EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Hybrid process algebra

Citation for published version (APA):
Cuijpers, P. J. L., & Reniers, M. A. (2003). Hybrid process algebra. (Computer science reports; Vol. 0307).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/17685d5c-8f9f-40a9-8659-1bc9811116b8

Hybrid Process Algebra*

P.J.L. Cuijpers and M.A. Reniers
July 3, 2003

1 Introduction

1.1 Hybrid Systems

The theory of hybrid systems, studies the combination of continuous/physical
and discrete/computational behaviour. When computational software is com-
hined with mechanieal and electrieal components, or is interacting with, for
example, chemical processes, a hybrid system arises in which the interaction he-
tween the continuous behaviour of the components, and the discrete behaviour
of the software is important.

In curreni practice, often the discrete part of a hivbrid systemn is described
and analyzed using methods from computer science, while the contimions part
is handled by control science. The design of the complete system is nsnally such
that interaction hetween the discrete and continions part is suppressed to a
minimmim. Becanse of this suppressed interaction, analysis is possible to some
extent, but it limits the design options. In the field of hybrid systems theory,
researchers attempt to extend the possibilities for interaction. The goal of this
paper, is to develop an algebraic theory, called hybrid process algebra {HyPA),
to support these attemnpts. Our hopes are that hyhrid process algebra can serve
as a mathematical basis for improvement of the design strategies of hybrid
systems, and the possibility to analyse them. Further on in this introduction,
we will review some of the already existing hybrid formalisms, and point out
the defects of those, on which we hope to make some improverments.

In figure 1, a graphical representation is given of the general aim of onr
efforts. The figure shows our desire, that a hybrid theory is, in a sense, a
conservative extension of computer science and systems theory. More precisely,
a model from systems theory or computer science, should be expressible, and
preferably look the same, in the hybrid theory, and theorems from systems
theory and computer science should be transterable to the hybrid theory {(when
restricted to models from the original field of course). What the figure does not
show, is that this conservativity is not the only goal. In that case, a simple

iy

*We would ltke to express our gratitude to Progress/STW (Grant EESHITR), Philips-CF'T
and Assembleon, for their financial and material support of this project.

union of the theories wonld be sufficient. We also desire a certain interaction
hetween the theories, reflecting the interaction hetween software and physics
described before. This goal is harder to formalize, but in the remainder of this
infroduction we hope fo give some feeling for i, using examples of deficiencies
{in our view} in existing hybrid formalisms, and indicating how we intend to
improve on those.

Hyhrid Theory

Syntax
Systems Theory Computer Science
Syntax Syntax

Svstems Theory Compmter Science

Semantics Semantics
Hybrid Theory

Semantics

Fignre 1: Developing Hybrid Theory

1.2 Algebraic Reasoning

In systems theory, algebraic reasoning is acknowledged by most people, as one
of the most powertul tools available for analyzing physical behavionr. This
behaviour is usually described by differential equations and inclusions, which
model the rate of change of the value of certain continous variables, or by dit-
ference eguations and inclusions, modelling discrete changes in variables. Note,
however, that these two ways of descriptions are hardly ever combined. As an
example of a differential equation, & = f(z.), in which & and u are variables
ranging over the real numbers, and f is real valned function, models that the
value of & changes continuously through time (indicated by the dot in &) with
a rate defined by fix,u}, i.e. by the enrrent value of ¢ and ». Alternatively, if
there is a choice of rates of change, one may write # € F(w, v}, in which F is a

set-valued function over the reals. Also, an inequality = < f{x, y) may denote
that z is constrained in its valne (not its rate of change} for some reason. As
an example of a difference equation, ¥ = (2=, 47) denotes that the value of
z is reassigned to f(z~,%). based on the previous values of x and u. This
way of notation is for example nsed in [41]. Following Henzinger's way [26] of
describing continuous behaviour, we allow any predicate over model variables
V., and their ‘dotted” versions V,,, in this report. These predicates are called
flow-clauses. Analogously, predicates over V. and V1 are called ‘reinitializa-
tion clanses”, and are nused to model discontinmons behaviour of model variables.
However, although we allow arbitrary predicates over model variables, the anal-
vsis of systems will often furn oné to be easier, if we confine onrselves to ¢lanses
based on some algebraic way of description.

In computer science, the nsefilness of algebra is still a topic of much de-
bate, but nevertheless there are interesting examples of applications of process
algebra (see for example [23] for a list of references to protocol verifications,
[12] for a start in the description and analysis of other indnstrial size problems,
like the design of a controller for a coating system and a turntable system, and
[22] for the description and analysis of railway interlocking specifications). In
process algebra, the discrete actions that a systermn may perform are offen con-
sidered atomic elements of the algebraic deseription language. These ‘atomic
actions’ can be combined using operations describing choice between hehaviors,
seguential execution of hehaviors, and concurrent execntion of hehaviors. For
example, the process algebraic equation X == aX + b describes a recursive pro-
cess X that may choose to execute an atomic g action, followed by an exeention
of X again, or choose () to exeente b and terminate. In this report we take the
process algebra ACP 8] and extend it with new atoms, describing continuons
hehaviour through the nse of flow-clanses and discontinmons behaviour throngh
reinitialization-clanses as mentioned before. Also, we import the disrupt oper-
ator from LOTOS [13], since it turned out to model the sequential composition
of flow-clanses well. The choice for ACP is rather arhitrary, and we expect that
the methods described in this report can be easily extended to other process
algebras. Obviously, the choice for ACP leads to the need for an alternative
notation tor some symbols, sinee, amongst others, the process algebraic + has
a different meaning than the system theoretic 4. In section 2.1 of this report,
these notational problems are solved, and the notation for our hyhbrid process
algebra is formalized.

Returning to figure 1, we may conclude that we have chosen the process
algebra ACP as a representative syngax for computer science, and a predicate
variant of differential equations and difference equations for systems theory.
The resulting conservative extension, we call hyhrid process algebra {or for
short, HyPA), in which abstract actions are described by the actions of standard
process algebra, physical behaviour is described by How clanses, and assign-
ments and other discontinuities are described by reinitialization clauses. The
reason for this choice of syntax, is thai we agree that algebraic reasoning is an
important tool for the analysis of systems. and that we wonld like to support
the possibility of algebraic reasoning abonut hiybrid systems. So far, the only

algebraic approaches that we know of regarding hybrid systems, are described
in [37, 39, 36] (hyhrid), [44, 11] (hybrid versions of ACP}, [27] (hyhrid C8P)
and [35] (¢-caleulus). In the remainder of this introduction, we will explain
the deficiencies that these methods have. in our opinion, in describing hybrid
interaction. We should note, that within other hybrid formalisms like hybrid
automata [26, 28], hybrid Petri-nets [9, 16, 19] and hybrid action systems [33],
the nse of algebraic reasoning on differential equations for analysis purposes,
is not uncommon. It is the process algebraic reasoning that is underexposed.
For a translation of hybrid antomata into the process algebras (8P, and timed
#CRL, see [2] and [45, 24], respectively.

In the hybrid theory that has heen developed by system theorists (see for
example [41, 42, 10, 25, 40, 18]} algebraic reasoning is possible, but none of
these theories support reasoning abont non-determinism. All of these theories
have a trace semantics, and cannot distinguish deadlocks and non-deterministic
choices. Since we would like a conservative extension of process algebra, we
wonld also like to he able to distingnish systems up to the notion of bisimulation
equivalence, and therefore, we consider the system theoretic formalisms as non
conservative with respect fo computer science.

In section 3 of this report, we prove formally that HyPA is a conservative
extension of the process algebra ACP, and by construction of the semantics, it
is immediately clear that it is a conservative extension of differential inclusions,
at least up to the type of solutions we have chosen to use.

1.3 Hybrid Interaction

Many of the hybrid formalisms that we have mentioned so far, have some prob-
lem in the definition of parallel composition. And surprisingly. in most cases,
this problem comes to light in a purely continuons case study. Let us consider
the following example, depicted in figure 2, of a continmons plant P described
by the differential equation & = f(x, u), and a continuous controller ¢ described
by % = g(x}. The composition of plant and controller will be denoted as P || .

P
&= fle,u)

C
u=glx)

Figure 2: Continnous control system

The hybrid automata of Henzinger [26], as well as the hybrid process alge
bra of Vereijken [44], and of Jifeng [27], assume that the continuons behavionr
of two composed systems is independent. Using these formalisms, the system
P | ¢ would not model any interaction hetween P and € at all, since the only

interaction between systems can be through computational actions. The vari-
able 2 of P would simply be regarded different from the variable ¢ of . Hence,
in our opinion, these formalisms cannot be considered to be a conservative ex-
tension of systems theory. At least, they do not support the way in which we
wonld like to think about parallel composition of systems.

In a similar way, it turns oni that the parallel composition of the above
processes is not defined for the hybrid antomaton model of Lynch, Segala and
Vaandrager [28]. At least, not without a few amendments. In the formalism of
[28], it is nacessary to identify variables as either state variablas of a system, or as
external variables of the system. These two sets of variables are supposed to be
disjoint. The intnition hehind this partition is that the state variables model the
memory of the system, while the external variables model the communication
with other systems. Therefore, in a parallel composition, it is reguired that two
hybrid antomata are competible, meaning that the state variables of the one
antomaton do not intersect with any of the variables of the other antomaton.
Now, looking at the plant P of fignure 2. we see that we need to choose « £o be a
state variable, otherwise information on x is lost between transitions, but it also
needs to be an external variable, since we need to communicate its value with
the controller . This contradicts the reqguirement on hybrid antomata that the
set of state-variables and the set of external-variables are disjoint. Admittedly,
the problem is not as big as it may seem, since by adding an external variable
y, and the equation y = 2, to the description of P, and changing the deseription
of O to u = gly), we can declare z to be a state-variable, and find that the
systems have become compatible. So. although the system in figure 2 cannot
he modelled as P ¢ directly in this hybrid antomaton model, we can modeal
the slight modification depicted in figure 3 instead.

P
2= fleau)

y=zx

c
u=gly)

Fignre 3: Compatible continmons control system

In [32] it was already noted that the variable-partition of a system, is not
always uniguely determined by the equations that describe the system. Even
in our simple control example, it is possible to nuse the equations ¢ = y and
u = glx), and declare x external and y a state variable. Often, there is no
clear physical ground to choose a specific partition. This is the one reason why
we would like to avoid the partitioning of the set of variables of a system, in
our semantics. Another reason. is that in basic texthooks on control theory
{for example [17]}, one usually starts out with developing controllers for plants

of which the state-variables are also output-variables. It therefore seems, that
the intnition behind compatibility, that state-variables do not play a role in
communication with other systems, does not coincide with the system-theoretic
ingnition. This is confirmed by the theory disenssed in [32]. where state-variables
may also be output-variables of a system, while external-variables may be inputs
or outpiits.

In this report, we show that partitioning the model variables as done for
hybrid antomata, is in fact not necessary, if a subtly different semantical view
is taken. We have to credit the authors of [28] however, for being able to do
analysis, to some extend. in the light of abstraction of variables {making them
internal}. The hybrid process algebra we present in this report is not concerned
with any form of abstraction so far, because experience with normal process
algebra shows that abstraction is a diffienlt topic to study algebraically, and we
expect it to be convenient, that the basic theory is worked out first [7]. On the
other hand, HyPA is developed in close cooperation with the people who are
working on the formal semantics of the hybrid y-langnage. which is foenssed
on the simulation of hybrid systems. Their operational semantics [36] uses a
semantical structure similar 0, and based on, the one we have developed for
HyPA (discussed in section 2.2), and their langnage does contain and operator
that allows for the hiding of model variables {althongh there is no axiomatization
for it vet}. Also the hybrid process algebra of Bergstra and Middelburg [11],
that appeared as a technical report just ome week before this one went o print,
uses a hybrid fransition system semantics, and has comparable definitions for
parallel composition. Furthermore it has a form of abstraction from model
variables, comparable to that of v. We expect, therefore, that it is possible to
develop a similar abstraction operator for HyPA, and hopefully to find a way
to reason about it algebraically. In section 4, we disenss the relation befween
HyPA, y and the process algebra of [11] in more detail. Admittedly, these three
languages are very similar, which calls for a more thorough comparison in the
near future.

In ¢-calenlns [35], the semantics assumes continuous hehaviour to he a prop-
erty of the environment, rather than of the process itself, There, (urgent} envi-
ronmental actions allow the process to change the rules for continuous hehavionr
in an interleaving manner, which leads to the replacement of one differential
equation by another. Again, there is no contimious interaction between P and
. When we write P{]C in ¢-caleulns, the semantics is such that only the
continmous behaviour of the plant or of the controller is executed. This, clearly,
contradicts with our intuition on the parallel composition.

In hybrid action systems, the parallel composition of P and ¢ leads o the
desired result. if we ignore some irrelevant syntactical constructs. However, the
parallel composition of two differential equations ¢ = 1|/j& = 2 results in a
process that acts like the differential inclusion # € {1,2}. This, again, contra-
dicts with onr intuition. We would expect contradicting equations to result in
deadlock. Nevertheless, hoth the ‘interleaving’ approaches from ¢-calenlus and
hybrid action systems, nright turn onf to be nsetul in sitnations where our intu-
ition is flawed, and the theories might be considered complementary to HyPA.

In conclusion, we might state that we alm for an algebraic formalism, in
which the parallel composition has a similar intuition as in [28], but withont
having to require compatibility of the composed systems. To do this, we have
worked out the notion of hybrid irensition system. as a semantical framework,
in [15]. This framework unifies the discrete behaviour of computer science and
the contimions hehaviour of system theory in a similar way as the hybrid an-
tomata of [28] do, while avoiding the explicit nse of state variables and external
variables. From a system theoretic point of view, hybrid transition systems are
an extension of Sontag machines [38]. Beturning to figure 1, one might say that
the chosen semantics of the original fields are transition systems for computer
science, and Sontag machines for system theory. Our conservative extension of
those is ¢alled hybrid transition system. On the framework of hiybrid transition
systems, it furns out fo he rather easy to define an operational semantics for
actions, as well as for differential equations and inclusions. Also all kinds of
compositions known from process algebra, among which parallel composition,
can be defined easily using the method for giving an operational semantics in-
troduced in [31]. As far as we know, HyPA and y and the process algebra of [11]
are the only process algebras for hybrid systems so far. that use an operational
semantics in which complete physical signals are taken into acconnt rather than
only the time-behaviour of a system.

1.4 Discontinuities

Regarding discontinuous behaviors, the semantics for differential eguations in
HyPA, differs a libtle from the usnal interpretation taken in, for example, Hen-
zinger's hybrid antomata. The standard approach there (and in most other
hybrid formalisms), is to assnme only contimons hehaviour of all variables, un-
less they are specifically altered by assignment transitions. For some hybrid
descriptions of physical behaviour, however, it is convenient that certain vari-
ables can also behave discontinuously. Take, for example, the electrical circnit
depicted in fipure 4, in which a switch steers the voltage over a resistor-capacity
corhination.

2

/
Le‘ Rll:] —

Figure 4: Electrical cirenit with switch

For such a system, it is desirable o model the voltage over, and the current
through the resistors (vgy, vie. i, and i4) as discontinuons functions of time.
A possible hybrid automaton model for this cireuit, is depicted in figure 5. Note,

that there are arbitrary jumps modelled on the transitions, for the discontinions
variables {i.e. not for ve!}. This is necessary, becanse, withont deeper analysis
of the differential equations, we do not know what kind of discontinuities may
oceur. In order to avoid discontinmons hehaviour that violates the physical
properties of the cireuit, we may indicate in the hybrid antomaton model, that
the algebraic equations used to describe the electrical cirenit are inverients. As
an example of an undesired discontinuity, one should note that, when the switch
closes, the current throngh the second resistor (ig.) is determined completely
by the source voltage v, and the voltage over the capacitor v, The invariants
make sure that no other assignments can be made to i gs.

How:
o= O e
inv:

iigp = ~igz
v =iy Hl
Vg =ty H2
Vi =V + U0
i =i

jmp: jrmp

v € R vy € R
v € R vy € R
i € R igi i€ R
ige € R iga € R
it € R i€ R
ack. act:
open Aow: ¢lose

peo= O e
inv:

Uiy = Ug
v =i Hl
Vg = iy 2

URL = Uz + UC

Ty = e

Figure 5: Auntomaton modelling the electrical cirenit

Now, in the case of higher index differential equations, the approach of using
invariants to avoid undesired discontinuities breaks down. As an example, let us
consider a system described by the following equations, in which z is a variable

that may hehaviour discontinuously:

o
y = -z
o T

As before, it is nndesirable that an assignment to z is made that violates these
equations. But the approach that is usunally taken in hybrid antomata theory,
to take all algebraic equiations to be invariants, does not work here. The choice
of z is independent from the choice of & and 4. Clearly, the system only can
perform confinuons behaviour, if the value of z is reset immediately to zero.
This, however, is insight obtained through analysis of the equations, and should
therefore not be nsed when modelling a system. As far a8 we know. there is no
solintion in hybrid automaton theory for this problem. This is why we take a
different approach regarding discontinmons behaviour in HyPA.

In HyPA, when modelling a differential equation, we can indicate explicitly
whether z is continuous or discontinuous. I it is continuous, we find deadlock
for the higher index differential equations of the previons example. H it is
discontinmous, only those discontinuities can ocenr for which a solution exists.
Furthermore, assignments are modelled, not as a kind of atomic actions (as with
hybrid antomatal, but as reinitializations of processes. As it turns out, the
reinitialization of How-clanses only ocenrs if the fow-clanse has a solution atter
reinitializing, while the reinitialization of atomic actions is always executable.
This will be explained in more detail in section 2.2 of this report.

1.5 Drawbacks

At first sight, there seemn to be two major drawhacks to our method. The first
drawhack, is that we need a kind of hisimulation equivalence that takes into
acconnt the valuation of all variables, in order for it to be a congruence for
parallel composition. However, this does not render the whole theory useless,
bhecanse the same method of reguiring compatibility of processes that was nsed
in [28] in order to define parallel composition, can be used in HyPA to guarantee
congruence of parallel composition under a weaker notion of equivalence (like
the one nsed in [28]), and furthermore, we give an axiomatization for our notion
of equivalence that allows elimination of the parallel composition from closed
process ferms, so that weaker notions of eqguivalence can be nsed for analysis of
processes atter applying this elimination. The second drawhack, is that some
of the axioms hecome rather confusing due to the discontinmities that may be
possible in some of the variables of a differential equation. This can be helped,
as we show in section 3, by simply reguiring all variables to be continmous,
as in hybrid antomata. So, in conclusion, the theory is not more diflicult or
cutnbersome, if we model processes under the usual restrictions. In fact, as we
indicate in section 4.1, we expect that HyPA is a conservative extension of hybrid
antomata, although we do not give a formal proof of this claim. Furthermore,

we have new constructs to our disposition that are not available, yet, in other
hybrid formalisms, at the cost of having to use more diffienlt axioms.

1.6 Structure of this report

In section 2.1 of this report, the syntax of HyPA is presented, describing how the
standard process algehra ACP [8] is extended with a constant for termination,
the so-called disrupt operator, known from LOTOS [13], and a simplification of
the two fypes of clauses from [41], representing contimons and discontinuons
behaviour. As we mentioned before, HyPA does not contain any operators for
handling abstraction of actions or variables yet. But, even without abstraction
constructs, hybrid process algebra turns out to be interesting fopic of study,
already. Furthermore, since abstraction is arather complicated subject. it seems
wise to develop a concrete process algebra first [7]. In section 2.2, a hybrid
transition system semantics is defined in the style of [31], in which continuons
bhehaviour is synchronizing, and discrete behaviour is interleaving. Section 3 is
devoted to an axiomatization of HyPA, for the equivalence notion of bisimulation
[29]. In this section. also the formal relation with ACP is disenssed, and a
set of basic terms is given into which closed HyPA terms can be rewritten.
We conclude by giving our own views on the work presented, and by making
sugeestions for future research. In the appendices, we give the proofs for the
sonndness, conservativity and rewriting claims of section 3.

2 Hybrid Process Algebra

2.1 Syntax

In this section, the syntax of HyPA is introduced, which is an extension of
the process algebra ACP [8, 21], with the distupt operator from LOTOS [13]

and with flow-clanses and reinitialization-clanses from the event-flow formalism
introduced in [41]. The syntax of HyPA is defined by:

P = $ierarcid» P1P o PP o Py
Py PP P P|PIP||PiP|P\6y(F),

where ¢ € A, e € O and d € D are not defined formally here, but only described
informally in the following explanatory text.

s There are the atomic process terms § {ealled deadlock) and € {called empty
process t, modelling respectively a deadlocking process and a (successiully)
terminating process.

s There are atomic discrete actions, chosen from a set A, nsed to model
discrete, computational hehaviour.

s There are flow-clouses, used to model continnons, never terminating, phys-
ical behaviour. Flow-clanses are chosen from a set . formed by pairs

10

[1% Pred] of predicates Pred, in which model variables V,,, (with 2 € ¥,,,
taking value in V(z)} and their derived' versions Vi, = {& 1 2 € ¥V}
(with & also taking value in V(z)) may occur as free variables, and of a
subset V € V,,, signifving which variables are contimions, in the sense
that during the evolution of time their valne may not jump. We usually
leave ont the brackets for V, and even omit it {and the " delimiter} if
it is empty. Typical flow-clauses are differential equations, for example
[#] &= fle.y)], and algebraic inequalities, for example [z < fle.y) .
Furthermore, the set ' is closed under conjunction (A) of clanses. In
general, the domain V(z) of a model variable z € ¥, is specified by the
modeller at the first introduction of the variables. In this paper, the spec-
ification of domains is usnally left out since, most of the time, it is obvious
from the context. We write V== [J o V() for the nnion of all variable
domains, and Vol = V¥, — V¥ for the set of variable valuations.

s There are reinitialization-clauses, used to model discontimons changes in
the values of the model variables. Beinitialization-clanses are chosen from
a set [J, formed by pairs [V Pred], consisting of predicates Pred. in
which free variables may occur from the sets Vi, = {&~ 1 & € V,,,} and
Vi = {at 1@ € Vi }, modelling the cnrrent and future value of a model
variable, respectively, and of a set V' C V¥V, modelling which variables
are allowed to change. Typical reinitialization-clanses are assignments,
for example [:i:] at = fla, y’}] which, in imperative programming, is
nsually denoted as x := f(z,y). But, also hoolean predicates can be
modelled, by choosing V' empty (using the same notational conventions
as with flow-clanses), and only using the current value of variables, i.e.
[Pred(:f:_,y_, .- }] Apart from containing the above described pred-
icates, the set [J is closed under conjunction (A}, disjunction (V), and
concatenation {~) of reinitialization-clanses. Also, there is a satisfiability
operator (d'} on clauses d € D, which does not reinitialize the values of
a model variable, but only executes the reinitialized process, if d can be
satisfied in some way, and there is a reinitialization-clanse (.,) derived
from a flow-clause ¢ € £, which execntes the same discontinnities that are
allowed initially by the flow-clanse. These last two operators turn onut to be
especially useful when caleulating with process terms. Reinitializations-
clanses are assumed o act upon another process, so if p € P is a HyPA
process, and d € D is a reinitialization-clanse, then 4 > p denotes the
reinitialized HyPA process.

» Thereis the alternative composition® p@ g, modelling a (non-deterministic)

IWe assume derivation is defined for all variables, but if we want to us a variable for which
this % not the case {for example a computational data structure], then no formal problems
arise as long as we do not nse the derived variable # in our predicates.

2We nse the notation 4 and > for alternative and sequential composition, rather than the
nsnal 4+ and -, to avoid confusion with the notation used in flow-clanses and reinitialization-
clanses for addition and mmltipHcation. Also, we use X a2 p for recursion rather than X = p.
We realize that this might distract people in the field of process algebra, yet chose to adapt

11

choice between the processes p and q.

s There is the sequentiol composition p© g, modelling a sequential exeention
of processes p and g. The process ¢ is executed after termination of the
Drocess p.

s There is the disrupt operator p » g, which models a kind of sequential
composition where the process ¢ may take over execution from process p
at any moment, withont waiting for its termination. This composition is
invaluable when modelling two flow-clauses executing one after the other,
since the hehaviour of flow-clauses is ongoing, and never terminates. The
disrupt is originally introduced in the language LOTOS [13], where it
is nsed to model for example exception-handling. Also, it is used, for
example in [4], for the description of mode-switches.

s Related to the disrupt, there is the lefi-disrupt operator, denoted p > g,
which first execnites a part of the process p and then behaves as a normal
disrupt. The left-disrupt is mainly needed for calenlation and axioma-
tization purposes, rather than for modelling purposes. For example, it
ocenrs often when we attemnpt to eliminate the parallel composition from
a process term through axiomatic reasoning, as described in section 3.

s There is the parellel composition, p || ¢, which models concurrent execu-
tion of p and ¢. The intuition behind this conenrrent execution is that
discrete actions are executed in an interleaving manner, with the possibil-
ity of synchronization (as in ACP, where synchronization is called com-
ntunication), while flow-¢lanses are forced to synchronize, and can only
synchronize if they accept the same solutions. The synchronization of ac-
tions takes place nsing a {commutative and associative} commumnication
function v € (4 x 4) — 4. For example, if the actions a and ¢’ synchro-
nize, the resulting action is ¢” = ava’. Actions cannot synchronize with
flow-clanses, and in a parallel composition between those, the action will
execnite Arst.

s Related to the parallel composition there are the operators p|l g (called
left-parallel composition), which denotes that p performs a discrete action
first {if possible}, and then it hehaves as normal parallel composition, and
plg (called forced-synchronization), that denotes how the first behaviour
{either a discrete action or a part of a flow) of p and ¢ is synchronized, after
which it hehaves as normal parallel composition. As with the left-disrupt,
these operators are mainly introduced for ealenlation purposes.

s There is the encepsulation, 8y (p), which models that certain discrete
actions (from the set H C A} are blocked during the execution of the
process p. This operator is often used in combination with the parallel

the process algebraic notation rather than the notation adopted fram system theory, simiply
becanse the latter has been in use for a longer time already.

12

composition to model that synchronization between discrete actions is
enforced.

s Finally, all the processes should be interpreted in the light of a set E of
recursive definitions of the form X = p, where X is a reeursion variable
from the set V. (with V. NV, =) and p is a process term in which this,
and other recursion variables, may oceur. Recursion is a powertul way to
model repetition in a process.

The binding order of the operators of HyPA is the following: @, », >, d 3>, ||,
L. |. &, where alternative composition hinds weakest, and sequential composi-
tion binds strongest. With encapsulation (9 (1)), brackets are always used. As
an example, a term d » a5 85 ¢l ¢ should be read as (d > (@ © b1} © (c|]).

2.2 Formal Semantics

In this section, we give a formal semantics to the syntax defined in the pre-
vions section, by constructing a kind of labelled transition system, for each
process term and each possible valuation of the model variables. In this transi-
tion system we consider two different kinds of transitions: one associated with
compntational hehaviour (i.e. discrete actions), and the other associated with
physical hehavionr {i.e. How-clanses}. This is why we call those transition sys-
tems hybrid.

Definition 1 (Hybrid Transition System) A hybrid transition system #s a
tuple { X, A, S, .~), consisting of o state space X, a sef of actions labels
A, o set of signal labels X, ond fransition relations —C X x A x X and ~C
X x ¥ % X, Lastly, there is o terminalion predicate v € X.

For the semantical hybrid fransition systems that are associated with HyPA
terms, the state space is formed by pairs of process terms and valuations of the
model variables to their domain, i.e. X = P % Val. The set of action labels is
formed by pairs of actions and valuations, i.e. & = 4 x Val, and the set of signal
lahels is formed by partial functions of time to valuations, ie. & = T = Val.
In this paper, we model time using the non-negative real numbers (7" = R2").
Furthermore, we limit onrselves to those elements o € ¥ that have a closed
interval. non-singleton domain, which includes the least element O, soif ¢ € X
then the domain of o is of the form dom(o) = [G...{, for some ¢ > (. We

use the notation (p.2) V5 {p'. 2" for a transition ((p. #). (a. '), (5. ¥")) € =
with (p, 2}, (#/,#"} € X and (a,+') € A Similarly, we use {(p,v) 5 (p/,v)
for a transition ((p.#).e.(¢.#'}} €~ with ¢ € £, and for arbitrary transitions,
we use (p,) 4 {9,) instead of ((p,), L () em U~ and l € AU
Finally, termination is denoted {p,»} v instead of (p,») € V.

