EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A thread algebra with multi-level strategic interleaving
(extended version)

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2006). A thread algebra with multi-level strategic interleaving (extended
version). (Computer science reports; Vol. 0628). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/3b1f523e-606d-4da4-b9c6-4e8575459776

A Thread Algebra with Multi-level Strategic
Interleaving

(Extended Version)

J.A. Bergstra'-2, C.A. Middelburg 3!

! Programming Research Group, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

Department of Philosophy, Utrecht University,

P.O. Box 80126, 3508 TC Utrecht, the Netherlands

Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands
e-mail:janb@science.uva.nl, keesm@win.tue.nl

Abstract In a previous paper, we developed an algebraic theory about threads
and a form of concurrency where some deterministic interleaving strategy deter-
mines how threads that exist concurrently are interleaved. The interleaving of dif-

ferent threads constitutes a multi-thread. Several multi-threads may exist concur-
rently on a single host in a network, several host behaviours may exist concurrently
in a single network on the internet, etc. In the current paper, we assume that the
above-mentioned kind of interleaving is also present at those other levels. We ex-
tend the theory developed so far with features to cover the multi-level case. We
employ the resulting theory to develop a simplified, formal representation schema
of the design of systems that consist of several multi-threaded programs on var-
ious hosts in different networks and to verify a property of all systems designed

according to that schema.

Keywords thread algebra — strategic interleaving — thread-service composition
— delayed processing — exception handling — formal design prototype

Note This paper is a substantially extended version of [8].

1 Introduction

A thread is the behaviour of a deterministic sequential program under execution.
Multi-threading refers to the concurrent existence of several threads in a program
under execution. Multi-threading is the dominant form of concurrency provided

2 J.A. Bergstra, C.A. Middelburg

by recent object-oriented programming languages such as Java [11] and C# [12].
In the case of multi-threading, some deterministic interleaving strategy determines
how threads that exist concurrently are interleaved.

Arbitrary interleaving, on which theories about concurrent processes such as
ACP [5] are based, does not provide an appropriate abstraction when dealing with
multi-threading: it happens that interleaving of certain threads leads to deadlock
with a particular deterministic interleaving strategy whereas arbitrary interleaving
would not lead to deadlock, and vice versa. In [7], we introduced a number of plau-
sible deterministic interleaving strategies for multi-threading. We also proposed to
use the phrase strategic interleaving for the more constrained form of interleaving
obtained by using such a strategy. In order to deal with strategic interleaving, we
assumed that a collection of threads to be interleaved takes the form of a sequence,
called a thread vector.

Strategic interleaving of a thread vector constitutes a multi-thread. In conven-
tional operating system jargon, a multi-thread is called a process. Several multi-
threads may exist concurrently on the same machine. Multi-processing refers to
the concurrent existence of several multi-threads on a machine. Such machines
may be hosts in a network, and several host behaviours may exist concurrently in
the same network. And so on and so forth. We assume that strategic interleaving
is also present at those other levels.

In the current paper, we extend the theory developed so far with features to
cover multi-level strategic interleaving. An axiomatic description of the features
concerned, as well as a structural operational semantics, is provided. There is a
dependence on the interleaving strategy considered. We extend the theory only for
the simplest case, to wit cyclic interleaving. Cyclic interleaving basically operates
as follows: at each stage of the interleaving, the first thread in the thread vector
gets a turn to perform a step and then becomes the last one while all others move
one position. Other plausible interleaving strategies are treated in [7]. They can
also be adapted to the setting of multi-level strategic interleaving.

Threads proceed by performing steps, in the sequel called basic actions, in a
sequential fashion. Each basic action performed by a thread is taken as a command
to be processed by a service offered by the execution environment of the thread.
The processing of a command may involve a change of state of the service con-
cerned. At completion of the processing of the command, the service concerned
produces a reply value which is returned to the thread. In this paper, we introduce
thread-service composition, which allows for certain basic actions performed by a
thread to be processed by a certain service. This is needed if certain basic actions
are performed by the thread only for the sake of getting reply values returned by
a certain service and that way having itself affected by that service. In such cases,
the service concerned has an auxiliary nature in the sense that it forms part of the
system under consideration.

We demonstrate that the theory developed in this paper may be of use by em-
ploying it to develop a simplified, formal representation schema of the design of
systems that consist of several multi-threaded programs on various hosts in dif-
ferent networks and to verify a property of all systems designed according to that
schema. We propose to use the term formal design prototype for such a schema.

A Thread Algebra with Multi-level Strategic Interleaving 3

The verified property is laid down in a simulation theorem, which states that, if

a finite thread that forms part of a system designed according to the presented
schema does not make use of the services that form part of the system, then that
thread is simulated by the system. In other words, the thread is not really affected

by the system.

Setting up a framework in which formal design prototypes for systems that
consist of several multi-threaded programs on various hosts in different networks
can be developed and general properties of systems designed according to those
formal design prototypes can be verified is one of the objectives with which we
developed the theory presented in this paper.

The main assumption made in the theory presented in this paper is that strategic
interleaving is present at all levels of such systems. This is a drastic simplification,
as a result of which intuition may break down. We believe however that some such
simplification is needed to obtain a manageable theory about the behaviour of such
systems — and that the resulting theory will sometimes be adequate and sometimes
be inadequate.

Moreover, cyclic interleaving is a simplification of the interleaving strategies
actually used for multi-threading. Because of the complexity of those strategies,
we consider a simplification like this one desirable to start with. It leads to an
approximation which is sufficient in the case where the property laid down in the
simulation theorem mentioned above is verified. The essential point turns out to
be that the interleaving strategy used at each level is fair, i.e. that there will always
come a next turn for all active threads, multi-threads, etc. The simulation theorem
goes through for all fair interleaving strategies: the proof only depends on the use
of multi-level cyclic interleaving in the part where in point of fact its fairness is
shown.

Thread algebra with multi-level strategic interleaving is a design on top of
BPPA (Basic Polarized Process Algebra) [6,3]. BPPA is far less general than ACP-
style process algebras and its design focuses on the semantics of deterministic
sequential programs. The semantics of a deterministic sequential program is sup-
posed to be a polarized process. The idea is that a polarized process may occur
in two roles: the role of a client and the role of a server. In the former role, ba-
sic actions performed by the polarized process are requests upon which a reply is
expected. In the latter role, basic actions performed by the polarized process are
offers to serve a request and to return a reply. The distinction between these roles is
relevant in case BPPA is extended with a mechanism for client-server interaction,
as in [4]. However, BPPA deals with polarized processes that occur in the role of
a client only. In thread algebra, threads are regarded as polarized processes that
occur in the role of a client only.

The structure of this paper is as follows. After a review of BPPA (Section 2),
we extend it to a basic thread algebra with cyclic interleaving, but without any fea-
ture for multi-level strategic interleaving (Section 3). Next, we extend this basic
thread algebra with thread-service composition (Section 4) and other features for
multi-level strategic interleaving (Section 5). Following this, we discuss how de-
layed processing and exception handling can be expressed (Section 6) and give a
formal representation schema of the design of systems that consist of several multi-

4 J.A. Bergstra, C.A. Middelburg

Table 1 Axiom of BPPA

z<tauDy=z Jdtaulax TI1

threaded programs on various hosts in different networks (Section 7). Finally, we
make some concluding remarks (Section 8).

2 Basic Polarized Process Algebra

In this section, we review BPPA (Basic Polarized Process Algebra), a form of pro-
cess algebra which is tailored to the description of the behaviour of deterministic
sequential programs under execution.

In BPPA, it is assumed that there is a fixed but arbitrary finite sdiagic
actions.A with tau ¢ A. We write A,, for A U {tau}. BPPA has the following
constants and operators:

— thedeadlockconstanD;
— theterminationconstans;
— for eacha € A:.,, a binarypostconditional compositiooperator. <a > _.

We use infix notation for postconditional composition. We introdacion prefix-
ing as an abbreviation: o p, wherep is a term of BPPA, abbreviates< a &> p.

The intuition is that each basic action performed by a polarized process is taken
as a command to be processed by the execution environment of the polarized pro-
cess. The processing of a command may involve a change of state of the execution
environment. At completion of the processing of the command, the execution en-
vironment produces a reply value. This reply is eitliesr F and is returned to the
polarized process concerned. peindg be closed terms of BPPA. Therd a > ¢
will proceed a9 if the processing of leads to the replyl (called a positive reply),
and it will proceed ag if the processing of leads to the repl¥ (called a negative
reply). If the reply is used to indicate whether the processing was successful, a use-
ful convention is to indicate successful processing by the ré@pd unsuccessful
processing by the reply. The actiontau plays a special role. Its execution will
never change any state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbrevia-
tion introduced above, axiom T1 can be written as followst tau > y = tau o x.

A system of recursion equationser BPPA is a set of equatios = {X =
tx | X € V}whereV is a set of variables and eath is a term of BPPA that only
contains variables frory. We write V(E) for the set of all variables that occur
on the left-hand side of an equation fh Let ¢ be a term of BPPA containing a
variableX . Then an occurrence df in ¢ is guardedif ¢ has a subterm of the form
t’ <a > t” containing this occurrence df. A system of recursion equatiolsis
guardedif all occurrences of variables in the right-hand sides of its equations are
guarded or it can be rewritten to such a system of recursion equations using the
equations oft. Following [3], a CPO structure can be imposed on the domain of
the projective limit model of BPPA. Then guarded recursion equations represent

A Thread Algebra with Multi-level Strategic Interleaving 5

Table 2 Axioms for guarded recursion

(X|E) = (tx|E) if X=tx € E RDP
E= X =(X|E) if X € V(E) RSP

continuous operators having least fixed points. These matters will not be repeated
here, taking for granted that guarded systems of recursion equations have unique
solutions.

