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Hybrid Process Algebra* 

P .. J.L. Cuijpers and M,A, Reniers 

July 3, 2003 

1 Introduction 

1.1 Hybrid Systems 

The theory of hybrid systems: studies the (;ombinHtion of (;ontinnollsjphyskHl 
Bnd dis(:rete/(;OmplltHtiollHl behavionr. \Vhen (;omplltHtiollHl software is (;OIn
bined with medumkHl Bnd eledrkHl (;omponents: or is intenH:ting with: for 
exmnple: (:hemkHl pro(:esses: H hybrid system arises in whkh the intenH:tion be
tween the (;ontinnolls behavionr of the (;omponents: Bnd the dis(:rete behavionr 
of the software is important. 

In (:llrrent pnH:tke: often the dis(:rete part of H hybrid system is des(:ribed 
Bnd l-HlHlyzed nsing methods from (;ompllter sdelH:e: while the (;ontinnolls part 
is handled by (;ontrol sdelH:e. The design of the (;omplete system is usually SlH:h 
that intenH:tion between the dis(:rete and (:ontinuous part is suppressed to a 
minimum. Be(:ause of this suppressed intenH:tion: analysis is possible to some 
extent: but it limits the design options. In the field of hybrid systems theory: 
resean:hers attempt to extend the possibilities for intenH:tion. The goal of this 
pHpeL is to develop HIl HIgebrHie theory, eHlled hybrid proeess HIgebfH (HyPA), 
to support these attempts. Our hopes are that hybrid pn)(:ess algebra (:an serve 
as a mathematkal basis for improvement of the design strategies of hybrid 
systems: and the possibility to analyse them. Further on in this introd1H:tion: 
we will review some of the already existing hybrid formalisms: and point out 
the defeds of those: on whkh we hope to make some improvements. 

In figure 1: a graphkal representation is given of the general aim of our 
efforts. The figure shows our desire: that a hybrid theory is: in a sense: a 
(:onservative extension of (:omputer sdelH:e and systems theory. f\!Iore predsely: 
a model from systems theory or (:omputer sdelH:e: should be expressible: and 
preferably look the smne: in the hybrid theory: and theorems from systems 
theory and (:omputer sdelH:e should be transferable to the hybrid theory (when 
restrkted to models from the original field of (:01Hse). \Vhat the figure does not 
show: is that this (:onservativity is not the only goal. In that (:ase: a simple 
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union of the theories would be sufficient. \Ve also desire a certain interaction 
between the theories, reflecting the interaction between software and physics 
described before. This goal is harder to formalize , but in the remainder of this 
introduction we hope to give some feeling for it, using examples of deficiencies 
(in our view) in existing hybrid formalisms, and indicating how we intend to 
improve on those. 

Systems Theory 
Syntax 

Semantics 

Hybrid Theory 
Syntax 

Semantics 

Figure 1: Developing Hybrid Theory 

1.2 Algebraic Reasoning 

Computer Science 
Syntax 

Computer Science 
Semantics 

In systems theory, algebraic reasoning is acknowledged by most people, as one 
of the most powerful tools availahle for analyzing physical behaviour. This 
behaviour is usually described by differential equations and inclusions, which 
model the rate of change of the value of certain continuous variahles, or by dif
ference equations and inclusions, modelling discrete changes in variahles. Note, 
however, that these two ways of descriptions are hardly ever combined. As an 
example of a differential equation, :r = f(:r, u), in which :r and u are variahles 
ranging over the real numbers, and f is real valued function, models that the 
value of :r changes continuously through time (indicated by the dot in :r) with 
a rate defined by f(:r, u), i.e. by the current value of :r and u. Alternatively, if 
there is a choice of rates of change, one may write :r E F(:r, u) , in which F is a 
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set-valued function over the re;:-tls. Also, an inequality :r ::; 1(:r, y) may denote 
that :r is constrained in its value (not its rate of change) for some reason. As 
an example of a difference equation, :r+ = 1(:r-,'I1-) denotes that the value of 
:r is reassigned to 1(:r-, '11-), based on the previous values of :r and '11. This 
way of notation is for example used in [41]. Following Henzinger's way [26] of 
describing continuous behaviour , we allow any predicate over model variables 
Vm and their 'dotted' versions Vm in this report. These predicates are called 
flow-clauSf'B. Analogously, predicates over V-;;I and V~I are called 'reinitializa
tion clauses', and are used to model discontinuous behaviour of model variables. 
However, although we allow arbitrary predicates over model variables, the anal
ysis of systems will often turn out to be easier, if we confine ourselves to clauses 
based on some algebraic way of description. 

In computer science, the usefulness of algebra is still a topic of much de
bate, but nevertheless there are interesting examples of applications of process 
algebra (see for example [23] for a list of references to protocol verifications, 
[12] for a start in the description and analysis of other industrial size problems , 
like the design of a controller for a coating system and a turntable system, and 
[22] for the description and analysis of railway interlocking specifications). In 
process algebra, the discrete actions that a system may perform are often con
sidered atomic elements of the algebraic description language. These 'atomic 
actions' can be combined using operations describing choice between behaviors, 
sequential execution of behaviors, and concurrent execution of behaviors. For 
example, the process algebraic equation X = aX + b describes a recursive pro
Cf'BS X that may choose to execute an atomic a action, followed by an execution 
of X again, or choose (+) to execute b and terminate. In this report we take the 
process algebra ACP [8] and extend it with new atoms, describing continuous 
behaviour through the use of flow-clauses and discontinuous behaviour through 
reinitialization-clauses as mentioned before. Also, we import the disrupt oper
ator from LOTOS [13]' since it turned out to model the sequential composition 
of flow-clauses well. The choice for ACP is rather arbitrary, and we expect that 
the methods described in this report can be easily extended to other process 
algebras. Obviously, the choice for ACP leads to the need for an alternative 
notation for some symbols, since, amongst others, the process algebraic + has 
a different meaning than the system theoretic +. In section 2.1 of this report, 
these notational problems are solved, and the notation for our hybrid process 
algebra is formalized. 

Returning to figure 1, we may conclude that we have chosen the process 
algebra ACP as a representative syntax for computer science, and a predicate 
variant of differential equations and difference equations for systems theory. 
The resulting conservative extension, we call hybrid process algebra (or for 
short HyPA) , in which abstract actions are described by the actions of standard 
process algebra, physical behaviour is described by flow clauses, and assign
ments and other discontinuities are described by reinitialization clauses. The 
reason for this choice of syntax, is that we agree that algebraic reasoning is an 
important tool for the analysis of systems, and that we would like to support 
the possibility of algebraic reasoning abcHlt hybrid systems. So far , the only 
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algebraic approaches that we know of regarding hybrid systems, are described 
in [37, 39, 36] (hybrid X), [44, 11] (hybrid versions of ACP), [27] (hybrid CSP) 
and [35] (G)-calculus). In the remainder of this introduction, we will explain 
the deficiencies that these methods have, in our opinion, in describing hybrid 
interaction. \Ve should note, that within other hybrid formalisms like hybrid 
automata [26, 28], hybrid Petri-nets [9, 16, 19] and hybrid aetion systems [33]' 
the lL<.;e of algebraic reasoning on differential equations for analysis purposes, 
is not lllH;ommon. It is the process algebraic reasoning that is underexposed. 
For a translation of hybrid automata into the process algebras CSP, and timed 
I,CRL, see [2] and [45, 24], respeetively. 

In the hybrid theory that has been developed by system theorists (see for 
example [41, 42, 10, 25, 40, 18]) algebraic: reasoning is possible, but none of 
these theories support reasoning ahout non-determinism. All of these theories 
have a tn-ice semantics, and cannot distinguish deadlocks and non-deterministic 
choices. Since we would like a conservative extension of process algebra, we 
would also like to be able to distinguish systems up to the notion of bisimulation 
equivalence, and therefore, we consider the system theoretic formalisms as non 
conservative with respect to computer science. 

In section 3 of this report, we prove formally that HyPA is a conservative 
extension of the process algebra ACP, and by construction of the semantics, it 
is immediately dear that it is a conservative extension of differential indusions, 
at least up to the type of solutions we have chosen to use. 

1.3 Hybrid Interaction 

IVlany of the hybrid formalisms that we have mentioned so far , have some prob
lem in the definition of parallel composition. And surprisingly, in most caseB, 
this problem comes to light in a purely continuous case study. Let us consider 
the following example, depicted in figure 2, of a continuous plant P described 
by the differential equation:r = f(:r, u) , and a continuous controller C described 
by u = [I(:r). The eomposition of plant and eontroller will be denoted as P II C. 

P 
- ;i; = i(:r, u) r--

u :r 

C 
- u = [I(:r) f---

Figure 2: Continuous control system 

The hybrid automata of Henzinger [26]' as well as the hybrid process alge
bra of Vereijken [44], and of .Tifeng [27], assume that the eontinuous behaviour 
of two composed systems is independent. Using these formalisms, the system 
P II C would not model any interaction between P and C at all, since the only 
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interaction between systems can be through computational actions. The vari
able :r of P would simply be regarded different from the variahle :r of C. Hence, 
in our opinion, these formalisms cannot be considered to be a conservative ex
tension of systems theory. At least, they do not support the way in which we 
would like to think ahout parallel composition of systems. 

In a similar way, it turns out that the parallel composition of the ahove 
processes is not defined for the hybrid automaton model of Lynch, Segala and 
Vaandrager [28]. At least , not without a few amendments. In the formalism of 
[28], it is necessary to identify variables as either state variables of a system, or as 
external variahles of the system. Thf'Be two sets of variahles are supposed to be 
disjoint. The intuition behind this partition is that the state variahles model the 
memory of the system, while the external variables model the communication 
with other systems. Therefore, in a parallel composition, it is required that two 
hybrid automata are compatible, meaning that the state variahles of the one 
automaton do not intersect with any of the variahles of the other automaton. 
Now, looking at the plant P of figure 2, we see that we need to choose :r to be a 
state variahle, otherwise information on :r is lost between transitions, but it also 
needs to be an external variahle, since we need to communicate its value with 
the controller C. This contradicts the requirement on hybrid automata that the 
set of state-variahles and the set of external-variahles are disjoint. Admittedly, 
the problem is not as big as it may seem, since by adding an external variable 
y, and the equation y = :r, to the description of P, and changing the description 
of C to u = g(y) , we can declare :r to be a state-variable, and find that the 
systems have become compatible. So, although the system in figure 2 cannot 
be modelled as P II C directly in this hybrid automaton model, we can model 
the slight modification depicted in figure 3 instead. 

p 

- ;" = i(:r, u) r--
y= :r 

u 
C 

- u = [j(Y) f---

Figure 3: Compatible continuous control system 

In [32] it was already noted that the variahle-partition of a system, is not 
always uniquely determined by the equations that describe the system. Even 
in our simple control example, it is possible to use the equations :r = y and 
u = g(:r), and dedare :r external and y a state variahle. Often, there is no 
dear physical ground to choose a specific partition. This is the one reason why 
we would like to avoid the partitioning of the set of variables of a system, in 
our semantics. Another reason, is that in basic textbooks on control theory 
(for example [17]), one usually starts out with developing controllers for plants 
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of which the state-variahles are also output-variahles. It therefore seems, that 
the intuition hehind compatibility, that state-variahles do not playa role in 
communication with other systems, does not coincide with the system- theoretic 
intuition. This is confirmed by the theory discussed in [32], where state-variahlf>B 
may also be output-variahles of a system, while external-variahles may be inputs 
or outputs. 

In this report , we show that partitioning the model variahles as done for 
hybrid automata, is in fact not necessary, if a subtly different semantical view 
is taken. \Ve have to credit the authors of [28] however, for being ahle to do 
analysis, to some extend, in the light of ahstraction of variahles (making them 
internal). The hybrid process algebra we present in this report is not concerned 
with any form of ahstraction so far, because experience with normal process 
algebra shows that ahstraction is a difficult topic to study algebraically, and we 
expect it to be convenient , that the basic theory is worked out first [7]. On the 
other hand, HyPA is developed in dose cooperation with the people who are 
working on the formal semantics of the hybrid x -language, which is focussed 
on the simulation of hybrid systems. Their operational semantics [36] uses a 
semantical structure similar to, and based. on, the one we have developed for 
HyPA (discussed in section 2.2), and their language does contain and operator 
that allows for the hiding of model variahles (although there is no axiomatization 
for it yet). Also the hybrid proeess algebra of Bergstra and Middelburg [11], 
that appeared as a technical report just one week before this one went to print, 
uses a hybrid transition system semantics, and has comparahle definitions for 
parallel composition. Furthermore it has a form of ahstraction from model 
variahles, comparahle to that of x. \Ve expect, therefore, that it is possible to 
develop a similar ahstraction operator for HyPA, and hopefully to find a way 
to reason ahout it algebraically. In section 4, we discuss the relation between 
HyPA, X and the proeess algebra of [11] in more detail. Admittedly, these three 
languages are very similar , which calls for a more thorough comparison in the 
near future. 

In cj)-calculus [35], the semantics assumes continuous behaviour to be a prop
erty of the environment, rather than of the process itself. There, (urgent) envi
ronmental actions allow the process to change the rules for continuous behaviour 
in an interleaving manner , which leads to the replacement of one differential 
equation by another. Again, there is no continuous interaction between P and 
C. \Vhen we write P II C in cj>-calculus, the semantics is such that only the 
continuous behaviour of the plant or of the controller is executed .. This, dearly, 
contraclicts with our intuition on the parallel composition. 

In hybrid action systems, the parallel composition of P and C leads to the 
desired result, if we ignore some irrelevant syntactical constructs. However, the 
parallel composition of two differential equations :r = 1 II:r = 2 results in a 
process that acts like the differential inclusion:r E {l, 2}. This, again, contra
diets with our intuition. \Ve would expect contradicting equations to result in 
deadlock. Nevertheless, both the 'interleaving' approaches from cj>-calculus and 
hybrid action systems, might turn out to be useful in situations where our intu
ition is flawed , and the theories might be considered complementary to HyPA. 
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In conclusion, we might state that we aim for an algebraic formalism , in 
which the parallel composition has a similar intuition as in [281, but without 
having to require compatibility of the composed systems. To do this, we have 
worked out the notion of hybrid transition system, as a semantical framework, 
in [15]. This framework lmifif'B the discrete behaviour of computer science and 
the continuous behaviour of system theory in a similar way as the hybrid au
tomata of [28] do, while avoiding the explicit use of state variahles and external 
variahles. From a system theoretic point of view , hybrid transition systems are 
an extension of Sontag machines [38]. Returning to figure 1, one might say that 
the chosen semantics of the original fields are transition systems for computer 
science, and Sontag machines for system theory. Our conservative extension of 
those is called hybrid transition system. On the framework of hybrid transition 
systems , it turns out to be rather easy to define an operational semantics for 
actions, as well as for differential equations and inclusions. Also all kinds of 
compositic)lls known from process algebra, among which parallel composition, 
can be defined easily using the method for giving an operational semantics in
trodlleed in [31]. As far as we know, HyPA and X and the proeess algebra of [11] 
are the only process algebras for hybrid systems so far, that use an operational 
semantics in which complete physical signals are taken into account rather than 
only the time-behaviour of a system. 

1.4 Discontinuities 

Regarding discontinuous behaviors, the semantics for differential equations in 
HyPA, differs a little from the usual interpretation taken in, for example, Hen
zinger's hybrid automata. The standard approach there (and in most other 
hybrid formalisms), is to assume only continuous behaviour of all variahles, un
less they are specifically altered by assignment transitions. For some hybrid 
descriptions of physical behaviour, however, it is convenient that certain vari
ables can also behave discontinuously. Take, for example, the electrical circuit 
depicted in figure 4, in which a switch steers the voltage over a resistor-capacity 
combination. 

Figure 4: Electrical circuit with switch 

For such a system, it is desirable to model the voltage over, and the current 
through the resistors (Vllb Vaz , 'i 1h and 'i llz ) as discontinuous functions of time. 
A possible hybrid automaton model for this circuit , is depicted in figure 5. Note, 

7 



that there are arbitrary jumps modelled on the transitic)lls, for the discontinuous 
variahles (i.e. not for vc!). This is necessary, because, without deeper analysis 
of the differential equations, we do not know what kind of discontinuities may 
occur. In order to avoid discontinuous behaviour that violates the physical 
properties of the circuit, we may indicate in the hybrid automaton model, that 
the algebraic equations used to describe the eleetrical circuit are invariants. As 
an example of an undesired discontinuity, one should note that, when the switch 
doses, the current through the second resistor (iIlZ) is determined completely 
by the source voltage Ve and the voltage over the capacitor Vc. The invariants 
make sure that no other assignments can be made to 'iHZ. 

jmp: 
V/I1 :E IR 
VllZ :E lR 
i/l1 :E IR 
'i HZ :E lR 

:E IR 
aet: 
open 

flow: 
Ve = C ie 

inv: 
'iRI = -'iRz 

VIlI = 'illl Rl 
VllZ = 'i HZ R2 

VIlI = VIlZ + Vc 

'i HZ = 

flow: 
ve = C ie 

inv: 
VRI = Ve 

VIlI = 'illl Rl 
VIlZ = 'i HZ R2 

VRI = VIlZ + Vc 

'i HZ = 

jmp: 
V/I1 :E IR 
VIlZ :E lR 
i ll1 :E IR 
'i RZ :E lR 

:E IR 
aet: 
dose 

Figure 5: Automaton modelling the eleetrical circuit 

Now, in the case of higher index differential equations, the approach of using 
invariants to avoid undesired discontinuities breaks down. As an example, let us 
consider a system described by the following equations, in which z is a variahle 
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that may behaviour discontinuously: 

:r z 

y -z 

:r y . 

As before, it is undesirable that an assignment to z is made that violates these 
equations. But the approach that is usually taken in hybrid automata theory, 
to take all algebraic equations to be invariants, does not work here. The choice 
of z is independent from the choice of :r and y. Clearly, the system only can 
perform continuous behaviour, if the value of z is reset immediately to zero. 
This, however, is insight obtained through analysis of the equations, and should 
therefore not be used when modelling a system. As far as we know, there is no 
solution in hybrid automaton theory for this problem. This is why we take a 
different approach regarding discontinuous behaviour in HyPA. 

In HyPA, when modelling a differential equation, we can indicate explicitly 
whether z is continuous or discontinuous. If it is continuous, we find deadlock 
for the higher index differential equations of the previous example. If it is 
discontinuous, only those discontinuities can occur for which a solution exists. 
Fi1fthermore, assignments are modelled, not as a kind of atomic actions (as with 
hybrid automata), but as reinitializations of processes. As it turns out, the 
reinitialization of flow-clauses only occurs if the flow-clause has a solution after 
reinitializing, while the reinitialization of atomic actic)lls is always executable. 
This will be explained in more detail in section 2.2 of this report. 

1.5 Drawbacks 

At first sight , there seem to be two major drawbacks to our method. The first 
drawback, is that we need a kind of bisimulation equivalence that takes into 
account the valuation of all variahles, in order for it to be a congruence for 
parallel composition. However, this does not render the whole theory useless, 
because the Sf-nne method of requiring compatibility of processes that was used 
in [28] in order to define parallel composition, can be used in HyPA to guarantee 
congruence of parallel composition under a weaker notion of equivalence (like 
the one used in [28]), and furthermore , we give an axiomatization for our notion 
of equivalence that allows elimination of the parallel composition from closed 
process terms, so that weaker notions of equivalence can be used for analysis of 
processes after applying this elimination. The second drawback , is that some 
of the axioms become rather conflL<.;ing due to the discontinuities that may be 
possible in some of the variables of a differential equation. This can be helped , 
as we show in section 3, by simply requiring all variables to be contillllOus, 
as in hybrid automata. So, in conclusion, the theory is not more difficult or 
cumbersome, if we model processes under the usual restrictions. In fact, as we 
indicate in section 4.1, we expect that HyPA is a conservative extension of hybrid 
automata, although we do not give a formal proof of this claim. Furthermore, 
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we have new constructs to our disposition that are not availahle, yet , in other 
hybrid formalisms, at the cost of having to use more difficult axioms. 

1.6 Structure of this report 

In section 2.1 of this report , the syntax of HyPA is presented, describing how the 
standard process algebra ACP [8] is extended with a constant for termination, 
the so-ealled disrupt operator, known from LOTOS [13]' and a simplifieation of 
the two types of clauses from [41], reprf'Benting continuous and discontinuous 
behaviour. As we mentioned before, HyPA does not contain any operators for 
handling ahstraction of actions or variahles yet. But, even without ahstraction 
constructs, hybrid process algebra turns out to be interesting topic of study, 
already. Ftuthermore, since ahstraction is a rather complicated subject , it seems 
wise to develop a concrete prOCf'BS algebra first [7]. In section 2.2, a hybrid 
transition system semantics is defined in the style of [311, in which continuous 
behaviour is synchronizing, and discrete behaviour is interleaving. Section 3 is 
devoted to an axiomatization of HyPA, for the equivalence notion ofbisimulation 
[29]. In this section, also the formal relation with ACP is discussed , and a 
set of basic terms is given into which dosed HyPA terms can be rewritten. 
\Ve conclude by giving our own views on the work presented, and by making 
suggestions for future research. In the appendices, we give the proofs for the 
soundnf'Bs, conservativity and rewriting claims of section 3. 

2 Hybrid Process Algebra 

2.1 Syntax 

In this section, the syntax of HyPA is introduced, which is an extension of 
the proeess algebra ACP [8, 21], with the disrupt operator from LOTOS [13] 
and with flow-clauses and reinitialization-clauses from the event-flow formalism 
introdlleed in [41]. The syntax of HyPA is defined by: 

P ')IElalcld»PIP C9 PIPC')PI 
P ~ P,P c> P,P II P I P~P I P I P I 0/1 (P) , 

where a E ii, c E C and d E D are not defined formally here, but only described 
informally in the following explanatory text. 

• There are the atomie proeess terms,) (ealled deadlock) and E (ealled empty 
process), modelling respectively a deadlocking process and a (successfully) 
terminating process. 

• There are atomic discrete actions, chosen from a set ii, used to model 
discrete, computational behaviour. 

• There are flow-clauses, used to model continuous, never terminating, phys
ical behaviour. Flow-clauses are chosen from a set C , formed by pairs 
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[ v I Pred] ()f predkates Pred: in whkh m()(lel variables V m (with:r E V m 

taking value in V(:r)) and their derived 1 versions 'if m = {:r I :r E V m} 
(with :r also taking value in V(:r)) may o(:(:ur as free variables: and of a 
subset V ~ Vm: signifying whkh variables are (:ontinuous: in the sense 
that during the evolution of time their value may not jump. \Ve usually 
leave out the bnH:kets for V: and even omit it (and the T delimiter) if 
it is empty. Typkal flow-dauses me differential equations: for example 
[ :r I :i: = f(:r.)I)] , and algebmi(; inequalities, for example [:r:S f(:r.)I)]. 
Furthermore: the set C is dosed under (:onj1llH:tion (A) of dauses. In 
general: the domain V(:r) of a model variable :r E V m is spedfied by the 
modeller at the first introd1H:tion of the variables. In this paper: the spe(;
ifi(:ation of domains is usually left out sin(:e: most of the time: it is obvious 
from the (;ontext. We write V = U C" V(:r) for the union of all variable 

x,- 'f m 

domains: and Val = V m -t V for the set of variable valuations . 

• There are reinitialization-clauses: used to model dis(:ontinuous dlHnges in 
the vall1es ()f the m()(lel variables. Reinitializati(Hl-dal1ses me dl()sen fn)ln 
a set D: formed by pairs [V I Pred]: (:onsisting of predkates Pred: in 
whkh free variables may o(:(:ur from the sets V-;;1 = {:r- I :r E V m } and 
Vtl = {:r+ I :r E V m}: modelling the (:urrent and future value of a model 
variable: respedively: and of a set V ~ V m modelling whkh variables 
me alh)wed t() dll-lnge. Typkal reinitializati(Hl-dal1ses are assignments: 
for example [ :r I :r+ = f(:r-. y-)] whkh: in imperative programming: is 
usually denoted as :r := f(:r. y). But: also boolean predkates (:an be 
modelled: by dlOosing V empty (using the same notational (:onventions 
as with flow-dauses): and only using the (:urrent value of variables: i.e. 
[ Pred( :r- . y- . ... ) ] . Apart fn)ln (:(Hltaining the a b(we des(:ribed pred
kates: the set D is dosed under (:onj1llH:tion (A): disj1llH:tion (V): and 
(:()ll(:atenati(Hl (,.....,) ()f reinitializati(Hl-dal1ses. Als(): there is a satisfia bility 
operator (d?) on dauses d E D: whkh does not reinitialize the wilues of 
a model variable: but only exe(:utes the reinitialized pn)(:ess: if d (:an be 
satisfied in some way: and there is a reinitialization-dause (Cjmp) derived 
from a flow-dause C E C: whkh exe(:utes the same dis(:ontinuities that me 
allowed initially by the flow-dause. These last two operators turn out to be 
espedally useful when (:akulating with pn)(:ess terms. Reinitializations
dauses are assumed to ad upon 1-Hlother pn)(:ess: so if pEP is a HyPA 
pn)(:ess: and d E D is a reinitialization-dause: then d » p denotes the 
reinitialized HyPA pn)(:ess . 

• There is the alternative compositionz p:ij q: modelling a (non-deterministk) 

1 \Ve as:-mnw oerivation is oefineo for all variables, bnt if we want to ns a variable :1: for which 
this is not the case (for example a compntational oata strnctnre), then no formal problems 
arise as long as we 00 not nse the oeriveo variable :1: in onr preoicates. 

2\Ve nse the notation d: ano :,': for alternative ano seqnential composition, rather than the 
nsnal + ano " to avoio confnsion with the notation nseo in Aow-danses ano reinitialization
danses for aooition ano mnltiplication. Also, we nse X ~ p for recnrsion rather than X = p. 
\Ve realize that this might oistract people in the fielo of process algebra, yet chose to anapt 
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dlOke between the pn)(:esses p and q. 

• There is the sequential composition p:9 q: m()delling a seq1Iential eXe(:1Iti(Hl 
of pn)(:esses p and q. The pn)(:ess q is exe(:uted after termination of the 
pn)(:ess p. 

• There is the disrupt operator p .. q: whkh models a kind of sequential 
(:omposition where the pn)(:ess q may take over exe(:ution from pn)(:ess p 
at any moment: without waiting for its termination. This (:omposition is 
inva11Iable when m()delling tW() fl()w-da1Ises eXe(:1Iting (Hle after the ()ther: 
siIH:e the behaviour of flow-dauses is ongoing: and never terminates. The 
disrupt is originally introdu(;ed in the language LOTOS [131, where it 
is used to model for example ex(:eption-handling. Also: it is used: for 
example in [41: for the des(:ription of mode-swiu:hes. 

• Related to the disrupt: there is the left-disrupt operator: denoted p [> q: 
whkh first exe(:utes a part of the pn)(:ess p and then behaves as a normal 
disrupt. The left-disrupt is mainly needed for (:akulation and axioma
tization purposes: rather than for modelling purposes. For example: it 
o(:(:urs often when we attempt to eliminate the parallel (:omposition from 
a pn)(:ess term through axiomatk reasoning: as des(:ribed in sedion 3. 

• There is the parallel (:omposition: p II q: whkh models (:OlH:urrent exe(:u
tion of p and q. The intuition behind this (:OlH:urrent exe(:ution is that 
dis(:rete l-H:tions are exe(:uted in l-ill interleaving manner: with the possibil
ity of synduonization (as in ACP: where synduonization is (:alled (:om
munkation): while flow-dauses are fon:ed to sYIH:hronize: and (:an only 
sYIH:hronize if they l-H:(:ept the same solutions. The sYIH:hronization of l-H:
ti(HlS takes pla(:e 1Ising a (:(nmmItative and ass()(:iative) (:(nmmmkati(Hl 
f1llH:tion r E (A x A) -t A. For example: if the l-H:tions a and a' synduo
nize: the resulting l-H:tion is a" = ara'. Adions (:l-illnot synduonize with 
flow-dauses: and in a parallel (:omposition between those: the l-H:tion will 
exe(:ute first. 

• Related to the pafH11el (;omposition there me the operators p ~ q (;a11ed 
left-parallel composition): whkh denotes that p performs a dis(:rete l-H:tion 
first (if possible): and then it behaves as normal parallel (:omposition: and 
pi q (;a11ed forced-synchronization), that denotes how the first behaviour 
(either a dis(:rete l-H:tion or a part of a flow) of p and q is sYIH:hronized: after 
whkh it behaves as normal parallel (:omposition. As with the left-disrupt: 
these ()perat()rs are mainly intn)(111(:ed f()r (:ak1Ilati(Hl p1Irp()Ses. 

• There is the encapsulation: 8 11 (p): whkh models that (:ertain dis(:rete 
l-H:tions (from the set H ~ A) are blo(:ked during the exe(:ution of the 
pn)(:ess p. This operator is often used in (:ombination with the parallel 

the process algebraic notation rather than the notation adopteo from system theory, simply 
becanse the latter has been in nse for a longer time alreaoy. 
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(:omposition to model that synduonization between dis(:rete I-H:tions is 
enf()r(:ed . 

• Finally: all the pn)(:esses should be interpreted in the light of a set E of 
re(:ursive definitions of the form X ;:;:j P: where X is a re(:ursion variable 
from the set VI' (with VI' nVm = 0) and p is a pn)(:ess term in whkh this: 
and other re(:ursion variables: may o(:(:ur. Re(:ursion is a powerflll way to 
model repetition in a pn)(:ess. 

The binding order of the operators of HyPA is the following: ::), ~ , C>, d », II, 
~: I: :ij: where alternative (:omposition binds weakest: and sequential (:omposi
tion binds strongest. \Vith elH:apsulation (811 (_)): bHH:kets are always used. As 
an example, a term d » a::) b ::) ell c' should be read as (d » (a::) b)) ::) (c II c'). 

2.2 Formal Semantics 

In this sedion: we give a formal semantks to the syntax defined in the pre
vious sedion: by (:onstr1l(:ting a kind of labelled transition system: for el-H:h 
pn)(:ess term and el-H:h possible valuation of the model variables. In this transi
tion system we (:onsider two different kinds of transitions: one assodated with 
(:omputational behaviour (i.e. dis(:rete I-H:tions): and the other assodated with 
physkal behaviour (i.e. fiow-dauses). This is why we (:all those transition sys
tems hybrid. 

Definition 1 (Hybrid Transition System) A hybrid tfHnsition system is a 
tuple (X. A H.~. ,( ). consisting oj a state spaee X. a set oj actions labels 

a set oj signal labels 2:. and transition relations X x A x X and 
X x 2: x X. Lastly. there is a termination predicate ,( <;; X. 

For the semantkal hybrid transition systems that are assodated with HyPA 
terms: the state Spl-H:e is formed by pairs of pn)(:ess terms and valuations of the 
model variables to their domain: i.e. X = P x Val. The set of I-H:tion labels is 
formed by pairs of I-H:tions and valuations: i.e. irA = A x Val: and the set of signal 
labels is formed by partial TIuH:tions of time to valuations: i.e. I: = T H Val. 
In this paper: we model time using the non-negative real numbers (T = ). 
Furthermore: we limit ourselves to those elements a E I: that have a dosed 
interval: non-singleton domain: whkh indudes the least element 0: so if a E I: 
then the domain of a is of the form dom(a) = [0 ... t], for some t > O. We 

I . ( ) oy· ( , ") f .. (( ) ( ') (' H)) use t 112 notation p. v H P . v or a transItion p. v . a. v . p. v E H 

with (p.v). (p'.v H
) E X and (a. v') E A. Similarly, we use (p. v) ~ (p'.v') 

for a transition ((p. v). a. (p'. v')) E"-+ with a E and for arbitrary transitions: 

we use (p.v) -'+ (p'.v') instead of ((p. v).I. (p'.v')) EH U ~ and I E Au 2:. 
Finally, termination is denoted (p. v ) ,( instead of (p. v) E ,(. 

Hybrid transition systems (:an be used to model (:omputational behaviour 
through the use of I-H:tion transitions: whkh take no time to exe(:ute: and to 
model physkal behaviour through the use of signal transitions: whkh represent 
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the behaviour of model variables during the passage of time. Note: that there 
is no variable in V m that is explidtly assodated with time. Hen(:e: if one would 
like to refer to time in a flow-dause. one would have to indude the model of a 
do(:k: using for example a differenti;il equa tion like [ tit = 1 ] . 

In table 1: the semantks ()f the ahnnk pn)(:esses and the fl()w-dal1ses is given: 
using deduetion rules in the style of [31]. In rule number (3),(4) and (5) we use 
the notations (v. a) 1= c and (v. v') F d: for notions of solution for flow-dauses 
and reinitializati(Hl-dal1ses: that are explained fl1rther (Hl in this se(:ti(Hl. 

