
 

Machine scheduling and Lagrangian relaxation

Citation for published version (APA):
Velde, van de, S. L. (1991). Machine scheduling and Lagrangian relaxation. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Centrum voor Wiskunde en Informatica.
https://doi.org/10.6100/IR350591

DOI:
10.6100/IR350591

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR350591
https://doi.org/10.6100/IR350591
https://research.tue.nl/en/publications/0541bee1-7793-43b8-9fbe-9adbb224f6ee


MAC HINE SCHEDULING 
AND 

LAGRANGIAN RELAXATION 

0 
0 

Steef van de Velde 

0 



MACHINE SCHEDULING 
AND 

LAGRANGIAN RELAXATION 



MACHINE SCHEDULING 
AND 

LAGRANGIAN RELAXATION 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor aan de 
Technische Universiteit Eindhoven, op gezag van 

de Rector Magnificus, prof. dr. J.H. van Lint, voor 
een commissie aangewezen door het College van 

Dekanen in het openbaar te verdedigen op 
vrijdag 5 april 1991 te 16.00 uur 

door 

STEVEN LEENDERT VAN DE VELDE 

geboren te Sint Philipstand 

1991 
CWI, Amsterdam 



Dit proefschrift is goedgekeurd door 
de promotor 

Prof. dr. J. K. Lenstra 



Voor mijn vader 



Acknowledgements 

Many people contributed in one way or another to this thesis. Gerard Kinder
vater, Ben Lageweg, Martin Savelsbergh, and Peter de Waal were always 
prepared to help me with text processing and computer programming. Tobias 
Baanders designed the cover. Emile Aarts, Mohamed Dessouky, Antoon Kolen, 
dr. Lebedev, Anne Marie van Luijt, Henk Oosterhout, Udatta Palekar, Chris 
Potts, Maurice Queyranne, and Auke Woerlee gave valuable comments on the 
thesis or on the papers constituting it. Bert Gerards helped me with two particu
lar proofs. Han Hoogeveen conducted joint research on the subjects of the last 
two chapters; he gave candid comments on the others. Laurence Wolsey 
reviewed an earlier version scrupulously; his comments on Lagrangian relaxation 
were particularly helpful. 

lt has been a great privilege and pleasure to have Jan Karel Lenstra as a super
visor. I have benefited and leamed a lot from his expertise. 

I am grateful to them all. 

Steef van de Velde 



T ABLE OF CONTENTS 

1. Introduetion 
l.I. Machine 8Cheduling 
1.2. Combinatorial optimization 
1.3. Lagrangian relaxation and duality 
1.4. Machine scheduling and Lagrangian re1axation 

2. Single-machine schedu1ing 
2.1. The Lagrangian dua1 of Ijprec I ~w1c1 
2.2. Approximation 
2.3. Prima1 decomposition 
2.4. The total weighted tardiness prob1em 

3. Flow-shop scheduling 
3.1. Introduetion 
3.2. Formu1ation and re1axation 
3.3. Dominanee criteria 
3.4. The a1gorithm 
3.5. Extensions 

4. Parallel-machine scheduling 
4.1. Introduetion 
4.2. Minimizing makespan and its dua1 prob1em 
4.3. Duality-based beuristic search 
4.4. The branch-and-bound a1gorithm 
4.5. Computational experiments 
4.6. Conclusions 

5. Common due date scheduling 
5.1. Introduetion 
5.2. Emmons" matching algorithm for the unrestricted problem 
5.3. A new lower bound for the restricted variant 
5.4. A new upper bound for the restricted variant 
5.5. Branch-and-bound 
5.6. Computational results 

6. Just-in-time scheduling 
6.1. Introduetion 
6.2. The insertion of idle time for a given sequence 
6.3. The branch-and-bound algorithm 
6.4. Lower bounds 
6.5. Computational results 
6.6. Conclusions 

Reierences 

Samenvatting 

,. 

I 
I 
8 

17 
35 

39 
40 
47 
49 
51 

55 
55 
56 
61 
62 
64 

67 
67 
69 
78 
80 
82 
88 

89 
89 
91 
91 
95 
96 
97 

101 
102 
I04 
107 
111 
I26 
126 

129 

137 



1 

Introduetion 

1.1. MACHINE SCHEDULING 

Motivated and stimulated by the practical relevanee of production planning and 
computer scheduling problems, scheduling has become an important area of 
operations research. In the broadest sense, 'scheduling is the allocation of 
resources over time toperfarm a collection of tasks' [Baker, 1974], and the theory 
of scheduling is concerned with 'the optimal allocation of scarce resources to 
activities over time' [Lawler, Lenstra, Rinnooy Kan, and Shmoys, 1989] and with 
'the optimal utilization of the usually limited resources in accomplishing the 
variegated tasks or objectives' [Bellman, Esogbue, and Nabeshima, 1982]. 

We confine ourselves to scheduling problems in which each task or activity 
requires at most one resource at a time. In this case, scheduling problems are 
usually seen as problems that concern the scheduling of jobs on machines of lim
ited capacity and availability. Such problems are traditionally referred to as 
machine scheduling problems. A job consists of an ordered list of operations, each 
of which requires processing during a certain period of time on some machine. 
Each machine can process at most one job at a time and is continuously available 
from time 0 onwards. A job can he processed by at most one machine at a time. 
A schedule specifies for each job when and by which machine it is executed. The 
objective is to find a schedule that optimizes some criterion function. Usually, 
this is a function of the job completion times. 

The variety of machine environments, job characteristics, and objective func
tions give rise to a myriad of machine scheduling problems. In this thesis, we 
consider only deterministic machine scheduling problems: we assume perfect 
knowied ge of the data beforehand. 

In this introductory chapter, we give a flavor of what machine scheduling 
problems and their associated salution techniques are about. We familiarize the 
reader with some scheduling rnadeis and concepts in Section 1.1, in which we 
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consider problems involving the following machine environments: the single
machine shop, the flow shop, and the parallel-machine shop. These machine 
environments are the subject of further study in the subsequent chapters. In Sec
tion 1.2, we point out how machine scheduling problems fit into the beoader 
framework of combinatorial optimization and give an informal introduetion to 
the theory of computational complexity. With the help of this theory, it is possi
bie to classify problems as easy or probably hard to solve. 

Introductions to these fields necessarily have to be selective and concise: only 
those concepts that are relevant for the subsequent chapters are discussed; others 
are merely touched upon. For more elaborate introductions to the respective 
areas, we refer to Conway, Maxwell, and Milier [1967], Baker [1974], French 
[1982], and Law1er, Lenstra, Rinnooy Kan, and Shmoys [1989] for machine 
scheduling, to Lawler, Lenstra, Rinnooy Kan, and Shmoys [1985] fora guided 
tour through combinatorial optimization, and to Garey and Johnson [ 1979] for 
computational complexity. 

The subject of this thesis is the application of Lagrangian relaxation and dual
ity to machine scheduling problems. Although the technique of Lagrangian 
relaxation is known to be helpful in solving many types of hard combinatorial 
optimization problems, its use for machine scheduling problems is limited thus 
far. However, the message of this thesis is that Lagrangian relaxation has much 
to offer to machine scheduling theory. In Section 1.3, we introduce the basic con
cepts and issues involved in the application of Lagrangian relaxation, thereby 
focusing on machine schedu1ing problems. In Section 1.4, we give an overview of 
the literature on Lagrangian relaxation applied to machine scheduling problems, 
describe what our objectives are, and give a preview of the scheduling problems 
that are dealt with in the subsequent chapters. 

1.1.1. Single-machine scheduling 
The usual setting for the single-machine job shop is as follows. A set of n jobs 
~ { J 1, ••• , J n} has to be scheduled on a single machine. Each job Jj 
(j = 1, ... ,n) consistsof one operation requiring processingduringa period of 
1ength p1. Each Jj is only available for processingduringa prespecified period:_it 
becomes available at its release date r1 and must be completed by its deadline dj. 
In addition, each job may have a positive weight wj, which expresses its impor
tance with respect to the other jobs, and a due date dj, by which it should be com
pleted. The weights and the due dates are typically used to define the objective 
function. The machine can handle no more than one job at a time and is continu
ously available from time 0 onwards. 

Consider the data of the 5-job example in Table l.I. All release dates are 
assumed to be 0, and all deadlines are set to infinity. We have represented an 
arbitrary schedule in the form of a so-called Gantt chart in Figure l.I. The 
schedule is feasible in termsof machine capacity and availability: it specifies for 
each job Jj a completion time Cj such that the jobs do not overlap in their execu
tion, and such that Cj-p1 ;;;.o 0 for j I, ... , n. Each job once started is pro
cessed without interruption. We say that a job is preempted if its execution is 
interrupted and resumed at a later point in time. 
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Jl '2 '3 J4 ls 

PJ 6 3 4 6 8 
wJ 5 2 2 2 I 

T ABLE l.I. Processing times and weights. 

FIGURE l.I. Gantt chart. 

We consider an elementary single-machine problem. Suppose the objective is 
to find a schedule that minimizes the sum of the weighted completion times, that 
is, ~J 1 w1c1. This objective function is often interpreted as a measure for the 
work-in-process inventory as well as for the speed by which the producer 
responds to the consumers' demands. The data given in Table 1.1 specify an 
instanee of the problem type of minimizing ~J = 1 w1c1 on a single machine. In 
general, a problem instanee is formed by specific choices for the parameters of 
the problem type. We make now the following observations. 

ÜBSERVATION l.I. In any optimal schedule, the jobs are processed consecutively 
in the in terval [0, ~ J 1 PJ ]. 

After all, the objective function is non-decreasing in the job completion times. 
If there were idle time before the completion of the last job, then the objective 
value could be reduced by shiftingjobs to the left, thereby removing the machine 
idle time. 

ÜBSERVATION 1.2. There is no optimal schedule in which some job is preempted. 
Suppose there were an optimal schedule with some job interrupted and its exe

cution resumed at a later point in time. By processing the different portions of 
the interrupted job immediately before the execution of its last portion, we do 
not change its completion time, but reduce the completion times of the jobs that 
were previously finished between the execution of the first and last portion of the 
preempted job. 

