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I. 

PROLOGUE 

The introduetion of generalized functions has considerably advanced mathe­

matica! analysis, in particu1ar harmonie analysis and the theory of partial 

differential equations. In a non-rigarous way, electrical engineers and 

physicists have been using generalized functions for almast a century. 

But it took some time before mathematica! justification of the use of im­

proper functions such as the Heaviside step function and the Dirac delta 

function has been taken up. 

The first mathematica! concepts which started up a theory of generalized 

functions were the finite parts of divergent inteerals used by Hadamard 

and the Riemann-Liouville integrals due to Riesz. Later Sobolev defined 

generalized derivatives by means of integration by parts, and Bochner de­

veloped the theory of the Fourier transfarm for functions increasing as 

some power of their argument. Many of these results were unified by Schwartz 

in his monograph Théorie des Distributions. Here the unifying concept is 

the notion of locally convex topological vector space. Generalized func­

tions (distributions) are continuons linear functionals on such spaces of 

well behaved functions. 

Later on, also Gelfand and Shilov.defined many classes of generalized 

functions. But more importantly, they showed how to use generalized func­

tions in mathematica! analysis. It turned out that generalized functions 

conneet many aspects of analysis, of functional analysis, of the theory 

of partial differential equations and of the representation theory of lo­

cally compact Lie groups. 

Thus, generalized functions have gained wide popularity among mathematicians. 



Thc theorîes of Schwartz and of Gelfand-Shilov can be described as follows. 

One starts with a vectorspaceS .of 'good' functions for instanc~ the set 

V of infinitely differentiable functions with compact support or lthe set 

S of infinitely differentiable functions of rapid decrease. This vector 

space is called the test space. The test space S carries a suitab:le Raus-

dorff topology which makes s into a locally convex, topological vector 

space. The choice of the topology is not arbitrary; an extra condition 

will be imposed. A generalized function is a continuons linear functional 

onS. Equivalently, the space of generalized functions is the topological 

dual S' of S. ·Thus the space of generalized functions ga ins a natural weak 

topology. To justify the name generalized function we construct a space s* 

that can be identified with S' and contains S. Therefore, let X be a Hil~ 

bert space (e.g. L
2

(R) or a Sobolev space) such that S is a dense subspace 

of X and such that the embedding of Sin X is continuous. Then by means of 

the inner product of X, the subspace S of X induces the weak Hausdorff to­

pology o(X,S) on X. Next, one considers the sequentia! completion s* of X 

with this topology. The mentioned extra condition one has to impose on the 

topology of S is the following: each merober of S' can be represented by an 

element of s* by means of the canonical pairing of S and s*. So S' and s* 

can be identified. SinceS x c s* and sin~e the. memhers of s are functions, 

s*, and hence S' can be regarcled as a space of improper functions. Thus, 

V' can be interpreted as a space of impraper functions which are derivatives 

of some order of continuous functions on the real line. 
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Even Lightbill's more classical approach can bedescribed in this functio­

nal analytic set up. One considers so-called regular sequences in S which 

converge in a weak sense. It turns out that a sequence is regular if it 

converges in o(X,S). Two regular sequences are equivalent if the difference 

of these sequences is a null-sequence in a(X,S). A generalized function 

in the sense of Lighthili is just an equivalence class of regular sequences. 

So the theory based on the triplet S c X c s* and the theory based on re­

gular sequences are equivalent. 

In an inspiring paper [B], De Bruijn proposed a new theory of generalized 

functions, which was developed further in Janssen's thesis [J]. In [B] 

three kinds of functions occur: smooth functions, smoothed functions and 

generalized functions. A function is said to he smooth if it belongs to 

Gelfand-Shilov's space a special class of entire func"tions. A smoothed 

function f is derived from a smooth function g by application to g of an 

operator from a set of smoothing operators. Thesetof smoothing operators 

is a one-parameter semigroup denoted by (Na)a>O" De Bruijn proved that each 

smooth function is smoothed and that each smoothed function is smooth. 

Now, a generalized function is a mapping F from (O,oo) into the set of smooth 

functions that satisfies NaF(S) = F(a +8) for all positive a and f',. Al­

though De Bruijn establishes a pairing between the spaces of smoothed func­

tions and of generalized functions, no topologies are introduced for these 

spaces and questions about duality and continuity of linear mappings can be 

linked to sequentia! convergence only. 



4. 

In [G], De Graaf generalizes De Bruijn's theory considerably by treating 

it on a functional analytic level. The paper [G] contains a theory of the 

two types of topological vector spaces Sx A and Tx A which are g~nerated 
' ' ' 

by a holomorphic semigroup with infinitesimal generator A in the Hilbert 

space x. In this thesis Sx,A will be called an analyticity space and Tx,A 

a trajectory space. If we take a suitable operator A in a Hilbert space 

X= L2 (M,~), the trajectory space TX,A contains generalized functions on 

the measure space M. 

The space sx,A is an inductive limit. This inductive limit is non-strict. 

So the general theory on inductive limits, which assumes strictness, can 

not be applied. In my opinion, the main feature in [G] is the introduetion 

of the function algebra B(lR). Each element of B(lR) agrees with a seminorm 

on SX A' Together these seminorms generate the inductive limit topology • . 
This important observation has led to complete characterizations of null 

sequences, of bounded subsets and of compact subsets of SX,A just as for 

strict inductive limits. Furthermore, large pieces of Hilbert space theory 

can be inserted into the theory. For instance, in [G] this has led to a 

detailed exposition of continuous linear mappings, of topological tensor 

products and of so-called Kernel theorems, all with respect to analyticity 

spaces and trajectory spaces. Considerations of this type are not current 

in distribution theory. 

The main souree of inspiration for the present work has been the systematic 

functional analytic approach in [G] to continuous linear mappings, which is 

absent in other distribution theories. During the research, we got the firm 

expectation that more, interesting results would be obtained by applying 



Hilbert space techniques as already mentioned. This became a second motive 

for this thesis. Furthermore, any theory of generalized functions should 

contain some speetral theory. It should tell whether continuous self-

adjoint operators on an analyticity space sx,A admit generalized eigen­

functions in TX A' Finally, we have had the ambition to interprete parts 
' 

of the formalism of quanturn theory in terms of analyticity spaces and tra-

jectory spaces because in such an.interpretation these spaces seem more 

appropriate than Hilbert spaces. 

Summarized, motivation for this thesis has been the wish to develop the 

purely functional analytic theory [G], to translate various concepts of 

classica! distribution theory into the language of [G] and to give a 

mathematica! interpretation of some quanturn physics. 

The second part of this prologue is devoted to a short survey of the con-

tents of this thesis. 

For a nonnegative, self-adjoint operator A in a Hilbert space X the analy-

ticity space sx,A is the dense subspace of x defined by 

U e-t A (X) • 

t>O 

On SX,A a non-strict inductive limit topology is imposed. The trajectory 

space T X,A consis ts of all mappings F : (0 ,oo) -+ X which satisfy 

-• A V t>O V pO : F ( t + T) = e F ( t) 

E 1 f h • . Am -t A . xamp es o suc traJector~es are t ,... e x wl th x E X and m ~ 0. A 

suitable choice of seminorrus turns TX,A into a Frêchet space. The Hilbert 



h. 

spact..l x is embedded in rx,A by means of the mapping emb x + TX A 
, ' 

given by 

emb(W) t ... 
-tA 

e W WE X, t > 0. 

Thus we obtaine the triplet SX Ac X c TX A' , . 
I t is clear that for each f E SX A there exists T > 0 such that eT A f € X. 

' 
So it makes sense to define a pairing between Sx,A and TX,A as fellows, 

<f,G> TA 
(e f,G(T)) 

\vith (•,•) the usual inner product in X. Due to the trajectory property 

of the elementsof TX A' the definition of <•,•> does notdepend on the 
' 

choice of T > 0. With this pairing the spaces SX A and TX A can be seen 
' ' 

as each other's strong dual spaces. 

The theory on the spaces sx,A and Tx,A forms a functional analytic descrip­

tion of a new kind of distribution theory. If X = L2 (M,~) for some measure 

space M, then TX,A consists of improper functions on M. 

The paper [G] contains a detailed discussion of several topological features 

of analyticity and trajectory spaces, and of the duality between them. More-

over, it contains a detailed discussion of ~ontinuous linear mappings, which 

is new in distribution theory. In [G] five types of morphisms are discussed 

and also four Kemel theorems. AKernel theerem gives conditions such that 

all continuous linear mappings arise from the elements (kernels) out of a 

suitable topological tensor product. 
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In Chapter one of this thesis we shall surnmarize the results in De Graaf's 

paper. In addition, this chapter contains some examples of analyticity 

spaces, which can be characterized in classical analytic terms. Further, 

we discuss a relation between representation theory of Lie groups and the 

theory presented here. 

In order to obtain the appropriate topological tensor product of the spaces 

sX,A and rY,B and of the spaces rx,A and sY,B' the spaces LÀ and LB are 

. brought up in [G]. In Chapter two we shall shed more light on these rather 

obscure spaces. With the introduetion of two new types of analyticity/tra-

jectory spaces, we obtain a unifying approach to all spaces which occur in 

[G]. It is possible to describe the intersectien of EÀ and EB in termsof 

these new spaces. This description leads to a Kernel theerem for the ex-

tendable linear mappings, i.e. the continuous linear mappings on an ana-

lyticity space with a continuous linear extension on the corresponding tra-

jectory space. 

If the space SX,A or the space SY,B is nuclear, then one of the Kernel 

theorems says that EÀ comprises all continuous linear mappings from SX,A 

into SY,B' Ghapter three contains the explicit tormulation of the four 

Kemel theorems of [G] and of the Kernel theerem for the extendable linear 

mappings. Subsequently, we study the following operator algebras: the al­

gebra rA of continuous linear mappings from SX A into itself, the algebra 
' 

TA of continuous linear mappings from Tx,A into itself and the algebra 

EA of extendable linear mappings. In our research we involve the relation 

between algebraic structures and topological structures. We use the algebra 

EA as a mathematica! model for the description of parts of quanturn statis-

tics. 
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The remaining part of Chapter three is devoted to matrices. If SX A is a 
• 

nuclear space, then to every continuous linear mapping on SX,A th~re can 

be associated an infinite matrix. We shall derive a simple characferiza­

tion of the infinite matrices corresponding to the elementsof rA, TA and 

EA. In a separate section we treat the continuous linear mappings whose 

matrices consist of only one non-zero (co)diagonal. These mappings are 

usually called weighted shift. In fact, weighted shifts and their finite 

combinations appear frequently in applied rnathematics and in the theory 

of special functions. At the end of this chapter, the matrix calculus is 

applied in the construction of nuclear analyticity spaces SX A on which . 
a finite number of bounded linear operators on X and, also, a finite num-

ber of cammuting self-adjoint operators in X act continuously. 

Chapter four is the self-contained part of this thesis, in which we shall 

develop a theory of generalized functions in terms of our distribution 

theory. For a self-adjoint operator P which is continuous on a nuclear 

analyticity space sx,A there exist generalized eigenveetors in Tx,A for 

almost every point of the spectrum cr(P). In the proof of this result 

nuclearity seems to play an essential role. 

The remaining part of Chapter four is devoted to a mathematica! interpre-

tation of Dirac's formalism. A reinterpretation of Dirac's bracket notion 

leads toa mathematica! theory which involves Fourier expansion of kets, 

orthogonality of complete sets of eigenkets and matrices of unbounded 

linear mappings, all in the spirit of Dirac. 

We conclude this thesis with an epilogue. The study of analyticity spaces 

and trajectory spaces has raised questions and consequently has brought 

up re sul ts. Th is thesis cannot contain all of them. So we have made a 

,;c, I v·.·tion. In the epilogue we shall point at related results. 



l, ÄNALYTICITY SPACES~ TRAJEeTORY SPACES AND LINEAR MAPPINGS BElWEEN THEM 

I. The space 

Let A be a nonnegative, self-adjoint operator in a Hilbert space X. Then 

-tA 
the semigroup (e ) t~O consis ts of bounded linear operators on X. In 

order that this semigroup is smoothing, A is supposed to be unbounded. 

The test space SX,A is the dense linear subspace of X consisring of smooth 

-tA 
elements e h, where h E X and t > 0. We have 

U e-tA (X) 

t>O 

-t A 
Since each subspace e (X) of X can be given its obvious Hilbert space 

structure, SX,A can be looked upon as a union of Hilbert spaces. We note 

that for each f E SX,A there ex is t T > 0 such that eT A f makes sense as 

an element of X. 

The strong topology in Sx,A is the finest locally convex topology on sx,A 

for which the injections e-tA(X) -TSXA' t > 0, are all continuous. 
' 

In other words, we impose on SX A the inductive limit topology with res-, 
-tA peet tothespaces e (X), t > 0. We note that this inductive limit is 

not strict, 
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111e function algebras B(JR) and B+ (lR) are defined as follows: 

- B(~) consists of all everywhere finite, real valued Borel functions + 

on lR such that for all t > 0 the function x~ +(x)e-tx is bou~ded 

on [O,oo). 

- B+(~) consists of all q, E B(1R) with <J>(x) ;" e: > 0, e: E ~. 

By the speetral theorem forself-adjoint operators, the operators q,(A), 

-tA q, E B(~) are well defined, and the operators q,(A)e , t > 0, are all 

bounded. Further for f E SX A and 4 E B(1R) 
' 

4 CA) f e -,A (<J>(A) e -(t--r)A )e +tAf E sx,A 

if t > 0 sufficiently small and 0 < T < t. 

On SX,A the seminorms Pq, are well-defined by 

( 1.1) 

where 11 • 11 denotes the usual norm in X. Then the following very fundamen-

tal theorem can be proved. 

The seminorms Pq, of (1.1) are continuous on SX,A and they gener.ate the 

strong topology on Sx,A· 

Although the iriductive limit is not strict, because of Theorem (I .2) most 

results for strict inductive limits are also valid in our SX,A space. 

In [G] the following results have been proved with ad hoc arguments. 



(I. 3) Theorem. 

A subset B c SX A is bounded iff th~re is t > 0 such, that B is a bounded 
' -tA subset of e (X). 

( 1.4) Theorem. 

A subset K c SX A is compact iff there is t > 0 such, that K is a compact 
' -tA subset of e (X). 

(I .5) Theorem. 

A sequence (fn) in SX,A is Cauchy iff (fn) is a Cauchy sequence in some 

e-t A (X). 

-tA 
Hence SX,A is sequentially complete, because each e (X) is complete. 

The elements of sx,A can be characterized as fellows. 

(1.6) Lellll1la. 

Let f EX, and suppose f E !J(<j>(Á)) for all"' E B+(lR). Then f E sx,A" 

Employing the standard terminology of topological vector spaces, the 

properties of sx,A are the following. 

(I . 7) Theerem. 

I SX,A is complete. 

II SX,A is bornological. 

III SX,A is barre led. 

11. 

IV SX,A is Mantel, iff for t > ó the operator -tA. 
compact on x. every e ~s 

V s 
x,A is nuclear iff for every t > 0 the operator -t A is Hilbert-e 

Schmidt on X. 
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2. The space TX,A 

In X consider the evolution equation 

(2. I) dF 
dt "' -AF • 

A salution F of (2.1) is called a trajectory if F satisfies 

(2.2.i) F(t + T) 

(2.2.ii) vt>O: F(t) E x . 

We emphasize that lim F(t) does not necessarily exist in X-sense. The 
uo 

complex vector space of all trajectories is denoted by rx A" For F E rx A , , 
we have F(t) E sX,A' t > 0. The Hilbert'space x can be embedded in TX,A" 

To this end, define emb: X + TX A by 
' 

(2. 3) -tA emb(X) (t) = e x XE X. 

Thus X can be considered as a subspace of TX,A' and we have 

The characterization of the elements of rx,A is as follows. 

Let F E TX,A" Then there exists lil E X and q, E B+(lR)· such that 

F(t) q,(A)e-tA!.O, t > 0. 

The strong topology in TX A is the locally convex topology induced by 
' 

the seminorms 



(2.5) p (F) = 11 F(_!_) 11 
11 11 

n c 11 • 

With this topology TX A becomes a Frêchet space, i.e. a metrizable and , 
complete space. 

It is nothard to see that sx,A is dense in rx,A' For F E rx,A just take 

1 
the sequence (F(n)) c sx,A' This sequence converges toF in the strong 

topology of TX,A' Further in [G], eh. II, the following results have 

been proved: 

(2 .6) Theorem. 

A set B c rx A is bounded iff each of the sets {F(t) I F € B}, t > o, is 
' 

bounded in X. 

(2.7) 

A set Kc: rx,A is compact iff each of the sets {F(t) I F EK}, t > 0, is 

compact in X. 

With the aid of the standard terminology of topological vector spaces 

Tx,A can be described as fellows. 

(2.8) Theorem. 

I 

Il 

III 

IV 

rx,A is bornological. 

rx,A is barreled. 

-tA 
is Mentel iff the operators e are compact on X for 

is nuclear iff the operators e-t A are Hi lbert-Schmidt 

all t > 0. 

all t > 0. 

on X for 
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3. The pairing of Sx,A and Tx,A 

On SX,A x TX,A the sesquilinear form <•, •> is defined by 

(3 .I) <g' F> 
tA 

: = (e g , F ( t)) , 

where as usu al ( • , •) denotes the inner product of X. \<le note that this 

definition makes sense for t > 0 sufficiently small, and does not depend 

on the choice of t > 0 because of the trajectory property (2.2.ii) satis-

fied by F. 

The spaces SX A and TX A can be considered as the strong topological dual 
' ' 

spaces of each other by this pairing. So we have 

(3.2) Theorem. 

I Let t be a linear functional on SX A' Then l is continuous iff there , 
exists F E rx,A such, that l(h) = <h' F>, h E sx,A' 

II Let m be a linear functional on TX,A' Then m is continuous iff there 

exists f E sx,A such, that m(G) = <~>, GE rx,A" 

As usual, the linear functionals of SX,A resp. Tx,A induce the weak to­

pology on Tx,A resp. sx,A in the following way: 

(3.3.i) 

(3.3.ii) 

The weak topology on sx,A is the topology induced by the semi­

norms, pF(h) = I <h' F> I' F E rx,A. 

The weak topology on Tx,A 

norms pf(G) = l<f, G>l, f 

is the topology induced by the semi-

A simple argument [CH], II. §22, shows, that SX,A and TX,A are reflexive 

both in the s trong and the weak topology. 
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(3.4) Theorem. (Banach-Steinhaus) 

Weakly bounded sets in sx,A resp. rx,A are strongly bounded. 

In the next two theorems weak convergence of séquences in SX,A as well 

as in TX A are characterized. 
' 

(3.5) 

f + 0 in the weak topology of SX A iff 
n . • 

As a corollary it immediately follows that strong convergence of a se-

qence in SX,A' implies its weak convergence. Further, any bounded sequence 

in sx,A has a weakly convergent subsequence. 

(3.6) Theorem. 

So again it follows thatstrongly converging sequences in TX,A are weak­

ly convergent. By a diagonal argument it can be proved that any bounded 

sequence in TX,A has a weakly converging subsequence. 

When are weakly convergent sequences always strongly convergent? The next 

theorem deals with this question. 
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(3 • 7) Theorem. 

The following three statements are equivalent: 

I 
. -tA . For each t > 0, the operator e ~s compact on X. 

I 

II Each weakly convergent sequence in sx,A converges strongly iti Sx A· 
• 

lil Each weakly convergent sequence in Tx,A converges strongly in Tx A. , 

4. Characterization of continuous linear mappings between the spaces 

Let B be a non-negative self-adjoint operator in the separable Rilhert 

space Y. In this section we give conditions implying continuity of 

Further, there are given conditions on a linear operator in X such that 

it can be extended to a continuous linear mapping on TX,A' The next 

theorem is an immediate consequence of the fact that sx,A is bornological. 

( 4. I) Theorem. 

Let R be an arbi trary locally convex topological vector space. A -linear 

mapping t: SX,A ~Ris continuous iff 

I 
. -t A for each t > 0 the mapp1.ng te : X + R is continuous. 

II for each null sequence (un) c SX,A' the sequence (t un) 

sequence in R. 

is a null 

In [G], De Graaf gives several equivalent conditions on linear mappings 

of one of the mentioned types to be continuous. Each of these conditions 

is useful in its own context. The next theerem deals with continuous linear 

mappings from SX,A into SY,B' 



(4.2) Theurem. 

Suppusc 1': SX A , Sy B is a linear mapping. Then P is continuous iff 
' ' 

one of the following conditions is satisfied 

1 f -> 0 strongly in SX A implies Pu _" 0 s trongly in SY,B' n 
' n 

li For each t " 0 the operator Pe 
-t A is continuous from X into Y. 

III For each t > 0 there ex is ts s / 0 sueh that Pe-t A (X) c e-s B (Y) 

and 
B -t A 

P e is a bounded linear operator from X into Y. 

IV There ex.ists. a dense linear subspace :: c Y such that for each fixed 

V 

y E :: the linear functional R.p (f) = (Pf , Y)y is continuous on 
,IJ 

-t A * -t A For each t > 0 the adjoint (Pe ) of Pe is continuous 

from Y into X. 

The next corollary is important for applications. 

(4.3) cdrollary. 

Let Q be a densely defined closable operator: X -> Y. If D(Q) SX,A 

and Q(Sx,A) c SY,B' then Q maps Sx,A continuously into SY,B' 

(4.4) Theorem. 

Let K: SX A -> Ty B be a linear mapping. Then K is continuous iff 
' ' 

I 
-s B -t A 

For each t > 0, s > 0 the operator e K e is continuous from 

X into Y. 

-s 8 
II For each s > 0 the mapping e Kis continuous from SX,A into SY,B' 

I 7 • 
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( 4 • 5) "fl1eorern 

Let V: TX,A ~ SY,B be a linear mapping, and let Vr: X~ Y denote 

restrietion to X. Then V is continuous iff one of the following c4ndi­

tions is satisfied 

I V * (Y) c S A" 
r X, 

There exists t > 0 such that V * (Y) c e-t A (X) and et A V * is 
r r 

II 

bounded as an operator from Y into X. 

t A -tA 
III There exists t > 0 such that Vre with domain e (X) c X is 

bounded as an operator from X into Y. 

IV There exists t > 0 and a continuous linear mapping Q: SX,A ~ SY,B 

such, that V 
-tA 

Qe • 

(4.6) Theorem. 

Let ~: TX,A + TY,B be a linear mapping. Let ~r: X~ TY,B denote the 

restrietion of ~ to X. Then ~ is continuous iff one of the following 

conditions is satisfied. 

I 

Il 

For each g E Sy ,B the linear functional F ~+ <y , ~F> is continuous 

on TX,A" 
-s B 

For each s > 0 the linear·mapping e ~ is continuous from TX,A 

into sy s· 
' 

III For each s > 0 (e-sB .Pr)*(y) € Sx,A" 

IV For each s > 0 there exis ts t > 0 such that e-s B .p et A • e-s B .pet A 
r 

on the domain e-t A (X) is bounded as an operator form X into Y. 

An interesting class of densely defined linear operators is established 

by those operators in X which can be extended to continuous linear map-
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pings from Tx,A into TY,B. This class is characterized as follows. 

(4.7) Theorem. 

Let E be a densely defined linear operator from X into Y. E can be ex-

tended toa continuous linear mapping Tx,A ~ TY,B iff E has a dense-

ly defined adjoint E*: D(Q*) ~ SY,B +X with E*(sY,B) ~ Sx,A· 

As a corollary of this theorem it follows that a continuous linear map-

ping Q: SX,A ~ SY,B can be extended to a continuous mapping 

Q: T X,A + Ty ,B iff i ts adjoint Q* satisfies D(Q*) => Sy ,B and Q* (Sy ,B) c SX,A. 

5. Topological tensor products and Kernel theorems 

Let X® Y denote thesetof Hilbert-Schmidt operators from X into Y. 

X ® Y is a Hilbert space, which can be regarcled as a complete topological 

tensor product of the Hilbert spaces X and Y. Further, in X® Y the 

operator A ~ B is defined to be the unique self-adjoint extension of the 

operator A® 1 + 1 ® B which is well defined on the algebraic tensor 

-t(A~B> -tA -tB so product D(A) ®a D(B). We have e "' e 0 e , t > 0. 

( -t(A~B)) .. f h. xny e t>O ~s a sem1group o smoot 1ng operators on ~ . 

Now, according to section I and 2, we introduce the spaces SX®Y ,A~B and 

TX€1Y,A~lr They can be regarded as topological completions of the al­

gebraic tensor products Sx,A ®a ~.B c.q. Tx,A ®a Ty,s· 

An element J E SX€1Y,A~B can be considered as a linear operator 

J: SX,A + SY,B in the following way: Let F Ë Tx,A· Define JF by 
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I 
For E > 0 and sufficiently small this definition makes sense and does 

not depend on the choice of E. 

(5. I) Kemel theorem. 

If f h 0 1 f h -tA, e-tS 1.·s HJ..lbert-· or eac t > at east one o t e operators e 

Schmidt, then SX@Y,A!EIB camprises all continuous linear mappings from 

Tx,A into Sy,s· 

An element K E TX@Y,AEBB can be considered as a linear operator K: 

sx,A + rY,B in the following way: Let f E sx.A· Define Kf E rY,B by 

For any f E SX,A and t > 0 this definition makes sense for E > 0 sufficient­

ly small. Moreover (Kf)(t) does notdepend on the choice of E. 

(5.2) Kemel theorem. 

-tA -tB . If for each t > 0 at least one of the operators e , e l.S Hi~bert-

Schmidt, then TX@Y,AEBB camprises all continuous linear mappings from 

SX,A into Ty ,s· 

Next, in order to describe continuous linear mappings P: SX,A + SY,B 

and ~: TX,A + TY,B De Graaf introduces two more topological tensor 

products: 

The subspace l:A of TX@Y,A®I defined by 

This is a topological completion of Tx,A 0a Sy,s· 



t 

The subspace Eg of TX 0 y, T ® B defined by 

' l:B . = { 4> I 4> E T x@ y. 1@ B • V t>O: 4> ( t) 

' Eg is a topological completion of SX,A ~a Ty,B· 

On the spaces l:A and r:8 complete sets of seminorms are introduced. An 

' element P E l:A can be considered as a linear operator P: SX,A 4 Sy,g 

as fellows: For f E sx,A define Pf E sY,B by 

Pf P(e;) ee:Af. 

Then Pf € sY,B' because P(e:) E SX@Y,A!BB. The definition makes sense 

for e; > 0 sufficiently small and does not depend on the choice of e:. 

(5.3) Kemel theorem. 

21 

If for each t > 0 at least one of the operators e-t A e-t B is Hilbert-
I 

Schmidt, then l:A camprises all continuous linear mappings from Sx,A 

into sy,s· 

t 

Finally, an element 4> E Eg can be considered as a linear operator 

4>: TX,A ~ TY,B in the following wày: For FE TX,A define 4>F E TY,B by 

(4>F)(t) := 4>(t) ee;(t)AF(E:(t)) • 

This definition makes sense for each t > 0 and e;(t) > 0 sufficiently 

small. The result does notdepend on the specific choice of e;(t). 
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(5.4) Kernel 

-tA -tB. 
If for each t >'0 at least one of the operators e , e 1.s Hil,ert-

Schmidt, then ~B comprises all continuous linear mappings from TX,A 

into TY,B' 

For more details and proofs the reader is referred to [G], Ch. VI. InCh. 
r r 

II the spaces ~A and l::B will be defined in a more elegant way and 

discussed in a wider context, Further investigations in this theory 

of generalized functions led to a fifth Kernel theorem for those 

continuons linear mappings from Sx A into Sy 
8

,·which can be extended 
' ' 

toa continuons linear mapping from TX,A into TY,B' the so called 

extendable linear mappings. 

6. Examples of SX A-spaces 

(I) The sB-spaces of Gelfand-Shilov 
a 

De Bruijn's theory of generalized function is based on the test function 

space SL
2

(-m.) ,H , where H is the Hamiltonian operator of the harmonie 

oscillator, 

The space SL
2

(-m.),H consists of entire analytic fnnctions f satisfying 

jf(x + iy) j 2 2 
~ C exp(-~Ax + !By ) x,y E -m., 

where A, BenCare some positive constauts only dependent on f. The 
l 

space S equals the space S2 introduced in the books of Gelfand-
L2(-m.),H ! 

Shilov [GS
2
J. 



Recently, it has been proved that the Gelfand-Shilov spaces S~j~::. 

k E ll, are SX A-type spaces. (see [EGP]). To this end, put , 

k/k+l 
Then Sl/k+l • SL (R) B • By applying the Fourier transfarm it easily 

2 • k 
follows that 

We conjecture that a great number of Gelfand-Shilov spaces s8 are of 
a 

type SX A' 
' 

(2) Hankel invariant distribution spaces 

For a > -1, the Hankel transfonn lHa is formally defined by 

(ma f) (x) • J Ja (xy) rxy f (y)dy 

0 

x > o, 

where J is the Bessel function of order a. The Hankel transfarm extends 
a 

toa unitary operator on Z $ L2 (0,~). The generalized Laguerre functions 

L(a) n E ll u {0}, 
n ' 

L(a)(x) 
n ( 

2r(n+l) \!xa+~e-!i 1 (a)(x2) r (n +a+ I) j n x > 0, 

where L(a) is the n-th generalized Laguerre polynomial of type a, 
n 

satisfy 

23. 
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They establish a complete orthonormal basis of eigenfunctions in Z for 

the positive self-adjoint operator Aa 

Their respective eigenvalues are 4n + 2, n E: :N u {0}. 

By routine methods it can be shown that the space SZ,Áa is invariant 

under the unitary operator JHa. So JHa extends to a continuous bijeetion 

on the distribution space Tz,A • In [E2J, [EG] the elements of S 
"a Z,Aa 

are characterized as fellows 

f '" SZ A iff 
' a 

(i) z ~ z-(a+~)f(z) extends to an entire analytic and 

even function 

ànd (ii) there are positive constauts A,· B and C such that 

-(a+l) 2 2 
lz 2 f(z)l s C exp(-4Ax + !By) 

where z =x + iy. 

