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PROLOGUE

The introduction of generalized functions has considerably advanced mathe-
matical analysis, in particular harmonic analysis and the theory of partial
differential equations. In a non-rigorous way, electrical engineers and
physicists have been using generalized functions for almost a century.

But it took some time before mathematical justification of the use of im-
proper functions such as the Heaviside step function and the Dirac delta

function has been taken up.

The first mathematical concepts which started up a theory of generalized
functions were the finite parts of divergent integrals used by Hadamard

and the Riemann-Liouville integrals due to Riesz. Later Sobolev defined
generalized derivatives by means of integration by parts, and Bochner de-
veloped the theory of the Fourier transform for functions incregsing as

some power of their argument, Many of these results were unified by Schwartz
in his monograph Théorie des Distributions. Here the unifying concept is

the notion of locally convex topological vector space. Generalized func-—
tions (distributions) are continuous linear functionals on such spaces of

well behaved functioms.

Later on, also Gelfand and Shilov.defined many classes of generalized
functions. But more importantly, they showed how to use generalized fune-
tions in mathematical analysis. It turned out that generalized functions
connect many aspects of analysis, of functional analysis, of the theory
of partial differential equations and of the representation theory of lo-

cally compact Lie groups.

Thus, generalized functions have gained wide popularity among mathematicians.



The theories of Schwartz and of Gelfand-Shilov can be described as follows.
One starts with a vector space § of 'good' functions for instancé the set

U of infinitely differentiable functions with compact support or jthe set

S of infinitely differentiable functions of rapid decrease, This vector
space is called the test space. The test space S carries a suitable Haus-
dorff topology which makes $ into a locally convex, topological vector
space. The choice of the topology is not arbitrary; an extra condition

will be imposed. A géneralized function is a continuous linear functional
on 8. Equivalently, the space of generalized functions is the topblogical
dual S' of §. Thus the space of generalized funétions gains a natural weak
topology. To justify the name generalized function we comstruct a space s*
that can be identified with S' and contains 8. Therefore, let X be a Hil=
bert space (e.g.,Lz(IO or a Sobolev space) such that § is‘a dense gubspace
of X and such that the embedding of § in X is continuous. Then by means of
the inner product of X, the subspace S of X induces tﬁe weak Hausdorff to-
pology o(X,8) on X. Next, oné considers the sequential completion 8" of X
with this topology. The mentioned extra condition one has to impose on the
topology of S is the following: each member of 8' can be represented by an
element of S~ by means of the canonical pairing of S and $*. S0 8 and §*
can be identified. Since § ¢ X « $* and since the members of 8§ are functions,
S*, and hence 8' can be regarded as a space of improper functions. Thus,

D' can be interpreted as a space of improper functions which are derivatives

of some order of continuous functions on the real line.



Even Lighthill's more classical approach can be described in this functio-
nal analytic set up. One considers so-called regular sequences in S which
converge in a weak sense. It turmns out that a sequence is regular if it
“converges in o(X,8). Two regular sequences aretequivalent if the difference
of these sequences is a null-sequence in 0(X,S). A generalized function

in the sense of Lighthill is just an equivalence class‘of regular sequences.
So the theory based on the triplet §S ¢ X ¢ S* and the theory based on re-

gular sequences are equivalent.

In an inspiring paper [B], De Bruijn proposed a new theory of generalized
functions, which was developed further in Janmssen's thesis [J]. In [B]
three kinds of functions occur: smooth functions, smoothed functions and
generalized functions. A function is said to be smooth if it beloﬁgs to
Gelfand-Shilov's space Si, a special class of entire functions. A smoothed
function £ is derived from a smooth function g by application to g of an
operator from a set of smoothing operators. The set of smoothing operators

is a one-parameter semigroup denoted by (Nu)a> . De Bruijn proved that each

0
smooth function is smoothed and that each smoothed function is smooth.

Now, a generalized function is a mapping F from (0,») into the set of smooth
functions that satisfies NaFKS) = F(g ;6) for all positive o and £. Al-
though De Bruijn establishes a pairing between the spaces of smoothed func~—
tions and of generalized functions, no topologies are introduced for these
spaces and questions about duality and continuity of linear mappings can be

linked to sequential convergence only.



In [G], De Graaf generalizes De Bruijn's theory considerably by éreating
it on a functional analytic level. The paper [G] contains a theory of the
two types of topological vector spaces SX,A and TX,A which are g%nerated
by a holomorphic semigrogp with infinitesimal generatof A in the Hilbert
space X. In this thesis SX,A will be called an analyticity space and Tﬁ,A
a trajectory space., 1If we take a suitable operator A in a Hilberfﬁspace

X = LZ(M,u), the trajectory space TX,A contains generalized functions on

the measure space M.

The space SX,A is an inductive limit. This inductive limit is non-strict.
So the general theory on inductive limits, which assumes strictness, can
not be applied. In my opinion, the main feature in [G] is thé introduction
of the function algebra B(R). Each element of B(R) agrees with a seminorm
onASX’A. Together these seminorms generate the inductive limit topology.
This important observation has led to complete characterizations of null
sequences, of bounded subsets and of compact subsets of SX,A just as for
strict inductive limits. Furthermore, large pieces of Hilbert space theory
can be inserted into the theory. For instance, in [G] this has led to a
detailed exposition of continuous linear mappings, of topologicai tensor
products and of so-called Kernel theorems, all with respect to analyticity
spaces and trajectory spaces. Considerations of this type are mot current

in distribution theory.

The main source of inspiration for the present work has been the systematic
functional analytic approach in [G] to continuous linear mappings, which is
absent in other distribution theories, During the research, we got the fimm

expectation that more, interesting results would be obtained by applying



Hilbert space technigques as already mentioned. This became a second motive
for this thesis., Furthermore, any theory of generalized functions should
contain some spectral theory. It should tell whether continuous self-
adjoint operators on an analyticity space SX,A admit generalized eigen-
funciions in TX,A’ Finally, we have had the ambition to interprete parts
of the formalism of quantum theory in terms of analyticity spaces and tra-
jectory spaces because in such an. interpretation these spaces seem more

appropriate than Hilbert spaces.

Summarized, motivation for this thesis has been the wish to develop the
purely functional analytic theory [G), to translate various concepts of
classical distribution theory into the lamguage of [G] and to give a

mathematical interpretation of some quantum physics.

The second part of this prologue is devoted to a short survey of the con-

tents of this thesis.

For a nonnegative, self-adjoint operator A in a Hilbert space X the analy-

tieity space SX A is the dense subspace of X defined by
>

T .

t>0

On SX A2 non~gtrict inductive limit topology is imposed. The trajectory
*

space TX A consists of all mappings F : (0,«) » X which satisfy
i

) _ -TA
Vt>0V1>O P F(e+1) = ¢ (L) .

tA

. . m - .
Examples of such trajectories are tw» A e x with x ¢ X andm 2 0. A -

suitable choice of seminorms turns TX A into a Fr8chet space. The Hilbert
2

v



space X is embedded in TX A by means of the mapping emb : X -+ TX A

i

given by

emb@) 1 tw e TPy , weX, t>0, ‘

Thus we obtaine the triplet SX,A cXc TX,A'

1t is clear that for each f e SX A there exists T > 0 such that eTA feX.
>

So it makes sense to define a pairing between SX A and TX A as follows,
b4 14

(eTA

<f,G> = £,6(1)) . feSpu, Ge T

X,A

with (+,+) the usual inner product in X. Due to the trajectory property
of the elements of TX 42 the definition of <+,+> does not depend on the
2
choice of t > 0. With this pairing the spaces § and T, can be seen
X, A X,A

as each other's strong dual spaces,

The theory on the spaces SX A and T, forms a functional analytic descrip~
: k4

X,A
tion of a new kind of distribution theory., If X = éz(ﬁ,u) for some measure

space M, then TX A consists of improper functioms on M.
>

The paper [G] contains a deiailed discussion of several topological features
of analyticity and trajectory spaces, and of the duality between them. More—
over, it contains a detailed discussion of continuous linear mappings, which
is new in distribution theory. In [G] five typesbof morphisms are discussed
and also four Kernel theorems., A Kernel theofem gives conditions such that
all continuous linear mappings arise from the elements (kernels) out of a

suitable topological tensor product.



In Chapter one of this thesis we shall summarize the results in De Graaf's
paper. In addition, this chapter contains some examples of analyticity
spaces, which can be characterized in classical analytic terms. Further,
"we discuss a relation between representation tﬁeory of Lie groups and the

theory presented here.

In order to obtain the appropriate topological tensor product of the spaces
SX,A and TY,B and of the spaces TX,A and SY,B’ the spaces ZA and Xé are

. brought up in [G]. In Chapter two we shall shed more light on these rather
obscure spaces. With the introduction of two new types of analyticity/tra-
jectory spaces, we obtain a unifying approach to all spaces which occur in
[G]. It is possible to describe the intersection of EA and Eé in terms of
these new spaces. This description leads to a Kernel theorem for the ex-
tendable linear mappings, i.e. the continuous linear mappings on an ana-

lyticity space with a continuous linear extension on the corresponding tra-

jectory space.

If the space SX,A or the space SY,B is nuclear, then one of the Kernel
theorems says that Z; comprises all continuous linear mappings from SX,A
into SY,B' Chapter three contains the explicit formulation of the four
Kernel theorems of [G] and of the Kernel theorem for the extendable linear
mappings. Subsequently, we study the following operator algebras: the al-
gebra TA of continuous linear mappings from SX,A into itself, the algebra
TA of continuous linear mappings from TX,A into itself and the algeﬁra

EA of extendable linear mappings. In our research we involve the relation
between algebraic structures and topological structures. We use the algebra
EA as a mathematical model for the deséription of parts of quantum statis;

tics.



The remaining part of Chapter three is devoted to matrices. If sX,A is a
nuclear space, then to every continuous linear mapping on SX,A there can
be associated an infinite matrix. We shall derive a simple characteriza-
tion of the infinite matfices corresponding to the elements of TA, TA and
EA' In a separate section we treat the continuous linear mappings whose
matrices consist of only one non-zero (co)diagonal. These mapping§ are
usually called weighted shift, In fact, weighted shifts and their finite
combinations appear frequently in applied mathematics and in the theory
of special functions. At the end of this chapter, the matrix calculus is
applied in the construction of nuclear analyticity spaces SX,A on which

a finite number of bounded linear operators on X and, also, a finite num—

ber of commuting self-adjoint operators in X act continuously.

Chapter four is the self-contained part of this thesis, in which we shall
develop a theory of generalized functions in terms of our distribution
theory. For a self-adjoint operator P which is continuous on a nuclear
analyticity space SX,A there exist generalized eigenvectors in TX,A for
almost every point of the spectrum o(P). In the proof of this result

nuclearity seems to play an essential role,

The remaining part of Chapter four is devoted to a mathematical interpre-—
tation of Dirac's formalism. A reinterpretation of Dirac's bracket notion
leads to a mathematical theory which involves Fourier expansion of kets,
orthogonality of complete sets of eigenkets and matrices of unbounded

linear mappings, all in the spirit of Dirac.

We conclude this thesis with an epilogue. The study of amalyticity spaces
and trajectory spaces has raised questions and consequently has brought
up results. This thesis cannot contain all of them. So we have made a

sclection. In the epilogue we shall point at related results.



I, ANALYTICITY SPACES, TRAJECTORY SPACES AND LINEAR MAPPINGS BETWEEN THEM

I. The space SX,A

Let A be a nonnegative, self-adjoint operator in a Hilbert space X, Then

A

. -t - .
the semigroup (e ) consists of bounded linear operators on X. In

t20
order that this semigroup is smoothing, A is supposed to be unbounded.

The test space SX A is the dense linear subspace of X consisting of smooth
E]

elements e_tA h, where € X and £ » 0. We have

. -t . . . :
Since each subspace e A (X) of X can be given its obvious Hilbert space
structure, SX 4 can be looked upon as a union of Hilbert spaces. We note
»

that for each f ¢ SX A there exist 1t > 0 such that eTA f makes sense as

*

an element of X.

The strong topology in SX A is the finest locally convex topology on SX A
* 37

for which the injections it: e_tAq(X) > SX A t > 0, are all continuous.

3
In other words, we impose on SX A the inductive limit topology with res-
»

-t s s . P
pect to the spaces e A (X), t » 0. We note that this inductive limit is

not strict,

N



The function algebras B(R) and B+(R) are defined as follows:

-~ B(R) consists of all everywhere finite, real valued Borel funétions $
on R such that for all t > 0 the function x b @(x}e~tx is bouqded
on [0,=).
- B*(IO consists of all ¢ ¢ B(R) with ¢(x) 2 ¢ > 0, ¢ ¢ R,
By the spectral theorem for self-adjoint operators, the operators ((A),
~tA

¢ ¢ B{R) are well defined, and the operators ((A)e , t >0, are all

bounded. Further for f ¢ SX A and ¢ ¢ B(R)
s

~(t-T)A )e+tA

_ ~TA
$(AYE = e ($(A) e £ e SX,A

if t » 0 sufficiently small and 0 < v < t.

On SX A the semipnorms p are well-defined by
4 .

¢
(1) 7 p () = Heh) £)

where || -l denotes the usual norm in X. Then the following very fundamen-

tal theorem can be proved.

(1.2) Theorem.

The seminorms p¢ of (1.1) are coantinuous on SX_AVand they generate the
s

strong topology on SX A
*

Although the inductive limit is not strict, because of Theorem (1,2) most
results for strict inductive limits are also valid in our SX A Space.
3

In [G] the following results have been proved with ad hoc arguments.



(1.3) Theorem.

A subset B « SX A is bounded iff there is t > 0 such, that B is a bounded

subset of e_tA (X).

(1.4 Theorem.

A subset K « SX A is compact iff there is t > 0 such, that X is a compact
>

subset of e-tA (X).

{1.5) Theorem.

A sequence (fn) in SX A is Cauchy iff (fn) is a Cauchy sequence in some

EA .

Hence SX A is sequentially complete, because each e—tA (X) is complete.

The elements of SX A can be characterized as follows.

3

{(1.6) Lemma.

Let f ¢ X, and suppose £ ¢ (¢ (A)) for all ¢ « B+(R). Then f « SX A
N 3

Employing the standard terminology of topological vector spaces, the

properties of S¢ 4 are the follewing.

s

{(1,7) Theorem.

I SX,A is complete.
I1 SX,A is bormological.
I1I SX,A is barreled.

v SX A is Montel, iff for every t > 0 the

v SX A is nuclear iff for every t > 0 the operator e“tA
>

Schridt on X,

-t A
operator e

is compact on X.

is Hilbert-



12.

The space TX,A

In X consider the evolution equation

@y e -Ar.

A solution F of (2.1) is called a trajectory if F satisfies

(2.2.i) V¥ AR = F(t+ 1)

t>0vr>0:
(2.2.11) Vt>0: F(t) ¢ X .

We emphasize that lim F(t) does not necessarily exist in X-sense. The
40 ) :
complex vector space of all trajectories is denoted by TX Al For F ¢ Tk A
4 b4
we have F(t) ¢ S, ,, t » 0. The Hilbert 'space X can be embedded in T, ,.
X,A X,A

To this end, define emb: X - TX A by
¥

(2.3)  emb(0) (t) = e PAy . xex.

Thus X can be congidered as a subspace of TX A® and we have
3

8 cXchA.

XlA *

The characterization of the elements of Tk A is as follows.
b

(2.4) Theorem.
Let F e Ty A Then there exists w ¢ X and ¢ ¢ B, (R)- such that
»

F(t) = o(Ae A, &> 0.

The strong topology in TX A is the locally convex topology induced by
L]

the seminorms



(2.5) 0 () = IFC) I, ne N,

With this topology Tk 4 becomes a Fréchet space, i.e, a metrizable and
2

complete space,

It is not hard to see that SX,A is dense in TX,A' For F ¢ TX,A just take
the sequence (F(é?) < SX A This sequence converges to F in the strong
b

topology of Tx . Further in [G], ch. II, the following results have
k4

A

been proved:

(2.6) Theorem.

A set B c TX A is bounded iff each of the sets {F(t)|F e B}, t > 0, is
b 4

bounded in X.

(2.7) Theorem.

Aset X c TX A is compact iff each of the sets {F(t)} Fe K}, t >0, is
3

compact in X.

With the aid of the standard terminology of topological vector spaces
T can be described as follows.
X,A

(2.8) Theorem.

1 TX,A is bornological,

11 TX,A

IIT TX A is Montel iff the operators entA are compact on X for all t > 0.
3

is barreled.

v TX,A

all ¢t > O,

is nuclear iff the operators e_tA are Hilbert-~Schmidt on X for

[



14

3. The pairing of SX,A and TX,A

On SX,A x TX,A the sesquilinear form <+, *> is defined by

G.1 g, 1= e, F(e) ,

where as usual (-, ) denotes the inner product of X. We note that this
definition makes sense for t > 0 sufficiently small, and does not depend
on the choice of t > 0 because of the trajectory property (2.2.ii) satis~-

fied by F.

The spaces SX.A and T can be considered as the strong topological dual

X,A

spaces of each other by this pairing. So we have

(3.2) Theorem.

I Let £ be a linear functional on SX A’ Then £ is continuous iff there
>
exists F € TX,A such, that £(h) = <h, F>, h € SX,A'
II Let m be a linear functional on Tk A Then m is continuous iff there
td

exists f ¢ SX,A such, that m(G) = <f, G>, G ¢ Tk,A'

As usual, the linear functionals of SX A Tesp. Tk A induce the weak to-
1] 14

pology on TX,A resp. SX,A in the following way:

(3.3.1) The weak topology on SX A is the topology induced by the semi~
3

norms, pF(h) = |<h,F>|, F ¢ TX,A'

(3.3.ii) The weak topology on Tk A is the topology induced by the semi-
E]

norms o (G) = |<£, 6|, f ¢ Sy A
td

A simple argument [CH], II. §22, shows, that SX A and Tk A 2re reflexive
’ s s

both in the strong and the weak topology.



{3.4) Theorem. (Banach~Steinhaus)

Weakly bounded sets in S resp. T. are strongly bounded.
X,A X,A

“In the next two theorems weak convergence of séquences in SX A well
bl

as in Tk A are characterized.
£

(3.5) Theorem.

an + 0 in the weak topology of SX,A iff

thA

3 (£) < o tA (X) and £ > 0, weakly, in e "X .

>0°

As a corollary it immediately follows that strong convergence of a se-—

gence in Sx A implies its weak convergence., Further, any bounded sequence
’

in SX A has a weakly convergent subsequence.

»

(3.6) Theorem.

F + 0 weakly in TX,A iff Vt>0: Fn(t) + 0 weakly in X.

So again it follows thatstrongly converging sequences in TX A 2re weak- "
: Ed
ly convergent. By a diagonal argument it can be proved that any bounded

sequence in T, has a weakly converging subsequence.
X, A

When are weakly convergent sequences always strongly comvergent? The next

theorem deals with this question.



.

(3.7) Theorem.

The following three statements are equivalent:
I For each t > 0, the operator e~tA is compact on X,
. |
I1 Each weakly convergent sequence in Sx A converges strongly iu'SX A’
H td

II1 Each weakly convergent sequence in TX A converges strongly in Tﬁ A
» i L]

Characterization of continuous linear mappings between the spaces

Se.ar Teoar Sy, ™4 Ty g

Let B be a non-negative self-adjoint operator in the separable Hilbert
space Y. In this section we give conditions implying continuity of
linear mappings SX,A ﬁ'SY;B’ SK,A -+ TY,B’ TX,A - TY,B and TR,A > SY,B'
Purther, there are given conditions on & linear operator in X such that
it can be extended to a continuous linear mapping on Tx A The next

N »

theorem is an immediate consequence of the fact that SX A is bornological.
el

(4.1) Theorem.

Let R be an arbitrary locally convex topological vector space. A linear
mapping £: SX A7 R is continuous iff
L

A

I for each t > 0 the mapping £ e "% ¥ » R is continuous.
IT for each null sequence (un) < Sx At the sequence (£11n} is a null
¥y

sequence in R.

In [G], De Graaf gives several equivalent conditions on linear mappings
of one of the mentioned types to be continuous. Each of these conditioms

is useful in its own context. The next theorem deals with continucus linear

mappings from SX,A into SY,B'



(4.2) Theorem,

Suppese P': S » S is a linear mapping. Then P is continuous iff
XA Y,B ‘

one of the following conditions iy satisfied

5 i 1 i 3 .», i .
Lof - 0 strongly in SX,A implies i Uy 0 strongly in SY,B

Il For each t » 0 the operator Pe‘tA is continuocus from X into Y.

IIT For each t » 0 there exists 8 » 0 such that Pe_tA(X} = e*SB (Y}

and es 5 Pe_t A

is a bounded linear operator from X into Y.
IV There exists. a dense linear subspace £ c Y such that for each fixed

4 ¢ T the linear functional ZP g(f) = (Pf, )y is continuous on

>

Sx,A -
v For each t » 0 the adjoint (Pemt A)* of Pe“t‘gL is continuous

from ¥ into X.

The next corollary is important for applications.

(4.3) Corollary.

Let Q be a densely defined closable operator: X - Y. If D(Q) DHSX A
PO . b

and Q(SX,A) < SY,B’ then ¢ maps SX,A continuously 1nto'SY,B.

(4.4) Theorem.

Let K: S + T, be a linear mapping. Then K is continuous iff
x,A "~ 'Y,B : ; ,

‘ -sB

1 For each t > 0, s > 0 the operator e e_tA

K is continuous from
X into Y.

II For each s > 0 the mapping e-sB K is continuous from § into 8, ,.
X,A Y,B



(4.5) Theorem.

Let V: T + 8 be a linear mapping, and let V_: X - Y denote its
X,A Y,B r
restriction to X, Then V is continuous iff one of the following caindi—

tions is satisfied

*
I Ur Y) < SX,A'

I1 There exists t > 0 such that Vr*(Y) < e—tA (X) and et *

A V= is
T
bounded as an operator from Y into X.
. tA . . ~tA :
III There exists t > 0 such that Vre with domain e (X} <« X is
bounded as an operator from X into Y.
IV There exists t > 0 and a continuous linear mapping §: SX A SY 8
3 . s

such, that V = Qe-t A.

(4.6) Theorem.

Let &: TX,A + TY,B be a linear mapping. Let & : X = TY,B denote the
restriction of ¢ to X. Then ¢ is continuous iff one of the following

conditions is satisfied.
I For each g ¢ SY B the linear functional F » <y, 9F> is continuous
s
on TX,A'
IT For each s > 0 the linear mapping e_Sng is continuous from TX A
*
into SY,B'
-5 B *
III For each 5 > 0 (e % ) (¥) € S .
r X,A
sB tA ~-sB_ tA

IV For each s > 0 there exists t > O such that e ére = @ de

on the domain e—tA (X) is bounded as an operator form X into Y.

An interesting class of densely defined linear operators is established

by those operators in X which can be extended to continuous linear map—



pings from T into T_ ,. This class is characterized as follows.
X,A Y,B

(4.7) Theorem.

‘Let E be a densely defined linear operator from X into Y. ¥ can be ex-

tended to a continuous linear mapping FE: TX A TY B iff F has a dense-~
* 2

. o * * . *
ly defined adjoint E : D(@) » SY,B + X with £ (SY,B) € SX,A'

As a corollary of this theorem it follows that a continuous linear map~
ping @: S -+ S8 can be extended to a continuous mapping
x,A "~ ~¥,B

- . ) L. * PR * *
Q: TX,A > TY,B iff its adjoint § satisfiesD(g ) > SY,’B and & (SY,B) < SX,A'

Topological temsor products and Kernel theorems

Let X @ Y denote the set of Hilbert-Schmidt operators from X into Y.
X ®Y is a Hilbert space, which can be regarded as a comg;lete topological
tensor product of the Hilbert spaces X and Y. Further, in ¥ @ Y the
operator A B B is defined to be the unique self-adjoint extension of the
operator A® T + T ® B which is well defined on the algebraic tensor

product D{A) ®a D(B). We have e-t(ABB) = e-tA (9] e‘tB

-t (ABB)
(e )t>0

, t>0. 80

is a semigroup of smoothing operators on X @ Y.

Now, according to section 1 and 2, we introduce the spaces SX@Y,AIEB and

Txov,ABB

i .q. @ .
gebraic tensor products SX,A ®a SY,B c.q TX,A a TY,B

. They can be regarded as topological completions of the al-

An element J ¢ § can be considered as a linear operator

XQY,AHB

J: SX,Ak - SY,B in the following way: Let F ¢ TX,A' Define JF by

-e B

ko= e B fB A peey .



20.

i

|

For € > 0 and sufficiently small this definition makes sense and does

not depend on the choice of €.

(5.1) Kernel theorem.

tA -tB

1f for each t > 0 atleast one of the operators e ', e is Hilbert~
Schmidt, then SX@Y,AE'B comprises all continuous linear mappings from
TX,A into SY,B'

An element K ¢ TX@Y,AEBS can be considered as a linear operator K:

SX,A -+ TY,B in the following way: Let f ¢ SX,A' Define Kf ¢ TY,B by

e~(t-€)5

(KE) () := Koy S 2 e, ¢ > 0.

For any f ¢ SX A and £ > O this definition makes sense for ¢ > 0 sufficient-
. .

ly small. Moreover (Kf)(t) does not depend on the choice of ¢.

{(5.2) Kernel theorem.

If for each t » 0 at least one of the operators e-tA, e-tB is Hilbert—
Schmidt, then TX@Y,AE&B comprises all continuous 1n’1ear mappings from
SX,‘A into TY,B'

Next, in order to describe continuous linear mappings P: SX AT SY B
14 3

and ¢: Tx A TY 3 De Graaf introduces two more topological temsor
Ll *

prdduc ts:

14

The subspace Iy of T,

XOY,A®1 defined by

Ly t= {P| P« TX®Y,A®I s Visg? P(L) € Sx@w,AEB} .

This is a topological completion of TX,A ®a SY,B'
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T
The subspace EB of T,

XOY,I€B defined by

1
g :={e]®cTgy 108 * Yeo! *(V) < Syoy ama!-

L]
ZB is a topological completion of SX A @a TY,S'

*

1 t
On the spaces Ty and Zg complete sets of seminorms are introduced. An

]
element P ¢ EA can be considered as a linear operator P: SX,A > SY,B

as follows: For £ ¢ SX,A define Pf ¢ SY,B by

PE = P(e) e P g

>

Then Pf ¢ SY,B’ because P(e) ¢ SX@Y,AEB' The definition makes sense

for ¢ > 0 sufficiently small and does not depend on the choice of «.

(5.3) Kernel theorem.
“tA -tB ., ..
If for each t » 0 at least one of the operators e , € is Hilbert—

¥
Schmidt, then EA comprises all continuous linear mappings from SX A
b4

into SY 8

b4

1]
Finally, an element ¢ ¢ ZB can be considered as a linear operator

3z TX,A - TY,B in the following way: For F ¢ TX,A define ¢F € TY,B by

e(t)A

@F)(t) = 9(t) e Fle(t)) .

This definition makes sense for each t > 0 and e€(t) > 0 sufficiently

small, The result does not depend on the specific choice of £(t).
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(5.4) Kernel theorem.

If for each t » 0 at least one of the operators e_té, e'tB is Hilbert—

: |

Schmidt, then ZB comprises all continuous linear mappings from TX A
" s

1nt§ Tf,B'

For more details and proofs the reader is referred to [G], Ch. VI, In Ch.
11 tbeVspaces E; and Zé will be defined in a more elegant way and
discussed in a wider context, Further investigations in this theory

of generalized functions led to a fifth Kernel theorem for those
continuous linear mappings from SX,A into SY’B,'which can be extended

to a continuous linear mapping from T, into T, ,, the so called
i X,A Y,B

extendable linear mappings.

Examples of SX’A-spaces

The SS—spaces of Gelfand-Shilov

De Bruijn's theory of generalized functiom is based on the test function

space § where H is the Hamiltonian operator of the harmonic

Lo (R H °
oscillator,
2
H= ! (— 4 + xz + I) . .
2 2
dx

The space st(]R),H consists of entire analytic functions f satisfying
S, 2 2
[£(x + iy)| < C exp(~}Ax" + {By") , x,y ¢ R,

where A, B en C are some positive constants only dependent on f. The

1
space § equals the space 8 introduced in the books of Gelfand-
2

Lo(R) ,H
shilov [GS,].



(2)

k/k+l

Recently, it has been proved that the Gelfand-Shilov spaces sh’k-bi’

k € N, are SX A-type spaces. (see [EGP1). To this end, put
*
8 - ‘é*' ka k+1/2k
k dx

k/k+1
1/k+1

follows that

Then 8 =8 . By applying the Fourier transfom it easily

Ly (R) ’Bk

Sl Jk+1

Wikl =S

Ly(R), B

- a2 ko, \k+1/2k
whereBk’-'((-—z) +x> .

dx
We conjecture that a great number of Gelfand~Shilov spaces Sﬁ are of

type SX,A'

Hankel invariant distribution spaces

For g > -1, the Hankel transform ]Ha is formally defined by

o

(m £)(x) = ]Ja(xy)/{;f(y)dy , x>0,
0

where Joz is the Bessel function of order o. The Hankel transform extends

to a unitary operator on Z = LZ(O s). The generalized Laguerre functions

ﬂia}, ne Nu{0},

i 12
£ ) = (___........_”(“”) )x"‘**e @0 xso,

Fin+a+l) n

(o)

n is the n-th generalized Laguerre polynomial of type o,

where L

satisfy

(a) _ 0 (@)
]Han (-1} Ln .

23.
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They establish a complete orthonormal basis of eigenfunctions in Z for

the positive self-adjoint operator Ay

a2 2 o’
Ayt = —5 + x '+a—z—‘~-2¢x .
dx X

Thelr respective eigenvalues are 4n+2, ne N v {0},

By routine methods it can be shown that the space Sz A is invariant

*
under the unitary operator E%. So nﬂ‘ extends to a continuous bijection
on the distribution space TZ,AG' In [Ezj, [EG] the elements of SZ,A

o
are characterized as follows

feS £

Z,Au if

(1) zw z

~(a+})

f(z} extends to an entire gnalytic and
even function

and (ii) there are positive constants A, B and C such that
(o)
|2 (a+2)f(z)} s C exp(-%sz + iByz)

where z = x + iy.

(3) Nuclear SX 4 spaces for given sets of operators in X
3

In Ch. III, there will be given a matrix caleculus for the continuous linear
mappings from a nuclear SX,A space into itself. With the aid of this
calculus we have been able to construct a nuclear SX,A space for a

finite number of bounded linear operators on a Hilbert space X, and

also for a finite number of commuting, self-adjoint operators in X, The
existence of such nuclear SX;A space is very important for our theory

of generalized eigenfunctions and our interpretation of Dirac's forma—

lism (gee Ch. 1V).
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Analytic veclors

in [Nel], Nelson introduced the notion analytic vector. Let A be a

self-adjoint operator in X. Then § € X is an analytic vector for A iff
A" g4 < ab™n! , n=0,1,2,...

for some fixed constants a, b only dependent on 4. The space of analy~
tic vectors for A is denoted by C¢™A), and called the analyticity do-
main of A, Nelson showed that for a nonnegative, self-adjoint operator
A the vector § e C*(A) can be written as § = e-:Atv where t > 0 and

w e X. Hence C¥A) = SX,A'
The notion analytic vector was also introduced for unitary representa-
tions of Lie groups (see [Eel], [Wal, [Go] and [Wal):

Let ¢ be a finite dimensional Lie group. A unitary representation [/ of

G is a mapping
g U{g) , ge@
from ¢ into the unitary operators on some Hilbert space X.

