

'PLATE' : a decision support system for resource-constrained
project scheduling problems
Citation for published version (APA):
Jansen, A. R. H. W., Klieb, L., Noorlander, C., & Wolf, G. (1990). 'PLATE' : a decision support system for
resource-constrained project scheduling problems. (Designing decision support systems notes; Vol. 9003).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/3457b81d-ccd7-40f7-bfa3-045e5047e1f2

Editors: prof.dr. K.M. van Hee
prof.dr. H.G. Sol

'PLATE'; A DECISION SUPPORT SYSTEM
FOR RESOURCE-CONSTRAINED
PROJECT SCHEDULING PROBLEMS

by

A. Jansen
L. Klieb
C. Noorlander
G. Wolf

EINDHOVEN UNIVERSITY OF TECHNOLOGY
r. du Buisson
Department of Mathematics and Computing Science
P.O. Box 513
5600 Mil EINDHOVEN

Augustus 1990

NFl 11.90/03

A. Jansen
Eindhoven University of Technology
Faculty of Mathematics and Computing Science
P.O. Box 51~j, 5600 MB Eindhoven, the Netherlands

1. Klieb
Eindhoven University of Technology
Faculty of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

C. Noorlander
Eindhoven University of Technology
Faculty of Mathematics and Computing Science
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

G. Wolf
Eilldhoven University of Technology
Faculty of Mathematics and Computing Science
P.O. Box 513,5600 MB Eindhoven, the Netherlands

"PLATE": A Decision Support System for
Resource-Constrained Project Scheduling Problems

A. Jansen, L. Klich, C. Noorlander, O. Wolf

Department of Mathematics and Computing Science,
Eindhoven University of Technology,

P.O. Box 513,5600 MB Eindhoven, The Netherlands

(date: august 17, 1990. preliminary version)

Abstract: PLATE is an interactive decision-support system for resource-constrained scheduling problems. developed at the
Eindhoven University of Technology in the Netherlands in the scope of an international exercise, coordinated by IIASA, the
International Institute for Applied Systems Analysis. Attention is not only paid to the (mathematical) problem of finding
algorithms for generating good schedules in reasonable time, but also to the functionality and architecture of the whole system,
especiaUy the user interface.

1. Introduction

In this article we describe a decision support system, developed in the context of an international
exercise, coordinated by IIASA, the International Institute of Applied Systems Analysis [1]. The
participanL~, research groups from several countries, each developed a DSS for a representative cI ass
or scheduling problems, according to several conditions specified by IIASA. The purpose of the
exercise is to acquire knowledge and experience in methods for designing decision support systems
by means of the independent development of these systems for one and the same planning situation
and their final evaluation. This paper reports the experiences of the computer science team of the
Eindhoven University of Technology.

The planning situation, resource constrained project scheduling, can be characterized by a set of tasks,
each to be processed by a set of resources in a certain time interval. No resource can be allocated
to two tasks at the same time and a task has to be performed without interruption. For each task there
is a release time, a deadline and a due date. Resources are available only at certain time intervals.
Waiting times between two tasks can be specified by means of generalized precedence constraints.
A task can be performed only by specific resource sets, each with a specific processing time.

A schedule consists of a set of allocations, triples (T,Rs,I), with T a task, Rs a resource set and I a
time-interval. The constraints mentioned above define the feasibiHty of schedules. We call a schedule
complete if every task is allocated, otherwise the schedule is partial.

To measure the quality of a schedule several criteria are possible. Most criteria are related to earliness
or tardiness of tasks with respect to their due dates. The overall criterion can be specified by the user
by panuneterisation of several weighting factors [1].

In this article we pay attention not only to the (mathematical) problem of finding algorithms for
generating good schedules in reasonable time, but also to the functionality and architecture of the
whole system, especially the user interface.

Starting point is the idea that the planning process is made up of two essential components: automatic
planning and manual planning.

Within the automatic planning process a schedule is generated by the system. either from scratch. or
from a partial schedule. Because of the fact that there is no efficient algorithm for solving the general
RCPS-problem. which is NP-hard, we use an approximation method, based on heuristics, to generate
a schedule, satisfying as many constraints as possible and having a mther good (a1lhough not optimal)
measure of quality. The user can lUne the planning algoriLhm by means of several parameters.

Within the manual planning process the user is more involved. The user interface, the software
component responsible for intemction between user and system, is comparable with an electronic
planning board. A graphical representation of the schedule as Gantt diagntm is displayed to show the
allocation of tasks to resources (y-axis) over time (x-axis), including all characteristic values of the
schedule. Infeasible schedules are not forbidden, but violations of constraints are visible to the user
by means of special colouring. The system supports the management of primitive scheduling­
operations. i.e. the user can insert. delete and shift task allocations in time by means of function-keys.
It is very important for the user to see immediately the consequences of decisions. In this respect Lhe
system acts like a planning editor.

Within the whole planning process both automatic and manual planning may be used, in arbitrary
order and frequency. In realistic situations we start with an empty or partial schedule. By automatic
planning we can generate a basic schedule, that should be completed/corrected by manual planning.

Section 2 presents a formal description of the problem. In section 3 we give an function description
of the system by means of dataflow diagrams and functional decomposition. Also some
implementational aspects are discussed. In section 4 we explain algorithms and heuristics for the
automatic planner. Also some test results are given. In section 5 wc describe thc manual planning
component and the user interface. Finally in section 6 we discuss some problems and conclusions.

2. Summary of the scheduling problem

In this section we give a short. formal summary of the decision situation considercd. For the original
problem definition wc refcr to rn.

2.1. The kernel data

The kernel data of the decision situation are given by a 9-tuple (R,E,T,a,b,F,P,a,~), where:
- R is a non-empty, finite, set of resources.
- EE R~ p(lRxlR) is a function defining availabilities: (a.b)E E(r) <=> "Resource rE R is available during

time interval [a,b]". For arbitmry (a,b)EE(r) and (c,d)EECr) with (a,b)*(c.d) we rcquirc that
(a,b)n(c,d)=0.
T is a non-empty, finite, set of tasks.