--(1) 
(LV),( 

-----(2) 
( a. v) :'4' (L V ) 

(v. a) 1= c. dom(a) = [0 ... t] 
--------(3) 

(c.v) ~ (c.a(t)) 

(v. v') 1= d. (p. v') ,( 
------(4) 

( d » p. v) ,( 

(v. v') 1= d. (p. v') -'+ (p'. v" ) 
---------(5) 

(d»p.v) -'+ (p'.v") 

T})ble 1: Operational semanti"s of HyPA 

Rule (1) (:aptures our intuition that E is a pn)(:ess that only terminates. 
Analogously: the fad that there is no rule for 8: expresses that this is indeed 
a deadlo(:king pn)(:ess. Rule (2) expresses that dis(:rete l-H:tions display their 
own name: and the valuation of the model-variables on the transition label: but 
do not dumge this valuation. Changes in the valuation (:an only be (:l-\1lsed by 
flow-dauses and reinstallation-dauses: as defined by rules (3) to (5). 

A flow-dause dlHnges the valuation of the model-variables l-H:(:ording to the 
possible solutions of its predkate. In (:ontrast to the flow predkates of [261: 
dis(:ontinuities in the flow of a variable :r: me allowed in HyPA when :r ?}. V. 
Formally: we define the (:OlH:ept of solution of a flow-dause as follows. 

Definition 2 (Derived signal) For a signal a E 2:. the derived signal a. on 
the same domain. is defined by a(t')(:r) = (;fta(t)(:r)) (t'). Jor all t' E dom(a). 
On the bounds oj the domain. we use the leJt- and right-derivative. respectively. 

Definition 3 (Solution of a How-predicate) We define that a pair (v. v') E 
Val x Val is a solution oj a predicate Pred on Jree variables V m u"if m. denoted 
(v. v') 1= Pred. iJ the predicate evaluates to true. when every variable :r in the 
predicate is evaluated to v(:r), and every derived variable :r in the predicate is 
evaluated to v'(:r). 

Definition 4 (Solution of a How-clause) A pair (v. a) E Val x 2:. is defined 
to be a solution oj a flow-clause c E C. denoted (v. a) 1= c. as Jollows . 

• (v. a) 1= [V I Pred] iJ Jor all t E dom(a) we find (a(t). art)) 1= Pred. and 
Jor all:r E V we find v(:r) = a(O)(:r) and a(·)(:r) is a continuous Junction 
Jrom T to V(:r); 
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• (v, a) 1= C 1\ c' if (v, a) 1= C and (v, a) 1= c'; 

Clearly, the dause [false] has no solutions. Ftuthermore, for the solutions 
of a differential equation [:r I :i; = f (:r, y)], we find that a 0 (:r) (with :r the 
differentiated variahle) is a continuolls and differentiahle function of time. For 
[ true], every signal (including discontinuolls signals) is a solution. 

Reinitialization-elauses change the valuation of the model-variahles accord
ing to the possible solutions of their predicate. The set V, that we nse in 
addition to predicates, indicates that a variable is allowed to change its value. 
\Vhenever :r (j V, the variahle :r is fixed., and we can extend the predicate with 
:r- = :r+. Formally, we define a solution of a reinitialization-elause as follows. 

Definition 5 (Solution of a reinitialization-predicate) We define that a 
pair (v, v') E Val x Val is a solution of a predicate Pred on free variables 
V~, U vt, denoted (v, v') 1= Pred, if the predicate evaluates to true, when every 
variable :r- in the predicate is evaluated to 1I(:r) , and every derived variable :r+ 
in the predicate is evaluated to v'(:r). 

Definition 6 (Solution of a reinitialization-clause) A pair (v, v') E Val x 
Val is defined to be a solution of a reinitialization-clause d E D, denoted 
(v, v') 1= d, as follows. 

• (v, v') 1= [F I Pred] if (v, v') 1= Pred and for all :r 'i F we find v(:r) 
v'(:e). 

• (v, v') 1= d'v d" if (v, v') 1= d' or (v, v') 1= d"; 

• (v, v') 1= d'/\ d" if (v, v') 1= d' and (v, v') 1= d"; 

• (v, v') 1= d' - d" if there exists v E Val with (v, v) 1= d' and (v, v') 1= d"; 

• (v, v') 1= d'? if v = v', and there exists v E Val with (v, v) 1= d'. 

• (v, v') 1= Cjmp if there exists a E I: such that (v, a) 1= C and a(O) = v'. 

Obviollsly, [false] has no solutions, while [Vm I true] has every possible 
reinitialization as solution. Note, that [true] exactly allows all reinitializations 
that do not change any of the variahle valuations. If we want to model a 
conditional execution of the form "if Pred then p" , for a predicate Pred on free 
variahles from Vm , and a process PEP, this ean be done keeping V empty 
and by writing [Pred- ] »p. Here, Pred- denotes that we replace every 
free variahle :r in Pred by :r-. In a similar way, we sometimes write Pred+ to 
denote the replacement of every :r with :r+. Taking V empty implies that, for all 
variahles :r E Vm , we have :r- = :r+. Finally, if we have a two reinitialization
clauses d, d' ED, the clause d ,....., d' accepts exactly those solutions that are 
in some way a concatenation of the reinitializations of d and d'. The clause 
d? does not change the value of any of the variahles, and only has a solution 
for those valuations for which d has a solution. The clause Cjmp imitates the 
reinitializations performed initially by a flow-clause c. 
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Now that the atomk behaviour of HyPA has been explained: let us take a 
doser look at the operators. Their semantks is defined in table 2. Rules (6) to 
(10): for alternative and sequential (:omposition: are very similar to that of Aep. 
However: it is worth noting that we have dlOsen to model signal-transitions as 
having the same non-deterministk interpretation as 1-H:tion-transitions. This in 
(:ontrast to many timed pn)(:ess algebras [51: where the passage of time (by itself) 
d()es IH)t trigger a brmH:hing in the transiti()ll system. The reaS()ll f()r this way ()f 
modelling: is our intuition that (:ontinuous behaviour (Le. the passing of time) 
infiuelH:es the valuation of the model variables: and (:an therefore introd1H:e 
(:hokes in the system behaviour: just like dis(:rete 1-H:tions do. I( in the future: 
we develop operators to abstrad away from the variables that trigger those 
(:hokes: we do not want the (:hokes themselves to disappear: through some 
time-determinism medumism. The argument for introdudng time-determinism: 
that time is 1-ill external phenomenon: does in our opinion not hold for hybrid 
systems. Also: the hybrid automata of Henzinger [261: and most other hybrid 
automata apprOl-H:hes that we know o( are time-non-deterministk: supposedly 
for the same reasons. 

Interestingly: in [11] a time-deterministk apprOl-H:h to hybrid systems is dlO
sen (dearly they disagree with the above arguments): while in y [36] 1-ill op
erator is introd1H:ed for both. f\!Iodels in the y languages: therefore: might 
show the differelH:e between the apprOl-H:hes. AIH1: as far as we (:an tell: the 
time-deterministk operator is used most often when: for example: a (:ontroller 
makes a dlOke after some delay. This is modelled as a time-deterministk dlOke 
between delaying 1-H:tions. \Vhen modelling physkal modes of a system: the 
non-deterministk dlOke operator is used. The physkal behaviour of a system 
(:an only be in one mode: even if a partkular evolution is permitted in both 
m()(les. 

Rules (11) to (14) define the sermmties of the disrupt opemtoL and the 
left-disrupt opera tor. If we (:ompare these rules to the rules for sequential (:om
position: we see that the main differelH:e: is the way in whkh termination is 
handled. Firstly: in a (:omposition P .. q: the pn)(:ess q may start exe(:ution 
without p terminating. And Se(:OlHUy: if the pn)(:ess p terminates: the pn)(:ess 
p .. q may also terminate regardless of the behaviour of q. 

Rules (15) to (19) define the sermmties of the pmallel eompositiOlL and in 
these rules the differelH:e between 1-H:tion and signal transitions is most promi
nent. For 1-H:tions: the interpretation of the parallel (:omposition is the same as in 
ACP [8, 21]. Diserete aetions that me plaeed in pmallel me interleaved, but om 
als() sYIH:hn)llize 1Ising a (partial: (:(nmmItative and ass()(:iative) (:(nmmmkati()ll 
f1llH:tion rEA x AHA. If a dis(:rete 1-H:tion a (:ommunkates with 1-ill 1-H:tion 
a': the valuation of the model variables has to be the same for both: and the 
result is 1-ill 1-H:tion a" = ara'. If fiow-dauses are pl1-H:ed in parallel: they always 
sYIH:hronize their behaviour s11(:h that: intuitively: the signals that are possible 
in a parallel (:omposition are a solution of both dauses. 

The eneapsulation, as defined by rules (20) to (22), only infiuenees aetion 
transitions. This is not surprising: siIH:e the 811 (_) operator is originally in
tended to model enfon:ed sYIH:hronization in a parallel (:omposition. Signal 
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---'--~(PCc',_v~) ,(,'--;c-(6) (p. v) -'+ (p'. v') 
(pD q.v),( (pD q.v) -'+ (p'.v') 

(7) (p. v) ,(. (q. v) ,( (8) 
(p::)q.v),( 

(qD p. v ) ,( (qD p. v) -'+ (p'. v' ) 

(p. v) -'+ (p'. v' ) () (p. v ) ,(. (q. v) -'+ (q'. v' ) ( ) 
I 9 I 10 

(p::) q.v) -) (p'::) q.v') (p::) q.v) -) (q'.v') 

(p.v),( 
-('p~~~q~. v')-'(o-. (11) 

(pc>q.v),( 

I 
__ (~p~. v~)_-),----(~p~'. _v'~) --(12) 

(p ~ q.v) -'+ (p' ~ q.v') 

(p c> q.v) -'+ (p' ~ q.v') 

(q.v),( (13) (q.v) -'+ ;q'.V') (14) 
(p ~ q.v),( (p ~ q.v) -) (q'.v') 

(P.v),(.(q.v),(( _) 
~,--'-;,~~~ 10 (pil q.v),( 

(p.v) ~ (p'.v'). (q.v) ~ (q'.v')( ) 
J 16 (pil q.v) ~ (p' II q'.v') 

(plq·v),( (plq.v) ~ (p'llq'·v') 

(p.v) ~ (p'.v'). (q.v),( (17) 

(pllq.v) ~ (p'.v') 

(qI!P'v) ~ (p'.v') 
(plq.v) ~ (p'.v') 
(qlp,v) ~ (p'.v') 

( ) ".v· (' ") p.v H P . v 
---"-'---'------,~~-'---- (18) 

(p II q.v) "2; (p' II q.v") 

(qI!P'v) "2; (qllp'.v") 

(ph.v) "2;' (p'llq.v") 

(p. v) "2;' (p'.v"). (q .. ~) "c4" (q'.v"). a" = ai a' (19) 

(pllq.v) "8' (p'llq'·v") 

(plq.v) ":4' (p'llq'.v") 

(p.v) "2;' (p'.v"). ar/H ( ) 
. 20 

(Ull (p).v) "2; (Ull (p').v") 

(p.v) ~ (p'.v') (21) (p.v),( (22) 
(Ull (p) .v) ~ (Ull (p') .v') (Ull (p) .v),( 

(p.v),( (23)X""pEE (p.v) ~ (p'.v') (24) X""pEE 
(X.v),( (X.v) -) (p'.v') 

Table 2: Operational semHntks of HyPA: (;ontinlled 

17 



transitic)lls are already synchronized. 
Rules (23) and (24) model reeursion in the same way as it was done in [8, 21]. 

For a recursive definition X ~ p, a transition for the variahle X is possible, if it 
can be deduced from the semantical rules for the process term p. 

2.3 Example: Steam Boiler 

This section is intended to illustrate the use of HyPA for modelling hybrid sys
tems. The process below, is a model of the celebrated benchmark problem of the 
ste;:-tm boiler [1]. For reasons of brevity, the problem is simplified considerably. 
It is not our intention to give a comparison with other models of the steam 
boiler here. \Ve only want to give a feeling for the syntax and semantics of the 
language. The text below, explains shortly what the given model consists of. 

Valve ~ Is 
lv 

I Valve 
v 

Water I 

Wmax {op, d} s 
W -----

Wmin 'Yater I Controller I I Heater I 

Figure 6: The steam boiler 

The boiler process, as depicted in figure 6 consists of a water level '10, an 
in-flow v and a stemn production s. This stream production is determined 
by the Heater process, which limits it between Smin and Smax. The in-flow is 
determined by a Valve process, which can be opened or dosed using the signals 
TO and rc respectively. If the valve is open, the in-flow to the boiler is Vin. If it is 
dosed, the in-flow is O. Furthermore, there is a Controller, that every T seconds 
interferes with the valve, by telling it to open or dose using the signals so and sc. 
The goal of this controller, is to keep the water level between '/I)min and '/I)max. 

To do this safely, it takes a margin of '/0 safe into account. The total system is 
the parallel composition of the \Vater process, the Heater, the two modes of 
the Valve, and the Controller, over which communication is enforced through 
the definitions op = TOrSO, cl = rCrsc, and H = {SO,sc,TO,rc}. In the next 
section, we will discuss an axiomatization of HyPA that allows us to rewrite this 
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example into a form in which all parallel compositions are eliminated. 

Water " 
Heater " 

ValveOpen " 
ValveClose " 
Controller " 

[ II) Iii) = V - s 1 
[Smin ::; S ::; Sma xJ 

[ V = Vin ] .. rc (~ ValveClose 

[ v = 0 1 ~ m (,) ValveOpen 

[ t I t+ = 0 1 » [t I : ~ ~ 1 ~ 

( -10- 2: -W max - -Wsate ] » sc (~ Controller CD ) 
UYmin + -Wsate ::; -10- ::; -W max - -Wsate ] » Controller CD 
-W- ::; -Wmin + -Wsate ] » so (~ Controller 

Boiler " 0/1 (Water II Heater II (ValveOpen CD ValveClosed) II Controller) 

3 Algebraic Reasoning in HyPA 

The strength of the field of process algebra, lies in its ahility to use equational 
reasoning for the analysis of transition systems, or, more precisely, for the anal
ysis of equivalence dasses of transition systems, called processes. 

In this section, we show that this equational reasoning is also possible in 
HyPA. A notion of equivalence is defined on process terms, reflecting equiva
lence of the underlying semantical transition systems. Consequently, equivalent 
process terms represent the same process. \Ve study properties of this equiv
alence, and capture those properties in a set of derivation rules and a set of 
axioms on the algebra of process terms. Together, this forms a proof system 
in which every derived equality on process terms represents equality of the 
underlying hybrid transition systems. In other words, process terms that are 
derivahly equal, describe transition systems in the Sf-nne equivalence dass, and 
hence describe the same process. 

This section is split up in three parts. In the first part, we define the well 
known notion of bisimulation equivalence on hybrid transition systems, we give 
a formal axiomatization, and prove soundness of this axiomatization. In the 
second part, we will treat the intuition behind the axioms, and insights they 
provide us with. In the third part, we show a few useful properties of our 
axiomatization, like a conservativity theorem with respect to the process algebra 
ACP and a rewrite system for rewriting dosed HyPA terms into a normal form. 

3.1 Axiomatization 

The equivalence we assume on hybrid transition systems, is the well known 
notion of bisim1l1ation [29J. 

Definition 1 (Bisimulation) A relation R <;; P x P on pmeess terms, is a 
bisim1l1ation relation if for all p, q E P such that pR q, and for all valuations 
II, II' E Val and labels I E A U we find 
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• (p. v),( implies (q.v) ,(; 

• (q.v),( implies (p. v ) ,( ; 

• (p. v) -'+ (p'. v') implies there exists q' s. t. ( q. v) -'+ (q'. v') and p' R q'; 

(q. v) 
, 

( q'. v') implies there exists p' s. t. (p. v ) 
, 

(p'.v') and p'Rq'. • -) -) 

Two process terms :r and yare bisimilm, denoted :r 1::± y, if there exists a 
bisimulation relation that relates them. 

If two pn)(:ess terms Bre bisimilHr: then they des(:ribe eqnivalent transition 
systems: helH:e they des(:ribe the SHme pn)(:ess. In table 3 we give H set of 
derivation rules: Bnd thronghont the next sllbsedion we give H set of Hxioms 
that: to H large extend: (:Hptllre this notion of bisim1l1Htioll. \Ve write HyPA 
f- p;:;:j q: if we (;Hll derive eqlliVHlelH:e of P Bnd q nsing those Hxioms. 

Definition 8 (Derivation) We write HyPA f- P '" q to indieate that eqmva
lence of open terms p and q can be derived from our axiom system. JVe define 
that equivalence can be derived according to the rules given in table 3. 

=-=~--(1) 
HyPA f- P '" P 

HyPA f- P '" q (2) 
HyPA f- q '" P 

HyPA f- P '" q. HyPA f- q '" r (3) 

HyPA f- P '" r 

HyPA f- P '" q. S a variable sllbstitlltion(4) 

HyPA f- S(p) '" S(q) 

aan n-ary HyPA opemtof. V'<i<n HyPA f- Pi'" qi (5) 

HyPA f- a(p, .. ·Pn) '" a(q, .. . qn) 

"IVy' (v. v') 1= d iff (v. v') 1= d' (6) 

HyPA f- d» :r '" d' » :r 

VV,J (v. a) 1= e iff (v. a) 1= e' (7) 

HyPA f- e '" e' 

P'" q is an axiom (8) 

HyPA f- P '" q 

VV,J (v. a) 1= e' implies (v. a) 1= e 
Vvy,J (v. v') 1= d and (v'. a) 1= e implies (v'. a) 1= e' 

HyPA f- d » e '" d » e' c> e 

VV,J (v. a) 1= e iff (v. a) 1= e' or (v. a) 1= en (10) 

HyPA f- e", (e' ::) en) c> e 

Table 3: Derivation rules of HyPA 

(9) 

In the remainder of this SllbSedioll: the Hxioms of HyPA: Bnd the insight 
they provide regarding the operators of the language: Bre presented. Also: the 
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intuitions behind the 9th and 10th derivation rule, are discussed. In each of 
the axioms, :r, y, z denote arbitrary open HyPA terms. The letters a, a' denote 
actions, while c, c' denote flow-clauses and d, d' denote reinitialization clauses. 
Unlike what is usual for ACP, one may not choose r) when a is written in an 
axiom. The set of axioms is divided into seven groups. 

• The first group consists of two axioms that give the definition of parallel 
composition and the disrupt operator in terms of other HyPA operators. 

:r II y "" :r ~ y G) y ~:r (l) :r I y 

:r~y"":rC>yG)y 

These axioms ean also be found in [8] and [4], respeetively. 

• The second group expresses associativity, commutativity and distribution 
properties of the various operators. All of these axioms occur also in [8] 
or [4]. Their intuition is the Sf-tme as with standard process algebra. 

(:r G) y) (l) z "" :r (l) (y (l) z) 

(:r C> y) C> z "":r C> (y ~ z) 

(:r I y) I z "" :r I (y I z) 

(:r CD y) (~ z;:;:j:r (~ z CD Y (~ z 

:rCDY;:;:jyCD:r 

(:r (,) y) (,) z "" :r (,) (y (,) z) 

(:r h) ~ z "" :r ~ (y II z) 

(:r I y) ~ z "" :r I (y ~ z) 

(:r CD y) C> z "":r C> z cD Y C> z 

(:r G) y) I z "" :r I z G) Y I z 

:rly""yl:r 

Notice, that these axioms may be used to prove the equalities (:r .. y) .. 
z "":r ~ (y ~ z) and (:r II y) II z "" :r II (y II z). 

• The third group is concerned with unit and zero elements for the various 
operators, and with axioms that express similar properties. 

:r (~ € ;:;:j :r 

€[>:r;:;:j€ 

<11:r",,:r 
[false 1 "" " 

[false 1 » :r "" " 
Cjmp » C;:;:j C 

:r[>r);:;:j:r 

"I:r",," 
<~:r""" 

d»"""" 
[ true 1 » :r "" :r 

Special attention should be paid to the axiom Cjmp » C ;:;:j c, which ex
presses the intuition that every flow-clause may spontaneously reinitialize 
according the derived reinitialization-elause Cjmp. Fi1fthermore, according 
to the axiom d » (d' » :r) "" (d - d') » :r found further on, we derive 
C;:;:j Cjmp » C ;:;:j Cjmp » Cjmp » C ;:;:j (Cjmp ,...., Cjmp) » c, which expresses 
that multiple of those reinitializations may occur after each other. 
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• The fourth group of axioms focusses on the left-parallel composition and 
the left-disrupt operator. 

(a:'J :c)~y""a:'J (:el l y) 

(c C> :e)~y""" 

(a :'J :e) c> y "" a :'J (:e ~ y) 

(d» (c c> :e)) :'J y "" d» c C> (:e :'J y) 

The left-parallel composition operator is used to axiomatize the interleav
ing behaviour of the parallel composition. The axioms describe that only 
actions are allowed by left-parallel composition. The left process cannot 
perform signal transitions, since these should be synchronized. The left
disrupt operator is used to axiomatize the behaviour of a disrupt composi
tion, when the left process is not disrupted immediately. Both actions and 
signals can be performed by the left-disrupt. However, the axiom express
ing exeeution of a signal, i.e. (d » c C> :e) :'J y "" d» c C> (:e:'J y), is a lit
tle complicated because of the interaction between reinitialization-elauses 
and fiow-elaUSf'B. Using the unit element [ true] for reinitialization we may 
darify things a bit by obtaining the equality (c C> :e) :'J Y"" c C> (:e:'J y). 
This equality is in itself not enough, because reinitialization does not dis
tribute over sequential composition in a simple way, as we will see further 
on. 

• The fifth group of axioms focusses on distribution properties of reinitial
izations. 

d»:e:D d'»:e "" (dVd')>>:e 

d» (:e (l) y) "" d » :e :D d» y 

(d» :e) C> y "" d » :e C> y 

d» (d' » :e) "" (d - d') » :e 

(d» a) :'J :e "" d » a :'J :e 

(d » E) :'J :e "" d? » :e 

(d» :e) h "" d» (:eh) 

A trivial consequence (using logical equivalence of [true] V [true] and 
[ true]) of these axioms is for example the equality :r G) :r ;:;:j :r, which 
expresses that the choice between equals is not an aetual choice. Note, 
that reinitialization does not simply distribute over sequential composi
tion! The reader should pay attention to the axiom (d » d (0 :r ;:;:j d? » :r , 
which expresses that a reinitialization of the empty process only leads to 
termination if the reinitialization dause is satisfiahle. I.e. only if there is 
a reinitialization possible that satisfies the dause. Note, that this reini
tialization does not aetually take pl;:-ice, therefore after termination the 
valuation of the variables is the same as before. Clearly, we can use the 

? 

logical equivalence between [true] and [true]· to obtain the equality 
€ (0 :r;:;:j :r, known as an axiom from [8]. The last axiom in this group, ex
presses that a concatenation of reinitializations leads to a reinitialization 
with the concatenation of the dauses. 

• The sixth group expreSSf'B the rather complicated rules for the synchro
nization operator. Since reinitialization does not distribute over synchro-
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nization, we have to take it into account in every of the axioms. 

d» E I d'» E "" (d? /\ d'?)>> E 

d» E I d' » (a :,) :r) "" " 
d» a :,) :r I d' » a' :,) Y"" (d /\ d') » (ara') :,) (:r II y) if (ara') defined 

d » a :,) :r I d' » a' :,) y "" " if (ara') undefined 

d» E I d' » c c> :r"" (d? - d') » (c c> :r) 

d»c c> :rld'»a:,) Y""" 

d»c c> :rld'»c' c> Y"" 

((d - Cjmp) /\ (d' - c1mp))» (c/\ c') c> 

The first axiom expresses that a synchronization terminates if both the 
left and the right process terminate. Similar to the sequential composi
tion, this termination only takes pl;:-tce if (both) the reinitializations are 
satisfiable. The second axiom expresses that termination cannot synchro
nize with actions, and therefore leads to deadlock. The third and fourth 
axiom express that actions a and a' may synchronize by producing an 
action ara' if this action is defined, and otherwise the synchronization 
results in deadlock. If the synchronizing actions are reinitialized, both 
reinitializations should be satisfied, i.e. both processes should agree on 
the change of valuation. In particular , if ara' = a", and a is reinitial
ized by an assignment :r+ = :r- + 1, we find [ :r I :r+ = :r- + 1] » a I a' ~ 
[ :r I :r+ = :r- + 1] » a I [true] » a' "" ([ :r I :r+ = :r- + 1]/\ [ true]) » 
(ara') ~ [false] » (ara') ~ 8. Since a' does not agree on the assignment, 
a deadlock results. The fifth axiom expresses that termination may oc
cur before signal behaviour executes. The terminating process disappears 
from the equation but, again, only if the corresponding reinitialization is 
satisfiable. That termination occurs before and not at the same time as 
the signal behaviour is expressed by the fact that we find a concatenation 
of reinitializations, rather than a conjunction. The sixth rule expresses 
that actions and signals cannot synchronize. Finally, the seventh axiom 
expresses the way in which signals can synchronize. This axiom is quite 
complicated due to our decision to make it possible for flow-clauses to 
perform reinitializations. \Vhen synchronizing, these flow-clause reinitial
izations should be taken into account. If we restrict ourselves to flow
clauses in which all variables are continuous (as is done in hybrid automata 
for example), i.e. clauses of the form [Vm I PredJ, we find the equality 
d» c c> :r I d'» c' c> Y"" (d/\ d')>> (c/\ c') c> (:r II y), whieh is more in 
line with out intuition that both reinitialization-elauses and flow-clauses 
are synchronized. The proof of equality relies on the observation that , in 
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case of continuity, Cjmp = c3mp (no jumps, hence only satisfiahility) and 

(do - dD 1\ (d[, - d"?) = (do 1\ d[,) - (d; 1\ d" ?) . 

• The seventh group expresses the (usual) distribution properties of the 
encapsulation. 

au (:r (l) y) '" au (:r) :D au (y) 

au (:r c> y) '" au (:r) c> au (y) 

au (e) '" e 

au (a) '" a if a 'I H 

au (:r :'J y) '" au (:r) :'J au (y) 

au (d » :r) '" d» au (:r) 

au (E) '" E 

au (a) "''' if a E H 

The 9th derivation rule in tahle 3, expresses how a reinitialization can re
strict the choice for the first transition of a flow-clause. A useful application of 
this rule is in recognizing a solution of a differential equation given a certain 
initial condition. For example, consider the flow clause [ :r~ t I :r =:r ;\ i = 1]. 
Clearly, :r = r/ is a solution of the differential equation :r = :r, if initially t = 0 
and :r = 1. Using the 9th derivation rule, we now find the following equivalence. 

Note, that t and :r are both taken to be continuous. Otherwise, the flow-clauses 
in this example might execute undesired reinitializations. The 9th derivation 
rule also expresses the repetitive character of flow-clauses. This is illustrated 
using d = [true] and c' = c. \Ve then find the equivalence c ~ c [> c. 

The 10th derivation rule, also expresses this repetitive character. This is 
illustrated by taking c = c' = c", we then find again c ~ c [> c. Furthermore, 
the 10th derivation rule expresses that if we can divide a flow-clause c into two 
(possibly overlapping) clauses c' and c", then the first transition taken by c can 
be mimicked by either c' or c". An application of this rule, is that a solution 
of a flow-clause can be split off even if there is no reinitialization. For example, 

[
:i; = 3:r3/3

]. ... . . . 
the clause i = 1 contams a set of chfferentIal equatIOns wIth solutions 

:r = 0 and :r = t3 if initially :r = 0 and t = O. However, for other initial 
conditions, other solutions are possible. Using the 10th derivation rule, we find 
the following equality, which describes exactly that :r = 0 and :r = t3 are two 
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possible trajectories of this clause. 

[ . ''''3] :~ = 3:r~f 

t = 1 

([::;)] :D 
:~ ::: 3:r~ f [>:~ ::: 3:r~ f [ ''''3] ) [ ''''3] 
t-l t-l 

([::;)] v ([;:;"] v [::13c213]) ~ [::13c213]) 
'" ([::;"] ~ [::13C3/3]) ~ [::{C3/3

] :D ["=0] ~ t = 1 [ ''''3] :r = 3:r~ f c-
i = 1 .v 

( [
:r ~ 3:r

3/3] 
t - 1 

~ [:: {C3/3]) ~ [:: {C3/3 ] 

[ ''''3] :~ = 3:r~f 

t = 1 D [::;"] 

'" ([::;)]:D [:::"]) 
Note that , in contrast to the example for derivation rule 9, we do not need 
continuity of :r and t in this case. 

3.2 Soundness 

Rests us to show, that all the derivations that can be made ahout process 
terms, indeed lead to sound statements about the bisimulation equivalence of 
these terms. In other words, we need to prove the following theorem. 

Theorem 1 (Soundness) If, for two closed terms pond q, we find HyPA 

f- P '" q then p 1:1 q. 

Proof f\!Iost of the techniques used. in this proof are also explained in detail 
in [7]. The main observation is that a derivation is sound, if all of the rules that 

are used in it are sound. Now, if we use (p) v:!4' (p') as alternative notation 

for a transition (p, II) it (p, II'), then the definition of bisimulation becomes 
that of strong-bisimulation as defined in [7]. In other words , we use the obvious 
isomorphism, mapping (P x Val) x (A u 2:) x (P x Val) to P x (Val x (A u 
2:) x Val) x P, to transform our notion of bisimulation into strong-bisimulation. 
Hence, the derivation rules 1,2 and 3 are sound, since strong-bisimulation is an 
eqllivalenee (see [29, 7, 43]). 

The proof that rule 4 and 5 are sound, is based on the observation that, 
using the Sf-nne isomorphism, all the semantieal rules of HyPA turn out to be in 
the so-ealled path-format [6]. That is, formally they are in path-format only, if 
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, (v, v') 1= d, (p, v'),( (p, v') ,( 
we fead for example the fule as H fule that 

(d» p,v)'( (d» p,v)'( 
is only valid nnder the (;ondition that (v, v') 1= d, It is a standard resnlt [7, 61, 
that strong-bisim1l1Htion is H (;ongr1l81H:e for operators that Bre defined nsing 
only rules in path-format. HelH:e: in Bny (;ontext: variables may be repl<-H:ed by 
terms: Bnd terms may be repl<-H:ed by eqnivalent terms: whkh is eXl-H:tly what 
fule 4 Bnd [) express. 

Rules 6 Bnd 7 Bre s01llHl: be(:Hllse the transition systems generated for logi
(:Hlly eql1ivHlent dHl1ses Bre is(nn()rphk (helH:e hisimilHr). This is strHightf()rWHrd 

to verify. That fule 8 is sonnd for el-\(:h of the Hxioms of HyPA: Bnd that the 
rules 9 Bnd 9 Bre s01llHl: is proven in appendix A. [2j 

3.3 Conservativity and Rewriting 

One of the things that (;Hll be (:on<:111ded abont HyPA: nsing the given Hxiom

atization: is that it is a (:onservative extension of the pn)(:ess algebra ACP [8]. 
This illustrates that HyPA does not violate the general ideas behind this pn)(:ess 
algebra. 

Theorem 2 (Conservativity) HyPA is a conservative extension oj ACP (ex
cept Jar notational differences ::) and ::)), meaning that Jar ever-y two closed 
ACP terms p and q, we find that ACP f- P '" q iJ and only iJ HyPA f- P '" q, 

Proof See appendix B, 

Fllrthermore: like in ACP: it is possible to define a set of bask terms into 
whkh every HyPA pn)(:ess (:an be rewritten using the axioms. These bask 
terms dearly show that the parallel (:ompositions (:an be eliminated from all 
HyPA pn)(:esses. 

Definition 9 (Basic terms) A basic term, is a process term oj the Jollowing 
Jorm, N ::= d » E I d » a ::) N I d » c c> N IN::) N, 

Theorem 3 (Rewriting) Every closed HyPA term can be rewritten into a ba
sic term. 

Proof In appendix C: we give a strongly normalizing rewrite system that 
does this: based (in prindple) on reading all the axioms as rewrite rules from 
left to right (adding a few extra rules for handling unit elements). [2j 

\Ve (:onjedure that this rewriting result (:an be extended to a linearization 
result: meaning that we exped to be able to rewrite every guarded re(:ursive 
spedfi(:ation of a HyPA pn)(:ess into a linear form in whkh we only use re(:ursion 
over bask terms. 
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The usefulness of elimination of the parallel composition, was already noted 
in the introduction. It was pointed out there, that the notion of bisimulation 
we use is very strong, because all possible valuations of the variahles are taken 
into account at every point in time. IVlany weaker notions of equivalence, while 
still preserving interesting analysis properties, are not sensitive to the valuation 
of variahles. Those equivalences, often, are not congruent for the parallel com
position operator. Therefore, algebraic reasoning ahout those notions in the 
context of parallel composition becomes difficult. 