A vector §{ ¢ X is called an analytic vector for the representation U,

if the mapping

g Ulg)4
is analytic on &. We shall denote the space of analytic vectors for U
by C¥%).

Let A(G) denote the Lie algebra of the Lie group G, and let {p ,....p4}

be a basis for A(G). Then for every p ¢ A(G)

s & U{exp(sp))
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is a one parameter group of unitary operators on X. By Stone's theorem
its infinitesimal generator, denoted by 9U(p), is skew-adjoint. Thus
the Lie algebra A(0) is represented by skew-adjoint operators in X.
Put ‘

d

a=1- 3 @up’.
k=1

Nelson, [Ne]], has proved that the operator A can be uniquely extended
to a poéitive, self-adjoint operator in X, Denote its extemnsion by 4,

also. Then we have (see [Ne}], [Gol)

(7.1)Theorem,

The space of analytic vectors for the representation U, lode (7)) equals

the space S

.

X,Ai

The following result tells something about the action of U (p), p ¢ A(D

on the space § 3
X4

(7.2) Theorem.

The linear operators aU(p), p e A(G), are continuous as linear mappings

from 8 , into itself.
X,a%

Proof, Let p ¢ A(G).

Following [Go], proposition 2.1, the operator 3U{p) maps S 3 into it-

X,A
self. Since 3U(p) is skew-adjoint, continuity follows from section 4,

Theorem 4.2. v O

In several cases the space S ) is nuclear. Here we mention the follo-
o X,4
wing cases. Possibly, other cases can be found in the book of Warner,



27.

{Wal, For a proof we refer to [Nal.

3 } is nuclear if U is an irreducible unitary representation of G on
X,A
X and one of the following statements is satisfied:

(i) ¢ is semi-simple with finite center.

(ii) G is the semi-direct product of 4 @ X where 4 is an abelian in~
variant subgroup and X is a compact subgroup, e.g. the Euclidian
groups,

(tii) G is nilpotent.

Again we note that nuclearity of S } is very important for our theory
X,4
of generalized functions and our interpretation of Dirac's formalism.
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ANALYTICITY SPACES AND TRAJECTORY SPACES BASED ON A PAIR OF
COMMUTING, HOLOMORPHIC SEMIGROUPS

Introduction

A main result in the theory on analyticity and trajectory spaces is the
validity of four Kernel theorems for four types of continuous 1inéar
mappings which appear in this theory. A Kernel theorem provides conditions
such that all linear mappings of a specific kind arise from the elements

(kernels) out of a suitable topelogical‘tensor product.

In order to prove a Kernel theorem for the continuous linear mappings
from SX,A into SY,B’ resp. from TX,A into TY,B the rather curiocus spaces
Z; and Eé are brought up in [G]. The space ZA is a topological tensor

1
product of TX,A and SY,B and the space Ig of SX,A and TY,B‘

In the third chapter of this thesis we shall explicitly formulate the men-
tioned Kernel theorems within the framework of a thorough discussion of
continuous linear mappings on analyticity and trajectory spaces.

During the investigations which led to the third chapter of this thesis,
we needed a clearer view on those remarkable spaces EA and Eé.

To this end we studied two new types of spaces, namely S(TZ,C’D) and

T(Sz C,D) with £ and D commuting, nonnegative, self-adjoint operators
b4



b
o)

in a Hilbert gpéce Z. We shall present them here. Up to now these spaces
have no other than an abstract use., However, the space S(TZ,C’D) can be

regarded as the 'analyticity domain' of the operator ¥ in TZ,C’ cf. Ch, I,
Section 7. The space T(SZ,C’D> contains all trajectories of TZ,D through

SZ ¢ Ve mention the following relations
*

T = TCyuen, 168" 5 Ip = SUyey 1g5:A%0):
I = Tyop a0 1) » 25 = SUygy por» 1980

The first section is concerned with the analyticity space S(Tz C,O).
. b4

This space is a countable union of Fré@chet spaces

N -s0 -
S(TZ,C’9> = U e (TZ,C) u T

$>0 >0 e P (zy,0
For the strong topology we take.the inductive limit topology . We shall
produce an explicit system of seminorms which generates this topology,
and characterize the elements of SCTZ,C,D). We looked for a character-
ization of null-sequences, bounded subsets and compact subsets of
S(TZ’C,D) and for the proof of its completeness; however, without success.
The second section is devoted to the trajectory space T(Sz,c,ﬂ). With
the introduction of a "matural' topology, the space T{SZ’C,U) becomes
a complete topological vector space. Here we have been more successful.
The elements, the bounded and the compact subsets, and the null-sequences
of T(SZ’C,Q) will be described completely., Since TX,A is a special'*i~

T(S D)-space the latter results extend the theory on the topological 7

z,C’

structure of TX A.Cf.EG],‘ch.II. In Section 3 we shall introduce 3 pairing
£



hetween S(T,
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A'C;D) andJT(S?'C,D)d;withvthis,pairing,they,canﬁbe‘regarded
» ‘y .

‘us-éachlbthe?‘S'strong‘dualvspace$; Further we.note that.for both spaces

a‘Banacﬁ~$teiﬁhﬁﬂs,theorem will be-proved....: . -

‘The extendable iiﬁeér“mappings éstéblish,alfifth”:ype‘of mappings in

the theory. They are contiﬁdoué'ffbmfsgggfihto Si’g,’and»can be 'extended’
to contin?ous linear mappings from TX,A into T&,B' In order to describe
the clasg'af?ektedﬁaﬁlé linear mappings it-is natural to look for a des-
cription of the intersectiom of EA apd Zé, or, more generally, of
T(SZ,C’D} and T(SZ,D,C). Therefore in Section 4 we introduce the nome-
gative, self-adjoint operators C A D = mag(C,D) and C v D = min(C,P).
Téjthese both the theory in [G] and the theory of Sections 1-3 apply.

The operators C A D and C vV D enable us to represent intersections and
algebraic sums of the spaces SZ,C’ 32,9’ TZ,C’ TZ,v’ S(TZ,C,D), etc.,és
spaces of one of our types. It will lead to a fifth Kernel theorem in

the following chapter.

The spaces which appear in our theory are ordered by inmclusion. In the
final section we discuss the inclusion scheme. Since each space can be
considered as a space of continuous linear mappings of a specific kind
the scheme illustrates the interdependence of these types.

The space S(T D)

z,0’

Let C and D denote two commuting, nonnegative, seif—adjoint‘operators
in a Hilbert space Z. We take them fixed throughout this part of the

paper. Suppose C,0 admit spectral res.mlut::i.ons;(Gk)’m]R and (Hp)ueli’



(1.1

(1.2)

such that
f
C = AdGA , D—J ude
R R

A, in R

Then for every pair of Borel sets A], 2

G(Al) H(AZ) = H(AZ) G(Al) .

Since the operators e—sD’ s > 0, and e_tc, t > 0, consequently commute,

for each fixed s > 0 the linear mapping e 8 is continuous on the trajec~
tory space TZ c (Cf. Ch. I, Section 4). We now introduce the space

S(TZ,C’D) as follows.

Definition
STy oD = U e‘SD(TZ D= v w0

) .
s>0 nelN z,C

We note that e—SD(TZ C) < e_UD(TZ c) for 0 < ¢ < s. Since the operator
b ’

sD . . . . -sD i i
e is injective on SZ,C’ the space e (TZ,C) is dense in TZ,C by

duality. Hence S(TZ C,D) is a dense subspace of TZ ¢ In the space
’ 3

~-sD

e (TZ C) =T , the strong topology is the topology generated
’ B

e P),c

by the seminorms q ,ne N,
s,n

_ sD 1 ~gD
qs,n(h) =lle h(;) ||Z , hee

(TZ,C)

SD(T

We remark that e ) is a Fréchet space.

Z,C

Definition

The strong topology on S(TZ C,D) is the inductive limit topology, i.e.

3
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the finest locally convex topology for which all injectioms i-.»

‘Cs (T C)"'S(zcy) ) o 3
= . DA
are continuous. =l ) A
Note that the inductive I,A.mg Asmot SERACtL viay vrevs ol rodr

A subset @ < S(TZ C,D) is open 1f and Qn;i.y 1f Qhe mteé}rsectlon
- Y b IR
Qne s'D( C) is open in e -s (T C) for each s > 0.

S Tl 7 e T re e sharl prccf’” & sy§tem oft s’éin’iﬁoﬁﬁé‘ h‘*SGT “”D)
woelnid ohd 40 Fisvadd r{éwlz:‘;cially S ofvdE Topoldey eduivalent ‘to ‘thé‘kﬁﬁ%&tg topo-

YK HE @Y e b5 wel 1dErddide the Fet 0E Functiods F(R?) .

(1.3) Definition

T, . sy Doy, (T2
6 ¢ F(]R } if and only\f W S U R
. ~us _At ©
Vs>0 3t>0 ;gg (le(r,wle e ) <
w20

Further, F+(R2) denotes the subset of all functions F‘('.Rz) ‘which are

positive on {(,u}|2 2 0, uz2 0} .

For 8 ¢ F(]Rz) the operator 6(C,p) in X is defined by

[
8(C,p) = 8(A,u) dGyH,,.
Ay
®2

Here dG}\Hp denotes the operator-valued measure on the Borel subsets of

R? related to the spectral projections of C and D. On the domain



D(S(C,D)) = {we 2| f | e(x,u)|2 A(G,H w,w) < =}
RZ

8(C,D) is self-adjoint.
The operators 6(C,D), 8 ¢ F(E?), are continuous linear mappings from the space
S(TZ C,D) into Z. This can be seen as follows. Let h ¢ S(Tz C,D). Then

» . s

define

8¢, mh = CoC,0e e ().

Since there exists s > 0 such, that esD h(t) € Z for all t > O, and since

for each s > 0 there exists t > 0 such, that the operator etce(C,D)e—sD
is bounded on Z (cf. Definition (1.3)), the vector 8(C,D)h is in Z. Hence

the following definition makes sense,

(1.4) Definition

For each 8 ¢ F+(R?) the seminorm Py is defined by

po () = 16(C,0nl, , ke ST, D),

z,0°

and the set U , £ >0, by
g€

U e = {h ¢ S(T

., D) | 18(C,0hl, < e}

Z,C?

The next theorem is the generalization of Theorem (1.4)in {G] to the type

of spaces S(TZ,C,D).
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D) Theorem

R
L., Foreacht « F+(m"} the seminorm B, is continuous in the strong

|
|

topology of S(TZ,C’D)'
II. Let a convex set Q « S(TZ C,?) have the property that for each s > 0
3
v

the set 2 n e (T, .) contains a neighbourhood of 0 in é-SD(T ).
z,C ‘ z,C
Then & contains a set Ue c for well-chosen 9 ¢ F+(Rz) and ¢ > 0.
>
Hence the strong topology in S(TZ C,U) is induced by the semi~
* .
norms pg.
Proof.
I. Tn order to prove that p, is a continuous seminorm on S(TZ C,D) we
. . H
have to show that 8(C,D) is a continuous linear mapping from
S(Tz C,D) into Z. Therefore, let s > 0. Then there is t > 0 such
,C7"
thacﬂetgﬁ(c,ﬂ)e—SDH < =, S0 8(C,D) is continuous on e—spéTZ c} (cf.
»
Ch. I, Section 4).8ince s > 0 is arbitrarily taken, it implies that
0(C, D) is continuous on S(TZ C,U).
E]

II. We introduce the projections an, n,m e N,

P =f [ dG}\Hu.

n~1 m-1

Then an(Q) contains an open neigh$ourhood of 0 in an(z). (We note

that an(S(TZ,C,D)) S an(Z).) So the following definition makes sense,

LI suplp | (b ¢ Pon(@ A anmhﬂ <p)=he an(ﬂ)} .

Next we define the function 8 as follows
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22
8(h,u) = 22 , he (n-1,n), ue (mi,m],

Inm

8(2,0) = 803, 1),

>
v
<

8(0,w)

#

e(%,u)’ v o> 0 s

8(x,u) =0 R A< 0 vu<0.

We shall prove that 6 ¢ F(]KZ) . To this end, let s > 0, Then there are

t >0 and € > 0 such that

isD
2,0

{h]| J j’ e“sd(G}\th(t),h(t)) «<Hesne
0 0

-4sD

because {1 N e (TZ C) contains an open neighbourhood of O by assump-
’

tion, So we derive

c sc e(n—l)t e—%ms

a,me N.
nm 3 2

With 2 ¢ (n~1,n], u € (m~1,ml it follows that

22 e
o m egnt e (m-1)s

T
nm

8 () eéAt e M8 <

S nzmz e-int e-%(m—l)s e%(s+t}

€

So sup (e%kt e M8 8 (hyp) < o,

Az0
ux0

We claim that

*3 16(C,Mhil <1 = h e Q.
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Suppose h ¢ e_sa(?'z c) for some ¢ > O, Then for all t > O
*

po 30 otC anhiiz <w !

n,m :

and for o, 0 < o < g, fixed and every 1 > t

(x%) 160 &€ p pp < o @ )s=0) ~ta=l)(r=t)y 8D ~tC 5
nm nm

Because of assumption (%)

1P hil < @)™ = .
nm

nm
Hence n2m2 anh e O n e-ca(?'z,c} for every ﬁ,m e N. In e-ci?(.rz,c) we
represent h by
N,M
1 22 . 1
h= | —e(n’u’P h)~+(‘,2 A )h
n,m nzm2 nm (n>N) v(m>M) anm2 e
where
] ) (3
h =< —) P h) .
W\ Gmpviom 42 \@ovw ™
With (**) we calculate
1% ng 1? s
< (N ¥ yoeu y ¥ ) e’ 7P Rl
n=N+1 m=] n=1 m=M+1

2

(Nh SAN(T-t) 4 e-ZM(s—c)) " esD e-tC Bl



(1.6)

47

Hence hNM + 0 in e-ov

arbitrarily. So for sufficiently large N,M we have hNM e [(Gn eﬁcD(Tz C)}.
s

(TZ C) because both t > 0 and T > t are taken
]

Since h is a sub—convex combination of elements in the convex set

2N e*qD(TZ C) the result h ¢ ¢ follows. 9]

Similar to Ch., I, Section 1, we should'like to characterize bounded sub-~
setd, compact subsets, and sequential convergence in S(TZ,C,E). However,
we think that this requires a method of construéting functions in F+(R2)
similar to the construction of functions in B*(]R)ih the proofs of the
characterizations given in [G], Ch.I. Up to now, our attempts to solve

this problem were not successful.

Remark. Asin Ch. I the set B _(R) consists of all everywhere finite j
Borel function ¢ on R which are strictly positive and satisfy i

N -x
Va>0 : sup (p(x)e ") < e, |
%>0 !

Finally, we characterize the elements of S{TZ C,U).
. ’

Lemma

heS8{T D) iff there are @ € B (R),WeZands >0 such that

2,00
h = e*qu,((])w .

Proof. The proof is an immediate comsequence of the following equivalence:

Fel F = ¢(Cw 0

2,6 ® Y8, () Ywez ¢

As in [Gl, Ch.I,it can bé proved that S(Tz C,D) is bornological and
2

barreled.



2.1}

(2.2)

The space T(S 123}

2,0

The elements of TZ p are called trajectories, i.e. functions F from
H)

(0,~) into Z with the following property:

~oP
VS>0 Vc>0 : F(s+o) = ¢ F(s) .

Now the subspace T(SZ C,?) of Tz D is defined as follows:

Definition
The space T(SZ C,D) contains all elements G € TZ D which satisfy
s 3

VS>0 : G(s) € SZ,C .

Remark . T(SZ,C’D) consists of tra}ectorles of TZ,? through‘SZ,C. The

space T(SZ C,U) is not trivial. The embedding of Z into TZ p maps

- s - £
SZ ¢ into T(SZ c,?), because the bounded operators e_SG, s » 0 and e—tv,
L >

t > 0, commute,

In T(SZ C,D) we introduce the seminorms p gt b€ B (R}, s » 0, by
L

b

Pig Ne(CIF (s l, , F e T(SZ,C’D) .

b

The strong topology in T(SZ C,D) is the locally convex topolegy induced
s .

by the seminorms p

by8

The bounded subsets of T(S D) can be fully characterized with the

z,0’
aid of the function algebra F+CR2}. To this end we first prove the fol-

lowing lemma.



2.3)

(2.4)

39.

Lemma

The subset B in T(S P)is bounded iff for each s > 0 there exists

z,C’
t » 0 such that the set {F(s)IF ¢ B} is bounded in the Hilbert space
e_tC(Z) ,
Proof. B is bounded in T(SZ c,ﬁ) iff each seminorm p¢ s is bounded on
4 *

B iff the set {F(s)|F ¢ B} is bounded in S, - for each s > 0. From Ch. I,
Fio

Section 1, the assertion follows,

Because of Definition (1.3) for every 0 ¢ E;(]iz) and each W ¢ Z the
Dw sD

vector 8(C,Dye ® is in SZ ¢+ So the trajectory s = 6(C,Me * W is
t

an element of T(SZ C,U) and it will be denoted by 6(C,D)u.

Theorem

The set B « T(SZ C,D) is bounded iff there exists 8 ¢ F+(R2) and a
3

bounded subset V of Z such that B = 8(C, D) ()

Proof.

«) Let s > 0. Then there exists t > 0 such that

1etCece,me™ P01 < 1 Cocc,0ye Pl .

Hence B is a bounded subset by Lemma.(2.3).

=) Let n,m € N . Define

e || som,

n-1 m~1

and put rnm = éﬁg ("anGu). Let s > 0. Then there are t > 0 and Ks,t
such that

>0
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n m

2 (

sup ( I d(G.H G,C)) <
nm GeB J A

n-1 m-1

~
[}

n m
e2ms e-2(n—l)t sup /J' { e—ZuSeZXtd(G)\Hu G,G)) <

<
GeB
n-1 m!
- - 2 2 -2nt 2
< est e 2{A~1)E sup IIeCC G(s)II” < e ms Tty .
s,t
GeB
Thus we obtain the following
y -ms nt
. <
Vs>0 E!t>0 E!K>O Vn,me]N PR Lo ® sk

Define 6 on ]R2 by

8(A,u) = nm L if r #0, n-1 £ A <n, mI < p <m,
-n . 4

8(X,u) = e if rnm =0,

8(x,u) =0 if X <0oru<0.

Then 6 € F+(R2) . To show this, let s > 0. Then there are 0 < t < | and

K > 0 such that for all A € [n-1,n) and v ¢ [m-1,m)

£ =(g~
o0 o (m-1)s < oS

At -us
8(A,u) e " e < omor o s,t

if r #0, and if r =0,
nm nm

-us _ -n nt

8 (A, ) ext e e e < 1

For each G ¢ B define W by

=1
w=0C,n 'c= ] (ﬂ P c).

¢ 40 \°O
nm



€2:5)

(2.6)

(2 T

Then we calculate as follows

2
- -2 -2, -2 2 -2 -2 _ u%2
lwi, = 7 #On m A AP G €] nm = ()
I o n,m
le -1
Hence w ¢ Z with llwl < < and the set ¥V = 8(C,0) (B) is bounded in Z. [

Since Tx A is a special T(SZ C,D) space, Theorem (2.4) yields a charac-—
’ >

terizaticn of the bounded subsets of TX A
’

Corollary

Let B c TX A Then B is bounded iff there exists ¢ € B+(R) and a bounded
o »

subset ¥V in X such that B = ¢(A) (V).

Special bounded subsets of T(SZ C,D) are the sets consisting of one
’

single point. This observation leads to the following.

Corollary

Let H € T(SZ C,D). Then there are W ¢ Z and 6 ¢ F+(R2) such that
b

H= 6(C,D)w. (Cf. Ch.I, Section 2).

Similar to Lemma (2.3) strong convergence in T(SZ C,D) can be character-
’

ized.

Lemma

Let (Hﬂ) be a sequence in T(SZ,C’D)' Then Hl + 0 in T(SZ,C’D) iff

tC
Veso Jeso ¢ e Hz(s)lr 0
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Proot. \l{{} ts o null sequence in 7{5,, ("D) ir (H((s) is a ﬁ‘mH sequence in

s o fereach s ~ 0. FromCh. 1, Section | the assertion folfows. I}

(Hg) is a null sequence in T(8 D) iff there exists a null. sequence

z,0’°

(wz) in Z and ¢ ¢ £’+(]I{2) such that HE = 0(C,Dw,.

Proof. The sequence (Hf_) is bounded in T(Sz C,Q). Then construct @€F+(R2)
£

as in Theorem (2.4):

9 (x,u) = nm fnm if L. F0, n-i £ A <n, ml S p<m,
- .

a(h,u) = e if L = o,

8{x,u) =0 if x < 0oru<o

where Lop - max Ul ?nm
: LewW

Let € > 0. Then there are N,M ¢ W such that

Hy Iy .

> < e/’
{(o>N)v(m>M) n'm
r—l
Define wz = G(C,i?)"1 Hiﬁ = 12 T:%n- Pmn H, , £ € N. Then for all £ ¢ N
nm#0
-2 =2f =2 2 2
(%) ) n ‘m (rnm NP el ) < (e/2)°.

(n>N) v (m>M)

Further, there exist t > 0 and £0 ¢ N such that for all £ > 1’,0

-2 -2 =2 2
(%%) (n™m e WP HT) <
(nzu)f\(msmnrmyﬁo oo nm L

< M max [(r'z)netc H£(1>n2] < (er? .
(ngN) A (m<M) ,«rmﬁo o
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A combination of (*) and (»x) yields the result
szu < ¢ for all £ > £0 g

Since the choice of & ¢ F+(m?) in the proof of the previous theorem

has to do only with the boundedness of the sequence (Hg) in T(S D),

z,C?
Theorem (2.8) implies the following.

(2.9) Corollary
<F£) is a Cauchy sequence in T(SZ C,D) iff there exists 6 ¢ F+(R?) and
3
a Cauchy sequence Gﬂz) in Z such that F£ = S(C,O)wg, £ ¢ N. Hence

every Cauchy sequence in T(Sz c,@) converges to a limit point.
b4

Further, we have the following extension of the theory in [€].

(2,10) Corollary
(Fﬁ) is a null {(Cauchy) sequence in Tx A if there exists a null (Cauchy)
»

sequence (WK) in X and ¢ € B+(R) with FI, = $(Aw,, £ ¢ N.

Finally we characterize the compact subsets of T(SZ C,ﬁ).
’

(2.11) Theorem

Let ¥ ¢ T(SZ,C’D)' Then ¥ is compact iff there exists 8 ¢ F+C$2) and
a compact subset J ¢ Z such that ¥ = 9(C,D)(W).
=) Since X is compact, X is bounde§ in T(SZ’C,F). So conétruct 8 ¢ F+(m?)

and the bounded subset ¥ of Z as in the proof of Theorem (2.4). We



(2.12)

(2.13)

(2.14)

44,

shall prove that W is compact. Let (wl) be a sequence in W¥. Then

(e(C,D)WK) is a sequence in X. Since X is compact there exists a sub-
|

sequence (wzk) and W € Z such that

D) .

8(C,0) Wg-w) > 0 in T(S, .,

The same arguments which led to Theorem (2.8) yield wtk > w in Z. Hence
W is comﬁact in Z.

< Since 08(C,D) : Z » T(SZ,C’D) is continuous for each 9 ¢ F+(]R2) , the
compact set W c Z has a compact image 9(C,D) (W) in T(SZ,C,D) for

each 6 «¢ F;(Rz) ]

Corollary

K c T(SZ C,D) is compact iff X is sequentially compact.
’

Corollary

K c TX A is compact iff there exists a compact ¥ ¢ X and ¢ € B (R) such,
k4

that X = ¢(A) (W).

Theorem

T(SZ,C’D) is complete.

Proof. Let (Fa) be a Cauchy net in T(S D). Then for each s > 0 the net

z,C?

(F (s)) is Cauchy in S . Completeness of 'S, ; yields F(s) ¢ S with
a ) Z,C Z,C

zZ,C
-sD

Fa(s) + F(s). Since (e )s20

is a semigroup of continuous linear mappings

on S, », the function s » F(s) is a trajectory of T(S, .,D). |
z,C z,C

Finally,we prove the following result.



45

(2.15) Lemma

SZ,C is sequentially dense in T(SZ,C’D)'

Proof. Let H ¢ T(8 7). Then H(%) I SZ ¢r B¢ N and H(;ll-) + H in

z,C’

TS m.

z,C?

3. The pairing of S(TZ,C ,0) and T(Sz,C’D)

In this section we introduce a pairing of S(T, »,0) and TS, 0. 1t
s ¥
is shown that S(TZ C,T)) and T(SZ C,ﬂ) can be regarded as each other's
s 2

strong dual spaces.

(3.1) Definition

Let h ¢ S(TZ C,D) and let F ¢ T(SZ C,U). Then the number<€h,F® is de~
3 14

fined by

)
<h,F» = <F(s), e° h>.
Here <+,*> denotes the usual pairing of S and T, n.
z,C z,C
We note that the above definition makes sense for s > 0 sufficiently

small and that it does not depend on the choice of s > 0 because of the

trajectory property of F.

{(3.2) Theorem
I. Let F ¢ ‘!'(,SZ C,D). Then the functional
s,
h #<h,F>

is continuous on S(TZ _c,?}‘).
IT. Let £ be a continuous linear functional on S(TZ C,D). Then there exist:
¥

G e T(S D) such that

z,0’



= <€ 3
L(h) h,G® , h e S(TZ e D .

11T, Let H ¢ S(TZ C,U). Then the functional
. -

Fv<h,7 >

is continuous on T(S_ ,,7).
z,C
IV. Let m be a continuous linear functional on T(SZ C,D). Then there
14

exists g € S(Tz C,U) such thaﬁ
nF) =g F> , F TS, oD

Proof.

I. For every W ¢ TZ ¢ and every s > 0
¥

«;e'ssw,b*»= <F(s),W> ,

and Wn 2> 0 in TZ C implies <F(s),wn> + 0. Hence the functional
k4
h » <€h,F®>is strongly continuous on S(TZ C,D).
. ) 3
II. Because of the definition of inductive limit topology, each linear
functional £ o e*sD is continuous on Tz ¢ So there exists G(s) ¢ SZ c
y ]
with (£ » ehsg)(W) = <G(s),W>, WweT s > 0. Since (e~SD)
e z,C’ : s20

is a semigroup of continuous linear mgppings on Sz;c it follows that
G(s+o) = e‘UDG(s) s 8,0 20,

So s » G{s) is in T(SZ,C’D) and
£(h) = <G(s),e T’h> =<€h,G>», h ¢ S(TZ e )

11T, F0110w1ng Lemma (1.6), there are w e 2, s > O and ¢ e B,(R) with

h = ¢(C)w. Hence the inequality



Kn,F? = |<w,e(C)F(£)>] < Iwiib(COFCe) I

the continuity follows.
IV. The strong topology in T(Sz C,@) is generated by the seminorms P
> (]

where s > 0 and ¢ ¢ B+(BJ . Since m is strongly continuous on

T(Sz C,D) there are ¢ > 0 and ¢ ¢ B+(EU such' that
(] <, (F) = Ig(OF @I, F e TS, 0,0).

So the linear functional m o m(C)*IeOO is norm continuous on the

dense linear subspace w(C)e_cD(T(S D)) © Z, It therefore can bhe

zZ,C*
extended to a continuous linear functional on Z., So there exists

W e Z with

@ 9@ ') (GOF@) = (G(OF@)w).

Put g = @(C)e w e S(T D).

z,C’

Definition

The weak topology on S(Tz C,D) ig the topology generated by the seminorms
up(h) = |[€h,F>|, S(T2 oD
The weak topology on S(T c,ﬂ) is the topology generated by the seuwinorms

u (F) = |<h,F>|, F € T(S, c R

A standard argument [Ch], II,522 shows that the weakly continuous linear
functionals on S(TZ C,D) are all cbtained by pairing with elements of
b4 .
T(S, ~»D) and vice versa. So it follows that S(T, ,,0) and T(S ,0) are
z,C z,C Z,C

reflexive both in the strong and the weak topology.
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(3.4) Theorem (Banach—Steinhaus)
I. Let W c T(SZ,C’D) be weakly bounded. Then ¥ is strongly bgunded.
II. Let V ¢ S(TZ’C,D? be weakly bounded. Then ¥ is strongly b?unded.
M- . H
I. Let s > 0, and let ¢ ¢ B+(]i). Then following Lemmé (1ﬁ6) e*80¢(C)w €
€ S(TZ,C’D) for each W ¢ Z and by assumption there exists.Nw > 0 such
that {«é‘s%(C)w,FN = 1w, 4 (OF ()] s N, Foe W,
"By the Banach-Steinhaus theorem for Hilbert spaces there exists

as’¢ > 0 such that

He(OYF(s) !l < as’¢ .

With Lemma (2.3) the proof is finished.

II, Let 8 ¢ F+(m2). Then for each W ¢ Z, 6(C,D)w ¢ T(SZ,C’D)'
By assumption there exists %B > 0 such that
[(eC,Mh,uw| <M,
for each W ¢ Z. Hence for all h e V
faC,DHnll < g
for some ay > 0. ’ a

The next theorem characterizes weakly converging sequences in T(SZ C,D).
3

{3.5) Theorem

F£ + 0 in the weak topology of T(SZ C,v) iff there exists a sequence
(we) in Z with wp > 0 weakly in Z, and a function § ¢ F+(m2).such that

F, = 8(C,Nw,, £ « N.
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Proof
&) Trivial
=) The null sequence (FZ) is weakly bounded. So by Theorem (3.4) it is

a strongly bounded sequence in Z. As in Theorem (2,8) define fom for

n,m ¢ N by
om zz% a anFE n.
-ms ot . ,
Then VS>0 3t>0 : sup(nm Tm® } < «, and the function 6 defined
n,m
by
a{i, ) =amr o if rnm%{), n=1 £ XA <n, ml<yu<m,
-n .
g(x,u) = e if Com = 0,
6(A,u) =0 elsewhere ,

. 2 ~ -1, -1 =1 -1
is in F*(JR ). Puth- 8(C, D) F£ = r}: #On m rnmpanK , L e W

nm
Let u ¢ Z, and let € > 0 and N,M ¢ N so large that

@y < e/ .

{(n>N) v(n>M)
Then
( 2y}
(u,P__w )l < flull IP__w ll)
(n>N) v (mM) nng \(§>Nv(m>M) nmf
rnm%c rnm*o
2 é
-2 -2 = 2
suuu( o 2w 2T Fu)) .
(§>N)V(m>M) o nm £
rmn#()
< egfaiull



(3.6)

(3.7)

Furcher, since anu e S D) for all n,m ¢ N, there exists {0 . N

T, e

such that for all ¢ > 50

-1 =1 -1 1
) (u,P_ w )‘ < ‘4{ z nom r P up,F>» <ef2
<Ny A(mey, B L (n<N) A (mEM) m o[ L

r #0 r_ #0

nm nm

A

Hence, for each € > 0 and w € Z there exists ZO ¢ N such that for

all £ > 20
(w,w )} < (U,P__wy) | + (u,P__wy)| <<,
£ (n>N) vV (m>M) , gt (n=N) A (msM) , A
rnm#O rnm#O
Thus we have proved that WK + 0 weakly in Z, and
FZ = e(C,’D)wz. 8]

Corollary
I. Strong convergence of a sequence in T(SZ C,D) implies its weak con-—
3
vergence.