(3) Nuclear SX,A-spaces for given sets of operators in X 

In Ch. III, there will be given a matrix calculus for the continuous linear 

mappings from a nuclear ~,A space into itself. With .the aid of this 

calculus we have been able to construct a nuclear Sx,A space for a 

finite number of bounded linear operators on a Hilbert space X, and 

also for a finite number of commuting, self-adjoint operators in X. The 

existence of such nuclear SX,A space is very important for our theory 

of generalized eigenfunctions and our interpretation of Dirac's forma-

lism (see Ch. IV) . 
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ln !Ne 1], Nelson introduced the notion analytic vector. Let A be a 

self-adjoint operator in X. Then 6 E X is an analytic vector for A iff 

n=O,I,2, ... 

for some fixed constauts a, b only dependent on ~· The space of analy­

tic veetors for A is denoted by Cw(A), and called the analyticity do-

main of A. Nelson showed that for a nonnegative, self-adjoint operator 

w • -tA 
A the vector ó E C (A) can be wntten as 6 = e W where t > 0 and 

wE x. Hence Cw(A) = sX,A' 

The notion analytic vector was also introduced for unitary representa-

tions of Lie groups (see [Ne
1
J, [Wa], [Go] and [Na]); 

Let G be a fini te dimensional Lie group. A uni tary representation U of 

G is a mapping 

g >+ U(9) 9 E G 

from G into the unitary operators on some Hilbert space X. 

A vector 6 E X is called an analytic vector for the representation U, 

if the mapping 

9 >+ U(9) Ó 

is analytic on G. We shall denote the space of analytic veetors for U 

by Cw(U). 

Let A(G) denote the Lie algebra of the Lie group G, and let {p
1

, ••• ,pd} 

be a basis for A(G). Then for every p E A(G) 

s..,.. U(exp(sp)) 
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1s a one parameter group of unitary operators on X. By Stone's thJorem 

its infinitesimal generator, denoted by oU(p}, is skew-adjoint. Thus 

the Lie algebra A(G) is represented by skew-adjoint operators in X. 

Put 

~:; • r 

Nelson, [Ne 1J, has proved that the operator/:; can be uniquely extended 

to a positive, self-adjoint operator in X. Denote its extension by ll, 

also. Then we have (see [Ne 1J, [Go]) 

(7.1 

The space of analytic veetors for the representation U, C~U) equals 

the space S ~ • 
X,ll 

The following result tells something about the action of oU(p), p E A(G) 

on the space S 1. 
X,ll 

(7 .2} 

The linear operators oU(p), p e A (G}, are continuous as linear mappings 

from S 1 into itself. 
X,ll 2 

Proof. Let p E A(G). 

Following [Go], proposition 2.1, the operator oU(p) maps S i into it­
X,ll 

self. Since oU(p) is skew-adjoint, continuity follows from section 4, 

Theorem 4. 2. D 

In several cases the space S l is nuclear. Here we mention the follo­
X,ll 

wing cases. Possibly, other cases can be found in the book of Warner, 



[Wa]. For a proof we refer to [Na]. 

S 1 is nuclear if U is an irreducible unitary representation of G on 
X,t.l 

X and one of the following statements is satisfied: 

(i) G is semi-simple with finite center. 

(ii) G is the semi-direct product of A @ K where A is an abelian in-

variant subgroup and K is a compact subgroup, e.g. the Euclidian 

groups. 

(iii) G is nilpotent. 

Again we note that nuclearity of S ! is very important for our theory 
X,t. 

of generalized functions and our interpretation of Dirac's formalism. 

27. 
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ll. ÄNALYTICITY SPACES AND TRAJEeTORY SPACES BASED ON A PAIR OF 

CCM"UTI NGJ HOl..(Jv1QRPH IC SEMI GROUPS 

Introduetion 

A main result in the theory on analyticity and trajectory spaces is the 

validity of four Kemel theorems for four types of continuous linear 

mappings which appear in this theory. AKernel theorem provides conditions 

such that all linear mappings of a specific kind arise from the elements 

(kernels) out of a suitable topological tensor product. 

In order to prove a Kemel theorem for the continuous linear mappings 

from sx,A into SY,B' resp. from TX,A into TY,B the rather curious spaces 

f I 
in [G]. space EÀ is a topological l:A and z:B are brought up The tensor 

product of TX A and Sy B and the space >::8 of sx,A and TY,B' . ' 
In the third chapter of this thesis we shall explicitly formulate, the men­

tioned Kemel theorems within the framewerk of a thorough discussi.on of 

c'ontinuous linear mappings on analyticity and trajectory spaces, 

During the investigations which led to the third chapter of this thesis, 

we needed a clearer view on those remarkable spaces l:À and Es· 
To this end we stuclied two new types of spaces, namely S(TZ,C'V) and 

T(SZ,C'V) with C and V commuting, nonnegative, self-adjoint operators 



in a Rilhert space Z. We shall present them here. Up to now these spaces 

have no ether than an abstract use. However, the space S(TZ,C'V) can be 

regarded as the 'analytidty domain' of the operator V in TZ,C' cf. Ch. I, 

Sectien 7. The space T(Sz,C'V) contains all trajectoriesof TZ,V through 

S
2 

C' We mention the following relations 
• 

i:' A 

1:' B 

The first sectien is concerned with the analyticity space S(TZ,C't)). 

This space is a countable union of Frêchet spaces 

-sV 
S(Tz,C'V) = U e (T2,C) = U T -sV 

s>O s>O e (Z) ,C 

For the streng topology we take.the inductive limit topology. We shall 

produce an explicit system of seminorms which generatas this topology, 

and characterize the elementsof S(Tz,c•V). We looked fora character­

ization of null-sequences, bounded subsets and compact subsets of 

S(TZ,C'V) and for the proof of its completeness; however, without success. 

The second sectien is devote~ to the trajectory space T(SZ,C'V). With 

the introduetion of a 'natural' topology, the space T(SZ,C'V) becomes 

a complete topological vector space. Here we have been more successful. 

The elements, the bounded and the compact subsets, and the null-sequences 

of T(SZ,C'V) will be described completely. Since TX,A is a special.· 

T(SZ,C'V)-space the latter results extend the theory on the topological 

structure of TX,A' Cf.[G], ch.II. In Sectien 3 we shall introduce a pairing 
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'bétween ·S(Tz,C;O) and. T(SZ,C'V) • . Rith this pairif!g they. can·be regarded 

as '~ach other1s s trong d.uab spaces, ft,~.rth.er. w_e,no,te, that (or both spaces 

iJ · Banach-Steinh:aus theorem will·, PEil p.ro')Ted. 

The êxtendable 1inear mappings establisb a fifth typè of mappings in 

the theory. They are conti'nuous' from :si,A itito SY ,8 ; and can be 'extended' 

to continuous linear mappings from TX A into Ty 8• In order to describe 
' ' 

the class ~f" exteridablè lin:ear mappings it; is. naturàl to look for a des-

cription of the intersectien of EÀ and f.B' or, more generally, of 

T(SZ,C'V) and T(SZ,V'C). Therefore inSection 4 we introduce the nonne­

gative, self-adjoint operators C A V = max(C,V) and C v V min(C,V}. 

To these both the theory in [G] and the theory of Sectiens 1-3 apply. 

The operators C A V and C v V enable us to repreaent intersections and 

algebraic sums of the spaces SZ C' SZ V' TZ c• TZ V' S(TZ C,V)', etc., as 
,. ~ , ' t 

spaces of one of our types. It will lead to a fifth Kemel theerem in 

the following chapter. 

The spaces which appear in our theory are ordered by inclusion. In the 

final sectien we discuss the inclusion scheme. Since each space can be 

considered as a space of continuous linear mappings of a specific k:i.nd 

the scheme illustrates the interdependence of these types. 

1. The space S(TZ C,V) 
' 

Let C and ·v denote two connnuting, nonnegative, seÜ-adjoint operators 

in a Hilbert space z. We take them fixed tbraughout this part of the 

paper. Suppose C,V admit speetral resolutions (GÀ\,;:JR and (H
11

}
11

€:R, 



such that 

c f 
lR 

r 
V 

J 
lR 

\l dH • 
].l 

Then for every pair of Borel sets n1, n2 in lR 

J:. 

-sV -tC Since the operators e , s > 0, and e , t > 0, consequently conunute, 

f h f · d 0 h 1' · -sV · · h · or eac ~xe s > t e ~near mapp~ng e ~s cont~nuous on t e tra]ec-

tory space Tz,C (Cf. Ch. I, Section 4). We now introduce the space 

S(T2 C,V) as follows • 
• 

(1.1) Definition 
_l.v 

U e n (T z C) • 
nElil ' 

-sV -crV 
We note that e (T

2 
C) c e (T

2 
C) for 0 < cr < s. Since the operator 

' . -sV . -sV 
e ~s injective on S

2 
C' the space e (T

2 
C) is dense in T

2 
C by . ' . 

duality. Hence S(T
2 

C,V) 
-sV ' 

is a dense subspace of T2 c· In the space 
• 

e (T ) = T , 
z,C e-sV(Z),C 

the strong topology is the topology generated 

by the seminorros q , n E lil , s,n 

q (h) = 11 e60 h(J..)II s,n n Z 
-sV 

h E e (Tz c> . 
-sV 

We remark that e (T z, C) is a Frêchet space. 

( 1. 2) Definition 

The strong topology on S(TZ,C'V) is the inductive limit topology, i.e. 
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the finest locally convex topology for which all injec1:(4\ljl.Jl 

i 
s 

are continuous. 

A subset 11 c S(Tz,c•V) is o~e~ ,~)cF(~.iJ~f~. i(~)}~f ti.~ywsection 
-sV · -sV · "' "' · 

!l n e (Tz C) is open in e (TZ C) for each s > 0. 

,;J:t!.n::mg..r èHtJ!é'§l?c:':'i:i~l:i' t)ê "sliaN pr'odlite ,~, iytft:a:;·;~ S'èmîlio~ :ä:î.l:S(P.nitf,V) 
(;. z. 

-.::.
9 è !>:r j tf'liiJW ltiéi:tii!Ji':i' '\d'daÎ·l; ~'cáiiJ.éi~ '1:op'&1:<5~ e<i.\li .J!aferit ::~ itbef:stl.-ön~ topo-

'11:'6~ 1ff' ('f:'ty:~:ltfiei&ibriF weC1rl'ttid&Uia 't'he ·s~t ':idf :Ç~~tibh'Si'F(Ef) 

(1.3) Definition 

Let 

a " 

Vs>O 3t>O: sup <le(À,~)ie-~s eÀt ) < oo, 

À~O 

~~0 

Further, F + (:R2) denotes the subset of all functions F(:R2) which are 

positive on {(À,~)IÀ ~ O, ~ ~ 0} • 

For e E F(:R2) the operator e(C,V) in x is defined by 

S(C,V) ~ Jl 8(À,~) dGÀH~. 
:m,Z 

Here d GÀ H~ denotes the operator-valued measure on the Borel subsets of 

:m.2 related to the speetral projections of C and V. On the domain 



e(C,V) is self-adjoint. 

The operators 2 e (C, V), e ê P(JR ) , are continuous linear mappings from the space 

S(Tz c,V) into z. This can be seen as fellows. Let h E S(Tz c,V). Then 
' . . 

de fine 

sV Since there exists s > 0 such, that e h(t) E Z for all t > 0, and since 

for each s > 0 there exists t > 0 such, that the operator etCe(C,V)e-sV 

is bounded on Z (cf. Definition (1.3)), the vector e(C,V)h is inZ. Hence 

the following definition makes sense. 

(1.4) Definition 

For each e € P+(JR2) the seminorm p8 is defined by 

and the set U , E > 0, by 
8,€ 

u = {h"' S<Tz c,V) 1 lle(C,V)hllz < d. 
8,€ ' 

The next theerem is the generalization of Theorem(l.4)in [G] to the type 



34 

,, 
L For cach tl , F+ (JIC) the seminorm p

0 
is continuous iu the streng 

tüpology of S(T
2 

c•V). 
' 

a convex set 11 c S(T
2 

C,V) have the property that for each s > 0 

-sV ' ~-sV 
II. Let 

the set 12 n e (T Z c> contains a neighbourhood of 0 in ~ (T Z c>. . ' 
Then n contains a set ~·9 ,E 

2 for well-chosen e E P+(JR) and E > 0. 

Hence the strong topology in S(Tz c·V} is induced by the semi-
• 

norms 

I. In order to prove that Pe is a continuous seminorm on S{Tz,C'V) we 

have to show that 9(C,V) is a continuous linear mapping from 

S(TZ,C'V) into z. Therefore, let s > 0. Then there is t > 0 such 

h 11 tCe(c V> -sv 11 (CV) . . -sViy. ) ( f t at e , , e < "'• So e , 1.s cont1.nuous on e .; Z,C c • 

Ch. I, Sectien 4). Since s > 0 is arbitrarily taken, it implies that 

0(C,V) is continuous on S(Tz,C'V). 

II. We introduce the projections Pnm' n,m E ~, 

n m 

Pnm I I dGÀHll. 

n-1 ar-I 

Then Pnm(n) contains an open neighbourhood of 0 in Pnm(Z). (We note 

that P (S(TZ C,V)) c P (Z).) So the following definition makes sense, nm , nm 

r = sup{p I (h E P (Z) A 11 P h 11 < p) =+ h E P (Q)} • nm nm nm ,nm 

Next we define the function 6 as fellows 
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À« (n-I,n) , lJ ~ (m-I,m], 

e(:\,O) À > 0 ' 

).1 > 0 ' 

À< 0 V].!<Ü. 

2 We shall prove that 6 ~ F(~ ) • To this end, let s > 0. Then there are 

t > 0 and E > 0 such that 

"" "' 
{hl J J e\l

8 d(GÀH!Jh(t),h(t)) < ,?}c::Q n e-~sV<Tz,c>· 
0 0 

because U n e-!sV(T
2 

c> contains an open neighbourhood of 0 by assump-
' 

tion. So we derive 

(n-l)t -~ms 
rnm > <: e e , n,m € ll . 

With ;, (n-l,n], 1J E (m-l,m] it follows that 

elnt e-(m-l)s 

2 2 
~ ~ e-!nt e 

E: 

(m-l)s Hs+t) 
e • 

So sup (e~Àt e-ps B(Ä,!J) 
Ä;;,O 
u;;,O 

We claim that 

(*) ueCC,V)hll < 1 .. hEn. 
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-sV Suppose h E e (Tz,c> for some s > 0. Then for all t > 0 

and for cr, 0 < cr < s, fixed and every·T > t 

(**) 

Because of assumption (*) 

r nm 

n2m2 p h -crV . -crV Hence nm e n n e (T z,c> for every n.m e lil • Iri e (T z,c> we 

represent h by 

Nt-M I 2 2 . ( t I ) 
h L 22(n m pnmh)+ , L. . 22 hNM 

n,m n m . n>N)v(m>M) n m 

where 

( l: p h) . 
\(n>N)v(m>M) nm 

With (**) we calculate 



He.nce hNM _,. 0 
· -oV 

because both > 0 and taken in e (T;;:,c> t T > t are 

arbitrarily. So for sufficiently large hNM E cç, n -oV N,M we have e (TZC)J. 
' 

Since h is a sub-convex combination of elements in the convex set 

.,., fl -aV " e (Tz,c> the result h E n follows. 0 

Similar toCh. I, Section I, we should like to characterize bounded sub-

sets, compact subsets, and sequentia! convergence in S(TZ,C'V). However, 

we think that this requires a metbod of constructing functions in F+(~2 ) 

similar to the construction of functions in B+(~) in the proofs of the 

characterizations given in [G], Ch.I. Up to now, our attempts to solve 

this problem were not successful. 

Remark. As inCh. I the set B+(lR) consists of all everywhere finite 

Borel function ~ on lR which are strictly positive and satisfy 

sup (~(x)e-~x) < oo. 

x>O 

Finally, we characterize the elements of S(TZ,C'V). 

(I .6) Lemma 

h" S(TZ C,V) iff there are 4 "B+(JR), W" Zand s > 0 such that 
' 

h = e -sV q, (C )w • 

~· The proof is an immediate consequence of the following equivalence~ 

F • <ji(C)W 0 

As in [GJ, Ch.I,it can bè proved that S(TZ C,V) is bornological and 
' 

barre led. 
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The elements of T
2 

V are called trajectories, i.e. functions IF from , 
(O,oo) into Z with the following property: 

-a V 
Vs>O Vo>O : F(s+o) = e F(s) . 

Now the subspace T(SZ,C'V) of Tz,V is defined as fellows: 

(2.1) Definition 

(2.2) 

The space T(Sz,C'V) contains all elements G E TZ,V which satisfy 

G(s) E SZ C • 
' 

Remark. T(Si C,V) consists of trajectories of TZ V 
' \ , through SZ c· The 

' 
space T(SZ,C'V) is not trivia!. ~e embedding of·Z into T2 V maps 

' -sV . -tV Sz,C into T(SZ,C'V), because the bounded operators e , s > 0 and e 

t > 0, ~;ommute. 

In T(Sz,c•V) we introduce the seminorms P~,s' ~ € B+(lR) , s > 0, by 

Pq,,s llq,(C) F(s) llz , F -: T(SZ,C'V) • 

The strong topology in T(SZ,C'V) is the locally convex topology induced 

by the seminorms P,,, • 
"''s 

The bounded subsets of T(SZ,C'V) can be fully characteri~ed with the 

2 aid of the function algebra F+(lR ) • To this end we first prove the fol-

lowing lemma. 
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(2.3) Lemma 

The subset B in T(S2 C,V)is bounded iff for each s > 0 there exists 
' 

t > 0 such that the set {F(s)IF € B} is bóunded in the Hilbert space 

e-tC(Z). 

Proef. B is bounded in T(SZ,C'V) iff each seminorm P~,s is bounded on 

B iff the set {F(s)l F € B} is bounded in s
2

" for'each s > 0. From Ch. I, 
'" 

Sectien I, the assertien fellows. 

2 Because of Definition (I. 3) for every e € F+ (:lR ) and each W € Z the 

-sV -sV vector e(C,V)e w is in SZ c· So the trajectory s 1+ e(C,V)e w is 
' 

an element of T(S
2 

C,V) and it will be denoted by e(C,V)w. 
' 

(2. 4) Theerem 

2 
The set B c T(SZ,C'V) is bounded iff there exists e E' F+(lR ) and a 

bounded subset V of Z such that B = e (C,V) (V) 

Proef. 

•) Let s > 0. Then there exists t > 0 such that 

tC -sV 
11 e e ( C, VJ e w 11 

Hence Bis a bounded subset by Lemma.(2.3). 

•) Let n,m E lil . Define 

n m 

P nm = I I d G ÀH IJ ' 
n-1 m--1 

and put rnm = sup (IIPnmGjl). Lets> 0. Then there are t > 0 and K
5
,t>O 

GEB 
such that 
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n m 
2 (f f r sup 
nm GEB n-1 m-1 

~ e 2ms e- 2(n-I)t 

Thus we obtain the following 

Def ine 8 on :IR
2 

by 

d(GÀHll G,G)) ~ 

n m 

sup (f f e-2)lse2Àtd(GÀHll 
GEB n-1 ro-l 

nm ·r 
nm 

-ms nt e e ~ K • 

G,G ) ) 

nm rnm i f rnm # 0, n-1 !> À < n, m-1 !> ll < m, 

8(À ,IJ) 

8(À ,IJ) 

-n 
e 

0 

i f r 
nm 0 ' 

if À < 0 or ll < 0 . 

~ 

2 
Then 8 E F+(1R). To show this, let s > 0 . Then there are 0 < t < I and 

K > 0 such that for all À E [n-I,n) and IJ E [ m-l,m) 

8(À ,IJ) 
Àt e-IJS 

~ 
nt e- (m-I) s 

~ 
s 

K e nm r e e 
nm s,t 

if r I 0, and i f r = 0 
' nm nm 

8 (À' IJ) 
Àt - IJS 

" 
-n nt 

I e e e e < 

For each G E B define W by 

w (r~~ nm P G) . nm 



Then we ca l culate as follows 

llwll~ !. 
r #0 nm 

- 2 -2 n m 

';I . 

2 
Hence w E Z with llwll < "6 and the set V a(C,V)- 1(8 ) is bounded inz. 0 

Since TX,A is a special T(SZ,C'V) space, Theorem (2.4) yields a charac­

terization of the bounded subsets of TX A' , 

(2. 5) Corollary 

Let B c TX,A' Then 8 is bounded iff there exists 4 E 8+(~) and a bounded 

subset V in X such that 8 = 4(A) ( V). 

Special bounded subsets of T(S2 C,V) are the sets consisting of one , 
single point. This observation leads to the following. 

(2.6) Corollary 

Let 
2 

H E T(S
2 

C,V). Then there are w E Zand e E F+(~ ) . such that , 
H = S(C,V)w. (Cf. Ch. I, Section 2). 

Similar to LellUila (2.3) strong convergence in T(S2 C,V) can be character-, 
ized. 

(2. 7) Lemma. 

Let (He) be a sequence in T(SZ,C'V). Then H.e. -+ 0 in T(SZ,C'V) iff 

tC 
Vs >O 3t>O : lle H,e(s) 11-+ 0 • 
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l'_r:~'.:'I· UI(') i~ ;t nul! Sc'quc•n.:e in11_S;é,C'V) iJr (11('(:;) i:; a ~lllll sequenn• in 

S~ ' lc>r c';lch:; 'o. FromCh. I, Sec'lÎou I lhe :l:lSL1rtion rodow:;. 11 - '\ 

\~.8) Theon;m 

(He} is il null sequence in T(SZ,C'V) iff there exists a null sequence 

Z 2 
(Wi) in and il L P+ (lR ) such that He = o (C,V)w.e: 

2 
Proof. The sequence (He) is bounded in T(SZ,C'V). Then construct OcF+(lR) 

as in Theorem (2.4): 

-n 
e 

0 

if rnm 0 , 

if À < 0 or ~ < 0 

where r = max (11 P Ho 11) • 
nm iEJN nm .._ 

Let ~ > 0. Then there are N,M E JN such that 

I < (~/2)2. 
(n>N)v(m>M) 

r-1 

~ P H , l E lil • Then for all i E lN 
nm nm i I 

r nm#O 

(*) L n 
(n>N)V(m>M) 

-z(r -2 11 P H 112) < (~/2) 2• 
nm nm l 

Further, there exis t t > 0 and la E lil such that for all l > la 

(**) 
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A combination of (*) and (**) yields the result 

for all l > t 0 

Since the choice of e € (JR
2) in the proof of the previous theorem 

has to do only with the boundedness of the sequence (Hl) in T(SZ,C'V), 

Theorem (2.8) implies the following. 

(2.9) Corollary 

0 

(Ft) is a Cauchy sequence in T(SZ,C'V) iff there exists e € F+(JR
2

) and 

a Cauchy sequence (Wt) in Z such that F l"' e(C,V)wl, l € JN. Hence 

every Cauchy sequence in T(S
2 

C•V) converges to a limit point. , 

Further, we have the following extension of the theory in [G], 

(2.10) Corollary 

(Ft) is a null (Cauchy) sequence in TX,A if there exists a null (Cauchy) 

sequence (Wf) in X and<j. E (JR) with F,e. = <l>(A)wl, l E :N. 

Finally we characterize the compact subsets of T(SZ C,D). 
' 

(2. 11) Theorem 

Let Kc TCSZ,C'V). Then Kis compact iff there exists e E F+(JR
2

) and 

a compact subset Wc Z such that K e(C,V)(W). 

Proof. 

~) Since Kis compact, Kis bounded in T(Sz,c•D). So construct e E F+(JR
2

) 

and the bounded subset W of Z as in the proof of Theorem (2.4). We 
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shall prove that W is compact. Let (Wl) be a sequence in w. Then 

(e(C,V)wl) is a sequence in K. Sirree Kis compact there e~ists a sub­

sequence (W~) and W E Z such that 

Thesameargumentswhichled to Theerem (2.8) yield W~ +Win Z. Hence 

W is compact in Z. 
2 

<= Sirree e (C, V) : Z + T (S2 C, V) is continuous for each 9 E F + (JR ) , the , 
compact set Wc Z has a compact image e(C,V)(W) in T(SZ C,V) for , 
each 0 

(2.12) Corollary 

K c T(SZ,C'V) is compact iff K is sequentially compact. 

(2.13) Corollary 

Kc T A is compact iff there exists a compact Wc X and ~ E B+(JR) such, X, 

that K =~(A) (W). 

(2.14) Theerem 

T(Sz C,V) is complete. , 
Proef. Let (Fa) be a Cauchy net in T(SZ,C'V). Then for each s > 0 the net 

(Fa(s)) is Cauchy in sz,c· Completeness of sz,c yields F(s) E Sz,c with 

-sV Fa(s) + F(s). Sirree (e )s~O is a semigroup of continuous linear mappings 

on Sz,C• the function s ~ F(s) is a trajectory of T(SZ,C'V). IJ 

Finally,we prove the following result. 
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(2.15) Lemma 

SZ,C is sequentially densein T(SZ,C'V). 

Proef. Let H E T(SZ,C'V). Then H(*) c SZ,C' n E lN and H(*) -+ H ln 

T(SZ,C'V). 

3. The pairing of S 

In this sectien we introduce a pairing of S (T Z C ,V) and T (S
2 

C ,V). It 
' . 

is shown that S(T
2 

C,V) and T(S
2 

C,V) can be regarcled as each other's 
' ' 

streng dual spaces. 

(3, I) Definition 

LethE S(Tz c,V) and let FE T(Sz c,V). Then the number<h,F>is de-. ' 
fined by 

< h,F> = <F(s), h> • 

Here <•, •> denotes the usual pairing of Sz,C and Tz,C• 

We note that the above definition makes sense for s > 0 sufficiently 

smalland that it does not depend on the choice of s > 0 because of the 

trajectory property of F. 

(3.2) Theerem 

I. Let F E T(SZ,C'V). Then the functional 

h I+< h,F> 

is continuous on S(T Z;C'V) • 

II. Let! be acontinuous linear functional on S(TZ,C'V). Then there 

G E rcsZ,C'V) such that 



III. Let h c S(T2 C,V). Then the functional 
' 

F~+ 

is continuous on T(S
2 

c,V). 
' 

IV. Let m be a continuous linear functional on T(SZ,C'V). Then there 

exists g E S(Tz c,V) such that 
' 

Proof. 

I. For every l.r T and every s > 0 z,c 

and W ~ 0 in T2 C implies <F(s),W > ~ 0. Hence the functional n , n 

h ~+<h,F>is strongly continuous on S(T
2 

C,V). 
' , 

II. Because of the definition of inductive limit topology, each linear 

f . 1 o -sV . . T 
unct~ona ~ o e kS cont~nuous on z,c· So there exists G(s) € SZ,C 

-sV with (! 0 e )(W) ~ <G(s),W>, wE rz,c• -sV 
s > 0. Since (e ) 8~0 

is a semigroup of continuous linear mappings on SZ,C it follows that 

G(s ..- o) -oV 
e G(s) , s,a ;::: 0 • 

So s * G(s) is in T(SZ,C'V) and 

0 (h) ; <G{s) ,e8 Vh> = <h,G>, h ~ S(T V) 
~ ~ ·.z, c' · 

III. Following Lemma (1.6), there are We Z, s > 0 and cp e B+(JR) with 

h = e-sV4(C)w. Hence the inequality 



i<h,F~ I <w,q,(C)F(t)> I ~ llwi!IIHC)F(t) 11 

the continuity fo11ows. 

IV. The strong topology in T(SZ C,V) is generated by the seminorrus 
' 

where s > 0 and Ij> E B + (JR) • Since m is strongly continuous on 

T(SZ C,V) there are cr > 0 and <p E B+(JR) such·that 
' 

jm(F) I s: Prp,o(F) = l!ql(C)F(o)ll, F E T(Sz,c•V). 

h 1 . f . 1 (C)-I oV · . h So t e 1near unct1ona m 0 rp e 1s norm cont1nuous on t e 

-oV dense linear subspace rp(C)e (T(SZ,C'V)) c z. It therefore can 

extended to a continuous linear functional on Z. So there exists 

w E z with 

-1 oV (ma rp(C) e )(rp(C)F(o)) ('!' (C)F (a) ,w). 

Definition 

The weak topology on S(TZ,C'V) is the topology generated by the s;cminorms 

uF(h) "'i<h,F>I, h S(TZ,C'V). 

The weak topology on S(Tz c,V) is the topology generated by the SeJ,Jinorms 
' 

uh(F) = l<h,F>I, F E T(Sz,c·V). 

A standard argument [Ch], 11,§22 shows that the weakly continuous linear 

functionals on S(TZ,C'V) are all obtained by pairing with elements of 

T(SZ,C'V) and vice versa. So it follows that S(TZ,C'V) and T(SZ,C'V) are 

reflexive bath in the strong and the weak topology. 
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(3.4) Theorem (Banach-Steinhaus) 

I. Let W c T(SZ,C'V) be weakly bounded. Then W is strongly bounded. 
. i 

II. Let V c S(TZ,C'V) be weakly bounded. Then V is strongly bounded. 

Proof. 

-sV I. Lets> 0, and let <1> e B+(lR). Then following Lemma (1,6) e q,(C)WE 

€ S(TZ C'V) for each W e Z and by assumption there exists NW > 0 such 
'·-sV 

that l«:e 4>(C)w,F);1 = I (W,cp(C)F(s)) I ~ Nw, F .: w. 

By the Banach-Steinhaus theorem for Hilbert spaces there exists 

~ > 0 such that s,q, 

ll<t>(C)F(s) 11 < as,q, • 

With Lemma (2.3) the proof is finished. 

2 
II. Let e .: F+(lR). Then for each we z, e(C,V)w e T(SZ,C'V). 

By assumption there exists ~ > 0 such that 

I cecC,V)h,w)j ~ MW 

for each W e z. Hence for all h E V 

for some a 6 > 0. 