We extend BPPA with guarded recursion by adding constants for solutions
of guarded systems of recursion equations and axioms concerning these additional
constants. For each guarded system of recursion equdians eachX € V(FE),
we add a constant standing for the unique solutio&'dér X to the constants of
BPPA. The constant standing for the unique solutiortofor X is denoted by
(X|FE). Moreover, we use the following notation. Lebe a term of BPPA an@
be a guarded system of recursion equations. Then we Yt for ¢ with, for
all X € V(E), all occurrences oK in ¢ replaced by X|F). We add the axioms
for guarded recursion given in Table 2 to the axioms of BPPA. In this tabléx
and F stand for an arbitrary variable, an arbitrary term of BPPA and an arbitrary
guarded system of recursion equations, respectively. Side conditions are added to
restrict the variables, terms and guarded systems of recursion equations for which
X, tx and E stand. The additional axioms for guarded recursion are known as
the recursive definition principle (RDP) and the recursive specification principle
(RSP). The equationsSX |E) = (tx|E) for a fixed E express that the constants
(X|E) make up a solution oF. The conditional equation8 = X = (X|E)
express that this solution is the only one.

Remark 1Let E andE’ be two guarded systems of recursion equations over BPPA
with V(E) = V(E’), whereE’ is E rewritten using the equations &f. Then, by
RDP,(X|E) = (X|E') forall X € V(FE). This can be regarded as a justification

of the definition of a guarded system of recursion equations. Moreover, it shows
that no generality is lost if we assume in proofs that all occurrences of variables
in the right-hand sides of the equations in a guarded system of recursion equations
are guarded.

Henceforth, we will write BPPAA) for BPPA with the set of basic actioné
fixed to be the setd, and BPPAA)+REC for BPPAA) extended with the con-
stants for solutions of guarded systems of recursion equations over(BpBAd
the axioms RDP and RSP from Table 2.

The projective limit characterization of process equivalence on polarized pro-
cesses is based on the notion of a finite approximation of dept¥hen for
all n these approximations are identical for two given polarized processes, both
processes are considered identical. This is expressed by the infinitary conditional
equation AIP (Approximation Induction Principle) given in Table 3. Following [6],
which in fact uses the notation of [5], approximation of depik phrased in terms
of a unaryprojectionoperatorr,,(-). The projection operators are defined induc-
tively by means of axioms PO—P3 given in Table 3. In this table and all subsequent

6 J.A. Bergstra, C.A. Middelburg

Table 3 Approximation induction principle

mo(x) =D PO
Tnt1(S) =S P1
m+1(D) =D P2
mnt1(z Jaly) = mn(z) Jalma(y) P3
(Anzomn(z) =mn(y) = z=y AIP

tables with axioms in whicla occurs,a stands for an arbitrary action from;,,,.
It happens that RSP follows from AIP.

Theorem 1 (RSP follows from AIP) Let £ be a guarded system of recursion
equations, and leX € V(E). Then it follows fromAIP that E = X = (X|E).

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equationsAhare guarded (see Remark 1). After
replacingn times ¢ > 0) all occurrences of alX € V(E) in the right-hand
sides of the equations i by the right-hand side of the equation far in F,

all occurrences of variables in the right-hand sides of the equations are at least at
depthn + 1. We write E™ for the guarded system of recursion equations obtained
in this way, and we writé’; for the right-hand side of the equation f&rin E".
Because all occurrences of variableg’{nare at least at depthh+ 1, 7, (t%) is a
closed term. Now assunigand take an arbitrany > 0. ThenE™ and in particular

X = t%. From this, it follows immediately that, (X) = =, (t%). Hence,E =
mn(X) = m,(t%). From this, and the fact that, (¢%) equals a closed term, it
follows by RDP that alser,, ((X|E)) = m,(t%). Hencem,(X) = m,((X|E)).

From this, it follows by AIP thatX = (X |E). O

As mentioned above, the behaviour of a polarized process depends upon its
execution environment. Each basic action performed by the polarized process is
taken as a command to be processed by the execution environment. At any stage,
the commands that the execution environment can accept depend only on its his-
tory, i.e. the sequence of commands processed before and the sequence of replies
produced for those commands. When the execution environment accepts a com-
mand, it will produce a positive reply or a negative reply. Whether the reply is
positive or negative usually depends on the execution history. However, it may
also depend on external conditions.

In the structural operational semantics, we represent an execution environment
by a functionp : (A x {T,F})" — P(A x {T,F}) that satisfies the following
condition: (a,b) € p(a) = p(a ~ {(a,b))) = O foralla € A, b € {T,F}
anda € (A x {T,F})*".1 We write £ for the set of all those functions. Given
an execution environment € £ and a basic action € 4, the derivedexecu-
tion environment ofp after processing with a positivereply, written %+ p, is

1 We write () for the empty sequencéd) for the sequence havingas sole element, and
a ~ 3 for the concatenation of sequeneeands. We assume that the identities™ () =
() ~ a = ahold.

A Thread Algebra with Multi-level Strategic Interleaving 7

Table 4 Transition rules of BPPA

S| D7 (z Jtau D>y, p) 2% (z, p)

(a,T) € p(()) — (a,F) € p({))
(@ Qay,p) % (z, 2 p) g (@ <ay,p) = (y, 2 p) g
=2l =2t

Table 5 Transition rules for guarded recursion

e N L T T
(X)) = (o) (X|B) | (X|B) 1

defined bya%fp(a) = p({(a, T)) ™ «); and likewise thederivedexecution envi-
ronment ofp after processing with a negativereply, written %‘ p, is defined by
a pla) = p(((a, F)) ~).

The following transition relations on closed terms of BPPA are used in the
structural operational semantics of BPPA:

— abinary relation_, p) - (_, p’) for eacha € A.,, andp, p’ € &;
— aunary relation |;
— aunary relation T;
— aunary relation .

The four kinds of transition relations are called #Hation steptermination dead-
lock, andtermination or deadlockelations, respectively. They can be explained as
follows:

— (p,p) = (p', p’): in execution environment, proces® can perform actiom
and after that proceed as proc@ss execution environment’;

— p |: proces® cannot but terminate successfully;

— p]: proces® cannot but become inactive;

— p]: procesgp cannot but terminate successfully or become inactive.

The termination or deadlock relation is an auxiliary relation needed when we ex-
tend BPPA in Section 3.

The structural operational semantics of BPPA is described by the transition
rules given in Table 4. In this table and all subsequent tables with transition rules in
whicha occursa stands for an arbitrary action frog,,. The transition rules for
the constants for solutions of guarded systems of recursion equations over BPPA
are given in Table 5. In this tableX, tx and F stand for an arbitrary variable,
an arbitrary term of BPPA and an arbitrary guarded system of recursion equations
over BPPA, respectively. The transition rules for projection are given in Table 6.

Bisimulation equivalence is defined as followsb#&simulationis a symmetric
binary relationB on closed terms of BPPA such that for all closed tegrandg:

8 J.A. Bergstra, C.A. Middelburg

Table 6 Transition rules for projection

(2, p) = (2!, p) x| £

(Tnt1(x),p) = (mn(2),p) Tnp1(@)] mppa(e)T wo(z) 7

— if B(p,q) and(p,p) = (¢,), then there is @ such that(q, p) = (¢, ')
andB(p',¢');

— if B(p,q) andp |, theng |;

— if B(p,q) andp1, theng 1.

Two closed termg andq arebisimulation equivalentwrittenp < ¢, if there exists
a bisimulationB such thatB(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional
composition operators and the projection operators. This follows immediately from
the fact that the transition rules for these operators are in the path format (see
e.g. [2]). The axioms given in Tables 1, 2 and 3 are sound with respect to bisimu-
lation equivalence.

3 A Basic Thread Algebra with Foci and Methods

In this section, we introduce a thread algebra that deals with single-level strategic
interleaving. Features for multi-level strategic interleaving will be added in sub-
sequent sections. The thread algebra introduced in this section is an extension of
BPPA. In [6], its has been outlined how and why polarized processes are a nat-
ural candidate for the specification of the semantics of deterministic sequential
programs. Assuming that a thread is a process representing a deterministic se-
guential program under execution, it is reasonable to view all polarized processes
as threads.

In order to deal with strategic interleaving, it is assumed that a collection of
threads to be interleaved takes the form of a sequence, called a thread vector.
Strategic interleaving operators turn a thread vector of arbitrary length into a sin-
gle thread. This single thread obtained via a strategic interleaving operator is also
called a multi-thread. Formally, however both threads and multi-threads are polar-
ized processes.

In this paper, we only cover the simplest interleaving strategy, naoyelc
interleaving Cyclic interleaving basically operates as follows: at each stage of
the interleaving, the first thread in the thread vector gets a turn to perform a basic
action and then the thread vector undergoes cyclic permutation. We mean by cyclic
permutation of a thread vector that the first thread in the thread vector becomes the
last one and all others move one position to the left. If one thread in the thread
vector deadlocks, the whole does not deadlock till all others have terminated or
deadlocked. An important property of cyclic interleaving is that it is fair, i.e. there
will always come a next turn for all active threads.

Other plausible interleaving strategies are treated in [7]. They can also be
adapted to the features for multi-level level strategic interleaving that will be in-

A Thread Algebra with Multi-level Strategic Interleaving 9

Table 7 Axioms for cyclic interleaving

() =s csi
1({S) ~a) = lI(e) CSI2
I({D) ~ a) = Sp([[(er)) CsI3
[[((tauoz) ™~ a) = tau o ||(a ™ (x)) CSI4
[({z S f.mBy)~a)=](a™(z) IfmD(a~(y) CSI5

Table 8 Axioms for deadlock at termination

Sp(S) =D S2D1
Sp(D) =D S2D2
Sp(tau o x) = tau o Sp(z) S2D3

Sp(z Qf.mB>y) = Sp(x) I f.m>Sp(y) S2D4

troduced in the current paper. The strategic interleaving operator for cyclic inter-
leaving is denoted by(-). In [7], it was denoted by} ., (-) to distinguish it from
other strategic interleaving operators.

It is assumed that there is a fixed but arbitrary finite sdbof F and a fixed
but arbitrary finite set omethodsM. For the set of basic actiond, we take the
setFM = {f.m | f € F,m € M}. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process a
command. Each method plays the role of a command proper. Performing a basic
action f.m is taken as making a request to the service naghead process the
commandn.

The axioms for cyclic interleaving are given in Table 7. In this table and all
subsequent tables with axioms or transition rules in wifi@ndm occur, f and
m stand for an arbitrary focus froth and an arbitrary method frooM, respec-
tively. In CSI3, the auxiliarydeadlock at terminatiooperatorSp (-) is used. This
operator turns termination into deadlock. Its axioms appear in Table 8.