- aE T ~lR. defines release times: aCt) is the time at which task t becomes avai1able for processing.
- bE T ~lR defines deadlines: bet) is thc time at which task t must have been proccssed (completcly).
- FET~p(P(R» defines feasible resourcesets: processing of task tET is only possible wiLh

resourcesets in F(t) .
. PE {(t,f) ItET 1\ fE F(t)} ~ R+ defines processing times: P(t,f) is the time needed to process task tE T

with (feasible) rcsourccsct fE F(t).
aE TxT -,7R is a partial function defining minimal required waiting times: a(t,u) is the minimal
required Lime between the completion time of task t and the starting timc of task u for (t,U)E dome a).

- BE TxT -,7R defines maximal allowed waiting times: B(t,u) is the maximal allowed time between the
completion time of task t and the starting time of task u for (t,U)E dom(J3).

2

Our objective is the construction of a schedule, which is a 3-tuple (G,S,C), where:
- GE T (7 f.J(R) is a resource schedule. We require G(t)E F(t) for tE dom(O). O(t) gives the resourccset

with which task tE dom(G) will be processed.
- S.CET (71R are time schedules. Set) gives the starting time of (the processing of) task tE domeS), and

C(l) gives the completion time of task tE dom(C).
A resource- or time schedule is complete iff its domain is equal to T. A schedule (G,S,C) is complete
iff G,S and C are complete. A schedule (Gl,SI'Cl) is an extension of schedule (G2'~'Cz) iff G2~Gl
1\ S2~SI 1\ Cz~Cl'

2.2. The kernel constraints

Wc now define the kernel constraints which a schedule should satisfy. They are formulated as
predicates which return true for an arbitrary complete schedule 7=(G.S,C) iff the corresponding
constraint is satisfied.
- BorderOk(~ .- "Every task is processed between its release time and deadline"

.- ("ift:tE T:a(t)::;;S(t) 1\ C(t)::;;b(t».
- MinWaitOk(~ .- "The schedule satisfies the minimal required waiting times"

.- ("ift,u:(t,U)E dome a):a(t,u)::;;S(u)-C(t».
- MaxWaitOk(~ .- "The schedule satisfies the maximal allowed waiting times"

:= ("ift.u:(t,U)E dom(p):S(u)-C(t)::;;P(t,u».
- TimesOk(~ .- "The completion time of each task is equal to its starting time plus its

processing time"
.- ("ifttE T:C(t)=S(t)+P(t,G(t»).

- ResOk(~ .- "No resource can be allocated to 2 tasks at the same timc"
.- ("ift,U:t,UE T 1\ G(t)nG(u):t0:C(t)::;;S(u) v C(u)::;;S(t».

- AvailOk(~ .- "Every resource is available when it is used"
.- ("ifttE T:"ifr:rE G(t):3a,b:(a,b)E E(r):a::;;S(t) 1\ C(t)::;;b).

A complete schedule [F is feasible iff it satisfies all 6 kernel constraints.

2.3. The optimality function

Finally, we define an optimality value for each feasible schedule.
The optimality data of the decision situation are given by a 5-tuple (Q,d,u,v,w), where:

QE I1(T) defines a set of projects. Observe that a project is simply a set of tasks, and that every task
belongs to exactly one project (Q is a partition of the taskset1

).

- dE TuQ-'7R defines duedates for the projects and tasks. We say that a task or project tE TuQ has
been processed optimally iff its completion time2 is equal to its duedate.

- UE (~)8 is a row of 8 weights .
. VE TuQ-'7~ defines earliness weights for the tasks and projects.
- WE TuQ-'7~ defines tardines..~ weights for the tasks and projects.
The optimality value of a schedule is equal to the weighed (via u) summation of the maximal and total
weighed carlinesscs and tardinesses of the projects and tasks (8 components in total). We define help
values U(i:()::;;i<8) and CPE Q-'71R for feasible schedule 7=(G,S,C) as follows:

CPE Q-'71R where (qE Q) CP(q):=(MAXt:tE q:C(t»
CP(q) is the completion time of project q.

10 ;.,. partition of set T. notation QE n(l'), iff Q is a set of sets with:
. T~(uE:lic Q:E).

(\:IH,I':E,FE Q 1\ F.;;<F:Er.F=0).

2The completion time of • proje"~ is equal to the maximum of the completion times of all tasks in that project.

3

U(O) := "the maximal weighed earliness of the tasks"
.- (MAXt:tE T:v(t) 1Ilax(d(t)-C(t) ,0»

U(I) .- "the maximal weighed earliness of the projects"
.- (MAXq:qE Q:v(q)1Ilax(d(q)-C(q),0»

U(2) := "the maximal weighed tardiness of the tasks"
.- (MAXt:tE T:w(t) 111 ax(C(t)-d(t) ,0»

U(3) := "Lhe maximal weighed tardiness of the projects"
:= (MAXq:qE Q:w(q)1Ilax(C(q)-d(q),0»

U(4) := "the total weighed earliness of the tasks"
.- (SUMt:tE T:v(t) 1ll ax(d(t)-C(t) ,0»

U(S) .- "the total weighed earliness of the projects"
:= (SUMq:qE Q:v(q)111ax(d(q)-C(q),0»

U(6) := "the total weighed tardiness of the tasks"
:= (SUMt:tE T:w(t)1llax(C(t)-d(t),0»

U(7) .- "the total weighed tardiness of the projects"
.- (SUMq:qE Q:w(q)1Ilax(C(q)-d(q),0»

Now we are able to give the optimality value Z(Y) of /T:
z(Y) := (SUMi:lli;i<8:u(i)'U(i»

A feasible schedule 9'is optimal iff it has a minimal optimality value (the minimum of the optimality
values of all feasible schedules).

Now, our scheduling problem looks as follows. Given (constant) kernel data (R,E,T.a,b,F,p,a,~),
optimality data (Q,d,u,v,w) and a starting schedule PS=(Gp,sp,Cp): Construct an optimal schedule
.9"=(G,S,C) which is an extension of PS.

Remark: Mathematically it is not necessary to introduce the availabilities of resources in our problem
explicitly, as they can be modelled with dummy tasks. Nevertheless we have chosen to keep them in
our definition because it is an important concept which is needed later on.

3. Functional design and implementation

To describe the boundaries between the system and its external environment we usc a context diagram
(see fig. I), which is in fact a dataflow diagram or level zero.

Fig.1 Context diagram

4

We have in fact two penn anent data stores used by the system: the problem-instance data and UlC

schedules. The problem instance data, containing the specifications of tasks and resources, including
all constraints [1], are used only for input. The schedules, containing the effective allocations of
rcsource selS and time intervals to tasks. are used for both input and output (existing schedules may
be updated). As usual for an interactive system. the user is also involved to influence the planning
process.

