

Hybrid process algebra

Citation for published version (APA):
Cuijpers, P. J. L., & Reniers, M. A. (2003). Hybrid process algebra. (Computer science reports; Vol. 0307).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/17685d5c-8f9f-40a9-8659-1bc9811116b8

Hybrid Process Algebra*

P .. J.L. Cuijpers and M,A, Reniers

July 3, 2003

1 Introduction

1.1 Hybrid Systems

The theory of hybrid systems: studies the (;ombinHtion of (;ontinnollsjphyskHl
Bnd dis(:rete/(;OmplltHtiollHl behavionr. \Vhen (;omplltHtiollHl software is (;OIn
bined with medumkHl Bnd eledrkHl (;omponents: or is intenH:ting with: for
exmnple: (:hemkHl pro(:esses: H hybrid system arises in whkh the intenH:tion be
tween the (;ontinnolls behavionr of the (;omponents: Bnd the dis(:rete behavionr
of the software is important.

In (:llrrent pnH:tke: often the dis(:rete part of H hybrid system is des(:ribed
Bnd l-HlHlyzed nsing methods from (;ompllter sdelH:e: while the (;ontinnolls part
is handled by (;ontrol sdelH:e. The design of the (;omplete system is usually SlH:h
that intenH:tion between the dis(:rete and (:ontinuous part is suppressed to a
minimum. Be(:ause of this suppressed intenH:tion: analysis is possible to some
extent: but it limits the design options. In the field of hybrid systems theory:
resean:hers attempt to extend the possibilities for intenH:tion. The goal of this
pHpeL is to develop HIl HIgebrHie theory, eHlled hybrid proeess HIgebfH (HyPA),
to support these attempts. Our hopes are that hybrid pn)(:ess algebra (:an serve
as a mathematkal basis for improvement of the design strategies of hybrid
systems: and the possibility to analyse them. Further on in this introd1H:tion:
we will review some of the already existing hybrid formalisms: and point out
the defeds of those: on whkh we hope to make some improvements.

In figure 1: a graphkal representation is given of the general aim of our
efforts. The figure shows our desire: that a hybrid theory is: in a sense: a
(:onservative extension of (:omputer sdelH:e and systems theory. f\!Iore predsely:
a model from systems theory or (:omputer sdelH:e: should be expressible: and
preferably look the smne: in the hybrid theory: and theorems from systems
theory and (:omputer sdelH:e should be transferable to the hybrid theory (when
restrkted to models from the original field of (:01Hse). \Vhat the figure does not
show: is that this (:onservativity is not the only goal. In that (:ase: a simple

*\Ve wonkllike to express om gratitnae to ProgressjST\V (Grant EES:J17:i), Philips-eFT
ana Assembleon, for their financial ana material snpport of this project.

1

union of the theories would be sufficient. \Ve also desire a certain interaction
between the theories, reflecting the interaction between software and physics
described before. This goal is harder to formalize , but in the remainder of this
introduction we hope to give some feeling for it, using examples of deficiencies
(in our view) in existing hybrid formalisms, and indicating how we intend to
improve on those.

Systems Theory
Syntax

Semantics

Hybrid Theory
Syntax

Semantics

Figure 1: Developing Hybrid Theory

1.2 Algebraic Reasoning

Computer Science
Syntax

Computer Science
Semantics

In systems theory, algebraic reasoning is acknowledged by most people, as one
of the most powerful tools availahle for analyzing physical behaviour. This
behaviour is usually described by differential equations and inclusions, which
model the rate of change of the value of certain continuous variahles, or by dif
ference equations and inclusions, modelling discrete changes in variahles. Note,
however, that these two ways of descriptions are hardly ever combined. As an
example of a differential equation, :r = f(:r, u), in which :r and u are variahles
ranging over the real numbers, and f is real valued function, models that the
value of :r changes continuously through time (indicated by the dot in :r) with
a rate defined by f(:r, u), i.e. by the current value of :r and u. Alternatively, if
there is a choice of rates of change, one may write :r E F(:r, u) , in which F is a

2

set-valued function over the re;:-tls. Also, an inequality :r ::; 1(:r, y) may denote
that :r is constrained in its value (not its rate of change) for some reason. As
an example of a difference equation, :r+ = 1(:r-,'I1-) denotes that the value of
:r is reassigned to 1(:r-, '11-), based on the previous values of :r and '11. This
way of notation is for example used in [41]. Following Henzinger's way [26] of
describing continuous behaviour , we allow any predicate over model variables
Vm and their 'dotted' versions Vm in this report. These predicates are called
flow-clauSf'B. Analogously, predicates over V-;;I and V~I are called 'reinitializa
tion clauses', and are used to model discontinuous behaviour of model variables.
However, although we allow arbitrary predicates over model variables, the anal
ysis of systems will often turn out to be easier, if we confine ourselves to clauses
based on some algebraic way of description.

In computer science, the usefulness of algebra is still a topic of much de
bate, but nevertheless there are interesting examples of applications of process
algebra (see for example [23] for a list of references to protocol verifications,
[12] for a start in the description and analysis of other industrial size problems ,
like the design of a controller for a coating system and a turntable system, and
[22] for the description and analysis of railway interlocking specifications). In
process algebra, the discrete actions that a system may perform are often con
sidered atomic elements of the algebraic description language. These 'atomic
actions' can be combined using operations describing choice between behaviors,
sequential execution of behaviors, and concurrent execution of behaviors. For
example, the process algebraic equation X = aX + b describes a recursive pro
Cf'BS X that may choose to execute an atomic a action, followed by an execution
of X again, or choose (+) to execute b and terminate. In this report we take the
process algebra ACP [8] and extend it with new atoms, describing continuous
behaviour through the use of flow-clauses and discontinuous behaviour through
reinitialization-clauses as mentioned before. Also, we import the disrupt oper
ator from LOTOS [13]' since it turned out to model the sequential composition
of flow-clauses well. The choice for ACP is rather arbitrary, and we expect that
the methods described in this report can be easily extended to other process
algebras. Obviously, the choice for ACP leads to the need for an alternative
notation for some symbols, since, amongst others, the process algebraic + has
a different meaning than the system theoretic +. In section 2.1 of this report,
these notational problems are solved, and the notation for our hybrid process
algebra is formalized.

Returning to figure 1, we may conclude that we have chosen the process
algebra ACP as a representative syntax for computer science, and a predicate
variant of differential equations and difference equations for systems theory.
The resulting conservative extension, we call hybrid process algebra (or for
short HyPA) , in which abstract actions are described by the actions of standard
process algebra, physical behaviour is described by flow clauses, and assign
ments and other discontinuities are described by reinitialization clauses. The
reason for this choice of syntax, is that we agree that algebraic reasoning is an
important tool for the analysis of systems, and that we would like to support
the possibility of algebraic reasoning abcHlt hybrid systems. So far , the only

3

algebraic approaches that we know of regarding hybrid systems, are described
in [37, 39, 36] (hybrid X), [44, 11] (hybrid versions of ACP), [27] (hybrid CSP)
and [35] (G)-calculus). In the remainder of this introduction, we will explain
the deficiencies that these methods have, in our opinion, in describing hybrid
interaction. \Ve should note, that within other hybrid formalisms like hybrid
automata [26, 28], hybrid Petri-nets [9, 16, 19] and hybrid aetion systems [33]'
the lL<.;e of algebraic reasoning on differential equations for analysis purposes,
is not lllH;ommon. It is the process algebraic reasoning that is underexposed.
For a translation of hybrid automata into the process algebras CSP, and timed
I,CRL, see [2] and [45, 24], respeetively.

In the hybrid theory that has been developed by system theorists (see for
example [41, 42, 10, 25, 40, 18]) algebraic: reasoning is possible, but none of
these theories support reasoning ahout non-determinism. All of these theories
have a tn-ice semantics, and cannot distinguish deadlocks and non-deterministic
choices. Since we would like a conservative extension of process algebra, we
would also like to be able to distinguish systems up to the notion of bisimulation
equivalence, and therefore, we consider the system theoretic formalisms as non
conservative with respect to computer science.

In section 3 of this report, we prove formally that HyPA is a conservative
extension of the process algebra ACP, and by construction of the semantics, it
is immediately dear that it is a conservative extension of differential indusions,
at least up to the type of solutions we have chosen to use.

1.3 Hybrid Interaction

IVlany of the hybrid formalisms that we have mentioned so far , have some prob
lem in the definition of parallel composition. And surprisingly, in most caseB,
this problem comes to light in a purely continuous case study. Let us consider
the following example, depicted in figure 2, of a continuous plant P described
by the differential equation:r = f(:r, u) , and a continuous controller C described
by u = [I(:r). The eomposition of plant and eontroller will be denoted as P II C.

P
- ;i; = i(:r, u) r--

u :r

C
- u = [I(:r) f---

Figure 2: Continuous control system

The hybrid automata of Henzinger [26]' as well as the hybrid process alge
bra of Vereijken [44], and of .Tifeng [27], assume that the eontinuous behaviour
of two composed systems is independent. Using these formalisms, the system
P II C would not model any interaction between P and C at all, since the only

4

interaction between systems can be through computational actions. The vari
able :r of P would simply be regarded different from the variahle :r of C. Hence,
in our opinion, these formalisms cannot be considered to be a conservative ex
tension of systems theory. At least, they do not support the way in which we
would like to think ahout parallel composition of systems.

In a similar way, it turns out that the parallel composition of the ahove
processes is not defined for the hybrid automaton model of Lynch, Segala and
Vaandrager [28]. At least , not without a few amendments. In the formalism of
[28], it is necessary to identify variables as either state variables of a system, or as
external variahles of the system. Thf'Be two sets of variahles are supposed to be
disjoint. The intuition behind this partition is that the state variahles model the
memory of the system, while the external variables model the communication
with other systems. Therefore, in a parallel composition, it is required that two
hybrid automata are compatible, meaning that the state variahles of the one
automaton do not intersect with any of the variahles of the other automaton.
Now, looking at the plant P of figure 2, we see that we need to choose :r to be a
state variahle, otherwise information on :r is lost between transitions, but it also
needs to be an external variahle, since we need to communicate its value with
the controller C. This contradicts the requirement on hybrid automata that the
set of state-variahles and the set of external-variahles are disjoint. Admittedly,
the problem is not as big as it may seem, since by adding an external variable
y, and the equation y = :r, to the description of P, and changing the description
of C to u = g(y) , we can declare :r to be a state-variable, and find that the
systems have become compatible. So, although the system in figure 2 cannot
be modelled as P II C directly in this hybrid automaton model, we can model
the slight modification depicted in figure 3 instead.

p

- ;" = i(:r, u) r--
y= :r

u
C

- u = [j(Y) f---

Figure 3: Compatible continuous control system

In [32] it was already noted that the variahle-partition of a system, is not
always uniquely determined by the equations that describe the system. Even
in our simple control example, it is possible to use the equations :r = y and
u = g(:r), and dedare :r external and y a state variahle. Often, there is no
dear physical ground to choose a specific partition. This is the one reason why
we would like to avoid the partitioning of the set of variables of a system, in
our semantics. Another reason, is that in basic textbooks on control theory
(for example [17]), one usually starts out with developing controllers for plants

5

of which the state-variahles are also output-variahles. It therefore seems, that
the intuition hehind compatibility, that state-variahles do not playa role in
communication with other systems, does not coincide with the system- theoretic
intuition. This is confirmed by the theory discussed in [32], where state-variahlf>B
may also be output-variahles of a system, while external-variahles may be inputs
or outputs.

In this report , we show that partitioning the model variahles as done for
hybrid automata, is in fact not necessary, if a subtly different semantical view
is taken. \Ve have to credit the authors of [28] however, for being ahle to do
analysis, to some extend, in the light of ahstraction of variahles (making them
internal). The hybrid process algebra we present in this report is not concerned
with any form of ahstraction so far, because experience with normal process
algebra shows that ahstraction is a difficult topic to study algebraically, and we
expect it to be convenient , that the basic theory is worked out first [7]. On the
other hand, HyPA is developed in dose cooperation with the people who are
working on the formal semantics of the hybrid x -language, which is focussed
on the simulation of hybrid systems. Their operational semantics [36] uses a
semantical structure similar to, and based. on, the one we have developed for
HyPA (discussed in section 2.2), and their language does contain and operator
that allows for the hiding of model variahles (although there is no axiomatization
for it yet). Also the hybrid proeess algebra of Bergstra and Middelburg [11],
that appeared as a technical report just one week before this one went to print,
uses a hybrid transition system semantics, and has comparahle definitions for
parallel composition. Furthermore it has a form of ahstraction from model
variahles, comparahle to that of x. \Ve expect, therefore, that it is possible to
develop a similar ahstraction operator for HyPA, and hopefully to find a way
to reason ahout it algebraically. In section 4, we discuss the relation between
HyPA, X and the proeess algebra of [11] in more detail. Admittedly, these three
languages are very similar , which calls for a more thorough comparison in the
near future.

In cj)-calculus [35], the semantics assumes continuous behaviour to be a prop
erty of the environment, rather than of the process itself. There, (urgent) envi
ronmental actions allow the process to change the rules for continuous behaviour
in an interleaving manner , which leads to the replacement of one differential
equation by another. Again, there is no continuous interaction between P and
C. \Vhen we write P II C in cj>-calculus, the semantics is such that only the
continuous behaviour of the plant or of the controller is executed .. This, dearly,
contraclicts with our intuition on the parallel composition.

In hybrid action systems, the parallel composition of P and C leads to the
desired result, if we ignore some irrelevant syntactical constructs. However, the
parallel composition of two differential equations :r = 1 II:r = 2 results in a
process that acts like the differential inclusion:r E {l, 2}. This, again, contra
diets with our intuition. \Ve would expect contradicting equations to result in
deadlock. Nevertheless, both the 'interleaving' approaches from cj>-calculus and
hybrid action systems, might turn out to be useful in situations where our intu
ition is flawed , and the theories might be considered complementary to HyPA.

6

In conclusion, we might state that we aim for an algebraic formalism , in
which the parallel composition has a similar intuition as in [281, but without
having to require compatibility of the composed systems. To do this, we have
worked out the notion of hybrid transition system, as a semantical framework,
in [15]. This framework lmifif'B the discrete behaviour of computer science and
the continuous behaviour of system theory in a similar way as the hybrid au
tomata of [28] do, while avoiding the explicit use of state variahles and external
variahles. From a system theoretic point of view , hybrid transition systems are
an extension of Sontag machines [38]. Returning to figure 1, one might say that
the chosen semantics of the original fields are transition systems for computer
science, and Sontag machines for system theory. Our conservative extension of
those is called hybrid transition system. On the framework of hybrid transition
systems , it turns out to be rather easy to define an operational semantics for
actions, as well as for differential equations and inclusions. Also all kinds of
compositic)lls known from process algebra, among which parallel composition,
can be defined easily using the method for giving an operational semantics in
trodlleed in [31]. As far as we know, HyPA and X and the proeess algebra of [11]
are the only process algebras for hybrid systems so far, that use an operational
semantics in which complete physical signals are taken into account rather than
only the time-behaviour of a system.

1.4 Discontinuities

Regarding discontinuous behaviors, the semantics for differential equations in
HyPA, differs a little from the usual interpretation taken in, for example, Hen
zinger's hybrid automata. The standard approach there (and in most other
hybrid formalisms), is to assume only continuous behaviour of all variahles, un
less they are specifically altered by assignment transitions. For some hybrid
descriptions of physical behaviour, however, it is convenient that certain vari
ables can also behave discontinuously. Take, for example, the electrical circuit
depicted in figure 4, in which a switch steers the voltage over a resistor-capacity
combination.

Figure 4: Electrical circuit with switch

For such a system, it is desirable to model the voltage over, and the current
through the resistors (Vllb Vaz , 'i 1h and 'i llz) as discontinuous functions of time.
A possible hybrid automaton model for this circuit , is depicted in figure 5. Note,

7

that there are arbitrary jumps modelled on the transitic)lls, for the discontinuous
variahles (i.e. not for vc!). This is necessary, because, without deeper analysis
of the differential equations, we do not know what kind of discontinuities may
occur. In order to avoid discontinuous behaviour that violates the physical
properties of the circuit, we may indicate in the hybrid automaton model, that
the algebraic equations used to describe the eleetrical circuit are invariants. As
an example of an undesired discontinuity, one should note that, when the switch
doses, the current through the second resistor (iIlZ) is determined completely
by the source voltage Ve and the voltage over the capacitor Vc. The invariants
make sure that no other assignments can be made to 'iHZ.

jmp:
V/I1 :E IR
VllZ :E lR
i/l1 :E IR
'i HZ :E lR

:E IR
aet:
open

flow:
Ve = C ie

inv:
'iRI = -'iRz

VIlI = 'illl Rl
VllZ = 'i HZ R2

VIlI = VIlZ + Vc

'i HZ =

flow:
ve = C ie

inv:
VRI = Ve

VIlI = 'illl Rl
VIlZ = 'i HZ R2

VRI = VIlZ + Vc

'i HZ =

jmp:
V/I1 :E IR
VIlZ :E lR
i ll1 :E IR
'i RZ :E lR

:E IR
aet:
dose

Figure 5: Automaton modelling the eleetrical circuit

Now, in the case of higher index differential equations, the approach of using
invariants to avoid undesired discontinuities breaks down. As an example, let us
consider a system described by the following equations, in which z is a variahle

8

that may behaviour discontinuously:

:r z

y -z

:r y .

As before, it is undesirable that an assignment to z is made that violates these
equations. But the approach that is usually taken in hybrid automata theory,
to take all algebraic equations to be invariants, does not work here. The choice
of z is independent from the choice of :r and y. Clearly, the system only can
perform continuous behaviour, if the value of z is reset immediately to zero.
This, however, is insight obtained through analysis of the equations, and should
therefore not be used when modelling a system. As far as we know, there is no
solution in hybrid automaton theory for this problem. This is why we take a
different approach regarding discontinuous behaviour in HyPA.

In HyPA, when modelling a differential equation, we can indicate explicitly
whether z is continuous or discontinuous. If it is continuous, we find deadlock
for the higher index differential equations of the previous example. If it is
discontinuous, only those discontinuities can occur for which a solution exists.
Fi1fthermore, assignments are modelled, not as a kind of atomic actions (as with
hybrid automata), but as reinitializations of processes. As it turns out, the
reinitialization of flow-clauses only occurs if the flow-clause has a solution after
reinitializing, while the reinitialization of atomic actic)lls is always executable.
This will be explained in more detail in section 2.2 of this report.

1.5 Drawbacks

At first sight , there seem to be two major drawbacks to our method. The first
drawback, is that we need a kind of bisimulation equivalence that takes into
account the valuation of all variahles, in order for it to be a congruence for
parallel composition. However, this does not render the whole theory useless,
because the Sf-nne method of requiring compatibility of processes that was used
in [28] in order to define parallel composition, can be used in HyPA to guarantee
congruence of parallel composition under a weaker notion of equivalence (like
the one used in [28]), and furthermore , we give an axiomatization for our notion
of equivalence that allows elimination of the parallel composition from closed
process terms, so that weaker notions of equivalence can be used for analysis of
processes after applying this elimination. The second drawback , is that some
of the axioms become rather conflL<.;ing due to the discontinuities that may be
possible in some of the variables of a differential equation. This can be helped ,
as we show in section 3, by simply requiring all variables to be contillllOus,
as in hybrid automata. So, in conclusion, the theory is not more difficult or
cumbersome, if we model processes under the usual restrictions. In fact, as we
indicate in section 4.1, we expect that HyPA is a conservative extension of hybrid
automata, although we do not give a formal proof of this claim. Furthermore,

9

we have new constructs to our disposition that are not availahle, yet , in other
hybrid formalisms, at the cost of having to use more difficult axioms.

1.6 Structure of this report

In section 2.1 of this report , the syntax of HyPA is presented, describing how the
standard process algebra ACP [8] is extended with a constant for termination,
the so-ealled disrupt operator, known from LOTOS [13]' and a simplifieation of
the two types of clauses from [41], reprf'Benting continuous and discontinuous
behaviour. As we mentioned before, HyPA does not contain any operators for
handling ahstraction of actions or variahles yet. But, even without ahstraction
constructs, hybrid process algebra turns out to be interesting topic of study,
already. Ftuthermore, since ahstraction is a rather complicated subject , it seems
wise to develop a concrete prOCf'BS algebra first [7]. In section 2.2, a hybrid
transition system semantics is defined in the style of [311, in which continuous
behaviour is synchronizing, and discrete behaviour is interleaving. Section 3 is
devoted to an axiomatization of HyPA, for the equivalence notion ofbisimulation
[29]. In this section, also the formal relation with ACP is discussed , and a
set of basic terms is given into which dosed HyPA terms can be rewritten.
\Ve conclude by giving our own views on the work presented, and by making
suggestions for future research. In the appendices, we give the proofs for the
soundnf'Bs, conservativity and rewriting claims of section 3.

2 Hybrid Process Algebra

2.1 Syntax

In this section, the syntax of HyPA is introduced, which is an extension of
the proeess algebra ACP [8, 21], with the disrupt operator from LOTOS [13]
and with flow-clauses and reinitialization-clauses from the event-flow formalism
introdlleed in [41]. The syntax of HyPA is defined by:

P ')IElalcld»PIP C9 PIPC')PI
P ~ P,P c> P,P II P I P~P I P I P I 0/1 (P) ,

where a E ii, c E C and d E D are not defined formally here, but only described
informally in the following explanatory text.

• There are the atomie proeess terms,) (ealled deadlock) and E (ealled empty
process), modelling respectively a deadlocking process and a (successfully)
terminating process.

• There are atomic discrete actions, chosen from a set ii, used to model
discrete, computational behaviour.

• There are flow-clauses, used to model continuous, never terminating, phys
ical behaviour. Flow-clauses are chosen from a set C , formed by pairs

10

[v I Pred] ()f predkates Pred: in whkh m()(lel variables V m (with:r E V m

taking value in V(:r)) and their derived 1 versions 'if m = {:r I :r E V m}
(with :r also taking value in V(:r)) may o(:(:ur as free variables: and of a
subset V ~ Vm: signifying whkh variables are (:ontinuous: in the sense
that during the evolution of time their value may not jump. \Ve usually
leave out the bnH:kets for V: and even omit it (and the T delimiter) if
it is empty. Typkal flow-dauses me differential equations: for example
[:r I :i: = f(:r.)I)] , and algebmi(; inequalities, for example [:r:S f(:r.)I)].
Furthermore: the set C is dosed under (:onj1llH:tion (A) of dauses. In
general: the domain V(:r) of a model variable :r E V m is spedfied by the
modeller at the first introd1H:tion of the variables. In this paper: the spe(;
ifi(:ation of domains is usually left out sin(:e: most of the time: it is obvious
from the (;ontext. We write V = U C" V(:r) for the union of all variable

x,- 'f m

domains: and Val = V m -t V for the set of variable valuations .

• There are reinitialization-clauses: used to model dis(:ontinuous dlHnges in
the vall1es ()f the m()(lel variables. Reinitializati(Hl-dal1ses me dl()sen fn)ln
a set D: formed by pairs [V I Pred]: (:onsisting of predkates Pred: in
whkh free variables may o(:(:ur from the sets V-;;1 = {:r- I :r E V m } and
Vtl = {:r+ I :r E V m}: modelling the (:urrent and future value of a model
variable: respedively: and of a set V ~ V m modelling whkh variables
me alh)wed t() dll-lnge. Typkal reinitializati(Hl-dal1ses are assignments:
for example [:r I :r+ = f(:r-. y-)] whkh: in imperative programming: is
usually denoted as :r := f(:r. y). But: also boolean predkates (:an be
modelled: by dlOosing V empty (using the same notational (:onventions
as with flow-dauses): and only using the (:urrent value of variables: i.e.
[Pred(:r- . y-)] . Apart fn)ln (:(Hltaining the a b(we des(:ribed pred
kates: the set D is dosed under (:onj1llH:tion (A): disj1llH:tion (V): and
(:()ll(:atenati(Hl (,.....,) ()f reinitializati(Hl-dal1ses. Als(): there is a satisfia bility
operator (d?) on dauses d E D: whkh does not reinitialize the wilues of
a model variable: but only exe(:utes the reinitialized pn)(:ess: if d (:an be
satisfied in some way: and there is a reinitialization-dause (Cjmp) derived
from a flow-dause C E C: whkh exe(:utes the same dis(:ontinuities that me
allowed initially by the flow-dause. These last two operators turn out to be
espedally useful when (:akulating with pn)(:ess terms. Reinitializations
dauses are assumed to ad upon 1-Hlother pn)(:ess: so if pEP is a HyPA
pn)(:ess: and d E D is a reinitialization-dause: then d » p denotes the
reinitialized HyPA pn)(:ess .

• There is the alternative compositionz p:ij q: modelling a (non-deterministk)

1 \Ve as:-mnw oerivation is oefineo for all variables, bnt if we want to ns a variable :1: for which
this is not the case (for example a compntational oata strnctnre), then no formal problems
arise as long as we 00 not nse the oeriveo variable :1: in onr preoicates.

2\Ve nse the notation d: ano :,': for alternative ano seqnential composition, rather than the
nsnal + ano " to avoio confnsion with the notation nseo in Aow-danses ano reinitialization
danses for aooition ano mnltiplication. Also, we nse X ~ p for recnrsion rather than X = p.
\Ve realize that this might oistract people in the fielo of process algebra, yet chose to anapt

11

dlOke between the pn)(:esses p and q.

• There is the sequential composition p:9 q: m()delling a seq1Iential eXe(:1Iti(Hl
of pn)(:esses p and q. The pn)(:ess q is exe(:uted after termination of the
pn)(:ess p.

• There is the disrupt operator p .. q: whkh models a kind of sequential
(:omposition where the pn)(:ess q may take over exe(:ution from pn)(:ess p
at any moment: without waiting for its termination. This (:omposition is
inva11Iable when m()delling tW() fl()w-da1Ises eXe(:1Iting (Hle after the ()ther:
siIH:e the behaviour of flow-dauses is ongoing: and never terminates. The
disrupt is originally introdu(;ed in the language LOTOS [131, where it
is used to model for example ex(:eption-handling. Also: it is used: for
example in [41: for the des(:ription of mode-swiu:hes.

• Related to the disrupt: there is the left-disrupt operator: denoted p [> q:
whkh first exe(:utes a part of the pn)(:ess p and then behaves as a normal
disrupt. The left-disrupt is mainly needed for (:akulation and axioma
tization purposes: rather than for modelling purposes. For example: it
o(:(:urs often when we attempt to eliminate the parallel (:omposition from
a pn)(:ess term through axiomatk reasoning: as des(:ribed in sedion 3.

• There is the parallel (:omposition: p II q: whkh models (:OlH:urrent exe(:u
tion of p and q. The intuition behind this (:OlH:urrent exe(:ution is that
dis(:rete l-H:tions are exe(:uted in l-ill interleaving manner: with the possibil
ity of synduonization (as in ACP: where synduonization is (:alled (:om
munkation): while flow-dauses are fon:ed to sYIH:hronize: and (:an only
sYIH:hronize if they l-H:(:ept the same solutions. The sYIH:hronization of l-H:
ti(HlS takes pla(:e 1Ising a (:(nmmItative and ass()(:iative) (:(nmmmkati(Hl
f1llH:tion r E (A x A) -t A. For example: if the l-H:tions a and a' synduo
nize: the resulting l-H:tion is a" = ara'. Adions (:l-illnot synduonize with
flow-dauses: and in a parallel (:omposition between those: the l-H:tion will
exe(:ute first.

• Related to the pafH11el (;omposition there me the operators p ~ q (;a11ed
left-parallel composition): whkh denotes that p performs a dis(:rete l-H:tion
first (if possible): and then it behaves as normal parallel (:omposition: and
pi q (;a11ed forced-synchronization), that denotes how the first behaviour
(either a dis(:rete l-H:tion or a part of a flow) of p and q is sYIH:hronized: after
whkh it behaves as normal parallel (:omposition. As with the left-disrupt:
these ()perat()rs are mainly intn)(111(:ed f()r (:ak1Ilati(Hl p1Irp()Ses.

• There is the encapsulation: 8 11 (p): whkh models that (:ertain dis(:rete
l-H:tions (from the set H ~ A) are blo(:ked during the exe(:ution of the
pn)(:ess p. This operator is often used in (:ombination with the parallel

the process algebraic notation rather than the notation adopteo from system theory, simply
becanse the latter has been in nse for a longer time alreaoy.

12

(:omposition to model that synduonization between dis(:rete I-H:tions is
enf()r(:ed .

• Finally: all the pn)(:esses should be interpreted in the light of a set E of
re(:ursive definitions of the form X ;:;:j P: where X is a re(:ursion variable
from the set VI' (with VI' nVm = 0) and p is a pn)(:ess term in whkh this:
and other re(:ursion variables: may o(:(:ur. Re(:ursion is a powerflll way to
model repetition in a pn)(:ess.

The binding order of the operators of HyPA is the following: ::), ~ , C>, d », II,
~: I: :ij: where alternative (:omposition binds weakest: and sequential (:omposi
tion binds strongest. \Vith elH:apsulation (811 (_)): bHH:kets are always used. As
an example, a term d » a::) b ::) ell c' should be read as (d » (a::) b)) ::) (c II c').

2.2 Formal Semantics

In this sedion: we give a formal semantks to the syntax defined in the pre
vious sedion: by (:onstr1l(:ting a kind of labelled transition system: for el-H:h
pn)(:ess term and el-H:h possible valuation of the model variables. In this transi
tion system we (:onsider two different kinds of transitions: one assodated with
(:omputational behaviour (i.e. dis(:rete I-H:tions): and the other assodated with
physkal behaviour (i.e. fiow-dauses). This is why we (:all those transition sys
tems hybrid.

Definition 1 (Hybrid Transition System) A hybrid tfHnsition system is a
tuple (X. A H.~. ,(). consisting oj a state spaee X. a set oj actions labels

a set oj signal labels 2:. and transition relations X x A x X and
X x 2: x X. Lastly. there is a termination predicate ,(<;; X.

For the semantkal hybrid transition systems that are assodated with HyPA
terms: the state Spl-H:e is formed by pairs of pn)(:ess terms and valuations of the
model variables to their domain: i.e. X = P x Val. The set of I-H:tion labels is
formed by pairs of I-H:tions and valuations: i.e. irA = A x Val: and the set of signal
labels is formed by partial TIuH:tions of time to valuations: i.e. I: = T H Val.
In this paper: we model time using the non-negative real numbers (T =).
Furthermore: we limit ourselves to those elements a E I: that have a dosed
interval: non-singleton domain: whkh indudes the least element 0: so if a E I:
then the domain of a is of the form dom(a) = [0 ... t], for some t > O. We

I . () oy· (, ") f .. (() (') (' H)) use t 112 notation p. v H P . v or a transItion p. v . a. v . p. v E H

with (p.v). (p'.v H
) E X and (a. v') E A. Similarly, we use (p. v) ~ (p'.v')

for a transition ((p. v). a. (p'. v')) E"-+ with a E and for arbitrary transitions:

we use (p.v) -'+ (p'.v') instead of ((p. v).I. (p'.v')) EH U ~ and I E Au 2:.
Finally, termination is denoted (p. v) ,(instead of (p. v) E ,(.

Hybrid transition systems (:an be used to model (:omputational behaviour
through the use of I-H:tion transitions: whkh take no time to exe(:ute: and to
model physkal behaviour through the use of signal transitions: whkh represent

13

the behaviour of model variables during the passage of time. Note: that there
is no variable in V m that is explidtly assodated with time. Hen(:e: if one would
like to refer to time in a flow-dause. one would have to indude the model of a
do(:k: using for example a differenti;il equa tion like [tit = 1] .

In table 1: the semantks ()f the ahnnk pn)(:esses and the fl()w-dal1ses is given:
using deduetion rules in the style of [31]. In rule number (3),(4) and (5) we use
the notations (v. a) 1= c and (v. v') F d: for notions of solution for flow-dauses
and reinitializati(Hl-dal1ses: that are explained fl1rther (Hl in this se(:ti(Hl.

--(1)
(LV),(

-----(2)
(a. v) :'4' (L V)

(v. a) 1= c. dom(a) = [0 ... t]
--------(3)

(c.v) ~ (c.a(t))

(v. v') 1= d. (p. v') ,(
------(4)

(d » p. v) ,(

(v. v') 1= d. (p. v') -'+ (p'. v")
---------(5)

(d»p.v) -'+ (p'.v")

T})ble 1: Operational semanti"s of HyPA

Rule (1) (:aptures our intuition that E is a pn)(:ess that only terminates.
Analogously: the fad that there is no rule for 8: expresses that this is indeed
a deadlo(:king pn)(:ess. Rule (2) expresses that dis(:rete l-H:tions display their
own name: and the valuation of the model-variables on the transition label: but
do not dumge this valuation. Changes in the valuation (:an only be (:l-\1lsed by
flow-dauses and reinstallation-dauses: as defined by rules (3) to (5).

A flow-dause dlHnges the valuation of the model-variables l-H:(:ording to the
possible solutions of its predkate. In (:ontrast to the flow predkates of [261:
dis(:ontinuities in the flow of a variable :r: me allowed in HyPA when :r ?}. V.
Formally: we define the (:OlH:ept of solution of a flow-dause as follows.

Definition 2 (Derived signal) For a signal a E 2:. the derived signal a. on
the same domain. is defined by a(t')(:r) = (;fta(t)(:r)) (t'). Jor all t' E dom(a).
On the bounds oj the domain. we use the leJt- and right-derivative. respectively.