These two observations reduce the single-machine scheduling problem of minim
izing ~J = 1 w1c1 to a sequencing problem: we should determine the sequence in 
which the jobs go through the machine. There is a fundamental algorithm by 
Smith [1956] that solves this problem in an easy way. 

THEOREM l.I. The single-machine problem of minimizing ~}=t w1c1 is solved by 
processing the jobs in order of non-increasing values w1 I p1. 

PROOF. First, we prove that such an order is necessary for optimality. The proof, 
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typical of a number of proofs in machine scheduling, proceeds by contradiction 
and by use of an interchange argument. Suppose there is an optima} sequence, in 
which h is immediately scheduled before J1 although wk I Pk < w11 p1• These jobs 
are hence not processed in compliance with Smith's rule. If Ck is the completion 
time of Jh thenJ1 is completedat time C1 Ck + p1. Hence, the cost contributed 
by the two jobs is 

wi(Ck +PI)+ wkck. (1.1) 

If we swap J1 and h, the costof their execution amounts to 

w,(Ck + p,- Pk) + wk(Ck + p,). 

Subtracting (1.2) from (1.1) yields 

W1Pk -wkPI = (wllpl-wkiPk)(PkPI) > 0, 

which contradiets the optimality of the first schedule. 

(1.2) 

Second, we need the observation that each sequenee has the same objective 
value if all jobs have equal ratios w1 I p1. This is easi1y established by an inter
change argument. 

The combination of these two arguments leads to the condusion that the 
necessary condition, fully prescrihing the scheduling order, is also sufficient for 
optimality. D 

Notice that the schedule depicted in Figure 1.1 is optimal for the 5-job problem. 
In Chapter 2, we consider the same setting except that there are preeedenee rela
tions between the jobs; this means that each job has a number of jobs, each of 
which has to preeede this job in any feasible sequence. It will turn out that this 
problem is much more difficult to solveto optimality. 

1.1.2. Flow-shop scheduling 
An m-machine flow shop is described as follows. There are m machines, each of 
which can handle at most one job at a time and is continuously available from 
time 0 onwards. There is a set of n jobs ~ = {J I> ••• ,J n}, each of which consists 
of a chain of m operations. The ith operation of job 11 has to be executed on 
machine M; duringa positive processing time Pu (i 1, ... ,m, j =I, ... ,n). 
Note that this means that the jobs pass through the machines in the same order. 
Each job can be executed by at most one machine at a time: operations of the 
samejob may not overlap in their execution. 

Consider the 2-machine 5-job example from Baker [19741 in Table 1.2; we 
have depicted a feasible schedule in Figure 1.2. Observe that both machines pro
eess the jobs in the same order. 

We address the problem of minimizing the maximum job completion time in 
the 2-machine flow shop. The maximum completion time C max = maXJ..,;;,j..,;;, n Cj 
is referred to as the makespan. Note that we have Cmax = 24 for the schedule in 
Figure 1.2. In parallel to the single-machine problem, we make some easy obser
vations. First, there is an optimal schedule in which all the operations are per
formed without any unnecessary delay and without interruption. Second, there is 
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Jl J2 J3 J4 Js 

PlJ 1 3 6 7 5 

P21 2 6 6 5 2 

T ABLE I.2. Processing times. 

0 24 

FIGURE 1.2. Gantt chart. 

an optima} schedule in which both machines process the jobs in the same order. 
A schedule with this feature is called a permutation schedule. The latter observa
tion, easily validated by an interchange argument, is particularly useful: the 
scheduling problem reduces again to a sequencing problem. Let a be some 
sequence with the jobs reindexed in order of appearance. Using the earlier obser
vations, we note that the minimum makespan fora can be expressedas 

k n 

Cmax maxl.;;;k.;;;n(~PlJ + ~P2J). 
j I j=k 

Observe that the makespan of the schedule in Figure 1.2 can be expressed in this 
way. We stipulate the following elementary rule, which is due to Johnson [1954]. 

THEOREM 1.2. The problem of minimizing the makespan in the 2 -machine flow shop 
is solved by scheduling first the jobs with p 11 "";;; p 21 in order of non-decreasing p IJ• 
and then by scheduling the remainingjobs in order of non-increasingp2f D 

Note that the schedule presented in Figure 1.2 is an optimal schedule for the 
instanee in Table 1.2. For the case of m:;;.. 3 machines, there is no easy rule to 
solve the makespan problem. In Chapter 3, we analyze the 2-machine flow shop 
with the objective to minimize the sum of the job completion times, that is, 
~J = 1 c1. It wilt appear that we have to go through a lot more trouble to solve this 
problem. · 

1.1.3. Parallel-machine scheduling 
Suppose there are m parallel machines available for processing a set of n 
independent jobs}= {J 1, •.• .Jn }. Each of these machinescan handle at most 
one job at a time. The processing of J1 (i I, ... ,n) on machine M, 
(i= I, ... ,m) requires a positive uninterrupted period of length p11 • Each job 
has to be scheduled on exactly one of the m machines. We may assume n :;;.. m. 

Consider the following 8-job 3-machine example for which the processing 
times are given in Table I.3. A feasible schedule is given in Figure 1.3; the length 
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of the schedule, or the makespan, is equal to 33. This schedule is obtained by 
simply scheduling each job on the machine that handles it fastest. 

Jl J2 J3 J4 ls J6 J1 Js 
MI 30 6 3 10 12 11 8 6 
M2 20 10 00 15 6 6 14 7 
M3 10 11 9 14 14 00 10 9 

TABLE 1.3. Processing time matrix. 

FIGURE 1.3. Gantt chart for the parallel-machine shop. 

The objective is to find a schedule of minimum length. Again, we make some 
easy observations. Apparently, there is an optimal schedule with each machine 
processing the jobs assigned to it without delay. Furthermore, the order in which 
each machine processes its jobs is immaterial. This scheduling problem reduces 
to an assignment problem: for a given assignment of jobs to machines, it is easy 
to construct a corresponding schedule with minimum makespan. 

The schedule in Figure 1.3 is not optima!. If we decide to assign J 4 to M 3 
rather than to M ~> then we get a schedule with makespan 24, which, as it hap
pens, is not optimal either. 

Obvious and intuitively appealing assignment rules cannot be expected to pro
duce optimal solutions for allinstances of the problem. We will give evidence for 
this in Section 1.2. If we insist on finding the optimal solution, then we could fol
low the approach to enumerate and examine all feasible solutions. Since each of 
the n jobs can be assigned to m machines, there are mn such solutions to con
sider. Since this number grows exponentially with the number of jobs, this 
approach is viabie only for instances of very limited size. An alternative 
approach is to solve the problem to optimality by means of a dynamic program
ming algorithm. For such an algorithm, we need some principle of optimality. If 
we compare all partial schedules for the jobs J 1, ••• , Jj that occupy the machines 
exactly up to times t 1, ••• , tm, then apparently we need only to consider the one 
with least cost, as the other schedules, having higher cost, can never lead to an 
optima! solution. This notion of dominanee is valid, since the order in which the 
jobs are processed on the machines is irrelevant for the length of the schedule. 

This optimality principle can be recursively applied in the following way. Let 
Fj(t" ... , tm) denote the minimum oost for scheduling the jobs J b ... ,Jj 
without idle time subject to the constraint that the last job on M; is completed at 
time t;, for i = 1, ... , m. The initialization of the recursion is 
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{ 

0, if t; 0 for i 

oo, otherwise , 

and the recursion for j = l, ... , n is given by 

l, ... ,m, 

Fj(t J, ••. , tm) mini.;;: i.;;: mmaxg,Fj 1 (tb ... , l;-Ptj• ... , tm) }, 

for t1 = l, ... , T1, 

where T; = };j = 1 Pij· The optima} solution value is then equal to 

mino.;;: t,.;;: T,, ... ,o.;;: t.,.;;: T., Fn(t 1> • • • , tm), 

7 

and the optimal schedule can be found by backtracing. The recursion shows that 
the time required to execute this algorithm grows linearly with the number of 
jobs and the processing times, and exponentially with the number of machines. 
Since we may assume that n ~ m, the dynamic programming algorithm seems to 
be preferabie to complete enumeration, as the time for the latter depends 
exponentially on n. However, the linear dependency on the processing times may 
be prohibitive, even in case of few machines. In addition, the space required to 
effectuate the optimality principle also grows linearly with the processing times 
and grows exponentially with the number of machines. These time and space 
requirements seriously limit the applicability of the dynamic programming algo
rithm. In that sense, the parallel-machine problem seems to he much more diffi
cult to solve than the first two problems we considered. 

1.1.4. Problem classification 
Because of the huge variety of machine scheduling problems, we need a classifi
cation scheme to make them rapidly accessible and easy to refer to. We adopt the 
notation and terminology of the dassification scheme for deterministic machine 
scheduling probieros as proposed by Graham, Lawler, Lenstra, and Rinnooy 
Kan [ 1979]. Classification takes place by use of a three-field notation a I /31 y. 

The first field a specifies the machine environment. For instance, I refers to 
the special case of a single machine and F denotes the flow-shop situation. In 
case of parallel machines, we have a E { P, Q, R }, since three cases can be dis
tinguished. We have a= P if Pu = pj for each J1 and M1; in this case, the 
machines are said to be identical. If Ptj I s1, where s; denotes the speed of 
machine M 1, then the machines are uniform, which is denoted by Q. In the gen
eral case, the machines are unrelated, which is specified by R. In general, the 
number of machines is specified as part ofthe problem instance. However, if the 
symbols F, P, Q, or R, are immediately foliowed by an integer, then the number 
of machines is specified as part of the problem type and is equal to this integer. 
For example, F2 refers to the 2-machine flow shop. 