Hybrid transition systems can be used to model computational behaviour
throngh the use of action transitions, which take no time to execnte, and to
model physical behaviour throngh the use of signal transitions, which represent

13

the hehaviour of model variables during the passage of time. Note, that there
is no variable in V,,, that is explicitly associated with time. Hence, if one wonld
like to refer to time in a flow-clause, one would have to include the model of a
clock, using for example a differential equation like [¢ | {= 1].

In table 1, the semantics of the atomic processes and the low-clanses is given,
using deduction rules in the style of [31]. In rule number (3).(4} and (5) we use
the notations (v, o} = ¢ and (#, '} k= d, for notions of solution for fow-clauses
and reinitialization-clauses, that are explained further on in this section.

(.0} b= ¢, dom{c} =[0...1]
(1) (2} (3)

{e)V {awy ¥ {e.v) (eow) > (eall))

(') =d (p/) n (i =d (pv') 5 (F.")

(A pu)d (A pw)y 5 (")

(3)

Table 1. Operational semantics of HyPA

Rule (1} capiures our infuition that € is a process that only terminates.
Analogonusly, the fact that there is no rule for 4, expresses that this is indeed
a deadlocking process. Rule (2) expresses that discrete actions display their
own name, and the valnation of the model-variables on the transition label, but
do not change this valuation. Changes in the valuation can only be caused by
flow-clauses and reinstallation-clanses, as defined by rules (3} to (5},

A flow-clanse changes the valuation of the model-variables according to the
possible solutions of its predicate. In contrast to the flow predicates of [26],
discontinmities in the flow of a variable z, are allowed in HyPA when 2 ¢ V.
Formally, we define the concept of solution of a flow-clanse as follows.

Definition 2 (Derived signal) For o signel 0 € X, the derived signal ¢, on
the same domain, is defined by 6 (' ¥(x) = (%a(i)(:n}) {(t"y, for all ¥ € dom(c).
On the bounds of the domain, we use the lefi- and righi-derivative, respectively.

Definition 3 (Solution of a flow-predicate) We define thot a pair (v,v') €
Val x Val is o solution of a predicate Pred on free variables ¥V, U Vo, denoted
(v, ') = Pred, if the predicate evaluates to true, when every woriable x in the
predicete is evaluoied to v(z), ond every derived veriable © in ihe predicoie is
evaluated to v/ (x).
Definition 4 (Solution of a flow-clause) A pair (».0) € Vol x L, is defined
to be a solution of e flow-clouse ¢ € U, denaied (v, 0} k= ¢, os follows.
o (ro) = [V| Pred] if for all t € dom(o) we find (c(t),5(t)) = Pred. and
for ell x €V we find vix) = o(0){2) and o(-){x} is a continuous function
frem T to V(z);

14

s (rollEerad f (rollEecond (vo) =0

Clearly, the clause [faése] has no solutions. Furthermore, for the solutions
of a differential equation [:.':[&= flz,y)], we find that o{-j(x) (with « the
differentiated variable} is a contimions and differentiable function of time. For
[é‘me]: every signal {inclnding discontinuous signals} is a solution.

Reinitialization-clauses change the valuation of the model-variables accord-
ing to the possible solutions of their predicate. The set V. that we use in
addition o predicates, indicates that a variable is allowed to change its value.
Whenever & ¢ V', the variable » is fixed, and we can extend the predicate with
x~ =z, Formally, we define a solution of a reinitialization-clause as follows.

Definition 5 (Solution of a reinitialization-predicate) We define that a
pair (w0} € Val % Val is o solution of e predicoie Pred on free wariables
Vo, UV, denoted (1,07} |= Pred, if the predicaie evaluotes bo true, when every
variehle ©~ in the predicate is evaluated te v(z), and every derived variable «
in the predicaie is evolucted fo v/ ().

Definition 6 (Solution of a reinitialization-clause) A pair (2. 2/) € Val x
Vol is defined to be a solution of o reinitielizelion-clouse d € D, denoled
(1.7} = d, as follows.

o (v b= [V] Pred] if (».#) |= Pred ond for oll 2 ¢ V we find v{s) =
v ()

(wy=dvd if (viy=d or (v YD,
(v yb=d Ad” if (') b= d ond (0,07 = d7;
(.0 b2 d ~ ' if there exists v € Vol with (v.v) = d and (v, = d7;

(v.Y = d? if w=1", and there exists v € Val with (v.v) = d'.

o (1.0} |= Cimp if there exists 0 € & such thot (v. 0} |= ¢ ond o{l} = /.

Obviously, | false] has no solutions, while [¥, | true | has every possible
reinitialization as solution. Note, that [tme] exactly allows all reinitializations
that do not change any of the variable valuations. I we want fo model a
conditional execntion of the form “if Pred then 57, for a predicate Pred on free
variables from V,,,, and a process p € P, this can be done keeping V' empty
and by writing [Pred*] 3 p. Here, Pred™ denotes that we replace every
free variable « in Pred by 2. In a similar way, we sometimes write Pred’ to
denote the replacement of every o with . Taking V empty implies that, for all
variables # € V,,,, we have 2~ = 27, Finally, if we have a two reinitialization-
clanses d,d" € D, the clanse d ~ &' aceepts exactly those solutions that are
in some way a concatenation of the reinitializations of 4 and . The clause
d” does not change the value of any of the variables, and only has a solution
for those valuations for which d has a solution. The clanse ¢y, imitates the
reinitializations performed initially by a flow-clause ¢.

15

Now that the atomic behavionr of HyPA has been explained, let 1us take a
closer look at the operators. Their semantics is defined in table 2. Rules (6} to
{16}, for alternative and sequential composition, are very similar to that of ACP.
However, it is worth noting that we have chosen to model signal-transitions as
having the same non-deterministic interpretation as action-fransitions. This in
contrast o many timed process algebras [5], where the passage of time (by itself)
does not trigeer a branching in the transition system. The reason for this way of
modelling, is our infuition that continuons hehavionr (i.e. the passing of time)
influences the valnation of the model variables, and can therefore introduce
choices in the system behaviour, just like discrete actions do. I, in the future,
we develop operators fo abstract away from the variables that trigger those
choices, we do not want the choices themselves to disappear, through some
time-determinism mechanism. The argnment for introducing time-determinism,
that time is an external phenomenon, does in our opinion not hold for hybrid
systems. Also, the hybrid antomata of Henzinger [26], and most other hybrid
antomata approaches that we know of, are time-non-deterministic, supposedly
for the same reasons.

Interestingly, in [11] a time-deferministic approach to hybrid systems is cho-
sen (clearly they disagree with the above argnments), while in y [36] an op-
erator is infroduced for both. Models in the v languages, therefore, mright
show the difference between the approaches. And, as far as we can tell, the
time-deterministic operator is used most often when, for example, a controller
makes a choice afier some delay. This is modelled as a time-deterministic choice
hetween delaying actions. When modelling physical modes of a system, the
non-deterministic choice operator is used. The physical hehaviour of a system
can only be in one mode, even if a particular evolution is permitted in both
modes.

Rules (11) to (14) define the semantics of the disrupt operator, and the
left-disrupt operator. If we compare these riles to the miles for sequential com-
position, we see that the main difference, is the way in which termination is
handled. Firstly, in a composition p m» g, the process ¢ may start execution
without p terminating. And secondly, if the process p terminates, the process
p » g may also terminate regardless of the hehaviour of g.

Rules (15} to (19) define the semantics of the parallel composition, and in
these rules the difference between action and signal transitions is most promi-
nent. For actions, the interpretation of the parallel composition is the same as in
ACP [8, 21]. Discrete actions that are placed in parallel are interleaved, but can
also synchronize using a {partial, commmutative and associative] commumnication
function v € A x A — A, It a discrete action a communicates with an action
@', the valnation of the model variables has to be the same for hoth, and the
resilt is an action a” = avya’. It How-clauses are placed in parallel, they always
synchronize their behaviour such that, intnitively, the signals that are possible
in a parallel composition are a solution of both clauses.

The encapsulation, as defined by rules (20) to (22), only influences action
transitions. This is not surprising, since the 3y () operator is originally in-
tended to model enforced synchronization in a parallel composition. Signal

15

{(pv}v (6) {pv)y = V) (p,z»‘}v":(q,zf}f(s}

78 (poqviy

i
poan T po) b,

O opov { ;
e b5 (P

{q©pw

{p.w) 5 (p) 9) {pr) s {a. >—£>(<§’V’>

(10)
(poaw) 5 (W oar) (poaw) 5 (g
(p)v pw) 5)
(pw gy " (pwqw) 5 () w g 1
(p 1> quw}v

l ! !
(p=quw)y = (P wagv)

an) ¢ lavd b (g)

: { (14)
{pwaqu)v {pwquy = ()

(o) La) v - (p) B (0} (v} S (g
Glerye T Glen © ey D
(pla.v)v {plawy S W ldv)

(o) S W an)))
(pllg.w) = (pv) (ollawy & (5 e
e (allpo) ¥ (gl)
(gipw) 5 (5,0 (pliawy 5 (o llar")

(p.v) ¥ (p). (a. zf) Wolgy a” “ma(lq}
{pllg.v) H (p'ld vy
(pla.wy " (pllg.o"

(pwy ¥ (p'.v"). ag H
(3{{ (p}if} ’""""}’ (‘%H(p’):"/y>

(207

{p: >"§" (o', v") (21) (pw)v '
(Dp (phow) ~ (On (p},-f/’> {Dy (p).v) v

(22}

(pviv ~ (pv) 5 (g N :
B T A

Table 2: Operational semantics of HyPA, continued

17

transitions are already synchronized.

Rules (23) and (24) model recursion in the same way as it was done in [8, 21].
For a recursive definition X s p, a transition for the variable X is possible, if it
can be dednced from the semantical rules for the process term p.

2.3 Example: Steam Boiler

This section is intended to illustrate the use of HyPA for modelling hybrid sys-
tems. The process helow. is a model of the celebrated henchmark problem of the
steamn boiler [1]. For reasons of brevity, the problem is simplified considerably.
It is not our intention to give a comparison with other models of the steam
boiler here. We only want to give a feeling for the syntax and semantics of the
language. The text helow, explains shortly what the given model consists of.

Valve H $
i

Wimnax
w

Winin

Controller | Heater |

Figure 6: The steam boiler

The boiler process, as depicted in figure 6 consists of a water level w, an
in-flow v and a steam production s. This stream production is determined
by the Heater process, which limits it between spu; and 8,0, The in-flow is
determined by a Valve process, which can be opened or closed using the signals
ro and re respectively. If the valve is open, the in-flow to the boiler is v,,. Hit is
closed, the in-flow is 0. Furthermore, there is a Controller, that every T seconds
interferes with the valve. by telling it to open or close nsing the signals so and sc.
The goal of this coniroller, is to keep the water level between w,;, and W, q..
To do this safely, it takes a margin of w4, into account. The total system is
the parallel composition of the Water process, the Heater, the two modes of
the Valve, and the Controller, over which communication is enforced through
the definitions ap = royso, ¢l = reyse, and H = {s0,s¢, 7o, rc}. In the next
section, we will discuss an axiomatization of HyPA that allows us to rewrite this

18

example into a fornt in which all parallel compositions are eliminated.

Water & [w

h=0v-35]

b=l
t<T
[m_ Z ings — msafe] 3 se 0 Controller &

Wenin + Woate LW < Wengy — 'zzﬁsaﬁ,] 3 Controller &
0 L Wopim + wwfcj > se © Controller

Heater w [smm <8 g S-rmm]
ValveOpen & [v=1v,] » rc @ ValveClose
ValveClose ['L s G] » re o ValveOpen

Controller

bl

(it =0]» [t

}» - =T] >

Boiler

1l

i (Water || Heater || (ValveOpen & ValveClosed) || Controller)

3 Algebraic Reasoning in HyPA

The strength of the field of process algebra, lies in its ability to use equational
reasoning for the analysis of fransition systems, or, more precisely. for the anal-
vsis of eguivalence ¢lasses of transition systems, called processes.

In this section, we show that this equational reasoning is also possible in
HyPA. A notion of equivalence is defined on process terms, reflecting equiva-
lence of the underlying semantical transition systems. Consequently, equivalent
process ferms represent the same process. We study properties of this eguiv-
alence, and capture those properties in a set of derivebion rules and a set of
azioms on the algebra of process terms. Together, this forms a proof system
in which every derived equality on process terms represents equality of the
underlying hybrid transition systems. In other words, process terms that are
derivably equal, describe transition systems in the same equivalence class, and
hence describe the same process.

This section is split up in three parts. In the first part, we define the well
known notion of bisimulation equivalence on hybrid transition systems, we give
a formal axiomatization, and prove soundness of this axiomatization. In the
second part, we will treat the infnition behind the axioms, and insights they
provide us with. In the third part, we show a few useful properties of our
axiomatization, like a conservativity theorem with respect to the process algebra
ACP and a rewrite systemn for rewriting closed HyPA terms into a normal form.

3.1 Axiomatization

The equivalence we assiume on hybrid fransition systems, is the well known
notion of hisimmlation [29].

Definition 7 (Bisimulation) A4 relaiion R € P %X P on process terms, is o
hisimulation relotion if for all p,g € P such thet pRq, and for oll veluations
v’ € Vol and labels L € A UE, we find

19

o (p,w) implies {q,v}V;
o (q.v) v implies (p.v) ;

s {pv) 4 (P, implies there exists ¢ 5.6 {q. 1) 4 (v Yendp Ry':

s {q,u) 4 {q .3/ implies there exists p’ s.t. {(p,w) 4 (/v)y andp’ Ry

Two process terms © and y are bisimilar, denofed x = vy, if there exisis o
bisimulation relation thet relotes them.

It two process terms are bisimilar, then they describe equivalent iransition
systems, hence they describe the same process. In fable 3 we give a set of
derivation rules, and throughoni the next subsection we give a set of axioms
that, to a large extend, capture this notion of bisimulation. We write HyPA
F p &g, if we can derive equivalence of p and g using those axioms.

Definition 8 {(Derivation) We write HyPA F p & ¢ {0 indicate ihot equiva-
lence af open terms p and g con be derived from our eziom system. We define
that equivalence can be derived according to the rules given in foble 3.

HyPA F p & g(i} HyPAFpmig, HyPAFgmer

3
HyPArpmp HyPAFgayp HyPAFp=y (3)

HyPA F p a2 g, 5 a variable substitution

HyPA - S(p) = S(g) @

Oan n-ary HyPA operator, Yi<;<n HyPAF p &

5
HyPAF O oopn) &= Olgy o ognd)

Yo (r /) =dilt (v, =d (6) Vos (no)=ciff (no)=¢

7
HyPAVrd>» omd > HyPAF cme e 0

p &g is an axiom
HyPAF pmig

(8)

Vg (o) = implies (o) =
Yo o () = dand (7,0} |= ¢ implies (v, 0) = ¢
HyPAFd > emd>»d b e

(9}

Vo (o) b= ciff (o) = or (o) ="
HyPAbl e (5 Y > ¢

(10)

Tahle 3: Derivation rules of HyPA

In the remainder of this subsection, the axioms of HyPA, and the insight
they provide regarding the operators of the langnuage, are presented. Also, the

20

intuitions behind the 9th and 10th derivation rule, are discussed. In each of
the axioms, x, 1y, z denote arbitrary open HyPA terms. The letters g, @’ denote
actions, while ¢, ¢ denote How-clauses and d, d” denote reinitialization clauses.
Unlike what is usual for ACP, one may not choose § when g is written in an
axiom. The set of axdoms is divided into seven groups.

s The first gronp consists of two axioms that give the definition of parallel
composition and the disrupt operator in terms of other HyPA operators.
allymzlly o ylae s zly
T yRrD>yEy
These axioms can also be found in [8] and [], respectively.

s The second group expresses associativity, commutativity and distribution
properties of the varions operators. All of these axioms oceur also in [§]
or [4]. Their infnition is the same as with standard process algehra.

(o) Szrmrd® (yo z) (xoy)Ozme o (yoa)
(g > zma > (y » 2 (el w3l z = all (gl 2)
(zlyd zma|(y]z) (lylzma|yll =)
(o ozme D zhy®z byl zmczdylz
(e yillzmallz b yllz e b yilzmalzd ylz
F o yRY D ely~yle

Notice, that these axioms may he used to prove the equalities (z » ¥} »
zriz e (y e zhand (z||yi|lz 2l (vl 2).

s The third group is concerned with unit and zero elements for the varions
operators, and with axioms that express similar properties.

T e R o daw

€ > wrte dlaosd
cllem~a clezmd
[ﬁzlﬁe]) d>»dmd
[ﬁzlse] o d [tme] > E

Cjmp > CREC

Special attention should be paid to the axiom ¢, > ¢ & ¢, which ex-
presses the intnition that every How-clanse may spontaneously reinitialize
aceording the derived reinitialization-clause ¢, Furthermore, according
to the axiom d > (d ») & (d ~ d'} > & found further on, we derive
€AY Gy B CR Qg B Gy P € R (cjmp ~ r:j,w) 3 ¢, which expresses
that multiple of those reinitializations may occur after each other.

21

s The fourth group of axioms focusses on the left-parallel composition and
the left-disrupt operator.

e eilyvmea® (2]ly) ez yma® (z»y)
(e ajlymd de» e e oymd>er (oY)

The left-parallel composition operator is used to axiomatize the interleav-
ing behaviour of the parallel composition. The axioms describe that only
actions are allowed by left-parallel composition. The left process cannot
perform signal transitions, since these should be synchronized. The left-
disrupt operator is used to axiomatize the behaviour of a distupt composi-
tion, when the left process is not disrupted immediately. Both actions and
signals can be performed by the left-disrupt. However, the axiom express-
ing execution of asignal, le. (d > c > 2y Cymd>» c > (O y)isalit-
tle complicated becanse of the inferaction between reinitialization-clases
and How-clauses. Using the unit element [true] for reinitialization we may
clarify things a bit by obtaining theequality (e &=) Dy e > (& Oy}
This equality is in itself not enongh, hecanse reinitialization does not dis-
tribute over sequential composition in a simple way, as we will see further
Ol

s The fifth group of axioms focusses on distribution properties of reinitial-
izations.

d»aesod >exdvdy > d»a)cemd>»aor
d>zwyirmd>cE d>y (d>e)mend >
d>zi>ymd> >z >y (d» xy[y=d> (z|lv)

d»d>anmdrd) >

A trivial consequence {using logical equivalence of [tme] v [tme] and
[é‘ruc]) of these axioms is for example the equality 2 © 2 & x, which
expresses that the choice hetween equals is not an actual choice. Note,
that reinitialization does not simply distribute over sequential composi-
tion! The reader shonld pay attention to the axiom (d » e) oz = d' > 2.
which expresses that a reinitialization of the empty process only leads to
termination if the reinitialization clanse is satisfiable. Le. only if there is
a reinitialization possible that satisfies the clause. Note, that this reini-
tialization does not actually take place, therefore after termination the
valuation of the variables is the same as before. Clearly, we can use the
logical equivalence between [irue] and [é‘me]? to obtain the equality
€ x & z, known as an axiom from [8]. The last axiom in this group, ex-
presses that a concatenation of reinitializations leads to a reinitialization
with the concatenation of the clanses.

s The sixth group expresses the rather complicated rules for the synchro-
nization operator. Since reinitialization does not distribute over synchro-

22

nization, we have to take it into account in every of the axioms.

d>eld Dern(d"AdT) > ¢
d>eld »>{am)b
dya®z|d »a ©oysm{dad) > (ava’) o (zlly) if (ava’) defined
draeoz|d>d oymé if (aya") undefined
d>eld e on(d ~d)> (e 2)
dycba|ld a0 ymd

drepra|ld2drym

((d ~ Cjmpd A (d ~ 5,) > (eAd]) B

The first axiom expresses that a synchronization terminates if both the
left and the right process terminate. Similar to the sequential composi-
tion. this fermination only takes place if (both) the reinitializations are
satisfiable. The second axiom expresses that termination cannot synchro-
nize with actions, and therefore leads to deadlock. The third and fourth
axiom express that actions @ and ¢’ may synchronize by producing an
action aya’ if this action is defined, and otherwise the synchronization
results in deadlock. I the synchronizing actions are reinitialized, both
reinitializations should be satisfied, Le. both processes should agree on
the change of valuation. In particular, if ave’ = &”, and «a is reinitial-
ized by an assignment 2% = 27 41, we find [@ | b pT 4 1] >ala
[elet = +1] > al [true] > o' m ([e| e = +1]Altrue]) >
(aya') as [folse] > (ava’) = 6. Since @’ does not agree on the assignment,
a deadlock results. The fifth axiom expresses that termination may oc-
cur before signal behaviour executes. The terminating process disappears
from the equation but, again, only if the corresponding reinitialization is
satisfinble. That termination oceurs before and not at the same fime as
the signal behaviour is expressed by the fact that we find a concatenation
of reinitializations, rather than a conjunction. The sixth mile expresses
that actions and signals cannot synchronize. Finally, the seventh axiom
expresses the way in which signals ean synchronize. This axiom is ¢nite
complicated due to our decision to make it possible for flow-clauses to
perform reinitializations. When synchronizing, these How-clanse reinitial-
izations should he taken into accomnt. If we restrict ourselves to flow-
clanses in which all variables are continuons {as is done in hybrid antomata
for example}, i.e. clanses of the form [Vm | Pred], we find the equality
d> el z|d > yndad)> (end) = (2l y), which is more in
line with out intuition that both reinitialization-clanses and How-clanses
are synchronized. The proof of equality relies on the observation that, in

23

case of continnity, Cjnp = C;np {no jumps, hence only satisfiability} and
? 7y ? ?
(do ~di) Aldy ~dy") = (do Adg) ~ (dy Ady7).

s The seventh group expresses the (usual} distribution properties of the
encapsulation.

Opr (& © y) & Sy () © Sy (y) Oy (x @ y) & O () O O (y)
Ou (2 & y) & Oy (@) 1 Oy (y) Oi (d > &) e d > Oy (x)

Oy (e) e Oy (e) mo ¢

dylayma fag H Oippla)md ifac H

The 9th derivation rule in table 3, expresses how a reinitialization can re-
strict the choice for the first transition of a How-clause. A usetul application of
this mile is in recognizing a solution of a differential equation given a certain
initial condition. For example, consider the flow clanse [B | FEp N f= 1].
Clearly, @ = ¢' is a solution of the differential equation @ = @, if initially £ = 0
and w = 1. Using the 8th derivation mile, we now find the following equivalence.

=1 P=z
[‘” ﬁ:(}] = {‘” f:l]

gt =1 r=e =z
gt i [t

Note, that ¢ and z are both taken to be continnous. Otherwise, the How-clanses
in this example might execute undesired reinitializations. The 9th derivation
riile also expresses the repefitive character of flow-clanses. This is illustrated
using d = [tme] and ¢ = ¢. We then find the equivalence e s e > o

The 10th derivation rile, also expresses this repetitive character. This is
illustrated by taking ¢ = ¢ = ¢”, we then find again ¢ & ¢ » . Furthermore,
the 10th derivation rule expresses that if we can divide a How-clanse ¢ into two
{possibly overlapping) clauses ¢ and ¢”, then the first transition taken by ¢ can
be mimicked by either ¢ or ¢”. An application of this rule, is that a solution
of a flow-¢lanse can be split off even if there is no reinitialization. For example,
s Gti0
P=1
2 = 0 and g = 2 if initially 2 = 0 and 7 = 0. However, for other initial
conditions, other solutions are possible. Using the 1Gth derivation rule, we find
the following equality, which describes exactly that z = G and = = £ are two

the clause [] contains a set of differential equations with solutions

24

possible trajectories of this clanse.

w) pes] lw e 30?8 R ¢ @t
e (Fr e 22) = 27]) = 20
=0 5 & om J?/ s ::'?:f‘} 5 = 320 " @ = a?/® -
P=1 = = =1 b=1 foes -
& == Ja?l8] s 7= 3x2/7 s a8
£ | b 1 B
0 L w=30 | fe=4 b 7 =3¢/ . ¢ = 3x2/3
il ;e P i=1 i=1
#=0] _ [@=d & = 3?0
(e 20 - 1]

Note that, in contrast to the example for derivation rule 9, we do not need

contimiity of 2 and ¢ in this case.

3.2 Soundness

Rests us to show, that all the derivations that can be made about process
terms, indeed lead fo sound statements abont the bisimmlation equivalence of
these terms. In other words, we need fo prove the following theorem.

Theorem 1 (Soundness) If, for two closed terms p and g, we find HyPA
Fprsg thenpeg.

Proof Most of the technignes nsed in this proof are also explained in detail
in [7]. The main observation is that a derivation is sound, if all of the rules that

are used in if are sound. Now, if we use (p} “ {¥} as alternative notation
for a transition {(p,#) Ay {p.#/), then the definition of hisimulation becomes
that of strong-bisimmlation as defined in [7]. In other words, we use the obvious
isomorphism, mapping (P % Val) x (AU X)) % (P x Val} to P x (Vel x (AU
¥} x Valj % P, to transtorm our notion of bisimulation into strong-hisimulation.
Hence, the derivation rules 1,2 and 3 are sonnd, sinee stromg-bisimmlation is an
equivalence (see [29, 7, 43]).

The proof that rule 4 and 5 are sound, is based on the observation that,
using the same isomorphism, all the semantical rules of HyPA turn out to be in
the so-called path-format [6]. That is, formally they are in peth-format only, it

25

. o o 4 o 4
v) = d (pi/) as a rule) -

(d>»puv)y {d>» pv)y
is only valid under the condition that (v, '} |= d. Tt is a standard result [7, 6],
that strong-bisimmlation is a congruence for operators that are defined using
only rules in peth-format. Hence, in any context, variables may be replaced by
terms, and terms may be replaced by equivalent terms, which is exactly what
rile 4 and 5 express.

Rules 6 and 7 are sound, hecause the transition systems generated for logi-
cally equiivalent clanses are isomorphic (hence hisimilar}. This is straightforward
to verify, That rule 8 is sound for each of the axioms of HyPA, and that the
riles 9 and 9 are sound, is proven in appendix A. Y

that

we read for example the rule

3.3 Conservativity and Rewriting

One of the things that can be concluded abont HyPA, using the given axiom-
atization, is that it is a conservative extension of the process algebra ACP [8].
This illustrates that HyPA does not violate the general ideas behind this process
algebra.

Theorem 2 {Conservativity) HyPA is ¢ conservative edtension af ACP {ex-
cept for notational differences & and &), meaning that for every fwo closed
ACP terms p ond ¢, we find that ACP & p = g if and only if HyPA - p = q.

Proof See appendix B. ®

Furthermore, like in ACP, it is possible fo define a set of basic terms into
which every HyPA process can be rewritten using the axioms. These basic
terms clearly show that the parallel compositions can be eliminated from all
HyPA processes.

Definition 9 (Basic terms) A basic term, is o process term of the following
form. Nu=d>»eid>»a o Nid>»el> N1 N & N.

Theorem & (Rewriting) Fvery closed HyPA term con be rewriiten into o bo-
sic term.

Proof In appendix C, we give a strongly normalizing rewrite system that
does this, based (in principle} on reading all the axioms as rewrite rules from
left to right {adding a few extra rules for handling unit elements). i

We conjecture that this rewriting result can be extended to a linearization
result, meaning that we expect to be able to rewrite every gnarded recursive
specification of a HyPA process into a linear form in which we only use recursion
over hasic terms.

26

The usefulness of elimination of the parallel composition, was already noted
in the introduction. & was pointed out there, that the notion of bisimulation
we ise s very strong, becanse all possible valuations of the variables are taken
infto acconni af every point in time. Many weaker notions of equivalence, while
still preserving interesting analysis properties, are not sensitive o the valuation
of variables. Those equivalences, often, are not congrient for the parallel com-
position operator. Therefore, algebraic reasoning about those notions in the
context of parallel composition becomes diffienlt.

This is already a known phenomenon in process theory, and it is caused by
the possihbility of interference in the valne of shared variables {see for example
[30]}. Many different solutions have been proposed. also in the field of hybrid
systems. For example, in the hybrid automaton theory of [28], the authors
propose a restriction (ealled compatibility of antomata) on the systems that may
be placed in parallel, to ensure that no interference occurs. This is a perfectly
reasonable way of handling the problem, but it has the disadvantage that we
have to add extra variables, if we want to model processes that intentionally
interfere, like the control system shown in the introduction.