Definition 3 (Solution of a How-predicate) We define that a pair (v. v') E
Val x Val is a solution oj a predicate Pred on Jree variables V m u"if m. denoted
(v. v') 1= Pred. iJ the predicate evaluates to true. when every variable :r in the
predicate is evaluated to v(:r), and every derived variable :r in the predicate is
evaluated to v'(:r).

Definition 4 (Solution of a How-clause) A pair (v. a) E Val x 2:. is defined
to be a solution oj a flow-clause c E C. denoted (v. a) 1= c. as Jollows .

• (v. a) 1= [V I Pred] iJ Jor all t E dom(a) we find (a(t). art)) 1= Pred. and
Jor all:r E V we find v(:r) = a(O)(:r) and a(·)(:r) is a continuous Junction
Jrom T to V(:r);

14

• (v, a) 1= C 1\ c' if (v, a) 1= C and (v, a) 1= c';

Clearly, the dause [false] has no solutions. Ftuthermore, for the solutions
of a differential equation [:r I :i; = f (:r, y)], we find that a 0 (:r) (with :r the
differentiated variahle) is a continuolls and differentiahle function of time. For
[true], every signal (including discontinuolls signals) is a solution.

Reinitialization-elauses change the valuation of the model-variahles accord
ing to the possible solutions of their predicate. The set V, that we nse in
addition to predicates, indicates that a variable is allowed to change its value.
\Vhenever :r (j V, the variahle :r is fixed., and we can extend the predicate with
:r- = :r+. Formally, we define a solution of a reinitialization-elause as follows.

Definition 5 (Solution of a reinitialization-predicate) We define that a
pair (v, v') E Val x Val is a solution of a predicate Pred on free variables
V~, U vt, denoted (v, v') 1= Pred, if the predicate evaluates to true, when every
variable :r- in the predicate is evaluated to 1I(:r) , and every derived variable :r+
in the predicate is evaluated to v'(:r).

Definition 6 (Solution of a reinitialization-clause) A pair (v, v') E Val x
Val is defined to be a solution of a reinitialization-clause d E D, denoted
(v, v') 1= d, as follows.

• (v, v') 1= [F I Pred] if (v, v') 1= Pred and for all :r 'i F we find v(:r)
v'(:e).

• (v, v') 1= d'v d" if (v, v') 1= d' or (v, v') 1= d";

• (v, v') 1= d'/\ d" if (v, v') 1= d' and (v, v') 1= d";

• (v, v') 1= d' - d" if there exists v E Val with (v, v) 1= d' and (v, v') 1= d";

• (v, v') 1= d'? if v = v', and there exists v E Val with (v, v) 1= d'.

• (v, v') 1= Cjmp if there exists a E I: such that (v, a) 1= C and a(O) = v'.

Obviollsly, [false] has no solutions, while [Vm I true] has every possible
reinitialization as solution. Note, that [true] exactly allows all reinitializations
that do not change any of the variahle valuations. If we want to model a
conditional execution of the form "if Pred then p" , for a predicate Pred on free
variahles from Vm , and a process PEP, this ean be done keeping V empty
and by writing [Pred-] »p. Here, Pred- denotes that we replace every
free variahle :r in Pred by :r-. In a similar way, we sometimes write Pred+ to
denote the replacement of every :r with :r+. Taking V empty implies that, for all
variahles :r E Vm , we have :r- = :r+. Finally, if we have a two reinitialization
clauses d, d' ED, the clause d ,....., d' accepts exactly those solutions that are
in some way a concatenation of the reinitializations of d and d'. The clause
d? does not change the value of any of the variahles, and only has a solution
for those valuations for which d has a solution. The clause Cjmp imitates the
reinitializations performed initially by a flow-clause c.

15

Now that the atomk behaviour of HyPA has been explained: let us take a
doser look at the operators. Their semantks is defined in table 2. Rules (6) to
(10): for alternative and sequential (:omposition: are very similar to that of Aep.
However: it is worth noting that we have dlOsen to model signal-transitions as
having the same non-deterministk interpretation as 1-H:tion-transitions. This in
(:ontrast to many timed pn)(:ess algebras [51: where the passage of time (by itself)
d()es IH)t trigger a brmH:hing in the transiti()ll system. The reaS()ll f()r this way ()f
modelling: is our intuition that (:ontinuous behaviour (Le. the passing of time)
infiuelH:es the valuation of the model variables: and (:an therefore introd1H:e
(:hokes in the system behaviour: just like dis(:rete 1-H:tions do. I(in the future:
we develop operators to abstrad away from the variables that trigger those
(:hokes: we do not want the (:hokes themselves to disappear: through some
time-determinism medumism. The argument for introdudng time-determinism:
that time is 1-ill external phenomenon: does in our opinion not hold for hybrid
systems. Also: the hybrid automata of Henzinger [261: and most other hybrid
automata apprOl-H:hes that we know o(are time-non-deterministk: supposedly
for the same reasons.

Interestingly: in [11] a time-deterministk apprOl-H:h to hybrid systems is dlO
sen (dearly they disagree with the above arguments): while in y [36] 1-ill op
erator is introd1H:ed for both. f\!Iodels in the y languages: therefore: might
show the differelH:e between the apprOl-H:hes. AIH1: as far as we (:an tell: the
time-deterministk operator is used most often when: for example: a (:ontroller
makes a dlOke after some delay. This is modelled as a time-deterministk dlOke
between delaying 1-H:tions. \Vhen modelling physkal modes of a system: the
non-deterministk dlOke operator is used. The physkal behaviour of a system
(:an only be in one mode: even if a partkular evolution is permitted in both
m()(les.

Rules (11) to (14) define the sermmties of the disrupt opemtoL and the
left-disrupt opera tor. If we (:ompare these rules to the rules for sequential (:om
position: we see that the main differelH:e: is the way in whkh termination is
handled. Firstly: in a (:omposition P .. q: the pn)(:ess q may start exe(:ution
without p terminating. And Se(:OlHUy: if the pn)(:ess p terminates: the pn)(:ess
p .. q may also terminate regardless of the behaviour of q.

Rules (15) to (19) define the sermmties of the pmallel eompositiOlL and in
these rules the differelH:e between 1-H:tion and signal transitions is most promi
nent. For 1-H:tions: the interpretation of the parallel (:omposition is the same as in
ACP [8, 21]. Diserete aetions that me plaeed in pmallel me interleaved, but om
als() sYIH:hn)llize 1Ising a (partial: (:(nmmItative and ass()(:iative) (:(nmmmkati()ll
f1llH:tion rEA x AHA. If a dis(:rete 1-H:tion a (:ommunkates with 1-ill 1-H:tion
a': the valuation of the model variables has to be the same for both: and the
result is 1-ill 1-H:tion a" = ara'. If fiow-dauses are pl1-H:ed in parallel: they always
sYIH:hronize their behaviour s11(:h that: intuitively: the signals that are possible
in a parallel (:omposition are a solution of both dauses.

The eneapsulation, as defined by rules (20) to (22), only infiuenees aetion
transitions. This is not surprising: siIH:e the 811 (_) operator is originally in
tended to model enfon:ed sYIH:hronization in a parallel (:omposition. Signal

16

---'--~(PCc',_v~) ,(,'--;c-(6) (p. v) -'+ (p'. v')
(pD q.v),((pD q.v) -'+ (p'.v')

(7) (p. v) ,(. (q. v) ,((8)
(p::)q.v),(

(qD p. v) ,((qD p. v) -'+ (p'. v')

(p. v) -'+ (p'. v') () (p. v) ,(. (q. v) -'+ (q'. v') ()
I 9 I 10

(p::) q.v) -) (p'::) q.v') (p::) q.v) -) (q'.v')

(p.v),(
-('p~~~q~. v')-'(o-. (11)

(pc>q.v),(

I
__ (~p~. v~)_-),----(~p~'. _v'~) --(12)

(p ~ q.v) -'+ (p' ~ q.v')

(p c> q.v) -'+ (p' ~ q.v')

(q.v),((13) (q.v) -'+ ;q'.V') (14)
(p ~ q.v),((p ~ q.v) -) (q'.v')

(P.v),(.(q.v),((_)
~,--'-;,~~~ 10 (pil q.v),(

(p.v) ~ (p'.v'). (q.v) ~ (q'.v')()
J 16 (pil q.v) ~ (p' II q'.v')

(plq·v),((plq.v) ~ (p'llq'·v')

(p.v) ~ (p'.v'). (q.v),((17)

(pllq.v) ~ (p'.v')

(qI!P'v) ~ (p'.v')
(plq.v) ~ (p'.v')
(qlp,v) ~ (p'.v')

() ".v· (' ") p.v H P . v
---"-'---'------,~~-'---- (18)

(p II q.v) "2; (p' II q.v")

(qI!P'v) "2; (qllp'.v")

(ph.v) "2;' (p'llq.v")

(p. v) "2;' (p'.v"). (q .. ~) "c4" (q'.v"). a" = ai a' (19)

(pllq.v) "8' (p'llq'·v")

(plq.v) ":4' (p'llq'.v")

(p.v) "2;' (p'.v"). ar/H ()
. 20

(Ull (p).v) "2; (Ull (p').v")

(p.v) ~ (p'.v') (21) (p.v),((22)
(Ull (p) .v) ~ (Ull (p') .v') (Ull (p) .v),(

(p.v),((23)X""pEE (p.v) ~ (p'.v') (24) X""pEE
(X.v),((X.v) -) (p'.v')

Table 2: Operational semHntks of HyPA: (;ontinlled

17

transitic)lls are already synchronized.
Rules (23) and (24) model reeursion in the same way as it was done in [8, 21].

For a recursive definition X ~ p, a transition for the variahle X is possible, if it
can be deduced from the semantical rules for the process term p.

2.3 Example: Steam Boiler

This section is intended to illustrate the use of HyPA for modelling hybrid sys
tems. The process below, is a model of the celebrated benchmark problem of the
ste;:-tm boiler [1]. For reasons of brevity, the problem is simplified considerably.
It is not our intention to give a comparison with other models of the steam
boiler here. \Ve only want to give a feeling for the syntax and semantics of the
language. The text below, explains shortly what the given model consists of.

Valve ~ Is
lv

I Valve
v

Water I

Wmax {op, d} s
W -----

Wmin 'Yater I Controller I I Heater I

Figure 6: The steam boiler

The boiler process, as depicted in figure 6 consists of a water level '10, an
in-flow v and a stemn production s. This stream production is determined
by the Heater process, which limits it between Smin and Smax. The in-flow is
determined by a Valve process, which can be opened or dosed using the signals
TO and rc respectively. If the valve is open, the in-flow to the boiler is Vin. If it is
dosed, the in-flow is O. Furthermore, there is a Controller, that every T seconds
interferes with the valve, by telling it to open or dose using the signals so and sc.
The goal of this controller, is to keep the water level between '/I)min and '/I)max.

To do this safely, it takes a margin of '/0 safe into account. The total system is
the parallel composition of the \Vater process, the Heater, the two modes of
the Valve, and the Controller, over which communication is enforced through
the definitions op = TOrSO, cl = rCrsc, and H = {SO,sc,TO,rc}. In the next
section, we will discuss an axiomatization of HyPA that allows us to rewrite this

18

example into a form in which all parallel compositions are eliminated.

Water "
Heater "

ValveOpen "
ValveClose "
Controller "

[II) Iii) = V - s 1
[Smin ::; S ::; Sma xJ

[V = Vin] .. rc (~ ValveClose

[v = 0 1 ~ m (,) ValveOpen

[t I t+ = 0 1 » [t I : ~ ~ 1 ~

(-10- 2: -W max - -Wsate] » sc (~ Controller CD)
UYmin + -Wsate ::; -10- ::; -W max - -Wsate] » Controller CD
-W- ::; -Wmin + -Wsate] » so (~ Controller

Boiler " 0/1 (Water II Heater II (ValveOpen CD ValveClosed) II Controller)

3 Algebraic Reasoning in HyPA

The strength of the field of process algebra, lies in its ahility to use equational
reasoning for the analysis of transition systems, or, more precisely, for the anal
ysis of equivalence dasses of transition systems, called processes.

In this section, we show that this equational reasoning is also possible in
HyPA. A notion of equivalence is defined on process terms, reflecting equiva
lence of the underlying semantical transition systems. Consequently, equivalent
process terms represent the same process. \Ve study properties of this equiv
alence, and capture those properties in a set of derivation rules and a set of
axioms on the algebra of process terms. Together, this forms a proof system
in which every derived equality on process terms represents equality of the
underlying hybrid transition systems. In other words, process terms that are
derivahly equal, describe transition systems in the Sf-nne equivalence dass, and
hence describe the same process.

This section is split up in three parts. In the first part, we define the well
known notion of bisimulation equivalence on hybrid transition systems, we give
a formal axiomatization, and prove soundness of this axiomatization. In the
second part, we will treat the intuition behind the axioms, and insights they
provide us with. In the third part, we show a few useful properties of our
axiomatization, like a conservativity theorem with respect to the process algebra
ACP and a rewrite system for rewriting dosed HyPA terms into a normal form.

3.1 Axiomatization

The equivalence we assume on hybrid transition systems, is the well known
notion of bisim1l1ation [29J.

Definition 1 (Bisimulation) A relation R <;; P x P on pmeess terms, is a
bisim1l1ation relation if for all p, q E P such that pR q, and for all valuations
II, II' E Val and labels I E A U we find

19

• (p. v),(implies (q.v) ,(;

• (q.v),(implies (p. v) ,(;

• (p. v) -'+ (p'. v') implies there exists q' s. t. (q. v) -'+ (q'. v') and p' R q';

(q. v)
,

(q'. v') implies there exists p' s. t. (p. v)
,

(p'.v') and p'Rq'. • -) -)

Two process terms :r and yare bisimilm, denoted :r 1::± y, if there exists a
bisimulation relation that relates them.

If two pn)(:ess terms Bre bisimilHr: then they des(:ribe eqnivalent transition
systems: helH:e they des(:ribe the SHme pn)(:ess. In table 3 we give H set of
derivation rules: Bnd thronghont the next sllbsedion we give H set of Hxioms
that: to H large extend: (:Hptllre this notion of bisim1l1Htioll. \Ve write HyPA
f- p;:;:j q: if we (;Hll derive eqlliVHlelH:e of P Bnd q nsing those Hxioms.

Definition 8 (Derivation) We write HyPA f- P '" q to indieate that eqmva
lence of open terms p and q can be derived from our axiom system. JVe define
that equivalence can be derived according to the rules given in table 3.

=-=~--(1)
HyPA f- P '" P

HyPA f- P '" q (2)
HyPA f- q '" P

HyPA f- P '" q. HyPA f- q '" r (3)

HyPA f- P '" r

HyPA f- P '" q. S a variable sllbstitlltion(4)

HyPA f- S(p) '" S(q)

aan n-ary HyPA opemtof. V'<i<n HyPA f- Pi'" qi (5)

HyPA f- a(p, .. ·Pn) '" a(q, .. . qn)

"IVy' (v. v') 1= d iff (v. v') 1= d' (6)

HyPA f- d» :r '" d' » :r

VV,J (v. a) 1= e iff (v. a) 1= e' (7)

HyPA f- e '" e'

P'" q is an axiom (8)

HyPA f- P '" q

VV,J (v. a) 1= e' implies (v. a) 1= e
Vvy,J (v. v') 1= d and (v'. a) 1= e implies (v'. a) 1= e'

HyPA f- d » e '" d » e' c> e

VV,J (v. a) 1= e iff (v. a) 1= e' or (v. a) 1= en (10)

HyPA f- e", (e' ::) en) c> e

Table 3: Derivation rules of HyPA

(9)

In the remainder of this SllbSedioll: the Hxioms of HyPA: Bnd the insight
they provide regarding the operators of the language: Bre presented. Also: the

20

intuitions behind the 9th and 10th derivation rule, are discussed. In each of
the axioms, :r, y, z denote arbitrary open HyPA terms. The letters a, a' denote
actions, while c, c' denote flow-clauses and d, d' denote reinitialization clauses.
Unlike what is usual for ACP, one may not choose r) when a is written in an
axiom. The set of axioms is divided into seven groups.

• The first group consists of two axioms that give the definition of parallel
composition and the disrupt operator in terms of other HyPA operators.

:r II y "" :r ~ y G) y ~:r (l) :r I y

:r~y"":rC>yG)y

These axioms ean also be found in [8] and [4], respeetively.

• The second group expresses associativity, commutativity and distribution
properties of the various operators. All of these axioms occur also in [8]
or [4]. Their intuition is the Sf-tme as with standard process algebra.

(:r G) y) (l) z "" :r (l) (y (l) z)

(:r C> y) C> z "":r C> (y ~ z)

(:r I y) I z "" :r I (y I z)

(:r CD y) (~ z;:;:j:r (~ z CD Y (~ z

:rCDY;:;:jyCD:r

(:r (,) y) (,) z "" :r (,) (y (,) z)

(:r h) ~ z "" :r ~ (y II z)

(:r I y) ~ z "" :r I (y ~ z)

(:r CD y) C> z "":r C> z cD Y C> z

(:r G) y) I z "" :r I z G) Y I z

:rly""yl:r

Notice, that these axioms may be used to prove the equalities (:r .. y) ..
z "":r ~ (y ~ z) and (:r II y) II z "" :r II (y II z).

• The third group is concerned with unit and zero elements for the various
operators, and with axioms that express similar properties.

:r (~ € ;:;:j :r

€[>:r;:;:j€

<11:r",,:r
[false 1 "" "

[false 1 » :r "" "
Cjmp » C;:;:j C

:r[>r);:;:j:r

"I:r",,"
<~:r"""

d»""""
[true 1 » :r "" :r

Special attention should be paid to the axiom Cjmp » C ;:;:j c, which ex
presses the intuition that every flow-clause may spontaneously reinitialize
according the derived reinitialization-elause Cjmp. Fi1fthermore, according
to the axiom d » (d' » :r) "" (d - d') » :r found further on, we derive
C;:;:j Cjmp » C ;:;:j Cjmp » Cjmp » C ;:;:j (Cjmp ,...., Cjmp) » c, which expresses
that multiple of those reinitializations may occur after each other.

21

• The fourth group of axioms focusses on the left-parallel composition and
the left-disrupt operator.

(a:'J :c)~y""a:'J (:el l y)

(c C> :e)~y"""

(a :'J :e) c> y "" a :'J (:e ~ y)

(d» (c c> :e)) :'J y "" d» c C> (:e :'J y)

The left-parallel composition operator is used to axiomatize the interleav
ing behaviour of the parallel composition. The axioms describe that only
actions are allowed by left-parallel composition. The left process cannot
perform signal transitions, since these should be synchronized. The left
disrupt operator is used to axiomatize the behaviour of a disrupt composi
tion, when the left process is not disrupted immediately. Both actions and
signals can be performed by the left-disrupt. However, the axiom express
ing exeeution of a signal, i.e. (d » c C> :e) :'J y "" d» c C> (:e:'J y), is a lit
tle complicated because of the interaction between reinitialization-elauses
and fiow-elaUSf'B. Using the unit element [true] for reinitialization we may
darify things a bit by obtaining the equality (c C> :e) :'J Y"" c C> (:e:'J y).
This equality is in itself not enough, because reinitialization does not dis
tribute over sequential composition in a simple way, as we will see further
on.

• The fifth group of axioms focusses on distribution properties of reinitial
izations.

d»:e:D d'»:e "" (dVd')>>:e

d» (:e (l) y) "" d » :e :D d» y

(d» :e) C> y "" d » :e C> y

d» (d' » :e) "" (d - d') » :e

(d» a) :'J :e "" d » a :'J :e

(d » E) :'J :e "" d? » :e

(d» :e) h "" d» (:eh)

A trivial consequence (using logical equivalence of [true] V [true] and
[true]) of these axioms is for example the equality :r G) :r ;:;:j :r, which
expresses that the choice between equals is not an aetual choice. Note,
that reinitialization does not simply distribute over sequential composi
tion! The reader should pay attention to the axiom (d » d (0 :r ;:;:j d? » :r ,
which expresses that a reinitialization of the empty process only leads to
termination if the reinitialization dause is satisfiahle. I.e. only if there is
a reinitialization possible that satisfies the dause. Note, that this reini
tialization does not aetually take pl;:-ice, therefore after termination the
valuation of the variables is the same as before. Clearly, we can use the

?

logical equivalence between [true] and [true]· to obtain the equality
€ (0 :r;:;:j :r, known as an axiom from [8]. The last axiom in this group, ex
presses that a concatenation of reinitializations leads to a reinitialization
with the concatenation of the dauses.

• The sixth group expreSSf'B the rather complicated rules for the synchro
nization operator. Since reinitialization does not distribute over synchro-

22

nization, we have to take it into account in every of the axioms.

d» E I d'» E "" (d? /\ d'?)>> E

d» E I d' » (a :,) :r) "" "
d» a :,) :r I d' » a' :,) Y"" (d /\ d') » (ara') :,) (:r II y) if (ara') defined

d » a :,) :r I d' » a' :,) y "" " if (ara') undefined

d» E I d' » c c> :r"" (d? - d') » (c c> :r)

d»c c> :rld'»a:,) Y"""

d»c c> :rld'»c' c> Y""

((d - Cjmp) /\ (d' - c1mp))» (c/\ c') c>

The first axiom expresses that a synchronization terminates if both the
left and the right process terminate. Similar to the sequential composi
tion, this termination only takes pl;:-tce if (both) the reinitializations are
satisfiable. The second axiom expresses that termination cannot synchro
nize with actions, and therefore leads to deadlock. The third and fourth
axiom express that actions a and a' may synchronize by producing an
action ara' if this action is defined, and otherwise the synchronization
results in deadlock. If the synchronizing actions are reinitialized, both
reinitializations should be satisfied, i.e. both processes should agree on
the change of valuation. In particular , if ara' = a", and a is reinitial
ized by an assignment :r+ = :r- + 1, we find [:r I :r+ = :r- + 1] » a I a' ~
[:r I :r+ = :r- + 1] » a I [true] » a' "" ([:r I :r+ = :r- + 1]/\ [true]) »
(ara') ~ [false] » (ara') ~ 8. Since a' does not agree on the assignment,
a deadlock results. The fifth axiom expresses that termination may oc
cur before signal behaviour executes. The terminating process disappears
from the equation but, again, only if the corresponding reinitialization is
satisfiable. That termination occurs before and not at the same time as
the signal behaviour is expressed by the fact that we find a concatenation
of reinitializations, rather than a conjunction. The sixth rule expresses
that actions and signals cannot synchronize. Finally, the seventh axiom
expresses the way in which signals can synchronize. This axiom is quite
complicated due to our decision to make it possible for flow-clauses to
perform reinitializations. \Vhen synchronizing, these flow-clause reinitial
izations should be taken into account. If we restrict ourselves to flow
clauses in which all variables are continuous (as is done in hybrid automata
for example), i.e. clauses of the form [Vm I PredJ, we find the equality
d» c c> :r I d'» c' c> Y"" (d/\ d')>> (c/\ c') c> (:r II y), whieh is more in
line with out intuition that both reinitialization-elauses and flow-clauses
are synchronized. The proof of equality relies on the observation that , in

23

case of continuity, Cjmp = c3mp (no jumps, hence only satisfiahility) and

(do - dD 1\ (d[, - d"?) = (do 1\ d[,) - (d; 1\ d" ?) .

• The seventh group expresses the (usual) distribution properties of the
encapsulation.

au (:r (l) y) '" au (:r) :D au (y)

au (:r c> y) '" au (:r) c> au (y)

au (e) '" e

au (a) '" a if a 'I H

au (:r :'J y) '" au (:r) :'J au (y)

au (d » :r) '" d» au (:r)

au (E) '" E

au (a) "''' if a E H

The 9th derivation rule in tahle 3, expresses how a reinitialization can re
strict the choice for the first transition of a flow-clause. A useful application of
this rule is in recognizing a solution of a differential equation given a certain
initial condition. For example, consider the flow clause [:r~ t I :r =:r ;\ i = 1].
Clearly, :r = r/ is a solution of the differential equation :r = :r, if initially t = 0
and :r = 1. Using the 9th derivation rule, we now find the following equivalence.

Note, that t and :r are both taken to be continuous. Otherwise, the flow-clauses
in this example might execute undesired reinitializations. The 9th derivation
rule also expresses the repetitive character of flow-clauses. This is illustrated
using d = [true] and c' = c. \Ve then find the equivalence c ~ c [> c.

The 10th derivation rule, also expresses this repetitive character. This is
illustrated by taking c = c' = c", we then find again c ~ c [> c. Furthermore,
the 10th derivation rule expresses that if we can divide a flow-clause c into two
(possibly overlapping) clauses c' and c", then the first transition taken by c can
be mimicked by either c' or c". An application of this rule, is that a solution
of a flow-clause can be split off even if there is no reinitialization. For example,

[
:i; = 3:r3/3

].
the clause i = 1 contams a set of chfferentIal equatIOns wIth solutions

:r = 0 and :r = t3 if initially :r = 0 and t = O. However, for other initial
conditions, other solutions are possible. Using the 10th derivation rule, we find
the following equality, which describes exactly that :r = 0 and :r = t3 are two

24

possible trajectories of this clause.

[. ''''3] :~ = 3:r~f

t = 1

([::;)] :D
:~ ::: 3:r~ f [>:~ ::: 3:r~ f [''''3]) [''''3]
t-l t-l

([::;)] v ([;:;"] v [::13c213]) ~ [::13c213])
'" ([::;"] ~ [::13C3/3]) ~ [::{C3/3

] :D ["=0] ~ t = 1 [''''3] :r = 3:r~ f c-
i = 1 .v

([
:r ~ 3:r

3/3]
t - 1

~ [:: {C3/3]) ~ [:: {C3/3]

[''''3] :~ = 3:r~f

t = 1 D [::;"]

'" ([::;)]:D [:::"])
Note that , in contrast to the example for derivation rule 9, we do not need
continuity of :r and t in this case.

3.2 Soundness

Rests us to show, that all the derivations that can be made ahout process
terms, indeed lead to sound statements about the bisimulation equivalence of
these terms. In other words, we need to prove the following theorem.

Theorem 1 (Soundness) If, for two closed terms pond q, we find HyPA

f- P '" q then p 1:1 q.

Proof f\!Iost of the techniques used. in this proof are also explained in detail
in [7]. The main observation is that a derivation is sound, if all of the rules that

are used in it are sound. Now, if we use (p) v:!4' (p') as alternative notation

for a transition (p, II) it (p, II'), then the definition of bisimulation becomes
that of strong-bisimulation as defined in [7]. In other words , we use the obvious
isomorphism, mapping (P x Val) x (A u 2:) x (P x Val) to P x (Val x (A u
2:) x Val) x P, to transform our notion of bisimulation into strong-bisimulation.
Hence, the derivation rules 1,2 and 3 are sound, since strong-bisimulation is an
eqllivalenee (see [29, 7, 43]).

The proof that rule 4 and 5 are sound, is based on the observation that,
using the Sf-nne isomorphism, all the semantieal rules of HyPA turn out to be in
the so-ealled path-format [6]. That is, formally they are in path-format only, if

25

, (v, v') 1= d, (p, v'),((p, v') ,(
we fead for example the fule as H fule that

(d» p,v)'((d» p,v)'(
is only valid nnder the (;ondition that (v, v') 1= d, It is a standard resnlt [7, 61,
that strong-bisim1l1Htion is H (;ongr1l81H:e for operators that Bre defined nsing
only rules in path-format. HelH:e: in Bny (;ontext: variables may be repl<-H:ed by
terms: Bnd terms may be repl<-H:ed by eqnivalent terms: whkh is eXl-H:tly what
fule 4 Bnd [) express.

Rules 6 Bnd 7 Bre s01llHl: be(:Hllse the transition systems generated for logi
(:Hlly eql1ivHlent dHl1ses Bre is(nn()rphk (helH:e hisimilHr). This is strHightf()rWHrd

to verify. That fule 8 is sonnd for el-\(:h of the Hxioms of HyPA: Bnd that the
rules 9 Bnd 9 Bre s01llHl: is proven in appendix A. [2j

3.3 Conservativity and Rewriting

One of the things that (;Hll be (:on<:111ded abont HyPA: nsing the given Hxiom

atization: is that it is a (:onservative extension of the pn)(:ess algebra ACP [8].
This illustrates that HyPA does not violate the general ideas behind this pn)(:ess
algebra.

Theorem 2 (Conservativity) HyPA is a conservative extension oj ACP (ex
cept Jar notational differences ::) and ::)), meaning that Jar ever-y two closed
ACP terms p and q, we find that ACP f- P '" q iJ and only iJ HyPA f- P '" q,

Proof See appendix B,

Fllrthermore: like in ACP: it is possible to define a set of bask terms into
whkh every HyPA pn)(:ess (:an be rewritten using the axioms. These bask
terms dearly show that the parallel (:ompositions (:an be eliminated from all
HyPA pn)(:esses.

Definition 9 (Basic terms) A basic term, is a process term oj the Jollowing
Jorm, N ::= d » E I d » a ::) N I d » c c> N IN::) N,

Theorem 3 (Rewriting) Every closed HyPA term can be rewritten into a ba
sic term.

Proof In appendix C: we give a strongly normalizing rewrite system that
does this: based (in prindple) on reading all the axioms as rewrite rules from
left to right (adding a few extra rules for handling unit elements). [2j

\Ve (:onjedure that this rewriting result (:an be extended to a linearization
result: meaning that we exped to be able to rewrite every guarded re(:ursive
spedfi(:ation of a HyPA pn)(:ess into a linear form in whkh we only use re(:ursion
over bask terms.

26

The usefulness of elimination of the parallel composition, was already noted
in the introduction. It was pointed out there, that the notion of bisimulation
we use is very strong, because all possible valuations of the variahles are taken
into account at every point in time. IVlany weaker notions of equivalence, while
still preserving interesting analysis properties, are not sensitive to the valuation
of variahles. Those equivalences, often, are not congruent for the parallel com
position operator. Therefore, algebraic reasoning ahout those notions in the
context of parallel composition becomes difficult.

This is already a known phenomenon in process theory, and it is caused by
the possibility of interference in the value of shared variahles (see for example
[30]). Many different solutions have been proposed, also in the field of hybrid
systems. For example, in the hybrid automaton theory of [28], the authors
propose a restriction (called compatibility of automata) on the systems that may
be placed in parallel, to ensure that no interference occurs. This is a perfectly
reasonahle way of handling the problem, but it has the disadvantage that we
have to add extra variahles, if we want to model processes that intentionally
interfere, like the control system shown in the introduction.

HyPA is, in principle, focussed on being general. \Ve start out by using a
very general parallel composition, that is defined for all possible processes, and
necessarily end up with an equivalence that is very strong, but is at least a con
gruence for this composition. Now , the elimination result allows us to eliminate
the parallel composition from the process description. And, after elimination,
we can start to use algebraic reasoning on a weaker notion of equivalence to
analyse the specific properties we are interested in. Admittedly, this method
may turn out to be less practical than the road followed by [28], because the
elimination of parallel compositions can become quite cumbersome. On the
other hand, it may also be possible to formulate derivation rules for reasoning
ahout weaker notions of equivalence, that express a kind of conditional congru
ence 'under compatibility'. In this way, other methods can be imported into
HyPA.

As an example of rewriting into basic terms , we can rewrite the steftm boiler
system of the previous section into the following description, in which parallel
composition and encapsulation are eliminated. Notice that this rewriting is
done here over a recursive definition, hence is an example of linearization of
such process descriptions. Looking at the axiomatization, one might expect
that do, ... ,d3 would contain clauses of the form Cjmp , but those are eliminated
using calculation on reinitialization clauses. Admittedly, performing the actual
elimination by hand is very cumbersome, and leads to a very long calculation,
which we left out of this report for reasons of space. Finding theorems to make
these calculations shorter, is a topic for future research.

Boiler '" Open CD Closed

Open '" do » Co ~ (d, » cl :~ Closed ::8 dz » Open ::8 d3 » op (~ Open)

Closed '" do » Cc ~ (d, » cl :~ Closed ::8 dz » Closed ::8 d3 » op (~ Open)

27

with

do '"
d, '"
dz ;:;;;:

d3 '"

t I t+ = 0 1 '
t- = T 1\

t- = T 1\

t- = T 1\

i = 1
t '5c T

'11)- 2: 'lOmax - '/I)sate] '

U)min + 'Wsate ::; '10- ::; 'lOmax - 'Wsate] '

'10- ::; 'Wmin + 'Wsate] '

Co;:;;;: t. '10 'Ii) = V - S

and

Smin ::; S ::; Smax

V = Vin

i = 1
t '5c T

Cc ;:;;;: t. '/0 'Ii) = V - S

Smin ::; S ::; Smax

v=O

One result that is missing, so far, is a proof that the given axiomatization
is complete for bisimulation of HyPA terms. I.e. a proof that for closed terms
p and q, if P tl q then also HyPA I- P "" q. We do not exdllde the possi
bility yet, modulo completenf'Bs of the logical equivalence of flow-clauses and
reinitialization-clauses, but the faet that the number of signals that is a solu
tion of a flow-clause, and the number of valuation jumps that is a solution of a
reinitialization-clause may be infinite, complicates matters seriously.

4 Related Work

In this seetion, we will compare HyPA, in an informal way, to hybrid formalisms
that were previously developed.

4.1 Hybrid Automata

One of the most influential of all hybrid formalisms, is the hybrid automaton
formalism described by Henzinger [26]. These automata consist of nodes in
which certain differential equations are active under an invariant, and of guarded
transitions between those nodes that model discrete aetions. For example, the
steam-boiler example (after rewriting it into a basic term) could be modelled as
the hybrid automaton depicted in figure 7.

A general hybrid automaton is depicted in figure 8. Such an automaton
is easily translated into a hybrid process algebraic term, using the following
observations .