This is already a known phenomenon in process theory, and it is caused by 
the possibility of interference in the value of shared variahles (see for example 
[30]). Many different solutions have been proposed, also in the field of hybrid 
systems. For example, in the hybrid automaton theory of [28], the authors 
propose a restriction (called compatibility of automata) on the systems that may 
be placed in parallel, to ensure that no interference occurs. This is a perfectly 
reasonahle way of handling the problem, but it has the disadvantage that we 
have to add extra variahles, if we want to model processes that intentionally 
interfere, like the control system shown in the introduction. 

HyPA is, in principle, focussed on being general. \Ve start out by using a 
very general parallel composition, that is defined for all possible processes, and 
necessarily end up with an equivalence that is very strong, but is at least a con
gruence for this composition. Now , the elimination result allows us to eliminate 
the parallel composition from the process description. And, after elimination, 
we can start to use algebraic reasoning on a weaker notion of equivalence to 
analyse the specific properties we are interested in. Admittedly, this method 
may turn out to be less practical than the road followed by [28], because the 
elimination of parallel compositions can become quite cumbersome. On the 
other hand, it may also be possible to formulate derivation rules for reasoning 
ahout weaker notions of equivalence, that express a kind of conditional congru
ence 'under compatibility'. In this way, other methods can be imported into 
HyPA. 

As an example of rewriting into basic terms , we can rewrite the steftm boiler 
system of the previous section into the following description, in which parallel 
composition and encapsulation are eliminated. Notice that this rewriting is 
done here over a recursive definition, hence is an example of linearization of 
such process descriptions. Looking at the axiomatization, one might expect 
that do, ... ,d3 would contain clauses of the form Cjmp , but those are eliminated 
using calculation on reinitialization clauses. Admittedly, performing the actual 
elimination by hand is very cumbersome, and leads to a very long calculation, 
which we left out of this report for reasons of space. Finding theorems to make 
these calculations shorter, is a topic for future research. 

Boiler '" Open CD Closed 

Open '" do » Co ~ (d, » cl :~ Closed ::8 dz » Open ::8 d3 » op (~ Open) 

Closed '" do » Cc ~ (d, » cl :~ Closed ::8 dz » Closed ::8 d3 » op (~ Open) 
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with 

do '" 
d, '" 
dz ;:;;;: 

d3 '" 

t I t+ = 0 1 ' 
t- = T 1\ 

t- = T 1\ 

t- = T 1\ 

i = 1 
t '5c T 

'11)- 2: 'lOmax - '/I)sate ] ' 

U)min + 'Wsate ::; '10- ::; 'lOmax - 'Wsate ] ' 

'10- ::; 'Wmin + 'Wsate ] ' 

Co;:;;;: t. '10 'Ii) = V - S 

and 

Smin ::; S ::; Smax 

V = Vin 

i = 1 
t '5c T 

Cc ;:;;;: t. '/0 'Ii) = V - S 

Smin ::; S ::; Smax 

v=O 

One result that is missing, so far, is a proof that the given axiomatization 
is complete for bisimulation of HyPA terms. I.e. a proof that for closed terms 
p and q, if P tl q then also HyPA I- P "" q. We do not exdllde the possi
bility yet, modulo completenf'Bs of the logical equivalence of flow-clauses and 
reinitialization-clauses, but the faet that the number of signals that is a solu
tion of a flow-clause, and the number of valuation jumps that is a solution of a 
reinitialization-clause may be infinite, complicates matters seriously. 

4 Related Work 

In this seetion, we will compare HyPA, in an informal way, to hybrid formalisms 
that were previously developed. 

4.1 Hybrid Automata 

One of the most influential of all hybrid formalisms, is the hybrid automaton 
formalism described by Henzinger [26]. These automata consist of nodes in 
which certain differential equations are active under an invariant, and of guarded 
transitions between those nodes that model discrete aetions. For example, the 
steam-boiler example (after rewriting it into a basic term) could be modelled as 
the hybrid automaton depicted in figure 7. 

A general hybrid automaton is depicted in figure 8. Such an automaton 
is easily translated into a hybrid process algebraic term, using the following 
observations . 

• The flow predicate Pjx in a node of an automaton, describes flows in a sim
ilar way as in HyPA. Only, in hybrid automata , all signals are continuous. 
Hence, we take V = Vm and find the clause [Vm I Pjx J. Note, that hy
brid automata only allow differentiahle solutions of flow predicates, while 
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jmp: t = T 1\ t:= 0 1\ 

-10 ::; -Wmin + -/I) safe 

aet: op 

;\"liJ=v-s 

inv: t ::; T ;\ V = Vin 

Smin ::; S ::; Smax 

-10 2: -W max - -Wsate 

aet: cl 

1\ 

inv: t :S T 1\ V = 0 
Smin ::; S ::; Smax 

Figure 7: Example of a Hybrid Automaton IVlodelling a SteftIn Boiler 

HyPA may allow non-differentiahle solutions if a variahle is not subject 
to differentiation. These additional solutions are considered to be unim
portant for the moment. In a future, formal discussion of this translation, 
theory may be developed to handle them . 

• The invariant Fix is a predicate that ean be llsed in a flow-clause, but ean 
also be transformed to be llsed in a reinitialization clause, since only vari
ahles from the set Vm are llsed in it. The semantics of hybrid automata, 
contain a kind of look-ahead sneh that after a transition, an invariant P;y 
or Piz must hold respectively, other wise the transition cannot be taken. 
Translating this to HyPA, that means that in reinitializations, the precli
cate ~t or Pi~ should hold, respectively. Recall that we have defined P+ 
in section 2.2, as a transformation of a predicate P on Vm in which every 
variahle :r is replaced by :r+ . 

• The transitions of hybrid automata contain actions ay and az . In transla
tion, those actiC)llS disrupt the flow-clauses. Fi1fthermore, the jump con
ditions Pjy and Pjz on the transitions are translated into reinitializations 
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that act on these actions. Again, we take V = Vm , and assume that it 
is specified in the jump conclition which variahles may change, and which 
remain constant. 

jmp: Pjz 

act: a;; 

jmp: Pjy 

act: ay 

Figure 8: General Example of a Hyhrid Automaton 

Using these ohservations, the more general automaton in figure 8 is trans
lated into: 

Of course, this is not a formal translation. The semantics of hyhrid au
tomata as given in [26] is one of timed transition systems, while the hyhrid 
transition systems we use here are suhtly different. \Ve conjecture that it is 
possihle to transform the signal-transitions of the hyhrid transition system into 
timed transitions, and the action-transitions of the hyhrid transition system 
into action-transitions of a timed transition system, hy ahstracting away from 
all valuations. However, this is left as a suhject for future research. The com
parison with hyhrid automata is merely intended to give an intuition on how 
the existing hyhrid theories fit into our hyhrid process algehraic structure. 

4.2 Other Process Algebras 

\Vith respect to process algehras for hyhrid systems , there are two previous 
works that we must consider. One, hyhrid esp, was already introduced in 1994 
hy .1ifeng [27]. The other, G)-calculus, was very recently introdlH:ed hy Rounds 
and Song in [35]. 

30 



Hybrid CSP has a semantks in whkh el-H:h pn)(:ess represents a set of hybrid 
tnH:es. S11(:h a hybrid tnH:e: then (:onsists of a TIuH:tion of a (:ontinuous dosed 
time domain to valuations: a f1llH:tion of that same domain to sequelH:es (that 
gives the empty sequelH:e ex(:ept for on a finite set of time-points): and a few 
predkates (like termination). A system is then modelled in hybrid CSP: by 
giving a predkate that defines whkh tnH:es are in the system. Comparable to 
the way that HyPA has atomk pn)(:esses and operators: hybrid CSP has atomk 
predkates: and predkate operators. Apmt from the fad that a tnH:e semantks 
does not resped brHlH:hing properties of a system: hybrid CSP also has the 
drawba(:k that in parallel (:(nnp()siti()ll the (:()lltin11()1IS variables ()f the (:(nnp()sed 
systems are assumed to be disjoint: and that assignments (:an only be made to 
programming variables: and not to (:ontinuous variables. \Ve susped: however: 
that these problems (:an be solved by defining new predkate operators: and that 
the author of [27] did not see the need for them at the time. Interestingly: there 
me operators defined in [27] whose f1llH:tion is not easily translated into HyPA. 
The main reason for this: is that do(:ks need to be modelled explidtly in HyPA: 
while they me often a f1llH:tional pmt of the operators of hybrid CSP. Again: 
we (:onjedure: that HyPA (:an be extended with operators that mimk those of 
hybrid CSP: should the need arise. 

The q')-(:akulus has a semantks based on timed transition systems: and given 
this: has a very interesting way of dealing with parallelism. As we already men
tioned in the introd11(:tion: q')-(:akulus regmds (:ontinuous behaviour to be a 
property of the environment: rather than a property of the q')-(:akulus program. 
Exe(:ution starts with I-ill empty environment HlHl: while running the program: 
differential eq1Iati()lls (()r rather their ved()r-field eq1livalents) and invariants: 
me added and repll-H:ed: by (interleavingly) exe(:uting so-(:alled environmental 
I-H:tions. The upshot of this: is that it is not ne(:essary to require that paral
lel programs have distind (:ontinuous variables: but still: the semantks of the 
parallel (:omposition of q')-(:akulus does not (:oindde with our intuition that (:on
tinuous behaviour should simply satisfy both pn)(:esses. Fllrthermore: be(:ause 
a vedor-field is used as a representation of differential equations in the environ
ment: q')-(:akulus (:an only handle differential equations with unique solutions 
(hen(:e: not for example the equation :r = 3:rt). Also: the notion of equiv
alelH:e that arises fnnn 1lsing bisim1Ilati()ll in (:(nnbinati()ll with envin)llmental 
I-H:tions: makes that only syntl-H:tkally equal differential equations are adually 
(:onsidered equal. This is a drawbl-H:k that might be solved by some kind of ab
stnH:tion: but it still has I-ill artifidal feel to it. Comparing q')-(:akulus to HyPA: 
we may (:ondude that: due to (amongst others) the environmental I-H:tion ap
prOl-H:h: not all HyPA pn)(:esses (:an be translated into q')-(:akulus. Conversely: 
the fad that the environmental I-H:tions of q')-(:akulus have a maximal progress 
semantks: q')-(:akulus programs (:I-illnot be translated into HyPA. This: however: 
(:an be solved by extending HyPA with I-ill urgelH:y operator: as was done for 
hybrid y in [12, 36] 

As we mentioned already in the introd11(:tion: HyPA is developed in dose 
(:ooperation with the resean:hers developing hybrid y. Resean:h on the language 
y: as a modelling and simulation language for pn)(:ess (:ontrol: started in 1982 
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[34]' and has since been through many stages of development, including an 
extension with hybrid description constructs. In 2002 [12], a formal operational 
semantics , based on CSP rather than ACP, was defined for the discrete-time part 
of the language, and recently, a formal semantics has been given for the hybrid 
part as well [36]. It is interf'Bting to see that many of the theoretical aspects 
of HyPA (like the use of hybrid transition systems) , have been applied in the 
formal semantics of X, while on the other hand, the future extensions of HyPA 
are very likely to be inspired by the modelling strengths of X, including their 
abstraction operators and possible the maximal progress operator. As research 
progressed, both languages seem to have evolved more and more towards each 
other, and it is not unthinkahle that these paths will ultimately converge. 

Another hybrid process algebra, was published as a technical report only 
one week before this one. In [11] a combination of the process algebra with 
continuous relative timing of [5] and the process algebra with propositional 
signals of [3]' lead to a (only subtly) different algebra, that is also suited for the 
description of hybrid systems. The development of this algebra and of HyPA has 
been largely independent, and it is surprising to see how many similaritif'B exist 
between the two. Nevertheless, due to different starting points and intuitions, 
also some differences can be found. 

The process algebra of [11] was intended to be a conservative extension of 
timed ACP, while HyPA was intended to be an extension of 'normal' ACP. This 
gave rise to the most important difference, in our opinion, between the two 
languages, which is that [11] choice time-determinism (as it was discussed in 
section 2.2), while we chose time-non-determinism (which is more in line with the 
hybrid automaton approach [26]). As a matter of fact, in X, two choice operators 
exists, one for each view on time. Another difference is that [11] intended to give 
an algebraic theory of hybrid automata, which leads to the modelling choice that 
switching between continuous behaviors can only take plf-tce through the use of 
discrete actions, while in HyPA switching can be arbitrary. This is illustrated, 
by the fact that the passing of time during which physical behaviour takes 
plaee, is modelled explieitly in [11], while, for HyPA, time passing is implieit 
when writing down a flow-dause. 

4.3 Control Theory Formalisms 

The formalisms used in control theory to describe hybrid systems can, from a 
HyPA point of view, be classified into two kinds. The first kind, are formalism 
regarding continuous time behaviour, while the second kind , regards time to 
evolve discretely. Roughly speaking, continuous time models can be translated 
into HyPA using flow-clauses, while the discrete models can be translated into 
reinitialization clauses, acting on a "time-step" process. Computational actions 
and sequential compositions of processes, seldomly playa role in control theory. 
IVlode-switching, on the other hand, is a central aspect. In this paragraph, we 
sketch the general translation of several control theory formalisms into HyPA. 
\Ve do not intend to be complete, but rather want to give a feel for the relation 
between HyPA and control theory. Ftuthermore, one has to keep in mind that 
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control theory usually reasons ahout trace equivalence of systems , while HyPA 
is primarily concerned with bisimulation. 

\Vith respect to the continuous time models , we conjecture that most of them 
can be translated into either one singe flow-clause C or, in more complicated 
cases, into one single recursive term of the form: 

CT" (co G) ... (l) en) ~ CT. 

where Co ... Cn, denote clauses representing the different continuous modes a 
system can be in. If (and only if) a system can be modelled using only three 
continuous variables, namely the state variahle :r E ,the output variable 
y E ]Rtn and the input variahle u E ]Rn, and using only clauses of the form 

I., 
l' 

.( = ii,e + B,u + 1, 1 
Y =., C1 :r +,D1u + gl J 
(:c. u) E H, 

with A;,B;,C; and D; matrices of appropriate dimensions, and H; a convex 
polyhedron (Le. constructed from a finite set of inequalities), for every 'I , then 
we say that CT is a continuous time piecewise affine system [18]. If (and only 
if) a system can be modelled as one single continuous flow-clause, using the 
variahles v. '10 E ]Rs in addition to :r,y and u, and if this flow clause is of the 
form 

[ 

;( = ii:c + B,u + Bzw 1 
Y = C:c + D,u + D·,w c = "r" .. ~ 

- "v = E1:r + Ezu + E3'W + (;4 

0<;v..Lw2:0 

then we say that the system is a continuous time linear complementarity sys
tem [40]. Here, ii, B" Bz, C, D" Dz, E" Ez and Ez are matriees of appropriate 
dimensions, (;4 is a constant vector and 0 ::; v .1 '10 2: 0 denotes that the vectors 
v and w are orthogonal (i.e. 0 <; v, 0 <; wand vTw = 0). 

A class of continuous control systems that does not fit directly into HyPA, 
is deseribed by Filippov in [20]. The way in whieh he defines the solutions 
of differential inclusions, by using integration rather than derivation, is not 
captured by the notion of solution of a flow-clause in HyPA. Some differential 
inclusions do have solutions in Filippov's formalism, while they do not in HyPA. 
Filippov developed these kind of solutions, because the control community was 
struggling with a problem ealled "sliding modes" [41]. A partieular example of 
this problem, is illustrated by the observation that in piece-wise affine systems, 
the system CT might get into deadlock on the borders of the polyhedra H;, if 
the derivatives on both sides of the border "point" towards it. This deadlock is 
unintended, because the physical intuition of control scientists is usually that a 
system will start evolving along this border, rather than deadlocking. Filippov's 
method makes sure that these evolutions are included in the solutions of the 
differential inclusion describing the system. In HyPA, sliding modes will have 
to be modelled explicitly, by adding a separate clause C S , for every polyhedron 
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border where this phenomenon occurs. \Ve expect, that Filippov's notion of 
solution can be adopted in the HyPA semantics, but do not know what the 
formal consequences would be precisely. This might be a subject of future 
research. 

Discrete time models can be translated into the following HyPA term: 

DT" (do V ... V dn ) » Timestep (,) DT, 

with 

Timestep" [t I t+ = 0] » I {t} U l {:rJ Ij E J} 

Here, the set F = {:rj I j E J} denotes the set of all variables that are used in 
the reinitialization-elauses do ... dn , describing the discontinuous changes over 
time. TimeBtep denotes the progress of time with one sample time Ts > 0, 
during which the variahles :rj are supposed to remain constant. Similar to the 
continuous case, if (and only if) V = {:r, y, u}, and for all reinitializations (with 
i E [0 ... nJ) we find 

:r+ = A,:r- + B,u- + j, 
y+ = Ci:r+ + Dill+ + g; 

dj = :r, y, u y- = Cj:r- + Dju- + g; 
(:r+, u+) E H, 
(:r-, u-) E H, 

with Ai,Bj,Ci and D j matrices of appropriate dimensions, and Hi a convex 
polyhedron, we say that DT is a discrete time piecewise affine system [18]. 
Analogously, if (and only if) a system can be written in the form 

DT= 
:r,y,u 
V.'II) 

:r+ = A:r- + B, u- + Bzw
y+ = C:r+ + D,u+ + Dzw+ 
y- = C:r- + D, u- + Dzw-
v+ = E l :r+ + EZll+ + E3'10+ + (;4 

V- = E1:r- + Ezu- + E3'w- + (;4 

o :S v+ ..L 10+ 2': 0 
o :S v- ..L 10- 2': 0 

» Times tep :,) D T . 

we say that it is a discrete time linear complementarity system [40]. 
A third type of discrete control formalism is discrete time mixed logical dy

namical systems [10]. Similarly to linear complementarity systems, these sys
tems can be described using only one reinitialization-elause. This time, however, 
the clause also reasons abcHlt variables that take value in the domain {O, I}. A 
mixed logical dynamical system may use variables :r E ]Rl, Y E ]Rtn and u E ]Rn, 

and in addition, the variahles z E ]RI' and 'II) E {O, I} s, and can be written in the 

34 



form: 

DT= 
:r,Y,u 
V.'W 

:r+ = A:r- + B,u- + Bzw- + B 3z
y+ = C:r+ + D, u+ + Dzw+ + D3Z+ 
y- = C:r- + D,u- + Dzw- + D3 z
E l :r+ + Ezu+ + E3'w+ + E4Z+ ::; (;5 

El :r- + Ezu- + E 3 '11)- + E4z- ::; (;5 

» Timestep :,) DT . 

In [25]' the relation between the discrete control formalisms described ahove is 
further worked out, and it turns out that most of them are equivalent under 
certain, from a physical point of view very reasonahle, assumptions. 

As we mentioned in the beginning of this paragraphs, HyPA is primarily 
concerned with the notion of bisimulation equivalence. However, suppose we 
would adopt language equivalence, or even some weaker appropriate notion of 
equivalence. This would mean that we probahly loose congruence of parallel 
composition, but it would also mean that we might be ahle to abstract away 
from a lot of computational behaviour and rewrite certain HyPA processes into 
one of the above forms. Since a lot of control theory is developed for those 
forms, this might greatly improve the analysis possibilities of HyPA. 

5 Conclusions and Future Work 

In this report, the syntax, semantics and axiomatization were presented , of a 
hybrid process algebraic theory called HyPA. This theory is aimed at the de
scription and analysis of hybrid systems. HyPA is a conservative extension of 
the process algebra ACP [8], with a constant representing termination, a dis
rupt operator in the style of LOTOS [13]' and dames [41] for the deseription of 
continuous and discontinuous behaviour of model variahles. Using the axiom
atization of HyPA, dosed process terms can be rewritten into basic terms, in 
which all parallel compositic)lls are eliminated. 

HyPA turns out to be different from most existing hybrid formalisms, in 
two major ways. It has a hybrid transition system semantics, for which it is 
not necessary to distinguish between state variahles and external variahles in 
differential equations. This allows for a general definition of parallel composition 
in the style of ACP, that also allows continuous interaction between all model 
variahles. Ftuthermore, discontinuities in the variables of differential equations 
do not need to be explicitly modelled by assignment actions. Alternatively, in 
HyPA it is explicitly written down when a variable is continuous. Apparent 
drawbacks of HyPA are its strong notion of equivalence, and the sometimes 
complex axiomatization. However, we have sketched, how by assuming the 
same properties that are common on hybrid automata (compatibility of parallel 
composed systems, and continuity of all model variables), both the equivalence 
may be weakened, and the axiomatization becomes simpler. Admittedly, HyPA 
is very similar to the languages hybrid X [36] and the hybrid process algebra of 
[11]. The differences are mainly found in the way time-determinism is treated, 
and in the way in which the passing of time is modelled implicitly or explicitly. 
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Future work on HyPA can be divided into five categories, given in arbitrary 
order. 

• The first category, is a formalization of section 4, comparing HyPA to 
other (hybrid) formalisms. Clearly, sinee X and the works of [11] are very 
similar, a formal comparison is inclispensahle. Also, formal comparisons 
with hybrid automata, G)-calculus, and hybrid Petri-nets, are important. 
Translations to and from those formalisms are useful, in order to be ahle to 
use analysis techniques from one, in the other formalism. This , of course, 
is also the case for various control formalisms and techniques. 

• The second category, is the application of HyPA to a number of (larger) 
case studies. Only this will reveil whether the way of modelling we have 
chosen is indeed as convenient as expected, and whether practical theorems 
can be formulated to support the analysis of hybrid systems. 

• The third category encompasses work on showing that the axiomatiza
tion of HyPA, modulo calculation on dauses, is complete (or can be made 
complete) for the notion of bisimulation. Also, extending the result for 
rewriting dosed terms into basic terms, to rewriting of recursive specifi
cations into a linear form, is essential for the analysis of systems. 

• The fourth category of future work, is the extension of the theory with 
ahstraction. Also, extension with system theoretic concepts like, for ex
ample, a metric or topology on the state-space [14], or other notions of 
limit behaviour [461, may then come into play. One of the classical prob
lems in the hybrid systems field, namely the analysis of Zeno-behaviour, 
where infinite sequences of actions converge to a certain point, arises from 
such a metric, and we feel that a truly hybrid semantical model should 
indude it. It is important to note, that without ahstraction, our current 
notion of equivalence is strong enough to capture Zeno-behaviour, simply 
because process terms need to be equivalent for all valuations of variahles, 
including Zeno-points. After ahstraction of certain variahles , however , 
Zeno-behaviour of those variahles cannot be distinguished anymore, and 
therefore a new notion of equivalence might be need.ed. Other types of ah
straction, like ahstraction from actions [8, 21], would also greatly improve 
the analytic powers of HyPA. Also for those, new notions of bisimulation, 
known in classical process algebra for example, branching bisimulation, or 
observational equivalence, are needed. 

• The fifth category, is tool support. Calculations on a simple example such 
as the stef)m-boiler, quickly become very cumbersome and tedious. This is 
a serious problem when applying the theory to any system of interf'Bting 
size. Using the result that processes can be rewritten into basic terms 
using a strongly terminating rewriting system, makes that developing a 
very basic tool for partially automating these calculations should not be 
diffielllt. 
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A Soundness 

In this appendix, we prove soundness of derivation rules 9 and 10, and of all the 
axioms of HyPA. All proofs will be of the following form: (1) Every proof will 
have one subsection dedicated to it. (2) Every subsection starts out by giving a 
relation that is obviously a witness of the axiom or derivation rule under study. 
(3) The remainder of that section is devoted to proving that the given relation is 
a bisimlliation relation, by verifying the truth of the fonr eases in the definition 
of bisimlliation for every related pair. 

A.1 Derivation Rule 9 

Under the assumption that for all II and a we find that (v, a) 1= c' implies 
(v, a) 1= c and the assumption that for all v, v' and a we find that (v, v') 1= d 
and (v', a) 1= c implies (v', a) 1= c', we study the smallest relation R <:; P x P 
sneh that: 

d» cRd» c' c> c /\ cRc' ~ c /\ :eR:e. 

as a witness candidate for derivation rule 9. 
For :rR:r the proof is trivial. For d » eRd » c' [> c, it is easy to see 

that none of the related terms can terminate, hence we only need to check the 
following cases: 

1. (d» c, v) ..'., (p, v"), for whieh we need the hypothoBis 

(a) 3". (v, v') 1= d and (c, v') ..'., (p, v"), for whieh we need the hypoth
esis 

i. 3",t P = c /\ I = a /\ dom(a) = [0 ... t]/\ (v', a) 1= c /\ v" = art). 
Now, using the assumptions stated in the beginning of this sec

tion, we eondude that (v', a) 1= c', henee (d » c' c> c, v) ..'., 
(e' .. e, II") with p = eRe' .. e. 

2. (d» c' c> c, v) ..'., (p, v"), for whieh we need the hypothesis 

(a) 3". (v, v') 1= d and (c' 
hypothesis 

I c> c, v') -) (p, v"), for whieh we need the 

i. 3,. p = r ~ c /\ (c',v') ..'., (r,v"), for whieh we need the 
hypothesis 

A. 3",t r = c' /\ I = a /\ dom(a) = [0 ... t] /\ (v', a) 1= 
c' /\ art) = v". 
IT sing the assumptions stated in the beginning of this section 

I 
we eondude (v', a) 1= c and henee (d » c, v) -) (c, v") 
with eRe' .. e=p. 

For eRe' .. e, the proof is similar to that in derivation rule 10. Note, that 
this proof relies on the assumption that for all II and a such that (II, a) 1= e' we 
find also (v, a) 1= c. 
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A.2 Derivation Rule 10 

Under the assumption that (v, a) 1= c if and only if (v, a) 1= c' or (v, a) 1= c", 
we study the smallest relation R r;; p x P sneh that: 

cR(c' CD c") [> c ;\ eRe' .. c ;\ eRe" .. c;\ :rR:r. 

as a witness candidate for derivation rule 10. 
For :rR:r the proof is trivial. For cR(c' CD efr

) [> c, and the other eases, it 
is easy to see that none of the related terms can terminate, hence we only need 
to cheek the following eases: 

1. (c, v) -'-+ (p, v'), from whieh we direetly eondude (c' ~ c, v) -'-+ (p, v') 

and (c" ~ c, v) -'-+ (p, v') with p R p, and furthermore need the hypoth
esis 

(a) 3",t I = a 1\ dom(a) = [0 ... t] 1\ P = c 1\ v' = art) 1\ a 1= c, for 
which we need one of the hypotheses 

Lal=c' 

For whieh we eondude (c', v) -'-+ (c', v') and henee ((c 'D c') c> 

c,v) -'-+ (c' ~ c,v'), with pRe' ~ c. 

ii. a 1= c" 
\Vhieh is similar to the previolls ease. 

2. ((c' 'D c") c> c, v) -'-+ (p, v') , for whieh we need the hypothesis 

(a) 3,. p = r ~ c 1\ (c':D c",v) -'-+ (r,v') , for whieh we need one of 
the hypotheses 

i. (c', v) -'-+ (r, v') , for whieh we need the hypothesis 

A. 3",t I = a 1\ dom(a) = [0 ... t ] 1\ r = c' 1\ a 1= c' 

From whieh we eondude that a 1= c henee (c, v) -'-+ (c, v') 
with eR c' .. c. 

ii. (c", II) it (r, II'), which is similar to the previolls ease. 

3. (c' ~ c, v) -'-+ (p, v'), for whieh we need one of the hypotheses 

(a) 3,. p = r ~ c 1\ (c', v) -'-+ (r, v'), for whieh we need the hypothesis 

i. r = c', from which we concludep = c' .. c hence eRp. 

(b) (c,v) -'-+ (p,v'), for whieh we eondudepRp. 

4. (c" .. C, II) it (p, II! ) , which is similar to the previolls ease. 
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A.3 The axiom: [fllise 1 ~ 6 

\Ve study the smallest relation R ~ P x P sneh that: 

[false] R,). 

Clearly, sim,e for no pair (v, a) E Val x ~ we find (v, a) 1= [false], neither 
[false] nor l5 terminate, or perform any transition. Hence, R is a bisimlliation 
relation. 

A.4 The axiom: [fllise 1 » 1: ~ 6 

We stndy the smallest relation R <;; P x P sneh that for all :c E P: 

[false] »:cR,). 

Clearly, sinee for no pair (v, v') E Val x Val we find (v, v') 1= [false], 
neither [false] :r » nor l5 terminate, or perform any transition. Hence, R is a 
bisimlliation relation. 

A.5 The axiom: d» df » 1: ~ (d ~ df
) » 1: 

We stndy the smallest relation R <;; P x P sneh that for all :c E P: 

d» d'»:cR (d - d')>>:c 1\ :cR:c. 

Fnr :cR:c the proof is trivial. Fnr d» d' » :cR (d - d') » :c , we find the 
following eases: 

1. (d» d' » :c, v),(, for whieh we need the hypothesis 

(a) 3". (v, v') 1= d 1\ (d'»:c, v') ,(, for whieh we need the hypothesis 

i. 3" .. (v',v") 1= d' 1\ (:c,v"),( 
From whieh we eondnde (v, v") 1= d - d' and ((d - d') » 
:c,v),(. 

2. ((d - d') » :c, v),(, for whieh we need the hypothesis 

(a) 3" .. (v, v") 1= d - d' 1\ (:c, v"),(, for whieh we need the hypothesis 

i. 3". (v, v') 1= d 1\ (v', v") 1= d' 
From whieh we eondnde (d' » :c, v'),( and henee (d » d' » 
:c, v),( 

3. (d» d' » :c, v) -'+ (p, v"'), for whieh we need the hypothesis 

(a) 3". (v,v') 1= d 1\ (d'» :c,v') -'+ (p,v"'), for whieh we need the 
hypothesis 
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i. 3" .. (v',v") 1= d' 1\ (:r,v") -'., (p,v"') 
From whieh we eondude (v, v") 1= d - d', henee ((d - d') » 
:r, v) -'., (p, v"') with p R p 

4. ((d - d') » :r, v) -'., (p, v"'), for whieh we need the hypothesis 

(a) 3"" (v,v") 1= d - d' 1\ (:r,v") -'., (p,v"'), for whieh we need the 
hypothesis 

i. 3", (v, v') 1= d 1\ (v', v") 1= d' 

From which we conclude (d' » :r, II') 4 (p, II"'), and hence 

(d»d'»:r,v) -'., (p,v"'),withpRp 

A.6 The axiom: d» 6 ~ 6 

\Ve study the smallest relation R ~ P x P snch that: 

d»bRb. 

Trivially, both d » l5 and 8 cannot perform any transitions, nor terminate. 
Hence R is a bisimlliation relation. 

A.7 The axiom: [true 1 » 1: ~ 1: 

We study the smallest relation R <;; P x P sueh that for all :r E P: 

[true] »:rR:r 1\ :rR:r. 

For :r R :r, the proof is trivial. For [true] » :r R:r we find the following 
eases. 

1. ([ true] » :r, v) ,(, for whieh we need the hypothesis 

(a) 3", (v, v') 1= [true] 1\ (:r, v'),(, for whieh we need the hypothesis 

i. 3v (v, v) 1= [true] 1\ v = v' 
From which we directly conclude (:r, II) ,/ 

2. (:r,v),( 
And dearly (v, v) 1= [true] henee ( [ true] » :r, v),(. 

3. ([ true] » :r, v) -'., (p, v"), for whieh we need the hypothesis 

(a) 3", (v, v') 1= [true] 1\ (:r, v') -'., (p, v"), for whieh we need the 
hypothesis 
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i. 3v (v, v) 1= [true] 1\ v = v' 

From whieh we eondnde (:c, v) ..'., (p, v") with pRp. 

4. (:c,v) ..'., (p',v") 
For which we may immediately conclude that (v,l/) 1= [true], hence 

( [ true] » :c, v) ..'., (p, v") with pRp. 

A.8 The axiom: Cjmp » C ~ C 

We stndy the smallest relation R <;; P x P sneh that for all :r E P: 

Cjmp» eRe ;\ :rR:r. 

For :r R :r, the proof is trivial, but for the proof of Cjmp » eR c we first need 
the following lemmas on solutions of flow clauses. 

Lemma 1 If (v, a') 1= c and (a'(O), a) 1= c then (v, a) 1= c. 

Proof \Vith induction to the structure of flow-clauses, we find two eases. 

• If (v,a') 1= [F I Pred] and (a'(O), a) 1= [F I Pred] then we find for all 
t E dom(a) that (a(t), o-(t)) 1= Pred and furthermore for all :r E F we find 
v(:r) = a'(O)(:r) = a(O)(:r), henee (v,a) 1= [F I Pred]. 