HyPA is, in principle. focussed on being general. We start out by nusing a
very general parallel composition, that is defined for all possible processes, and
necessarily end up with an equivalence that is very strong, but is at least a con-
gruence for this composition. Now, the elimination result allows us to eliminate
the parallel composition from the process description. And, after elimination,
we can start to use algebraic reasoning on a weaker notion of equivalence to
analyse the specific properties we are inferested in. Admittedly, this method
may fnrn ont o0 be less practical than the road followad by [28], becanse the
elimination of parallel compositions can become guite cumbersome. On the
other hand, it may also be possible to formmlate derivation rules for reasoning
about weaker notions of equivalence, that express a kind of conditional congri-
ence under compatibility’. In this way, other methods can be imported into
HyPA.

As an example of rewriting into hasic terms, we can rewrite the steam hoiler
systemn of the previous section into the following description, in which parallel
composition and encapsulation are eliminated. Notice that this rewriting is
done here over a recursive definition, hence is an example of linearization of
siuch process descriptions. Looking at the axiomatization, one might expect
that dy, ... ,ds would contain clanses of the form ¢z, but those are eliminated
using calculation on reinitialization clauses. Admitiedly, performing the actnal
elimination by hand is very enmbersome, and leads to a very long calenlation,
which we left out of this report for reasons of space. Finding theorems to make
these calenlations shorter, is a topic for mture research.

Boiler a Open 4 Closed
Open w8 dy > e, » (di > o & Closed @& dy >» Open & ds > op © Open)

Closed = dy > e, » (dy > el @ Closed @ ds > Closed @ dy > op = Open)

27

with

dyg = "If| AN :0],
dy = :t‘ s T} A Ew‘ By S W |
dr= [t =T] A [Woin + 10505 S W < Winay — Waafe | »
ds = '_t’ = T] Ajw g Woin + Wsafe |
f=1
t X
e = | Ly i = v —§
Smin S § S Smaz
I P = U R
and
_ 5 4 ;
t< T
. = | Lw|lw=v—3g
Smin m<w 8 m<w Smax
L y = |

One resulé that is missing, so far, is a proof that the given axiomatization
is complete for bisimulation of HyPA ferms. Le. a proof that for closed terms
pand ¢ if p 2 ¢ then also HyPA F p & ¢, We do not exclude the possi-
hility vet, modulo completeness of the logical equivalence of flow-clauses and
reinitialization-clanses, but the fact that the munber of signals that is a solu-
tion of a flow-clanse, and the mimber of valuation jumps that is a solution of a
reinitialization-clanse may be infinite, complicates matters serionsly.

4 Related Work

In this section, we will compare HyPA | in an informal way, to hybrid formalisms
that were previonsly developed.

4.1 Hybrid Automata

One of the most influential of all hybrid formalisms, is the hybrid antomaton
formalism deseribed by Henzinger [26]. These antomata consist of nodes in
which certain differential equations are active under an invariant, and of guarded
transitions hetween those nodes that model discrete actions. For example. the
steam-boiler example {after rewriting it into a basic term} could be modelled as
the hyhrid antomaton depicted in figure 7.

A general hybrid antomaton is depicted in figure 8. Such an automaton
is easily translated into a hybrid process algebraic ferm, using the following
observations.

s The flow predicate Py, in anode of an antomaton, describes Hows in a sim-
ilar way as in HyPA. Ounly, in hybrid automata, all signals are contimions.
Hence, we take V = ¥V, and find the clanse [‘Vm [Py] Note, that hy-
brid antomata only allow differentiable solutions of flow predicates, while

28

e 0 i~ j“l}): .

O e
; -t w s
pap L A4 eafe . L H}"‘Gw Ay =y
a _<, e jmp: F=T A t:= 0 A qcf- o] p B (""a@? A
act: op W S Wanin -+ Wyafe £ B i

act: ap

flow:i=1 A th=0v—35 flow: =1 A Ww=v—35
nvi E<T A v=1y inv:i<T A v=10
Smin %8 X Spmoa Spmin 28X Smpx

jop: =T A L:=0A

W Winag = Wanfe

wmz‘n i 0w, o =2l A act: el '31“‘9: ' i safe s B
’ Safe < W safe
U S Wy 2 P wnin 0T e
= —)
safe ap & Wnd?

Fignre 7: Example of a Hybrid Antomaton Modelling a Steam Boiler

HyPA may allow non-differentiable solutions if a variable is not subject
to differentiation. These additional solutions are considered to he unim-
portant for the moment. In a future, formal discussion of this franslation,
theory may be developed o handle them.

s The invariant P, is a predicate that can be used in a flow-clanse, but can
also be transformed to be used in a reinitialization clause, since only vari-
ables from the set V., are used in it. The semantics of hybrid antomata,
coniain a kind of look-ahead such that after a transition, an invariant 7%,
or P, must hold respectively, other wise the transition cannot he taken.
Translating this to HyPA, that means that in reinitializations. the predi-
cate Pf; or P77 should hold, respectively. Recall that we have defined PT

in section 2.2, as a transformation of a predicate P on V,,, i which every
variable @ is replaced by z7.

s The transitions of hybrid antomata contain actions a, and .. In fransla-
tion, those actions disrupt the flow-clanses. Furthermore, the jump con-
ditions £, and £, on the transitions are translated into reinitializations

29

that act on these actions. Again, we take V =V, and assume that it
is specified in the jump condition which variables may change, and which
remain constant.

Fignre & General Example of a Hybrid Automaton

Using these observations, the more general antomaton in fignre 8 is trans-
lated into:

[Vl Pou A P 30y 0 ¥
Xw [V | Pra AP | @
[Vo | Pe AP > a0 Z

Of course, this is not a formal translation. The semantics of hybrid an-
tomata as given in [26] is one of timed transition systems, while the hybrid
transition systems we use here are subtly different. We conjecture that if is
possible to transtorm the signal-transitions of the hybrid transition systemn into
timed fransitions, and the action-fransitions of the hybrid fransition system
into action-fransitions of a timed transition system, by abstracting away from
all valuations. However, this is left as a subject for future research. The com-
parison with hybrid automata is merely infended to give an intuition on how
the existing hybrid theories fit into our hybrid process algebraic structure.

4.2 Other Process Algebras

With respect to process algebras for hybrid systems, there are two previous
works that we must consider. One, hybrid CSP, was already introdiced in 1994
by Jifeng [27]. The other, d-calenlns, was very recently introdnced by Rounds
and Song in [35].

30

Hybrid C'SP has a semantics in which each process represents a set of hybrid
traces. Such a hybrid trace, then consists of a fanction of a continnons closed
time domain to valuations, a function of that same domain to sequences (Ehat
gives the empty sequence except for on a finite set of time-points), and a few
predicates {like termination). A system is then modelled in hybrid CSP, by
giving a predicate that defines which traces are in the system. Comparable to
the way that HyPA has atomic processes and operators, hybrid C8P has atomic
predics and predicate operators. Apart from the fact that a trace semantics
does not respect branching properties of a system, hybrid CS8P also has the
drawhack that in parallel composition the contimious variables of the composed
systems are assumed to be disjoint, and that assignments can only he made to
programining variables, and not to continuons variables. We suspect, however,
that these problems can be solved by defining new predicate operators, and that
the author of [27] did not see the need for them at the time. Interestingly, there
are operators defined in [27] whose function is not easily translated into HyPA.
The main reason tor this, is that clocks need to bhe modelled explicitly in HyPA,
while they are often a funciional pari of the operators of hybrid CSP. Again,
we conjecture, that HyPA can be extended with operators that mimic those of
hybrid C8P, should the need arise.

The ¢-calenlus has a semantics based on timed fransition systems, and given
this, has a very interesting way of dealing with parallelisin. As we already men-
tioned in the introduction, ¢-calenlus regards contimions behaviour to bhe a
property of the environment, rather than a property of the ¢-calculus program.
Execntion starts with an empty environment and, while running the programt,
differential equations {or rather their vector-field equivalents) and invariants,
are added and replaced, by (interleavingly) executing so-called environmental
actions. The upshot of this, is that it is not necessary to require that paral-
lel programs have distinct continuous variables, but still, the semantics of the
parallel composition of ¢-calenlus does not coincide with our intuition that con-
tinmous behaviour should simply satisfy both processes. Furthermore, becanse
a vector-field is used as a representation of differential equations in the environ-
ment, ¢-calenlus can only handle differential equations with unigue solutions
{hence, not for example the equation # = 3x%}. Also, the notion of equiv-
alence that arises from using bisimulation in combination with environmental
actions, makes that only syntactically equal differential equations are actually
considered equal. This is a drawhack that might be solved by some kind of ab-
straction, but it still has an artificial feel to it. Comparing ¢-calculus to HyPA,
we may concinde that, due to {amongst others) the environmental action ap-
proach, not all HyPA processes can be translated into ¢-caleulus. Conversely,
the fact that the environmental actions of g-calenlus have a maximal progress
semantics, ¢-caleilus programs cannot be translated into HyPA. This, however,
can be solved by extending HyPA with an urgency operator, as was done for
hybrid y in [12, 36]

As we mentioned already in the introduction, HyPA is developed in close
cooperation with the researchers developing hyvbrid yv. Research on the langnage
., as a modelling and simulation language for process conirol, started in 1982

3

[34], and has since been through many stages of development, including an
extension with hybrid description constructs, In 2002 [12], a formal operational
sernantics, based on CSP rather than ACP, was defined for the discrete-time part
of the langnage. and recently, a formal semantics has been given for the hybrid
part as well [36]. Tt is interesting o see that many of the theoretical aspects
of HyPA (like the nse of hybrid transition systems), have heen applied in the
formal semantics of v, while on the other hand, the futnure extensions of HyPA
are very likely to be inspired by the modelling strengths of y, including their
abstraction operators and possible the maximal progress operator. As research
progressed, both langnages seem to have evolved more and more towards each
other. and it is not unthinkable that these paths will ultimately converge.

Another hybrid process algebra, was published as a technical report only
one week hefore this one. In [11] a combination of the process algebra with
continious relative timing of [5] and the process algebra with propositional
signals of [3], lead to a (only subtly) different algebra, that is also suited for the
description of hybrid systems. The development of this algebra and of HyPA has
been largely independent, and if is surprising to see how many similarities exisé
hetween the two. Nevertheless, due to different starting points and intuitions,
also some differences can be found.

The process algebra of [11] was intended 0 be a conservative extension of
timed ACP, while HyPA was intended to be an extension of normal’ ACP. This
gave rise to the most imporiant difference, in our opinion, between the two
langnages, which is that [11] cholce time-determinism {as it was discussed in
section 2.2}, while we chose time-non-determinism {which is more in line with the
hybrid antomaton approach [26]}. As amatter of fact, in ., fwo choice operators
exists, one for each view on time. Another difference is that [11] intended to give
an algebraic theory of hybrid antomata, which leads to the modelling choiee that
switching hetween contimmons behaviors ¢an only take place through the use of
discrete actions, while in HyPA switching can be arbitrary. This is illustrated,
by the fact that the passing of time during which physical behaviour takes
place. is modelled explicitly in [11], while, for HyPA, time passing is implicit
when writing down a flow-clause.

4.3 Control Theory Formalisms

The formalisms used in control theory to describe hybrid systems can, from a
HyPA point of view, be classified into two kinds. The first kind, are formalism
regarding continmons time behaviour, while the second kind, regards time to
evolve diseretely. Ronghly speaking, continnous time models can be translated
into HyPA nsing How-clauses. while the discrete models can be translated into
reinitialization clauses, acting on a “time-step” process. Compnutational actions
and sequential compositions of processes, seldomly play a role in control theory.
Mode-switching, on the other hand, is a central aspect. In this paragraph, we
sketch the general translation of several control theory formalisms into HyPA.
We do not intend to be complete, but rather want to give a feel for the relation
between HyPA and control theory. Furthermore, one has to keep in mind that

32

control theory usnally reasons abonut trace equivalence of systems, while HyPA
is primarily concerned with hisimmlation.

With respect to the continnous time models, we conjecture that most of them
can be translated into either one singe flow-clanse ¢ or, in more complicated
cases, into one single recursive term of the form:

CT » (Cﬂ . Cﬂ_) | 3 CT

where ¢y...¢5, denote clanses representing the different contimous modes a
svstem can be in. If (and only if} a system can he modelled using only three
continuons variables, namely the séate variable » & R, the output variable
y € R™ and the input variable ¥ € R, and using only clauses of the form

=40+ Bu+ fg-l
i owlys O+ D+ g b
L {w,u) € H; J

with A4;,B;.C; and D; mairices of appropriate dimensions, and H; a convex
polyhedron (i.e. constructed from a finite set of inequalities), for every 4, then
we say that O is & continuous time piecewise affine system [18]. I (and only
if} a system can be modelled as one single continnous flow-clanse, nsing the
variables v, 20 € B* in addition to 2.y and u, and if this flow ¢lanse is of the
form

&= Ar 4+ Biu 4+ Bow
y=Cae+ Diu+ Dew
v=Fyax-+ Faoud Faw 4oy
G<<v Lw>0

ties &

then we say that the system is a continuous fime lineor complementarity sys-
tem [40]. Here, A, By, B2, C, Dy, D2, E;, Ey and E5 are matrices of appropriate
dimensions, €4 is a constant vector and 0 < v L > 0 denotes that the vectors
v and w are orthogonal (i.e. 0 < v, 0 < w and v7w =).

A class of continuous control systems that does not fit directly into HyPA,
is described by Filippov in [20]. The way in which he defines the solutions
of differential inclusions, by nsing integration rather than derivation, is not
captured hy the notion of solution of a How-clanse in HyPA. Some differential
inelasions do have solutions in Filippov's formalism, while they do not in HyPA.
Filippov developed these kind of solutions, because the control community was
struggling with a problem called “sliding modes” [41]. A particular example of
this problem, is illustrated by the observation that in piece-wise affine systems,
the system CT might get into deadlock on the horders of the polyhedra H;, it
the derivatives on both sides of the border “point” towards it. This deadlock is
unintended, becanse the physical intnition of control scientists is nsually that a
system will start evolving along this border, rather than deadlocking. Filippov's
method makes sure that these evolutions are included in the solutions of the
differential inclusion deseribing the system. In HyPA, sliding modes will have
to be modelled explicitly, by adding a separate clause ¢, for every polyhedron

33

border where this phenomenon oceurs. We expect, that Filippov's notion of
solntion ¢an be adopted in the HyPA semantics, but do not know what the
formal consequences would be preciselv. This might be a subject of fuiure
research.

Discrete time models can be translated into the following HyPA fernu:

DT s {dy V...V d,) > Timestep & DT,

with

P |
Timestep & [i]ﬁ:ﬂ] S {ﬁ'}%en tST”, -I [=T, >
R Ajes ¢ =0]

Here, the set V = {a; | j € J} denotes the set of all variables that are used in
the reinitialization-clanses dy . .. d,, describing the discontinnous changes over
time. Timestep denotes the progress of time with one sample time Ty, > 0,
during which the variables #; are supposed to remain constant. Similar to the
continuous case, it {and only it) V' = {x, y, u}, and for all reinitializations (with
ie[0...n]; we find

at = Ajem + By + F

yt = Ciet + Dot + ¢
di = | w,yuly =Ciz™ + Do + g

(%, ut) e H;

(z-,u)€ H;

with A, B,.C; and D), matrices of appropriate dimensions, and H; a convex
polyvhedron, we say that DT is a discrete time piecewise affine system [18].
Analogously, if (and only if} a system can be written in the form

gt o 4 e B] w4 Bg’ﬂ}_
yT wm Cat + Dyut + Dowt
o y =Ce + v + Do
DT = | “%Y o = Biat + Bout 4+ Bt 464 | > Timestep © DT,
v, _ _ _ _

’ vTom EyeT 4 Fou™ + Eaw™ + ey
O0<ot Lwt >0
G<<e” Lw >0

we say that it is a discrete time lineor complementarity system [40].

A third type of discrete control formalism is discrete time mized logical dy-
namicel systems [10]. Similarly to linear complementarity systems, these sys-
tems can be described using only one reinitialization-clanse. This time, however,
the clause also reasons about variables that take value in the domain {0G,1}. A
mixed logical dynamical system may use variables # € B, y € B™ and u € R,
and in addition, the variables z € B" and w € {0,1}%, and can be written in the

34

form:

at =A™ 4+ By~ 4 Baw™ 4+ Baz”
) yT = Cat + Dyt + Dow™ + Dazt
DT = ZZ‘U y~o=Cx Dy 4+ Dyw Doz | > Timestep 5 DT .
OV EvaT - EeuT + EgeT + EzT < ey
Eixm + Eou + Eaw + Ejz7 <eg
In [25], the relation between the discrete control formalisms described above is
further worked omf, and it furns ont that most of them are equivalent under
certain, from a physical point of view very reasonable, assnmptions.

As we mentioned in the beginning of this paragraphs, HyPA is primarily
concerned with the notion of bisimulation equivalence. However, suppose we
would adopt langnage equivalence, or even some weaker appropriate notion of
equivalence, This would mean that we probably loose congruence of parallel
composition, but it wonld also mean that we might be able to abstract away
from a lot of computational behaviour and rewrite certain HvPA processes into
one of the above forms. Since a lot of control theory is developed for those
forms, this might greatly improve the analysis possibilities of HyPA.

5 Conclusions and Future Work

In this report, the synfax, semantics and axiomatization were presented, of a
hybrid process algebraic theory called HyPA. This theory is aimed at the de-
seription and analysis of hybrid systems. HyPA is a conservative extension of
the process algebra ACP [8], with a constant representing termination, a dis-
mpt operator in the style of LOTOS [13], and clanses [41] for the description of
continuous and discontimmions behaviour of model variables. Using the axiom-
atization of HyPA, closed process terms can be rewritten into basic terms, in
which all parallel compositions are sliminated.

HyPA turns out to be different from most existing hybrid formalisms. in
two major ways. 16 has a hybrid transition system semantics, for which if is
not necessary to distingnish between state variables and external variables in
differential equations. This allows for a general definition of parallel composition
in the style of ACP, that also allows contimions interaction between all model
variables. Furthermore, discontinmities in the variables of differential equations
do not need to be explicitly modelled by assignment actions. Alternatively, in
HyPA it is explicitly written down when a variahle is ¢ontimious. Apparent
drawbacks of HyPA are its strong notion of equivalence, and the sometimes
complex axiomatization. However, we have sketched, how by assuming the
same properties that are common on hybrid automata (compatibility of parallel
composed systems, and continuity of all model variables), both the equivalence
may be weakenied, and the axiomatization becomes simpler. Admittedly, HyPA
is very similar to the langnages hybrid y [36] and the hybrid process algebra of
[11]. The differences are mainly found in the way time-determinism is treated,
and in the way in which the passing of time is modelled implicitly or explicitly.

35

Future work on HyPA can be divided into five categories, given in arbitrary
order.

s The first category, is a formalization of section 4, comparing HyPA to
other (hyhrid) formalisms. Clearly, since y and the works of [11] are very
simnilar, a formal comparison is indispensable. Also, formal comparisons
with hybrid antomata, ¢-caleulus, and hybrid Petri-nets, are important.
Translations to and from those formalisms are usetul, in order to be able to
use analysis techniques from one, in the other formalism. This, of course,
is also the case for varions control formalisms and fechniques.

s The second category, is the application of HyPA to a number of (larger)
case studies. Only this will reveil whether the way of modelling we have
chosen is indeed as convenient as expected, and whether practical theorems
can be formmilated to support the analysis of hybrid systems.

s The third category encompasses work on showing that the axiomatiza-
tion of HyPA, modulo calenlation on clanses, is complete (or can be made
complete} for the notion of hisimulation. Also, extending the resnlt for
rewriting closed ferms into basic terms, to rewriting of recursive specifi-
cations into a linear form, is essential for the analysis of systems.

s The fourth category of future work, is the extension of the theory with
ahstraction. Also, extension with system theoretic concepts like, for ex-
ample, a metric or topology on the state-space [14], or other notions of
limit behaviour [46], may then come into play. One of the classical prob-
lems in the hybrid systems field, namely the analysis of Zeno-behaviour,
where infinite sequences of actions converge to a certain point, arises from
snech a metrie, and we feel that a truly hybrid semantical model should
include it. It is important to nofe, that without abstraction, our current
notion of equivalence is strong enough to capture Zeno-behaviour, simply
hecanse process terms need 0 be eguivalent for all valuations of variables,
including Zeno-points. After abstraction of certain variables, however,
Zeno-behaviour of those variables cannot be distinguished anymore, and
therefore a new notion of equivalence might be needed. Other types of ab-
straction, like abstraction from actions [8, 21], wounld also greatly improve
the analytic powers of HyPA. Also for those, new notions of bisimulation,
known in classical process algebra for example. branching bisitmilation, or
observational equivalence, are needed.

s The fifth category, is tool support. Calenlations on a simple example such
as the steam-boiler, quickly become very cumbersome and tedious. This is
a serions problem when applying the theory to any system of inferesting
size. Using the result that processes can be rewritten into basic terms
using a strongly terminating rewriting system, makes that developing a
very hasic tool for partially antomating these ealenlations should not he
difficult.

36

Acknowledgements Finally, we would like to thank Paul van den Bosch,
Jan Friso Groote, Manrice Heemels, Aleksandar Juloski, Tim Willemse, Ka
Lok Man, Ramon Schiffelers, Bert van Beek and Mohammad Mousavi, for their
comments during several stages of the development of this report.

References

1]

[2]

[10]

[11]

[12]

J-B. Abrial. Steam-hoiler control specification problem. In Dogstuhl Meet-
ing: Methods for Semaontics and Specification, 1995,

P. Amthor. A CS8P model for hybrid antomata. In Northern Formal Meth-
ods Workshop (NFMW98), 1998,

J.CM. Baeten and J.A. Bergstra. Process algebra with propositional sig-
nals. Theosretical Comgputer Science, 177:381-405, 1997.

J.C.M. Basten and J.A. Bergstra. Mode transfer in process algebra. Tech-
nical Beport C8-R 00-01, TU /e, 2000.

J.CM. Basten and C.A. Middelburg. Process Algebro with Timing. Mono-
graphs in Theoretical Computer Science. Springer-Verlag, 2002,

J.CM. Baeten and C. Verhoet. A congruence theorem for structured op-
erational semantics with predicates. In Proceedings CONCUR 93, volume
715 of Lecture Notes in Computer Science, pages 477-492. Springer-Verlag,
1993.

J.C. M. Baeten and €. Verhoef. Concrete process algebra. In 8. Abram-
sky, Dov M. Gabbhay, and T.8.E. Maibaum, editors, Semantic Modelling,
volume 4 of Hendbook of Logic in Computer Science, pages 143268, 1995,

J.CM. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cam-
bridge Tranets in Theoretical Computer Science. Cambridge University
Press, Cambridge, 1990.

J. Le Bail, H. Alla, and R. David. Hybrid Petri net. In Proc. of the Ist
Furopean Control Conference, BCC91, pages 14727, Grenohle, France,
July, 1991,

A. Bemporad and M. Morari. Control of systems integrating logic, dynam-
ies, and constraints., Aufometica, 35.

J.A. Bergstra and C.A. Middelburg., Process algehra for hybrid systems.
Technical Report CSR (3-06, TU /e, Eindhoven, Netherlands, 26G3.

V. Bos and J.J.T. Kleiju. Formel specification and anelysis of industrial
systems. PhD thesis, TU/e, 2002.

37

[13] E. Brinksma. A tutorial on LOTOS. In Michel Diag, editor, Proe. Proto-
col Specification, Testing and Verification V., pages 171-194, Amsterdam,
Nethetlands, 1985,

[14] P.LL. Cuijpers and M.A. Reniers. Topological (bi-}sinmlation. Fachnical
Report CS-Report (2-04, TU /e, Eindhoven, Netherlands, 2002.

[15] P.J.L. Cuijpers., M.A. Reniers, and W.PM.H. Heemels. Hybrid transition
systems. Technical Report CS-Bepors 02-12, TU/e, Eindhoven, Nether-
lands, 2002,

[16] 1. Demongodin and N.T. Koussonlas, Differential Petri nets: A new model
for hybrid systems. In Proc. Advenced Summer Institute 96, pages 61-8,
June, 1996.

[17] R.C. Dorf and R.H. Bishop. Modern Conirel Systems. Series in Electrical
and Computer Engineering: Control Engineering. Addison-Wesley, 1995

[1&] E.D.Sontag. Nonlinear regnlation: The piecewise linear approach. TEEE
Trans. Autom. Conirol, 26:346-358, 1981.

[19] A. Di Febbraro, A. Gina, and G. Menga, editors. Special Issue on Hybrid
Petri Nets, volurme 11 of Diserete Fvent Dynomic Systems, 2001,

[20] A.F. Filippov. Differential Equations with Discontinucus Righthend Sides.
Mathematics and its applications (Soviet series). Klnwer Academic Press,
1988,

[21] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Com-
puter Science. Springer-Verlag, Betlin, 1998,

[22] W. Fokkink, J.F. Groote, M. Hollenberg, and B. van Vlijmen. LARIS 1.0:
LAnguege for Retlway Interlocking Specificetions. CWI, Amsterdam, 2000.

[23] J.E. Groote and M.A. Reniers. Algebraic process verification. In JA.
Bergstra, A. Ponse, and 8.A. Smolka, editors, Handbook of Process Algebra,
chapter 17, pages 1151-1208. Elsevier Science B.V., Amsterdam, 2001.

[24] LF. Groote and J.J. van Wamel. Analysis of three hybrid systems in timed
uCRL. Seience of Computer Progromming, 39:215-247, 2001.

[25] W.P.M.H. Heemels, B. De Schutfer, and A. Bemporad. On the equivalence
of classes of hybrid dynamical models. In Proc. Conference on Decision
and Contrel, pages 364-369, Orlando, Florida, 2001.

[26] T.A. Henzinger. The theory of hybrid antomata. In Proceedings aof the
11ih Annuel IEEE Sympasium on Logic in Compuier Science (LICS 1996),
pages 278202, TEEE Computer Bociety Press, 1996,

38

[27] H. Jifeng. From CSP to hybrid systems. In A.W.Roscoe, editor, 4 Classical
Mind, Essays in Honour of C.A.R. Hoore, pages 171-189. Prentice-Hall
International, 1994,

[28] N. Lynch, B. Segala, and F. Vaandrager. Hybrid 1/0 antomata. Informa-
tion and Compuiation.

[28] R. Milner. A caleulus of communicating systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[30] 8.5, Owicki and D. Gries. An axiomatic proof technigue for parallel pro-
grams . Acte Informatice, 6:319-340, 1976.

[31] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarlms University,
1981.

[32] T.W. Polderman and J.C. Willems. Intreduction to Mathematical Systems
Theory: A Behovioural Approach, volume 26 of Tezts in Applied Moathe-
metics. Springer-Verlag, 1998,

[33] M. Rimkkd, A. P. Ravn, and K. Sere. Hybrid action systems. Theoretical
Computer Science, 290:937-973, 2003.

[34] LE. Booda. Simulation of Logistics Flemenis (Sole). Enschede, Nether-
lands, 1982, User Mannal.

[35] W.C. Rounds and H. Song. The d-calenlns: A language for distributed
control of reconfignrable embedded systems. In F. Wiedijk, O. Maler, and
A, Prueli, editors, Hybrid Systems: Computotion and Control, 6th Interna-
tonal Workshep, HSCC 2003, volnme 2623 of Lecture Notes in Compuier
Science, pages 435-449. Springer-Verlag, 2003.

[36] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Beniers, and J.E.
Rooda. Formal semantics of hybrid chi. In Formaots #, 2003.

[37] R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E.
Rooda. A hybrid language for modelling, simulation and verification. Anal-
vsis and Design of Hybrid Systems (ADHS03}, to appear. International
Federation of Automatic Control (TFAC), 2003.

[38] E.D. Sontag. Mathemoticel Control Theory: Deterministic Finite Dimen-
stonal Systems, volnme 6 of Tezts in Applied Mothematics. Springer-Verlag,
1998.

[39] D.A. van Beek, N.G. Jansen, K.L. Man, M.A. Reniers, J.E. Rooda, and
R.R.H. Schiffelers. Relating ¢hi to hybrid antomata. In 8.Chick, P.J.
Sénchez, D. Ferrin, and D.J. Morrice, editors, Proceedings of the 2008 Win-
ter Simulation Conference.

39

[40]

[44]

[45]

[46]

A.J. van der Schaft and J.M. Schumacher. Complementarity modeling of
hybrid systems. [EEE Tronsaciions on Auiometic Control, 43:483-490,
1998,

A.J. van der Schaft and J. M. Schumacher. An Imfroduction to Hybrid Dy-
ramical Systems, volume 251 of Lecture Notes in Control ond Information
Seiences. Springer-Verlag, London, 2000.