Henceforth, we will write TA,, for BPPA(FM) extended with the strategic
interleaving operator for cyclic interleaving, the deadlock at termination operator,
and the axioms from Tables 7 and 8.

Example 1The following equation is easily derivable from the axioms of,[A

1({(f1-mf ©S) D fr.mi & (fi'mf 0 S)) ~
((f3-m50S) Q fama B (f3'.my 0S)))
= ((fi-my o f3:m50S) < fa.ma & (f].m] o f3.m5 0 S))
< fiom B
((f{'-m{ o fi.mh 0S) < fo.ma & (f{'.mf o f.my 0S)) .
This equation shows clearly that the two threafism/ oS) < fi.m >(f{.m/ oS)

and(f5.mf o S) < fo.ma > (f5.m4 o S) are interleaved in a cyclic manner: first
the first thread performg,.m,, next the second thread perforrfisms, next the

10 J.A. Bergstra, C.A. Middelburg

first thread performg].m/ or f{’.m} depending upon the reply ofi.m4, next
the second thread perfornfis.m/ or fJ.m! depending upon the reply gfa.mso.

We can prove that each closed term ofgJAcan be reduced to a closed term
of BPPA(FM).

Theorem 2 (Elimination) For all closed termg of TAg,, there exists a closed
termq of BPPA(FM) such thap = ¢ is derivable from the axioms GfAg,.

Proof We prove this by induction on the structureof

— p=S: Sisaclosed term of BPRAM).

— p=D: Dis aclosed term of BPRAM).

— p =tauop’: Let¢ be a closed term of BPRAM) such thapy’ = ¢’. Such
a term exists by the induction hypothesis. Then o ¢ is a closed term of
BPPA(FM) andtau o p’ = tauo¢'.

—p=p Jfm>p"”: Letq andq” be closed terms of BPRAM) such that
p' = ¢ andp” = ¢”. Such terms exist by the induction hypothesis. Then
¢ < f.mr>q" isaclosed term of BPRAM) andp’ < fomDp’ = ¢ I f.mD>

/!

q’.
— p = Sp(p’): By the induction hypothesis, there exists a closed tefrof

BPPA(FM) such thap’ = ¢’. So we are done if we have proved the following
lemma:

Let ¢’ be a closed term of BPRAM). Then there exists a closed terhof
BPPA(FM) such thaSp(¢') = 7’ is derivable from the axioms of T, .

We prove this lemma by induction on the structure/of

— ¢ =S: Sp(S) = D by S2D1 and is a closed term of BPRAM).

— ¢ =D: Sp(D) = D by S2D2 and is a closed term of BPRAM).

— ¢ =tauoq”: Sp(tau o ¢”’) = tau o Sp(q”) by S2D3. Letr” be a closed
term of BPPAFM) such thatSp(¢”) = r”. Such a term exists by the
induction hypothesis. Thetau o "’ is a closed term of BPRAM) and
Sp(tauo¢”) =tauor”.

_ q/ = q// S]me q///: SD(q// S’fmlz q///) — SD(q//) S] fm‘z SD(q///) by
S2DA4. Letr” andr”’ be closed terms of BPRAM) such thaSp(¢”) =
r” andSp(¢”") = r"”. Such terms exist by the induction hypothesis. Then
r” < f.om " is a closed term of BPRAM) andSp(¢” < fom>¢") =
r! < fm > "

—p = |(a): If a = (), then||(a) = S by CSI1 andS is a closed term of
BPPA(FM). If o = ||({p})~...~(pl,)) for somen > 0, then, by the induction
hypothesis, there exist closed tergis. .., ¢/, of BPPA(FM) such thap) =
qi, - -0, = ¢,,. So we are done if we have proved the following lemma:

Let¢i,q, (n > 0) be closed terms of BPR&M). Then there exists a
closed termr’ of BPPA(FM) such that|((¢}) ~ ...~ {(q,)) = ' is derivable
from the axioms of TA,,.

We prove this lemma by induction on the sum of the depths plus ogig of.,
¢;, and case distinction on the structuregbf

A Thread Algebra with Multi-level Strategic Interleaving 11

— 1 =S {[((S) ™ (g2) > .~ {an) = [[({g3) ~ ...~ (qp,)) by CSI2. Let’
be a closed term of BPRAM) such that|({¢}) ~ ...~ (g,)) = r'. Such
a term exists by the induction hypothesis. MoreoyéS) ~ (¢5) ~ ...~
(gn)) =r".

— g} = D: [[((D) ~(gh) ~. ..~ () = So[|({gh) ~ ..~ (a4))) by CSI3.
Letr’ be a closed term of BPRAM) such that|({(¢}) ~...~(¢,)) = r'.
Such a term exists by the induction hypothesis. {'die a closed term of
BPPA(FM) such thabp(r') = s’. Such a term exists by the lemma proved
above for the case = Sp(p’). Moreover,||({D) ~(g5) ~...~{q,)) = 5.

— ¢y =tauoqq: ||((tauogy) ~(g) ~ ...~ (qy)) = tauo [[({gg) ~...~
(q.) ~ (¢})) by CSI4. Letr’ be a closed term of BPRAM) such that
({gh) ~ ... ~{q,) ~ {¢{)) = r’. Such a term exists by the induction
hypothesis. Thenau o 7’ is a closed term of BPRAM) and ||({tau o
@) ~(ga) ~ ...~ (gy,)) =tauor’.

—q=¢/ fmbq” (@ LfmBq") ~(go) ...~ () = [((g2) ~

2 {gn)) Sfm B [[({g) ~ - (gn) ~ (@) by CSIS. Let
r’ andr” be closed terms of BPRAM) such that|({(¢5) ~ ...~ {(q},) ™~
(@) =r"and||({¢h) ~...~{q,) ~{¢")) = r". Such terms exist by the
induction hypothesis. Therd < f.m > r" is a closed term of BPRAM)
and|| (¢ < f.m® g’y ™~ (gh) ~ ...~ (gh) =1 S fm ",
O

The following proposition, concerning the cyclic interleaving of a thread vector
of length1, is easily proved using Theorem 2.

Proposition 1 For all closed term® of TAg,, the equation|({(p)) = p is deriv-
able from the axioms oTAg,.

Proof By Theorem 2, it is sufficient to prove that this equation is derivable for all
closed term® of BPPA(FM). We prove this by induction on the structuregof

—p=S:||({S)) =S by CSI2 and CSI1.
— p=D: ||((D)) = D by CSI3, CSI1 and S2D1.
— p=tauop’: ||({tauop’)) = tau o p’ by CSl4 and the induction hypothesis.
—p=p Ifm " ||((p Sfm>p")) =p < f.m>p’ by CSI5 and the
induction hypothesis.
In the proof of each case, in addition to the above-mentioned axioms, the fact that
a=a~()=()~aisneeded. O

The equation|({p)) = p from Proposition 1 expresses the obvious fact that in the
cyclic interleaving of a thread vector of lengtimo proper interleaving is involved.

The following are useful properties of the deadlock at termination operator
which are proved using Theorem 2 as well.

Proposition 2 For all closed termsp, ..., p, of TAg,, the following equations
are derivable from the axioms A, :

Spo(So(p1)) = So(p1) , 1)
So(I({p1) ~ -+~ {pn))) = [({Sp(p1)) ~ ... > (Sp(Pn))) - (2

12 J.A. Bergstra, C.A. Middelburg

Proof By Theorem 2, it is sufficient to prove that these equations are derivable
for all closed term®y, . .., p,, of BPPA(FM). We prove that (1) is derivable by
induction on the structure of;:

—p1 =S: Sp(Sp(S)) = D by S2D1 and S2D2, anld = Sp(S) by S2D1.

-p =Dt SD(SD()) = So(D) by S2D2.

— p1 = tauop): Sp(Sp(tau o pj)) = tau o Sp(Sp(p})) by S2D3 twicetau o
Sp(Sp(p))) = tau o Sp(p}) by the induction hypothesis, andu o Sp(p}) =
Sp(tau o p}) by S2D3.

—p1 = py <fm>pft Sp(Sp(p) < f.m® pi)) = Sp(Sp(p})) <
Sp(Sp(py)) by S2D4 twice, Sp(Sp(p))) < fmr> Sp(Sp(py)
Sp(p}) < f.m™> Sp(p) by the induction hypothesis, arfh(p}) <
Sp(p) = So(p} < f-m>py) by S2D4.

We prove that (2) is derivable by induction on the sum of the depths plus one of
p1, - - -, Py and case distinction on the structurepef

—p1 = S Sp([[((S) ™ (p2) ~ ... > (pn))) = So(So(|({p2) ~ ... > (pn))))
by CSI2 and (1),Sp(So([|({p2) ~ .- > (pa)))) = So (H(<So(p2)> ~
~ (Sp(pr)))) by the induction hypothe5|s argb(||((Sp(p2)) ~ ... ~
<So(pn)>)) |({Sp(S)) ~ (Sp(p2)) ...~ (Sp(pn))) by CSI3 and S2D1.
— p1 = D: Sp([|({D) ~ (p2) ~ <pn>)) = Sp(Sp([l({p > ~(pn))))
by CSI3,Sp (Sp (|| ({p2) ~ -m<pn>)))—SD(||(<SD (p2)) ™~ <So(n))))
by the induction hypothesis, ansh (|| ({(Sp(p2)) ~ . <SD(N)) =

|((Sp(D)) ~ {Sp(p2)) ~ ...~ {Sp(pn))) by CSI3 and s2D2.

— p1 = tauop): Sp(||({tauopi) ~(pa) ~...~(pn))) = tauoSp(||((p2) ~. ..~
(pn) ~ (p1))) by CSI4 and S2D3tau o Sp([|({p2) ~ ...~ (pn) ~ (p1))) =
tau o |({Sp(p2)) ~ ...~ (Sp(pn)) ™ (Sp(p}))) by the induction hypothesis,
andtau o [|((Sp(p2)) ~ ... ~ (So(pa)) ~ (So(ph)) = | ({Sp(tau o pf)) ~
(Sp(p2)) ~ ...~ (Sp(pn))) by CSl4 and S2D3.