• The flow predicate Pjx in a node of an automaton, describes flows in a sim
ilar way as in HyPA. Only, in hybrid automata , all signals are continuous.
Hence, we take V = Vm and find the clause [Vm I Pjx J. Note, that hy
brid automata only allow differentiahle solutions of flow predicates, while

28

jmp: t = T 1\ t:= 0 1\

-10 ::; -Wmin + -/I) safe

aet: op

;\"liJ=v-s

inv: t ::; T ;\ V = Vin

Smin ::; S ::; Smax

-10 2: -W max - -Wsate

aet: cl

1\

inv: t :S T 1\ V = 0
Smin ::; S ::; Smax

Figure 7: Example of a Hybrid Automaton IVlodelling a SteftIn Boiler

HyPA may allow non-differentiahle solutions if a variahle is not subject
to differentiation. These additional solutions are considered to be unim
portant for the moment. In a future, formal discussion of this translation,
theory may be developed to handle them .

• The invariant Fix is a predicate that ean be llsed in a flow-clause, but ean
also be transformed to be llsed in a reinitialization clause, since only vari
ahles from the set Vm are llsed in it. The semantics of hybrid automata,
contain a kind of look-ahead sneh that after a transition, an invariant P;y
or Piz must hold respectively, other wise the transition cannot be taken.
Translating this to HyPA, that means that in reinitializations, the precli
cate ~t or Pi~ should hold, respectively. Recall that we have defined P+
in section 2.2, as a transformation of a predicate P on Vm in which every
variahle :r is replaced by :r+ .

• The transitions of hybrid automata contain actions ay and az . In transla
tion, those actiC)llS disrupt the flow-clauses. Fi1fthermore, the jump con
ditions Pjy and Pjz on the transitions are translated into reinitializations

29

that act on these actions. Again, we take V = Vm , and assume that it
is specified in the jump conclition which variahles may change, and which
remain constant.

jmp: Pjz

act: a;;

jmp: Pjy

act: ay

Figure 8: General Example of a Hyhrid Automaton

Using these ohservations, the more general automaton in figure 8 is trans
lated into:

Of course, this is not a formal translation. The semantics of hyhrid au
tomata as given in [26] is one of timed transition systems, while the hyhrid
transition systems we use here are suhtly different. \Ve conjecture that it is
possihle to transform the signal-transitions of the hyhrid transition system into
timed transitions, and the action-transitions of the hyhrid transition system
into action-transitions of a timed transition system, hy ahstracting away from
all valuations. However, this is left as a suhject for future research. The com
parison with hyhrid automata is merely intended to give an intuition on how
the existing hyhrid theories fit into our hyhrid process algehraic structure.

4.2 Other Process Algebras

\Vith respect to process algehras for hyhrid systems , there are two previous
works that we must consider. One, hyhrid esp, was already introduced in 1994
hy .1ifeng [27]. The other, G)-calculus, was very recently introdlH:ed hy Rounds
and Song in [35].

30

Hybrid CSP has a semantks in whkh el-H:h pn)(:ess represents a set of hybrid
tnH:es. S11(:h a hybrid tnH:e: then (:onsists of a TIuH:tion of a (:ontinuous dosed
time domain to valuations: a f1llH:tion of that same domain to sequelH:es (that
gives the empty sequelH:e ex(:ept for on a finite set of time-points): and a few
predkates (like termination). A system is then modelled in hybrid CSP: by
giving a predkate that defines whkh tnH:es are in the system. Comparable to
the way that HyPA has atomk pn)(:esses and operators: hybrid CSP has atomk
predkates: and predkate operators. Apmt from the fad that a tnH:e semantks
does not resped brHlH:hing properties of a system: hybrid CSP also has the
drawba(:k that in parallel (:(nnp()siti()ll the (:()lltin11()1IS variables ()f the (:(nnp()sed
systems are assumed to be disjoint: and that assignments (:an only be made to
programming variables: and not to (:ontinuous variables. \Ve susped: however:
that these problems (:an be solved by defining new predkate operators: and that
the author of [27] did not see the need for them at the time. Interestingly: there
me operators defined in [27] whose f1llH:tion is not easily translated into HyPA.
The main reason for this: is that do(:ks need to be modelled explidtly in HyPA:
while they me often a f1llH:tional pmt of the operators of hybrid CSP. Again:
we (:onjedure: that HyPA (:an be extended with operators that mimk those of
hybrid CSP: should the need arise.

The q')-(:akulus has a semantks based on timed transition systems: and given
this: has a very interesting way of dealing with parallelism. As we already men
tioned in the introd11(:tion: q')-(:akulus regmds (:ontinuous behaviour to be a
property of the environment: rather than a property of the q')-(:akulus program.
Exe(:ution starts with I-ill empty environment HlHl: while running the program:
differential eq1Iati()lls (()r rather their ved()r-field eq1livalents) and invariants:
me added and repll-H:ed: by (interleavingly) exe(:uting so-(:alled environmental
I-H:tions. The upshot of this: is that it is not ne(:essary to require that paral
lel programs have distind (:ontinuous variables: but still: the semantks of the
parallel (:omposition of q')-(:akulus does not (:oindde with our intuition that (:on
tinuous behaviour should simply satisfy both pn)(:esses. Fllrthermore: be(:ause
a vedor-field is used as a representation of differential equations in the environ
ment: q')-(:akulus (:an only handle differential equations with unique solutions
(hen(:e: not for example the equation :r = 3:rt). Also: the notion of equiv
alelH:e that arises fnnn 1lsing bisim1Ilati()ll in (:(nnbinati()ll with envin)llmental
I-H:tions: makes that only syntl-H:tkally equal differential equations are adually
(:onsidered equal. This is a drawbl-H:k that might be solved by some kind of ab
stnH:tion: but it still has I-ill artifidal feel to it. Comparing q')-(:akulus to HyPA:
we may (:ondude that: due to (amongst others) the environmental I-H:tion ap
prOl-H:h: not all HyPA pn)(:esses (:an be translated into q')-(:akulus. Conversely:
the fad that the environmental I-H:tions of q')-(:akulus have a maximal progress
semantks: q')-(:akulus programs (:I-illnot be translated into HyPA. This: however:
(:an be solved by extending HyPA with I-ill urgelH:y operator: as was done for
hybrid y in [12, 36]

As we mentioned already in the introd11(:tion: HyPA is developed in dose
(:ooperation with the resean:hers developing hybrid y. Resean:h on the language
y: as a modelling and simulation language for pn)(:ess (:ontrol: started in 1982

31

[34]' and has since been through many stages of development, including an
extension with hybrid description constructs. In 2002 [12], a formal operational
semantics , based on CSP rather than ACP, was defined for the discrete-time part
of the language, and recently, a formal semantics has been given for the hybrid
part as well [36]. It is interf'Bting to see that many of the theoretical aspects
of HyPA (like the use of hybrid transition systems) , have been applied in the
formal semantics of X, while on the other hand, the future extensions of HyPA
are very likely to be inspired by the modelling strengths of X, including their
abstraction operators and possible the maximal progress operator. As research
progressed, both languages seem to have evolved more and more towards each
other, and it is not unthinkahle that these paths will ultimately converge.

Another hybrid process algebra, was published as a technical report only
one week before this one. In [11] a combination of the process algebra with
continuous relative timing of [5] and the process algebra with propositional
signals of [3]' lead to a (only subtly) different algebra, that is also suited for the
description of hybrid systems. The development of this algebra and of HyPA has
been largely independent, and it is surprising to see how many similaritif'B exist
between the two. Nevertheless, due to different starting points and intuitions,
also some differences can be found.

The process algebra of [11] was intended to be a conservative extension of
timed ACP, while HyPA was intended to be an extension of 'normal' ACP. This
gave rise to the most important difference, in our opinion, between the two
languages, which is that [11] choice time-determinism (as it was discussed in
section 2.2), while we chose time-non-determinism (which is more in line with the
hybrid automaton approach [26]). As a matter of fact, in X, two choice operators
exists, one for each view on time. Another difference is that [11] intended to give
an algebraic theory of hybrid automata, which leads to the modelling choice that
switching between continuous behaviors can only take plf-tce through the use of
discrete actions, while in HyPA switching can be arbitrary. This is illustrated,
by the fact that the passing of time during which physical behaviour takes
plaee, is modelled explieitly in [11], while, for HyPA, time passing is implieit
when writing down a flow-dause.

4.3 Control Theory Formalisms

The formalisms used in control theory to describe hybrid systems can, from a
HyPA point of view, be classified into two kinds. The first kind, are formalism
regarding continuous time behaviour, while the second kind , regards time to
evolve discretely. Roughly speaking, continuous time models can be translated
into HyPA using flow-clauses, while the discrete models can be translated into
reinitialization clauses, acting on a "time-step" process. Computational actions
and sequential compositions of processes, seldomly playa role in control theory.
IVlode-switching, on the other hand, is a central aspect. In this paragraph, we
sketch the general translation of several control theory formalisms into HyPA.
\Ve do not intend to be complete, but rather want to give a feel for the relation
between HyPA and control theory. Ftuthermore, one has to keep in mind that

32

control theory usually reasons ahout trace equivalence of systems , while HyPA
is primarily concerned with bisimulation.

\Vith respect to the continuous time models , we conjecture that most of them
can be translated into either one singe flow-clause C or, in more complicated
cases, into one single recursive term of the form:

CT" (co G) ... (l) en) ~ CT.

where Co ... Cn, denote clauses representing the different continuous modes a
system can be in. If (and only if) a system can be modelled using only three
continuous variables, namely the state variahle :r E ,the output variable
y E]Rtn and the input variahle u E]Rn, and using only clauses of the form

I.,
l'

.(= ii,e + B,u + 1, 1
Y =., C1 :r +,D1u + gl J
(:c. u) E H,

with A;,B;,C; and D; matrices of appropriate dimensions, and H; a convex
polyhedron (Le. constructed from a finite set of inequalities), for every 'I , then
we say that CT is a continuous time piecewise affine system [18]. If (and only
if) a system can be modelled as one single continuous flow-clause, using the
variahles v. '10 E]Rs in addition to :r,y and u, and if this flow clause is of the
form

[

;(= ii:c + B,u + Bzw 1
Y = C:c + D,u + D·,w c = "r" .. ~

- "v = E1:r + Ezu + E3'W + (;4

0<;v..Lw2:0

then we say that the system is a continuous time linear complementarity sys
tem [40]. Here, ii, B" Bz, C, D" Dz, E" Ez and Ez are matriees of appropriate
dimensions, (;4 is a constant vector and 0 ::; v .1 '10 2: 0 denotes that the vectors
v and w are orthogonal (i.e. 0 <; v, 0 <; wand vTw = 0).

A class of continuous control systems that does not fit directly into HyPA,
is deseribed by Filippov in [20]. The way in whieh he defines the solutions
of differential inclusions, by using integration rather than derivation, is not
captured by the notion of solution of a flow-clause in HyPA. Some differential
inclusions do have solutions in Filippov's formalism, while they do not in HyPA.
Filippov developed these kind of solutions, because the control community was
struggling with a problem ealled "sliding modes" [41]. A partieular example of
this problem, is illustrated by the observation that in piece-wise affine systems,
the system CT might get into deadlock on the borders of the polyhedra H;, if
the derivatives on both sides of the border "point" towards it. This deadlock is
unintended, because the physical intuition of control scientists is usually that a
system will start evolving along this border, rather than deadlocking. Filippov's
method makes sure that these evolutions are included in the solutions of the
differential inclusion describing the system. In HyPA, sliding modes will have
to be modelled explicitly, by adding a separate clause C S , for every polyhedron

33

border where this phenomenon occurs. \Ve expect, that Filippov's notion of
solution can be adopted in the HyPA semantics, but do not know what the
formal consequences would be precisely. This might be a subject of future
research.

Discrete time models can be translated into the following HyPA term:

DT" (do V ... V dn) » Timestep (,) DT,

with

Timestep" [t I t+ = 0] » I {t} U l {:rJ Ij E J}

Here, the set F = {:rj I j E J} denotes the set of all variables that are used in
the reinitialization-elauses do ... dn , describing the discontinuous changes over
time. TimeBtep denotes the progress of time with one sample time Ts > 0,
during which the variahles :rj are supposed to remain constant. Similar to the
continuous case, if (and only if) V = {:r, y, u}, and for all reinitializations (with
i E [0 ... nJ) we find

:r+ = A,:r- + B,u- + j,
y+ = Ci:r+ + Dill+ + g;

dj = :r, y, u y- = Cj:r- + Dju- + g;
(:r+, u+) E H,
(:r-, u-) E H,

with Ai,Bj,Ci and D j matrices of appropriate dimensions, and Hi a convex
polyhedron, we say that DT is a discrete time piecewise affine system [18].
Analogously, if (and only if) a system can be written in the form

DT=
:r,y,u
V.'II)

:r+ = A:r- + B, u- + Bzw
y+ = C:r+ + D,u+ + Dzw+
y- = C:r- + D, u- + Dzw-
v+ = E l :r+ + EZll+ + E3'10+ + (;4

V- = E1:r- + Ezu- + E3'w- + (;4

o :S v+ ..L 10+ 2': 0
o :S v- ..L 10- 2': 0

» Times tep :,) D T .

we say that it is a discrete time linear complementarity system [40].
A third type of discrete control formalism is discrete time mixed logical dy

namical systems [10]. Similarly to linear complementarity systems, these sys
tems can be described using only one reinitialization-elause. This time, however,
the clause also reasons abcHlt variables that take value in the domain {O, I}. A
mixed logical dynamical system may use variables :r E]Rl, Y E]Rtn and u E]Rn,

and in addition, the variahles z E]RI' and 'II) E {O, I} s, and can be written in the

34

form:

DT=
:r,Y,u
V.'W

:r+ = A:r- + B,u- + Bzw- + B 3z
y+ = C:r+ + D, u+ + Dzw+ + D3Z+
y- = C:r- + D,u- + Dzw- + D3 z
E l :r+ + Ezu+ + E3'w+ + E4Z+ ::; (;5

El :r- + Ezu- + E 3 '11)- + E4z- ::; (;5

» Timestep :,) DT .

In [25]' the relation between the discrete control formalisms described ahove is
further worked out, and it turns out that most of them are equivalent under
certain, from a physical point of view very reasonahle, assumptions.

As we mentioned in the beginning of this paragraphs, HyPA is primarily
concerned with the notion of bisimulation equivalence. However, suppose we
would adopt language equivalence, or even some weaker appropriate notion of
equivalence. This would mean that we probahly loose congruence of parallel
composition, but it would also mean that we might be ahle to abstract away
from a lot of computational behaviour and rewrite certain HyPA processes into
one of the above forms. Since a lot of control theory is developed for those
forms, this might greatly improve the analysis possibilities of HyPA.

5 Conclusions and Future Work

In this report, the syntax, semantics and axiomatization were presented , of a
hybrid process algebraic theory called HyPA. This theory is aimed at the de
scription and analysis of hybrid systems. HyPA is a conservative extension of
the process algebra ACP [8], with a constant representing termination, a dis
rupt operator in the style of LOTOS [13]' and dames [41] for the deseription of
continuous and discontinuous behaviour of model variahles. Using the axiom
atization of HyPA, dosed process terms can be rewritten into basic terms, in
which all parallel compositic)lls are eliminated.

HyPA turns out to be different from most existing hybrid formalisms, in
two major ways. It has a hybrid transition system semantics, for which it is
not necessary to distinguish between state variahles and external variahles in
differential equations. This allows for a general definition of parallel composition
in the style of ACP, that also allows continuous interaction between all model
variahles. Ftuthermore, discontinuities in the variables of differential equations
do not need to be explicitly modelled by assignment actions. Alternatively, in
HyPA it is explicitly written down when a variable is continuous. Apparent
drawbacks of HyPA are its strong notion of equivalence, and the sometimes
complex axiomatization. However, we have sketched, how by assuming the
same properties that are common on hybrid automata (compatibility of parallel
composed systems, and continuity of all model variables), both the equivalence
may be weakened, and the axiomatization becomes simpler. Admittedly, HyPA
is very similar to the languages hybrid X [36] and the hybrid process algebra of
[11]. The differences are mainly found in the way time-determinism is treated,
and in the way in which the passing of time is modelled implicitly or explicitly.

35

Future work on HyPA can be divided into five categories, given in arbitrary
order.

• The first category, is a formalization of section 4, comparing HyPA to
other (hybrid) formalisms. Clearly, sinee X and the works of [11] are very
similar, a formal comparison is inclispensahle. Also, formal comparisons
with hybrid automata, G)-calculus, and hybrid Petri-nets, are important.
Translations to and from those formalisms are useful, in order to be ahle to
use analysis techniques from one, in the other formalism. This , of course,
is also the case for various control formalisms and techniques.

• The second category, is the application of HyPA to a number of (larger)
case studies. Only this will reveil whether the way of modelling we have
chosen is indeed as convenient as expected, and whether practical theorems
can be formulated to support the analysis of hybrid systems.

• The third category encompasses work on showing that the axiomatiza
tion of HyPA, modulo calculation on dauses, is complete (or can be made
complete) for the notion of bisimulation. Also, extending the result for
rewriting dosed terms into basic terms, to rewriting of recursive specifi
cations into a linear form, is essential for the analysis of systems.

• The fourth category of future work, is the extension of the theory with
ahstraction. Also, extension with system theoretic concepts like, for ex
ample, a metric or topology on the state-space [14], or other notions of
limit behaviour [461, may then come into play. One of the classical prob
lems in the hybrid systems field, namely the analysis of Zeno-behaviour,
where infinite sequences of actions converge to a certain point, arises from
such a metric, and we feel that a truly hybrid semantical model should
indude it. It is important to note, that without ahstraction, our current
notion of equivalence is strong enough to capture Zeno-behaviour, simply
because process terms need to be equivalent for all valuations of variahles,
including Zeno-points. After ahstraction of certain variahles , however ,
Zeno-behaviour of those variahles cannot be distinguished anymore, and
therefore a new notion of equivalence might be need.ed. Other types of ah
straction, like ahstraction from actions [8, 21], would also greatly improve
the analytic powers of HyPA. Also for those, new notions of bisimulation,
known in classical process algebra for example, branching bisimulation, or
observational equivalence, are needed.

• The fifth category, is tool support. Calculations on a simple example such
as the stef)m-boiler, quickly become very cumbersome and tedious. This is
a serious problem when applying the theory to any system of interf'Bting
size. Using the result that processes can be rewritten into basic terms
using a strongly terminating rewriting system, makes that developing a
very basic tool for partially automating these calculations should not be
diffielllt.

36

Acknowledgements Finally, we would like to thank Paul van den Bosch,
,Tan Friso Groote, f\!Iaurice Heemels, Aleksandar ,Tuloski, Tim \Villemse, Ka
Lok f\!Ian , Ramon Schiffelers, Bert van Beek and f\!Iohammad f\!Iousavi , for their
comments during sevenil stages of the development of this report.

References

[IJ .J-R. Abrial. Steam-boiler eontrol speeifieation problem. In Dagstuhl Meet
ing: Methods for Semantics and Specification, 1995.

[2J P. Amthor. A CSP model for hybrid automata. In Northern Formal Meth
ods Workshop (NFMW98), 1998.

[3J .1.C.M. Baeten and .J.A. Bergstra. Proeess algebra with propositional sig
nals. Theoretical Computer Science, 177:381405, 1997.

[4J .1.C.M. Baeten and .1.A. Bergstra. Mode transfer in proeess algebra. Teeh
nieal Report CS-R 00-01, TU I e, 2000.

[5J .1.C.M. Baeten and C.A. Middelburg. Pmeess Algebra with Timing. Mono
graphs in Theoretical Computer Science. Springer-Verlag, 2002.

[6] ,T.C.f\'1. Baeten and C. Verhoef. A congruence theorem for structured op
erational semantics with predicates. In Proceedings CONCUR -'93, volume
715 of Lecture Notes in Computer Science, pages 477492. Springer-Verlag,
1993.

[7J .1.C.M. Baeten and C. Verhoef. Conerete proeess algebra. In S. Abram
sky, Dov M. Gabbay, and T.S.E. Maibaum, editors , Semantic Modelling,
volume 4 of Handbook of Logic in Computer Science, pages 149268. 1995.

[8J .1.C.M. Baeten and W.P. Weijland. Pmcess Algebra, volume 18 of Cam
bridge Tmncts in Theoretical Computer Science. Cambridge University
Press, Cambridge, 1990.

[9J .1. Le Bail, H. Alla, and R. David. Hybrid Petri net. In Pmc. of the 1st
Eumpean Contml Conference. ECC·91, pages 14727, Grenoble, Franee,
.July, 1991.

[10] A. Bemporad and f\!I. f\!Iorari. Control of systems integrating logic, dynam
ics, and constraints. Automatica, 35.

[11 J .1.A. Bergstra and C.A. Middelburg. Proeess algebra for hybrid systems.
Teehnieal Report CSR 03-06, TU Ie, Eindhoven, Netherlands, 2003.

[12J V. Bos and .T..1.T. Kleijn. Formal specification and analysis of industrial
systems. PhD thesis, TU/e, 2002.

37

[13] E. Brinksma. A tutorial on LOTOS. In Miehel Diaz, editor, Pmc. Pmto
col Specification, Testing and Verification V, pages 171194, Amsterdam,
Netherlands, 1985.

[14] P . .T.L. Cuijpers and M.A. Reniers. Topologieal (bi-)simulation. Tedmieal
Report CS-Report 02-04, TU Ie, Eindhoven, Netherlands, 2002.

[15] P . .T.L. Cuijpers, M.A. Reniers, and W.P.M.H. Hoomels. Hybrid transition
systems. Tedmieal Report CS-Report 02-12, TU Ie, Eindhoven, Nether
lands, 2002.

[16] I. Demongociin and N.T. KOllssolllas. Differential Petri nets: A new model
for hybrid systems. In Pmc. Advanced Summer Institute '96, pages 618,
.Tune, 1996.

[17] R.C. Dorf and R.H. Bishop. Modern Contml Systems. Series in Eleetrieal
and Computer Engineering: Control Engineering. Addison- \Vesley, 1995.

[18] E.D.5ontag. Nonlinear regulation: The pieeewise linear approaeh. IEEE
Trans. A utom. Contml, 26:346358, 1981.

[19] A. Di Febbraro, A. Giua, and G. Menga, editors. Special Issue on Hybrid
Petri Nets, volume 11 of Discrete Event Dynamic Systems, 2001.

[20] A.F. Filippov. Differential Equations with Discontinuous Highthand Sides.
IVlathematies and its applications (Soviet series). Killwer Academic Press,
1988.

[21] W. Fokkink. Intmduction to Pmcess Algebra. Texts in Theoretieal Com
puter Seienee. Springer-Verlag, Berlin, 1998.

[22] W. Fokkink, ,LF. Groote, M. Hollenberg, and B. van Vlijmen. LAHIS 1.0:
LAnguage for Hailway Interlocking Specifications. CWI, Amsterdam, 2000.

[23] ,LF. Groote and M.A. Reniers. Algebraie proeess verifieation. In ,LA.
Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Pmcess Algebra,
ehapter 17, pages 11511208. Elsevier Seienee B.V., Amsterdam, 20l11.

[24] ,LF. Groote and .T..L van Wame!. Analysis of three hybrid systems in timed
I,CRL. Science of Computer Pmgramming, 39:215247, 20l11.

[25] W.P.M.H. Heemels, B. De Sdl1ltter, and A. Bemporad. On the equivalenee
of classes of hybrid dynamical models. In Pmc. Conference on Decision
and Contml, pages 364369, Orlando, Florida, 2001.

[26] T.A. Henzinger. The theory of hybrid automata. In Pmceedings of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996),
pages 278292. IEEE Computer Soeiety Press, 1996.

38

[27] H .. meng. From CSP to hybrid systems. In A.W.Roseoe, editor, A Classical
Mind. Essays in Honour of C.A.H. Hoare, pages 171189. Prentiee-Hall
International, 1994.

[28] N. Lyneh, R. Segala, and F. Vaandrager. Hybrid I/O automata. Informa
tion and Computation.

[29] R. Milner. A calculus of communicating systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[30] S.s. Owieki and D. Gries. An axiomatie proof tedmique for parallel pro
grams 1. Acta Informatica, 6:319340, 1976.

[31] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAI:f\U FN-19, Computer Science Department, Aarhus University,
1981.

[32] .LW. Polderman and .T.C. Willems. Introduction to Mathematical Systems
Theory: A Behavioural Approach, volume 26 of Texts in Applied Mathe
matics. Springer-Verlag, 1998.

[33] M. Ri;nkki;, A. P. Ravn, and K. Sere. Hybrid aetion systems. Theoretical
Computer Science, 290:937973 , 2003.

[34] .LE. Rooda. Simulation of Logistics Elements (Sole). Ensehede, Nether
lands, 1982. User Manual.

[35] \V.C. Rounds and H. Song. The G)-calculus: A language for distributed
control of reeonfigllrahle embedded systems. In F. \Viedijk, O. IVlaler, and
A. Pnueli, editors, Hybrid Systems: Computation and Control. 6th Interna
tional Workshop. HSCC 2003, volume 2623 of Lecture Notes in Computer
Science, pages 435449. Springer-Verlag, 2003.

[36] R.R.H. Sehiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and .LE.
Rooda. Formal semantics of hybrid chi. In Formats ?, 2003.

[37] R.R.H. Sehiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and .LE.
Rooda. A hybrid language for modelling, simulation and verification. Anal
ysis and Design of Hybrid Systems (ADHS03), to appear. International
Federation of Automatie Control (IFAC) , 2003.

[38] E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimen
sional Systems, volume 6 of Texts in Applied Mathematics. Springer-Verlag,
1998.

[39] D.A. van Beek, N.G . .Tansen, K.L. Man, M.A. Reniers, .LE. Rooda, and
R.R.H. Sehiffelers. Relating ehi to hybrid automata. In S.Chiek, PI
Sanehez, D. Ferrin, and D .. L Morriee, editors, Proceedings of the 2003 Win
ter Simulation Conference.

39

[40] A . .T. van der Sehaft and .T.iV!. Sdl1lmaeher. Complementarity modeling of
hybrid systems. IEEE Transactions on Automatic Control, 43:483490,
1998.

[41] A . .T. van der Sehaft and .T.iV!. Sdl1lmaeher. An Introduction to Hybrid Dy
namical Systems, volume 251 of Lecture Notes in Control and Information
Sciences. Springer-Verlag, London, 2000.

[42] A .. T. van cler Sehaft and .1.f\!I. Schumacher. Compositionality issues in dis
crete, continuolls, and hybrid systems. Int. J. Robust and Nonlinear Con
trol, 11 :417434, 2001.

[43] R .. T. van Glabbeek. The linear time branehing time speetrum I: The
semantics of concrete, sequential processes. In .1.A. Bergstra , A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra, ehapter 1, pages
399. Elsevier Seienee B.V., Amsterdam, 20l11.

[44] .T..T. Vereijken. A proeess algebra for hybrid systems. In The Second Euro
pean Workshop on Real-Time and Hybrid Systems, Grenoble, Franee, 1995.

[45] T.A.C. Willemse. Semantics and Verification in Process Algebras with Data
and Timing. PhD thesis , TU Ie, Eindhoven, Netherlands, 2003.

[46] iV!. Ying. Topology in Process Calculus: Approximate Correctness and In
finite Evolution of Concurrent Programs. Springer-Verlag, 20l11.

40

A Soundness

In this appendix, we prove soundness of derivation rules 9 and 10, and of all the
axioms of HyPA. All proofs will be of the following form: (1) Every proof will
have one subsection dedicated to it. (2) Every subsection starts out by giving a
relation that is obviously a witness of the axiom or derivation rule under study.
(3) The remainder of that section is devoted to proving that the given relation is
a bisimlliation relation, by verifying the truth of the fonr eases in the definition
of bisimlliation for every related pair.

A.1 Derivation Rule 9

Under the assumption that for all II and a we find that (v, a) 1= c' implies
(v, a) 1= c and the assumption that for all v, v' and a we find that (v, v') 1= d
and (v', a) 1= c implies (v', a) 1= c', we study the smallest relation R <:; P x P
sneh that:

d» cRd» c' c> c /\ cRc' ~ c /\ :eR:e.

as a witness candidate for derivation rule 9.
For :rR:r the proof is trivial. For d » eRd » c' [> c, it is easy to see

that none of the related terms can terminate, hence we only need to check the
following cases:

1. (d» c, v) ..'., (p, v"), for whieh we need the hypothoBis

(a) 3". (v, v') 1= d and (c, v') ..'., (p, v"), for whieh we need the hypoth
esis

i. 3",t P = c /\ I = a /\ dom(a) = [0 ... t]/\ (v', a) 1= c /\ v" = art).
Now, using the assumptions stated in the beginning of this sec

tion, we eondude that (v', a) 1= c', henee (d » c' c> c, v) ..'.,
(e' .. e, II") with p = eRe' .. e.

2. (d» c' c> c, v) ..'., (p, v"), for whieh we need the hypothesis

(a) 3". (v, v') 1= d and (c'
hypothesis

I c> c, v') -) (p, v"), for whieh we need the

i. 3,. p = r ~ c /\ (c',v') ..'., (r,v"), for whieh we need the
hypothesis

A. 3",t r = c' /\ I = a /\ dom(a) = [0 ... t] /\ (v', a) 1=
c' /\ art) = v".
IT sing the assumptions stated in the beginning of this section

I
we eondude (v', a) 1= c and henee (d » c, v) -) (c, v")
with eRe' .. e=p.

For eRe' .. e, the proof is similar to that in derivation rule 10. Note, that
this proof relies on the assumption that for all II and a such that (II, a) 1= e' we
find also (v, a) 1= c.

41

A.2 Derivation Rule 10

Under the assumption that (v, a) 1= c if and only if (v, a) 1= c' or (v, a) 1= c",
we study the smallest relation R r;; p x P sneh that:

cR(c' CD c") [> c ;\ eRe' .. c ;\ eRe" .. c;\ :rR:r.

as a witness candidate for derivation rule 10.
For :rR:r the proof is trivial. For cR(c' CD efr

) [> c, and the other eases, it
is easy to see that none of the related terms can terminate, hence we only need
to cheek the following eases:

1. (c, v) -'-+ (p, v'), from whieh we direetly eondude (c' ~ c, v) -'-+ (p, v')

and (c" ~ c, v) -'-+ (p, v') with p R p, and furthermore need the hypoth
esis

(a) 3",t I = a 1\ dom(a) = [0 ... t] 1\ P = c 1\ v' = art) 1\ a 1= c, for
which we need one of the hypotheses

Lal=c'

For whieh we eondude (c', v) -'-+ (c', v') and henee ((c 'D c') c>

c,v) -'-+ (c' ~ c,v'), with pRe' ~ c.

ii. a 1= c"
\Vhieh is similar to the previolls ease.

2. ((c' 'D c") c> c, v) -'-+ (p, v') , for whieh we need the hypothesis

(a) 3,. p = r ~ c 1\ (c':D c",v) -'-+ (r,v') , for whieh we need one of
the hypotheses

i. (c', v) -'-+ (r, v') , for whieh we need the hypothesis

A. 3",t I = a 1\ dom(a) = [0 ... t] 1\ r = c' 1\ a 1= c'

From whieh we eondude that a 1= c henee (c, v) -'-+ (c, v')
with eR c' .. c.

ii. (c", II) it (r, II'), which is similar to the previolls ease.

3. (c' ~ c, v) -'-+ (p, v'), for whieh we need one of the hypotheses

(a) 3,. p = r ~ c 1\ (c', v) -'-+ (r, v'), for whieh we need the hypothesis

i. r = c', from which we concludep = c' .. c hence eRp.

(b) (c,v) -'-+ (p,v'), for whieh we eondudepRp.

4. (c" .. C, II) it (p, II!) , which is similar to the previolls ease.

42

A.3 The axiom: [fllise 1 ~ 6

\Ve study the smallest relation R ~ P x P sneh that:

[false] R,).

Clearly, sim,e for no pair (v, a) E Val x ~ we find (v, a) 1= [false], neither
[false] nor l5 terminate, or perform any transition. Hence, R is a bisimlliation
relation.

A.4 The axiom: [fllise 1 » 1: ~ 6

We stndy the smallest relation R <;; P x P sneh that for all :c E P:

[false] »:cR,).

Clearly, sinee for no pair (v, v') E Val x Val we find (v, v') 1= [false],
neither [false] :r » nor l5 terminate, or perform any transition. Hence, R is a
bisimlliation relation.

A.5 The axiom: d» df » 1: ~ (d ~ df
) » 1:

We stndy the smallest relation R <;; P x P sneh that for all :c E P:

d» d'»:cR (d - d')>>:c 1\ :cR:c.

Fnr :cR:c the proof is trivial. Fnr d» d' » :cR (d - d') » :c , we find the
following eases:

1. (d» d' » :c, v),(, for whieh we need the hypothesis

(a) 3". (v, v') 1= d 1\ (d'»:c, v') ,(, for whieh we need the hypothesis

i. 3" .. (v',v") 1= d' 1\ (:c,v"),(
From whieh we eondnde (v, v") 1= d - d' and ((d - d') »
:c,v),(.