A.J. van der Schaft and J.M. Sehmmacher. Compositionality issnes in dis-
crete, continnous, and hybrid systems. Inid. J. Robust and Nonlinear Con-
frol, 11:417-434, 2001.

R.J. van Glabheek. The linear time - branching time spectrum I The
semantics of concrete, sequential processes. In J.A. Bergsira, A. Ponse,
and 8.A. Smolka, editors, Handbook of Process Algebro, chapter 1, pages
3-99. Elsevier Science B.V., Amsterdam, 2001,

J.J. Vereijken. A process algebra for hybrid systems. In The Second Euro-
pean Workshop on Real-Time and Hybrid Systems, Grenoble, France, 1995,

T.A.C. Willemse. Semantics end Verificotion in Process Algebras with Dato
and Timing. PhD thesis, TU /e, Eindhoven, Netherlands, 2003.

M. Ying. Topology in Process Coleulus: Approzimate Correctness and In-
finite Evolution of Concurrent Progroams. Springer-Verlag, 2001.

40

A Soundness

In this appendix, we prove soundness of derivation rules 9 and 10, and of all the
axioms of HvPA. All proofs will be of the following form: (1) Every proof will
have one subsection dedicared to i, (2) Every subsection starts out by giving a
relation that is obviously a witness of the axiom or derivation rule nnder study.
{3} The remainder of that section is devoted to proving that the given relation is
a bisimulation relation, by verifving the truth of the four cases in the definition
of bisimulation for every related pair.

A.1 Derivation Rule 9

Under the assumption that for all # and ¢ we find that (y, 0} = ¢ implies
{#,0) b= ¢ and the assumption that for all ».#/ and ¢ we find that (3. #) = d
and {(#/, 0} = ¢ implies (¢, 7} |= ¢/, we study the smallest relation R € P x P
such that:

d>cRd>»cd pe A ceRdwen 2Rz,

as a witness candidate for derivation rule 9.

For @ R the proof is trivial. For d > eRd > ¢ 1 o, it is ensy to see
that none of the related terms can terminate, hence we only need to check the
following cases:

1. {d>» e) A {p.+"), for which we need the hypothesis

(a} Ju (1) =d and {e.) " {p.2"}, for which we need the hypoth-
exis
L3gp=cAl=0Adomlo)=[0.. 0 A o) k=cnv =al).
Now, using the assumptions stated in the beginning of this sec-
tion, we conclude that (¢, 0) |= ¢, hence {d > ¢ 1 e, 0) L
{/w ey withp=cRe » e

2.(d> B o) 4 {p."}, for which we need the hypothesis

(a} dur (1,0 = d and (¢ & ¢,) & {p,v"}, for which we need the
hypothesis

Ldip=rmw»ca () 5 {r.»"}, for which we need the
hypothesis
Adyyr=¢d Al=0 A domlo) =[0...0] A (Vo) =
¢ A alty =",
Using the assmmptions stated in the heginning of this section
we conclude (.0} = ¢ and hence {d > c,v) . (e’
with eRe/ » e=p.

For ¢ R¢" » ¢ the proof is similar to that in derivation rule 10. Note, that
this proof relies on the assnmption that for all # and & such that (. o) = ¢ we
find also (v,) = ¢

41

A.2 Derivation Rule 10

Under the assumption that (w0} |= ¢ if and only if (o) = ¢ or (w0} = 7,
we study the smallest relation R € P x P such that:

eRId oI penrncREP e A RS wen 2Rz

as a witness candidate for derivation rule 10.

For R x the prootf is trivial. For e R (¢/ © ¢} 1= ¢ and the other cases, it
is easy o see that none of the related terms can terminate, hence we only need
to check the following cases:

1. {eow) 4 {p.#"}, from which we directly conclude (¢ » ¢, 0} % {p.v'}
and {¢” ») £t {p.7" Y with p R p, and furthermore need the hypoth-
esis

() Jppl=0 A dome) =[0...i] A p=c A ¥ =0o(l) A ol=c for
which we need ome of the hypotheses

io=¢
For which we conclude (/. 2} 4 {c'. Y and hence ((c @) >
o) ol (& » o), with pRd » e

i, o ="
Which is similar to the previous case.

2w) e aw) At {p.v"), for which we need the hypothesis

t . . .
(a}) Jop=r e A (@ vy = (r) for which we need one of
the hypotheses

i {c.) L {r,#}, for which we need the hypothesis
A Fil=0c Adom(o)=[0... 8] Ar=¢ nold
From which we conclude that o = ¢ hence {¢,) A (e,
with e R’ » ¢

il. {70} = {r.¢), which is similar to the previous case.
! ; ; ; ;
3. (¢ » o,y = (p,), for which we need one of the hypotheses

! ; : :
(a} Jop=r p e {0} = {r.¢), for which we need the hypothesis
i. v = ¢, from which we conclude p = ¢ » ¢ hence ¢ R p.

(b} {c.w) A {p. v}, tor which we conclude pR p.

4. (" » e,v) — (p, /), which is similar to the previous case.

42

A.3 The axiom: [false] = §

We study the smallest relation R € F x P snuch that:
[fal&e] RS .

(Clearly, since for no pair (v.0) € Vol x T we find (v.0) |= [false |, neither
[faése] nor § terminate, or perform any transition. Hence, R 1is a bisimnlation
relation.

A.4 The axiom: [falsaz] b k)

We study the smallest relation R € P % P such that for all # € P:
false] > ¢ R4,

Clearly, since for no pair {»,#') € Vel x Vel we find (1,2} |= [folse].
neither [falﬁe] 3 nor § terminate, or perform any fransition. Hence, R is a
hisimulation relation.

A5 The axiom: d>» d » e x=(d~d)» ¢

We study the smallest relation R C PP » P such that for all » € P
de»d »aeR{d~dY>» e A zRa.

For x Rz the proof is trivial. For d > d > ¢ R{d ~ d'} > x, we find the
following cases:
1. {d> d > &,v} ¢, for which we need the hypothesis

(a} dur (') =d A {d > ") v, for which we need the hypothesis

L3 (W =d A (e ey
From which we conclude (»,¢") = d ~ d and {{d ~ &} >
e uyv .

2. {({d~d}) » z.v) v, for which we need the hypothesis

(a} o (v l=d~d A {&e”), for which we need the hypothesis
Lo Y =d A (WY =d
From which we conclude (d" > &+) v and hence (d > d >
R

S {d>d » z.w) L {p, "), for which we need the hypothesis

(a} do (Y =2d A {(d > 2"} ! {p.#”), for which we need the
hypothesis

43

Lo Hpe (W0 e d A {2 Ay {p,"
From which we conclude (3,2") E d ~ &, hence {(d ~ d}) >

GRS A {p.v”) with pRp

4 {(d~dy>» z.v) 4 {p.#"), for which we need the hiypothesis

(2} o (¥ lmd~d A {z.0") k" {p,#""}, for which we need the
hypothesis

L3, (e =d A 7 l=d
From which we conclude (d" 3 @, ") =t {p.""}, and hence
(d>d > ar) S (p"), with pRp

A.6 The axiom: d» d =/
We study the smallest relation & € P x P such that:
d>» R
Trivially, both d 3 4 and § cannot perform any transitions, nor terminage.

Hence R is a bisimulasion relation.

A7 The axiom: [t;"ue] Srm
We study the smallest relation R C PP »x P such that for all » € P
[é‘me] aeRe A oRe.

For 2 Rz, the proof is trivial. For [{;rue] S aRa we find the following
cases.

1. {[true] 3 x.v) v, for which we need the hypothesis

(a) T (woa) = [true] A (@.0') ¢, for which we need the hypothesis

L3y (o) = [true] A v=v
From: which we directly conclude (@, v} &

2 (ewiv
And clearly (w7} = [true | hence ([true] > w.0) .

3. ([true] > 2. 0) 4 {p.#”), for which we need the hypothesis

(8) Jue (o) |= [true] A (@) L {p."}, for which we need the
hypothesis

44

1i: By Tora) b= [tme] A=y

From which we conclude { &, v} 4 {p.+"} with p R p.

4. {w.v) 4 {(pov”s
For which we may immediately conclude that (1,) = [tme], hence

([true] > 2.0} L {p") with pRp.

A.8 The axiom: cj,, » c®c
We study the smallest relation R € P » P such that for all 2 € P:
Cimp > cRe A aRa.

For £ R 2, the proof is trivial, but for the proof of ey, > ¢ R e we first need
the following lemmas on solutions of How ¢clanses.

Lemma 1 If (.0} = ¢ and (¢’ (0), 0} = ¢ then (n.0) = ¢
Proof With induction fo the structure of flow-clanses, we find two cases.

s If (v,0) |= [1| Pred] and (¢'(0).0) k= [V| Pred] then we find for all
¢ € dom(o) that (6(2),5(t)) = Pred and furthermore for all z € V we find
#(x) =o' (0)(x) = o{0)(z), hence (v,0) k= [V| Pred].

s If (12, 0") = cne’ and (67(0). 0) = cnd then, (ko) = cand (67(0).0) |= ¢,
and (¢, ¢’} = ¢ and (6'((3), 6) = ¢. Hence, with induction to the structure
of cand &, we find (1, 0) Eeand (o) =, and finally (ir,0) Eend.

i

Lemma 2 If (v,0} |= ¢ then (o(0}, 0} = ¢
Proof With induction o the structure of flow-clauses, we find two cases.

o If (v.0) = | V| Pred] then we find for all ¢ € dom(o) that (o().6(1)) =
Pred and furthermore, trivially, for all @ € V we find o(0)(x} = o(0¥{x),
hence {o{0). o) = [V| Pred].

s I (1.0) = cnc then (o) |= ¢ and (1, 6) |= . Hence, with induction
to the structure of ¢ and ¢, we find (o((},0) |= ¢ and {o(0),0) = ¢, and
finally (¢(0}.0} F=oAd.

X

Now, we proceed with the proof that R is a bisimulation relation. Since
both ¢y 3 ¢ and ¢ cannot terminate, we only have the following two cases.

45

L (tpmp > c0) 4 {p."}, for which we need the hypothesis

() o (V') E Gmp A {6 ¥) b {p,¢"}, for which we need the
hypothesis
Ldsso l=0 Adom{e)=[0..] Ap=cA (Hoj=chr =
gty A (mo'il=e AV =0 ()
Using the first lemma, we conclude (s, o) = ¢ and hence (e, v} 5
{e,o(i}), ie {o,0) & {p,v") with pRp

2. (e, u) & {p.#), for which we need the hypothesis

(2} Jpel=0 A dom{oy=[0...8] A (royEe A ¥V =0(t) A p=¢
Using the second lemma, we directly conclude that {(o{0),0) = ¢
and hence (¥, 5(0)) & Cjmyp. Finally, this leads t0 {ejy > e,p) 5

{e,o(t)), Le. to (Cimp > 0,0} 4 {p.#"y with pR p.

A9 The axiom: (z @ y) ® 2=z & (y @ z)
We study the smallest relation B € P x P such that for all 2,94,z € P:

(xy©zRe® oz A aeRe
For z Rz, the proof is trivial. For (& &) @ z2Ra 4 (y © z) we find the
following cases.
1. {({& & y) & z,v) v, for which we need one of the hypotheses
{a} {@ & y.w) v, for which we need one of the hypotheses
Ll
From which we directly conclnde (x % (y & 2,0} .
i {y, vy ¢
From which we directly conclude {y & z,2) ¢ and {(z & (y &
Zhdd
(b} {z,0}¢

From which we directly conclude (y @z,) and (e & (y o 2),2) v

2. (e (y4 z), vy, similar to the previous case.
3. (e y) & z,0) A {p. "}, for which we need one of the hypotheses

(a} {@x @ g} oy {p.+}, for which we need one of the hypotheses

i fawwd 5 {p.a")

with pR p

46

i (v 5 (p/)
zhw) ! {p.v'ywith pRp

l ;
(b} {zw} = (p.o"}
From which we conclude {y & 2,#} L {p.e/Y, hence (z @& (y @&

2}, 1) A {p./} with pRp

4 {es(ys 2w 4 {p. ¢}, similar to the previons case.

A.10 The axiom: r d yx=y P z
We study the smallest relation R € F x P snuch that for all 2,y € I
D yRydv e~ zRa
For # Rz, the proofis trivial. For 2 & y Ry © x we find the following cases.
1. (& @ y. v}, for which we need one of the hypotheses
(a} {@w}v

From which we directly conclude {y @& x. 0} v

(b} (g.w}v
From which we directly conclude {y & z, v} ¢

2. (y @ x,u) v, symmetrical to the previous case.

! ;
(a} (@)~ {po')
From which we directly conclude {y & . ») A {p.+') with pRp.

™

(b} {y,w)} 5 {p, o'}y From which we directly conclude {y & 2,2} 4
{p.+'} with p R p.

1t

! . .
4. {y & x.v) = {p.v'), symmetrical to the previous case.

A1l Theaxiom: d»rd d >rxdvd) >
We study the smallest relation R € P x P such that for all # € P:
dzrod>aeREAVd >z A z2Re.
For z Rz, the proofis trivial. Ford > 2 4 d > 2R {dVvd} > 2 we find

the following cases.

47

1L.{d>»za d > w), for which we need one of the hypotheses

(a} {d > x,») . for which we need the hypothesis

LAy l=d A (a0)y
From which we conclnde (¢} |= (d vV &7}, hence ({(dv d) >
R AR

(b} {d > z.v) v, similar to the previous case.
2. {{dvd) > x vy, for which we need the hypothesis

(a) doe 'y = (dv dy A (a2)y, for which we need one of the

hypotheses
L) =d
From: which we directly conclude (d > .2} v and hence (d 3>
read>rv)d.

il. (1) = d', similar to the previous case.

(a} {d > xu) & {p.¥"), for which we need the hypothesis
Lol ed A le 'y S (pa)
From which we conclude (v, ") |= (dV d) hence {(dv d'} >
w v A {p.+") with p R p.

(b} {d' » x,v) 4 {p,»”). similar to the previons case.

4. {{dvd)y > x.v) A {p.¥”}, for which we need the hypothesis.

(a} Jo (Y = dvd) A (o) 4 {p,#"}, for which we need one of
the hypotheses

L) =d
From which we directly conclude {d > a.#) 4 {p.") and
hence {(d>» x & & > w.v) A {p.v”) with p R p.

il (#.2) = ', similar to the previons case.

A12 Theaxiom: d» (r @ ylx=dz e R d>y
We study the smallest relation & € P x P such that for all o,y € P:
d>»{z o yRd>»r b d>y A 2R

For z R z. the proof is trivial. Ford » (¢ & y)Rd > « & d > y, we find
the llowing cases.

45

(a} Do (1,9 = d A (& @ y, 2}, for which we need one of the
hypotheses

Lo A{wd ¥
From which we conclude (d > 2,0} v hence {d > o & d >

Y.
il {y. o)
Which is similar to the previous case.

2. {d>» x o d>»yw) v, for which we need one of the hypotheses

(a) {d 2 w.v) ¢, for which we need the hypothesis

Ldy (Y =d A {2/)
From which we conelude (= & y.#' 3¢, and hence {d > (x &

YLy

(b} {d> y.u)v
Which is similar to the previous case.

the hypotheses

i {a) L {p, ")
From which we conclude {d > x.v} Z {p.#”) hence {d >

7% t
i (y.v') = (p")
Which is similar to the previous case.

d.{d>aebd>yv) 2 {p.+"), for which we need one of the hypotheses

(a} {d > x,v) & {p,#"), for which we need the hypothesis
L3 () =d oA (e S (g
From which we conclude {& @ .+ % {p.+"}, and hence
(d>(zr® yhw) S (po
(b) {d> y.0r) = {p.o")
Which is similar fo the previons case.
A13 Theaxiom: z @ y) Oz Oz Ry Oz
We study the smallest relation R € P % P such that for all 2,9,z € P:
(zoyymzRee 22y 2z A 2R
For z Rz, the proof is trivial. For {z & y) @ 2Rz © 2 9 y © z we find

the following cases.

49

1. {{x & y) & z,¢) ¢, for which we need the hypothesis

(0} {x & y,w)v A {zw), for which we need one of the hypotheses
Lo {awyy
From which we conclude (& & z.) v and hence (& & 2z & ¥y ©
z) .
il. {y.#) v, which is similar to the previous case.
2. {x 2 &y z,r), which follows the reverse reasoning of the previous
case.

3. (e y) © 2w 5 {p. "}, for which we need one of the hypotheses

(a} {e © g} Alzw) 4 {p.#/}, for which we need one of the
hypotheses
i {eed v
EFrom which we conclude (& © z,v} b {p."; and hence (& ©
< { ’ .
@y ©zry = {p), with pRp.
i {y,w)¢
Which is similar £o the previons case.

(b) Jop=r@z A {z&

! ;) ;
© gy =+ (v, for which we need one of the
following hypotheses

i fe v Ay {r, o}
From which we conclude (& & z,#) . {p, "y and hence (2 ©
R ROW-NTS s {p.+'}, with pRp.

. i
i {yoey = (rod)
Which is similar to the previous case.

4. (e z@oyszwy = {pv), which follows the reverse reasoning of the
previous case.

A14 Theaxiom: (z 0 y) O zxz O (y © 2)
We study the smallest relation R’ C P % P such that for all x4,z € P:
zoyyozRee oz A eRe.

For R &, the proof is trivial. For (x © y) © 2R © {y © 2z}, we find the
following cases.

1. {{& & y) & z,¢)} v, for which we need the hypothesis

(0} {x = y,uwyv A {zw), for which we need the hypothesis

5y

L{ouwyy A {ypdy
From which we readily conclude {y @ z,#}v and {(z & (y ©
Zhdy .

2. (o (y & z)hw) v, similar to the previous case.
! ; . i
3. ({x © y) @) = {p'}, for which we need one of the hypotheses

(a} {w o yowdv A {z.0) & {p.¥"), for which we need the hypothesis
ey Alyey
From which we readily conclude (y © 2z, %) Ay {p,v/Yand (x5
{y o 2w 5 {p.') with pR p.

by Jep=r @z A {xy ¥} & {r,#"}, for which we need one of the
hypotheses

Llwwdyv A {yw) A {r.e)
From which we readily conclude that (y © z,#) A {p, "), and
hence (z © (y © 2),») 5 {p,#'}), with pRp.

. dyr=5oy A {ow) X {s.9")
From which we readily conclude that p = (s © y} © 2z and
(oo (y @z % (s & (y 2z, Yy withpRs © (y © z).

4 (e (y 2 zhe) 4 {p. v}, similar to the previons case.

A.15 The axiom: ¥ ® €& x
We study the smallest relation R € P x P such that for all # € P
z@eRae.
We only need to verify the following cases.
1. {& © e,») . for which we need the hypothesis
(2} {aw)v

2 (e
Using the rule for {¢, 2} v, we immediately conclude {# & ¢, v} .

3. (e ew) A {p. v}, for which we need the hypothesis

(8} Iy p=p @ e Az w) 5 {(p' v}
And by construction p' R p.

4. {ww) . (p.#')

. i g
From which we eonclude (& © e, v} = (p© e, ')

A16 Theaxiom: d>a) Gz x d®»a®x

We study the smallest relation R € P x P such that for all # € P:
d>a)ormd>amae AcRe.

For # R w, the proofis trivial. For{d > a) & ¢ R d > a © . we find there
is no termination, since actions do not terminate immediately. This leaves us
with the following cases.

1. {({(d>» a) © a,w) A4 {p, ¥}, for which we need one of the hypotheses

(a} {d» aw)v
Which cannot oceur, since there is no termination rule for a.

by dop=roae A (d>ar) A {r,2"}), for which we need the
hypothesis

L3 Ed A lady S (")
From which we conclude {a@ © «,2") A {p.v"} hence {d >

a @ e 4 {p. 2"} with pR p.

. ! . o .
2. {d>»aoay)y = ("), with reverse reasoning to the previous case.

A17 Theaxiom: d»e) 0z ~ d > 2
We study the smallest relation R € P »x P such that for all # € P
d>e)ozRd >z N aRe.

For @R, the proof is trivial. For (d > €} @ « R d° > x, we find the
following cases.

1. {{d> e} & x,») v, for which we need the hypothesis

(a} {d > eviv A (o), for which we need the hypothesis

i Helww) = d
From which we conclude that (w.») |= d° and hence (d¥ >
R

2. (d" > x,w} ¢, for which we need the hypothesis

(a) 3o G’y = d” A {20}V, for which we need the hypothesis

L (muiEd A p=y
Hence, using {e,v) v we may derive (d > e.2) ¢ and finally,
nsing # =, we find {{d > ¢) © 2,0} v .

3. (d>» e o z,w) EA {p,»"), for which we need one of the hypotheses

(a} {d > ewdd Adlrmw) - {p. "}, for which we need the hypothesis
L3, oyl l=d
From which we conclude (v, v) = d” and hence (d" > z,v) 4
{p,o") with p R p.
(b) Tp {d> e,0) 5 {ro")
Which e¢annot he fulfilled since ¢ does not generate any transitions.
4.{d" > a,v) = {p.2" }, for which we need the hypothesis
(2} o (Y =2 d" A {29 £ {p.#"}, for which we need the hypoth-
esis

Ld (mviEda p=y
Hence, using {e, v} v we may derive {d > .} ¢, and finally,

using v =, we find ({d > ¢) © z.v) & {p. "y with pR p.

A.18 Theaxiom: x » y=z > y&Py

We study the smallest relation K € F x P such that for all =,y € #:
s yRoes=yomy A aoRae.

For x R z. the proofis trivial. For o » yRa & y @ y, we find the following
cases.

1. {& w» y,u»} v, for which we need one of the hypotheses
(o} {e, 0}
From which we conclude (# t» y.0) ¢ hence {a > y ® y.v} <.
(b} (v} v

From which we directly conclude {& > y & y.v) .

(a} {x > y.») v, for which we need the hypothesis
Lo{awyv
From which we directly conclnde (@ » y,22) ¢

(b} (g}

From which we directly conclude {x w» y, 2} .
3. (ax w oy, u) A {p, '}, for which we need one of the hypotheses

{ ;
(a} (y.v) = (pv')
From which we directly conclude (& > v @& y. v} Ay {p.v), with
pRp.

(b} Jop=rw»y A (z.v) A {r.e')
From which we conclude {(z > y,v) d {r » %) and hence
{z = y@yw) S (po'), with pRp.

. ! : o ;
4. {x > yDywry = (p), with reverse reasoning from the previons case.

A19 Theaxiom: (@ y) > e > 2@y 2
We study the smallest relation R C P x P such that for all o,y 2 € I
(evyypzRa>zoy> z A 2Rz

For xR z, the proot is trivial. For (z @ y) » 2Re > 2 © y 1 2z, we find
the llowing cases.

1. {{& & y) == z,2}v, for which we need the hypothesis

{a} {& & y.w) v, for which we need one of the hypotheses

i {wed v
From which we directly conclude (@ z.#}¢ hence {& >
zd oy > vy,

. {y,v)¢
Similar to the previous case.

2. (x> z & y > 2w, with reverse reasoning from the previous case.
Lz y > zw} L {p.#}, for which we need the hypotheses
(o} Jop=rwz A {adyw kA {r,»"}. for which we need one of the
hypotheses
Lo {av) 5 {r)
From which we conclude {x > =z,#) % {r » =z} hence
(x> 2@y bz A {p.v'}, with p R p.

" !
i y,ey 5 (re)
Similar to the previous case.

d{erzoyl z,p) 5. {p.+}. with reverse reasoning from the previons
case.
A.20 The axiom: (z > y) > 2=z > (y » 2)
We study the smallest relation R C P % P such that for all x4,z € P:
ey zRex{ywzy Alewpyip zRew (ywp z) A cRe.

For @ Ra., the proof is trivial. For (z &= y)} » 2Rz > (y » 2}, we find
the following cases.

1. {{& > y} > z,¢) ¢, for which we need the hypothesis

(a} {x > y,») v, for which we need the hypothesis
Lo {awyy
From which we directly conclnde (o > {(y » 2z})¢ .

2. (x> (y » zhw) ¢, with reverse reasoning from the previous case.
{ 7 e . ; N
3. ({z > y) > 2,0y = {(p.), for which we need the hypothesis
(aydvp=r w2z A {2z yv A {r,#/}, for which we need the
hypothesis

iLdgr=smwy A {aw) L (8.4}
From which we conclude { 1= (y & z).v) 5 (s » (y »
zhe'yand (s » y) » zRs » (y » z}.

4 (o= {yw z).0) 3. {p'.), similar to the previons case.
For (z ») » zRa » (y » z}, we find the following cases.
1. {{= » y} » z.#) ¢, for which we need one of the hypotheses

(a} {x » y.v) v, for which we need one of the hypotheses
Loy
From which we conclude directly (x » (y » z). 2} .
il. {y.»})v From which we conclude {y » z,2} v and hence (z »
(y » zhu).

(b} {z.0)v
From which we conclnde {y » z,#}v and hence (& » (y »
Zhe iy

2. (o (y » zhw) v, similar to the previous case.

3 (e yl» z.0) & {p.¥"), for which we need one of the hypotheses

{ 5
(a} {z.0) = (p.')
From which we conclude {y » z,v) K {p, v} and hence {z »
(y » 2).0) 5 (po/) with pRyp.
by dvp=r w2z nr {zw» yuw 4 {r,1/"}, for which we need one of
the hypotheses
i (g} S ()
From which we conclnude {y » 2z, »} % {p, o'y and hence {z »
{y » zh.w) & {p.+") with p R p.

il dgr=s5mwy A (a0} 4 (8.4}
From which we conclude p = (s » 3y} » zand (z » {y »
2w 5 (s (y w2 Y with(s » y) w zRs » (y » z).

4 {aw {yw zhv) A {p.¢"), similar to the previous case.

A.21 The axiom: (2| y)l|z=~2] (y]z)
We study the smallest relation R € P x P such that for all 2,94,z € P:
(Ll zRal =) o @lplRel@l A 2R

For R z, the proof is trivial. For (x| y}|| s R || (y ||), we find the fol-
lowing cases.

1. {({x] y)ll z.#} v . which cannot be derived.

2. (x|l wli=z),»} ¢, which cannot be detived.

3. (el =) o {p,#"). for which we need the hypothesis that [€ A
and furthermore

(ay dep=rlizalzlyw) AN {r, ¢}, for which we need the hypothesis
Ldgr=slly A {ao.w) et {s,¢)

From which we conclnde (|| {yl] z), v} 4 {sll (yll z).¢"), with
p=(sllyllzRs |l (gl z).

4 (x|l (wl 2o} 2 {¢, "}, similar to the previous case.
For (zljy) i z R« || (v]| z), we find the following cases.
1. {{xly)]] z.#) ¢, for which we need the hypothesis.

(0} {zlly,w}v A {2z, ¢}, for which we need the hypothesis
Loy A {yudy
From which we conclude directly (o }] (w1l z). ¢} .

2. {all (yll 2).v) ¢, similar to the previous case.
3l z.e) A {p. "}, for which we need one of the hypotheses

(0} I p="{(allyllr Aled A (2.0} L {r.v)
From which we conclude (x|l (y|lz).v) 4 {allylir). ey with
(ellyllirRall(yllr)

by v p=vrilz A lead n {{ally)v) iR {r,»}, for which we find
one of the hypotheses

L3y r = slly A {a.p) = {s.#') From which we conclude
! s
(el wlzhw) = (sl (wllz)r’) with (sl [2 Rs]l (] 2).
. de r o= alls A (g} s {5.') From which we conclnde
I A
(el lizhw) = (elisllz).e) with (el s}z R} (s || 2).
. Jeprpaw r =8|l A L= layd vy A {&0) it {s.2/} A
{y.vy B (s'.0). From which we conclude ([} (yl] 2).2) ot
(sl (sl 23,7} with (s{| S}]| 2R s |[(s"[]).
(€ Jpppawp=rlr A L= (ava v) A {(e]jy).r) B3 r2') A
{z,0)y B3 {r', '), for which we find one of the hypotheses
L3, r = slly A {ew) B (s From which we conclude
l ! o 2 i !
(el wlzhw) = (sl i) o) with (s up " Rsll (]l).
i3, r = zlls A {yr) B (s} From which we conchude
{ z 7 . £ i
Coll @l 2wy S (all (sl)0y with (ol)| Rocl] (1] 7).
il Jpgraran r=8l|8 A a=ay" A (z,2) B {s,¢) A
{y, v} =" (&' w). Using associativity of 7, we conclude that
{a”’va"" yyvad' = a’v(a"'va’}, from which we conclude in turn that
{ ’ f 7 =4 E ' ’ i
(el lizhw) = (s e’ with (s [S} P Rs [(5" [] 7).
(d} {xlly.w)v A leX
hypothesis
o {awyv A {ywiv
From which we directly conclude (x| (y | z), ¢} A {p,+’) with
s Rp.

e} {z.03¢ ALeX A {a|ly.w) ods {p.+), for which we need one of
the hypotheses

Az} ol {p.+), for which we need the

o (o) A ly) S (p)
From which we immediately conclude (x| (y] 2},) L {p, v}
with p R p.

o (gu)y A {zp) o (po)
From which we immediately conclude (x| (y] 2},) L {p, v}
with p R p.

o Dowp=rlr A {mw) S (0} A (gw) S (00
From which we immediately conclude (&] (v [2}, #) k. {p ')
with p R p.