• If (v, a') 1= cl\c' and (a'(O), a) 1= cl\c' then, (v, a') 1= c and (a'(O), a) 1= c, 
and (v, a') 1= c and (a'(O), a) 1= c. Henee, with indnetion to the strueture 
of c and c', we find (v, a) 1= c and (v, a) 1= c', and finally (v, a) 1= c 1\ c'. 

Lemma 2 If (v, a) 1= c then (a(O), a) 1= c. 

Proof \Vith induction to the structure of flow-clauses, we find two eases. 

• If (v,a) 1= [F I Pred] then we find for all t E dom(a) that (a(t),o-(t)) 1= 
Pred and furthermore , trivially, for all :r E F we find a(O)(:r) = a(O)(:r), 
henee (a(O), a) 1= [F I Pred]. 

• If (v, a) 1= c 1\ c' then (v, a) 1= c and (v, a) 1= c'. Henee, with indnetion 
to the strueture of c and c', we find (a(O), a) 1= c and (a(O), a) 1= c', and 
finally (a(O), a) 1= c 1\ c'. 

Now, we proceed with the proof that R is a bisimlliation relation. Since 
both Cjmp » C and c cannot terminate, we only have the following two eases. 
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1. (Cjmp» C, v) -'+ (p, v"), for whieh we need the hypothesis 

(a) 'lv' (v,v') 1= Cjmp 1\ (c,v') ~ (p,v"), for whieh we need the 
hypothesis 

i. 3",t,"' I = a 1\ dom(a) = [0 ... tJ 1\ P = C 1\ (v', a) 1= C 1\ v" = 
art) 1\ (v, a') 1= C 1\ v' = 17'(0) 
Using the first lemma, we eondude (v, a) 1= C and henee (c, v) -4 
(c,a(t)), i.e. (c,v) -'+ (p,v") withpRp 

2. (c, v) -'+ (p, v') , for whieh we need the hypothesis 

(a) 3",t I = a 1\ dom(a) = [0 ... tJ 1\ (v, a) 1= c 1\ v' = art) 1\ p = c 
Using the seeond lemma, we direetly eondude that (17(0), a) 1= c 

and henee (v,a(O)) 1= Cjmp' Finally, this leads to (Cjmp» c,v) -4 
(c, a(t)), i.e. to (Cjmp » c, v) -'+ (p, v') with pR p. 

A.9 The axiom: (1: Ell y) Ell Z ~ 1: Ell (y Ell z) 

We study the smallest relation R <:; P x P sueh that for all :e, y, z E P: 

(:e G) y) G) zR:e G) (y G) z) 1\ :eR:e. 

Fnr :eR:e, the proof is trivial. Fnr (:e G) y) G) zR:r G) (y'D z) we find the 
following eases. 

1. ((:r :D y) 'D z, v),(, for whieh we need one of the hypotheses 

(a) (:r :D y, v),(, for whieh we need one of the hypotheses 

i. (:r,v),( 
From w hieh we direetly eond ude (:r 'D (y G) z), v) ,( . 

ii. (y,v),( 
From whieh we direetly eondude (y 'D z, v),( and (:r 'D (y 'D 
z),v),( 

(b) (z,v),( 
From whieh we direetly eondude (y G) z, v) ,( and (:r G) (y G) z), v) ,( 

2. (:r G) (y G) z), v),( , similar to the previous ease. 

3. ((:r G) y) G) z, v) -'+ (p, v'), for whieh we need one of the hypotheses 

(a) (:r G) y, v) -'+ (p, v'), for whieh we need one of the hypotheses 

i. (:r, v) -'+ (p, v') 

From whieh we direetly eondude (:r :D (y :D z), v) -'+ (p, v') 
with pRp 

46 



ii. (y,v) -'+ (p,v') 

From whieh we eondude (y G) z, v) -'+ (p, v'), henee (:e (l) (y (l) 

z),v) -'+ (p,v') withpRp 

(b) (z,v) -'+ (p,v') 

From whieh we eondude (y 'D z, v) -'+ (p, v'), henee (:e 'D (Y'D 

z),v) -'+ (p,v') withpRp 

4. (:e 'D (y :D z), v) -'+ (p, v'), similar to the previous ease. 

A.10 The axiom: 1: Ell y ~ y Ell 1: 

We study the smallest relation R <;; P x P sueh that for all :e, yEP: 

:r CD yRy CD :r ;\ :rR:r. 

For :r R :r, the proof is trivial. For:r CD y R Y G) :r we find the following eases. 

1. (:e :D y, v) ,(, for whieh we need one of the hypotheses 

(a) (:e,v),( 
From which we directly conclude (y (1) :r, II) ,/ 

(b) (y,v),( 
From which we directly conclude (y ::9 :r, II) ,/ 

2. (y (1) :r, II) ,/ , symmetrical to the previolls ease. 

3. (:e :D y, v) -'+ (p, v'), for whieh we need one of the hypotheses 

(a) (:e,v) -'+ (p,v') 

From whieh wedireetly eondude (y 'D :e,v) -'+ (p,v') withpRp. 

(b) (y,v) -'+ (p,v') From whieh we direetly eondude (y:D :e,v) -'+ 
(p, v') with pR p. 

4. (y 'D :e, v) -'+ (p, v'), symmetrieal to the previous ease. 

A.ll The axiom: d» 1: Ell df » 1: ~ (d V df
) » 1: 

We study the smallest relation R <;; P x P sueh that for all :e E P: 

d»:e:D d'» :eR(dVd')>>:e 1\ :rR:r. 

Fnr :eR:e, the proof is trivial. Fnr d» :r :D d'» :eR (d V d') » :r, we find 
the following eases. 
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1. (d»:c (l) d' » :c, v) ,(, for whieh we need one of the hypotheses 

(a) (d»:c, v) ,(, for whieh we need the hypothesis 

i. 3", (v, v') 1= d 1\ (:c, v') ,( 
From whieh we eondude (v, v') 1= (d V d'), henee ((d V d') » 
:c,v'),(. 

(b) (d'»:c, v ) ,(, similar to the previous ease. 

2. ((d V d') » :c, v),(, for whieh we need the hypothesis 

(a) 3", (v, v') 1= (d V d') 1\ (:c, v') ,(, for whieh we need one of the 
hypotheses 

i. (v, v') 1= d 
From whieh we direetly eondude (d » :c, v) ,( and henee (d » 
:c (£) d'» :c,v),(. 

ii. (v, II') 1= d', similar to the previolls ease. 

3. (d»:c (l) d' » :c, v) -'-t (p, v"), for whieh we need one of the hypotheses 

(a) (d»:c, v) -'-t (p, v"), for whieh we need the hypothesis 

i. 3", (v, v') 1= d 1\ (:c, v') -'-t (p, v") 
From whieh we eondude (v, v') 1= (d V d') henee ((d V d') » 
:c,v') -'-t (p,v") withpRp. 

(b) (d'»:c, v) -'-t (p, v" ), similar to the previous ease. 

4. ((d V d') » :c, v) -'-t (p, v"), for whieh we need the hypothesis. 

(a) 3", (v, v') 1= (d V d') 1\ (:c, v') -'-t (p, v"), for whieh we need one of 
the hypotheses 

i. (v, v') 1= d 

From whieh we direetly eondude (d » :c, v) -'-t (p, v") and 

henee (d » :c (£) d' » :c, v) -'-t (p, v") with pR p. 

ii. (v, II') 1= d', similar to the previolls ease. 

A.12 The axiom: d» (1: Ell y) ~ d» 1: Ell d» y 

We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

d» (:c (l) y)Rd»:c (l) d» y 1\ :cR:c. 

Fnr :cR:c, the proof is trivial. Fnr d» (:c (l) y)Rd»:c 'D d» y, we find 
the following eases. 

1. (d» (:c (£) y), v),(, for whieh we need the hypothesis 
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(a) 3", (v, v') 1= d 1\ (:C:1) y, v') ,(, for whieh we need one of the 
hypotheses 

L (:c,v'),( 
From w hieh we eond nde (d » :r, v ),( henee (d » :r :1) d » 
y,v),(, 

iL (y, v'),( 
\Vhieh is similar to the previolls ease. 

2, (d»:r :1) d» y, v) ,(, for whieh we need one of the hypotheses 

(a) (d» :r, v) ,(, for whieh we need the hypothesis 

L 3", (v, v') 1= d 1\ (:r, v') ,( 
From whieh we eondnde (:c :1) y, v'),(, and henee (d » (:r :1) 
y),v),(, 

(b) (d»y,v),( 
\Vhieh is similar to the previolls ease. 

3, (d» (:r :D y), v) -'+ (p, v"), for whieh we need the hypothesis 

(a) 3", (v, v') 1= d 1\ (:r:1) y,v') -'+ (p,v"), for whieh we need one of 
the hypotheses 

L (:r,v') -'+ (p,v") 

From whieh we eondnde (d » :r, v) -'+ (p, v") henee (d » 
:r:1) d» y,v) -'+ (p,v"), 

iL (y,v') -'+ (p,v") 
\Vhieh is similar to the previolls ease. 

4, (d»:r:1) d» y, v) -'+ (p, v"), for whieh we need one of the hypotheses 

(a) (d» :r, v) -'+ (p, v"), for whieh we need the hypothesis 

L 3", (v, v') 1= d 1\ (:r, v') -'+ (p, v") 

From which we conclude (:r (1) y, II') it (p, II"), and hence 

(d» (:r (1) y), v) -'+ (p, v"), 

(b) (d» y,v) -'+ (p,v") 
\Vhieh is similar to the previolls ease. 

A.13 The axiom: (1: Ell y) G Z ~ 1: G z Ell y G z 

We stndy the smallest relation R <;; P x P sneh that for all :r, y, z E P: 

(:r CD y) (9 zR:r (9 z CD Y (9 z ;\ :rR:r. 

For :rR:r, the proof is trivial. For (:r CD y) (:J zR:r (0 z (1) Y (:J z, we find 
the following eases. 
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1. ((:c :D y) (,) z , v),(, for whieh we need the hypothesis 

(a) (:c (D y,v),( 1\ (z,v),(, for whieh we need one of the hypotheses 

i. (:c,v),( 
From which we conclude (:r (0 z, II) ,/ and hence (:r (9 z CD Y (9 
z) ,(. 

ii. (y, II ) ,/ , which is similar to the previolls ease. 

2. (:r:9 z (1) y (0 z, II) '/, which follows the reverse reasoning of the previolls 
ease. 

3. ((:c :D y) (,) z, v) ..'., (p, v'), for whieh we need one of the hypotheses 

(a) (:c G) y,v),( 1\ (z,v) ..'., (p,v') , for whieh we need one of the 
hypotheses 

i. (:c,v),( 

From whieh we eondude (:c (,) z, v) ..'., (p, v') and henee (:c (,) 

z (D Y (,) z, v) ..'., (p, v' ), with p R. p. 
ii. (y,v),( 

\Vhieh is similar to the previolls ease. 

(b) 3,.p=r (,) z 1\ (:c G) y,v) ..'., (r,v'), for whieh we need one of the 
following hypotheses 

i. (:c,v) ..'., (r,v') 

From whieh we eondude (:c (,) z, v) ..'., (p, v') and henee (:c (,) 
",. ".) t, ( ') 'tl R. z ,j) Y ;~ Z, II -, p, II , WI, 1 P ~ p. 

ii. (y, v) ..'., (r, v' ) 
\Vhieh is similar to the previolls ease. 

4. (:c (,) z (D Y (,) z, v) ..'., (p, v') , whieh follows the reverse reasoning of the 
previolls ease. 

A.14 The axiom: (1: G y) G Z ~ 1: G (y G Z) 

We study the smallest relation R. <;; p x P sueh that for all :c, y, z E P: 

(:c (,) y) (,) zR.:c (,) (y (,) z) 1\ :cR.:c. 

Fnr :r R.:c, the proof is trivial. For (:r (,) y) (,) z R.:r (,) (y (,) z), we find the 
following eases. 

1. ((:c (,) y) (,) z , v),(, for whieh we need the hypothesis 

(a) (:c (,) y,v),( 1\ (z,v),(, for whieh we need the hypothesis 
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i. (:r,v),( 1\ (y,v),( 
From whieh we readily eondude (y (,) z, v),( and (:r (,) (y (,) 
z),v),(. 

2. (:r (,) (y (,) z), v),(, similar to the previous ease. 

3. ((:r (,) y) (,) z, v) ..'., (p, v'), for whieh we need one of the hypotheses 

(a) (:r (,) y, v),( 1\ (z, v) ..'., (p, v'), for whieh we need the hypothesis 

i. (:r,v),( 1\ (y,v),( 

Fromwhieh wereadilyeondude (y ,,) z,v) ..'., (p,v') and (:r(') 

(y (,) z),v) ..'., (p,v') withpRp. 

(b) 3,. p = r (,) z 1\ (:r (,) y, v) ..'., (r, v'), for whieh we need one of the 
hypotheses 

i. (:r,v),( 1\ (y,v)..'., (r,v') 

From whieh we readily eondude that (y ,,) z,v) ..'., (p,v'), and 

henee (:r (,) (y (,) z), v) ..'., (p, v'), with pR p. 

ii. 3, r = s (,) Y 1\ (:r,v) ..'., (8,V') 
From which we readily conclude that p = (8 (9 y) :~ z and 

(:r (,) (y (,) z), v) ..'., (s (,) (y (,) z), v') with pR 8 ,,) (y (,) z). 

4. (:r (,) (y ,,) z), v) ..'., (p, v'), similar to the previous ease. 

A.15 The axiom: 1: G f ~ 1: 

We study the smallest relation R <;; P x P sueh that for all :r E P: 

:rC0€R:r. 

\Ve only need to verify the following eases. 

1. (:r (,) <, v) ,(, for whieh we need the hypothesis 

(a) (:r,v),( 

2. (:r,v),( 
Using the rule for «, v) ,(, we immediately eondude (:r ,,) <, v) ,(. 

3. (:r (,) <,v) ..'., (p,v'), for whieh we need the hypothesis 

(a) 3p' p=p' (,) < 1\ (:r,v) ..'., (p',v') 
And by construction p' R p. 

4. (:r,v) ..'., (p,v') 

From whieh we eondude (:r ,,) <,v) ..'., (p ,,) <,v') 
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A.16 The axiom: (d» a) G 1: "" d» a G 1: 

We study the smallest relation R <;; P x P sueh that for all :e E P: 

(d» a) (,) :e " d» a (,) :e 1\ :eR:e . 

Fnr :e R :e, the proof is trivial. Fnr (d » a) (,) :e R d » a (,) :e, we find there 
is no termination, since actions do not terminate immediately. This leaves us 
with the following eases. 

1. (( d » a) (,) :e, v) -'+ (p, v" ), for w hieh we need one of the hypotheses 

(a) (d»a,v),( 
\Vhieh cannot occur, since there is no termination rule for a. 

(b) 3,. p = r (,) :e 1\ (d» a,v) -'+ (r,v") , for whieh we need the 
hypothesis 

I 
i. 3", (v, v') 1= d 1\ (a, v') -) (r, v") 

From whieh we eondude (a (,) :e, v') -'+ (p, v") henee (d » 
a (,) :e, v) -'+ (p, v") with pR p. 

(d " ') I (' ") 1 1 2. ' » a ;~ :r, II -t p, II ,wit 1 reverse reasoning to t le previolls ease. 

A.17 The axiom: (d» r) G 1: "" ,t» 1: 

We study the smallest relation R <;; P x P sueh that for all :e E P: 

(d» E) (,) :e R d? »:e 1\ :eR:e . 

Fnr :eR:e, the proof is trivial. Fnr (d» E) (,) :r R d? » :r, we find the 
following eases. 

1. (( d » E) (,) :r, v ) ,(, for w hieh we need the hypothesis 

(a) (d» E, v),( 1\ (:r, v) ,(, for whieh we need the hypothesis 

i. 3,. (v, v) 1= d 
From whieh we eondude that (v, v) 1= d? and henee (d? » 
:r, v),( 

2. (d? » :r, v) ,(, for whieh we need the hypothesis 

(a) 3", (v, v') 1= d? 1\ (:r, v') ,(, for whieh we need the hypothesis 

i. 3,. (v, v) 1= d 1\ v = v' 
Henee, using (E, v),( we may derive (d » E, v),( and finally, 
using v = v', we find ((d» E) (,) :r, v),(. 

3. ((d» E) (,) :r, v) -'+ (p, v"), for whieh we need one of the hypotheses 
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(a) (d» <,v)'( 1\ (:r,v) -'-t (p,v"), forwhieh we need the hypothesis 

i. 3v (v, v) 1= d 

From whieh we eondude (v, v) 1= d? and henee (d? » :r, v) -'-t 
(p, v") with pR p. 

(b) 3,. (d » <, v) -'-t (f, v") 
\Vhieh cannot be fulfilled since € does not generate any transitions. 

4. (d? » :r, v) -'-t (p, v"), for whieh we need the hypothesis 

(a) 3", (v,v') I=d? 1\ (:r,v') -'-t (p,v"),forwhiehweneedthehypoth
esis 

i. 3v (v, v) 1= d 1\ v = v' 
Henee, using «, v ),( we may derive (d » <, v) ,(, and finally, 

using v =v', we find ((d» <) C,) :r,v) -'-t (p,v") withpRp. 

A.18 The axiom: 1( ~ Y ~ 1( I> Y Ell y 

We study the smallest relation R <;; P x P sueh that for all :r, yEP: 

:r ~ yR:r c> y CD Y 1\ :rR:r . 

For :r R :r, the proof is trivial. For:r .. y R:r [> y CD y, we find the following 
eases. 

1. (:r ~ y, v) ,(, for whieh we need one of the hypotheses 

(a) (:r,v),( 
From whieh we eondude (:r c> y, v),( henee (:r C> y CD y, v),(. 

(b) (y,v),( 
From whieh we direetly eondude (:r C> y CD y, v),(. 

2. (:r C> y CD y, v) ,(, for whieh we need one of the hypotheses 

(a) (:r C> y, v),(, for whieh we need the hypothesis 

i. (:r,v),( 
From whieh we direetly eondude (:r ~ y, v) ,(. 

(b) (y,v),( 
From which we directly conclude (:r .. y, II) ,/. 

I 
3. (:r ~ y, v) -) (p, v'), for whieh we need one of the hypotheses 

(a) (y,v) -'-t (p,v') 

From whieh we direetly eondude (:r C> y CD y, v) -'-t (p, v') , with 
pRp. 
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(b) 3" p = r ~ y 1\ (:r, v) -'-t (r, v') 

From whieh we eondude (:r c> y, v) -'-t (r ~ y, v') and henee 

(:r C> y (l) y,v) -'-t (p,v'), withpRp, 

4. (:r [> y CD y, II) it (p, II' ), with reverse reasoning from the previolls ease. 

A.19 The axiom: (1: Ell y) I> Z ~ 1: I> z Ell y I> z 

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P: 

(:r fD y) C> zR:r C> z'D Y C> z 1\ :rR:r ' 

Fnr :r R :r, the proof is triviaL Fnr (:r :D y) C> z R:r C> z 'D Y C> z, we find 
the following eases. 

L ((:r :D y) C> z, v),( , for whieh we need the hypothesis 

(a) (:r :D y, v),(, for whieh we need one of the hypotheses 

i. (:r,v),( 
From which we directly conclude (:r [> z, II) ,/ hence (:r [> 

z:D y C> z,v),(, 

ii. (y,v),( 
Similar to the previolls ease. 

2. (:r [> z ::9 y [> z, 11),( , with reverse reasoning from the previolls ease. 

3, ((:r fD y) C> z, v) -'-t (p, v'), for whieh we need the hypotheses 

(a) 3" p = r ~ z 1\ (:r:D y, v) -'-t (r, v'), for whieh we need one of the 
hypotheses 

i. (:r,v) -'-t (r,v') 

From whieh we eondude (:r C> z, v) -'-t (r ~ z, v') henee 

(:r C> z :D y C> z, v) -'-t (p, v'), with pRp, 

ii. (y, v) -'-t (r, v' ) 
Similar to the previolls ease. 

4. (:r [> z::9 y [> z, II) 4 (p, II'), with reverse reasoning from the previolls 
ease. 

A.20 The axiom: (1: I> y) I> Z ~ 1: I> (y ~ z) 

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P: 

(:r C> y) C> zR:r C> (y ~ z) 1\ (:r ~ y) ~ zR:r ~ (y ~ z) 1\ :rR:r, 

Fnr :rR:r, the proof is triviaL Fnr (:r C> y) C> zR:r C> (y ~ z), we find 
the following eases. 
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1. ((:r c> y) C> Z, 11),(, for whieh we need the hypotheBis 

(a) (:r C> y, 11),(, for whieh we need the hypothesis 

i. (:r,II),( 
From whieh we direetly eondude (:r C> (y ~ z), 11),(. 

2. (:r [> (y .. z)~ 11),(, with reverse reasoning from the previolls ease. 

3. ((:r C> y) C> Z, II) -'., (p, II'), for whieh we need the hypothesis 

(a) 3,. p = r ~ z 1\ (:r C> y, II) -'., (r, II'), for whieh we need the 
hypothesis 

i. 3, r = s ~ Y 1\ (:r , II) -'., (s, II' ) 

From whieh we eondude (:r C> (y ~ z), II) -'., (s ~ (y ~ 
Z),II') and (s ~ y) ~ zRs ~ (y ~ z). 

4. (:r C> (y ~ z), II) -'., (p', II'), similar to the previous ease. 

Fnr (:r ~ y) ~ zR:r ~ (y ~ z), we find the following eases. 

1. ((:r ~ y) ~ Z, 11),(, for whieh we need one of the hypotheses 

(a) (:r ~ y, 11),(, for whieh we need one of the hypotheses 

i. (:r,II),( 
From whieh we eondude direetly (:r ~ (y ~ z), 11),(. 

ii. (y, II) ,( From whieh we eondude (y ~ Z, 11),( and henee (:r ~ 
(y ~ Z),II),(. 

(b) (Z,II),( 
From whieh we eondude (y ~ Z, 11),( and henee (:r ~ (y ~ 
Z),II),(. 

2. (:r ~ (y ~ z), 11),(, similar to the previous ease. 

3. ((:r ~ y) ~ Z, II) -'., (p, II'), for whieh we need one of the hypotheses 

(a) (Z , II) -'., (p,II') 

From whieh we eondude (y ~ Z,II) -'., (p,II') and henee (:r ~ 
(y ~ Z),II) -'., (p,II')withpRp. 

(b) 3,. p = r ~ z 1\ (:r ~ y,lI) -'., (r,II'), for whieh we need one of 
the hypothesf'B 

i. (y, II) -'., (r, II' ) 

From w hieh we eond ude (y ~ Z, II) -'., (p, II') and henee (:r ~ 
(y ~ Z),II) -'., (p,II') withpRp. 
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ii. 3, r = s ~ Y 1\ (:r, II) -'+ (s, II' ) 
From whieh we eondude p = (s ~ y) ~ z and (:r ~ (y ~ 

Z),II) -'+ (s ~ (y ~ Z),II') with (s ~ y) ~ zRs ~ (y ~ z). 

4. (:r ~ (y ~ z), II) -'+ (p, II'), similar to the previous ease. 

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P: 

Fnr :rR:r, the proof is trivial. Fnr (:r~y)~zR:r~(Yl l z), we find the fol
lowing eases. 

1. ((:r ~ y) ~ Z, 11),(, whieh eannot be derived. 

2. (:r ~ (y II z), II) ,(, whieh eannot be derived. 

3. ((:r ~ y) ~ Z, II) -'+ (p, II') , for whieh we need the hypothesis that I E A 
and furthermore 

(a) 3,. p = r II z 1\ (:r ~ y, II) -'+ (r, II'), for whieh we need the hypothesis 

i. 3,r=slly 1\ (:r, II) -'+ (S,II') 

From whieh we eondude (:r ~ (y II z), II) -'+ (s II (y II z), II'), with 
p = (s II y) II z R s II (y II z). 

4. (:r ~ (y II z), II) -'+ (p', II') , similar to the previous ease. 

Fnr (:r II y) II zR:r II (y II z), we find the following eases. 

1. ((:r II y) II z, 11),(, for whieh we need the hypothesis. 

(a) (:rlly,II),( 1\ (Z,II),( , for whieh we need the hypothesis 

i. (:r,II),( 1\ (y,II),( 
From whieh we eondude direetly (:r II (y II z), 11),(. 

2. (:r II (y II z), 11),(, similar to the previous ease. 

3. ((:r II y) II z, II) -'+ (p, II'), for whieh we need one of the hypotheBes 

(a) 3,. p = (:r II y) II r 1\ I E A 1\ (z, II) J., (r, II') 

From whieh we eondude (:rll (yllz),II) -'+ (:rll (yllr),II') with 
(r II y) II rRr II (y II r). 

(b) 3,. p = rllz 1\ I E A 1\ ((:rlly),II) J., (r,II'), for whieh we find 
one of the hypotheses 
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i. 3, r = s II y 1\ (:c, v) c'., (s, v') From whieh we eondllde 

(r II (y II z), v) c'., (s II (y II z), v') with (s II y) II zR s II (y II z). 

ii. 3, r = :rll s 1\ (y,v) c'., (s,v') From whieh we eondllde 

( :r II (y II z), v) c'., (:r II (s II z), v') with (:r II s) II z R :r II (s II z). 

iii. 3"",0,0' ,,, r = sl l s' 1\ 1= (wya',v') 1\ (:r,v) ~. (s,v') 1\ 

(y,v) o~. (s',v'). From whieh we eondllde (:rl l (yl l z),v) -'+ 
( s II (s' II z), v') with (s II s') II z R s II (s' II z). 

(e) 3","',0,0' ,,, p = rl l r' 1\ 1= (ara',v) 1\ ((:rl l y),v) o,-'?' (r,v') 1\ 

(z ~ II) a~) (r', II') , for which we find one of the hypotheses 

i. 3, r = s II y 1\ (:r, v) ~. (s, v') From whieh we eondllde 

(r II (y II z), v) -'+ (s II (y II r'), v') with (s II y) II r' R s II (y II r'). 

ii. 3, r = :cll s 1\ (y,v) ~. (s,v') From whieh we eondllde 

(:r II (y II z) , v) -'+ (:c II (s II r') , v') with (:c II s) II r' R:r II (s II r'). 

iii. 38 ,8',00",00'" r=s ll s';\ a=a"ra"';\ (:r,v) a~v (s,I/');\ 

(y,lI) (8',V). Using associativity of r, we conclude that 
(a"ra"')ra' = a"r(afffra'), from which we conclude in turn that 

(:r II (y II z), v) -'+ (s II (s' II r'), v') with (s II s') II r' R s II (s' II r'). 

(d) (:rlly,v)v'" 1\ I E I: 1\ (z,v) ~ (p,v'), for whieh we need the 
hypothesis 

• (:c,v) v'" 1\ (y,v)v'" 
From whieh we direetly eondllde (:r II (y II z), v) -'+ (p, v') with 
pRp. 

(e) (z, v) v'" 1\ I E I: 1\ (:r II y, v) ~ (p, v'), for whieh we need one of 
the hypothesf'B 

• (:r,v) v'" 1\ (y,v) ~ (p,v') 

From whieh we immediately eondllde (:c II (y II z), v) -'+ (p, v') 
with pRp. 

• (y,v)v'" 1\ (:r,v) ~ (p,v') 
I 

From whieh we immediately eondllde (:c II (y II z), v) -) (p, v') 
with pRp . 

• 3,."., p=rllr' 1\ (:r,v) ~ (r,v') 1\ (y,v) ~ (r',v') 

From whieh we immediately eondllde (:c II (y II z), v) -'+ (p, v') 
with pRp. 

(f) 3,."p=rlls 1\ I E I: 1\ ((:rl l y),v) ~ (r,v') 1\ (z,v) ~ (s,v') , 
for which we need one of the hypotheses 
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• (:r,v),( 1\ (y,v) ~ (r,v') 

From whieh we immediately eondude (:r II (y II z), v) .!., (p, v') 
with pRp . 

• (y,v),( 1\ (:r,v) ~ (r,v') 
I 

From whieh we immediately eondude (:r II (y II z), v) -) (p, v') 
with pRp . 

• 3,.",." r=r'llr" 1\ (:r,v) ~ (r',v') 1\ (y,v) ~ (r",v') 

From whieh we immediately eondude (:r II (y II z), v) .!., (r' II (r" II 8), v') 
with p = (r' II r") II 8Rr' II (r" II 8). 

4. (:r II (y II z), v) .!., (p', v'), similar to the previous ease. 

A.22 The axiom: (1: I y) I z ~ 1: I (y I z) 
We study the smallest relation R <;; P x P sueh that for all :r, y, z E P: 

(:rly)lzR:rI(Ylz) 1\ (:rlly)llzR:rII(Yllz) 1\ :rR:r. 

Fnr :r R:r, the proof is trivial. For (:r I y) I z R :r I (y I z), we find the following 
eases. 

1. ((:r I y) I z, v),(, for whieh we need the hypothesis 

• (:r I y, v),( 1\ (z, v) ,( , for whieh we need the hypothesis 

- (:r,v),( 1\ (y,v),( 
From whieh we immediately eondude (:r I (y I z), v),(. 

2. (:rl (ylz),v),(, similar to the previous ease. 

3. ((:r I y) I z, v) .!., (p, v'), for whieh we need one of the hypotheses 

(a) 3,.",o,o',vp=rI181\1=(ara',v)I\(:rly,v) '14' (r,v')I\(z,v) 0;";' 
(s~ II'), for which we need the hypothesis 

i. 
a" .1' 

r = r' II r" ;\ a = a"ra'" ;\ (:r, II) H (r', II') ;\ 

(y,v) (r",v') 
Using associativity of r we then conclude I = a"r(afffra') and 

henee (:rl (ylz),v) .!., (p,v') withpRp. 

(b) 3,."p=rI18 1\ lEI: 1\ (:rly,v)~ (r,v') 1\ (z,v)~ (8,V'), 
for which we need one of the hypotheses 

i. 3,.",." r=r'llr" 1\ (:r,v) ~ (r',v') 1\ (y,v) ~ (r",v') 

From whieh we immediately eondude (:r I (y I z), v) .!., (r' II (r U II s), v') 
with p = (r' II r") II sRr' II (r" II s). 
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ii. (:r,v) ~ (r,v') 1\ (y,v),( 
I 

From whieh we immediately eondude (:r I (y I z), v) -) (p, v') 
with pRp. 

iii. (y, v) ~ (r, v') 1\ (:r, v ) ,(, similar to the previous ease. 

(e) I E I: 1\ (:rly,v) ~ (p,v') 1\ (z,v),(, for whieh we need one of 
the hypotheses 

i. 3,."., p=rllr' 1\ (:r,v) ~ (r,v') 1\ (y,v) ~ (r',v') 

From whieh we immediately eondude (:r I (y I z), v) ..'., (p, v') 
with pRp. 

ii. (:r,v) ~ (p,v') 1\ (y,v),( 
I 

From whieh we immediately eondude (:r I (y I z), v) -) (p, v') 
with pRp. 

iii. (y, v) ~ (r, v') 1\ (:r, v ) ,(, similar to the previous ease. 

I 
(d) I E I: 1\ (z,v) ~ (p,v') 1\ (:rly,v),( , for whieh we need the 

hypothesis 

i. (:r,v),( 1\ (y,v),( 

From whieh we immediately eondude (:r I (y I z), v) ..'., (p, v') 
with pRp. 

4. (:r I (y I z), v) ..'., (p', v'), similar to the previous ease. 

Fnr (:r II y) II z R:r II (y II z), the proof is similar to that ofthe axiom (:r ~ y) ~ z "" 
:r~(Yl l z). 

A.23 The axiom: (1: I y) ~ z ~ 1: I (y ~ z) 

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P: 

(:rly)~zR:rI(Y~z) 1\ (:rl ly)l l zR:rII(yl l z) 1\ :rR:r. 

For :r R :r, the proof is trivial. 
Fnr (:r I y) ~ z R:r I (y ~ z), we find the following eases. 

1. ((:r I y) ~ z, v),(, whieh eannot be satisfied. 

2. (:r I (y ~ z), v),(, for whieh we need the hypothesis 

• (y ~ z, v) ,(, whieh eannot be satisfied. 

3. ((:r I y) ~ z, v) ..'., (p, v') , for whieh we need the hypothesis that I E A 
and furthermore 

(a) 3,. p = r II z 1\ (:r I y, v) ..'., (r, v'), for whieh we need the hypothesis 
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i. 3",. ,0,0'," r = s II s' 1\ I = (ara'. v) 1\ (:r. v) \'4' (s.v') 1\ 

( ) o· ," (' ') Y,1I H S ,II 

From whieh weeondude (:rl (y~z).v) ..'., (sll (s'llz).v') with 
p = (s II s') II zRs II (s' II z). 