The next theorem characterizes weakly converging sequences in T(SZ C'V). 
' 

(3.5) Theorem 

Fl + 0 in the weak topology of T(SZ,C'V) iff there exists a sequence 

(wl) in Z with wl + 0 weakly in Z, and a function a E F+(lR
2

) such that 

Fl e(C,V)wl, l e lN. 

0 
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.,) Trivial 

~) The null sequence (Ft) is weakly bounded. So by Theorem (3.4) it is 

a strongly bounded sequence in Z. As in Theorem (2.8) define rnm for 

n,m € N by 

by 

r nm s up (11 P F u 11) • 
.ÎE:N nm <-

sup(nmr e-msent) < "'• and the function 8 defined 
nm n,m 

= n m r nm 

-n 
e 

0 

if rnm f. O, n-1 <; ;, < n, m-1 o> ).l < m , 

if rnm 0 , 

elsewhere 

L n-lm-lr- 1P F
0 

, .tEN. 
r ;o nm nm <-

nm 

Let u. E Z, and let c > 0 and N ,M E lN so large that 

Th en 

I (n 
(n>N)v(n>M) 

-2 2 
) < (e/2) • 

I I (u.,Pnmw )I 
(n>N)v(m>M) .t 

r /0 nm 

< t:/211 uil 



Flt rc!!er , s in c~ r u '­
om 

su èl t thJt (ur Jll r ' 

I \ (u , P W0 ) I 1- nm "-(n:>N)II (m.SM) , 
r #0 

nm 

fur :111 n , m c lN, chere exists .e.
0 

,_ lN 

Hence, for each E > 0 and u E Z there e xi s ts R.
0 

E lN s uch t hat for 

5 I I (u' p w R.) I· + 
(n>N)v(m>M), nm 

r #0 nm 

Thus we have proved that WR. ~ 0 weakly in Z, and 

D 

(3.6) Corollary 

I. Strong convergence of a sequence in T(SZ,C'V) implies its weak con-

vergence. 

II. Any bounded sequence in T(SZ,C'V) has a weakly converging subsequence. 

(FR.) is a 1veakly converging null sequence in T X,A if f there ex is ts a weakly 

converging null sequence (wR.) in X and a function ~ E B+(~) such that 

Remark: From Theorem(2 . 4)and Definition(3 . 2) it fo llows that the strong 

topology in S(Tz C,V) equals the so-called Mackey topology (Cf.[Tr],p.369). 

' 
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4. Spaces related to the operators C v V and C A V 

As in the previous sections, (GÀ)ÀElR and (H
11

)
11

ElR denote the speetral 

resolutions of C and V. The orthogonal projection P, defined by 

commutes with C as well as V. 

(4. I) Definition 

(4. 2) 

The nonnegative, self-adjoint operator C A V is defined by 

c A V PCP + (I- P)V(I- P) • 

The nonnegative, self-adjoint operator C v V is defined by 

c V V (1 - P) C (1 - P) + PVP. 

Remark: The operators C A V and C v V are also given by 

c A V I~ max(À,Il)dGÀH
11 

, C v V 
lR 

I~ min(À,Jl)dGÀHil . 

lR 

The spaces SZ cvv• SZ CAV' Tz cvv and Tz CAV are well-defined by Ch. I, 
' ' ' ' 

Section I and 2. With the aid of these spaces sums and intersections of 

SZ,C' SZ,V' TZ,C' and TZ,V can be described. 

Theorem 

I. s s = s n SZ V z,CAV z,C+V z,C 
' 

I I. sz,CvV s c + SZ V Z, . 
III. T Z,CAV T Z,C+V T z,c + T V z, 
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(In II, + denotes the usual sum in Z, and in III the usual s um in Tz ,e+V') 

Proof. From the definition of the projec tion P we derive easily that for 

all t > 0 the operators Pe-teetVP and (I-P)e-tVete (1 -P) are bounded inZ. 

I. Let f E SZ,eAV' Then there are t > 0 and w E Z such that 

-re~ ~ re -rv 
Sof= e w with w = Pw + (1-P)e e (1-P)w E z, and hence f E SZ e· , 
Simila rly it follows that f E SZ v· , 
On the other hand, let g E sz,e n sz,v· Then for some w,v E z and t > o, 

-te 
g = e W and g 

So g can be written as 

g Pg + (1 - P) g 

-tV 
e V 

tC -tV Pe- Pw + (1-P)e (1-P)v 

Finally ,weprove thatS e V = S e V' z, A Z, + 

Since e .+D :<: eAVit is obvious that Sz ,e+V c Sz,eAV' 

-re -cV 
Now l e t f E SZ,eAV' Then f = (Pe P + (I- P)e (1- P))W for ce rtain 

t > 0 and W E Z. Thus we fi nd 

f -!t(e+V) [ P - ! re ! tVP (1 P) j tV jte(1 P)- d = e e e + - e e - JW , an 

and he nee f E S2, e+V . 

IT. Le t f E Sz ,evv· The n the r e are W E Zandt > 0 s uch tha t 
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So f <: SZ,C + SZ,V' On the other hand let u,v Z and J cL t / 0 . l'n t 

-tC -tV 
g ; c u + e v . Then 

Since c V V ~ c and c V V ~ V, this yields g E sz,CvV' 

H l. Le t G ~ TZ,C AO' Then liJ E: Zand <p E: B+(lR) are such that G q> (C" V)w. 

Si nee rp (C "V) = <p (C) P + cp (V) (1 - P), 

G = <p(C)IW + q>(V)(I-P)w c T2 C + T2 v· 
' ' 

On the other hand let cp,~ E ll+(lR) and let u,v E Z. Put 

G = <p(C)u + ~(V)v 

Since the operators cp(C)e-t(CAV) and ~(V)e-t(C"V), t > 0, are bounded on 

Z, for all t > 0 

Hence G E T
2

,C,..V' Because SZ,C"V SZ,C+V also topologically, it is clear 

that T = T z,c"v z,C+V' 
IV. Let H € Tz,C n Tz,V' Then there are ~ .X E B+(lR) and v,w E Z such 

that H = ~(C)W and H = x(V)v . . So H can be written as 

H = ~(C)(I-P)w + x<V)Pv, 

and e-t(CvV)H = e-tC~(C)(I -P)w + e-tVx(V)Pv E z. This implies HE rz,cvv· 

Since C v V ~ C and C v V ~ V we have 

0 



(4. 3) 

Jt i$ obvious that the operators C "V and Cv V commute. So the spaces 

fined. Here, for convenience, we have omitted the subscript Z. Sirnilar 

to Theorem (4.2) we shall prove the following. 

Theorem 

I. S(TC,V) n S(TV,C) S(TCvV'C " V), 

I I. S(TC,V) + S(TV,C) S(TC"V'C V V)' 

III. T(SC,V) n T(SV,C) T(SC"V'C V V)' 

IV. T(SC,V) + T(SV,C) T(SCvV'C "V) . 

Proof 

I. Let k E S(Tc,Vl n S(TV,C). Then there are ~.~ E B+(~) , t > 0 and 

u,v E Z such that k ~ e-tC~(V)u and k e-tV~(C)v. 

Put X inax(~ ,~). Then x E B + (1R) and k is given by 

k ~ e -tCx(Vlû: and k 

·•ith u~ x-J (V)<p(V)u E zand v~ x- 1 (C)~(C)v E z. So 

k Pk + (I -P)k 

This yields kES(TCvV'C "V) . 

On the other hand, let ~ E B+(1R) and let W E Z, t > 0. Then for h 

<p(CvV)e-t (CAV)W' 

Hence hE S(Tc,V) . Similarly it can be shown that h E S(TV,C) . 
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II. Leth E S(TC,V) + S(TV,C). Then there are w,v E z, t > 0 and x EB+(~). 

such that 

h 
-tC -tV 

e x(V)w + e x (C)v 

Hence h can be written as 

Since Cv V $ C,V and CA V ~ C,V, this yields h E S(TCAV'C v V). 

In order to prove the .other inclusion, assume that g E S(TCAV'C v V). 

Then there are W E Z,t > 0 'lnd 'I' E B+(~) such,that 

g 

III.Let Q E T(Sc,V) n T(SV,C) and let t > 0. Then there exists s > 0 such, 

sC -tV sV -tC that e e Q E Z and e ~ Q E z. 

Hence PesCe-tVPQ E Zand (1- P)esVe- tC(I - P)Q E Z which implies · 

es(CAV)e-t(CvV)Q E Z. 

On the other hand, let R E T(SCAV'C v V), and let t > 0. Then take 

s > 0 such, that es(CAV)e-t(CvV)R E z. This yields 

So R can be seen as an element o f T(SV,C), and similarly as an ele-
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IV. Let Q E T(SC,V) + T(Sv,C). Then there are Q
1 

E T(SC,V ) and Q
2 

E T(SV,C ) 

such that Q = Q1 + Q2 with the sum understood in TC+V" Le t t > 0. 

Then there is s > 0 such that 

sC -tVQ sV -tCQ e e 
1 

E Z and e e 
2 

E Z • 

s(CvV) -t(C"V) Hence e e Q = 

so that Q E T(SCvV'C A V) . 

Finally, le t R E T(SCvV'C A V) and let t > 0. Then there is s > 0 with 

Hence R 
sV -tC 

PR + (I - P) R and e e PR 

s (CvV) -t (CAV) . . sC -tV 
Pe e R E Z and s 1m1larly e e R E Z. 

Thus we have shown R E T(SC,V) + T(SV,C) . 

The preceding theorems play a maj or role in the inclusion scheme which 

we give in Section 5. The results of Theorem (4.3) will lead to a fifth 

Kernel theorem in the following chapter. 

5 . The inclusion scheme 

The s paces which are introduced i n [ G] and in t he previous sections f it 

D 

into an inclusion scheme. Here we shall give some properties of the spaces 



in thi s schE>me . ·The reader may as well skip thc proofs . They are added 

fo r completeness. Let C and V de note two commuting, nonnegative, self-

adjoint operators in Z. 

(5 .1 ) Lermna 

Let C ~ V. Then 

S(T0,C) =SC and T(Sv,C) = Tc. 

Proof. It is clear that SC c S(T0,C) and T(S0,C) c TC. 

So let f 

that f 

E s<T0,c). 

-tc -e qJ(V)w. 

Then there are t > 0 and qJ e B+(~) 

He nee 

because qJ (V)e-t/zC is a bounded operator onZ. 

Similarly , Tc c T(Sv,C) can be proved. 

(5.2) Lemma 

S(T0,c) c T<Sc,V) 

Proef. Leth E S(TV,C). Then h can be written as 

-te -
h = e '1J(V)W 

where t > 0, qJ E B+(~) and WE Z. Hence, for all s > 0, 

With emb(h) -sV s ~ e h, the proef is complete. 

and W e Z such 



5cvV c S(TC"V'C V V) c T(SC vV'C " V) Tc"v 
u u u 

SCvV c S(TV,C V V) c T(SCvV'V) Tv 
u u u 

se c S(TV,C) c T(SC,V) c Tv 
u u u 

sc S(TCvV'C) c T(SC,C V V) c TCvV 
u u u 

sc"v S(TCvV'C " V) c T(SC"V'C V V) c TCvV 
n n n 

sv S(TCvV'V) c T(SV,C v V) c TCvV 
n n n 

sv c S(TC,V) c T(SV,C) c Tc 
n n n 

SCvV c scTc,c V V) c T(SCvV'C) rc 
n n n 

SC vV c S(TC"V'C V V) c T(SCvV'C " V) TC"V 

Fig. (5.3) The inclusion scheme 

A row in the inclusion scheme (5.3) is of the farm 

( 5 . 4) 

(5 .5) Thearem 

In (5.4) all embeddings are continuous and have dense ranges. 

Proaf. We praeeed in three s teps. 

(i) SC c scr0,c) 

Let (1~n) be a null sequence in Sc· Then there is t > 0 s uch that 



t'è e w
0 

+ 0 in z. So for all s > 0 

te -sv ~ 0 e e w ~ 
n 
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in X. This proves that the embedding emb : Së~ S(TV,C) is continuous. 

To show that Sc is densein S(T0,C), let HE: T(Sv,C> with<lif,H>= 0 

for all f E: SC. Then <f,H> = 0 for all f € SC. So H = O, and SC is 

dense in S(Tp,C). 

(ii) S<Tv,C> c T(Sc,V> 

First we remind that in Lemma (5.2) we showed how S(T0,ë) can be em­

bedded in T(SC,V). The embedding is continuous. To show this, let 

s > 0 and q. E B + (:R). Then the seminorm 

is continuous on S(T0,C) 

Now let gE S(Të,V), the dual of T(SC,V). Then g can be written as 

g = rp (C)u where u E Sfj and 'P E B+(:R). Suppose 

<1i g,h> 0 

Then for all f E Sc and all x E (:R) 

Hence u= 0, and scr0,c) is densein T(Sc,V). 

(iii) T(Sc,V) c TV . 

The continuity of the embedding follows from the continuity of the 

seminorms 

t + IIH(t)ll , t > 0, 
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Further, let f E s0 and suppose <f,H> = 0 for all H € T(Së,V). 

Then (f,h) = 0 for all h E Së. So f = 0. 

Consider the inclusion subscheme of (5.3). 

Then similar to Theorem (5.5) we show 

(5. 7) Theorem 

In (5.6) all embeddings are continuous and have dense ranges. 

Proof. We proceed in two steps. 

(i) Let (fn) be a null sequence in.SCAV' Then there is t > 0 such that 

llet(CAV)f 11->- 0. Hence 
n 

Further, let G E TC and suppose for all f E SCAV' 

<f,G> = 0 

So for all x E Z and t > 0, (x,e-t(CAV)G) = 0. This implies G = 0, 

and hence SCAV is dense in SC. 

Cii) sc c: scvV : 

Fellows from (i) because C = (C v V) A C . 

(5.8) Corollary 

In the inclusion scheme 

all embeddings are continuous and have dense ranges. 

0 

0 



(5 .9) 
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. follows from Theorem (5. 7) by dualîty. 

Finally we consider the inclusion subscheme. 

We prove 

In (5.9) all embeddings are continuous and have dense ranges. 

Proof. 1\fe proceed in two steps . 

(i) Since the seminorms 

are continuous in T(SCAV'C v V), the embedding of T(SCAV'C v V) in 

T(SC,C v V) is continuous. Further, SCAV c T(SCAV'C v V) is dense 

in SC, and SC is densein T(SC,C v V). So T(SCAV'C v V) is densein 

T(SC,C v V). (See Lemma (1.16)). 

(ii) The seminorms 

-tV 
G + 11 lP (C)e G 11 

are continuous in T(SC,C v V). So the embedding from T(SC,C v V) in­

to T(Sc,V) is continuous. Further we note that SC is dense both in 

T(SC,C v V) and in T(SC,V) by Theorem (2.15). Hence T(SC,C v V) is 

densein T(SC,V). 0 



(5. I I) Corollary 

In the inclusion scheme 

all embeddings are continuous and have dense ranges. 

Finally, the main result of this section will be given. 

(5. 12) Theorem 

In (5.3) all embeddings are continuous and 'have dense ranges. 

Proof. Follows from Theorem (5.5), (5.7) and (5.10), and from Corollary 

(5,8) and (5.11). 0 
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111. ÜN CONTINUDUS LINEAR MAPPINGS BETWEEN ANALYTICITY AND TRAJECTDRY SPACES 

Introduetion 

Here X and Y will denote Rilhert spaces, and A will be a nonnegative self-

adjoint operator in X and Ba nonnegative self-adjoint operator in Y. In 

[G], the fourth chapter contains a detailed discussion of the four types 

of continuous linear mappings: 

In order to prove aKernel theorem for each of these types, in addition 

to the topological tensor products Sx~,NBB and T~.NBB' the spaces 

f ' • ' ' LA and LB have been ~ntroduced. LA and LB are topological tensor products 

of TX,A and SY,B and of Sx,A and TY,B. 

In order to gain a deeper understanding of the topological structure of 

I I • 
these spaces LA and LB' we have ~ntroduced the more general type of spaces 

T(SZ,C'V) and S(TZ,C'V), where C and V are cammuting nonnegative self­

adjoint operators in the Rilhert space Z. The following relations have 

been mentioned: 

So obviously results in Ch. II apply to the spaces LÀ, L~, IA and r8 . 
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Thus, the intersectien of EÀ and EB is a space of type T(SZ,C'V). This 

observationleads toa Kemel theorem for so-called extendable mappings. 

Cf. Ch. I, Section 4. 

Precise formulations of the above-mentioned five Kemel theorems can be 

found inSection 1. In the remaining sections we consider the case X= Y 

and A = 8. Hence, we investigate the spaces 

In Section 2 we shall prove that rA and TA admit an algebraic structure 

and that they are homeomorphic. The homeomorphism is denoted by c. The 

mapping c is also a homeomorphism from the space SA = S(TX®K,A®I'I~) 

onto sA= S(TX®X,I®4.'A®1). Put EA = rA n TA. Then 

it inherits several properties of the algebras rA 

is an involution on EA. The strong dual EÀ equals 

SA +SA. We shall extend c to EÀ in a natura! way. 

EA is an algebra and 

c 
and TA. The mapping 

the algebraic sum 

In the sequel we shall confine our attention to nuclear analyticity 

spacesSX A' Then, because of the Kernel theorems the space rA<TA) camprises 
' 

all continuous linear mappings from SX,A (TX,A) into itself. Inspired by 

operator theory for Hilbert spaces, we introduce the topology of point­

wise and weak pointwise convergence in rA<TA).These topologies correspond 

to the strong and weak operator topology for Von Neumann algebras, while 

the weak and strong topology of rA(TA) correspond tothe ultra-weak and 

uniform operator topology. 

In Sectiens 3 and 4 we study the relations between the algebraic and the 

topological structure of rÄ and TA. It appears that separate multiplica­

tion is continuous in all mentioned topologies. The effects of the results 



of dw pn:vious secdons on the algebra and it:s strong dual EÀ are 

investigated inSection 5. 

In Section 6 we indicate possibilities to interprete parts of quanturn 

statistics by means of the mathematica! apparatus developed for the spa-

ces EA and EÀ. Theyseem to be more appropriate than any operator algebra 

on a Hilbert space, because in general EA contains unbounded, self-

adjoint operators. However, we emphasize that we consider it as an Ansatz 

only. We are not fully aware of all consequences of such redescription. 

If tbe Kern el theorem holds true, each continuous linear mapping from SX,A 

into itself bas a well-defined infinite matrix. Section 7 of this paper 

is devoted toathorougb description of this kind of matrices. There are 

manageable, necessary and sufficient conditions on the entries of an in-

finite matrix, such, tbat its corresponding linear mapping is continuons 

on SX,A' Tbe thus obtained identïfication between -f and a class U(-f) 

of well-specified infinite matrices enables us to construct a large 

variety of elements in-f. Particularly, we note bere tbat the matrix 

calculus will be of great importance in a fortbcoming pàper on ene-para­

meter (semi-)groups of elements of -f. In Section 8 we treat a subclass 

of M(-f), the class of unbounded weighted shifts. Weigbted shifts are the 

simplest, non-trivia! operators in rA. 

In the final section our matrix calculus yields the construction of nu-

clear analyticity spaces on which a prescribed set of linear operators 

act continuously. 
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In this section we shall reeall the four Kernel thenrents introduced in 

[G], ch.VI, and we shall add one to them. 

The Hilbert space XlliJY of all Hilbert-Schmidt operators from X into Y 

can be regarded as a topological tensor product of X and Y. Let A and B 

denote nonnegative self-adjoint operators in X and Y. Let W € D(À). Then 

for all V € Y, we define 

Af'IJI (w@.l) • (Aw)®v 

With the aid of linear extension, the operator A®I is well-defined on the 

algebraic tensor product D(A)®ay' It can be proved that A®l with domain 

D(A)® Y is nonnegative and essentially self-adjoint. Cf.(W],[G]. Similar­a 

ly 1@8 with domain X®aD(B) is nonnegative and essentially self-adjoint 

in~. Further, the operators A®l and li6 commute, i.e., their speetral 

puojections commute. 'So the operator ~ • A®l + I®B with domain 

{WE. XlliJYj J (À+)l)
2
d((EÄ@f'\l)ll/,ll/) < oo} 

JR2 

is self-adjoint and nonnegative. Consequently the spaces s~.~ and 

T~y,AmB are well-defined. In [G] it is,proved that S~Y,AmB is a topclogi­

cal tensor product of SX,A and SY,B' and T~,NEB a topological tensor pro-

-t (AH;B) -tA -tB 
duet of TX,A and TY,B' We note that e = e ®e , t <1: 0. 

Case (a). Continuous linear mappings from TX,A into SY,B' 

An element e E s~.~ induces a linear mapping rx,A + sY,B in the fol­

lowing way. Let F E TX,A' Then 9F is defined by 
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where E > 0 has to be taken sufficiently small. 

(1.1) Theorem 

I. For each 9 E sx~ ~· the linear operator 9: rx A ~ sy B as defined 
' ' ' 

by (a) is continuous. 

II. For 8 E SX~,AffB' F E TX,A and G E TY,B' 

-tA III. If for each t > 0 at least one of the operators e e -tB is Ril-

bert-Schmidt, then SX®Y,~ camprises all continuous linear mappings 

from TX,A into SY,B" 

IV. SX®X,~A camprises all continuous linear mappings from TX,A into 

-tA SX,A' iff for each t > 0 the operator e is Hilbert-Schmidt. 

Proof. Cf.[G], Theorem 6.1. 

Case (b). Continuous linear mappings from SX,A into TY,B" 

Let w E rx~ A~· For f E sx A we define ~f E rY,B by 
' ' 

(b) t > 0 ' 

where s > 0 has to be taken sufficiently small. 

(I. 2) Theorem 

I. For each w E rx~,AGE the linear mapping w: sx,A + TY,B defined by 

(b) is continuous. 
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II. For each ~ € Tx~ Arnu> f € sx A and g E sy B 
,~ , ' 

<g,<l>f>y = <f®g,~>~· i 

III. If for each t > 0 at least one of the operators e-tA e-tB lis H.S. 

then r~,Ail:6 camprises all continuous minear mappings fro~ sx,A in­

to Ty B' 
' 

IV. T~,NEÄ camprises all continuous linear mappings from SX,A into 

T X,A iff for each t > 0 the operator e -tA is H.S. 

Proof. Cf.[G], Theorem 6.2. 0 

In [G], Ch.V, the spaces EÀ and EB are introduced as follows. 

E' B 

It is not hard to prove that EÀ equals the space T(~,l®B'A®l) and Eij 

the space T(SX~ A®I'I®B) both set theoretically and topologically. Cf • 
• 

Ch. II, Sectien 2; [G], Ch. V. 

Let F E T x A and g E sy B' Th en F ® g is defined as the trajectory 
' . 
F®g: t -r F(t) ®g. 

Since F(t) ® (ee:Bg) E ~ for e: > 0 sufficiently small and all t > 0, the 

trajectory F ® g is an element of T (SX0i ,IQlfi'A®I). So the algebraic tensor 

product of TX,A and Sy ,B is contained in T(SX®Y,IQlfi'A®1). De Graaf proves 

that T(SX®Y,l@B'A®1) is a complete topological tensor product of TX,A and 

SY ,B' Moreover, for F E T X,A and g E Sy ,B tb.e tensor prqduct F 6ll g is an 

element of s<rx®Y,A0I'I~). because there exists E > 0 fixed such that 
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(1. 3) 

So the algebraic tensor product TX,A(fl:'aSY,B is also contained in 

S(TX®Y,A®I'T@B). By similar arguments it follows that the space 

T (SX®Y A®I, I eB) is a complete topological tensor product of the spaces 
' 

Sx,A and TY,B' The algebraic tensor product SX,A®aTY,B is contained in 

S(TX®Y,I®B'A®1). We note that S(TX®Y,A®I'I®B) is included in 

T(SX®Y,l®B'A®I), and that S(TX®Y,I®B'A®l) is included in T(SX®Y,A®I'I®B), 

Cf. Ch. II, Section 5. 

Case c. Continuons linear mappings from SX,A into SY,B' 

Let p € T(SX®Y,1®B'A®1). Then for f E sx,A wedefine Pf by 

(c) p (f) cA 
P(c)e f, 

where E > 0 has to be taken sufficiently small. We note that (c) does not 

depend on the choice of c > 0. Since P(c) 

I. ForeachP E T(SX!&'!'.',I®B'A®I) the linear operator P: sx A+ sy B defined 
' ' 

by (c) is continuous. 

II. For each p E T(SX®Y I®B'A®l), f E sx A and G E ry B 
' ' ' 

-tA III. If for each t > 0 at least one of the operators e e-tB is H.S. 

then T(SX®'i Jfi!JB'A®1) comprises all continuons linear mappings from 
' 

Sx A into Sy 8 • 
' , 
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IV. T (SX@Y, lr0A ,A®I) camprises all continuous linear mappings from SX,A 
. . .· .·. -tA: 

into itself iff for eac.b t > 0 the operator e · is H.S. 

Proof. Cf.[G], Theo~em 6.3. 0 

Case (d}. Continuous linearmappings fromTX,A irito TY,fV 

Let K" T(SX@Y,A®l'I€8). For F "TX,A' KF " TY,B by 

(d) (KF}(t) = K(t)ee:A)F(e:) • 

definition makes sens~ for all .t, > .0 and for étch e: > 0 slttffièiently 

small. We have (KF)(t) € sY.B' because K E Tx~.I€8' 

(1.4) Theorem. 

I. For each K "T(S~,A®l'l®B), the linear mapping K: TX,A ~ TY,B 

defined in (d), is continuous. 

-tA -tB • III. If for each t > 0 at least one of the operators e e 1s H.S., 

then T(S~,A@I'l€6) comprises all continuous linear mappings from 

TX,A into TY,B' 

IV. T(SX®OC,A®l'1€A) comprises all continuous linear mappings from TX,A 

into itself iff the operatore-tAis Hilbert-Schmidt for all t > 0. 

Cf.[G], Theorem 6.4. 

(1.5) Definition 

A continuous linear mapping E from SX,A into SY,B is called extendable, 

if E can be extended to a continuous linear mapping from TX,A into TY,B' 

0 
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In [G], necessary and sufficient conditions are given in order that a 

linear mapping on SX A is extendable, cf. Ch. I, Sectien 4. 
' 

InCh. II fora pair of commuting, nonnegative, self-adjoint operators we 

have defined the operator C A V by 

and the operator C v V by 

C v V J! min(À,~)dGÀH~. 
:JR2 

where (G,), 1R and (H ) 1R are the speetral resolutions of C and V • 
A ;,E ~ ~€ 

Moreover, we have shown that 

Applying this result to the spaces T(SX0f, 1~,AG<>1) and T(SX®Y ,A®I ,1181B), 

we find that their intersectien equals the space T(SX0f,A®B'~) with 

A®B (A®I) A (1®8) and AQB (A®I) V (1@8). 

(1.6) Definition 

The canonical mapping emb: SX,A®aSY,B + T(SX®Y,A®B'AQB) is defined by 

emb (f@ g) : t >+ e-t(~) (f@ g) 

It is obvious that emb(f®g) E T(SX@Y,A®B'AQB). 

The space T(SX®Y,A®B'A~) is a complete topological tensor product of the 

spaces SX,A and SY,B' By this we mean 
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(I • 7) Theorem 

I. T(SX~,A®B'A~) is complete, 

II. The mapping ~ : Sx,A x SY,B + T(S~,A®B,AQB) is continuous. 

III. SX,A®aSY,B is densein T(SX~,A®B'AQS). 

Proof. 

I. All spaces of this kind are complete. Cf. Ch. II, Section 2. 

II. It is sufficient to check continuity at [0;0]. Let 4 E B+(m), and 

let t > 0. Then 

11 q, (Á®B)e -t (AQB) (f 6ll g) llx~ ~ 

as soon as h(A)fll and 114(8)gll are small enough. Cf.[G], Ch.I. 

III. Following [G], Ch.V, the spaçe SX,A~aSY,B is dense in S~,Am6' 

FromCh. II, Section 5, it follows that S~ AIDS is dense in 
' 

The strong dual space of T(S~,A®B'AQB) is equal to the space 

S(T~Y,A®B'AQB), where 

Hence, for all f E sX,A' g E sY,B and all F E rX,A' G E TY,B 

Case (e). Extendable linear mappings from SX,A into SY,B' 

Let E E T(S~Y,A®B'AQB). Then for f E sx,A we define Ef by 



Ef 

where e > 0 has to be talien sufficiently small. Definition (e 1) does not 

depend on the choice of e. Further Ef E Sy • B because (~ISZB) ( e -TA0l) is 

a bounded operator on x~. and because E(T) E sx~.A~ c sx~.I€B" 

Let F E rx,A· We define the extension Eon rx.A by 

where each E > 0 has to be chosen sufficiently small. We have EF E Ty B' 
' 

because the operator e tAISZB (! ®e -tB) is bounded on X€1{ for all t > 0, and 

because E(t) E sx~.A~ c sX€1i,A®I" 

Remark: If E E T(SX~,A~,A®B) then E can be embedded in T(SX®Y,l@B'A®I) 

as follows 

and in T(S~,A®l'l@B) as 

Cf. Ch. II, Section 4. 

The proof of the next theorem will be omitted; it is an immediate corol-

lary of Theorem (1.3) and (1.4). 

(1.8) Theorem 

I. By (e 1) and (e2), each element of T(SX~,A®B'AQ8) provides a continu-

ous and extendable linear mapping from sx,A into Sy,s· 
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..";:f@G + F@g,E:»= <Ef,G> + <g,EF> 

-tA -tB • III. If for each t > 0 at least one of the operators e or e ~s 

Hilbert-Schmidt, then T(SX®ï' A((i;fi'A6'26) comprises all e.xtendable linear 
' 

. mappings from SX,A into SY,B' 

IV. T(SX®K A®Ä'A~) comprises all extendable 

operat:r e-tA is Hilbert Schmidt for all 

linear ·mappings iff the 

t > o. 

By Theerem (1.8) we have given the space of extendable linear mappings 

the structure of a space of typeT(S C'V), if at least one of the spaces z, 
Sx,A and SY,B is nuclear. 