2. ((d - d') » :c, v),(, for whieh we need the hypothesis

(a) 3" .. (v, v") 1= d - d' 1\ (:c, v"),(, for whieh we need the hypothesis

i. 3". (v, v') 1= d 1\ (v', v") 1= d'
From whieh we eondnde (d' » :c, v'),(and henee (d » d' »
:c, v),(

3. (d» d' » :c, v) -'+ (p, v"'), for whieh we need the hypothesis

(a) 3". (v,v') 1= d 1\ (d'» :c,v') -'+ (p,v"'), for whieh we need the
hypothesis

43

i. 3" .. (v',v") 1= d' 1\ (:r,v") -'., (p,v"')
From whieh we eondude (v, v") 1= d - d', henee ((d - d') »
:r, v) -'., (p, v"') with p R p

4. ((d - d') » :r, v) -'., (p, v"'), for whieh we need the hypothesis

(a) 3"" (v,v") 1= d - d' 1\ (:r,v") -'., (p,v"'), for whieh we need the
hypothesis

i. 3", (v, v') 1= d 1\ (v', v") 1= d'

From which we conclude (d' » :r, II') 4 (p, II"'), and hence

(d»d'»:r,v) -'., (p,v"'),withpRp

A.6 The axiom: d» 6 ~ 6

\Ve study the smallest relation R ~ P x P snch that:

d»bRb.

Trivially, both d » l5 and 8 cannot perform any transitions, nor terminate.
Hence R is a bisimlliation relation.

A.7 The axiom: [true 1 » 1: ~ 1:

We study the smallest relation R <;; P x P sueh that for all :r E P:

[true] »:rR:r 1\ :rR:r.

For :r R :r, the proof is trivial. For [true] » :r R:r we find the following
eases.

1. ([true] » :r, v) ,(, for whieh we need the hypothesis

(a) 3", (v, v') 1= [true] 1\ (:r, v'),(, for whieh we need the hypothesis

i. 3v (v, v) 1= [true] 1\ v = v'
From which we directly conclude (:r, II) ,/

2. (:r,v),(
And dearly (v, v) 1= [true] henee ([true] » :r, v),(.

3. ([true] » :r, v) -'., (p, v"), for whieh we need the hypothesis

(a) 3", (v, v') 1= [true] 1\ (:r, v') -'., (p, v"), for whieh we need the
hypothesis

44

i. 3v (v, v) 1= [true] 1\ v = v'

From whieh we eondnde (:c, v) ..'., (p, v") with pRp.

4. (:c,v) ..'., (p',v")
For which we may immediately conclude that (v,l/) 1= [true], hence

([true] » :c, v) ..'., (p, v") with pRp.

A.8 The axiom: Cjmp » C ~ C

We stndy the smallest relation R <;; P x P sneh that for all :r E P:

Cjmp» eRe ;\ :rR:r.

For :r R :r, the proof is trivial, but for the proof of Cjmp » eR c we first need
the following lemmas on solutions of flow clauses.

Lemma 1 If (v, a') 1= c and (a'(O), a) 1= c then (v, a) 1= c.

Proof \Vith induction to the structure of flow-clauses, we find two eases.

• If (v,a') 1= [F I Pred] and (a'(O), a) 1= [F I Pred] then we find for all
t E dom(a) that (a(t), o-(t)) 1= Pred and furthermore for all :r E F we find
v(:r) = a'(O)(:r) = a(O)(:r), henee (v,a) 1= [F I Pred].

• If (v, a') 1= cl\c' and (a'(O), a) 1= cl\c' then, (v, a') 1= c and (a'(O), a) 1= c,
and (v, a') 1= c and (a'(O), a) 1= c. Henee, with indnetion to the strueture
of c and c', we find (v, a) 1= c and (v, a) 1= c', and finally (v, a) 1= c 1\ c'.

Lemma 2 If (v, a) 1= c then (a(O), a) 1= c.

Proof \Vith induction to the structure of flow-clauses, we find two eases.

• If (v,a) 1= [F I Pred] then we find for all t E dom(a) that (a(t),o-(t)) 1=
Pred and furthermore , trivially, for all :r E F we find a(O)(:r) = a(O)(:r),
henee (a(O), a) 1= [F I Pred].

• If (v, a) 1= c 1\ c' then (v, a) 1= c and (v, a) 1= c'. Henee, with indnetion
to the strueture of c and c', we find (a(O), a) 1= c and (a(O), a) 1= c', and
finally (a(O), a) 1= c 1\ c'.

Now, we proceed with the proof that R is a bisimlliation relation. Since
both Cjmp » C and c cannot terminate, we only have the following two eases.

45

1. (Cjmp» C, v) -'+ (p, v"), for whieh we need the hypothesis

(a) 'lv' (v,v') 1= Cjmp 1\ (c,v') ~ (p,v"), for whieh we need the
hypothesis

i. 3",t,"' I = a 1\ dom(a) = [0 ... tJ 1\ P = C 1\ (v', a) 1= C 1\ v" =
art) 1\ (v, a') 1= C 1\ v' = 17'(0)
Using the first lemma, we eondude (v, a) 1= C and henee (c, v) -4
(c,a(t)), i.e. (c,v) -'+ (p,v") withpRp

2. (c, v) -'+ (p, v') , for whieh we need the hypothesis

(a) 3",t I = a 1\ dom(a) = [0 ... tJ 1\ (v, a) 1= c 1\ v' = art) 1\ p = c
Using the seeond lemma, we direetly eondude that (17(0), a) 1= c

and henee (v,a(O)) 1= Cjmp' Finally, this leads to (Cjmp» c,v) -4
(c, a(t)), i.e. to (Cjmp » c, v) -'+ (p, v') with pR p.

A.9 The axiom: (1: Ell y) Ell Z ~ 1: Ell (y Ell z)

We study the smallest relation R <:; P x P sueh that for all :e, y, z E P:

(:e G) y) G) zR:e G) (y G) z) 1\ :eR:e.

Fnr :eR:e, the proof is trivial. Fnr (:e G) y) G) zR:r G) (y'D z) we find the
following eases.

1. ((:r :D y) 'D z, v),(, for whieh we need one of the hypotheses

(a) (:r :D y, v),(, for whieh we need one of the hypotheses

i. (:r,v),(
From w hieh we direetly eond ude (:r 'D (y G) z), v) ,(.

ii. (y,v),(
From whieh we direetly eondude (y 'D z, v),(and (:r 'D (y 'D
z),v),(

(b) (z,v),(
From whieh we direetly eondude (y G) z, v) ,(and (:r G) (y G) z), v) ,(

2. (:r G) (y G) z), v),(, similar to the previous ease.

3. ((:r G) y) G) z, v) -'+ (p, v'), for whieh we need one of the hypotheses

(a) (:r G) y, v) -'+ (p, v'), for whieh we need one of the hypotheses

i. (:r, v) -'+ (p, v')

From whieh we direetly eondude (:r :D (y :D z), v) -'+ (p, v')
with pRp

46

ii. (y,v) -'+ (p,v')

From whieh we eondude (y G) z, v) -'+ (p, v'), henee (:e (l) (y (l)

z),v) -'+ (p,v') withpRp

(b) (z,v) -'+ (p,v')

From whieh we eondude (y 'D z, v) -'+ (p, v'), henee (:e 'D (Y'D

z),v) -'+ (p,v') withpRp

4. (:e 'D (y :D z), v) -'+ (p, v'), similar to the previous ease.

A.10 The axiom: 1: Ell y ~ y Ell 1:

We study the smallest relation R <;; P x P sueh that for all :e, yEP:

:r CD yRy CD :r ;\ :rR:r.

For :r R :r, the proof is trivial. For:r CD y R Y G) :r we find the following eases.

1. (:e :D y, v) ,(, for whieh we need one of the hypotheses

(a) (:e,v),(
From which we directly conclude (y (1) :r, II) ,/

(b) (y,v),(
From which we directly conclude (y ::9 :r, II) ,/

2. (y (1) :r, II) ,/ , symmetrical to the previolls ease.

3. (:e :D y, v) -'+ (p, v'), for whieh we need one of the hypotheses

(a) (:e,v) -'+ (p,v')

From whieh wedireetly eondude (y 'D :e,v) -'+ (p,v') withpRp.

(b) (y,v) -'+ (p,v') From whieh we direetly eondude (y:D :e,v) -'+
(p, v') with pR p.

4. (y 'D :e, v) -'+ (p, v'), symmetrieal to the previous ease.

A.ll The axiom: d» 1: Ell df » 1: ~ (d V df
) » 1:

We study the smallest relation R <;; P x P sueh that for all :e E P:

d»:e:D d'» :eR(dVd')>>:e 1\ :rR:r.

Fnr :eR:e, the proof is trivial. Fnr d» :r :D d'» :eR (d V d') » :r, we find
the following eases.

47

1. (d»:c (l) d' » :c, v) ,(, for whieh we need one of the hypotheses

(a) (d»:c, v) ,(, for whieh we need the hypothesis

i. 3", (v, v') 1= d 1\ (:c, v') ,(
From whieh we eondude (v, v') 1= (d V d'), henee ((d V d') »
:c,v'),(.

(b) (d'»:c, v) ,(, similar to the previous ease.

2. ((d V d') » :c, v),(, for whieh we need the hypothesis

(a) 3", (v, v') 1= (d V d') 1\ (:c, v') ,(, for whieh we need one of the
hypotheses

i. (v, v') 1= d
From whieh we direetly eondude (d » :c, v) ,(and henee (d »
:c (£) d'» :c,v),(.

ii. (v, II') 1= d', similar to the previolls ease.

3. (d»:c (l) d' » :c, v) -'-t (p, v"), for whieh we need one of the hypotheses

(a) (d»:c, v) -'-t (p, v"), for whieh we need the hypothesis

i. 3", (v, v') 1= d 1\ (:c, v') -'-t (p, v")
From whieh we eondude (v, v') 1= (d V d') henee ((d V d') »
:c,v') -'-t (p,v") withpRp.

(b) (d'»:c, v) -'-t (p, v"), similar to the previous ease.

4. ((d V d') » :c, v) -'-t (p, v"), for whieh we need the hypothesis.

(a) 3", (v, v') 1= (d V d') 1\ (:c, v') -'-t (p, v"), for whieh we need one of
the hypotheses

i. (v, v') 1= d

From whieh we direetly eondude (d » :c, v) -'-t (p, v") and

henee (d » :c (£) d' » :c, v) -'-t (p, v") with pR p.

ii. (v, II') 1= d', similar to the previolls ease.

A.12 The axiom: d» (1: Ell y) ~ d» 1: Ell d» y

We study the smallest relation R <;; P x P sueh that for all :c, yEP:

d» (:c (l) y)Rd»:c (l) d» y 1\ :cR:c.

Fnr :cR:c, the proof is trivial. Fnr d» (:c (l) y)Rd»:c 'D d» y, we find
the following eases.

1. (d» (:c (£) y), v),(, for whieh we need the hypothesis

48

(a) 3", (v, v') 1= d 1\ (:C:1) y, v') ,(, for whieh we need one of the
hypotheses

L (:c,v'),(
From w hieh we eond nde (d » :r, v),(henee (d » :r :1) d »
y,v),(,

iL (y, v'),(
\Vhieh is similar to the previolls ease.

2, (d»:r :1) d» y, v) ,(, for whieh we need one of the hypotheses

(a) (d» :r, v) ,(, for whieh we need the hypothesis

L 3", (v, v') 1= d 1\ (:r, v') ,(
From whieh we eondnde (:c :1) y, v'),(, and henee (d » (:r :1)
y),v),(,

(b) (d»y,v),(
\Vhieh is similar to the previolls ease.

3, (d» (:r :D y), v) -'+ (p, v"), for whieh we need the hypothesis

(a) 3", (v, v') 1= d 1\ (:r:1) y,v') -'+ (p,v"), for whieh we need one of
the hypotheses

L (:r,v') -'+ (p,v")

From whieh we eondnde (d » :r, v) -'+ (p, v") henee (d »
:r:1) d» y,v) -'+ (p,v"),

iL (y,v') -'+ (p,v")
\Vhieh is similar to the previolls ease.

4, (d»:r:1) d» y, v) -'+ (p, v"), for whieh we need one of the hypotheses

(a) (d» :r, v) -'+ (p, v"), for whieh we need the hypothesis

L 3", (v, v') 1= d 1\ (:r, v') -'+ (p, v")

From which we conclude (:r (1) y, II') it (p, II"), and hence

(d» (:r (1) y), v) -'+ (p, v"),

(b) (d» y,v) -'+ (p,v")
\Vhieh is similar to the previolls ease.

A.13 The axiom: (1: Ell y) G Z ~ 1: G z Ell y G z

We stndy the smallest relation R <;; P x P sneh that for all :r, y, z E P:

(:r CD y) (9 zR:r (9 z CD Y (9 z ;\ :rR:r.

For :rR:r, the proof is trivial. For (:r CD y) (:J zR:r (0 z (1) Y (:J z, we find
the following eases.

49

1. ((:c :D y) (,) z , v),(, for whieh we need the hypothesis

(a) (:c (D y,v),(1\ (z,v),(, for whieh we need one of the hypotheses

i. (:c,v),(
From which we conclude (:r (0 z, II) ,/ and hence (:r (9 z CD Y (9
z) ,(.

ii. (y, II) ,/ , which is similar to the previolls ease.

2. (:r:9 z (1) y (0 z, II) '/, which follows the reverse reasoning of the previolls
ease.

3. ((:c :D y) (,) z, v) ..'., (p, v'), for whieh we need one of the hypotheses

(a) (:c G) y,v),(1\ (z,v) ..'., (p,v') , for whieh we need one of the
hypotheses

i. (:c,v),(

From whieh we eondude (:c (,) z, v) ..'., (p, v') and henee (:c (,)

z (D Y (,) z, v) ..'., (p, v'), with p R. p.
ii. (y,v),(

\Vhieh is similar to the previolls ease.

(b) 3,.p=r (,) z 1\ (:c G) y,v) ..'., (r,v'), for whieh we need one of the
following hypotheses

i. (:c,v) ..'., (r,v')

From whieh we eondude (:c (,) z, v) ..'., (p, v') and henee (:c (,)
",. ".) t, (') 'tl R. z ,j) Y ;~ Z, II -, p, II , WI, 1 P ~ p.

ii. (y, v) ..'., (r, v')
\Vhieh is similar to the previolls ease.

4. (:c (,) z (D Y (,) z, v) ..'., (p, v') , whieh follows the reverse reasoning of the
previolls ease.

A.14 The axiom: (1: G y) G Z ~ 1: G (y G Z)

We study the smallest relation R. <;; p x P sueh that for all :c, y, z E P:

(:c (,) y) (,) zR.:c (,) (y (,) z) 1\ :cR.:c.

Fnr :r R.:c, the proof is trivial. For (:r (,) y) (,) z R.:r (,) (y (,) z), we find the
following eases.

1. ((:c (,) y) (,) z , v),(, for whieh we need the hypothesis

(a) (:c (,) y,v),(1\ (z,v),(, for whieh we need the hypothesis

50

i. (:r,v),(1\ (y,v),(
From whieh we readily eondude (y (,) z, v),(and (:r (,) (y (,)
z),v),(.

2. (:r (,) (y (,) z), v),(, similar to the previous ease.

3. ((:r (,) y) (,) z, v) ..'., (p, v'), for whieh we need one of the hypotheses

(a) (:r (,) y, v),(1\ (z, v) ..'., (p, v'), for whieh we need the hypothesis

i. (:r,v),(1\ (y,v),(

Fromwhieh wereadilyeondude (y ,,) z,v) ..'., (p,v') and (:r(')

(y (,) z),v) ..'., (p,v') withpRp.

(b) 3,. p = r (,) z 1\ (:r (,) y, v) ..'., (r, v'), for whieh we need one of the
hypotheses

i. (:r,v),(1\ (y,v)..'., (r,v')

From whieh we readily eondude that (y ,,) z,v) ..'., (p,v'), and

henee (:r (,) (y (,) z), v) ..'., (p, v'), with pR p.

ii. 3, r = s (,) Y 1\ (:r,v) ..'., (8,V')
From which we readily conclude that p = (8 (9 y) :~ z and

(:r (,) (y (,) z), v) ..'., (s (,) (y (,) z), v') with pR 8 ,,) (y (,) z).

4. (:r (,) (y ,,) z), v) ..'., (p, v'), similar to the previous ease.

A.15 The axiom: 1: G f ~ 1:

We study the smallest relation R <;; P x P sueh that for all :r E P:

:rC0€R:r.

\Ve only need to verify the following eases.

1. (:r (,) <, v) ,(, for whieh we need the hypothesis

(a) (:r,v),(

2. (:r,v),(
Using the rule for «, v) ,(, we immediately eondude (:r ,,) <, v) ,(.

3. (:r (,) <,v) ..'., (p,v'), for whieh we need the hypothesis

(a) 3p' p=p' (,) < 1\ (:r,v) ..'., (p',v')
And by construction p' R p.

4. (:r,v) ..'., (p,v')

From whieh we eondude (:r ,,) <,v) ..'., (p ,,) <,v')

51

A.16 The axiom: (d» a) G 1: "" d» a G 1:

We study the smallest relation R <;; P x P sueh that for all :e E P:

(d» a) (,) :e " d» a (,) :e 1\ :eR:e .

Fnr :e R :e, the proof is trivial. Fnr (d » a) (,) :e R d » a (,) :e, we find there
is no termination, since actions do not terminate immediately. This leaves us
with the following eases.

1. ((d » a) (,) :e, v) -'+ (p, v"), for w hieh we need one of the hypotheses

(a) (d»a,v),(
\Vhieh cannot occur, since there is no termination rule for a.

(b) 3,. p = r (,) :e 1\ (d» a,v) -'+ (r,v") , for whieh we need the
hypothesis

I
i. 3", (v, v') 1= d 1\ (a, v') -) (r, v")

From whieh we eondude (a (,) :e, v') -'+ (p, v") henee (d »
a (,) :e, v) -'+ (p, v") with pR p.

(d " ') I (' ") 1 1 2. ' » a ;~ :r, II -t p, II ,wit 1 reverse reasoning to t le previolls ease.

A.17 The axiom: (d» r) G 1: "" ,t» 1:

We study the smallest relation R <;; P x P sueh that for all :e E P:

(d» E) (,) :e R d? »:e 1\ :eR:e .

Fnr :eR:e, the proof is trivial. Fnr (d» E) (,) :r R d? » :r, we find the
following eases.

1. ((d » E) (,) :r, v) ,(, for w hieh we need the hypothesis

(a) (d» E, v),(1\ (:r, v) ,(, for whieh we need the hypothesis

i. 3,. (v, v) 1= d
From whieh we eondude that (v, v) 1= d? and henee (d? »
:r, v),(

2. (d? » :r, v) ,(, for whieh we need the hypothesis

(a) 3", (v, v') 1= d? 1\ (:r, v') ,(, for whieh we need the hypothesis

i. 3,. (v, v) 1= d 1\ v = v'
Henee, using (E, v),(we may derive (d » E, v),(and finally,
using v = v', we find ((d» E) (,) :r, v),(.

3. ((d» E) (,) :r, v) -'+ (p, v"), for whieh we need one of the hypotheses

52

(a) (d» <,v)'(1\ (:r,v) -'-t (p,v"), forwhieh we need the hypothesis

i. 3v (v, v) 1= d

From whieh we eondude (v, v) 1= d? and henee (d? » :r, v) -'-t
(p, v") with pR p.

(b) 3,. (d » <, v) -'-t (f, v")
\Vhieh cannot be fulfilled since € does not generate any transitions.

4. (d? » :r, v) -'-t (p, v"), for whieh we need the hypothesis

(a) 3", (v,v') I=d? 1\ (:r,v') -'-t (p,v"),forwhiehweneedthehypoth
esis

i. 3v (v, v) 1= d 1\ v = v'
Henee, using «, v),(we may derive (d » <, v) ,(, and finally,

using v =v', we find ((d» <) C,) :r,v) -'-t (p,v") withpRp.

A.18 The axiom: 1(~ Y ~ 1(I> Y Ell y

We study the smallest relation R <;; P x P sueh that for all :r, yEP:

:r ~ yR:r c> y CD Y 1\ :rR:r .

For :r R :r, the proof is trivial. For:r .. y R:r [> y CD y, we find the following
eases.

1. (:r ~ y, v) ,(, for whieh we need one of the hypotheses

(a) (:r,v),(
From whieh we eondude (:r c> y, v),(henee (:r C> y CD y, v),(.

(b) (y,v),(
From whieh we direetly eondude (:r C> y CD y, v),(.

2. (:r C> y CD y, v) ,(, for whieh we need one of the hypotheses

(a) (:r C> y, v),(, for whieh we need the hypothesis

i. (:r,v),(
From whieh we direetly eondude (:r ~ y, v) ,(.

(b) (y,v),(
From which we directly conclude (:r .. y, II) ,/.

I
3. (:r ~ y, v) -) (p, v'), for whieh we need one of the hypotheses

(a) (y,v) -'-t (p,v')

From whieh we direetly eondude (:r C> y CD y, v) -'-t (p, v') , with
pRp.

53

(b) 3" p = r ~ y 1\ (:r, v) -'-t (r, v')

From whieh we eondude (:r c> y, v) -'-t (r ~ y, v') and henee

(:r C> y (l) y,v) -'-t (p,v'), withpRp,

4. (:r [> y CD y, II) it (p, II'), with reverse reasoning from the previolls ease.

A.19 The axiom: (1: Ell y) I> Z ~ 1: I> z Ell y I> z

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P:

(:r fD y) C> zR:r C> z'D Y C> z 1\ :rR:r '

Fnr :r R :r, the proof is triviaL Fnr (:r :D y) C> z R:r C> z 'D Y C> z, we find
the following eases.

L ((:r :D y) C> z, v),(, for whieh we need the hypothesis

(a) (:r :D y, v),(, for whieh we need one of the hypotheses

i. (:r,v),(
From which we directly conclude (:r [> z, II) ,/ hence (:r [>

z:D y C> z,v),(,

ii. (y,v),(
Similar to the previolls ease.

2. (:r [> z ::9 y [> z, 11),(, with reverse reasoning from the previolls ease.

3, ((:r fD y) C> z, v) -'-t (p, v'), for whieh we need the hypotheses

(a) 3" p = r ~ z 1\ (:r:D y, v) -'-t (r, v'), for whieh we need one of the
hypotheses

i. (:r,v) -'-t (r,v')

From whieh we eondude (:r C> z, v) -'-t (r ~ z, v') henee

(:r C> z :D y C> z, v) -'-t (p, v'), with pRp,

ii. (y, v) -'-t (r, v')
Similar to the previolls ease.

4. (:r [> z::9 y [> z, II) 4 (p, II'), with reverse reasoning from the previolls
ease.

A.20 The axiom: (1: I> y) I> Z ~ 1: I> (y ~ z)

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P:

(:r C> y) C> zR:r C> (y ~ z) 1\ (:r ~ y) ~ zR:r ~ (y ~ z) 1\ :rR:r,

Fnr :rR:r, the proof is triviaL Fnr (:r C> y) C> zR:r C> (y ~ z), we find
the following eases.

54

1. ((:r c> y) C> Z, 11),(, for whieh we need the hypotheBis

(a) (:r C> y, 11),(, for whieh we need the hypothesis

i. (:r,II),(
From whieh we direetly eondude (:r C> (y ~ z), 11),(.

2. (:r [> (y .. z)~ 11),(, with reverse reasoning from the previolls ease.

3. ((:r C> y) C> Z, II) -'., (p, II'), for whieh we need the hypothesis

(a) 3,. p = r ~ z 1\ (:r C> y, II) -'., (r, II'), for whieh we need the
hypothesis

i. 3, r = s ~ Y 1\ (:r , II) -'., (s, II')

From whieh we eondude (:r C> (y ~ z), II) -'., (s ~ (y ~
Z),II') and (s ~ y) ~ zRs ~ (y ~ z).

4. (:r C> (y ~ z), II) -'., (p', II'), similar to the previous ease.

Fnr (:r ~ y) ~ zR:r ~ (y ~ z), we find the following eases.

1. ((:r ~ y) ~ Z, 11),(, for whieh we need one of the hypotheses

(a) (:r ~ y, 11),(, for whieh we need one of the hypotheses

i. (:r,II),(
From whieh we eondude direetly (:r ~ (y ~ z), 11),(.

ii. (y, II) ,(From whieh we eondude (y ~ Z, 11),(and henee (:r ~
(y ~ Z),II),(.

(b) (Z,II),(
From whieh we eondude (y ~ Z, 11),(and henee (:r ~ (y ~
Z),II),(.

2. (:r ~ (y ~ z), 11),(, similar to the previous ease.

3. ((:r ~ y) ~ Z, II) -'., (p, II'), for whieh we need one of the hypotheses

(a) (Z , II) -'., (p,II')

From whieh we eondude (y ~ Z,II) -'., (p,II') and henee (:r ~
(y ~ Z),II) -'., (p,II')withpRp.

(b) 3,. p = r ~ z 1\ (:r ~ y,lI) -'., (r,II'), for whieh we need one of
the hypothesf'B

i. (y, II) -'., (r, II')

From w hieh we eond ude (y ~ Z, II) -'., (p, II') and henee (:r ~
(y ~ Z),II) -'., (p,II') withpRp.

55

ii. 3, r = s ~ Y 1\ (:r, II) -'+ (s, II')
From whieh we eondude p = (s ~ y) ~ z and (:r ~ (y ~

Z),II) -'+ (s ~ (y ~ Z),II') with (s ~ y) ~ zRs ~ (y ~ z).

4. (:r ~ (y ~ z), II) -'+ (p, II'), similar to the previous ease.

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P:

Fnr :rR:r, the proof is trivial. Fnr (:r~y)~zR:r~(Yl l z), we find the fol
lowing eases.

1. ((:r ~ y) ~ Z, 11),(, whieh eannot be derived.

2. (:r ~ (y II z), II) ,(, whieh eannot be derived.

3. ((:r ~ y) ~ Z, II) -'+ (p, II') , for whieh we need the hypothesis that I E A
and furthermore

(a) 3,. p = r II z 1\ (:r ~ y, II) -'+ (r, II'), for whieh we need the hypothesis

i. 3,r=slly 1\ (:r, II) -'+ (S,II')

From whieh we eondude (:r ~ (y II z), II) -'+ (s II (y II z), II'), with
p = (s II y) II z R s II (y II z).

4. (:r ~ (y II z), II) -'+ (p', II') , similar to the previous ease.

Fnr (:r II y) II zR:r II (y II z), we find the following eases.

1. ((:r II y) II z, 11),(, for whieh we need the hypothesis.

(a) (:rlly,II),(1\ (Z,II),(, for whieh we need the hypothesis

i. (:r,II),(1\ (y,II),(
From whieh we eondude direetly (:r II (y II z), 11),(.

2. (:r II (y II z), 11),(, similar to the previous ease.

3. ((:r II y) II z, II) -'+ (p, II'), for whieh we need one of the hypotheBes

(a) 3,. p = (:r II y) II r 1\ I E A 1\ (z, II) J., (r, II')

From whieh we eondude (:rll (yllz),II) -'+ (:rll (yllr),II') with
(r II y) II rRr II (y II r).

(b) 3,. p = rllz 1\ I E A 1\ ((:rlly),II) J., (r,II'), for whieh we find
one of the hypotheses

56

i. 3, r = s II y 1\ (:c, v) c'., (s, v') From whieh we eondllde

(r II (y II z), v) c'., (s II (y II z), v') with (s II y) II zR s II (y II z).

ii. 3, r = :rll s 1\ (y,v) c'., (s,v') From whieh we eondllde

(:r II (y II z), v) c'., (:r II (s II z), v') with (:r II s) II z R :r II (s II z).

iii. 3"",0,0' ,,, r = sl l s' 1\ 1= (wya',v') 1\ (:r,v) ~. (s,v') 1\

(y,v) o~. (s',v'). From whieh we eondllde (:rl l (yl l z),v) -'+
(s II (s' II z), v') with (s II s') II z R s II (s' II z).

(e) 3","',0,0' ,,, p = rl l r' 1\ 1= (ara',v) 1\ ((:rl l y),v) o,-'?' (r,v') 1\

(z ~ II) a~) (r', II') , for which we find one of the hypotheses

i. 3, r = s II y 1\ (:r, v) ~. (s, v') From whieh we eondllde

(r II (y II z), v) -'+ (s II (y II r'), v') with (s II y) II r' R s II (y II r').

ii. 3, r = :cll s 1\ (y,v) ~. (s,v') From whieh we eondllde

(:r II (y II z) , v) -'+ (:c II (s II r') , v') with (:c II s) II r' R:r II (s II r').

iii. 38 ,8',00",00'" r=s ll s';\ a=a"ra"';\ (:r,v) a~v (s,I/');\

(y,lI) (8',V). Using associativity of r, we conclude that
(a"ra"')ra' = a"r(afffra'), from which we conclude in turn that

(:r II (y II z), v) -'+ (s II (s' II r'), v') with (s II s') II r' R s II (s' II r').

(d) (:rlly,v)v'" 1\ I E I: 1\ (z,v) ~ (p,v'), for whieh we need the
hypothesis

• (:c,v) v'" 1\ (y,v)v'"
From whieh we direetly eondllde (:r II (y II z), v) -'+ (p, v') with
pRp.

(e) (z, v) v'" 1\ I E I: 1\ (:r II y, v) ~ (p, v'), for whieh we need one of
the hypothesf'B

• (:r,v) v'" 1\ (y,v) ~ (p,v')

From whieh we immediately eondllde (:c II (y II z), v) -'+ (p, v')
with pRp.

• (y,v)v'" 1\ (:r,v) ~ (p,v')
I

From whieh we immediately eondllde (:c II (y II z), v) -) (p, v')
with pRp .

• 3,."., p=rllr' 1\ (:r,v) ~ (r,v') 1\ (y,v) ~ (r',v')

From whieh we immediately eondllde (:c II (y II z), v) -'+ (p, v')
with pRp.

(f) 3,."p=rlls 1\ I E I: 1\ ((:rl l y),v) ~ (r,v') 1\ (z,v) ~ (s,v') ,
for which we need one of the hypotheses

57

• (:r,v),(1\ (y,v) ~ (r,v')

From whieh we immediately eondude (:r II (y II z), v) .!., (p, v')
with pRp .

• (y,v),(1\ (:r,v) ~ (r,v')
I

From whieh we immediately eondude (:r II (y II z), v) -) (p, v')
with pRp .

• 3,.",." r=r'llr" 1\ (:r,v) ~ (r',v') 1\ (y,v) ~ (r",v')

From whieh we immediately eondude (:r II (y II z), v) .!., (r' II (r" II 8), v')
with p = (r' II r") II 8Rr' II (r" II 8).

4. (:r II (y II z), v) .!., (p', v'), similar to the previous ease.

A.22 The axiom: (1: I y) I z ~ 1: I (y I z)
We study the smallest relation R <;; P x P sueh that for all :r, y, z E P:

(:rly)lzR:rI(Ylz) 1\ (:rlly)llzR:rII(Yllz) 1\ :rR:r.

Fnr :r R:r, the proof is trivial. For (:r I y) I z R :r I (y I z), we find the following
eases.

1. ((:r I y) I z, v),(, for whieh we need the hypothesis

• (:r I y, v),(1\ (z, v) ,(, for whieh we need the hypothesis

- (:r,v),(1\ (y,v),(
From whieh we immediately eondude (:r I (y I z), v),(.

2. (:rl (ylz),v),(, similar to the previous ease.

3. ((:r I y) I z, v) .!., (p, v'), for whieh we need one of the hypotheses

(a) 3,.",o,o',vp=rI181\1=(ara',v)I\(:rly,v) '14' (r,v')I\(z,v) 0;";'
(s~ II'), for which we need the hypothesis

i.
a" .1'

r = r' II r" ;\ a = a"ra'" ;\ (:r, II) H (r', II') ;\

(y,v) (r",v')
Using associativity of r we then conclude I = a"r(afffra') and

henee (:rl (ylz),v) .!., (p,v') withpRp.

(b) 3,."p=rI18 1\ lEI: 1\ (:rly,v)~ (r,v') 1\ (z,v)~ (8,V'),
for which we need one of the hypotheses

i. 3,.",." r=r'llr" 1\ (:r,v) ~ (r',v') 1\ (y,v) ~ (r",v')

From whieh we immediately eondude (:r I (y I z), v) .!., (r' II (r U II s), v')
with p = (r' II r") II sRr' II (r" II s).

58

ii. (:r,v) ~ (r,v') 1\ (y,v),(
I

From whieh we immediately eondude (:r I (y I z), v) -) (p, v')
with pRp.

iii. (y, v) ~ (r, v') 1\ (:r, v) ,(, similar to the previous ease.

(e) I E I: 1\ (:rly,v) ~ (p,v') 1\ (z,v),(, for whieh we need one of
the hypotheses

i. 3,."., p=rllr' 1\ (:r,v) ~ (r,v') 1\ (y,v) ~ (r',v')

From whieh we immediately eondude (:r I (y I z), v) ..'., (p, v')
with pRp.

ii. (:r,v) ~ (p,v') 1\ (y,v),(
I

From whieh we immediately eondude (:r I (y I z), v) -) (p, v')
with pRp.

iii. (y, v) ~ (r, v') 1\ (:r, v) ,(, similar to the previous ease.

I
(d) I E I: 1\ (z,v) ~ (p,v') 1\ (:rly,v),(, for whieh we need the

hypothesis

i. (:r,v),(1\ (y,v),(

From whieh we immediately eondude (:r I (y I z), v) ..'., (p, v')
with pRp.

4. (:r I (y I z), v) ..'., (p', v'), similar to the previous ease.

Fnr (:r II y) II z R:r II (y II z), the proof is similar to that ofthe axiom (:r ~ y) ~ z ""
:r~(Yl l z).

A.23 The axiom: (1: I y) ~ z ~ 1: I (y ~ z)

We study the smallest relation R <;; P x P sueh that for all :r, y, z E P:

(:rly)~zR:rI(Y~z) 1\ (:rl ly)l l zR:rII(yl l z) 1\ :rR:r.