IT. Any bounded sequence in T(SZ C,D) has a weakly converging subsequence.
’

Corollary

(Fz)is aweakly converging null sequence in T iff there exists a weakly

X,A

converging null sequence (WZ) in X and a function ¢ € B+(ﬁ0 such that

FZ = ¢(Aw,, £ € N.

Remark: From Theorem(2.4) and Definition(3.2) it follows that the strong

topology in S(TZ,C’

D) equals the so-called Mackey topology (Cf.[Tr],p.369).
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(4.1)

(4.2)
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Spaces related to the operators C VD and C A D

A b 3 .
in the previous sections, (GA)AeR

resolutions of C and D. The orthogonal projection P, defined by

and (Hu)uelR denote the spectral

commutes with C as well as D.
Definition
The nonnegative, self-adjoint operator C A D is defined by
CAD=PP+ (I-P)D(I-P)
The nonnegative, self-adjoint operator ¢ v D is defined by

CvD=(I-P)C(I-P) + POP.

Remark: The operators C A D and C V D are also given by

2

CAD-= ff max(k,u)dG}\Hu ol V= Jf min(k,u)dG}\f‘lu .
]R2 R

and T are well-defined by Ch. I,

The spaces SZ,CVU’ SZ,C/\D’ TZ,CVD Z,CAD

Section | and 2. With the aid of these spaces sums and intersections of

SZ,C’ SZ,D’ TZ,C’ and TZ,D can be described.
Theorem

To8g 0= 33,000 = S2,0 % 320

. Spovp = 520" 52,0
III. " + T

Tz,can = Tz,000 = Tz,0 * T2y0
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Iv. TZ,CVD = TZ,C n TZ,D'

(In II, + denotes the usual sum in Z, and in III the usual sum in TZ cep*)
’

Proof. From the definition of the projection P we derive easily that for

tC tD -tD tC
e e

all £ > 0 the operators Pe” P and (I-P)e (I -P) are bounded in Z.

I. Let f ¢ SZ,CAD’ Then there are t > 0 and W ¢ Z such that
£=e 8Oy, - peChy v (1-PYe P(T-Pw .

So f = e_tca) with W = Pw + (T—P)etce_tD(T—P)w ¢ Z, and hence f € SZ c*

Similarly it follows that f ¢ SZ 0"

>

On the other hand, let g € SZ c " SZ D Then for some W,v € Z and t > 0,
> ? :
g = e-—th and g = e-tDv .

So g can be written as

g = Py + (T=Phg= Pe CPy s (I=Pe PI=Py =

- Dy v q-Pw) €S, o

Finally,we prove that S S

2,0AD T Vz,C+D°
Since C+V2CADitis obvious that SZ,C+D c SZ,CAD’

c

Now let f e S . Then f = (Pe“t P + (I—P)e_tD(I—P))W for certain

Z,CAD
t >0 and W ¢ Z. Thus we find

f = e_%t(c+D)EPe_%tce%tDP + (I—P)e%t?e%tc(T-P)]w, and
and hence f € SZ,C+D .
IT. Let f ¢ SZ,CVD' Then there are w ¢ Z and t > O such that
£ =t ODy o pe™Ppy v (1-P)e (- P .
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. On the other hand let w,v < Z and let t -~ 0. Pu

-tD
g =c w+ e v. Then

= e—t(CVD)[et(CVD)e-tCu + et(CVD)e—tDV].

Since C v D < C and C v D < D, this yields g « SZ,CVU'
Let ¢ € T, 0 Then w ¢ Z and g e B, (R) are such that G = o(CADw.

Since 9(CAD) = ¢(C)P + o(D)(I-P),

G =)W+ gM(T-Pw ¢ TZ gt TZ 0

On the other hand let ¢,¢ € E+(R) and let w,v ¢ Z. Put

G =9C)u + ¢MDv .

Since the operators w(C)e-t(CAv) and ¢(D)e—t(CAD), t > 0, are bounded on
Z2s for all £ > 0
e—t(CAD)G = (e_t(cAv)o(C)u + e_t(cAD)¢(D)v) &g .

Hence G € TZ,CAD' Because SZ,CAD = sZ,C+D also topologically, it is clear

that TZ,CAU = TZ,C+U'

Let H n TZ 0 Then there are ¢,x € B+(R) and v,w € Z such
’

€ TZ,C
that H = ¢ (C)w and H = x(D)v. So B can be written as

H=¢C)T-Pw + x(@Pv ,

- e-t(CVU)H = e—cc¢(C)(l -Pw + e—tvx(D)Pv € Z. This implies H ¢ TZ,CVD'

Since C v D < C and C v D < D we have

and T

Tz,0v0 < Tz,¢ z,0v0 < Tz,0°




(4.3)

It is obvious that the operators C A D and C v D commute. So the spaces

S(T CvD, S(T CAD, T(S cCvD , T( C A D) are well de-

CAD? cvD? CaD? SCVTJ’

fined. Here, for convenience, we have omitted the subscript Z. Similar

to Theorem (4.2) we shall prove the following.

Theorem

L S(To,D) 0 S(Tp,0) = S(Tpyp,C A D),

I1. S(To,0) + (75,0 = S(T,p,C v D),

<

III. T(S(,0) n T(Sp,0) = T(S D),

CAD’C
Iv. T(SC,D) + T(SD,C) = T(SCVD’C AD).

Proof

I. Let k ¢ S(TC,D) n S(TD,C). Then there are ¢,¢ ¢ B (R), t > 0 and
u,v € Z such that k = e_tc(p(D)u and k = e—tvq.(C)v.

Put x = max(g,$). Then X € B+(IO and k is given by
k= ey and k= e Pxo)y
with =% '(D)o(MuczZand ¥= x '(C)(C)v € Z. So

k= Pk + (1 -Pk = Pe Sy + (1-Pe ()%

- Dy e v pyPR + (- PV
This yields ke S(TCVD’C AD).
On the other hand, let ¢ ¢ B+(R) and let W € Z, t > 0, Then for h =
_ ¢(Cvp)e—t(CAD)w 5
b= 0@ D) o(c v 0)etPeHCDYyy

Hence he S(TC,D).Similarly it can be shown that h € S(TD,C).
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1I. Let h € S(TC,D) + S(TD,C). Then there are w,v ¢ Z, t > 0 and X ¢ B+(R),

such that

£

h = e_tcx(D)w +e Dx(C)v .

Hence h can be written as

e—t(va)X D)Eet(CvD)e—tC

h = (€ A 1 A D)x@w +

D) D=L e\ Dyx(C)VT .

+
Since C v D < C,D and C A D = C,D, this yields h ¢ S(TCAD’C v D).

In order to prove the other inclusion, assume that g € S(TCAD’C v D).

Then there are We Z,t > 0and g € B+(]R) such, that

= e—t(CvD)w(C A Dyw =

= e Porho + o) (1 - Pw € ST,D) + S(T),0.

I11.Let Q € T(SC,D) n T(SD,C) and let t > 0, Then there exists s > 0 such,

that esce_tDQ € Z and esDc—tC

Hence Pesce_tDPQ € Z and (I - P)eSDe

es(CAD)e-t(CvD)

Q= Z.

=1L . ; :
(I - P)Q € Z which implies -
(o

On the other hand, let R € T(SCAD’C v D), and let t > 0. Then take

s(CAD)e—t(CVD)

s > 0 such, that e R € Z. This yields

e « PP Lo 4 (1 - PP (1 - MR
N [Pe(s+t)ve~(s+:)cp s (1 - P)]I:es(CAD)e—t(CVD)]R 5

So R can be seen as an element of T(SD,C), and similarly as an ele-

ment of T(SC,D)-
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IV, Let Q ¢ T(SC,D) + T(SD,C). Then there are Qle T(SC,D) and QZ € T(SD,C)
such that Q = Q *Q with the sum understood in TC+D' Let t > 0.

Then there is s > 0 such that

esce_th1 € Z and eSDe_CCQ2 € Z .

Hence e

s (C\ﬂ?)e-t(cf‘l))Q -

tD

(t+s)De—(t+s)CP + (I-—P))esce_ Ql +

= (Pe

(t+s)Ce—(t+s)D(I _ P))esDe—tC

+(P+(I—P)e er

so that Q ¢ T(S CAD.

cvDp?

Finally, let R € T(S C A D) and let t > 0. Then there is s > 0 with

cvD?

oS (CvD) ot (C/\D)R < z.

PR + (I - P)R and esve_tcPR =

Hence R

C -tD

= Pes(cvv)e_t(CAD)R ¢ Z and similarly e°"e "R ¢ Z.

Thus we have shown R ¢ T(SC,D) + T(SD’C) i [
The preceding theorems play a major role in the inclusion scheme which
we give in Section 5. The results of Theorem (4.3) will lead to a fifth

Kernel theorem 1in the following chapter.

The inclusion scheme

The spaces which are introduced in [G] and in the previous sections fit

into an inclusion scheme. Here we shall give some properties of the spaces



(5.1)

(5.2)

in this scheme. The reader may as well skip the proofs. They are added

for completeness. Let C and D denote two commuting, nonnegative, self-

adjoint operators in Z.

Lemma

~

Let C > D. Then

S(Tﬁ,C) = SE and T(S%,C) = TE'

Proof. It is clear that SE G S(Tﬁ,a) and T(Sﬁ,a) c Te.

So let f e 3(T5,E). Then there are t > 0 and ¢ ¢ B+(IO and w

that £ = e_tcw(ﬁ)w. Hence
f = e-t/zc(@(ﬁ)e-t/zcw) € SE A

because w(ﬁ)e_t/zc is a bounded operator on Z.

Similarly, TE & T(SN,E) can be proved.

Lemma

S(T5,0) = T(Sg,D) .

Proof. Let h € S(T~,E). Then h can be written as

h = e_tcw(ﬁ)w 3

wheret > 0, ¢ € B+(IU and w € Z. Hence, for all s > 0,

-sDetC q» Y

e h = ¢(5)e-s

~

With emb(h) : s~ e_svh, the proof is complete.

€

Z such



Sevp € STeapC v D) e TGpyp,C a0 = Top
i v u U
Seup € STpCv D) T(Spp0 =T
U U u I
Se € S(T5,0) c  T(Se,0) « Ty
1l u u U
Se = S$UTyps©) < TGSeCvD) < Towp
u U U I
SCAD = S(TCVD,C AD) c T(SCAD’C vD) < TCVD
n n n U}
Sp = STopsD < TEpC VD) Top
[} n n n
S, < STD c T(Sy,0 = Ty
n n n [}
Sewp € STHC VD) © T(Spp,0) =T,
n n n n
Scvp € SUTeapeC VD) = TiSeypsC A D) = Ty

Fig. (5.3) The inclusion scheme

A row in the inclusion scheme (5.3) is of the form

(5.4) SE c S(Ta,a) c T(Sa,ﬁ) c Tﬁ'

(5.5) Theorem

In (5.4) all embeddings are continuous and have dense ranges.
Proof. We proceed in three steps.
(1) Sy = S(T%,0)

Let (wn) be a null sequence in SE.Then there is t > 0 such that
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~

etcwn +~ 0 in 2. So for all s > O

~ o~ ~

tC £C ~sD

e emb(wn)(s}=e e wn-rO

in X. This proves that the embedding emb : Sfécr S(Tﬁ,ﬁ) is continuous.
To show that 3'5 is dense in s<‘r5,ﬁ), let H ¢ T(Sﬁ,a’) with<f HP= 0

for all f ¢ SE'
dense in S(Tﬁ,'é).

Then <f,H> = 0 for all f ¢ S'é'. So H = 0, and SE’ is

(ii)S(Tg,C) < T(SE,D) .

(iii) T(S«é,'ﬁ) e Tx .

First we remind that in Lemma (5.2) we showed how S(Tﬁ,'é) can be em~
bedded in T(S’é‘,ﬁ). The embedding is continuous. To show this, let

s >0 and ¢ ¢ B+(]R). Then the seminorm

o> o @ e SPhll
is continuous on S(T‘ﬁ,E) . )
Now let g ¢ S(T~,§), the dual of T(Sx,0). Then ¢ can be written as

g = ¢ (C)u where u ¢ Sﬁ and ¢ ¢ B+(R) . Suppose

<g,i»=0 , h ¢ 8{Tx,0).

Then fqr all £ ¢ SE and all X ¢ B+(]R)

@®f , xDuw =0 .

Hence u = 0, and S(Tﬁ,ﬁ) is dense in TCSE,ﬁ).
v
The continuity of the embedding follows from the continuity of the
seminorms
t o~ JJH(EYN , & > 0,

on T(Str,ﬁ) .



{5.6)

5.7

(5.8)
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Further, let f ¢ 35 and suppose <f,H> = 0 for all H ¢ T(Sx,0).

Then (f,h) = 0 for all h ¢ 35. So £ = 0.

Consider the inclusion subscheme of (5.3).

Sean <S¢ < Sevp -

Then similar to Theorem (5.5) we show

Theorem

In (5.6) all embeddings are continuous and have dense ranges.
Proof. We proceed in two steps.
(i) Let (fn) be a null sequence in'SCAD’ Then there is t > 0 such that

HetcCAD)an -+ 0. Hence

ne® €CmECAD) ot (CDg 5 o,

fn“ s lle
Further, let G ¢ TC and suppose for all f ¢ SCAQ’

<£,G6> = 0 .

So for all x ¢ Z and t > O, {x,e—t(cAD)

G) = 0, This implies G = 0,
and hence SCAD is dense in Sc.
(ii) SC c SCV@ s

Follows from (i) because C = (C v D) A C .

Corollary

In the inclusion scheme

Tewo = Te “Teap

‘all embeddings are continuous and have dense ranges.
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frooﬁf Follows from Theorem {5.7) by duality.

Finally we consider the inclusion subscheme.

(5.9

T CvD < T'(sc,c VD) TS0

SCAD’

We prove

(5.10) Theorem

In (5.9) all embeddings are continuous and have dense ranges.

Proof. We proceed in two steps.

&8

(ii)

Since the seminorms

-t (CvD)

F > llg(Ce Fll, t>0,¢cB (R

are continuous in T(SCAD,C v 0), the embedding of T(SCAQ’C v P) in
T(SC,C v U) is continuous. Further, SCAQ S T(SCAD’C v D) is dense
in SC, and SC is denge in T(SC,C v 7). So T(SCAD,C v D) is dense in
T(SC,C v D). (See Lemma (1.16))}.

The seminorms

D

c>le@e el , t>0,0cB (R ,

are continuous in T(SC,C v D). So the embedding from T(SC,C v D) in-
to T(SC,U) is continuous. Further we note that SC is dense both in
T(SC,C v I} and in T(SC,U) by Theorem (2.15). Hence T(SC,C v D) is

dense in T(SC,D)‘



(3.11) Corollary

In the inclusion scheme
S(TCAD’C v o S(TC,C vD) o S(TC,D)

all embeddings are continuous and have dense ranges.

Finally, the main result of this section will be given.

(5.12) Theorem

In (5.3) all embeddings are continucus and have dense ranges.
Proof. Follows from Theorem (5.5), (5.7) and (5.10), and from Corollary

(5.8) and (5.11).
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ITI. ON CONTINUOUS LINEAR MAPPINGS BETWEEN ANALYTICITY AND TRAJECTORY SPACES

Introduction

Here X and Y will denote Hilbert spaces, and A will be a nonnegative self-
adjoint operator in X and B a nonnegative self-adjoint operator in Y. In
[G], the fourth chapter contains a detailed discussion of the four types

of continuous linear mappings:

-+ S S

S v,8> “x,A ”

XA TY,B’ TX,A > SY,B’ TX,A > TY,B' Cf. Ch. I, Section 4.

In order to prove a Kernel theorem for each of these types, in addition

to the topological tensor products SXQY,NBB and TKQY,NEB’ the spaces

ZA and Zé have been introduced. ZA and Zé are topological tensor products

of T and SY and of SX A and TY 3"

X,A ,B s s

In order to gain a deeper understanding of the topological structure of

these spaces ZA and Zé, we have introduced the more general type of spaces

T(S

7 C,D) and S(TZ C,D), where C and D are commuting nonnegative self-
b ] 3

adjoint operators in the Hilbert space Z. The following relations have

been mentioned:

I = T(SXQY’I@B,AQH) s Iy = S(TXQY,IQB,AQH) s

1

3 = S(T

I, =T(S IeB) , = XQN,A@H’IQB)

XN, AQT B

So obviously results in Ch. II apply to the spaces ZA, Eé, ZA and ZB.
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Thus, the intersection of EA and zé is a space of type T(SZ C,D). This
Hd
observation leads to a Kernel theorem for so~called extendable mappings.

Cf. Ch. I, Section 4.

Precise formulations of the above-mentioned five Kermel theorems can be
found in Section 1, In the remaining sections we consider the case X = Y

and A = B, Hence, we investigate the spaces

a1 ABT) and T, = T(S QA).

Xox, T xex, Ael*

In Section 2 we shall prove that TA and TA admit an algebraic structure
and that they are homeomorpﬁic. The homeomorphism is denoted by c. The
e, . '

1 h h £ th $, = S(T. , J@A

mapping ~ is also a homeomorphism r:: e space S ( X8, ARl )
= . 0%) = i

onte SA S(Tigx,ISA’A 1). Put EA : n TA' Then EA is an algebra and
it inherits several properties of the algebras TA and TA’ The mabping ¢

is an involution on E£,. The strong dual EA equals the algebraic sum

SA + SA‘ We shall extend ¢ to EA in a natural way.

In the sequel we shall confine our attention to nuclear analyticity
spacesSX)A.Ihen, because of the Kernel theorems the space TA(TA) comprises
all continuous linear mappings from SX,A(TX,A} into itself. Inspired by
operator theory for Hilbert spaces, we introduce the topology of point—
wise and weak pointwise convergence in TA(TA).These topologies correspond
to the strong and weak operator topology for Von Neumann algebras, while
the weak and strong topology of TA(TA} correspond to the ultra-weak and

uniform operator topology.

In Sections 3 and 4 we study the relations between the algebraic and the
topological structure of TA and TA' It appears that separate multiplica-

tion is continuous in all mentioned topologies. The effects of the results



of the previous sectioas on the algebra EA and its strong dual EA are

investigated in Section 5.

In Section 6 we indicate possibilities to interprete parts of quantum
statistics by means of the mathematical apparatus developed for the spa-
ces EA and E}. Theyseem to be more appropriate than any operator algebra
on a Hilbert space, because in general E4 contains unbounded, self-
adjoint operators. However, we emphasize that we consider it as an Ansatz

only. We are not fully aware of all consequences of such redescription,

If the Kernel theoremholds true, each continuous linear mapping from SX,A
into itself has a well-defined infinite matrix. Section 7 of this paper
is devoted to athorough description of this kind of matrices, There are
manageable, necessary and sufficient conditions on the entries of an in-
finite matrix, such, that its corresponding linear mapping is continuous
on SX,A' The thus obtained identification between TA and a class M(TA)
of well-specified infinite matrices enables us to construct a large
variety of elements in TA. Particularly, we note here that the matrix
calculus will be of great importance in a forthcoming paper on one~para-
meter {(semi-)groups of elements of TA. In Section 8 we treat a subclass
of M(TA), the class of unbounded weighted shifts, Weighted shifts are the

simplest, non-trivial operators in TA.

In the final section our matrix calculus yields the constructicn of nu-
clear analyticity spaces on which a prescribed set of linear operators

act continuously.
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Kernel theorems ‘

|

In this section we shall recall the four Kernel theorems introduced in

[G], ch.VI, and we shall add one to them.

The Hilbert épace X®Y of all Hilbert~Schmidt operators from X into ¥
can be regarded as a topological temsor product of ¥ and Y. Let A and B
denote nonnegative self-adjoint operators in X and Y. Let w ¢ D(A), Then

for all v € Y, we define
AST (wv) = (Awdv .

With the aid of linear extension, the operator A®I is well-defined on the
algebraic tensor product D(li)@aY. it can be proved that A®I with domain
D(A}QaY is nonnegative and essentially self-adjoint. Cf.[W],[G]. Similar-
ly I€B with domain X@aD(B) is nonnegative and essentially self-adjoint’

in X®Y. Further, the operators A®] and ¥88 commute, i.e., their spectral

projections commute. °So the operator ABB = A®T + I€B with domain

f
W e x| | (a‘«wza((EA@Fu)w,w) < w}
Rg
i 1f-adjoint and ive. Conse tly the es S and
is self-adjoint and nonnegative. Consequently spac XOY ,ARB
T ~defined. ~1 e s _ . .
o AEB 3re well-defined. In [G] it Ls‘prove‘ad that SX®Y,AEEB is a topologi
cal tensor product of SX,A and SY,B’ and TK@Y,AEBB a topological tensor pro-

~t (AEB) _ e-tA @ e-tB

2 0.
duct of TX A and TY g We note that e , t20

£ k4
Case {a). Continuous linear mappings from T. inte 8. .
———— X,A Y,B
An element 8 ¢ SX@Y,AES induces a linear mapping TX,A - SY,B in the fol~

lowing way. Let F ¢ TX . Then 8F is defined by

SA



(a) or = e B(eBae)r (o)

where £ > 0 has to be taken sufficiently small.

(1.1) Theorem

I. For each 8 ¢ SXGX,AEB’ the linear operator 8: TX A %-SY,B as defined

s

by (a) is continuous.

II. For 8 ¢ SX@N,AEB’ F e TX,A and G ¢ TY,B’

<8F,G>Y = <8’F€C>X8H .

-tA - . .
III. If for each t > 0 at least ome of the operators e t , € tB is Hil-

bert-Schmidt, then SX@N,AEB comprises all continuous linear mappings
f T i

rom X,A into SY,B'
Iv. SX@R,NEA comprises all continuous linear mappings from TX,A into

SX A iff for each t > 0 the operator e_tA is Hilbert-Schmidt.
’

Proof. Cf.[G], Theorem 6.1, 0

Case (b). Continuous linear mappings from S into T .
X,A Y,B

Let ¢ ¢ T

XOY , ABB" For f ¢ SX,A we define of « TY,B by

() (@£) (e) = e—(t_€)3¢(e)é:Af , t >0,

where ¢ > 0 has to be taken sufficiently small.

(1.2) Theorem

. th i i : defi
I. For each ¢ ¢ TX@X,AEB e linear mapping ¢ SX,A > T&,B efined by

(b) is continuous.
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II. For each ¢ ¢ TX@Y,AEEB’ £ e SX,A and g ¢ S‘Z,B X

<g, 0>y = <£@g, 0> 0. |

III. If for each t > 0 at least one of the operators e_tA, e-tg is H.S.

then TXG)Y, Aup Comprises all continuous minear mappings froug SX, 4 inm
to TY,B'

Iv. TX@(,AEEA comprises all continuous linear mappings from SX,A inteo

TX A iff for each t > 0 the operator e—tA is H.S.

Proof. Cf£.[G], Theorem 6.2, i

In [G], Ch.V, the spaces Z:& and ):}'3 are introduced as follows.

Ta = ¢ Ty, st | Yesg ) € Sygy agg? s

gh = (K« Tx&*,z% | ¥ypgiK(E) € Syey, B *

It is not hard to prove that I} equals the space T A®I) and I}
v op A &qua p 6}4@3{,1@8’ ) B
the space T(SX&)Y,A@I’I@B) both set theoretically and topologically. Cf.

Ch.1I, Section 2; [G], Ch.V,

Let F ¢ TX aand g e S, p+ Then F®g is defined as the trajectory
, Y,B
F@g: t » F{(t)®g.

Since F(t}@(eegg} € X8 for ¢ > 0 sufficiently small and all t > 0, the
trajectory F®g is an element of T{SXW,I%’A®I)' So the algebraic temsor

product of and S, 3 is contaiped in T(8 QB’A®I)' De Graaf proves
*

Tx,A XS, T
that T(’SX@I,I@JB’A@) is a complete topological temsor product of TX, A and

S « Moreover, for F ¢ TX and g € S the tensor product F®g is an

Y,B A Y,8
element of S(TX@Y,A@JI’I@B)’ because there exists € > 0 fixed such that



__ &B n eB
(I€e ) (FoOR) = FO (e g) ¢ Tygy sop -

So the algebraic tensor product TX,A@aSY,B is also contained in

S(T..

S&Y A@I’IQB)' By similar arguments it follows that the space
>

T8 I®B) is a complete topological temsor product of the spaces

Xy ,ART
g . . . . .
X,A and TY,B The algebraic tensor product SX,AQETY,S is contained in

ST

Y& I@B,A@ﬂ). We note that S(T.

xRy ,A®l?
ARI) is included in T(8

I®B) is included in

TS A®1), and that S(T 1eB) ,

oy, 1e8’ XY ,AQT’

Cf. Ch.II, Section 5.

XY, 168°

Case ¢, Continuous linear mappings from S into S, ,.
_— X,A Y,B

Let P e T(S A®T). Then for f ¢ SX 4 Ve define Pf by
*

X907, 198

(¢) P(f) = P(e}eEAf,

where ¢ > 0 has to be taken sufficiently small. We note that (c) dees not

depend on the choice of ¢ > 0. Since P(g) ¢ SXQK,IQB we have Pf ¢ SY,B'

(1.3) Theorem

I. ForeachP ¢ T(S A®l) the linear operator P: SX AT S

X, 168° , Y,

by (¢) is continuous.

B defined

II. For each P ¢ T(8 ARD), f ¢ SX,A and G € TY

Xex, 188’ ,B

PEG, = EOCP> o .

III. If for each t > 0 at least one of the operators e_tA, eth is H.S.

then T(Sx@w,IQB’qu) comprises all continuous linear mappings from

SX,A into SY,B'
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Iv. T(SX®Y,I®A’A®I} comprises all continuous linear mappings from SX,A
inte itself iff for each t > O the opérator eqt* is H.S,
Proof. C£.LG], Theorem 6.3. . . L R

Case (d). ‘Continuous 1ine‘a‘r'fmapping’s from T A‘ irto T B‘
’

Let K € T(S,,

mwmm’ by

1€8), For F ¢ T A’ “define KF ¢ TY B

@ ;wngexum?WQL

" This. definition makes sense for all t >.0 and for each & > 0 s;nf;ﬁiéi"e’ntly

small. We have (KF)(t} « SY,B’ because K ¢ Tx@‘l,'I@B'

{1.4) Theorem. 7 ;
1. For each K ¢ T(3X®Y,A®I’I®8)’ the linear @pplng Ks TX,A > TY,B
defined in (d), is continuous. ’

IX. For each K € T(SM’AQI,IQ’B), F ¢ TX,A’ g € SY,B

<gaKF>Y =<F® g,K%.

III. 1If for each t > O at least one of the operators e“tA, e-tB is H.S.,
then T(SXQY A@I’I%) comprises all continuous linear mappings from

TX,A into TY B

V. T(S I,I@A) comprises all continuous linear mappings from T A
b2

XX, AQ
into itself iff the operator e ~tA is Hilbert-Schmidt for all t > 0.

Proof. C£.[G]l, Theorem 6.4.

(1.5) Definition
A continuous linear mapping E from SX A into SY B is called extendable,
- ? 3

if E can be extended to a continuous linear mapping from TX A into TY B
s ¥
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In [G], necessary and sufficient conditions are given in order that a
linear mapping on SX A is extendable, cf. Ch.I, Section 4.

3
InCh. II for a pair of commuting, nonnegative, self-adjoint operators we

have defined the operator C A U by
!
CAD= JJ max(;\,u)dGAHu,
2
and the operator C v U by

CvD= J( min(l,p)deHv.
Rr2

where (G and (H )

A) AeR Wper 3 the spectral resclutions of C ;nd D.

Moreover, we have shown that

T(S D n TS

Sy,00 =76

cCvD).

Z, D’ Z,0AD?

Applying this result to the spaces T(SX@Y I%,A@I) and T(SX@{ A&{,I@B),

we find that their intersection equals the space T(SX@Y A@B’AQB) with
3

ABB = (A®I) ~ (I®B) and AUB = (A®T) v (I€B).

(1.6) Definition

The canonical mapping emb: Sy ;& + T(8

X@Y,A@B’A@B) is def:gned by

emb(f@g) 1 £ e_t(A@B)(f®g)

It is obvious that emb(f®g) ¢ T(8 A@B) .

XY ,AgB’

The ‘space T8 AgB) is a complete topological tensor product of the

XY, A0B’

s‘;paces N and S . By this we mean

X,A ¥,B
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* {1.7) Theorem
I. T(SXQ’E,A@B’A@B) ig complete. |
II. The mapping ® : SX,A x SY,B > T(SX@Y,W,A@B) ?.s continuous.’

11T, SX,AQaSY,B is dense in T(SX@,A@’A@B)'

Proof.
I. All spaces of this kind are complete. Cf. Ch.II, Section 2.
II. It is sufficient to check contimuity at [0;0]. Let ¢ € B _(R), and

let t > 0, Then

“MMEk_a“w%ngH%Ws

sanﬂ@gg+uﬂw¢wm%<;,

as soon as N¢(AYEll and [[$(B)gll are small enough. C£.[G], Ch.I.

III. Following [G], Ch.V, the space SX,AQaSY,S is demse in SX@Y,AE'
FromCh. II, Section 5, it follows that sX@Y,M is dense in
T Gyex, Aas>AT) -

The strong dual space of T(S A€B) is equal to the space

X9 ,AnB’

3 X8Y, A@B’AQB) » where

S<TX®Y,A®B’A@B) = SCTX®Y,A®I’I®B) *+ S(TX@Y,I@S’A@D .

Hence, forallfesxA,geSYBandallFeTxA,GeTYB
’ £ 3 >

f®C + F®g ¢ S(TX®Y A@B’A@B) .

Case (e). Extendable linear mappings from S into 8, o
X,A Y,B

Let E ¢ T(S

X@Y,A@B’A@B)' Then for f ¢ SX,A we define Ef by




(e f = oFAB) [ ey (n(ey) Tt ,

where € > 0 has to be taken sufficiently small. Definition (el) does not

T (AER) (e~

depend on the choice of . Further Ef ¢ SY B because e T"‘63*1) is
*

a bounded operator on X&Y, and because E(1) ¢ S « 3

XY ,AGB
T . 4 » ol
Let T ¢ X,A We define the extension E on TX,A by

XX, 168’

(e,) - ER(t) = FA) (10" B) B e . £ 0.

where each ¢ > 0 has to be chosen sufficiently small. We have IF ¢ TY g

. k4
tACB -tB, .

because the operator e (I®e ) is bounded on X&Y for all t » 0, and

because E(t) € Sx&r,A@B o SX@Y,A@I'

Remark: If E ¢ T(SX@,K&’A@B) then E can be embedded in T(8 Agl)

Xy, IeB’

as follows

et(AVB)(e'tA

embl(E)Hi"> ) E(t)) ,

and in T(8 I&B) as

XY ,ART?
enb, @) s t v ¢t 4B 107 By ()

Cf. Ch.II, Section 4,

The proof of the next theorem will be omitted; it is an immediate corol-

lary of Theorem (1.3) and (1.4).