(£) Jrup=rlis ALES A {(ellyhw) > (no') A {2w) > (s.0/),
for which we need one of the hypotheses

s {owyv A {yw) ER {r.e)
From which we immediately conclude (& || (v | 2}, #} 25 {p,2'}
with p R p.

o {y. ey A (me) Ay {r.e)

From which we immediately conclude (&l (y] 2} ») 4 {p.)
with p R p.
o oo r=01r" A {rw) ks {r'v'y A {y.v) oh {(r". v
From which we immediately conclnde {z{] (y || 2),») & {r'f (7") s). 0")
with p = (5" ") [{s R’ || 57 || o).

4 (all (wl]zhw) 4 {p'), similar to the previons case.

A.22 The axiom: (zly)lz=z|(ylz)

We study the smallest relation R © 7 % P such that for all 2,9,z € I
(wlyl|zRal(yiz) A (wlyllzRel(yliz) A wRe.

For & R &, the proof is trivial. For (o |y) |z R «| (] z}, we find the following
cases.

1. {{z]y)] 2 ¢} v, for which we need the hypothesis

s {z|y. vy A {z,0} v, for which we need the hypothesis
—{awwdv A ()Y
From which we immediately conclude (x| (y] z).v) .

2. {xl(ylz),w) v, similar to the previous case.

3 {(x]y)] 20} 4 {p, "}, for which we nead one of the hypotheses

o, ol o

(8} Fpsnawp=riisal={ava’ vinlelyr) B (r.) {z.0) B
{s,#'}), for which we need the hypothesis
i 331»:,.;;¢(1;;¢a;;; y o=y H r A i@ = a”’}'a!!! M (:i:, V} af.“:“‘éﬁ (Tlg i/!> P4

(yov) =" (70

Using associativity of v we then conclnde [= a"+(a"

~va'} and
hence (x| {y|z).») &, {p.+/}) with p R p.
(b} dryp=r|ls AleX A {&|y.v) b e’y A (zow) s {5,594},
for which we need one of the hypotheses
T R = o A T .5 {r'’y A {yow) b {(r".

From which we immediately conclnde (x| (y| 2], #) 4 {r'l| (r" |l 8}, "}
with p = (" |7} s R || ("]} 8).

o o) s ('Y A (o) v
From which we immediately conclude {z] (y] 2}, #} 5 {p,2'}
with p R p.

iil. {y.) sy (v, A {a.w) ¢, similar to the previous case.

(c; el A {alyw) s {p.v')y A {z.w) ¢, for which we need one of
the hypotheses

L3 p=rllrt A (e b (r'y A () s (P

From which we immediately conclude {z]| (y| z), #) 2 {p')
with p R p.

o (o) s g’y A (g) v
From which we immediately conclude {z] (y] z),)} £ {pv')
with p R p.

iil. {y.) .8 {r.v'y A Lo} &, similar to the previous case.

(G IeX A (a0} & {(p.e'y A {x|yoe)v, for which we nesd the
hypothesis

L{eeyv A (g
From which we immediately conclude (x| (y]| z).#) Ay {p.)
with p R p.

4 {xl(y]zhwv) 4 {¢. "}, similar to the previous case.
For (= || yi |l z Rz || (|| =), the proof is similar to that of the axiom (z || ¥}l 7 ~
z|l (=)
A.23 The axiom: (z|y) || z=~z|{yl =)
We study the smallest relation /. C P % P such that for all x4,z € P:
(19l 2Rl yll2) A @l 2Rl (] =) A 2R .

For # R x, the proot ig trivial.
For (z |y}l 2 Re! (y|l =), we find the following cases.

1. {((z])l z.#} v, which cannot be satisfied.
2. (x| (y]] 2).#} v, for which we need the hypothesis

s {y|l z.») v, which cannot be satisfied.

3. (el =0 4 {p.#"), for which we need the hypothesis that I € A
and furthermore

(2} Jep=rilz A {x]lyw) AN {r,i'}, for which we need the hypothesis

39

b B i e Pz] ¢ b b= (eyploop & () B {s.47) A
(g.v) W (")
From which we conclude (x| (|| 2}, ») oy {s]|(s"l| 2},) with
p=I(sll&)llzRsll (s || 2}.

4. (al (yll 20,2 4 {p.7}. for which we need one of the hypotheses

a et PO YRS A = [avya .U} A o4 wﬂ row Fa!
3 2 £ { 4 §
{yll z») B {s,#"), for which we need the hypothesis
L3y s=48lz A {ge) 8 {,2). From which we conclude
{ 4 w i ' i 7

el sy 5 (&) 20y with (v) | 2R | (7] 2) =
.

by deleX A {yllzw) A { 5.2}, which cannot be satisfied.

(¢} te X A {y|l z.#) v, which cannot be satisfied.

For (z|ly) |l z R z|] (y|l z), the proof is similar to that of the axiom (x| y)] 2 a

el (gl =)

A.24 The axiom: (¢ ©® 2) > y=a © (2 » y)

We study the smallest relation R € P »x P such that for all 2,y € P:
lacwiyRas{zwy AfleszywyRes(ewy A zRae.

The proof for 2 R x, is trivial. Furthermore, since actions cannot terminage,
we find the following cases for {a &) > yRa @ (z » y).

1. {((a @ x) = goo) oy {p.i/}, tor which we need the hypothesis
fay dop=rwy s {a®aw) s {r,#}, for which we need the

hypothesis

. ! ;)
iLdgr=s% 2 A {a,v} = {s¢) for which we need the hy-
pothesis

A s=c¢
From which we conclude p= (¢ @) » yand {a & (x »

yhov) A (e @ (xw y/ywith (e &) » yRe @ (2 »
yl-

2. {a® (zw» y,w) E {p.2}. similar to the previous case.

For (e (o «} » yRe o (z » y), the proof is similar to that of the axiom

i

€ 0 xRE.

60

A25 Theaxiom: d»clz)ymd®clz 0y

We study the smallest relation R € P x P such that for all o,y € P!
d>epraioyRd>eprasoyAleparoyRew s oy A 2R,

The proof for z Rz, is trivial. We find the following cases for (d » ¢ >
rl B yRd> et 2oy

1. {{d> (c > o)) © y.w) ¢, for which we need the hypothesis

(a} {d>» (e a),wyv A {y,v}v, for which we need the hypothesis
L 3w l=d A (e o), for which w need the hypothesis
A (e
Which cannot be derived using the semantical riles of HyPA.

2.d > ¢ > {(x y turns out not to terminate, similarly to the previous
case,

J{d>»ct o) 0y e A {p.+"), for which we need the hypothesis

(a} dop=r oy A l{dscr zw) 4 {r,"}, for which we need the
hypothesis
L3y (mv)=d A (e o) & {r,#" Y, for which we need the
hypothesis
A dyr=swa A (o) 5. {s.#7}, for which we need the
hypothesis
s 5=
From which we concnde p={e » 2} © yand {c » 2 ©

Y.y & {ew ooy Ywith{cw 2o yRew 2y

(b} {d>» ¢ v A (yw) j? {p.+”), which cannot occur since
d 2 ¢ b a does not terminate.

4 {d>cwaxoywr) 8 {¢,»"}, similar to the previous case.
We find the following cases for (¢ » 2} © yRe » z & g.
1. {{e » @) & y.) v, for which we need the hypothesis
(a} {ew a2} A {y,v) v, for which we need one of the hypotheses
i {ew) v
Which cannot be derived.
i o,y

From which we conclude (o @ y, 2} v and hence {¢ » x ©
Y.

61

2. {ew & @y, similar to the previous case.
3 {lew a) oy 4 {p.#}, for which we need one of the hypotheses

{a} (e » wvy v A {yw) A4 {p.}. for which we need one of the
hypotheses
i (o)
Which eannot be derived.
il {wwy
From which we conclude {x @ vy,) 4 {p,v}hence {c p £ &
YW A {p.w)with pRp.
M) Jop=r©uy A {cw xr) S (1), for which we one of the
hypotheses
i {wwd .. {r.#/'}
From which we conclude (& © 2.2 5. {p.v') hence (¢ »
ORI 4 {p.}; with pRp.
il. dyr=35ma A {cw) 3. {5.¢)
From whichwe conclude p= (s » 2z} o yand {c » 2Dy, ») A
(s @y rwith(s » o) @ yRsw z @y

! - .
4. {cw oy wy = (P, similar to the previous case.

A.26 The axiom: z > d &1z
We study the smallest relation R C P »x P such that for all » € P
e dRe AacwiRae.
There are only two non-trivial cases:
1 (o d.0) gy {p.'), for which we need the hypothesis
() By p=p' w0 A (@) 5 (')
For which we conclude " » 6 R p'.
2. (zw v} L {p.v"}, for which we need the hypothesis
(0 dp p=p » & A {a,v) 2 {(p. v}
For which we conclude ¥ » R p'.
A.27 The axiom: ¢ [» x ¢
We study the smallest relation R € P x P such that for all # € P
e B axRe.

It is trivial to see that {e » w.#)v & (e, #} v, and that both terms do
not generate any transitions. Hence R is a hisimulation relation.

62

A28 Theaxiom: (d>»zr)> ymd>» o>y
We study the smallest relation R € P x P such that for all # € P:
d>z)pyRd>r >y 2Re.

For 2 Rz, the proof is trivial. For {(d > 2) > yRd > & & y. we find the
following cases.
1. {{d>» &) > y.») v, for which we need the hypothesis

(a3 {d > x,u) v, for which we need the hypothesis

Lo (Y =d A (e) v
From which we conclude (o = y.+/}v hence (d > = I»
y .

2. {(d > x> y,v) v, similar to the previous case.
3. {(d>»a > yw) 4 {p,#""}, for which we need the hypothesis

(0 Jop=r wy A (d>ev) .- {r. "}, for which we need the
hypothesis
L3y () =d A (o) 2 {r.#'"}
From which we conclude (& > y,2/} 4 {r » y, "} and hence

{d>» x> yw) 2 {p, "}y with p R p.

4. {d>» x> ywv ;. {p.+”), similar to the previons case.

A.29 The axiom: z|ly=z|y @ ylle @ x|y
We study the smallest relation B € P x P such that for all ¢,y € P!

ellyRaelly ® ylle ® «jy A eRae .

For @ R, the proofis trivial. For oy Raelly & yll ¢ @ #y. we find the
following cases.
1. {&liy. v} v which leads to:

(a) {zw}v A {pw) v
From this we find {# |y, »)v andhence {ally D ylla D iy, v} .
2. {xlly © ylle 4 & y.»} ¢ which leads to the cases:

(a} (el y, v}

For which there is no deduction rule.

(b} (ylle.w)v
For which there is no dednction rile.

63

(¢} {x|y,») v which leads to:

i.

{wwdv A ()&
From this we find, directly, {(z{ly,»}v .

3 {ally. v} A {p,+’} which leads to the cases:

(ay {={a.v} A (xlly.¢) B3 {p. ') which leads to the cases:

i.

il.

iil.

By (zow) B (P A p=plly

From which we conclude that {z| y.v) ¥ (p.2/), and hence
{elly,w) 5 (po) and (zlly @ ylle o zlyw) 5 (p0)
with p R p.

317' (y,;/} rf_ﬂ; (p,f;”,) A px;xlip"

Similar to the previous case.

By prarar p= PP A a=ara’ A (wr) B P A
(yow) = (")

From which we conclude that (#ly.0) 577 (y 1 #7. #"), and
hence (zly, %) % (p') and {ally & yle © xlyp) 5
{p."; with pRp.

(b t=0 A {x|ly.v} > (p.v') which leads to the cases:

i.

il.

iil.

(aw) & A {gw) % ()

From which we conclude that (x| y.#} ~» (p,#') and hence
(elywy 5 (p/) and (xlly & ylle © zlye) 5 (pe)
with p R p.

{0} A {aw) S (p)

Similar to the previous case.

Y p=0B | A (20} S (Y A () S (B)
From which we conclude that {z|y. v} ~» (p||p".+") and

{p,#/'} with p R p.

4 (allym ylle s alyw) | {p.v; which leads to the cases:

(a) {ally.v) 5 (pow)

Trivial, since every deduction rule for || is also a rule for |].

!
(b) {yllz,2) = (pw}
Trivial, since every deduction rule for || is also a rule for |].

!
() {zlyw) = (pw}
Trivial, since every deduction rule for | is also a rule for || .

64

A.30 The axiom: (z B y)||z=z]lz & yl =
We study the smallest relation /€ P % P such that for all .y, 2z € P!
(zwyilzRellzoyllz An 2Rz

For # R, the proof is trivial. For (¢ & y)ll 2R el 2 & y|l 2 we find the
following cases.
1. { (= & y)l] 2.0} v, which cannot ocenr.
2. (el 2 © yll 2,0 ¢, for which we need one of the hypotheses:
(a} (x| z. ¢} v, which cannot oceur.

(b} {y|| z.#) v, which cannot ocenr.

3. (le® yill 2o 4 {p.+"}, for which we need the hypothesis:
esis:
i {wd ;. {r.#'}
From which we may conclude {ax{ z,»} . {allz,#"}, hence
{ell z ® y|l z.2) A {p,#") with p R ».
W {y,e) D ()

Which is similar to the previous case.

4 (wllzw yl z.v) 5 {p.+"}, for which we need one of the hypotheses:

(a}) {xl z.0) . {p. "}, for which we need the hypothesis:

Ldvp=rlz ey} A4 {r.v')
From which we readily conclude (& % y,»} 4 {r, ¢} and hence

{{z 4yl z,p) i {(p,'y with pR p.

!
(b} {yll 2w} = ("}
Which is similar fo the previons case.

A31 Theaxiom: d > rl|y~d>» (z]y)
We study the smallest relation R C PP »x P such that for all o,y € I
deallyRd> (#ly) A 2Rz .

For & R a, the proof is trivial. For d » z|lyRd > (x| y}, we find the
following cases.

1. {d > zl{ly.v} v, which cannot oceur.

65

2. {d>» (x| v}, v}, for which we need the hypothesis:
(a} J ') =d A {2l y,#"), which canmot ocenr.
3 {d>» alye) X {p. ¥}, for which we need the hypothesis:

(a} o p = rlly A {d > o.v) 4 {r,#"), for which we need the
hypothesis:

Lo (et l=d A {a") ! {r,u}
From which we may conclude (| v,) 4 {p.+"} and finally

(a3 (zllyhvy S (pv") with pRp.
4. (d> (wlly) v 3 {p.#"), for which we need the hypothesis:

(a} 3 (') =d A (z]ye) 4 {p.v"}, for which we need the
hypothesis:

Ldvp=vrlly A (&) 4 {r.v”)
From which we may conclude (d 3 w2} Lt {r.2"y and hence
{d» x|y w) ! {p,+"} with pR p.

A.32 The axiom: (a ® z)|y=a © (z]y)
We study the smallest relation R € P % P such that for all 2,y € P:
(e aillyRa @ (elly) A e adliluRe o (elly) A 2Ra .

For xRz, the proof is trivial. For (@ @ zj[lyRea © (z|ly), we find the
following cases.

1. Termination does not oceur.

2. {{a o oilly.v) & {p,), for which we need the hypothesis:

: i . . .
(a} I p = rlly A {a @ z.v) = {r.¢'}, and since actions do not
terminate, we need the hypothesis:

Ldyr=s5© 2z A {a.r) 4 {s.¢").

Clearly, s =€, hence p = (¢ © w}lly and {a & (z||y).») et
{e o (x]ly).vywithe o (2|l Rie © 2}l

3. {a o (eliy)w) X {p,»"}, which is similar o the previous case.
For (¢ @ zillyRe © xl|y, we find the following cases.
1. {{e © x) ||y, #) ¢, for which we need the hypothesis:

(a}) {e & zwd v A {y.v) v, for which we need the hypothesis:

66

Lo{awyv
From which we readily conelnde (z |jy,#} v, hence (e & (2l yh,) .

2. {e & {xlly). v} v, which is similar to the previous case.
3. (e aillyw) 4 {p.+"). for which we need one of the hypotheses:

(8) Forge L= A p=p 1p" A (e ® 2) S (F) Ay S
{p”, ¢}, tor which we need the hypothesis:
L {mw) s (P
From which we readily conelude (z|jy,#) -5 (p'[|p", %"} and
hence (e @ (xlly)e) 2 (p.v') with pRp.
by o t=0 A (e @ z,v) > {p,w) Aly,v) v, which is similar to the
first case.
(¢} Aol =0 A {e® awv)v A {y,w) > {pw) which is similar to
the first case.

(@) Dy l=ava Ap=pl|p" AleDa,w) = (P w) Aly,r) 5
{p”,+"), which is similar to the first case.

() Jop l=a Ap=plly A leoawr) S {p v}, whichis similar to
the first case.

() Jap l=a A p=zllp’ A {y.v) S (p.v), which is similar to the
first case.

4. (e ® (zly) v} 25 {p,+"}, which nses the reverse reasoning of the previ-
OIS case.

In fact, this last case could also have been concluded from the axiom € © x &

A.33 The axiom: (¢ > 2)|y =0
We study the smallest relation R € F x P snuch that for all 2,y € P
(c > aillyRd.

(learly, both related processes in (¢ = z)|| y RJ cannot ferminase. Fur-

thermore, for {{c = z}|| v} A {p. v} we ultimately need the hypothesis

that . l=a A p=(r » 2)|ly A {e,v) S {r,/), which clearly eannot

ocenr. Henece hoth processes do not perform any transitions.

A.34 The axiom: z|y=vy|z

We study the smallest relation R C P »x P such that for all »,y € I
zlyRyle A ellyRyllz A 2R,

For @ Rz, the proof is frivial. For 2|y Rylz and 2|y Ry ||z the proofs
are straightforward by symmetry of the rules for | and [].

67

A.35 Theaxiom: (z ® y)|zxz|z Byl 2

We study the smallest relation R € P x P such that for all o,y € P!
(e ®y)|zRelzd ylz A 2R

For ¢ Ra, the proof is trivial. For {& & y)|zRalz & y|z, we find the
following cases.

1. {{# @&)| z,v) v, which needs the hypothesis:

(0} {x & yudv A {zw)v, which needs one of the hypotheses:
Lo {awyv
From which we readily conclude { x| z. v} ¢, and hence (x| z &
ylz.wyv.
il. {y.») v, which is similar to the previous case.
2. {«lz ® yl|zw) v, which follows the reverse reasoning from the previous
case.
3. {((z D y)|z,u) 0 {p. "}, which needs one of the hypotheses:

(@) Jrppr l=0 Ap=p'l|p" A {edyr) S (p) A (ar) S
{p”, "), which needs one of the hypotheses:

L (@) > {p'),
From which we may conclnde that {u|z,0) ~5» {§ || p7,+") and

hence (@l z & ylzv) A {p.v") with p R p.

&%, o ;o
i (g} ~ (phv'),
similar to the previous case.

(b) aarprpreo U= (ava,v) A p=p|[p" A (2@ yw) By A

a0
{zow) = ("),
which is similar to the previous case.

. i ¢ . ; ;
4 {axlz ® ylz,w) = {(p), which follows the reverse reasoning of the
previous case.

A.36 The axiom: d{z =~ ¢

We study the smallest relation R € F x P snuch that for all 2 € P
8l e R6.

It is straightforward to verify that both terms 8| & and 4 do not terminase,
not ¢an perform any transitions.

68

A.37 The axiom: ¢||lz =1
We study the smallest relation R € P x P such that for all # € P:
efleRe A xR

For @ R, the proof is trivial. For € || # R, termination is frivial. Further-
more, we have the following cases.

1. (el zw} 4 {p.#), which needs one of the hypotheses:

(a) pl=0a A {&,v) 5 (p)

From which we easily conclude {z,») 5 {p,'}y and p R p.
(b) Jup p=cllp’ A (ww) S (p0)

From which we conclnde (z, »} &y (v yandel|p Ry

] o ; 5 ;
2. {w.ey = {p.w}, which follows the reverse reasoning of the previous case.

A.38 The axiom: €|z = ¢
We study the smallest relation R € P % P such that for all 2 € P
el # R 4.
(learly, || has no miles for termination, and since e cannot perform any

transitions, € || @ cannot either. This covers the cases of e || # R 4.

A.39 The axiom: d»e|d e (d Ad") ¢
We study the smallest relation R € F x P snuch that:
d»etd >R AdY) > e

Clearly, we only need to verify the cases of d > ¢|d > e R(d"Ad)Y > ¢
for termination.

1. {d> eld > e,v) v, for which we need the hypothesis

(a} A ('Y =d A Jue (Y =4
From which we conclude that (».v) | d° and (v.v) = &7, hence
(d AdY) > e)y,
2. ((d" Ad7) > e.v) v, for which we need the hypothesis

(a} 3 () = (& A7), which comes down to the hypothesis

Lw=v Ad,vv=d A Ju () =d
From which we easily conclude {d > e, 2} v and (d' > e, v} v,
hence (d > eld > e w} .

69

A40 Theaxiom: d>»¢|d >a® rxd
We study the smallest relation R € P x P such that for all # € P:
d>cld »>a® R4

Clearly, & » a & x does not terminate directly, hence d > ¢|d > a © 2,
does not. Also d > e does not execute any transitions, and & » a © & does
not execite any signal transitions, hence d > e|d > a © z does not execute
any fransitions.

A41 The axiom: d » a © z|d » o © y = drd) »
(aya) © (z]| y) if (avd') defined

For a given a and @’ such that ave’ is defined, we study the smallest relation
R C Px P aiuch that for all 2,y € P:

draozld »d 0 yREAADLY > (ava) & (z2lly) A e @ zxlle ® yRe ®

For # R, the proof is trivial. Ford » a © z|d » o © yR{drd) >
{ava’) = (xl] ¥}, thereis clearly no termination. Hence we find only the following
Cases.

lLLi{d»am eld »d @ yv) k. {p.2"}, for which we need one of the
hypotheses:

(@) Joppr l=0 A (d> a0 ar) S (P ") Ad >d Oyw) 5

(p,’,’: g/,’,’! >:
for which the hypotheses can clearly not be fulfilled.

(b} Fuit g pp i o L = (@"v0™" 0) A {d> oo ze) iy (p' "y A
(d >d oy v S {p”, "), for which we need the hypothesis:
Lodu ey =d A {a®a v At (Y A d (= d A
{a" @z i {p”, "), for which we need the hypothesis:
A dp=roen {ar) ML {(rp"Yy A Jup’=r" S A
{a. v S {r’.#""), which can only he concluded if:
® s Wil o e et e ey e

from which we conclude that [= {(avd’, "), p = ¢ ©
alle @ yand (s, "} = (d A d). Finally, we then obtain
{{(dnd} > (ava') © (2lly),») A {e = (xllyh»"} and
e @ xlle @ yRe @ (xlly)

2. {{dady » (ava') & (aliy)v) A {p.v"}, for which we need the hy-
pothesis

(a} Ao’y = dnd) ~ {{ave’) © (zlly)) ! {p, v/}, for which
we need the hypothesis:

70

{xliyy A e Ra.

Ldwp=ralzliy A {Hayd). o) Ay {r,#"}, which can only he
concluded if:
Al =(avd, v} A v=v =" A r=c¢ hence (") =d
and (") B, thus (d > a© ald > d © yv) A
e @ zlle oy’ dande & wlle © yRe o (x| y).
For ¢ © xlle © yRe & (x| y), the cases are similar to the cases of €
zlyRe @ (2]ly)in the proof of (o @ 2}y = a @ (x| y).

A42 The axiom: d » o ©® z|d » d © y = § if {ayd')
undefined

For a given @ and & such that avya’ is undefined, we study the smallest, relation
R C Px P siuch that for all 2,y € P:

d>ameld >»d o yRA.
Ford>» a® ald > a © ythere is ¢learly no termination. Furthermore,

there are no signal transitions. Hemnce the only case to be studied is: {d >

a@ald > ©yw) S {(p), for which we ultimately need the hypothesis
that o’ = ava’, which is contradictory to the assimption that ava’ is undefined.

A43 Theaxiom: d»e|d e ax(d ~d)®»c 2

We study the smallest relation R € P x P such that for all # € P:
dyeld e aR({ ~d)>ecr 2 A zR2.

For & R &, the proof is trivial. Also, since ¢ [» & cannot fermtinate, the cases
for termination are also frivial (both terms cannot}. Hence, we only study the
following cases for d > eld e 2R{E ~d Y > e 2

L{d>» eld » ¢ aw) % {p.2"}, for which we need one of the
hypotheses

() dp lehn p=d>e|lpn (d>ecb arv) v {#.#"}, which
wonld need
e l=d A {cw a2 s {p.+"), and henece would need
A dp=rmwaer {av A {r, 3,
which can clearly not he satisfied.
by dol=0 A {d>ew)v A{d >c aw)-S {pv"), for which
we need the hypothesis
L3, (moyEd A B (wi)Y=d A leb o) 5 (pa),
but then we may conclude (v,) | d° hence (1,0/) = d° ~ d)
and finally {(d" Ad}y > e 2,0} 5 {po”) with pR p.

71

2. ((dAd) > e v - {p. "}, tor which we need the hypothesis

(a) Do (Y= (d ~dYy A (e 2 ¥ {p.+"""), which leads to
the hypothesis
L AsYed A (") Ed, for which we need
A3, (e led Av =i,
Finally, we may conclude that {d > e.x}v and (d >
o TR % {p.v”"), hence (d > e|d > ¢ = a,v) 4
{p.v"y with pRp.

A44 The axiom: d»cl> 2|d »a® yx)

We study the smallest relation R € F x P snuch that for all 2,y € I
d>» e ald >a©ymd.

Clearly, ¢ > x eannot terminate, nor perform any action fransitions, while
a & y cannot terminate and cannot perform any signal transitions. None of the
hypothesis of the forced-synchronization operator can therefore be fulfilled.

A5 Theaxiom: d»c > o|d »d > y=
((d~ cimp) AN ~ o)) 2 (e Ad) B
(zlldwydyllewrzdz|d»ydylcr)
zlle w oy
ylhew 2o
wld woyd
ylew x

In this section, we will use the abbreviations M == and

N={{d~cpp} Ald ~ {%mp}).
We study the smallest relation R € P » P such that for all z.y € P:
sdx»epzld > yRN>enAd 2 M
scp zlidwyRencd » M
s cllyRyll=
s xRz

For 2 R z, the proof is trivial.

For z || y Ry i x. the proof follows according to the same lines as in the proot
of axiom z |y Ry |z

Ford>» e ald »c o yRN > end » M, we find the following
cases.

l.{d> et a|d > d > yw)d, for which we need the hypothesis

72

(a} {d>» ¢ zu)d A {d > ¢ > yryy, which leads to the
hypothesis
L3y (') =dAle >z)¢, for which we need the hypothesis
A. (e} ¢, which cannot be satisfied.

2L A(N>end I M), cannot be satisfied for similar reasons as in the
previous case.

3 ldepra|ld>d >y 4 {p. "}, leading to one of the hypothe-
ses

(ay dple A A {d>ek zp) A {p/,#"), which can clearly not be
satisfled since How-clanses cannot execute action transitions.

) eppr l=0c A domle) =0...8] A p=pllp" A (d> e
zu) o (P Y A > = oyr) - (P77, for which we
need the hypothesis

L) e d A (e n o) D) A S (ne”) =
d A (e oyl s {77, leading to the hypothesis

A e = »ae A leYS WYY A S p" =1 »

y A (e’) 5 (¢ "), for which we need the hypothesis

s (K otEeAr=cA (M olldAar=d A =at).