2. The algebras rA, TA änd EA 

The space yÄ = T(SX®K IQ\'A@I) comprises all continuous linear mappings 
' -tA from SX,A into itself if and only if the operator e is Hilbert-Schmidt 

f 11 0 S • h' 1.A d • 1 b • If h or a t > • o ~n t ~s case a ~ts an a ge ra~c structure. t e 

space SX A is not nuclear, then it is less natural that yÄ is an algebra. 
' 

Yet it is true. To show this, let P1 

for each f E SX A by definition, 
' 

• € yÁ, Then by the previous section 

where , 1,,2 > 0 have tobetaken sufficiently small. Thus tb the product 

P1P2 there corresponds the trajectory (P 1P2) in rA 
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TA where for each t > 0 we have to take T > 0 so small that e P2 (t) X®K. 

With the above-derived multiplication (P 1,P2) + (P 1P2), TA is an algebra. 

Similarly, there exists a multiplication oparation on TA= T(SX®K,A®I'I®A), 

(K 1,K2) + (K 1K2), where 

(2.1) Definition 

c The linear mapping on TX®K,~ is defined by 

Ramark: ~cis called the adjoint·of ~. 

(2.2) Lemma 

The mapping c is a strongly continuous bijeetion on TX€K A~ with ~cc = ~. 
' 

Proof. The lemma is a natura! consequence of the definition of c, and of 

the strong topology in TX®K,~' 

Since rA,rA can beseen as subspaces of T~.~· the Mappingcis well­

defined on rA and TA. It is not difficult to see that for P E rA its 

adjoint Pc is given by Pc: t + P(t)*, Here we note that tt+P(t) is a 

trajectory in rA. 

· (2. 3) Lemma 

The mapping c is a bijeetion from rA· onto TA. 

Proof. Let t > 0, and let P E TA. Then there is ~ > 0 such that 

0 
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or, equivalently, 

P(t) e: D(I @e-rA) 

So its adjolnt P(t)* is in D(e'A@1), which yields Pc € TA. 

Sinûlarly for K e: TA we derive Kc e: rA. Hence c is a bijection. 

(2.4) Theerem 

The mapping c: rA ..,. TA is a homeomorphism. 

c c c c Proef. It is clear that is a bijeetion satisfying (P
1
P

2
) • P

2
P

1 
• 

Further, each seminorm on rA transforms into a seminorm on TA by the 

mapping c. In particular, for all P € rA, 

where q, € B+(JR) and t > 0. Thus _the result is established. Cf. Ch. II, 

Sectien 2. 

(2.5) Corollary 

The mapping c TA..,. rA is a homeomorphism. 

The definitions (a) - (d) of the preceding section, which indicate how 

0 

0 

the elements of each of the four tensor products induce continuous linear 

mappings, lead to the following 

(2.6) Lemma 

Let f,g ESX,A, ancl let F,G E tx,A' Then 



<f,'Î'g> ~ <g, 'Î' ' T X(2)X,AIB\ ' 

<Pf,G> <f,PcG> p E TA , 

<g,KF> <Kcg,F> K E TA 

<OcG,F> a E SX(2)}{, AIB\ ' 

We note that is the representant in TA of P' and Kc the representant 

in rA of K', where P' and K' denote the dual mappingsof Pand K. 

FollowingCh. II, Section2, each element HE T(Sz c,V) can be written as 
' 

H = O(C,V)W, where wE Z and B E F (JR2) , i.e. a function from JR2 into 
+ 

lt + satisfying 

-tÀ S\l 
Vs>O 3 O: sur (6(À,ll)e e ) < "'· 

t> À~0,\1~0 

Applying this result to rA we can write for P E rA 

P e(1®A,A@1)(W) , 

for a well-chosen W 2 X®X and e E F+(JR). Then it is obvious that 

Hence Pc= e(A~1,1~)(W*). Similarly for K TA, K x(A~l,l~)(V), where 

V € X@X and 

The streng dual spaces SA of TA and SA of yÁ are given by 
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and 

As already observed by De Graaf, we have SA c rA and SA c TA. 

The mapping c is a continuous bijeetion from SA onto SA, and even a 

homeomorphism SA ~ SA because of the equalities 

for all 2 
E F+(JR) and for all a E SA. Cf. Ch. II, Section l. 

The elements SA and sA are characterized as follows. 

q.(A)We-tA 

Thus, it easily follows that 

The weak topology for rA is the coarsest topology in which all linear 

tunetionals on rA obtained by pairing with elements of sA are continuous 

Hence, the weak topology is generated by the seminorms 

p € rA 
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where ~ E SA. Similarly the weak topology for TA is generated by 

where ~ESA. The following lemma shows thatc is weakly continuous. 

(2. 7)Lemma 

Let P 

2 Proof. There are W,V EX~, and 0 "'F+(:m.) , 4 E B+(:m.) and t > 0 such 

that P = 0(IeA,A®I)(W) and ~ = q,(A)Ve-tA. Sa employing speetral integrals 

with respect to the speetral resolution (EÀ ~11 ) (À,J.I)€JR2 of 1101, we may 

write 

<~,P>= Jf 0(À,Il)e-tÀ<!>(J.I)d(EilVEÀ,W)X0X 
:ffi:2 

Jl a(l,ll)e-tv~(À)d(EilV*EÀ,w*) 
JR 
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(2.8) Theorem 

I. The mapping c rA+ TA resp. TA+ rA is weakly continuous• 

II. The mapping c SA +SA resp. SA +SA is weakly continuous. 

The algebra EA is defined as EA = rA n TA; it consists of extendable 

linear mappings from SX,A into itself. InSection 1 we have shown tbat 

Naturally, the strong topology of EA is generated by the seminorms 

where t > 0 and ·~ ~ B+(JR) • The seminorms s~,t are equivalent to the semi­

norms u~,t and v~,t' 

q.(A)Ee-tA 

So the embeddings fA q rA and EA q TA are continuous if the spaces carry 

their strong topology. 

The dual space EÁ of EA is expressed by the algebraic sum 

Hence, the weak topology of EA is equivalent to the topology induced by 

the weak topologies of rA and TA. Put differently, the embeddings fA q rA 
and EA q TA are continuous if the spaces carry their weak topology. 

The mapping c is a continuous bijeetion from EA onto itself. Since 



EÀ c TX@<.,Aw4.' the mapping c is well defined on EÀ. We should like to 

write 

K 1. 

A 
However, the choice of <P and '!' is not unique, because SA n S = SX@C,AIB\' 

In order to show the independenee of the specific ehoice of ~ and ~ in 

the wanted equality, suppose 

~I + ~I = ~2 + '!'2 

where ~ 1 .~2 E sA and '!' 1 ,~2 ~SA. Then ~I - ~2 
A 

~~ - ~2 ( S n SA • SX€0C,AffiA' This implies 

~c _ <!>c 
1 2 

which yields 

~ 2 - '!'I , He nee 

The above-mentioned result leads to the following theorem 

(2.9) Theorem 

I. The mapping c is a strongly and weakly continuous linear bijeetion 

from EA onto itself. It satisfies 

Hence, c is an involution on EA. 

II. The mapping e is a strongly and weakly continuous bijeetion from EA 
onto itself with ace • a, a € EA . 
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III. Let E cc EA. Tnen E = 8(A<&<\,A0\)(W) for 8 E F+(lR2) and W E X€K. We 

have Ec = 8(A<&<\,A~)(W*). 

IV. For E E EA and a E EÀ 

--- c c <a,E>= <a ,E >. 

If the Kernel theorem holds true, the algebra rA comprises all continuous 

linear mappings from SX A into itself. So rA can be identified with the 
' 

algebra of all continuous linear mappings from SX A into itself. 
' 

As a space of linear mappings, rA obtains some natural topologies from 

its domain space SX A• such as the topology of pointwise convergence and 
' 

the topology of weak pointwise convergence. Similar constructions exist 

in the algebras TA and EA. 

In the following chapters we shall deepen the topological structure of 

the algebras rA, TA ánd EA. We shall investigate their affiliation with 

the respective algebraic structures. 

3. The topological structure of the algebra rA. 

In the remaining part of this paper we assume that the space SX A is nu-
' 

clear. Equivalently, we assume that rA comprises all continuous linear 

mappings from SX A into itself. Then, besides its weak and its strong 
' 

topology denoted by T& and Tw in the sequel, we introduce the topologies 

Tp and Twp for rA. 

(3.1) Definition.(The topology of pointwise convergence) 

The topology Tp is the locally convex topology for / induced by the semi-



where f E sx,A and Ijl E B + (m.) • 

A 
P " T ' 
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The net (Pa) in TA is 'p-convergent if and only if the net (Paf) in SX,A 

is strongly convergent for all f E SX A' The topology Tp is the coarsest 

topology for which the linear mapping: yÁ ~ SX A' , 

P ;.,.. Pf , P E yÁ, 

are strongly continuous for all f E SX A' , 
The following result is remarkable. In fact, the streng topology of yÁ 

is not introduced as a specific operator topology. Yet, it is one. 

(3.2) Lemma 

The topology T
5 

is equivalent to the topology of uniform convergence 

on bounded subsets of sx,A· 

Proof, Let (Pa) be a strongly convergent net in yÁ with limit P and let 

B be a bounded subset of SX A' Then. there is t > 0 so that the set etA(B) 
• 

is bounded in X. For all f E B, all Ijl E B + (m.) and all a 

On the other hand, let s > 0 and let t > 0. Suppose 

P f -+ Pf a 

strongly in Sx,A and uniformly on the bounded subset {e-:tAw!llwll"' J}, 

Th en for each Ijl E B +(I{) there is a 1 , such that 

11 q,(A)(Pa (t) ?(t))WII < s/2 , 
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for all a. > a. 1 and all we: X with IIWII "' 1. Hence, 

Remark: In the proof of LelliiiU1 (3.2) we employed the norm 11·11 of the 

Banach algebra B(X) insteadof the Hilbert-Schmidt norm li"llx€K' However, 

this is allowed because of the following relation 

D 

(3.3) Definition. (The topology o~ weak pointwise convergence) 

(3.4) 

The topology T is the locally convex topology generated by the semi­wp 

uf G (P) I <Pf 'G> I ' p E: rA • 
' 

where f E: SX A and G E TX A' 
' . 

The net (Pa) in rA converges to P E: rA in Twp-sense if and only if 

<(Pa- P)f,G> + 0 for all f E: SX,A and GE: TX,A' The topology twp is 

the coarsest topology for which the linear mappings 

P ~ <Pf,G> , P E: rA 

are all continuous. T is the topology of uniformwaak pointwise conver-
P 

gence on bounded subsets of Tx,A· The latter proposition is an immediate 

consequence of the characerization of bounded subsets of Tx,A· The above 

introduced topologies for rA are ordered as follows 

., 
w T 

p 



Here means 'coarser than'. 

t 3.5) Theorem. (Principle of uniform boundedness) 

let B be a subset of rÄ. Then the following statements are equivalent 

I. B is T -bounded. s 

II. B is T -bounded. 
w 

III. B is T -bounded 
p 

IV. B is T -bounded. wp 

Proof. The equivalence I*II follows from Ch. II, Section 3. Further, it is 

clear that I•III•IV. 

IV""' III: Each weakly bounded set in SX A is strongly bounded, cf. Ch. I, 
' 

Section 3. From this observation the assertion follows. 

III .. I: For all cj. E B+(lR), t > 0 and WE X, there exists CJ(t,(ji,W) such 

that the set {cj.(Á)Pe-tAIP E 8} is strongly bounded in B(X). Hence, the 

uniform boundedness for B(X) yields CJ(t,tj.) > 0 with llq.(A)Pe-tAII :1 CJ(t,q,). 

Thus we derive 

A -tA -tJzA 11$( )Pe IIX®X :1 CJ(t/z,tj.) lle l'x®X, P EB. 

(3.5) Lemma 

Let (Pn) be a sequence in rA such that lim Pnf exists 
U->oo 

f E SX,A' Then P : f ~ lim Pnf is 
n->oo 

continuous, i.e., P 

in SX,A for each 

€ rA. 

I' w 

Proof. By Theorem (3.5) the sequence (Pn) is T
8
-bounded. So for each t > 0 

there is at> 0 such that IIPn(t)JI.s; at' n E Jl. It is obvious that Pis 

a linear mspping from sx,A into itself. Further, for all w E X, IIWII = 

and for all t > 0 



for n <: N sufficiently large. Hence P € rA by Ch. I, Section 4. 0 

(3. 7) Theorem 

rA is sequentially t -complete and, similarly,sequentially t -complete 
p ~ 

Proof. The proof is an immediate consequence of Lemma (3.5) and the 

(weak) sequential completeness of Sx,A· D 

In the remaining part of this section we investigate the relation between 

the topological structure of rA and its algebraic structure. 

First we have the following result. 

(3. 8) Theorem 

Jóint multiplication 'is strongly sequentially continuous in rA. 
Proof. Let (Pn) and (Tn) be two converging sequences in rA with Pn ~ P 

and Tn ~ T. Let t > 0, and let cjl € B+ (lR) • Then there exists e: > 0 and 

C > 0 such that 

and 

Uee:A(T (t) - T(t))ll .... 0 
n 

because the sequence (Tn(t)) converges to T(t) strongly in s~.z~· 

Hence the inequality 



(3.9) 

(3. 10) 
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for all n e :N, yields the desired result. 0 

As observed by De Graaf SA c rA, we have the following strenger result. 

SA is a proper two-sided ideal in rA. 
Proof. From the characterization of the elements of SA we obtain the 

equivalence 9 E SA • 9 represents a continuous linear mapping from 

-tA 
SX,A into e (X) for ~ome t > 0. 

--t -a.A 
Let P1,P2 Er· and let 9 € SA. Then 9 maps sx,A into some e (X) and 

-a.A -llA further P1 maps e (X) into e (X) for some ll > 0 (cf. Ch. I, Section 4). 

So P19P2 maps SX,A into e-llA(X) continuously, and hence P19P2 SA. 

Since 1 ; SA, the ideal SA is proper. 0 

sA is a proper, two-sided ideal in TA. 

Proef. Follows directly from the properties of the adjoint mapping c 

and Lemma (3. 9). 0 

(3. 11) Corollary 

Let I!> E SA and P E rA. Then 

and 
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Proof. The proof is an application of Le~ (2.2) and Corollary (3.9). 0 

The algebra ~ with topology T is called locally convex, if 

(E,T) is a locally convex, topolocical vector space. 

Separate multiplication is continuous in (~,T). 

(3. 13) Theorem 

The algebra TA is locally convex if it carries any of the topologies 

TS' Tw' Tp and Twp 

Proof. We shall only prove the continuity of separate multiplication. 

I. (l',,s). 

Let P E yA be fixed. Then for all T e yA 

for E > 0 sufficiently small. Hence T ~ TP is continuous. To show 

the continuity of P -+ T P, let T E I' be fixed, and let E > 0. Fur-

ther, let t > 0 and let q, E B + (lR) • Then there is an open null­

neighbourhood Q in SX,A such, that 

11 tj~(A)Tf 11 < E/2 

as soon as f E Q. The existence of Q follows from the continuity of T. 

Let (P ) be a net in yA that converges strongly to P. Then there 
OI 



<'xio;Ls 'L such that for all f 
I 

-tA r, WliiWII uniformiy 

if a ,. a 
1

• So u 
1 

does not depend on the choice of f. (Lemma (3. ) • 

Hence, if a > a
1

, then 

ll<ji(Á)T(Pa -P)fll < s/2. 

for all f E SX A with lletAfll . l. The latter observation leads 

to the result 

11 q,(A)T(Pa- P) (t) 11 s </2 < s 

if a > a 1• This finishes the proof. 

I I. <rA' 'w) • 

Let Pl,P2 E rA. Then for each ~ E sA 

and hence 

is a weakly continuous seminorm on yA. 
nr. crA,,P). 

IV. 

Let Taf+ Tf for all f E SX,A. 

Then TaP2f + TP 2f and hence by continuity of P 1, P 1TaP 2f + P1TP 2f. 

This completes 

A 
(T 0rwp). 

The seminorm 

the proof. 
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is T -continuous for each f E SX A and each G E TX A'< wp , • • 

4. The topological structure of the algebra TA 

As we have already assumed in Sectien 3, TA camprises all continuous 

linear mappings from Tx A into itself. The strong topology and the 
' 

0 

weak topology of TA will be denoted respectively by aw and os. In eer-

respondenee with the topologies T and T of TA we first introduce p < wp 

the topologies crp and o • wp 

(4.1) Definition (The topology of pointwise convergence) 

The topology op is the locally convex topology of TA induced by the 

se!lll.'norms v F,t 

where F E TX,A and t > 0. 

The net (Ra) in TA converges toR E TA in crp-sense if and only if 

RaF +RF strongly for all F E TX,A' The topology op is the coarsest 

topology for which the linear mappings TA+ Tx,A 

are all continuous. 

(4.2) Lemma 

The topology cr
5 

is equivalent to the topology of uniform converganee 

on bounded subsets of TX,A' 
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Proof. Let (Ra) be a strongly convergent net in TA with limit R. Let 

B be a strongly bounded subset of TX,A' Then there exists ~ E B+(R) 

and a bounded subset W of X such that B = (ji(A) (W) (Cf. Ch. II, Section 2). 

Hence for all W E W 

lle-tA(R - R)~(A}WII::;; 11 (R (t} - R(t)}(ji(A)IIIIwll 
a · a 

On the other hand, let e: > 0 and let (jJ E B+(R) • Suppose RaF +RF 

strongly in T x,A and uniformly for F E {q,(A}wl llw 11 ::; I}. Then for each 

t > 0 there is a
1 

such that 

11 (Ra.(t) - R(t))q,(A)WII < t:/2 

for all a~ a
1 

and all WE X with w s !. Hence 

11 (Ra(t)- R(t))cp(A)II::;; e:/2 < e: 

(Remember the remark after Lemma (3.2).) 

(4.3) Definition (The topology of weak pointwise convergence). 

The topology T is the locally convex topology induced by the semi­wp 

norms 

where f E sX,A and G E TX,A' 

The net (RN) converges to R in (TA' T ) if and only if <f, (R - R)G> + 0 
~ wp o: 

for all f E sX,A and G E TX,A' The topology Twp is the coarsest topo-

logy for which the linear mappings TA + ~ 

R >+ <f ,RG> 
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ar~ all continuous. The topology op is the topology of uniform, weak 

pointwise converganee on bounded subsets of ~.A· 

The above introduced topologies are ordered as fellows 

0 

& 
s 
~ 

0 0 
w p 

~ 
(/ 

0 wp 

(4.5) Theerem (Principle of uniform boundedness). 

Let B be a subset of yA. Then the followi~g statements are equivalent 

I. Bis crs-bounded 

II. B is cr -bounded 
p 

III. B is cr -bounded 
w 

IV. 8 is cr -bounded. 
wp 

Proof. We shall only prove the implication II ~ I. The other implica-

tions are trivial or easy corollaries of other structure theorems. 

II ~I: For all t > 0, WEi. X and Ij. E B+(E.), .we thus assume that 

the set 

is strongly bounded in B(X), Hence, the uniform boundedness principle 

for B(X) yields a.(t,rJ>) > 0 with 11 e-tARq.(A)II s; a.(t,q.), R E B. Hence 

(4.6) Lemma 

0 

Let (Rn) be a sequence in TA such that lim RnF exists in Tx,A for each 
n-+o:> 



f' c. TX,A' Then R: F » lim RnF i.s continuous, i.e. 
n..,.." 

Proof. By the preceding theorem the sequence (Rn) 

' TA. 

is T -bounded. So for s 

each t > 0 there exists 6t > 0 such that IIRn(t) 11 s ~'\• n :tl • lt is 

clear that R maps TX A into itself. Further, for all w E X with IIWII 1, 
' 

and for all t > 0 

lle-tA(R-R)WII+6 <St+ l n t -

for n :tl suffic.iently large. Hence R c TA by Ch. I, Section 4. 

( 4 . 7) Theorem 

TA is sequentially ap- and awp -complete. 

In Section 2 we have proved that the mapping c from yÁ onto TA is 

T ++ o and T +>- a continuous, and its inverse c is a 1+ T and s s w w s s 

a +>- T continuous. We do not know whether the mapping c is -r +>- a con-w w p p 

tinuous and whether its inverse is a +>- T continuous. However, for 
p p 

PE-,A, 

Soit fellows that P~ Pc, P ErA, is t - a continuous and R,.,. Re, wp wp 

R E TA, is a 1+ T continuous , wp wp 

With the above observed kinds of continuity of the mapping c and the 

mentioned properties of c the following results are straightforward 

corollaries of Theorem (3.8) and Theerem (3.13). 

(4.8) Theorem 

Joint multiplication is sequentially continuous in TA. 

The algebra TA is locally convex if it carries one of the 
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Completing this section we prove the following. 

(4. 9) Theorem 

The algebra rA with topology T is locally convex. 
p 

Proof. Let R,l +RF for all F e: Tx,A" Then for s 1,s2 e: TA, RrlzF+RS2F 

and hence by continuity of s 1, S 1R~S2F + s
1
RS2F. This completes the 

proof. 0 

5. The topological structure of the algebra EA 

Because of the assumption in Section 3 that Sx,A is nuclear, fA camprises 

all continuous linear mappings from SX A into itself which are extend-
' 

able to TX A' In Section 3 we observed that the strong and the weak 
' 

topology of EA, denoted by ps and pw in the sequel, admit the following 

characterizations 

ps is the coarsest locally convex topology on EA for which the em­

beddings EA ~rA, and EA qTA are continuous with respect to the 

strong topology of rA resp. TA. 

- Pw is the coarsest locally convex topology on EA for which the em­

beddings EA c;, rA and EA q. TA are continuous with respect to the weak 

topology of rA resp. TA. 

Similarly we introducè the topologies pp and pwp. 

(5.1) Definition 

The topplogy pp is the coarsest locally convex topology on EA for which 

the embeddings EA ct rA and EA c; TA are continuous with respect to TP 
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resp. a • The net (E ) in EA converges to E if and only if ~ Ef 
p a 

strongly in sx,A for all f E sx,A as well as ECJ.G + EG strongly in 

TX A for all G E TX A' 
' ' 

(5.2) Lemma 

The topology ps is equivalent to the topology of uniform T - and 
' p 

crp-convergence on bounded sets in Sx,A resp. Tx,A' 

Proof. Cf. Lemma (3.2) and (4.2). 

(5.3) Definition 

(5.4) 

The topology pwp is the coarsest locally convex topology on EA for 

which the embeddings E A q yA and E A c:;. TA are continuous wi th respect 

to T resp. a . The net (E ) in EA converges to E if and only if wp wp a 

Eaf ~ Ef weakly in SX,A for all f E SX,A as well as EaG ~ EG weakly 

in TX A for all G E TX A' 
' ' 

The above introduced topologies of rA are ordered as follows. 

ps 
v ,;:, 

Pw p 
p 

',) v 
Pwp 

(5.5) Theorem (Principle of uniform boundedness) 

Let B be a subset of EA. Then the following statements are equivalent. 

I. B is p
5
-bounded; 

II. is pw-bounded; 

iiL fl is p -bounded; 
p 
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IV. Bis p -bounded. wp 

Proof. Cf. Theorem (3.5) and (4.5). 

(5.6) Theorem 

EA is sequentially complete in pp- and pwp-sense. 

Proof. Cf. Theorem (3.7) and (4.7). 

0 

0 

The adjoint mapping c becomes an involution on the algebra EA. From 

the previous sections it follows that c is p -, p - and p -continuous. s w wp 

From Theorem (3.13), (4.8) and (4.9) 'we obtain immediately 

(5. 7) Theorem 

- Joint multiplication is strongly sequentially continuous in EA. 

- Separate multiplication is ps-' pw-• pp- and Pwp•continuous. 

The dual space EÀ of EA can be represented by the algebraic som of the 

spaces SA and SA. So every continuous linear functional l on EA can 

be written as 

l: E <+~K 1 ,El$ + ~K2 ,E> A • 
A S 

where K1 € SA and K2 € sA. The choice of K1 and K2 is not unique be-

cause SA n sA = SX®OC,~' cf. Ch. II, Section 4. 

(5.8) Proposition 

The space SX€0C,~ is a proper, two-sided ideal in EA. 

Proof. SA and SA are proper, two-sided ideals in rA resp. TA. Hence 

s~.~ =SA n SA is a proper two-sided ideal in TA n rA= EA· 0 



Then EI(KI + K2)E2 is a well-defined element of EÁ by Lemma (3.9) and 

Corollary (3. IO). In order to prove this, we have to show that the 

definition of EI(KI + K2)E 2 does notdepend on the choice of KI and 

A 
K2• So let KI + K2 = 0. Then KI = -K2 ESA n S = SX®K,~· By Propo-

sitien (5.8), EIKIEZ = -EIK2E2 E SX®K,~" Hence, EIKIEZ + EIKzEz = 0, 

which completes the proof. 

These observations imply the following. 

(5. 9) Leouna 

Let K E EÀ and E E EA. Then 

~K,E>= ~Kc,Ec> 

~K,E > = ~EeK, I> 

~EK,I>= ~KE,I> or equivalently trace (EK) 

Proof. Cf. Corollary (3.Il). 

trace(KE). 

In a forthcoming paper we shall give a complete description of two 

subalgebras of EA, where we no longer assume that SX,A is nuclear. 

There we shall treat two topological algebras, the conmutant of {A}' 

and the double commutant {A}". Inspired by the thesis of Pijls [Pij], 

we have been able to prove that {A}" c EA is a coounutative cw*-alge­

bra, i.e. a commutative generalized Von Neumann algebra. The notion 

of cw*-algebra has been introduced by Allan,[Al]. 
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b. Applieation:; to quantum stati:;tics 

In this sectien we consider ,i quantton mechanica! system in which the 

dynamics is determined by a Hamiltonian operator H, i.e. a self-

adjoint operator in some appropriate Hilbert space X. We asswne the 

almost inevitable condition that there can be found a nuclear ana-

lyticity space SX A such that H and each of the unitary operators 
' ia:H 

e ,a: <:: JR., are continuous linear mappings on SX,A. Further, for the 

states of the quantum system we take the one-dimensional subspaces 

of the trajectory space TX,A' InCh. IV we have proved that TX,A con­

tains almost all (generalized) eigenveetors of H. 

In this sectien we adopt the terminology and notatien of Dirac. The 

elements of TX,Á are called kets and they are denoted by IF>, Conju­

gate to thè kets are the bras, denoted by <FI. The bra space is also 

. a trajectory space·~o it has an antilinear structure. InCh. IV we have 

interpreted Dirac's bracket notion so that the expression 

<FIG> 

makes sense for arbitrary kets and bras. In fact, <FIG> denotes the 

function 

<FIG> s ~ <IF>(s),IG>> 

The elementsof SX,Á are called test kets. The bras conjugated tothem 

are called test bras. In this sectien we shall only consider the brack-

et of a test bra <gl and a ket IF> resp. of a bra <GI and a test ket 

lf>. Then for their brackets we may take the ordinary numbers <giF>(O) 

and <Gjf>(O). 
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At a certain instant the dynamica! system is supposed to be in one 

or ether of a number of possible states according to some given pro-

bability law. Following Dirac, [Di], these states may establish a dis-

crete set, a continuous range or both together. Here we look at the 

discrete case, Suppose that the possible states are given by norma-

lized test kets lm>, m E JN. Let pm denote the P.robability that the 

system is in the m-th state. Then we define the quantum density opera-

tor p by 

E p = 
m=l m 

where, according to Dirac lm><ml = lm>~lm>. 

In SchrÖdinger's picture the kets will evoluate in time in accordance 

with SchrÖdinger's equation 

ii'! d~IF> HIF> 

and the bras with the hermitean conjugate of this equation. Since with-

out disturbance the system remains in the same state, corresponding 

to a ket which satisfies SchrÖdinger's equation, the pm's are constant 

in time. We therefore have the following equation 

Lp (H lm><ml 
m 

m 

Hp pH= [H,p]. 

lm><miH) 

For convenience we shall take ~ = I in the sequel. 

In our interpretation, the observables of the quanturn system are repre-

sented by self-adjoint operators in X, which maps SX,A continuously 
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into itself. Or, equivalently, by the symmetrie elements of EA with 

a self-adjoint extension in X. 

If the sy.stem is in the m-th state, the expectation value <(3> ~f any 

observable 8 equals 

<8> "'<ml8lm>. 

Hence, if we insert the distribution law of the system corresponding 

to the above-introduced density operator p, then the average expecta-

tion value <f3> is given by 

<f3> "'! p <ml8lm> "'<p,l3>"' tr(pf3), 
m 

m 

whenever p .:: EÀ. Put 13 "' I. Then it foHows that 

<I> = L pm • 
m 

The solution of equation (5.2) is given by 

P( t) "' -itH itH 
e Poe ' t <: 0 ' 

i aH where p(O) is p
0

• Since the unitary operators e , a.:: E, are extend-

able, and since EÀ remains invariant under right and left multiplica­

tion by elements of EA' (See Lemma (5.2)),. we have p(t) .:: EÀ• t <: 0 

iff Po .:: EÀ. 
Let 130 be any observable. Then the average expectation value at time 

t equals 

where we have written a0(t) to indicate that the observable a0 can 

intrinsically depend on t. Put 8(t) = eitH80(t)e-itH. Then 

Ï3 = i[H,8J + ~~ 
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ae 
where a;: Cr) 
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~ i<[ff,SJ> + <~~> 

The differential equations (6.4.a) and 

(6.4.b) determine the evolution of the observables in the Heisenberg 

picture. 

Now we are in a position to describe a quanturn mechanica! system in 

terms of observables out of some suitably chosen space EA, and 'states' 

in its corresponding streng dual EÀ. We emphasize that the notion of 

state will get a meaning different from the one in the beginning of 

this section. 

(6.5) Definition 

(6 .6) 

A symmetrie element P E EA is called positive if <fiPif> ~ 0 for all 

test kets lf>. 