The second field contains the job characteristics. If it is empty, then the default 
assumptions apply. This means that preeroption oJ;_jobs is not allowed, that no 
preeedenee relations are specified, that rj = 0 and d1 = oo for all jobs, and that 
the processing times are arbitrary non-negative inte_gers. The most common acro
nyms that occur in this field are pmtn, pree, rj, and d1, indicating that preeroption 
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is allowed, that there are preeedenee relations between the jobs, that the jobs 
have release times, and that the jobs have deadlines, respectively. 

The third field specifies the objective function. For instance, y C max denotes 
the makespan criterion, and y = '2:.} 1 w1Ci means that the objective is to minim
ize the sum of the weighted job completion times. Other important objective 
functions are the sum of weighted tardiness '2:.} = 1 w1 ~, where ~ denotes the tar
diness of J1, defined as Tj::::: max { Cj- dj, 0}, and the maximum lateness Lmax• 

defined as Lmax = max1 ,;;;j ,;;;n (Cj- dj). Lj = Cj dj is called the lateness ofJ1. 
The three scheduling problems introduced earlier are denoted by 11 I '2.w1c1, 

F2ll Cmax• and R 11 Cmax• respectively. 

l.2. COMBINATORIAL OPTIMIZATION 

Machine scheduling problems belong to the area of combinatorial optimization. 
Combinatorial optimization involves problems in which we have to choose the 
best from a finite number of relevant solutions. For the first two scheduling 
problems, for instance, we can restriet ourselves to the n ! permutations of the n 
jobs: for each permulation (or sequence) there is only one relevant schedule, 
since the schedules with avoidabie machine idle time before or between the exe
cution of jobs are dominated by the schedules without avoidabie machine idle 
time. For the third problem, there are at most mn assignments. Given an assign
ment of jobs to machines, we can easily compute the associated minimum mak
espan. 

The finiteness of the solution set suggests the brute-force approach of exhaus
tive or explicit enumeration to be effective: simply generate all feasible solutions, 
examine their costs, and select the best one. Such an approach can be very time
consuming, since the required effort to examine all schedules grows exponen
tially with the number of jobs. It is to be expected that the number of basic arith
metic operations (additions, subtractions, and multiplications) to be performed 
will at least be of the order n !, n !, and mn, respectively. As there is an upper 
bound on the number of operations that a computer can perform per period of 
time, problems of only very limited size are effectively solvable by explicit 
enumeration. 

We have therefore good reasons to search for faster algorithms. Such algo
rithms are apparently available for the problems II I '2.wjCj and F21 I C max: 

both are solvable by simple scheduling rules that ask us to arrange the jobs in a 
certain order. The R I I C max problem seems to be much harder to solve. 
Although under certain circumstances the dynamic programming algorithm may 
be preferred to complete enumeration, the effort to solve the problem compares 
very poorly with the effort needed for the first two problems. The fundamental 
question is whether there exists a simple algorithm for R I I C max or not. If not, 
then this problem may considered to be 'hard' in comparison with the 'easy' 
problems lil '2.w1Cj and F211 Cmax· 

The distinction between easy and hard problems apparently involves the effort 
required to solvethem to optimality. Since the effort grows with the size of the 
problem instance, it makes sense to express the effort as some function of this 
size. The size of an instanee is defined as the number of symbols required to 
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represent it. The size is encoding-dependent: it makes a difference which 
representation system we employ. Integers may be represented by an arithmetic 
system to some fixed base B ;;;:. 2, in which case ~og8 n 1 symbols are required to 
represent an integer n. If B = 2, then we have a binary encoding. If B = 10, then 
we have a decimal encoding. Another system is a unary encoding. Under a unary 
encoding, integers are represented by a series of l's, the lengthof which is equal 
to the value of the integer: to represent an integer n, weneed n symbols. We will 
see that the differenee between a unary encoding and an arithmetic encoding to 
some fixed base i~ relevant for number problems. A problem is called a number 
problem if no polynomial function p exists such that for any instanee I the larg
est integer occurring in I is bounded from above by the value that p assumes for 
the size of I. 

For the representation of integers by arithmetic systems to some fixed base it 
does not really matter what base is used. Sinee B is fixed and log8 n = 
logn 11ogB, the number of symbols required to represent an integer n grows as a 
logarithmic function of n for any B ;;;:. 2. In the remainder, we only consider a 
binary encoding. The results, however, apply also to arithmetic systems to other 
fixed base B > 2. 

The running time of an algorithm for a given problem is measured by an upper 
bound on the number of elementary steps that the algorithm performs on any 
valid input, expressed as a function of the size of the input. If the size of the 
instanee is measured by n, then the running time of an algorithm is expressed as 
0(/(n)) if there are constants c and n0 such that the number of steps for any 
problem instanee with n ;;;:. n0 is bounded from above by cf (n ). A similar defini
tion can he given for the space requirement of an algorithm. These measures 
express the rate of growth [Papadimitriou and Steiglitz, 1982] of the complexity of 
the algorithm. 

If we reconsider 11 I ~w1c1 , then the size of a problem instanee is the number 
of symbols required to represent PJ and w1 for j = I, ... , n. This size is 
O(~J= 1 (Iogp1 + logw1)) under a binary encoding. However, we will assume 
throughout that each basic arithmetic operation requires constant time. We 
assert that complete enumeration canthen be implemenled to run in O(n !) time. 

DEFINITION 1.1. A problem is solvable in polynomial time with respect to a certain 
encoding if there exists an algorithm for it whose running time is bounded from 
above by a function that is a polynomial in the length of that encoding. 

Hence, if the length of the encoding is measured by n, then an algorithm is a 
polynomial-time algorithm if its running time is O(nk), forsome fixed k. From 
now on, a problem is said to be easy if it is solvable in polynomial time. The 
problems II I ~w1c1 and F21 I C max are easy. Both Smith's and Johnson's rule 
require that the jobs be arranged in a certain order. Sinee sorting a list of n ele
ments takes O(nlogn) time (see e.g. Aho, Hopcroft, and Uilman [1982]), both 
problems are solved in O(nlogn) time. Note that the space required is also poly
nomially bounded. In general, the spaee requirement is polynomially bounded if 
the running time is. 
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The dynamic programming algorithm for the R I I C max problem requires 
O(nmCm) time and O(nCm) space, where Cis an upper bound on the optimal 
makespan. If the length of the encoding is measured in the obvious terms of the 
number of jobs n, the number of machines m, and log(~ i"= 1 ~J = 1 Pu), then tbis is 
clearly not a polynomial procedure: the number of machines appears in the 
exponent and C cannot be bounded in the above terms. 

1.2.1. Computational complexity: the classes 15' andC!lli5' 
There is an elegant theory of computational complexity that classifies problems 
as hard or easy. It carries strong evidence that it is very unlikely that there exist 
polynomial-time algorithms for problems that are classified as hard. For an 
introduetion to this theory, we refer to the seminat works by Cook [1971] and 
Karp [1972], and to the textbook by Garey and Johnson [1979]. Intbis section, 
we confine ourselves to an informal description and a review of the basic con
cepts. 

The theory involves decision problems rather thari optimization problems. We 
define a decision problem to be a question to wbich the answer is either 'yes' or 
'no'. Any optimization problem can be viewed as a finite series of decision prob
lems. Soppose the objective is to minimize some function f (x) over x; the associ
ated decision problems are then of the type: is f(x)..;:;; k?, where kis repeatedly 
adjusted by binary search over ar1 appropriate interval for k. If a particular deci
sion problem is solvable in polynomial time, then the related optimization prob
lem is so1vable in polynomial time if its optimal solution value is an integer 
whose logarithm is polynomially bounded in the size of the input. 

DEFINITION 1.2. The class 15' contains all the decision problems that are solvable 
in polynomial time. 

The decision variant of the I I I ~wjCj problem is as follows: given an integer k, 
is there a schedule for wbich ~J 1 wjCj..;:;; k? If the answer is 'yes', then we cari 
verify the correctnessof the answer in polynomial time when provided with a 
schedule. After all, the schedule specifies the job completion times, wbich in turn 
serve as input for some algorithm that checks whether the schedule is feasible 
and whether ~j 1 wjCj ..;:;; k. Under a binary encoding, both the input and the 
running time of the algorithm can be polynomially bounded. The job completion 
times are then a concise certificate for a polynomial-time certificate-checking algo
rithm. The decision problems for F 11 Cmax and R 11 Cmax are of the same type: 
given ari integer k, is there a schedule with C max .s; k? It is easy to verify that con
cise certificates and polynomial certificate-checking algorithms exist for these 
problems. 

At this point, we are ready to introduce the class 'Jti5'. 

DEFINITION 1.3. The class 'Jti5' oomprises all decision problems for wbich concise 
certificates and polynomial-time certificate-checking algorithms exist. 

Note that we have that 15Jç;;'Jti5'. The crudal question is whether 15' = 'Jti5', that is, 
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are the problems in '1UP solvable in polynomial time? It is widely conjectured that 
this is not the case, i.e., that '!P;:f::9U5', since 9L'!P contains so many difficult prob
lems, including the decision versions of the traveling salesman problem and 
integer programming, for which polynomial-time algorithms have not been . 
found, in spite of the many man years devoted to these problems. The notion of 
polynomial reducibility is very important in complexity theory; we give the 
definition as formulated by Lawler, Lenstra, Rinnooy Kan, and Shmoys [ 1989]. 

DEFINITION 1.4. A problem A is polynomially reducible to problem B if and only 
if there exists a polynomial-time eomputable funetion T that transforms inputs 
for A into inputs for B such that x is a 'yes' input for A if and only if T(x) is a 
'yes' input for B. 

The notion of redueibility in polynomial time is transitive: if a problem A 
reduces polynomially to problem B, and if problem B reduces polynomially to 
problem C, then problem A reduces polynomially to problem C. 

DEFINITION 1.5. A problem is said to be 9L'!P-eomplete if it is a member of the 
elass 9L'!P, and if every problem in 9L'!P is polynomially reducible to it. 