(1.8) Theorem

I. By (el) and (9'2)’ each element of T(SXGZ’Y,A@B’A@B) provides a qontlnu-

ous and extendable linear mapping from S into S, ,»
X,A Y,B



1I. For each E ¢ T(SXQY,A@B’AQB)’ f e SX,A’ g e SY,B’ F e TX,A and

GETY

»B’
<f QG + FOg,E>= <Ef,G> + <g,EF> .

IIT. If for each t > 0 at least one of the operators e*tA or e—tB is

Hilbert~Schmidt, then T(SXQN,AGB’AQB} comprises all extendable linear
_mappings from SX,A into SY,B'
1v. T(SXSK,A@A’A&A) comprises all extendable linear mappings iff the

‘operator e_tA is Hilbert Schmidt for all t > 0.

By Theorem {1.8) we have given the space of extendable linear mappings

the structure of a space of type T(8 Py, if at least one of the spaces

z,C?
SX,A and SY,B is nuclear.

The algebras TA, TA and EA

The space TA= T(S}@X

from Sx A into itself if and only if the operator e'tA is Hilbert—Schmidt
’

I@A,A@ﬂ) comprises all continuous linear mappings
3

for all t > 0. So in this case TA admits an algebraic structure. If the

space SX A is not nuclear, then it is less natural that TA is an algebra.
s

Yet it is true. To show this, let PPy e TA. Then by the previous section

for each £ ¢ Sx A by definition,
Ty
- 1 TgA,
2, (B,0) = P (16 p, (1,)e™%)

where TyaTy > 0 have to be taken sufficiently small. Thus to the product

P.P

122 there corresponds the trajectory (Ple) in TA

(PPt > PI(T)eTAPz(t)
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where for each t > 0 we have to take T > 0 so small that eTAPZ(t) e X8K.

With the above-derived multiplication (P),Pz) + (P‘Pz), TA is an algebra.

Similarly, there exists a multiplication operation on TA = T(8 I®A),

XK ,ART *
(Kl’KZ) > (Kle), where

(Kle): [ Kl (t}eTAKz(T) .

(2.1) Definition

The linear mapping ¢ on TX@X A is defined by
b4

c *
. T .
Bt o> 0(t) , b € XEX , A

Remark: &% is called the adjoint of o.

(2.2) Lemma
R - . ‘. . . ce
The mapping =~ is a strongly continuous bijection on TX@(,AE& with ¢ = &,
Proof. The lemma is a natural consequence of the definition of (:, and of

the strong topology in TX@{,AEW : 0

. .C .
Since 7A,TA can be seen as subspaces of TX@X,AE%’ the mapping =~ is well~
defined on TA and TA‘ It is not difficult to see that for P ¢ TA its
adjoint PC is given by PS: ¢t P(t)*. Here we note that tw»P(t) is a

trajectory in TA.

"(2.3) Lemma
The mapping ~ is a bijection from onto TA.

Proof. Let t > §, and let P ¢ TA. Then there is 7 > 0 such that

e™oe) ¢ xex
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or, equivalently,
P(t) ¢ p(loe™) .

So its adjoint P(t)” is in D(eTA&)I), which yields P® ¢ Ty !

€ is a bijection. 0

Similarly for K ¢ TA we derive K% ¢ TA Hence
Theorem

.. ¢ TA . .
The mapping : +Tpis a homeomorphism.
Proof. It is clear that © is a bijection satisfying (PIPZ)C = P;P? .
Further, each seminorm on TA transforms into a seminorm on TA by the

mapping €. In particular, for all P ¢ TA,
T4 A)YP(L) “X@( = (I ®¢(A))P.(t)llxm= i!(¢(4)®1)9(t)*llx®§(’

where ¢ ¢ B+(]R) and t > 0. Thus the result is established. Cf. Ch. II,

Section 2. 0

Corollary
: ¢ TA . .
The mapping ¢ TA > is a homeomorphism.
The definitions (a) -~ (d) of the preceding section, which indicate how
the elements of each of the four temsor products induce continuous linear

mappings, lead to the following’

Lemma

Let f,g SSX,A , and let . F,G € TX,A‘ Then



T ¢,
<f,dg> = <g, 67 f> |, ¢« TXQK,AEA R

<pf,G> = <f,PCG> , P e T,

<g,KP> = <k“g, P>, KeT,,

— G
<gF,G> = <87°G,F> , 8 ¢ SX@X,AEK s

We note that P® is the representant in TA of P' and K° the representant

in TA of K', where P' and K' denote the dual mappings of P and X.

Following Ch, II, Section 2, each element H ¢ T(Sz C,O) can be written as
4 .

H= o(C,0Hw, where w ¢ 2 and 0 « F+(R?), i.e. a function from’Rz into

K satisfying

: sup {8(A,u)e_tkesu) < w,
A20,u20

Vs>0 Eit>0
Applying this result to TA we can write for P ¢ TA

P = 5(IQA,ART) (W) ,
for a well-chosen W ¢« XX and 6 ¢ F+(R?}. Then it is obvious that

peey = (oo "o (e, 104) W) .

Hence P = G(A@H,IQK)(Q*). Similarly for K ¢ T,, K = x(A®I,I1@4) (V), where

Ve XK and x ¢ F+(R2),
% = (@A, ARD) (V).

The strong dual spaces SA of TA and SA of TA are given by



SA = §( I&A)

Tyox, Aer’
and

stesa

xex, Aop T

As already observed by De Graaf, we have SA < TA and SA < TA'
The mapping ® is a continuous bijection from SA onto SA, and even a

homeomorphism SA - SA because of the equalities
OAST, T€A) (8) llyc, = Il O(TEA,AST) (6°) llygy s

for all 9 ¢ F+(E€) and for all 8 ¢ SA' Cf. Ch. II, Section I;

The elements SA and SA are characterized as follows.

tA

A _
¥YeS @ a¢§B+(]R) at>0 B xex ¥ ¢(A)@e

P e SA o3 e-tAVo(A) .

veB, (R) >0 Wexex * ¢

#

Thus, it easily follows that

i

v© = AR o Sy

¢ Q(A)V*e-tA € SA

<
1

The weak topology for TA is the coarsest topology in which all linear
functionals on TA obtained by pairing with elements of SA are continuous

Hence, the weak topology is generated by the seminorms

5,(P) = [€e,p3 , Pe A
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where ¢ ¢ SA. Similarly the weak topology for TA is generated by
r\i,(l() = |<€¥,K>»] , K¢ TA’
where ¥ ¢ SA’ The following lemma shows that ¢ is weakly continuous.
(Q.Y)L_en_mai
Let P ¢ TA and let ¢ « SA. Then
G Pr=<€" 2%,

Proof. There are W,V ¢ XX, and 8 ¢ F+(}R2) , b€ B+(3R) and t » 0 such
that P = (IeA,AQT) (W) and ¢ = ¢{A)Ve_tA. So employing spectral integrals

with respect to the spectral resolution (Ekﬁu) 2 of I®I, we may

(LWeR

write

<€, PP= sz @(A,u}e"t:\cs»(u)d(EuVE)\,w)X@x .
R

. _ * .
Since (EuVEA’w)X@( = (E}\U Eu,w‘:)xgx, we derive

It

f -
<P, P> = J;{ ou,A)e t}‘&b(u)diERV*Eu,W*)
2
R

#

- JJ o0, we M IE VTE W)
2
—<e YL A), oAl Toh) W) > =

=<3, p%» i
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Theorem

I. The mapping ¢, TA - TA resp. TA -+ ’IA is weakly continuous .

{

II. The mapping € SA - SA resp. SA > SA is weakly continuous. ,
i |

The algebra EA is defined as EA = YA n TA; it consists of extendable

linear mappings from .SX A into itself. In Section 1 we have shown that
3

EA ET(SX@K,AM’A@U .
Naturally, the strong topology of EA is generated by the seminorms

5,0®) = lehae AN @y e E,

where ¢ > 0 and ¢ ¢ B+(R) . The seminorms s¢ ¢ are equivalent to the semi-
: 3
norms ucl:,t and vq)’t,
~-tA
u(l»,t:(E) = ¢(A)Ee , E € EA’
vq),t(E) = e-tAE(i;(A) , Ee EA‘

So the embeddings EA < TA and EA [~ TA are continuous if the spaces carry
their strong topology.

The dual space E] of E, is expressed by the algebraic sum
P A O FA

EA=SA+SA (+3.nT Aly\)'

Hence, the weak topology of E n is equivalent to the topology induced by
the weak topologies of TA and T&. Put differently, the embeddlngs EA -3 TA
and EA C.TA are continuous if the spaces carry their weak topology.

The mapping € is a continuous bijection from EA onto itself. Since




e T ing © s we s ' .
tA XEX , AEA the mapping is well defined on EA' We should like to

write

[ <

@+ 9% =064+, 2¢ SA, ¥ S,.

. o i . A
However, the choice of ¢ and ¢ is not unique, because SA nS = SX@K,AEﬁ'
In order to show the independence of the specific choice of ¢ and ¥ in

the wanted equality, suppose

where ¢ @2 € SA and ¥

A e
¢ - %, € S$a SA = SX@K,A&A' This implies

,?2 & SA' Then ¢, - &, = ¥, ~ ¥, . Hence

| i 1 2 2

< [l
27 ¥ € Syex,Apte

which yields

DRI S

by r ¥y =0 v Yy

The above-mentioned result leads to the following theorem

(2.9) Theorem
I. The mapping ¢ is a strongly and weakly continuous linear bijection

from EA onto itself. It satisfies

ce _ c _ _c.c
E=E, (BjE)) = EsE; , EpEpE ¢ Ey-
Hence, € is an involution on EA'

II. The mapping € is a strongly and weakly continuous bijection from EA

onto itself with 8° = 8, 8 ¢ E} -
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III. Let B ¢ E,. Then E = O(AGA,ACA) (W) for © « F;(ngz) and W ¢ XK. We

have ES = 0(AGA,AQA) (W").

IV. For E ¢ EA and 8 ¢ EA

<8,E>= <0%,E> .

If the Kernel theorem holds true, the algebra TA comprises all continuous
1ineér mappings from SX,A into itself. So TA can be identified with the
algebra of all continuous linear mappings from SX,A into itself.

As a space.of linear mappings, TA obtains some natural topologies from
its domain space SX,A’ such as the topology of pointwise convergence and
the topology of weak pointwise convergence. Similar constructions exist

in the algebras TA and EA'

In the following chapters we shall deepen the topological structure of

the algebras TA, TA and EA' We shall investigate their affiliation with

the respective algebraic structures.

The topological structure of the algebra TA.

In the remaining part of this paper we assume that the space SX,A is nu-
clear. Equivalently, we assume that TA comprises. all continuous linear
mappings from SX,A into itself. Then, besides its weak and its strong
topology denoted by t, and Ty in the sequel, we introduce the topologies

Tp and Twp for TA.

Definition, (The topology of pointwise convergence)

The topology T is the locally convex topology for TA induced by the semi~

norms uf’¢,
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A
uf’¢ = IeCA)PENl , P e T,

where f ¢ SX,A and ¢ € B+(mj.
The net (Pa) in TA is 1p-convergent if and only if the net (Paf) in SX,A

is strongly convergent for all f ¢ SX A’ The topology TP is the coarsest
>

topology for which the linear mappings *‘SX A
»
P»Pf,PeTA,

are strongly continuous for all £ ¢ SX A
>
The following result is remarkable. In fact, the strong topology of TA

is not introduced as a specific operator topology. Yet, it is one,

Lemma

The topology T is equivalent to the topology of uniform convergence

on bounded subsets of SX,A’

Proof. Let (Pu) be a strongly convergent net in TA with limit P and let

B be a bounded subset of SX A* Then there is t > 0 so that the set etA(B)
»

is bounded in X. For all f ¢ B, all ¢ ¢ B, (R) and all o

1A B, = PYEN < 16 (A (B (&) = RN el .

‘On the other hand, let ¢ > 0 and let t > 0. Suppose

P f - Pf
a

strongly in SX A and uniformly on the bounded subset {eftAw[ﬂwH = 1},

Then for each ¢ ¢« B+(H0 there is Gy such that

14(A) (2, (6) = P(eDwll < /2
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for all a > @, and all w ¢ X with lwll = 1. Hence,

HQ(A)(Pa(t) - PN <e/2< €. . O

Remark: In the proof of Lemma (3.2) we employed the norm -l of the
Banach algebra B(X) instead of the Hilbert-Schmidt norm H“HXQK. However,

this is allowed because of the following relation

HBCE) I < HP(E) lygy SUP(E/DI ||e.“t/2'q‘x1}®x ,Pe ™,

Definition., (The topology of weak pointwise convergence)
The topology Twp is the locally convex topology generated by the semi-

norm u
£,6 °

uf,G(P) = |<PE,G>] , P e TA .
where f ¢ SX,A and G € TX,A'

The net (Pa) in TA converges to P ¢ TA in Twp-sense if and onmly if
<{Pa - PY£,G> »~ 0 for all f ¢ SX,A and G ¢ TX,A' The topology Twp is

the coarsest topology for which the linear mappings
Pw <pPf,G> , P ¢ TA

are all continuous. Tp is the toéology of uniform weak pointwise conver-
gence on bounded subsets of TX A The latter proposition is an immediate
»
consequence of the characerization of bounded subsets of Tx A* The above
’

introduced topologies for TA are ordered as follows
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Here < means 'coarser than'.

{ 3.5) Theorem. {Principle of uhiform bouﬁdedness)
Let B be a subset of TA. Then the following statements are equivalent
I. Bis Ts~bounded.

1I. B is tw-bounded.

III. B is Tp~bounded

v, B is Twp—bounded.
Proof. The equivalence I®II follows from Ch. II, Section 3, Further, it is
clear that I=1II=1IV,

IV=11I: Each weakly bounded set in SX,A is strongly bounded, cf. Ch. I,
Section 3. From this observation the assertion follows.

ITI=1I: For all ¢ ¢ B+(1R) , t >0 and w ¢ X, there exists o(t,¢,w) such
that the set {w(A)Pe’tAIP € B} is strongly boundéd in B(X). Hence, the
uniform boundedness for B(X) yields a(t,¢) » O with H¢(A)Pe—tAH S a(t.g).

Thus we derive

1

tA "

B¢ (AypPe” s alt/9,4) ite“t/ZAux@(, P < B.

X&K
(3.5) Lemma
Let (Ph) be a sequence in TA such that lim Pnf exists in SX,A for each
f e SX,A' Then P : £ » iiz Pnf is contiizzus, i.e., P« TA.
Proof. By Theorem (3.3) the sequence (Pn) is Ts-bounded. So for each t > O
there is @, > 0 such that HPn(t)H fa,n¢ N. It is obvious that P is
a linear mapping from SX,A into itself. Further, for all w ¢ X, jlwf = 1

and for all t > 0



(3.7

(3.8)

86.

L -tA ~tA
fre “wli < (P Pn)e wl + a, € o i

for n ¢ N sufficiently large. Hence P ¢ TA by Ch. I, Section 4. ]

Theorem

TA is sequentially Tp-complete and, similarly,sequentially rwp~comp1ete

Proof. The proof is an immediate consequence of Lemma (3.5) and the

(weak) sequential completeness of SX A ‘ : a
bl

In the remaining part of this section we investigate the relation between

‘the topological structure of TA and its algebraic structure.

First we have the following result.

‘Theorem

Joint mult1p11cat10n ‘is strongly sequentially coatinuous in TA
Proof. Let (P ) and (T ) be two converging sequences in TA with P, o+ P
and Tn +~T, Let t > 0, and let ¢ ¢ B*CR). Then there exists ¢ » 0 and

C > 0 such that

neﬁ”\?n(t) I<C,neN,

and

GEA(Tn(t) - T(eN| + 0

because the sequence (Tn(t)) converges to T(t) strongly in SXQX,IQA'

Hence the inequality

1A R T, - P S
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< H@(A)(Pn-P)(s)HﬂeEATn(tNi+I%(A)P(e)ﬂ||eEA (Tn-T)(t)U
for all n € N, yields the desired result. ]

As observed by De Graaf SA < TA, we have the following stronger result.

(3.9) Lemma

SA is a proper two—sided ideal in TA.
Proof. From the characterization of the elements of SA we obtain the
equivalence ¢ € SA @ & represents a continuous linear mapping from
SX A into e-tA(X) for some t > 0.
£
Let PI,P2 € TA and let ¢ ¢ SA' Then ¢ maps SX A into some e-aA(X) and
3
further P] maps e-aA(X) into e-BA(X) for some B > 0 (cf. Ch. 1, Section 4).
. ~BA :
So PIQP2 maps SX,A into e (X) continuously, and Eence P]@Pz € SA'
Since 1 ¢ SA’ the ideal SA is proper. 8]

(3.10) Corollary
sA is a proper, two-sided ideal in TA'
Proof. Follows directly from the properties of the adjoint mapping C‘

and Lemma {(3.9).

{3.11) Corollary

Let ¢ ¢ SA and P ¢ TA. Then

<¢,p>= <P s, I> =<0 P,I>

and
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<3,P>»=<8°,p%> = <pp®, 1> = <¢p%,1>.

(Note that <9p%,I»= trace (sP%)).

Proof. The proof is an application of Lemma (2.2} and Corollary (3.9). {1

Definition
The algebra I with topology 1 is called locally convex, if
- (Z,1) is a locally convex, topolocical vector space,

~ Separate multiplication is continuous in (Z,1).

Theorem

The algebra TA is locally convex if it carries any of the topologies
Tys Tye rp and Twp.

Proof. We shall only prove the continuity of separate multiplication.

I. (TA,TS)-

et P =« TA be fixed. Then for all T ¢ TA
14CA) (TR (£) lygge < I6CAIT(E) fyggglie™ (D))

for € » 0 gsufficiently small. Hence T » TP is continuous. To show
the continuity of P -~ TP, let T ¢ TA be fixed, and let ¢ > 0. Fur-
ther, let t > 0 and let ¢ € B,(R) . Then there is an open null-

neighbourhood @ in SX such, that

A

1$(AITEY < €/2

as soon as f ¢ . The existence of  follows from the continuity of T.

Let (Pa> be a net ﬁaTAthat converges strongly to P. Then there




exinls “y such that for aill § - 1c-t wiwl ~ 1 wniformly
P ~-pP ¢ &
(¢, PE ¢ %

if ¢ » a,. So o, does not depend on the choice of £, (Lemma (3.2)).

! 1

Hence, if o > oy, then
flq»(A)T(Pq-P)fII < e/2

for all £ ¢ SX A with ﬂetAf I« 1. The latter observation leads
b

to the result
Te(AT (R, -P) () I 5 £/2 < €

if a > a- This finishes the proof.

TI. (TA,’{W) .

Let PI’PZ € TA Then for each & ¢ SA

e nCapt
QQ,P’TP2>»€P1¢P2,T>
and hence
<€
T | Q,PITPZ?’I

is a weakly continucus seminorm on TA .

I1X. (’A,Tp).

Let Taf + Tf for all £ ¢ SX,A'

Then TaPZf > Tsz and hence by continuity of Pl’ P]Tusz > P]Tsz.
This completes the proof.
A
w. (T ’Twp)’

The seminorm

T+ [<T(P,E), PG>
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is 1 -continuous for each f ¢ SX,A and each G ¢ TX,A‘ o

The topological structure of the algebra TA

As we have already assumed in Sectiom 3, TA comprises all continuous
linear mappings from TX A into itself. The strong topology and the
2

weak topology of TA will be denoted respectively by Yy and G- In cor-
respondence with the topologies T and\Twp of TA we first introduce
the topologies o_ and o _ .

> topolog p ¢ %p
Definition (The topology of pointwise convergence)
The topelogy cp is the locally convex topology of~TA induced by the

seminorms v.
'F,t

VF,C(R) f NEFY) , R e TA

°

where F ¢ TX,A and £ > O.

The net (Ra) in TA converges to R ¢ TA in cp—sense if and only if
RaF -+ RF strongly for all F ¢ TX A The topology OP is the coarsest
topology for which the linear mappings TA - TX A

’

Re»RF , ReT, ,

are all continuous,

Lenma
The topology Sy is equivalent to the topology of uniform convergence

on bognded subsets of TX,A’



Proof. Let CRG) be a strongly convergent net in TA with limit R. Let
B be a strongly bounded subset of TX A+ Then there exists ¢ ¢ B _(R)
1’
and a bounded subset ¥ of X such that B = ¢(A)(¥) (CEf. Ch.I1I, Section 2).

Hence for all w ¢ W
He’tA(Rq;‘ By (Al < H(Ra(t) - R(ED QA Hwl .

On the other hand, lete> 0 and let ¢ ¢ B+(1R). Suppose RaF - RF
strongly in Tk 4 and uniformly for F {¢(Aywlliwll < 1}, Then for each
*

t > O there is ay such that
I ® (1) - Rt (Aywl < g/2

for all ¢ 2 ¢, and all W ¢ X with @ < 1. Hence

1

HE (1) - R(EN$AIN £ €/2 < e . i

(Remember the remark after Lemma (3.2).)

(4.3) Definition (The topology of weak pointwise convergence).

The topology Twp is the locally convex topology induced by the semi-

norms

vG,f(R) = [<f,RG>] , R ¢ TA R

where £ ¢ Sx A and G ¢ TX,A'

3

The net (RQ) converges to R in (TA,TWP) if and only if <f,(ﬁa-R)G>-+0

for all £ ¢ § and G ¢ T, ,. The topology t__ is the coarsest topo~
X,A wp :

XA
logy for which the linear mappings TA > €

Bvr <E,RG> , ReT, ,
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are all continuous. The topology % is the topology of uniform, weak

pointwise convergence on bounded subgets of SX A
»

The above introduced topologies are Qrdered as follows

Theorem (Principle of uniform boundedness).
Let’B be a subset of TA. Then the following statements are equivalent
I. B is cs—bounded H
II. B is Gp-Bounded H
111, B is cw~bounded H
V. B is ¢__~bounded.
wp
Proof. We shall only prove the implication II = I. The other implica-~
tions are trivial or easy corollaries of other structure theorems.
IT = I: For all £ >0, w ¢ X and § ¢ B+(R),‘we thus assume that

the set
{e‘t’«&p(z&)wi}? e B}

is strongly bounded in B(X). Hence, the uniform boundedness principle

for B(X) yields a(t,¢) > 0 with ﬂe—tA8¢(A)H < a(t,4), B ¢ B. Hence

e R () lgy < xCht, e AU, R B 0

Lemma

Let (R ) be a sequence in TA such that lim R F exists in T A for each
n ase B X,
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¥ “\TX,A‘ Then H: F +» lim HnF is continuous, i.e. # « TA.
Ty
Proof. By the preceding theorem the sequence (Rn) is Ts-bounded. So far
each t » O there existsst > 0 such that ﬁRn(t)H $B,ne N. It is
clear that R maps TX A into itself. Further, for all w ¢ X with flwl = 1,
y

and for all t > 0

-tA ~tA . ,
e " Rwill < e (R~ Rn)wu~+ B, < 8t + 1

for o € W sufficiently large. Hence R ¢ TA by Ch. I, Section 4. L

Theorem

TAis sequentially cp— and owp—complete.

. . C .
In Section 2 we have proved that the mapping ~ from TA onto TA is
. . . c .
T + ¢ and T _+% o continuous, and its inverse is ¢_+ 1_ and
] s W w s 8
: . . c .
cw4+ T, continuous, We do not know whether the mapping = is rp++ Gp con~

tinuous and whether its inverse is cp4+ Tp continuous. However, for

fe SX,A and G ¢ TX,A’
|<pf,G>] = |<£,%>] , P« ™,

So it follows that P& Pc, P« TA, is Twp4+ Gwp continuous and R!+<Rc,
Re TA, is o+ t__ continuous,

wp wp
With the above observed kinds of continuity of the mapping ¢ and the
mentioned properties of ¢ the following results are straightforward

corollaries of Theorem (3.8) and Theorem (3.13).

(4.8) Theorem

~ Joint multiplication is sequentially continuous in TA‘

~ The algebra TA is locally convex if it carries one of the
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topologies os, o, and ¢

Completing this section we prove the following.

Theorem

The algebra TA with topology T is locally convex.
Proof. Let R F > RF for all F e T X,A° Then for 5,5, ¢ TA’ R S,F » RS ¥
and hence by continuity of S], S!Rast - SIRSZF' This completes the

proof. ‘ g

The topological structure of the algebra EA

Because of the assumption in Section 3 that SX A is nuclear, EA comprises
L 4
all continuous linear mappings from SX A into itself which are extend-

able to T A In Section 3 we observed that the strong and the weak

“ topology of E,, denoted by p_ and p_ in the sequel, admit the following
A < 8 w ’

characterizations

- Py is the coarsest locally convex topology on EA for which the em~
beddings EA S TA and EA aT 4 are continuous with respect to the
strong topology of TA resp. TA.

- Py is the coarsest locally convex topology on EA for which the em~
beddings EAC;TA and EA C;TA are continuous w1th respect to the weak
topology of TA resp. TA'

Similarl§ we introduce the topologies pp and pwp‘

Definition

The to?glogy pp is the coarsest locally convex topology on EA for which

the embeddings EAcaTA and EA C;TA are continuous with respect to i
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resp. cp. The net (Ea) in EA converges to E if and only if Eaf » Ef
strongly in SX;A for all f ¢ SX,A as well as EaG + EG strongly in

TX,A for all G ¢ TX,A'

Lemma
The topology Pg is equivalent to the topology of uniform T and
cp-convergence on bounded sets in SX,A resp. TX,A’

Proof. Cf. Lemma (3.2) and (4.2). [»

Definition

The topology pr is the coarsest locally convex topology on EA for
which the embeddings EA C;'r& and EA C;TA are continuous with respect
to Twp resp. owp. The net (Ba) in EA converges to E if and only if
Ef > Ef weakly in sX,A for all f ¢ SX,A as well as EQG + EG weakly

in TX,A for all € ¢ TX,A'

The above introduced topologies of TA are ordered as follows.

Theorem (Principle of uniform boundedness)

Let B be a subset of EA' Then the following statements are equivalent.
I. B is ps-bounded;
it. B is pw—bounded;

i1T. A is pp*bounded;
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V. B is p_ ~bounded.
wp

Proof. Cf., Theorem (3.5) and (4.5). 1]

Theorem
E, is sequentially complete in p - and -sense.
A q y comp o, Pup

Proof. Cf. Theorem (3.7) and (4.7). > 0

The adjoint mapping ¢ becomes an involution on the algebra EA’ From
the previous sections it follows that ¢ is Pg™s P~ and pwp*continuous.

From Theorem (3.13), (4.8) and (4.9) we obtain immediately

Theorem

- Joint multiplication is strongly sequentially continuous in EA.

-~ Separate multiplication is Pe™s s pp— and pwpwcontinuous.

The dual space EA of EA can be represented by the algebraic sum of the
spaces SA and SA. So every continuous linear functional £ on E4 can

be written as

£: Ew <K BB, T <K HED,
1 2
SA SA

where K, e SA and Kz € SA. The choice of Ki and K, is not unique be-

cause SA n SA = SX@K,A&A’ cf. Ch. II, Section 4.

Proposition
The space SX@K,AEﬂ is a proper, two—sided ideal in EA.

Proof. SA and SA are proper, two-sided ideals in TA resp. TA' Hence

SX@K,AE% = SA n SA is a proper two-sided ideal in TA n TA = EA- a



Let £ ,E, e EA; Then for all (K, + K,) ¢ E}, define

1?

T .
E (K| * K,)Ey:= E\K\E, +E KB, .

Then EI(K] + KZ)EZ is a well-defined element of EA by Lemma (3.9) and

Corollary (3.10). In order to prove this, we have to show that the

definition of EI(KI + KZ)EZ does not depend on the choice of Kl and
A

Kz. So let K] + K2 = 0. Then K1 = —K2 € SA nS = sX@X,AEA' By Propo-

sition (5.8), EIKIEZ = —EIKZE2 € SX@X,AEA' Hence, E K\E, + E\K,E, = 0,

which completes the proof.

These observations imply the following.

(5.9) Lemma

Let K « EA and E € EA‘ Then

<K,E®= < ,E¢>
<K,E> = <E°K, 1>
<EK,I>» = <KE,I> or equivalently trace (EK) = trace(KE).

Proof. Cf. Corollary (3.11).

In a forthcoming paper we shall give a complete description of two

subalgebras of EA’ where we no longer assume that Sx A is nuclear.

Hd
There we shall treat two topological algebras, the commutant of {A}'

and the double commutant {A}". Inspired by the thesis of Pijls [Pij],
we have been able to prove that {A}" c EA is a commutative GW*—alge—

bra, i.e. a commutative generalized Von Neumann algebra. The notion

of GW*—algebra has been introduced by Allan,[Al].
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Applications to quantum statistics

In this section we consider a quantum mechanicél system in whic§ the
dynamics is determined by a Hamiltonian operator H, i.e. a self-
adjoint opérator in some appropriate Hilbert space X. We assume the
almost inevitable condition that there can be found a nuclear ana-
lyticity space SX,A such that H and each of the unitary operators
eiaH,a ¢ R, are continuous linear mappings on SX,A' Further, for the
states of the quantum system we take the one-dimensional subspaces

of the trajectory space T A In Ch, IV we have proved that T, con-
. X, X,A

tains almost all (generalized) eigenvectors of H.

In this section we adopt the terminology and notation of Dirac. The
elements of TX A are called kets and they are denoted by |[F>, Conju~"
. b g

gate to thé kets are the bras, denoted by <Fl. The bra space is also

.a trajectory spacey it has an antilinear structure. In Ch. IV we have

interpreted Dirac's bracket notion so that the expression
<F|G>
makes sense for arbitrary kets and bras. In fact, <F[G> denotes the

function
<FiG> 1 s » <[F>(8),[G>>

The elements of SX,A are called test kets. The bras conjugated to them
are called test bras. In this section we shall only consider the brack-
et of a éest bra <g| and a ket |F> resp. of a bra <G| and a test ket
|£>. Then for their brackets we may take the ordinary numbers <g|¥>(0)

and <G|£>{0).
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At a certain instant the dynamical system is supposed to be in one

or other of a number of possible states according to some given pro-
bability law. Following Dirac, [Di], these states may establish a dis-
crete set, a continuocus range or both taéether. Here we look at the
discrete case, Suppose that the possible states are given by norma-—
lized test kets [m>, m ¢ N. Let Py denote the probability that the

system is in the m—th state. Then we define the quantum density opera-

tor p by
o o5
p= § pylmo<m| ) Py~ s P20,
mn=1 m=1

where, according to Dirac jwe<m| = |m>®|m>.

In Schrédinger's picture the kets will evoluate in time in accordance

with Schrodinger's equation

g d _
ih 524F> = H|F>

and the bras with the hermitean conjugate of this equation. Since with-
out disturbance the system remains in the same state, corresponding
to a ket which satisfies Schrodinger's equation, the pm's are constant

in time. We therefore have the following equation

i

ing me (Hlm><n| - |m><m|H)
m

it

Ho —pH= [H,pl.
for convenience we shall take h = | in the sequel.