A positive element P of EA leads to a positive, density defined, sym­

metrie operator P in X. This operator P admits a so-called Friedrichs 

extension PF in X, cf.[Fa]. The operator PF is positive and self-ad­

joint in X. Hence, at least every positive element of EA is an ob-

servable. 

Let o E EÀ. Th en o is called re al if o (P) E :R for all P 

p = 

From Sectien 5 we obtain the following characterization. 
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c 
o E EÀ is real iff o = o. 

Proof. Let P E EA be symmetrie. Then by Section 5 

This leads to the following equivalences 

<o,P>.: :IR for all P E EA with P = Pc • 

.. c 
cr = a • 

The latter equivalence is due to the fact that every E .: EA 
c c 

b . . f . 1 E -- E +2E + l.. (E -2·iE ) 1.nat1.on o two symmetrJ.c e ements, 

is a com-

Let o E EÀ with o =oe. Then a= s
1 

+ s 2 with s
1 

E SA and 

0 

. s1 + si 
s 2 "SA. (Cf. Section 5). Puts= 2 • Then s "sA and o = s +se. 

(6.8) Definition 

Let o E EÀ be a real functional. Then o is called a state if 

- o(P) ~ 0 for all positivè P E EA 

- o(I) = I, i.e. a state is always normalized. 

In order to characterize the states in EÀ we prove the following. 

(6.9) Lemma 

Let E E EA, and let Tin denote the orthogonal projection onto the linear 

span of the first n eigenveetors of A. Then the sequenc7 {TinETin} con-



verges to E in EA. 

Proef. Let t > 0. Then we can take T > 0 such, that bath 

and 

Now we compute as fellows 

tA -tA ile (E-ITE!I)e 11 
n n X0X 

s lle'A(I- !In)EITne-tAI!X®x + lle'~(I- ITn)e-tAI~@X s 

"; (11 (I- lin)e-tAII + 11 (I- lin)e-!tAII)IIe2'~e-!tAI~0X 

Hence, 11 e tA (E - li Eli ) e -tA 11 -+ 0 for n -> oo • 
n n X6Qx 

Sim~larly we can prove 

So the assertien has been shown. 

Let P E EA be positive. Then for each n E N, the operator 

linPJin is an element of EA. In fact rrnPITn is a positive self-adjoint 

Hilbert-Schmidt operator. So there exists fjn)E rrn(X), j ~ l, ... ,n, 

such that 

TI PIT n n 

with V· ~ 0. It leads to the following characterization. 
J 
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0 
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(6.10) Theorem 

Let o € EÀ be real. Then a is a state iff 

<a, lf><fl >;:;; 0 

for all test kets lf>. 

Proof 

~> Trivial, The projections Plf> = lf><fl are elements of EA and they 

are positive for all t.est kets jf> . 

., ) Let P E EA be positive. Let the projection IT
0

, n e: :N, he as in 

Lemma (6.9). The functional E~+<cr,E>is strongly continuous on 

<o,P>a lim<a, ITnPITn>. 
n...,. 

With the above remark it can be easily se.en that for all n e: :N 

<a,IT PIT >~ 0. Hence<a,P>~ 0. n n 

Thus we have shown that a is a state. 

Remark: Since a € EÀ c Tx~.~; and lf><fl € s~.~ we derive 

<a,lf><fl>= <flcrlf>. (See [Di]), 

Special elements of EÀ are the pure states. Here is the definition. 

(6 .11) De finitien 

0 

A state p is called pure if there exists a normalized test ket lf> with 

Of course, one might wonder why we don't take normalizable kets in 

Definition (6.8), i.e. kets in the Hilbert space X. The following 

lemma shows the answer. 
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(6. 12) Lenuna 

Let lW> be a ket. Then 

IW><WI E EÀ ." lW> is a test ket. 

Proof 

•) Suppose lW> i SX A' Then there exists 4 .: B+ (JR.) such that 
' 

iW> i D(4(A)). The operator q.(A) 2 is in EA, but 

Hence IW><W\ i EÀ • 

•) Trivial. 

The pure states admit the folllowing characterization. 

(6 . 13) Theorem 

A state p is pure if and only if p .: SA (or SA) with p2 • p. 

Proof. If p is pure, p = lf><fl forsome test ket \f>. Hence 

p E SX®X,AffiÁ sA n SA, and p is a projection. On the other hand, 

0 

p E sA and p is a state yield p pc E SA. Hence p E s~.MB&.; p is a 

Hilbert-Schmidt projection with tr(p) = 1. So there exists a normalized 

lf>E·Xwith p = lf><f\. By Lemma (6.12) lf> is a test ket. 

(6. 14) Theorem 

Every pure state in EÀ is an extreme point in the set of states. 

Let 1 f> be a normalized test ket, and lln' n .: lil , denote the 

projection as introduced in Lemma (6.9). Suppose there exist states 

cr,o2 .: EÀ and 0 <ct < I such that 

0 
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Then for all n 11 with Tin I f> I 0 

TI lf><fill 
n n 

11 TI I f> 11
2 

n 

nklf><flnk 
Take k e 11 fixed, with llklf><flllk 1 0. Then 2 is an extreme 

llnklf> 11 

point in thesetof states in ~(X)~k(X). Hence, we may assume 

By Lemma (6.9) the sequences {Tinlf><fiTI
0

} and {IIn'lTin} converge to 

I f><f I resp. cr1 weakly. Hence cr1 = I f><f I D 

In the following theerem we prove that the pure states are the only 

extreme points in the set of states. 

(6.15) Theerem 

Let p be an extreme point in the set of states, Then p is a pure state 

Proof. Since p I 0, there exists a normalized test ket lf> such that 

P <I f><f I) ;. o . 

Remark: The following implication can be shown rather easily: 
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Put PI f> "' _I f><f I . Th en p can be wri tten as 

where (po Plf)(E) ""p(Pif>E), E E fA. So (poPif>)(I) "'p(Pff) >F 0. 

l) Suppose p o (I-PI f) 'i 0, and consequently p (I- PI f) ; 0. Th en we 

can write p ap
1 

+ (I a)p
2

, where 

p 0 (I-pI f) 
I - p (PI f>) 

The functionals p
1 

and p
2 

are states. This can be seen as follows 

p(P 

p I ' 

and 

pi(E) 

2 
For the latter equality see Lemma (6.9) and cbserve that Plf> = Plf>" 

Thus we derive 01 (E) E lR for all E E EA with E = and p 1 (E) ;;.: 0 

for all positive E E EA. Similarly, p2 is a state. But now we have 

got a contradiction, because pis extreme. Hence p 0 (I-Pif) = 0, 

and consequently p = p o Plf> and p(Pif>) = I. Further, it easily 

follows that for all test kets lg> 
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p(lg><gl) - l<flg>l 2 • 

Employing the projeedons nn• n e li , as introdueed in LeJna (6. 9), 

we find that for eaeh symmetrie E € EA and for each n € li there 

exists ll (n) € lR and !dn) > € ITn(X) such that 
j J 

and 

Letting n +<»,by Lemma ( 6. 9) we obtain 

and 

Hence for all symmetrie E € EA• p(E) 

This yields p = lf><fl. 

<fiEI f> • 

D 

I) Remark: Let p € EA be a real positive functional, i.e. p(P) ~ 0 for 

all positive P € EA • Let n E' li • and let E E EA. Then the following 

inequality is immediate from the finite-dimensional case 
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lp(IT EIT )1 2 
S p(IT )p(TI EcEIT) n n n n n 

So in the limit n 7 oo we obtain 

2 I p (E) I s p (I) p 

Consequently p (I) = 0- p 0 . 

The linear span of the pure states is dense in EÀ. 
Proof. We assume that P and <fiPif> = 0 for all test kets if>. 

Then <f+giPif+g> and Plf+ig> = 0, and hence, Re(<fiPig>) = 0 and 

Im(<fiPig>) = 0 for all test kets lf> and test bras <gl. So P = 0. 0 

Finally we shall characterize the statesin SA (or SA) or equivalently 

the states in Sx~ A~' , 

( 6. 1 7) Theorem 

Let p E SX€K,A~' Then the following statements are equivalent. 

(I) p is a state, 

(2) ·p is positive and self-adjoint with tr(p) 

(3) Th ere exis t normalized Ij> E SX A and , 

3 s>o 
j=l 

and IP. = l such .that 
j J 

p LP. I j><j I. 
j J 

< = ' 

I. 

numbers pj satisfying 
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Proof. The proof proceeds as fellows: (I) "" (2) "" (3) • (I). 

(1)=>(2}: 

From Theorem (6.10) it fellows that pis a positive operator on SX,A' 

Since p is Rilhert Schmidt and pc= p, p is a positive, self-adjoint 

operator on X with tr(p) = I. 

{2)•{3): 

· -sA -sA · 
By definition, there exists s > 0 such that p = e We for some 

W e ~ with W ~ 0. Since p € ~ and p ~ 0, there exists an orthonormal 

basis (Ij>) in X, and positive numbers p. such that 
J 

P = h.lj><jl with h· = 1. 
j J j J 

Further, since We-sA is Rilhert Schmidt and We-sAij> 

< "' • 

(3) .. (I) 

"' 
Note first that<p,l>= L p.<jlj> 

j=l J 
L p. = 1. 

j=l J 
Let s > 0 as indicated. Then 

plj>=p.lj>. 
J 

W s'A sA W -sAI . sA 1 • Put = e pe • Then e J> = p.e J>. 
J 

-sA Hence We is Rilbert-Schmidt and thus we find that 

-sA -sA 
p = e We € s~.~ 

sA
1

• p.e J >, 
J 
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If E E EA is synunetric then <jiEij> ER and hence p(E) ER. If E E EA 

is positive, then <jiEij>? 0 and hence p(E) ? 0. Thus it is clear that 

p is a sta-te. 0 

As a rule the dynamical state of a quanturn system at a certain instant 

cannot be represented by one single ket, but we have a statistical 

mixture of kets. Therefore, in the beginning of this section we intro-

duced the quanturn density p (cf.(6. 1)). According to the probability 

law determined by p, the quanturn system is in one or other of a number 

of possiblc states. So it makes sense to define p to be the state of 

the quanturn system at a given time. 

If at t = 0 the quanturn system is in the state p
0

, at t 

is in the state P(T) with 

p ( T) 

So p satisfies the evolution equation (cf. (6.2)) 

P -i[H,p] 

T the system 

In order to arrive at a mathematical rigorous theory, we only consider 

itH Po E EÀ. Then for every t > 0, p(t) E EÀ, because e E EA for all 

t E R. (See Section 4). At every time t we can compute the expectation 

value <S> with respect to p of the observable S E EA, 

<S>(t) =~p(t),S~, 

where for convenience we have assumed that S is constant in time. 

Now in general we shall assume that any state in EÀ as defined in Defi­

nition (6.8) represents an initial state of the quanturn system in the 
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above indicated way. A state o
0 

evoluates in time according tö 

-itH itH e ooe • t > 0 . 

So the statistica! mixture determined by the quantum density ~perator 

p is a particular kind of state; states such as p have an immediate 

physical interpretation. From (6.17) we obtain that every state 

Po ll SX@X,AIB\ induces a statistical mixture. The pure states are special 

types of statistica! mixtur,es; one knows with certainty that the sys-

tem is in a state determined by one test ket. 

We conclude this section with a short discussion of the three possible 

types of dynamica! quanturn systems. 

(I) The Hamiltonian operator H admits a purely discrete spectrum 

This case is the easiest one to treat and it probably contains the most 

promising results. 

Let H be a Hamiltonian operator in X with eigenvalues E
1 

:S E
2 

:S ••• , 

and corresponding normalized eigenkets IE 1>,jE2>, •••• Then the eigen­

ketsjE.>Of H establish a complete orthonormal basis for X. Define the 
l. 

positive nurobers Àn• n E E, as follows 

and the self-adjoint operator A by 

followed by linear extension and uniqua self-adjoint extension to X. 

Then the analyticity space SX,A is nuclear because 

t > o. 

"' r e -;l.nt <"' for all 
n=l 
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->. t 
Furtlter, His <:ontinuous on SX A be<:ause sup <IEnle n) < ro, Hence, 

' n<.:JN iuH 
fl ' EA. Similarly if follows that the unitary operators e , u JR, 

are elements of EA. So the space SX A satisfies the required conditions. 
' 

Ml important example of a statistica! mixture is given by the state 

L p IE ><E I ' p ~ 0, 
n=l n n n n 

I . 

Then P is represented by a diagonal matrix, and seen as a bounded 

operator on X, p clearly commuteswith A and H. Since p <: EA., it 

satisfies 

Hence p
11 

= O(e -aÀ 11), and p E SX~,AáÄ· It is obvious that without dis­

turbanee the state P does not depend on the time t. We note that it is 

obvious that every term IE ><E I of the series does not depend on t, 
n n 

i.e. the system remains in a stationary state as long as disturbances 

do not occur. 

In general a state p is given by 

p p IE ><E I nm n m 
n,m 

However, in many physically realistic cases the non-diagonal elements 

can be neglected. 

An example for class (I) is given by the one dimensional harmonie 

oscillator where H = + x2 + 1). Then H is self-adjoint in (JR) 
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with E
0 

= n, n c lN as its eigenvalues and thc Hermite functions as its 

eigenfunctions. Hence, we can take A "' H. We note that the space 

S is equal to the space SÎ of Gelfand-Shilov. Well-defined ob-
L2 (lR), H , 

servables are the momenturn operator id~ and the position operator x. 

(2) The Hamilton operator H admits a purely continuous spectrum 

This is a harder case. We are able to construct a nuclear analyticity 

space SX,A such that H is continuous on SX,A (cf. Section 9). Then to 

almost every point in the spectrum of H there corresponds on eigenket 

in the trajectory space TX A' However, it is not clear whether the 
• i aH unitary operators e , a € lR , are continuous on SX A, and this pro-

' 
blem bas not been solved yet. Of course, we could weaken the conditions 

on SX A and skip nuclearity. Thf!n the analytic.ity space SX, lH I with( H )s 

(H2 )~· would be ideal. But nuclearity seems to play an essential role 

both in the discussions of this section and in our interpretation of 

Dirac's formalism. 

There is another approach. Sometimes iH is one of the skew-adjoint 

generators of a unitary Lie group representation on X with nuclear 

analyticity space. We shall explain this to some extent. Let G be a 

finite dimensional Lie group with Lie algebra A(G). Let U be a repre-

sentation of G into the space of unitary operators on X, and aU 

the corresponding infinitesimal representation of A(G) in X. Then 

for every a E A(G) the operator oU(a) is skew-adjoint in X, by Stone's 

theorem. 

Our first assertien is the following one. 

There exists a 1 "A(G) such that iH = oU(a1). 



Since G has dimeosion d < ~ there are a
2

, •.. ,ad € A(G) such that 

{a 1, ... ,ad} generates the Lie group Gin the usual way. Following 

Nelson, [N~], the analyticity space corresponding to the unitary re-

presentation U is equal to 

where 11 

Then our secoud assumption is 

sx,&2 is nuclear. 
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In Ch. I, Section 7, we have g:î.ven several cases of unitary represent-

ations of Lie groups G with a nuclear analyticity space SX 11 ~. More-
' 

over, we have proved that both the unitary operators U(g), g € G and 

the skew-adjoint operators aU(a.), j m 1, ••• ,d, are all continuous 
J 

on SX 
11

4. Sounder the above-mentioned assumptions the nuclear analy­
' 

ticity space sx,d has the desired properties. 

An example for this type of operators is the Hamiltonian operator of 

the free partiele in one dimension, 

d2 
H = - dx2 

An appropriate algebra is the six-dimensional algebra generated by 

x + . 2 . d ].' 
l.x ' l.x, dx ' 

It corresponds to the infini tesimal representation belonging to the 

unitary representation of the SchrÖdinger groups on L2(JR) • The SchrÖ-
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dinger group is obtained as a semidirect product of SL(2,lR) and of 

Wl' the Weyl group. We note that the SchrÖdinger group is the SYmmetry 

group of the SchrÖdinger equation of the free partiele (see [~]). 
I 
! 

(3) The Hamiltonian operator H admits a discrete/continuous spectrum 

In many applications the intersting part of the spectrum of H is the 

discrete one. So we split X into the direct sum X = Xd~c such that 

Hd, the restrietion of H to Xd, acts invariantly in Xd and Hd is a 

self-adjoint operator in Xd with discrete spectrum,and such that He, 

the restrietion of H to Xc, acts invariantly in Xc and He is a self­

adjoint operator in Xe with a purely continuous spectrum. 

An example for this case is the Hamiltonian operator of the hydrogen 

atom. 
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I • l'llt' ~ll~lll" i >..'CS 

A:-~ l.n SL't:ti.IJ\1 .> WL' stilt ~1S$llillt' lhat sx.,A i:-; ~l HlH.'lt-•ar spat'L'. ~tJ in 

S Lh~._·n.: L'XÎ.sts :Hl i)Ctll~~n~,nn;tl ba.sis (v~) [or X con.slsting of eigen-
X,,\ J 

L,,-Àjt 
j;l 

satisfying 

for all t 0. Th en the space rA contains all linear mappings from 

SX A into itself, and TA all linear mappings from TX A into itself. 
' ' 

Let L yÁ, Then toL there can be associated the well-defined matrix 

(L . . ) as follows 
q 

L. . = (Lv., v.) , 
~J J 1 

i,j l ,2 ... 

this section is devoted to the kind of infinite matrices which arises 

in this way. We shall produce necessary and sufficient conditions on 

a matrix (Q •. ) in order that its associated linear operator Q is a 
1J 

continuous linear mapping on SX,A' We emphasize that there are neither 

elegant nor applicable conditions on infinite matrices which imply 

boundedness of its associated operator-in X (see [Ha], Ch.IV). 

Since the linear mapping L is continuous on SX,A' it satisfies 

where 11 • IIXQX denotes the norm in XQX. This implies that the columns 

LvJ., j E: JN , of the matrix (L . ) satisfy 
1J 
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Put bi "' Lvi, i E lN. Then the veetors bi span the 

froro (7.1) it follows that there exists s > 0 such 

i € lN. Define the trajectory L : (O,oo) -> X€X by 

L(t) t > 0. 

range L(SX,A) and 

-sA that bi ! e (X), 

Then L(t) E sx~.I®Á' To show this let 0 < tl < t, and choose s > 0 

and C > 0 such that 

Then 

sAA ~ -À·t sA 
lle L(t)IIX®X =11 L e l. v.0(e b.)llv,.,.v 5; 

i=l l. l. """""' 

Hence Î(t) E S~,z~· It is obvious that 

So L € TA. Since for all f € sx,A 

"' 
.Îfa r (f,v.)b. 

i=l l. l. 
I (f,v.)Lv. = Lf, 

i=l l. l. 

the linear mapping L is represented by the series 
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r v. ®b. 
i=l ~ ~ 

with conve;gence in rA. 
On the other hand, let there be given b 1,b 2, ••• in SX A satisfying 

' 
(7 .2) 

Th en i t is obvious that the series L v. ®b. converges in rA, and re-
i=l ~ ~ 

presents the linear mapping 

f '+ L (f,v.)b. , f E SX A' 
i=l ~ 1. ' 

So the following characterization holds true. 

(7.3) Characterization (the columns) 

(7 .4) 

Let W be a linear operator in X with domain containing the linear span 

<v1,v2 , ••• >. Then W maps SX,A continuously into itself iff the bi= Wvi' 

i E JN, satisfy condition (7 .2). W is represented in rA by the series 

L v.®(Wv.). 
i=J ~ ~ 

The conjugate Lc of Lis an element of TA. Hence, as a continuous 

linear mapping from TX,A into itself Lc satisfies the following con­

dition 

Put B. 
J 

c 
L vj E TX,A Then they satisfy 
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where the series converges in Tx,A· Hence Bj represents the j-th row 

of the matrix (Lij). Define the trajectory L by 

~ B.(t)®v. , t > 0. 
j=I J J 

Then for each t > 0, s
0 

> 0 can be chosen such that 

and for 0 < s < s0 , 

~ -À·(s0-s) 
~ C L e J < oo • 

j=l 

Hence, L(t) € s~.r~· t > 0, and L € rA. Since 

l 
j•l 

<f,B.> v. 
J J 

l (Lf,v.)v. • Lf, f € SX,A' 
j•l J J 

00 

the mapping L is represented by the series ~ B.®v. with convergence 
j>=l J J 

in rA. 
On the other hand, let there be given B1, s 2, ••• satisfying condition 

(7.4), then similarly it can be shown that the series L B.®v. repre­
j•l J J 

sents the linear mapping 
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fl~ L <f,B.>v. , f E SX A 
j=l J J ' 

in TA. Thus we obtain a secoud characterization of the elements in rA. 

(7 .5) Characterization (the rows) 

Let W be a linear operator in X with domain containing the linear 

span <v
1
,v2, ••• >, and put B. = L (Wv.,v.)v .. Then Wis continuons 

J i•l l. J l. 

on SX A iff B. E TX A• j E lil, with 
' J ' 

V 
0

3 
0

3C 
0
v. JN:IIB.(t)IIX:;:; Ce-ÀjS • 

t> s> > JE J 

We have W = L B.0/ .• 
j=l J 

A complete characterization of the rows and columns of the matrices 

of elements in rA is already quite interesting. A characterization of 

the entries is much more useful. The following theorem characterizes 

the entries. 

(7.6) Theorem 

(7. 7) 

Let the infinite matrix (L . . ) satisfy 
l.J 

Then L defined by 

L L L . . v. lli>v. 
i,j l.J J l. 
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is in rA, and conversely. 

Proof. 

• ) Let t > 0. Then there are s > 0 and C > 0 such that 

This yields the following estimate 

l;' -À-t -À·S 
l. e J e l. 

i,j 
< ... 

Since t > 0 has been taken arbitrarily, the result L € yA fellows. 

• ) Let L é yA. Then Vt>03s>O: 

where L. . = (Lv. , v. ) • 0 
l.J J l. 

We shall often employ condition (7.7). It is of great help in the con-

struction of examples and counterexamples. In the sequel, we shall 

identify the space yA with the space M(yA) of infinite matrices which 

satisfy condition {7.7). 

The following lemma shows that the product in rA corresponds to the 

matrix product in M{rA). 
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(7 • 8) LellD.lla 

Let R ,S € TA. Th en the matrix of R o S is given by 

i,j € N 

where each of the series converges absolutely. 

Proof. Let t > 0, i,j E lN. Following Theorem (6.6) there are s,s
0 

> 0 

such that 

SR.j 

and 

for some c
5

,cR > 0. This leads to the following estimate 
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= (IR.!/.. v!/..~v.) • (I Sk. vJ.®vk) 
i,!/.. 1 

l. j,k J 

=RoS. 

The conjugation c:.rÁ+ TA induces aconjugation on M(rÁ). The precise 

result is given in the following lemma. 

(7. 9) Lemma 

.(v.&v.) 
l. J l. 

where converganee of the series is in TA. 

Proof. From Theorem (7.8) we obtain 

<;' -À·t L(t)= t..e JL .. v.®v.,t>O, 
i,j l.J J l. 

with converganee in SX€0C I®A for each t > 0. Hence we find 
' 

L(t)* <;< -ÀJ·tL- .• v. @v. 
l. e Jl. l. J 

i,j 

<;' ->.·t-= !.. e l. L •• v
3
. 0vi , t > 0 

i,j Jl. 

with converganee in s~.A®I for each t > 0. 

If L E rÁ, then the matrix elements Ïji satisfy Vt>03s>O 

->.·t >.·s,- I sup (e l. e J L. . ) < "' • 
• • Jl. 
l.,] 

D 



-\·t \·s 
s up e . 1 t:. J j 4} • • j < ... ,_. 

l.j 
i' j 

then \~ .. ) is tbe matrix of an elements in f. 
Jl. 

Thus we arri ve at the following theorem. 

(7. JO) Theorem 

(7. 11) 

Let (Q . . ) be an infinite matrix. Then 
l.J 

Q= }:Q .. v.®v. 
. . l.J J l. 
l.,J 

is an element of TA iff the matrix elements Q •• , i,j E :N, satisfy 
lJ 

We note that Q • • 
l.J 

<v. ,Qv.> • 
l. J 

As a corollary of Theorem (7.6) and (7.10) we derive the following 

{7.12) Corollary 

The matrix (Eij) represents an element of EA if and only if it satis­

fies the condition (7.7) and (7.11). 

In the following section we introduce the class of weighted shift 

operators. This kind of operators plays an important role in a lot of 

computations in mathematica! physics (cf. the annihilation- and creation 

operator in a suitable representation). Further, because ?f their simple 

structure, the above-mentioned class provides the necessary illustrations 

of the theory. 
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8. The class of weighted shifts 

For convenience we first introduce a set VA of diagonal . A 

diagonal operator D is a linear operator in X which is well-defined 

on the linear span <v 1,v2, •.• >, and which operates on this span as 

follows: 

O,V., jE JN, 
J J 

with ö. E ~. Hence, the matrix of Dis diagonal. Following Theerem 
J 

(7.6), DE: rA if and only if 

Vt>O: s~p (lö.le-Àjt) < oo • 

J J 

Hence, De is also in rA, .and D is extendab le. 

(8.1) Definition 

VA c EA denotes thè set of diagonal operators D in X which satisfy 

< co 

where ö j , j " E , are the diagonal entries of the matrix of D. 

This section contains a first investigation of the special class of 

elements of rA established by the weighted shift operators or, shortly, 

weighted shifts. A weighted shift W is a linear operator in X which is 

well defined on the linear span <v 1,v2, ••• >, and which operates as fol­

lows 

Wv; w.v.+l , j E lN, 
J J J . 

with wj E ~. j e: lN. Hence, W is uniquely determined by its matrix with 



(8.2) 

(8.3) 

respect to the basis (v.) given by 
J 

W •• • w.lî .• 1 , i,j E :N, 
~J J l,J+ 
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where lî~k denotes Kronecker's delta. Then following Theorem (7,6) the 

linear mapping w E TA if and only if 

Vt>03s>O: s~p (lw.le-ÀjteÀj+l 8
) <"' 

J J 

and Wc E rA if and only if 

I I -À. t À. -Is 
V 

0
3 

0
: sup ( w. 

1 
e J e J ) 

t> s> j>J J-
< ... 

Since À. 
1 J-

À. it is clear that continuity of W implies continuity 
J 

of if. Hence, a continuous weighted shift is extendable. 

Condition (8.2) can be rewritten into 

In the remaining part of this section we impose the following condition 

on the eigenvalues of A. 

This condition is not very severe; it implies the following order 

estimate, À. • O(Mj). If Condition (8.3) is dropped, then there exists 
J Àjk+l 

a subsequence (Àjk) such that ~ "' as k ~ "'· Let U be the uni-

lateral shift given by Uv. : v. 1, j E :N. So U is a bounded operator 
J J+ 

on X. Suppose U E I'. Then there should be s > 0 such that 
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"' > 
( À• JS-À•) sup (e J+ J ) 

je:N 

Àjk _A 
Since À. -+ .. and -À-- -+ 0 the assumption U e T · yields a contradic-

J jk+l 
tion. Hence U I. f. If the eigenvalues L .do not sati~fy Condition, (8.3). 

J 

it is possible that there only occur Hilbert-Schmidt operators in EA. 

Because of Condition (8.3) it follows that (8.2) reduces to 

(8.4) 

So the following characterization is an immediate consequence of Defi-

nition (8.1) and (8.4). 

(8.5) Characterization 

Let W be a weighted shift. Then W " rA iff there exists aD E VA such 

that W = UD. 

The following definition generalizes the notion of weighted shifts. 

(8.6) Definition 

A linear operator W(n) in X is called a weighted n-shift, n e :N u {0} 

if w(n) satisfies 

with w ~n) e 11:. 
J 

Hence, a weighted 0-shift is a diagonal operator, a weignted I-shift is 

an ordinary weighted shift. Let W(~) be a weighted n-shift with weight 

sequence (y~n}}. Then W(n) E f if and only if 
J 



(8. 7) 

(8.8) 

Because of (8.3) there exists M > 0 such that 

E )N • 

So (8.7) is equivalent to 

(n) À't 
V : sup (I y. Ie- J ) < "' • 

t>O • JN J JE 

This yields the following characterization. 
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(8.9) Characterization 

Let w<u) be a weighted u-shift, n E JN V {0}. Theu w(n} E rA iff there 

exists D t VA such tha~ W(n) = UuD. 

Siuce U E EA aud D E EA for all D E VA• from (8.9) we derive that 

every weigthed u-shift, n E JN v {O}, is extendable. 

(8.10) Definition 

The operator w(-u), n E JN, is called a weighted (-u}-shift if 

(-u) (-n) j j JN w v. w. v. > u, E 
J J-n ru 

with w~-n) E 
J 

a:, and w<-n>v. 
J 

: 0, I < • - J :<;; n. 

If the. liuear mapping w<-n) ErA then it satisfies 
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., '· 

or equivalently 

(8. ll) 

since À. < À. for j > n, j E: lN, The latter condition is equivalent to 
J-n J 

' (8.12) 

Thè implication (8,12) • {8,11) is trivial. In order to prove that 

(8.11) implies (8~12), let t > 0. Then 

< "" 

À. 
with M > 0 such that {~ 1 

< M, j e lN • 

So similar to (8.9) theJweighted (-n)-shifts in rA are characterized 

by 

(8.13) Characterization 

Let W(-n) be a weighted(-n)-shift, Then W(-n) erA iff there exists 

D E VA such that w<-n} D(U*}n. 

Since u* and D e VA both are extendable, 

ther the product w<kt)w(k2) with k k 
> I' 2 

each W(-n) is extendable. Fur-



131. 

and the conjugate (W(kl)c) is a (-k 1)-shift. So the weighted k-shifts 

k € ~. establish an involutive semi-group in EA' 

The weightéd k-shifts, k E ~. span the algebra rA in a very special 

way, 

(8. 14) Theorem 

Let L E rA with matrix (L .. }. Define the weighted k-shifts w(k) by 
lJ 

w<k\. aL. k . v. ' j > max{O,-k}, j E :N, 
J J+ ,J J 

where k E ~. Then W(k) E EA and L W(k} rep~esents L. This series 
kG'l 

converges absolutely. 