Within PLATE several processes can be distinguished. which are specified in the dataflow diagram
of level one (see fig. 2). There is are a compiler and a decompiler, to convert ascii files (both instance
data and schedules) to binary files and vice versa. There are two planning processes, the automatic and
the manual planner.

instance data
(ascii)

instance data
(binary)

schedule (bin.)

schedule (ascii)

Fig. 2 Dataflow diagram

The user input is driven by menus and function keys, preventing the user from giving infeasible
commands. The hierarchical menustructure corresponds pretty well with the functional decomposition
of PLATE (sec fig. 3).

5

PLATE

manual
planning

automatic
planning

Fig.3 Functional decomposition

Before the effective scheduling process can be started, the problem instance data and the schedules
should be converted to binary files by a simple compiler. Schedules created or updated (in binary
rorm) can be decompiled afterwards back to ascii files.

Belore starting the planning process, the user should load the (compi1ed) instance data and a schedule,
which may exist or may be empty. Moreover the user should select a criterion, to measure the quality
of the schedule during the planning process. Afterwards the user may decide to save the schedule or
not.

The planning process does consist of both automatic and manual planning. Both processes may be
performed in arbitrary order and frequency.

6

During automatic planning a complete schedule will be generated by the system, although some
constraints may be violated. The user has the possibility to clear the schedule from faulLy planned Lasks
and iterate the generation to get better results. Moreover he can tune the planning algorithm by means
of several parameters (sec section 4).

During manual planning two groups of fUllctions arc available to the user. Firsllherc an.' IlinCliolls fo ..
navigation and inspection. With these we can scroll and zoom the planning-board, and inspect all kinds
of relevant information. Secondly there is a group of decision handling functions. With these we can
add task allocations to the schedule, remove them from the schedule or shift task-allocations in time
(see section 5).

PLATE is written in Turbo Pascal (Borland), version 5.0, using the database tool1x>x and a software
package for linear programming. It is made up of approximately 20.000 lines of source code, for a
larger part written by students. The system runs on an IBM-PC with a CGA colour monitor under MS­
DOS version 3.3.

4. Automatic planning

In this section, we globally describe the approximation method used in the automatic planning
component of our DSS. Most parts are taken from [2].

4.1. Some definitions

First, we simplify constraint AvailOk by introducing a function ResSetA vaile P(R)~ P(lRxJR) which
gives the time segments during which an arbitrary resourceset is available, so for We peR) holds:

(ua,b:(a,b)e ResSetA vail(W):[a,b D=(nr:re W:(ua,b:(a,b)e E(r): [a,b])
The algorithm used for calculating ResSetAvail(W) given E is very easy and will not be further
clahorated here. Using this definition of ResSelAvail, we may rewrite constraint AvailOk as:

A vail Ok (.7) := (Vt:te T:3a,b:(a,b)E ResSctA vai1(G(L»:;C;S(l) A C(Osb)
In the future wc will use this alternative definition.

When we now observe constraints AvailOk and ResOk which a feasible schedule 9'=(G,S,C) must
satisfy, we see that:
(1) Every ta~k t will be processed in exactly one segment of ResSetAvail(G(t». This means that two

functions X,YeT ~JR can be found for g; where [X(t),Y(t)] represents the time segment in which
task t will be processed: ('Vt:teT:(X(t),Y(t»EResSetAvail(G(t» A X(t)sS(l) A C(t)::;Y(l).
Formalisation gives:

We derine a segment schedule for resource schedule G as a pair (X,Y), where:
• X,YeT-VJR 1\ dom(X)=dom(Y) A dom(X)!;;;;dom(G)
. (Vt:te dom(X):(X(t),Y(t»e ResSetAvail(G(t»)
A segment schedule (X,Y) is complete, notation FullSeg(G,X,Y), iff dom(X)=T.
A complete schedule 9' =(G.S.C) satisfies segment schedule (X,Y) for G, notation
SegsOk(9',X,Y) iff (Vt:tedom(X):X(t)::;S(t) 1\ C(t)::;Y(t», which means that all tasks in !F
must be planned in the time segments given by (X,Y).

An important property of segment schedules is the following. For an arbitrary complete schedule
9'=(G,S,C) and a segment schedule (X,Y) for G holds:

FuIISeg(G,X,Y) A SegsOk(9',X,Y) => AvailOk(9).
(2) For every pair (t,u) of tasks where G(t)nG(u):;t0 we see that S(t)~C(u) or C(t)sS(u), so t and u

must be processed in some strict order. Therefore, we can define a derivate set O!;;;;TxT for !F,
which represents the imposed orders for such conflicting taskpairs:

7

(t,U)E 0 ~ (G(t)r£J(U)~ A C(t)S;S(U»
Fonnalisation gives:

We define a sequence schedule for resource schedule G ao; a set O~xT, where:
("ift,u:{t,U)E O:t,UE dom(G) A (u,t)~ 0 A G(t)r£J(u)~)

A sequence schedule is complete, notation FullOrder(G,O), iff:
("ift,U:t,UE T A G(t)r£J(u)*0:(t,U)E 0 v (U,t)E 0),

which means that 0 contains an order for precisely all conflicting taskpairs.
A complete schedule !T =(G,S,C) satisfies sequence schedule 0 for G, notation
OrderOk(!T,O), iff ("ift,u:(t,U)E O:C(t)s;8(u», which means that for every order (t,U)E 0 holds
that t will be completely processed before u in !T.

An important property of sequence schedules is the following. For an arbitrary complete schedule
!T=(G,S,C) and a sequence schedule 0 for G holds:

FullOrder(G,O) A OrderOk(!T,O) ~ ResOk(9).

We see that every feasible schedule !T=(G,S,C) satisfies exactly one segment schedule (X,Y) and
exactly one sequence schedule 0, i.e.:

(X, Y):("ifttE T:(X(t),Y(t»E ResSetAvail(G(t» A X(t)S;S(t) A C(t)S;Y(t»
- O={(t,u)!t,UET A G(t)r1G(u)~ A C(t)s;8(u)}
The reverse is of course not true: There can be many (but also zero!) feasible schedules !T=(G,S,C)
which satisfy an arbitrary segment schedule and sequence schedule for G.