For :r R :r, the proof is trivial.
Fnr (:r I y) ~ z R:r I (y ~ z), we find the following eases.

1. ((:r I y) ~ z, v),(, whieh eannot be satisfied.

2. (:r I (y ~ z), v),(, for whieh we need the hypothesis

• (y ~ z, v) ,(, whieh eannot be satisfied.

3. ((:r I y) ~ z, v) ..'., (p, v') , for whieh we need the hypothesis that I E A
and furthermore

(a) 3,. p = r II z 1\ (:r I y, v) ..'., (r, v'), for whieh we need the hypothesis

59

i. 3",. ,0,0'," r = s II s' 1\ I = (ara'. v) 1\ (:r. v) \'4' (s.v') 1\

() o· ," (' ') Y,1I H S ,II

From whieh weeondude (:rl (y~z).v) ..'., (sll (s'llz).v') with
p = (s II s') II zRs II (s' II z).

4. (:r I (y ~ z).v) ..'., (P.v'). for whieh we need one of the hypotheses

(a) 3,.",0,0',,, P = r II s 1\ I = (ara'. v) 1\ (:r.v) o~. (r.v') 1\

(Y ~ z. v) \'4' (s. v'), for w hieh we need the hypothesis

i. 3,. s = s' II z 1\ (y,v) \'4' (r',v'). From whieh we eondude

((:r I y)~z,v) ..'., ((r II s') II z,v') with (r II s') II zRr II (s' II z) =
p.

(b) 3, I E I: 1\ (y~z,v) ~ (s,v'), whieh eannot be satisfied.

(e) I E I: 1\ (y~z,v),(, whieh eannot be satisfied.

Fnr (:r II y) II z R:r II (y II z) , the proof is similar to that ofthe axiom (:r ~ y) ~ z "
:r~(Yllz).

A.24 The axiom: (a G 1:) I> y ~ a G (1: ~ y)

We study the smallest relation R <;; P x P sueh that for all :r, yEP:

(a (') :r) c> yRa (') (:r ~ y) 1\ (E (') :r) ~ yRE (') (:r ~ y) 1\ :rR:r.

The proof for :r R :r, is trivial. Fl1rthermore, since actions cannot terminate,
we find the following eases for (a .') :r) c> yR a (') (:r ~ y).

1. ((a (') :r) c> y,v) ..'., (p,v'), for whieh we need the hypothesis

(a) 3,. p = r ~ y 1\ (a (') :r,v) ..'., (r,v'), for whieh we need the
hypothesis

i. 3, r = s .') :r 1\ (a, v) ..'., (s, v'), for whieh we need the hy
pothesis

A. s = E

From whieh we eondude p = (E .') :r) ~ y and (a .') (:r ~

y),v) ..'., (E (') (:r ~ y),v') with (E ('):r) ~ yRE .') (:r ~
y).

2. (a (') (:r ~ y),v) ..'., (p,v'), similar to the previous ease.

Fnr (E (') :r) ~ yRE (') (ee ~ y), the proof is similar to that of the axiom

60

A.25 The axiom: (d» c I> 1:) G y::::; d» c I> 1: G y

We study the smallest relation R <;; P x P sueh that for all :e, yEP:

(d» c c> :e) (,) yRd» c C> :e :,) y 1\ (c ~ :e) (,) yRc ~ :e (,) y 1\ :eR:e.

The proof for :eR:e, is trivial. We find the following eases for (d » c C>
:e) ,,) yRd» c C>:e (,) y.

1. ((d » (c C> :e)) ,,) y, v) ,(, for w hieh we need the hypothesis

(a) (d» (c C> :e),v),(1\ (y,v),(, for whieh we need the hypothesis

i. 3", (v, v') 1= d 1\ (c C> :e, v') ,(, for whieh w need the hypothesis

A. (c, v') ,(
\Vhieh cannot be derived llsing the semantical rules of HyPA.

2. d » c [> (:r (9 y) turns out not to terminate, similarly to the previolls
ease.

3. ((d» c C> :e) (,) y, v) ..'., (p, v"), for whieh we need the hypothesis

(a) 3,. p = r (,) y 1\ (d» c C>
I :e, v) -) (r, v"), for whieh we need the

hypothesis

i. 3", (v, v') 1= d 1\ (c C> :e, v') ..'., (r, v"), for whieh we need the
hypothesis

A. 3, r = 8 ~ :e 1\ (c,v') ..'., (8,V"), for whieh we need the
hypothesis

• S = c:
From whieh we eondude p = (c ~ :e) (,) y and (c ~ :c (,)

y, v') ..'., (c ~ :r:') y, v") with (c ~ :c) (,) yR c ~ :r:') y.

(b) (d» c C> :c),(1\ (y,v) ..'., (p,v") , whieh eannot oeem sinee
d » c [> :r does not terminate.

4. (d» c ~ :c (,) y, v) ..'., (p', v"), similar to the previous ease.

We find the following eases for (c ~ :c) (,) yRc ~ :c (,) y.

1. ((c ~ :c) (,) y, v),(, for whieh we need the hypothesis

(a) (c ~ :c, v),(1\ (y, v) ,(, for whieh we need one of the hypotheses

i. (c, v) ,(
\Vhieh cannot be derived.

ii. (:c,v),(
From whieh we eondude (:c :,) y, v),(and henee (c ~ :c ,,)
y,v),(.

61

2. (c .. :r (0 y, II) ,/ , similar to the previous case.

3. ((c ~ :r) (,) y, v) ..'., (p, v) , for whieh we need one of the hypotheses

(a) (c ~ :r, v),(1\ (y, v) ..'., (p, v), for whieh we need one of the
hypotheses

i. (c, v) ,(
\Vhieh cannot be derived.

ii. (:r,v),(

From whieh weeondude (:r (,) y,v) ..'., (p,v) henee (c ~ :r:,)

y,v) ..'., (p,v) withpRp.

(b) 3,. p = r (,) y 1\ (c ~ :r,v) ..'., (r,v'), for whieh we one of the
hypotheses

i. (:r,v) ..'., (r,v')

From whieh we eondude (:r (,) y, v) ..'., (p, v') henee (c ~
:r (,) y,v) ..'., (p,v) withpRp.

I
ii. 3, r = s ~ :r 1\ (c, v) -) (8, v')

From whieh we eondude p = (8 ~ :r) (,) y and (c ~ :r (,) y, v) ..'.,
(8 ~ :r (,) y,v') with (s ~ :r):,) yR8 ~ :r (,) y.

4. (c ~ :r :,) y, v) ..'., (p', v') , similar to the previous ease.

A.26 The axiom: 1(I> is ~ 1(

We study the smallest relation R <;; P x P sueh that for all :r E P:

:r c> <5R:r 1\ :r ~ <5R:r .

There are only two non- trivial cases:
I

1. (:r c> <5, v) -) (p, v'), for whieh we need the hypothesis

(a)
I

3p' p=p' ~ <5 1\ (:r,v) -) (p',v')
For w hieh we conclude p' .. l5 R p' .

I
2. (:r ~ <5, v) -) (p, v'), for whieh we need the hypothesis

(a) I
3p' p=p' ~ <5 1\ (:r,v) -) (p',v')
For w hieh we conclude p' .. l5 R p' .

A.27 The axiom: f I> 1(~ f

We study the smallest relation R <;; P x P sueh that for all :r E P:

€C>:rR€.

It is trivial to see that « c> :r,v)'("*'" «,v),(, and that both terms do
not generate any transitions. Hence R is a bisimulation relation.

62

A.28 The axiom: (d» 1:) I> y "" d» 1: I> y

We study the smallest relation R <;; P x P sueh that for all :c E P:

(d»:c) C> yRd»:c C> y 1\ :cR:c .

Fnr :cR:c, the proof is trivial. Fnr (d» :c) C> yRd»:c C> y, we find the
following eases.

1. ((d»:c) C> y, v),(, for whieh we need the hypothesis

(a) (d»:c, v) ,(, for whieh we need the hypothesis

i. 3". (v, v') 1= d 1\ (:c, v') ,(
From whieh we eondude (:c C> y, v'),(henee (d » :c C>
y,v),(.

2. (d»:c C> y, v) ,(, similar to the previous ease.

3. ((d»:c) C> y, v) -'+ (p, v"), for whieh we need the hypothesis

(a) 3,. p = r ~ y 1\ (d»:c, v) -'+ (r, v"), for whieh we need the
hypothesis

i. 3". (v, v') 1= d 1\ (:c, v') -'+ (r, v")

From which we conclude (:r [> y, II') 4 (r .. y, II") and hence

(d» :c C> y, v) -'+ (p, v") with pR p.

I
4. (d»:c C> y, v) -) (p, v"), similar to the previous ease.

A.29 The axiom: 1: II y "" 1: ~ y Ell y ~ 1: Ell 1: I y

We study the smallest relation R <;; P x P sueh that for all :c, yEP:

Fnr :c R:c, the proof is trivial. For :c II y R:c ~ y G) Y ~:c G) :c I y, we find the
following eases.

1. (:c II y, v),(whieh leads to:

(a) (:c,v),(1\ (y,v),(
From this we find (:r I y, v),(and henee (:r ~y 'D y~:r 'D :r I y, v),(.

2. (:r ~ y :D y ~:r :D :c I y, v),(whieh leads to the eases:

(a) (:ch,v),(
For which there is no deduction rule.

(b) (y~:r,v),(

For which there is no dedlH:tion rule.

63

(e) (:r I y, v) ,(whieh leads to:

i. (:r,v),(1\ (y,v),(
From this we find, direetly, (:r II y, v),(.

3. (:r II y, v) ..'., (p, v') whieh leads to the eases:

(a) I = (a, v) 1\ (:r II y, v) \'4' (p, v') whieh leads to the eases:

i. 3p' (:r,v) \'4' (p',v') 1\ p=p'lly
From whieh we eondnde that (:r ~ y, v) \'4' (p, v'), and henee

(:r~y,v) ..'., (p,v') and (:r~y G) y~:r 'D :rly,v) ..'., (p,v')
with pRp.

ii. 3p' (y,v) \'4' (p',v') 1\ p=:rllp'
Similar to the previolls ease.

iii. ::Ip' ,p" ,a' ,a" P = p' II p" ;\ a = arra" ;\ ()
0' ,v (, ') :r, II H P , II ;\

a" .1.>
(y,v) H (p",v')

From whieh we eondnde that (:r I y, v) ,v (p' II p", v'), and

henee (:rly,v) ..'., (p,v') and (:r~y 'D y~:r :D :rly,v) ..'.,
(p,v') withpRp.

(b) l=a 1\ (:rlly,v) ~ (p,v') whiehleads to the eases:

i. (:r,v),(1\ (y,v) ~ (p,v')
From whieh we eondnde that (:r I y, v) ~ (p, v') and henee

I I
(:rly,v) -) (p,v') and (:r~y 'D y~:r G) :rly,v) -) (p,v')
with pRp.

ii. (y,v),(1\ (:r,v) ~ (p,v')
Similar to the previolls ease.

iii. 3p',p" p=p',p"ll 1\ (:r,v) ~ (p',v') 1\ (y,v) ~ (p",v')
From whieh we eondnde that (:r I y, v) ~ (p' II p", v') and

I I
henee (:rly,v) -) (p,v') and (:r~y :D y~:r :D :rly,v) -)
(p, v') with pRp.

I
4. (:r ~ y 'D Y ~:r :D :r I y, v) -) (p, v) whieh leads to the eases:

I
(a) (:rh,v) -) (p,v)

Trivial, since every deduction rule for ~ is also a rule for II.
I (b) (y~:r,v) -) (p,v)

Trivial, since every deduction rule for ~ is also a rule for II.
I (e) (:rly,v) -) (p,v)

Trivial, since every deduction rule for I is also a rule for II.

64

A.3D The axiom: (1: Ell y) ~ z ~ 1: ~ z Ell y ~ z

We study the smallest relation R <;; P x P sueh that for all :c, y, z E P:

Fnr :c R:c, the proof is trivial. Fnr (:c (l) y) ~ z R:c ~ z (l) y ~ z, we find the
following eases.

1. ((:c fD y) ~ z, v) ,(, whieh eannot oeem.

2. (:c ~ z fD Y ~ z, v),(, for whieh we need one of the hypotheses:

(a) (:c ~ z, v),(, whieh eannot oeem.

(b) (y ~ z, v) ,(, whieh eannot oeem.

3. ((:c fD y) ~ z, v) -'.; (p, v'), for whieh we need the hypothesis:

(a) 3,.p=rllz 1\ (:cfDy,v) -'.; (r,v'),forwhiehweneedthehypoth
esis:

i. (:c,v) -'.; (r,v')

From whieh we may eondude (:c ~ z, v) -'.; (:c II z, v'), henee
I

(:c~z (l) y~z,v) -) (p,v') withpRp.

ii. (y, v) -'.; (r, v')
\Vhieh is similar to the previolls ease.

4. (:c ~ z ' J) Y ~ z, v) -'.; (p, v'), for whieh we need one of the hypotheses:

(a) (:c ~ z, v) -'.; (p, v'), for whieh we need the hypothesis:

i. 3,. p = r II z (:c, v) -'.; (r, v')

From which we readily conclude (:r CD y, II) it (r, II') and hence

((:c (!) y) ~ z, v) -'.; (p, v') with pR p.

(b) (y~z,v) -'.; (p,v')
\Vhieh is similar to the previolls ease.

A.31 The axiom: d» 1: ~ y ~ d» (1: ~ y)

We study the smallest relation R <;; P x P sueh that for all :c, yEP:

Fnr :c R :c, the proof is trivial. Fnr d » :c ~ y R d » (:c ~ y), we find the
following eases.

1. (d»:c ~ y, v),(, whieh eannot oeem.

65

2. (d» (:c ~ y), v),(, for whieh we need the hypothesis:

(a) 3", (v, v') 1= d 1\ (:c ~ y, v'),(, whieh eannot oeeUf.

3. (d» :c~y,v) -'+ (p,v"), for whieh we need the hypothesis:

I
(a) 3,. p = r II y 1\ (d» :c, v) -+ (r, v"), for whieh we need the

hypothesis:

i. 3", (v, v') 1= d 1\ (:c, v') -'+ (r, v")

From whieh we may eondude (:c ~ y, v') -'+ (p, v") and finally

(d» (:c h), v) -'+ (p, v") with pR p.

4. (d» (:c ~ y), v) -'+ (p, v"), for whieh we need the hypothesis:

(a) 3", (v,v') 1= d 1\ (:e~y,v') -'+ (p,v"), for whieh we need the
hypothesis:

i. 3,. p = r II y 1\ (:e, v') -'+ (r, v")

From which we may conclude (d » :r, II) 4 (r, II") and hence

(d»:eh,v) -'+ (p,v")withpRp.

A.32 The axiom: (a G 1:) ~ y ~ a G (1: II y)

We study the smallest relation R <;; P x P sueh that for all :e, yEP:

Fnr :eR:e, the proof is trivial. Fnr (a (,) :e) ~yRa (,) (:e II y), we find the
following eases.

1. Termination does not occur.

2. ((a (,) :e) ~ y, v) -'+ (p, v'), for whieh we need the hypothesis:

(a) 3,. p = rl l y 1\ (a (,) :e , v) -'+ (r,v'), and sinee aetions do not
terminate, we need the hypothesis:

i. 3, r = s (,) :e 1\ (a, v) -'+ (s, v').

Clearly, s = E, henee p = (E (,) :e) II y and (a (,) (:e II y), v) -'+
(E (,) (:e II y), v') with E (,) (:e II y) R (E (,) :e) II y.

3. (a (,) (:el l y),v) -'+ (p,v'), whieh is similar to the previous ease.

Fnr (E (,) :e) II yRE (,) :el l y, we find the following eases.

1. ((E (,) :e) II y, v) ,(, for w hieh we need the hypothesis:

(a) (E (,) :e,v),(1\ (y,v),(,forwhiehweneedthehypothesis:

66

:r.

i. (:c,v),(
From whieh we readily eondude (:c II y, v),(, henee (E (,) (:c II y), v),(.

2. (E (,) (:c II y), v) ,(, whieh is similar to the previous ease.

3. ((E (,) :c) II y, v) -'-+ (p, v') , for whieh we need one of the hypotheses:

(a) 3",p',p" l=a 1\ p=p'llp" 1\ (E (,) :c,v) ~ (p',v') I\(y,v) ~
(p", II'), for which we need the hypothesis:

i. (:c,v) ~ (p',v')
From whieh we readily eondude (:c II y, v) ~ (p' II pH, v') and

henee (E (,) (:clly),v) -4 (p,v') withpRp.

(b) 3" I = a 1\ (E (,) :C, v) ~ (p, v) 1\ (y, v),(, whieh is similar to the
first ease.

(e) 3" I = a 1\ (E (,) :c,v)'(1\ (y,v) ~ (p,v), whieh is similar to
the first ease.

(d) 30 ,0' ,p' ,p" I = ara' 1\ p = p' II P" 1\ (E (,) :C, v) ,"; (p', v) 1\ (y, v) ~
(p", II'), which is similar to the first ease.

(e) 30 ,p' I =a 1\ p=p'lly 1\ (E (,) :c,v),"; (p',v),whiehissimilarto
the first ease.

(f) 30 ,p' l=a 1\ p=:cllp' 1\ (y,v),"; (p',v),whiehissimilartothe
first ease.

4. (E (,) (:c II y), v) -'-+ (p, v'), whieh uses the reverse reasoning of the previ-
011S ease.

In faet, this last ease could also have been concluded from the axiom € (:J :r ~

A.33 The axiom: (c I> 1:) ~y ~ 6

We study the smallest relation R <;; P x P sueh that for all :c, yEP:

(c C> :c)~yR".

Clearly, both related processes in (c [> :r) ~ yR{) cannot terminate. Fur

thermore, for ((c C> :c) ~ y, v) -'-+ (p, v') we ultimately need the hypothesis
that 30 ,,' I = a 1\ p = (r ~ :c) II y 1\ (c, v) ,"; (r, v'), whieh dearly eannot
occur. Hence both processes do not perform any transitions.

A.34 The axiom: 1: 1 y ~ y 11:
We study the smallest relation R <;; P x P sueh that for all :c, yEP:

:clyRyl:c 1\ :cllyRyll:c 1\ :cR:c.

Fnr :c R:c, the proof is trivial. Fnr:c I y R y l:c and :c II y R y 11:c the proofs
are straightforward by symmetry of the rules for I and II.

67

A.35 The axiom: (1: Ell y) 1 z ~ 1: 1 z Ell y 1 z

We study the smallest relation R <;; P x P sueh that for all :r, yEP:

(:r G) y) I zR:r I z G) Y I z 1\ :rR:r.

Fnr :rR:r, the proof is trivial. For (:r G) y)lzR:rlz 'D ylz, we find the
following eases.

1. ((:r 'D y) I z, v) ,(, whieh needs the hypothesis:

(a) (:r:D y,v),(1\ (z,v),(, whieh needs one of the hypotheses:

i. (:r,v),(
From whieh we readily eondude (:r I z, v),(, and henee (:r I z 'D
ylz,v)'(.

ii. (y, II) ,/ , which is similar to the previolls ease.

2. (:r I z (1) Y I z, II) ,(, which follows the reverse reasoning from the previolls
ease.

3. ((:r 'D y) I z, v) ..'., (p, v'), whieh needs one of the hypotheses:

(a) '3",P',P" l=a 1\ p=p'llp" 1\ (:r:D y,v) ~ (p',v') 1\ (z,v) ~
(p", II'), which needs one of the hypotheses:

i. (:r,v) ~ (p',v'),
From whieh we may eondude that (:r I z, v) ~ (p' II p", v') and

henee (:rlz:D ylz,v)..'., (p,v') withpRp.

ii. (y,v) ~ (p',v'),
similar to the previolls ease.

(b) '3o,o',P',P"," I = (ara', v) 1\ p=p'llp" 1\ (:r'D y,v) ~. (p',v') 1\

() 0'." (" ') Z, II ~ p, II ,

which is similar to the previolls ease.

4. (:r I z :D Y I z, v) ..'., (p, v'), whieh follows the reverse reasoning of the
previolls ease.

A.36 The axiom: 611: ~ 6
We study the smallest relation R <;; P x P sueh that for all :r E P:

bl:rRb.

It is straightforward to verify that both terms 81 :r and l5 do not terminate,
nor can perform any transitions.

68

A.37 The axiom: f Ill: ~ 1:

We study the smallest relation R <;; P x P sueh that for all :c E P:

For :rR:r, the proof is trivial. For € II :rR:r, termination is trivial. Further
more, we have the following eases.

1. (II :c , v) -'-t (p, v), whieh needs one of the hypotheses:

(a) 3" 1=17 1\ (:c,v) ~ (p,v')

From whieh we easily eondude (:c, v) -'-t (p, v') and pR p.

(b) 30 ,p' p= <liP' 1\ (:c,v) 8 (p',v')

From whieh we eondude (:c, v) -'-t (p', v') and (II p' R p'.

2. (:r, II) 4 (p, II), which follows the reverse reasoning of the previolls ease.

A.38 The axiom: f ~ 1: ~ 6

We study the smallest relation R <;; P x P sueh that for all :c E P:

Clearly, ~ has no rules for termination, and since € cannot perform any
transitions, € ~:r cannot either. This covers the eases of € ~ :rRt>.

A.39 The axiom: d» f I df » f ~ (,t II df
") » f

\Ve study the smallest relation R ~ P x P snch that:

d» (Id'» (R(d? I\d'?)>> E.

Clearly, we only need to verify the eases of d » (I d' » (R (d? 1\ d'?) » (
for termination.

1. (d» (I d' » (, v) ,(, for whieh we need the hypothesis

(a) 3v ' (v, v') 1= d 1\ 3 v " (v, v") 1= d'
From whieh we eondude that (v, v) 1= d? and (v, v) 1= d'?, henee
((d? I\d'?)>>(,v)'(.

2. ((d? I\d'?)>> (,v),(, for whieh we need the hypothesis

(a) 3v ' (v, v') 1= (d? 1\ d'?), whieh eomes down to the hypothesis

i. v = v' 1\ 3v (v, v) 1= d 1\ 3v ' (v, v') 1= d'
From whieh we easily eondude (d » (, v),(and (d' » (, v) ,(,
henee (d » (I d' » (, v) ,(.

69

A.40 The axiom: d» f I d' » a G 1: ~ 6

We stndy the smallest relation R <;; P x P sneh that for all :c E P:

d» E I d'» a (,) :cR,).

Clearly, d' » a (~ :r does not terminate directly, hence d » € I d' » a (9 :r,
does not. Also d » € does not execute any transitions, and d' » a (0 :r does
not execute any signal transitions, hence d » € I d' » a (~ :r does not execute
any transitions.

A.41 The axiom: d» a G 1: I d' » a' G y ~ (d II d') »
(a~ia') G (1: II y) if (Wia') defined

For a given a and a' sneh that arar is defined, we study the smallest relation
R <;; P x P sneh that for all :c, yEP:

d»a(,):cld'»a'(,) yR(dl\d')>> (ara') ,,) (:cl l y) 1\ E('):cIIE(')yRE(') (:cl l y) 1\ :eR:e.

Fnr :eR:e, the proof is trivial. Fnr d » a (,) :e I d' » a' (,) yR (d 1\ d') »
(ara') (,) (:e II y) , there is dearly no termination. Henee we find only the following
eases.

1. (d» a (,) :e I d' » a' (,) y, v) ..'., (p, v"'), for whieh we need one of the
hypotheses:

(a) 3",p' ,p" I = a 1\ (d» a (,) :e, v) ~ (p', v"') 1\ (d' » a' ,,) y, v) ~
(p", v f

"),

for which the hypotheses can dearly not be fulfilled.

=> I (" "') (d .) a" .v (b) "'a" ,a''' ,p',p''"" = a ra ,v 1\ .» a (v :e,v H (p',v"') 1\

(d' » a' (,) y, v) (pH, v"'), for whieh we need the hypothesis:

a" .1.>

i. 3", (v, v') 1= d 1\ (a (,) :e, v') H (p', v"') 1\ 3" .. (v, v") 1= d' 1\

(a' (,) :e,v') (p", II"'), for which we need the hypothesis:
a" .1'

A. 3/' p' = r :9 :r ;\ (a, II') H (r, II"') ;\ 31" p" = r' :~ :r ;\

(a', v f
) a~v (r', II"') , which can only be concluded if:

• a = a", a' = ar
", v = v f = v" = v f", r = rf = €,

from which we conclude that I = (afaf , v f") , p = € (~

:e II E (,) Y and (v, v"') 1= (d 1\ d'). Finally, we then obtain

((d 1\ d') » (ara') (,) (:e II y), v) ..'., (E (,) (:e II y), v"') and
E (,) :el I E (,) yRE (,) (:el l y)·

2. ((d 1\ d') » (ara') (,) (:e II y), v) ..'., (p, v"), for whieh we need the hy
pothesis

(a) 3", (v, v') 1= (d 1\ d') 1\ ((ara') ,,) (:e II y), v') ..'., (p, v"), for whieh
we need. the hypothesis:

70

i. 3,. p = f (,) (:r II y) 1\ ((wya'), v') -'., (f, v"), whieh ean only be
concluded if:
A. I = (ara', v) 1\ v = v' = v" 1\ f = (, henee (v, v") 1= d

and (v, v") 1= d', thus (d » a (,) :r I d' » a' (,) y, v) -'.,
((,) :r II ((,) y, v") and ((,) :r II ((,) yR ((,) (:r II y).

Fnr ((,) :r II ((,) yR(:,) (:r II y) , the eases are similar to the eases of (:,)
:r II yR (:,) (:r II y) in the proof of (a :,) :r) ~ y " a (,) (:r II y).

A.42 The axiom: d» a G 1: I d' » a' G y ~ 6 if (a~ia')
undefined

For a given a and a' sneh that wya' is undefined., we study the smallest relation
R <;; P x P sueh that for all :r, yEP:

d» a (,) :r I d'» a' (,) yRb.

For d » a :~ :r I d' » a' (9 y there is dearly no termination. Furthermore,
there aTe no signal transitic)lls. Henee the only ease to be studied is: (d»

a:') :r I d' » a' (,) y, v) :0'; (p, v'), for whieh we ultimately need the hypothesis
that a" = arar , which is contradictory to the assumption that arar is undefined.

A.43 The axiom: d» f I d' » c I> 1: ~ (,t ~ d') » c I> 1:

We study the smallest relation R <;; P x P sueh that for all :r E P:

d» (I d'» c c> erR (d? - d')>> c c> :r 1\ :rR:r.

For :rR:r, the proof is trivial. Also, sinee c [> :r cannot terminate, the eases
for termination are also trivial (both terms cannot). Henee, we only study the
following eases for d» (I d' » c C> erR (d? - d') » c C> cr.

I
1. (d » (I d' » c C> :r, v) -) (p, v") , for whieh we need one of the

hypotheses

(a) 3p' I E A 1\ P = d » (II p' 1\ (d'» c C> :r, v) -'., (p', v"), whieh
would need.

I
i. 3", (v, v') 1= d 1\ (c ~ :r, v') -) (p, v"), and henee would need

I A. 3,. p' = f ~ :r 1\ (c, v') -) (f, v"),
which ean dearly not be satisfied.

(b) 3" I = a 1\ (d» (,v),(1\ (d'» c C> :r,v) ~ (p,v"), for whieh
we need. the hypothesis

i. 3v (v,v) I=d 1\ 3", (v,v') I=d' 1\ (c C> :r,v') ~ (p,v") ,
but then we may eondude (v, v) 1= d? henee (v, v') 1= d? - d')
and finally ((d? I\d')>> c C> :r,v) .."; (p,v") withpRp.

71

2. ((d? /\ d') » c C> :c, v) ..'., (p, v"'), for whieh we need the hypothesis

(a) 3"" (v, v") 1= (d? - d') /\ (c C> :c, v") ..'., (p, v"'), whieh leads to
the hypothesis

i. 3", (v, v') 1= d? /\ (v', v") 1= d', for whieh we need

A. 3v (v, v) 1= d /\ v = v'.
Finally, we may eondude that (d » E, v),(and (d' »
c C> :c,v) ..'., (p,v"'), henee (d» E I d'» c c> :c,v) ..'.,
(p, v"') with pRp.

A.44 The axiom: d» e I> 1: I d' » a G y ~ 6

We study the smallest relation R <;; P x P sueh that for all :c, yEP:

d» c C> :c I d'» a (,) y "" b.

Clearly, c [> :r cannot terminate, nor perform any action transitions, while
a (9 y cannot terminate and cannot perform any signal transitions. None of the
hypothesis of the forced-synchronization operator can therefore be fulfilled.

A.45 The axiom: d» c I> 1: I d' » c' I> Y ~
((d ~ ejmp) II (d' ~ ejmp)) » (e II c') I>
(l:~e' ~ y Ell y~e ~ 1: Ell 1:le' ~ yEll yle ~ 1:)

In this section, we will use the abbreviations AI

N = ((d - Cjmp) /\ (d' - cfmp)).
We study the smallest relation R <;; P x P sueh that for all :c, yEP:

• d» c C> :cl d'» c' C> yRN» c/\ c' C> lVJ

• c ~ :c II c' ~ y R C /\ c' ~ lVJ

• :rR:r

For :r R :r, the proof is trivial.
Fnr :c II y R y II :c, the proof follows aeeording to the same lines as in the proof

of axiom :r I yRy l:c·
Fnr d » c C> :r I d' » c' C> y R N » c /\ c' C> lVJ, we find the following

eases.

1. (d» c C> :r I d' » c' C> y, v) ,(, for whieh we need the hypothesis

72

(a) (d » e c> :c, v),(/\ (d'» e' c> y, v),(, whieh leads to the
hypothesis

i. 3", (v, v') 1= d /\ (e c> :c, v') ,(, for whieh we need the hypothesis

A. (e, v') ,(, whieh eannot be satisfied.

2. (.N» c;\ c' [> AI, II) ,/, cannot he satisfied for similar reasons as in the
previolls ease.

3. (d» e c> :c I d' » e' c> y, v) -'-t (p, v"') , leading to one of the hypothe
ses

(a) 3p' I E A /\ (d» e c> :c,v) -'-t (p', v"'), whieh ean dearly not be
satisfied since flow-clauses cannot execute action transitions.

(b) 3J ,p',p" I = a /\ dom(a) = [O ... t] /\ P = p'llp" /\ (d» e c>
:c,v) ~ (p',v"') /\ (d'» e' c> y,v) ~ (p",v"'), for whieh we
need the hypothesis

i. 3", (v, v') 1= d /\ (e c> :c, v') ~ (p', v"') /\ 3"" (v, v") 1=
d' (' ") J (" "') I 1'1 1 l' . ;\ c [> y, II "'-+ p, II ,ea{ mg to t le lypot leSIS

A. 31" p' = r' .. :r ;\ (c, II') ~ (r', II"') ;\ 31''' p" = r" ..
y ;\ (c, II") ~ (r", II"'), for which we need the hypothesis

• (v', a) 1= e /\ r' = e /\ (v", a) 1= e' /\ r" = e' /\ v'" = art).
Using the second lemma on the solutions of clauses, fonnd
in the proof of axiom ejmp » e '" e, we know that (17(0), a) 1=
(e/\ e'). Fllrthermore, we may eondllde that (v, 17(0)) 1= N
and p = e ~ :c II e' ~ y, to finally find (N » e /\ e' c>

I IvI,v) -) ((e/\e') ~ IvI,v"') andpRe/\e' ~ IvI.

4. (N)> (e /\ e') c> IvI, v) -'-t (p, v") , leading to the hypothesis

(a) 3", (v, v') 1= N /\ ((e /\ e') c> IvI, v') -'-t (p, v"), for whieh we need
the hypothesis

I
i. 3,. p = r ~ IvI /\ ((e /\ e'), v') -) (r, v") /\ 3", ,J , (v, v,) 1=

d /\ (v"a,) I=e /\ 3""J, (V,V2) I=d' /\ (V2, (72) I=e /\ v'= a, (0) = 172(0), and finally we need the hypothesis

A. I = a /\ r = (e /\ e') /\ (v', a) 1= (e /\ e') /\ v" = art).
From this we may conclude that p = (c;\ c') .. AI, but
furthermore we can llse the first lemma on solutions of flow
clauses, fonnd in the proof of axiom Cjmp » C ;.;,:;-: c, together
with the faets that (v" a,) 1= e and (v', a) 1= e and v' =
a, (0) to find (v" a) 1= e and similarly (V2, a) 1= d. This
leads to the observations that (d » e c> :c) ~ (e ~
:c,v") and (d' » e' c> Y) ~ (e' ~ y,v"), and finally

(d » e C> :c I d' » e' C> y, v) -'-t (e ~ :c II e ~ y, v") and
e ~ :clle ~ yRp.

73

Fnr e ~ :c II e' ~ yRe/\ c' ~ !VI, we find the following eases.

1. (e ~ :c II e' ~ y, v) ,(, for whieh we need the hypothesis

(a) (e ~ :c, v),(/\ (e' ~ y, v),(, for whieh we need the hypothesis

i. (:c,v),(/\ (y,v),(
From whieh we may eondude (:c I y, v),(henee (!VI, v),(and
((e /\ e') ~ !VI, v) ,(.

2. (e/\ e' ~ !VI, v),(, for whieh we need the hypothesis (!VI, v) ,(and henee
one of the following hypotheses

(a) (:c ~ e' ~ y, v) ,(, whieh eannot oeem.

(b) (y~e ~ :c,v),(, whieh eannot oeem.