Proof. The eigenvalues À. of A satisfy the following estimates 
J 

For n E :N u {0}, 

with j E :N, s 0 > 0, and 0 < s < s0 • For n E :N, 

with j :N , j > n, t 0 > o and t > t 0• 

First note that it is obvious that each W(k), k € ~. is continuous 

and hence extendable (cf,(8,9) and (8.13)). So we only prove the second 

assertion. Let t > 0. Then there exists s > 0 such that 

For n E: :N u {0} by (*) we have 
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For n " N by (**) we have 

A combination of the above results yields for all N J>N2 e N 

Hence, the series L e5 AW(k)e-tA converges absolutely in~. 
kOl 

Since X@X is a Hilbert space absolute converganee implies converganee 

and therefore 

sAL -tA ~ sAW(k) -tA e e = L e e , 
kOl 

Thus we have proved the second assertion. 

Since all weighted k-shifts, k e ~. are extendable, the following corol-

lary is immediate. 

0 



133. 

(8. 15) Corollary 

The space TA in Theorem (3,14) can be replaced by TA, 

For the weighted k-shifts W(k) speetral properties can be discussed 

in detail and in T X A and SX A can be constructed. This 
> , 

mai be a sub j eet for further inves tigation. 

9, Construction of an analyticity space SX,A for some given operators in X 

Given a finite number of linear operators in a Hilbert space X, the 

question arises whether there can be constructed nuclear analyticity 

spaces on which these operators are continuous linear mappings. In this 

sectien we shall show that for a finite number of bounded operators on 

X, resp. for ·a finite number of cammuting self-adjoint operators in X, 

such a construction is iudeed possible. The proef of the results of 

this sectien is closel.y related to the theory on matrices of elements 

in TA (cf. Section 7). 

Let P be a bounded, self-adjoint operator on X. Following [Ha], p.201, 

P can be represented by a Jacobi matrix, i.e. there exists an ortho-

normal basis (er) in X such that the matrix of P satisfies 

0 if I r-j 1 < 1 , r,j " JN. 

If we define the positive self-adjoint operator A in X by 

Ae. , j "' JN , 
J 

foliowed by linear and unique self-adjoint extension, then we have the 

following result. 
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('1.1) Lemma 

'11"" self-adjoint operator P is an element of TA. 

Following Theorem (7.6) we have to show 

V 3 • sup (e-j 
t>O s>O" 

,j 
I <Pe.,e >I><"'· J r 

Let t > 0, and let 0 < s < t. 1ben 

where 11 Pil denotes the norm of P in B(X) 

With the aid of Lemma (9,1) the more general case of an unbounded self-

adjoint operator T can be solved, To this end let (FÀ)ÀEm denote 

the speetral resolution of the identity for T and IIl' l E J:il , the 

speetral projection 

i 

( I 
l-1 

Then X is decomposed into 

where in each invariant subspace ITl(X) the estimate 

holds true. So if we put Tl = ITlTnl , then Tl is bounded on X , and 

there exists an orthonormal basis (e~l)) such that f(T e.~l) e. (i))) is 
J \ l J ' r 

a Jacobi matrix. 

0 



Define the positive self-adjoint operator A by 

(j+l) e~l), 
J 
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foliowed by linear and unique self-adjoint extension, Then the eigen-

values of A are the numbers À = n+l with multiplicity n, n ~ B, 
n 

-tA So all the operators e , t > 0, are Hilbert-Schmidt and the anali-

ticity space SX A is nuclear, 
' 

1 (n) (n+l-j) . 1 (n) Put 0 . = e. , J = l, ••• ,n. Then the veetors 0 • are the eigen-
J J J 

veetors of A with eigenvalue À • Enumerating the 6~n),s in the usual 
n J 

way, we have constructed a complete orthononnal basis (gk) for X, which 

yields the following theorem. 

(9. 2) Theerem 

The operator T maps SX A continuously into itself • . 
Proof. Let t > O, and let 0 < s < t, Then 

sup ~up {e(r+n)se-(j+m)tl (Te;m) ,er (n)>l} = 
r,n J ,m 

~ sup (me- (t-s)) sup (erse-jt) < ro , 

m lr-jisl 

In order to establish a similar result for N bounded operators 

B1,B2, ••• ,BN on X, we shall construct an orthonormal basis in X such 
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that the matrix of each Bv' v = l, ••• ,N, is column finite, i.e. for 

every j .:: E there exists r0 € E such that 

To this end, let (Ór) be an orthonormal basis in x. Put e1 = 61• There 

exists an orthonormalset {e2,e3, ... ,~} .L {e1} with k 1 s (n+l) + 1, 
I 

such that 

and 

Similarly, there exists an orthonormal set{~+!''"'~ }.J.-:el'"''~ }, 
I 2 I 

k2 s 2(n+l) + 1, such that 

and 

Continuing in this way we derive sets {~ +I'''''~ } with 
l.-1 .e 

k.e:,; .t(n+t) +I and with {ek +l; ... ,ek }.l{e1, ... ,ek } such that 
l.-1 l l-1 

Bvel. € <eI' ••• ,ek > ' V I, ••• ,N 
.e 

and 

6.e+l € <el, ••• ·~ > . 
l 

Thus we obtain an orthonomnal basis (er) in X. This basis is complete 
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, <e
1
,e7 , ••• ,ek ~ tE .IN. The matrix of each Bv' 

- f.+ l 
l ·, v ,; N, is column finite, because 

(B e. ,e ) 
v J r 

0 if r > j(N+I) + l. 

Now define the positive self-adjoint operator A by 

Ae... 
J E Jl!l ' 

foliowed by linear and unique self-adjoint extension. Then 

(9.3) Theorem 

The linear operators B1,,,.,BN map the nuclear analyticity space SX,A 

continuously into itself. 

t Proof. Let v .E {I,, •• ,N}, and let t > 0, s > 0 with 0 < s < N+ï' Then 

I (B e.,e )le-jters sup v J r 
r,j 

:>11Bvlle8 sup e-j(t-(N+l)s) $ e 8 11Bvll 
jEJl!l 

With the aid of Theorem (9.3) we can extend the result of Theorem (9.2) 

to hold true for a finite number of cammuting self-adjoint operators 

in X. Let T1,T2,,,.,TN beN cammuting self-adjoint operators in X with 

resolutions of identity (Fiv)) , v = l,, •• ,N. So their speetral projee­

tions commute, Îoe, F(v)(~ )F(~)(ö) = F(~)(8 )F(v)(8) where 8 8 
v ~ Jl v v' IJ 

denote Borel sets in JR. Let IT.i' .f. E lNN , denote the projection 

D 
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Then for all 6-t TI!(X), T
11
6! t: TI!(X) and IIT

11
6,ell !}6,ell. 

Further, X = $ Il,e(X), 
!.::NN 

Since each operator ~[IT.e(X) is bounded, there exists an orthormal basis 

(ej!)) in TI!(X) such that for all v = I, ••• ,N, 

0 if r > j(N+I) + I. 

Define the positive,self-adjoint operator A in X by 

Ae~!) = (j + 
J 

I UI)"~!) . ..., u __ N <... "- ,JE ... ,,.._E:N-, 
J 

foliowed by the usual extensions (Note that lil = ! 1+, •• +~). Then the 

eigenvalnes of A are the numbers À = N+p, p € :N, with multiplicity 
, p 

(N+~- 1 ). Hence, the analyticity space SX,Á is nuclear, 

Renumerating the orthonormal basis (e~!)) yields an orthonormal basis 
J 

(9.4) Theorem 

Each of the operators T
11

, v 

from SX,A into itself. 

I, ••• ,N is a continuons linear mapping 

t 
Proof. Let v = I, ••• ,N, and let 0 < s < N+l • Then 

0 
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IV, GENERALlZEn EIGENFUNCTIONS WITH APPLICATIONS TO DIRAC' S FûRt'!ALISM 

Abstract. 

In the first part of this chapter a theory of generalized eigenfunctions is 

developed which is based on the theory of generalized functions introduced 

by De Graaf. For a finite number of cammuting self-adjoint operators the 

existence of a complete set of simultaneous generalized eigenfunctions is 

proved. A major role in the construction of the proof is played by the commu­

tative multiplicity theory. 

The second part is devoted to an Ansatz for a mathematica! interpretation 

of Dirac's formalism. Instead of employing rigged Hilbert space theory 

Dirac's bracket notion is reinterpreted and extended to the generalized 

function space TX,A' In this way, the concepts of the Fourier expansion of 

kets, of the orthogonality of complete sets of eigenkets and of matrices 

of unbounded linear mappings, all in the spirit of Dirac, fit into a mathe­

matica! rigarous theory. 
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Preliminaries. 

The introduetion of a theory of generalized eigenfunctions is closely re la-

ted toa theory of generalized functions, of course. In [GeVi], eh. I, to this 

end the theory of rigged Hilbert spaces is introduced. Here we employ 

De Graaf's theory of generalized functions, see [G]. In these prelimina-

ries the main features of this .theory will be given. 

In a Hilbert space X consider the evolution equation 

(p.I) "'-Au 

where A is a positive, unbounded self-adjoint operator. A solution u of 

(p.l) is called a trajectory if u satisfies 

(p.2.i) \{ t>O : u ( t) E x 

(p.2.ii) 

We emphasize that lim u(t) does not necessarily exist in X-sense. The 
t+O 

complex vector space of all trajectories is denoted by Tx,A· The space 

TX,A is considered as a space of generalized functions in [G]. 

The analyticity space sx,A is defined to be the dense linear subspace of 

X consisting of smooth elements of the form e-tAh where h E X and t > 0. 

-tA 
Hence SX A • U e (X). For each f E SX A' there exists T > 0 such that 

' t>O ' 
e'A f E sx,A· Further, for each FE rx,A we have F(t) E sx,A for àu 

t > 0. SX,A is the test function space in De Graaf's theory. In TX,A we 

take the topology induced by the seminorms 

{p.3) F ._,. 11 F ( t) 11 , F <:: T X A. 

' 
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l:h:c<1use of the trajectory property (p.2.ii) of elements in TX,A' it is 

u Frêchet space with this topology. In SX,A we take the inductive limit 

topology. In [G], a set of seminorros on SX,A is produced which generates 

the inductive limit topology. 

The pairing between SX,A and Tx,A is defined by 

(p.4) <g,F> A 
g,F(T)) , g E sx A' F , 

Here (•,•) denotes the inner product in X. Definition (p.4) makes sense 

for T > 0 sufficiently small. Due to the trajectory property (p.Z.ii) it 

does not depend on the choice of T. 

The space SX,A is nuclear if and only if A generates a semigroup of Hilbert­

Schmidt operators on X. In this case A has an orthonormal basis (vk) of 

eigenveetors with respective eigenvalues Àk, say. Further, for all t > 0 

'i' -Àk t the series L e converges. It can be shown that f 
k=l 

sx,A if and only 

if there exists T > 0 such that 

(p .5) 

and F E TX A if and only if for all t > 0 . 
(p.6) 

A topological tensor product SX,A il9 Sx,A is given by SX@X,AtBA and, 

sirnilarly, Tx,A G1l Tx,A by TX~X,AtBA' Here AtBA denotes the positive, 

adjoint operator Ail9I + IGèA. SinceS A is nuclear, the Kemel theorems x, 

self-

of [G], Ch. VI, apply. So SXGX,AtBA camprises the kernels of all continuous 

linear rnappings from Tx,A into Sx,A and TXGèX,AtBA the kernels of all conti­

nuous linear mappings frorn SX A into TX A' , . 



0. Int 

First I want to give ani J Juslrativeexamph' for tlie g<·ncral theory ,,J Lhi,, 

chnpter. Therefore, let SX A he the test function space with X = f,/fi{) and 
2 ' 

A }(- :x2 + x
2 

+ I), the llamiltonian operator of the harmonie oscilla-

tor. Th is SX,A -space is one of the examples discussed in [ G ], and in Ch. I. 

It is well-known that the Hermite functions ~k' k = 0,1 , •.• are the eigen­

functions of A with eigenvalues k + 1. So for each t > 0, the operator 

-t A · 'lb s hm · d d h S d T 1 Th e 1s H1 ert- c 1 t, an t e spaces X,A an X,A are nuc ear. e 

self-adjoint operator Q 

(Qf) (x) x f(x) x c lR ' 

maps SX,A continuously into itself, and can be extended to a continuous 

linear mapping on TX A' denoted by Q., also. . ' 

The linear functional 6 , given by xo 

ö f..,. f(x
0

) xo 

is an eigenfunctional of Q with eigenvalue x0 • The question arises whether 

óxO € TX,A' The space SX,A consists of entire analytic functions. So 

for each f E SX,A' f(x0) exists, ~nd can be written as 

Hence ö € TX A if and only if the series 
xo ' 

converges in X for all t > 0. Because of the growth properties of l~k(x0) I 
for large k, this is true in this special case. 
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In this chapter only nuclear SX,A spaces are considered. This implies that 

-t A 
all the operators e t > 0, have to be Hilbert-Schmidt. SoA has an 

orthonormal basis of eigenveetors v
1 

,v
2

, ••• with respective eigenvalues 

~ -À·t satisfying L e 1 < ~ for all t > 0. 
i=l 

Let T be a self-adjoint operator in X which is continuons on SX A' Since 
' 

T is self-adjoint, T can always be represented as a multiplication operator 

in a countably direct sum of L
2
-spaces. For convenience in this introduc­

tion, we shall consider the special case that T is unitarily equivalent 

to multiplication by the identity function in L2 (1R,~) for some finite 

Borel measure ~· In other words, a unitary operator U : X+ L2(1R,u) 

exists, such that Q = UTu* is given by 

(Qfi)(x) x 6 (x) 

on its domain D(Q) = U(D(T)). U maps SX,A continuously onto SY,B' where 

y and B = uAu* . 

Put (jlk Uvk, k = I , 2,. .. • Th en the <Pk' s es tab lish an orthonormal bas is 

in Y and they are the eigenveetors of B with eigenvalnes ÀI ,À 2, ... 

o(T), the spectrum of T. It is obvious that x0 is a (generalized) 

eigenvalue of T if and only if the linear functional ~ 
Xo 

is continuous on SY,B' This continuity condition is equivalent to the 

condition 

(0 .I) 

Of course, there is a problem here. In general [(x0) has no meaning for 

L
2
-functions. Formula (O.l) makes sense only, if we can choose a represen­

tant from each equivalence class <(!lk> in a unique way. In case 
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SY ,B c L.,. (:R, \l) we could employ the lifting theory of Ionescu T->1lcea 

(see [IT]). But in general Sy B is not contained in L.,.Cil.,ll) • 
• 

We shall prove that a unique choice of representante .k in the classes 

<~k>' k • I ,2, ••• , implies a unique choice of represent~nts in all 

classes <f> of SY,B' just by defining 

(0.2) 

Here we take 

(0.3) x++ lim{ !l(Qh(x))-I J ~kd!l} 
h~O Qh(x) 

where Qh(x) [x-h, x+h]. It is clear that Definition (0.3) does not 

depend on the choice of ~k E <~k>. 

The general case that T is equivalent to multiplication by the identity 

function in a countably direct sum of L2-spaces can be dealt with similarly. 

In sectien I we shall show the existence of generalized eigenfunctions 

for .a continuous self-adjoint operator T on SX,A. In section 2 excerpts 

of the commutative multiplicity theory are given, For this theory we 

refer to Nelson ([Ne2J) and Brown ([Br]). The main theerem in section 3 

states that we can a priori remove a set of measure zero N out of the 

spectrum o(T) of T such, that for all points in o(T)\N with multiplicity 

m, 0 s m s co, there exist precisely m independent generalized eigenfunc-

tions. Sectien 4 is devoted to a sketchy proof of the result that in an 

adapted form the conclusions of section 3 remain valid for an n-tuple of 

commuting self-adjoint operators. Finally, in sectien 5 an Arisatz is given 

for a mathematica! interpretation of Dirac's formalism. 



l . The ex is te nee of generalized eigenfunctions 

In the sequel A will denote a positive self-adjoint operator in X which 

generates a semigroup of Hilbert-Schmidt operators. SoA has an ortho-

normal basis of eigenveetors v
1

,v
2

, ••• with respective eigenvalues 

À
1

,Ä
2

, ••• satisfying .I e-Àit < oo for all t > 0. Further, T will denote 
~=I 

a self-adjoint operator in X, which maps SX,A continuously into itself. 

The speetral resolution of T is denoted by (HÀ)ÀEm· 

For 6 E X, the subspace x
6 

of X is defined to be the ciosure of the linear 

span of the set {H(ll) 6 lt::. c m a Borel set}. Here H(ll) denotes the spee-
r 

tral projection J d HÀ • 

!::. 

( l. I) Lemma 

The subspace x
0 

of X is unitarily equivalent to L2(m,p
6
), where pn denotes 

the positive, finite Borel measure (HÀ6,6)ÀElR' 

Proof 

The proef will be sketchy. It is taken from [Br]. 

Let gE XL' Then there exist sequences (a.(n)) and (ll~n)). such 
1J j jd'l J JEI< 

that 

lim 11 g - 0 . 
n.-

So we may conclude that the finite series 

are uniformly bounded. Then ~ 
jn 

1 im I a ~n) !::. ~n) exis ts and because of the 
n-- j=l J J 
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By (*) g can be expressed as g cp(T)6 with llgll " llq,IIL • On the other 
2 

hand, if q. € L2 (R, p Ó), then 

jn 
q. " lim L a ~n) ll ~n) 

n.- j=-1 J J 

with the limit taken in,L2-sense. So obviously g = cp(T)ó. 

The following equivalence holds 

Ug = U(q.(T)6) = 4> 

is unitary. This completes the proof. 

(1.2) Notation 

P denotes the set of x E R which. satisfy 

for every e: > 0. 

For each x E P, define 

( 1.3) Gt,h(x) := emb{ [pÓ(Qh(x))]-l J dHÀ 6} (t) 
Qh(x) 

t > 0. 

0 



Here emb is the continuous linear mapping from X into Tx,A' 

-t A 
emb(w) : t >+ e (W) w € x' 

and Qh (x) the closed interval [x- h, x+ h]. 

Since (vk)k€~ is an orthonormal basis of eigenveetors of A the Fourier 

expansion of G h(x) is given by 
t, 

G t (x) t, l 

By Lemma (1. I) for each k" ~ there exists ~k E 

J d(HÀ6,vk) 

Qh(x) 
6 

t > 0, h > 0 . 

h > 0 . 
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With the aid of Theorem 10.49 in [WZ] we can prove that there exists a null 

set N 
1 

, k for each k E ~ such that the limit 

exists for every x E P\NI,k and can be interpreted as a representant of 

the <~k> in the usual way. 

-Àkt 2 
Furthermore, let t > 0. Then the function I e l~kl belengs to L1{JR,p6). kE~ 

Hence applying Theerem 10.49 of [WZ] for the secoud time, we obtain a null 

set NZ,t such that for all x E P\NZ,t' 

( I e 
kE~ 
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Put N = ( U N1 k) u ( U N ). Then N is a null 
k,;:N • m::N 2 .!. 

set with respect to p6. 
' 'n 

For each x" P\N we have derived"the following 

(I .4. i) f lj)kdp6. 

Qh(x) 

limp6(Qh(x))-J f ( L e-Àkt lcpk12)dp6 

h+O Qh (x) kE:N 

Since for each t > 0 there exists n E :N with 0 < n < t, we find 

The latter observation leads to the following definition. The element G 
t,x 

of X is defined by 

(1.5} 
-À t 

Gt : = L e k $k (x) vk 
,x kE:N 

t > 0 • 

Then t ~ Gt,x is an element of Tx,A' 

Let h " SX,A' and put 

Then lh(x) I < w for all x € P\N. This can.be seen as follows: 

< "" 

for t > 0 small enough. 



149. 

We now come to the main theorem of this section. It says that out of a null 

set tv
6 

with respect to the measure p
6
, each x E Padmits a generalized eigen­

vector in rx,A' 

(1.6) Theorem 

For each x P, h > 0 and t > 0, define 

,h(x) := emb{p6(Qh(x))-l I dffÀii} (t) 

Qh (x) 

Then there exists a null set NÓ with respect to pÓ such that 

(i) G = lim h(x) exists in X for all X E and all t,x 
h+O ' 

(ii) G t I·~ E rx,A' and G I 0 for all x 
x ,x x 

(iii) TG xG x x 

Pro of 

t > 0. 

(I .S.i) Let t > 0, and let 8 > 0. Let x E P\N where N is the null set as de­

fined in (I .4). Then there exists n E lli such that 0 < l < 2t. Put 
n 

M ( t e x,n 
kEJN 

-(t 
e 

Th en 

(*) 

n Fix k
0 

E lli so large that 

L e 
k=k0+J 

I 
- (t- Iinko 

,; e < 
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Furthermore, by (4.i) and (4.ii) we can choose h > 0 so small that 

and also 

Th en 

and 

J q>k dp 6 - ljlk (x) I < E 

Qh (x) 

k = l, ..• ,k@ 

(M + l) 
2 

• x,n 

-tA 
< ~::lle "x®X 

A combination of the estimates (*), (**) and (***) yields the result 

llembptÎ(Qh(x))-
1 

( J d/1;,.6 )<t>- Gt,xll < e(2 + lle-tAIIX®X 

Qh(x) 

for h small enough where Gt is defined by (1.5) ,x 

(J.S.ii) If G is defined by G : t + G it is obvious that G in TX A' 
x x t ,x x ' 

Let r0 be the set of all x E P\N for which Gx = 0. We shall show that r0 

is a null set with respect to ptÎ • Note first that Gx = 0 impLies ljlk(x) • 0 



for all k E JN. Hence r 0 is a Borel set. Put y 

Th en 

;pk dp 6 0. 

Hence y = 0 and r0 is a null set with respect to p 6. 
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If we put Nn =Nu r0 , then Nn is a null set with respect to pn and for all 

x E P\N6 we have Gx E rx,A and # 0 . 

(l.S.iii) Let x E • We have to show TG = x G • Since T - x1 is conti-
x x 

nuous on TX A' . 
(*) (T - xl) lim (Qh (x) f di-LÀn= 

h+O Qh (x). 

lim (T x1) [o6(Qh(x))-l J d HÀ 6] . 
h+O 

Qh(x) 

We shall show that the latter limit tends to null in TX A for h + 0. 

To 
' 

this end, let t > 0. Then we compute as fellows 

lim embJl (T 
h+O 

lim { Z: e 
h+O kt:JN 

p6(Qh(x))-1 ( j (;1-x)-<pk_(_À_) dp6)vk} • 

Qh (x) 
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This expression can be treated as follows 

( I 
Qh(x) 

I for h small enough and n € :N so large that 0 < n < 2t. 

So the limit (*) is nulland also (I.S.iii) is proved. 

2. Commutative multiplicity theory 

The commutative multiplicity theorem enables us to set up a theory, which 

ensures that the notion 'multiplicity of an eigenvalue 1 also makes sense 

for generalized eigenvalues. The so-called multiplicity theory which leads 

to this theorem is mainly measure theoretica!. It is very well described 

by Nelson [Ne
2
J, eh. VI, and by Brown in [Br]. 

(2.1) Definition 

Let p be a positive, finite Borel measure on E. Then the support of p, 

supp(p), is defined by 

supp(p) :={rE EIV 0 p([r-e,r+E]) > 0]. 
e> 

0 



• :2) Lenm1~1 

t :J be a positive, finite Borel measure on JR. Then the complement 

of supp(p), , is a set of measure zero with respect to o. 

Proof 

For each x E supp(p)*, define the set , x+ t:] wi th 0 

taken so that p (Q ) 
x,s 0. Th en 

supp(p)* u Q 
XESUpp(p)* x, 

Let k E :N. The set supp(p)* [-k,k] is bounded in IR. With Besicovitch 

covering's Lemma ([WZ], p.l85) it follows that there is a countable set 

[x
1 

, ... } such that 

Hence 

supp(p)* n [-k,k] c U 
i=J 

p (supp(p) * n [ -k,k]) 0 . 

Since k E N is arbitrary, supp(p) * itself is a set of measure zero. 11 

There is another charaterization of supp(p). 

(2.3) 

supp(p) is the complement of the largest open set 0 

for which p(O) 0. 

Proof 

Let supp
1

(p) denote the complement of the largest measurable open null 

set, the set supp
1 

(p) is well defined (see [Bou], p. 16). Suppose 

x i supp
1 
(p). Then there exists c > 0 such that the interval 
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* Jx-E,x+d c supp 1(p) So p([x c,x+d) "0, and x ( supp{i!). 

Conversely, suppose x t supp(p). Then there exists c > 0 such that 

p([x-e:,x+d) = 0. This implies that (x-e:,x+e:) c supp
1
(p)*. 

Hence x i supp1(p), completing the proof. 

(2.4) Definition 

The Borel measure v is absolutely continuous with respect to the Borel 

measure v, notation v << v, if for every Borel set N with u(N) = 0, 

also v(N) = 0. 

The Borel measures v and v are equivalent, v - v, if v << v and v << v. 

It is clear that v- v implies supp(v) = supp(v). Soit makes sense to 

write supp(<v>) meaning the support of each v in the equivalence class 

<v>. 

(2.5) Definition 

Two equivalence classes <v> ·and <v> are called mutually disjoint if 

v (supp<v> n supp<v>) = p. (supp<v> n supp<v>) 0 . 

lf one wants a canonical listing of the eigenvalues of a matrix it is 

natural to list all eigenvalues of multiplicity one, two, etc. We need 

a way of saying that an operator is of uniform multiplicity one, two, etc. 

To this end we introduce 

(2.6} Definition 

A self-adjoint operator T is said to be of uniform multiplicity m, 

~ m ~ oo, if T is unitarily equivalent to multiplication by ~he ident-

tity function in L2(lR,v) El'l ••• El'l L2(1R,v), where there are m terms in 

the sum and v is a finite Borel mea.sure. 



This definition makes sense because if T is also unitarily equivalent 

to multiplication by the identity function on 

(n times), then m = n and ~ ~ v (see [Br]). 

{2.7) Theorem (Commutative multiplicity theorem) 

Let T be a self-adjoint operator in a Hilbert space X. Then there exists 

a decomposition X = X", EB x1 EB •.• EB Xm EB ..• so that 

(i) 'T acts invariantly in each Xrn 

(ii) T f X has uniform multiplicity m 
m 
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(iii) The measure classes <urn> associated with the speetral representation 

of T f Xm are mutually disjoint. 

Further, the subspaces ,x
2

, ... (some of which may be zero) and the 

, ... are uniquely determined by (i), (ii) 

and ( iii). 

For a proof see Nelson, eh. VI, Brown, [Br], or [RS]. 

3. ~ total set of generalized eigenfunctions for the self-adjoint operator T 

(3 • I ) De fini ti on 

A set r X is called cyclic with respect to T if 

X EB X 
yEf y 

Since X is separable, r consists of an at most countable number of ele-

ments. If r can be choosen such that it consistsof one element only, 

this element is called a cyclic vector and the operator T a cyclic ope-
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rator. The cyclic set r is not uniquely determined. The commutative 

multiplicity theerem brings in some uniqueness. 

(3.2) Lemma 

T has uniform multiplicity one if and only if T is cyclic. (see Defini-

tion 2.6) 

By Theerem (2.7) X can be splitted into a countable direct sum, 

The restricted operator T f X , I s m s oo, is unitarily equivalent to 
m 

multiplication by the identity function in 

(m times). 

By X ., j = J, ••• ,m, we denote the orthogonal subspace of Xm' which 
mJ 

corresponds to the j-th term in the direct sum. Since T f X . obviously 
mJ 

has uniform multiplicity one, there exists a cyclic vector y~m) for 
J 

T f X .. Thus we obtain a set r, 
mJ 

r :- { y ~m) I I s j < m + I ' I s m $ .. } ' 
J 

which is cyclic forT. Note that I s m s ""means m • .. ,1,2, •••. 

Let m, I s m s .. , be fixed so that Xm i' {0}, and let j, I s j < m+ I be 

fixed. Further, let p~m) denote the finite Borel measure ((Hl y;m) ,yjm) )) )..;lR· 
The projection from X onto X . is denoted by P~m) and the unitary opera-

mJ J 
(m) • A (m) · (m) (m) 

tor from XmJ· onto L2(lR,p (m)) by q . • F1.nally, put vk. U. P. vk. 
y. J ,J J J 

J 



From Theerem (1.5) we obtain sets N~m) of measure zero with respect te 
J 

pJ~m), m = '"',1,2, ... , such that for each oE supp(p~m))\N~m) 
J J 

is in TX,A' 

(m) 
,j 

and 

(m) 

'j 

t + L e 
k=l 

a G(m~ 
O,J 

Following Theorem (2.7) (m) - p~m) for all i, 
J 

1 s i < m + I, i.e. the 
m 

set N~m) is a null set with respect to each p(m) Put N(m) = U N~m) 
J i . 

j=l J 

(3.3) Theerem 

Let m, I m s =, be taken such that Xm;. {0}. Then there exists a null 

set N(m) with respect to <~m> with the property that for every 

157 ., 

supp(<~ >)\N{m) there are at least m independent generalized eigen­
m 

functions with eigenvalue a. Further, the set 

{ G (m~ I I s j < m + I , 1 s m s oo, a 
a,J 

is total. 

m 

Suppose L 
j=l 

0. Then for all f E sx,A 

m 
" 'f(.m) (~) 0 2. aj u • 

j=l J 

supp(<~ >)\N(m)} 
m 

Since SX,A is dense in X, this leads to a contradiction. 

A set V c TX,A is said to be total if VFEV<g,F> 

So suppose, 

(m) 
<g,G .> 0. 