Tn our interpretation, the observables of the quantum system are repre-—

sented by self-adjoint operators in X, which maps SX A continucusly
s
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into itself. Or, equivalently, by the symmetric elements of EA with
a self-adjoint extemsion in X.
If the system is in the mth state, the expectation value <B> of any

observable B equals
<> = <mlBlm>.

Hence, if we insert the distribution law of the system corresponding
to the above-introduced density operator p, then the average expecta-

tion value <B> is given by
<g> =) pm<mlﬁlm> =<p,8¥= tr(pB),
m .

whenever p ¢ EA. Put B = I, Then it follows that

<I>=Jp =1.

m
The solution of equation (5.2) is given by
~i it

o(e) = i, e s 0,
where p(0) is Pge Since the unitary operators elﬁH, a ¢ R, are extend-
able, and since EA'remains invariant under right and left multiplica—
tion by elements of EA. (See Lemma (5.2)), we have p(t) ¢ E}, t =2 0
iff g € EA.
Let B, be any observable. Then the average expectation value at time

t equals
| . it
By () = <(e), By () >=<py, e Mg () H>

where we have written Bo(t) to indicate that the observable 8 can

intrinsically depend on t. Put B(t) = eltﬂso(t)e—ltﬂ."Then

s 38
g = ilH,B] + T



(6.4.b)

(6.5)

(6.6}

4 = i<[H.81 9B,
dt(<g>) = i<[H,8]> + (Bt‘

i#480
It

where g%{T) = 8

(T)e—ITH. The differential equations (6.4.a) and

(6.4.b) determine the evolution of the observables in the Heigenberg

picture.

Now we are in a position to describe a quantum mechanical system in
terms of observables out of some suitably chosen space EA’ and ‘states'
in its corresponding strong dual EA. We emphasize that the notion of
stéte will get a meaning different from the one in the beginning of

this section.

Definition

A symmetric element P ¢ EA is called positive if <f[P[f» z 0 for all

test kets |f>.

A positive element P of EA leads to a positive, density defined, sym—
metric operator P in X. This operator T admits a so-called Friedrichs
extension PF in X, cf.[Fa]. The operator PF

joint in X. Hence, at least every positive element of EA iz an ob-

is positive and self-ad-

servable,

Definition

Let o € EA. Then ¢ is called real if o(P) ¢ R for all P ¢ EA with

From Section 5 we obtain the following characterization.
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(6.7) Theorem
3 EA is real iff o = a.

Proof. Let P ¢ EA be symmetric., Then by Section 5
<g,P¥=<0",P>,
This leads to the following equivaleunces

<€g,P®»e¢ R for all P ¢ EA with P = P¢ &

w<g PP=<s",P> for all P ¢ E, with P = P¢ @

c
L g =0 .

The latter equivalence is due to the fact that every E « EA is a com~

c c
. - . + . -
bination of two symmetric elements, E = E ZB + 1 E ZiE ) 0

Remark: Let o ¢ Ei with o = 6%, Then g = 8, + 8, with s, ¢ SA and

) s, + g€
8, € SA' {Cf. Section 5). Put s = -1—§-& . Then s € SA and o= s + s,

(6.8) Definition
Let o € EA be a real functiomal. Then o is called a state if
- ¢(P) 2 0 for all positive P ¢ EA H

- o(I) = I, i.e. a state is always normalized.

In order to characterize the states in Ei we prove the following.

{(6.9) Lemma
Let E ¢ EA’ and let DI, denote the orthogonal projection onto the linear

span of the first n eigenvectors of A. Then the sequence {HnEnn} con—
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verges to E in EA’

Proof. Let t > 0. Then we can take t > 0 such, that both

. -l
HeZTAEe gtAlkex < ™

and

o dtAR 2TA g < -

Now we compute as follows

”eTA A

-t
— )
(€ - T ELYe ~ oy =

< e - nn)Enne"t"‘ by * e"&(z - nn)e"“um <
TA

N Fea Il PR L T

"

@(r-m) e

AH

A -t ‘
Hence, lle (& - HnEHn)e ox 0 for n » « ,

Similarly we can prove

He"tA{E - 1 EIN )eTAH + 0 for n > =,
non

XOK

So the assertion has been shown. 0

Remark: Let P ¢ EA be positive, Then for each m ¢ N, the operator

L PM is an element of EA' In fact I P is a positive self-adjoint

Hilbert—-Schmidt operator. So there exists f;n)e Hn(X), J = 1,...,0,
such that
v e, @
R PO = § w. £ g
P i

with uj > 0. It leads to the following characterization.
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(6.10) Theorem

Let g € E‘i be real. Then o is a state iff

<g, [f><f{P2 0

for all test kets |[f>.
Proof

=) Trivial. The projections P = |£><f| are elements of EA and they

|£>
are positive for all test kets | £>.
<) Let P ¢ Eﬁ be positive. Let the projection IIn, ne N, be as in

Lemna (6.9). The functional E+ <€0,E®> is strongly continuous on

EA‘ Hence

< P lim< >
a,P lim <o, HnPﬁn .

pelacd
With the above remark it can be easily seen that for all n ¢ N
QU,HnPﬂnb'a 0. Hence €¢,P>2 0.

Thus we have shown that ¢ is a state. f

Remark: Since ¢ ¢ EA c TXQK AEA; and |f><f| ¢ SXQK ABA we derive
3 ¥

<g, | f><f| = «flo]f>. (See [Di]).

Special elements of Ei are the pure states. Here is the definition.

(6,11} Definition
A state p is called pure if there exists a normalized test ket |f> with
o = |f><f].
Of course, one might wonder why we don't take normalizable kets in
Definition (6.8), i.e. kets in the Hilbert space X. The following

lemma shows the answer.
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Lemma

Let |w> be a ket. Then

jwe<w| ¢ EA o |w> is a test ket.

Proof
=) Suppose |w> ¢ SX A Then there exists ¢ ¢ B (R) such that
*

> ¢ D($(A)). The operator ¢{A)2 is in EA’ but
P4
<lwsap|, ¢(A) D= =

Hence |w><w| £ Ek .

«=} Trivial. . i

The pure states admit the folllowing characterization.

Theorem
. . . A o2
A state p is pure if and only if p ¢ S (or SA) with p” = p.
Proof. If p is pure, p = |[f><f| for some test ket |f>, Hence
P € SXﬁX,AER = SA n SA’ and p is a projection. On the other hand,
A . . c . .

€ 8" and p is a state yield p = ¢ S,. Hence pe S ;0 is a
[ 9 ¥ P [ A P XER, ABA @
Hilbert-Schmidt projection with tx(p) = 1. So there exists a normalized

[£>e X with p = |£><f|, By Lemma (6.12) [f> is a test ket. 0

Theorem

Every pure state in EA is an extreme point in the set of states.
Proof. Let |f> be a normalized test ket, and Hn’ n ¢ N, denote the
projection as introduced in Lemma (6.9). Suppose there exist states

c,az‘ € Ej and 0 <a <1 such that



106.

[ f><f| = wo + (i—a)cz.

Then for all n ¢ N with IIn]f> 40

Enlfxfiﬂn ) oac:l(IIn) [Hnoln ] . (l-u)cz(ﬁn) [anzl'[n]
i e nm fes it LG T TR A
n n n
Hklf><ffl'[k
Take k ¢ N fixed, with II | £><£] H 7‘ 0. Then —-—-———T— is an extreme
II fE= 1l

point in the set of states in nk(ank(xy. Hence, we may assume

]Ik[f><flrtk = I ol .

Since Iikl'[‘z = IIk for all £ = k we derive

Vnel\l H Hn|f><f|]’[n = H’n oll'!n .

By Lemma (6.9) the sequences {Hnlf><f}ﬂn} and {I[nclﬁn} converge to

{£><£| resp. ¢, weakly. Hence o = [£><£] . 0

In the following theorem we prove that the pure states are the only
extreme points in the set of states,

{6.15) Theorem
Let p be an extreme point in the set of states. Then p is a pure state

Proof. Since p # 0, there exists a normalized test ket |f> such that
(if><£]) £ 0 .

Remark: The following implication can be shown rather easily:
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<V|f>eS . ¢ op(|fe<f]) = 0) = {p =0) .
X,

Put PI , = {£><f|. Then p can be written as

bt

A T (I-P|f>)/

>

where (p o P _ )(E) = p(Plf>E), E e EA. So {poPy.)() = Q(P[f>) #0.

& B

Suppose p © (I—-Plf>) # 0, and consequently p(I-P‘f>) # 0. Then we

can write p = a0, + (l-‘a)pz, where

P =p°Pf> 0 =DO(I_Pf>)
1 D(P|f>) ? 2 - D(P!f?)
&= p(rlf>}’

The functionals ch and 0y are states. This can be seen as follows

Q<Pff>) -
p(P

]
-
“

p (1) = =
! |f>)

and

-1 -1
DI(E) = (D(Plf>)) O(P¥f>E) = (Q(Plf>)) p(P|f>EP|f>).

For the latter equality see Lemma (6.9) and observe that PTf> = P|f>.

Thus we derive DI(E) ¢ R for all E ¢ EA with E = E® and pl(E) =0

for all positive E ¢ EA' Similarly, is a state. But now we have

)

got a contradiction, because p is extreme, Hence p o (I-P = 0,

&)

and consequently p = p o Plf> and o(P]f>) = 1. Further, it easily

follows that for all test kets |g>
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o(lgo<gh) = I<tlg>1?

Employing the projections Kn, n € N, as introduced in Iema (6)9),

we find that for each symmetric E ¢ EA and for each n ¢ N. there

exists u;n) € R and Ifgn)> € nn(x) such that

LEN, = JE‘u(n)lf(“)xf(“ﬂ

1
(n) s, @
p (N _ENL ) »o( Z ui T ES < f)

F o fee] )2
i= 1

= <f|KnEﬂn|f> .

Letting n+w,by Lemma (6.9) we obtain

D(ﬁnﬁﬂn) + p(E)
and

<f)HnEnn}f> > <f£|Elf>.

Hence for all symmetric E ¢ EA’ p(E) = <f|E[f> .

This yields p = [f£><f].

Remark: Let p ¢ EA be a real positive functional, i.e. p(P)

inequality is immediate from the finite—~dimensional case

> 0 for

~all positive P ¢ EA . Let n e N, and let E ¢ EA' Then the following
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2 c
o 1Y e .
o (o Lhn)l < p(ﬁn)p(HnL EHn) .
S0 in the limit n + ® we obtain

o) 1% < p(D)pEE).

1A

1

Consequently p(I) = 0 p =0 ,

Theorem

The linear span of the pure states is dense in E&.

Proof. We assume that P ¢ EA and <£|P|f> = 0 for all test kets [£f>.

Then <f+g|P|f+g> and <f+ig|P{f+ig> = 0, and hence, Re(<f|P[g>) = 0 and

Im(<£|P|g>) = O for all test kets |[f> and test bras «gl. So P = 0. D

Finally we shall characterize the states in SA (or SA) or equivalently

?he states in SX@X,AEA'

Theorem

Let p ¢ SX@K,AER' Then the following statements are equivalent.
(1) p is a state.
(2) 0 is positive and self-adjoint with tr{p) = 1.

(3) There exist normalized |j> € SX A ‘and positive numbers Py satisfying
E

T2
3., ¢ ¥ p.lleSA]j>112 < w o,
. i=1 J
and Epj = 1 such that

]

p = )psliv<il.
3 J
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Proof. The proo“f proceeds as follows: (1) = (2) = (3) = (1).
(1)=(2):

From Theorem (6.10) it follows that p is a positive operator on SX,A'
Since p is Hilbert Schmidt and p° = ps p is a positive, self-adjoint
operator on X with tr{p) = 1.

(2) = (3):
sA, ~sA

By definition, there exists s > O such that p = e = We for some

W e XX with W = 0. Since p ¢ XX and p = 0, there exists an orthonormal

basis (lj>) in X, and positive numbers P such that

e = ¥plj><jl with Jp, = 1.
i i

A ~gA sA

Further, since We ° is Hilbert Schmidt and We 1j> = pje 13>,

3

s

J

fe—18

!nwe“s"‘uwz - 1 21 P < w .

1 4

(3) = (1)

o3
Note first that <€p,I»= E p.<ili> = z p, = 1,
jz] g e
Let & > 0 as indicated. Then

o=l
plj pJIJ

Put W = eSApesg. Then WewSAlj> = pje3A|j>.

Hence We—s"\ is Hilbert~Schmidt and thus we find that

p = e“SAWe-SA € SXQX,A@\ .



If E € EA is symmetric then <j|E|lj> ¢ R and hence p(E) ¢ R. If E ¢ EA
is positive, then <j|E}j> = O and hence p(E) 2 0. Thus it is clear that

p is a state. 0

As a rule the dynamical state of a quantum system at a certain imstant
cannot be represented by one single ket, but we have a statistical
mixture of kets. Therefore, in the beginning of this section we intro-
duced the quantum density p (cf.(6.1)). According to the probability
law determined by p, the quantum system is in one or othgr of a number
of possible states. So it makes sense to define p to be the state of

the quantum system at a given time.

If at t = 0 the quantum system is in the state pgr Lt t =T the system

is in the state p(T) with

-itH  itH
p(t) = e epe -

So p satisfies the evolution equation (cf. (6.2))
p = -ilH,pl

In order to arrive at a mathematical rigorous theory, we only consider

tH

p. € E}. Then for every t > 0, p(t) € E!, because M E, for all
A ry A A

0

t € R. (See Section 4). At every time t we can compute the expectation

value <B> with respect to p of the observable B ¢ EA’
<B>(t) =<p(t),B3
where for convenience we have assumed that B is constant in time.

Now in general we shall assume that any state in Ei as defined in Defi-

nition (6.8) represents an initial state of the quantum system in the
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above indicated way. A state % evoluates in time according to .

e"ltHcoeltH’ >0 .

i
|
|
|
i

So the statistical mixture determined by the quantuni density gperator

p is a particular kind of state; states such as p have an immediate
physical interpretation. From (6.17) we obtain that every state

Pg € SX@X,AE& induces a statistical mixture., The pure states are special
types of statistical mixtures; one knows with certainty that the sys-

tem is in a state determined by one test ket.

We conclude this section with a short discussion of the three possible

types of dynamical quantum systems.

The Hamiltonian operator H admits a purely discrete spectrum

This case is the easiest one to treat and it probably contains the most

promising results.

Let ff be a Hamiltonian operator in X with eigenvalues El < E2 E-

and corresponding normalized eigenkets |E1>,|E2>,... . Then the eigen—
kets[si>of H establish a complete orthonormal basis for X. Define the

positive numbers i _, n ¢ N, as follows
n

Ay =E; A max(a,_, *1L,|E [), n> 1,

n
and the self-adjoint operator A by
A]En> = ;\n|En>

followed by linear extension and unique self-adjoint extension to X.

o
Then the analyticity space SX A is nuclear because }: et . for all
4 n=1
t > 0.
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~A.t
e "07) < », Heuce,

Further, His continuous on $ because sup ({E
X,A nel n

i .

H o« EA' Similarly if follows that the unitary operators EIQH, a e R,

are e¢lements of EA‘ So the space SX A satisfies the required conditions.
. k4

An important example of a statistical mixture is given by the state

f=<} o
pg= Lp, [E><E |, 20, Ip =1.
n=1 n=1

Then P is represented by a diagonal matrix, and seen as a bounded

operator on X, p clearly commuteswith A and H. Since p ¢ EA, it

satisfies

“ai, ak

: n n

3&>0Va>03M>0Vneli° (pne e’ <M.

Hence p_ = O(e‘akn) and p £ S . It is obvious that without dis~-
. n ’ XEX , ARA i

turbance the state p does not depend on the time t. We note that it is
obvious that every term IEn><En[ of the series does not depend on t,
i.e. the system remains in a stationary state as long as disturbances

do not occur.

In general a state p is given by

o= 1 eplt<El
n,m

However, in many physically realistic cases the non—diagonal elements
can be neglected.

An example for class (1) is given by the one dimensional harmonic

oscillator where H = é(jii + x2

+ 1). Then H is self-adjoint in Lz(R)
dx
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with E,=n, nc¢ W as its eigenvalues and the Hermite functions as its

eigenfunctions. Hence, we can take A = H. We note that the space

s is equal to the space S% of Gelfand-Shilov, Well-defined ob-
Ly(w), # i
servables are the momentum operator ié% and the position operator x.

The Hamilton operator H admits a purely continuous spectrum

This is a harder case. We are able to construct a nuclear analyticity
space SX,A such that H is continuocus on SX,A (cf. Section 9). Then to
almost every point in the séectrum of H there corresponds on eigenket

in the trajectory space TX,A' However, it is not clear whether the
unitary operators eiaH, a ¢ R, are continuous on SX,A’ and this pro-
blem has not been solved yet. Of course, we could weaken the conditions
on SX,A and skip nuclearity. Then the analyticity space SX,]HI with(#H )=
(Hz)% would be ideal. But nuclearity seems to play an essential role
both in the discussions of this section and in our interpretation of

Dirac's formalism.

There is another approach. Sometimes iH is ome of the skew-adjoint
generators of a unitary Lie gfoup representation on X with nuclear
analyticity space. We shall explain this to some extent. Let & be a
finite dimensional Lie group with Lie algebra A(G). Let U be a repre-
sentation of @ into the space of unitary operators on X, and U

the corresponding infinitesimal representation of 4(G) in X. Then
for every a ¢ A(G) the operator 3U(a) is skew—adjoint in X, by Stone's
theorem.

Our first assertion is the following one.

~ There exists a € A{&) such that iH = GU(al).
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Since & has dimension d < « there are Byyeeesdy € A(G) such that:
{a],...,ad} generates the Lie group G in the usual way. Following
Nelson, [Nel, the analyticity space corresponding to the unitary re-

presentation U is equal to

X, 5t
2 2 2
where & = 1 - ((3U(a)))” + (3U(ay))™ + ... + (AU

Then our second assumption is

- S : .
X,Ai 1s nuclear

In Ch.I, Section 7, we have given several cases of unitary represent~

~

ations of Lie groups G with a nuclear analyticity space SX Al More~
2

over, we have proved that both the unitary operators U(g), g ¢ & and

the skew-adjoint operators 8Q(aj), ji=1,...,d, are all continuous

on 8 . So under the above-mentioned assumptions the nuclear analy-

Cd
X, A3

ticity space SX Al has the desired properties.
)

An example for this type of operators is the Hamiltonian operator of

the free particle in one dimension,

oo
- 2

dx

An appropriate algebra is the six~dimensional algebra generated by

id—z- i(ix +>§—d-——) ix2 ix 4 i
dx2 4 dx dx’? ? > dx ?

It corresponds to the infinitesimal representation belonging to the

unitary representation of the Schrodinger groups on LZ(IO . The Schro-
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dinger group is obtained as a semidirect product of SL(2,R) and of
Vl,the Weyl group. We note that the Schrodinger group is the s&mme:ry
group of the Schrodinger equation of the free particle (see [Mil).

|

i

The Hamiltonian operator H admits a discrete/continuous spectrum

In many applications the intersting part of the spectrum of H is the
discrete one. So we split X into the direct sum X = XdGKc such that
Hd’ the restriction of H to X,, acts invariantly in Xd and Hd is a
self-adjoint operator in Xd with discrete spectrum,and such that Hc’
the restriction of H to X, acts invariantly in X, and Hc is a self-
adjoint operator in Xc with a purely continuous spectrum.

An example for this case is the Hamiltonian operator of the hydrogen

atom.



7. fne matrives of the oloments of ?A aud T

Asoin Section 3 we still assume that S‘ A is a nuelear space. S0 in
Ay
S‘ \ there exists an orthonormal basis (vj) for X consisting of cigen—
kgt

vectors of A with cigenvalues Aj, AI <A, > ... satisfying

for all t > 0. Then the space TA contains all linear mappings from

SX,A into itself, and TA all linear mappings from TX,A into itself.

Let L « TA. Then to L there can be associated the well-defined matrix

(Lij) as follows

I3 = 1 .
Ly (ij,vi), i3 1,2... .

This section is devoted to the kind of infinite matrices which arises
in this way. We shall produce necessary and sufficient conditions on
a matrix (Qij) in order that its associated linear operator ¢ 1s a

continuous linear mapping on 8 . We emphasize that there are neither

X,A
elegant nor applicable conditions on infinite matrices which imply

boundedness of its associated operator.in X (see [Hal, Ch.IV).

Since the linear mapping I is continuous on SX A it satisfies
s
. LnSA_ ~tA
Yes095503050 1€ L8 lggy < €
where ||-||X®X denotes the norm in X®X. This implies that the columms

ij, j € N, of the matrix (Lij) satisfy
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sA_
V5075507050 ien e Lvylly < CeTHT

(7.1)
Put b, = Lvi, i € N. Then the vectors b, span the range L(SX A} and
from (7.1) it follows that there exists s > 0 such that bi I3 e—SA(X),

i € W . Define the trajectory . (0,%) + X&X by

_}\.t ’
le 1 (vi®bi), t > 0.

Ly =

1

nr~38

< t, and choose s > 0

Then L(t) e SX@X,I@" To show this let 0 < ¢,

and C > 0 such that
IIeSAbiH < Ce}”itl , i W.
Then

sA» T At sA
e L () ygu = uizle @ b Mgy €

o o
s J ey, 20 e
i=1 i=1

Hence L(t) ¢ SX@X,I@A' It is obvious that

-~ - -t]A 7
L(t]+t2) (e @I)L(tz) » Tiaty > 0.

S0 L eT,A. Since for all f ¢ §
XA

De= § (g£,vpb; = ] (£,v0v; = If,
i=1 i=1

the linear mapping I is represented by the series



(7.2)

(7.3)

(7.4)
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izlvimi

with convergence in TA.

On the other hand, let there be given bl’bZ”" in Sx A satisfying
*

o TA At -
Verodrsodeso ientle byl s CeTh

o

Then it is obvious that the series | vi®bi converges in TA, and re-
i=1
presents the linear mapping

£ izl(f,vi)bi , fe sx,A'

So the following characterization holds true,

Characterization (the columns)

Let ¥ be a linear operator in X with domain containing the linear span
<Y, ,V,s..>. Then ¥ maps S continuously into itself 1iff the b, = Wv,,
1772 X,A i i

i € N, satisfy coddition (7.2). W is represented in TA by the series

s

) vf@(in).

i=1

The conjugate 1% of L is an element of TA. Hence, as a continuous

linear mapping from TX A into itself 1 satisfies the following con-
3

dition

g-tA e s
Yes03s503cs071e L e A“mx < C

Put Bj = chj e T . Then they satisfy

X,A

- Ao
Hij ] 843
Vt>035>03C>0VjeE‘”Bj(t)JX < Ce
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‘The trajectories B, span L(T, ,), and
i X,A

where the series converges in Tx A+ Hence B. represents the j~th row
.

of the matrix (Lij)' Define the trajectory z by

Then for each t > 0, 55 > 0 can be chosen such that
zx B, <ce ViSO | ;
Bj(t:)lX Ce , je¢ N,

and for 0 < g < Sy s

sAr I CsA
LCEM ygu S ujzlnj (€38 v My <

Ile

T A
sCc Je jto=s) ¢ o .
j=1

Hence, I(t) « SX&K oA t 7 0, and Ie TA. Since
*

«©
If = | <f,B>v, =
j=1 J 3 i

o~ 8

l(&f,vj)vj = Lf, £ ¢ SX,A’

0 .
the mapping L is represented by the series Z B.ij with convergence

‘ j=1
in TA.

On the other hand, let there be given B}, Bysaeo satisfying condition
- o0
(7.4), then similarly it can be shown that the series Z B.@Nj repre~
j=1
sents the linear mapping



(7.5)

(7.6)

(7.7

¢
B L sEBpvi L £y

in TA' Thus we obtain a second characterization of the elements in TA.

Characterization (the rows)

Let ¥ be a linear operator in X with domain containing the linear
o

BPan <V ,vy,...2, and put Bj = z (in’vj)vi' Then ¥ is continuous
i=]

on SX,A iff Bj € Tx,A’ j ¢ N, with

. ~Ass
Vt>Oas>(}BC>OVjeN'HBj(t)ux < ce 3% .

o
We have W = 2 B.®v..
i=1 1]

A complete characterization of the rows and columns of the matrices
of elements in TA is already quite interesting. A characterization of
the entries is much more useful. The following theorem characterizes

the entries.

Theorem

Let the infinite matrix (Lij) satisfy

(e—k-t A;s

\'2 JellLijl)cw.

t sup

3
t>0"s>0 i,jeN

Then L defined by

L= 7 Liiv3@v;
i,j
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is in TA, and conversely.
Proof. |
= )} Let t > 0. Then there are s > 0 and € > O such that

_.J"A. '3'A
(e "3t ileijl) <¢, i,j€ N.

This yields the following estimate

2

sA_ —tA 2 _ =2hit 2Xys
ie” Le i xex = _z.e 1 e }Ixii £

T

< C2 Z e_)‘ite")‘is < »,
i,]

Since t > 0 has been taken arbitrarily, the result I ¢ TA follows.

« ) Let L ¢ TA iheth>03$>O:

"ljtel' sALe-tAll <o

sup (e 13[Liji) s fe <&

is3
where Lij = (ij,vi).

We shall often employ condition (7.7). It is of great help in the con~
struction of examples and counterexamples. In the sequel, we shall
identify the space TA with the space M(TA) of infinite matrices which
satisfy condition {7.7).

The following lemma shows that the product in TA corresponds to the

matrix product in M(TA)‘
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(7.8) Lemma

Let 7,5 ¢ T . Then the matrix of Bo 8 is given by

where each of the series converges absolutely.
Proof. Let t > 0, 1,j ¢ IN . Following Theorem (6.6) there are S84 >0
such that

Ast =-Aps
80
ng S CS e le

and

g8y “Ais
CR e e

=]
A

ie ”
for some CS,CR > 0, This leads to the following estimate

{ekis< °z° Rizsij,\) S L I

2=1

< z {/ eklsR "'%)\ESOI IeAES(}S ’e-ljt[e‘ikgso)
g=}\ L]

A

AT VY
s G {gzle 250) )

Thus z R, 5 \ is an element of M(TA). Finally we have
4oy B4 2i/

z (z RS 23)\7 o, -

Z ( Z R” K3 (vk,v ))vjﬁbvi
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(ZR. v@v.)o({S.v.@v)
1’212 £‘1 j,kkj 3 k

RS,

#

The canjugationc:'TA+ TA induces a conjugation on M(TA). The precise

result is given in the following lemma.

(7.9) Lemma

let L € TA Then L ¢ TA’ and

. -
L= .Z.Lji(ngvi)
1s]

where convergence of the series is in TA‘

Proof. From Theorem (7.8) we obtain

(2]
v
[o]
-

L(t) = z e-;\jtl}ijvj®vi .
i3

with convergence in SX@,I@ for each t > 0, Hence we find

“Ait=.. v, . o=
L)y = e 3tLj:L VJ.@VJ
i,j

= 7 e-)\itz'i vj®vi
i,j J

with convergence in SX@X,A@I for each t > 0.

If L « TA, then the matrix element§ Lji satisfy Vt>033>0 :

sup (ea)\itekjslz..l) <o,
THE ji
1,1



Conversely, 10 the matrix (. .) salisfics, ¥ 3 :
- (tLJ) - 07520

H\itU‘stl&e},- | .

sup e
151

s

then {jS) is the matrix of an elements in TA.

Thus we arrive at the following theorem.

(7.10) Theorem

Let (Qij) be an infinite matrix. Then

@= 19 v,ov
s]

is an element of TA iff the matrix elements Qij’ i,j ¢ N, satisfy

(7.11) isup (e-xitexjleij{) < o

>

V507850

We note that Qij = <vi,ij> .

As a corollary of Theorem (7.6) and (7.10) we derive the following

(7.12) Corollary

The matrix (Eij) represents an element of EA if and only if it satis-

fies the condition (7.7) and (7.11).

In the foliowing section we introduce the class of weighted shift
operators. This kind of operators plays an important role in a lot of
computations in mathematical physics (cf. the annihilation~ and creation
operator .in a suitable representation). Further, because of their simple
structure, the above-mentioned class provides the necessary illustrations

of the theory.
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8. The class of weighted shifts §

|

For convenience we first introduce a set DA of diagonal operators. A

diagonal operator D is a linear operator in X which is well-defined
on the linear span SATATERRLS and which operates on this span as

follows:

Dy, =8,v,, jeN,

L s
—
L=

with §. € €. Hence, the matrix of U is diagonal. Following Theorem

(7.6), D ¢ T if and only if

) ~Ast
Vt>0' s?p (léjle 17y € =,

Hence, D° is also in TA, and U is extendable.

(8.1) Definition
DA IS EA denotes the set of diagonal operators D in X which satisfy

st

V.t sup l&.le 3T <
>
20 Sew
where 63, j € B, are the diagonal entries of the matrix of D.

This section contains a firsé investigation of the special class of
elements of TA established by the weighted shift operators or, shortly,
weighted shifts. A weighted shift ¥ is a linear operator in X which is
well defined on the linear span <VisVg3...>, and which operates as fol-
lows

WVJ =mjvj_” , ] e W,

with mj € €, j ¢ N. Hence, ¥ is uniquely determined by its matrix with
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(8.3)
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respect to the basis (vj} given by

W.. = w,8, .
1] J 1,3+l

where § X denotes Kronecker's delta. Then following Theorem (7.6) the

LS

linear mapping W ¢ TA if and only if

~Ait As .8
! i
Yes0Tgs0 SUP (ijle e ¥y <=

and ¥ ¢ TA if and only if

: sup (lu ]e—Kjtekj*ls) < o,

v 3 .
t>0"8>0 351 j-1

Since kj-l < kj it is clear that continuity of ¥ implies continuity

of W°. Hence, a continuous weighted shift is extendable.

Condition (8.2) can be rewritten inte

A,
: sup ‘mjlexp{-k.(t - s)} < o,

\4 3
t>0"s5>0 jeN ]

In the remaining part of this section we impose the following condition

on the eigenvalues of A.

X,
3y j+1

Mjen‘*fj's“-

This condition is not very severe; it implies the following order

estimate, Aj = O(MJ). If Condition (8.3) is dro?ped, then there exists

}\o

Jx+!

a subsequence (Ajk) such that A% + = as k + =, Let U be the uni-
Ik

lateral shift given by Uvj = vj+], j ¢ N, So U is a bounded operator

on X. Suppose U ¢ TA. Then there should be s > 0 such that
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Aty
As 4.](8‘ )
A 4. Ik As
® > gsup (e(AJHS 13)) > sup e Tk .
jeN keN
A»
Since }‘j =+ o and Troal + 0 the assumption U e TA yields a contradic-
Jx*

tion. Hence U¢ T . If the eigenvalues xj do not satisfy Condition, (8.3),
it is possible that there only occur Hilbert-Schmidt operators in EA'

~Because of Condition (8.3) it follows that (8.2) reduces to

(8.4) v sup (Iw.le_kjt) <@,
t>0
jeN :

So the following characterization is an immediate consequence of Defi-

nition (8.1) and (8.4).