(e) (:c I e' ~ y, v) ,(, for whieh we need the hypotheBis

i. (:c),(/\ (e' ~ y, v) ,(. From this we may eondude that
(e ~ :c, v),(and henee (c ~ :c II e' ~ y, v),(.

(d) (y I e ~ :c, v) ,(, is similar to the previous ease.

3. (e ~ :c II e' ~ y, v) -'-+ (p, v'), for whieh we need one of the following
hypotheses:

(a) 30 ,o',p' ,p" I = ara' p = p' II pH /\ (e ~ :c , v) A (p', v') /\ (e' ~

y, v) ~ (pH, v'), whieh leads to the hypothesis

i. (:c,v) A (p',v'),

from whieh we eondude (:c I e' ~ y, v) o~ ' (p' II p", v') , and

henee ((e/\e') ~ !VI,v) -'-+ (p,v') withpRp.

(b) 30 ,p.l=ap=p'll e' ~ y/\ (c ~ :r) A (p',v'),forwhiehweneed
the hypothesis

i. (:r,v) A (p',v')
from whieh we eondude that (:r ~ e' ~ y, v) A (p' II e' ~

I y, v') and henee ((e/\ e') ~ !VI, v) -) (p, v') with pRp.

(e) 30 ,p' I = a p = e ~ :r II p' /\ (e' ~ y) A (p', v'), whieh is similar
to the previolls ease.

(d) 3",p' ,p" I = a /\ dom(a) = [0 ... tJ /\ P = p' II p" /\ (e ~ :r, v) ~
(p', v') /\ (e' ~ y, v) ~ (pH, v'), for whieh we need one of the
following hypotheses:

i. 31" p' = r' .. :r ;\ (c,v) ~ (r',v') ;\ 31''' p" = r" ..
y ;\ (c', II) ~ (rff, II') , for which we need the hypothesis

A. r' = e /\ r" = e' /\ (v, a) 1= e /\ (v, a) 1= e' /\ v' = art)
From this we eondude that p = c ~ :r II e' ~ y and ((c /\

c') ~ !VI,v) -'-+ (e/\e' ~ !VI,v'), with pR(e/\ e') ~ !VI.

74

ii. 3, .• p' = r' ~ :r /\ (e,v) ~ (r'.v') /\ (y.v) ~ (p".v') , for
which we need the hypothesis
A. r' = c.

Now , we eondude that p = e ~ :r II p", and that (y I e ~
I I

:r,v) -) (p"lle ~ :r,v'). Henee ((c/\ c') ~ IvI,v) -)
(p"lle ~ :r,v') withp"lle ~ :rRp.

iii. (:r,v) ~ (p',v') /\ 3, ... pH = r" ~ y /\ (e',v) ~ (r",v'),
for which we need the hypothesis
A. r" = cr.

Now, we eondude that p = p' II e' ~ y, and that (:r I e' ~

y,v)..'., (p,v'). Henee, ((e/\e') ~ IvI,v)..'., (p,v') with
pRp.

iv. (:r,v) ~ (p',v') /\ (y,v) ~ (p",v')

From whieh it follows direetly that (:r I e' ~ y) ..'., (p,v')

Henee, ((e/\e') ~ IvI,v) ..'., (p,v') withpRp.

(e) 3" I = a /\ (e ~ :r,v) ~ (p,v') /\ (e' ~ y,v),(, for whieh we
need the hypothesis

i. (y,v),(.

From this we may eondude (yle ~ :r) ..'., (p,v'). Henee,

((e/\e') ~ IvI,v) ..'., (p,v') withpRp.

(f) 3" I = a /\ (e ~ :r,v)'(/\ (e' ~ y,v) ~ (p,v'), for whieh we
need the hypothesis

i. (:r,v),(.

From this we may eondude (:r I e' ~ y) ..'., (p, v'). Henee,

((c/\e') ~ IvI,v) ..'., (p,v') withpRp.

4. (e /\ e' ~ IvI,v) ..'., (p,v') , whieh needs one of the following hypotheses:

(a) 3,. p = r ~ IvI /\ ((e /\ e'),v) ..'., (r, v'), for whieh we need the
hypothesis

i. 3" I = a /\ dom(a) = [0 ... t]/\ r = (e/\e') /\ v' = art) /\ (v, a) 1=
c /\ (v, a) 1= c'.
From this we may readily conclude that p = (c;\ c') .. AI
and (e ~ :r,v) ~ (e ~ :r,v'). Consequently, we find (e ~

:rIle' ~ y,v)..'., (e ~ :rIle' ~ y,v') withe ~ :rIle' ~ yRp.

(b) (IvI, v) ..'., (p, v'), w hieh eomes down to one of the hypotheses:

i. (:r ~ e' ~ y, v) ..'., (p,v'), for this we need the hypothesis

A. 3",0 I = a /\ p = r II e' ~ y /\ (:r,v) ,"; (r,v').
From whieh we eondude (e ~ :r) ,"; (r, v') and finally

(e ~ :rIle' ~ y,v)..'., (p,v') withpRp.

75

ii. (y ~ e ~ :c, v) ..'., (p, v'), for this we need the hypothesis

A. 3",0 l=a 1\ p=rll e ~:c 1\ (y,v) 8 (r,v').
From whieh we eondllde (e ~ y) 8 (r, v') and finally

(e ~ :cl l e' ~ y,v)..'., (c ~ :cl l r,v') withpRc ~ :cl l r.

iii. (:c I e' ~ y, v) ..'., (p, v'), for whieh we need one ofthe hypothe
ses

A. 30 ,o' ,p',p" l=a,a'p=p'l lp" 1\ (:c,v) 8 (p',v') 1\ (e' ~

y, v) A (p", v'), whieh leads to the hypothesis

• (y,v) A (p",v')

From whieh we readily eondllde (e ~ :c II e' ~ y, v) ..'.,
(p, v') with p R p.

B. 3",p',p" I = a p = p'l lp" 1\ (:c,v) ~ (p',v') 1\ (e' ~
y, II) ~ (p", II'), which leads to one of the hypotheses

• 3/' p" = r .. y ;\ (c' .. y,lI) ~ (r,II'), then we need
the hypothesis
- r = c'

From whieh we eondllde that p = p' II e' ~ y and (c ~

:cl l e' ~ y,v)..'., (p,v') withpRp.

• (y,v) ~ (p",v')
I

From whieh we readily eondllde (e ~ :c II c' ~ y, v) -+
(p, v') with pRp.

iv. (yle ~ :c , v)..'., (p,v'),forwhiehweneedoneofthehypothe
ses

A. 30 ,o' ,p' ,p" 1= a,a' p=p'l lp" 1\ (y,v) 8 (p',v') 1\ (e ~

:c, v) A (p", v'), whieh leads to the hypothesis

• (:c,v) A (p",v')

From whieh we readily eondllde (e ~ :c II e' ~ y, v) ..'.,
(p" II p', v') with pRp" II p'.

B. 3",p' ,p" I = a p = p'I IP" 1\ (y,v) ~ (p',v') 1\ (e' ~
:r, II) ~ (p", II!), which leads to one of the hypotheses

• 3/' p" = r .. :r ;\ (c .. :r,v) ~ (r,II'), then we need
the hypothesis

-r=c
From whieh we eondllde that p = p' II e ~ :c and (e ~

:cl l e' ~ y,v)..'., (e ~ :cl lp',v') withpRe ~ :cl ip'.

• (:c,v) ~ (p",v')
I

From whieh we readily eondllde (e ~ :c II e' ~ y, v) -+
(p" II p', v') with pRp" II p'.

76

We study the smallest relation R <;; P x P sueh that for all :e, yEP:

au (:e G) y) Rau (:e) G) au (y) 1\ :eR:e.

Fnr :eR:e, the proof is trivial. Fnr au (:e G) y) Rau (:e) G) au (y), we have
the following eases.

1. (au (:e G) y), II) ,(, for whieh we need the hypothesis

(a) (:e G) y, 11),(, for whieh we need one of the hypotheses

i. (:e,II),(,
from whieh we eondude (au (:e) , II) ,(, henee (au (:e) G) au (y) , II) ,(.

ii. (y,II),(,
similar to the previolls ease.

2. (au (:e) (1) au (y) ,11),(,
which is similar to the previolls ease.

3. (au (:e (1) y), II) -'+ (p, II') , for whieh we need one of the hypotheses

(a) 3"".1 = a 1\ p = au (r) (:e:1) y,lI) ~ (r,II'), whieh leads to one
of the hypotheses

i. (:e,II) ~ (r,II')
From whieh we eondude (au (:e), II) ~ (p, II') and henee (au (:e) ())

au (y),II) -'+ (p,II') withpRp.

ii. (y,lI) ~ (p,v'), which is similar to the previolls ease.

(b) 3o,v".I=(a,v) 1\ p=au(r) 1\ arfH 1\ (:e:1)y,lI) c'., (r,II'),
for which the proof is similar to the previolls ease.

We study the smallest relation R <;; P x P sueh that for all :e, yEP:

au (:e :'J y) Rau (:e) :'J au (y) 1\ :eR:e.

The proof of which follows roughly the Sf-tIne lines as the previolls.

We study the smallest relation R <;; P x P sueh that for all :e, yEP:

all (:e c> y) Rau (:e) c> au (y) 1\ :eR:e.

The proof of which follows roughly the Sf-nne lines as the previolls.

77

We stndy the smallest relation R <;; P x P sneh that for all :e E P:

ou(d»:e)Rd»ou(:e) 1\ :eR:e.

The proof of which follows roughly the Sf-une lines as the previolls.

A.50 The axiom: alI (a) ~ a if a 'I. H

We stndy the smallest relation R <;; P x P sneh that, if a !f H, then:

AU (a) Ra 1\ au «) RE.

The proof that R is a bisimlliation relation goes as follows.
Clearly, (au «)) v'" if and only if «) v'" , while both eannot exeente any

transitions.
Furthermore, 811 (a) and a both cannot terminate, and if a (j. H they perform

the transitions (au (a) ,II) 8 (Ou«),II) and (a,lI) 8 «,II), respeetively.
Clearly AU «) R E.

A.51 The axiom: alI (a) ~ 6 if a E H

\Ve study the smallest relation R ~ P x P sneh that, if a E H, then:

AU (a) R b.

The proof that R is a bisimlliation relation goes as follows.
Clearly, both terms cannot terminate, nor can they execute signal transi

tions, and the one of the hypotheses needed for (au (a), II) 8 (p, II') is that
a (j H, which does not hold by assumption.

A.52 The axiom: alI (E) ~ E

\Ve study the smallest relation R ~ P x P snch that:

It is straightforward to verify that R is a bisimlliation relation.

A.53 The axiom: alI (e) ~ e

\Ve study the smallest relation R ~ P x P snch that:

au (e) R e.

Clearly, both processes cannot terminate. Fl1rthermore, the observation that
fiow-elaUSf'B can only execute signal transitions, makes the rest of the proof
straightforward.

78

B Conservativity of ACP

B.1 ACP I- p ~ !j implies HyPA I- p ~ !j

The following paragraphs contain, for each axiom of ACP, a derivation in HyPA.
Together with the observation that the derivation rules of ACP are contained
in those of HyPA we find that ACP f- P '" q implies HyPA f- P '" q. Note, that
in the axioms of ACP, every action a may be replaced by deadlock 8. In HyPA
this is not the ease. Therefore, we have two versions for some of the axioms on
communication and encapsulation.

The axiom: :r CD Y;:;:j Y (1):r Trivial.

The axiom: (:r (l) y) (l) z '" :r (l) (y (l) z) Trivial.

The axiom: :r G) :r ~ :r

:r fD:r '" [true]»:r (l) :r

'" [true]»:r fD [true] » :r

'" [true] V [true] » :r

'" [true]»:r
~ :r

The axiom: (:r G) y) :9 z ~ :r :~ z G) y (9 z Trivial.

The axiom: (:r :,) y) :,) z'" :r :,) (y C') z) Trivial.

The axiom: :r ::9 8 ~ :r

:r fD" '" :r CD [false] » :r

'" [true] » :r CD [false] » :r

'" [true] V [false] » :r

'" [true] » :r
~ :r

The axiom: l5 :~ :r ~ 8

" C,):r '" ([false] » E) C,) :r

'" [false]?»:r

'" [false]»:r
;:;:j l5

79

The axiom: a I b ;.;,:;-: arb, if arb defined In this proof, we llse the derivation
of :r CD 8 ;.;,:;-: :r.

a I b "
"
"
"
"
"
"
"
"

a(')Elb

a(')Elb(')E

[true] » a (,) E I b (,) E

[true] » a (,) E I [true] » b (,) E

([true]/\ [true]) » (arb) (,) (E II E)

[true] » (arb) (,) (E II E)

(arb) (,) (E II E)

(arb) (,) E

arb

The axiom: a I b " '" if arb undefined

alb" a(')Elb

;.;,:;-: a(~€lb(~€

" [true] » a (,) E I b (,) E

" [true] » a (,) E I [true] » b (,) E

;.;,:;-: 8

If we rep!aee a or b by " we trivially find a I " " " I b " ".

The axiom: :r II y " :r ~ y (D Y ~:r (D :r I y Trivial.

The axiom: a ~ :r " a (,) :r

a~:r " (a (,) E)~:r

" a (,) (<II:r)

If we rep!aee a by " we trivially find " ~ :r = ".

The axiom: a (,) :e ~ y " a (,) (:e II y) Trivial. Furthermore, if we rep!aee a by
8, we easily find the following derivation.

"(,) :e~y " ,,~y
;.;,:;-: 8

" "(,) (:e II y)

80

The axiom: (:r G) y) ~ z " :r ~ z G) y ~ z Trivial.

The axiom: a (,) :r I b " (a I b) ('):r The proof of this has four eases. If arb
is defined, we obtain the following proof, in which we llse a I b = arb.

a('):rlb " a('):rlb(')E

" [true] » a (,) :r I b (,) E

" [true] » a (,) :r I [true] » b (,) E

" ([true]/\ [true]) » (arb) (,) (:r II E)

" [true]» (arb) (,) (:r II E)

" (arb)(,) (:rIlE)

" (arb) (,) (:r~E (D E~:r (D :r~E)

" (arb) (,) (E ~:r :D :r ~ E :D :r ~ E)

" (arb) (,) (E ~:r (D :r ~ E (D E ~ :r)

" (arb):,) (E II :r)
" (arb) (,) :r

" (al b) (,) :r

If arb is undefined, we obtain the following proof, in which we llse a I b = 8.

a('):rlb" a('):rlb(')E

" [true]» a (,) :rlb (,) E

" [true]» a (,) :rl [true]» b (,) E

~ l5

" (al b) (,) :r

If a is replaeed by deadloek, we find

b('):rlb" bib

~ l5

" (b I b) :,) :r

And similarly if b is replaced by deadlock (using commutativity) ..

81

The axiom: a I b (') :c" (a I b) ('):c The proof of this has four eases. If arb
is defined, we obtain the following proof, in which we llse a I b = arb.

alb('):c" a(')<lb('):c

" a (') < I [true] » b (') :c

" [true] » a (') < I [true] » b (') :c

" ([true]/\ [true]) » (arb) (') « 11:c)

" [true]» (arb) (') « 11:c)

" (arb) (') « 11:c)

" (arb) (') :c

" (al b) (') :c

If arb is undefined, we obtain the following proof, in which we llse a I b = 8.

alb('):c" a(')<lb('):c

" a (') < I [true] » b (') :c

" [true]» a (') <I [true]» b ('):c

~ l5

" (al b) (') :c

If a is replaeed by deadloek we find

" (al b) (') :c

And similarly if b is replaced by deadlock (using l5 (0 :r ~ l5 and commutativity).

The axiom: a (') :c I b (') y " (a I b) (') (:c II y) The proof of this has four eases.
If arb is defined , we obtain the following proof, in which we llse a I b = arb.

a (') :c I b (') y " a (') :c I [true] » b (') y

" [true] » a (') :c I [true] » b (') y

" ([true]/\ [true])>> (arb) (') (:clly)

" [true] » (arb) (') (:c II y)

" (arb) (') (:c II y)

" (alb) (') (:cl ly)

82

If arb is undefined , we obtain the following proof, in which we use a I b = 8.

a (,) :c I b (,) Y " a (,) :c I [true 1 » b (,) Y

" [true 1 » a (,) :c I [true 1 » b (,) Y

~ 8
" <5 (,) (:cl l y)

" (a l b) (,) (:cl l y)

If a is replaeed by deadloek we find

<5('):clb(')y" <5lb(')y

~ 8

" <5 (,) (:c II y)

" (<5 I b) (,) (:c II y)

And similarly if b is replaced by deadlock (using commutativity).

The axiom: (:c (D y) I z " :c I z (D Y I z Trivial

The axiom: :c I (y (D z) " :c I y CD :c I z

:cl(y CD z) " (y (D z)l:e

" y l :e (D zl:e

" :eIY (D zl:e

" :e I Y (D :e l z

The axiom: all (a) " a, if a rt H Trivial.

The axiom: all (a) " <5, if a E H Trivial, exeept when a is replaeed by
deadlock. Then we find the following derivation.

The axiom: all (:e (1) y)

The axiom: all (:e (~ y)

all (<5) " all (fals e » :e)

" false» all (:e)

~ 8

" all (:e) (1) all (y) Trivial.

" all (:e) (~ all (y) Trivial.

83

B.2 HyPA I- p ~ !j implies ACP I- p ~ !j

In this sedioll: we will prove the (;onverse (:Hse. This is done nsing the semHntkHl
model of HyPA and ACP. We show, that if two dosed ACP terms p and q me
bisimilm in HyPA (whkh we may assume nsing sonndness of the derivation
HyPA f- P ;:;:j q): then they Bre bisimilHr in Aep. Then: we nse (;ompleteness
of the HxiOInHtizHtion of ACP: to (;on<:111de that there mnst be H derivation in
ACP to show this bisimilHrity. Thronghont this sedioll: we nse the nota tion
:r E ACP for ':r is H dosed ACP term': Bnd similarly for HyPA.

The operational semHntks of ACP: is given by the following rules.

(a)

a
(:r) ~AC'P (:r')

a
-----PACP ,/ (:r::) y) .!AC'P (:r')

(y::):r) .!,\C'P (:r')
(:r ::) y) .!AC'P ,f

(y ::) :r) .!AC'P ,f

(:r)
a

-----PACP (:r')
a .

(:r) ~AC'P ,f
a

-----PACP (:r' ::) y)
a

(:r ::) y) ~AC'P (y)

a
(:r) ~AC'P (:r')

(:rlly) .!,\C'P (:r'lly)
(yll:r) .!,\C'P (yll:r')
(:rh) .!,\C'P (:r'lly)

(:rlly) .!AC'P (y)
(yll:r) .!,\C'P (y)
(:rh) .!,\C'P (y)

o' (') () 0" (') '" (:r) -----PACP :r . Y -----PACP Y . a=ara

(:rlly) .!AC'P (:r'lly')
(:r I y) .! ,\C' P (:r' II y')

(:r) ~AC'P ,f.(y) "':.AC'P (y').

(:rlly) .!AC'P (y')

(yll:r) .!,\C'P (y')

(:rly) .!AC'P (y')

()
o' . () 0" .

:r -----PAcp;f. Y -----PAcp;f.

(:rlly) .!AC'P ,f

(:r I y) .!AC'P ,f

a = arra"

a = arra"

a
(:r) ~AC'P (:r').a r/ H

(UII(:r)) .!,\C'P (UII(:r'))

(:r) .!AC'P ,f.ar/H

(UII (:r)) .!AC'P ,f

Note: that the empty pn)(:ess E is not all ACP term. In stel-Hl: ACP has a

transiti()ll predkate dell()ted as (p) -! ACP ,/. The ll()ti()ll ()f bisiImllati()ll f()r
ACP terms is therefore defined as follows.

84

Definition 10 (ACP-Bisimulation) A relation R C;; P x P on pmcess terms
of ACP, is an ACP-bisimlllation relation if for all p, q E P such that pR q, we
find

(p)
a

(p') implies there exists q' s.t. (q)
a

(q') and p'Rq'; • -----PACP -----PACP

(q)
a

(q') implies there exists p' (p)
a

(p') and p'Rq'; • -----PACP s.t. -----PACP

a a
• (p) ~ACP ,(implies there exists q' s.t. (q) ~ACP ,(;

a a
• (q) ~ACP ,(implies there exists p' s.t. (p) ~ACP ,(.

Two process terms :r and yare ACP-bisimilar, denoted :r tiAC P y, if there exists
an ACP-bisimulation relation that relates them.

Now we will prove the following theorem, relating ACP-bisimlliation with
bisimlliation as defined for HyPA.

Theorem 4 For closed ACP terms pond q we find that ifp tl q then p "'ACP q.

Clearly, llsing soundness of HyPA and completeness of ACP, we can derive
from this theorem that

HyPA I- P "q =? P '" q =? P '" AC P q =? ACP I- P " q.

The following four lemmas are llsed to prove this theorem.

Lemma 3

If:c E ACP and (:c) .".ACP ,(then there exists y' tl E (with y' E HyPA) such

that (:c, v) '4 (y', v) for every v E Val.

Proof This proof llses induction on the structure of :r. Since:r E ACP,
we find the following eases.

a
1. :r = 8, which eontracliets with the assumption (:r) -----PACP ,/.

2. :r = a. From which we conclude using the semantics of HyPA that
(:c, v) '4 (E, v) for every v E Val.

3. :r = :r' CD :r" ;\ :r', :r" E ACP, for which we find the one of the hypotheses,
using the semantics of ACP.

(a) (:c') .".ACP ,(

\Vith induction, we conclude for :r' that there exists y' tl € such that
(:c',v) '4 (y',v) for every v E Val, henee also (:c,v) '4 (y',v) ,
using the semantics of HyPA.

(b) (:r") -!ACP ,(, similar to the previous ease.

a
4. :r = :r' (:J :r", which contradicts with the assumption (:r) -----PAC P ,/.

85

5. :r = :rf II :r" ;\ :rf, :r" E ACP, for which we find the following hypothesis,
using the semantics of A CP.

(a) 30 , ,0" a = afra" ;\ (:r') ~ACP ,/ ;\ (:r") ~ACP ../ 'Vith induc
tion, we conclude for :r f and :r" , that there exists z tl Zf tl € such

that (:c',v) 0'-': (z,v) and (:c",v) o~v (z',v) for every v E Val.

Using the semanties of HyPA, we then find that (:c , v) ~ (z II z' , v)
and using congruence for the parallel composition, together with the
derivahle, hence sOlmd, theorem € II € ~ €, we obtain z II Zf ~ €.

6. :r = :rf~:r", which contradicts with the assumption (:r) -!ACP ,/.

7. :r = :rf I :r" ;\ :rf, :r" E ACP, similar to the proof of:r = :rf II :r".

8. :r = 811 (:rf) ;\ :rf E ACP, for which we find the following hypothesis, using
the semantics of ACP.

(a) a?}. H ;\ (:rf) -!ACP ,/. 'Vith induction, we conclude for :rf, that
there exists yf tl € such that (:rf, II) 4 (yf, II) for every II E Val,

henee also (0/1 (:c) ,v) ~ (0/1 (y') , v) and with eongruenee and the
sound axiom a, ("') E we find 0/1 (y') tl (.

Lemma 4

If:c E ACP and (:c) -!ACP (y) then there exists y' tl Y (with y' E HyPA)
such that (:c, v) ~ (y', v) for every v E Val.

Proof This proof uses induction on the structure of :r. Since:r E ACP,
we find the following eases.

o
1. :r = 8, which contradicts with the assumption (:r) -----PACP (:r f

).

o
2. :r = a, which contradicts wi th the assumption (:r) -----PACP (:r f

).

3. :r = :rf CD :r" ;\ :rf, :r" E ACP, for which we find the one of the following
hypotheses, using the semantics of ACP.

(a) (:c') -!ACP (y)
'Vith induction, we conclude for :rf , that there exists yf tl Y such that
(:c',v) ~ (y',v) for every v E Val, henee also (:c,v) ~ (y',v),
using the semantics of HyPA.

(b) (:C V
) -! AC P (y), similar to the previous ease.

4. :r = :rf (0 :r" ;\ :rf, :r" E ACP, for which we find the one of the following
hypotheses, using the semantics of ACP.

86

(a)
a

3z y = z (,) :e" 1\ (:e') ~ACP (z)
\Vith induction, we conclude for :r', that there exists a z' tl z sneh
that (:e', 1/) "4' (z', 1/) for every 1/ E Val, henee we find (:e, 1/) "4'
(z' (0 :r", II) llsing the semantics of HyPA, and z' (9 :r" t:± Y llsing
congruence of the sequential composition.

(b) :r" = y ;\ (:rf) -!,AC P ,/. Using the previolls lemma, we may

conclude that there exists z t:± € sneh that (:r', II) 4 (z, II) for all

1/ E Val. Then, using the semanties of HyPA we find (:e, 1/) "4' (z (,)
:r", II). Congruence for the sequential composition, and soundness of
the axiom € (9 :r ~ :r then give nse z (9 :r" tl y.

5. :r = :r' II :r" ;\ :r, :r" E ACP, for which we find one of the following hy
potheSf'B, llsing the semantics of ACP.

(a) 3z y=zl l :e" 1\ (:e') -!ACP (z)
\Vith induction, we conclude for :r', that there exists z' tl z sneh
that (:r',I/) 4 (z',II) for aU II E Val, and llsing the semantics

of HyPA we conclude (:r, II) 4 (z' II :r", II). Congruence for the
parallel composition then gives us z' II :r" tl y.

(b) 3z y = :e' II z 1\ (:e") -! AC P (z), similar to the previous ease.

(e) 30' ,a" ,z,z' Y = z II z' 1\ a = a'ra" 1\ (:e') ..,;, ACP (z) 1\ (:e") "':, AC P

(z') \Vith induction to the structure of :r' and :r" we find '/0 tl Z

, '1 1 (') a',v () (") a".v (,) and'll) tl z sue 1 tlat :r ,II --+ '10,11 and :r ,II 4 '10 ,II .

Using the semantic" of HyPA we then eondude (:e, 1/) "4' (w II w', 1/)
and congruence for the parallel composition gives '10 II '11/ tl y.

6. :r = :r' ~ :r", a subcase of :r = :r' II :r".

7. :r = :r' I :r", a subcase of:r = :r' II :r".

8. :r = 811 (:r') ;\ :r' E ACP, for which we find the following hypothesis, using
the semantics of ACP.

(a) 3z y = 0/1 (z) 1\ a!f H 1\ (:e') -! AC P (z). With induetion, we
conclude for :r', that there exists z' tl z such that (:r', II) 4 (z', II)

for every 1/ E Val, henee also (0/1 (:e), 1/) "4' (0/1 (z') ,1/) and with
congruence we find y tl 811 (z').

Lemma 5 If:e E ACP then there is no 1/ such that (:e, 1/),(.

Proof Obvious. For immediate termination in HyPA, there must be a €

subterm of :r. No other constants or operators introduce termination. [8j

87

Lemma 6 If:rE ACPand there is av such that (:r,v) "4' (y,v), (withyE

HyPA) then either y tl E and (:r) -! ,(, or there exists y' E ACP such that
a

y tl y' and (:r) ~ (y').

Proof This proof llses induction on the structure of :r. For:r E ACP, we
find the following eases.

1. :r = 8, which eontracliets with the assumption that (:r, II) 4 (y, II) for
some II E Val.

2. :r = a, for which we find trivially y = € , and llsing the semantics of ACP
(:r) -! ,(.

3. :r = :r' (1) :r" ;\ :r', :r" E ACP, for which we find one of the following
hypotheses, llsing the semantics of HyPA.

(a) (:r',v) "4' (y,v) With induetion, we find for :r', one of the two
following hypotheses

i. y tl € ;\ (:r') -! ,/ From which we conclude, llsing the semantics

of ACP, that (:r) -! ,(.
a

ii. 3y ' y' E ACP 1\ Y tl y' 1\ (:r') ~ (y') From whieh we eondude,

using the semanties of ACP, that (:r) -! (y').

(b) (:r", v) "4' (y, v), similar to the previous ease.

4. :r = :r' (0 :r" ;\ :r', :r" E ACP, for which we find on of the following
hypotheses, llsing the semantics of HyPA.

(a) (:r', v),(1\ (:r", v) "4' (y, v), whieh aeeording to lemma 5 eontra
diets with the assumption that :r' E AC P.

(b) y = z (,) :r" 1\ (:r', v) "4' (z, v) With induetion, we find for :r', one
of the two following hypotheses

i. z tl € ;\ (:r') -! ,(From which we conclude, using the semantics

of ACP, that (:r) -!, ,/ :r", and using congruence of sequential
composition together with the sound axiom € (~ :r" ~ :r", that
y tl :r".

ii. 3::, z' E ACP ;\ z tl z' ;\ (:r') -!, (z') From which we conclude,

using the semantic,') of ACP, that (:r) -! (z' (~ :r"), and using
congruence of the sequential composition that y tl z' (~ :r".

5. :r = :r' II :r" ;\ :r', :r" E ACP, for which we find one of the following
hypotheses, using the semantics of HyPA.

(a) 3z y = z 11:r" 1\ (:r', v) "4' (z, v). With induetion, we find for :r',
one of the two following hypotheses

88

i. z tl E 1\ (:r') ",. V From whieh we eondude that (:r) ",. (:r")
and llsing equational reasoning y tl :r".

ii. z' E ACP ;\ z tl z' ;\ (:r') -! (z') From which we conclude

that (:r) -!, (z' II :r") and llsing congruence y tl z' II :r".

(b) 3z y =:r' II z 1\ (:r",II) '4 (Z , II) , whieh is similar to the previous
ease.

(e) 30, y = z II z' 1\ a = a'ra" 1\ (:r', II) 0'-': (z, II) 1\ (:r", II) 0"-',"
(. II \Vith induction, we find for :r', one of the fonT following hy
potheses

0 ' a"
i. z tl € ;\ (:r') -----P ,(;\ z' tl € ;\ (:r") -----P ,/ From which we

conclude llsing the semantics of ACP that (:r) -! ,(, and llsing
equational reasoning that y tl €.

ii. z tl € ;\ (:r') ~ ,/ ;\ 3w ' '11/ E ACP ;\ z' tl 'Ill ;\ (:r") ~ ('Ill)

From which we conclude llsing the semantics of ACP that (:r) -!
('Wf) and llsing congruence and (sound) equational reasoning
that y tl '/Il.

iii. 3w '10 E ACP ;\ z tl '10 ;\ (:r') ~ ('10) ;\ Z' tl € ;\ (:r") ~ ,/
Similar to the previolls ease.

0' a"
iv. 3w ,w' '10, '11/ E ACP ;\ z tl '10 ;\ (:r') -----P ('II))A z' tl '11/ ;\ (:r") -----P

('w') From which we conclude using the semantic,') of ACP that

(:r) ",. (w II w') and using eongruenee y tl w II w'.

6. :r = :r' ~ :r", which is a subcase of :r = :r' II :r".

7. :r = :r' I :r", which is a subcase of:r = :r' II :r".

8. :r = 0/1 (:r') 1\ :r' E ACP, for whieh we find one of the following hypotheses,
using the semantics of HyPA.

(a) 3z y = 0/1 (z) 1\ a 'f H 1\ (:r',II) '4 (Z,II) With induetion, we
find for :r', one of the two following hypotheses

i. z tl € ;\ (:r') -! ,/ From which we conclude, using the semantics

of ACP, tha t (:e) ",. v.
ii. 3::, z' E ACP ;\ z tl z' ;\ (:r') -! (z') From which we conclude,

using the semanties of ACP, that (:e) ",. (oz' 0) and using
congruence y tl 811 (z').

Using these four lemmas, we can prove the main theorem by showing that
tl is an ACP-bisimulation relation.

89

Corollary 1 tl, restricted to closed ACP terms, is an ACP-bisimulation rela
tion.

Proof Suppose p tl q, and p, q E ACP.

• If (p) .! ACP (p') , then we use the lemma 4 to find y tl p' sueh that

(p, II) 4 (y, II) for every II. Since tl is a bisimlliation relation, there

exists y' tl Y sneh that (q, II) 4 (y', II). Using lemma 5, and the obser
vation that p' E ACP, we find that not (p', II) ,/. Now, we can llse lemma

6 to find there exists a q' tl y' sneh that (q) -!ACP (q'). Lastly, tl is an
equivalence relation, from which we conclude p' ti q'.

a
• If (q) -----PAC P (q'), the reasoning is similar to the previolls ease.

• If (p) .!ACP .t, then we use lemma 3 to find y tl E sueh that (p,v) '4'
(y, II) for every 1/. Since tl is a hisimlliation relation, there exists y' tl Y

sneh that (q,lI) 4 (y',II). Now, llsing lemma 6 we may conclude that
either, there exists z E ACP snch that z tl y' (which cannot be, since then
z tl € and (z, II) ,/, contradicting lemma 4), or y' tl € (w hieh is true) and

(q) .!ACP .t.

• If (q) -!AC P ,/, the reasoning is similar to the previous ease.

90

C Rewriting into basic terms

In this section, we will show that all the terms of HyPA ean be rewritten into
bask terms, llsing the axiomatization of HyPA. In faet, we show that there
is a strongly normalizing rewrite system, for rewriting HyPA terms into the
following form .

. N' l5 I € I a I C I a (0 .N' I C [> .N' I d » a I d » C I

d » E I d » a c,) iV' I d » c c> iV' I iV' CD iV' .

After that, it is easy to verify that the terms in .N' ean be rewritten into .N
llsing the axioms [true] » :r ~ :r (:J € ~:r [> l5 ~ :r and 8 ;:;:j [false] » €.