O,J 

0 ... g = 0. 
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for I · 1 1 d ( ) · 1 (m) 'fh · · d · 1 J < m+ • :; m oo an o c supp <urn'' 1t, • en 1t umne 1ate,v 

follows that (U~m)p~m)g)(cr) • 0 almost everywhere with respect to ·IJ· 
J J m , 

wi th l s j < m + I and l ~ m s; "'. S o g • 0 • 

(3.4) Lemma 

Let cr(T) be the spectrum of T. Then 

cr(T) U supp(<J.!m>) 
mEJIU{"'} 

Pro of 

If x l a (T) , then there exis ts E > 0 such tha t 

H([x- e; • x+e:J) = 0. 

So for all m, l s m s "'• 

This implies (x- e:/2, x+ e:/2) </- supp(JJm) and hence 

x I. U supp(<JJ >) 
I ::;m";oo m 

Conversely, suppose x l U supp(<JJ >) • Then there exists ó > 0 such 
!Sm$«> m ( ) 

that (x- ó, x+ ó) </- supp(<JJ >), 1 s m s "'· Hence H([x- ó, x+ ö])y.m = 0 
m J 

for all m € Jl u {oo}, I s j < m+ I. This implies H([x- ó, x+ ó]) = 0. 

So x I. cr(T). 0 

We finish this section with two examples. 
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(3 .5) Example 

Let ÀO E o(T) be an eigenvalue of multiplicity m
0

• Then H(0
0

}) is a 

non-zero projection on X, and for j, l ~ j < mu+ I fixed, we have 

Hco0 }h~mo> 
H H0

0 
}y jmo) 11 2 

He nee G <me> E x . 
ÀO,j 

(3.6) Example 

Let C be a self-adjoint compact operator on X. Then the veetors 

YJ~m) ·= I 2-k e ~m) 
k=l J ,k 

::; j ::; m, l 

where the series may be a finite sum, establish a cyclic set for C. Here 

(e~m)) is an 
J,k 

eigenvee tor, 

m < oo 

orthonormal basis of eigenveetors for C; e~mk) is the 
J, 

I ::; j ::; m, with eigenvalue ~~m) of multiplicity m, 

4. The case of n-commuting self-adjoint operators 

j-th 

In this sectien we shall extend the theory of the first part of this 

paper to the case of n cammuting self-adjoint operators, where nis a 

natural number. We only discuss the frame work of this extension, because 

there really is no essential difference with the theory of one self-

adjoint operator. 

Let (T
1

,2'
2

, ... ,Tn) be an n-set of cernmuting self-adjoint operators in X, 

which map SX A continuously into itself. Let (iti\.EJR, i= l, ... ,n, 
' l. 
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denote their respective speetral resolutions. For 6 E X, the Hilbert 

space XÓ is the closure in X of the linear span 

<{H
1 

(t.
1
) ••• H (à >61 à. c :n a Borel set, i = 1, ••• ,n}>, 

n n ~ 

n The Hilbert space x
6 

is unitarily equivalent to L2 (:m. ,p
6
), where pó 

is the well-defined finite measure 

over the Borel subsets of :m.n. For every g E x
6 

there exis ts ~ E L2 (:m.n ,p Ó) 

with the properties 

g J gdH1(Ä 1) ••• Hn(Än)Ó 

lB. 

J1~1 2 dp6. 
:m.n 

The n-set restricted to x6, (T
1

, ••• ,Tn) r XÓ is unitarily equivalent to 

the n-set (Q1, ••• ,Qn) , where Qi denotes mul tipHeation by À i in 

L2(:m.n,pó) • 

For x E JRn and h > 0, we define the cube Qh (x) by 

Further we define the set P c :m.n by 

Then in case of the n-set (T1, ••• ,Tn)' Theorem (I .3) can be reformulated 

as fellows 



( 4. I ) Theorem 

For x , P, define 

Gx,h(t) := emb(pn(Qh(x)))-l ( J dH 1(À 1) ..• H
0

(À
0
)6) (t) 

Qh(x) 

There exists a null set N with respect to p n such that for all x E P\N 

(i) 

(ii) 

G (t) := lim G h(t) exists in X for all t > 0 
x h+O x, 

G 
x 

(iii) T.G x .G • 
1 x 1 x 

Proef 

cf. the proef of Theerem I .3. 
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The measure theoretical part of sectien 2 can be adapted in the usual way 

to measures in lR0
, cf. Definition (2.1), (2.4), (2.5) and (2.6) and Lemma 

(2 .2) and (2 .3). 

For a better understanding of the commutative multiplicity theorem for 

an n-set of self-adjoint cernmuting operators, we introduce the notion of 

(generalized) eigentuple of multiplicity m, I $ m $ oo 

(4.2) Definition 

An n-tuple À = (À 1 , ... ,À
0

) E lR0 is an eigentuple of the n-set (T1, ... ,T
0

) 

of multiplicity m if there exist m orthorrormal simultaneous eigenveetors 

(m) 
e.À,j such that 

<m+l,l$i$n. 

Similarly, the notion generalized eigentuple can be introduced. 
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If one wants a canonical listing of the eigentuples of an n-set of 

cammuting matrices it is natural to list all eigentuples of multiplicity 

one, two, •••• Weneed a way of saying that an n-set of cammuting self-

adjoint operators is of uniform multiplicity one, two, etc. 

(4.3) 

An n-set (T1 , ••• ,Tn) of cammuting self-adjoint operators is said to be 

of uniform multiplicity m if each Ti is unitarily equivalent to multi­

plication by À i in L
2 

(lRn ,11) EJj ••• EJj L
2 

(lRn ,11), where there are m terms 

in the sum and where 11 is a finite Borel measure in lRn. 

The formulation of the commutative multiplicity theorem for an n-set of 

commuting self-adjoint operators is quite evident. 

(4.4) 

Let (T1, ••• ,Tn) be an n~set of commuting self-adjoint operators in X. 

Then there exists a decomposition 

such that 

(i) The n-set (T1, .•• ,Tn) acts invariantly in each Xm, I $ m $ oo. 

(ii) The n-set (T1, ••• ,Tn) restricted to Xm has uniform multiplicity m. 

(iii} The measure classes <pm> associated with (T1, ••• ,Tn) r Xm are 

mutually disjoint. 

Further, the subspaces X
00

,X1,x2, ••• (some of which may be zero) and the 

classes <p
00

>,<11 1>, ••• are uniquely determined by (i}, (ii) and (iii). 
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The proof of this theorem can be derived from the proof in the one dimen-

sional case and is essentially the same (see [Ne2J, [Br]). 

(4.5) Definition 

A set r c X is called cyclic with respect to (T1, •.. ,Tn) if 

x tEl x . 
yET y 

Note that r is at most countable. 

If r consists of one element, this element is called cyclic vector. Lemma 

3.1 can be replaced by 

(4.6) 

The n-set (T
1 

, ••• ,Tn) is of uniform multiplicity one if and only if it 

has a cyclic vector. 

Following Theorem (4.4) X can be splitted into a direct sum 

X= X
00 

tEl x1 tEl x
2 

tEl •••• Each of the restricted operatorsT i r x , 
m 

s i < m+ 1 is unitarily equivalent to multiplication by Ài in 

m-times . 

Let X . , l s; j < m + J be the orthogonal subspace of Xm' which corresponds 
IDJ 

to the j-th term in the sum above. Then (T1, ... ,Tn) 

(m) 
vector yj , say. In this way a set r is obtained 

r { (m) I I yj j <m+l, I Sm:><»} 

which is cyclic for ('1" 1, ... ,Tn). 

X . has a cyclic 
IDJ 
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(4.7) Theorem 

i 
Take m, I ~ m ~ ~. such that Xm ~ {0}. Then there exists a null se~ 

~ ~)i 
N with respect to <~m>, such that for all À € supp(<~m>)\N , fhere 

are at least m independent simultaneous generalized eigll!nfunctions of 

(T 1, ••• ,T
0

) with generalized eigentuple À • (À
1

, ••• ,À
0
). 

Further, the set of all generalized eigenfunctions is total. 

(4.8) Example 

Consider SX,A with X = L2 {JR) and 

c~.Q2) where ~ denotes the parity 

2 x ; so 

I ( d
2 

2 ) A • - - --- + x + I and the 2-set 
2 dx2 

operator and Q2 multiplication by 

(Q
2 

6) (x) = x 2 
6Cx) and ( ~ 6> (x) 6( -x) · 

Then the 2-set (~,Q2 ) has uniform multiplicity I because it has a cyclic 

vector; for instanee take 

5. A mathematica! interpretation of Dirac's formalism 

In the preface to his hook on the foundations of quantum mechanics von 

Neumann says that Dirac 's formalism .U,· .öc.aJC.eely :to be. .6u!Lpa..ó.6e.d in bJteväy 

Uc.a..t JLi.gouJL. The improper functions of Dirac, the ó-function and its 

derivatives, have stimulated the growth of a new branch of mathematics: 

the theory of distributions. Yet, as far as we know, no paper on Dirac's 

formalism mathematically foundates the.bold way in which Dirac treats 

the continuous spectrum of a self-adjoint operator. Most papers on this 



subject unly solve the so called generalized eigenvalue problem by means 

of the rigged Hilbert space theory of Gelfand and Shilov. But Dirac's 

formalism bas more aspects. 

In this sec ti on an interpretation of the formalism is s tudied in terros 

of our distribution theory. It consists of the definition of ket and 

bra space, of Parseval's identity, of the Fourier expansion of kets with 

respect to continuous bases, of the existence and orthogonality of com­

plete sets of eigenkets, of matrices of unbounded linear mappings with 

respect to continuous bases, and of some matrix computation. 

We shall only consider quanturn systems at a given time without super­

selection rules. So we do not need to specify whether we are using the 

Heisenberg or SchrÖdinger pictures. A quanturn system at a given time is 

determined by states and observables. The space of all states is mostly 

supposed to be in 1-1 correspondence with the set of all one dimensional 

subspaces of an infinite dimensional separable Hilbert space X and the 

set of observables in 1-1 correspondence with the set of all self-adjoint 

operators in X. But in general we do nat need to consider all self-adjoint 

operators. To describe a quanturn system one can make a choice out of the 

set of observables, e.g. 'energy', 'momentum' and 'spin', which is suf­

ficiently large to completely determine the. quanturn system and in parti­

cular all relevant observables. 

In his formalism Dirac treats all points in the spectrum of a self-adjoint 

operator similarly. So the formalism assumes for instanee that the notion 

multiplicity of À for every point À in the spectrum makes sense, and further 

that for each À with multiplicity m there exist precisely m independent 

eigenstates. Of course, Hilbert space theory can not fulfil these wishes. 
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ll~ll.H .. ~t'"t". ~~ll."lf:t~~ ar~ ~oo smull. Th~rüfür~, it is n.:ttut~~~ lOlnok for space~, 

wh.ic:h extel1.d Hilbe.rt sp.:1ce., ;~:o.d witb structut'r;r:; c.·.t)I\lp.-::.r,).b1~ to HilberL 

spac:e ~truc.ture. For instJ.nc(', t.h~ tra_iec.tory sptlc(:.::; rX,A ar-e acc.eptablc 

(:.9.n.:,li.dat~ . .::: _ 

ln lht;l-c's .ft)t:'il);1.li:o=:m the. dual sp~.c-.e lJI: the. ket sp~to, l".h\~ so c.alled brá 

~p.Ut:C, i~ in 1-1 (:orrespondence with th~ ket spacr..::. So Ch~ latter space 

ought to be so:.:.~lf-Ju<'l). To this e.nd dist.r~bLltion theory C.:lütt ~ver be oÎ 

3f\y lu~li)· We try to c.irr.:.umv€nt rhj.o;:: problem. by ~~ (lew Îl1terpretatic;n of 

Let Q.S be a quantum 1neclH1nic.al systern. W~ ~$St.Jme. that Q$ :i..s completely 

dete:.rmined by U1~ $1.~1;. (Jf sêlf-adjoint operators tP
1

, .. - .Jln} in the Hilbert 

space X. Furth~.:.:r~ we .c:uppose: th~l· there. exists il. nuclear s:pace SX
1

A suc.h 

that each 1.)
1

ttt.i.tp::; Sx~A c.ontinuously int'.!.) itself. So t:hot~ r
1

, i= l, ..• ,nl 

(;~1'1. be extended te continuuus U.~ear mapping.S Oû. TX,A. Fur in.~t.(J.IïC.e, when 

the: se!.: (P
1
,..,. ,.Pn} is an n-set of commuting s€lf-~:~.djoint operaLor.s it 

is possible to ~CJJ\Struc:t such a nucl.e~·u ~pace (cf. Ch. T.II, Sec.:tion 9). 

In our int"!tp't'('l;:.ation the set uf observables of: Q.S c.orresponds uili.,lue:ly 

to the Sri:::l.: (lf se:l.f'T"adjoint upcra.ç,ors which an~ (.\~I'ltinuous on SX
1
A · We 

nou.~ th.:3.t the choice ot r.:tu.:~ spac.e SX~A dep~nUs on the se1f-.~djoint op€r~l.""" 

tOr$ P
1

, ..... :.~-P 11 For the . .;;et of statc:S W"e take the set: of one dimlmsXcn1.al 

s~bspaces of TX,A' 

In Dirac's tenninology, tbe tr~j\::~,;(or'Î.es of TX:.~-Á are c.allcd kc:.:t veetors 

11u::refor-c VJe i,ltroduc.e Dirai.!T~ br~c.ket. notcltiOI'I and denote t.hern by IG> 

in the s:€qvcl. Th~ label G in the expression j C·_.. J ~ mostly chosen such 

that it expre:;:sGS best t.he. properties of IG> which are relev.ant tn the 
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~ontext. Io IG~ uniquely correspouds th~ bra <G[ defined by 

~ -). t; 
t ~'-~'- ;, c k .::v ~ [ C>;,o vk 

k=l k 

whoi'ro;. (vk) denotcs the orthono!lllal basis of eigenv.,ctora of A, and where 

the series convergcs in X for each t > 0. 

lhe expresdon <F I G>, C<lll<!:d the bracket of <FI and IG>, denotea' the 

complex valued function 

<F I G> t .... < IF>(t)' IG» t ~ 0 . 

The funct~on <f I G> is well defined because IF> (t) • sx,A for every 

t > 0. It cxtends to an analytic f~nction on the open r~ght half pl~ne. 

LH f < SX,A' Then obviously <f I G>(-r) exists for cvery IG> and -r > 0 

sufficiently smal! and 

<G I f>(-r)- <I f>(-~) , IG». 

To emphaRiz.;. this n:lce property of the elcrnents in SX,A the kets and bras 

corresponding to e lcrocnts in sX,A are. o;.-!lled t6s t kets and test bras. 

Finally, "e rclt\<:~rk that for all t > 0 th€ function <F I G> satisfies 

""'d 
<F I G>(t) ~ <l'(t) I G>(O) 

<F I G>(t) = <l:'{t) I G>(O) 

<G(t) I F>(O) ~ <G I f'>(t) 

<FIG(t)>(O). 

Let: P : Sx,A + Sx,A be an obse~vable of QS. for simplicity, suppose that 

Pis a ~yclic oper~tor Ln X, Then all points i~ o(P), che spectrum of F, 

have multi.plicity one. Further, there eKists a cychc vectoJ: r in X s ... ch 
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th8-t. P is unit.arily equivalent tû nlultiplic.ation by À in Che: Hilbert .spacc 

D/ll<,J(HÀy,y)). Her< (H).\em Jenotes the spectr~l resolution of the 

ident.ity with respet.t r.o r. A~ 'in sectien 3, lhc. Borel meaaure d(H,r,·y) 

is denoted by do
1 

(;,) i11 t\•<0! """luel. 

Following the prec~~dios se.c.tions ther~;:: cxist.s a null set N wi. th respe.::t to 

vy such that for E<!Ch À '· o(P)\N there is an eigenket [;,>. With the no­

t;.ati.on of sec.tion J, 1>.) h~s th.c following Fou.rier expansion 

I).:. ). 'Ç"Wivk> 
t.~ l 

-tA 
Let g ,, SX,A' ·rhen R = e f fot o. well chosen SX,A and t > 0. 

Considt·r t:he fellowring fonn .. :Ü (:•.:rmputation 

He nee 

e f <À I f>(O) [Ac• (t) d~y(À). 
IR 

The <.>nty problem in this computation i.s the equoldy (•). Wç >hall therc-

fotc p"Cove that sUINJ:l~H:ion and inteeration can bl~ interc.hangod. The folio-

wing 1.ne.qualitie::; hold true 
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I ( 11 ~ 11 2 • I ) ( I e -;\kt ) 
I k=l 

lly the Fubi,>i-·)•on.elli theerem eq<Jo.lity (•) ia verih.,~. 

With the aid of (he above Qer~vatioü, g can be written a:s 

g I <\ I s,>(-t) 1;\>(t) dpr(J.) 

lR 

"Whe.re the. in.tegrot"r-1 converges absc]~.~t:ely in X, and does no~ c.le:pend on the 

choicc of t > 0, 

(S.il.~ 

Let I f> be a t«St keç, Thcn 

i.e. 

Jf> f <A I f>(O) IÀ>dp/À) 
lR 

lt>(t) - I <À I f>(O) IÀ>(t) dpy(À) 

IR 

t > 0 • 

aere. we use the uSI.l·-::tl nociun of integral for funt.tions fTorn 1R î.uto X. 

Proof 

Let t :> 0. Put g = I f> (t). We have se en that 

8 I<!. I g>(-t) IÀ>(t) dpy{Ä) 

lR 

with absolute conve.rgence. in X. 

Sinçe <). I g>(-t) = <À I f>(O), tr!C• «>•erticm follows. 
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Parsevai's identity is an immedia te consequence .of section 3 

(5 .2) llfll
2 J ltO,)i 2 d~/À) 

lR 

J l<f I À>(O)i
2 

dpy<À>. 

lR 

Further, from Theorem (5.1) it is clear that 

(5.3) PI f> I À <À I f>(O) I À> dp"<À) • 
lR . 

Let Ft rlt,A" Then for'every1: > o. F(1:) ESx,A and hence 

emb( IF>{T)) jF(t)> ·· J <À IF('[}>(O) I'À> dp/À) 

lR 

I 
f. 

following ·Theorem (5.1). Further, let t > 0. Then for every t, 0 < 1: < ~ 

(5 .4) I -(t--r)A I F> ( t) ; e · F> ( T) <À I F> ( T) I À> ( t - T) dp (À ) 
y 

The integral in (5.4) does notdepend on the choice of .T and: converges; 

absolutely in X. The ket IF> can thus be represented by 

IF> 

By the expression 

<À I F>(T) li\>(t T) dp (À) • 
y 

J <À I F> I À> dpy(À) 

lR 

is meant the trajectory 

<i\ IF>(t) li\>(t-t)dp (i\). 
y 



Each of the integrals does notdepend on the choice of T, 0 < T < t, 

and converges absolutely in X. We can write 

(5.5) I <ÀIF>!À>dpy(À) 

lR 
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where the integral has to be understood in the interpretation that we have 

derived above. (Cf. the appendix.) 

The result of Theorem (5. I) can be sharpened. To this end, let f E Sx,A' 

Th en there ex is ts T > 0 such that eT A f E SX ,A. We have 

lR 

<À I t> IÀ>dp (À) 
y 

lR 
:_A 

where the latter integral converges in X. Since e2 is a closed operator 

in X, and since • <À i f>(-T) IÀ>(T/2) dp (À) exists as au integral of a 
lR' y 

function from :m into X, the integral 

( 

1 <À I f>(-T) l:l.>('r) àp'Y(À) 

:m' 

exists in SX,A-sense. Hence in our interpretation 

lf> I <À I f> À>dpy(À) 

:m 

where the integral exists in SX A-sense. (Cf. the appendix.) 
' 

Consider the following equality 

<)l i À>(t) À , Jl E a (P) \N, t > 0 . 

Let óÀ denote the function 
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and let U denote the unitary operator from X onto Y = L2 (~,py), Put 

8- uAu*. Then 6À E rY,8 and for f E sY,B 

So öÀ is Dirac's delta function in TY,B and consequently we write 

(5.6) 

Relation (5.6) expresses the generalization of the orthogonality relations 

for the eigenveetors of P to the eigenkets of P in agreement with Dirac's 

notation. 

For the sake of completeness we rewrite the result (5.5) for the bras and 

test bras 

(5. 7) <FI I <F I À> <À I dpy(À) 

~ 

where the integral exists in rx,A-sense. If <FI is a test bra the integral 

exists in sx,A-sense. 

Another aspect of Dirac's formalism is the so called closure property of a 

complete set of eigenkets. 

(5.8} Theerem 

?- I Àn IÀ><ÀI dpy<À} 

:R 

n=O,l,2, ••• 

where the integral converges in TX®X,AEBA' Here IÀ> <À I denotes the tensor 

product 1:>..> lil> I À> (~: TX®X,AEBA). 



:n 

Proof 

Let t 0. Consider the following formal derivation 

-t(AEBA) n \ -nk -u n e P = L e e 2 <v iîll v , P > v @ v 
k,2 k 2 k 2 

I l,n 1>->(t) 0 1>->(t) dpy(>,) . 

JR 

We shall prove that summatien and integration can be interchanged. The re-

maining part of the proof is straight forward. 

Next we discuss the general case that P : Sx,A + SX,A has a countable 

cyclic set. There will appear no essential difference with the case of 

a cyclic operator P. The same notation as in section 3 will be employed. 

Proofs will be omitted. 

li 
u 
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So let {/m) l"m =""I 2 J •• > ... ~ j < m + l} be the cyclic set for 

P. Then X can be written as 

m=oo 
x= $ 

m=l 
m= 

where by absence of better notations $ 
m=l 

m 
$ X will denote 

j=l YJm) 

: X (m) ) $ ( .; X («>)) . 
j=l yj J=l yj 

The Hilbert space X y Çm) is unitarily equivalent tot L2 (lR,p y Çm)) and 

J J 
P f XyÇm) is unitarily equivalent to multiplication by À in L2 (1R,py~m)). 

J J 
Following· section 3 there exist sets N(m), each of which has measure zero 

with respect to <pyÇm)>' 

(m) J 
supp(<pyÇm)>)\N there 

J 

m = oo,J,2, ••• such that for all À in 

are m independent eigenkets IÀ,m,j>, 

The eigenkets can be written as 

where the series converges in TX A' Then similar to Theorem (5.1) 
• 

(5.9) Theorem 

Let f "sx,A· Th en 

m= m 
J <>.. ,m,j lf> I I I f> co> IÀ,m,j>dp Çm) (À) 

m=J j<= I 
lR YJ 

with convergence in rx,A' Further 

< m+ l. 



(Parseval's identity) and 

m=oo 
P\f> 1 L J À <X,m,j I f>(O) \X,m,j> dp (m) (X). 

m=l j=l lR Yj 

Henceforth we will call the set {\À ,m,j> \ À E o(P) , 1 

a Dirac basis. (In fact we have to exclude a null set N.) 

With the same interpretation as in (5.5) we have 

(5. 10) \F> 
m::oo 

1 
m=l 

I f <À,m,j IF>\X,m,j>dp (m)(X) 
j=l JR. Yj 

with convergence in TX,A' In particular if \F> in (5.10) is a test ket 

the convergence takes place even in sx,A-sense. 

Consider the following equality 

I 
\' -Àkt ~{m) (') ~(n) ( ) <IJ,n,i À,m,j>(t) = L e vk . " vk . IJ 

k=J ,J ,L 

where À 
(m) (n) 

supp(<py{m)>)\N , IJ E supp(<py~n)>)\N 
] L 

lsi<n+landm,n oo,l,Z, ... 

Let 6(m~ denote the function 
À,] 

6(m~ (\l,n,i,t) _,. <IJ,n,i \ À,m,j>(t) 
À,j 

m=ao 
and U the unitary operator from X onto Y e 

6(m~ 
m=l 

8 uAu*. Th en E TY,B' and for f 
"

3
Y,B À,J 

f ( • ) -+ ~ (n) (l.l) IJ,n,L 

and 

m 
e 

j=l 

< m+ I, 

Put 
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< m + 1} 

<~f 6 (m) > 
• À,j 

n=<» n 

I I 
n=l i=l 

"' ( I -(n) ~(n) ) (m)() f. (IJ) vk . (l.l) dp ( ) (IJ) vk . À 
1 L ,L y.n ,J 

JR. L 
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Hence 

<11,n,i I À,m,j> = öÀ(\l) 6 •• ö • 
J~ mn 

Finally we give the adaptation of the closure property (5.8). 

(5. I I) Theorem 

n=0,1,2, ... 

with convergence of the integral in TX®X,AIBA' 

Here we do not intend to discuss the interpretation of Dirac's formalism 

for an n-set of commuting observables. The generalization to this case 

is immediate and rather trivial. All results remain valid in an adapted 

form. We only notice the nice way in which the definition of a complete 

set of commuting observables in the sense of Dirac can be expressed in 

our terminology. 

(5.12) Proposition 

The n-set (P
1

, ••• ,Pn) is a complete set of commuting observables iff it 

has uniform multiplicity one. 

Given an orthonormal basis in X. Every bounded linear operator B in X is 

uniquely represented by its matrix [B] with respect to this basis. ·The 

product of two operators B1B2 has matrix [B 1B2J which can be derived 

by formal matrix multiplication, [B 1 B 2 Jk~ = ?[B 1Jki [B 2 Ji~' Dirac 
~ 

assumes that the matrix notion can also be introduced in the case of 

Dirae bases, and that operating with these matrices runs similarly to 
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LhL' discrL~tL' c~sL'. Bec.ausl' of this assumption onc can choose a represen-

ta ti on se> that tlte. 'tqJ'tC.M.nmtive~ o6 .the ma !te. abJ.>.tJz.a.U quantLtiu oc.c.u.Jt-

Ült!J Üt tlte p!LObfem Me. M 6-Urip.te. M poM-<-b.te. Examples of such repre-

sentations are the so called x- and p-representations. 

Here we shall give a mathematica! interpretation of this hypothesis of 

Dirac. We shall restriet ourselves to representations of observables 

with repsect to a complete set of generalized eigenfunctions of a cyclic 

self-adjoint operator. The general case of a non-cyclic self-adjoint 

operator or of a cammuting n-set can be dealt with similarly. 

Let p : sx,A 7 sx,A be a cyclic self-adjoint operator, and let IÀ>, 

À E o(P), denote the eigenkets of Pin TX A' The operator F ~Pis self-, 
adjoint in X <i9 X, and maps SX~X,AEilA continuously into itself. Eigen­

kets in TX@X,AEilA of P<i9 Pare I\>@ Ijl>, À,jl E o(P). Following Dirac 

we shall denote the tensor product I À> <i9 Ijl> by Ijl><\ I in the sequel. 

Every continuous linear mapping from Tx,A into Sx,A is derived from an 

element of SX@X,AEilA' because of the Kernel theorem. With the methods 

we employed in the proof of Theorem (5.1) the following result can be 

shown. 

(5 . I 3) Theorem 

Let B E SX@X,AEilA' Then 

B = IJ 
lR2 

<jl I BI \>(0) Ijl> <À I dp (À) dp (jl) 
y y 

where the integral converges in TX@X,AEilA' and where 
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We note that 

where the integral converges absolutely in X@ X. 

Similar to the one variabie case TX,A (cf. (5.5)), Theorem (5.13) can be 

adapted such that it is valid for elements in TX@X,AEBA • 

(5.14) Theorem 

Let G E TX@X,AEBA. Then we have with <IJ I G I ~> t,... <IJ I G(t) I ~> , 

where similarly to (5.5) the integral has to be understood in the follo-

wing sense. 

G t,... JJ <À I G llJ>(-r) CllJ> <~l)(t- T) dp (À) dp (IJ). 
y y 

lR 

Here the integrals do notdepend on the choice of -r, 0 < T < t, and con-

verge in X@ X. 

With respect to the Dirac basis CI~>)~Ecr(P) an element B, B E SX@X,AEBA' 

can be represented by the matrix [B] given by 

(5.15) ll ,À E cr(P) 

and following Theorem (5.13) 

B Jf [BJ ~ lll> <~I dp (~) dp (ll) • 
2 ll y y 

lR 



Further for IF> E TX A' the ket BIF> is a test ket and 
' 

(5. 16) BIF> = fJ <jl I BI ;\>(-T) <À I F>(T) llJ> dp (À) dp (\.1) . z; Y r 
:R 

where T 'A 0 has to be taken so small tha t B e E SX@ X A !BA, and where 
' 

the integral converges in TX,A and does not depend on the choice uf 

T > 0. Even convergence in SX,A can be proved. Further 

( 5. 17} <lJIBIF>(O) <lJ I BI À>(--r) <\I F>(T) dp (À) 
y 

where the integral converges absolutely. Note that <11 I BI \>(-T) exists 

because BIF> is a test ket for every ket IF>. 
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The matrix notion can be extended to elements of TX®X,A!BA" To this end, 

let GE TX@X,A!BA· Then with the expression [GJ we mean the set of 

functions 

(5. 18) <)J I G I À>. 

We note that G(t) E SX@X,A!BA" The expression [GJ will be called the 

matrix of G. By Theorem (5.14) we have 

G = rr [GJ À ill><ÀI dp (À) dp (11). 
z;, )J r r 

lR 

Let lf> be a test ket. Then G\f> can be represented by 

(5 .19) Gif> t..,. Ir [GJ , (T) <À 1 f>(--r) ljl>(t _ ,) dp (À) dp (11) 
2 • jlA y '( 

:R 

where '• 0 < < t, has to be taken so small that I f> ( -<:) c SX A, and where 
' 
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the integrals converge absolutely in X and do not depend on the choice 

of T > 0. Further 

(5.20) <lJ I G I f> t + J [e-(t-T)AG(T)]llÀ <À I f>(--r) dp/À) 

JR 

where the integrals converge absolutely and do not depend on the choice 

of T > 0. 

Similarly a matrix notion will be introduced for continuous linear mappings 

from SX A into itself resp. TX A into itself, or equivalently because of 
' ' 

Che Kernel theerem for elements in T(SX~X. I®A'A®1) resp. 
I I 

T(SX~X,A®1'1®A), i.e. the spaces }:8 and LA as introduced by De Graaf 

in [G], Ch. IV (cf. Ch. III}. 

