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Abstract

We show the existence of noncircular, self-similar solutions to the three-dimen-
sional Hele-Shaw suction problem with surface tension regularisation up to complete
extinction. In an appropriate scaling, these solutions are found as bifurcation so-
lutions to a nonlocal elliptic equation of order three. The bifurcation parameter is
the ratio of the suction speed and the surface tension coefficient.
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1 Introduction

The problem of Hele-Shaw flow with suction in one point and surface tension regular-
isation consists in finding a family of moving domains t 7→ Ω(t) in R3 and functions
p(·, t) : Ω(t) → R such that

∆p = µδ in Ω(t), (1.1)

p = −γκ on Γ(t) := ∂Ω(t). (1.2)

Here κ stands for the mean curvature of the moving boundary t 7→ Γ(t) (taken
negative if Ω(t) is convex) and γ > 0 is the surface tension coefficient. The parameter
µ > 0 denotes the suction speed and δ is the delta distribution.

As usual, the evolution of the boundary is given by

vn = − ∂p

∂n
, (1.3)
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where vn is the nornal velocity of the boundary.
Besides liquid flow in a Hele-Shaw cell [2], the model and variations of it describe the

growth of tumours [1] and porous media flow [3, 4].
Trivial solutions are given by balls around the origin whose volume decreases linearly

in time, with rate µ. The evolution of the domain that is initially the unit ball B3 is
therefore

Ω(t) = α(t)B3,

with α : [0, 4π
3µ ) → [0, 1) given by

α(t) := 3

√
1− 3µt

4π
.

In [9] it is shown that if µ/γ ≤ ζ2 := 32π/5 then this solution is nonlinearly stable with
respect to perturbations that do not change the volume and the center of mass of the
initial domain.

In this note we prove the existence of non-trivial solutions with the property

Ω(t) = α(t)Ω(0),

for µ/γ near the values

ζk := 4π
k3 + k2 − 2k

k + 3
, k = 2, 3, 4 . . . .

This communication is organized as follows: in Section 2 we introduce a rescaled evo-
lution equation (2.2) in a way that the trivial solutions described above are represented
by trivial stationary solutions. In turn, non-trivial stationary solutions of (2.2) corre-
spond to non-trivial self-similar extinction solutions of the original Hele-Shaw problem.
We repeat some results from [9, 10] which form the framework for our considerations
here. Because of the rescaling, the evolution operator depends on time. For the problem
in R3, the operator scales in such a way that this time dependence occurs simply as a
multiplication by a function of time.

In Section 3 we will apply a well known result on “bifurcation from a simple eigen-
value”. To ensure that the eigenvalue under consideration is simple, we have to restrict
our basic space, thereby introducing a symmetry breaking. This approach is also used
(for other free boundary problems) in [5], [6] and [7].

We want to point out here that the result depends crucially on the space dimension
3. This is due to the fact that only in this dimension the fundamental solution for the
Laplacian has the same scaling behavior with respect to dilations as the curvature.

2 The evolution problem

Let Hs(S2) be the Sobolev space of order s of functions on the unit sphere S2 in R3. We
recall some constructions and propositions from [9] which form the basis for the results
given in Section 3.
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We restrict ourselves to domain evolutions that can be described by a continuous
function R : S2 × [0,∞) → (−1,∞) such that

Ω(t) = ΩR(·,t) :=
{

ξ ∈ R3 \ {0} : |ξ| < 1 + R

(
ξ

|ξ| , t
)}

∪ {0}.

Besides R we introduce r : S2 × [0,∞) → (−1,∞) by

r(x, t) + 1 =
1 + R(x, t)

α(t)
.

This definition of r is equivalent to

Ωr(·,t) = α(t)−1ΩR(·,t). (2.1)

Let ΩR(t) = α(t)Ωr(t) be a solution to the Hele-Shaw problem (1.1)-(1.3). Then r(t)
satisfies an evolution equation of the form

∂r

∂t
=

1
α(t)3

(γF1(r)− µF2(r)) , (2.2)

with smooth F1 : U → Hs−3(S2) and F2 : U → Hs−1(S2), where s > 5 and U is a certain
neighbourhood of the origin in Hs(S2). For the precise structure of F1 and F2 and a
derivation of (2.2) we refer to [9]. (Hölder spaces are used there instead of Sobolev spaces.
Formally, however, the arguments are identical.) Here it is sufficient to investigate the
first Fréchet derivatives of F1 and F2.