The remainder of this section consists of three parts. In part one, we give
a rewrite system that is constructed for the task of rewriting HyPA terms into
.N'. Ftuthermore, we show that all the rewrite rules ean be derived llsing the
axiomatization of HyPA. And in part two, we show that all possible normal
forms of the rewrite system are in .N'. \Vhile in part three we show that the
rewrite system is strongly normalizing, i.e. that every term has a normal form
into which it can be rewritten.

C.l The rewrite system

In this section, we give the rewrite system for rewriting HyPA terms into terms
of the form iV'. All the rules are derivable using the axiomatization, and are
hence sound. This can be easily seen, since we have ordered the rules in groups,
based on the most important axiom from which the rule is derived. Almost all
rules are derivable using only the base axiom, and one or more of the following
unit-, zero-, and commutativity-theorems. (Note that most of them are axioms.)

:rC0€~:r 15:9:r~15 15~:r~15

,) I :r '" ,) ,) 'D :r '" :r [true] » :r '" :r
[false] » :r "',) :r c> ,) '" :r EII:r '" :r
:r I y '" y I :r :r 'D y '" y 'D :r :r II Y '" y II :r

In the derivations, we have also used the following logical equivalences:
d?? = d? d? /\ [true] = d? d /\ d' = d' /\ d

c/\ c' = c' /\ c [false]? = [false] [true]? = [true]
[true] - d = d

Only two rules are not derivable using only those axioms, and using the
derivahility of other rules. For those two rules, a proof is given in the end of the
subsubsection in which they are introduced.

C.l.I Rules from the axiom: d» ,) '" ,)

d»')Y')

91

C.1.2 Rules from the axiom: d» (d' » :r) " (d - d') » :r

d » d' » :r 4 (d - d') » :r

C.1.3 Rules from the axiom: d» (:r (l) y) " d » :r (l) d» y

d» (:r :D y) 4 d » :r :D d» y

C.1.4 Rules from the axiom: (:r :'J y) :'J z " :r :'J (y :'J z)

(:r :'J y) :'J z 4 :r :'J (y :'J z)

C.1.5 Rules from the axiom: (:r :D y) :'J z " :r :'J z :D y :'J z

(:r CD Y) (~ Z Y :r :9 z CD y (~ z

C.1.6 Rules from the axiom: :r ~ y,,:r c> y (D Y

C.1.7 Rules from the axiom: E C> :r" E

C.1.8 Rules from the axiom: (:r C> y) C> z,,:r C> (y ~ z)

(c c>:r) C> y4c C> (:r ~ y)

C.1.9 Rules from the axiom: (:r :D y) C> z,,:r C> z :D Y C> z

(:r :D y) C> z 4 :r C> z :D Y C> z

C.1.10 Rules from the axiom: :r II y " :r ~ y :D Y ~:r :D :r I y

:r II y 4 :r ~ y :D Y ~:r :D :r I y

C.1.11 Rules from the axiom: (:r :D y) ~ z " :r ~ z :D Y ~ z

(:r:D y)~z 4 :r~z:D y~z

C.1.12 Rules from the axiom: E ~:r " "

E~:r4"

C.1.13 Rules from the axiom: (d» E) :'J :r" d? » :r

(d» E):'J :r4 d?»:r
€(:J:rY:r

92

C.1.14 Rules from the axiom: (d»:r) ~ y " d » (:r ~ y)

(d»:r) h Y d» (:rh)
,)~:rY')

C.1.15 Rules from the axiom: (a:,) :r) ~ y " a :,) (:r II y)

(a (,) :r)~yYa (,) (:rl l y)
a~:r Y a (,) :r

C.1.16 Rules from the axiom: (c C> :r) ~ y " ,)

(cc>:r)~yY')
c~:rY ,)

C.1.11 Rules from the axiom: (d» a) (,) :r" d» a (,) :r

(d» a) (,) :r Y d» a (,) :r
,) (,) :r Y ,)

(d» a (,) :r) (,) y Y d» a (,) (:r (,) y)

This last rule is perhaps not so trivial, and ean be derived as follows:

(d» a (,) :e) (,) y " ((d» a) (,) :e) (,) y

" (d» a) (,) (:r (,) y)

" d» a (,) (:e :,) y)

C.1.18 Rules from the axiom: (a:,) :e) C> Y" a (,) (:e ~ y)

(a (,) :r) C> y Y a (,) (:r ~ y)
a C> :r Y a (,) (E (D :e)

The derivation of this last rule goes as follows:

a C> :r " (a (9 E) C> :r

" a :~ (E ~ :e)

" a :9 (E C> :r CD :e)

" a :~ (E ::9 :r)

C.1.19 Rules from the axiom: (d» :e) C> Y" d» :e C> y

(d» :r) C> y Y d» :e C> y
,)C>:eY,)

93

C.1.20 Rules from the axiom: (d» c c> :r) (,) y " d » c c> :r (,) y

(d» c c> :r) (,) y Y d» c c> :r (,) y
(c c> :r) (,) yY c C> :r (,) y
(d» c) (,) :r Y d» c
c(~:rYc

C.1.21 Rules from the axiom: <5 l:r " <5

<51:rY<5

:r1<5y <5

C.1.22 Rules from the axiom: (:r (D y) I z " :r I z (D Y I z

(:r (D y)lzY :rlz (D Ylz
:rl (y (D z) Y :rly (D :rlz

C.1.23 Rules from the axiom: d» E I d' » E " (d? /\ d'?) » E

d» E Id'» E Y (d? /\d'?)>> E

d » E lEY d? » E

E I d » E Y d? » E

E lEY E

C.1.24 Rules from the axiom: d» a (,) :r I d' » a' (,) y " (d /\ d') »
(ara') (,) (:r II y) if (ara') defined

For some of the rules below , it is important to notice that the reinitialization
clause ([true] Ad) is not logically equivalent to d, since [true] prevents variables
from changing their valuation. The unit element of;\ for reinitialization-elauses
is [V m I true].

d» a (,) :r I d' » a' ,,) y Y (d /\ d') » (ara') (,) (:r II y)
a (,) :r I d » a' (,) y Y ([true]/\ d) » (ara') ,,) (:r II y)
a (,) :r I a' (,) y Y (ara') (,) (:r II y)
d» a (,) :r I a' (,) y Y (d /\ [true]) » (ara') ,,) (:r II y)
d» a I d' » a' (,) :r Y (d /\ d') » (ara') (,) :r
d» a (,) :r I d' » a' Y (d /\ d') » (ara') (,) :r
d» a (,) :r I a' Y (d /\ [true]) » (ara') ,,) :r
a I d » a' (,) :r Y ([true]/\ d) » (ara') ,,) :r
a (,) :r I d » a' Y ([true]/\ d) » (ara') ,,) :r
d» a I a' (,) :r Y (d /\ [true]) » (ara') ,,) :r
d» a I d' » a' Y (d /\ d') » (ara')
d» a I a' Y (d /\ [true]) » (ara')
a I d» a' Y ([true]/\ d) » (ara')
a I a' (,) :r Y (ara') (,) :r
a :,) :r lEY (ara') (,) :r

94

al a' Y wya'

C.1.25 Rules from the axiom: d» a:'):r I d' » a':,) y " ,) if (wya') undefined

d» a :,) :r I d' » a' :,) y Y ,)

a (,) :rId» a':,) yY')
d» a:') :rIa':,) yY')
d» aid'» a':,):r Y')

d» a :,) :r I d' » a' Y ,)

a:') :rIa':,) yY')
aid» a':,):rY,)
d»a:,) :rla'Y,)
a('):rld»a'Y')
d» ala':,):rY,)
a:'):rla'y,)
ala':,):rY,)
d»ald'»a'Y,)
ald»a'Y,)
d» ala' Y,)

ala'y,)

C.1.26 Rules from the axiom: d» < I d' » (a :,) :r) " ,)

d»<ld'»a:,) :ry,)
d»a:,) :rld'»<Y')
<Id» a:,):rY,)
d»a:,):rI<Y,)
a:,):rld»<Y,)
d»<la:,):rY,)
d» aid'» < Y')

d»<ld'»aY,)
<la:,):rY,)
a:'):rl<y')
<ld»aY,)
d»al<Y,)
d»<laY,)
ald»<Y,)
<lay,)
al<Y,)

C.1.27 Rules from the axiom: d» < I d' » c c> :r" (d? ~ d') » (c c> :r)

d » < I d' » c C> :r Y (d? ~ d') » c C> :r
d » c C> :r I d' » < Y (d'? ~ d) » c C> :r

95

cc> :rld»<Yd?»cc>:r
d» < Icc> :r Y d? » e C> :r
<Id»c C> :rYd»c C>:r
d» c C> :rl< Y d» c C>:r
d» c I d' » < Y (d'? - d) » c
d» < Id'» cY (d? -d')>> e
<Ic C> crY c C>:r
cc>:rl<Ycc>:r
cld»<Yd?»e
d»<lcYd?»c
<ld»cYd»c
d»cl<Yd»c
< IcY c
cl < Y c

C.1.28 Rules from the axiom: d» c C> :r I d' » a :,) y '" ,)

d»a:,) :rld'»c C> yY')
d» c C> :rld'» a:,) yY')
d» c C> :rla:,) :rY,)
d» a:,) :rlc C> yY')
c C> :rld» a:,) yY')
a:,) :rld» c C> yY')
d»cld'»a:,) crY')
d»a:,) :rld'»cy,)
d» c C> :rld'» aY,)
d»ald'»c C> crY')
c C> :rla:,) yY')
a:,) :rle C> yY')
c l d»a:,):rY,)
a:,) :rld» cY')
d»cla:,):rY,)
d» a:,) :rlcY,)
c C> :rld» aY,)
d» ale C> :r Y')
d» c C> :rlay,)
ald»cc>:rY,)
d»cld'»ay,)
d»ald»cY,)
a:,):rlcY,)
cla:,):rY,)
alcc>:rY,)
cc>:rlaY,)
ald»ey,)
eld»ay,)

96

d» aleY,)
d»elay,)
aley,)
clay,)

C.1.29 Rules from the axiom: d» e C> :r I d'» e' C> Y'" ((d - Cjmp) /\
(d' - e1mp))» (e/\e') C> (:r~e' ~ Y G) y~c ~ :r 'D:rl c' ~ Y G) yl C ~ :r)

d» e C> :rld'» e' C> yY

((d) (d' ,)) (') (~ ~ :~' :;,~) . - ejmp /\ . - ejmp » e /\ e C> ,r I e' ~ y ,D

yl e ~ :r

(

:r~e' ~ Y G))
y~e~:rG)

e C> :r I d» e' C> y Y (ejmp /\ (d - e1mp))» (e /\ e') C> ,r I e' ~ y G)

yl C ~ :r

(

,'r,~e' ~ y'D)
y~e~:rG)

d»e C> :rIc' C> yY ((d-ejmp)/\eimp)>> (e/\e') C> :rle' ~ y 'D

yl e ~ :r

(
:r~e'~Y(D)

e C> :r I e' C> y Y (e /\ e')jmp » (e /\ e') C> ~ ~(~; : ~ :~
yl e ~ :r

d» eld'» c' C> crY ((d- Cjmp)/\ (d' - e1mp))» (e/\c') C> (ell:r)
d» e C> :r I d' » e' Y ((d - ejmp) /\ (d' - e1mp)) » (e /\ e') C> (:r II e')
d» e C> :r Ie' Y ((d - Cjmp) /\ eimp)>> (c /\ e') C> (:r II e')
e C> :r I d» e' Y (ejmp /\ (d - e1mp))» (c /\ e') C> (:r II c')
d»ele' C> crY ((d-ejmp)/\eimp)>> (e/\e') C> (ell:r)
eld»e' C> crY (ejmp/\(d-e1mp))» (e/\e') C> (cll:r)
d» e I d'» c' Y ((d - Cjmp) /\ (d' - c1mp)) » (c /\ e')
e I d » e' Y (ejmp /\ (d - eimp)) » (e /\ e')
d» e Ie' Y ((d - ejmp) /\ e1mp) » (e /\ e')
e C> :r I e' Y (c /\ e')jmp » (c /\ e') C> (:r II c')
e Ie' C> :r Y (c /\ e')jmp » (c /\ e') C> (c 11:r)
e I e' Y (e /\ e')jmp » (e /\ e')

The rule d » e I d' » e' C> :r Y ((d - ejmp) /\ (d' - eimp)) » (e /\ e') C> (e II :r)
is not trivial. Therefore, we give its derivation.

97

d»cld'»c'c>:r " d»cc> <5ld'»c'c>:r

" ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') c>

" ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') c>

" ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') c>

C.1.30 Rules from the axiom: VII (E)" E

VII(E)'-+E

C.1.31 Rules from the axiom: if a E H then VII (a) " <5

if a E H then VII (a) '-+ <5

C.1.32 Rules from the axiom: if a 'I H then VII (a) " a

if a 'I H then VII (a) '-+ a

98

C.1.33 Rules from the axiom: au (e) " e

au (e) Y e

C.1.34 Rules from the axiom: au (:r :') y) " au (:r) :') au (y)
au (:r C') y) Y au (:r) C') au (y)

C.1.35 Rules from the axiom: au (:r c> y) " au (:r) c> au (y)

au (:r c> y) y au (:r) c> au (y)

C.1.36 Rules from the axiom: au (d» :r) " d » au (:r)

au (d» :r) y d» au (:r)
au (<5) y <5

C.1.37 Rules from the axiom: au ((:r CD y)) "au (:r) :D au (y)

au (:r CD y) y au (:r) CD au (y)

C.2 Normal forms are in N '

Since the atoms of HyPA are also atoms of .N! , every HyPA term p (j. .N' has a
sllbterm s (j .N' of the form:

P d » .N' I .N' G) .N' I .N' (~ .N' I .N' .. . N' I .N' [> .N' I

N' II N' I N' ~ N' I N' I N' I au (N')

In the following paragraphs, we will give one or more applicahle rewrite rules for
every of these possihle sllbterms, unless the specific sllbterm is itself in normal
form. In that ease, we do not need to give a rule since we have a contradiction
with the assumption that s ?}. .N'.

C.Z.1 The form: sEd» N'

\Ve find the following eases:

• sEd» 8, which rewrites llsing d » 8 y 8;

• sEd» E EN';

• sEd» a EN';

• sEd» eE N';

99

• sEd» a (9 .N' E iV':

• sEd» c C> iV' E iV';

• sEd» d' » a, whieh rewrites using d » d' » :r '-+ (d - d') » :r;

• sEd» d' » c, whieh rewrites using d » d' » :r '-+ (d - d') » :e;

• sEd» d'» E, whieh rewrites using d» d'» :e'-+ (d - d') » :e;

• sEd» d'» a ('J iV', whieh rewrites using d» d'» :e'-+ (d - d') » :e;

• sEd» d'» c C> iV', whieh rewrites using d» d'» :e'-+ (d - d') » :r;

• sEd» (iV' G) iV'), whieh rewrites using d » (:r :D y) '-+ d» :e :D d» y.

C.2.2 The form: s E iV' :D iV'

Whieh direetly leads to s E iV'.

C.2.3 The form: s E iV' :'J iV'

\Ve find the following eases

• s E 8 (9 iV', which rewrites using 8 :9 :rY 8:

• s E € (9 iV', which rewrites using € :9 :r Y :r:

• sEa (9 iV' ~ iV':

• sEc. (9 iV', which rewrites using c. (9 :r Y c.:

• s E (a :'J iV') :'J iV' , whieh rewrites using (:e :'J y) :'J z'-+ :e :'J (y :'J z);

• s E (c C> iV') :'J iV', whieh rewrites using (c C> :e) :'J y'-+ c C> :r :'J y;

• s E (d» a) :'J iV', whieh rewrites using (d » a) :'J :e'-+ d» a :'J :e;

• s E (d» c) :'J iV', whieh rewrites using (d » c) :'J :e'-+ d» c;

• s E (d» E) :'J iV', whieh rewrites using (d» E) :'J :e'-+ d? »:r;

• s E (d» a :'J iV') :'J iV', whieh rewrites using (d » a :'J :e) :'J y,-+ d»
a :'J (:e :'J y);

• s E (d» c C> iV') :'J iV', whieh rewrites using (d» c C> :r) :'J y'-+ d»
c. [> :r (9 y;

• s E (iV' CD iV'):9 iV', which rewrites using (:r::9 y) (9 Z Y :r (9 z (l) Y (9 z.

C.2.4 The form: s E iV' ~ iV'

\Vhich rewri tes using:r .. y Y :r [> y ::9 y.

100

C.2.5 The form: sEN' c> N'

\Ve find the following eases

• s E l5 [> .N', which rewrites llsing l5 [> :r Y 8:

• sEt" [> .N' , whkhrewritesllsing€ [> :r'-t €:

• sEa [> .N', which rewrites llsing a [> :r Y a :~ (I: :1) :r);

• sEc [> .N' :;;; .N':

• s E (a ('J N') c> N', whieh rewriteB using (a C'J :r) c> y'-+ a ('J (:r ~ y);

• s E (c C> N') C> N', whieh rewrites using (c C> :r) C> y'-+ c C> (:r ~ y);

• s E (d» a) C> N', whieh rewrites using (d » :r) C> y'-+ d» :r C> y;

• s E (d» c) C> N' , whieh rewrites using (d »:r) C> y'-+ d» :r C> y;

• s E (d» E) C> N', whieh rewrites using (d» :r) C> y,-+ d» :r C> y;

• s E (d» a C'J N') C> N', whieh rewrites using (d »:r) C> y,-+ d » :r C>

y;

• s E (d» c C> N') C> N' , whieh rewrites using (d »:r) C> y'-+ d » :r C>

y;

• s E (N' CD N') C> N', whieh rewrites using (:r (D y) C> z'-+ :r C> z (D Y C>

z.

C.2.6 The form: sEN' II N'

Whieh rewrites ming :r II y '-+ :r ~ y CD Y ~:r :D :r I y.

C.2.1 The form: s E N'~N'

\Ve find the following eases

• s E 8~.Nf, which rewrites llsing 15~:r y 8;

• s E € ~ .N', which rewrites llsing € ~:r Y 8;

• sEa ~ .N', which rewrites llsing a ~:r Y a :9 :r:

• s E c~ .N', which rewrites llsing c~:r Y 8;

• s E (a (,) N') ~ N', whieh rewrites using (a c,) :r) ~ y '-+ a (,) (:r II y);

• s E (c C> N') ~ N' , whieh rewrites using (c C> :r) ~ y '-+ b;

• s E (d» a)~N', whieh rewrites using (d» :r)~y,-+ d» :r~y;

• s E (d» c) ~ N' , whieh rewrites using (d » :r) ~ y '-+ d» :r ~ y;

101

• s E (d» E)~N', whieh rewrites using (d» :r)~y,-+ d» :r~y;

• s E (d» a (,) N') ~ N' , whieh rewrites using (d » :r) ~ y '-+ d» :r ~ y;

• s E (d» c c> N') ~ N', whieh rewrites using (d » :r) ~ y '-+ d» :r ~ y;

• s E (N' CD N') ~ N', whieh rewrites using (:r :D y) ~ z '-+ :r ~ z (D Y ~ z.

C.2.8 The form: sEN' I N'

\Ve find the following eases

• s E () I·N', which rewrites llsing 81:r y 8;

• s E € I .N f , for w hieh we find the eases

s E € 18, which rewrites llsing:r 18 y 8;

s E € I/'; , which rewrites llsing € I € Y 1':;

S E € I a, which rewrites llsing € I a y 8;

s E € I c, which rewriteB llsing € ley c;

s E € I a (~ .N', which rewrites llsing € I a :~ :r Y 8:

s E € Ie [> .N' , which rewrites llsing € I c [> :r Y c [> :r:

SEE I d» a, whieh rewrites using E I d» a '-+ b;

SEE I d » c, whieh rewrites using E I d » c '-+ d » c;

SEE I d» E, whieh rewrites using E I d» E '-+ d? » E;

SEE I d » a :,) N', whieh rewrites using E I d» a :,) :r '-+ b;

SEE I d » c c> N', whieh rewrites using E I d » c c> :r '-+ d» c c>
:r:

SEE I (N' :D N'), whieh rewrites using :r I (y :D z) '-+ :r I y :D :r I z.

• sEa I .N f, for w hieh we find the eases

sEa 18, which rewrites llsing:r III y 8;

sEa I /';, which rewrites llsing a I € Y 8;

sEa I a', for which we find two eases

* If arar defined then we rewrite llsing a I a' Y afa';

* If afar undefined then we rewrite llsing a I a' Y 8;

sEa I c, which we rewrite llsing a ley 8;

sEa I a' (0 .N', for which we find two eases

* If afar defined then we rewrite using a I a' (~ :r Y (afa') :~ :r:

* If afa' undefined then we rewrite using a I a' (~ :r Y 8;

sEa I c [> .N', which we rewrite using a Ie [> :r Y 8:

sEa I d» a' , for which we find two eases

102

* If ara' defined then we rewrite using a I d » a' '-+ ([true ll\d) »
(ara');

* If wya' undefined then we rewrite llsing a I d » a' Y l5;

sEa I d » c, whieh we rewrite using a I d » c '-+ b;

sEa I d» E, whieh we rewrite using a I d» E '-+ b;

sEa I d » a' (~ .N', for which we find two eases

* If afar defined then we rewrite llsing a I d » a' (9 :r Y ([true] ;\
d) » (ara') (:) :r;

* If afar undefined then we rewrite llsing a I d » a' (0 :r Y l5;

sEa I d » c c> N', whieh we rewrite using a I d » c C> :r '-+ b;

sEa I (N' CD N'), whieh rewrites using :r I (y 'D z) '-+ :r I y (D :r I z .

• sEc I .N', for which we find the eases

sEc 18, which rewrites llsing :r 18 y 8;

sEc I €, which rewrites llsing c I € Y c;

sEc I a, which rewrites llsing c I a y 8;

S E cle', whieh rewrites llsing clc' Y (C!\C')jmp» (cAe');

sEc I a (0 .N', which rewrites llsing c I a (~ :r Y 8;

sEc I c' [> .N', which rewrites llsing c I c' [> :r Y (c;\ c')jmp »
(CI\C') C> (cll:r);

sEc I d» a, whieh rewrites using c I d » a '-+ b;

sEc I d » c', whieh rewrites using c I d » c' '-+ (Cjmp 1\ (d
c1mp)) » (c 1\ c');

sEc I d » E, whieh rewrites using c I d » E '-+ d? » c;

sEc I d» a (:) N', whieh rewrites using c I d » a (:) :r'-+ b;

sEc I d » c' C> N', whieh rewrites using c I d » c' C> :r '-+

(Cjmp 1\ (d - c1mp)) » (c 1\ c') C> (c II :r);
sEc I (N' (D N'), whieh rewrites using :r I (y 'D z) '-+ :r I y 'D :r I z .

• sEa (0 .N' I.N', for which we find the eases

sEa :~ .N' 18, which rewrites llsing :r 18 y 8;

sEa :~ .N'I /';, which rewrites llsing a (~ :r I € Y 8;

sEa :9 .N'I a', for which we find two eases

* If afa' defined then we rewrite using a (~ :r I a' Y (afa') :~ :r:

* If afa' undefined then we rewrite using a (~ :r I a' Y 8;

sEa :~ .N'I c, which rewrites using a (~ :r IcY 8;

sEa :~ iV' I a' (~ iV', for which we find two eases

103

* If afa' defined then we rewrite using a (9 :r 1 a' (9 y Y (afa') :9

(:r II y);

* If afa' undefined then we rewrite using a (9 :r 1 a' (9 y Y 8;

sEa :9 .N'I c. [> iV' , which rewrites using a (9 :r 1 c. [> y y 8;

sEa :9 iV'1 d» a' , for which we find two eases

* If afa' defined then we rewrite using a (9 :r 1 d » a' Y ([true] ;\
d) » (wya') (,) :r;

* If afa' undefined then we rewrite using a :9 :r 1 d » a' Y 8;

sEa c,) iV'l d » c, whieh rewrites using a c,) :r I d » c '-+ b;

sEa c,) iV'l d» E, whieh rewrites using a c,) :r I d» E '-+ b;

sEa :9 iV'1 d » a' (9 iV', for which we find two eases

* If afa' defined then we rewrite using a :9 :r I d » a' (9 y Y

([true]/\ d) » (ara') (,) (:r II y);

* If afa' undefined then we rewrite using a :9 :r 1 d » a' (9 y Y 8;

sEa (,) iV'l d » c c> iV', whieh rewrites using a c,) :r I d » c c>
y'-+ b;

"" I ("" AU) 1· 1 . . I () I sEa c,) H H cD" ,w 11e 1 rewntes usmg:r y CD z '-+:r y cD
:r I z .

• sEc. [> iV' 1 iV', for which we find the eases

sEc. [> iV' 18, which rewrites using :r 18 Y 8;

sEc. [> iV' 1 €, which rewrites using c. [> :r 1 € Y c. [> :r:

sEc. [> iV' I a, which rewrites using c. [> :r I a Y 8;

sEc. [> iV' 1 c.' , which rewrites using c. [> :r 1 c.' Y (c.;\ c.')jmp »
(c /\ c') c> (:r II c');

sEc. [> iV' 1 a (9 iV', which rewrites using c. [> :r 1 a (9 y Y 8;

sEc. [> iV' I c.' [> iV' , which rewrites using c. [> :r I c.' [> y Y

(

.·r.~c' ~ yCD 1
y~c~:r(l) .

(c /\ c')jmp » (c /\ c') C> :r I c' ~ Y CD '

ylc ~ :r

sEc C> iV' I d » a, whieh rewrites using c C> :r I d» a '-+ b;

sEc C> iV' l d » c', whieh rewrites using c C> :r I d » c' '-+

(Cjmp /\ (d - c}mp)) » (c /\ c') C> (:r II c');

sEc C> iV' I d » E, whieh rewrites using c C> :r I d » E '-+ d? »
c. [> :r:

sEc C> iV' I d » a (,) iV', whieh rewrites using c C> :r I d » a:') y '-+
b;

104

- sEc c> N' I d » c' c> N', whieh rewr(it~"rS i';:,in; (~C>:D :r)1 d » c' c>

y~c~:r(l) .
y Y (Cjmp /\ (d - c}mp))» (c/\ c') C> :r I c' ~ y:D '

ylc ~ :r

sEc C> N'I (N' :D N'), whieh rewriteB using :r I (y (l) z) Y :r I y :D

:r I z .

• sEd» a I N' , for whidl we find the eases

sEd» a I <5, whieh rewrites using :r I <5 Y <5;

sEd» a I E, whieh rewrites using d» a lEY <5;

sEd» a I a', for which we find two eases

* If ara' defined then we rewrite using d » a I a' Y (d/\ [true l) »
(ara');

* If afar undefined then we rewrite llsing d » a I a' y l5;

sEd» a I c, whieh rewrites using d» a IcY <5;

sEd » a I a' (:J .N', for which we find two eases

* If ara' defined then we rewrite llsing d » a I a' :9 :r Y (d;\
[true]) » (ara') :'J :r;

* If afar undefined then we rewrite llsing d » a I a' ::J :r Y l5:

sEd» a Icc> N' , whieh rewrites using d » a Icc> :r Y <5;

sEd» a I d' » a', for whieh we find two eases

* If ara' defined then we rewrite using d » a I d' » a' Y (d /\
d') » (ara');

* If afar undefined then we rewrite llsing d » a I d' » a' Y 8;

sEd» a I d' » c, whidl rewrites using d » a I d » c Y <5;

sEd» a I d'» E, whieh rewrites using d» a I d'» E Y <5;

sEd » a I d' » a' (0 .N', for which we find two eases

* If afar defined then we rewrite llsing d » a I d' » a' (0 :r Y
(d /\ d') » (ara') :'J :r;

* If ara' undefined then we rewrite llsing d » a I d' » a' (0 :r Y l5;

sEd» a I d' » c C> N', whieh rewrites using d » a I d' » c C>
:r Y <5;

sEd» a I (N' (l) N'), whieh rewrites using:r I (y (l) z) Y :r I y:D:r I z .

• sEd» c I N', for whieh we find the eases

sEd» c 1<5, whidl rewrites using :r I <5 Y <5;

sEd» c IE , whieh rewrites using d» c lEY d» c;
sEd» c I a, whieh rewrites using d» c I a Y <5;

105

sEd» ele', whieh rewrites using d» ele' '-+ ((d - ejmp) 1\

e}mp) » (e 1\ e');

sEd» e I a C') N', whieh rewrites using d » e I a :') :c '-+ <5;

sEd» ele' c> N', whieh rewrites using d» ele' c> :c '-+ ((d
ejmp) 1\ e}mp) » (e 1\ e') c> (e II :c);

sEd» e I d' » a, whieh rewrites using d » e I d' » a '-+ <5;

sEd» e I d' » e', whieh rewriteB using d » e I d' » e' '-+ ((d -
ejmp) 1\ (d' - e}mp)) » (e 1\ e');

sEd» e I d' » E, whieh rewrites using d » e I d' » E '-+ (d'? -
d) » e;

sEd» e I d' » a :') N', whieh rewrites using d» e I d' » a C') :c '-+
<5;

sEd» e I d' » e' c> N', whieh rewrites using d » e I d' » e' c>
:c '-+ ((d - ejmp) 1\ (d' - e}mp)) » (e 1\ e') c> (e II :c);

sEd» e I (N' CD N'), whieh rewrites using:c I (y CD z) '-+ :c I y CD:c I z .

• sEd» E I N', for whieh we find the eases

sEd» E 1<5, whieh rewrites using :c I <5,-+ <5;

sEd» E IE, whieh rewrites using d» E I E '-+ d? » E;

sEd» E I a, whieh rewrites using d» E I a '-+ <5;

sEd» E Ie, whieh rewrites using d» E Ie '-+ d? » e;

sEd» E I a C') N', whieh rewrites using d» E I a C') :c '-+ <5;

sEd» E Icc> N', whieh rewrites using d » E Icc> :r '-+ d? »
c [> :r:

sEd» E I d' » a, whieh rewrites using d » E I d' » a '-+ <5;

sEd» E I d' » e, whieh rewriteB using d » E I d' » e '-+ (d? -
d') » e;

sEd» E I d' » E, whieh rewrites using d » E I d' » E '-+ (d? 1\

d'?) » E;

sEd» E I d' » a:') N', whieh rewrites using d » E I d' » a C') :r '-+
<5;

sEd» E I d' » e C> N', whieh rewrites using d » E I d' » e C>

:r '-+ (d? - d') » e C> :r;

sEd» E I (N' CD N'), whieh rewrites using:r I (y CD z) '-+ :r I y CD:r I z .

• sEd» a C') N'I N', for whieh we find the eases

sEd» a :') N'I <5, whieh rewrites using :r I <5 '-+ <5;

sEd» a :') N'I E, whieh rewrites using d» a :') :r lEY <5;

106

sEd » a (0 .N'I a', for which we find two eases

* If afa' defined then we rewrite using d » a :~ :r I a' Y (d;\
[true]) » (ara') :,) :r;

* If afa' undefined then we rewrite using d » a :~ :r I a' Y 8;

sEd» a c,) iV'l c, whieh rewrites using d » a :,) :r Ie '-+ b;

sEd » a :~ iV' I a' (~ iV', for which we find two eases

* If afa' defined then we rewrite using d » a (~ :r I a' (~ y y
(d 1\ [true]) » (ara') :,) (:r II y);

* If afa' undefined then we rewrite using d » a (~ :r I a' (~ y y 8;

sEd» a :,) iV'l c c> iV', whieh rewrites using d » a :,) :r Icc>
y'-+ b;

sEd » a (~ iV'1 d' » a', for which we find two eases

* If afa' defined then we rewrite using d » a (~ :r I d' » a' Y

(d 1\ d') » (ara') :,) :r;

* If afa' undefined then we rewrite using d » a (~ :r I d' » a' Y 8;

sEd» a c,) iV'l d' » c, whieh rewrites using d » a c,) :r I d' » c '-+

b:

sEd» a c,) iV' I d' » E, whieh rewrites using d » a :,) :r I d' » E '-+

b:

sEd » a (~ iV'1 d' » a' (~ iV', for which we find two eases

* If afa' defined then we rewrite using d » a (~ :r I d' » a' (~ y Y

(dl\d')>> (ara'):,) (:rlly);
* If afa' undefined then we rewrite using d » a (~ :r I d' » a' (~

y'-+ b;

sEd» a:') iV' I d' » c c> iV', whieh rewrites using d » a:'):r I d' »
c c> y'-+ b;

sEd» a :,) iV'l (iV' CD iV'), whieh rewrites using :r I (y CD z) '-+

:rIY:D:rlz .

• sEd» c c> iV' I iV', for whieh we find the eases

sEd» c C> iV'l b, whieh rewrites using :r I b '-+ b;

sEd» c C> iV' I E, whieh rewrites using d» c C> :r IE '-+ d» c C>

:r:

sEd» c C> iV'l a, whieh rewrites using d » c C> :r I a '-+ b;

sEd» c C> iV'l c', whieh rewrites using d » c C> :r I c' '-+ ((d -
Cjmp) 1\ c1mp) » (c 1\ c') C> (:r II c');

sEd» c C> iV'l a:') iV', whieh rewrites using d » c C> :r I a c,) :r '-+
b:

107

- sEd» c c> N'I c' c> N', whieh rewr(it~"rS i';:,in; ~ ~;D C)c>

y~e~:r(l) .
y Y ((d - Cjmp) /\ c}mp)>> (c/\ c') C> :r I c' ~ y:D '

yle ~ :r

- sEd» c C> N' I d' » a, whidl rewrites using d » c C> :r I d' »
a Y <5:

- sEd» c C> N' I d' » c', whieh rewrites using d » e C> :r I d' »
c' Y ((d - Cjmp) /\ (d' - c}mp)) » (c /\ c') C> (:r II c'):

- sEd» e C> N'I d' » E, whieh rewrites using d » c C> :r I d' »
E Y d'? - d » c C> :r:

- sEd» c C> N' I d' » a :'J N', whieh rewrites using d » c C>

:r I d'» a :'J y Y <5:

- sEd» c C> N'I d' » c' C> N', whieh rewrites using d » c C>

:r I d' » c' C> y Y ((d - Cjmp) /\ (d' - c}mp)) » (c /\ c') C>

(
."r.~c, ~ y:D)
y~c~:r(l) .
:rlc'~y:D '
Ylc~:r

- sEd» c C> N'I (N' :D N') , whieh rewrites using :r I (y (l) z) Y

:rly(l):rlz.