4.2. Finding an optimal solution

Using segment- and sequence schedules, we can give an algorithm which finds an optimal solution
for the scheduling problem in finite time. First, we consider a subproblem. Suppose given arc:
- A complete resource schedule GdGp.
- A complete segment schedule (X, Y) for G.
- A complete sequence schedule 0 for G,
and we arc searching for the optimal schedule (G,S,C) which satisfies (X, Y) and O. The problem is
calculating time schedules S and C which satisfy the following rest constraints (while minimizing Z)3:
- ("ifl:tE T:a(t)S;S(t) A C(t)S;b(t» (BorderOk)
- ("ift,u:(t,U)E dom(a):<X(t,u)S;S(u)-C(t» (MinWaitOk)
- ("ift,u:(t,U)E dom(p):S(u)-C(t)S;P(t,u» (MaxWaitOk)

("ifttE T:C(t)=S(t)+P(t,G(t») (TimesOk)
("ifI:LE T:X(t)S;S(t) A C(t)S;Y(t» (SegsOk)

- ("ift,u:(t,U)E O:C(t)S;S(u» (OrderOk)
- ("ift:tE dom(Sp):S(t)=Sit» (Extension requirement)
- ("ifttE dom(Cp):C(t)=Cp(t» (Extension requirement)

We observe that these constraints arc all linear (in)equalities in variables Sand C. This subproblem
can lherefore be solved with one of the well-known algorithms (e.g. simplex-method) for linear
programming problems using Z as target-function4

• Since we know that every feasible schedule !T
consists of a complete resource schedule G and that it satisfies a complete segment schedule and
sequence schedule, it is easy (yet time-consuming) to find an optimal schedule by traversing all
possible combinations of resource-, segment- and sequence schedules and calculating time schedules
by solving the mentioned subproblem using an L.P.-algorithm. It is evident that this process walks

3 According 10 the 2 properties of segment- and sequence schedules. we may leave out constraints ResOk and AvaUOk as these are implied by the fac'! that /T should

satisfy the complele (X. Y) and O.

410 spite of the max- and min-componentll in !.he target funclion. we can write Z as • linear function by adding some (linear) constraints (sec e.g. [51. PI' 14·21).

through all feasible. and therefore also all optimal. schedules. The algorithm runs in finite time because
there are only a finite number of (complete) resource-, segment- and sequence schedules. The
algorithm becomes:

function OptSolveO:lB x (T""'pCR» x (T....,lR) x (T....,lR) x lR
{ this function returns a 5-tuple (b,G.S,C,v). where:

}

b::::} "the scheduling problem has feasible solutions (schedules)" /\
"(Gopt,Sop!,CopJ is an optimal schedule" /\
"v=Z(GopttSopt,CopJ is the optimality value of (Gopt'Sopt'C~" /\

...,b ::::} "the scheduling problem has no feasible solutions"

var Gopt:T"'" p (R); Sopt,Copt:T,lR; val:lR; solve:lB\;
begin

val:=+oo;
for all G:GET""'P(R) /\ (V'ttET:G(t)EF(t» do

for all X,Y:FulISeg(G,X,Y) do
for all O:FullOrder(G,O) do

(S,C,solve):=LpSolve(G,X,Y,O);
if solve /\ Z(G,S,C)<val then Gopt,Sopt,Copttval:=G,S,C,Z(G,S,C) fl

od
od

od;
{ val=+oo ::::} "The problem has no feasible solutions" /\

val:t:+oo ::::} n(Gopt'Sopt,CopJ is an optimal schedule with value val"
}
return(vaJ:t:+oo,Gopt,Sopt,Copt,val)

end;

Here we assume the availability of a linear programming problem solver "LpSolve" which calculatcs
an optimal solution for the earlier mentioned sub-problem.

This algorithm is unusable for all but the very simplest problem inslances because oi till'

combinatorial explosion of the number of possible combinations of resourcc-, segmcnt- and sequence
schedules. Therefore, we have to invent an approximation method, which is the subject of paragraph
4.4. First, however, we will refonnulate our scheduling problem into a fonn which reflects the problem
in a more natural way.

4.3. Reformulation of the scheduling problem

We start with the introduction of the concept extended schedule. This is a 6-tuple (G,X,Y,O,S,C),
where:

G is a resource schedule.
- (X, Y) is a segment schedule for G.
- 0 is a sequence schedule for G.
- Sand C are starting- and completion time schedules.
An extended schedule is complete iff G, (X,Y), 0, Sand C are complete.

Next, we extend the definition of 4 kernel constraints, and introduce 2 new constraints (for extended
schedules). Let Y=(G,X,Y,O,S,C) be an arbitrary complete extended schedule. We define:

BorderOk(9):=(\1't:tET:a(t)::::;S(t) 1\ C(l)::::;b(t»
- MinWaitOk(9):=(\1't,u:(t,u)E dom(a):a(t,u)::::;S(u)-C(t»
- Max WaitOk(9):=(\1't,u:(t,U)E dom(~):S(u)-C(t)::::;~(t,u»

9

- TimesOk(9):=('Vt:le T:C(t)=S(t)+P(t,G(t»)
- SegsOk(9):=('Vt:te T:X(t):S;S(t) 1\ C(t):S;Y(t)
- OrderOk(9):=('Vt,u:(t,u)e O:C(t):S;S(u»
A complete extended schedule Y=(G,X,Y,O,S,C) is feasible iff it satisfies these 6 constraints. The
optimality value Z(9) of a feasible extended schedule Y=(G,X,Y,O,S,C) is defined as Z(G,s,C). A
feasible schedule Y is optimal if it has minimal value Z(Y). An extended schedule Y I is an
extension of extended schedule Y 2 iff all subschedules in Y I are a superset of the corresponding
subschedules in Y 2 (analogous to the extension of an ordinary schedule).

We see:
(1) When Y=(G,X,Y,O,S,C) is a feasible extended schedule, then (G,S,C) is a feasible 'normal'

schedule. When Y is optimal, (G,S,C) is optimal.
(2) When (G,S,C) is a feasible SChedule, then Y=(G,X,Y,O,S,C) is a feasible extended schedule.

When (G,S,C) is optimal, Y is optimal by choosing (X,Y) and ° as mentioned on the end of
paragraph 4.1.