—p1 = py AfmBpit Sp(l|((py LfomB pi) ~ (p2) ~ ... > (pn))) =
So(l((p2) .~ (pe) = (71))) I fm = Sl (4p2) ~ L (o)~ ()
by CSI5 and S2D4Sp([|((p2) ~ .-~ (pn) ~ (P1))) L f.m B Sp([|((p2) ~

(o) ~ () = [({Sp(p2)) ~ - ~ (So(pn) ~ (So(ph))) D fom >
l({(Sp(p2)) ~ ...~ (Sp(pn)) ™ (SD()>) by the induction hypothesis, and
1(So(p2)) ~ - ~ (So(pn) ~ (SoBh) D fm [((So) ~ ... ~
(So(pn)) ™ (Sp(P1)) = [1({Sp(ps L fan&p})) ~(Sp(p2))~. ..~ (Sp(p)))
by CSI5 and S2D4.

0

We extend TA,, with guarded recursion like in the case of BPPA. It involves
systems of recursion equations overgJAwhich require an adaptation of the no-
tion of guardedness. 8ystem of recursion equationser TA;,, is a set of equa-
tionsE = {X =tx | X € V} whereV is a set of variables and eath is a term
of TAq, that only contains variables froi. Lett¢ be a term of TA,, containing a
variableX . Then an occurrence df in ¢ is guardedif ¢ has a subterm of the form
t’ <a > t"” containing this occurrence df. A system of recursion equatiosis
guardedif all occurrences of variables in the right-hand sides of its equations are

A Thread Algebra with Multi-level Strategic Interleaving 13

guarded or it can be rewritten to such a system of recursion equations using the
axioms of TAy, and the equations df.

Henceforth, we will write TA,,+REC for TAy, extended with the constants
for solutions of guarded systems of recursion equations ovgr, &Ad the axioms
RDP and RSP from Table 2.

Theorem 2 states that the strategic interleaving operator for cyclic interleav-
ing and the deadlock at termination operator can be eliminated from closed terms
of TAgy,. It does not state anything concerning closed terms of , #/REC. The
following two propositions concern the case where the operand of the strategic in-
terleaving operator for cyclic interleaving is a sequence of constants for solutions
of guarded systems of recursion equations over BPBA) and the case where
the operand of the deadlock at termination operator is such a constant.

Proposition 3Let £/ and E” be guarded systems of recursion equations over
BPPA(FM), letX € V(E’), and letY € V(E”). Then there exists a guarded sys-
tem of recursion equations overBPPA(FM) and a variableZ € V(F) such that
I({({(X|E")) ~ {({Y|E"))) = (Z|E) is derivable from the axioms &Ay,,,+REC

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equationsfhand E”’ are guarded (see Remark 1).
Without loss of generality, we may also assume ¥gt’) andV(E") are disjoint

sets. We take an injective functidghthat maps each pair of variables(¥(E’) x
V(E")U(V(E")xV(E")) to avariable notitV(E’)UV(E"), and define, guided

by axioms CSI2—-CSI5, the following guarded system of recursion equations:

E={Z(X'\Y)=Y'|X'=S e E ANY'eV(E")}
U{Z(X,Y)=Sp(Y')|X'=D € E' ANY' e V(E")}
U{Z(X',Y') =tauo Z(Y',X") |

X' =tauo X" € E' NY' e V(E")}
U{Z(X",Y)=ZY",X") S fm>ZY', X") |
X' =X"dfm>X" € B ANY' eV(E")}
U{Z(Y',X)=X"|Y' =S e E' A X' e V(E')}
U{ZY",X)=Sp(X')|Y' =D € E" A X' e V(E")}
U{ZY’', X')=tauo Z(X',Y") |
Y/ =tauoY” € E' A X' € V(E')}
U{Z(Y', X")=Z(X",Y") < fm> Z(X',Y") |
Y' = Y" dfm>Y" € E" N X' e V(E')}
UE' UE".
If we replace inE, for all X’ € V(E') and allY’ € V(E"), all occurrences
of Z(X',Y") by ||[(((X'|E")) ~ ((Y'|E"))), all occurrences o (Y’, X') by
I(((Y'|E"Y) ~ ((X'|E"))), all occurrences oK’ by || (((X'|E’))) and all occur-

rences oft”’ by ||({({Y’|E"))), then each of the resulting equations is derivable by
first applying RDP and then applying one of CSI2—CSI5. Hefj¢c&,X |E’)) ~

14 J.A. Bergstra, C.A. Middelburg

((Y'|E"))) is a solution of E for Z(X,Y). From this, it follows by RSP that
I((XIED) ~ ({YE") = (Z(X,Y)|E). O

Proposition 4 Let £’ be a guarded system of recursion equations @RPA(FM),
and letX € V(E'). Then there exists a guarded system of recursion equafions
over BPPA(FM) and a variableY € V(E) such thatSp ((X|E’)) = (Y|E) is
derivable from the axioms ofA;, +REC

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equationsih are guarded. We take an injective
functionY” that maps each variable Wi(E£’) to a variable not ifV(E’), and de-

fine, guided by axioms S2D1-S2D4, the following guarded system of recursion
equations:

E={Y(X)=D|X'=Sec F}u{Y(X')=D|X'=D € E'}
U{Y(X') =tauoY(X") | X' =tauo X" € E'}
UY(X)=Y(X") D fmB> Y (X") | X = X" < fam> X" € E'} .

If we replace inE, for all X’ € V(E’), all occurrences of (X') by Sp ((X'|E")),

then each of the resulting equations is derivable by first applying RDP and then
applying one of S2D1-S2D4. Henc®; ((X|E’)) is a solution ofE for Y (X).

From this, it follows by RSP thap ((X|E’)) = (Y(X)|E). O

Proposition 3 states that the strategic interleaving operator for cyclic interleaving
can be eliminated from terms of the folf((X|E")) ~ ((Y|E"))) if E’ andE”

are guarded systems of recursion equations over BPPA. Proposition 4 states

that the deadlock at termination operator can be eliminated from terms of the form
Sp((X|E")) if E' is a guarded system of recursion equations over BPRA).
Moreover, both state that the resulting term is a term of the fofhE’) whereE

is a guarded system of recursion equations over BPRA). It is clear that the

proof of Proposition 3 generalizes to the case where the operand is a sequence of
length greater tha.

The structural operational semantics of ;JAis described by the transition
rules given in Tables 4 and 9.

Bisimulation equivalence is also a congruence with respect to the strategic in-
terleaving operator for cyclic interleaving and the deadlock at termination operator.
This follows immediately from the fact that the transition rules for, [Aonsti-
tute a complete transition system specification in the relaxed panth format (see
e.g. [13]). The axioms given in Tables 7 and 8 are sound with respect to bisimula-
tion equivalence.

4 Thread-Service Composition
In this section, we extend the thread algebra introduced in Section 3 with thread-

service composition, which allows for certain basic actions performed by a thread
to be processed by a certain service. This is needed if certain basic actions are

A Thread Algebra with Multi-level Strategic Interleaving 15

Table 9 Transition rules for cyclic interleaving and deadlock at termination

a

1Ly 2k L Tkt 0) = (T, 07)

(k> 0)
(Ix1) ~ o (epga) ™~ @), p) = (™ (2,04)),0")
1’117~~-7xk17xlT7<xk+17p>i><x;g+1vp,> (k2l>0)
(Iz1) ~ .o (epga) ™ @), p) = (([(@™ (D) ™ (2] 41))s 0)
10y, Tk 1],z o 1 k> 15 0)
I({z1) ~ ..o {zi) | l({z1) ~ .o () T
(z,p) = (', p") x]

(Sp(x),p) = (Sp('),p') Sp(2)1

performed by the thread only for the sake of getting reply values returned by a
certain service and that way having itself affected by that service.

For eachf € F, we introduce ahread-service compositiooperator_ /5 _.
These operators have a thread as first argument and a service as second argument.
P /¢ H is the thread that results from processing all basic actions performed by
thread P that are of the formf.m by serviceH. When a basic actiof.m per-
formed by threadP is processed byi, it is turned into the actiomau and post-
conditional composition is removed in favour of action prefixing on the basis of
the reply value produced by .

A service is represented by a functiéh: M*™ — {T, F, B, R} with the prop-
erty thatH (o) =B = H(a~(m)) =BandH(a) =R = H(a~ (m)) =R
for alla € M* andm € M. This function is called theeply function of the
service. Given a reply functiol and a methodn, the derived reply function of
H after processingn, written ;2 H, is defined by:2- H () = H((m) ~).

The connection between a reply functiGhand the service represented by it
can be understood as follows:

— If H({m)) = T, the request to process commands accepted by the service,
the reply is positive and the service proceed ;nﬂ.

— If H((m)) = F, the request to process commands accepted by the service,
the reply is negative and the service proceedgnagl .

— If H((m)) = B, the request to process commamdis not refused by the
service, but the processingof is temporarily blocked. The request will have
to wait until the processing of is not blocked any longer.

— If H({m)) = R, the request to process commands refused by the service.

The axioms for thread-service composition are given in Table 10. In this table
and all subsequent tables with axioms or transition rules in whitcurs, likef,
g stands for an arbitrary focus froff. Axiom TSC3 expresses that the actian
is always accepted. Axioms TSC5 and TSC6 make it cleartthaarises as the
residue of processing commands. Therefose,is not connected to a particular
focus, and is always accepted.

Henceforth, we write TAC for TA,,, extended with the thread-service compo-
sition operators and the axioms from Table 10.

16 J.A. Bergstra, C.A. Middelburg

Table 10 Axioms for thread-service composition

S/fH=S TSC1
D/fH=D TSC2
(tavox) /f H =tauo (z /; H) TSC3
(xdgmby) /fH=(z/f H)dgmb(y/r H) iff#g TSC4
(xQfmDy) [y H=tauo (z /p 22-H) ifFH(m) =T TSC5
(xdfmy) [y H=tauo (y /5 5= H) if H((m)) =F TSC6
(< fmby)/f H=D if H((m}) € {B,R} TSCT7

Example 2etm, m’,m” € M, and letH be a service such th&f (o ~ (m)) =
Tif #n(a) — #mr(a) > 0, Ha~ (m)) = Fif #, () — #mr(a) <0,
H(a~(m')) = TandH(a ~ (m")) =T, for all @« € M*. Here#,,/(a) and
#m~ (a) denote the number of occurrencesidfandm”, respectively, inv. Then
the following equation is easily derivable from the axioms offA

(fm'o((ff-m oS)<fmt>(f'-m"0S))) /f H=tauotauo f'.m’'oS.