The notion of 9L'!P-completeness interconnects the hardest problems in 9L'!P in the 
sense that if there would be a polynomial-time algorithm for one partienlar 9L'!P
eomplete problem, then it could be transformed into polynomial-time algorithms 
for all other 9L'!P-complete problems. In order to prove that a partienlar problem 
is 9L'!P-complete, we must show that it is a member of 9L'!P and that all other prob
lems in 9L'!P are polynomially reducible to it. Cook [1971] proves this for the so
called satisfiability problem. Since the notion of reducibility is transitive, it suf
fices for any other alleged 9L'!P-complete problem to show that it is in 9L'!P and 
that some known 9L'!P-complete problem polynomially reduces to it. The above 
definitions and concepts imply that it is very unlikely that there exist 
polynomial-time algorithms for problems that are 9L'!P-eomplete. 

Garey and Johnson [1979] present an extensive list of problems that have been 
shown to be 9L'!P-complete, including the P ARTITION problem. 

PARTITION 

Given a multiset & = {a 1, ••• , a1} of t integers, does & include a subset &1 such 
that 

t 

~ aj = ~ a112? 
a,EB, j==l 

We now prove what we alluded to before: the deeision problem of the R 11 C max 

problem is 9L'!P-eomplete; henee, it is very unlikely that there exists a 
polynomial-time algorithm for the optimization problem. We give a polynomial 
rednetion from PARTITION. 
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TIIEOREM 1.3. The decision variant of the R I I C max problem is !.?JL<?Y-complete, even 
in the case of two identical machines. 

PROOF. It is obvious that the problem is a memher of the class !.?JL<?Y. We prove 
that PARTITION is polynomially reducible to our decision problem. For any 
instanee of PARTITION, construct the following instanee of the scheduling prob
lem: 

m=2, 

n = t, 
piJ=a1, for i=I, ... ,m,j=I, ... ,n, 

t 

k = ~a1 12. 
j=l 

It is easy to verify that the question whether there exists a schedule with 
C max .;;;;; k has an affirmative answer if and only the instanee of the P ARTITION 
problem is a 'yes' instance. Clearly, the reduction is polynomial. 0 

Optimization problems are not in !.?JL<?Y, but they are said to be !.?JL<?Y-hard if their 
decision variants are !.?JL<?Y-complete: apparently, such problems are at least as 
hard as the problems in !.?JL<?Y. 

We comeback to the difference between a binary and a unary encoding of the 
input. The distinction is relevant for those number problems that are !.?JL<?Y
complete under a binary encoding, but salvabie in polynomial time under a 
unary encoding. For PARTITION, for instance, there is a dynarnic programming 
algorithm that runs in O(tL}=I aj) time and space, which is polynomially 
bounded under a unary encoding. Such an algorithm is not polynoniial under a 
binary encoding, and is therefore called a pseudo-polynomial-time algorithm. 
Problems that are !.?JL<?Y-complete under bath encodings are called strongly !.?JL<?Y
complete. Problems are said to be ordinarily !.?JL<?Y-complete if they are !.?JL<?Y
complete under a binary encoding. 

Note that the Rm 11 Cmax problem is salvabie in polynomial time under a 
unary encoding. The number of machines is here specified as part of the problem 
type and not of the problem instance. In other words, the number of machines is 
fixed. The dynarnic programming algorithm runs in 0 (nmCm) time and 0 (nCm) 
space, with C some upper bound on the makespan. Since we have that 
C.;;;;minJ.;;;;.;;;mLj=IPiJ' the running time can altematively be written as 
O(nm(min1.;;;;.;;;m Lj=IPiJ)m) time. For fixed m, this time requirement is polyno
mial under a unary encoding. 

Although we have shown that the decision variant of R I I C max is !.?JL<?Y
complete in the ordinary sense for a fixed number of machines by a reduction 
from PARTITION, it is possible to prove that the problem is !.?JL<?Y-complete in the 
strong sense in case of an arbitrary number of machines. The reduction is from 
3-PARTITION, one of the basic strongly !.?JL<?Y-complete problems. 
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3-PARTffiON 

Given an integer b and a multiset ée = {ah ... , a 3t} of 3t positive integers with 
tb< aj <tb for each j, j = 1, ... , 3t, and with -:z:jt 1 aj =tb, is there a parti
lion of ée into t mutually disjoint subsets ée1, ... , &r such that 

ée= ée1 U · · · Uéfr 

and 

The reduction is omitted, but proceeds in the samespirit as the former. 

1.2.2. Optimization 
Although optimization algorithms for hard combinatorial optimization algo
rithms are unavoidably enumerative in nature, the aim is still to develop algo
rithms that perform satisfactorily well on the average for instances of reasonable 
size. The main concern is to avoid exhaustive enumeration of the solution space, 
since this would imply computational suïcide. There are a number of generic 
optimization methods: dynamic programming, branch-and-bound, and cutting 
plane methods. 

Both dynamic programming and branch-and-bound aim at implicit enumeration 
of the solution space. For the application of dynamic programming, we need to 
identify some underlying principle of optimality. We have seen an example of 
dynamic programming for the R 11 C max problem. Application of the optimality 
principle may require both time and space that is not bounded by a polynomial 
in the length of the input. Nonetheless, dynamic-programming based pseudo
polynomial algorithms may be very efficient. 

Branch-and-bound solves a combinatorial optimization problem 'by breaking 
up the feasible set of solutions into successively smaller subsets, calculating 
bounds on the objective function value over each subset, and using them to dis
card certain subsets from forther consideration' [Balas and Toth, 1985]. 

For the R I I C max problem, for instance, a simple lower bound on the objec
tive function over the entire set of solutions is given by 
r-:z:J 1 mini ,.;; i,.;; mPiJ I m l, where r x 1 denotes the smallest integer not smaller 
than x. After all, the n jobs combined require at least :Z:J = 1 min1,.;; i< mPiJ time, 
and it is ideal to split this requirement equally over the m machines. This bound 
may be rounded up to the nearest integer, since the optimal makespan will be 
inlegral due to integrality of the processing times. Partitioning of the set of all 
feasible schedules into m subsets could proceed according to the assignment of 
some job. For the instanee given in Table 1.3, we partilion the feasible set into 
three subsets according to whether we assign J 1 to M 1, M 2, or M 3• Bearing in 
mind that 24 is an upper bound on the optimal makespan, we discard the assign
ment of J 1 to M 1, since this requires 30 units of time. Hence, we ignore all feasi
ble solutions in which J 1 is scheduled on M 1 • N ow consider the scheduling of J 1 

on M 2. A lower bound is then given by (p 12 + 2::J=2min1..;;,.;;mPij)lm = 21-}. 
As we cannot discard the assignment of J 1 to M 2 at this stage, we may forther 
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partition this set of feasible solutions with J 1 scheduled on M 2 according to 
whether we assign J 2 to Mb M 2, or M 3• We proceed in this way until we have 
discarded alJ possible subsets. 

The feasible set of sequencing problems, including single-machine and flow- . 
shop problems, is usually partitioned according to the job that is sequenced in 
the next available position, starting either at the beginning or at the end of the 
sequence. 

It is helpfut to visualize the partitioning of the feasible set as a tree tumed 
upside down, having nodes and branches. The nodes represent the subsets; the 
branches indicate a further partitioning of these subsets. 

Several factors affect the performance of a branch-and-bound algorithm. The 
growth of the search tree depends largely on the strength of the lower bound. The 
stronger the lower bound the fewer nodes have to be examined, but strong lower 
bounds usually ask more computing time than weaker bounds. The size of the 
tree is also affected by the quality of the upper bound, the use of other elimina
tion criteria, and the partitioning (or branching) strategy. Furthermore, the stra
tegy that dictates the order in which the nodes are examined is also very impor
tant. 

Lagrangian relaxation (Section 1.3) is a generic technique to compute strong 
lower bounds; it may also behelpfut for the development of upper bounds, elimi
nation criteria, and partitioning strategies. 

The aim of cutting plane methods, finally, is to solve integer linear program
ming problems by linear programming. This is possible if we have a complete 
description of the convex huil of the solution space by means of linear inequali
ties. In genera1, it is difficult to find such a description. A partial description, 
however, is also useful, since the solution of the linear program may then induce 
a strong lower bound, which in turn can be used in a branch-and-bound or 
branch-and-cut algorithm. The latter has been shown to be successful for a 
number of combinatorial optimization problems including the traveling sales
man problem (see e.g. Grötschel and Padberg [1985] and Padberg and Rinaldi 
[1987]), but its success for machine scheduling problems is modest up to now. 
Cutting planes will not be considered here; we refer to Schrijver [1987] for an ela
borate treatment of this subject. 

1.2.3. Approximation 
If a combinatorial optimization prob1em is 0t~-hard, then we know that an 
optimization algorithm is likely to take a spperpolynomial amount of time in the 
worst case. This makes optimization algorithms unreliable, since it is usually 
impossible to gauge beforehand how much time will be needed. Instead of pursu
ing an optimal solution, we could settie for a good approximate solution that 
hopefully can be obtained at the expense of considerably less effort. The 
dilemma is to spend an uncontrollable and possibly exponential amount of time 
to find an optimal solution, or to spend an acceptable amount of time to find a 
near-optimal solution. For the second option, we also have to deal with the 
trade-off between the quality of the approximate solution and the time invested 
to find it. How can we measure the quality of an approximate solution, or at a 
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higher level, how can we evaluate the performance of an approximation algo
rithm? There are a few methods for this, including empirica/ analysis,probabilistic 
analysis, and worst-case analysis. 

The empirical analysis of an approximation algorithm can be oonducted in 
various ways. Usually, it oornes down to running a oonsiderable number of tests 
on different instances of the problem, and oomparing the approximate salution 
value with the solutions generated by other approximation algorithms, with the 
optimal salution value (if this can be found), or with a lower bound on the 
optimal value. By performing empirical analysis, the aim is to get some feeling of 
the average performance of the approximation algorithm. 