Hence: For every feasible/optimal schedule (G,S,C) we can find a feasible/optimal extended schedule
(G,X. Y,O,S,C) and vice-versa. The following reformulated scheduling problem is therefore functionall y
equal to the original one: Given kernel data (R,E,T,a,b,F,p,a,~), optimality data (Q,d,u,v,w) and an
extended start schedule (Gp,Xp. Y p,Op,sp,Cp): Construct an optimal ex.tended scheduleY =(G,X, Y ,0 ,S,C)
which is an extension of the extended start schedule.

This specification will be used throughout the rest of this section. It highlights more of the real
scheduling problems, which are the determination of a resource-, segment- and sequence schedule.
Now, we have a formulation of the problem which contains all these relevant concepts. In the rest of
this section when we write 'schedule', we mean 'extended schedule' unless stated otherwise.

4.4. A 4-phase approximation method

Our problem is finding a method which generates a good complete scheduleY=(G,X,Y,O,S.C) which
is an extension of start schedule (Gp,XP'YP'Op,sp,C~ within reasonable time limits. As indicated in the
previous paragraph, it is not acceptable to walk through all possible combinations of resource-,
segmcnt- and sequence schedules. We propose, as a first approximation step, to determine the schedule
in 4 separated phases:
- Phase 1 (resource scheduler): Determine resource schedule G.
- Phase 2 (segment scheduler): Determine segment schedule (X, Y) for G.

Phase 3 (sequence scheduler): Determine sequence schedule ° for G.
- Phase 4 (time scheduler): Determine starting- and completion time schedules Sand C.

From the following reasons it follows that these 4 phases should be performed in the order given:
- Only when the resourceset for a task is known, we can plan that task in a segment, because the

possible segments follow from that resourceset.
- When tasks are already planned in segments, many sequences for conflicting task pairs are already

implicitly given by the segment schedule. Our sequencing task will therefore be much easier (it has
less work to do, and all tasks are already planned in a time segment, which makes the decision
situation for the sequencer less difficult.)
We can only determine time schedules via L.P. when complete resourcc-, segment- and sequence
schedules are available.

Our proposed approach has, among others, the advantage that we can handle the 4 phases more or less
isolated (a kind of divide and conquer strategy). We now have to develop 4 relatively simple
schedulers instead of 1 very complex one. Note though that there are still some problems to be solved.
The most important ones are:

10

- We have to invent criteria which indicate when (combinations of) resource-. segment- and sequence
schedules are good (can be part of feasible and/or optimal schedules). In the first 3 phases we then
have to search for (sub)schedules which satisfy these criteria. In general we need evaluation
functions which assign values to arbitrary schedules. These values should be a measure for the
quality of such a schedule.

- Tn the first 3 phases it is not possible to walk through all possibilities for the resourcc-, segmellt­
and scqucnce schedules since these sets are much too large for practical problem instances (yet much
smaller than the set of all combinations of these schedules). We see that the reduction of the
problem size via the 4-phase method is not enough: We need a second approximation method for
the first 3 scheduling phases.

In the next 2 paragraphs we will shortly discuss these 2 problems.

A possible disadvantage. apart from the non-optimality, is the following. It may happen that in a
certain phase a scheduling decision is taken which appears to be bad (Le. leads to a bad schedule) in
a later phase. When we hold on to our strict 4-phase method. it is not possible anymore to correct such
an error. It is therefore necessary to make our method more flexible. One easy way of doing so is
introducing a separate fifth phase CIterator') which removes any 'bad' parts from a complete schedule
(keeps only the good parts) and reruns the 4 phases until an acceptable schedule is obtained or until
the user finds the resulting schedule good enough. Note that the removal of bad parts may also be
done by hand. Of course. more advanced methods are possible, e.g. removing errors during the
scheduling process, and not aftelWards as proposed.

Graphically, we can depict our scheduling system as follows:

1 2

Resource
r-- -

Scheduler

G

3

Segment Sequence
t---

Scheduler Scheduler

(X, Y)

5

I Iterator : I
I I

start
schedUlt

final
schedule
.J.,

4

Time
'---

Scheduler

0 (S, C)

When phase 1 slarts with a begin schedule (Gp,~,YP'OP'Sp'Cp), after scheduling phase 1 we have
obtained a schedule (G,XP'YP'OP'Sp,C~; after phase 2 we have a schedule (G.X,y,Op'sp,C~ etc. till
(G,X,Y,O,S,C) after phase 4 (the begin sehedule is extended to a complete schedule). The iterator
(phase 5) then removes possible bad parts from this (complete) schedule and reruns the 4 phases with
a new begin schedule, or it stops and returns the complete schedule as result.

Remark: Our scheduling system makes global decisions in the beginning, and deLailed decisions in
the end: The later the phase, the smaller the freedom for the placement of tasks (the possible time
segments in which tasks may be planned will be reduced continuously during the scheduling process).

4.5. Evaluation of schedules

In this paragraph we shortly consider evaluation functions, which assign values to arbitrary schedules.

11

These values should indicate if such a schedule is extendible to a good feasible schedule. These
functions will be used by the search method which will be described in the next paragraph. A search
process will walk through many schedules which will be rejected or selected as part of our ultimate
schedule. This selection or rcjection is based upon the values of the evaluation functions. They will
therefore be very important for our results. These functions are in fact the intelligence of the
scheduling system. Some important aspects of schedules are:

- Feasibility (schedules can contain errors).
- Occupation rate of the resource(set)s.
- The optimality (distances to duedates).
- Future 'planability' of tasks (freedom of placement, processing time etc.).

For each of these (and other) aspects of a schedule, an evaluation function should be available. Then,
every schedule has a number of evaluation values, each of which is a measure for the quality of that
schedule. These values will then be combined to one value by a weighted summation. This ultimate
value is a measure for the overall quality of that schedule (e.g. the lower this value, the better the
schedule).

We have implemented a number of fairly general evaluation functions in our prototype which
consider the aspects mentioned above. The user is able to enter weights for the different functions.
This is an essential property, as different problem instances need different weights for obtaining a good
solution (the importance of a certain evaluation function depends on the problem type. Sometimes the
occupation rate is important, sometimes the optimality etc.)