For the equation (2.2), r ≡ 0 is a stationary solution, corresponding to the shrinking
ball Ω(t) = α(t)B3. On the other hand, it is clear that any stationary solution, i.e. any
time independent r satisfying

γF1(r)− µF2(r) = 0 (2.3)

corresponds to a solution Ω(t) = α(t)Ωr, i.e. a self-similar solution of the original problem
(1.1)–(1.3) which exists up to time 4π/(3µ) when complete extinction of the domain takes
place.

We introduce the Dirichlet-to-Neumann operator N : Hσ(S2) → Hσ−1(S2), σ > 1, as
the operator that maps a function h to Nh := ∂u

∂n , where u satisfies

∆u = 0 on B3

u = h on S2.

This is a first order pseudodifferential operator on S2 whose spectrum consists of the
nonnegative integers. The eigenfunctions are the spherical harmonics of corresponding
degree.

The linearisations of F1 and F2 around r ≡ 0 are given by

F ′1(0)h = N (−N 2h−Nh + 2h
)

(2.4)

and
F ′2(0)h = − 1

4π
(Nh + 3h) . (2.5)

For this we refer to [10] Lemma 2.12 and [9] Lemma 2.5.
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3 Non-trivial stationary solutions via bifurcation

Let Sl be the space of spherical harmonics of order l. Define for σ ≥ 0 the subspace
Hσ
×(S2) of Hσ(S2) consisting of those functions that are invariant with respect to rotations

around the z-axis. It is well known that

Sl ∩Hσ
×(S2) = 〈Y 0

l 〉,
where Y 0

l are the zonal harmonics given by

Y 0
l (θ) = Pl(cos θ),

where θ denotes the polar angle coordinate on S2 and Pl are the Legendre polynomials.
The mappings F1 and F2 respect rotational symmetries. Therefore, on a suitable

neighbourhood U× of zero in Hs
×(S2), we have a smooth mapping F×,µ : U× → Hs−3

× (S2)
given by

F×,µ = (γF1 − µF2)|U× .

We shall now state the main result of this note. We keep s and γ fixed and denote
by Xk the orthoplement of 〈Y 0

k 〉 in Hs
×(S2). Moreover, we write µk := γζk.

Theorem 3.1. Let k ≥ 2 be an integer. There exists a δ > 0 and a C1-curve (f, m) :
(−δ, δ) → Xk × R such that (f(0),m(0)) = (0, µk) and for all τ ∈ (−δ, δ) we have

F×,m(τ)

(
τY 0

k + τf(τ)
)

= 0. (3.1)

Furthermore, there is a neighborhood of (0, µk) such that any zero of (r, µ) 7→ F×,µ(r),
is either of the form

(
τY 0

k + τf(τ),m(τ)
)

or of the form (0, µ).

This theorem ensures the existence of non-trivial stationary solutions to (2.3). In
particular, Y 0

k gives the direction in which these solutions bifurcate from the trivial one,
see Figure 1.

The proof of Theorem 3.1 uses the following lemma. To simplify notation here, we
define Ak ∈ L(Hs

×(S2),Hs−3
× (S2)) by

Ak := F ′×,µk
(0).

Lemma 3.2. Let k ≥ 2 be an integer. We have kerAk = 〈Y 0
k 〉 and R(Ak) has codimen-

sion one.

Proof. The zonal harmonics form a complete orthogonal system in Hs
×(S2). Conse-

quently, we get from (2.4), (2.5), and the fact that NY 0
l = lY 0

l

Akh =
∑

l≥0

gl(k)‖Y 0
l ‖−2

0 (h, Y 0
l )0Y 0

l , h ∈ Hs
×(S2),

where (·, ·)0 denotes the usual inner product on L2(S2), ‖ · ‖0 the corresponding norm,
and

gl(k) = −γ(l3 + l2 − 2l) +
µk

4π
(l + 3).

As gl(k) = 0 if and only if l = k and gl(k) ∼ −γl3 for large l, both statements follow
immediately.
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Figure 1: The domains ΩcY 0
2
, for several values of c ∈ R. For |c| small but nonzero,

these domains approximate non-trivial stationary solutions of the rescaled problem, i.e.
shapes of self-similarly vanishing domains.

The proof of Theorem 3.1 follows if we combine Lemma 3.2, [8] Theorem 13.5 and
the fact that

∂µ(F ′×,µ(0))|µ=µk
Y 0

k = −F ′2(0)Y 0
k =

k + 3
4π

Y 0
k /∈ R(Ak).

Our analysis does not provide any strict results concerning the more complicated
question of stability of the solutions we found. At least for k > 2, instability is to be
expected because of the linear instability of the trivial solution for µ = µk.
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