FortheR 11 C max instance, we applied a simple dispatching rule: while running 
through the list of jobs, we assigned each job to the machine that has the smallest 
processing time for it, thereby obtaining a schedule with C max = 33. Reeall that a 
lower bound is given by p-:j 1 min1 ..;; i..;; mPiJ I m 1, which gives 19 for the 
instanee of Table 1.3. This renders little information about this instance: the 
approximate salution in Figure 1.3 is poor, or the lower bound is. 

The probabilistic performance analysis of an approximation algorithm takes 
place subject to a ebasen probability distribution of the instances, and all state
ments are made subject to this distribution. The goal is usually to establish that 
the algorithm is asymptotically optimal under a certain probability distribution 
of the instances. Another, equally important, aim is to get a pro babilistic charac
terization of the optimal salution value. This, in itself, is aften the basisfora pro
babilistic performance analysis of the algorithm. 

A worst-case analysis measures the behavior of the algorithm in the worst case 
rather than in the average case. Such an analysis oonveys a pessimistic view, since 
the worst case may not be representative. However, a worst-càse analysis 
proceeds independently of the distri bution of problem instances, and gives there
fore a performance guarantee for all instances. An approximation algorithm that 
asymptoticaliy never delivers a salution value of more than p times the optimal 
salution value is called a p-approximation algorithm. We refer top as the worst
case ratio. 

The dispatching ruie for the R I I C max problem has worst-case ratio m. After 
all, we have that the resulting makespan is no more than "i.J = 1 min1 <i <mPij• and 
alower bound is given by "i.J 1 min1 < 1 ..;;mPulm. To show that this ratio is tight, 
consider the following instance: 

n =km, 

pij= I, forj I, ... ,n, 

Pij = 1 + E:, for i 2, ... , m, j = 1, ... , n, 

where k is some given constant, and 0 < E: < I Ik. The approximation algorithm 
assigns all jobs to M 1, thereby producing a schedule with makespan n. In any 
optimal schedule, however, exactly k jobs are assigned to each machine; this 
gives the makespan k(l +E:). It is easy to see that the ratio p = nl(k +kE:)-m if 
E:-0. 

A number of popular techniques are applicable to the design of approximation 
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algorithms for machine scheduling problems. We wil1 only give a sample of these 
techniques, nota complete classification. We have already seen a memher of a 
simple but widely applicable class of approximation algorithms: the class of 
dispatching rules. These rules make use of priority functions that associate an 
urgency measure with each job, according to which it is assigned or sequenced. 
Such priority functions are based upon intuitively reasonable but often only 
locally valid arguments that estimate the urgencies of the jobs. Not surprisingly, 
they may produce myopie and erroneous schedules. Dispatching rules are 
nonetheless widely applied in complex and large job-shop systems. On the one 
hand, they are easy to develop and to imptement no matter the problem setting; 
on the other hand, their robustness tends to grow with the size of the problem. 

The second class contains the approximation algorithms based upon dynamic 
programming and rounding. This technique is only applicable to a problem if 
there is a pseudo-polynomial algorithm available for its solution. The central 
idea is not to consider the entire state space, but only a specific part of it. In fact, 
this part is chosen such that the dynamic programming, running in pseudo
polynomial time on the entire state space, runs in polynomial time on the 
reduced state space. Such algorithms usually have a performance guarantee. This 
is achieved by rounding down all the data of the problem to a multiple of the 
desired accuracy p > 1, by which only a limited number of distinct data remain, 
and by running the dynamic programming-based procedure. For the R I I C max 

problem, for instance, Horowitz and Sahni (1976] apply this principle to develop 
a p-approximation algorithm, running in O(nm(nml(p l))m 1) time and 
space. 

Third, there are the so-called truncated branch-and-bound algorithms. The 
idea bere is to discard some of the feasible subsets, even if there is no valid rea
son to do so. The decision what subsets to discard can be made arbitrarily; for 
instance, termination may occur upon reaching a prespecified number of nodes. 
It makes more sense, however, to develop a more involved strategy for this. The 
following strategy gives rise to an approximation algorithm with a performance 
guarantee. Instead of discarding a node if the associated lower bound LB is no 
less than the upper bound UB, we now discard a node if pLB ;;;;;. UB for some 
predetermined p > I. This is a p-approximation algorithm, but, in genera!, it is 
still impossible to bound its running time by a polynomial in the size of the 
input. 

Local-search algorithms, finally, are two-phase approximation algorithms. In 
the first phase, a schedule is generated that serves as input for the second phase; 
in the second phase, the schedule is adjusted somewhat in order to improve on its 
value. For the second phase, the usual procedure is to define fora given schedule 
a a neighborhood N" as the set of schedules that can be obtained from a by carry
ing out a prespecified type of changing operations. For parallel-machine schedul
ing problems, for instance, we could define the neighborhood of the schedule a as 
the set of schedules that are obtained eithe-r by reassigning one job, or by swap
ping two jobs that are scheduled on different machines in a. For sequencing 
problems, like single-machine and flow-shop problems, it is customary to define 
the neighborhood of a schedule as those schedules that are obtained either by 
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repositioning one job in the sequence, or by interchanging two jobs. The pro~ 
eedure proceeds by searching the neighborhood N" fora schedule with smaller 
objective value, which wilt be our new approximate solution. This process is 
repeated and terminates when no further improvement can be found. Evidently, 
procedures based upon this concept provide locally optimal solutions; in general, 
they cannot be guaranteed to find globally optimal solutions. 

Although the procedure above is typical of a plain local~search algorithm, the 
main danger is to get trapped in a relatively poor local optimum. We may cir~ 
cumvent this pitfall by using multiple schedules as starting points, which may 
lead us to multiple locally optimal solutions. Hopefully, one of them is a good 
approximate solution. 

More sophisticated techniques to avoid early entrapment have been 
developed, among which simulated annealing and tabu search take prominent 
places. Simulated annealing (see e.g. Van Laarhoven and Aarts [1987]) leaves the 
possibility open to travel from one local optimum to another. This is achieved by 
accepting deteriorations of the objective value with a probability that is a 
decreasing function of running time. Tabu search [Glover, 1989; De Werra and 
Hertz, 1989] is much similar to simulated annealing, but provides a deterministic 
mechanism to accept deteriorations. 

Globally, we can say that local~search algorithms are easy to develop and to 
implement, and are known to produce excellent results. 

1.3. Lagrangian re/axation and duality 
In Section 1.2, we mentioned the need for strong lower bounds if we want to 
apply branch~and-bound. Mathematica} formulations often provide the insight 
to derive good lower bounds. A common strategy is to relax some of the con
straints such that the resulting problem is easier to solve and provides a lower 
bound to the original problem. The simplest way is the linear programming relax
ation: formulate the problem as an integer linear prograrnming problem, drop 
the integrality constraints on the variables, and then solve the linear program
ming relaxation. Other relaxation methods, such as Lagrangian relaxation and 
surrogate relaxation, are more intricate to perform, but give lower bounds that 
are theoretically at least as good. In this thesis, we consider Lagrangian relaxa
tion and Lagrangian duality, and their opportunities for the development of 
optimization and approximation algorithms for machine scheduling problems. 
Although it is common practice to speak about the Lagrangian relaxation of a 
combinatorial optimization problem, it is more correct to refer to the Lagrangian 
relaxation of a partienlar formulation of the problem. An optimization problem 
often allows different formulations, and one formulation may offer completely 
different opportunities than others. 

Lagrangian relaxation is already a conventional technique, dating back to the 
work by Held and Karp [ 1970, 1971] on the traveling salesman problem. Since 
then, it has shown its merits for a gamut of hard combinatorial optimization 
problems, running from the traveling · salesman problem, partienlar plant Ioca
tion and machine scheduling problems, to general integer linear programming 
problems. Excellent introductions to Lagrangian relaxation are given by 
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Geoffrion [1974A], Shapiro [1979] and Fisher [1981]; an overview of its applica
tions is given by Fisher [ 1981, 1985]. 

Traditionally, though, the emphasis has been on problems that are formulated 
in terms of integer ( usually 0-1) linear programming prob1ems. In this section, we . 
give a broader introduetion to the basicconceptsof Lagrangian relaxation than 
found in the literature referred to earlier, since we do not confine ourselves to 
problems that are formulated as 0-1 linear programs. It will be oriented towards 
machine scheduling, and will place earlier applications of Lagrangian re1axation 
to machine scheduling problems in a specific context. It is unavoidable, however, 
that our introduetion partly parallels other expositions. The undertone of this 
thesis is that Lagrangian relaxation has a wider range of applications than found 
in and suggested by the literature. We do consider other formulations, and, in the 
subsequent chapters, we show that they facilitate the application of Lagrangian 
relaxation to machine scheduling prob1ems. 

To show that combinatorial optimization prob1ems al1ow different formu1a
tions, and to demonstrate what we mean by formu1ations other than integer 
linear programming formulations, we give three different formulations for the 
I I I };w1c1 prob1em. 