4. (:r I (y ~ z).v) ..'., (P.v'). for whieh we need one of the hypotheses 

(a) 3,.",0,0',,, P = r II s 1\ I = (ara'. v) 1\ (:r.v) o~. (r.v') 1\ 

( Y ~ z. v) \'4' (s. v' ), for w hieh we need the hypothesis 

i. 3,. s = s' II z 1\ (y,v) \'4' (r',v'). From whieh we eondude 

((:r I y)~z,v) ..'., ((r II s') II z,v') with (r II s') II zRr II (s' II z) = 
p. 

(b) 3, I E I: 1\ (y~z,v) ~ (s,v'), whieh eannot be satisfied. 

(e) I E I: 1\ (y~z,v),(, whieh eannot be satisfied. 

Fnr (:r II y) II z R:r II (y II z) , the proof is similar to that ofthe axiom (:r ~ y) ~ z " 
:r~(Yllz). 

A.24 The axiom: (a G 1:) I> y ~ a G (1: ~ y) 

We study the smallest relation R <;; P x P sueh that for all :r, yEP: 

(a (') :r) c> yRa (') (:r ~ y) 1\ (E (') :r) ~ yRE (') (:r ~ y) 1\ :rR:r. 

The proof for :r R :r, is trivial. Fl1rthermore, since actions cannot terminate, 
we find the following eases for (a .') :r) c> yR a (') (:r ~ y). 

1. ((a (') :r) c> y,v) ..'., (p,v'), for whieh we need the hypothesis 

(a) 3,. p = r ~ y 1\ (a (') :r,v) ..'., (r,v'), for whieh we need the 
hypothesis 

i. 3, r = s .') :r 1\ (a, v) ..'., (s, v'), for whieh we need the hy
pothesis 

A. s = E 

From whieh we eondude p = (E .') :r) ~ y and (a .') (:r ~ 

y),v) ..'., (E (') (:r ~ y),v') with (E ('):r) ~ yRE .') (:r ~ 
y). 

2. (a (') (:r ~ y),v) ..'., (p,v'), similar to the previous ease. 

Fnr (E (') :r) ~ yRE (') (ee ~ y), the proof is similar to that of the axiom 
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A.25 The axiom: (d» c I> 1:) G y::::; d» c I> 1: G y 

We study the smallest relation R <;; P x P sueh that for all :e, yEP: 

(d» c c> :e) (,) yRd» c C> :e :,) y 1\ (c ~ :e) (,) yRc ~ :e (,) y 1\ :eR:e. 

The proof for :eR:e, is trivial. We find the following eases for (d » c C> 
:e) ,,) yRd» c C>:e (,) y. 

1. (( d » (c C> :e)) ,,) y, v ) ,( , for w hieh we need the hypothesis 

(a) (d» (c C> :e),v),( 1\ (y,v),(, for whieh we need the hypothesis 

i. 3", (v, v') 1= d 1\ (c C> :e, v') ,(, for whieh w need the hypothesis 

A. (c, v' ) ,( 
\Vhieh cannot be derived llsing the semantical rules of HyPA. 

2. d » c [> (:r (9 y) turns out not to terminate, similarly to the previolls 
ease. 

3. ((d» c C> :e) (,) y, v) ..'., (p, v"), for whieh we need the hypothesis 

(a) 3,. p = r (,) y 1\ (d» c C> 
I :e, v) -) (r, v"), for whieh we need the 

hypothesis 

i. 3", (v, v') 1= d 1\ (c C> :e, v') ..'., (r, v"), for whieh we need the 
hypothesis 

A. 3, r = 8 ~ :e 1\ (c,v') ..'., (8,V"), for whieh we need the 
hypothesis 

• S = c: 
From whieh we eondude p = (c ~ :e) (,) y and (c ~ :c (,) 

y, v') ..'., (c ~ :r:') y, v") with (c ~ :c) (,) yR c ~ :r:') y. 

(b) (d» c C> :c),( 1\ (y,v) ..'., (p,v") , whieh eannot oeem sinee 
d » c [> :r does not terminate. 

4. (d» c ~ :c (,) y, v) ..'., (p', v" ), similar to the previous ease. 

We find the following eases for (c ~ :c) (,) yRc ~ :c (,) y. 

1. ((c ~ :c) (,) y, v),(, for whieh we need the hypothesis 

(a) (c ~ :c, v),( 1\ (y, v) ,(, for whieh we need one of the hypotheses 

i. (c, v ) ,( 
\Vhieh cannot be derived. 

ii. (:c,v),( 
From whieh we eondude (:c :,) y, v),( and henee (c ~ :c ,,) 
y,v),(. 
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2. (c .. :r (0 y, II) ,/ , similar to the previous case. 

3. ((c ~ :r) (,) y, v) ..'., (p, v) , for whieh we need one of the hypotheses 

(a) (c ~ :r, v),( 1\ (y, v) ..'., (p, v), for whieh we need one of the 
hypotheses 

i. (c, v ) ,( 
\Vhieh cannot be derived. 

ii. (:r,v),( 

From whieh weeondude (:r (,) y,v) ..'., (p,v) henee (c ~ :r:,) 

y,v) ..'., (p,v) withpRp. 

(b) 3,. p = r (,) y 1\ (c ~ :r,v) ..'., (r,v'), for whieh we one of the 
hypotheses 

i. (:r,v) ..'., (r,v') 

From whieh we eondude (:r (,) y, v) ..'., (p, v') henee (c ~ 
:r (,) y,v) ..'., (p,v) withpRp. 

I 
ii. 3, r = s ~ :r 1\ (c, v) -) (8, v' ) 

From whieh we eondude p = (8 ~ :r) (,) y and (c ~ :r (,) y, v) ..'., 
(8 ~ :r (,) y,v') with (s ~ :r):,) yR8 ~ :r (,) y. 

4. (c ~ :r :,) y, v) ..'., (p', v') , similar to the previous ease. 

A.26 The axiom: 1( I> is ~ 1( 

We study the smallest relation R <;; P x P sueh that for all :r E P: 

:r c> <5R:r 1\ :r ~ <5R:r . 

There are only two non- trivial cases: 
I 

1. (:r c> <5, v) -) (p, v'), for whieh we need the hypothesis 

(a) 
I 

3p' p=p' ~ <5 1\ (:r,v) -) (p',v') 
For w hieh we conclude p' .. l5 R p' . 

I 
2. (:r ~ <5, v) -) (p, v'), for whieh we need the hypothesis 

(a) I 
3p' p=p' ~ <5 1\ (:r,v) -) (p',v') 
For w hieh we conclude p' .. l5 R p' . 

A.27 The axiom: f I> 1( ~ f 

We study the smallest relation R <;; P x P sueh that for all :r E P: 

€C>:rR€. 

It is trivial to see that « c> :r,v)'( "*'" «,v),(, and that both terms do 
not generate any transitions. Hence R is a bisimulation relation. 
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A.28 The axiom: (d» 1:) I> y "" d» 1: I> y 

We study the smallest relation R <;; P x P sueh that for all :c E P: 

(d»:c) C> yRd»:c C> y 1\ :cR:c . 

Fnr :cR:c, the proof is trivial. Fnr (d» :c) C> yRd»:c C> y, we find the 
following eases. 

1. ((d»:c) C> y, v),(, for whieh we need the hypothesis 

(a) (d»:c, v) ,(, for whieh we need the hypothesis 

i. 3". (v, v') 1= d 1\ (:c, v') ,( 
From whieh we eondude (:c C> y, v'),( henee (d » :c C> 
y,v),(. 

2. (d»:c C> y, v) ,(, similar to the previous ease. 

3. ((d»:c) C> y, v) -'+ (p, v"), for whieh we need the hypothesis 

(a) 3,. p = r ~ y 1\ (d»:c, v) -'+ (r, v"), for whieh we need the 
hypothesis 

i. 3". (v, v') 1= d 1\ (:c, v') -'+ (r, v") 

From which we conclude (:r [> y, II') 4 (r .. y, II") and hence 

(d» :c C> y, v) -'+ (p, v") with pR p. 

I 
4. (d»:c C> y, v) -) (p, v"), similar to the previous ease. 

A.29 The axiom: 1: II y "" 1: ~ y Ell y ~ 1: Ell 1: I y 

We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

Fnr :c R:c, the proof is trivial. For :c II y R:c ~ y G) Y ~:c G) :c I y, we find the 
following eases. 

1. (:c II y, v),( whieh leads to: 

(a) (:c,v),( 1\ (y,v),( 
From this we find (:r I y, v),( and henee (:r ~y 'D y~:r 'D :r I y, v),(. 

2. (:r ~ y :D y ~:r :D :c I y, v),( whieh leads to the eases: 

(a) (:ch,v),( 
For which there is no deduction rule. 

(b) (y~:r,v),( 

For which there is no dedlH:tion rule. 
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(e) (:r I y, v) ,( whieh leads to: 

i. (:r,v),( 1\ (y,v),( 
From this we find, direetly, (:r II y, v),(. 

3. (:r II y, v) ..'., (p, v') whieh leads to the eases: 

(a) I = (a, v) 1\ (:r II y, v) \'4' (p, v') whieh leads to the eases: 

i. 3p' (:r,v) \'4' (p',v') 1\ p=p'lly 
From whieh we eondnde that (:r ~ y, v) \'4' (p, v'), and henee 

(:r~y,v) ..'., (p,v') and (:r~y G) y~:r 'D :rly,v) ..'., (p,v') 
with pRp. 

ii. 3p' (y,v) \'4' (p',v') 1\ p=:rllp' 
Similar to the previolls ease. 

iii. ::Ip' ,p" ,a' ,a" P = p' II p" ;\ a = arra" ;\ ( ) 
0' ,v ( , ') :r, II H P , II ;\ 

a" .1.> 
(y,v) H (p",v') 

From whieh we eondnde that (:r I y, v) ,v (p' II p", v'), and 

henee (:rly,v) ..'., (p,v') and (:r~y 'D y~:r :D :rly,v) ..'., 
(p,v') withpRp. 

(b) l=a 1\ (:rlly,v) ~ (p,v') whiehleads to the eases: 

i. (:r,v),( 1\ (y,v) ~ (p,v') 
From whieh we eondnde that (:r I y, v) ~ (p, v') and henee 

I I 
(:rly,v) -) (p,v') and (:r~y 'D y~:r G) :rly,v) -) (p,v') 
with pRp. 

ii. (y,v),( 1\ (:r,v) ~ (p,v') 
Similar to the previolls ease. 

iii. 3p',p" p=p',p"ll 1\ (:r,v) ~ (p',v') 1\ (y,v) ~ (p",v') 
From whieh we eondnde that (:r I y, v) ~ (p' II p", v') and 

I I 
henee (:rly,v) -) (p,v') and (:r~y :D y~:r :D :rly,v) -) 
(p, v') with pRp. 

I 
4. (:r ~ y 'D Y ~:r :D :r I y, v) -) (p, v) whieh leads to the eases: 

I 
(a) (:rh,v) -) (p,v) 

Trivial, since every deduction rule for ~ is also a rule for II. 
I (b) (y~:r,v) -) (p,v) 

Trivial, since every deduction rule for ~ is also a rule for II. 
I (e) (:rly,v) -) (p,v) 

Trivial, since every deduction rule for I is also a rule for II. 
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A.3D The axiom: (1: Ell y) ~ z ~ 1: ~ z Ell y ~ z 

We study the smallest relation R <;; P x P sueh that for all :c, y, z E P: 

Fnr :c R:c, the proof is trivial. Fnr (:c (l) y) ~ z R:c ~ z (l) y ~ z, we find the 
following eases. 

1. ((:c fD y) ~ z, v) ,(, whieh eannot oeem. 

2. (:c ~ z fD Y ~ z, v),(, for whieh we need one of the hypotheses: 

(a) (:c ~ z, v),(, whieh eannot oeem. 

(b) (y ~ z, v) ,( , whieh eannot oeem. 

3. ((:c fD y) ~ z, v) -'.; (p, v'), for whieh we need the hypothesis: 

(a) 3,.p=rllz 1\ (:cfDy,v) -'.; (r,v'),forwhiehweneedthehypoth
esis: 

i. (:c,v) -'.; (r,v') 

From whieh we may eondude (:c ~ z, v) -'.; (:c II z, v'), henee 
I 

(:c~z (l) y~z,v) -) (p,v') withpRp. 

ii. (y, v) -'.; (r, v' ) 
\Vhieh is similar to the previolls ease. 

4. (:c ~ z ' J) Y ~ z, v) -'.; (p, v'), for whieh we need one of the hypotheses: 

(a) (:c ~ z, v) -'.; (p, v'), for whieh we need the hypothesis: 

i. 3,. p = r II z (:c, v) -'.; (r, v') 

From which we readily conclude (:r CD y, II) it (r, II') and hence 

((:c (!) y) ~ z, v) -'.; (p, v') with pR p. 

(b) (y~z,v) -'.; (p,v') 
\Vhieh is similar to the previolls ease. 

A.31 The axiom: d» 1: ~ y ~ d» (1: ~ y) 

We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

Fnr :c R :c, the proof is trivial. Fnr d » :c ~ y R d » (:c ~ y), we find the 
following eases. 

1. (d»:c ~ y, v),(, whieh eannot oeem. 
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2. (d» (:c ~ y), v),(, for whieh we need the hypothesis: 

(a) 3", (v, v') 1= d 1\ (:c ~ y, v'),(, whieh eannot oeeUf. 

3. (d» :c~y,v) -'+ (p,v"), for whieh we need the hypothesis: 

I 
(a) 3,. p = r II y 1\ (d» :c, v) -+ (r, v"), for whieh we need the 

hypothesis: 

i. 3", (v, v') 1= d 1\ (:c, v') -'+ (r, v") 

From whieh we may eondude (:c ~ y, v') -'+ (p, v") and finally 

(d» (:c h), v) -'+ (p, v") with pR p. 

4. (d» (:c ~ y), v) -'+ (p, v"), for whieh we need the hypothesis: 

(a) 3", (v,v') 1= d 1\ (:e~y,v') -'+ (p,v"), for whieh we need the 
hypothesis: 

i. 3,. p = r II y 1\ (:e, v') -'+ (r, v") 

From which we may conclude (d » :r, II) 4 (r, II") and hence 

(d»:eh,v) -'+ (p,v")withpRp. 

A.32 The axiom: (a G 1:) ~ y ~ a G (1: II y) 

We study the smallest relation R <;; P x P sueh that for all :e, yEP: 

Fnr :eR:e, the proof is trivial. Fnr (a (,) :e) ~yRa (,) (:e II y), we find the 
following eases. 

1. Termination does not occur. 

2. ((a (,) :e) ~ y, v) -'+ (p, v'), for whieh we need the hypothesis: 

(a) 3,. p = rl l y 1\ (a (,) :e , v) -'+ (r,v'), and sinee aetions do not 
terminate, we need the hypothesis: 

i. 3, r = s (,) :e 1\ (a, v) -'+ (s, v' ). 

Clearly, s = E, henee p = (E (,) :e) II y and (a (,) (:e II y), v) -'+ 
(E (,) (:e II y), v') with E (,) (:e II y) R (E (,) :e) II y. 

3. (a (,) (:el l y),v) -'+ (p,v'), whieh is similar to the previous ease. 

Fnr (E (,) :e) II yRE (,) :el l y, we find the following eases. 

1. (( E (,) :e) II y, v ) ,(, for w hieh we need the hypothesis: 

(a) (E (,) :e,v),( 1\ (y,v),(,forwhiehweneedthehypothesis: 
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:r. 

i. (:c,v),( 
From whieh we readily eondude (:c II y, v),(, henee (E (,) (:c II y), v),(. 

2. (E (,) (:c II y), v) ,(, whieh is similar to the previous ease. 

3. ((E (,) :c) II y, v) -'-+ (p, v') , for whieh we need one of the hypotheses: 

(a) 3",p',p" l=a 1\ p=p'llp" 1\ (E (,) :c,v) ~ (p',v') I\(y,v) ~ 
(p", II'), for which we need the hypothesis: 

i. (:c,v) ~ (p',v') 
From whieh we readily eondude (:c II y, v) ~ (p' II pH, v') and 

henee (E (,) (:clly),v) -4 (p,v') withpRp. 

(b) 3" I = a 1\ (E (,) :C, v) ~ (p, v) 1\ (y, v),(, whieh is similar to the 
first ease. 

(e) 3" I = a 1\ (E (,) :c,v)'( 1\ (y,v) ~ (p,v), whieh is similar to 
the first ease. 

(d) 30 ,0' ,p' ,p" I = ara' 1\ p = p' II P" 1\ (E (,) :C, v) ,"; (p', v) 1\ ( y, v) ~ 
(p", II'), which is similar to the first ease. 

(e) 30 ,p' I =a 1\ p=p'lly 1\ (E (,) :c,v),"; (p',v),whiehissimilarto 
the first ease. 

(f) 30 ,p' l=a 1\ p=:cllp' 1\ (y,v),"; (p',v),whiehissimilartothe 
first ease. 

4. (E (,) (:c II y), v) -'-+ (p, v'), whieh uses the reverse reasoning of the previ-
011S ease. 

In faet, this last ease could also have been concluded from the axiom € (:J :r ~ 

A.33 The axiom: (c I> 1:) ~y ~ 6 

We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

(c C> :c)~yR". 

Clearly, both related processes in (c [> :r) ~ yR{) cannot terminate. Fur

thermore, for ((c C> :c) ~ y, v) -'-+ (p, v') we ultimately need the hypothesis 
that 30 ,,' I = a 1\ p = (r ~ :c) II y 1\ (c, v) ,"; (r, v'), whieh dearly eannot 
occur. Hence both processes do not perform any transitions. 

A.34 The axiom: 1: 1 y ~ y 11: 
We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

:clyRyl:c 1\ :cllyRyll:c 1\ :cR:c. 

Fnr :c R:c, the proof is trivial. Fnr:c I y R y l:c and :c II y R y 11:c the proofs 
are straightforward by symmetry of the rules for I and II. 
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A.35 The axiom: (1: Ell y) 1 z ~ 1: 1 z Ell y 1 z 

We study the smallest relation R <;; P x P sueh that for all :r, yEP: 

(:r G) y) I zR:r I z G) Y I z 1\ :rR:r. 

Fnr :rR:r, the proof is trivial. For (:r G) y)lzR:rlz 'D ylz, we find the 
following eases. 

1. ((:r 'D y) I z, v) ,(, whieh needs the hypothesis: 

(a) (:r:D y,v),( 1\ (z,v),(, whieh needs one of the hypotheses: 

i. (:r,v),( 
From whieh we readily eondude (:r I z, v),(, and henee (:r I z 'D 
ylz,v)'(. 

ii. (y, II ) ,/ , which is similar to the previolls ease. 

2. (:r I z (1) Y I z, II) ,(, which follows the reverse reasoning from the previolls 
ease. 

3. ((:r 'D y) I z, v) ..'., (p, v'), whieh needs one of the hypotheses: 

(a) '3",P',P" l=a 1\ p=p'llp" 1\ (:r:D y,v) ~ (p',v') 1\ (z,v) ~ 
(p", II'), which needs one of the hypotheses: 

i. (:r,v) ~ (p',v'), 
From whieh we may eondude that (:r I z, v) ~ (p' II p", v') and 

henee (:rlz:D ylz,v)..'., (p,v') withpRp. 

ii. (y,v) ~ (p',v'), 
similar to the previolls ease. 

(b) '3o,o',P',P"," I = (ara', v) 1\ p=p'llp" 1\ (:r'D y,v) ~. (p',v') 1\ 

( ) 0'." ( " ') Z, II ~ p, II , 

which is similar to the previolls ease. 

4. (:r I z :D Y I z, v) ..'., (p, v'), whieh follows the reverse reasoning of the 
previolls ease. 

A.36 The axiom: 611: ~ 6 
We study the smallest relation R <;; P x P sueh that for all :r E P: 

bl:rRb. 

It is straightforward to verify that both terms 81 :r and l5 do not terminate, 
nor can perform any transitions. 
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A.37 The axiom: f Ill: ~ 1: 

We study the smallest relation R <;; P x P sueh that for all :c E P: 

For :rR:r, the proof is trivial. For € II :rR:r, termination is trivial. Further
more, we have the following eases. 

1. ( II :c , v) -'-t (p, v), whieh needs one of the hypotheses: 

(a) 3" 1=17 1\ (:c,v) ~ (p,v') 

From whieh we easily eondude (:c, v) -'-t (p, v') and pR p. 

(b) 30 ,p' p= <liP' 1\ (:c,v) 8 (p',v') 

From whieh we eondude (:c, v) -'-t (p', v') and ( II p' R p'. 

2. (:r, II) 4 (p, II), which follows the reverse reasoning of the previolls ease. 

A.38 The axiom: f ~ 1: ~ 6 

We study the smallest relation R <;; P x P sueh that for all :c E P: 

Clearly, ~ has no rules for termination, and since € cannot perform any 
transitions, € ~:r cannot either. This covers the eases of € ~ :rRt>. 

A.39 The axiom: d» f I df » f ~ (,t II df
") » f 

\Ve study the smallest relation R ~ P x P snch that: 

d» (Id'» (R(d? I\d'?)>> E. 

Clearly, we only need to verify the eases of d » ( I d' » (R (d? 1\ d'?) » ( 
for termination. 

1. (d» ( I d' » (, v) ,( , for whieh we need the hypothesis 

(a) 3v ' (v, v') 1= d 1\ 3 v " (v, v") 1= d' 
From whieh we eondude that (v, v) 1= d? and (v, v) 1= d'?, henee 
((d? I\d'?)>>(,v)'(. 

2. ((d? I\d'?)>> (,v),( , for whieh we need the hypothesis 

(a) 3v ' (v, v') 1= (d? 1\ d'?), whieh eomes down to the hypothesis 

i. v = v' 1\ 3v (v, v) 1= d 1\ 3v ' (v, v') 1= d' 
From whieh we easily eondude (d » (, v),( and (d' » (, v) ,( , 
henee (d » ( I d' » (, v) ,(. 
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A.40 The axiom: d» f I d' » a G 1: ~ 6 

We stndy the smallest relation R <;; P x P sneh that for all :c E P: 

d» E I d'» a (,) :cR,). 

Clearly, d' » a (~ :r does not terminate directly, hence d » € I d' » a (9 :r, 
does not. Also d » € does not execute any transitions, and d' » a (0 :r does 
not execute any signal transitions, hence d » € I d' » a (~ :r does not execute 
any transitions. 

A.41 The axiom: d» a G 1: I d' » a' G y ~ (d II d') » 
(a~ia') G (1: II y) if (Wia') defined 

For a given a and a' sneh that arar is defined, we study the smallest relation 
R <;; P x P sneh that for all :c, yEP: 

d»a(,):cld'»a'(,) yR(dl\d')>> (ara') ,,) (:cl l y) 1\ E('):cIIE(')yRE(') (:cl l y) 1\ :eR:e. 

Fnr :eR:e, the proof is trivial. Fnr d » a (,) :e I d' » a' (,) yR (d 1\ d') » 
(ara') (,) (:e II y) , there is dearly no termination. Henee we find only the following 
eases. 

1. (d» a (,) :e I d' » a' (,) y, v) ..'., (p, v"'), for whieh we need one of the 
hypotheses: 

(a) 3",p' ,p" I = a 1\ (d» a (,) :e, v) ~ (p', v"') 1\ (d' » a' ,,) y, v) ~ 
(p", v f

"), 

for which the hypotheses can dearly not be fulfilled. 

=> I (" "') (d . ) a" .v (b) "'a" ,a''' ,p',p''"" = a ra ,v 1\ .» a (v :e,v H (p',v"') 1\ 

(d' » a' (,) y, v) (pH, v"'), for whieh we need the hypothesis: 

a" .1.> 

i. 3", (v, v') 1= d 1\ (a (,) :e, v') H (p', v"') 1\ 3" .. (v, v") 1= d' 1\ 

(a' (,) :e,v') (p", II"'), for which we need the hypothesis: 
a" .1' 

A. 3/' p' = r :9 :r ;\ (a, II') H ( r, II"') ;\ 31" p" = r' :~ :r ;\ 

(a', v f
) a~v (r', II"') , which can only be concluded if: 

• a = a", a' = ar
", v = v f = v" = v f", r = rf = €, 

from which we conclude that I = (afaf , v f") , p = € (~ 

:e II E (,) Y and (v, v"') 1= (d 1\ d'). Finally, we then obtain 

((d 1\ d') » (ara') (,) (:e II y), v) ..'., (E (,) (:e II y), v"') and 
E (,) :el I E (,) yRE (,) (:el l y)· 

2. ((d 1\ d') » (ara') (,) (:e II y), v) ..'., (p, v"), for whieh we need the hy
pothesis 

(a) 3", (v, v') 1= (d 1\ d') 1\ ((ara') ,,) (:e II y), v') ..'., (p, v"), for whieh 
we need. the hypothesis: 
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i. 3,. p = f (,) (:r II y) 1\ ((wya'), v') -'., (f, v"), whieh ean only be 
concluded if: 
A. I = (ara', v) 1\ v = v' = v" 1\ f = (, henee (v, v") 1= d 

and (v, v") 1= d', thus (d » a (,) :r I d' » a' (,) y, v) -'., 
( (,) :r II ( (,) y, v") and ( (,) :r II ( (,) yR ( (,) (:r II y). 

Fnr ( (,) :r II ( (,) yR( :,) (:r II y) , the eases are similar to the eases of ( :,) 
:r II yR ( :,) (:r II y) in the proof of (a :,) :r) ~ y " a (,) (:r II y). 

A.42 The axiom: d» a G 1: I d' » a' G y ~ 6 if (a~ia') 
undefined 

For a given a and a' sneh that wya' is undefined., we study the smallest relation 
R <;; P x P sueh that for all :r, yEP: 

d» a (,) :r I d'» a' (,) yRb. 

For d » a :~ :r I d' » a' (9 y there is dearly no termination. Furthermore, 
there aTe no signal transitic)lls. Henee the only ease to be studied is: (d» 

a:') :r I d' » a' (,) y, v) :0'; (p, v'), for whieh we ultimately need the hypothesis 
that a" = arar , which is contradictory to the assumption that arar is undefined. 

A.43 The axiom: d» f I d' » c I> 1: ~ (,t ~ d') » c I> 1: 

We study the smallest relation R <;; P x P sueh that for all :r E P: 

d» (I d'» c c> erR (d? - d')>> c c> :r 1\ :rR:r. 

For :rR:r, the proof is trivial. Also, sinee c [> :r cannot terminate, the eases 
for termination are also trivial (both terms cannot). Henee, we only study the 
following eases for d» ( I d' » c C> erR (d? - d') » c C> cr. 

I 
1. (d » (I d' » c C> :r, v) -) (p, v") , for whieh we need one of the 

hypotheses 

(a) 3p' I E A 1\ P = d » ( II p' 1\ (d'» c C> :r, v) -'., (p', v"), whieh 
would need. 

I 
i. 3", (v, v') 1= d 1\ (c ~ :r, v') -) (p, v"), and henee would need 

I A. 3,. p' = f ~ :r 1\ (c, v') -) (f, v"), 
which ean dearly not be satisfied. 

(b) 3" I = a 1\ (d» (,v),( 1\ (d'» c C> :r,v) ~ (p,v"), for whieh 
we need. the hypothesis 

i. 3v (v,v) I=d 1\ 3", (v,v') I=d' 1\ (c C> :r,v') ~ (p,v") , 
but then we may eondude (v, v) 1= d? henee (v, v') 1= d? - d') 
and finally ((d? I\d')>> c C> :r,v) .."; (p,v") withpRp. 
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2. ((d? /\ d') » c C> :c, v) ..'., (p, v"'), for whieh we need the hypothesis 

(a) 3"" (v, v") 1= (d? - d') /\ (c C> :c, v") ..'., (p, v"'), whieh leads to 
the hypothesis 

i. 3", (v, v') 1= d? /\ (v', v") 1= d', for whieh we need 

A. 3v (v, v) 1= d /\ v = v'. 
Finally, we may eondude that (d » E, v),( and (d' » 
c C> :c,v) ..'., (p,v"'), henee (d» E I d'» c c> :c,v) ..'., 
(p, v"') with pRp. 

A.44 The axiom: d» e I> 1: I d' » a G y ~ 6 

We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

d» c C> :c I d'» a (,) y "" b. 

Clearly, c [> :r cannot terminate, nor perform any action transitions, while 
a (9 y cannot terminate and cannot perform any signal transitions. None of the 
hypothesis of the forced-synchronization operator can therefore be fulfilled. 

A.45 The axiom: d» c I> 1: I d' » c' I> Y ~ 
((d ~ ejmp) II (d' ~ ejmp)) » (e II c') I> 
(l:~e' ~ y Ell y~e ~ 1: Ell 1:le' ~ yEll yle ~ 1:) 

In this section, we will use the abbreviations AI 

N = ((d - Cjmp) /\ (d' - cfmp)). 
We study the smallest relation R <;; P x P sueh that for all :c, yEP: 

• d» c C> :cl d'» c' C> yRN» c/\ c' C> lVJ 

• c ~ :c II c' ~ y R C /\ c' ~ lVJ 

• :rR:r 

For :r R :r, the proof is trivial. 
Fnr :c II y R y II :c, the proof follows aeeording to the same lines as in the proof 

of axiom :r I yRy l:c· 
Fnr d » c C> :r I d' » c' C> y R N » c /\ c' C> lVJ, we find the following 

eases. 

1. (d» c C> :r I d' » c' C> y, v) ,(, for whieh we need the hypothesis 
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(a) (d » e c> :c, v),( /\ (d'» e' c> y, v),(, whieh leads to the 
hypothesis 

i. 3", (v, v') 1= d /\ (e c> :c, v') ,(, for whieh we need the hypothesis 

A. (e, v') ,(, whieh eannot be satisfied. 

2. (.N» c;\ c' [> AI, II) ,/, cannot he satisfied for similar reasons as in the 
previolls ease. 

3. (d» e c> :c I d' » e' c> y, v) -'-t (p, v"') , leading to one of the hypothe
ses 

(a) 3p' I E A /\ (d» e c> :c,v) -'-t (p', v"'), whieh ean dearly not be 
satisfied since flow-clauses cannot execute action transitions. 

(b) 3J ,p',p" I = a /\ dom(a) = [O ... t] /\ P = p'llp" /\ (d» e c> 
:c,v) ~ (p',v"') /\ (d'» e' c> y,v) ~ (p",v"'), for whieh we 
need the hypothesis 

i. 3", (v, v') 1= d /\ (e c> :c, v') ~ (p', v"') /\ 3"" (v, v") 1= 
d' (' ") J (" "') I 1'1 1 l' . ;\ c [> y, II "'-+ p, II ,ea{ mg to t le lypot leSIS 

A. 31" p' = r' .. :r ;\ (c, II') ~ (r', II"') ;\ 31''' p" = r" .. 
y ;\ (c, II") ~ (r", II"'), for which we need the hypothesis 

• (v', a) 1= e /\ r' = e /\ (v", a) 1= e' /\ r" = e' /\ v'" = art). 
Using the second lemma on the solutions of clauses, fonnd 
in the proof of axiom ejmp » e '" e, we know that (17(0), a) 1= 
(e/\ e'). Fllrthermore, we may eondllde that (v, 17(0)) 1= N 
and p = e ~ :c II e' ~ y, to finally find (N » e /\ e' c> 

I IvI,v) -) ((e/\e') ~ IvI,v"') andpRe/\e' ~ IvI. 

4. (N)> (e /\ e') c> IvI, v) -'-t (p, v") , leading to the hypothesis 

(a) 3", (v, v') 1= N /\ ((e /\ e') c> IvI, v') -'-t (p, v"), for whieh we need 
the hypothesis 

I 
i. 3,. p = r ~ IvI /\ ((e /\ e'), v') -) (r, v") /\ 3", ,J , (v, v,) 1= 

d /\ (v"a,) I=e /\ 3""J, (V,V2) I=d' /\ (V2, (72) I=e /\ v'= a, (0) = 172(0), and finally we need the hypothesis 

A. I = a /\ r = (e /\ e') /\ (v', a) 1= (e /\ e') /\ v" = art). 
From this we may conclude that p = (c;\ c') .. AI, but 
furthermore we can llse the first lemma on solutions of flow 
clauses, fonnd in the proof of axiom Cjmp » C ;.;,:;-: c, together 
with the faets that (v" a,) 1= e and (v', a) 1= e and v' = 
a, (0) to find (v" a) 1= e and similarly (V2, a) 1= d. This 
leads to the observations that (d » e c> :c) ~ (e ~ 
:c,v") and (d' » e' c> Y) ~ (e' ~ y,v"), and finally 

(d » e C> :c I d' » e' C> y, v) -'-t (e ~ :c II e ~ y, v") and 
e ~ :clle ~ yRp. 
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Fnr e ~ :c II e' ~ yRe/\ c' ~ !VI, we find the following eases. 