This equation shows clearly how the threagh’ o ((f'.m/oS) < fom > (f".m" o
S)) is affected by servicd{: the processing of.m’ and f.m by H turns these
basic actions inteau, and the reply value returned @y after completion of the
processing off.m makes the thread proceed with performifign’.

We can prove that each closed term ofTAcan be reduced to a closed term
of BPPA(FM).

Theorem 3 (Elimination) For all closed terms of TAt¢, there exists a closed

fm

termq of BPPA(FM) such thap = ¢ is derivable from the axioms GFAC.

Proof The proof follows the same lines as the proof of Theorem 2. Here, we have
to consider one additional case, viz= p’ /; H. By the induction hypothesis,
there exists a closed tergh of BPPA(FM) such that’ = ¢'. So we are done if

we have proved the following lemma:

Let ¢’ be a closed term of BPRANM). Then there exists a closed tenrh of
BPPA(FM) such thay’ /; H = 1’ is derivable from the axioms of TA.

We prove this lemma by induction on the depthybfind case distinction on the
structure ofy’:

- ¢ =S:S/y H=SbyTSCland is a closed term of BPRAM).

— ¢ =D: D/; H=DbyTSC2and is a closed term of BPRAM).

—¢ =tauoq”: (tauoq”) /f H = tauo (¢" /y H) by TSC3. Letr” be a
closed term of BPPAFM) such thaty” /; H = r”. Such a term exists by
the induction hypothesis. Theau o r” is a closed term of BPR&M) and
(tauoq”) /¢ H =tauor”.

- ¢ =q¢" <g.m>¢": We distinguish four cases:

A Thread Algebra with Multi-level Strategic Interleaving 17

- f#9 ("<dgmq") /[y H=(¢"/f H)<dg.mP (¢" [; H) by TSCA.
Let " andr"’ be closed terms of BPRAM) such thaty” /; H = r”
andq¢” /; H = r'". Such terms exist by the induction hypothesis. Then
r” <4 g.m>r"" is aclosed term of BPRAM) and(¢”" < g.m™>¢"") /yH =
" Qg.m>r".

~ f =g H({(m)) =T: (¢"<gm®>q") /s H = tauo (¢" /; 5. H) by
TSCb. Letr” be a closed term of BPRAM) such thay” /; %H =7,
Such a term exists by the induction hypothesis. Tteno v’ is a closed
term of BPPAFM) and(¢” <g.m>¢"") /y H =tauor”.

— f =g, H((m)) = F: This case goes analogous to the previous case.

- f=9,H{(m)) € {B,R}: (¢" <gm™>¢") /s H= Dby TSC7 and is
a closed term of BPP&M).

|

The following are useful properties of the deadlock at termination operator in
the presence of both cyclic interleaving and thread-service composition which are
proved using Theorem 3.

Proposition 5 For all closed term9y, ..., p, of TAES, the following equations
are derivable from the axioms GtALC:

fm

Sp(So(p1)) = So(p1) 1)
So([l({p1) ~ ..~ (pn))) = [({Sp(p1)) ~ ...~ (Sp(pn))) , 2
So(p1 /r H) = So(p1) /r H . 3

Proof By Theorem 3, it is sufficient to prove that these equations are derivable
for all closed termg, ..., p, of BPPA(FM). For equations (1) and (2), this is
already done in the proof of Proposition 2. For equation (3), we do it by induction
on the depth of); and case distinction on the structurepef

- p1 =S: 5p(S/f H) =Dby TSC1 and S2D1, and = Sp(S) /; H by TSC2
and S2D1.

— p1 =D: Sp(D /s H) = D by TSC2 and S2D2, arld = Sp (D) /s H by TSC2
and S2D2.

— p1 =tauop): Sp((tauop}) /f H) = tauoSp(p} /¢ H) by TSC3 and S2D3,
tau o Sp(p} /f H) = tau o (Sp(p}) /¢ H) by the induction hypothesis, and
tau o (Sp(p}) /s H) = Sp(tau o p;) /s H by TSC3 and S2D3.

— p1 = p, <g.m>p}: We distinguish four cases:

~ [# g So((p, Sg.mep) [y H) = So(ph /y H) 1gm® So(p} /y H)
by TSC4 and S2D4Sp(p) /5 H) <g.m™> Sp(py /f H) = (So(p}) /¢
H) <g.m®> (Sp(py) /r H) by the induction hypothesis, ai8p(p}) /;
H)<g.m®(Sp(p}) /s H) = Sp(p) Qg.m®p}) /s H by TSC4 and S2D4.

— f=g, H((m)) = T: Sp((py <g.m>p) /s H) = tauo Sp(p; /5 72 H)
by TSC5 and S2D3auoSp(p} /5 22 H) = tauo (Sp(p}) /5 2= H) by the
induction hypothesis, anduo (Sp (p}) /s 22 H) = Sp(p) < g.m>pY) /s H
by TSC5 and S2D4.

— f =g, H((m)) = F: This case goes analogous to the previous case.

18 J.A. Bergstra, C.A. Middelburg

- f=g9,H({(m)) € {B,R}: Sp((p} <g-m>pY)/f H) = Dby TSC7 and
S2D2, andD = Sp(p) Jg.m> pY) /y H by TSC7 and S2DA4.
O

We extend TAS with guarded recursion as in the case ofJASystems of
recursion equations over FA and guardedness of those are defined as in the case
of TAsm, but with TAg, everywhere replaced by .

Henceforth, we will write TAS*+REC for TA:S extended with the constants
for solutions of guarded systems of recursion equations ovgf Bfd the axioms
RDP and RSP from Table 2.

Theorem 3 states that the strategic interleaving operator for cyclic interleaving,
the deadlock at termination operator and the thread-service composition operators
can be eliminated from closed terms of JA It does not state anything about
closed terms of TA+REC. Propositions 3 and 4, concerning the case where
the operand of the strategic interleaving operator for cyclic interleaving is a se-
guence of constants for solutions of guarded systems of recursion equations over
BPPA(FM) and the case where the operand of the deadlock at termination opera-
tor is such a constant, go through in the presence of the thread-service composition
operators. The following proposition concerns the case where the first operand of
a thread-service composition operator is such a constant.

Proposition 6 Let £’ be a guarded system of recursion equations @RPA(FM),
and letX € V(E’). Moreover, letf be a focus and lefl be a reply function. Then
there exists a guarded system of recursion equatirever BPPA(FM) and a
variableY € V(E) suchthat X|E’) /s H = (Y'|E) is derivable from the axioms
of TAEC+REC

Proof Without loss of generality, we may assume that all occurrences of variables
in the right-hand sides of the equationdihare guarded (see Remark 1). :¢be

the set inductively defined by the following rules: fi) € H; (i) if m € M and

H eH, thenaimH’ € H. We take an injective functiol that maps each pair in
V(E') x H to a variable not iV (E’), and define, guided by axioms TSC1-TSC7,
the following guarded system of recursion equations:

E={Y(X',H)=S|X'=S e E' N H eH}
U{Y(X',H)=D|X' =D € E' A H € H}
U{Y(X',H')=tauoY(X",H') | X' =tauo X" € E' A H € H}
U{Y(X',H) =Y (X" H)<g.m>Y (X" H)|

!

U{Y(X',H') =tauo Y(X", 22 H') |

IX" o (X' =X"<Afm>X" € E' AN H({(m))=T A H € H)}
U{Y(X',H') =tauo V(X" 2 H') |

IX" e (X' =X"<Afm> X" € E' AN H((m))=F A H € H)}
U{Y(X',H)=D|3m, X", X" o

(X' = X" < fm> X" € E' A H'((m)) € {B,R} A H' € H)} .

A Thread Algebra with Multi-level Strategic Interleaving 19

Table 11 Transition rules for thread-service composition

(m,p) =% (&', p) (z,p) L (2!, p')

(x /r H,p) =% (2’ [¢ H,p) (x /¢ H,p) ™ (2 /s H, p')
(@, p) L (2!,)

<:E /f H7p> -, <:IS/ /f %H’pl>

x Lmo o T T

(z,p) (', p") = 1 1

((m)) € {B,R
x/fHT el } xz/fH| xz/f HY

f#g

H((m)) € {T,F}, (f-m, H((m))) € p(())

If we replace inE, for all X’ € V(£’) and all H' € H, all occurrences of

Y (X', H') by (X'|E") /; H, then each of the resulting equations is derivable by
first applying RDP and then applying one of TSC1-TSC7. He(€eE") /; H is

a solution ofE for Y(X, H). From this, it follows by RSP thatX |E’) /; H =
(Y(X,H)|E). O

The structural operational semantics of {JAis described by the transition
rules given in Tables 4, 9 and 11.

Bisimulation equivalence is also a congruence with respect to the thread-service
composition operators. This follows immediately from the fact that the transition
rules for these operators are in the path format. The axioms given in Table 10 are
sound with respect to bisimulation equivalence.

5 Guarding Tests

In this section, we extend the thread algebra developed in Sections 3 and 4 with
guarding tests. Guarding tests are basic actions meant to verify whether a service
will accept the request to process a certain method now, and if not so whether it
will be accepted after some time. Guarding tests allow for dealing with delayed
processing and exception handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actlong now take
the settMet = {f.m, f?m, f7?m | f € F,m € M}. Basic actions of the forms
f?m and f7’m will be calledguarding testsPerforming a basic actiofi?m is
taken as making the request to the service nafndreply whether it will accept
the request to process methachow. The reply is positive if the service will accept
that request now, and otherwise it is negative. Performing a basic gtlionis
taken as making the request to the service najnedreply whether it will accept
the request to process methodnow or after some time. The reply is positive
if the service will accept that request now or after some time, and otherwise it is
negative.