The first one is an integer linear programming formulation, an extension of 
which is emp1oyed by Potts [1985A] and Dyer and Wolsey [1990] to obtain lower 
bounds for the problems lipree I };w1c1 and I! r1 I };w1C1, respectively. We intro
duce 0-1 decision variables x1k (j, k 1, ... , n) that assume the value I if job J1 
is sequenced before Jk> and the value 0 otherwise. Naturally, we must have 
xjj 0, for j 1, ... , n. The completion time of J1 is then given by 
};k 1 fkXkj +Pi· The prob1em is to minimize 

subject to 

n n n 

~ ~ WJfkXkj + ~ WJPJ 
j=lk=l j I 

Xkj + Xjk =I, 

Xkj + X[k + Xjf;;;;. 1, 

x1k E {0, 1}, 

Xjj = 0, 

forj, k = 1, ... ,n,j=Fk, (1.3) 

for j, k, I= 1, ... , n, j=Fk, j=Fl, k=j::.l, (1.4) 

forj, k = 1, ... ,n, (1.5) 

forj I, ... ,n. (1.6) 

The constraints (1.3) ensure that J1 is sequenced either beforeh or after h- The 
conditions (1.4) are transitivity constraints'that disallow cycles: if J1 is sequenced 
before h and h before Jr, then we cannot have J1 sequenced after h 

The second formulation is a gencric one; extensions are found for multiple
machine prob1ems (see e.g. Thompson and Zawack [1985/6]). We define 
T };j 1p1. We now introduce integer variables xJt that take the value I if J1 
starts at timet, and the value 0 otherwise. The 111 };w1c1 problem canthen be 
formulated as to minimize 

n T-1 

~ ~ wj(t + p1)x11 
J=l t=O 
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subject to 
T-l 

L Xjt = 1, forj = 1, ... ,n, (1.7) 
t=O 

n I I 

L L x1s = 1, fort = 0, ... , T 1, (1.8} 
j=l s=max{t-p1,0} 

Xjt E {0, 1 }, forj=l, ... ,n,t=O, ... ,T 1. (1.9) 

The conditions (1.7) ensure that each job is started exactly onee in the interval 
[0, T -1], the oonditions (1.8) reflect that the machine can handle on1y one job at 
any point in time between 0 and T, and the conditions (1.9) are the integrality 
constraints on the variab1es. The major handicap of this formu1ation is the 
number of variables: we have nT of them. This formulation requires a pseudo
po1ynomia1 number of variables and oonstraints. 

We now give a formulation that is not an integer linear programming formula
tion. Let c1 be the completion time of J1, for j = I, ... , n. The 11 I ~w1c1 prob
lem is then todetermine job completion times C 1, ••• , Cn that minimize 

subject to 

Ck ;;;;. c1 + Pk or c1 ;;;;. Ck + p1, 

c1 -p1 ;;;;.o, 

forj, k =I, ... ,n,j=/=-k, (1.10) 

forj=l, ... ,n. (1.11) 

The constraints ( 1.10) stipulate that the machine handles at most one job at a 
time: for every pair of jobs J1 and Jb it must be that J1 precedes Jk or that h 
preeedesJ1. The conditions (1.11) express the availability of the machine: no job 
can he started before time 0. 

The tricky issue is actually the lormulation of the capacity constraints of the 
machine. In the integer programming formulations, these capacity constraints 
are formulated by means of 0-1 variables, which accounts for the relatively large 
number of variables. In the third formulation, the capacity oonstraints are for
mulated by means of the '1ogical' disjunctive constraints ( 1.10). It is important to 
realize that, in spite of the glossy formulations, each one still represents a polyno-
mially solvable problem. · 

Such formulations provide the basis for formulations of hard problems. For 
instance, suppose we impose preeedenee constraints between the jobs. It is con
venient to represent such oonstraints by an acyclic preeedenee graph G with ver
tex set {J I> •.• ,Jn} and are set A, which equals its transitive reduction; i.e., no 
are in A can beremovedon the basis of transitivity. A path in G from J1 to Jk 
implies that J1 bas to be sequenced before Jk. The lipree I ~w1C1 problem has 
been shown to be 'E>Ll!P-hard in the strong sense by Lawler [1978] and Lenstra and 
Rinnooy Kan [ 1978]. 
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The preeedenee constraints require the addition of the following type of con
straint in the first formulation, 

for each (J1, h) E A, 

of the following type in the second formulation, 
t 

~Xks;;;.O, fort=O, ... ,T 1, foreach(J1,h)EA, 
s=O 

and the following conditions in the third formulation, 

Lower bounds for the lipree I }";w1c1 problem can be obtained by disregarding 
the preeedenee constraints. Consirlering the first two formulations, we can also 
obtain them by dropping the integrality constraints on the 0-1 variables, and by 
subsequently solving the resulting linear programming problems. For the second 
formulation, this approach is only feasible if T is not too large. At this point, it is 
not clear how the third formulation can be of use. This will become apparent in 
the next section, where we introduce the concept of Lagrangian relaxation. 

1. 3.1. Basic concepts of Lagrangian relaxation 
The main idea behind Lagrangian relaxation is to see an '~Uj-hard combinatorial 
optimization problem as an 'easy-to-solve' problem complicated by a number of 
'nasty' side constraints. These nasty side constraints are removed from the set of 
constraints, and put into the objective function, each weighted by a given 
Lagrangian multiplier. This is what we refer to as dualizing the nasty constraints. 
Dualizing the nasty constraints, we get an easy-to-solve problem, and its solution 
provides a lower bound on the optimal solution value of the original problem. 

Examining the lipree I }";w1c1 problem, we may identify the preeedenee con
straints as the nasty constraints. However, Potts [1985A], using the first formola
tion for the 1 !pree I }";w1c1 problem, does not particularly focus on the pre
eedenee constraints when dualizing. For a specific formulation of the problem, 
there may be no unique set of nasty constraints. In addition, whether constraints 
are nasty or not can often only be decided for a specific formulation of the prob
lem. This gives rise to competing formulations, and to competing relaxations of 
the same formulation. In Section 1.3.2, we present an example of the latter. 

Consider the typical formulation for a combinatorial optimization problem, 
relerred to as problem (P): minimize 

subject to 

ex 

Ax ;;;ob, 

x EX, 

(P) 

where A is a given m X n matrix, b a given m X I vector, and c is a given 1 X n 
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vector; x is an n X I vector of decision variables. It is assumed that X is a non
empty closed set and that X bas some computationally convenient structure not 
shared by the entire problem. We denote by v (P) the optimal objective value of 
problem (P). If we now introduce a non-negative vector of Lagrangian multi
pliers À (Àb ... ,Àm) to dualize the constraints Ax ~ b with, we obtain the 
Lagrangfan problem (LÀ). This problem is to find the value L (À), whlch for a 
given À ;;;;. 0 is the minimum of 

(e M)x + Àb 

subject to 

x EX 

Since we have assumed that X possesses some convenient structure, we may 
assume that the Lagrangian problem is easier to solve than the original problem. 

1REOREM 1.4. The value L (À) is a lower bound on v (P) for a19' À;;;;. 0. 

PROOF. Let x* be an optimal solution to problem (P). Since À;;;;;;, 0 and Ax* ;;;;. b, 
we have that 

L (À) EO; (e-ÀA )x* + Àb = ex* + À(b-Ax*) EO; v (P). 0 

It is easy to verify that if the dualized constraints are equality constraints of 
the type Ax = b, then the associated vector of Lagrangian multipliers is unres
tricted in sign. We assume throughout that the dualized constraints are inequali
ties. This assumption can be made without loss of generality, since any system of 
linear equations can be rewritten in terros of linear inequalities. 

Since L(À) provides a lower bound on v (P), we are interested in determining 
the Lagrangian multiplier À* that yields the best lower bound. Thls problem is 
called the Lagrangian dual problem, referred to as problem (D): maximize 

L(À) (D) 

subject to 

À;;;;.O. 

In general, we cannot guarantee to have v(P) = L(À*); the difference 
v (P) - L(À *)is referred to as the duality gap. In contrast to problem (D), prob
lem (P) is call~ the prima/ problem. If (P) is an integer linear _prograrnming 
problem, then (P) denotes i~ linear programming relaxation; v (P) denotes the 
optimal objective value for (P). As a matter of convenience, we use also an alter
native notation for mathematical programming problems. For instance, we write 
problem (P) as v (P) = min (ex I A x EO; b, x E X}. 

If X (x I x;;;;. 0}, then problem (D) boils down to the dual problem in linear 
programming. Consider 

L(À*) = max(min{(e- M)x + Àb I x;;;;. 0} I À;;;;. 0 }. 
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If the vector (e- i\A) would be negative in one of its components, then the 
minimization over x would require that we put the corresponding c0mponent of 
x equa1 to +co, thereby making the lower bound worthless. We :may confine 
ourselves, therefore, to those veetors À for which e i\A ;;;;. 0. This gives 

L(À*)=max{M I e-i\A ;;;;.O,À;;;;.O}, 

which is clearly the dua1 of the linear program 

min{ex I Ax ;;;ob, x ;;;;oO}. 

In the proof of the following theorem we make use of these arguments. 

TIIEOREM 1.5. /f(P) is an integer linear programmingproblem, then L(À*);;;;. v(P). 

PRooF. Without loss of generality, we may assume that X= 
{x 1 Dx ;;;;;. e, x ;;;;. 0, x integral} with D a matrix and e a column vector, both of 
appropriate dimensions. We now have that 

L(À*) = max{min{(e- i\A)x+M I x EX} I À;;;;;. 0} 

;;;;.max{min{(e-i\A)x+M IDx;;;;oe,x;;;;oO} IÀ;;;;.O} 

= max{min{(e- i\A p.D)x +M + pe I x;;;;;. 0} I À;;;;. 0, I';;;;;. 0}} 

= max{M + pe Ie- i\A -~tD;;;;. 0, À;;;;;. 0, I';;;;;. 0} 

= min{ ex I Ax ;;;;. b, Dx ;;;;;. e, x ;;;;. 0} 
-= v(P). D 

The proof _ of Theorem 1.5 indicates a sufficient condition for having 
L(À*) = v(P). 

COROLLARY l.I. IJ (P) is an integer linear programming problem, and the problem 
min {ex I x E X } ean be solved as a linear programming problem Jor any given 
I X n veetor_e, i.e., the integrality eonstraints on x are redundant, then we have that 
L(À*)=v(P). D 

Adopting the terminology of Geoffrion [1974B], we say that the Lagrangian 
problem possesses the integrality property if the integrality constraints on x are 
redundant. 