• s E (N' (l) N') IN', whidl rewrites using (:r :D y) I z Y :r I z :D y I z.

C.2.9 The form: s E 0/1 (N')

\Ve find the following eases

• s E 0/1 (<5), whieh rewrites using 0/1 (<5) Y <5:

• s E 0/1 (E), whieh rewrites using 0/1 (E) Y E:

• s E 0/1 (a), for whieh we find the following eases

- a E H , in whieh ease we have the rule 0/1 (a) Y <5

- art H, in whieh ease we have the rule 0/1 (a) Y a

• s E 0/1 (e) , whieh rewrites using 0/1 (c) Y c:

• s E 0/1 (a :'J N'), whieh rewrites using 0/1 (:r :'J y) Y 0/1 (:r) :'J 0/1 (y):

• s E 0/1 (c C> N'), whieh rewrites using 0/1 (:r C> y) Y 0/1 (:r) C> 0/1 (y):

• s E 0/1 (d» a), whieh rewrites using 0/1 (d » :r) Y d» 0/1 (:r):

• s E 0/1 (d» c) , whieh rewrites using 0/1 (d» :r) Y d» 0/1 (:r):

• s E 0/1 (d» E) , whieh rewrites using 0/1 (d» :r) Y d» 0/1 (:r):

108

• s E 0/1 (d» a C,) N') , whieh rewrites using 0/1 (d» :e) '-+ d» 0/1 (:e);

• s E 0/1 (d» c c> N'), whieh rewrites using 0/1 (d » :e) '-+ d» 0/1 (:e);

• s E 0/1 (N' CD N') , whieh rewrites using 0/1 (:e CD y) '-+ 0/1 (:e) cD 0/1 (y).

C.3 The rewrite system is strongly normalizing

That the ahove rewrite system is strongly normalizing can be demonstrated
llsing semantieallahelling in combination with the recursive path ordering tech
nique as (among others) described in [7]. \Ve define the following ranking-norm
on HyPA terms and reinitialization-elauses.

• lbJ = lEJ = laJ = lcJ = 1;

• ld»:eJ = l:rJ +1;

• l:r CD yJ = max (l:eJ, lyJ);

• l:r c,) yJ = l:r ~ yJ = l:r c> yJ = 2l:rJ + lyJ;

• l:el lyJ = l:ehJ = l:elyJ = l:eJ + lyJ;

• lO/1 (:e)J = l:eJ + 1.

Now , we lahel every operator in a HyPA term with its norm. I.e. we write
:e c')zlxJ+lyJ y in stead of:e C,) y. Then, we define the following (well-founded)
ordering on lahelled operators. (Note that we still treat d » :r as a unary
operator.)

• 81 < 1:1 < al < Cl < G)l

• for all n we have ::Dn <

• for all n~ rn, d we have (Un < d »m;

• for all n, d, d' we have d »n < d' »n+ ,;

• for all n, rn, d we have d »n < (9 m;

• for all n we have (~n < [>n ;

• for all n we have [>n < "n ;
• for all n we have "n < (~n+ l ;

• for all n.rn we have "n < 1m;

• for all n we have In < ~n ;

• for all n we have ~n < lin;

• for all n we have lin < In+ 1 ;

109

• for all n, m we have lin < Om,1/ 0;

In the remainder, we will show for each of the rules that they are strictly decreas
ing with respect to the recursive path ordering based on > (which we denote
>I'Po). For reasons of readahility, we will sometimes omit the lahelling of some
of the operators, if the exact lahelling is not important for the proof. The rules
that result in deadlock, or other constants, are considered trivial. Note that for
every term :r we have l:r J 2: 1.

C.3.1 d» d' » :r '-+ (d - d') » :r

d »lxj+Z d' »lxj+l :r
>l'pO d »lxJ+z d' »lxJ+l :r
>,'po (d - d') »lxj+l d »[xj+Z d' »lxj+l :r
>,'po (d - d') »lxj+l d' »lxJ+l :r
>,'po (d - d') »lxj+l d' »1XJ+l :r
>,'po (d - d') »lxj+l :r

C.3.2 d» (:r G) y) '-+ d»:r G) d» y

d »lxj+lyj+l (:r G) y)
>,'po d »[xj+lyj+l (:r (l) y)
>,'po (d »[xj+lYJ+l (:r G) y)) CD (d »[xj+lYJ+l (:r CD y))
>,'po (d »lxj+lyj+l (:r G) 'y)) CD (d »lxj+lyj+l (:r G) 'y))
>,'po d »lxj+lyj+l :r G) d »lxj+lyj+l y
>,'po d »lxj+l :r G) d »lyj+l y

C.3.3 (:r:'J y) :'J z'-+ :r :'J (y :'J z)

(:r +lyj y) :'J4lxj+zlyj+lzJ z
+lyj y) +lzJ 'z

>,'po ((:r :'Jzlxj+lyj y) :'J4lxj+zlyJ)+lzJ 'z)
((:r :'Jzlxj+lyj y) :'J4lxj+zlyj+lzJ 'z)
>,'po (:r +y y) +Zlyj+
((:r :'Jzlxj+lyj y) :'J4lxJ+zlyj+lzJ
>,'po (:r +lyj 'y) +zlyj+lzJ
((:r y) +zlyj+lzJ 'z)
>rpo ((:r +lyj y)
>rpo :r +zlyj+lzJ ((:r +lyj 'y)
>rpo :r +zlyj+lzJ (y +zlyJ+lzJ z)
>rpo :r +zlyj+lzJ (y +lzJ z)

110

C.3.4 (:r fD y) (,) z'-+ :r (,) z (D Y (,) z

(:r fD y) (,) z
>,'po (:r (D y) (,) 'z
>,'po ((:r (D y) (,) 'z) (D ((:r (D y) (,) 'z)
>,'po ((:r (D 'y) (,) z) (D ((:r (D 'y) (,) z)
>rpo :r (0 z CD Y (9 z

C.3.5 :r ~ y,-+ :r > y (D Y

:r "zlxj+lYJ Y
>rpo :r "zlxj+lYJ *y
>rpo :r "zlxj+lYJ *y(1):r "zlxj+lYJ *y
>l'pO :r "zlxj+lYj *y(1) y
>,'po (:r ~zlxJ+lYJ 'y) >zlxJ+lyJ (:r ~zlxJ+lYJ 'y) fD Y
>l'pO :r [>zlxj+lYJ (:r "zlxj+lYJ *y) CD Y
>l'pO :r [>zlxj+lYJ Y CD Y

C.3.6 (c > :r) > y'-+ c > (:r ~ y)

(c >z+lx(:r) >4+2lxJ+lyJ y
>rpo (c [>2+x :r) [>4+zlxj+lYj *y
>,'po ((c >Z+x :r) >4+2lxJ+lyJ 'y) >Z+2lxJ+lyJ
((c >Z+x :r) >4+2lxJ+lyJ 'y)
>,'po c >Z+2lxJ+lyJ ((c >Z+x :r) >4+2lxJ+lyJ 'y)
>,'po c >Z+2lxJ+lyJ ((c >z+x ':r) >4+2lxJ+lyJ y)
>rpo C [>z+zlxj+lYJ (:r [>4+zlxj+lYj Y)
>,'po c >Z+2lxJ+lyJ (:r ~zlxJ+lyJ y)

C.3.7 (:r fD y) > z'-+ :r > z fD y > z

Similar to the proof of (:r fD y) (,) z'-+ :r (,) z (D Y (,) z,

Similar to the proof of:r ~ y '-+ :r > y (D y,

Similar to the proof of (:r CD Y) (~ Z Y :r :9 z CD y :9 z, since the semantical
lahelling is irrelevant for this proof.

C.3.10 (d» E) (,) :r '-+ d? » :r

(d» E) (,) :r
>,'po (d» E) (,) ':r

111

>,'po d?» (d» E) (,) ':r
>rpo d?»:r

C.3.11 (d» :r)~y,-+ d»:rh

(d» :r) h
>,'po (d»:r) ~ 'y
>,'po d» (d» :r) ~ 'y
>,'po d» (d »' :r) ~ y
>,'po d» :r~y

C.3.12 (a (,) :r) ~ y '-+ a (,) (:e II y)

(a(,):e)~y

>,'po (a (,) :e) ~ 'y
>,'po ((a (,) :e) ~ 'y) (,) ((a (,) :e) ~ 'y)
>,'po ((a (,) :e) ~ 'y) (,) ((a (,) ':e) ~ y)
>,'po ((a (,) :e)~ 'y) (,) (:e~y)

>,'po a (,) (:e II y)

C.3.13 a ~:e '-+ a (,) :e

Trivial, since ~n 2: C0 n ·

C.3.14 (d» a) (,) :e'-+ d» a (,) :e

Similar to the proof of (d » :e) ~ y '-+ d» :e ~ y,

C.3.15 (d» a (,) :e) (,) y,-+ d» a (,) (:e (,) y)

Fnr the proof of this rule, we use the faet that (:e (,) y) (,) z'-+ :e (,) (y (,) z) is
an rpo-decreasing rewrite rule.
(d »3+lxj a lxj :e) (')6+2lxj+lyj Y
>,'po (d »3+lxj a (')z+lxj :e) (')6+2lxj+lyj 'y
>,'po d »3+2lxj+lyj (d »3+lxj a lxj :e) ~u-r;Lx;+lyj 'y
>,'po d »3+2lxj+lyj (d »;+lxj a lxj :e) +lyj y

>,'po d »3+2lxj+lyj (a (')z+lxj :e)
>,'po d »3+2lxj+lyj (a lx' :e)
'-+ d »3+2lxj+lyj a +lyj (:e

C.3.16 (a (,) :e) > y,-+ a (,) (:e ~ y)

(a (')z+lxj :e) >4+2lxj+lyj y
>,'po (a :e) >4+2lxj+lyj 'y
>,'po ((a (')z+lxj :e) >4+2lxj+lyj 'y)
((a (')z+lxj :e) >4+2lxj+lyj 'y)

112

Y
ly_ y)

+lY_

>rpo a +lyj ((a lx :r) C>4+ZlxJ+lYJ 'y)
>rpo a +lyj ((a lx ':r) C>4+ZlxJ+lYJ y)
>rpo a +lyj (:r C>4+Zlx +lyj y)
>rpo a +lyj (:r C>ZlxJ+lYJ y)

C.3.11 a C> :r '-+ a (,) (E CD :r)

In this proof, we use that l:rJ = max (1, l:rJ) = lE CD :rJ.
a C>z+lxJ :r
>l'pO a C>z+lxJ *:r
>l'pO (a C>z+lxJ *:r) (9z+lxJ (a C>z+lxJ *:r)
>rpo a lXJ (a C>z+lxJ *:r)
>,'po a lxj ((a C>z+lxj ':e) (a C>3+lxj ':e))
>rpo a lXJ (I': CDlxJ (a C>z+lxJ
>,'po a lxj (E CDlxj :e)

C.3.18 (d» :e) C> y'-+ d» :e C> y

Similar to the proof of (d » :e) ~ y '-+ d» :e ~ y,

C.3.19 (d» c C> :e) (,) y'-+ d» c C> (:e (,) y)

(d »3+lxj c C>3+lxj :e) (')6+Zlxj+lyj Y

+ lyj 'y
>,'po (d »3+lxj c C>z+lxj :e) (')6+Zlxj+lyj 'y
>,'po d »3+zlxj+lyj (d »3+lxj c C>z+lx' :e)
>,'po d »3+zlxj+lyj ((d »3+lxj c C>z+lxj :e) +lyj 'y) C>z+zlxJ+lyj
((d »3+lxj C C>3+lxj :e) +lyj 'y)
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((d »3+lx' C C>3+lxj

>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((d »;+lxj C C>3+lxj

>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((c C>z+lx' :r)
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj ((c C>z+lxj ':e)
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj (:r +lyj y)
>,'po d »3+zlxj+lyj C C>z+zlxj+lyj (:e +lyj y)

C.3.20 (c C> :e) (,) Y'-+ C C> (:e (,) y)

(c C>3+lxj :e) (')4+zlxj+lyj Y
>rpo (c C>z+lxJ :r) (94+zlxJ+lYJ *y
>,'po ((c C>3+lxj :r) (')4+ZlxJ+lyj 'y) C>z+zlxJ+lyj
((c C>3+lxj :r) (')4+Zlxj+lyj 'y)
>,'po C C>z+zlxj+lyj ((c C>z+lxj :e) (')4+Zlxj+lyj 'y)
>,'po C C>z+zlxj+lyj ((c C>z+lxj ':e) +lyj y)
>l'pO c C>z+zlxJ+lYJ (:r (94+zlxJ+lYJ y)
>,'po C C>z+zlxj+lyj (:e lyj y)

113

:e) (')6+Zlxj+lyj

:r) (')6+Zlxj+lyj

+ lyj y)
+lyj y)

'y)
y)

C.3.21 (d» c) (,) :r Y d» c

(d» c) (,) :r >,'po (d» c) (,) ':r >,'po d» c

C.3.22 (:r CD y)lzY :rlz (D Y l z

Similar to the proof of (:r CD Y) (:J Z Y :r (0 z CD Y (0 z, since the semantical
lahelling is irrelevant for this proof.

C.3.23 :r I (y (D z) Y :r I y (D :r I z

:rl (y CD z)
>,'po :r I '(y CD z) >,'po (:r I '(y (D z)) (D (:r I '(y CD z))
>,'po (:r I (y CD 'z)) (D (:r I (y CD 'z))
>,'po (:rly) (D (:rlz)

C.3.24 d» E I d' » E Y (d? 1\ d'?) » E

d»Eld'»E
>,'po d» E I'd' » E

>,'po (d? 1\ d'?) » (d» E I'd'» E)
>,'po (d? 1\ d'?) » E

C.3.25 d» E lEY d? » E

Similar to the proof of d » E I d' » E Y (d? 1\ d'?) » E.

C.3.26 E I d» E Y d? » E

Similar to the proof of d » E I d' » E Y (d? 1\ d'?) » E.

C.3.27 d» a (,) :r I d' » a' (,) y Y (d 1\ d') » (wya') (,) (:r II y)

d» a (,) :r l6+lxj+lyj d'» a' (,) y

>rpo d» a (0 :r i6+lxJ+lYJ *d'» a' (:J y
>,'po (d 1\ d') » (d» a (,) :r l6+lxj+lyj 'd'» a' (,) y)
>,'po (d 1\ d') » (d» a (,) :r l6+lxj+lyj 'd'» a' (,) y) (,)
(d» a (,) :r l6+lxj+lyj 'd'» a' (,) y)
>,'po (d 1\ d') » (ara') (,) (d» a (,) :r l6+lxj+lyj 'd'» a' (,) y)
>,'po (d 1\ d') » (ara') (,) (d »' a (,) :r l6+lxj+lyj d' »' a' (,) y)
>,'po (d 1\ d') » (ara') (,) (a (,) :r l6+lxj+lyj a' (,) y)
>,'po (d 1\ d') » (ara') (,) (a (,) ':r l6+lxj+lyj a' (,) 'y)
>,'po (d 1\ d') » (ara') (,) (:r l6+lxj+lyj y)
>,'po (dl\d')>> (ara') (,) (:rl!lxj+lyjY)

114

C.3.28 a (,) :r I d » a' (,) y Y ([true]/\ d) » (wya') (,) (:r II y)

Similar to the proof of d » a (,) :r I d' » a' (,) y Y (d /\ d') » (ara') (,) (:r II y).

C.3.29 a (,) :r I a' (,) y Y (ara') (,) (:r II y)

Similar to the proof of d » a (,) :r I d' » a' (,) y Y (d /\ d') » (ara') (,) (:e II y) ,
but leaving out the introduction of (d ;\ d') ».

C.3.30 d» a (,) :e I a' (,) y Y (d /\ [true]) » (ara') (,) (:e II y)

Similar to the proof of d » a (,) :r I d' » a' (,) y Y (d /\ d') » (ara') (,) (:e II y).

C.3.31 d» a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :e

d» aid'» a' (,):e

>,'po d» a I'd' » a' (,) :r
>,'po (d /\ d') » (d» a I'd' » a'
>,'po (d /\ d') » (d» a I'd' » a'
(d» a I'd' » a' (,) :e)

:9
:~

:r)
:e) :~

>,'po (d /\ d') » (ara') (,) (d» a I'd'» a' (,) :r)
> "po (d /\ d') » (ara') :,) :e

C.3.32 d» a :,) :r I d' » a' Y (d /\ d') » (ara') (,) :e

Similar to the proof of d » a I d' » a' (,) :r Y (d /\ d') » (ara') (,) :r,

C.3.33 d» a (,) :r I a' Y (d /\ [true]) » (ara') (,) :r

Similar to the proof of d » a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :r,

C.3.34 a I d» a' (,) :r Y ([true]/\ d) » (ara') (,) :r

Similar to the proof of d » a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :e,

C.3.35 a (,) :r I d » a' Y ([true]/\ d) » (ara') (,) :e

Similar to the proof of d » a I d' » a' (,) :e Y (d /\ d') » (ara') (,) :r,

C.3.36 d» a I a' (,) :e Y (d /\ [true]) » (ara') (,) :e

Similar to the proof of d » a I d' » a' (,) :r Y (d /\ d') » (ara') (,) :r,

C.3.37 d» a I d' » a' Y (d /\ d') » (ara')

d» aid'» a'
>,'po d» a I'd' » a'
>,'po (d /\ d') » (d» a I'd' » a')
>,'po (d /\ d') » (ara')

115

C.3.38 d» a I a' 4 (d /\ [true]) » (ara')

Similar to the proof of d » a I d' » a' 4 (d /\ d') » (ara').

C.3.39 a I d» a' 4 ([true]/\ d) » (ara')

Similar to the proof of d » a I d' » a' 4 (d /\ d') » (ara').

C.3.40 a I a' (,) :c 4 (ara') ,,) :c

al a' :9 :r
>l'pO a I *a' (:J :r
>"po (a I 'a' (,) :c) ,,) (a I 'a' ,,) :c)
>"po (ara') ,,) (a I 'a' ,,) :c)
> "po (ara') (,) :c

C.3.41 a (,) :c I a' 4 (ara') ,,) :c

Similar to the proof of a I a' (,) :c 4 (ara') ,,) :c.

C.3.42 d» E I d' » c [> :c Y (d? - d') » c [> :c

d»Eld'»c [>:c
>"po d» E I'd' » c [> :c
>"po (d? - d') » (d» E I'd' » c [> :c)
>"po (d? - d') » (d» E I'd' » c [> :c) [>

(d» E I'd' » c [> :c)
>"po (d? - d') » c [> (d» E I'd' » c [> :c)
>"po (d? - d') » c [> :c

C.3.43 d» c [> :c I d' » E 4 (d'? - d) » c [> :c

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c.

C.3.44 c [> :cld» E 4 d?» c [>:c

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c.

C.3.45 d» E I c [> :c 4 d? » c [> :c

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c.

C.3.46 Eld» c [>:c4 d» c [>:c

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c.

C.3.47 d» c [> :c IE 4 d» c [> :c

Similar to the proof of d » E I d' » c [> :c 4 (d? - d') » c [> :c.

116

C.3.48 d» cl d'» E '-+ (d'? ~ d)>> c

d»cld'»E
>,'po d» cl 'd'» E

>,'po (d'? ~ d)>> (d» ci 'd'» E)
>,'po (d'? ~ d) » c

C.3.49 d» E 1 d' » c '-+ (d? ~ d') » c

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c,

C.3.50 E 1 c [> :r '-+ c [> :r

Trivial, since c [> :r is a sllbterm of € I c [> :r.

C.3.51 c [> :r 1 E '-+ c [> :r

Trivial, since c [> :r is a sllbterm of c [> :r I €.

C.3.52 c 1 d » E '-+ d? » c

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c,

C.3.53 d» E 1 c '-+ d? » c

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c,

C.3.54 E 1 d» c '-+ d» c

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c,

C.3.55 d» c 1 E '-+ d» c

Similar to the proof of d » c 1 d' » E '-+ (d'? ~ d) » c,

C.3.56 d» c [> :rl d'» c' [> y'-+ ((d ~ Cjmp) /\ (d' ~ c}mp))» (c/\ c') [>

(:r~c'~y G)y~c~:r G):rlc'~y (£)ylc~:r)

d» c [> :r l6+lxj+lyj d'» c' [> y
>,'po d» c [> :r 16+ lxJ+lyj 'd'» c' [> y
>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (d» c [>

>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (d» c [>

(d» c [> :r 16+lxj+lyj 'd'» c' [> y)
>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (c /\ c') [>

(d» c [> :r l6+lxJ+lyj 'd' » c' [> y)
>,'po ((d ~ Cjmp) /\ (d' ~ c}mp)) » (c /\ c') [>

117

:r l6+lxj+lyj *d' »
:r 16+lxj+lyj *d' »

c' [> y)
c' [> y) [>

811

·(0; "Iii CD Ii ,'110; CD 0; ,,]Ii CD Ii ,'1]0;) <l (,'IV")
« ((am;" ~ ,p) V (am", ~ p)) ;-, Ii <l ,'I « ,p I 0; <l " « p JO JOOld 'HP OjlH]!Ul!S

(0; ~ "Iii iT' Ii ~ "10; iT' 0; ~ "Tlii iT' Ii ~ "Tlo;) -,v 1 -,v II -,v 1 II

<l (,'I V ,,) « (am;" V (amF" ~ p)) ;-, Ii <l ,'I 10; <l " «p 8!n:-O

·(0; "Iii CD Ii ,'110; CD 0; "]Ii CD Ii ,'1]0;) <l (,'IV")
«((am;" ~ ,p)V(am"'~p));-,1i <l ,'1« ,plo; <l" «PJoJoOld"'pOjlH]!Ul!S

(0; ~ "Iii iT' Ii ~ "10; iT' 0; ~ "Tlii iT' Ii ~ "Tlo;) -,v 1 -,v II -,v 1 II

<l (,'I V ,,) « ((am;" ~ p) V awF,,) ;-, Ii <l ,'I «p I 0; <l" .1.9'\:-0

(

0; " ;"1+;x1+<'11i)

.

C."; Ii' p.ffi1+.fxl+<'IO
G;O; ","1+rx1+<']1i
eli p;fi1+;x1+<.]0;

<l (,'I V ,,) « ((am;" ~ ,p) V (am", ~ p)) od.,<

(

(Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p) " ;"1+;x1+<'11i)

.

C,;; (Ii" <l ,'I «,P,.;fi1+.;x1+91 0; <l " «p) p.ffi1+.fxl+<'IO
CD (Ii <l ,'1« ,p, r"1+: x1+91 0; <l ,,« p) ","1+rx1+<']1i

Q; (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p) ,'I ;"1+;x1+<'] 0;

<l (,'I V ,,) « ((am;" ~ ,p) V (am", ~ p)) od.,<

(

(Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p) (Ii <l ,'I « ,p, ;"1+;x1+91 0; <l " «p) ;"1+;x1+<'11i)

.•

C,;; (Ii" <l ,'I « 'P'.ffi1+.fX1+91 0; <l " «p) (Ii" <l ,'I «,P,.f"1+.fX1+91 0; <l " «P).ffi1+.fxl+<'1 0;
G; (Ii <l ,'I «,p, ,"1+: x1+91 0; <l " «p) (Ii <l ,'I «,p, ,"1+r x1+91 0; <l " «p) ,"1+rx1+<']1i
Q; (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p) (Ii <l ,'I « ,p, ;"1+;x1+91 0; <l " «p) ;"1+;x1+<'] 0;

<l (,'I V ,,) « ((am;" ~ ,p) V (am", ~ p)) od.,<

(

(Ii <l ,'I « ,p, ;"1+;x1+91 0; <l " «p) ;"1+;x1+<'11i)

.

C,;; (Ii" <l ,'I « 'P'.ffi1+.fX1+91 0; <l " « P).f"1+.fxl+<'1 0;
CD(1i <l ,'1« ,p, ,"1+rx1+910; <l"« p) ,"1+rx1+<']1i
Q; (Ii <l ,'I « ,p, ;"1+;x1+91 0; <l " «p) ;"1+;x1+<'] 0;

<l (,'I V ,,) « ((am;" ~ ,p) V (am", ~ p)) od.,<

(

(Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p) ;"1+;x1+<'1 (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p))

•

C,;; (Ii" <l ,'I «,p, ,.;"1+.;X1+91 0; <l " «p) ,.;"1+.;xl+<'1 (Ii <l ,'I «,p, ;."1+;.x1+91 0; <l " «p)
G; (Ii <l ,'1« ,p,"1+,x1+91 0; <l ,,« p) ,"1+ ,xl+<'] (Ii <l ,'1« ,p, ,"1+: x1+91 0; <l ,,« p)
Q; (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p) ;"1+;x1+<'] (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p)

<l (,'I V ,,) « ((am;" ~ ,p) V (am", ~ p)) od.,<

(

(Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p))
CD (Ii <l ,'I «,p, ;fi1+;x1+91 0; <l " «p)
CD (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p)
CD (Ii <l ,'I «,p, ;"1+;x1+91 0; <l " «p)

C.3.59 e c> :r I e' c> y Y (e /\ c')jmp » (e /\ c') c>
(:r~e'~y G)y~e~:r G):rle'~y G)Yle~:r)

Similar to the proof of d » c C> :r I d' » e' C> y Y ((d - ejmp) /\ (d' - e1mp)) »
(e/\e') C> (:r~e' ~ y G) y~c ~:r G) :rIc' ~ y G) yle ~ :r), bllt llsing the
faet that [true] ,-..., Cjmp is logically equivalent to c.

C.3.60 d» el d'» e' C> :r Y ((d - ejmp)/\(d' - e}mp))» (e/\e') C> (ell:r)

d» e 15+lxj d' » e' C> :r
>rpo d» Cl5+lxj *d'» c' [> :r
>,'po ((d - ejmp) /\ (d' - e}mp)) » (d» e 15+lxj 'd'» e' C> :r)
>,'po ((d - Cjmp) /\ (d' - e}mp)) » (d» C 15+lxj 'd'» c' C> :r) C>

(d» e 15+lxj 'd' » e' C> :r)
>,'po ((d-ejmp)/\(d'-e}mp))» (e/\e') C> (d»el5+lxj 'd'» e' c>:r)
>,'po ((d - Cjmp) /\ (d' - e}mp)) » (e /\ e') C> (d »' e l5+lxj d'» c' C> ':r)
>,'po ((d-ejmp)/\(d'-e}mp))» (e/\e') C> (eI5+lxjd'»e' C> ':r)
>,'po ((d - ejmp) /\ (d' - e}mp)) » (e /\ e') C> (eI5+lxj:r)
>,'po ((d - Cjmp) /\ (d' - e}mp)) » (e /\ e') C> (ell'+lxj:r)

C.3.61 d» C C> :r I d' » c' Y ((d - Cjmp)/\ (d' - c}mp)) » (c/\c') C> (:c II e')

Similar to the proof of d» el d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) »
(e /\ e') C> (e II :r).

C.3.62 d» C C> :r Ie' Y ((d - ejmp) /\ e}mp) » (c /\ e') C> (:r II c')

Similar to the proof of d» ci d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) »
(e/\e') C> (ell:r),

C.3.63 e C> :r I d» e' Y (ejmp /\ (d - e}mp)) » (e /\ e') C> (:r II e')

Similar to the proof of d» el d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) »
(e/\e') C> (ell:r),

C.3.64 d» ele' C> crY ((d-ejmp)/\e}mp)>> (e/\e') C> (ell:r)

Similar to the proof of d» el d' » c' C> :r Y ((d - ejmp) /\ (d' - e}mp)) »
(e/\e') C> (ell:r),

C.3.65 e I d » e' C> :r Y (ejmp /\ (d - e}mp)) » (e /\ e') C> (e 11:r)

Similar to the proof of d» el d' » e' C> :r Y ((d - Cjmp) /\ (d' - e}mp)) »
(e/\e') C> (ell:r),

119

C.3.66 d» cld'» C'y ((d- Cjmp) 1\ (d' - c}mp))» (CI\C')

d»cld'»c'
>,'po d» C I'd' » c'
>,'po ((d - Cjmp) 1\ (d' - c}mp)) » (d» C I'd'» c')
>,'po ((d - Cjmp) 1\ (d' - c}mp)) » (c 1\ c')

C.3.67 C I d » c' Y (Cjmp 1\ (d - c}mp)) » (c 1\ c')

Similar to the proof of d» C I d'» c' Y ((d - Cjmp) 1\ (d' - c}mp)) » (c 1\ c'),

C.3.68 d» C I c' Y ((d - Cjmp) 1\ c}mp) » (c 1\ c')

Similar to the proof of d» C I d'» c' Y ((d - Cjmp) 1\ (d' - c}mp)) » (c 1\ c'),

C.3.69 C [> :r I c' Y (c 1\ c')jmp » (c 1\ c') [> (:r II c')

Similar to the proof of d» cl d' » c' [> :r Y ((d - Cjmp) 1\ (d' - c}mp)) »
(CI\C') [> (cl l :r),

C.3.70 clc' [>:rY (Cl\c')jmp» (CI\C') [> (cl l :r)

Similar to the proof of d» cl d' » c' [> :r Y ((d - Cjmp) 1\ (d' - c}mp)) »
(cl\c') [> (cl l :r),

C.3.71 0/1 (:r (,) y) Y 0/1 (:r) ,,) 0/1 (y)

0/1 (:r ,,) y)
>,'po 0/1 (:r ,,) y)'
>,'po 0/1 (:r ,,) y)' ,,) 0/1 (:r ,,) y)'
>,'po 0/1 (:r ,,) 'y) ,,) 0/1 (:r (,) 'y)
>,'po 0/1 (:r) (,) 0/1 (y)

C.3.72 0/1 (:r [> y) Y all (:r) [> 0/1 (y)

Similar to the proof of 0/1 (:r (,) y) Y 0/1 (:r) ,,) 0/1 (y),

C.3.73 0/1 (d»:r) Y d» 0/1 (:r)

0/1 (d» :r)
>,'po 0/1 (d»:r)'
>,'po d» 0/1 (d» :r)'
>,'po d» 0/1 (d »' :r)
>,'po d» 0/1 (:r)

C.3.74 0/1 (:r CD y) Y 0/1 (:r) 'D 0/1 (y)

Similar to the proof of 0/1 (:r (,) y) Y 0/1 (:r) ,,) 0/1 (y),

120

	200307_Page_001
	200307_Page_002
	200307_Page_003
	200307_Page_004
	200307_Page_005
	200307_Page_006
	200307_Page_007
	200307_Page_008
	200307_Page_009
	200307_Page_010
	200307_Page_011
	200307_Page_012
	200307_Page_013
	200307_Page_014
	200307_Page_015
	200307_Page_016
	200307_Page_017
	200307_Page_018
	200307_Page_019
	200307_Page_020
	200307_Page_021
	200307_Page_022
	200307_Page_023
	200307_Page_024
	200307_Page_025
	200307_Page_026
	200307_Page_027
	200307_Page_028
	200307_Page_029
	200307_Page_030
	200307_Page_031
	200307_Page_032
	200307_Page_033
	200307_Page_034
	200307_Page_035
	200307_Page_036
	200307_Page_037
	200307_Page_038
	200307_Page_039
	200307_Page_040
	200307_Page_041
	200307_Page_042
	200307_Page_043
	200307_Page_044
	200307_Page_045
	200307_Page_046
	200307_Page_047
	200307_Page_048
	200307_Page_049
	200307_Page_050
	200307_Page_051
	200307_Page_052
	200307_Page_053
	200307_Page_054
	200307_Page_055
	200307_Page_056
	200307_Page_057
	200307_Page_058
	200307_Page_059
	200307_Page_060
	200307_Page_061
	200307_Page_062
	200307_Page_063
	200307_Page_064
	200307_Page_065
	200307_Page_066
	200307_Page_067
	200307_Page_068
	200307_Page_069
	200307_Page_070
	200307_Page_071
	200307_Page_072
	200307_Page_073
	200307_Page_074
	200307_Page_075
	200307_Page_076
	200307_Page_077
	200307_Page_078
	200307_Page_079
	200307_Page_080
	200307_Page_081
	200307_Page_082
	200307_Page_083
	200307_Page_084
	200307_Page_085
	200307_Page_086
	200307_Page_087
	200307_Page_088
	200307_Page_089
	200307_Page_090
	200307_Page_091
	200307_Page_092
	200307_Page_093
	200307_Page_094
	200307_Page_095
	200307_Page_096
	200307_Page_097
	200307_Page_098
	200307_Page_099
	200307_Page_100
	200307_Page_101
	200307_Page_102
	200307_Page_103
	200307_Page_104
	200307_Page_105
	200307_Page_106
	200307_Page_107
	200307_Page_108
	200307_Page_109
	200307_Page_110
	200307_Page_111
	200307_Page_112
	200307_Page_113
	200307_Page_114
	200307_Page_115
	200307_Page_116
	200307_Page_117
	200307_Page_118
	200307_Page_119
	200307_Page_120