(8.5) Characterization

Let ¥ be a weighted shift. Then ¥ ¢ TA iff there exists a D ¢ 9A such

that ¥ = UD.

The following definition generalizes the notion of weighted shifts.

(8.6) Definition’

I‘,(n)

A linear operator in X is called a weighted n-shift, n ¢ N y {0}

if W(n) satisfies

vj = mj vj+n s Je N

with m§n) e C. .

Hence, a weighted O-shift is a diagonal operator, a weighted i-shift is

" an ordinary weighted shift. Let W(n) be a weighted n-shift with weight

sequence (Y§n)). Then W(n) £ TA if and only if
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. . (n), =Ast A: .8
(8.7) Vt>(}as>0' sup (le Je 17e M0 < w
jeN
Because of (8.3) there exists M > 0 such that
A,
i'f“ <M, jeN.
3
So (8.7) is equivalent to
: . (n) | _-Ajt
(8.8) Vt>0' sup (lyj le J o< e,

jeN

This yields the following characterization.

(8.9) Characterization

Let 7@ be a weighted‘n—shift, n e N u{0}, Then W(n) € TA iff there
exists D « UA such thatc W(n) = U,

Since U ¢ E4 and D ¢ &4 for all D ¢ QA, from (8.9) we derive that

every weigthed n-shift, n « W u {0}, is extendable.

(8.10) Definition

The operator W(-n)’ ne N, is called a weighted (~n)~shift if

W(-n>vj = mj(:i) Vj_n »i>n, e X

{-n) (=n)

with wj ¢ €, and ¥ v. =0, 1% j<n.

If the. linear mapping W(*n) € TA then it satisfies
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{-n)' e Aﬁ.’i;‘e“"\jf‘n‘s) < w

i-n g

v
£>0"s>0

3 H sup‘(Jw
P

. j»n
or equivalently

8.11) Yisgt SUP ('}w?—n) | ébxj*'nt) <w,
jeN

since )‘j-n < Aj for j » mn, j € N, The latter condition is equivalent to

i . TN S e

© (8.12) ¥ __.% sup {Im.(-n)[e_}‘jt) < @,
£>0"
jelN

The . implication (8,12) = (8,11) is trivial. In order to prove that

(8.11) implies (8.12), let t > 0. Then

— - 4 —- — . - * ) s 2
sup (st n}le }‘Jt) = sup (Im( n)le (}‘J/)\Ji'l”°?‘}+n"’§’?‘_j+n)}\]+nt)
jenN J LJew

n

< @®

sup (|

ey
; n)'e XJ‘*ntM )
jen

A,
with M > 0 such that-—-i—t}— <M, je N.
-
So similar to (8.9) the weighted (~n)~shifts in TA are characterized

by

(8.13) Characterization

Let W(_n) be a weighted (~n)~shift, Then W(nn) € TA iff there exists
D € D, such that WO - patyP,
(-n)

Since U" and D € QA both are extendable, each ¥ is extendable, Fur-

ther, the product Af<kl)Iv’(k2) with k;’k € Z is a weighted (k1+k2)~shift:

2



(8.14)
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(kl)c

and the conjugate (W ) is a (-kl)-shiftc So the weighted k-shifts

k ¢ Z, establish an involutive semi-group in EA'

The weighted k-shifts, k ¢ Z, span the algebra TA in a very special

way.

Theorem

(k)

Let L € TA with matrix (Lij)' Define the weighted k-shifts ¥ by

k . .
k'( )vj = Lj+k,j vis > max{0,~k}, i ¢ N,

where k ¢ Z. Then Ev’(k) € EA and Z W(k) represents L. This series
keZ :
converges absolutely,

Proof, The eigenvalues Aj of A satisfy the following estimates

Form ¢ W u {0},

() etj+n® < e""n(SO's}eAjmso

with j ¢ N, sg>0, and 0 < s < S5 For n ¢ N,
(xx) Mt o Anltmte) mAjto

withjem,j>n,t0>0andt>t0.

First note that it is obvious that each W(k), k¢ Z, is continuous
and hence extendable {cf.(8.9) and (8.13)). So we only prove the second

assertion, Let t > 0. Then there exists s > 0 such that

[ < o,

o hpeheAy

For n ¢ N u {0} by (*) we have
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« 1/2
=-AnS 28Ap+j -t13,2)
e = © (jzl & hyg,52 )

] eSAW @ e"tA

<e oS I ezsALe—%tA

Vo "
For n € BN by (**) we have

) - - © . mtens 2\1/2
esAW( n, tA <e gxnt( 3 le“J-nL o gc;\le)

j=n+1 j-an

XK

~$Apty 2sA  ~itA
£ e fle e ”X@K .

A combination of the above results yields for all NN, € N
Ny
I nesh®e Ay
k=-N

1

( N, N, :
< eZSALe-%tAll)@x( I e Pat .y e'*ns)
=1

n=0

Hence, the series ) e
keZZ
Since ¥¥X is a Hilbert space absolute comvergence implies convergence

SAW(k)e_tA converges absolutely in X€X,

and therefore

(AL A |y sAL G0 A
keZ

Thus we have proved the second assertion,

Since all weighted k-shifts, k € Z, are extendable, the following corol-

lary is immediate.
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(8,15) Corollary

The space TA in Theorem (8.14) can be replaced by e

For the weighted k-shifts W(k)

spectral properties can be discussed
in detail and eigenvectors in TX 4 and SX 4 can be constructed. This
¥ ¥

may be a subject for further investigation,

9. Construction of an analyticity space Sy A for some given operators in X
3

Given a finite number of linear operators in a Hilbert space X, the
question arises whether there can be constructed nuclear analyticity
spaces on which these operators are continuous linear mappings, In this
section we shall show that for a finite number of bounded operators on
X, resp. for a finite number of commuting self-adjoint operators in X,
such a construction is indeed possible. The proof of the results of
this section is closely related to the theory on matrices of elements

in TA {cf. Section 7).

Let P be a bounded, self~adjoint operator on X. Following [Hal, p.201,
P can be represented by a Jacobi matrix, i.e. there exists an ortho-

normal basis (er) in X such that the matrix of P satisfies
C?e,r,aj} =0 if |r-j] <1, r,j ¢ B

If we define the positive self-adjoint operator A in X by
Aejzjej;j€ms

followed by linear and unique self-adjoint extension, then we have the

following result,
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9.1) Lemma

ihe self-adjoint operator P is an element of TA'
Proof. Following Theorem (7.6) we have to show
~je rs

: sup (e t(Pej,er)I)< w,

Vt>0§s>0

¥

Let t > 0, and let O < s < t, Then

sup ¢ It | (Peyue)] < 1Pl it G s o Sypy
r,]

where I Pl denotes the norm of P in B(X) 0

With the aid of Lemma (9.1) the more general case ¢f an unbounded self=~

adjoint operator T can be solved. To this end let (F denote

}»)Aem
the spectral resclution of the identity for T and HE’ £ e B, the

spectral projection

£ =f¥l
nﬁ'“ ( j + J )dFA .
-1 <L

Then X is decomposed into

X = f? IIE(X) .
i=]

where in each invariant subspace HL(X) the estimate
<
HTfKN < £Hfzﬂ R f£ € Hz(x),

holds true. So if we put TK = HzTH£ , then T£ is bounded on X , and
there exists an orthonormal basis (égz))such that ((T£g§£),eé£))) is

a Jacobi matrix.
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Define the positive self-adjeint operator A by
,Ae,;"*) . (jma;@, jeN, LeN

followed by linear and unique self-adjoint extension, Then the eigen-
values of A are the numbers An = n+1 with multiplicity n, n ¢ W.
S0 all the operators eutA, t > 0, are Hilbert-Schmidt and the anali-
ticity space 8 is nuclear.

X,A
Put é;n) = Q§n+l-3), j = l,.ss,n. Then the vectors 6§n) are the eigen~

J

vectors of A with sigenvalue An. Enumerating the s in the usual

(n) ]
B

way, we have constructed a complete orthonormal basis (gk) for X, which

yields the following theorem.

(9.2) Theorem
The operator T maps SX 4 continuously into itself.
¥

Proof. Let t > 0, and let 0 < s < t, Then

A, ~tA
sup| (5" Te™™g,,9.)| =
£,k L%

= sup sup {e(r+n)se_(j+m)t|(Tﬂgm),@r(n))|} =
r,n j,m ]

= gup (e-m<t"s)sup (erse_jt|(Tmegm),ﬁﬁm))|)) k¢
m T, 3

< sup (me” (t-s)) sup (erse~3t) < @, 0

m jr-ji=t

In order to establish a similar result for N bounded operators

BI’BZ"“’B on X, we shall comstruct an orthonormal basis in X such

N
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that the matrix of each Bv’ v l,...,N, is column finite, i.,e. for

every j € N there exists Ty € N such that

(Bv)rj =0 for r > Ty

To this end, let (ér) be an orthonormal basis in X. Put e, = 51. There
exists an orthonormal set {¢ ,¢ seeealy } L {e,} with k, £ (n+1) + 1,
2*73 1 1 1
such that
Bvel € <Q},..°,ekx>’ Vo= 1,.04,N
and

52 € <ex,o..,ek]> .

Similarly, there exists an orthonormal set {ek F1ree Yy }i{él,...,ek 1,
1 2 1

k, § 2(n+1) + 1, such that

2
B\)e.2 € <el,...,e.k2> s V= Do, N

and

53 € <el,...,ek2>.

Continuing in this way we derive sets {ekz-x”““’ekz} with

k£ < £(n+1) + 1 and with {ekz_lﬂi'“’akz}i{el"“’ekﬁ.i} such that

Bveﬁ € <el,...,ek£> s Vv = lycee,N

and
6£+1 € <el,...,e,k£>' .

Thus we obtain an orthonormal basis (Qr) in X. Thig basis is complete



because éC TN £ ¢ K. The matrix of each Bv’

L+ 1

I ~ v £ N, is column f{inite, because

1?

(Svaj,er) =0 if ¢ > j(N+1) + 1,
Now define the positive self-adjoint operator A by

Aaj=jej,jem,

followed by linear and unique self-adjoint extension. Then

(9.3) Theorem
The linear operators Bl""’gN map the nuclear analyticity space SX A
»
continuously into itself,

Proof, Let v € {1,...,N}, and let t > 0, s » O with 0 < s < ﬁ%?‘ Then

‘ -jt rs _
sup I(Bvej’ar)[e e =
Tyl
-jt rs
= sup Ckaaj,er)|e T8y «

1755 (1) +1

A

Hgvﬂes sup (e sy es"BVH .

jEN
With the aid of Theorem (9.3) we can extend the result of Theorem (9.2)
to hold true for a finite number of commuting self-adjoint operators
in X. Let %l,Tz,...,TN be N commuting self-adjoint operators in X with
resolutions of identity (Fiv)) , v = l,s..,N, So their spectral projec-
tions commute, i.e. F(v)(AV)F(U)(Ap) = F(u)(éu)F(v)(Av) where Av, Au

denote Borel sets in R, Let HK’ £ e NN , denote the projection

a ooe F™ (g -
np = F et s Ia) < gpeee PV = A< gy



(9.4)
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Then for all §, € T,(0), T g, « T, and IT g, < £ ]I 6,1l . ;
|
i

Further, X = & Tp(X)e
Ler £

Since each operator (Jnigx) is bounded, there exists an orthormal basis

(ejf‘?')) in I,(X) such that for all v = I,...,N,

(Tvegﬁ),eg)) =0 if r > j(E+1) + I,

Define the positive,self-adjoint operator A in X by

Aegz) =+ Ual)e;’ﬁ’ ,jeN, Lew,
followed by the usual extensions (Note that |£] = £1+...+ZN). Then the

eigenvalues of A are the numbers Ap = N+p, p ¢ N, with multiplicity

fN+p-1
N

). Hence, the analyticity space SX A is nuclear,
L]
Renumerating the orthonormal basis (e;z)) yields an orthonormal basis

(gn)neli for X. We have

Theorem

Each of the operators Tys v = hheaoN is a continuous linear mapping
from SX,A into itself.

Proof. Let v = 1,,,.,N, and let 0 < s < ﬁ%T" Then

A, —tA
sup ](es Tve gm’gn)] =

n,m

= gup sup

(3] (k))
T e,
r,jelN k,LeW ( “QJ & l) €

r -2} (t=s) -i (= (N )8)Y
< e sup (£ e ) su (e o, 0
s (2, o ) -

(Q-(l£!+j)ta(lk[+r)s




139,

IV, GENERALIZED EIGENFUNCTIONS WITH APPLICATIONS TO DIRAC'S FORMALISM

Abstract.

In the first part of this chapter a theory of generalized eigenfunctions is
developed which is based on the theory of generalized functions introduced
by De Graaf. For a finite number of commuting self-adjoint operators the
existence of a complete set of simultaneous generalized eigenfunctions is
proved. A major role in the construction of the proof is played by the commu~-
tative multiplicity theory.

The second part is devoted to an Ansatz for a mathematical interpretation
of Dirac's formalism. Instead of employing rigged Hilbert space theory
Dirac's bracket notion is reinterpreted and extended to the generalized
function space TX,A' In this way, the concepts of the Fourier expansion of
kets, of the orthogonality of complete sets of eigenkets and of matrices

of unbounded linear mappings, all in the spirit of Dirac, fit into a mathe-

matical rigorous theory.



140.

Preliminaries.

VThe introduction of a theory of generalized eigenfunctions is clogely rela-
ted to a theory of generalized functions, of course. In [GeVi], ch.I, to this
end the theory of rigged Hilbert spaces is introduced. Here we employ
De Graaf's theory of generalized functions, see [G]. In these prelimina-

ries the main features of this theory will be given.

In a Hilbert space X consider the evolution equation

du
(?.l) '(-I'E Au

where A is a positive, unbounded self-adjoint operator. A solution u of

(p.1) is called a trajectory if u satisfies

(p.2.1) Vt>0 :’u(t) e X

(p.2.41) VoV o AU = ult + 1) .

We emphasize that lim u(t) does not necessarily exist in X-sense. The
: t¥0 '
complex vector space of all trajectories is denoted by Tk A The space
3

~TX A is considered as a space of generalized functions in [G].
E

The analyticity space SX A is defined to be the dense linear subspace of
3

X consisting of smooth elements of the form e’tAh where h ¢ X and t » O.

Hence S = U e—tA(X). For each f ¢« S , there exists 1 > 0 such that
X, A %,A

t>0
TA .
e fe SX,A' Further, for each F ¢ Tﬁ,A we have F(r) ¢ SX,A for all

t>0.38 is the test function space in De Graaf's theory. In T we
X,A X,A

take the topology induced by the seminorms

{p.3) Fro {IF(0)I , F ¢ TX,A'



Because of the trajectory property (p.2.ii) of elements in TX,A’ it is
a Fréchet space with this topology. In SX,A we take the inductive limit
topology. In [G], a set of seminorms on SX,A is produced which generates
the inductive limit topology.

The pairing between S and TX A is defined by

X,A

A
(p.4) <g F> = (e Vg, F()) , g ¢ SX,A’ F e TX’A.

Here (-,-) denotes the inner product in X, Definition (p.4) makes sense
for © > 0 sufficiently small, Due to the trajectory property (p.2.ii) it

does not depend on the choice of T.

The space SX A is nuclear if and only if A generates a semigroup of Hilbert-
3

Schmidt operators on X. In this case A has an orthonormal basis (vk) of

eigenvectors with respective eigenvalues My, say. Further, for all t > 0

the series z e-}\kt converges. It can be shown that f ¢ SX A if and only
k=1 ‘ ‘

>

if there exists T > 0 such that

-X
(.5 (f,v,) = 0(e k™)
and F e T if and only if for all t > 0
X,A
(p.6) v Fr o= 0tk Ty |

A topological tensor product SX,A ® SX,A is given by SX@X,AEA and,

imi ’ . h iti 1f-
similarly, TX,A ® TX,A by TX@X,AEEA Here ABA denotes the positive, se
adjoint operator A®I + I®A. Since 35 A is nuclear, the Kernel theorems

s
of [Gl, Ch. VI, apply. So SX@X,AEA comprises the kernels of all continuous
linear mappings from TX,A into SX,A and TX@X,AEHA the kernels of all conti-

nuous linear mappings from SX,A into TX,A'
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. Jontroduction

First | want to give an illustrativeexample for the general theory of this
chapter. Therefore, let SX Ahe the test function space with X = LZ(EO and
2 ’
! 2 . R . .
A = 7( - f£§-+ X+ I) , the Hamiltonian operator of the harmonic oscilla-
dx

tor. This SX’A—space is one of the examples discussed in [G], and in Ch. I,
It is well-known that the Hermite functicns ¢k, k =0,l,... are the eigen—
functions of A with eigenvalues k + 1, So for each t > 0, the operator

e“tA is Hilbert~Schmidt, and the spaces SX,A and TX A are nuclear. The

¥

self-adjoint operator ¢
@) (x) =xf{x) , x¢ R,

maps SX A continuously into itself, and can be extended to a continuous
b
linear mapping on TX A’ denoted by &, also.
b ‘

The linear functional by s given by
0

6XO o P>'f(xo)

is an eigenfunctional of @ with eigenvalue 2g- The question arises whether
5 € Tx A The space SX A consists of entire analytic functions. So
* £

%
0
for each f ¢ SX A f(xo) exists, and can be written as
E] 1

£(xy) = ] (£, )y (x0) .
ol T L o
Hence 6x0 € TX,A if and only if the series

°§ RGO

b (Xg) 4
ko k0 Y

&, (t) =
X0

converges in X for all t » 0. Because of the growth properties of |¢k(x0){

for large k, this is true in this special case.



In this chapter only nuclear SX 4 Spaces are considered. This implies that
s
all the operators e_tA, t > 0, have to be Hilbert-Schmidt. So A has an

orthonormal basis of eigenvectors MR with respective eigenvalues

=
-A{t

0 < i £, s ... satisfying } e < @ for all t > O.

1
i=1
Let I be a self-adjoint operator in X which is continuous on SK A Since
3

T is self-adjoint, 7 can always be represented as a multiplication operator

in a countably direct sum of L -spaces, For convenience in this introduc~

2

tion, we shall consider the special case that 7 is unitarily equivalent
to multiplication by the identity function in Lz(m,u) for some finite
Borel measure p. In other words, a unitary operator U : X - Lz(m,u)

exists, such that g = vrU” is given by
@H & = x40

on its domain D{g) = U@(T)). U maps SX,A continuously onto SY,B’ where
¥ = L,(R,u) and B = vAU* .

Put & = Uv, , k = 1,2,... . Then the mk's establish an orthomormal basis

k,
in Y and they are the eigenvectors of B with eigenvalues Al,Az,... .

Let Xg € c{7), the spectrum of 7. It is obvious that Xy is a (generalized)

eigenvalue of 7 if and only if the linear functional AXO s £ f(xo)
is continuous on SY 3 This continuity condition is equivalent to the
b

condition

©.1) t

At
k
. e vk(xo)@k ¢ TY,B .

ne~—18

1
Of course, there is a problem here. In general 6(X0) has no meaning for
Lz-functians. Formula (0.!) makes sense only, if we can choose a represen-

tant from each equivalence class <g, > in a unique way. In case
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SY,B < L (R,1) we could employ the lifting theory of Ionescu Tulcea
(see [IT]). But in general SY,B is not contained in L_(R,u).

We shall prove that a unique choice of representants $k in the cla%ses
<97 k=1,2,... , implies a2 unique choice of representants in ali

classes <f> of SY 3’ just by defining
»
(0.2) £ 1= Z (£,0,0%, -

Here we take

R . -1

0.3) §, 1 =+ limsg nu(Q (x)) g, du
k h k
o Q,
h

where Qh(x) = [x~-h,x+h]. It is clear that Defimition (0.3) does not
depend on the choice of @k € <.
The general case that 7 is equivalent to multiplication by the identity

function in a countably direct sum of L, -spaces can be dealt with similarly.

2

In section | we shall show the existence of generalized eigenfunctions

for a continuous self-adjoint operator T on SX,A' In section 2 excerpts

of the commutative multiplicity theory are given, For this theory we

refer to Nelson([ﬂezl) and Brown ([Brl). The main theorem in section 3
states that we can a priori remove a set of measure zero N out of the
spectrum o(7) of T such, that for all points in o(T)\N with multiplicity
m, 0 £ m £ », there exist precisely m independent gemeralized eigenfunc-
tions, Section 4 is devoted to a sketchy proof of the result that in an
adapted form the conclusions of section 3 remain valid for an n~tuple of
commuting self-adjoint operators, Finally, in section 5 an Ansatz is given

for a mathematical interpretation of Dirac's formalism.




. The existence of generalized eigenfunctions

In the sequel A will denote a positive self-adjoint operator in X which
generates a semigroup of Hilbert~Schmidt operators, So A has an ortho~

normal basis of eigenvectors ViV .. with respective eigenvalues

90
w

Ay Az,... satisfying Z’e Mt o for all t > 0. Further, 7 will denote

a self-adjoint operatir in X, which maps SX,A continuously into itself.

The spectral resolution of T is denoted by (HA)A R

For § ¢ X, the subspace X6 of X is defined to be the closure of the linear

span of the set {H(A)§] 4 < R a Borel set}. Here H(A) denotes the spec~

o0
tral projection J dHA

A
1.1) Lemma
The subspace Xﬂ of X is unitarily equivalent to Lz(m,pﬁ), where p6 denotes

the positive, finite Borel measure (Hké’é)kelk'

Proof

The proof will be sketchy. It is taken from [Br].
(n)

Let g « Xé Then there exist sequences (a( )) and (A jeN such
that
(=) lim g - E ai“)ﬂ(a(“))m =0

ne ji=1

So we may conclude that the finite series

[Ty

T .

'2]a§n)H(A§n}}5 R ne N,
je

(n) {n)

are uniformly bounded. Then ¢ = lim E exists and because of the

oo 3=l
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completeness of L2<R’Q£)’
2

d < ®o,

[ 161200, < = .

By (*) g can be expressed as g = ¢tT}5 with ligl = ﬁdf”L . On the other
B 2

hand, if ¢ ¢ Lz(m,‘pﬁ), then

n
¢ = lim J oW, W
o j=1 3 3

with the limit taken in,Lz—sense. So obviously g = ¢(D){.

The following equivalence holds

g€ Xg® ad»eLQ(JR,oé) F9 =D
The operator [ : X6 > Lz(mjpé},
Ug = U(p(M§) = ¢
is unitary. This completes the proof.
(1.2) Notation
P denotes the set of x ¢ R which satisfy
96([x~e,x+g]) >0
for every ¢ > 0.

For each x ¢ P, define

(1.3) Gt,h(x) = emb{{pﬂ'(qhum" J dH, 5} (0) , t>o0.
Qh(X)
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Here emb is the continuous linear mapping from X into TX A
*

emb (W) ¢ t»e-tA(w) , we X,

and Qh(x) the closed interval [x-h,x+h].

Since (vk) is an orthonormal basis of eigenvectors of A the Fourier

kel

expansion of Gt h(x) is given by
s

- [ dH, §sv)
G (x) = ~Agt Qh(x) A k 0 o
t,hx-ge o v, , t>0,h>0.

=1 Qh(x)f ( 7\6'6)

By Lemma (1.1) for each k ¢ N there exists #y € LZ(IR, pé) such that

{ —
J d(H, §,v,) = J oy .m0
Qh(X) Q, ()

With the aid of Theorem 10.49 in [WZ] we can prove that there existe a null

set Nl X for each k ¢ N such that the limit
b

-1 —
= oo d
7y (%) ;:g pé(Qh(x)) J 9 4oy
Qh(X)

exists for every x € PAN and 5; can be interpreted as a representant of

Ik
the Lz—class <Tp;> in the usual way.

. At
Furthermore, let t > 0., Then the function | e Ak |

ke N
Hence applying Theorem 10.49 of [WZ] for the second time, we obtain a null

2
qak] belongs to LI(R’%)'

set N such that for all x ¢ P\N

2,t 2,¢°

_ - - 2
) e’xktl@ 12>(x)=lim9 Q_ M 1( [(Z e}tktw i )df})’
(ké]N : o b ° o 00 keM K
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Put N = ( U Ni k) U ( U N ) Then N is a null set with respect to 96.
1

ke neN

’n

For each x ¢ P\N we have derived the following

(1.4.4) ¥ PR 0 = nm pﬁ(Qh(x)) I?{I:dpé.

kel
Q, ()

l
(1.4.41) V__ ze lcpk(x)] - lmpﬁ(Qh(x))
K

Q, (x)

(e

keIN

Since for each t > 0 there exists n ¢ N with 0 < x: < t, we find

k
I ek g l®s [ e ™ g | <
kel kel

The latter observation leads to the following definition. The element Gt €

of X is defined by

~“At
(1.5 G = § e KT X v , t>0.
t,X - k k

Then t » Gt,x is an element of TX,A'

Let h ¢ Sx,A’ and put

Brxw } (h,v,)§ (x) e L (R,p,)
kel k7 Tk 2 £

Then Ifx(x)l < o for all x ¢ P\N. This can be seen as follows:

keN ke N

Y %
fl < (1 famp?) (12 f5,m1%)

for t > 0 small enough.

i

i

=X
k't l@k{2>d‘36 .

b4

< o



We now come to the main theorem of this section. It says that out of a null

set Nﬂ with respect to the measure 95, each x € P admits a generalized eigen—
L

vector in T .
X,A

s

(1.6} Theorem

For each x ¢ P, h > 0 and t > 0, define

! [ deg} (t) .

G (x) := emb{pé(Qh(x))'
Q, ()"

t,h

Then there exists a null set Hﬁ with respect to pé such that

(1) ¢ = lim G
hyO

.. . . .
(ii) Gx st H~Gt < € TX,A’ and Gx # 0 for all x ¢ P\ﬁé.

b4

" h(x) exists in X for all x ¢ P\ﬁ?’6 and all t > 0.
2

(iii) TGX = xGx .
Proof

{1.5.1i) Let £ > 0, and let ¢ > 0. Let x € P\N where V is the null set as de-

fined in (1.4). Then there exists n € N such that 0 < %~< 2t. Put

Tk nt
M = ( Ie 15, ()] ) . Fix k., ¢ N so large that
X,0 keI k 0
-
(=) _
e nk<g(Mxn+])l N k%ko.
s
Then
“Aptm—or 2 -2kt g 2
() [ e 'k @k(x) vkli = e 2kt l@k(x)} <
k=kg*1 K=kt
1
“(t"—))&k
< e n’ 0 ﬁz < 62.

“x,n



Furthermore, by (4.i) and (4.ii) we can choose h > 0 s0 small that

—l F— - ]
Ipé(Qh(X)) kadpé-cpk(x)] < g s k= kg
Q, ()
and also
@ 7! ()j "‘;A“{ l?')d <+ 12
oé g (x keme N "5 t.n .
Q, =
Then
k, )
- - [ — - -tA
(*+) uk-—};l e Akt [Oé(Qh(X)) ! J % dpé - @k(x)] vkll <eche t “X@X
Q, (x)
and
Gex) ] e“*k“pémh(x))"( J?p;d%)vkuz -
kot Q, ()
= ¢ Pt Ipé'(Qh(X))-'l J ﬁz{gdpélz <
k=k0+1 Q (X)
h
] o
'Z(C'—)}\k - X
n ko | n "k -1 J 2 } 2
<e 1kgme P 4(Q, =) o, | o< e

Q, (%)

A combination of the estimates (), (**) and (»»x%) yields the result

tA

Il exb pé(qh(xn" ( f dH, g )(t) -6, I<e@ s e e

Qh(X)

for h small enough where Gt x is defined by (1.5)
£

(1.5.i1) If Gx is defined by Gx L Gt,x it is obvious that Gx in TX,A'

Let FO be the set of all x ¢ P\F for which Gx = (0, We shall show that TO

is a null set with respect to pé . Note first that Gx = 0 implies $k(x) =0



151,

for all k ¢ IN. Hence T, is a Borel set. Put vy = r f dﬁkﬁ and let k ¢ N.
0

0
Then

(Y;Vk) = 4( d(Hxést) = ,i( @k dp6 = 0.
PO FO

Hence vy = 0 and FO is a pull set with respect to pé.
If we put Né =N u FO’ then Nﬁ is a null set with respect to p6 and for all

X € P\ﬁ?6 we have GX € TX,A and GX # 0.

(1.5.111i) Let x ¢ P\ﬁé. We have to show TGX = xGx. Since T - xI is conti-

nuous on T,
X, A’

(*) (T - xI) 1lim Qﬁ(Qh(X)}-] J df‘fig =
hi0
Q ()
= lim (T - xI) [p @Q x»7! J dt 5}
hy0 § A
Qh(X)

We shall show that the latter limit tends to null in TX A for h + 0.
2

To this end, let t > 0. Then we compute as follows

lim emb‘[(T - xI) [o (Q (x))_] dH 6]}(t) =
h0 1 §7"h A
Qh(X)

o { [ ot BN - Dvp) v} -
3;33 Ikgl\le Qg(Qh(X)) a6, (T = xDv) Jv,
Qh(X)

i

. J’ -, t -1 ( ( ) o ) _L
iix(l)l Ikgxqe . pﬁmh{x)) ] (A -x) Q‘k(}\) doé ’ka« .
Q, ()
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This expression can be treated as follows

R CN O [(A-x)‘“”@km ao | <
kel Qh(x) :
s I e e ( f IRMEPE
. pé(Qh(X))_‘ ( I IA-'xlzdﬁﬁ) <

Q, (x)

2

2
< h (Mx,n + 1)

for h small enough and n ¢ W so large that 0 < % < 2t.

So the limit (*) is null and also (1.5.iii) is proved.

Commutative multiplicity theory

The commutative multiplicity theorem enables us to set up a theory, which
ensures that the notion 'multiplicity of an eigenvalue' also makes sense
for generalized eigenvalues. The so~called multiplicity theory which leads
to this theorem is mainly measure theoretical., It is very well deseribed

by Nelson [Nezj, ch. VI, and by Brown in [Br].

(2.1) Definition
Let p be a positive, finite Borel measure on R. Then the support of p,

supp(op), is defined by

ez . - 3
supp(p) = {r ¢ R]V€>0 s pllr=c,r+el) » 0} .




/oy

{2.2} Lomma
Let p be a positive, finite Borel measure on R, Then the complement

- o, .
of supp(p}, supp(p} , is a set of medsure zerc with respect to o.
Proof
* . .
For each % ¢ supp{p) , define the set QX t= {x=-g ,x+e] with ¢ > 0
’
taken so that p(Qx ?) = 0. Then
v E

*
supp(p)  « U
xesupp(p)

*Qx,a'

Let k « W. The set Supp(p)* o [-k,k] is bounded in R. With Besicovitch
covering’s Lemma ([WZ], p.185) it follows that there is a countable set
{xl,xz,...} such that

supp(o)” n [~k,k]l ¢ U Q

i=1] ¥

254

Hence

*
p(supp(p) n [-k,k1} = 0.
Since k ¢ N 1s arbitrary, supp(p)* itself is a set of measure zero. i

There is another charaterization of supp(p).

(2.3) Lemma
supp(p) is the complement of the largest open set O

for which p(0) = 0.