A service may be local to a single thread, local to a multi-thread, local to a
host, or local to a network. A service local to a multi-thread is shared by all threads
from which the multi-thread is composed, etc. Henceforth, to simplify matters, it
is assumed that each thread, each multi-thread, each host, and each network has a

20 J.A. Bergstra, C.A. Middelburg

Table 12 Additional axioms for cyclic interleaving & deadlock at termination

I((z < frmBy) ~ a) = [[(() ~ a) Iftm > [[(a~ (y)) CSI6
(e QfPmBy) ~a) = (&) ~ @) IfPm [|(a~ (y)) CSIT
Sp(z < f?m > y) = Sp(x) < fm>Sp(y) S2D5
Sp(z < f7m>y) = Sp(z) < f7m > Sp(y) S2D6

Table 13 Additional axioms for thread-service composition

(@ dgtmBy) /; H = (a /s H) Qg?mB (y /s H)] #g TSCs
(zQftmDy) /f H=tauo (z /f H) if H((m)) e {T,F} TSC9
(x QftmPy) /f H=tauo (y /y H) if H(m))=B A f#t TSC10
(x<frmBy) /f H=D) =B A g =0 v
H((m)) = TSC11
(xdgtmby) /f H=(x/p H) dgWtmD (y/r H) iff#g TSC12
(x 4f"mPy) /f H=tauo (z /¢ H) if H({(m)) € {T,F,B} TSC13
(z < fmbDy) /f H=tauo (y/f H) if H((m))=R TSC14

unique local service. Moreover, it is assumed that h, n € F. Below, the focit,
p, h andn play a special role:

— for each thread; is the focus of its unique local service;

— for each multi-threadp is the focus of its unique local service;
— for each hosth is the focus of its unique local service;

— for each networknp is the focus of its unique local service.

As explained below, it happens that not only thread-service composition but
also cyclic interleaving has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination in
the presence of guarding tests are given in Table 12. Axioms CSI6 and CSI7 state
that:

— after a positive reply off 7m or f7’m, the same thread proceeds with its next
basic action; and thus it is prevented that meanwhile other threads can cause
a state change to a state in which the processing @ blocked (andf?m
would not reply positively) or the processing wf is refused (and bothi?m
and f7?m would not reply positively);

— after a negative reply ofi?m or f7?m, the same thread does not proceed with
it; and thus it is prevented that other threads cannot make progress.

Without this difference, Theorem 5 in Section 7 would not go through.

The additional axioms for thread-service composition in the presence of guard-
ing tests are given in Table 13. Axioms TSC10 and TSC11 are crucial. The pointis
that, if the local service of a thread is in a state in which the processing of method
m is blocked, no other thread can raise that state. Consequently, if the processing
of m is blocked, it is blocked forever.

Henceforth, we write TE“#" for TA!s¢ extended with a postconditional com-

fm

position operator for each guarding test and the axioms from Tables 12 and 13.

A Thread Algebra with Multi-level Strategic Interleaving 21

We can prove that each closed term of,TA" can be reduced to a closed term
of BPPA(FME").

Theorem 4 (Elimination) For all closed termg of TA{"5", there exists a closed

termq of BPPA(FM ") such thap = ¢ is derivable from the axioms GfA ;"

fm

Proof The proof follows the same lines as the proof of Theorem 3. Here, we have
to consider two additional cases, viz= p’ < f?m>p” andp = p' < f’m>p”.
These cases go the same as the pasey’ < f.m > p”. In the lemma for the case

p = Sp(p’), we have to consider the additional cagess ¢” < f?m> ¢ and

qd =q" Qfm>q"”. These cases go the same as the gaseq” < f.m > ¢".

In the lemma for the case = ||(«), we have to consider the additional cases
¢, = ¢ < frm> ¢ andg, = ¢/ < fm> ¢}’. These cases go analogous to
the case; = ¢ < f.m™> ¢/”. In the lemma for the case = p’ /; H, we have

to consider the additional casgs= ¢’ <g?m> ¢"” andq¢’ = q"” <g7'm > ¢"".
These cases go similar to the cases ¢ <g.m>¢"”. O

In other words, Theorem 3 goes through in the presence of guarding tests.

We extend Téﬁf’gt with guarded recursion as in the case of;,JASystems of
recursion equations over ’ﬁ’gt and guardedness of those are defined as in the
case of TAy,, but with TA,, everywhere replaced by T&®".

Henceforth, we will write TA"5*+REC for TAZ*" extended with the con-
stants for solutions of guarded systems of recursion equations O\EErgTRnd
the axioms RDP and RSP from Table 2.

Example 3Let f € F be such thalf # t, letm,m',m"” € M, and letH be a
service such thalf (a ~ (m)) = T if #,/ (o) — #m () > 0, H(a~ (m)) =B

if # (@) — #mr(e) <0, Ha~(m')) = TandH(a ~ (m")) = T, for

all @ € M*. Moreover, letE be the guarded system of recursion equations that
consists of the equatial = ((f'.m/oS)< f.m>(f".m"0S))< f?m™>X. Then

the following equations are easily derivable from the axioms df TR +REC:

[((f"-m" e S) I fmE (f.m" 0 S)) ~(fm'oS)) [y H=tauoD,
I(({(X|E)) ~(f-m'0S)) / H=tauotauotauotauo f'.m’'oS.

The first basic action performed By((f'.m/'oS) I f.m > (f".m"” oS)) ~(f.m’o
S)) is f.m. Becauséd ((m)) = B, the processing of.m by H leads tdD. The first
basic action performed By ((X |E)) ~{(f.m'oS)) is f?m. Becauseéd ((m)) = B
andf # t, nextf.m’ is performed and thereaftgfm is performed again. Because

621, H({m)) =T, nextf.m is performed and thereaftgf.m’ is performed.

Just like Theorem 3, Propositions 3, 4 and 6 go through in the presence of
guarding tests. The proofs follow the same lines as before, but, like in the proof of
Theorem 4, we have to take into account that two additional kinds of basic actions
may occur in guarded systems of recursion equations.

The additional transition rules for cyclic interleaving and deadlock at termina-
tion in the presence of guarding tests are given in Table 14, whetands for an

22 J.A. Bergstra, C.A. Middelburg

Table 14 Additional transition rules for cyclic interleaving & deadlock at termination

w1l wk L (Thgn, p) L (Thq1r P

(1) ~ oo (zrgn) ~ @), p) 2 ({2 0) ™ @), p')

(o, T) € p(()) (k=0)

x1 17 cey Tk 17 Zy Tv <'7:k’+17 P> £ <.Z’;€+17 pl>

e — (@, T)ep(() (k>1>0)
(@)~ oo Grgn) =~ @), o) 2 () ~ @~ (D)), o)

z1 L ey Tk lv <xk’+17 P> o <1‘;€+17 pl>

(I(z1) ~ oo (zrgn) ™ @), p) L (@™ (@), o)

(a,F) € p(()) (k=0)

x1 17 cey Tk 17 Zy Tv <xk’+17 P> £ <x;€+17 p/>

(I(z1) ~ oo (zagn) ~ @), p) = (@™ (D) ~ (2] 14)),0)

(,F)ep(()) (k=1>0)

(z,p) > (2, p)
o,

(So(@), p) = (Sp(@'), p')

Table 15 Additional transition rules for thread-service composition

(@, p) L (!, pf)

- f#g
(x /¢ H,p) =5 (' /5 H,p')

(,p) L (2, p')
<x/f H7p> 2, <x/ /f va,>

m
(,p) L (2, p')

<x /f H7p> L, <x/ /f va,>

H((m)) € {T,F}, (f?m,T) € p(())

H((m)) =B, f#t, (f?m,F) € p(())

T trm, z'p T, frm, ' p’

(z,p) (p)H(<m>):B (z, p) (p>H(<m>):R
zhHT @/ HT
2 gm o, o
(z, p) —>Wm (', p") Iy

(z /s H,p) =5 (2 [y H,p')

f7?m

<$,P> I <xl7pl>
(x/f H,p) oy, (33/ /f H’pl>
f7?m

<$,P> I <xl7pl>
(x [H,p) =% (2’ /¢ H,p')

H((m)) € {T,F,B}, (f7m,T) € p(())

H((m)) =R, (f7m,F) € p(())

arbitrary basic action from the s€f?m, f?’m | f € F, m € M}. The additional
transition rules for thread-service composition in the presence of guarding tests are
given in Table 15.

Bisimulation equivalence remains a congruence with respect to these opera-
tors. The axioms given in Tables 12 and 13 are sound with respect to bisimulation
equivalence.

A Thread Algebra with Multi-level Strategic Interleaving 23

Table 16 Axioms for delayed processing and exception handling

e flmy=(zdfmDy) <frm>(z D fimy) DP
edfmylz= (e dfmz) IfPmBy EH1
e flmy|z= (@ fm2) I fmb (2 D fimfy]>2) S fPm>y EH2

6 Delayed Processing and Exception Handling

We go on to show how guarding tests can be used to express postconditional com-
position with delayed processing and postconditional composition with exception
handling.

For postconditional composition with delayed processing, we extend the set of
basic actions with the séff!m | f € F, m € M}. Performing a basic actiofim
is like performingf.m, but in case processing of the commands temporarily
blocked, it is automatically delayed until the blockade is over.

For postconditional composition with exception handling, we introduce the no-
tationsz < f.m [y] >z andz < flm [y] > 2. The intuition forz < f.m [y] &> z is that
x < f.m D> zistried, buty is done instead in the exceptional case thatf.m > z
fails because the request to procesis refused. The intuition far < flm [y] > z
is thatz < flm > z is tried, buty is done instead in the exceptional case that
x < flm > 2 fails because the request to processs refused. The processing of
m may first be blocked and thereafter be refused; in that gaisejone instead as
well.

The defining axioms for postconditional composition with delayed processing
and the two forms of postconditional composition with exception handling are
given in Table 16. Axiom DP guarantees tlfat: is only performed iff 7m yields
a positive reply. Axioms EH1 and EH2 guarantee tfiat is only performed if
f'myields a positive reply. An alternative to axiom EH2 is

< fimyl>z=((xQfm>2) I f!m> (< flm>2)) I fm>y.

In that casey is only done if the processing af is refused immediately.
From DP, EH1-EH2 and CSI6—CSI7 (Table 12), it follows immediately that

[(z QflmBy) ~a)=[((z 2 fmBy)~a) fImb (e~ (2D flmPy)),

(D fmy|Ez)~a) =[|({(z dfmE2) ~a) L fPmE [[(a~ (y)) ,

|((z 4 flm [y & 2) ~ a)
=z 2 fmBz)~) AfImE [[(a~ (z dflmy] > 2))) LfTmE [[(a~ () -

These equations give a clear picture of the mechanisms for delayed processing
and exception handling.