4.6. Searching

The first 3 scheduling problems (resource-, segment- and sequence scheduler) are very similar, as they
can all be formulated as a so~cal1ed 'unstructured search problem':

definition
An unstructured search problem (USP) is a pair (S,:5;), where:
- S is the search space (an arbitrary, non-empty, finite set)
- SE SxS~lB is the compare function (transitive and reflexive: S is a so-called pre-order). It is used

to distinguish between elements of the search space.
A solution for a USP (S,$;) is an element SE S. An optimal solution is a solution s satisfying
(V't:lE S:s$;t).
o

Our first 3 scheduling problems can be formulated as USPs by choosing S as the set of resource-,
segment- resp. sequence schedules. The compare function follows from the evaluation values of
schedules using the earlier mentioned weighed combination of those values.

The clements of the search space have a special structure for our 3 problems. This observation leads
to a more specific search problem, the so-called 'allocation problem':

definition
An allocation problem (AP) is a 4-tuple (V,A,f,s). where:
- V is an arbitrary, non-empty, finite set of objects.
- A is an arbitrary, non-empty, finite set of allocations.
- fE V ~ peA) is a function which gives the possible allocations for each object. We require that every

object has at least one possible allocation. so (V'V:VE V:f(v):;t:0).
Now, we define the search space for AP (V,A,f,$;) as the set S:={ s ISE V -+A 1\ (V'V:VE V:S(V)E f(v»}.

$;E SxS-+lB is the compare function (transitive and reflexive).
A solution of an AP (V,A,f,$;) is a function (schedule!) SE V-+A where every object v has a possible

12

allocation s(v). Hence, such a solution is an element of the search space S for (V,A,f,S). An optimal
solution is a solution s satisfying (\it:te S:sSt).
o

Note: every AP belongs also to the class of USPs: (S,S) is the USP corresponding to AP (V,A,r,S)
with search space S.

The following choices for V,A and f show how our 3 scheduling problems can be modelled as an
allocation problem.
- resource scheduler: V=1\dom(Gp); A=P(R); f={(t,u)lteV /\ u=F(t)}
- segment scheduler: V=1\dom(X~; A=!RxlR; f={(t,u)lteV /\ u=ResSetAvail(G(t»}, where G is an

earlier detennined complete resource schedule.
- sequence scheduler: V={ {t,u} It,ueV /\ G(t)nG(u);t0 /\ (t,u)~Op /\ (u,t)~Op}; A=T;

f={(p,p) Ipe V}, where G is an earlier detennined complete resource schedule. Here, an object is a
unordered pair of tasks. An allocation for such a pair is the task which is processed first.

Now, we have to invent a search method which doesn't walk through all elements of the search space,
but yet finds a good solution. In our implementation we have ehoosen Greedy Search (simple and
easy), but other methods are certainly possible. Greedy search works as follows for an allocation
problem (V,A,f,s) with search space Sand so-caUed extended search space U:={tlt~s /\ seS}. We
start with an empty schedule s:=0 which will be stepwise extended to a complete schedule se S. In
every step we add one object v with allocation aef(v) to s. When detennining this allocation a for v,
we consider a certain small local environment of objects 0 on which v has much influenceS. The
algorithm works as follows:

procedure GreedySearch;
var s:U; v:V; O:p(V); a:A;
begin

s:=:0;
while dom(s);tV { not all objects allocated} do

v:=GetObject(s); { Select an object v with no allocation, so VE V\dom(s) }
O:=GetEnviron(v,s); { Select a (small) environment O~V\(dom(s)u{v}) of objects

a:=FuUSearch(s,v ,0);

Alloc(v,a)
od

with no allocation where v has much influence on }
Evaluate all schedules S'EU with S';;;;)S and dom(s')=
dom(s)uOu{v}. Let t be the best of these schedules, then
select a=t(v) }
Add pair (v,a) to s

(s is the obtained (complete) schedule}
end;

Some notes concerning GetObject and GetEnviron:
GCIObject: This function detennines the order in which the objects will be processed. We have
chosen to walk the time-axis from the left to the right (w.r.t. to deadline): most urgent job first. Of
course, there are other possibilities.

- GetEnvimn: The maximum number of allowed objects in 0 will be given by a user-parameter. This
detennines the speed of the search process (the number of schedules which have to be processed in
step FullSearch). In our implementation we have choosen a very simple way of placing objects in
0: the objects which are closest to v on the time-axis will be selected first. Of course, much more

S
Thi. means WIthe possibility of finding a good allocation for an object in 0 strongly depends upon the allocation made for v.

13

di mcult (and better) selection methods are possible.

4.7 .. Test results

In this paragraph we will mention some interesting first results of our prototype. This will be done by
discussing our 3 most important test cases.

4.7.1. A (fictive) photo development- and printing company

This has been our primary test case (100 tasks, 9 resources) as it is a very difficult planning problem
which contains all aspects of resource-constrained project scheduling. For the ASCII-problem
specification and a feasible schedule of this case we refer to the appendix of [4]. This fictive problem
has been developed by us to have a good test case at hand.

A close look at the problem and feasible schedule reveals that the problem is indeed very difficult
because many resources will be almost fully occupied (100%) in a feasible schedule and relatively
many conflicting task pairs will occur. The automatic scheduler should therefore distribute the
resources very smoothly over the tasks and time to obtain a schedule with little errors.

Another aspect which complicates planning is that strong minimal- and maximal waiting time
constraints are posed between many tasks. Every scheduling decision taken for a task(pair) has
therefore relatively much influence on the future 'planability' of other tasks.

It is clear that we have to strive for a schedule which contains as few errors (wrongly planned tasks)
as possible because a very small fraction of the complete schedules is also feasible. The optimality
crilcrion is therefore not very important in this case.

OUf best result achieved so far is a schedule where 6 tasks have been wrongly planned, This is
achieved using a search depth of 2 in the first 3 scheduling phases and 'playing' a little with the
weights for the evaluation functions (tuning). It appears, and was also to be expected, that especially
the evaluation functions which control the occupation of resources are important, which means that
they should have relatively large weights.

Obtaining the result takes 2 iteration steps: After the first step 8 tasks are in error. Removing these
tasks and re-running the schedulers results in the schedule with 6 errors. Further iterations give no
more improvements. Computing the schedule requires approximately] 0 minutes computing time on
a 10 Mhz. IBM-AT compatible computer (all tests have been run on this machine). We finally nole
that 3 of the error tasks can be planned correctly easily by hand using the manual planner. The other
3 require probably extensive changes in the schedule.