Proof
Let suppl(p) denote the complement of the largest measurable open null
set, the set Suppl(p) is well defined (see [Boul, p. 16). Suppose

x supp](p). Then there exists ¢ > 0 such that the interval
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[x-e,x+e] supP‘(p)*. So p(Ilx~c,x+¢l) = 0, and x / supp(p).
Conversely, suppose % ¢ supp(p). Then there exists ¢ > 0 such that
p{[x~¢c,x+¢]) = 0. This implies that (x-¢e,x+¢) < suppl(p)*.

Hence x ¢ supp](p), completing the proof.

(2.4) Definition

The Borel measure v is absolutely continuous with respect to the Borel
measure yu, notation v << u, if for every Borel set N with u(N) =0,
also vw(N) = O,

The Borel measures v and | are equivalent, v ~ u, if v << y and p << v,

It is clear that v ~ p implies supp(v) = supp{u). So it makes sense to
write supp(<v>) meaning the support of each v in the equivalence class

V>,

{2.5) Definition

Two equivalence classes <v> and <y> are called mutually disjoint if
v{supp<v> n supp<u>) = u(supp<v> n supp<p>) = 0.,

If one wants a canonical listing of the eigenvalues of a matrix it is
natural to list all eigenvalues of multiplicity one, two, etc. We need
a way of saying that an operator is of uniform multiplicity one, two, etc.

To this end we introduce

{2.6) Definition

A self-adjoint operator T is said to be of uniform multiplicity m,

I £ms o, if T is unitarily eﬁuivalent to multiplication by the ident-
tity function in Lz(m*“) ® ... d thm,u), where there are m terms in

the sum and 1 is a finite Borel measure,
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This definition makes sense because if 7 is also unitarily equivalent
to multiplication by the identity function on LE(R,v) e ... & Lz(va)

(n times), themm = n and y ~ v (see [Brl).

{2.7) Theorem (Commutative multiplicity theorem)

Let 7 be a self-adjoint operator in a Hilbert space X. Then there exists

a decomposition X = X, ® x’ B ... 8 Xm ® ... so that

(i) ' acts invariantly in each Xm

Giiy 7T Xm has uniform multiplicity m

(iii) The measure classes <> associated with the spectral representation

of 7T X, are mutually disjoint,

Further, the subspaces Xm,X],Xz,... (some of which may be zero) and the

measure classes UZHSH P, SHy >, e aTe uniquely determined by (i), (ii)

and (iii).

Proof

For a proof seeNelson,[Nezjch. Vi, Brown, [Brl, or [RS]. ]

. A total set of generalized eigenfunctions for the self-adjoint operator 7T

{(3.1) Definition
A set T ¢ X is called cyeclic with respect to T if
X= ® X .
yel ¥
Since X is separable, [ consists of an at most countable number of ele-
ments. If T can be choosen such that it consists of one element only,

this element is called a cyclic vector and the operator T a cyclic ope-
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rator. The cyclic set T is not uniquely determined. The commutative

multiplicity theorem brings in some uniqueness.

{3.2) Lemma
T has uniform multiplicity one if and only if 7 is cyclie. (see Defini-

tion 2.6)
By Theorem (2.7) X can be splitted into a countable direct sum,

X=X ®X ®X, ... .

The restricted operator 7 | X, | € m < », is unitarily equivalent to
m

multiplication by the identity function in
Lz(R,pm) & ... 0 Lz(m,um) 5 {m times).

By ij, i=1,...,m, we denote the orthogonal subspace of Xm, which

corresponds to the j~th term in the direct sum. Since 7 [ X m obviously

(=)

has uniform multiplicity one, there exists a cyclic vector y for

7T ij. Thus we obtain a set T,

FW{YM!1<'<m+I,1£mSwL

which is cyclic for 7. Note that 1 s m £ = means m = «,1,2,,..

letm, | £m g », be fixed so that Xm # {0}, and let j, 1 £ j <m+1 be

(m) - (@ (m) ’
denote the finite Borel measure (( A»{' Y5 AR

The projection from X onto ij is denoted by P§m) and the unitary opera-

}. Finally, put ’\}(n% §m)P§m)vk.

fixed. Further, let p

(m
tor from ij onto LZ{R’ngm)) by Z,{j



157,

(m)

From Theorem (1.3} we obtain sets Nj of measure zero with respect to

ng), =w,1,2,... , such that for each ¢ ¢ supp(p§m))\N§m>
(m) | Tt (m
Gc,j r ot o> kzle vk’j(a)vk
is in TX,A’ and
;T'G(m). = UG(m). .
Ty ] Gyl
Following Theorem (2.7) pgm} ~ pgm) for all i, 1 € i <m+1, i.e. the
i i o
set Ngm) is a null set with respect to each pim). Put N<m) = U N;m).
. i=1

(3.3) Theorem

Let m, | £ m € =, be taken such that X # {0}. Then there exists a null

(m)

set N with respect to <um> with the property that for every

{m)

o€ supp(<um>)\N there are at least m independent generalized eigen-

functions with eigenvalue o. Further, the set

{Gé?§ Il S j<m+l, 1l cm<w, gc¢ Supp(<um>)\N(m)}
is total.
Proof
m (m) N
Suppose jgl .y cc’j = 0. Then for all f ¢ Sx,A
jul
I s fJ@(c) -0.
j=1

Since SX A is dense im X, this leads to a contradiction.
A set V < TX,A is said to be total if stV<g’F> = =g =0,

So suppose,

<g,G(m2> = (.

RN
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for 1 £ j<m+1l, 1 <m<eand 0 ¢ supp(‘tum«")\}l(m). Then it immediately

follows that (SEm)Pgm)g) (o) = 0 almost everywhere with respect to e

with 1 £ j<m+1l and | cms = Sog =0,

(3.4) Lemma

Let ¢g(T)} be the spectrum of T, Then

o() = U supp(<um>) .
meHu{e}

Proof

If x { o(7), then there exists ¢ > 0 such that
H{lx-¢,x+c]) = 0.

So for allm, | s m < =,
um([x-e,x-l-e]) =0,

This implies (x-¢/2, x+e/2) ¢ supp(um) and hence

x¢ U supp(<um>§ .

1smgoo

Conversely, suppose x ¢ U supp(<um>) . Then there exists & > 0 such
{Smgon

that (x-8,x+6) ¢ supp(<um>), 1 <ms o, Hence H([x~6, x+ Gl)yém) =0

for allme N u {=}, 1 £j<m+i, This implies H([x-&,x+56]) = 0.

Sox § o(T).

We finish this section with two examples.
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(3.5) Example

Let A, ¢ o(T) be an eigenvalue of multiplicity m

0 Then H({AG}) is a

0

non-zero projection on X, and for j, 1 < j < ub-+1 fixed, we have

f dff ngo) {mgy)

Q, () | HDghy™

[ aty$m0) 000 WHO by 0% 2
i J 0773

G;mo) = lim
0,7 hso

Qh(A 3

Hence G(mo) e X,
AL .
0,3

(3.6) Example

Let C be a self-adjoint compact operator on X. Then the vectors

-k (m)

J,k , 1= j‘s m, 1 <m< =,

-
018

where the series may be a finite sum, establish a cyclic set for C. Here

(m)

( §m)) is an orthonormal basis of eigenvectors for C; eJ X is the' j~th
>

(m)

eigenvector, 1 € j <€ m, with eigenvalue My of multiplicity m,

I €m < ™,

The case of n-commuting self-adjoint operators

In this section we shall extend the theory of the first part of this
paper to the case of n commuting self-adjoint operators, where n is a
natural number. We only discuss the frame work of this extension, because
there really is no essential differeﬁce with the théory of one self-

adjoint operator.

Let <Tl’T .,Tn) be an n-set of commuting self-adjoint operators in X,

27
which map SX,A continucusly into itself. Let (A, )l R 7 i=1,...,n,
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denote their respective spectral resolutions. For § ¢ X, the Hilbert

space X6 is the closure in X of the linear span
<{H1(A1) Hu(An)ﬂ A, < R a Borel set, i= l,...,n}>.i

The Hilbgrt space xé is unitarily equivalent to Lz(]an’pé), where p,g .

is the well-defined finite measure
pts(Al,...,An) = (h‘l(al)...Hn(An}é,ﬁ)

over the Borel subsets of R", For every g ¢ Xﬂ there exists § ¢ Lz(mn,pé}

with the properties

=3
i

Jﬁdﬁl(ll)...ﬂn(xn)ﬂ
R

g J]mzdpé.
Rn

The n-set restricted to Xﬁ’ (T],...,Tn) r xﬁ is uhitarily equivalent to
the n-set (QE""’Qn) , where Qi denotes multiplication by }‘i in

n
Lz(m ’96) .

For x ¢ B® and h > 0, we define the cube Qh(x) by

Q@) i={g e R'||x; ~¢g;] sh, i=1,...,n}.

Further we define the set P ¢ R by
o o .
Pi={x e R }vh>0 s Qﬁ(Qh(x)) > 0} .

Then in case of the n—set (T .,Tn), Theorem (1.3) can be reformulated

ERE

as follows



(4.1) Theorem

For x « P, define

GX’h(t) 1= emb(p6<qh(x)))"‘< JdHl(X])...Hn(An)ﬁ) (t)
Qh(X)

There exists a null set N with respect to p6 such that for all x ¢ P\N

lim G h(t) exists in X for all t > 0
h+o *°

(ii) GX ot e Gx(t) € TX,A and Gx #0

(1) 6,0

(iii) lti = xti.

Proof

cf. the proof of Theorem 1.3.

The measure theoretical part of section 2 can be adapted in the usual way
to measures in Rp, cf. Definition (2.1), (2.4), (2.5) and (2.6) and Lemma

(2.2) and (2.3).

For a better understanding of the commutative multiplicity theorem for
an n-set of self-adjoint commuting operators, we introduce the notion of

(generalized) eigentuple of multiplicity m, 1 < m £ =,

(4.2) Definition
An n-tuple A = (A],...,An) e R" is an eigentuple of the n-set (Tl""’Tn)

of multiplicity'm if there exist m orthonormal simultaneous eigenvectors

a(m? such that
A’J
(m) _ (m)
fiti T MG

In

1 £ j<m+l, 1 €£1i<n,

Similarly, the notion generalized eigentuple can be introduced.
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If one wants a canonical listing of the eigentuples of an n-set of
commuting matrices it is natural to list all eigentuples of multiplicity
one, two,... . We need a way of saying that an n-set of commuting 'self-

adjoint operators is of uniform multiplicity one, two, etec.

(4.3) Definition

An n-set (T§’°"’?n) of commuting self-adjoint operators is said to be
of uniform multiplicity m if each Ti is unitarily equivalent to multi-
plication by ki in LZ(mP,u) D .., & Lz(ﬂfhu), where there are m terms

. . L. . n
in the sum and where u is a finite Borel measure in R .

The formulation of the commutative multiplicity theorem for an n-set of

commuting self-adjoint operators is quite evident.

(4.4) Theorem
Let (Tl""’Tn) be an n-set of commuting self-adjoint operators in X.

Then there exists a decomposition

X=X ®X ®X, 0 ...

such that

(i) The n~set (Tl""’Tn) acts invariantly in each Xh, t gmg o,
(ii) The n-set (T],...,Tn) restricted to Xm has uniform multiplicity m.
(iii) The measure classes U> associated with (T],...,Tn) f Xm are

mutually disjoint.

Further, the subspaces Xm,Xl,Xz,... {some of which may be zero) and the-

classes <Py <H

|7s-- are uniquely determined by (i), (ii) and (iid).
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The proof of this theorem can be derived from the proof in the one dimen-

sional case and is essentially the same (see [Nezj, [BrD).

(4.5) Definition
A set.' « X is called cyclic with respect to (T],...,Tn) if
X= ® X .,
yeT Y

Note that T is at most countable.

If T consists of one element, this element is called cyclic vector. Lemma

3.1 can be replaced by

(4.6) Lemma
The n-set (Tl,...,Tn) is of uniform multiplicity one if and only if it

has a cyclic vector,

Following Theorem (4.4) X can be splitted into a direct sum

X=X & X, @ X2 ® ... . Each of the restricted operators T, r X

1 i «m+1 is unitarily equivalent to multiplication by Ai in

1A

n n .
LZ(IR ,um) ®...d LZ(IR ,um) , m-times .

Let ij, 1 € j<m+1 be the orthogonal subspace of Xm’ which corresponds
to the j~th term in the sum above., Then (TI""’Tn) f ij has a cyclic
(m)

vector Yj , say. In this way a set I is obtained

I = {ng) 12 3<m+l, 1 $mg o}

which is cyclic for (T],...,T ).
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(4.7) Theorem
i

Take m, 1 € m £ », such that X # {0}. Then there exists a null se}

@ (m)

with respect to <u>s such that for all X ¢ supp(<pm>}\N s &here
are at least m independent simultaneous generalized eigenfunctioné of
(TI""’Tn} with generalized eigentuple A = (Xl,...,hn). -

Further, the set of all gemeralized eigenfunctions is total,

(4.8) Example

2
‘Consider S with X = L_(R) and A = LY (U x2 + 1] and the 2-set
X,A 2 2 dX2
(@,Qz) where ¢ denotes the parity operator and Qz mltiplication by
2
x73 so

@H = x> §x) and 3G = f(=x .

Then the 2-set (@,Qz) has uniform multiplicity | because it has a cyclic

vector; for instance take

b

yrx e (1 + xye .

A mathematical interpretation of Dirac's formalism

In the preface to his book on the foundations of quantum mechanics von
Neumann says that Dirac's formalism {4 scarcely fo be swipassed in brevity
and efegance but that it in no way satisgies the requinements of mathema-
Lical nigoun. The improper functions of Dirac, the é-function and its
derivatives, have stimulated the growth of a new branch of mathematics:
the theory of distributions. Yet, as far as we know, no paper on Dirac's
formalism mathematically foundates the bold way in which Dirac treats

the continuous spectrum of a self-adjoint operator. Most papers on this



subjeet only solve the so called generalized eigenvalue problem by means
of the rigged Hilbert space theory of Gelfand and Shilov. But Dirac's
formalism has more aspects.

In this section an interpretation of the formalism is studied in terms
of our distribution theory. It consists of the definition of ket and
bra space, of Parseval's identity, of the Fourier expansion of kets with
respect to continuous bases, of the existence and orthogonality of com~
plete sets of eigenkets, of matrices of unbounded linear mappings with

respect to continuous bases, and of some matrix computation.

We shall only consider quantum systems at a given time without super-
selection rules. So we do not need to specify whether we are using the
Heisenberg or Schrodinger pictures. A quantum system at & given time is
determined by states and observables. The space of all states is mostly
supposed to be in 1-! correspondence with the set of all one dimensional
subspéces of an infinite dimensional separable Hilbert space X and the

set of observables in 1~1 correspondence with the set of all self-adjoint
operators in X. But in general we do not need to consider all self-adjoint
operators, To describe a quantum system one can make a choice out of the
set of observables, e.g. 'energy', 'momentum' and ‘'spin’, which is suf-
ficiently large to completely determine the quantum system and in parti-
cular all relevant observables.

In his formalism Dirac treats all points in the spectrum of a self-adjoint
operator simila?ly. So the formalism assumes for instance that the notion
multiplicity of X for every point A in the spectrum makes sense, and further
that for each A with multiplicity m there exist precisely m independent

eigenstates., Of course, Hilbert space theory can not fulfil these wishes.
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Wilbert spaces arg too small. Therefore, it is naweral Lo look for spaces,
which extend Hilbert space, and with structuces comparable to Hilbert

space structure, For instance, the Lrajectory spaces Tx are acceptable
¥

A
canglidates.

o Birac's formalism the dual space of the ket space, rhe so called bra
space, iy in 1-1 correspondence with the ket space. So the latter spare
sught to be self-dual. To this end distribution theery can't ever he of

any help, We try to circumvent this problem by & new interpretation of

Dirac's bracket notion.

Let (5 be a quantum mechanical system. We assume that 08 is completely
determined by the set of self-sdjoint wperators {Pl,.,.,Fn] in the Hilberf
space X. Further, we suppose that there exiasts a nucleaar space SX,A gach
that each P, maps SX,A continvously into itaelf. Sou the Fi’ i = 1,i..,m,
can be extended to continuous linear mappings on TK,A' For instance, when
the set (Pl,...,Fn} is an n-set of commuting self-adjoint aperators it

iz possible to construct such a nuclear space (of. Ch. T1II, Section 9).
In our interprxetation the set of observables of 3 corresponds uniguely
to the set of self-adjoint operators which are sentinuous on SX,A' We
note that the choice of the space SX,A depends on the self-adjeint opera-
tors P ,...,F . For the set of sfatcy we take the sct of one dimemsional

1 n

subzpaces of TX,A'

In Dirac's terminolopy, the trajecrories of TX 4 oT@ eallud ket vecrors
¥

Therefore we introduce Dirac’s bracket motation and denote them by [G=

in the sequel. The label G in the expression |G+ is mostly chosen such

that it expresses best the properties of |G» which are relavant in the
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vontext. To |G* uniqualy corresponds the bra <G| defined by

<Gl st J o kb

] <V ,|C>>v
k=1 k

k

where (Vk) denotes the orthomormal basis of eigenvectors of A, and whera
the series converges in X for each t * Q.
The expreszion <F | G», called the bracket of <F| and |G», denotes the

complex valued function
<F |Gz te <[Ff2(),|G>> , oD,

The function <¥ | ¢+ is well defined because |F»(t) « 3y for every

£ >0, It extends to an analytic¢ funcrion on the open right half plane,

Let £ ¢ $, ,. Then cbviously <f | Gx{-1) exists for every [C» and T » O
'

sufficiently small and

wf \ Gr(-1) =-:!f}(""l.') . \G:n-;
similarly <G| £2(-1) exizts and

<6 | £5(-1) = <] f2(-1) , {G=> .

To emphazize thisz nice property of the elements in SX A the kets and bras
¥
corresponding te ¢lements in SX 4 BT called teést kets and test bras.
¥

Finally, we remark that for all t > 0 the function <F | G+ satisfies

<P | Gr(t) = <F{C) | 62(0) = <G(t) | F+(0) = <G | ¥>(L)
and
<P | G=(t) = <F{t) | &=(0) = <F | G(t)=(0) .

Let D : 8 + 8 be an observeble of 05. For simplicivy, suppose that

X,A K,A
P iz a ¢yclic operator in X, Then all points ia o(F), the spectrum of F,

have multiplicity one. Further, there exiats a ¢yclie vector y im X such
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that P is uniterily equivalent to multiplication by A in the Hilbert space

Lz(llild(n‘-f;\'r,y)'). Here (H.) denotes the spectral resolution of the

AAeR
identity with respect to P, As in section 3, the Borel measure d(Hﬂ,-v)
ig danoted by dp {A) in the sequel.
T
Following the preceding sections there exists a null set N with respect to
DY such that for each A « (F)\N there is an eigenket |A». With the no-
tation of zection 3, |i» has the following Fourier expansion
@
[a= =} Vkik){vk}
=]
where the seriss comverges in T, .
XA
tA

f for a well chosen £ & & and t = Q,

Let g ¢ SX,A' Then g = & XA

Consider the following formal computacion

. - St
I3 kzle (E,vk)vk

v |
- EIC k( [ f(x)vk(A)qum)vk
K TR

(2 j%m ( v e“*ktakmvk)ame.
k=0
R
Hence

g - J on | £200) [ar (e) dp (1)
K
The only problem in this computation is the equality (x). W shall there-
fore prove that summarion and integration can be interchanged. The follo-

wing itnequalities hold true
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T { “Apton Farrey| -
¥ ] e k \m)vkmi duv()\) -

o w

( 7o Mkt J Boo|2dn, ) » T oTMKE J lﬁk(?\)lzd;: m) -
k=1 ¥ k=1 ¥

R R

By the Fubini-fTonelli theorem gquality (*) iz verified,

With the aid of the above derivation, g can be written as

g = J st | gr(-t) |ax(e) da_ (1)
T

where the integbal converges absolutely in X, and does not depend on the

choice of £ = 0,

{5.1) Theorem

Let |£» be a test kez. Then

{f> = J<A | £2¢0) IAbdpy(A)
b3

[Ex(t) = JcA | £2(0) JA}(t)dpy(A? . b0,
R

liera we use the usual notion of integral for functioms from B ingo X.

Praof

Let £ = 0. Put g = [£>(t). We have seen that

g = f i | g=(-t) |ax(r) dpy(k)
R

with absolute convergence in X.

Singa <) | g2{=t) = i | £%(0), the assertion follows.
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Parseval's identity is an immediate consequence of section 3

.20 e’ - J ]'ff(x)lzdgyma/ [ [<f | A?(O)lzdaym-
Further, from Theorem (5.1} it is clear that

(5.3) Plf> = I x<x | £2(0) |a> aoy(a) .

Let F ¢ TX,A‘ Then for every 1 > 0, F(1) ¢ SX,}( and hence: b

“emb(|F> (1)) = |F(1)> = /jex RIGHOMES cipY(?\)
‘ il

following v‘i‘heoreﬁ (5.1). Further, let t > 0. Then for every =z, 0: <t <t

i

e—(t*'r)k

(5.4) [F>(t) = [F>(r) = J A P (D) ae(e-1) dpy(l) .

R
The integral in (5.4) does not depend on the choice of 1 and converges! -:

abéolutely in X. The ket |F> can thus be represented by

|[F> ¢ £ > j < | Fr (1) fas(e-1) dpy(x) .
124

By the expression

J <A | F s dp\{(}\)
R

is meant the trajectory

t e [ < [ Fs() |ae(e-1) dpy(h) .
R ‘
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Each of the integrals does not depend on the choice of T, 0 < 1 < t,

and converges absolutely in X. We can write

(5.5) [E> = J <x | B> !x>de(x>
R
where the integral has to be understood in the interpretation that we have
derived above. (Cf, the appendix.)
The result of Theorem (5.1} can be sharpened. To this end, let f ¢ SX,A’
A

Then there exists t > 0 such that e £ ¢ SX A We have
¥

&= [l 17 do () = ( A E D D> do ()
R R L
- A
where the latter integral converges in X. Since e is a closed operator
in X, and since i <A | £ (-1) }A>(t/2)de(A) exists as an integral of a

function from R into X, the integral

Ir<1 | >0 (0 dp, ()
.

exists in SX Amsense. Hence in our interpretation
5

|£> = J < | £> a> doyik)
R

vhere the integral exists in SX gosense. (C£. the appendix.)
3

Consider the following equality

<p | A>(L) =
k

ne3 8

e"’\ktekmvk(u) , A€ o(P)\N, £ > 0.
1

Let GA denote the function

6, ¢ (u,0) P <u [ A»(t)
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and let U denote the unitary operator from X onto Y = LZ(]R,Qy). Put |

B =UAU". Then 6. ¢ T and for F ¢ 8
A Y,

Y,B B

@

<E,6,> = kZ!( ﬁ(u) % G0 do_ () )?zkm =i .

So 6& is Dirac's delta function in TY 8 and consequently we write
- 3

(5.6) <p|A> = 6, (W) .

 Relation (5.6) expresses the géneralization of the orthogonality relations
for the eigenvectors of P to the eigenkets of P in agreement with Dirac's
notation.

For the sake of completeness we rewrite the result (5.5) for the bras and

test bras

(5.7 <F| = J <F | x> <a] de(x) : .
i

where the integral exists in TX A-sense. 1f <F| is a test bra the integral
L

exists in SX,A—sense.

Another aspect of Dirac's formalism is the so called closure property of a

complete set of eigenkets.

(5.8) Theorem (clfosure property)

P = Jx“}pqtapy(x) , n=0,1,2,...
R

where the integral converges in TX@X,AEEA' Here |r> <,\l dengtes the tensor

product - [A> ® [r> (¢ TX@X,AE!A)'



Proof

Let t » 0. Consider the following formal derivation

SEABA) o

- JPSy Qv
k £ k 3
K,

- - / —_—
7 e At At \ { A" <vki 2> (0) <v_ | 2>(0) dp (.\))v Qv
k1 j 2 Y k 2
4 R

#

() x“(kgl (e'*kt{&?vk) © Mt e, vy )do.f(k)
R ’

= J e @ (o dp (1) .
R

We shall prove that summation and integration can be interchanged. The re-

maining part of the proof is straight forward.

y ( e Akt e‘”t;\“akmvﬁ(m do_ () <

o )
. H SMEME g 0012+ jr D e ) <
ke g Y
S-;_— ekt (Hanknz + ,}(ze“?\zt)
k. A
- -3t A -
< 3 AP gAY R

Next we discuss the general case that P : SX A7 SX A has a countable

b 3
cyelic set. There will appear no essential difference with the case of
a cyclic operator P. The same notation as in section 3 will be employed.

Proofs will be omitted.



174.

So let {ygm)l m=ow,1,2,,.. , 1< 3j<m+l} be the cyclic set for

P. Then X can be written as

: m=o  m
X= & ® X :
T mel gl Y}m)
. m=c @
where by absence of better notations @ ® X ) will denote
m=l 3=l ¥i®
J
( oo m o
® & X ) @ ( ® X ) «
m=i  j=I ng) j=1 Y}“')

The Hilbert space Xygm) is unitarily equivalent tozﬁzﬂﬁ,pygm)) and
. i . H
P T ngﬁ) is unitarily equivalent to multiplication by X in LZCR’ngm))'

. J
, each of which has measure zero

(m)

Following section 3 there exist sets N

with respect to <p (m)>’ m = «,1,2,... such that for all A in
v

1
there are m independent eigenkets [A,m,j>, 1 < j < m+1.

supp(<p_ o)W

Y3

The eigenkets can be written as

[A,m,i> = kzlx‘rf’g Q) lv, >

where the series converges in TX A Then similar to Theorem (5.1}
N s

(5.9) Theorem

Let f ¢ SX;A' Then

m=e m
le>= 1} J hamd [ £2(0) [hum,j>do () )
m=} j=I R . YJ
with convergence in T, ,. Further
X,A
2 _®” 2 ' 2
el ® =} ¥ f [<a,m,i | £5(0)|“ dp ()m
w=l o §=1 g ij



(Parseval's identity) and

m=<x7 Resl
Plf> =} ] f Y <d,m, | £2(0) [A,m,j>de 0 ().
. om=l §=1 v

3
Henceforth we will call the set {lk,m,j>| AeolP ,lsm<wo, 1 53 <m+1}
a Dirac basis, (In fact we have to exclude a null set N.)

With the same interpretation as in (5.5) we have

m
(5.10) |[F» = § ) f <,m,j | Fr |a,m,i>dp (m) 6]
=l g Y3

with convergence in TX A In particular if iF> in (5.10) is a test ket

the convergence takes place even in SX A—sense.1

s

Considexr the following equality

, . P RSN YR €Y
<u,m,i | A,m, i () = kzie M e
) (m) (n) -
where A € supp(<p (m)>)\N , € supp(<p (n)>>\N » 15 3 <m+ 1,
Ys 2
J L
i €£1i<n+] and m,n = «,1,2,,..
Let 6§m§ denote the function
3
6™ Gymyiy) ~ <t | im0
3
m=e
and U the unitary operator from X onto ¥ = & ® Lz(mqp (m})' Put
m=1 j=1 Y
- x (m) - 3
B = UAU . Then 6A,j € TY,B’ and for f ¢ SY,B
s, . % (o) 2{n)
£ (V:nal) d fi (U) s fi € innslﬁy(n))
J
and
n=® n =3 As————
s m s(n) | () ()
6= 1 11 B0 9w de (0 fy L)
n=l i=1 k=] Y
) i
£ .
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Hence

<U,m,i | A,m,j> = 6)\(11) 6ji 6mn .

Finally we give the adaptation of the closure property (5.8).

(5.11) Theorem

m
n . .
z [ A |A,m,3><k,m,3| dp (m)(A) , n=20,1,2,...
1 j=1 R Y3

with convergence of the integral in TX®X,AEA'

Here we do not intend to discuss the interpretation of Dirac's formalism
for an n-set of commuting observables. The generalization to this case
is immediate and rather trivial. All results remain valid in an adapted
form. We only notice the nice way in which the definition of a complete

set of commuting observables in the sense of Dirac can be expressed in

our terminology.

(5.12) Proposition
The n-set (P,,...,P ) is a complete set of commuting observables iff it
1 n

has uniform multiplicity one.

Given an orthonormal basis in X. Every bounded linear operator B in X is
uniquely represented by its matrix [B] with respect to this basis. The

product of two operators B B, has matrix [Ble] which can be derived

by formal matrix multiplicationm, [B1B2]k£ = g[Bl]ki [BZJiz

assumes -that the matrix notion can also be introduced in the case of

. Dirac

Dirae bases, and that operating with these matrices runs similarly to
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the discrete case. Because of this assumption one can choose a represen-
tation so that the nepresentatives of the more abstract quantities occur-
ning (n the problem are as simple as possible. Examples of such repre-
sentations are the so called x~ and p-representations.

Here we shall give a mathematical interpretation of this hypothesis of
Dirac. We shall restrict ourselves to representations of observables
with repsect to a complete set of generalized eigenfunctions of a cyclic
self~adjoint operator., The general case of a non-cyclic self-adjoint

operator.or of a commuting n-set can be dealt with similarly.

Let P SX A be a cyclic self-adjoint operator, and let |}>,

: SX,A -
X € o(P), denote the eigenkets of P in TX A The operator F @ P is self-
i

adjoint in X ® X, and maps S continuously into itself. Eigen-—

X X,ABA

kets in T of P® P are |[A>® |u>, Asu € o(P). Following Dirac

XQX,ABHA

we shall denote the temsor product |[A> ® |u> by |u><\| in the sequel.

Every continuous linear mapping from TX A into SX A is derived from an
E ] *

element of SX@X,AEEA’ because of the Kernel theorem. With the methods

we employed in the proof of Theorem (5.1) the following result can be

shown.

(5.13) Theorem

Let B ¢ S . Then

X®X,ABA

B = H <u | B | A>(0) [u><a| do_(A) dp_(w)
]Rz Y Y

where the integral converges in TX , and where

®X,ABA

—tAE—JAB

<u | B|Aa>(t) = <e , x> @ >



We note that

STEABAG ” < | B | 2>(0) (Ju> <a])(v) do, (W do () , 4 -0,

rY \

where the. integral converges absolutely in X ® X.

Similar to the one variable case Tx A (cf. (5.5)), Theorem (5.13) can be
3
adapted such that it is valid for elements in TX@X,AEA’
(5.14) Theorem .

Let G e Ty . Then we have with <u | G| A> : t & <u|G(p) | A>,

@X,ABA

G = ” <u |G| A> |u><x] dp () dp_(n)

2 Y Y
R .

where similarly to (5.5) the integral has to be understood in the follo-

wing sense.

f
G:twr “ |6 |u>(0 (Ju> <AD(t=1)dp_(A) dp_ (W) .
]Rz Y Y

_ Here the integrals do not depend on the choice of 1, 0 < T < t, and con-

verge in X ® X.