Using the second lemuma on the solutions of clanses, found

in the proof of axiom e, 3 ¢ & ¢, we know that (¢{0},7) =

(eAd). Furthermore, we may conclnde that (. o{(0)} = N

and p = ¢ » xllc » y. to finally find (¥ > ecnd >
My 5 {(end) w M"Yy and pRend » M.

4. (N> ead)y» Mu) 4 {p.+"}, leading to the hypothesis

(a) 3 'y = N A {{end) » M) b {p.#"}. for which we need
the hypothesis

iLdep=r e M A {{eadid) 4 (e A o gy (o) =

d A (o) kEe A Do () 2d A (o) lze A W =

71{0} = 05(0}, and finally we need the hypothesis

All=ag Ar=lend) A (VW0 = lend)y n v =06t
From this we may conclude that p = (e A) » M, but
furthermore we can nse the first lemma on solutions of flow
clanuses, found in the proof of axiom e, > ¢ = ¢, together
with the facts that (p.0¢) = ¢ and (¢, 0} = ¢ and /' =
o:(0) to find (z1,0) |= ¢ and similarly (.0} = ¢'. This
leads to the observations that (d > ¢ = #) ~» (¢ »
"y and {d > ¢ B oy) 5 (¢ w» oy 7). and finally
(decrzid>cd e ygr) b (ewallew yo") and
cw e w yRp

73

For e w z||d » yRend » M. we find the following cases.
1. {ew zljd » y,u} ¢, for which we need the hypothesis

(a} e o) A {d »), for which we need the hypothesis

Loy d A {ywid
From which we may coneclude {« |y, ») ¢ hence (M, v} v and
{{end)w My,

2. {eace » M), for which we need the hypothesis { M, ») ¢ and hence
one of the following hvpotheses
(a} {xl] & w y,#) ¢, which cannot ocenr.
(b} {yllcw z,2)v, which cannot ocenr.
(e} {x|c w y.2) . for which we need the hypothesis

L{edv A {d w» yw)y. From this we may conclude that
{ew 2,y and hence (e » z|ld » yu) .

(d} {ylew z,w), issimilar to the previous case.

3. (e w zlld » oy 4 {p.#'}, for which we need one of the following
hypotheses:

(2) Jow g L=ava p=p llp" A (cw 2wy S Py A »
Y. L {p”,+}, which leads to the hypothesis

i {mw) S (P,
from which we conclude (x| » y.#) iy (o' || p7. v). and
hence ({cAc) » M v} 4 {p.v') with p R p.
by Jup l=ap=plc wyn {cw a) S {p), for which we need
the hypothesis
Lolaey S (P
from which we conclude that {zll¢ » y,v) = (Pl »
y. ') and hence {{en) » M.2) 5 {p.+) with pR p.

(€ Jupl=ap=cw z||pr (¢ » y) > (P,0), which is similar
to the previons case.

(@) Jopprl=0 A dom(a) =[0...4] A p=g'|lp" A {cw z,0) 5
(p "y A L woywd ~» (p”"), for which we need one of the
following hypotheses:

L3 p=r e e A {ey) > (Y)Y A D = p
y A {efow) s (" 0", for which we need the hypothesis
Av=cAar"=d AlvoilEe A (roell=d AV =olf)

From this we conclude that p =¢ p» 2| ¢ » y and {{eA
dyw Mow) 2 {end w M), withpRencd) » M.

74

i Fe = ez A {er) D (Y A (goey D (B0, for
which we need the hypothesis
A r=c
Now, we conclude that p = ¢ » x||p”, and that {y|c »
a1 4 {(p"lle »). Hence {{cAd) » Mow) 4
(P e w ey with p" e » o Rp
i, (o)~ P’y A T " =" ey A (w7,
for which we need the hypothesis
A, prE e
Now, we conclude that p = p' | » 3, and that {z]d »
Yoy & {p.+' ;. Hence, {{enc) » M.w} = {p.#'} with
pRp.
v, (,w) S (0) A () S ()
From which it follows directly that {z|c » gy} = {p'}
Hence, {{(eAd) » M, 1) 4 {p,v'}y with pRp.
(&) Ao l=0c A (e w» x.0)~» (pe') A (¢ » yw)v, for which we
need the hypothesis
Lo {y,wiv.
From this we may conclude {(y|ec » 2} .- {p.+}. Hence,
{{eAnd)»w M) 5. {p. s with pRp.
(ty Iy l=0 A {cw z,udv A » ywd ~ (p), for which we
need the hypothesis
L {awi .
From this we may conclude {z|c » ¥y} 4 {p,+/). Hence,
{{end) »w My LA {p,v/'}y with pRp.

4. {ene » M,v) A {p,#"}, which needs one of the following hypotheses:

(a) op=r » M A {{cAd)v) 5 {r,+"), for which we need the
hypothesis
Ldpl=andomio)=[0.. . ar={(cAcd)ar =c(t} A (o) =

e A (va) =l

From this we may readily conclnde that p = {c A) » M

and {¢ » z,v) ~ (¢ » 2,0). Consequently, we find (¢ »

e ey Ay {ew zlld »wy/Ywithe » ol » yRp.
(b} {M,w) ;A {p,»"}, which comes down to one of the hypotheses:

LAdalld »yw)d 4 {p.i¥}, for this we need the hypothesis
A Jal=aArp=ridwyn {zr)s {n)
From which we conclude (¢ » z) ¥ (7.} and finally
{ew xilc »y.w) 4 {p.v') with p R p.

75

i {yllew a.w) 5 {p.+}, for this we need the hypothesis
A Jul=aAp=rlew e A (ge) S (n)
From which we conclude {e¢ » y) 5 {77/} and finally
{ew zljd »yw) 5 {cw z|ir) withpRew afr.
il {w|e » oy . {p./}, for which we need one of the hypothe-
A Buappl=ayd p=p |p" A {z.w) S (P A (»

y.ou) & {p”,+}. which leads to the hypothesis

o (yow) & (P70
From which we readily conclude {¢ » z||d » vy} it
{p.v") with pRp.
B. 3oy l=0p=pllp’ A {aw) S (p) A (c»
y.ovy s (p” .0, which leads to one of the hypotheses
s L. p = ey A {d w oy vy s (), then we need
the hypothesis
me g gk
From which we conclude that p = ¢’ || ¢ » y and (¢ »
zlie » oy i1 {p,') with pR p.
o (yow) S (")
From which we readily conclude {c » 2|/’ » 3,2} 4
{p,#) with pRp.
iv. {ylcw oo} 4 {p. v}, tor which we need one of the hypothe-
A Jpwpp l=avd p=p llp" A {yv) S (P0) A (ew
v}y & {p”.1), which leads to the hypothesis

o (o) S ()
From which we readily conclnde {c » z||¢ ») -
(Pl p' ") with pRp" || p'.
B. Jopp L=op=pllp" A {uw) > (P A {d»
@ u) ~» {p”.#"), which leads to one of the hypotheses
s d.p"=r e x A {ew mw) S {r), then we need
the hypothesis
—r=c
From which we conclude that p = p'|lc » & and {c »
zle » oy 5 {ew i) withpRe » || p.
o (ow) > (P
From which we readily conclude {¢ » x|l » y,)} L
(p"l|p'. ") with pRp" || p'.

76

A.46 The axiom: 9y (z ® y) = 0y (z) ® On (y)

We study the smallest relation R € P x P such that for all o,y € P!

For # Rz, the proof is trivial. For Oy (¢ & y) ROy (&) & Oy (y), we have
the following cases.

1. {8y (& & y).e2) v, for which we need the hypothesis
(a} {x @ y,)y, for which we need one of the hypotheses

Lo {awyv,

i {y,w)v,
similar to the previous case.

which is similar to the previons case.

3 (Oule o y).v) 4 {p.+), for which we need one of the hypotheses

(a} oo l=a A p=0y(r} (oo yw) 5 (r#), which leads to one
of the hvpotheses

i {ww) 5 (r))
From which we conclude { S ().) ~> (p.#') and hence {8y (2)®
9 (). vy 5 (p.v') with pRp.

it. {y.#} % (p,v'), which is similar to the previous case.

by dowprl=(av) A p=8gr) A ad H A (2o yu) v {r,v'}.
for which the proof is similar to the previous case.

A.47 The axiom: 9y (z © y) =y (2) © g (y)
We study the smallest relation R € P »x P such that for all 2,y € P:
Buyle o y) Rdgley © Oyly) A el
The proot of which follows roughly the same lines as the previous.
A.48 The axiom: dy (z > y) = dy (2) & Jdg (y)
We study the smallest relation R € P x P such that for all 2,y € P
Suyle > y) Riglz) > dyly) A s Ra

The proot of which follows roughly the same lines as the previous.

7

A.49 The axiom: dy (d >) = d > Oy (z)
We study the smallest relation R € P x P such that for all # € P:
Opld>) Rd > Oy le) A s Ra.

The proot of which follows roughly the same lines as the previous.

A.50 The axiom: dy (o) ~aifag H
We study the smallest relation R € P »x P such that, it ¢ ¢ H, then:
Oy la) Ra A y(ed Re.

The proot that 1 is a bisimulation relation goes as follows.

Clearly, {3y (e)) v if and only if {¢} v, while hoth cannot exernte any
transitions.

Furthermore, &y (¢} and a both cannot terminate, and if ¢ € H they perform
the transitions {8y (a).v} & (Syle).w) and {a.v) ¥ (e}, respectively.
Clearly Oy (¢) Re.

A.51 The axiom: dy (o) =6 fae H
We study the smallest relation /R € P % P such that, if ¢ € H, then:

8” (a} R4,

The proot that R is a bisimulation relation goes as follows.

Clearly, hoth terms cannot terminate, nor can they execnte signal transi-
tions, and the one of the hypotheses needed for (9 (a}.#) v (p.#'} is that
a & H, which does not hold by assumption.

A.52 The axiom: dy (¢) = ¢

We study the smallest relation R € P x P such that:
8” (E} TRe.

1t is straightforward to verity that R is a bisimulation relation.

A.53 The axiom: dy (¢) = ¢

We study the smallest relation R € P »x P such that:
O (e} Re

Clearly, both processes cannot terminate. Furthermore, the observation that
Hlow-clanses can only execute signal transitions, makes the rest of the proof
straightforward.

78

B Conservativity of ACP
B.1 ACP F p= g implies HYPA I p =~ ¢

The tollowing paragraphs contain, for each axdom of ACP, a derivation in HyPA.
Together with the observation that the derivation rules of ACP are confained
in those of HyPA we find that ACP + p & g implies HYPA F p & ¢. Note, that
in the axioms of ACP, every action ¢ may be replaced by deadlock 4. In HyPA
this is not the case. Therefore, we have two versions for some of the axioms on
communication and encapsulation.

The axiom: + ® y~y @ ¢ Trivial.
The axiom: (z & y} ® za 2 ® (y © z) Trivial.

The axiom: z © z~ 7z

v o frue] >z &
~ [truel > ® [true] > o2
= [éme]\;’[tme]»:ﬁ
= [é‘me] >
R
The axiom: (¢ & y} @ 22 @ z 8y © z Trivial.

The axiom: (& © y) © zma @ {y & z) Trivial.

The axiom: ¢ & d x

c @6~ o [false] >

= [é‘me] e [ﬁllﬁﬁ] o

A [é‘me] Y Ualﬁe] o

~ [true] >
x

The axiom: § & a6
§@a ~ ([fase] >e) o x

A [fal&e]? >
~ [folse] > &
4

79

The axiom: «|b s avh, if avh defined In this proof, we use the derivation
of & & ma.

alb = a©e|b

MoaDe|lb e

 [true] >amelboe
[true] > a @ ef [irue] > b0 ¢
([true] A [true) > (avh) © (cile)

~ o [true] > (avh) © (elle)

~ (avh) @ (ell€)

m (ayh) © €

& avh

The axiom: al|b = 4§, if avh undefined

alb = a©elb
M oamelboe
~ [lrue] >a®elboe
~ [true] > a® €| [frue] > b e
& 0

If we replace @ or b by § we trivially find a |4 = 8| b a2 4.
The axiom: zlly~ally @ ylle @ «|y Trivial.

The axiom: al|cma © «
all « (@@ eyl =

~ g le]a)

X

= oaGx

It we replace a by 6 we trivially find |} & = 4.

The axiom: a9 zlly~a® (x|ly) Trivial. Furthermore, if we veplace a by
4, we easily find the following derivation.

dwally ~ 0y
)
~ 6o (ol]y)

&

80

The axiom: (z @ y)|lz~ x|z ® y|lz Trivial.

The axiom: ¢ @ | ba: (]| by © & The proof of this has four cases. H avh
is defined, we obtain the following proof, in which we use a| b = avh.

a@xlb = awe|lboe

o [true] D a©elboe

rs ftrue] > a© xl [rue] > 00 ¢

m ([irue] A ftrue]) > (avh) & (2]l €)
rue | > (avh) © (zl]e)
(@) © (alle)

e {avh) @ (zlle ® ella® x| €)

e (avh)y @ (elle® zlle® x| €
(avhy © lellz @ xlle @ el v)

a {avh) @ (el]x)

~ {avh) © @

m {a|b o«

If @b is nndefined, we obtain the following proof, in which we use a|b = 4.

a@axlb = a@w|lboe

o ftrue]l > a®elb o

r ftrue] > a @ x| [true] >0 @ ¢
4

P N

m (alb)y o

If @ is replaced by deadlock, we find

b alh ~ b
J
d oo

A (Bb) o

And similarly if & is replaced by deadlock (nsing commutativity}..

31

The axiom: a|b o @& (]| b} © & The proof of this has four cases. H avh
is defined, we obtain the following proof, in which we use a| b = avh.

albox = awelbor
moa@el [true]l > bo
r ftrue] > a @ el [true| >0 0w
m ([rue] A ftrue]) > (avh) @ (e]i@)
~ [true] > (ayh) © (el =)
2 {avh) @ (el|la)
& (avh) O
m {a|b©a

If avh is undefined, we obtain the following proof, in which we use a| b = 4.

alboae ~ a@elboe
N oa®el [true] >0 2
o [true] > a@e| [true] > b o e
8
I O
a (a|lby o

If @ is replaced by deadlock we find

dbaoae ~ 6

And similarly if & is replaced by deadlock (nsing § © 2 & § and commmtativity}.

The axiom: a & &b @ y = (a| by o (xlly) The proof of this has four cases.
If avh is defined, we ohtain the following proof, in which we use a! b = avb.

a@xlboy = a® x| [tme])b"ﬂy
true | > a© xf [true] > boy
re ([drue] A [irue]) > (avd) @ (zily)
m [true] > (avh) @ («]jy)
= (avh) © (z]ly)
m (alb) @ (xly)

82

It avh is undefined, we obtain the following proof, in which we use a| b= 4.

m [true] > a® a] [true] > boy
&

0o (x]ly)

m (alb) © (zlly)

If @ is replaced by deadlock we find

dwalboy = dlbey

)
a8 (elly)
~ (818 @ (elly)

And similarly if b is replaced by deadlock (nsing commutativity}.
The axiom: (z @ y}lzm 2|z @ y|z Trivial
The axion:: z|(y © z)ma|ly © 2lz

clly®s) ~ @oole

i
s

&
t
A
&

b

5
==
e

&

w

The axiom: 8y {(a) ~a, ifad H Trivial.

The axiom: Oy (a) ~ 6, if @ € H Trivial, except when a is replaced by
deadlock. Then we find the following derivation.

O (8) = Oy (false > z)
g folse > Oy (2)
b

14

The axiom: Jy(z & y & Oy (z) © 8y (y; Trivial.

The axiom: Jy (x © y & Oy (z) © 8y (y; Trivial.

33

B.2 HyPA |l p=y¢gimplies ACP - p =y

In this section, we will prove the converse case. This is done nsing the semantical
model of HyPA and ACP. We show, that if two closed ACP terms p and g are
hisimilar in HyPA {which we may assume nsing soundness of the derivation
HyPA - p = g}, then they are hisimilar in ACP. Then, we use completeness
of the axiomatization of ACP, to conclude that there must be a derivation in
ACP to show this hisimilarity. Throughout this section, we use the notation
w € ACTP for ‘= is a closed ACP term’, and similarly for HyPA.
The operational semantics of ACP, is given by the following rules.

o @ .
(o) Sace (o) () Sacr ¢
= - e @ .
{a} wacr v (e @ y) =ace (&) {20y} sacr ¥
o o .
(y igs) :i_:} —> AP (fﬂ’} (U &5 3-’} —acp ¥
o @ .
(:K} — AP (Zﬁ’) (37> —40p ¥

[£] [£]
(o y) sacp (& oy (e0y) —=acp (¥

(&) Sace () (&) Sacp v
Celly) Sace (e) Lelly) Sace (v)
(ylie) —ace (e (ylie) =ace (v}

(elly)y Sace (e'llyy {elly) Sace (¥)

(o) E;.A("P (') () ﬂﬂ("l’ (¥'). a=dard"
{zlly} %.A(“P T
{wly) —ace (1Y)

(e) Dace v (y) Dace (V). a=dya"
(zlly) B"Acu’) (¥
(ulley Sacr (')
(wly) E“:‘%("P (¥}

o B} o')
{2} —ace v, {y} »acp ¥, a=davd”
[43 .
{wlly) =ace v
[£3 ~
{xly)y —»acp ¢

£ ; £ _
{x) =wacp (& Yad H (o) 240p vad H
£ ; £ _
(O (@)} —ace (Gu(a)) (Oule)) —ace ¥
Note, that the empty process € is not an ACP term. In stead, ACP has a

transition predicate denoted as {p} —acp . The notion of bisimulation for
ACP terms is therefore defined as follows.

34

Definition 10 (ACP-Bisimulation) A relation R C P x P on process terms
of ACP, is an ACP-bisimulation relation if for oll p,g € P such thot p R q, we
Jind
s (p} L (9" implies there exists ¢ s {q} i p— (¢ end p Ry';
s (q) if;(:fp {¢") implies there exists p’ st (p) fvf;(-'p {(pYyaend p Ry':
s (p} —ayf;cp ¢ implies there exists ' s.t. {g) —a?‘;-qc"p <
s () if;{'fp v implies there exists p’ st {p) —G‘?‘A{Tp v .

Two process terms ¢ and y are ACP-hisimilar, denoted & 2 a0 p v, if there exists
an ACP-bisimulation relation that relates them.

Now we will prove the following theorem. relating ACP-bisimmilation with
bisitmilation as defined for HyPA.

Theorem 4 For closed ACP termspand g we findthei ifpegthenp2.40p q.

Clearly, using soundness of HyPA and completeness of ACP, we can derive
from this theorem that

HyPA Fpryg =peqg =pesnpg = ACP Fprg.
The following four lemmas are used to prove this theorem.

Lemima &
Ifeec ACP and {z) f&_f;(:fp v then there exists ' = ¢ (with y' € HyPA) such
that (o, v S (y' v for every v € Val.
Proof This proof uses induction on the structure of z. Since ¢ € ACP,
we find the following cases.

1. @ = 4, which contradicts with the assumption {«} —a»_f;(-p <.

2. & = a. From which we conclude using the semantics of HyPA that

(z,0) 8 (e,0) for every v € Val.
J.oa=2" 92" A 2 e € ACP, for which we find the one of the hypotheses,

using the semantics of ACP.

23 e
(a) (&'} wace ¢
With induction, we conclude for &' that there exists 3" 2 € such that
{a'owy B (i w) for every v € Val, hence also (w0} 25 (g w),
using the semantics of HyPA.

] 32 F: L -
(b} {2"} —4cp . similar to the previoms case.

. .o as . @ -
4. @ =2’ © ", which contradicts with the assumption {x} —acp .

85

5. x=a"||&" n o,2” € ACP, for which we find the following hypothesis,
nsing the semantics of ACP.

(s‘%l-} Eafﬁ“ a = a'va’ A ({f?’) ii‘g(:fp < A ({f?”} a—?‘g(}f{) v With indue-
tion, we conclude for ' and 2", that there exists z 2 2° 2 ¢ such
that (2,0} %3 {z,w) and {&",v) "3 (&) for every v € Val.
Using the semantics of HyPA, we then find that (z,#) 23 {z|] 2/,)
and using congruence for the parallel composition, together with the
derivable, hence sound, theorem € || € & €, we obtain z || 27 & €.

6. w = || &, which contradicts with the assumption (#} —40p .

T.x=& 2" A o, 2" € ACP, similar to the proof of z = 2" || 2”.
B, w = dy (e’ A a’ € ACP, for which we find the following hypothesis, using
; g Lyp : &

the semantics of ACP.
£ - P . . N : ;
(a} ag H A {2') —acp ¢ . With induction, we conclude for &', that
there exists i = ¢ such that (/. ») 2 (¢ #) for every v € Val,
henee also (G (), g oy and with eongruence and the
H) HY g
sound axiom &, (s) e we find Gy (1) 2 €.

Ed

Lermma 4
If o € ACP and {x} —a?‘&zq(jfp {y) then there exists ' = y fwith v € HyPA)
such thet (o vy B (y' w0y Jor every v € Val.

Proof This proof uses induction on the structure of x. 8Since @ € ACP,
we find the following cases.

1. # =4, which contradicts with the assumption (&) —acp (&)
- . “ 3 &3
2. x = a. which contradicts with the assnmption {2} —acp (&'}

Joe=q4" 3" A o.2" € ACP, for which we find the one of the following
hypotheses, using the semantics of ACP.

2}
(i%l.} (Zﬁ’) < 40P (y}
With induction, we conclude for 2, that there exists ' 2 y such that
(a'owy B (g w) for every v € Val, hence also (v} 2 (g w),
using the semantics of HyPA.

3

(b) {2”Y % 4cp (y), similar to the previous case.

4.z =2 © 2" A 2,27 € ACP, for which we find the one of the following
hypotheses, using the semantics of ACP.

36

(8) Joy=z2 0 2" A (&) Sacp (2)
With induction, we conclude for . that there exists a 2" 2 z such
that (o', 2) B (2,) for every » € Val, hence we find {,») =
{7z © &".¢) using the semantics of HyPA, and 2" & & = y using
congruence of the sequential composition.

by 2" =y A (&) DSa0p . Using the previous lemma, we may
conclude that there exists z = € such that (27,2} 3 {z,2) for all
v & Val. Then, using the semantics of HyPA we find (2,2} 9 (z
", ¢y, Congruence for the sequential composition, and soundness of
the axiom e © o & ¢ then give use 2 © a” =y,

5o = a'lj2” A a.e” € ACP, for which we find one of the following hy-
potheses, using the semantics of ACP.

(ay o y=zlla” A (&) fb,;(jfp {z}
With induction, we conclude for &', that there exists 2’ = z such
that (a0 B (2'.0) for all ¥ € Vel, and using the semantics
of HyPA we conclude (@) = (||« »). Congruence for the
parallel composition then gives us 2° || 27 £ y.

by Joy=2"||z A {2"} % acp {2), similar to the previous case.

af i
(€} s y=zll2 Aa=dva” A 2"y —acp {2) A {2") 40P
{7y With induction to the structure of @’ and z” we find w = z

o o'

and ' £ 2" such that (&', ¢} = Ge,w) and (27,0) 3 (W, e}

) i . 199 2
Using the semantics of HyPA we then conclude (&, 2} =3 (w0
and congrnence for the parallel composition gives w || w0 =y,

w' vy

6. x =2'l] 2. a subcase of £ = 2" || &”.
T.x=a | 2", asubease of & = 2" || 2”.

&« =0y (&) A &’ € ACP, for which we find the following hypothesis, using
the semantics of ACP.

i

(0} o y=0ulz) A ad H A {z') &z {z}. With induction, we
conclude for #’, that there exists 2’ 2 z such that (&', 2} ' (2,0}
for every » € Val, hence also {9y (), v} 23 {8y (') ,») and with
comgruence we find y =2 8y (27,

Ed
Lemma 5 If x € ACP then there is no v such that (z. v} .
Proof Obvious. For immediate termination in HyPA, there must be a ¢
suhterm of z. No other constants or operators introduce termination. =

37

Lemma 6 If # € ACP ond there is o » such thot {w. Y & {y.v), (withy €

HyPA) then either y < ¢ and (2) > ¢, or there ezists y' € ACP such that
23

y=y and (2) — (')

Proof This proof uses induction on the structure of . For € ACP, we
find the following cases.

- . . 5 0,4 3
1. « = 4§, which contradicts with the assumption that {x,2) = {y,») for
some # € Val.

2. & = a, for which we find trivially ¥ = ¢. and nsing the semantics of ACP

(o) 5

3w ou wl

.
@ 2" A & € ACP, for which we find one of the following

hypotheses, using the semantics of HyPA.

(a) {z

(3% 4 e . S . 9 2 3
Yy 5 {y,r)y With induction, we find for &', one of the two

following hypotheses

i.
il

(b} (&

4, ¢ = ¢

yzeA{r) 5% ¢ From which we conclude, using the semantics
of ACPD, that (2} = .

dyy e ACPAy=y A () % (y'} From which we conclude,
using the semantics of ACP, that {z} > (y'}.

r @, a i 5
ey S {y.oe), similar to the previous case.

i@’ A 22" e ACP, for which we find on of the following

hypotheses, using the semantics of HyPA.

{(a} {&

- (299 2 i . -
ey A (e vy S {y,v), which according to lemma 5 contra-

dicts with the assumption that & € ACP,

(b} y=z @ " A {2 v) £ {z,2y With induction, we find for &', one
of the two following hypotheses

i

il.

5o =g

[£3 - & " “
zee Az’y — ¢ From which we conclude, using the semantics
" = = & . N " .
of ACP, that (#) — ", and using congruence of sequential
composition together with the sound axiom ¢ © #” =2 2”7, that

y e
£ .
do 2 € ACP Az A (&) — (2} From which we conclude,

using the semantics of ACP, that {«} — (2’ & &), and nsing

congruence of the sequential composition that 4y = 2" © &”.
Ha” A o2 € ACP, for which we find one of the following

hypotheses, using the semantics of HyPA.

(a) 3.

y=zllz" A {2, vy DB {z,v). With induction, we find for 2/,

one of the two following hypotheses

88

‘ 6o ; i o
Lze2e A {(2') —» ¢ From which we conclude that {«} — (2”7}
and using equational reasoning y = z”.

il. 3. 2" € ACP Az A (&) % {2z} From which we conclude
that {2} > (2 Il #”) and using congruence y 2 2’ || 7.

by oy=ua"llz A (&0} 2 {z.#), which is similar to the previons
case.
(€ Jpwowy=zl|Z Aa=dva" Az, v} D (zw) A {z"v) "3

{Z.) With induction, we find for &', one of the four following hy-
potheses

. o at .
Lzee A {2y = & A Zee A () = ¢ From which we
. . ’ 6 .
conclude using the semantics of ACP that {z} — ', and using
equational reasoning that y 2 «.

. G}’ B G}:‘:‘
i.zeenle) » v A w e ACPAZ 2w A {2")y - (W)
x 3 « . &
From which we conclude nsing the semantics of ACP that {#) —
{w’}y and using congruence and {(sound} eguational reasoning
that y 2w’
ot aft i
il dp,weACP Azow A (2) = (w) A Zme A (") = ¢
Similar to the previous case.

; o o'
iv. dyp e’ € ACP AzewA{dy = Loynz 2w’ A {d") —
{1’} From which we conelude using the semantics of ACP that

4]
{ey = {w

w' Y and nusing congruence y = w || w’.
6. @« = 2’| £”. which is a subcase of & = 2" || 2".
7. x =g 1", which is a suhease of & = 2" || 2™
Lo =dyle " € ACP, for which we find one of the following hiypotheses,
8 S’y Ao’ € ACP, for which we find f the foll ¢ hypot! ;
using the sermantics of HyPA.
(a) Loy =0ulz) A ad H A {0y B {2, 0) With induction, we
find for #’, one of the two following hypotheses

iozeeAla) % ¢ From which we conclude, using the semantics
of ACP, that () = .

. 4o 2" € ACP Az A {d) 5 {z"} From which we conclude,
using the semantics of ACP, that (&) it {8 (}) and using
congruence y = i (27},

Ed

Using these four lemmas, we can prove the main theorem by showing that
= ig an ACP-bisimulation relation.

39

Corollary 1 =, restricted to clased ACP terms, is an ACP-bisimulation relo-
tian.

Proof Suppose p =g, and p,g € ACP.