1.3.2. An example: the generalized assignment problem 
The generalized assignment problem is a usefu1 problem for expository purposes 
because of its rich underlying structure. This accounts no doubt for the number 
of papers on the prob1em, in which various relaxations and variants of existing 
relaxations are proposed [Klastorin, 1979; Fisher, Jaikumar, and Van 
Wassenhove, 1986; Jörnsten and Näsberg, 1986; Sarin and Karwan, 1987; 
Karwan and Ram, 1987; Guignard and Rosenwein 1989, 1990; Barcia and 



1. 3. Lagrangian refaxation and duality 23 

Jörnsten, 1990]. The. generalized assignment probiem has many interpretations, 
and therefore many potentiai appiications. We interpret it as a machine schedul
ing problem closely reiated to the R 11 C max problem (see Section 1.1.3). Suppose 
we have a set of n independent jobs :}- { J I> ... , J n} and a set of m unreiated . 
parallel machines 01L = { M 1, ••• , M m}. Each of the jobs has to be scheduled on 
one of the machines. The processing of Jj on machine M; requires an uninter
rupted time PiJ for which a penalty cu > 0 is inflicted, for i= I, ... ,m, 
j I, ... ,n. Each M; (i = l, ... ,m) can handle at most one job at a time, and is 
avaiiable for processing from time 0 up to time b;: the total time required by the 
jobs assigned to it may not exceed b;. The objective is to find a scheduie of 
minimum totai cost. 

It is easy to verify that this problem is 'X':'P-hard. The proof proceeds by a 
reduction from PARTITION, and is simiiar to the one fortheR 11 Cmax probiem. 
In the same spirit as for the R I I C max probiem, we can deveiop a dynamic pro
gramming algorithm for it that requires O(nmb~) time and space, where 
bmax max, ,;;;;; ,;;;mb;. 

We formulate the problem as an integer program in the following way. We 
introduce variables xiJ that assume the vaiue I if Jj is assigned to M;, and the 
vaiue 0 otherwise, for i = 1, ... , m, j = 1, ... , n. The problem is then to minim
ize 

m n 

:L :L CyXij 
i=lj=l 

subject to 
n 

:L PuxiJ..;; b;, for i = I, ... , m, (1.12) 
)=1 

m 

:L Xtj I, for j 1, ... , n, (1.13) 
t=l 

Xij E {0, 1 }, for i = 1, ... , m,j = l, ... , n. (1.14) 

The constraints (1.12) in this formulation make sure that the capacities of the 
machines are not exceeded, the constraints ( 1.I3) enforce that each job •is 
assigned, and the constraints (1.14) prohibit preemption. From a different angle, 
we can say that the constraints (1.12) are the knapsack constraints, the con
straints (1.13) are the assignment constraihts, and the constraints (1.14) are the 
integrality constraints. 

First, we focus on the relaxation of the constraints (1.13). At first sight, it 
seems that the vector associated with them must be unsigned. However, since the 
equa1ity constraints can without any consequence be replaced with the inequality 
constraints ::i:7'=t xu ;;;" 1, we introduce a non-negative vector p. (P.l> ... ,p.n) of 
Lagrangian multipliers to dua1ize the constraints (1.13). We obtain the following 
Lagrangian problem: minimize 

m n n 

:L :L (cu - P.j)xu + :L iLJ 
i=lj I j I 
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subject to ( 1.12) and ( 1.14), for a given p. ~ 0. 
This prob1em reduces to m knapsack prob1ems, each of which can be so1ved in 

pseudo-polynomial time: solving the prob1em for machine M1 requires O(nb1) 

time. Hence, the Lagrangian is easy re1ative to the original problem. 
Another option is to introduce a non-negative vector À (À1, ••• , Àm) of 

Lagrangian multipliers and to dualize the constraints (1.12). In this fashion, we 
obtain another Lagrangian problem, which is to minimize 

m n m 

~ ~ (cij+À1pu)xu- ~ À1b1 
i IJ I 1=1 

subject to (1.13) and (1.14), fora given À~ 0. 
This Lagrangian problem is solvable in 0 (nm) time: assign each J1 to the 

machine that has minimum dual cost c11 + À1p 11 for it among the m machines. We 
note that this problem has the integrality property, implying that the best bound 
in this framework equals the optimal value of the linear programming rela.xation. 
The latter is obtained by replacing the integrality constraints (1.14) by the condi
tions x u ~ 0, thereby allowing preemption. 

1.3.3. Solving the Lagrangian dual problem 
Since we have an interest in finding the best lower bound, we pursue the optimal 
Lagrangian multiplier À*. Two fundamental questions arise: (i) how can we find 
À*?, and (ii) how time-consuming is it to find À*? The secoud question red u ces to 
the common trade-off between quality and speed. On the one hand, À* yields the 
best bound, but may be time-consuming to compute. On the other hand, it may 
be easier to compute an approximate value for À*, but this gives a lower bound 
of lesser quality. 

An important observation is that the Lagrangian dual problem (D) is actually 
the problem of maximizing a linear function subject to a finite number of linear 
constraints. Since we have assumed problem (P) to be a combinatorial optimiza
tion problem, X contains only a finite uurober of relevant solutions. Hence, X 
can berepresentedas X= {x<l), ... ,x<K>}. Problem (D) is then equivalent to 
the following prob1em: maximize 

subject to 

z 

z ";;;;; (c M)x(k) + i\b, for k 1, ... ,K, 

À~O. 

The reformulation makes it clear that the function L:À~L(À) is the 1ower 
envelope of a finitesetof linear functions. We have depicted in Figure 1.4 the 
shapeof Lform = 1 andK = 5. 

The retormulation also indicates that (D) is solvable to optimality through 
techniques for linear programming probieros with constraints given implicitly. In 
Section 1.3.3.1, we prove that, under certain conditions, problem (D) can be 
solved in polynomial time through Khachiyan's ellipsoid method [Khachiyan, 
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L(À) 

(c -M)x(l) 
(c -M)x<2> 

(c -M)x<4> 

'•, 

(c -M)x<3> -- ..... '•, 

(c -M)x<5> 

'•, 

0 

FIGURE 1.4. The form of L(À). 

1979]. General techniques to solve problem (D) are the subgradient method and 
the column generation method. The former is easy to implement, and therefore 

· frequently applied; it is described in Section 1.3.3.2. The latter is not discussed 
bere, since it is rarely used; the metbod is difficult to imp1ement and very slow in 
practice. For an exposition of these methods in a general context, we refer to the 
textbooks by Minoux [1986], Schrijver [1987], and Nemhauser and Wolsey 
[1988]. 

Any À~ 0 induces a lower bound on v(P). Approximation algorithms for 
problem (D) are therefore usually local search methods. We discuss two types: 
aseent direction methods (Section 1.3.3.3) and one-shot methods (Section 1.3.3.4). 
In Section 1.3.3.5, we consider some miscellaneous approaches. 

1.3.3.1. The ellipsoid method 
The ellipsoid metbod is a polynomia1 algorithm for linear programming [Khachi
yan, 1979]. We prove bere that, under certain conditions, it can be applied to 
problem (D). The applicability of the ellipsoid metbod is only of theoretica! 
interest; in practice, it is a very slow algorithm that is never used. 

THEOREM 1.6. Problem (D) is solvable in polynomial time if the problem 
min{p.x I x EX} is solvable in polynomial time for any 1 X n vector p. 

PROOF. Let~= { (z,À) I z E IJl, À E Rm, z ~(c -M)x(k) +Àb, for k = 1, ... ,K, 
À~O}. To prove that the ellipsoid metbod is applicab1e to problem (D), it suf
fices to show that the following separation problem for ~is solvable in polynomial 
time (see Grötschel, Lovász, and Schrijver [1981] and Padberg and Rao [1982]): - -
given (Ï,À) E Q X Qm, decide whether (z,À) E ~; if not, give a separating 
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hyperplane, that is, an inequality )\(jT + az ".;;; /3 (dT stands for the transpose of 
the row vector d), such that 

(z,À) E :K~ÀdT + az ".;;; /3, 

and 

ÀcJT + az >/3. 
- -

Observe now that for a given (Z,À) we can determine the value L(À) and the 
corresponding solution vector i in polynomial time, si!!_ce we have ass!:!_med that 
OU!:_ subproblem i~ solvable in polynomial time. If L(À) ;;;;.- z, then (z,À) E :J{; if 
L(À) <z, then (z,À) fJ. ~ and 

z>(c M)i +:V, 

is a separating hyperplane. 0 

1.3.3.2. The subgradient method 
We have seen that the function L : À~ L (À) is the lower envelope of a fini te set 
of linear functions; hence, L is continuous, piecewise linear, and concave in À, 
but, unfortunately, not everywhere differentiable. The function Lis not differen
tiable at any À where (L;~,) bas more than one optimal solution. We call such À the 
points of non-differentiability of the function L; for m I, they are also called the 
breakpoints of L. However, the function Lis everywhere subdifferentiable. A vec
tor 8 E ~m is called a subgradient of Lat À if it satisfies 

L(À +u) L(À) ".;;; u8, for each u E ~m. 

Hence, À is optimal if and only if 0 is a subgradient of L at À. In general, it is 
impossible to prove whether 0 is a subgradient, and we may only establish 
optimality if a sufficient condition for optimality (like the complementary slack
ness condition) is satisfied. The above suggests, nonetheless, that the solution for 
problem (D) can be approximated by an iterative procedure that generates a 
series of veetors of Lagrangian multipliers by moving a specified step size along a 
subgradient vector. lf i is an optimal solution of problem (LÀ), then the vector 
(b - Ai) is such a subgradient at À. After all, for each u E ~m we have that 

- - - - -
L(À +u) L(À) ".;;; (c (À+ u)A)i +(À+ u)b- (c -À)Ai + M 

u(b-Ai). 

This observation is the core of the subgradient metbod for solving problem (D). 
Let À(r) denote the vector of Lagrangian multipliers after the tth iteration, and let 
x<tl be an optimal solution to problem (L;~,'''). If À(O) is the initial vector, then a 
series of veetors is generated by the following rule: 

À{r+l) = À(t) + s<t)(b -Ax<tl), 

where s<tl > 0 is some scalar step size. The theoretical conditions for convergence 
of À(r) to À* are that s<tl ~ 0 and that ~i =o s(i) ~ oo [Polyak, 1967]. These 
stringent conditions can of course not be observed in practice. However, for the 
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step size 

s<t) = ft(
1)[z-L(À)] 

IIAx<tl -bll2 

with z :::= L (À*) and 0:::;:. ft(t) ~ 2 for each t, À (t) converges either to À*, or to a 
vector À such that L(À) > z [Polyak, 1969; Held and Karp, 1971]. There are 
many ru1es to choose the sequence ft(t) and the value z [Held, Wolfe, and 
Crowder, 1974; Camerini, Fratta, and Maffioli, 1975; Bazaraa and Goode, 1979; 
Karwan and Sarin, 1987]; usually, they are problem-specific and have an empiri
ca! justification. 