1. (e ~ :c II e' ~ y, v) ,(, for whieh we need the hypothesis 

(a) (e ~ :c, v),( /\ (e' ~ y, v),(, for whieh we need the hypothesis 

i. (:c,v),( /\ (y,v),( 
From whieh we may eondude (:c I y, v),( henee (!VI, v),( and 
((e /\ e') ~ !VI, v) ,(. 

2. (e/\ e' ~ !VI, v),(, for whieh we need the hypothesis (!VI, v) ,( and henee 
one of the following hypotheses 

(a) (:c ~ e' ~ y, v) ,(, whieh eannot oeem. 

(b) (y~e ~ :c,v),(, whieh eannot oeem. 

(e) (:c I e' ~ y, v) ,(, for whieh we need the hypotheBis 

i. (:c),( /\ (e' ~ y, v) ,(. From this we may eondude that 
(e ~ :c, v),( and henee (c ~ :c II e' ~ y, v),(. 

(d) (y I e ~ :c, v) ,( , is similar to the previous ease. 

3. (e ~ :c II e' ~ y, v) -'-+ (p, v'), for whieh we need one of the following 
hypotheses: 

(a) 30 ,o',p' ,p" I = ara' p = p' II pH /\ (e ~ :c , v) A (p', v') /\ (e' ~ 

y, v) ~ (pH, v'), whieh leads to the hypothesis 

i. (:c,v) A (p',v'), 

from whieh we eondude (:c I e' ~ y, v) o~ ' (p' II p", v') , and 

henee ((e/\e') ~ !VI,v) -'-+ (p,v') withpRp. 

(b) 30 ,p.l=ap=p'll e' ~ y/\ (c ~ :r) A (p',v'),forwhiehweneed 
the hypothesis 

i. (:r,v) A (p',v') 
from whieh we eondude that (:r ~ e' ~ y, v) A (p' II e' ~ 

I y, v') and henee ((e/\ e') ~ !VI, v) -) (p, v') with pRp. 

(e) 30 ,p' I = a p = e ~ :r II p' /\ (e' ~ y) A (p', v'), whieh is similar 
to the previolls ease. 

(d) 3",p' ,p" I = a /\ dom(a) = [0 ... tJ /\ P = p' II p" /\ (e ~ :r, v) ~ 
(p', v') /\ (e' ~ y, v) ~ (pH, v'), for whieh we need one of the 
following hypotheses: 

i. 31" p' = r' .. :r ;\ (c,v) ~ (r',v') ;\ 31''' p" = r" .. 
y ;\ (c', II) ~ (rff, II') , for which we need the hypothesis 

A. r' = e /\ r" = e' /\ (v, a) 1= e /\ (v, a) 1= e' /\ v' = art) 
From this we eondude that p = c ~ :r II e' ~ y and ((c /\ 

c') ~ !VI,v) -'-+ (e/\e' ~ !VI,v'), with pR(e/\ e') ~ !VI. 
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ii. 3, .• p' = r' ~ :r /\ (e,v) ~ (r'.v') /\ (y.v) ~ (p".v') , for 
which we need the hypothesis 
A. r' = c. 

Now , we eondude that p = e ~ :r II p", and that (y I e ~ 
I I 

:r,v) -) (p"lle ~ :r,v'). Henee ((c/\ c') ~ IvI,v) -) 
(p"lle ~ :r,v') withp"lle ~ :rRp. 

iii. (:r,v) ~ (p',v') /\ 3, ... pH = r" ~ y /\ (e',v) ~ (r",v'), 
for which we need the hypothesis 
A. r" = cr. 

Now, we eondude that p = p' II e' ~ y, and that (:r I e' ~ 

y,v)..'., (p,v'). Henee, ((e/\e') ~ IvI,v)..'., (p,v') with 
pRp. 

iv. (:r,v) ~ (p',v') /\ (y,v) ~ (p",v') 

From whieh it follows direetly that (:r I e' ~ y) ..'., (p,v') 

Henee, ((e/\e') ~ IvI,v) ..'., (p,v') withpRp. 

(e) 3" I = a /\ (e ~ :r,v) ~ (p,v') /\ (e' ~ y,v),(, for whieh we 
need the hypothesis 

i. (y,v),(. 

From this we may eondude (yle ~ :r) ..'., (p,v'). Henee, 

((e/\e') ~ IvI,v) ..'., (p,v') withpRp. 

(f) 3" I = a /\ (e ~ :r,v)'( /\ (e' ~ y,v) ~ (p,v'), for whieh we 
need the hypothesis 

i. (:r,v),(. 

From this we may eondude (:r I e' ~ y) ..'., (p, v'). Henee, 

((c/\e') ~ IvI,v) ..'., (p,v') withpRp. 

4. (e /\ e' ~ IvI,v) ..'., (p,v') , whieh needs one of the following hypotheses: 

(a) 3,. p = r ~ IvI /\ ((e /\ e'),v) ..'., (r, v'), for whieh we need the 
hypothesis 

i. 3" I = a /\ dom(a) = [0 ... t]/\ r = (e/\e') /\ v' = art) /\ (v, a) 1= 
c /\ (v, a) 1= c'. 
From this we may readily conclude that p = (c;\ c') .. AI 
and (e ~ :r,v) ~ (e ~ :r,v'). Consequently, we find (e ~ 

:rIle' ~ y,v)..'., (e ~ :rIle' ~ y,v') withe ~ :rIle' ~ yRp. 

(b) (IvI, v) ..'., (p, v' ), w hieh eomes down to one of the hypotheses: 

i. (:r ~ e' ~ y, v) ..'., (p,v'), for this we need the hypothesis 

A. 3",0 I = a /\ p = r II e' ~ y /\ (:r,v) ,"; (r,v'). 
From whieh we eondude (e ~ :r) ,"; (r, v') and finally 

(e ~ :rIle' ~ y,v)..'., (p,v') withpRp. 
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ii. (y ~ e ~ :c, v) ..'., (p, v' ), for this we need the hypothesis 

A. 3",0 l=a 1\ p=rll e ~:c 1\ (y,v) 8 (r,v'). 
From whieh we eondllde (e ~ y) 8 (r, v') and finally 

(e ~ :cl l e' ~ y,v)..'., (c ~ :cl l r,v') withpRc ~ :cl l r. 

iii. (:c I e' ~ y, v) ..'., (p, v'), for whieh we need one ofthe hypothe
ses 

A. 30 ,o' ,p',p" l=a,a'p=p'l lp" 1\ (:c,v) 8 (p',v') 1\ (e' ~ 

y, v) A (p", v' ), whieh leads to the hypothesis 

• (y,v) A (p",v') 

From whieh we readily eondllde (e ~ :c II e' ~ y, v) ..'., 
(p, v') with p R p. 

B. 3",p',p" I = a p = p'l lp" 1\ (:c,v) ~ (p',v') 1\ (e' ~ 
y, II) ~ (p", II' ), which leads to one of the hypotheses 

• 3/' p" = r .. y ;\ (c' .. y,lI) ~ (r,II'), then we need 
the hypothesis 
- r = c' 

From whieh we eondllde that p = p' II e' ~ y and (c ~ 

:cl l e' ~ y,v)..'., (p,v') withpRp. 

• (y,v) ~ (p",v') 
I 

From whieh we readily eondllde (e ~ :c II c' ~ y, v) -+ 
(p, v') with pRp. 

iv. (yle ~ :c , v)..'., (p,v'),forwhiehweneedoneofthehypothe
ses 

A. 30 ,o' ,p' ,p" 1= a,a' p=p'l lp" 1\ (y,v) 8 (p',v') 1\ (e ~ 

:c, v) A (p", v'), whieh leads to the hypothesis 

• (:c,v) A (p",v') 

From whieh we readily eondllde (e ~ :c II e' ~ y, v) ..'., 
(p" II p', v') with pRp" II p'. 

B. 3",p' ,p" I = a p = p'I IP" 1\ (y,v) ~ (p',v') 1\ (e' ~ 
:r, II) ~ (p", II!), which leads to one of the hypotheses 

• 3/' p" = r .. :r ;\ (c .. :r,v) ~ (r,II'), then we need 
the hypothesis 

-r=c 
From whieh we eondllde that p = p' II e ~ :c and (e ~ 

:cl l e' ~ y,v)..'., (e ~ :cl lp',v') withpRe ~ :cl ip'. 

• (:c,v) ~ (p",v') 
I 

From whieh we readily eondllde (e ~ :c II e' ~ y, v) -+ 
(p" II p', v') with pRp" II p'. 
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We study the smallest relation R <;; P x P sueh that for all :e, yEP: 

au (:e G) y) Rau (:e) G) au (y) 1\ :eR:e. 

Fnr :eR:e, the proof is trivial. Fnr au (:e G) y) Rau (:e) G) au (y), we have 
the following eases. 

1. (au (:e G) y), II) ,(, for whieh we need the hypothesis 

(a) (:e G) y, 11),(, for whieh we need one of the hypotheses 

i. (:e,II),(, 
from whieh we eondude (au (:e) , II ) ,( , henee (au (:e) G) au (y) , II ) ,( . 

ii. (y,II),(, 
similar to the previolls ease. 

2. (au (:e) (1) au (y) ,11),(, 
which is similar to the previolls ease. 

3. (au (:e (1) y), II) -'+ (p, II') , for whieh we need one of the hypotheses 

(a) 3"".1 = a 1\ p = au (r) (:e:1) y,lI) ~ (r,II'), whieh leads to one 
of the hypotheses 

i. (:e,II) ~ (r,II') 
From whieh we eondude (au (:e), II) ~ (p, II') and henee (au (:e) ()) 

au (y),II) -'+ (p,II') withpRp. 

ii. (y,lI) ~ (p,v'), which is similar to the previolls ease. 

(b) 3o,v".I=(a,v) 1\ p=au(r) 1\ arfH 1\ (:e:1)y,lI) c'., (r,II'), 
for which the proof is similar to the previolls ease. 

We study the smallest relation R <;; P x P sueh that for all :e, yEP: 

au (:e :'J y) Rau (:e) :'J au (y) 1\ :eR:e. 

The proof of which follows roughly the Sf-tIne lines as the previolls. 

We study the smallest relation R <;; P x P sueh that for all :e, yEP: 

all (:e c> y) Rau (:e) c> au (y) 1\ :eR:e. 

The proof of which follows roughly the Sf-nne lines as the previolls. 
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We stndy the smallest relation R <;; P x P sneh that for all :e E P: 

ou(d»:e)Rd»ou(:e) 1\ :eR:e. 

The proof of which follows roughly the Sf-une lines as the previolls. 

A.50 The axiom: alI (a) ~ a if a 'I. H 

We stndy the smallest relation R <;; P x P sneh that, if a !f H, then: 

AU (a) Ra 1\ au «) RE. 

The proof that R is a bisimlliation relation goes as follows. 
Clearly, (au «) ) v'" if and only if «) v'" , while both eannot exeente any 

transitions. 
Furthermore, 811 (a) and a both cannot terminate, and if a (j. H they perform 

the transitions (au (a) ,II) 8 (Ou«),II) and (a,lI) 8 «,II), respeetively. 
Clearly AU «) R E. 

A.51 The axiom: alI (a) ~ 6 if a E H 

\Ve study the smallest relation R ~ P x P sneh that, if a E H, then: 

AU (a) R b. 

The proof that R is a bisimlliation relation goes as follows. 
Clearly, both terms cannot terminate, nor can they execute signal transi

tions, and the one of the hypotheses needed for (au (a), II) 8 (p, II') is that 
a (j H, which does not hold by assumption. 

A.52 The axiom: alI (E) ~ E 

\Ve study the smallest relation R ~ P x P snch that: 

It is straightforward to verify that R is a bisimlliation relation. 

A.53 The axiom: alI (e) ~ e 

\Ve study the smallest relation R ~ P x P snch that: 

au (e) R e. 

Clearly, both processes cannot terminate. Fl1rthermore, the observation that 
fiow-elaUSf'B can only execute signal transitions, makes the rest of the proof 
straightforward. 
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B Conservativity of ACP 

B.1 ACP I- p ~ !j implies HyPA I- p ~ !j 

The following paragraphs contain, for each axiom of ACP, a derivation in HyPA. 
Together with the observation that the derivation rules of ACP are contained 
in those of HyPA we find that ACP f- P '" q implies HyPA f- P '" q. Note, that 
in the axioms of ACP, every action a may be replaced by deadlock 8. In HyPA 
this is not the ease. Therefore, we have two versions for some of the axioms on 
communication and encapsulation. 

The axiom: :r CD Y;:;:j Y (1):r Trivial. 

The axiom: (:r (l) y) (l) z '" :r (l) (y (l) z) Trivial. 

The axiom: :r G) :r ~ :r 

:r fD:r '" [true]»:r (l) :r 

'" [true]»:r fD [true] » :r 

'" [true] V [ true] » :r 

'" [true]»:r 
~ :r 

The axiom: (:r G) y) :9 z ~ :r :~ z G) y (9 z Trivial. 

The axiom: (:r :,) y) :,) z'" :r :,) (y C') z) Trivial. 

The axiom: :r ::9 8 ~ :r 

:r fD" '" :r CD [false] » :r 

'" [ true] » :r CD [false] » :r 

'" [ true] V [false] » :r 

'" [ true] » :r 
~ :r 

The axiom: l5 :~ :r ~ 8 

" C,):r '" ([ false] » E) C,) :r 

'" [false]?»:r 

'" [false]»:r 
;:;:j l5 
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The axiom: a I b ;.;,:;-: arb, if arb defined In this proof, we llse the derivation 
of :r CD 8 ;.;,:;-: :r. 

a I b " 
" 
" 
" 
" 
" 
" 
" 
" 

a(')Elb 

a(')Elb(')E 

[ true] » a (,) E I b (,) E 

[ true] » a (,) E I [true] » b (,) E 

([ true]/\ [true]) » (arb) (,) (E II E) 

[true] » (arb) (,) (E II E) 

(arb) (,) (E II E) 

(arb) (,) E 

arb 

The axiom: a I b " '" if arb undefined 

alb" a(')Elb 

;.;,:;-: a(~€lb(~€ 

" [ true] » a (,) E I b (,) E 

" [ true] » a (,) E I [true] » b (,) E 

;.;,:;-: 8 

If we rep!aee a or b by " we trivially find a I " " " I b " ". 

The axiom: :r II y " :r ~ y (D Y ~:r (D :r I y Trivial. 

The axiom: a ~ :r " a (,) :r 

a~:r " (a (,) E)~:r 

" a (,) (<II:r) 

If we rep!aee a by " we trivially find " ~ :r = ". 

The axiom: a (,) :e ~ y " a (,) (:e II y) Trivial. Furthermore, if we rep!aee a by 
8, we easily find the following derivation. 

"(,) :e~y " ,,~y 
;.;,:;-: 8 

" "(,) (:e II y) 
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The axiom: (:r G) y) ~ z " :r ~ z G) y ~ z Trivial. 

The axiom: a (,) :r I b " (a I b) ('):r The proof of this has four eases. If arb 
is defined, we obtain the following proof, in which we llse a I b = arb. 

a('):rlb " a('):rlb(')E 

" [ true] » a (,) :r I b (,) E 

" [ true] » a (,) :r I [true] » b (,) E 

" ([ true]/\ [true]) » (arb) (,) (:r II E) 

" [true]» (arb) (,) (:r II E) 

" (arb)(,) (:rIlE) 

" (arb) (,) (:r~E (D E~:r (D :r~E) 

" (arb) (,) (E ~:r :D :r ~ E :D :r ~ E) 

" (arb) (,) (E ~:r (D :r ~ E (D E ~ :r) 

" (arb):,) (E II :r) 
" (arb) (,) :r 

" (al b) (,) :r 

If arb is undefined, we obtain the following proof, in which we llse a I b = 8. 

a('):rlb" a('):rlb(')E 

" [true]» a (,) :rlb (,) E 

" [true]» a (,) :rl [true]» b (,) E 

~ l5 

" (al b) (,) :r 

If a is replaeed by deadloek, we find 

b('):rlb" bib 

~ l5 

" (b I b) :,) :r 

And similarly if b is replaced by deadlock (using commutativity) .. 
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The axiom: a I b (') :c" (a I b) ('):c The proof of this has four eases. If arb 
is defined, we obtain the following proof, in which we llse a I b = arb. 

alb('):c" a(')<lb('):c 

" a (') < I [true] » b (') :c 

" [ true] » a (') < I [true] » b (') :c 

" ([ true]/\ [true]) » (arb) (') « 11:c) 

" [true]» (arb) (') « 11:c) 

" (arb) (') « 11:c) 

" (arb) (') :c 

" (al b) (') :c 

If arb is undefined, we obtain the following proof, in which we llse a I b = 8. 

alb('):c" a(')<lb('):c 

" a (') < I [true] » b (') :c 

" [true]» a (') <I [true]» b ('):c 

~ l5 

" (al b) (') :c 

If a is replaeed by deadloek we find 

" (al b) (') :c 

And similarly if b is replaced by deadlock (using l5 (0 :r ~ l5 and commutativity). 

The axiom: a (') :c I b (') y " (a I b) (') (:c II y) The proof of this has four eases. 
If arb is defined , we obtain the following proof, in which we llse a I b = arb. 

a (') :c I b (') y " a (') :c I [true] » b (') y 

" [ true] » a (') :c I [true] » b (') y 

" ([true]/\ [true])>> (arb) (') (:clly) 

" [ true] » (arb) (') (:c II y) 

" (arb) (') (:c II y) 

" (alb) (') (:cl ly) 
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If arb is undefined , we obtain the following proof, in which we use a I b = 8. 

a (,) :c I b (,) Y " a (,) :c I [true 1 » b (,) Y 

" [ true 1 » a (,) :c I [true 1 » b (,) Y 

~ 8 
" <5 (,) (:cl l y) 

" (a l b) (,) (:cl l y) 

If a is replaeed by deadloek we find 

<5('):clb(')y" <5lb(')y 

~ 8 

" <5 (,) (:c II y) 

" (<5 I b) (,) (:c II y) 

And similarly if b is replaced by deadlock (using commutativity). 

The axiom: (:c (D y) I z " :c I z (D Y I z Trivial 

The axiom: :c I (y (D z) " :c I y CD :c I z 

:cl(y CD z) " (y (D z)l:e 

" y l :e (D zl:e 

" :eIY (D zl:e 

" :e I Y (D :e l z 

The axiom: all (a) " a, if a rt H Trivial. 

The axiom: all (a) " <5, if a E H Trivial, exeept when a is replaeed by 
deadlock. Then we find the following derivation. 

The axiom: all (:e (1) y) 

The axiom: all (:e (~ y) 

all (<5) " all (fals e » :e) 

" false» all (:e) 

~ 8 

" all (:e) (1) all (y) Trivial. 

" all (:e) (~ all (y) Trivial. 
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B.2 HyPA I- p ~ !j implies ACP I- p ~ !j 

In this sedioll: we will prove the (;onverse (:Hse. This is done nsing the semHntkHl 
model of HyPA and ACP. We show, that if two dosed ACP terms p and q me 
bisimilm in HyPA (whkh we may assume nsing sonndness of the derivation 
HyPA f- P ;:;:j q): then they Bre bisimilHr in Aep. Then: we nse (;ompleteness 
of the HxiOInHtizHtion of ACP: to (;on<:111de that there mnst be H derivation in 
ACP to show this bisimilHrity. Thronghont this sedioll: we nse the nota tion 
:r E ACP for ':r is H dosed ACP term': Bnd similarly for HyPA. 

The operational semHntks of ACP: is given by the following rules. 

(a) 

a 
(:r) ~AC'P (:r') 

a 
-----PACP ,/ (:r::) y) .!AC'P (:r') 

(y::):r) .!,\C'P (:r') 
(:r ::) y) .!AC'P ,f 

(y ::) :r) .!AC'P ,f 

(:r) 
a 

-----PACP ( :r' ) 
a . 

(:r) ~AC'P ,f 
a 

-----PACP (:r' ::) y) 
a 

(:r ::) y) ~AC'P (y) 

a 
(:r) ~AC'P (:r') 

(:rlly) .!,\C'P (:r'lly) 
(yll:r) .!,\C'P (yll:r') 
(:rh) .!,\C'P (:r'lly) 

(:rlly) .!AC'P (y) 
(yll:r) .!,\C'P (y) 
(:rh) .!,\C'P (y) 

o' (') ( ) 0" (' ) '" (:r) -----PACP :r . Y -----PACP Y . a=ara 

(:rlly) .!AC'P (:r'lly') 
(:r I y) .! ,\C' P (:r' II y') 

(:r) ~AC'P ,f.(y) "':.AC'P (y'). 

(:rlly) .!AC'P (y') 

(yll:r) .!,\C'P (y') 

(:rly) .!AC'P (y') 

( ) 
o' . ( ) 0" . 

:r -----PAcp;f. Y -----PAcp;f. 

(:rlly) .!AC'P ,f 

(:r I y) .!AC'P ,f 

a = arra" 

a = arra" 

a 
(:r) ~AC'P (:r').a r/ H 

(UII(:r)) .!,\C'P (UII(:r')) 

(:r) .!AC'P ,f.ar/H 

(UII (:r)) .!AC'P ,f 

Note: that the empty pn)(:ess E is not all ACP term. In stel-Hl: ACP has a 

transiti()ll predkate dell()ted as (p) -! ACP ,/. The ll()ti()ll ()f bisiImllati()ll f()r 
ACP terms is therefore defined as follows. 

84 



Definition 10 (ACP-Bisimulation) A relation R C;; P x P on pmcess terms 
of ACP, is an ACP-bisimlllation relation if for all p, q E P such that pR q, we 
find 

(p) 
a 

(p' ) implies there exists q' s.t. (q) 
a 

(q' ) and p'Rq'; • -----PACP -----PACP 

(q) 
a 

(q' ) implies there exists p' (p) 
a 

(p' ) and p'Rq'; • -----PACP s.t. -----PACP 

a a 
• (p) ~ACP ,( implies there exists q' s.t. (q) ~ACP ,(; 

a a 
• (q) ~ACP ,( implies there exists p' s.t. (p) ~ACP ,(. 

Two process terms :r and yare ACP-bisimilar, denoted :r tiAC P y, if there exists 
an ACP-bisimulation relation that relates them. 

Now we will prove the following theorem, relating ACP-bisimlliation with 
bisimlliation as defined for HyPA. 

Theorem 4 For closed ACP terms pond q we find that ifp tl q then p "'ACP q. 

Clearly, llsing soundness of HyPA and completeness of ACP, we can derive 
from this theorem that 

HyPA I- P "q =? P '" q =? P '" AC P q =? ACP I- P " q. 

The following four lemmas are llsed to prove this theorem. 

Lemma 3 

If:c E ACP and (:c) .".ACP ,( then there exists y' tl E (with y' E HyPA) such 

that (:c, v) '4 (y', v) for every v E Val. 

Proof This proof llses induction on the structure of :r. Since:r E ACP, 
we find the following eases. 

a 
1. :r = 8, which eontracliets with the assumption (:r) -----PACP ,/. 

2. :r = a. From which we conclude using the semantics of HyPA that 
(:c, v) '4 (E, v) for every v E Val. 

3. :r = :r' CD :r" ;\ :r', :r" E ACP, for which we find the one of the hypotheses, 
using the semantics of ACP. 

(a) (:c') .".ACP ,( 

\Vith induction, we conclude for :r' that there exists y' tl € such that 
(:c',v) '4 (y',v) for every v E Val, henee also (:c,v) '4 (y',v) , 
using the semantics of HyPA. 

(b) (:r") -!ACP ,(, similar to the previous ease. 

a 
4. :r = :r' (:J :r", which contradicts with the assumption (:r) -----PAC P ,/. 
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5. :r = :rf II :r" ;\ :rf, :r" E ACP, for which we find the following hypothesis, 
using the semantics of A CP. 

(a) 30 , ,0" a = afra" ;\ (:r') ~ACP ,/ ;\ (:r") ~ACP ../ 'Vith induc
tion, we conclude for :r f and :r" , that there exists z tl Zf tl € such 

that (:c',v) 0'-': (z,v) and (:c",v) o~v (z',v) for every v E Val. 

Using the semanties of HyPA, we then find that (:c , v) ~ (z II z' , v) 
and using congruence for the parallel composition, together with the 
derivahle, hence sOlmd, theorem € II € ~ €, we obtain z II Zf ~ €. 

6. :r = :rf~:r", which contradicts with the assumption (:r) -!ACP ,/. 

7. :r = :rf I :r" ;\ :rf, :r" E ACP, similar to the proof of:r = :rf II :r". 

8. :r = 811 (:rf) ;\ :rf E ACP, for which we find the following hypothesis, using 
the semantics of ACP. 

(a) a?}. H ;\ (:rf) -!ACP ,/. 'Vith induction, we conclude for :rf, that 
there exists yf tl € such that (:rf, II) 4 (yf, II) for every II E Val, 

henee also (0/1 (:c) ,v) ~ (0/1 (y') , v) and with eongruenee and the 
sound axiom a, ("') E we find 0/1 (y') tl (. 

Lemma 4 

If:c E ACP and (:c) -!ACP (y) then there exists y' tl Y (with y' E HyPA) 
such that (:c, v) ~ (y', v) for every v E Val. 

Proof This proof uses induction on the structure of :r. Since:r E ACP, 
we find the following eases. 

o 
1. :r = 8, which contradicts with the assumption (:r) -----PACP (:r f

). 

o 
2. :r = a, which contradicts wi th the assumption (:r) -----PACP (:r f

). 

3. :r = :rf CD :r" ;\ :rf, :r" E ACP, for which we find the one of the following 
hypotheses, using the semantics of ACP. 

(a) (:c') -!ACP (y) 
'Vith induction, we conclude for :rf , that there exists yf tl Y such that 
(:c',v) ~ (y',v) for every v E Val, henee also (:c,v) ~ (y',v), 
using the semantics of HyPA. 

(b) (:C V
) -! AC P (y), similar to the previous ease. 

4. :r = :rf (0 :r" ;\ :rf, :r" E ACP, for which we find the one of the following 
hypotheses, using the semantics of ACP. 
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(a) 
a 

3z y = z (,) :e" 1\ (:e') ~ACP (z) 
\Vith induction, we conclude for :r', that there exists a z' tl z sneh 
that (:e', 1/) "4' (z', 1/) for every 1/ E Val, henee we find (:e, 1/) "4' 
(z' (0 :r", II) llsing the semantics of HyPA, and z' (9 :r" t:± Y llsing 
congruence of the sequential composition. 

(b) :r" = y ;\ (:rf) -!,AC P ,/. Using the previolls lemma, we may 

conclude that there exists z t:± € sneh that (:r', II) 4 (z, II) for all 

1/ E Val. Then, using the semanties of HyPA we find (:e, 1/) "4' (z (,) 
:r", II ). Congruence for the sequential composition, and soundness of 
the axiom € (9 :r ~ :r then give nse z (9 :r" tl y. 

5. :r = :r' II :r" ;\ :r, :r" E ACP, for which we find one of the following hy
potheSf'B, llsing the semantics of ACP. 

(a) 3z y=zl l :e" 1\ (:e') -!ACP (z) 
\Vith induction, we conclude for :r', that there exists z' tl z sneh 
that (:r',I/) 4 (z',II) for aU II E Val, and llsing the semantics 

of HyPA we conclude (:r, II) 4 (z' II :r", II). Congruence for the 
parallel composition then gives us z' II :r" tl y. 

(b) 3z y = :e' II z 1\ (:e") -! AC P (z), similar to the previous ease. 

(e) 30' ,a" ,z,z' Y = z II z' 1\ a = a'ra" 1\ (:e') ..,;, ACP (z) 1\ (:e") "':, AC P 

(z') \Vith induction to the structure of :r' and :r" we find '/0 tl Z 

, '1 1 (') a',v ( ) (" ) a".v ( , ) and'll) tl z sue 1 tlat :r ,II --+ '10,11 and :r ,II 4 '10 ,II . 

Using the semantic" of HyPA we then eondude (:e, 1/) "4' (w II w', 1/) 
and congruence for the parallel composition gives '10 II '11/ tl y. 

6. :r = :r' ~ :r", a subcase of :r = :r' II :r". 

7. :r = :r' I :r", a subcase of:r = :r' II :r". 

8. :r = 811 (:r') ;\ :r' E ACP, for which we find the following hypothesis, using 
the semantics of ACP. 

(a) 3z y = 0/1 (z) 1\ a!f H 1\ (:e') -! AC P (z). With induetion, we 
conclude for :r', that there exists z' tl z such that (:r', II) 4 (z', II ) 

for every 1/ E Val, henee also (0/1 (:e), 1/) "4' (0/1 (z') ,1/) and with 
congruence we find y tl 811 (z'). 

Lemma 5 If:e E ACP then there is no 1/ such that (:e, 1/),(. 

Proof Obvious. For immediate termination in HyPA, there must be a € 

subterm of :r. No other constants or operators introduce termination. [8j 

87 



Lemma 6 If:rE ACPand there is av such that (:r,v) "4' (y,v), (withyE 

HyPA) then either y tl E and (:r) -! ,(, or there exists y' E ACP such that 
a 

y tl y' and (:r) ~ (y'). 

Proof This proof llses induction on the structure of :r. For:r E ACP, we 
find the following eases. 

1. :r = 8, which eontracliets with the assumption that (:r, II) 4 (y, II) for 
some II E Val. 

2. :r = a, for which we find trivially y = € , and llsing the semantics of ACP 
(:r) -! ,(. 

3. :r = :r' (1) :r" ;\ :r', :r" E ACP, for which we find one of the following 
hypotheses, llsing the semantics of HyPA. 

(a) (:r',v) "4' (y,v) With induetion, we find for :r', one of the two 
following hypotheses 

i. y tl € ;\ (:r') -! ,/ From which we conclude, llsing the semantics 

of ACP, that (:r) -! ,(. 
a 

ii. 3y ' y' E ACP 1\ Y tl y' 1\ (:r') ~ (y') From whieh we eondude, 

using the semanties of ACP, that (:r) -! (y'). 

(b) (:r", v) "4' (y, v), similar to the previous ease. 

4. :r = :r' (0 :r" ;\ :r', :r" E ACP, for which we find on of the following 
hypotheses, llsing the semantics of HyPA. 

(a) (:r', v ),( 1\ (:r", v) "4' (y, v ), whieh aeeording to lemma 5 eontra
diets with the assumption that :r' E AC P. 

(b) y = z (,) :r" 1\ (:r', v) "4' (z, v) With induetion, we find for :r', one 
of the two following hypotheses 

i. z tl € ;\ (:r') -! ,( From which we conclude, using the semantics 

of ACP, that (:r) -!, ,/ :r", and using congruence of sequential 
composition together with the sound axiom € (~ :r" ~ :r", that 
y tl :r". 

ii. 3::, z' E ACP ;\ z tl z' ;\ (:r') -!, (z') From which we conclude, 

using the semantic,') of ACP, that (:r) -! (z' (~ :r"), and using 
congruence of the sequential composition that y tl z' (~ :r". 

5. :r = :r' II :r" ;\ :r', :r" E ACP, for which we find one of the following 
hypotheses, using the semantics of HyPA. 

(a) 3z y = z 11:r" 1\ (:r', v) "4' (z, v). With induetion, we find for :r', 
one of the two following hypotheses 
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i. z tl E 1\ (:r') ",. V From whieh we eondude that (:r) ",. (:r") 
and llsing equational reasoning y tl :r". 

ii. z' E ACP ;\ z tl z' ;\ (:r') -! (z') From which we conclude 

that (:r) -!, (z' II :r") and llsing congruence y tl z' II :r". 

(b) 3z y =:r' II z 1\ (:r",II) '4 (Z , II) , whieh is similar to the previous 
ease. 

(e) 30, y = z II z' 1\ a = a'ra" 1\ (:r', II) 0'-': (z, II) 1\ (:r", II) 0"-'," 
( . II \Vith induction, we find for :r', one of the fonT following hy
potheses 

0 ' a" 
i. z tl € ;\ (:r') -----P ,( ;\ z' tl € ;\ (:r") -----P ,/ From which we 

conclude llsing the semantics of ACP that (:r) -! ,(, and llsing 
equational reasoning that y tl €. 

ii. z tl € ;\ (:r') ~ ,/ ;\ 3w ' '11/ E ACP ;\ z' tl 'Ill ;\ (:r") ~ ('Ill) 

From which we conclude llsing the semantics of ACP that (:r) -! 
('Wf) and llsing congruence and (sound) equational reasoning 
that y tl '/Il. 

iii. 3w '10 E ACP ;\ z tl '10 ;\ (:r') ~ ('10) ;\ Z' tl € ;\ (:r") ~ ,/ 
Similar to the previolls ease. 