With respect to the Dirac basis (|)\>) an element B, B ¢ S

reoa (P)

can be represented by the matrix [B] given by

XOX,ABA’

(5.15) [B]u)‘ =<u|B|2>(0) , u,x € o(P
and following Theorem (5.13)

B = 2” [B]u)\ |u> <A dpy()\) dp_Y(l.l) .
R
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Further for |F> « TX A> the ket B|F> is a test ket and
(5.16) B[F> = ” <p | B | a>(=1t) <2 | F> (1) |w> dpy(k) dp?(u)
.l

TA
where T »  has to be taken so small that Be € SX@X,AEHA’ and where
the integral converges in TX A and does not depend on the choice of
)
T > 0. Even convergence in SX 4 can be proved. Further

’

(5.17) <p | BIF>(0) = f <u | B Av(=1) <A | F>(1) dpy(x)

R

where the integral converges absolutely. Note that <u | B | A>(~1) exists

because B|F> is a test ket for every ket |F>.

The matrix notion can be extended to elements of TX@X,AIEA' To this end,
. . r

let G ¢ TX@X,AGJA' Then with the expression [G] we mean the set of

functions

(5.18) {Gl , = <u|G|ar».

HA

We note that G(t) ¢ SX@X,AEBA'

matrix of G. By Theorem (5.14) we have

The expression [G1 will be called the

G = [)[ [G]uA ju> <a doY(A) dp\((u) .

1R2;

Let [f> be a test ket. Then G|f> can be represented by
(5.19) Glf> : tw H LG (1) < | £2(=1) Jur{t - 1) dp_(A) dp_(u)
2} WA Yo Y
R

where 7, 0 < 1 < t, has to be taken so small that [f£>(-1) ¢ SX A’ and where
>
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the integrals converge absolutely in X and do not depend on the choice
of T » 0. Further

(5.200 < |G|f>:t > J [ (EDA
V R

G(r)]yk < | £ (-1) dem

where the integrals converge absolutely and do not depend on the choice

of t » 0,

Similarly a matrix notion will be introduced for continuous linear mappings
from SX A into itself resp. TX A into itself, or equivalently because of
k4 ?
; i @ .
the Kernel theorem for elements in T(SXQX, I®A’A 1) resp

] 1
T(S 1@A), i.e. the spaces ZB and EA as introduced by De Graaf

X9X,AQ1°
in {G], Ch. IV (cf. Ch.III).

For R ¢ T(S A®I) the matrix representation [R] is defined by

X©X,10A°

(5.21)  [R1, : (s,0) » <p | R(D) | A>(s) .

uA

Note that R(t) ¢ SX@X,AEA t » 0, fixed., So there exists ¢ > 0 such
that <p | R(t) | A>(~0) is well-defined because F(t) |A»> is a test ket.

It can be shown that

(5.22) R : tw R(t) = ” (R, (o,1) ([x>(t-1) @ [u>(0)) do () dp (1)
R

where the integrals converge in X @ X and do not depend on the choice of

7, 0 < 1 < t and of 0 > 0 sufficiently small. We write

(5.23) R = 2” [R]M [u> <] de(k)sipY(u)
R
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where the integral has to be interpreted in the seunse of (5.22) and
- srges i i 1.
converges in TX@X,AEBA {(even in T(SXQX,IGbA’A ). Let

g T(S A®1). Then the matrix of the product R'R is given

XX, IQA’
by

(5.24) [R'RJpA : (s,t) & [R']uv(s,c) [R]vk(-c,t)de(v) °
R

where the integrals converge absolutely and do not depend on the choice

of o, and where ¢ > 0 has to be taken such that

o A
e R < Syox AmA -

We write
' = ¥
(5.25) Lr R]M J’ [ Jw L2l doy(v)
R
where the integral converges in the indicated distributional sense.

Further, let |f> be a test ket. Then R|f> is a test ket, also, and

i

(5.26)  Rlf> ” <p | R() [ 2>(0) <x | £2(=1) |u>doYJ(>\) do_(u)

R

” [}?]M(-U,T) <A | (-1 |us (o) dem dem)

1R2

where the integral converges in T, A and does not depend on the choice
b4

of t >0 and of ¢ > O chosen sufficiently small as indicated in (5.21).

Finally, we have

(5.27) | R|f>: 8w [ [R]u}‘(s,r) < | £2(=1) doY(k) .
R
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I;I@A) its matrix [Q] is defined by

For @ ¢ T<SX®X,A9

(5.28)  [Q1 . : (s,£) » <u|@(s) | A>(v) .

ni

Note that g(s) ¢ sX@X,AEEA’

<y l Q(s) | x> {~1) is well-defined because @(s) I)\> is a test ket. It

So there exists T > 0 such that
can be shown that

(5.29) @ sw»Q(s) = JJ [Q]M(G,-T} (A (1) @ Ju>(s~0a) dcY(A) dOY(u)
]R2
where ¢, 0 < o < s, and where the integrals converge in X ® X and do not
depend on the choice of o, and of 7 > 0 sufficiently small (cf. (5.21).~
We write
5.30 = > <xd A) 4
(5.30) @ 2” (@1, du><ahde (V) 2o ()
R
where the integral has to be interpreted in the sense of (5.29) and con~
» ' t -
verges in TX@X,AEEA' Let @' ¢ T(SX®X,A®T’I®A)' Then the matrix of the

product Q'@ is given by

©(5.31) [Q‘QEM : (s,t) » J EQ'Jw(s,-—T) [Q]w\ft.t) doY(v)
R

where the integrals converge absolutely and do not depend on the choice

of 1, and where T > 0 has to be taken such that

TA
Q' (t)e € Sx@x,AEA .
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We write

(5.32) (@@l = J [@'e1,, (a1, do (v) .
R

Again the integral converges in the above-mentioned distributional sense.

Further, @|H> can be represented by

(5.33)  Qj#> : s+ ” (Q1,, (oy=t) A [ B> (1) fu>(s ~0) dp (A) do_()

J
RZ

where the integrals converge absolutely in X for every s > 0 and do
not depend on the choice of v, 0 < ¢ < s, and 1.> 0, and where T > 0

TA
has to be taken such that {(o)e € Sx@ X,ABA"
Finally, note that

(5.34) <ul@lH> 5w { £Q,,1(s,=1) <& | w> (1) dp (1)

R

Remark
The proofs of most results we gave in the last part of this section
become more transparant by the following relation:

Let B ¢ 8 A and let t. > 0 and t, > 0. Then

L®X,AH 1 2

(e~ b1 Ae o t2 A}B = H <ulB ax(0) (]A)(tl) ® tu>(t2)) dpy(k) doy(u) .
The proof of this relation runs analogously to the proof of Theorem (5.1).

References to this section:

[anl, [B6], [Dil, [Jal, [GeVil, [Mell, [Rel.



Appendix Some integration theory

In this appendix we shall introduce the notion of integral for functions
from R into Sx A and, also, from R iato TX A Therefore, we introduce
- > 3

so~called integrable functionms.

{a.1) Definition
Let f be a function from the interval [a,b] into ‘SX A Then f is called in=-
. ,

“tegrable if for all ¢ ¢ B, (R) the function
s » P(A) £(s)

from [a,b] into X is integrable; so afb v(A) £(s) ds ¢ X.

Let £ ¢ [a,b]» SX A be integrable. By taking ¢ = ! in the above definition
Ed
it follows that f is also integrable as a function from R into X. Hence

afb £(s) ds exists and defines an element of X. Since ¥(A) is a closed

operator and since afb w(A) £{(s) ds € X by definition (a.1) we obtain

b b
$(A) ( J £(s) ds) = J Y(A) £f(s) ds ¢ X.

a a

Hence (aj’b f(s)ds) e n DAy = SX A.‘Cf. Ch. I, Section I.
peBs (R) ’

We shall call a)'b f{s) ds the integral of the integrable function f over [a,b].

(a.2) Definition
Let F be a function from the interval [a,b] into TX A Then F is called in-
i ’

tegrable over [a,b] if for all t > 0 the function
g » F(s;t)

from [a,b] into X is integrable,



i.e. b
[ F(s;t)ds € X
a,

Let F : [a,b]l » TX A be integrable over [a,b]. Then for all t > 0, the
s

X~-integral afb F(s;t) ds ¢ X. Let afb F(s8) ds denote the mapping

b b

(J F(s)ds) I J F(s;t) ds .

a a
Then for all ¢ > 0 and T > O

b b
e"TA J F(s;t)ds = [ F(s;t+t)ds

a a

TA

due to the continuity of e on X. Hence the expression afb F(s) ds denotes

an element of TX A We shall call afb F(s) ds the integral of F over [a,b].
s



EP1LOGUE

During the research we have examined several topics which are related to
the theory of analyticity spaces and trajectory spaces. Not all of them
are contained in the present thesis. In Chapter one we have already men-

tioned the papers on the characterization of the spaces ST;E::, k € N and

‘on the Hankel invariant distribution spaces § s & > =1, In short
Lz {0 ,oo) ’AC(

we shall sum up some other subjects of study.

For each of the four types of linear mappings which appear in our theory,
a closed graph theorem is valid. A forthcoming paper will deal with this

kind of theorems, and, also, with the characterization of closed subspaces.

A closed subspace of the analyticity space Sx A is in 1 -1 correspondence
k4
with an array of projections ('Irt)t>0 from X into X satisfying
_ ~tA
T.=e Togp t,T>0 .

It will lead to the following result.

If P is a continuous injection on SX,A(TX,A) with a closed range in SX;A(TX,A)’

then its dual P’ is a coantinuous surjection on T, S, ).
) X,ATKA

Another paper, that we are prepairing, deals with groups and semigroups of
elements of TA (TA and EA}. Here, we are mainly loocking for conditions on

a linear operator [ in X, which imply that L generates a semigroup of one of
the mentioned types. We have been able to characterize the so-called holo—
morphic groups in the described way. However, with respect to the semigroups
we stand at a starting point. A related topic is the so~called classifica~
tion problem:

Given A and X, find conditions on B and Y such that
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In [E3] we have considered the case in which B is obtained from A by means

of a perturbation.

Finally, we shall devote some attention to a promising result of our research:
another, new set up [EIJ of a theory of generalized functions. This theory

is a kind of reverse of De Graaf's theory. We summarize it here.

In [EIJ we start with the evolution equation

(e.1) = Ao

rle

where A is a nonnegative, self-adjoint operator in the Hilbert space X.

A solution 9 of (e.l) is called an orbit if it satisfies

(e.2.1) Vtel} : o(t) € X

‘s \ _ o TA
(e.2.ii) VieeVreg * p{c+t) = e " o(t).

Each orbit ¢ is uniquely determined by its value ¢(0) and hence

¢(0) ¢ D((eA)W) = N D(enA). With the seminorms
n=1

(e.3) o (el . ¢ e T(X,A)

where t ¢ €, the space 1(X,A) becomes a Fr28chet space. The topological

structure of t(X,A) is similar to the topological structure of Tx Al
*

The asperity space o(X,A) consists of elements F for which there exists

t > 0 such that e—tAF e X. We have

(e.4) o(X,A) = U Xt= U Xn
>0 nelN
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where Xt denotes the completion of X with respect to the norm |- ﬂt

(e.5) nel, = tetAel L, fex.

It is not hard to see that Xt < XT for T > t. On 0(X,A) we impose an in-
ductive limit topology.‘The inductive limit is not strict. Inspired by [G]
we have been able to construct a set of seminorms which generate the givén
topology for o(X,A), The topological structure of the a:sperity space o(X,A)

is similar to the topological structure of the analyticity space SX A
. b4
The pairing between t(X,A) and o{X,A) is defined by

A

(e.6)  <p,¥> = (p(0),e TAW) ., pe T(XA), ¥ e oA .

Here t > O has to be taken so large that e—tA‘i’ € X. Due to (e.2.ii) the

definition does not depend on the choice of t > 0. The spaces t(X,A) and

o(X,A) are reflexive in the given topologies. -

In addition, [E]] contains the characterization of the four types of con-

tinuous linear mappings
T(X,A) > 1(Y,B), t(X,A) » o(¥,B), o(X,A) » 1(Y,B), 0(X,A) + o(Y,B)
and the introduction of four topological tensor products.

T(0X®Y,ARD),I®B), o(XOY,AEB), t(X®Y,AHB) and
(o (XQY,I®B),AQ1) .

These tensor products lead to four Kernel theorems just as in [G].
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Schwart o' space of tempered distribotions STCR)Y  can be vegarded as the

strong dual of the space Sy o LARY where
/ il
- 3
w.? o= f‘,-k-—‘L.; X 1) )
LR,

fhe space PU) becomes an orbital space in the following natural way.

Lot by € MHTY, Then define the mapping u @ € » LZ(]R) by

(e.8) u{t) :=

etlogHuO R te € .

Then N(H") corvesponds to the space I(LQ(JR),log Hy.
S0 the theory on orbital spaces and asperity spaces can be looked upon ag

a very general theory on distributions of the tempered kind,

in [El] we also have shown that the space of Hermite pansions, introduced

by Korevaar, [K], equals the asperity space
(e.9) G(Lz(m) )

with H as in (e.7). Moreover, in [E2], {EG], we have discussed the Hankel
invariant distribution spaces 0(52{0,m),10gAa) and c(Lz(O,m) ’Au)' The cor-
responding test function spaces T(Lz(ﬁ,w),logAa) and t(Lz(O,m) ’Aa) are

described in classical analytic terms.

We conclude this epilogue with the following quintuple:

t(X,A) ¢ SX,A cXc TX,A < o{X,A) .
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INDEX OF NOTATIONS

X, Y, Z

A, B, C, D

Sx,A* Sy,8° Sz,c

TX,A’ TY,B’ TZ,C

STy @0 TS, D)

Z;C”
CAD
CvoD
® , ®
a

] L}
ZA’ ZB
ZA' ZB

™, 7

s

A
A

0,0 5,0 ,0
s> "w’ "p’ “wp

Tory T.s T » T
s’ "w’ 'p’ Twp
p’ pr
B(R), B, (R)

pS’ Dw, 0

F(R®), F (R%)

Hilbert spaces (9,30)

nonnegative self-adjoint operators (9,30)
analyticity spaces (9,30)

trajectory spaces (12,38)

(30,38)

maximum of C and D (51)

minimum of C and D (51)
algebraic/topological tensor product (19)

T(S A®I), T(S 1®B) (20,21)

X®Y,I®B’ X®Y,A®T’

A®I), S(T

Sa X@Y,AQ@T’

X©Y,1 98’ 1©8) (29)

T(S A®I), T(S I®A) (74)

X®X,I®A’ XOX,A®T’

S(T. A®T), S(T I®A) (78)

X®X,I®A°
A
™o, s vs, 6o

XOX,AQT’

involution on EA (75)

pairing between the elements of an analyticity space

and the elements of a trajectoryvspace (13)

pairing between the elements of a space of type S(TZ,C’D)

and the elements of a space of type T(S D) (45)

z,C’
topologies on TA (82-84)

topologies on TA (90-91)

topologies on EA (94-95)

algebras of functions on R related to the seminorms
on an analyticity space (10)

algébras of functions on ]R2 related to the seminorms

on a space of type S(T D) (31)

Z,C”
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(G,)

Vaer H)ere ete-

emb

h <S(m)

X' X, ]
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ij
Q, (x)
supp (1)
a(P)

<F | G>
o<
(x>), (JA,m,i>)

(<u| B [2>)
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the analyticity domain of A (25)

the analyticity domain of a unitary Lie group
representation (26)

spectral resolution of the identity of C, D,
etc. (30)

embedding (1)

delta function concentrated in x (142)
Kronecker delta

cube with centre x (147)

support of the Borel measure p (152)
spectrum of the oéeracor P (158)

kets (166)

bras (167)

the bracket of <F| and [G> (167)

the tensor produkt of |F> and |G> (172)
Dirac basis (175)

matrix of B with respect to the Dirac basis
(]a>) 171

Gelfand-Shilov space of type S (22)

Hankel transform of order a (23)

Bessel function of order a (23)

n-th Laguerre function of order o (23)

n-th Hermite function (142)
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INDEX OF TERMS

a:
"absolutely continuous measures (154)
analytic vector (25)

analyticity domain (25,29)
analyticity space (9,28)

_asperity space (187)

b:

Banach~Steinhaus theorem (15,48)
barreled (11,13,37)
bornological (11,13,37)

bracket (98,167)

bra space (167)

bra vector (98,167)

[

closable operator (17)
closure property (172)
column finite matrix (136)

commutative multiplicity theory (152)

commuting self-adjoint operators (30,137)

continuous linear mappings (c.l.m.)
-~ from SX,A into SY,B a7
- from SX,A into TY,B an
- from TX,A into SY,B {18

- from TX,A into TY,S {18)

cyclice
- operator {155)
- set (155)

- vector (155)

d:
diagonal matrix (126)
Dirac
- basis (175)
- delta function (f,§42)
~ formalism (27,164)

disjoint measure classes {(154)

dual space (14,46)

ez

/eigentuple (161)

embedding (12)
extendable linear mapping (19,70)

extreme point (110)

£
Fréchet space (12,31)
Friedrich's extemsion (101)
Fourier expansions

- of kets (171)

- of bras (172)
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184 1:

o2 -

generalized eigenvector (139 Laguerre function (23)
GW*~algebra (X Lie algebra (25,114)

infinitesimal representation of - (26)
bt

Lie group (25)
Hamiltonian operator (22,98,142)

unitary representation of - (25,115)

Hankel invariant

- test space (23,190) m:

- distribution space (23,190) Mackéy topology (56)
Hankel transform (23) matrix calculus (117)
harmonic osciiiator (22,142) momentum operator (115)
Heaviside step function (1) Montel (space) (11,13)
Hexrmite function (142) multiplication
Hermite pansion (190) joint - (86,93,96)

homeomorphism (76,78) separate - (86,93,96)

multiplicicy (125,136,152)
i:

- of an eigentuple (161)
inclusion scheme (56)

inductive limit (9,31) n:

-~ topology (9,31) nuclear
non strict - {9,3!) ~,analyticity space (11)
infinite matrix (117) - trajectory space (13)
involution (81) n-set (159)

n-tuple (161)

i:
Jacobi matrix (133) o

observable (99,164)
ke

operator algebra (74)
Kernel theorem (19,66)
- of c.l.m. on SX A (82)
ket space (98,166) ’
- of e.l.m. on Tk A (90)
ket vector (98,166) 4
~ of extendable linear mappings (94)
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involutive - (95)
locally convex - (88)
orbit (187)

orbital space (188)

B

pairing (13,45)

parity operator (164)

Parseval's identity (170)
positioq'operator (114)
principle of uniform boundedness

(85,92,95)

q:

quantum

1

state (102,]65)

- density (100)

- system (98,166)

- statistics (100)

- statistical mixture (112)

Ir:

rigged Hilbert space (2,139)

X
Si—space (22)
Schridinger equation (99)
Schrodinger group (116)
smooth function (3)

smoothed function (3)

smoothing operator {3,9)
pure state {(104)

support (of a measure) (152)

t:
tempered distribution (188)
tensor product

algebraic ~ {66 ,69)
topological ~ (19,28,66)

~ of operators (66)

topology
strong - for SX,A (105
- - for Tﬁ,A 12)
- - for T(Sz’c,ﬁ}’(38)
- - for S(Té,c,v) 31
weak - for SX,A’ ete, (14,47)
pointwise - for TA, Ths EA (82,90,94)

weak pointwise = for TA, TA’ EA (84,91,95)
total set (157)

trajectory space (12)

u:
uniform multiplieity (154)
-~ for eigentuples (162)

unilateral shift (127)
v.

Wi

weighted shift (126)

Weyl group (116)
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SAMENVATTING

Geinspireerd door het artikel [B] van De Bruijn, heeft de Graaf een the-
orie van gegeneraliseerde functies ontwikkeld. Deze theorie [G] wordt
gekenmerkt door haar vrij strakke functionaal analytische aanpak,. Zij

is gebaseerd op het triplet

S

A X Ty 4

waarbij X een Hilbert-ruimte is, en A een niet-negatieve zelf-geadjun-
geerde operator in X, Het eerste gedeelte van [G] bevat de gebruikelijke
aspekten van een distributietheorie, zoals de definitie van de test-
functieruimte (SX,A) en van de distributie?uimte (TX,A)’ en van hun

paring. Aldus kunnen SX A en TX A gezien worden als elkaars duale.
3 ’

Het tweede gedeelte is minder conventioneel. De theorie [G] onderscheidt
zich hierin van andere distributietheorieen. In dit gedeelte s£aan gede~
tailleerde karakterisaties van vijf scorten continue lineaire afbeeldin~
gen. Voorts worden er vier soorten topologische tensor produkten inge-
voerd, die aanleiding geven tot vier Kern-stellingen. We merken op dat

een Kern—-stelling (Kernel theorem) voorwaarden levert waaronder alle
lineaire afbeeldingen van een bepaald type voorgesteld kunnen worden door
kernen uit een geschikt gekozen topologisch tensor produkt. In gangbare
distributietheorieén heeft het begrip Kern-stelling een zwakkere beteke-
nis en wordt veelal slechts gegeven voor de continue lineaire afbeeldingen

van de testfunctieruimte in de distributieruimte.

In dit proefschrift wordt de theorie van De Graaf verder uitgebouwd

en in verband gebracht met andere wiskundige disciplines. Dit laatste

heeft ertoe geleid ruimten van het type SX A analyticiteitsruimten te noe-
s

men. Het blijkt namelijk dat de verzameling SX A juist het analyticiteits
3
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domein van de operator A in X is. De elementen van TX A kunnen opgevat
’
worden als trajecten in de Hilbert-ruimte X. Vandaar dat TX A de traject-
*

ruimte heet.

In Hoofdstuk I wordt de theorie [G] samengevat. Daarnaast komen enige

voorbeelden van analyticiteitsruimten aan de orde.

In het tweede en derde hoofdstuk wordt het tweede gedeelte van [G] ver-
der uitgewerkt. Zoals vermeld zijn daar de topologische tensor produk-

ten EA, Zé en I, Ip ingevoerd maar de beschrijving in [G] van deze ruim-
ten is niet erg doorzichtig. Omdat de ruimten ZA en Zé de kernen bevatten
van de continue lineaire afbeeldinggp van SX,A in SY,B resp. TX,A in TY,B’
is het zaak hun topologische structuur goed in de vingers te krijgen. '
Daarom hebben we twee typen ruimten ingevoerd, die bepaald worden door
een Hilbert-ruimte Z en een paar commuterende niet-negatieve, onbegrensde,
ze}f-geadjungeerde operatoren in Z. De ruimten EA en Zé zijn van het ene
type, ZA en ZB van het andere. Op de nieuw ingevoerde ruimten worden topo-
logieén geintroduceerd, wordt een paring gegeven en bovendien worden hun

doorsneden gekarakteriseerd.

De verkregen resultaten worden gebruikt in de beschrijving van de operator
theorie voor analyticiteitsruimten en trajectruimten. Genocemde beschrijving
heeft geleid tot een (vijfde) Kern-stelling voor de zgn. uitbreidbare
lineaire afbeeldingen. Verder heeft deze beschrijving de bestudering ver~
licht van de algebra’s van continue 1inea§re afbeeldingen van SX,A in
zichzelf, ¢.q. van TX,A in zichzelf en van de uitbreidbare lineaire af-
beeldingen. Laatstgenoemde algebra dient in dit proefschrift als een
méthematisch‘médel voor quantum statistiek. Als de ruimte SX,A nucleair

is, bezit iedere continue lineaire afbeelding op SX,A een goed gedefini-

eerde matrix representatie. De oneindige matrices corresponderende met
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deze afbeeldingen zijn zeer eenvoudig te karakteriseren (in tegenstel-
ling tot matrices van begrensde lineaire operatoren op een Hilbert-ruim-
te). We krijgen aldus een groot reservoir aan voorbeelden. Het vermelden
waard zijn de zgn. verschuivingsoperatoren, die nader zijn onderzocht,
Tenslotte heeft de matrixcalculus geleid tot de constructie van nucleaire

analyticiteitsruimten waarop een eindig aantal operatoren in X continu 1is.

Het vierde hoofdstuk staat tamelijk los van de overige hoofdstukken.
Hierin wordt een theorie van gegeneraliseerde eigenfuncties ontwikkeld
die gebaseerd is op de theorie van gegeneraliseerde functies van De
Graaf. We beperken ons tot nucleaire analyticiteitsruimten SX,A en tot
zelf-geadjungeerde operatoren P in X die continu zijn op SX,A' De commu-
tatieve multipliciteitstheorie voor zelf-geadjungeerde operatoren speelt
een belangrijke rol. Als P continu is op de nucleaire ruimte SX,A en als

A € o(P) multipliciteit m, heeft, dan bestaan er tenminste m, (gegenera-

hA
liseerde) eigenvectoren in TX A met (gegeneraliseerde) eigenwaarde A.
9

Een gelijksoortige uitspraak geldt voor een eindig aantal commuterende

zelf-geadjungeerde operatoren.

Het tweede gedeelte van dit hoofdstuk is gewijd aan een wiskundige inter—
pretatie van het Dirac formalisme. We hebben het bracket begrip van Dirac
zodanig geinterpreteerd dat het "inwendig produkt" tussen twee gegenera-
liseerde functies mathematisch zinvol wordt. Een aantal aspekten van het
Dirac formalisme krijgen aldus een wiskundige betekenis. We noemén hier:
Fourierontwikkeling t.a.v. Dirac bases, quasi-orthogonaliteit van eigen—

kets en matrixcalculus m.b.t. Dirac bases.
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CURRICULLM VITAE

De schrijver van dit proefschrift is op 13 november 1956 geb%ren te
Sint-Oedenrode. In 1974 verwierf hij het einddiploma Gymnasi#m—ﬁ aan
het Gymnasium Bernrode te Heeswijk-Dinther. Daarna studeerde hij wis-
kunde aan de T.H.-Eindhoven. Zijn afstudeeronderzoek werd verricht
onder leiding van Prof.dr. $.T.M. Ackermans en had betrekking op
agymptotische Fuglede stellingen. In december 1979 behaalde hij het
diploma wiskundig ingenieur. Sindsdien is hij werkzaam als wetenschap~
pelijk assistent bij Prof.dr.ir. J. de Graaf, eerst in dienst van de

T.H.~Eindhoven, daarna in dienst van Z.W.O.
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De door McKennon ingevoerde testfunctieruimte Z is gelijk aan t(Lz(]R),Hﬁ)
d? ‘

waarbij H = %'(~2§‘+ xz + l). Zijn bewering dat deze ruimte invariant is
dx

onder de Laplace-transformatie is onjuist.

Literatuur: [E], [McK].

- -

Zij N een begrensde normale operator op een Hilbert~ruimte en zij B een
begrensde lineaire operator. Dan volgt uit ¥(WB-BN) - (WB-BW)N = 0 dat
NB - BN = 0. Deze stelling heeft asymptotische uitbreidingen in termen

van een vrij algemene klasse van operatortopologieén, waaronder de uni-

forme, de sterke en de zwakke operatortopologie.

Literatuur: [AEM].

-3 -

Met behulp van de wiskundige interpretatie van het Dirac-formalisme uit
dit proefschrift alsmede de operatortheorie voor analyticiteits— en
trajectruimten is het mogelijk de (anti-) commutatierelaties CCR en

CAR voor quantumveldoperatoren wiskundig te funderen.
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Laat 0 < p <1, k € Nen & ¢ N, Dan is de Gelfand-Shilov ruimte

bevat in de analyticiteitsruimte N
-aA? 2.k
éz(m) 3 ((—2) + {x)
dx

Wi O
b3

- E=
Fs

=
-
B

ktt e
)ksz, 2
Voor £ = 1 én p = 1 geldt ook het omgekeerde.

Literafuur: (EGP].

-5 -

Veronderstel dat in de locaal convexe Hausdorff topologische vectorruimte
R de continuiteit van lineaire functionalen reeds door nulrijen beschre-
ven kan worden. Dan is een lineaire deelruimte V in R gesloten dan en

slechts dan als V rijgesloten is.

Zij P een lineaire afbeelding van SX A in SY g met een gesloten grafiek
3 b

in SX,A X SY,B' Dan is P continu.

Zij P een continue lineaire injectie (surjectie) van SX A in SY 3 zodat
* 3
1 3 2 [ . _
P(SX,A) gesloten is in SY,B' Dan is P' : TY,B > TX,A cen continue sur

. . .. . ' .
jectie (injectie met P (TY,B) gesloten in TX,A)'
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De Weyl quantizatie RK van het symbool K kan geschreven worden als

K =25 J K{(x,B) exp(2i (-8 0 +a P))do dB
2 5
R
met P = -i —c-l-, Q= x en ¢ de pariteitsoperator.

dx 9 2
Schrijf X = Lz(m”xs‘ ,rdrdg), H_ = -l(‘ 9 2 -LL) PR S

g\r or "5r 2 2 2 2
r 3y
Y i -
en Mp =-7igg - Dan bevatten de ruimten T(stﬁ'p*“p s Hp Mp) en

T(S s H +M ) juist de Weylsymbolen van de continue lineaire
X,HP-MP P P

afbeeldingen van $ in ziéhzelf, resp. van in zichzelf,
L, (R ,H

"o, (®) 4
.. 1 -dz 2
waarbljﬂr':?» —5 X"+ 1),
dx )
Voor K ¢ T(SX,H T HP-MP} worden de matrzxelementen van de opgrator

QK SLé(]R),H -> SLZ(IR) H t.o.v. de Hermite basis gegeven door

@) =™ x>

X n,me¢ Ny {0}.

Hierbij is

. 2
Ar(ln-m} (r,0) = /% (-nt e:,(n—'m)cp /ﬁ% (t/-z-)n-me-r Ln(]n-m) (er)
en

- £ m
{n-m) _ e d n ~t
Lm (t) = m (—"dt) (t e ) s t>0,

Literatuur: [Dal, [Pel.
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De Hankel inmvariante testfunctieruimte Hu van Zemanian is gelijk aan

2 2
- -d I T
T (LZ(O, ), log (f—§'+ x" + 3 Zuly.

dx X

Literatuur: [EG], [Z2].

-9 -

Laat R een positieve zelf-geadjungeerde Hilbert-Schmidt operator zijn op
de Hilbert-ruimte X. Laat D een (onbegrensde) lineaire operator zijm in
X, die de deelruimte R{X) afbeeldt in LZ(R,u) waarbij u een finiete
niet-negatieve Borelmaat is. Veronderstel dat DR een goed gedefinieerde
Hilbert~Schmidt operator is van X in 52cm,u). Dan bestaat er een nul-

verzameling Nu zo dat voor alle £ ¢ R(X) en alle x ¢ R\Nu

@O = Lim w@ ) | @D
hy0
’ Q, G0
waarbi j Qh(x) = [x~*h,x;+h].
De lineaire functionalen
feo OO , feRX
zijn continu t.a.v, de norm {f - HR op R(X) gedefinieerd door
i

el = MR £y -

Deze stelling is een maattheoretische generalisatie van de inbeddings-

theorema's van Sobolev.
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De Leidsche Bul werd vroeger op de studentensoos bij grote hoeveelheden
verorberd, Dit baksel verdient daarom eerder de naam 'studentengebak'
dan het oudvaderlandse 'saucijzenbroodje'. Vaak wordt de naam van dit
laatste baksel al te scherpzinnig verklaard als 'panis socialié in usum

studiosorum', Maar uit niets blijkt dat studenten speciaal het saucijzen~

broodje de voorkeur gaven.
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