For R" T(SX~X,l®A'A®1) the matrix representation [R] is defined by 

(5 .21) [R]J.lÀ : (s,t)..,. <)l I R(t) I À.>(s). 

Note that R(t) € SX®X,AIBA t > 0, fixed. So there exists er > 0 such 

that <J.! I R(t) I :\>(-er) is well-defined because R(t) IÀ> is a test ket. 

It can be shown that 

(5. 22) R : t"'" R(t) = JI [R] , (-cr,t) ( lt..>(t- t) ® llJ>(cr)) dp (À) dp (\l) 
2 ll" r r 

JR 

where the integrals convergein X® X and do notdepend on the choice of 

t, 0 < 1: < t and of er > 0 sufficiently small. We write 

(5 .23) R = IJ [R] À lP <À I dp (À) dp (lJ) 
2 ll r - r 

JR 



lvh...:re the integral has to be interprered in the sense of (5.22) and 

converges in TX@X,AEBA (even in T{SX@X,I@A'Ac&-1)). Let 

HSXQSJX, IQ9A'A@ 1). Then the matrix of the product R'R is given 

by 

(5.24) [R'R]IJÀ (s, t) 1+ I 
:R 

[R'] (s,o) [R] 
1 
(-o,t) dp (v) 

IJV VA y 

where the integrals converge absolutely and do not depend on the choice 

of a, and where a > 0 has to be taken such that 

A 
R(t) E SX®X AEBA . . 

We write 

(5. 25) I [H, ] [H] ' dp (V) 
IJV VA y 

lR 

where the integral converges in the indicated distributional sense. 

Furthl'!r, let \f> be a test ket. Then H\f> is a test ket, also, and 

(5. 26) R\f> <IJ I R('r) I \>(0) <À I f>(--r) \IJ> dp {À) dp (IJ) y y 

IJ 
[R] , (-o,T) <À\ f>(-r) \Jl>(o) dp (À) dp (IJ) 

2 IJA Y Y 
lR 

where the integral converges in TX,A and does not depend on the choice 

of T > 0 and of a > 0 chosen sufficiently small as indicated in (5.21). 

Finally, we have 

(5.27) <IJ IR I f> [R] 
1 

(s,T) <À \ f>(-1:) dp (À) • 
IJA Y 

i8L 
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For Q E: T(SX 0 X,A@I!I®A) its matrix [Q] is defined by 

(5.28) [QJ
11

À : (s, t) ..,. <IJ I Q(s) I À>(t) • 

Note that Q(s) E: SX®X,AEBA' So there exists ' > 0 such that 

<IJ I Q(s) I À>(-;) is well-defined because Q(s) IÀ> is a test ket. It 

can be shown that 

(5. 29) Q S~+Q(s) = ff [Q] ,(o,-;) <IÀ>(;)® IIJ>(s-o)dp (À)dp (IJ) 
2 IJA y y 

:R 

where o, 0 < o < s, and where the integrals convergein X® X and do not 

depend on the choice of o, and of • > 0 sufficiently small (cf. (5.21). 

We write 

(5.30) Q = IJ [Q] , <111> <À l)dp (À) dp (IJ) 
2 IJA y y 

lR 

where the integral has to be interpreeed in the sense of (5.29) and con-

verges in TX®X,AEBA' Let Q' "T(SX®X,A®I'1®A). Then the matrix of the 

product Q'Q is given by 

(5. 31) (s,t)~+ J 
E. 

[Q'] (s,-T) [QJ À(T,t) dp (v) 
IJ\1 \) y 

where the integrals converge absolutely and do not depend on the choice 

of '• and where T > 0 has to be taken such that 
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We write 

(5.32) [Q'Q]j.IÀ f [Q'Q] [Q] , dp (v) • 
j.l\) \)A y 

JR 

Again the integral converges in the above-mentioned distributional sense. 

Further, QIH> can be represented by 

(5. 33) QIH> : sI+ rJ [Q] '(o,--r) <À I H>(-r) l].l>(s -o) dp {À) dp (\l) 
2) ].lA y y 

JR 

where the integrals converge absolutely in X for every s > 0 and do 

not depend on the choice of o, 0 < a < s, and T > 0, and where T > 0 

TA 
has tobetaken such that Q(o)e E sx~x.AIEA' 

Finally, note that 

(5 .34) <IJ IQ I H> s .... [Q , ](s,--r) <A I H>(<) dp (À). 
IJA y 

Remark 

The proofs of most results we gave in the last part of this section 

become more transparant by the following relation: 

Let B E SX<l9X,AIEA' and let t 1 > 0 and t 2 > 0. Then 

The proof of this relation runs analogously to the proof of Theorem (5.1). 

References to this section: 

[An], [BÖ], [Di], [Ja], [GeVi], [Mel], [RoJ. 
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Appendix Some integration theory 

In this appendix we shall introduce the notion of integral for functions 

from :R into SX,A' and, also, from lR into TX,A'' Therefore, we introduce 

so-called integrable functions. 

(a.l) Definition 

Let f be a function from the interval [a,b] into SX,A' Then f is called in­

, tegrable if for all .p E B + (:R) the function 

s 1+ 1/I(A) f(s) 

from [a,b] into X is integrable; so Jb .p(A) f(s) ds E X. 
a 

Let f : [a,b] t+ SX A be integrable. By taking 1jl = l in the above definition , 
it follows that f is also integrable as a function from lR into X. Henc~ 

afb f(s) ds exists and defines an element of X. Since lji(A) is a closed 

operator and since Jb lj!(A) f(s) ds E X by definition (a. I) we obtain 
a 

b b 

1/I(A) ( J f(s) ds) J 1/I(A) f(s) ds E X. 

a a 

Hence ( fb f(s) ds) e- n D(lj!(A)) = SX,A' Cf. Ch. I, Section I. 
a lj!EB+(ll} 

We shall call afb f(s} ds the integral of the integrable function f over [a,b]. 

(a.2) 

Let F be a function from the interval [a,b] into TX,A' Then F is called in­

tegrable over [a,b] if for all t > 0 the function 

s 1+ F(s;t) 

from [a,b] into X is integrable, 



b 

J F(s; t) ds E X • 

a 

Let F : [a,b] ~ TX,A be integrable over [a,b]. Then for all t > 0, the 

X-integral fb F(s; t) ds f X. Let Jb F(s) ds denote the mapping 
a a 

b 

( J F(s) ds) 

a 

b 

t~ J F(s;t)ds. 

a 

Then for all t > 0 and T > 0 

b b 

_,A I e F(s;t)ds I F(s;t + T) ds 

a a 

185 

due to the continuity of e _,A on X. Hence the expression Jb F(s) ds denotes 
a 

an element of Tx,A" We shall call afb F(s) ds the integral of F over [a,b]. 
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EPILOGUE 

During the research we have examined several topics which are related to 

the theory of analyticity spaces and trajectory spaces. Not all of them 

are contained in the present thesis. In Chapter one we have already men­

tioned the papers on the characterization of the spaces s~~~::' k € JN and 

on the Hankel invariant distribution spaces SL (O ~) A , a> -1. In short 
· 2 • • a 

we shall sum up some other subjects of study. 

For each of the four types of linear mappings which appear in our theory, 

a closed graph theerem is valid. ·A forthcoming paper will deal with this 

kind of theorems, and, also, with the characterization of closed subspaces. 

A closed subspace of the analytici ty space SX,A is in I - I correspondence 

with an array of projections (~t)t>O from X into X satisfying 

~t 
-TA 

e ~t+T t, T > 0 • 

It will lead to the following result. 

If pis a continuous injection on sx,A<rx,A) with a closed range in sx.A<Tx,A), 

then its dual P' is a continuous surjection on TX,A(SX,A). 

Another paper, that we are prepairing, deals with groups and semigroups of 

elementsof rA (TA and EA). Here, we are mainly looking for conditions on 

a linear operator L in X, which imply that L generates a semigroup of one of 

the mentioned types. We have been able to characterize the so-called holo-

morphic groups in the described way. Rowever, with respect to the semigroups 

we stand at a starting point. A related topic is the so-called classifica-

tion problem: 

Given A and X, find conditions on B and Y such that 
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In [E
3
J we have considered the case in which 8 is obtained from A by means 

of a perturbation. 

Finally, we shall devote some attention to a promising result of our research: 

another, new set up [E
1
J of a theory of generalized functions. This theory 

is a kind of reverse of De Graaf's theory. We summarize it here. 

In [E
1
] we start with the evolution equation 

(e.l) 2.t .. A~p 
dt 

where A is a nonnegative, self-adjoint operator in the Hilbert space X. 

A solution tp of (e.l) is called an orbit if it satisfies 

(e.2.i) 

(e.2.ii) 

Each orbit <p is uniquely determined by its value ~p(O) and hence 

~p(O) € D((eA)"") = tl D(enA). With the seminorros 
n=l 

(e.3) cp ,.. 1111'( t) I! 1p " t(X,A) 

where t E ~. the space T(X,A) becomes a Frêchet space. The topological 

structure of T(X,A) is similar to the topological structure of rX,A' 

The asperity space a(X,A) consists of elements F for which there exists 

t > 0 such that e-t AF € X. We have 

(e. 4) a(X,A) = U xt 
t>O 

u x 
nEE n 
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where Xt denotes the completion of X with respect to the norm 11 • llt 

(e.5) 11 f 11 t = 11 e-t A f 11 f E X • 

It is nothard to see that Xtc X't for 1: > t. On a(X,A) we impose an in­

ductive limit topology. The inductive limit is not strict. Inspired by (G] 

we have been able to cons.truct a set of seminorms which generate the given 

topology for a(X,A). The topological structure of the asperity space a(X,A) 

is similar to the topological structure of the analyticity space SX,A' 

The pairirig between 'r(X,A) and cr{X,A) is defined by 

(e.6) -tA (<p(t) ,e '!') <p e T (X,A) , '!' e a (X,A) . 

Here t > 0 has to be taken so large that e -tA 'I' E X. Due to (e.2.ii) the 

definition does not depend on the choice of t > 0. The spaces 't(X,A) and 

a(X,A) are reflexive in the given topologies. 

In addition, [E 1] contains the characterization of the four types of con­

tinuons linear mappings 

-r (X,A) ..,. 1: (Y ,8), 1: (X,A) ..,. a (Y,8), cr (X,A) ..,. 1: (Y ,8), cr (X,A) ..,. cr (Y ,8) 

and the introduetion of four topological tensor products. 

t(cr(X0Y,A®l),10B), cr(X®Y,AIBB), t(X0Y,AIBB) and 

't(a(X0Y,I0B),A(Il!I) • 

These tensor products lead to four Kernel theorems justas in [G]. 
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Th~ spa~e "'(/() bt'comes an orbital space in the following natura! way. 

(~. 8) 

ll(ll"'). Then de fine thc mapping u : iL • 

u ( t) . : ct log 1f u 
0 

t ( iL • 

(JR) by 

Tllen ;c (11"') corresponds to the space T (L2 (lR), log H). 

So the theory on orbital spaces and asperity spaces can be looked upon as 

a very general theory on distributions of the tempered kind. 

In [E 1] we a lso have shown that the space of Hermite pansions, introduced 

by Korevaar, [KJ, equals the asperity space 

(e.9) 

with H as in (e.7}. Moreover, in [E2J, [EG], we have discussed the Hankel 

invariant distribution spaces a(L2(0,oo},logAa) and o(L2(0,oo),Aa). The eer­

responding test function spaces r(L2(0,oo),logAa) and r(L2 (0,oo),Aa) are 

described in classica! analytic terms. 

We conclude this epilogue with the following quintuple: 

r(X,A) c sx,A c x c rx,A c o(X,A) • 
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X, Y, z 

A, B, c. V 

sx,A' SY,B' sz,c 

Tx,A' TY,B' Tz,c 

S(TZ,C'V), r<sz,c·V) 

C A V 

c V V 

c 

0 s' 0 w' 0 p' 0 wp 

T s' T w' T p' T wp 

p s' Pw• pp' pwp 

B(lR), B+(lR) 

F(JR2)' F (lR2) + 

Hilbert spaces (9,30) 

nonnegative self-adjoint operators (9,30) 

analyticity spaces (9,30) 

trajectory spaces (12,38) 

(30' 38) 

maximum of C and V (SI) 

minimum of C and V (SI) 

algebraic/topological tensor product (19) 

T(SX~Y,I~B'A~l), T(SX~Y,A~I'I~B) (20,21) 

S(TX!i!Y,IIi!B'Aii!I), S(TX!i!Y,A~I'I~B) (29) 

T(SX~ X, I ~A,A~ I), T(SX li!X,Aii! I, I lilA) (74) 

S(Tx~x. I ~A,A1i! 1), S(Tx~x,A~ I' I !i! A) (78) 

yÁ n TA, SA + SA (80) 

involution on EA (7S) 

pairing between the elements of an analyticity space 

and the elements of a trajectory space (13) 

pairing between the elements of a space of type S(TZ,C'V) 

and the elements of a space of type T(SZ,C'V) (4S) 

topologies on yÁ (82-84) 

topologies on TA (90-91) 

topologies on EA (94-9S) 

algebras of functions on lR related to the seminorros 

on an analyticity space (10) 

algebras of functions on JR2 related to the seminorros 

on a space of type S(TZ,C'V) (31) 
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the analyticity domain of A (25) 

the analyticity domain of a unitary Lie group 

representation (26) 

speetral resólution of the identity of C, V , 

etc. (30) 

embedding (I I) 

delta function concentrated in x (142) 

Kronecker delta 

cube with centre x (147) 

support of the Borel measure IJ (152) 

spectrum of the operator P (158) 

kets (166) 

bras (167) 

the bracket of <Fj and [G> (167) 

the tensor produkt of [F> and [G> (172) 

Dirac basis (175) 

matrix of B with respect to the Dirac basis 

Gelfand-Shilov space of type S (22) 

Hankel transform of order a (23) 

Bessel function of order a (23) 

n-th Laguerre function of order a (23 ) 

n-th Hermite function (142) 
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INDEX OF TERMS 

absolutely continuous measures (154) 

analytic vector (25) 

analyticity domain (25,29) 

analyticity space (9,28) 

. asperity space (187) 

Banach-Steinhaus theorem (15,48) 

barreled (11,13,37) 

bornological (11,13,37) 

bracket (98,167) 

bra space (167) 

bra vector (98,167) 

closable operator (17) 

ciosure property (172} 

column finite matrix (136) 

commutative multiplicity theory (152) 

cammuting self-adjoint operators (30,137) 

continuous linear mappings (c.l.m.) 

- from sx,A into SY,B (17) 

- from sx,A into TY,B (17) 

- from Tx,A into SY,B (18) 

- from Tx,A into TY,B (18) 

cyclic 

g: 

- operator (155) 

- set 

- vector 

(155) 

(155) 

diagonal matrix (126) 

Dirac 

- basis (175) 

- delta function (1,142) 

- formalis~ (27,164) 

disjoint measure classes (154) 

dual space (14,46) 

~: 

eigentuple (161) 

embedding (12} 

extendable linear mapping (19,70) 

extreme point (110) 

Frêchet space (12,31) 

Friedrich 1 s exte.nsion (I 0 I) 

Fourier expansions 

-of kets (171) 

- of bras (172) 



generalized e.igenveetor ( 139) 

Gw*-algebra (97) 

h: 

Ramiltonian operator (22,98,142) 

Hankel invariant 

test spaee (23,190) 

- distribution space (23,190) 

Hankel transfarm (23) 

harmonie oscillator (22,142) 

Heaviside step function (I) 

Hermite function (142) 

Hermite pausion (190) 

homeomorphism (76,78) 

i: 

inclusion scheme (56} 

inductive limit (9,31) 

- topology (9,31) 

non strict- (9,31) 

infinite matrix (117) 

involution (81) 

Jacobi matrix (133) 

Kemel theorem (19,66) 

ket space (98,166) 

ket vector (98,166) 

1: 

Laguerre funetion (23) 

Lie algebra (25,114) 

infinitesimal representation of - (26) 

Lie group (25) 

unitary representation of- (25,115) 

.!)!! 

Mackey topology (56) 

matrix calculus (117) 

momenturn operator (115) 

Mentel (space) (ll, 13) 

mul tipHeation 

joint - (86,93,96) 

separate - (86,93,96) 

multiplicity (125,136,152) 

of an eigentuple (161) 

n: 

nuclear 

,analyticity space (11) 

- trajeetory space (13) 

n-set (159) 

n-tuple (161) 

o: 

observable (99,164) 

operator algebra (74) 

- of c.l.m. on sx,A (82) 

of c.l.m. on Tx A (90) 
' 

of extendable linear mappings (94) 
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involutive - (95) 

locally convex - (88) 

orbit (187) 

orbital space (188) 

.P_: 

pairing (13,45) 

parity operator (164) 

Parseval's identity (170) 

position operator (114) 

principle of uniform boundedness 

(85,92,95) 

quantum 

- state (102,165) 

- density (100) 

- system (98,166) 

- statistics (100) 

-statistica! mixture (112) 

r: 

rigged Hilbert space (2,139) 

s: 

sli-space (22) 
Q 

SchrÖdinger equation (99) 

SchrÖdinger group (116) 

smooth function (3) 

smoothed function (3) 

smoothing operator (3,9) 

pure state {104) 

support (of a measure) (152) 

t: 

tempered distribution (188) 

tensor product 

algebraic - (66,69) 

topological - (19,28,66) 

- of operators (66} 

topology 

strong - for SX,A (10) 

- for rx,A (I 2) 

- for T(Sz,C'V) (38) 

- for S(Tz, C' V) (31) 

weak - for SX,A' etc. (14,47) 

pointwise - for rA, TA' fA (82. 90 ,94) 

weak pointwise - for rA, TA' EA (84,91,95) 

total set (157) 

trajectory space (12) 

u: 

uniform multiplicity (154) 

- for eigentuples (162) 

unilateral shift (127) 

Y· 

w: 

weighted shift (126) 

Weyl group (116) 
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SAMENVATTING 

Geinspireerd door het artikel [B] van De Bruijn, heeft de Graaf een the-

orie van gegeneraliseerde functies ontwikkeld. Deze·theorie [G] wordt 

gekenmerkt door haar vrij strakke functionaal analytische aanpak. Zij 

is gebaseerd op het triplet 

S AcXcT A X, X, 

waarbij X een Hilbert-ruimte is, en A een niet-negatieve zelf-geadjun-

geerde operator in X. Het eerste gedeelte van [G] bevat de gebruikelijke 

aspekten van een distributietheorie, zoals de definitie van de test-

functieruimte (SX,A) en van de distributieruimte (TX,A)' en van hun 

paring. Aldus kunnen sx,A en Tx,A gezien worden als elkaars duale. 

Het tweede gedeelte is minder conventioneel. De theorie [G] onderscheidt 

zich hierin van andere distributietheorieën. In dit gedeelte staan gede-

tailleerde karakterisaties van vijf soorten continue lineaire afbeeldin-

gen. Voorts worden er vier soorten topologische tensor produkten inge-

voerd, die aanleiding geven tot vier Kern-stellingen. We merken op dat 

een Kern-stelling (Kernel theorem) voorwaarden levert waaronder alle 

lineaire afbeeldingen van een bepaald type voorgesteld kunnen worden door 

kernen uit een geschikt gekozen topologisch tensor produkt. In gangbare 

distributietheorieën heeft het begrip Kern-stelling een zwakkere beteke-

nis en wordt veelal slechts gegeven voor de continue lineaire afbeeldingen 

van de testfunctieruimte in de distributieruimte. 

In dit proefschrift wordt de theorie van De Graaf verder uitgebouwd 

en in verband gebracht met andere wiskundige disciplines. Dit laatste 

heeft ertoe geleid ruimten van het type Sx,A analyticiteitsruimten te no~· 

men. Het blijkt namelijk dat de verzameling SX,A juist het analyticitei t;' 
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domein van de operator A in x is. be elementen van Tx,A kunnen opgevat 

worden als trajecten in de Rilhert-ruimte X. Vandaar dat TX,A de traject­

ruimte heet. 

In Hoofdstuk I wordt de theorie [G] samengevat. Daarnaast komen enige 

voorbeelden van analyticiteitsruimten aan de orde. 

In het tweede en derde hoofdstuk wordt het tweede gédeelte van [G] ver-

der uitgewerkt. Zoals vermeld zijn daar de topologische tensor produk-

ten rA, E~ en EA, EB ingevoerd maar de beschrijving in [G] van deze ruim­

ten is niet erg doorzichtig. Omdat de ruimten EA en EB de kernen bevatten 

van de continue lineaire afbeeldingen van Sx,A in SY,B resp. Tx,A in TY,B' 

is het zaak hun topologische structuur goed in de vingers te krijgen. 

Daarom hebben we twee typen ruimten ingevoerd, die bepaald worden door 

een Hilbert-ruimte Z en een paar cammuterende niet-neg~tieve, onbegrensde, 

zelf-geadjungeerde operatoren in z. De ruimten EA en Eg zijn van het ene 

type, rA en EB van het andere. Op de nieuw ingevoerde ruimten worden topo­

logieën geintroduceerd, wordt een paring gegeven en bovendien worden hun 

doorsneden gekarakteriseerd. 

De verkregen resultaten worden gebruikt in de beschrijving van de operator 

theorie voor analyticiteitsruimten en trajectruimten. Genoemde beschrijving 

heeft geleid tot een (vijfde) Kern-stelling voor de zgn. uitbreidbare 

lineaire afbeeldingen. Verder heeft deze beschrijving de bestudering ver-

licht van de algebra's van continue lineaire afbeeldingen van SX A in 
' 

zichzelf, c.q. van TX,A in zichzelf en van de uitbreidbare lineaire af­

beeldingen. Laatstgenoemde algebra dient in dit proefschrift als een 

mathematisch model voor quantum statistiek. Als de ruimte SX,A n~cleair 

is, bezit iedere continue lineaire afbeelding op sx,A een goed gedefini­

eerde matrix representatie. De oneindige matrices corresponderende met 
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deze afbeeldingen zijn zeer eenvoudig te karakteriseren (in tegenstel-

ling tot matrices van begrensde lineaire operatoren op een Hilbert-ruim-

te). We krijgen aldus een groot reservoir aan voorbeelden. Het vermelden 

waard zijn de zgn. verschuivingsoperatoren, die nader zijn onderzocht. 

Tenslotte heeft de matrixcalculus geleid tot de constructie van nucleaire 

analyticiteitsruimten waarop een eindig aantal operatoren in X continu is. 

Het vierde hoofdstuk staat tamelijk los van de overige hoofdstukken. 

Hierin wordt een theorie van gegeneraliseerde eigenfuncties ontwikkeld 

die gebaseerd is op de theorie van gegeneraliseerde functies van De 

Graaf. We beperken ons tot nucleaire analyticiteitsruimten SX,A en tot 

zelf-geadjungeerde operatoren P in X die continu zijn op SX A' De commu-
' 

tatieve multipliciteitstheorie voor zelf-geadjungeerde operatoren speelt 

een belangrijke rol. Als P continu is op de nucleaire ruimte SX,A en als 

À E cr(P) multipliciteit mÀ heeft, dan bestaan er tenminste mÀ (gegenera­

liseerde) eigenvectoren in Tx,A met (gegeneraliseerde) eigenwaarde À. 

Een gelijksoortige uitspraak geldt voor een eindig aantal cammuterende 

zelf-geadjungeerde operatoren. 

Het tweede gedeelte van dit hoofdstuk is gewijd aan een wiskundige inter-

pretatie van het Dirac formalisme. We hebben het bracket ~egrip van Dirac 

zodanig geinterpreteerd dat het "inwendig produkt" tussen twee gegenera-

liseerde functies mathematisch zinvol wordt. Een aantal aspekten van het 

Dirac formalisme krijgen aldus een wiskundige betekenis. We noemen hier: 

Fourierontwikkeling t.a.v. Dirac bases, quasi-orthogonaliteit van eigen-

kets en matrixcalculus m.b.t. Dirac bases. 



202. 

ÛJRRIOJLLi-1 VITAE 

De schrijver van dit proefschrift is op 13 november 1956 geb ren te 

Sint-Oedenrode. In 1974 verwierf hij het einddiploma Gymnasium-S aan 

het Gymnasium Bernrode te Heeswijk-Dinther. Daarna studeerde hij wis­

kunde aan de T.H.-Eindhoven. Zijn afstudeeronderzoek werd verricht 

onder leiding van Prof.dr. S.T.M. Ackennans en had betrekking op 

asymptotische Fuglede stellingen. In december 1979 behaalde hij het 

diploma wiskundig ingenieur. Sindsdien is hij werkzaam als wetenschap­

pelijk assistent bij Prof.dr.ir. J. de Graaf, eerst in dienst van de 

T.H.-Eindhoven, daarna in dienst van Z.W.O. 



STELLINGEN 

behorende bij het proefschrift 

ANALYTICITY SPACES, TRAJECTDRY SPACES 

AND LINEAR MAPPINGS BETWEEN THEM 

door 

S.J.L. van Eijndhoven 



I. 

- I -

De door McKennon ingevoerde testfunctieruimte Z is gelijk aan T(L2 (lR),H~) 
. . I (-d.2 2 ) . . . waarbLJ H ~ 2 ---2 + x + I • ZLJn bewer1ng dat deze ruimte invariant is 

dx 
onder de Laplace-transformatie is onjuist. 

Literatuur: [E], [MeK]. 

- 2 -

Zij N een begrensde normale operator op een Rilhert-ruimte en zij B een 

begrensde lineaire operator. Dan volgt uit N(NB- BN) - (NB- BN)N = 0 dat 

NB - BN = 0. Deze stelling heeft asymptotische uitbreidingen in termen 

van een vrij algemene klasse van operatortopologieën; waaronder de uni-

forme, de sterke en de zwakke operatortopologie. 

Literatuur: (AEM]. 

- 3 -

Met behulp van de wiskundige interpretatie van het Dirac-formalisme uit 

dit proefschrift alsmede de operatortheorie voor analyticiteits- en 

trajectruimten is.het mogelijk de (anti-) commutatierelaties CCR en 

CAR voor quantumveldoperatoren wiskundig te funderen. 
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- 4 

Laat 0 < p < 1, k E ~ent E ~. Dan is de Gelfand-Shilov ruimte 

bevat in de analyticiteitsruimte S 2 t k+t P 

Lz(lR), ((-d zJ + (x2)k) kf". 2 
dx 

Voor t = 1 èn p = 1 geldt ook het omgekeerde. 

Literatuur: [EGP]. 

- 5 -

Veronderstel dat in de locaal convexe Hausdorff topologische vectorruimte 

R de continuïteit van lineaire functionalen reeds door nulrijen beschre-

ven kan worden. Dan is een lineaire deelruimte V in R gesloten dan en 

slechts dan als V rijgesloten is. 

- 6 -

Zij Peen lineaire afbeelding van Sx,A in SY,B met een gesloten grafiek 

in SX,A x SY,B' Dan is P continu. 

Zij Peen continue lineaire injectie (surjectie) van SX,A in SY,B zodat 

P(SX,A) gesloten is in SY,B' Dan is P' : TY,B + TX,A een continue sur­

jectie (injectie met P'(TY,B) gesloten in Tx,A). 



III. 
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De Weyl quantizatie QK van het symbool K kan geschreven worden als 

J K(a.,B) exp(2i(-BQ.+a.P))da df! 

JR2 

P • d Q. d . . met ~ -1 dx , = x en t e par1te1tsoperator. 

+ I I (I 3 c 1 a
2

) Schrijf X L2 (JR x$ , rdrdq>), HP = -8 r '§r r'§r + z -;:-"2 i I 

r oq~ 

+- +-
2 2 

en M - ± i f Dan bevatten de ruimten T (SX H +M , H - M ) en 
p '!' 'pp p p 

T(SX H -M , H + M ) juist de Weylsymbolen van de continue lineaire 
' p p p p 

afbeeldingen van SL
2

(1R) ,H. in 

. . I (-d
2 

2 ) waarbl.J H = 2 - 2 + x + I • 
dx 

zichzelf, resp. van T in zichzelf, 
L

2 
(lR) ,H 

K E T (SX H +M , H - M ) worden de matrixelementen van de operator 
' p p p p 

Voor 

QK : S + S t.o.v. de Hermite basis gegeven door L'
2 

(JR) ,H L
2 

(lR) ,H 

(QK} = <A (n-m) ' K>x nm n n,m E 11 u {0} . 

Hierbij is 

en 

L(n-m) (t) 
m 

Literatuur: [Da], [Pe]. 

( 
d )m n -t 
dt (t e } t > 0. 



IV. 
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De Rankel invariante testfunctieruimte H van Zemanian is gelijk aan 
Jl 

Literatuur: [EG], [Z]. 

- 9 

Laat R een positieve zelf-geadjungeerde Hilbert-Schmidt operator zijn op 

de Hilbert-ruimte X. Laat D een (onbegrensde) lineaire operator zijn in 

X, die de deelruimte R(X) afbeeldt in L
2

0R,!l) waarbij u een finiete 

niet- negatieve Borelmaat is. Veronderstel dat DR een goed gedefinieerde 

Hilbert-Schmidt operator is van X in L2 (]R, p). Dan bestaat er een nul­

verzameling N zo dat voor alle f E R(X) en alle x E IR\N 
Jl )l 

{Df) (x) lim 
MO 

waarbij Qh(x) = [x-h,x+h]. 

De lineaire functionalen 

f ..,. (Df) (x) f E R(X) 

(Df)dll 

zijn continu t.a.v. de norm 11 • IIR op R(X) gedefinieerd door 

Deze stelling is een maattheoretische generalisatie van de inbeddings-

theorema's van Sobolev. 
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De Leidsche Bul werd vroeger op de studentensoos bij grote hoeveelheden 

verorberd. Dit baksel verdient daarom eerder de naam 'studentengebak' 

dan het oudvaderlandse 'saucijzenbroodje'. Vaak wordt de naam van dit 

laatste baksel al te scherpzinnig verklaard als 'panis socialis in usum 

studiosorum'. Maar uit niets blijkt dat studenten speciaal het ·saucijzen­

broodje de voorkeur gaven. 

V. 
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