" @ ; o ; ,
s If {p} —acp {p), then we use the lemma 4 o find v 2 ' such that
(73 4 a . . P . 2
{p.w)y 5 (y,u) for every ». Since £ is a bisimulation relation, there
. ’ ; 4. r T -
exists o' = 4 such that {g,2) = (¢, r}. Using lemma 5, and the obser-
vation that p’ € ACP, we find that not {/,#} v. Now, we can use lemma
j o j & o @ e
6 to find there exists a ¢ =2 ¢ such that {(¢) —40p (¢). Lastly, = is an
equivalence relation, from which we conclude p =2 ¢’

" @ , i . T ,) pe
o It {q) —=a0p {4}, the reasoning is similar to the previons case.

7 I - : 0,4
s I (p} >acp ¢, then we use lemma 3 to find ¥ 2 ¢ such that {p,»} =
{y, v} for every p. Since 2 is a bisimulation relation, there exists 4’ 2y

(1.2 43 .
such thas {q.#) 5 (y'.#). Now, using lemma 6 we may conclnde that
either, there exists z € ACP such that z & ¢ (which cannot be, since then
zeeand {z,) v, contradicting lemma 4}, or ¥’ 2 ¢ (which is true} and

(g} Sacp ¢

s If (g} —.a0p . the reasoning is similar to the previous case.

90

C Rewriting into basic terms

In this section, we will show that all the terms of HyPA can be rewritten into
basic terms, using the axiomatization of HyPA. In fact, we show that there
is a stromgly normalizing rewrite system, for rewriting HyPA terms into the
following form.

N = dretaicia Nier Nid>ard> e
d»cid>acmo Nid>ep NN & N,

After that, it is easy to verify that the terms in N7 ¢an be rewritien into v
using the axioms [frue] > e mae D emae > Smzand § & [folse] > e

The remainder of this section consists of three parts. In part one, we give
a rewrite system that is constructed for the task of rewriting HyPA terms into
N’. Furthermore, we show that all the rewrite rules can be derived using the
axiomatization of HyPA. And in part two. we show that all possible normal
forms of the rewrite system are in &', While in part three we show that the
rewrife system is strongly normalizing, i.e. that every term has a normal form
into which it can be rewritten.

C.1 The rewrite system

In this section, we give the rewrite system for rewriting HyPA terms into terms
of the form N’. All the rules are derivable using the axiomatization, and are
henee sound. This can he easily seen, since we have ordered the rules in groups,
based on the most important axiom from which the rule is derived. Almosi all
riles are derivable nsing only the base axiom. and one or more of the following
nnit-, zero-, and commutativity-theorems. (Note that most of them are axioms.}

RO dormd Gllemsd

dlaerd d S e [tme]):ﬁ:m:ft
[false] > zmd 21> dmz ellemx

clymyle o ymysr wllymylr
In the derivations, we have also nsed the following logical eguivalences:
d'? wngd d?;’\[éme]xd? dAad =d nd

ene =¢c Ae [ﬁzlse]? =3 [false] [é‘me]? = [é‘me]

[true] ~d=d

Only two rules are not derivable using only those axioms, and using the
derivability of other riles. For those two rules, a proof is given in the end of the
sihsubsection in which they are infroduced.

C.1.1 Rules from the axiom: d > § ~ 4
d3 0§

91

C.1.2 TRules from the axiom

d>»d > aw ([dd) >

C.1.83 BRules from the axiom

d» v yi=d>erad>y

C.1.4 Rules from the axiom:

(e S yy®ze 2w (yoz)

C.1.5 Rules from the axiom:

e byl e a®Hzhyoez

C.1.6 Rules from the axiom:

T YyYS YDy

C.1.7 Rules from the axiom:

€[> &3 e€

C.1.8 Rules from the axiom

e z)>y=ck (zwy)

C.1.9 Rules from the axiom:

(e

Gy rrz=zr>zEybk s

C.1.10 Rules from the axiom

elly=ellydylle ® aly

C.1.11 Rules from the axiom

(e y)lzo ez ylz

C.1.12 Rules from the axiom:

elff = 6

C.1.13 Rules from the axiom

d»eyvz=d >«
R A B

rd>»d>and~d) >

rd>»rdyimd>r b d>y

(fn': L y) (o) Z®E (9 (y () Z)
(DY) QzRrO2H YO 2

Tw YT Y DYy

ey (y w2

e byl ez Yz

x|y

tellymaelywylae @

c(royle~zlzo vz

el wmed

td>e)mrad >

92

C.1.14 TRules from the axiom: (d > 2} ||y =d> (2] v)
(d>»ailly—=d> ey

flez= 48

C.1.15 Rules from the axiom: (¢ @ z}||yv~a @ (x| y)
e aifly= e (z]y

ale—=a®ax

C.1.16 Rules from the axiom: (¢ > =)y~ 6

(et zilly— 8

cllzesd

C.1.17 Rules from the axiom: (d > a) D z2=d>a ® x

d»a)or=sd>»amr
dor—sd
d>am) oy=d>am &y

This last rile is perhaps not so trivial, and can be derived as follows:

e)y ~ (d>a)®a)oy
= da o (xoy
& dx»a®(zoy)

C.1.18 Rules from the axiom: (¢ © ¢) > y=a @ (& » y)

ez y=a® (zw»y)
al = a® (ed)

The derivation of this last rule goes as follows:

afl>ax =~ {(a©elma
& oa® (e w o)
& oam (e xdx)
& oa® (ed)

C.1.19 Rules from the axiom: (d > 2 > yxd> o > y

d>rbysd>rey
=

93

C.1.20 Rules from the axiom: (d > cp 2) G ymd P el 260y

d>»cpayoy=sd>cl by
lca)oy=ck ooy
d>ec)ba—d>»e

cioE=—c

C.1.21 Rules from the axiom: 6]z 4

floes §
wldes
C.1.22 Rules from the axiom: (v © y)|zmzlz & ylz

(e byilz=alzo ylz
ey z)s x|y ® |z

C.1.23 Rules from the axiom: d > ¢|{d > ern (d"Ad7) > ¢

d>eld e (dAd) > ¢
d>eles d >e
eld>e=d >e

ele=s e

C.1.24 Rules from the axiom: d > e D 2ld > ¢ o y= {drd) »
{ava’) @ (xlly) if (ayd') defined

For some of the riles below, it is important to notice that the reinitialization-
clanse { [true] Ad) is not logically equivalent to d, since [é‘me] prevents variables
from changing their valuation. The unit element of A for reinitialization-clanses
is [Vi | true].

d>»aweld >a Dy~ (dAad)> (ava) © (zf]y)
a@wld>d ©yo ([true] Ad) > (avd) © (zlly)
a@ald oy (avd) © (zl]ly)

d>»a® eld ©y (da[true]) > (avd) © (zlly)
d»ald >d caes drdy>» (avd) &«
d@»abaid »>d s (dad} > (avd) &«
d>»a® ala = (da[true]) > (aya) ¢
ald>a © e ([true] Ad) > (avd) «
a@ald>d = ([true] Ad) > (avd) ©
d>ald @z« (dn[true]) > (avd) ¢
d>»ald >»a — (dad) > (ava)
d>ald = (dA[true]) > (ave))
ald>» a = ([true] A d) > (ave))

ala @& wes (avd'y 5w

a @ xle— (ava’y o x

[T Y

L

94

ala — ava

C.1.25 Rulesfromtheaxiom: d > aou|d > ©y= 6 if (eve’) undefined

d»amald »a ©yesd
a@zr|ld>»d 0oy—=d
d>»a® zld ©y—s
dyald >d Ga—=d
d>a® zid >a =4
a®re|lad Gy=d
ald>a © res §
d>»a©zlad =4
a@rld>d =4
d>»ala & e~ d
a@x|lad o

alad © z= 4§
d>»ald >a — 8
ald>a — 8
d>»ald <9
ala s

C.1.26 Rules from the axiom: d > eld > (a © x) x4

d>eld a0z d
d>»a® zid >e 0
eld>am =
d>»a® xle=s
aDa|d>ecs d
d>»elam w9
d>»ald >e=4d
d>cld >a= 0
ela o x4

a @ x|le—d
eld>aws §
d>»ale~4d
d>elaws §
ald» e d

ela~s b

ale— b

C.1.27 Rules from the axiom: d > ¢|d > e z2x(d ~d) > (e 2)

d>eld e a=({d~di>ecr
d> ek ald e ({d~d) >

95

e zldesd >ep
d»elepae=ad >er
eldeprao=dycb
d>»c rle=sd>eb
dseld >ew (d ~d) > e
d>eld e (d ~d)>e
ele> e e

ek a|le—=ecn
cld» e d > ¢
d>elesd >e
eld>» e d>e
d>»cle—d>»e«

ele=s ¢

cle— e

C.1.28 Rules from the axiom: d» ¢ > z|ld > e ymd

d»abeld >epye—d
d>c ald a0y i
d> el ala® e d
d>»>a® zle yes
ek ald»ao y—4a
a@e|ld>Per y=d
d>cld >a® x 0
d>»a @ zld >e— 6
d>cr oid >aes §
deald >c» o4
e xlamy—sd

a @ aler gy b
cld>»>a@ e~ 4
a@x|ld>»e—d
d>»clamz—d
d>»a @ xlews d

ek zld>a—=d
d>»ale> x=

d> el ala=d
ald> e e b
d>»c|ld >a=d
d>ald>»ce— 0

a@ x|l d

cla @z §

alep wes 8

el xla=d
ald® e d
cld>a— 48

96

d>»ale— §
d>»clacs §
ale—s b
claes §

C.1.29 Rules from the axiom: d > ¢ > @|d > ¢ > y& ({d~ cmp) A
(d ~ci,)) 2 ead) = (2l py @yllewa zldwy @ yler a)

d»epald >d >y

((d~ Cjmpy A (d ~ el 0) 2 (e AL B

P

zlle »
yliew
zle w
yle p o
zlle »
yilew
xhe w
yle w o

Lt i

e oaeld> e Byt (Cup ANd~) > (eAd)

S

P

W

d> et ool Byt ((d~Cump) Ahy,,) > (end) &=

B3 L TR oo e
‘@‘-‘s@ Q‘S@

e
3
i

all e »oy
ylew &
ale wy @

yle w oz

d»cld > d o= (([drgupAd ~) 2 (eAd) B (el)
d> et ald > ((d~) Ad ~) > (ead) & (2]
d>c b ald = ((d~ chup) Aipy) 3 (eAc) B (2] &)

el xld> e (Cmp Ald ~) > (end) B (2])

d>c|ld b o= ([d~cjup) Ay, > (end) b (el 2)

cld> d b &< (Cup A (d ~ Gy }) > (e A d) & (cf| @)

d>eld > ¢ < ((d~Ciup) Ad ~) > (e A)

cld 3 = (g A (d ~€y)) > (e)

d> cle = ((d~ Gup) N Chpg) > (e)

e 2|9 (eA)mp > (eAd) > (2] d)

el B ee (A imp 2 (cad) = (efle)

el = (A hmp > (eAL)

el 2| B ye (A > (end) =

Theruled > cfd > ¢ & o< ((d~cjup) Ad ~ b} 2 (end) B (cf] @)
is not trivial. Therefore, we give its derivation.

97

dyeld»dpa = ddep dld>»d 2
NI A

P , alfew § @
A ((d~ cjmp) Alfd ~ ijp}) > (eAd) > Sle w oo
alew §
§ @
;L . lew d D
A ((d~ g A ~) 3 (eAd) > 5 “"J
zlew b
§ @
wlfler>d @ d) @
S (o egg) A) 3 en) | L)
zlle > 6 ® d)
e 0 @
m ((d~ i) A ~) > (endy > | @
ale = 8
zller> 6 @
 ((d~ o) Ad ~) B lead) e | e dlle s
wlem o
zlle ®
m ((d~ i) AMd ~Cpd) D lend) b | elle @
ale
ez @
(A~ Ad ~) > (end) | wlle

elx

m ((d o~) A ~ el)) B (end) po(eflx)

C.1.30 Rules from the axiom: 8y (¢} r e

(9” (6) Dbl

C.1.31 Rules from the axiom: if ¢ ¢ H then 04 (a) =4
ifa € H then dy{a) — 4

C.1.32 Rules from the axiom: if ¢ ¢ H then dy (a) = a
ifad H then dy {a) ~s a

98

C.1.33 Rules from the axiom:

Ay (e} = ¢

C.1.34 Rules from the axiom:

O (2 y)—= Oy (e} © O (y)

C.1.35 Rules from the axiom:

Qe (o =)= B (o) > Dy (y)

C.1.36 Rules from the axiom:

aH' (d > (f?} s d > aff (‘T}
Oy (8) < &

C.1.837 Rules from the axiom:

O (e ® y)—= Oy (e} & Ou (y)

Oy (e = c

Oy (= @ y) = Oy (x) © Gy (y)

Oer (& = y) m Oy (2} 1> Bu ()

On (4 @) = d > O (0

O ((x © y) =~ 0y (x) © 8y (y)

C.2 Normal forms are in N/

Since the atoms of HyPA are also atoms of N/, every HyPA term p ¢ N’ has a

suhterm s € N of the form:

P = d>» NN a N I NN INw»wNIN » N
NN ON NG NN 8y (N

In the tollowing paragraphs, we will give one or more applicable rewrite rules for
every of these possible subterms, unless the specific subterm is ifself in normal
form. In that case, we do not need o give a rule since we have a contradiction

with the assumption that s & N7,

C.2.1 The form: sed>» N'

We find the following cases:

s 5 d > 4, which rewrites using d > § < §;

s sEd>e e NG
s sed>ae N
s sSd>»ce N

99

s 5s€d» (N @ N, which rewrites using d > (&

s€d>»a® N e N':

sed>ct> N €N,

se€d>» d > a, which rewrites nsingd > d » e = (d~d') > «

s€d>» d > ¢ which rewrites wsingd > & > e« (d~d) > u;

s€d» d > e, which rewrifes usingd > d > o d~d) >z

sed>» d »a© N, which rewrites usingd > d > o= (d~d') > =

s€d>»d > e N, whichrewritesusingd > d > v~ (d~d") > o

C.2.2 The form: s N' & N’

Which directly leads to 5 € N7,

C.2.83 The form: s N’ & N’

We find the following cases

s€¢

SEa

se¢t

o N', which rewrites using € 0 @ =
& NC WY

5 N, which rewrites nsing ¢ & o <

s €8 9 N, which rewrites using 6 © = = 4;

Gy)=d>rod>y.

s € (g N o N, which rewrites using (2 © y) ® 2 & © (y © 2k

se€ic > N o N, which rewrites wsing (¢ > 2) Dy~ c > ¢ O ¥

se(d>a) o N, which rewrites using (d > a) ©® e d> a0 x

s€(d>» ¢) o N, which rewrites nsing {(d > ¢} @ 2«3 d > ¢

s € ({d» e) @& N', which rewrites using (d >)

s e (d

o df > o

> a© N & N, which rewrites using (d > e © 2} © y—= d >
a© (o y);

seld>» e N} & N'. which rewrites using (d > ¢ > 2) ® y = d >

Eod S

se (N @& Ny o N, whichrewrites using (s @ y) © s~ 20 2@

<y

C.2.4 The form: se N p N’

Which rewrites nsing o » ¥y« & [» ¥ 9 1.

160

C.2.5 The form: s € N' = N’

We find the following cases
s 54 [» N, which rewrites nusing § = # = §;
® 5 € ¢ > N, which rewrites using e B> @ < ¢

s s€a > N whichrewrites usinga > 2= a © (¢ & xJ;

ssce> N TN

s€{a @ N} > N', which rewrites using (@ @ a) » y~ a © (& » yh

s€ e N N, which rewrites using (e > 2) > gy c > {2 » ¥y}

se{d> a) > N, which rewrites using (d» @) > y = d>» z > 1

s€{d> e} > N, which rewrites using (d > 2) by d> 2 > ¥

s s€(d> ¢} N, which rewrites using (d > &) > vy d> x> 1y

ssE(d>»ad N N, whichrewrites using (d > o) >y d >z >
Y

sse(d» e N » N, which rewrites using (d > @) b y = d >z >
Y

s s (N & N > N, whichrewrltes using (s G gy bz a2 > z& y >
2R

C.2.6 The fornm: s N || N’

Which rewrites wsing z|ly = zlly @ ylle & «|y.

C.2.7 The form: s N'|| N’

We find the following cases
s 5 € 4[| N', which rewrites using 6 || « — 4;
5 <e| N, which rewrites using ¢ || # — &

» 5 < all N, which rewrites using all ¢ = o 9 @

s € ¢|| N/, which rewrites using || @ =+ 4:

s€(a© N} N, which rewrites using (¢ & zi{ly= e © (x| y}h

s € (e = N} N, which rewrites using (e > @) || y = 4

s € (d>» a)ll N', which rewrites using (d > a)ll y =~ d > 2l y;

s € {d > o}|| N, which rewrites using (d >)iy~ d>» =zl »

101

5 € (d>» e)|| N, which rewrites using (d » &)l y = d » z|l v
s s€(d>»a N)|| N, which rewrites using (d > zilly— d > o[l w
s sE€(d>» e NN, which rewrites nsing (d > w)lly = d > ol v

o s (N @ N} N, which rewrites using (z © yillz= 2l z © vyl 2.

C.2.8 The form: s N | N’

We find the following cases
s 5 € 0! N, which rewrites using 6| @ = 4:
s 5 € c| N, for which we find the cases

— § €e}d, which rewrites using x| 4 — o;

— § € ¢ |e, which rewrites using € | € =3 ¢;

— § € ¢ |a, which rewrites using € | @ = §:

— § € ¢ | e, which rewrites using €| ¢ =+

— s€ela© N, which rewrites nsing €| a & @~ §:

— s€ele > N, which rewrites using | ¢ b # <+ ¢ I» o

— s €¢ld > q, which rewrites using e | d » a — 6;

— s €eld > ¢, which rewrites using e|d > ces d > ¢

— §€e|d > e, which rewrites using e |d > e« d' > e
—s€eld > a® N, which rewrites using e |d » a © = — §;

—s€eld> e N, which rewrites usingeld > e 2 d> e >
&,

— s€e|{N @ N}, which rewrites using | (y @ 2} &|y @ «]| =z

s 5 €a| N, for which we find the cases

s € a|d, which rewrites using @ | d « §;
— § € ale, which rewrites using a|e — 6;
— s € qld’, for which we find two cases
+ If aya’ defined then we rewrite using al ¢ < ave';
If aya’ undefined then we rewrite using a | o’ < §;
— § € a| e, which we rewrite using ¢ | e < §;
—seqala © N, for which we find two cases
+ If ava’ defined then we rewrite using ala’ & o« {aya’) & =
+ If gy’ nndefined then we rewrite nsing a|a’ © z = §;

— s5€ale» N, which we rewrite using al ¢ = @« 4;

s€ald > o, for which we find two cases

162

+ If aya’ defined then werewriteusinga | d > &’ < ([true |Ad) >
(ave');
+ If aya’ undefined then we rewrite using a|d > ¢’ < §;
s €ald:®» ¢, which we rewrite using a|d » ¢~ 4;
s €ald > e, which we rewrite using a|d > ¢ — §;
scald»da © N, for which we find two cases
+ If aye’ defined then we rewrite nsingal{d > o' © o < ([irue] A
d) > (ava’) ©
+ If ave’ undefined then we rewrite using a|d > & © x = &
s€ald®» ¢ N, which we rewrite using a|d » ¢ > ¢ = 4;

s€al (N @ N, which rewrites nsing « | (v © z) = 2|y & =]z

5 €c| N, for which we find the cases

s € ¢| 8. which rewrites using z | 6 <3 4;

s € ¢] e, which rewrites nsing ¢| € <« e

§ € ¢| @, which rewrites using ¢| a < 4:

s €| ¢, which rewrites using ¢} e’ «3 (e A)y > (e A’}

s € cla® N, which rewrites using ¢la & 2 = §;

s € el 1 N, which rewrites using ¢|¢’ > & = (€A)jmp >
{endy o (el]eh

§ € | d > a, which rewrites using ¢} d > a <3 §;

s € eid » ¢. which rewrites using ¢|d » ¢ = {(tjn A (d ~
Crmp)) 3 (e A

5 € e|d> e, which rewrites using ¢} d 3 e <3 d' > e

sE€cld>» a® N, which rewrites using ¢ld > a © & =~ §;

s € cld » ¢ 1 N, which rewrites using ¢|d » ¢ » z <
(Cimp Ad ~ €p)) 3 (eA) B (ef| 2);

s€e| (N @& N, which rewrites using x| (¥ @ 2} = 2|y @ z! 2

s sEq 5 NN, for which we find the cases

s € g (5 N'|4, which rewrites using x| § — 4;

s €a o N'|e¢, which rewrites using ¢ & @] e < §;

sEa o N, for which we find two cases
+ If aya’ defined then we rewrite using a @ z|d = {ava’) © =
+ If aye’ undefined then we rewrite using ¢ © z]a = §;

s € a & N'|e which rewrites using @ & zle s §;

s€a® Nld & N, for which we find two cases

163

+ If aya’ defined then we rewrite using e @ 2| d © y = (ava’) ©
(il s
+ If aya’ undefined then we rewrite using @ o x| & © y = §;
s€a® N'|c» N, which rewrites using a & zle > y = §;
s€a® N|d>» d, for which we find two cases

+ Ifaye’ defined then we rewrite usinga @ | d > o' = ([érue] A
d) > (avya'} ©
+ If aya’ undefined then we rewrite using @ o o |d > a' = §;
§E€a® N|d> e which rewrites usinga © x| d > ¢ 6;
s€a® N'|d> e, which rewrites using a © x|d > e~

s€a® N|d>»d o N, for which we find two cases
+ If ava’ defined then we rewrite using @ & ¢|ld > o & y 3
([true | Ad) > (ava) o (2] y)
+ If gy’ undefined then we rewrite using a @ zid » o © y = 4
s€a® Nid>» e N, which rewrites using @ & «|d > ¢ »
9y = 0

—s€a® NN & N, which rewrites nsing | (y & 2}« x|y ®

ol

s s€c > N | N, for which we find the cases

s & ¢ > N'|4, which rewrites using |48 = §;

s€c > N'le, which rewrites using ¢ 1> ole s ¢ > 3

s €e » N'|a, which rewrites using ¢ > 2| a < 9;

§ € ¢ > N'|¢, which rewrites using ¢ &> #|¢/ = (¢A hjmp >
fened) o (zlle)

s€c > N'ia® N, which rewrites using ¢ > ala @ y— &

§ € e Nd » N, which rewrites nsing ¢ > xfe B y =3
zlid »y ©
ylle w z @
i »y
ylew x

2

(A mp > (end) >

s€c¢» N'id> a which rewrites using ¢ > #ld>» a = §;

s € ¢ » N'ld > ¢, which rewrites using ¢ > zld > ¢ <3
(Cimp A ~ ey }) 3 (eA) B (2]l)

s€c¢ > N'id> e which rewrites using e > @ld > e = d >
cbox

s€c > Nld> ao N, which rewrites using e b= zld > a y—
&

1064

—s€ep N|d>» < p N, which rewrites using e & zld > ¢

Y - (ﬂjmp A (d ~ C;‘mp}) > (f} A r:!) B

e wy &
yllew o @
ale »y @
ylew x

i3
i

—s€c N'|(N @ N, which rewrites using « | (y ® 2) = a|ly @

x|z

s s€d>»al N, for which we find the cases

5 €d> al|d, which rewrites using = | § < §;
s €d > ale, which rewrites using d » ale — &

sed>» ald, for which we find two cases

+ If ava’ defined then we rewrite usingd > a|a’ < (dnftrue]) >
(ava');
+ If aya’ undefined then we rewrite using d > ala’ — §;

s €d > ale which rewrites using d > alec s 4

sed>»ald © N, for which we find two cases

+ If ava' defined then we rewrite using d > ald © z = {(dA
Ferue|) > (avd)) © @
+ If aya’ undefined then we rewrite using d » ald’ o x <3 §;

s€d > ale > N, which rewrites using d > ale > < 4
sed>» ald > d, for which we find two cases

+ If ayve' defined then we rewrite using d > ald > o ~ {d A
d') > (aya'):
* If aye’ undefined then we rewrite using 3 ald > a' = §:

s E€d>» ald > ¢ which rewrites using d » ald > ¢~ §;
sE€d>» ald > ¢, which rewrites using d 3 ald > ¢ <3 4
sed>ald >d © N, for which we find two cases

+ If aye' defined then we rewrite using d > ald > d & 2 =
{dnad) > (ayd} & o
* If aya’ undefined then we rewrite nsing d » ald > ' © 2 <3 &;

s€d» ald » ¢ > N, which rewrites using d >» ald > ¢ »
T et 8

sE€d > al| (N & N}, whichrewrltesusing e | (y & 2) = xlys |z

® 5 €d» | N, for which we find the cases

— s&d > el d, which rewrites nsing |4 — &;

— s €d > cle, which rewrites using d > c|e = d > o

— s €d>» c|a, which rewrites using d > ¢| a ~+ 4

1065

s € d > c|c, which rewrites using d > c|c’ < ((d ~ Cimp) A

GV B> (el

— s€d> ecla® N, which rewrites nsing d > cla & z 3 §;

—sed®»cle » N, which rewrites using d > ¢l 2« {((d ~
Cimp) A Co) > (€A) &= (c]l @)

— s€d> eld > a. which rewrites using d > ¢ld > a s §:

—se€d> ctd > ¢, which rewrites using d > ¢|d > ¢ « {({d ~
Chmp) A ~ €y }) > (e A c)

—se€d> cld > ¢, which rewrites using d > c|ld > ¢ < (@7 ~
dl > o

—sed>eld »a® N, which rewrltesusing d » c¢ld > a2
B

—s5€d > celd > N, which rewrites using d > ¢ld > &
& ((d o~ Cmp) A ~ ¢, h) 2 (end) B (el)

— sed>» (N & N, whichrewrites using | (y @ 2) = x|ly® x| .

s s€d>» ¢l N, for which we find the cases

s € d > ¢|d, which rewrites using x| d — §;

5 €d > €|e, which rewrites using d 3 €| e = d' 3 e

§ € d > ¢|a, which rewrites using d » €| a — §;

— 5 €d > €|, which rewrites using d > e e« d° > e

—s&d> ela® N, which rewrites using d > ela & x = §;

—sed»ele » N, which rewrites using d > ¢le p 2 & >
c > &

— 5 €d> eld > a, which rewrites using d > e | & > a «s 4;

— s €d > eld > ¢, which rewrites using d > e|d » ¢ = (d' ~
d) > e

— € d > eld > e, which rewrites using d » e|d > ¢ = (d° A

d7) > e

—s€d>e|d > am N, whichrewrltesusingd > eld > a® <
8;

—s€d> eld > ¢ N, which rewrites using d > ¢|d » ¢
e (d ~dYy > e

—sed> | (N @& N, whichrewritesusing 2| [y 2) & 2ty d 2| 2
s s€d»ac N| N, for which we find the cases

—se€d>am NI J, which rewrites nsing x| § — 6;

— s€d>»a© N'|e, which rewrites using d > a & z]e ~ §;

106

—s&d>»a @ N'|d, for which we find two cases
+ If ava' defined then we rewrite uwsing d > a @ =|ad’ — (dA
Ftrue]) > (ave)) © o
+ If aya’ undefined then we rewrite using d > a © zla’ = §;
— s€d>»a© N'|e which rewrites nsingd > a © z|lc— §;
—sed>»a© N'|d o N, for which we find two cases
+ If ava defined then we rewrite using d > a © wlad & y =3
(da [true]) > (ava) © (]l y):
+ If ava’ undefined then we rewrite usingd > a @ 2| o’ © y = §;

—s€d>»a® Nle b N, which rewrites using d > a @ «le »
e 0
—sed>a® N|d > d, for which we find two cases

+ If aya defined then we rewrite using d > a © 2|d » o —
(dad) > (ava’) © o
+ If aye’ undefined then we rewrite usingd » a o 2| d > o’ — 4

—sed>»a© N|d > c whichrewrites using d » a ozl d > c~

8
—sed>»ae N |d > e which rewrites using d » a @ zld > e~
b

—sed>»a© N|d »d @ N, for which we find two cases
+ If ava' defined then werewrite usingd > a o o|d > ad 0oy =
(dad) > (ava') © (e lly)
+ If ava’ nndefined then we rewrite using d » a @ z|d > d ©
gy e 5
—se€d>»ao N |d »cp N, whichrewritesusingd » avz|d >
e oy
—s€d»a N|(N @ N}, which rewrites using = | {y © 2z} =
rly @ x|z

s s<d> = NN, for which we find the cases

— s€d> e NS, which rewrites using =} 8 — 4;

—s€d>» > N'le, which rewrites usingd > e > zle = d>c >
o

— 5€d> ¢ N'a which rewrites using d > ¢ > xja s 4;

—s€d> ¢ N, which rewrites using d > ¢ & zle’ < {((d ~
Cimp) N g) 3 (e A) B (2|l)

—s€d> e Nla® N, whichrewritesusingd » ¢ > a¢la @~
d:

167

|

f'\‘.g

s€d>»cp» N|d » N, which rewrites using d > ¢ 1>
e wy &
yllew o @
ale »y @

ylew x

s€d> > N|d > a which rewrites using d > ¢ > a|d >
a = &

sE€Ed>» e N|d >, which rewrites using d > ¢ » ¢ld >
¢t ((d ~ Cjmp) A(d ~ i)) > (end) B (2])
s€d>» e N|d > e which rewrites using d » ¢ > «|d >

e dimd> e
sed>c Nid > a© N, which rewrites using d > ¢ >
zld > a©y— b
se€d>» ¢ N|d > d 1 N, which rewrites using d > ¢ =
eld > oy (([d~) Ad ~) > (end) »
zle wy @
yllewz @
i » oy @
ylew &
sed>» ¢ N|(N @& N'), which rewrites nsing = | (y & z) —

™

iy @ x|z

i3
i

Y= ((d ~ Canp) A Cly) > (cAL) B>

s s € (N & N'}| N, which rewrites using (¢ & y)|z< «|z & y|z.