4.7.2. A 6*6*6 Job shop

Our next test case was the 6*6*6 Job-shop problem which appears in [6]. We note that this is a pure
sequencing problem, so only the performance of phase 3 of the scheduler will be tested with this case.
Also we note that our evaluation functions are not especially written for this kind of relatively simple
structured problems. They should be able to cope also with more complex problems. Nevertheless, a
Job-shop can be a good test case to see whether our fairly general evaluation functions are able to
cope reasonably with such specific problems. We finally note that finding a feasible schedule is not
difficult. The problem is finding an optimal schedule (all tasks processed as early as possible),

This reallonable small case contains 6 projects each consisting of 6 tasks. These 36 tasks must be
processed with 6 resources (machines). These resources are already allocated to the tasks, and the
problem consists of determining an order for 90 conflicting task pairs. A known optimum is 55 [6].

In the current prototype implementation we can use 3 evaluation functions lor the sequencer:
1. Feasibility. This funclion indicates (via a non-negative value) whether the current schedule can be

extended to a feasible schedule. The higher the value, the more errors the schedule contains. A

14

value of zero indicate no errors so far.
2. Freedom. The value of this function is a measure for the freedom with which tasks can be planned

in the future (distance between the banters for the possible starting- and completion times or the
tasks).

3. Duedate distance. The value of this function is a measure for the value of the optimality function
Z for a feasible schedule which is an extension of the schedule considered.

The feasibility function has a fixed weight of le20 (lOW) so that it dominates the other functions.
In the tests we have used 5 different combinations of weights for the other 2 functions. Our results
are given in the following table:

Search depth: 1 2 3 4

(mean) scheduling time: 0:10 0:32 1:25 3:40

Parameter combination
(freedom, duedate)

(le10,1) 61 61 60 60
(10,1) 55 61 60 60
(5, 1) 55 61 60 60
(1, 1) 55 60 60 55
(l,le10) 55 55 60 60

We see that certain good choices for the weights of the evaluation functions lead to the optimal
solution. This is a promising result.

4.7.3. A 10*10*10 Job shop

This is the well-known notorious 10*10*10 Job-shop problem, also taken from [6J. The same remarks
made for the 6*6*6 problem apply here. This problem requires the calculation of a sequence for 450
task pairs. A known optimum is 930 ([3], page 49).

Our results are:

Search depth:

(mean) scheduling time:

Parameter combination
(freedom, duedate)

(le10,1)
(10,1)
(5, 1)
(l, 1)
(l,le10)

1

1:46

1134
1106
1106
1282
1243

2

6:55

1088
1088
1088
1158
1318

3

21:06

1166
1151

The best result we obtained is 1088 at search depth 2. This is reasonable (distance 159 to the optimum,
approx. 17%) knowing that our evaluation functions are not especially written for Job-shops and that
this problem is a very difficult one. Of course, specially developed algorithms for such problems
obtain better results. see e.g. [3], page 49. We expect that implementing problem specific evaluation
functions might improve our results.

15

4.8. Some remarks on the automatic scheduler

An important conclusion which may be drawn from our (though limited) experiments is that a larger
search depth does not necessarily lead to better results (sec c.g. the tables in the previous 2 sub­
paragraphs. Also our experiments with the case in paragraph 4.7.1 indicate this). A reasonable
explanation for this fact is that the search depths which can be selected are not large enough to have
a predictable influence on the results (because of the time limits). A choice for another small search
depth may have a positive or negative effect because it leads to other. but not necessarily better results.
The search depth can therefore be considered as a random effect.

An important fact is that experimenting with the evaluation functions and weights can lead to
consistently better results (see again the tables in the previous paragraphs). It therefore seems
reasonable to direct further research to the area of evaluation functions and the systematic finding of
good parameters!weights for them. Another option is implementing an alternative (e.g. genetic) search
algorithm.

All in all we are reasonably satisfied with our first results. We expect that further research might
improve our results considerably. Among others, much work has to be done on the following topics:
- Finding good evaluation functions and weights for certain problem types. One very interesting poinl

is building a library of evaluation functions from which the system automatically extracts the
important ones, given the problem it has to solve (different problem types often require also different
evaluation functions for obtaining good results).

- Other search techniques.
- Better ways of combining the 4 phases (other iterators).

We fecI that placing tasks in segments is essentially different from sequencing because segment
scheduling is a more global task which requires other evaluation functions than the sequencer. This
is one of the reasons why we have kept resource availabilities in our problem definition (see also the
remark at the end of paragraph 2.3) and made 2 different schedulers for segment- and sequence
scheduling instead of one which handles both.

5. User interface and manual planning.

Wilh respect to the user interface we can distinguish output- and input aspects, i.e. the screens and the
user actions.

During manual planning the screen looks like an electronic planning-board (see fig. 4). A graphical
representation of the schedule as Gantt diagram is displayed to show the allocation of tasks to
resources (y-axis) over time (x-axis).

Because of the restrictions in screen sizes, it is important to show only the most relevant infonnation
in a rather compact and surveyable way. In this aspect graphical infonnation is preferable to alpha­
numeric infonnation.

While planning we should steadily be aware of the quality of the schedule. Not only the value of lhc
selected criterion should be visible and always up-to-date. but also other characteristic values, like a
measure of completeness, the percentage of incorrectly planned tasks. etc.

It is not forbidden to work with infeasible schedules. Most of the constraints are weak, i.e. the system
does not guarantee the feasibility of the schedule with respect to these constraints. However violations
or weak constraints are visualised by means of special colouring. So the user is aware of the measure

16

of infeasibility.

With respect to the userfriendliness, it is imlX>rtant that user actions should be performed with minimal
user effort and a minimal chance of giving wrong commands. So all user input is driven by menus
and function keys. The depth of the menu structure is kept as small as IX>ssible.

During manual planning two groups of functions are available to the user. First there are functions for
navigation and inspection. With these we can scroll and zoom the planooard and inspect all kinds of
relevant information, like special characteristic values, but also the problem-instance data.

Secondly there is a group of decision handling functions. With these we can add task allocations to
the schedule, remove them from the schedule, or shift task allocations in time.

To add a task allocation to the schedule the user may first choose an unplanned task and then select
a feasible resourceset; he may also start by choosing an arbitrary resourceset and then select an
unplanned task, which is feasible. If there is a time interval, where all resources of the selected set arc
available for task execution, the system will prolX>se the first interval. The user can accept the interval
and specify the exact starting time or can ask for the next appropriate lime-interval. However, if there
is no suitable time interval, the user can still specify a starting date. Before allocating the task, the
system checks against any violations of constraints, like precedence, release times. deadlines. but also
time overlapping. In the case of any infeasibility the user will be notified and it is up to the user to
effect the decision.