Henceforth, we write TR“E"IP" for TAIS2" extended with the postcondi-
tional composition operators for delayed processing and exception handling and
the axioms from Table 16.

24 J.A. Bergstra, C.A. Middelburg

Table 17 Transition rules for delayed processing and exception handling

(e AfmPy) AfrmD (z Aftm>y), p) 5 (2, p')
(z Aftm D>y, p) = (', p')
(¢ QfmD>2) A fPm By, p) 5 (W', p')
(< fmy] >z, p) 2 (W', p')
(((z QfmP>2) Aftm D> (z D flmy] > 2)) AfPm >y, p) 5 (o, p')

(x I f!m [y >z, p) = (W, p)

We extend T@f’gt’dp’eh with guarded recursion as in the case of; JASys-
tems of recursion equations over mﬁgt’dp’eh and guardedness of those are de-
fined as in the case of T4, but with TA;,, everywhere replaced by Tﬁ’g“dp’d‘.

Henceforth, we will also write TR &P *"+REC for TAZ#"1"*" extended

with the constants for solutions of guarded systems of recursion equations over
TA84IPM and the axioms RDP and RSP from Table 2.

Example 4Let H be as in Example 3. Then the following equations are easily
derivable from the axioms of TA&" 4P

N{(f'.m/ oS) I fomB> (f".m"oS))y~(fm'oS))/t H
=tauoD,

I({(f"-m" 0 S) < flm B (f".m" 0 S)) ~(f.m'0S)) /s H

=tauotauotauotauo f'.m’oS.

The resemblance with the equations from Example 3 is not accidental: the equa-
tion (X|E) = (f'.m' oS) < flm> (f”.m” o S), in which E is the guarded
system of recursion equations from Example 3, is derivable from the axioms of
TApoEh Pl REC.

The additional transition rules for postconditional composition with delayed
processing and postconditional composition with exception handling are given in
Table 17.

Bisimulation equivalence is a congruence with respect to these operators. The
axioms given in Table 16 are sound with respect to bisimulation equivalence.

7 A Formal Design Prototype

In this section, we show that the thread algebra developed in Sections 3-6 can be
used to develop a simplified, formal representation schema of the design of sys-
tems that consist of several multi-threaded programs on various hosts in different
networks and to verify a property of all systems designed according to the schema.

A Thread Algebra with Multi-level Strategic Interleaving 25

We propose to use the terformal design prototypéor such a schema. The pre-
sented schema can be useful in understanding certain aspects of the systems with
which it is concerned.

The set obasic thread expressionwith typical elementP, is defined by

P :=D|S|PIfm>P|Pdflim>P |
P fm[Pl>P|P<flm[P]>P | (X|E),

wheref € F, m € M and(X|E) is a constant standing for the unique solution
for variable X of a guarded system of recursion equatid which the right-
hand sides of the equations are basic thread expressions in which variables may
occur wherever basic thread expressions are expected. Thus, the use of guarding
tests, i.e. basic actions of the forrfigm and f7’m, is restricted to their intended
use.

A thread vector in which each thread has its local service is of the form

(Py }y TLSy) ~ ...~ (P, } TLS,,)

where Py, ..., P, are basic thread expressions, &fflS4, ..., TLS;, are local
services for threads. The local service of a thread does nothing else but maintaining
local data for the thread. A multi-thread vector in which each multi-thread has its
local service is of the form

I(TVa) fp PLS1) ~ ..~ ((TV,) fp PLSL,)

whereTVy,..., TV, are thread vectors in which each thread has its local ser-
vice, andPLS;, ..., PLS,, are local services for multi-threads. The local service

of a multi-thread maintains shared data of the threads from which the multi-thread
is composed. A typical example of such data are Java pipes. A host behaviour
vector in which each host has its local service is of the form

(PV1) b HLS) ~ .~ ([[(PVy,) o HLSy,)

wherePV,,..., PV, are multi-thread vectors in which each multi-thread has its
local service, and{LS+, ..., HLS;, arelocal services for hosts. The local service

of a host maintains shared data of the multi-threads on the host. A typical example
of such data are the files connected with Unix sockets used for data transfer be-
tween multi-threads on the same host. A network behaviour vector in which each
network has its local service is of the form

([(HV1) n NLS1) ~ ..o~ ([[(HV1,) /o NLSL,)

whereHV, ..., HV,, are host behaviour vectors in which each host has its local
service, andVLS, ..., NLS,, are local services for networks. The local service
of a network maintains shared data of the hosts in the network. A typical exam-
ple of such data are the files connected with Unix sockets used for data transfer
between different hosts in the same network.

The behaviour of a system that consist of several multi-threaded programs
on various hosts in different networks is described by an expression of the form

26 J.A. Bergstra, C.A. Middelburg

Table 18 Definition of simulation relation

S sim x
D sim z
z simy A x simz = zsimyJabz

zsimy A zsimw = zJal>zsimyJabw

[[(NV), whereNV is a network behaviour vector in which each network has its
local service. A typical example is the case whatg is an expression of the form

(NP /e TLSy) ~ Py /p TLS3)) fp PLS1) ~
(I((Ps /r TLS3) ~(Py x TLS4) ~(P5)k TLS5)) /p PLS2)) /o HLS1) ~
(ICII((Ps £ TLSg)) /p PLS3)) /h HLS2)) /o NLS ,

where P, ..., P; are basic thread expressioriBLS1, ..., TLSs are local ser-
vices for threadsPLS,, PLS,, PLS3 are local services for multi-threadd LS,
HLS, are local services for hosts, aiLS is a local service for networks. It de-
scribes a system that consists of two hosts in one network, where on the first host
currently a multi-thread with two threads and a multi-thread with three threads
exist concurrently, and on the second host currently a single multi-thread with a
single thread exists.

A desirable property of all systems designed according to the scheid)
is laid down in Theorem 5 below. That theorem is phrased in terms of the relation
sim (is simulated by) on closed terms of fA%"""+REC defined inductively
by means of the rules in Table 18. This relation can be explained as folosist
g means that, in any execution environmenperforms the same actions asin
the same order as, but ¢ possibly performs additional actions prior to each of
those common actions and next to the last of those common actions if their number
is finite. Roughly speaking, Theorem 5 states that, if a finite thread that forms part
of a system designed according to the schdliifdl”) does not make use of the
services that form part of the system, then that thread is simulated by the system.
In other words, the thread is not really affected by the system.

Theorem 5 (Simulation) Let P be a basic thread expression in which all basic
actions are from the seff.m | f € F\ {t,p,h,n},m € M} and constants
standing for the solutions of guarded systems of recursion equations do not occur.
Let C[P] be a context oP of the form||(NV') whereNV is a network behaviour
vector as above. TheR sim C[P]. This implies thaC[P] will perform all steps

of P in finite time.

Proof We prove this theorem for a more general schema than the sdh@ia)
presented above. We consider the schema that is obtained from the one presented
above by replacing all expressions of the fof(%"), whereV is a thread vector,

a multi-thread vector, a host behaviour vector or a network behaviour vector, by
expressions of the forr8%(||(V)). Here, for each ternp and eachn > 0, the

term S5 (p) is defined by induction om as follows:SY(p) is p and sg“(p) is
So(SB(p)). The less general schema is covered bec&f$g(V)) is [|(V).

A Thread Algebra with Multi-level Strategic Interleaving 27

Let TV = (Py p TLS1) ~...~ (P, /t TLS,,) ,
PV ={sp!(I(TVy))/p PLS)~ “<53“’(II(1)) /o PLSL,)
HV = <531(||(PV1)) /h HLS) ~ ...~ (Sp Spit "(I(PV,)) ;n HLSY,)
< ’I’L

YI(HV 1) o NLS2) o~ oo (Sp (|(HV 1)) o NLS1,)
be the thread vector in whiclP occurs, the muIti—thread vector in whichV
occurs, the host behaviour vector in whiEtV occurs and the network behaviour
vector in whichH 'V occurs, respectively. Lét be the position of” in TV, i, be
the position of 'V in PV, ij, be the position oV in HV, andi,, be the position
of HV in NV. Then thepositionof P in SE(||(NV)) is i, + {:(ip — 1 + Lp(in, —
1+ n(in — 1))).

We proveP sim C[P] by induction on the depth dP and case distinction on
the structure ofP:

— P =S: S sim CJS] follows immediately from the definition ofim ;

— P =D: D sim (D] follows immediately from the definition ofim ;

- P=P dfm>P"

We prove this case by induction on the positionfoin || (NV):
— Position of P in || (NV) is 1:

Because? = P’ < f.m> P”, we derive, using TSC4, CSI5 and S2D4,
Sp((TV)) = Sg-(I(TV") < fam e Sp(|(TV") (1), where
TV' = (P, /i TLS3) ~...~ (B,) TLS;,) ~ (P’ } TLS:) ,
TV" =(Py y TLS3) ~...~ (P,) TLS,,) ~(P" }, TLSy) .
Becausel'V, = TV, we derive from (1), using TSC4, CSI5 and S2D4,
So' (I(PV)) = Sp*(I(PV")) < f.m > Sp!([(PV™)) (2), where

PV’ = <S"2(|I(TV2))/pPL52>“~-~“(575“’(||(TVZP))/pPL51p>
~ (Sp (I(TV") /o PLS4) .

PV" = (Sp*(II(TV2)) fp PLS2) ~ ...~ (Sp” ([(TV4,)) /o PLS1,)
~ (S (I(TV"™)) fo PLS) -

BecausePV; = PV, we derive from (2), using TSC4, CSI5 and S2D4,
SeU(I(HV)) = Sp'(I|(HV")) < fm > S (I(HV™)) (3), where

HV' = Sy (1(PV2)) b HES2) o oo (S ([(PV3)) o HES)

~ <SD,(H(PV) /n HLS1) ,
HV" = (S E?(H(PV) HLS2) ~ ... (S (|(PV4,)) o HLS,)

~ (S (I(PV")) /o HLS1) -

BecauseHV, = HV, we derive from (3), using TSC4, CSI5 and S2D4,
S”(H(NV)) SE(I(NV')) < f.m &= SE([[(NV"™)) (4), where
NV' = (S (I(HV2)) o NLS5) ~ ...~ (SE ([(HV1,)) o NLSL,)

~ <SB (I(HV")) /o NLS1)
NV = (Spt (|(HV2)) o NLS3) ~ ...~ (Sp ([(HV1,)) /o NLS1,)

~ <S"1 (I(HV"™)) /o NLS1) .
The depth ofNV' and NV is one less than the depth &f)/. Hence, it
follows from (4), using the induction hypothesis and the definitiosiof,
thatP’ < f.m> P” sim C[P’ < f.m> P"].