VEF

C.2.9 The form: s € 8, (N')

We find the following cases

s 5 € Oy (6}, which rewrites using 8y (8} — 4

s € Oy (€}, which rewrites using Oy (e} < €

s € Oy (a), for which we find the following cases

— o € H,in which case we have the mle Oy (a) = 0

— a € H, in which case we have the rule 8y (a) = a

5 € dy (), which rewrites using Jy (¢} ~ o

s € Oy (a 5 N}, which rewrites using Jy (x © vy = Oy (x) © Sy (yh:
s € Oy (e > N, which rewrites using &y (v > ¥y}~ gy (a) = Oy (¥
s € Oy (d > a), which rewrites using 8y (d 3) < d > 8y (2):

s € Oy (d > ¢), which rewrites using 0y (d > z) = d > 0y ()

s € Oy (d > €}, which rewrites using 8y (d > 2} — d > Jy (z):

108

s € 0y (d>» a @ N, which rewrites using 0y (d > x) — d > 0y (x);

€ dy(d®» e N'), which rewrites using 8y (d >)~ d 3> 8y (2);

T

5 € O (N' 9 N}, which rewrites using &y (o @ y) = Sy (&) © 9y ().

C.3 The rewrite system is strongly normalizing

That the above rewrite system is stromgly normalizing can be demonstrated
using semantical labelling in combination with the recursive path ordering tech-
nigne as (among others) described in [7]. We define the following ranking-norm
onn HyPA terms and reinitialization-clauses.

o [0l =le]l=lal =le]=1;
ld >« = o] + 1

Lz @ y| = max(lz], ly]);

eyl =tewyl=le >yl =2+ Iyl
Lelly) = telly] = lely] = o] + ly);

o [Op (0)] = le] +1.

Now, we label every operator in a HyPA ferm with its norm. Le. we write
T Dy)pi4w; ¥ instead of 2z © y. Then, we define the following (well-founded)
ordering on labelled operators. (Note that we still freat d > x as a unary
operator.}

) < Cap <o <@y

s for all n we have &, < ©pay;
o for all n.m.d we have @&, <d >,

s for all n,d.d we haved >, < d >.40;
s for all n,m.d we have d >,< O

s for all » we have &, <[>,

s for all n we have =, <Py

s for all n we have p, < ©pay;

s for all n,m we have m, < [y

s for all » we have |, < .

s tor all n we have ||, < |jn:

o for all n we have ||, < Jnar:

169

o for all n,m we have ||, < Oy (1

In the remainder. we will show for each of the rules that they are strictly decreas-
ing with respect to the recursive path ordering hased on > (which we denote
B pe). For reasons of readability, we will sometimes omit the labelling of some
of the operators, if the exact labelling is not important for the proof. The mles
that resuli in deadlock, or other constants, are considered trivial. Note that for
every term z we have (2] > 1.

C31 d3xd >z d~di >z

d)me;_;_g d >>L3~w_§_] &x

Zepo @ >>’E3‘; 32 d Plel+1 ®

>-rpo (d e2 d’) >>ng;-§-] d >>’[T}'§'2 d >>Lg";_§_] E
Pepo (@~ d) P d P e

Pppo (d~d) Pleim d >>"[T;%_§_ T

P (@~ d) Dpipr 2

C3.2 d>»x v y=d>rzod>y

> e+ lyi4r (€ ¥)
Frpo &2y (7 EY)
Zrpo (d :>>L:1' Pl (f By)} s} (d :>>L3' +_y T+ (D U)}

e (@ |ziglyi (2O
Prpe d P lael+lyl +I] d >>_z‘ +lui+1 U
Pepe CP | 2@ AP0 Y

C.3.8 (a5 y oz ao (yo z)

(# Oa; L u) Gala; +>Ly e F

Brpo (¢ Oaloiilys ¥) Dalzitaloj+le) *2

Zepo (2 Dale+la) e v2lairle "7 Daleitalui+e
((z = 2|l |y Y Dz +2lyi+led *z)

Frpo (¢ ’}L:r +y ¥) O2lai+2lyi+ls]

((x Dalal+|w y) 4] —i—)Ly + |4} *2)

Sepo (€ Oalaitiyp Y Oalepralyitls]

(2 O2001410 ¥) ‘/5'4L&";+°Ly +L4: "z

Frpe & 'ﬁj’t i2lyi+le 2|z y) Tz +2lyi+ |2 "z}
Frpo T O2(z]+2|yl+ |2 ((J’ D22+ |yl Y Dala+2\yl+lel F
Frpo € Oalaitalui+le U Oaleivalyitlel 7

Prpe ¥ Oalapralui+le O Oolui+lz 7

110G

C3d 2@y s 2EzdyE s

(w5 y)© =2
Fepo (€ B y) @z
e (22 y) @ *2) @ (¢ D y) @ *2)
Pepe (28 ') © 2) ® (& *9) © 2)
Prpe D 2B YD

C35 swpysazlydy

€ Walaitlyl Y
Zirpe F .3“"3%

e

4
Frpo T Palzit|y
Zipo & Waleity] "
>'?*}70 (.’IT b?Lm;%Ly; Yy
Zyppo L D‘sz;}
>i‘}}() & D“')Lg»w_i_

C3.6 (crajry—ch (zwy)

(€ Bayio) @) Bagzlaitle ¥

epe (€ Bove) Pagoleitly) ¥

Pepo (€ Pate T Paralajtlyl Y Paralel+ i)
((c raye) Pagaleis|y)

Frepe € Pogoe]+y) {(c Boye) Bay2)e)+ |y a7
Frpe € Payaleiily (€ Bore T8 Bupaleigly ¥)
Pepo € Pagalailul (£ Pagolaisly ¥

Bepo € Pagalellul (€ Poleiilyl ¥

¥
¥
Ci37 (woypzrzBbybz

Similar to the proofof (r G ¥y) © 292 @ 2 B ¥y @ 2.

C.3.8 zly=zellyvoylzre ey

Similar to the proofof & » ¥y & > ¥ 4 ¥

C389 (oylzozlzoylz

Similar to the proof of (& & ¥y} © z s ¢ © z & ¥y © z, since the semantical
labelling is irrelevant for this proof.

C3.10 (dye)ovrod >«

d>»e)Dx
Zrpo (d > 6) o *a

111

Frpo d > (d> e} o *n
>‘:‘po d? >

C311 (d>»ally—d> iy

(d> zilly

Fepe (A2 x|ty
Zepe A3 (d>)| Yy
Bepe 03 (AT iy
Bene A3 ally

C.3.12 (eoa)voao @y

(e @ oylly

o (8O @) *y

Zrpe (@ @ 2)l *y) @ ((a © 2)l *y)
Pepe (@ @ @) *y) © ((a © *x}l y)
mepe (@@ 2| fy) © (2]l y)

>pe @@ (@] y)

C.3.18 alew=awa

Trivial, since |, > &,

C3l14 {(d@»a) b ae—sd>»abmnr
Similar to the proofof (d > @)y~ d» z| v.

C.3.15 dPaonoy=drad (oY

For the proof of this rule, we nse the fact that {0 © ¥y} © zes ¢ © {y © z} is
an rpo-decreasing rewrite rule.

(d Pay|a) & Dot e) Derolel+lul ¥

Frpo (d :>>3—§—[;"; a /J.H—Lz'w 3-:} '/5]6—5—2&;—5—[1.1"; $y
>epe 231202141y (@ 201 2) & D242} ©)
Pepe Favalel+lu (d >>§+LT$ & Dayle; x)
epo @ Psya2) 4|yl (@ Dagle] € Dosalz]+ly] ¥
epo 33120241l (€ Doy le) @) Dayale) il Y
A Psiaeitly @ Oosalei+ly (Do sy W

e+ ly) Y

16‘5’
62la -y Y

i
{e) 2
P

=) 2

C3.16 (eovz)py=aczwy

(@ D23 (2]) Pataleitly) ¥

>-rpo (C!- {5’2«}_&"; .’IT) D’a’l%?_r;%[y; *y

Zrpo (@ Dot @) Pagoleirly V) Dag2ait|y)
((a @2y 12} ®) Pagaleisle) V)

112

Frpo ({a« D24 |z) Brataiei+|y: *y)

@ 242|ri+|y]
Zrpo @ Daya|e)+|y) ((a: Dotz) Pato|al+|y) y)
Zrpe O Wetaleityl (f’ D‘4+?L&" +lui U)
Zepo @ Dagalzi+ly) O Poleitly V)
C317T abra—a@ledx)

In this proof, we use that |2] = max (1, lz]) = ¢ & z].
[#2 DQ%L:& o

Pipe @ Pagyia] T

>-i*po (a. [}2*_75 *Zf?) TQQ*LTS (ﬂ- D’g%Lg; *fﬂ}

>i‘}70 [#2 /J-H-LT (C! D)'Hﬁ" i'}

>‘:‘po t ‘/5'2+_m ((a D}+ f’) dLﬂ' (a D"%Lz‘ })
Fepo @ Oag) (€ Dg (a Botlel TE))

Prpe @ Daglz) (€ JW)

C.3.18 (dyxopy=d>a>y
Similar to the proofof (d >)l y~ d>» z| v

C.3.19 (dyepaioy—=sd>er (zoy

(d >si|e; € Poglz) T Tegalal +lu: ¥

Srpo (@ Paple) € Baple) ©) Oeraleitly Y

Pepo @ sraiei |yl (@Paq (2 € Payja) @) Qeqolaitlyl Y

Zepe @ Pagalzi+|y ((dPsgz D‘}ﬂ T} Tegolzi+lu Y Pogole) 4l
((d >34 121 € Pogpler #) Ospaleislyl Y

>epo @ P3ialzi4lel € Pagaei+ly; d >>3+L 2j € Boilzj ¥ Desalzitly W
Frpe @ Paioai 4l € Pogoleiy d >>3+ij € Boplel @) Desalelsly]l ¥
Zrpo 0234202l +y) € Pov2le)+lul (€ Boyje) ®) Oepale+lul V)

Frpe G 3si00ei 41y € Porae ity (6 Poyjer Y0 Oogae iy ¥

Zrpo @ Papo\ei+(u) € Prr2lei+ly (0 Teralei iy V)

Prpo 4 Zutalel+ly) € Potaleltly) (¢ O2lef+lu) Y

C3.20 (epaoyoyschk (6 y)

(e Brat (]) Dagz|zi+|y ¥

Zipo (€ Paylel @) Daraleltlyl Y

Zrpo ({6 Patier © Oap2ieitly: V) Paialei+ly)
{(e Pat|z: x} Datolzi+|yl *y)

Sepo € Dayalaitlyl (€ Barle] @) Ouzleiry] Y
Zepo € DPogalel 4|y ((C Broy|a! *:if} {54+2Lr;%—[y; U}
30 Dagoz sy ¥

yi (7 D200y W

-4
g

Zrpe € D‘z+z[:fw -

— o —
4

Zrpe O D‘?%?Lr; +

113

C.3.21 d>covar=d>»c
d>c) e d>e)® e>p,d>c

C.3.22 (o ylz= alzdylz

Similar to the proof of (& @ y} © 23 & 9 z & ¥ 9 =z, since the semantical
lahelling is irrelevant for this proof.

C.3.28 zilyo 2y a2ty alz

iy © =)

Sepe €)Y B 2} e (]| y @ 2)) @ (e]y D 2))
>epe (2 {y @ *2)} @ (2ly © *2))

e (w|y) @ (€] 2)

C.83.24 d>eld e (dad’)>e

d>eld »¢

ipo d>>€v‘Ef>>€

e (AT > (d>eltd > e)
>epo (ATAAT) > €

C.8.25 dyele=sd >e
Similar to the proofof d > eld > e (d°Ad7) > e

C.8.26 e¢ld>e—=d >e
Similar to the proof of d 3 e |d > e = (d" A d") > e.

C3.27T dyaoald >d ®y= dad) > (avd) © (2]l

d>»a® tlgy 4l d >ad Oy

>?*po d Paiox t6+L&";+Ly; Bl > a oy

Pepe (AAd) > d> a6 tb’%Lz‘ﬁrLy; d > Dy)

Zrpo (dad)>(d>»ao e tﬁ%_zﬁr[y; a0y o
d>»a® tlopleirp ' d>d Dy

Zrpo (dAA) > (ava’) © (> a @ alep|z)yy *d > a O y)
Fepo (AAD) > (ayd’) © (3% a O 2lgp|piq)y & 2 d 0 y)
Zepo (dAD) > (aya’) © (@ O Zles |21ty @ © ¥)

e (AAD) > (ava} © (a O *alegejsw @ © W)

Zrpo (dad) > (ava') © (« |6+Lm§+Ly§ y)

Zpo (dad) > (v} © (z HL&‘;-?—[y": y)

114

C.3.28 aoz|ld>d oy ([true] Ad) > (ayd) @ (z]|y)
Similar to the proof of d > a © zld > a Gy (dad) > (avd'} © (&]y

C.3.29 a®ald ©y= (ava) © (al|y)

Simeilar to the proofof d > a @ 2ld > d ©y—= dAad) > (avd) © (zly).
but leaving omt the introduction of (d A d'} >,

C.3.30 dya®zld ©yes (dn[true]) > (ave) © (2l y)
Similar to the proofof d > a @ 2l d > o Sy = dad) > (aved) © (z|ly).

C331 dyald>d e @Ad) > (avd) o @

d>»ald >»>a o2

Tape AP altd > d v

Sepe (AAAY > (> al*d > d ©)

Bepe (dAd) D> (> al*d >d 0)
d>al*d >a ©)

Bope (A > (ava’y © (d> a|*d > d © x)
Bepe (dAd) > (ayd) © «

C.3.32 dyaczid>ad = (dad)>» (ava') @«

(&

Similar to the proofofd > ald > d © 2 dAd) > (avd’) &

C.3.33 dyaozid= dA[true]) > (ava) © «

e,

Simtilar to the proofof d > al|d > d © s = (dAd) > (aya') ©

C.8.34 «ald>»d ® r= ([true] Ad) > (ava’) © &
Simtilar to the proofof d » a|d > d © = (dAd) > (aya) ©

(5

C.3.35 a®a|ld>»d < ([true] Ad) > (ava') © «
Similar to the proofofd > ald > d & oz dAd) > (avd') &

[

C.3.36 d>»ald © a= ({dA[true]) > (ava’) © «
Similar to the proofof d > ald > d © 2= (dad) > (ava) & 4

&

C.3.37T d>ald »d« (dAad) > (ava)

d>»ald >»d

Bepe &3 altd > d

Depe ([AAA) > (d> al*d > a')
Sepe (dA) > (ave')

C.3.38 d»ald = (dA [true]) > (aya)
Similar to the proofof d > ald > o~ (dAd'Y > (ava’).

C.8.39 ald>» a < ([true] Ad) > (avd)
Similar to the proofof d > ald > d < (dad) > (avd).

C.3.40 cald 0ae= (ave) o x

ala & &

B 0] W D

e (0]1Fa @) @ (a]*e ©)
Zipo {avae") @ (a|*d © x)

oo laya') O ow

C.3.41 o a|la s (avd) &

Similar to the proofof ala’ @ 2 <« (ava’} © .
P

C.342 dy>eld>cp o d~di>cp

d>eld ez

Depe A eltd oo

Sepe (A ~d) > A3 el*d >)
e A md) > A el*d e a) >
{d>el*d > 2)

e (W ~d) e @de|*d e)
e (A~ d) e oz

C343 d>cpzld e ~di>erx

Similar to the proofof d > eld e a2 (d ~d) > e o

C344 cp zlddesd >cr 2

Similar to the proofof d > eld > e v = (d ~d) > ¢ o

C3845 d>eleprarod ek«

Similar to the proofof d > eld e s (d ~d) > e > o

C.346 eld> e aod>eb o

Similar to the proofof d > eld e 2 (d ~d) > e 2

C347 d>c rle=d>cl» x

Similar to the proofof d > e|ld > e v = (d ~d) > ¢ o

116

C.3.48 dye|ld > e (d~d) > ¢

d>»cld >«

Do A el *d e

Fipe (A7 ~d) > A e|td > e

Sepe (@ ~d) > e

C.349 d>eld e (d~d)> e

Similar to the proofofd > eld > e = (@7 ~d) > ¢

C.3.50 elera=ch

Trivial, since ¢ &> z is a subterm of el ¢ > 2.

C351 o zle= ol z

Trivial, since ¢ [> « is a subterin of ¢ > x| e.

C.8.52 cld>esd >e
Similar to the proof of d > ¢|d > e = (d7 ~d) > c.

C.358 d>ele=sd >¢
Similar to the proofofd > eld > e (&7 ~d) > e

C.3.54 cld> e d>c
Similar to the proof of d > ¢|d" > e = (dF ~d) > c.

C.355 dy»elemsd>»e
Similar to the proof of d 3 ¢|d > e = (dF ~d) > c.

C.3.56 d>»eb ald>cd by ((drgmp)Ald ~ep,)) > (end) »
(el wy Byllewz daldwy @ylew z

d>cp Tleyplejsiy @ D >y

Fepe A e Elegeigy > oy

Fepo (A~ Cng) Ad ~)] > (A3 e b aloyaiyppy "d > > y)
rpo (™ Cup) ANd ~ e,) > A3 e b 2oy oipy " > > y)
(d> ¢ Tloylojtly " > &y

2

Zrpe {{d ~ ijp} AMd ~e) 2 (end)

(’ gy
(d> el wlop|ejqp d D>y
(d

epo (@~ Cump) Ad ~)} > (e A) I

117

8L

fvAaiac fiaz|lea v 40| f4sle) (v
& (M~ piv (M ~p)) A A p & pla o < pIojoord ey 0y TerIIIG

rqolfic fapes xA2|fa faqp]x)
G (V) € (v (M p) i ple 90KP 8EED

v A2/i@ igqped 24 :Jﬂfi | ,:Jﬂ;t:) < {ava)
< (M ~ p)v (9 ~ p)) e < o€ ple 0K pooord ey oy TeTHNG

(xq0|fi@ 402 @g;«quﬂfi;fiq’:ﬂ)
q(pva) L (Mo np)viul) - q pgplz 99 LeeD

@ o o BlHEl+e g
:"fl « p P
Gr oD ‘mﬁH‘mfoﬂ

< {I,}V,J) & {(dm P)V{dwrf}"-’f})) oc{!<
(ﬁqv«pfw+waqv<m<sﬁH“ﬂ
S, ﬁ]%»’v‘%ﬂ‘; <|f}<<p) < 2 A+ E-\%q
& (fi p A SOGORERER IR & ‘””C””x”fﬂ

Gl < pg p, IHEI 2 g0 gp) 4 p AT

< {I,}V,J) < {(dmfj . P) V{du.sf,}mp)) ot

(i p p, PHEI g0 p) « (i g p p, TIHEH2 oo g p) FIHTEl4E 4
KMQv<mﬂ+Hmav<m~MQv<pﬂ*wmﬂv<mﬂﬂﬂw

® (A 4 PP, I g o« p) 4 (69 pg p, AT o g p) A+ A
G p p, e qogp) « (£ 4 pgp, FAHAO e g0 «p) A2

< (V) (W~ p)v (B p)) ot

(1 4 p < p, M85 g 0 g p) W+ e 1
ﬂ@ﬂu«pﬂﬂﬁwﬂwwwwww

"{f;,.(ﬂ ’}<<1p +E]'§‘91J Q’;«p) +E]'§‘(ﬂﬁ,

G g pgp, ﬁ1+£+91.!(]’1<<p) Al+ie -E-(Tl.!

(V) <€ ("M~ p)v (W~ p)) i

(i a p<p, AR —é—q%! < /,<<p) 1+ x]-é—q{fl g 9P, iR '§'§£]+9|J <13 € p)

@6 < p p, P12 q o g p) B (F 4 o« p, B2 g2 € p)

S < 5 < p, MHEA 2 g0 g p) MHEH (8 < p < p, MHE]2 g0 < p)

G app, I+ qop) PHEEHNB @ p < p, PHEINe g 2 € p)

9 (PVI) € (o~ p) v (P~ p)) e

(A app, FEEL g0« p)

@< p p, TR g0 & p)

@(f < p < p, 92 g0 «p)

G p g p, IEEI e g0 < p)

S
4‘

-
i

C.3.59 cp zld by (A jmp ® (cAd) >
(zfdwy Syllewz aldwy Dylew

Similar to the proofofd > ¢ > @|d' > ¢ b y = ((d~ i) A(d ~ cfp)) >
fenc) = (zlldwy Dyllew a D ald »y @ ylew z), but using the
fact that [frue | ~ cpy is logically equivalent to e.

C.3.60 d>c|ld > b o= ((dr) Ad ~) > (eAd) B (] @)

d>» ¢ d > o

Basan d>>{, L’*d,>>{,bf'
Zrpo ((d o~ ffjmp} A (d f’Jmp 154 @) > .’IT)

Zepo (A~) AMd ~ i) > (> elsy o' d > > oa)

(d> elsgo*d > >)

Sepe (A~ Ciug) A i) 3 (EAC) B (@5 clay o) *d > ¢ B)
Sepo (A~ Cug) A ~) > (eAE) B (43 elogo) & > & 1 *2)
e (s il 2 (o) b Aelnget @ e > 0

rpo ((d ~ {fjmp} A (r’ﬂn;})} > (LA {,} B (ff 54 L&" IT)

rpe (A~ Cirp) A (d ~ pg)) > (eAE) B (e

C.3.81 dy»cb ald > (d~gupInd ~) 3 (end) 1 (||)
Similar to the proof of d > cfd > ¢ 1 @ ((d ~ cimp) A {d ~) >
{end) = (el a).

C.3.62 d»cp zld o ((d~cmp) Athy,) > (end) b (2])

Similar to the proof of d > cld > ¢ b o ((d ~ Cjmp) A (d ~
(eAd) B (el @)

Jmp)} >
C.3.63 cb ald> = (hu Ad~ i) > end) b (2]l)

Similar to the proof of d > eld > ¢ B 2 < ((d ~ jnp) A d ~ €y)} >
lene) e (ela).

C.3.64 d>» {,l £ B ((d o~ r’J!TiP) A mp) P ({,/\ r,’) B ({,H i'}

Similar to the proof of d > cld > ¢ B & = ((d ~ cjmp) A d ~)} >
fend) = (el 2).

C.3.65 cld>c b o= (Chmp Nd ~ i }) 3 (end) b (el @)

Similar to the proof of d 3> eld > ¢ B x < ((d ~ gjmp) A d ~ €))) >
{end) = (c]]).

119

C.3.66 d>c|d > ((dr~cmp) AMd ~)l > (end)

d>»cld >

e AP ¢ d e

Zipo (A~ Grup) N (d ~) > (d > el *d >)
Prpo ((d = ijp} A (d” ~ 73;'=m;9)} > (ﬂ A Cl}

C.3.67 cld> ¢ 9 (Gmp Ad ~ Cpp)) > (e A L)

Similar to the proof of d 3 eld' > ¢’ < ((d ~ gjmp) A (d' ~ €j,,)) 3 (e AL

C.3.68 d>clcd = ((dr~ cup) Ay} > (eA L)

Similar to the proof of d 3> eld' > ¢ < ((d ~ Gjmp) A (d' ~ €,,)) > (e AL

C.3.69 cp rid = (endm > end) & (2lld)

Similar to the proofof d > c{d > ¢ b & = ((d ~ tjmy) Ald
fend) = (el 2).

C.3.70 cld b e (eA)jmp > lend) > (ell2)

Similar to the proof of d > c¢|d > ¢ > 29 ((d ~ ¢jmp) A (d
lene) e (el]a).

C37TL Oy (v y)= Iy ey © dy(y)

O (2 © y)

>‘:‘po BH (:i: @ 3})‘;

e O (€@ y)" © O (e @ y)
Pepe O (2 © *y) @ Oy (2 @ *y)
Pepo On (®) © g (y)

C.3.72 Ol yy= Ou(x) > Oy
Similar to the proof of 8y (e © ¥~ Sy ie) & Sy (y).

C.3.78 Oy (d>)= d» 8y ()

O (d > x)

Frpo aH' (d > fﬁf
>‘:‘po d>» 3!.1 (d > :’:}*
Frpe 3 Oy (d>* «)
Zrpo d > 3.;.1 (3:)

C.3.74 Op(zoyy = Oylz) s 0uly)
Similar to the proof of 8y (e © ¥~ Sy ie) & Sy (y).

120

i r:j,'m;?)} >

~ c;imp)} >

	200307_Page_001
	200307_Page_002
	200307_Page_003
	200307_Page_004
	200307_Page_005
	200307_Page_006
	200307_Page_007
	200307_Page_008
	200307_Page_009
	200307_Page_010
	200307_Page_011
	200307_Page_012
	200307_Page_013
	200307_Page_014
	200307_Page_015
	200307_Page_016
	200307_Page_017
	200307_Page_018
	200307_Page_019
	200307_Page_020
	200307_Page_021
	200307_Page_022
	200307_Page_023
	200307_Page_024
	200307_Page_025
	200307_Page_026
	200307_Page_027
	200307_Page_028
	200307_Page_029
	200307_Page_030
	200307_Page_031
	200307_Page_032
	200307_Page_033
	200307_Page_034
	200307_Page_035
	200307_Page_036
	200307_Page_037
	200307_Page_038
	200307_Page_039
	200307_Page_040
	200307_Page_041
	200307_Page_042
	200307_Page_043
	200307_Page_044
	200307_Page_045
	200307_Page_046
	200307_Page_047
	200307_Page_048
	200307_Page_049
	200307_Page_050
	200307_Page_051
	200307_Page_052
	200307_Page_053
	200307_Page_054
	200307_Page_055
	200307_Page_056
	200307_Page_057
	200307_Page_058
	200307_Page_059
	200307_Page_060
	200307_Page_061
	200307_Page_062
	200307_Page_063
	200307_Page_064
	200307_Page_065
	200307_Page_066
	200307_Page_067
	200307_Page_068
	200307_Page_069
	200307_Page_070
	200307_Page_071
	200307_Page_072
	200307_Page_073
	200307_Page_074
	200307_Page_075
	200307_Page_076
	200307_Page_077
	200307_Page_078
	200307_Page_079
	200307_Page_080
	200307_Page_081
	200307_Page_082
	200307_Page_083
	200307_Page_084
	200307_Page_085
	200307_Page_086
	200307_Page_087
	200307_Page_088
	200307_Page_089
	200307_Page_090
	200307_Page_091
	200307_Page_092
	200307_Page_093
	200307_Page_094
	200307_Page_095
	200307_Page_096
	200307_Page_097
	200307_Page_098
	200307_Page_099
	200307_Page_100
	200307_Page_101
	200307_Page_102
	200307_Page_103
	200307_Page_104
	200307_Page_105
	200307_Page_106
	200307_Page_107
	200307_Page_108
	200307_Page_109
	200307_Page_110
	200307_Page_111
	200307_Page_112
	200307_Page_113
	200307_Page_114
	200307_Page_115
	200307_Page_116
	200307_Page_117
	200307_Page_118
	200307_Page_119
	200307_Page_120