0' a" 
iv. 3w ,w' '10, '11/ E ACP ;\ z tl '10 ;\ (:r') -----P ('II))A z' tl '11/ ;\ (:r") -----P 

('w') From which we conclude using the semantic,') of ACP that 

(:r) ",. (w II w') and using eongruenee y tl w II w'. 

6. :r = :r' ~ :r", which is a subcase of :r = :r' II :r". 

7. :r = :r' I :r", which is a subcase of:r = :r' II :r". 

8. :r = 0/1 (:r') 1\ :r' E ACP, for whieh we find one of the following hypotheses, 
using the semantics of HyPA. 

(a) 3z y = 0/1 (z) 1\ a 'f H 1\ (:r',II) '4 (Z,II) With induetion, we 
find for :r', one of the two following hypotheses 

i. z tl € ;\ (:r') -! ,/ From which we conclude, using the semantics 

of ACP, tha t (:e) ",. v. 
ii. 3::, z' E ACP ;\ z tl z' ;\ (:r') -! (z') From which we conclude, 

using the semanties of ACP, that (:e) ",. (oz' 0) and using 
congruence y tl 811 (z'). 

Using these four lemmas, we can prove the main theorem by showing that 
tl is an ACP-bisimulation relation. 
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Corollary 1 tl, restricted to closed ACP terms, is an ACP-bisimulation rela
tion. 

Proof Suppose p tl q, and p, q E ACP. 

• If (p) .! ACP (p') , then we use the lemma 4 to find y tl p' sueh that 

(p, II) 4 (y, II) for every II. Since tl is a bisimlliation relation, there 

exists y' tl Y sneh that (q, II) 4 (y', II). Using lemma 5, and the obser
vation that p' E ACP, we find that not (p', II ) ,/. Now, we can llse lemma 

6 to find there exists a q' tl y' sneh that (q) -!ACP (q'). Lastly, tl is an 
equivalence relation, from which we conclude p' ti q'. 

a 
• If ( q) -----PAC P (q'), the reasoning is similar to the previolls ease. 

• If (p) .!ACP .t, then we use lemma 3 to find y tl E sueh that (p,v) '4' 
(y, II) for every 1/. Since tl is a hisimlliation relation, there exists y' tl Y 

sneh that (q,lI) 4 (y',II). Now, llsing lemma 6 we may conclude that 
either, there exists z E ACP snch that z tl y' (which cannot be, since then 
z tl € and (z, II ) ,/, contradicting lemma 4), or y' tl € (w hieh is true) and 

(q) .!ACP .t. 

• If ( q) -!AC P ,/, the reasoning is similar to the previous ease. 
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C Rewriting into basic terms 

In this section, we will show that all the terms of HyPA ean be rewritten into 
bask terms, llsing the axiomatization of HyPA. In faet, we show that there 
is a strongly normalizing rewrite system, for rewriting HyPA terms into the 
following form . 

. N' l5 I € I a I C I a (0 .N' I C [> .N' I d » a I d » C I 

d » E I d » a c,) iV' I d » c c> iV' I iV' CD iV' . 

After that, it is easy to verify that the terms in .N' ean be rewritten into .N 
llsing the axioms [true] » :r ~ :r (:J € ~:r [> l5 ~ :r and 8 ;:;:j [false] » €. 

The remainder of this section consists of three parts. In part one, we give 
a rewrite system that is constructed for the task of rewriting HyPA terms into 
.N'. Ftuthermore, we show that all the rewrite rules ean be derived llsing the 
axiomatization of HyPA. And in part two, we show that all possible normal 
forms of the rewrite system are in .N'. \Vhile in part three we show that the 
rewrite system is strongly normalizing, i.e. that every term has a normal form 
into which it can be rewritten. 

C.l The rewrite system 

In this section, we give the rewrite system for rewriting HyPA terms into terms 
of the form iV'. All the rules are derivable using the axiomatization, and are 
hence sound. This can be easily seen, since we have ordered the rules in groups, 
based on the most important axiom from which the rule is derived. Almost all 
rules are derivable using only the base axiom, and one or more of the following 
unit-, zero-, and commutativity-theorems. (Note that most of them are axioms.) 

:rC0€~:r 15:9:r~15 15~:r~15 

,) I :r '" ,) ,) 'D :r '" :r [ true] » :r '" :r 
[false] » :r "',) :r c> ,) '" :r EII:r '" :r 
:r I y '" y I :r :r 'D y '" y 'D :r :r II Y '" y II :r 

In the derivations, we have also used the following logical equivalences: 
d?? = d? d? /\ [ true] = d? d /\ d' = d' /\ d 

c/\ c' = c' /\ c [false]? = [false] [true]? = [true] 
[true] - d = d 

Only two rules are not derivable using only those axioms, and using the 
derivahility of other rules. For those two rules, a proof is given in the end of the 
subsubsection in which they are introduced. 

C.l.I Rules from the axiom: d» ,) '" ,) 

d»')Y') 
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C.1.2 Rules from the axiom: d» (d' » :r) " (d - d') » :r 

d » d' » :r 4 (d - d') » :r 

C.1.3 Rules from the axiom: d» (:r (l) y) " d » :r (l) d» y 

d» (:r :D y) 4 d » :r :D d» y 

C.1.4 Rules from the axiom: (:r :'J y) :'J z " :r :'J (y :'J z) 

(:r :'J y) :'J z 4 :r :'J (y :'J z) 

C.1.5 Rules from the axiom: (:r :D y) :'J z " :r :'J z :D y :'J z 

(:r CD Y) (~ Z Y :r :9 z CD y (~ z 

C.1.6 Rules from the axiom: :r ~ y,,:r c> y (D Y 

C.1.7 Rules from the axiom: E C> :r" E 

C.1.8 Rules from the axiom: (:r C> y) C> z,,:r C> (y ~ z) 

(c c>:r) C> y4c C> (:r ~ y) 

C.1.9 Rules from the axiom: (:r :D y) C> z,,:r C> z :D Y C> z 

(:r :D y) C> z 4 :r C> z :D Y C> z 

C.1.10 Rules from the axiom: :r II y " :r ~ y :D Y ~:r :D :r I y 

:r II y 4 :r ~ y :D Y ~:r :D :r I y 

C.1.11 Rules from the axiom: (:r :D y) ~ z " :r ~ z :D Y ~ z 

(:r:D y)~z 4 :r~z:D y~z 

C.1.12 Rules from the axiom: E ~:r " " 

E~:r4" 

C.1.13 Rules from the axiom: (d» E) :'J :r" d? » :r 

(d» E):'J :r4 d?»:r 
€(:J:rY:r 

92 



C.1.14 Rules from the axiom: (d»:r) ~ y " d » (:r ~ y) 

(d»:r) h Y d» (:rh) 
,)~:rY') 

C.1.15 Rules from the axiom: (a:,) :r) ~ y " a :,) (:r II y) 

(a (,) :r)~yYa (,) (:rl l y) 
a~:r Y a (,) :r 

C.1.16 Rules from the axiom: (c C> :r) ~ y " ,) 

(cc>:r)~yY') 
c~:rY ,) 

C.1.11 Rules from the axiom: (d» a) (,) :r" d» a (,) :r 

(d» a) (,) :r Y d» a (,) :r 
,) (,) :r Y ,) 

(d» a (,) :r) (,) y Y d» a (,) (:r (,) y) 

This last rule is perhaps not so trivial, and ean be derived as follows: 

(d» a (,) :e) (,) y " ((d» a) (,) :e) (,) y 

" (d» a) (,) (:r (,) y) 

" d» a (,) (:e :,) y) 

C.1.18 Rules from the axiom: (a:,) :e) C> Y" a (,) (:e ~ y) 

(a (,) :r) C> y Y a (,) (:r ~ y) 
a C> :r Y a (,) (E (D :e) 

The derivation of this last rule goes as follows: 

a C> :r " (a (9 E) C> :r 

" a :~ (E ~ :e) 

" a :9 ( E C> :r CD :e) 

" a :~ (E ::9 :r) 

C.1.19 Rules from the axiom: (d» :e) C> Y" d» :e C> y 

(d» :r) C> y Y d» :e C> y 
,)C>:eY,) 
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C.1.20 Rules from the axiom: (d» c c> :r) (,) y " d » c c> :r (,) y 

(d» c c> :r) (,) y Y d» c c> :r (,) y 
(c c> :r) (,) yY c C> :r (,) y 
(d» c) (,) :r Y d» c 
c(~:rYc 

C.1.21 Rules from the axiom: <5 l:r " <5 

<51:rY<5 

:r1<5y <5 

C.1.22 Rules from the axiom: (:r (D y) I z " :r I z (D Y I z 

(:r (D y)lzY :rlz (D Ylz 
:rl (y (D z) Y :rly (D :rlz 

C.1.23 Rules from the axiom: d» E I d' » E " (d? /\ d'?) » E 

d» E Id'» E Y (d? /\d'?)>> E 

d » E lEY d? » E 

E I d » E Y d? » E 

E lEY E 

C.1.24 Rules from the axiom: d» a (,) :r I d' » a' (,) y " (d /\ d') » 
(ara') (,) (:r II y) if (ara') defined 

For some of the rules below , it is important to notice that the reinitialization
clause ([ true] Ad) is not logically equivalent to d, since [ true] prevents variables 
from changing their valuation. The unit element of;\ for reinitialization-elauses 
is [V m I true]. 

d» a (,) :r I d' » a' ,,) y Y (d /\ d') » (ara') (,) (:r II y) 
a (,) :r I d » a' (,) y Y ([ true]/\ d) » (ara') ,,) (:r II y) 
a (,) :r I a' (,) y Y (ara') (,) (:r II y) 
d» a (,) :r I a' (,) y Y (d /\ [ true]) » (ara') ,,) (:r II y) 
d» a I d' » a' (,) :r Y (d /\ d') » (ara') (,) :r 
d» a (,) :r I d' » a' Y (d /\ d') » (ara') (,) :r 
d» a (,) :r I a' Y (d /\ [true]) » (ara') ,,) :r 
a I d » a' (,) :r Y ([ true ]/\ d) » (ara') ,,) :r 
a (,) :r I d » a' Y ([ true ]/\ d) » (ara') ,,) :r 
d» a I a' (,) :r Y (d /\ [true]) » (ara') ,,) :r 
d» a I d' » a' Y (d /\ d') » (ara') 
d» a I a' Y (d /\ [ true]) » (ara') 
a I d» a' Y ([ true ]/\ d) » (ara') 
a I a' (,) :r Y (ara') (,) :r 
a :,) :r lEY (ara') (,) :r 
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al a' Y wya' 

C.1.25 Rules from the axiom: d» a:'):r I d' » a':,) y " ,) if (wya') undefined 

d» a :,) :r I d' » a' :,) y Y ,) 

a (,) :rId» a':,) yY') 
d» a:') :rIa':,) yY') 
d» aid'» a':,):r Y') 

d» a :,) :r I d' » a' Y ,) 

a:') :rIa':,) yY') 
aid» a':,):rY,) 
d»a:,) :rla'Y,) 
a('):rld»a'Y') 
d» ala':,):rY,) 
a:'):rla'y,) 
ala':,):rY,) 
d»ald'»a'Y,) 
ald»a'Y,) 
d» ala' Y,) 

ala'y,) 

C.1.26 Rules from the axiom: d» < I d' » (a :,) :r) " ,) 

d»<ld'»a:,) :ry,) 
d»a:,) :rld'»<Y') 
<Id» a:,):rY,) 
d»a:,):rI<Y,) 
a:,):rld»<Y,) 
d»<la:,):rY,) 
d» aid'» < Y') 

d»<ld'»aY,) 
<la:,):rY,) 
a:'):rl<y') 
<ld»aY,) 
d»al<Y,) 
d»<laY,) 
ald»<Y,) 
<lay,) 
al<Y,) 

C.1.27 Rules from the axiom: d» < I d' » c c> :r" (d? ~ d') » (c c> :r) 

d » < I d' » c C> :r Y (d? ~ d') » c C> :r 
d » c C> :r I d' » < Y (d'? ~ d) » c C> :r 
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cc> :rld»<Yd?»cc>:r 
d» < Icc> :r Y d? » e C> :r 
<Id»c C> :rYd»c C>:r 
d» c C> :rl< Y d» c C>:r 
d» c I d' » < Y (d'? - d) » c 
d» < Id'» cY (d? -d')>> e 
<Ic C> crY c C>:r 
cc>:rl<Ycc>:r 
cld»<Yd?»e 
d»<lcYd?»c 
<ld»cYd»c 
d»cl<Yd»c 
< IcY c 
cl < Y c 

C.1.28 Rules from the axiom: d» c C> :r I d' » a :,) y '" ,) 

d»a:,) :rld'»c C> yY') 
d» c C> :rld'» a:,) yY') 
d» c C> :rla:,) :rY,) 
d» a:,) :rlc C> yY') 
c C> :rld» a:,) yY') 
a:,) :rld» c C> yY') 
d»cld'»a:,) crY') 
d»a:,) :rld'»cy,) 
d» c C> :rld'» aY,) 
d»ald'»c C> crY') 
c C> :rla:,) yY') 
a:,) :rle C> yY') 
c l d»a:,):rY,) 
a:,) :rld» cY') 
d»cla:,):rY,) 
d» a:,) :rlcY,) 
c C> :rld» aY,) 
d» ale C> :r Y') 
d» c C> :rlay,) 
ald»cc>:rY,) 
d»cld'»ay,) 
d»ald»cY,) 
a:,):rlcY,) 
cla:,):rY,) 
alcc>:rY,) 
cc>:rlaY,) 
ald»ey,) 
eld»ay,) 
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d» aleY,) 
d»elay,) 
aley,) 
clay,) 

C.1.29 Rules from the axiom: d» e C> :r I d'» e' C> Y'" ((d - Cjmp) /\ 
(d' - e1mp))» (e/\e') C> (:r~e' ~ Y G) y~c ~ :r 'D:rl c' ~ Y G) yl C ~ :r) 

d» e C> :rld'» e' C> yY 

((d ) (d' , )) ( ') ( ~ ~ :~' :;,~ ) . - ejmp /\ . - ejmp » e /\ e C> ,r I e' ~ y ,D 

yl e ~ :r 

( 

:r~e' ~ Y G) ) 
y~e~:rG) 

e C> :r I d» e' C> y Y (ejmp /\ (d - e1mp))» (e /\ e') C> ,r I e' ~ y G) 

yl C ~ :r 

( 

,'r,~e' ~ y'D ) 
y~e~:rG) 

d»e C> :rIc' C> yY ((d-ejmp)/\eimp)>> (e/\e') C> :rle' ~ y 'D 

yl e ~ :r 

(
:r~e'~Y(D ) 

e C> :r I e' C> y Y (e /\ e')jmp » (e /\ e') C> ~ ~(~; : ~ :~ 
yl e ~ :r 

d» eld'» c' C> crY ((d- Cjmp)/\ (d' - e1mp))» (e/\c') C> (ell:r) 
d» e C> :r I d' » e' Y ((d - ejmp) /\ (d' - e1mp)) » (e /\ e') C> (:r II e') 
d» e C> :r Ie' Y ((d - Cjmp) /\ eimp)>> (c /\ e') C> (:r II e') 
e C> :r I d» e' Y (ejmp /\ (d - e1mp))» (c /\ e') C> (:r II c') 
d»ele' C> crY ((d-ejmp)/\eimp)>> (e/\e') C> (ell:r) 
eld»e' C> crY (ejmp/\(d-e1mp))» (e/\e') C> (cll:r) 
d» e I d'» c' Y ((d - Cjmp) /\ (d' - c1mp)) » (c /\ e') 
e I d » e' Y (ejmp /\ (d - eimp)) » (e /\ e') 
d» e Ie' Y ((d - ejmp) /\ e1mp) » (e /\ e') 
e C> :r I e' Y (c /\ e')jmp » (c /\ e') C> (:r II c') 
e Ie' C> :r Y (c /\ e')jmp » (c /\ e') C> (c 11:r) 
e I e' Y (e /\ e')jmp » (e /\ e') 

The rule d » e I d' » e' C> :r Y ((d - ejmp) /\ (d' - eimp)) » (e /\ e') C> (e II :r) 
is not trivial. Therefore, we give its derivation. 
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d»cld'»c'c>:r " d»cc> <5ld'»c'c>:r 

" ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') c> 

" ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') c> 

" ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') c> 

C.1.30 Rules from the axiom: VII (E)" E 

VII(E)'-+E 

C.1.31 Rules from the axiom: if a E H then VII (a) " <5 

if a E H then VII (a) '-+ <5 

C.1.32 Rules from the axiom: if a 'I H then VII (a) " a 

if a 'I H then VII (a) '-+ a 
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C.1.33 Rules from the axiom: au (e) " e 

au (e) Y e 

C.1.34 Rules from the axiom: au (:r :') y) " au (:r) :') au (y) 
au (:r C') y) Y au (:r) C') au (y) 

C.1.35 Rules from the axiom: au (:r c> y) " au (:r) c> au (y) 

au (:r c> y) y au (:r) c> au (y) 

C.1.36 Rules from the axiom: au (d» :r) " d » au (:r) 

au (d» :r) y d» au (:r) 
au (<5) y <5 

C.1.37 Rules from the axiom: au ((:r CD y)) "au (:r) :D au (y) 

au (:r CD y) y au (:r) CD au (y) 

C.2 Normal forms are in N ' 

Since the atoms of HyPA are also atoms of .N! , every HyPA term p (j. .N' has a 
sllbterm s (j .N' of the form: 

P d » .N' I .N' G) .N' I .N' (~ .N' I .N' .. . N' I .N' [> .N' I 

N' II N' I N' ~ N' I N' I N' I au (N') 

In the following paragraphs, we will give one or more applicahle rewrite rules for 
every of these possihle sllbterms, unless the specific sllbterm is itself in normal 
form. In that ease, we do not need to give a rule since we have a contradiction 
with the assumption that s ?}. .N'. 

C.Z.1 The form: sEd» N' 

\Ve find the following eases: 

• sEd» 8, which rewrites llsing d » 8 y 8; 

• sEd» E EN'; 

• sEd» a EN'; 

• sEd» eE N'; 
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• sEd» a (9 .N' E iV': 

• sEd» c C> iV' E iV'; 

• sEd» d' » a, whieh rewrites using d » d' » :r '-+ (d - d') » :r; 

• sEd» d' » c, whieh rewrites using d » d' » :r '-+ (d - d') » :e; 

• sEd» d'» E, whieh rewrites using d» d'» :e'-+ (d - d') » :e; 

• sEd» d'» a ('J iV', whieh rewrites using d» d'» :e'-+ (d - d') » :e; 

• sEd» d'» c C> iV', whieh rewrites using d» d'» :e'-+ (d - d') » :r; 

• sEd» (iV' G) iV'), whieh rewrites using d » (:r :D y) '-+ d» :e :D d» y. 

C.2.2 The form: s E iV' :D iV' 

Whieh direetly leads to s E iV'. 

C.2.3 The form: s E iV' :'J iV' 

\Ve find the following eases 

• s E 8 (9 iV', which rewrites using 8 :9 :rY 8: 

• s E € (9 iV', which rewrites using € :9 :r Y :r: 

• sEa (9 iV' ~ iV': 

• sEc. (9 iV', which rewrites using c. (9 :r Y c.: 

• s E (a :'J iV') :'J iV' , whieh rewrites using (:e :'J y) :'J z'-+ :e :'J (y :'J z); 

• s E (c C> iV') :'J iV', whieh rewrites using (c C> :e) :'J y'-+ c C> :r :'J y; 

• s E (d» a) :'J iV', whieh rewrites using (d » a) :'J :e'-+ d» a :'J :e; 

• s E (d» c) :'J iV', whieh rewrites using (d » c) :'J :e'-+ d» c; 

• s E (d» E) :'J iV', whieh rewrites using (d» E) :'J :e'-+ d? »:r; 

• s E (d» a :'J iV') :'J iV', whieh rewrites using (d » a :'J :e) :'J y,-+ d» 
a :'J (:e :'J y); 

• s E (d» c C> iV') :'J iV', whieh rewrites using (d» c C> :r) :'J y'-+ d» 
c. [> :r (9 y; 

• s E (iV' CD iV'):9 iV', which rewrites using (:r::9 y) (9 Z Y :r (9 z (l) Y (9 z. 

C.2.4 The form: s E iV' ~ iV' 

\Vhich rewri tes using:r .. y Y :r [> y ::9 y. 
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C.2.5 The form: sEN' c> N' 

\Ve find the following eases 

• s E l5 [> .N', which rewrites llsing l5 [> :r Y 8: 

• sEt" [> .N' , whkhrewritesllsing€ [> :r'-t €: 

• sEa [> .N', which rewrites llsing a [> :r Y a :~ (I: :1) :r); 

• sEc [> .N' :;;; .N': 

• s E (a ('J N') c> N', whieh rewriteB using (a C'J :r) c> y'-+ a ('J (:r ~ y); 

• s E (c C> N') C> N', whieh rewrites using (c C> :r) C> y'-+ c C> (:r ~ y); 

• s E (d» a) C> N', whieh rewrites using (d » :r) C> y'-+ d» :r C> y; 

• s E (d» c) C> N' , whieh rewrites using (d »:r) C> y'-+ d» :r C> y; 

• s E (d» E) C> N', whieh rewrites using (d» :r) C> y,-+ d» :r C> y; 

• s E (d» a C'J N') C> N', whieh rewrites using (d »:r) C> y,-+ d » :r C> 

y; 

• s E (d» c C> N') C> N' , whieh rewrites using (d »:r) C> y'-+ d » :r C> 

y; 

• s E (N' CD N') C> N', whieh rewrites using (:r (D y) C> z'-+ :r C> z (D Y C> 

z. 

C.2.6 The form: sEN' II N' 

Whieh rewrites ming :r II y '-+ :r ~ y CD Y ~:r :D :r I y. 

C.2.1 The form: s E N'~N' 

\Ve find the following eases 

• s E 8~.Nf, which rewrites llsing 15~:r y 8; 

• s E € ~ .N', which rewrites llsing € ~:r Y 8; 

• sEa ~ .N', which rewrites llsing a ~:r Y a :9 :r: 

• s E c~ .N', which rewrites llsing c~:r Y 8; 

• s E (a (,) N') ~ N', whieh rewrites using (a c,) :r) ~ y '-+ a (,) (:r II y); 

• s E (c C> N') ~ N' , whieh rewrites using (c C> :r) ~ y '-+ b; 

• s E (d» a)~N', whieh rewrites using (d» :r)~y,-+ d» :r~y; 

• s E (d» c) ~ N' , whieh rewrites using (d » :r) ~ y '-+ d» :r ~ y; 
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• s E (d» E)~N', whieh rewrites using (d» :r)~y,-+ d» :r~y; 

• s E (d» a (,) N') ~ N' , whieh rewrites using (d » :r) ~ y '-+ d» :r ~ y; 

• s E (d» c c> N') ~ N', whieh rewrites using (d » :r) ~ y '-+ d» :r ~ y; 

• s E (N' CD N') ~ N', whieh rewrites using (:r :D y) ~ z '-+ :r ~ z (D Y ~ z. 

C.2.8 The form: sEN' I N' 

\Ve find the following eases 

• s E () I·N', which rewrites llsing 81:r y 8; 

• s E € I .N f , for w hieh we find the eases 

s E € 18, which rewrites llsing:r 18 y 8; 

s E € I/'; , which rewrites llsing € I € Y 1':; 

S E € I a, which rewrites llsing € I a y 8; 

s E € I c, which rewriteB llsing € ley c; 

s E € I a (~ .N', which rewrites llsing € I a :~ :r Y 8: 

s E € Ie [> .N' , which rewrites llsing € I c [> :r Y c [> :r: 

SEE I d» a, whieh rewrites using E I d» a '-+ b; 

SEE I d » c, whieh rewrites using E I d » c '-+ d » c; 

SEE I d» E, whieh rewrites using E I d» E '-+ d? » E; 

SEE I d » a :,) N', whieh rewrites using E I d» a :,) :r '-+ b; 

SEE I d » c c> N', whieh rewrites using E I d » c c> :r '-+ d» c c> 
:r: 

SEE I (N' :D N'), whieh rewrites using :r I (y :D z) '-+ :r I y :D :r I z. 

• sEa I .N f, for w hieh we find the eases 

sEa 18, which rewrites llsing:r III y 8; 

sEa I /';, which rewrites llsing a I € Y 8; 

sEa I a', for which we find two eases 

* If arar defined then we rewrite llsing a I a' Y afa'; 

* If afar undefined then we rewrite llsing a I a' Y 8; 

sEa I c, which we rewrite llsing a ley 8; 

sEa I a' (0 .N', for which we find two eases 

* If afar defined then we rewrite using a I a' (~ :r Y (afa') :~ :r: 

* If afa' undefined then we rewrite using a I a' (~ :r Y 8; 

sEa I c [> .N', which we rewrite using a Ie [> :r Y 8: 

sEa I d» a' , for which we find two eases 
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* If ara' defined then we rewrite using a I d » a' '-+ ([ true ll\d) » 
(ara'); 

* If wya' undefined then we rewrite llsing a I d » a' Y l5; 

sEa I d » c, whieh we rewrite using a I d » c '-+ b; 

sEa I d» E, whieh we rewrite using a I d» E '-+ b; 

sEa I d » a' (~ .N', for which we find two eases 

* If afar defined then we rewrite llsing a I d » a' (9 :r Y ([ true] ;\ 
d) » (ara') (:) :r; 

* If afar undefined then we rewrite llsing a I d » a' (0 :r Y l5; 

sEa I d » c c> N', whieh we rewrite using a I d » c C> :r '-+ b; 

sEa I (N' CD N'), whieh rewrites using :r I (y 'D z) '-+ :r I y (D :r I z . 

• sEc I .N', for which we find the eases 

sEc 18, which rewrites llsing :r 18 y 8; 

sEc I €, which rewrites llsing c I € Y c; 

sEc I a, which rewrites llsing c I a y 8; 

S E cle', whieh rewrites llsing clc' Y (C!\C')jmp» (cAe'); 

sEc I a (0 .N', which rewrites llsing c I a (~ :r Y 8; 

sEc I c' [> .N', which rewrites llsing c I c' [> :r Y (c;\ c')jmp » 
(CI\C') C> (cll:r); 

sEc I d» a, whieh rewrites using c I d » a '-+ b; 

sEc I d » c', whieh rewrites using c I d » c' '-+ (Cjmp 1\ (d 
c1mp)) » (c 1\ c'); 

sEc I d » E, whieh rewrites using c I d » E '-+ d? » c; 

sEc I d» a (:) N', whieh rewrites using c I d » a (:) :r'-+ b; 

sEc I d » c' C> N', whieh rewrites using c I d » c' C> :r '-+ 

(Cjmp 1\ (d - c1mp)) » (c 1\ c') C> (c II :r); 
sEc I (N' (D N'), whieh rewrites using :r I (y 'D z) '-+ :r I y 'D :r I z . 

• sEa (0 .N' I.N', for which we find the eases 

sEa :~ .N' 18, which rewrites llsing :r 18 y 8; 

sEa :~ .N'I /';, which rewrites llsing a (~ :r I € Y 8; 

sEa :9 .N'I a', for which we find two eases 

* If afa' defined then we rewrite using a (~ :r I a' Y (afa') :~ :r: 

* If afa' undefined then we rewrite using a (~ :r I a' Y 8; 

sEa :~ .N'I c, which rewrites using a (~ :r IcY 8; 

sEa :~ iV' I a' (~ iV', for which we find two eases 
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* If afa' defined then we rewrite using a (9 :r 1 a' (9 y Y (afa') :9 

(:r II y); 

* If afa' undefined then we rewrite using a (9 :r 1 a' (9 y Y 8; 

sEa :9 .N'I c. [> iV' , which rewrites using a (9 :r 1 c. [> y y 8; 

sEa :9 iV'1 d» a' , for which we find two eases 

* If afa' defined then we rewrite using a (9 :r 1 d » a' Y ([ true] ;\ 
d) » (wya') (,) :r; 

* If afa' undefined then we rewrite using a :9 :r 1 d » a' Y 8; 

sEa c,) iV'l d » c, whieh rewrites using a c,) :r I d » c '-+ b; 

sEa c,) iV'l d» E, whieh rewrites using a c,) :r I d» E '-+ b; 

sEa :9 iV'1 d » a' (9 iV', for which we find two eases 

* If afa' defined then we rewrite using a :9 :r I d » a' (9 y Y 

([ true ]/\ d) » (ara') (,) (:r II y); 

* If afa' undefined then we rewrite using a :9 :r 1 d » a' (9 y Y 8; 

sEa (,) iV'l d » c c> iV', whieh rewrites using a c,) :r I d » c c> 
y'-+ b; 

"" I ("" AU) 1· 1 . . I ( ) I sEa c,) H H cD" ,w 11e 1 rewntes usmg:r y CD z '-+:r y cD 
:r I z . 

• sEc. [> iV' 1 iV', for which we find the eases 

sEc. [> iV' 18, which rewrites using :r 18 Y 8; 

sEc. [> iV' 1 €, which rewrites using c. [> :r 1 € Y c. [> :r: 

sEc. [> iV' I a, which rewrites using c. [> :r I a Y 8; 

sEc. [> iV' 1 c.' , which rewrites using c. [> :r 1 c.' Y (c.;\ c.')jmp » 
(c /\ c') c> (:r II c'); 

sEc. [> iV' 1 a (9 iV', which rewrites using c. [> :r 1 a (9 y Y 8; 

sEc. [> iV' I c.' [> iV' , which rewrites using c. [> :r I c.' [> y Y 

( 

.·r.~c' ~ yCD 1 
y~c~:r(l) . 

(c /\ c')jmp » (c /\ c') C> :r I c' ~ Y CD ' 

ylc ~ :r 

sEc C> iV' I d » a, whieh rewrites using c C> :r I d» a '-+ b; 

sEc C> iV' l d » c', whieh rewrites using c C> :r I d » c' '-+ 

(Cjmp /\ (d - c}mp)) » (c /\ c') C> (:r II c'); 

sEc C> iV' I d » E, whieh rewrites using c C> :r I d » E '-+ d? » 
c. [> :r: 

sEc C> iV' I d » a (,) iV', whieh rewrites using c C> :r I d » a:') y '-+ 
b; 
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- sEc c> N' I d » c' c> N', whieh rewr(it~"rS i';:,in; (~C>:D :r)1 d » c' c> 

y~c~:r(l) . 
y Y (Cjmp /\ (d - c}mp))» (c/\ c') C> :r I c' ~ y:D ' 

ylc ~ :r 

sEc C> N'I (N' :D N'), whieh rewriteB using :r I (y (l) z) Y :r I y :D 

:r I z . 

• sEd» a I N' , for whidl we find the eases 

sEd» a I <5, whieh rewrites using :r I <5 Y <5; 

sEd» a I E, whieh rewrites using d» a lEY <5; 

sEd» a I a', for which we find two eases 

* If ara' defined then we rewrite using d » a I a' Y (d/\ [ true l) » 
(ara'); 

* If afar undefined then we rewrite llsing d » a I a' y l5; 

sEd» a I c, whieh rewrites using d» a IcY <5; 

sEd » a I a' (:J .N', for which we find two eases 

* If ara' defined then we rewrite llsing d » a I a' :9 :r Y (d;\ 
[ true]) » (ara') :'J :r; 

* If afar undefined then we rewrite llsing d » a I a' ::J :r Y l5: 

sEd» a Icc> N' , whieh rewrites using d » a Icc> :r Y <5; 

sEd» a I d' » a', for whieh we find two eases 

* If ara' defined then we rewrite using d » a I d' » a' Y (d /\ 
d') » (ara'); 

* If afar undefined then we rewrite llsing d » a I d' » a' Y 8; 

sEd» a I d' » c, whidl rewrites using d » a I d » c Y <5; 

sEd» a I d'» E, whieh rewrites using d» a I d'» E Y <5; 

sEd » a I d' » a' (0 .N', for which we find two eases 

* If afar defined then we rewrite llsing d » a I d' » a' (0 :r Y 
(d /\ d') » (ara') :'J :r; 

* If ara' undefined then we rewrite llsing d » a I d' » a' (0 :r Y l5; 

sEd» a I d' » c C> N', whieh rewrites using d » a I d' » c C> 
:r Y <5; 

sEd» a I (N' (l) N'), whieh rewrites using:r I (y (l) z) Y :r I y:D:r I z . 

