implementation is
closely related to that of atomicity. What is speci
fied as a concurrent process on one level of atomicity
is a different object once the atomic actions are im
plemented using another level of atomicity within a
different semantic framework.

Point of debate:

- A general notion of concurrent process should be
insensitive to the level of atomicity chosen within
a framework. It should not matter whether oper
ations are atomic or not, because a specification
on one level of atomicity should remain relevant
to a deeper, more implementation oriented, level
on which the atoms of the previous level are de
composed and new, more realistic, semantic notions
have been introduced. That is, my ideal notion of
process should remain invariant under different im
plementations of increasing complexity and detail,
and should not depend on an a priori fixed level of
atomicity.

518 W.-P. de Roever

2.3 Technical questions - Bergstra & Klop's point
of view

Points of debate:

In Robin's present paper prefixing is suggested
as additional construction (Principle 8), instead of
the more general operation of sequential composition.
Now the advantage of general sequential composi
tion is its greater expressiveness. There are programs
which can be defined using a finite number of recur
sion equations in case general composition is avail
.able, but which would require an infinite number of
such equations had merely prefixing been available (
a. result of Hoare's). Now I seem to recall that-gen
eral sequential composition can be simulated within
CCS, and therefore the above remark only applies if
no CCS-type concurrency is present. Yet Hoare's ob
servation does point to the fact that general sequen
tial composition is of great help when specifying pro
grams, and that on the level of specification one does
not want to be faced with cumbersome terms simulat
ing general sequential composition. So why not intro
duce general sequential composition, as a first class
citizen in its own right, as a primitive operation, and
later on point to some refinement relationships?

As Bergstra & Klop have argued, one shouldn't in
troduce T immediately as the result of a communi
cation (elc = T), but one should rather introduce
an intermediate step i, which should be renamed
later as T: el'C = i and later T{i} (i) = 1'.

Their motivation is that i is sometimes needed as
guard in recursion equations in order to obtain
unique solutions of these equations. The fact that
equations such as X = T X have no unique solu
tions complicates their understanding and ease of
manipulation.

How do you distinguish between deadlock and di
vergence, and between deadlock and termination?

(Axiomatic approach) A characteristic feature of
Bergstra & Klop's algebra of concurrent processes
(ACP) is their (algebraic) axiomatic basis. This

contrasts with the usual way of characterizing con
current processes prior to Bergstra & Klop's work
(to the best of my knowledge), which uses (some
abstraction of the notion of) trees, and then "dis
covers" that laws such as x + x = x apply.

An axiomatic methodology inverts this style of
characterization. First axioms are given, then their
models are studied (efr. the theory of groups, cited
on pg. 2 of Robin's book). The first advantage of
the axiomatic approach is its model theory in which
the possible variations between models of the same
theory are established, and relationships between
these models derived. A second advantage is that
axiom systems can be manipulated in modular fash
ion, such as is, e.g., the case in the theory of ab
stract data types.

Should one interpret your current lecture as posi
tive indication of the fact that you have also been
converted to this viewpoint?

3. References

{I} J.A. Bergstra and J.W. Klop, Process Alge
bra for Synchronous Communication. Infor
mation and Control, vol. 60, nos. 1-3, Jan
uary /February IMarch 1984.

{2} L. Lamport, Specifying concurrent program mod
ules, ACM Transactions on Programming Lan
guages and Systems, vol. 5, no. 2, April 1983.

{3} H.13arringer, R. Kuiper, A. PnueIi, And now you
may compose temporal logic specifications, Proc.
of the 16th ACM Symposium on the Theory of
Computing, 1984.

Acknow ledgements

I wish to thank the Weizman Institute of Science
for its hospitality, and Carol Weintraub for typing the
manuscript upon late notice.