J.A. Bergstra, C.A. Middelburg

Below, in similar pieces of proof, more than one case must be considered
because TSC4, TSC5, TSC6 or TSCY7 is applicable where above only TSC4
is applicable.
— Position of P in || (NV) is greater than:
LetTV, = <P1 /t TL51> (O S <Plt /t TLSlt> s
PV1 = (S5 ([(TV1)) fp PLS1) ...~ (Sp” (I(TV4,)) /o PLSL,),

HVy = (S5 ([(PV1)) o HLS1) ~ ...~ (SE™ ([(PV,) o HLSy,)
be the thread vector at positidnin PV, the multi-thread vector at po-
sition 1 in HV; and the host behaviour vector at positibnin NV,
respectively. We make a case distinction on the structurg of

e P, = S: We derive, using TSC1 and CSIZ]' (||[(TV1)) =
Sgt([(TVY)), where TV = (P fy TLS2) ~ ...~ (P, / TLS;,).
Therefore,SB([(NV)) = SE(I[(NV')), where NV’ is NV with
S5t (|[(TV1)) replaced byS3'(|[(TV7})). The position of P in
SB(|[(NV")) is one less than the position &fin SE(||(NV)). Hence,
it follows, using the induction hypothesis, th@tsim C[P].

e P, = D: We derive, using TSC2 and CSISJ'(||(TV1)) =
Sprtt(|(TVY)), where TV = (P /i TLSy) ~...~ (P, / TLS,,).
Therefore,SE(|(NV)) = SE([(NV')), where NV is NV with
SpH(||(TV 1)) replaced bySp ™ (||(TV})). The position of P in
SB(|[(NV")) is one less than the position &fin SE(||(NV)). Hence,
it follows, using the induction hypothesis, th@tsim C[P].

e P, = P/ dfym> P{: On similar lines as forP above,
we derive, using TSC2-TSC7, CSI3-CSI5 and S2D3-S2D4, either
Sa(I(NV)) = Sa(I(NV') < fr.my = SE(I(NV")), SB(I(NV)) =
tau o SE([(NV*)) or SB(|(NV)) = SETH(|[(NV**)), where NV,
NV",NV*andNV** are such that the position &fin S5 (||[(NV")),
SE(I(NV™)), SE(I(NV*)) andSET (||(NV**)) is one less than the
position of P in SE(||(NV)). In each case, it follows, using the induc-
tion hypothesis and the definition efm, thatP sim C[P].

e P, = P/ <filmi> P/: On similar lines as forP above, we
derive, using TSC2-TSC11, CSI3-CSI6 and S2D3-S2D5, either
SBUI(NV)) = (SBUINV')) < fr.ma & SE(I(NV™))) < fi7my &
SeUINV™)), SE(I(NV)) = tauotauoSE([|(NV™)), Sp([|(NV)) =
tau o SE([I(NV™)) or SE(|(NV)) = Sp™([[(NV™™)), where
NV', NV”, ... are such that the position d@® in SE(||[(NV")),
SB(|(NV"), SEUINV™)), SB(I(NV*), SB(I(NV*)) and
SpT(|[(NV***)) is one less than the position &f in SE(||(NV)).

In each case, it follows, using the induction hypothesis and the defini-

tion of sim, thatP sim C[P].

e P, = P/ fi.my [P]']>P/”: On similar lines as foP above, we de-
rive, using TSC2-TSC7, TSC12-TSC14, CSI3—-CSI5, CSI7, S2D3-
S2D4 and S2D6, eithe8?(||(NV)) = (SB(|[(NV')) < fr.mi >
S(I(NV™)) < fr7ma = SB([(NV™)), SB(I(NV)) = tau o tau o
SBI(VV*)), SB(I(NV)) = tauoSE™ (| (NV™)) or SE(|(NV)) =

A Thread Algebra with Multi-level Strategic Interleaving 29

tau o SE(||[(NV**™)), whereNV', NV”, ... are such that the posi-
tion of Pin S (||(NV")), S5 (I(NV")), Sa(I(NV")), S5 (I(NV*)),
SpH(|[(NV*)) andSE (|| (NV***)) is one less than the position Bf
inSE(]|(NV)). In each case, it follows, using the induction hypothesis
and the definition okim , thatP sim C[P].

e P, = P/ dfi!my [P{']> P{”: On similar lines as forP above,
we derive, using TSC2-TSC14, CSI3—-CSI7 and S2D3-S2D6, either
SEUINV)) = ((SBUI(NV")) < frama & SE(I(NVY))) D fr7my B
SEUINV™))) D fi7tmy &= SE(I(NV™)), SE(I(NV)) = tau o
tau o tau o SE(||(NV™)), SE(|[(NV)) = tau o tau o SE(|[(NV™)),
S3(I(NV)) = tau o SEFL([(NV™*)) or SE([(NV)) = tau o
SE(|[(NV****)), where NV', NV", ... are such that the position
of P in SE([[(NV)), Sp(I(NV")), SE(I(NV™)), SE(I(NV™)),
SBUNY)), SEEL(INY ™)), SE(I(NV™)) andSp([|(NV =)
is one less than the position &fin SE(||(NV)). In each case, it fol-
lows, using the induction hypothesis and the definitionsiof , that
P sim C[P].

e P, = (X|E): Lettx be the right hand side of the equation f&rin
E.ByRDP,(X|E) = (tx|E). Hence, in this cas®; can be replaced
by (tx|E). The structure oft x| E) is covered by one of the previous
cases.

O

In the proof of P sim C[P] for the caseP = P’ < f.m[> P” given above, we
show among other things that multi-level cyclic interleaving (in the presence of
delayed processing and exception handling) is fair, i.e. that there will always come
a next turn for all active threads, multi-threads, etc. For the single-level case, a
mathematically precise definition of a fair interleaving strategy is given in [9].

8 Conclusions

We have presented an algebraic theory of threads and multi-threading based on
multi-level strategic interleaving for the simple strategy of cyclic interleaving. The
other interleaving strategies treated in [7] can be adapted to the setting of multi-
level strategic interleaving in a similar way. We have also presented a reasonable
though simplified formal representation schema of the design of systems that con-
sist of several multi-threaded programs on various hosts in different networks.
By dealing with delays and exceptions, this schema is sufficiently expressive to
formalize mechanisms like Java pipes (for communication between threads) and
Unix sockets (for communication between multi-threads, called processes in Unix
jargon, and communication between hosts). The exception handling notation in-
troduced is only used for single threads.

To the best of our knowledge, there is no other work on the theory of threads
and multi-threading that is based on strategic interleaving. Although a determinis-
tic interleaving strategy is always used for thread interleaving, it is the practice in

30 J.A. Bergstra, C.A. Middelburg

work in which the semantics of multi-threated programs is involved to look upon
thread interleaving as arbitrary interleaving, see e.g. [1,10].
Options for future work include:

— formalization of mechanisms like Java pipes and Unix sockets using the thread
algebra developed in this paper;

— adaptation of some interleaving strategies from [7], other than cyclic interleav-
ing, to the setting of multi-level strategic interleaving;

— extension of the program algebra from [6] with features for delayed process-
ing and exception handling, with a behavioural semantics based on the thread
algebra developed in this paper.

AcknowledgementsWe thank Mark van der Zwaag from the University of Amsterdam,
Programming Research Group, for suggesting a substantial improvement of the structural
operational semantics of FA presented in a draft of this paper, and for suggesting the use
of the symbol] to denote the auxiliary transition relation employed in the resulting struc-
tural operational semantics [14]. We also thank an anonymous referee for his/her valuable
comments concerning the presentation of the paper.

References

1. E.Abraham, F. S. de Boer, W. P. de Roever, and M. Steffen. A compositional opera-
tional semantics for JavaMT. In N. Dershowitz, editggrification: Theory and Prac-
tice, volume 2772 ofLecture Notes in Computer Sciengages 290-303. Springer-
Verlag, 2003.

2. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A.
Bergstra, A. Ponse, and S. A. Smolka, editétandbook of Process Algehrpages
197-292. Elsevier, Amsterdam, 2001.

3. J. A. Bergstra and |. Bethke. Polarized process algebra and program equivalence. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editoreedings 30th
ICALP, volume 2719 ofLecture Notes in Computer Sciengages 1-21. Springer-
Verlag, 2003.

4. J. A. Bergstra and |. Bethke. Polarized process algebra with reactive composition.
Theoretical Computer Sciencg43:285-304, 2005.

5. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communidatamn.
mation and Contrgl60(1/3):109-137, 1984.

6. J. A. Bergstra and M. E. Loots. Program algebra for sequential dodenal of Logic
and Algebraic Programmingd1(2):125-156, 2002.

7. J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving. Com-
puter Science Report 04-35, Department of Mathematics and Computer Science, Eind-
hoven University of Technology, November 2004.

8. J. A. Bergstra and C. A. Middelburg. A thread algebra with multi-level strategic inter-
leaving. Computer Science Report 04-41, Department of Mathematics and Computer
Science, Eindhoven University of Technology, December 2004.

9. J. A. Bergstraand C. A. Middelburg. Simulating Turing machines on Maurer machines.
Computer Science Report 05-28, Department of Mathematics and Computer Science,
Eindhoven University of Technology, November 2005.

10. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of multi-
threaded programd heoretical Computer Sciencg38(1/3):153-183, 2005.

A Thread Algebra with Multi-level Strategic Interleaving 31

11. J. Gosling, B. Joy, G. Steele, and G. Brach@he Java Language Specification
Addison-Wesley, Reading, MA, second edition, 2000.

12. A. Hejlsberg, S. Wiltamuth, and P. GoldeC# Language Specification Addison-
Wesley, Reading, MA, 2003.

13. C. A. Middelburg. An alternative formulation of operational conservativity with bind-
ing terms.Journal of Logic and Algebraic Programmin§5(1/2):1-19, 2003.

14. M. B. van der Zwaag. Personal communication, 2006.