• sEd» c I N', for whieh we find the eases 

sEd» c 1<5, whidl rewrites using :r I <5 Y <5; 

sEd» c IE , whieh rewrites using d» c lEY d» c; 
sEd» c I a, whieh rewrites using d» c I a Y <5; 
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sEd» ele', whieh rewrites using d» ele' '-+ ((d - ejmp) 1\ 

e}mp) » (e 1\ e'); 

sEd» e I a C') N', whieh rewrites using d » e I a :') :c '-+ <5; 

sEd» ele' c> N', whieh rewrites using d» ele' c> :c '-+ ((d
ejmp) 1\ e}mp) » (e 1\ e') c> (e II :c); 

sEd» e I d' » a, whieh rewrites using d » e I d' » a '-+ <5; 

sEd» e I d' » e', whieh rewriteB using d » e I d' » e' '-+ ((d -
ejmp) 1\ (d' - e}mp)) » (e 1\ e'); 

sEd» e I d' » E, whieh rewrites using d » e I d' » E '-+ (d'? -
d) » e; 

sEd» e I d' » a :') N', whieh rewrites using d» e I d' » a C') :c '-+ 
<5; 

sEd» e I d' » e' c> N', whieh rewrites using d » e I d' » e' c> 
:c '-+ ((d - ejmp) 1\ (d' - e}mp)) » (e 1\ e') c> (e II :c); 

sEd» e I (N' CD N'), whieh rewrites using:c I (y CD z) '-+ :c I y CD:c I z . 

• sEd» E I N', for whieh we find the eases 

sEd» E 1<5, whieh rewrites using :c I <5,-+ <5; 

sEd» E IE, whieh rewrites using d» E I E '-+ d? » E; 

sEd» E I a, whieh rewrites using d» E I a '-+ <5; 

sEd» E Ie, whieh rewrites using d» E Ie '-+ d? » e; 

sEd» E I a C') N', whieh rewrites using d» E I a C') :c '-+ <5; 

sEd» E Icc> N', whieh rewrites using d » E Icc> :r '-+ d? » 
c [> :r: 

sEd» E I d' » a, whieh rewrites using d » E I d' » a '-+ <5; 

sEd» E I d' » e, whieh rewriteB using d » E I d' » e '-+ (d? -
d') » e; 

sEd» E I d' » E, whieh rewrites using d » E I d' » E '-+ (d? 1\ 

d'?) » E; 

sEd» E I d' » a:') N', whieh rewrites using d » E I d' » a C') :r '-+ 
<5; 

sEd» E I d' » e C> N', whieh rewrites using d » E I d' » e C> 

:r '-+ (d? - d') » e C> :r; 

sEd» E I (N' CD N'), whieh rewrites using:r I (y CD z) '-+ :r I y CD:r I z . 

• sEd» a C') N'I N', for whieh we find the eases 

sEd» a :') N'I <5, whieh rewrites using :r I <5 '-+ <5; 

sEd» a :') N'I E, whieh rewrites using d» a :') :r lEY <5; 
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sEd » a (0 .N'I a', for which we find two eases 

* If afa' defined then we rewrite using d » a :~ :r I a' Y (d;\ 
[ true]) » (ara') :,) :r; 

* If afa' undefined then we rewrite using d » a :~ :r I a' Y 8; 

sEd» a c,) iV'l c, whieh rewrites using d » a :,) :r Ie '-+ b; 

sEd » a :~ iV' I a' (~ iV', for which we find two eases 

* If afa' defined then we rewrite using d » a (~ :r I a' (~ y y 
(d 1\ [true]) » (ara') :,) (:r II y); 

* If afa' undefined then we rewrite using d » a (~ :r I a' (~ y y 8; 

sEd» a :,) iV'l c c> iV', whieh rewrites using d » a :,) :r Icc> 
y'-+ b; 

sEd » a (~ iV'1 d' » a', for which we find two eases 

* If afa' defined then we rewrite using d » a (~ :r I d' » a' Y 

(d 1\ d') » (ara') :,) :r; 

* If afa' undefined then we rewrite using d » a (~ :r I d' » a' Y 8; 

sEd» a c,) iV'l d' » c, whieh rewrites using d » a c,) :r I d' » c '-+ 

b: 

sEd» a c,) iV' I d' » E, whieh rewrites using d » a :,) :r I d' » E '-+ 

b: 

sEd » a (~ iV'1 d' » a' (~ iV', for which we find two eases 

* If afa' defined then we rewrite using d » a (~ :r I d' » a' (~ y Y 

(dl\d')>> (ara'):,) (:rlly); 
* If afa' undefined then we rewrite using d » a (~ :r I d' » a' (~ 

y'-+ b; 

sEd» a:') iV' I d' » c c> iV', whieh rewrites using d » a:'):r I d' » 
c c> y'-+ b; 

sEd» a :,) iV'l (iV' CD iV'), whieh rewrites using :r I (y CD z) '-+ 

:rIY:D:rlz . 

• sEd» c c> iV' I iV', for whieh we find the eases 

sEd» c C> iV'l b, whieh rewrites using :r I b '-+ b; 

sEd» c C> iV' I E, whieh rewrites using d» c C> :r IE '-+ d» c C> 

:r: 

sEd» c C> iV'l a, whieh rewrites using d » c C> :r I a '-+ b; 

sEd» c C> iV'l c', whieh rewrites using d » c C> :r I c' '-+ ((d -
Cjmp) 1\ c1mp) » (c 1\ c') C> (:r II c'); 

sEd» c C> iV'l a:') iV', whieh rewrites using d » c C> :r I a c,) :r '-+ 
b: 
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- sEd» c c> N'I c' c> N', whieh rewr(it~"rS i';:,in; ~ ~;D C)c> 

y~e~:r(l) . 
y Y ((d - Cjmp) /\ c}mp)>> (c/\ c') C> :r I c' ~ y:D ' 

yle ~ :r 

- sEd» c C> N' I d' » a, whidl rewrites using d » c C> :r I d' » 
a Y <5: 

- sEd» c C> N' I d' » c', whieh rewrites using d » e C> :r I d' » 
c' Y ((d - Cjmp) /\ (d' - c}mp)) » (c /\ c') C> (:r II c'): 

- sEd» e C> N'I d' » E, whieh rewrites using d » c C> :r I d' » 
E Y d'? - d » c C> :r: 

- sEd» c C> N' I d' » a :'J N', whieh rewrites using d » c C> 

:r I d'» a :'J y Y <5: 

- sEd» c C> N'I d' » c' C> N', whieh rewrites using d » c C> 

:r I d' » c' C> y Y ((d - Cjmp) /\ (d' - c}mp)) » (c /\ c') C> 

(
."r.~c, ~ y:D ) 
y~c~:r(l) . 
:rlc'~y:D ' 
Ylc~:r 

- sEd» c C> N'I (N' :D N') , whieh rewrites using :r I (y (l) z) Y 

:rly(l):rlz. 

• s E (N' (l) N') IN', whidl rewrites using (:r :D y) I z Y :r I z :D y I z. 

C.2.9 The form: s E 0/1 (N') 

\Ve find the following eases 

• s E 0/1 (<5), whieh rewrites using 0/1 (<5) Y <5: 

• s E 0/1 (E), whieh rewrites using 0/1 (E) Y E: 

• s E 0/1 (a), for whieh we find the following eases 

- a E H , in whieh ease we have the rule 0/1 (a) Y <5 

- art H, in whieh ease we have the rule 0/1 (a) Y a 

• s E 0/1 (e) , whieh rewrites using 0/1 (c) Y c: 

• s E 0/1 (a :'J N'), whieh rewrites using 0/1 (:r :'J y) Y 0/1 (:r) :'J 0/1 (y): 

• s E 0/1 (c C> N'), whieh rewrites using 0/1 (:r C> y) Y 0/1 (:r) C> 0/1 (y): 

• s E 0/1 (d» a), whieh rewrites using 0/1 (d » :r) Y d» 0/1 (:r): 

• s E 0/1 (d» c) , whieh rewrites using 0/1 (d» :r) Y d» 0/1 (:r): 

• s E 0/1 (d» E) , whieh rewrites using 0/1 (d» :r) Y d» 0/1 (:r): 
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• s E 0/1 (d» a C,) N') , whieh rewrites using 0/1 (d» :e) '-+ d» 0/1 (:e); 

• s E 0/1 (d» c c> N'), whieh rewrites using 0/1 (d » :e) '-+ d» 0/1 (:e); 

• s E 0/1 (N' CD N') , whieh rewrites using 0/1 (:e CD y) '-+ 0/1 (:e) cD 0/1 (y). 

C.3 The rewrite system is strongly normalizing 

That the ahove rewrite system is strongly normalizing can be demonstrated 
llsing semantieallahelling in combination with the recursive path ordering tech
nique as (among others) described in [7]. \Ve define the following ranking-norm 
on HyPA terms and reinitialization-elauses. 

• lbJ = lEJ = laJ = lcJ = 1; 

• ld»:eJ = l:rJ +1; 

• l:r CD yJ = max (l:eJ, lyJ); 

• l:r c,) yJ = l:r ~ yJ = l:r c> yJ = 2l:rJ + lyJ; 

• l:el lyJ = l:ehJ = l:elyJ = l:eJ + lyJ; 

• lO/1 (:e)J = l:eJ + 1. 

Now , we lahel every operator in a HyPA term with its norm. I.e. we write 
:e c')zlxJ+lyJ y in stead of:e C,) y. Then, we define the following (well-founded) 
ordering on lahelled operators. (Note that we still treat d » :r as a unary 
operator.) 

• 81 < 1:1 < al < Cl < G)l 

• for all n we have ::Dn < 

• for all n~ rn, d we have (Un < d »m; 

• for all n, d, d' we have d »n < d' »n+ ,; 

• for all n, rn, d we have d »n < (9 m; 

• for all n we have (~n < [>n ; 

• for all n we have [>n < "n ; 
• for all n we have "n < (~n+ l ; 

• for all n.rn we have "n < 1m; 

• for all n we have In < ~n ; 

• for all n we have ~n < lin; 

• for all n we have lin < In+ 1 ; 
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• for all n, m we have lin < Om,1/ 0; 

In the remainder, we will show for each of the rules that they are strictly decreas
ing with respect to the recursive path ordering based on > (which we denote 
>I'Po). For reasons of readahility, we will sometimes omit the lahelling of some 
of the operators, if the exact lahelling is not important for the proof. The rules 
that result in deadlock, or other constants, are considered trivial. Note that for 
every term :r we have l:r J 2: 1. 

C.3.1 d» d' » :r '-+ (d - d') » :r 

d »lxj+Z d' »lxj+l :r 
>l'pO d »lxJ+z d' »lxJ+l :r 
>,'po (d - d') »lxj+l d »[xj+Z d' »lxj+l :r 
>,'po (d - d') »lxj+l d' »lxJ+l :r 
>,'po (d - d') »lxj+l d' »1XJ+l :r 
>,'po (d - d') »lxj+l :r 

C.3.2 d» (:r G) y) '-+ d»:r G) d» y 

d »lxj+lyj+l (:r G) y) 
>,'po d »[xj+lyj+l (:r (l) y) 
>,'po (d »[xj+lYJ+l (:r G) y)) CD (d »[xj+lYJ+l (:r CD y)) 
>,'po (d »lxj+lyj+l (:r G) 'y)) CD (d »lxj+lyj+l (:r G) 'y)) 
>,'po d »lxj+lyj+l :r G) d »lxj+lyj+l y 
>,'po d »lxj+l :r G) d »lyj+l y 

C.3.3 (:r:'J y) :'J z'-+ :r :'J (y :'J z) 

(:r +lyj y) :'J4lxj+zlyj+lzJ z 
+lyj y) +lzJ 'z 

>,'po ((:r :'Jzlxj+lyj y) :'J4lxj+zlyJ)+lzJ 'z) 
((:r :'Jzlxj+lyj y) :'J4lxj+zlyj+lzJ 'z) 
>,'po (:r +y y) +Zlyj+ 
((:r :'Jzlxj+lyj y) :'J4lxJ+zlyj+lzJ 
>,'po (:r +lyj 'y) +zlyj+lzJ 
((:r y) +zlyj+lzJ 'z) 
>rpo ((:r +lyj y) 
>rpo :r +zlyj+lzJ ((:r +lyj 'y) 
>rpo :r +zlyj+lzJ (y +zlyJ+lzJ z) 
>rpo :r +zlyj+lzJ (y +lzJ z) 
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C.3.4 (:r fD y) (,) z'-+ :r (,) z (D Y (,) z 

(:r fD y) (,) z 
>,'po (:r (D y) (,) 'z 
>,'po ((:r (D y) (,) 'z) (D ((:r (D y) (,) 'z) 
>,'po ((:r (D 'y) (,) z) (D ((:r (D 'y) (,) z) 
>rpo :r (0 z CD Y (9 z 

C.3.5 :r ~ y,-+ :r > y (D Y 

:r "zlxj+lYJ Y 
>rpo :r "zlxj+lYJ *y 
>rpo :r "zlxj+lYJ *y(1):r "zlxj+lYJ *y 
>l'pO :r "zlxj+lYj *y(1) y 
>,'po (:r ~zlxJ+lYJ 'y) >zlxJ+lyJ (:r ~zlxJ+lYJ 'y) fD Y 
>l'pO :r [>zlxj+lYJ (:r "zlxj+lYJ *y) CD Y 
>l'pO :r [>zlxj+lYJ Y CD Y 

C.3.6 (c > :r) > y'-+ c > (:r ~ y) 

(c >z+lx( :r) >4+2lxJ+lyJ y 
>rpo (c [>2+x :r) [>4+zlxj+lYj *y 
>,'po ((c >Z+x :r) >4+2lxJ+lyJ 'y) >Z+2lxJ+lyJ 
((c >Z+x :r) >4+2lxJ+lyJ 'y) 
>,'po c >Z+2lxJ+lyJ ((c >Z+x :r) >4+2lxJ+lyJ 'y) 
>,'po c >Z+2lxJ+lyJ ((c >z+x ':r) >4+2lxJ+lyJ y) 
>rpo C [>z+zlxj+lYJ (:r [>4+zlxj+lYj Y) 
>,'po c >Z+2lxJ+lyJ (:r ~zlxJ+lyJ y) 

C.3.7 (:r fD y) > z'-+ :r > z fD y > z 

Similar to the proof of (:r fD y) (,) z'-+ :r (,) z (D Y (,) z, 

Similar to the proof of:r ~ y '-+ :r > y (D y, 

Similar to the proof of (:r CD Y) (~ Z Y :r :9 z CD y :9 z, since the semantical 
lahelling is irrelevant for this proof. 

C.3.10 (d» E) (,) :r '-+ d? » :r 

(d» E) (,) :r 
>,'po (d» E) (,) ':r 
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>,'po d?» (d» E) (,) ':r 
>rpo d?»:r 

C.3.11 (d» :r)~y,-+ d»:rh 

(d» :r) h 
>,'po (d»:r) ~ 'y 
>,'po d» (d» :r) ~ 'y 
>,'po d» (d »' :r) ~ y 
>,'po d» :r~y 

C.3.12 (a (,) :r) ~ y '-+ a (,) (:e II y) 

(a(,):e)~y 

>,'po (a (,) :e) ~ 'y 
>,'po ((a (,) :e) ~ 'y) (,) ((a (,) :e) ~ 'y) 
>,'po ((a (,) :e) ~ 'y) (,) ((a (,) ':e) ~ y) 
>,'po ((a (,) :e)~ 'y) (,) (:e~y) 

>,'po a (,) (:e II y) 

C.3.13 a ~:e '-+ a (,) :e 

Trivial, since ~n 2: C0 n · 

C.3.14 (d» a) (,) :e'-+ d» a (,) :e 

Similar to the proof of (d » :e) ~ y '-+ d» :e ~ y, 

C.3.15 (d» a (,) :e) (,) y,-+ d» a (,) (:e (,) y) 

Fnr the proof of this rule, we use the faet that (:e (,) y) (,) z'-+ :e (,) (y (,) z) is 
an rpo-decreasing rewrite rule. 
(d »3+lxj a lxj :e) (')6+2lxj+lyj Y 
>,'po (d »3+lxj a (')z+lxj :e) (')6+2lxj+lyj 'y 
>,'po d »3+2lxj+lyj (d »3+lxj a lxj :e) ~u-r;Lx;+lyj 'y 
>,'po d »3+2lxj+lyj (d »;+lxj a lxj :e) +lyj y 

>,'po d »3+2lxj+lyj (a (')z+lxj :e) 
>,'po d »3+2lxj+lyj (a lx' :e) 
'-+ d »3+2lxj+lyj a +lyj (:e 

C.3.16 (a (,) :e) > y,-+ a (,) (:e ~ y) 

(a (')z+lxj :e) >4+2lxj+lyj y 
>,'po (a :e) >4+2lxj+lyj 'y 
>,'po ((a (')z+lxj :e) >4+2lxj+lyj 'y) 
((a (')z+lxj :e) >4+2lxj+lyj 'y) 
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>rpo a +lyj ((a lx :r) C>4+ZlxJ+lYJ 'y) 
>rpo a +lyj ((a lx ':r ) C>4+ZlxJ+lYJ y) 
>rpo a +lyj (:r C>4+Zlx +lyj y) 
>rpo a +lyj (:r C>ZlxJ+lYJ y) 

C.3.11 a C> :r '-+ a (,) (E CD :r) 

In this proof, we use that l:rJ = max (1, l:rJ) = lE CD :rJ. 
a C>z+lxJ :r 
>l'pO a C>z+lxJ *:r 
>l'pO (a C>z+lxJ *:r) (9z+lxJ (a C>z+lxJ *:r) 
>rpo a lXJ (a C>z+lxJ *:r) 
>,'po a lxj ((a C>z+lxj ':e) (a C>3+lxj ':e)) 
>rpo a lXJ (I': CDlxJ (a C>z+lxJ 
>,'po a lxj (E CDlxj :e) 

C.3.18 (d» :e) C> y'-+ d» :e C> y 

Similar to the proof of (d » :e) ~ y '-+ d» :e ~ y, 

C.3.19 (d» c C> :e) (,) y'-+ d» c C> (:e (,) y) 

(d »3+lxj c C>3+lxj :e) (')6+Zlxj+lyj Y 

+ lyj 'y 
>,'po (d »3+lxj c C>z+lxj :e) (')6+Zlxj+lyj 'y 
>,'po d »3+zlxj+lyj (d »3+lxj c C>z+lx' :e) 
>,'po d »3+zlxj+lyj ((d »3+lxj c C>z+lxj :e) +lyj 'y) C>z+zlxJ+lyj 
((d »3+lxj C C>3+lxj :e) +lyj 'y) 
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((d »3+lx' C C>3+lxj 

>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((d »;+lxj C C>3+lxj 

>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((c C>z+lx' :r) 
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((c C>z+lxj ':e) 
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj (:r +lyj y) 
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj (:e +lyj y) 

C.3.20 (c C> :e) (,) Y'-+ C C> (:e (,) y) 

(c C>3+lxj :e) (')4+zlxj+lyj Y 
>rpo (c C>z+lxJ :r) (94+zlxJ+lYJ *y 
>,'po ((c C>3+lxj :r) (')4+ZlxJ+lyj 'y) C>z+zlxJ+lyj 
((c C>3+lxj :r) (')4+Zlxj+lyj 'y) 
>,'po C C>z+zlxj+lyj ((c C>z+lxj :e) (')4+Zlxj+lyj 'y) 
>,'po C C>z+zlxj+lyj ((c C>z+lxj ':e) +lyj y) 
>l'pO c C>z+zlxJ+lYJ (:r (94+zlxJ+lYJ y) 
>,'po C C>z+zlxj+lyj (:e lyj y) 
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C.3.21 (d» c) (,) :r Y d» c 

(d» c) (,) :r >,'po (d» c) (,) ':r >,'po d» c 

C.3.22 (:r CD y)lzY :rlz (D Y l z 

Similar to the proof of (:r CD Y) (:J Z Y :r (0 z CD Y (0 z, since the semantical 
lahelling is irrelevant for this proof. 

C.3.23 :r I (y (D z) Y :r I y (D :r I z 

:rl (y CD z) 
>,'po :r I '(y CD z) >,'po (:r I '(y (D z)) (D (:r I '(y CD z)) 
>,'po (:r I (y CD 'z)) (D (:r I (y CD 'z)) 
>,'po (:rly) (D (:rlz) 

C.3.24 d» E I d' » E Y (d? 1\ d'?) » E 

d»Eld'»E 
>,'po d» E I'd' » E 

>,'po (d? 1\ d'?) » (d» E I'd'» E) 
>,'po (d? 1\ d'?) » E 

C.3.25 d» E lEY d? » E 

Similar to the proof of d » E I d' » E Y (d? 1\ d'?) » E. 

C.3.26 E I d» E Y d? » E 

Similar to the proof of d » E I d' » E Y (d? 1\ d'?) » E. 

C.3.27 d» a (,) :r I d' » a' (,) y Y (d 1\ d') » (wya') (,) (:r II y) 

d» a (,) :r l6+lxj+lyj d'» a' (,) y 

>rpo d» a (0 :r i6+lxJ+lYJ *d'» a' (:J y 
>,'po (d 1\ d') » (d» a (,) :r l6+lxj+lyj 'd'» a' (,) y) 
>,'po (d 1\ d') » (d» a (,) :r l6+lxj+lyj 'd'» a' (,) y) (,) 
(d» a (,) :r l6+lxj+lyj 'd'» a' (,) y) 
>,'po (d 1\ d') » (ara') (,) (d» a (,) :r l6+lxj+lyj 'd'» a' (,) y) 
>,'po (d 1\ d') » (ara') (,) (d »' a (,) :r l6+lxj+lyj d' »' a' (,) y) 
>,'po (d 1\ d') » (ara') (,) (a (,) :r l6+lxj+lyj a' (,) y) 
>,'po (d 1\ d') » (ara') (,) (a (,) ':r l6+lxj+lyj a' (,) 'y) 
>,'po (d 1\ d') » (ara') (,) (:r l6+lxj+lyj y) 
>,'po (dl\d')>> (ara') (,) (:rl!lxj+lyjY) 
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C.3.28 a (,) :r I d » a' (,) y Y ([ true]/\ d) » (wya') (,) (:r II y) 

Similar to the proof of d » a (,) :r I d' » a' (,) y Y (d /\ d') » (ara') (,) (:r II y). 

C.3.29 a (,) :r I a' (,) y Y (ara') (,) (:r II y) 

Similar to the proof of d » a (,) :r I d' » a' (,) y Y (d /\ d') » (ara') (,) (:e II y) , 
but leaving out the introduction of (d ;\ d') ». 

C.3.30 d» a (,) :e I a' (,) y Y (d /\ [true]) » (ara') (,) (:e II y) 

Similar to the proof of d » a (,) :r I d' » a' (,) y Y (d /\ d') » (ara') (,) (:e II y). 

C.3.31 d» a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :e 

d» aid'» a' (,):e 

>,'po d» a I'd' » a' (,) :r 
>,'po (d /\ d') » (d» a I'd' » a' 
>,'po (d /\ d') » (d» a I'd' » a' 
(d» a I'd' » a' (,) :e) 

:9 
:~ 

:r) 
:e) :~ 

>,'po (d /\ d') » (ara') (,) (d» a I'd'» a' (,) :r) 
> "po (d /\ d') » (ara') :,) :e 

C.3.32 d» a :,) :r I d' » a' Y (d /\ d') » (ara') (,) :e 

Similar to the proof of d » a I d' » a' (,) :r Y (d /\ d') » (ara') (,) :r, 

C.3.33 d» a (,) :r I a' Y (d /\ [ true]) » (ara') (,) :r 

Similar to the proof of d » a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :r, 

C.3.34 a I d» a' (,) :r Y ([ true]/\ d) » (ara') (,) :r 

Similar to the proof of d » a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :e, 

C.3.35 a (,) :r I d » a' Y ([ true]/\ d) » (ara') (,) :e 

Similar to the proof of d » a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :r, 

C.3.36 d» a I a' (,) :e Y (d /\ [ true]) » (ara') (,) :e 

Similar to the proof of d » a I d' » a' (,) :r Y (d /\ d') » (ara') (,) :r, 

C.3.37 d» a I d' » a' Y (d /\ d') » (ara') 

d» aid'» a' 
>,'po d» a I'd' » a' 
>,'po (d /\ d') » (d» a I'd' » a') 
>,'po (d /\ d') » (ara') 
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C.3.38 d» a I a' 4 (d /\ [ true]) » (ara') 

Similar to the proof of d » a I d' » a' 4 (d /\ d') » (ara'). 

C.3.39 a I d» a' 4 ([ true ]/\ d) » (ara') 

Similar to the proof of d » a I d' » a' 4 (d /\ d') » (ara'). 

C.3.40 a I a' (,) :c 4 (ara') ,,) :c 

al a' :9 :r 
>l'pO a I *a' (:J :r 
>"po (a I 'a' (,) :c) ,,) (a I 'a' ,,) :c) 
>"po (ara') ,,) (a I 'a' ,,) :c) 
> "po (ara') (,) :c 

C.3.41 a (,) :c I a' 4 (ara') ,,) :c 

Similar to the proof of a I a' (,) :c 4 (ara') ,,) :c. 

C.3.42 d» E I d' » c [> :c Y (d? - d') » c [> :c 

d»Eld'»c [>:c 
>"po d» E I'd' » c [> :c 
>"po (d? - d') » (d» E I'd' » c [> :c) 
>"po (d? - d') » (d» E I'd' » c [> :c) [> 

(d» E I'd' » c [> :c) 
>"po (d? - d') » c [> (d» E I'd' » c [> :c) 
>"po (d? - d') » c [> :c 

C.3.43 d» c [> :c I d' » E 4 (d'? - d) » c [> :c 

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c. 

C.3.44 c [> :cld» E 4 d?» c [>:c 

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c. 

C.3.45 d» E I c [> :c 4 d? » c [> :c 

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c. 

C.3.46 Eld» c [>:c4 d» c [>:c 

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c. 

C.3.47 d» c [> :c IE 4 d» c [> :c 

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c. 
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C.3.48 d» cl d'» E '-+ (d'? ~ d)>> c 

d»cld'»E 
>,'po d» cl 'd'» E 

>,'po (d'? ~ d)>> (d» ci 'd'» E) 
>,'po (d'? ~ d) » c 

C.3.49 d» E 1 d' » c '-+ (d? ~ d') » c 

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c, 

C.3.50 E 1 c [> :r '-+ c [> :r 

Trivial, since c [> :r is a sllbterm of € I c [> :r. 

C.3.51 c [> :r 1 E '-+ c [> :r 

Trivial, since c [> :r is a sllbterm of c [> :r I €. 

C.3.52 c 1 d » E '-+ d? » c 

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c, 

C.3.53 d» E 1 c '-+ d? » c 

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c, 

C.3.54 E 1 d» c '-+ d» c 

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c, 

C.3.55 d» c 1 E '-+ d» c 

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c, 

C.3.56 d» c [> :rl d'» c' [> y'-+ ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') [> 

(:r~c'~y G)y~c~:r G):rlc'~y (£)ylc~:r) 

d» c [> :r l6+lxj+lyj d'» c' [> y 
>,'po d» c [> :r 16+ lxJ+lyj 'd'» c' [> y 
>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (d» c [> 

>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (d» c [> 

(d» c [> :r 16+lxj+lyj 'd'» c' [> y) 
>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (c /\ c') [> 

(d» c [> :r l6+lxJ+lyj 'd' » c' [> y) 
>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (c /\ c') [> 
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C.3.59 e c> :r I e' c> y Y (e /\ c')jmp » (e /\ c') c> 
(:r~e'~y G)y~e~:r G):rle'~y G)Yle~:r) 

Similar to the proof of d » c C> :r I d' » e' C> y Y ((d - ejmp) /\ (d' - e1mp)) » 
(e/\e') C> (:r~e' ~ y G) y~c ~:r G) :rIc' ~ y G) yle ~ :r), bllt llsing the 
faet that [true] ,-..., Cjmp is logically equivalent to c. 

C.3.60 d» el d'» e' C> :r Y ((d - ejmp)/\(d' - e}mp))» (e/\e') C> (ell:r) 

d» e 15+lxj d' » e' C> :r 
>rpo d» Cl5+lxj *d'» c' [> :r 
>,'po ((d - ejmp) /\ (d' - e}mp)) » (d» e 15+lxj 'd'» e' C> :r) 
>,'po ((d - Cjmp) /\ (d' - e}mp)) » (d» C 15+lxj 'd'» c' C> :r) C> 

(d» e 15+lxj 'd' » e' C> :r) 
>,'po ((d-ejmp)/\(d'-e}mp))» (e/\e') C> (d»el5+lxj 'd'» e' c>:r) 
>,'po ((d - Cjmp) /\ (d' - e}mp)) » (e /\ e') C> (d »' e l5+lxj d'» c' C> ':r) 
>,'po ((d-ejmp)/\(d'-e}mp))» (e/\e') C> (eI5+lxjd'»e' C> ':r) 
>,'po ((d - ejmp) /\ (d' - e}mp)) » (e /\ e') C> (eI5+lxj:r) 
>,'po ((d - Cjmp) /\ (d' - e}mp)) » (e /\ e') C> (ell'+lxj:r) 

C.3.61 d» C C> :r I d' » c' Y ((d - Cjmp)/\ (d' - c}mp)) » (c/\c') C> (:c II e') 

Similar to the proof of d» el d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) » 
(e /\ e') C> (e II :r). 

C.3.62 d» C C> :r Ie' Y ((d - ejmp) /\ e}mp) » (c /\ e') C> (:r II c') 

Similar to the proof of d» ci d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) » 
(e/\e') C> (ell:r), 

C.3.63 e C> :r I d» e' Y (ejmp /\ (d - e}mp)) » (e /\ e') C> (:r II e') 

Similar to the proof of d» el d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) » 
(e/\e') C> (ell:r), 

C.3.64 d» ele' C> crY ((d-ejmp)/\e}mp)>> (e/\e') C> (ell:r) 

Similar to the proof of d» el d' » c' C> :r Y ((d - ejmp) /\ (d' - e}mp)) » 
(e/\e') C> (ell:r), 

C.3.65 e I d » e' C> :r Y (ejmp /\ (d - e}mp)) » (e /\ e') C> (e 11:r) 

Similar to the proof of d» el d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) » 
(e/\e') C> (ell:r), 
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C.3.66 d» cld'» C'y ((d- Cjmp) 1\ (d' - c}mp))» (CI\C') 

d»cld'»c' 
>,'po d» C I'd' » c' 
>,'po ((d - Cjmp) 1\ (d' - c}mp)) » (d» C I'd'» c') 
>,'po ((d - Cjmp) 1\ (d' - c}mp)) » (c 1\ c') 

C.3.67 C I d » c' Y (Cjmp 1\ (d - c}mp)) » (c 1\ c') 

Similar to the proof of d» C I d'» c' Y ((d - Cjmp) 1\ (d' - c}mp)) » (c 1\ c'), 

C.3.68 d» C I c' Y ((d - Cjmp) 1\ c}mp) » (c 1\ c') 

Similar to the proof of d» C I d'» c' Y ((d - Cjmp) 1\ (d' - c}mp)) » (c 1\ c'), 

C.3.69 C [> :r I c' Y (c 1\ c')jmp » (c 1\ c') [> (:r II c') 

Similar to the proof of d» cl d' » c' [> :r Y ((d - Cjmp) 1\ (d' - c}mp)) » 
(CI\C') [> (cl l :r), 

C.3.70 clc' [>:rY (Cl\c')jmp» (CI\C') [> (cl l :r) 

Similar to the proof of d» cl d' » c' [> :r Y ((d - Cjmp) 1\ (d' - c}mp)) » 
(cl\c') [> (cl l :r), 

C.3.71 0/1 (:r (,) y) Y 0/1 (:r) ,,) 0/1 (y) 

0/1 (:r ,,) y) 
>,'po 0/1 (:r ,,) y)' 
>,'po 0/1 (:r ,,) y)' ,,) 0/1 (:r ,,) y)' 
>,'po 0/1 (:r ,,) 'y) ,,) 0/1 (:r (,) 'y) 
>,'po 0/1 (:r) (,) 0/1 (y) 

C.3.72 0/1 (:r [> y) Y all (:r) [> 0/1 (y) 

Similar to the proof of 0/1 (:r (,) y) Y 0/1 (:r) ,,) 0/1 (y), 

C.3.73 0/1 (d»:r) Y d» 0/1 (:r) 

0/1 (d» :r) 
>,'po 0/1 (d»:r)' 
>,'po d» 0/1 (d» :r)' 
>,'po d» 0/1 (d »' :r) 
>,'po d» 0/1 (:r) 

C.3.74 0/1 (:r CD y) Y 0/1 (:r) 'D 0/1 (y) 

Similar to the proof of 0/1 (:r (,) y) Y 0/1 (:r) ,,) 0/1 (y), 
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