The removal of a task is much simpler. The user moves the cursor to the relevant task at the pJanning­
board before pressing the relevant function key.

A task allocation can be shifted in time by removing the task temlX>rarily from the planning board and
pUlling it in a list of "semi-planned" tasks (the resourcesets remain allocated, but not the time
intervals). A task can be replanned by selecting a task from that list and by moving the cursor along
the time axis.

Fig. 4: The electronic planning board

17

6. Conclusions and future research.

One of the biggest problems we encountered was the inflexibility of the software and its sensibility
10 change requests. This is of course a general software engineering problem, not only related to our
project. but decision support systems seem to suffer from it extremely. A minor change in the
underlying model, or in the limiting constraints, can have the consequence of redesigning the whole
system.

The reason for that can be found in the fact that conventional DSS-systems are dominated by the
algorithmic aspect. Mostly mathematicians working in the field of operations research were involved
in the development. Althougb the algorithmic aspect may be very interesting from the mathematical
point of view, the software dealing with it plays an inferior role related to other software components
like the management of decisions and the user interface.

The application of techniques from the field of artificial intelligence may be a step in the right
direction. More general and flexible search methods can be used for a huge class of planning
problems [8]. The idea of an expert system shell and a rule base with the flexibility to add and change
complex structured rules and metarules can be applied to constraints and search methods in a planning
situation [7].

Anyway we should be aware that by developing a DSS-system we are dealing in the first place with
a software engineering problem. Perhaps we should intend to build optimal software to produce
practicable schedules, instead of trying to produce optimal schedules with impracticable software.

Acknowledgements

We like to thank Lida van de Bent. Jan BOinck, Clen Lubbers. Frans van der Meeren and Rcinoud van
Dommclen for their contributions to the programming of the system, and Ad Aerts and Kees van Hee
for many valuable suggestions. Furthermore we thank Wim Keulemans for making available the L.P.­
software.

Literature

III J.M. Amhonisse, K.M. van Hee, J.K. Lenstra (1987). "Resource-Constrained Project Scheduling:an
International Exercise in DSS Development", Note OS-N8702, Centre for Mathematics and
Computer Science, Amsterdam.

[2] A. Jansen (1990). "Een aanpak van resource-constrained project scheduling problemen", Master's
Thesis, Eindhoven University of Technology, Eindhoven. (in Dutch)

[3] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (1989). "Sequencing and
Scheduling:Algorithms and Complexity", Report BS-R8909, Centre for Mathematics and Computer
Science, Amsterdam.

[4] "User manual of PLATE: a Decision Support System for resource-constrained project scheduling
problems", Eindhoven University of Technology, Eindhoven (1990).

[5] K.G. Murty (1983). "Linear programming", John Wiley & Sons.
[6J H. Fisher, G.L. Thompson (1963). "Probabilistic Learning Combinations of Local Job-shop

Scheduling Rules", in: J.F. Muth, G.L. Thompson (eds.), "Industrial Scheduling", Prentice Hall
(pp.225-251).

18

[71 A.E. Eiben, K.M. van Hee (1990). "Knowledge representation and Search Methods for Decision
Suppon Systems", in: W. Gaul, M. Schader (cds.), "Data, Expcn Knowledge and Decisiolls".
Computer and System Science Series, Springer-Verlag.

[81 K.M. van Hee, A. Lapinski (1989). "OR and AI approaches to decision suppon", Decision Support
Systems 4, pp. 447-459.

Appendix: Notational conventions

In this appendix some of our, possibly not completely standard, notational conventions will be
explained.
Let P and Q be arbitrary boolean predicates in n variables. Let R be an expression in n variables with
a set as result type. Let S be an expression in n variables with a number as result type. We define:
- (V'ap .. ,a,,:P(a1, ... a,,):Q(ap".a,,» is a boolean predicate saying that for all variables al""a" satisfying P

also Q holds.
- (3ap .. ,a,,:P(ap .. ,a,,):Q(ap ... a,,» is a boolean predicate saying that there exist variables ap ... a" satisfying

P for which also Q holds.
- (ual, .. ,a,,:P(al ... ,a,,):R(ap ... a,,» is an expression giving the union of all sets R(al a,,) where variables

ap ... a" satisfy P.
- (nap ... a,,:P(ap ... a,,):R(ap ... a,,» is an expression giving the intersection of all sets R(al''''a,,) where

variables ap ... a" satisfy P.
- (MAXal' ... a,,:P(ap .. ,an):S(al a,,» is an expression giving the maximum of all values S(al a,,) where

variables ap ... a" satisfy P.
- (SUMa1 an:P(ap ... a,,):S(a1 a,,» is an expression giving the sum of all values S(al''''a,,) where

variables al''''a" satisfy P.
Let A and B be arbitrary finite sets. We define:
- A~B is the set of all functions from A to B. As usual. a function is simply a set of pairs.

f={ (al.bl) (a".bn)} is a function from A to B (fE A~B) iff:
O. (V'i.j:l::;i<j::;n:,v~aj)

1. {al' .. ,an}=A
2. (bl' ... bn}~B

- A7B is the set of all partial functions from A to B. The set of pairs f= {(al'bj) (a".bn)} is a partial
function from A to B (fE A7B) iff:

O. (V'i.j: 1::;i<j::;n:~*a)
1. {aj an}~A
2. (bl' ... bn}~B

- The domain dom(f) of a (partial) function f is defined by dom(f):={a 13b:true:(a.b)E f}.
- The powerset peA) of set A is defined by P(A):={qC~A}.
- IR. denotes the set of all real numbers.lR+ denotes the set of all positive real numbers. JR;; denotes the

set of all non-negative real numbers. lB denotes the set of booleans.

Let TP be an arbitrary type (set of values). Let a be an arbitrary non-negative integer. We define:
- Tp· denotes the set of all rows with a elements of type TP. Let q be an arbitrary row with a

clements, then is q(n) defined as the n-th element of the row (counting starts from O. so O::;n<a).
Example: Let q:=<1.5. 2, O. 2.25. 3>E(JR;;)5. then q(0)=1.5 and q(2)=0.

19