In practice, the subgradient metbod is a non-polynomial approximation 
method. We are unable to establish whether it has converged to the optima} vec
tor of Lagrangian multipliers. The main handicap of the subgradient method, 
however, is that it does not produce a series of monotonically increasing lower 
bounds. It is known for its zig-zagging in the beginning and slow convergence at 
the end (see, e.g., Held, Wolfe, and Crowder [1974]). The metbod is usually ter
minated when there is no significant increase of the objective value, or upon 
reaching a predetermined number of iterations. The subgradient metbod is 
undoubtedly the most frequently applied technique, since it is easy to implement. 
Furthermore, the ample computational experiments with the subgradient metbod 
reported in the Iiterature give the impression that it produces invariably good 
approximate solutions. 

1.3.3.3. Aseent direction methods 
Consirlering the handicap of the subgradient method, it is natura} tolook for an 
iterative metbod that generates a series of monotonically increasing 1ower 
bounds. The key feature of such a metbod is the adjustment of only a limited 
number of multipliers per iteration, as opposed to the subgradient metbod where 
all multipliers are adjusted simultaneously. If tbe consequences of particular 
multiplier adjustments can he evaluated, then one guaranteeing an improved 
lower bound is chosen. Such methods are often referred to as multiplier adjust
ment methods, but we pref er to call them aseent direction methods. 

An aseent direction metbod is problem-specific: it exploits tbe special stroc
ture of tbe problem and of the formulation. In genera}, an aseent direction 
metbod requires typically significantly less iterations than the subgradient 
metbod [Guignard and Rosenwein, 1989]; per iteration, the effort is of the same 
order. Hence, an aseent direction metbod is in general much faster than the 
subgradient method. However, it cannot he guaranteed to produce lower bounds 
tbat are as good. Aseent direction methods have shown to he successful for a 
wide range of combinatorial optimization problems. They include plant location 
problems [Bilde and Kramp, 1977; Erlenkotter, 1978; Guignard and Spielberg, 
1979], the traveling salesman problem [ Christofides, 1970; Balas and Christo
fides, 1981], the generalized assignment prob1em [Fisher, Jaikumar, and Van 
W assenhove, 1985], and the set covering problem [Fisher and Kedia, 1990]. 
These applications indicate that the gain in speed over the subgradient metbod 
compensates the possib1e 1oss in lower bound qua1ity more than sufficiently. 
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In spite of the numerous problems in machine scheduling, the use of aseent 
direction methods in this area has remained limited to two applications: Hariri 
and Potts [1984] and Potts [1985A] use aseent direction methods for the problems 
F2lprec I C max and lipree I ~wiCi, respectively. The problems were formulated 
in terms of 0-1 variables. The formulation of the latter problem is given in Sec
tion 1.3; the formulation of the farmer is similar. This thesis examines logical for
mulations for scheduling problems, such as the one we presented for the 
lipree I ~wjCj problem in Section 1.3. In the subsequent chapters, we show that 
logical formulations facilitate the development of aseent direction methods. 

In this subsection, we consider the ideas bebind the design of aseent direction 
algorithms. We note that Guignard and Rosenwein [ 1989] present an 
application-oriented guide for designing Lagrangian aseent direction algorithms. 
Our discussion here is of a theoretica} nature. 

The notion of directional derivative plays a central role in aseent direction algo
rithms. The directional derivative of the function L at À is defined as 

Lu(À) = lim L(À + w)- L(À), 
EJ.O € 

(1.15) 

for any vector u E Rm. Hence, À is optimal if and only if 

Lu(À) ~ 0, for all u E Rm; (1.16) 

note that this is equivalent to 0 being a subgradient at À. If Lj;(À) > 0 for some 
ïi E Rm, then ü is called an aseent direction of L at À: we get an irnproved lower 
bound by rnaving some scalar step size à along ïi. In general, it is difficult to 
compute directional derivatives. However, it is easy to compute them for the 
primitive vectors. A vector u = (u 1, ••• , um) is primitive if all u1 = 0 for all i but 
one. Hence, there are at most 2m different primitive directional derivatives at 
anyÀ. 

We show that the primitive directional derivatives can almast he found by 
inspection. For i = I, ... , m, let tt (À) he the directional derivative at À for any 
primitive vector with the ith component positive. For i = 1, ... , m, let Ç (À) he 
the directional derivative at À for any primitive vector with the ith component 
negative. The first step is to rewrite definition (1.15) forthese directional deriva
tives; accordingly, we get that 

+ . L(ÀJ, ... ,Ài + €, ... ,Àm)- L(ÀJ, ... ,Àm) 
~00=~ ' 

<~0 € 

and 

Ç(À) = lim L(Àb ... ,À; t:, •.. ,Àm)- L(ÀI> ... ,Àm) 
<J,O € 

for i = I, ... , m. Directional derivatives may not exist at the boundaries of the 
feasible region of À; for instance, Ç (À) is undefined for À = (0, ... , 0), for any 
i= 1, .. . ,m. 

The second step is to sirnplify the above expressions. First, reeall that any 
problem (L;-.) may have multiple optimal solutions; let x<;>.) he the set containing 



1 .3. Lagrangian retaxation and duality 29 

them. Second, for any existing primitive direction at À, a sufficiently small step 
size E > 0 exists such that some x+ E x<'-l remains optima!. This claim is proved 
as follows. 

For any i (i = I, ... , m), define À(8) À +8él, where él is the ith unity vec
tor; accordingly, let x<'-<8Jl denote thesetof optima} solutions for problem (Lt.(8J). 
Let 8(x) = {8ER+ u {0} 1 x E x<'-<8ll}; 8(x) may be empty. 

LEMMA l.I. 8( x ) is a closed interval. 

PROOF. This is true because 

p. E 8(x)#(c -À(8)A)x,.,;; (c -À(5)A)x for all x EX 

(See also Figure 1.4). 0 

THEOREM 1.7. There exists a sufficiently small value E > 0 such that some 
x+ E x<'-J is also optima/ for problem (Lt.((J). 

PROOF. For each x EX and 5(.X) not empty, let 5(x) [/(x ),r(x)]. Determine 

E +min{{l(x) ll(x)>O,xE x<'-<8J>},I}. 

Choose x+ such that E E 5(x + ); i.e., x+ is an optimal solution for the problem 
(Lt.(<))· But this implies that I (x+) ,.,;; 0 and r (x+) ;;:;. E. 0 

Let now À= {À" ... ,À;+ E, ... ,Àm) for an arbitrary i (i= 1, ... ,m) with E > 0, 
and let x + E x<'-J also be optimal for problem (LÀ) if E is sufficiently small. 
Hence, x + must be such that 

a<ilx + = maxx Ex"' (a<ilx ), 

where a<il denotes the ith row of the matrix A. We get then that 

L(ÀI> ... ,À;+ E, ••• ,Àm) = L(ÀJ, ... ,Àm) + t:(b; a(ilx+), 

if E > 0 and E sufficiently small. Using this, we observe that the associated primi
tive direction reduces to 

Jt(À)=b; a(ilx+. 

Note that 

L(À)- L(À) = E lt (À) 

if Eis sufficiently small; hence, if tt (À)> 0, then we obtain an improved objec
tive value by moving along the corresponding primitive direction. Similarly, we 
get 

/j(À)=a(ilx- -bi, 

where x- is such that 

a<il x- = minx x'" (a<ilx). 
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We now address the issue how to compute an appropriate step size to move by 
along an aseent direction. In genera!, we like to choose the step size so as to max
imize the increment to the Lagrangian objective value. First of all, the step size 
must he feasibk: it may not take us beyond the boundary of the feasible region · 
of À. Moving along a specified aseent direction but not crossing the boundary of 
the feasible region, we reach points where the directional derivative changes; 
possibly, we reach the point where the direction is no Jonger an aseent direction. 
Hence, any feasible step size that does not take us beyond this point induces an 
improved objective value. The step size maximizing the increment to the Lagran
gian objective value either takes us to this point, or to a point at the boundary of 
the feasible region, whichever is closer. For instance, if Ç (À)> 0, then the 
appropriate step size is found by maximizing 

L(ÀJ, ... ,À;-~' ... ,Àm) 

subject to 

o.;;;;~.;;;;À;. 

Sometimes, other step sizes are preferable. Depending on the application, it may 
he more convenient to compute the step size that takes us to the first point where 
the directional derivative changes. We will see an example of this in Chapter 4. 

The effectiveness of an aseent direction depends on our ability to specify an 
appropriate step size; the efficiency of an aseent direction algorithm depends on 
the effort to compute it. Apparently, weneed toperfarm some kind of sensitivity 
analysis; the easier the Lagrangian problem, the easier it is to determine an 
appropriate step size. 

In each iteration, weneed to identify a primitive aseent direction, to specify an 
appropriate step size, and to adjust the vector of Lagrangian multipliers. This 
leaves freedom for implementation. For each application, we must determine in 
which order we scan the primitive directions, which one to choose (for instance, 
the direction of steepest ascent), which step size to compute, and so on. 

An aseent direction methad can of course he terminated if there is no signifi
cant increase of the objective value. Otherwise, termination occurs if no aseent 
direction among the existing primitive directions c~ he found anymore. Sup
pose an aseent direction methad terminates at some À; if all primitive directional 
derivatives exist, then we have 

It (À).;;;; 0 and Ç (À).;;;; 0, for i = 1, ... , m, 

or, equivalently, 

a(i>x- .;;;;b;.;;;;a(i>x+, fori= l, ... ,m. 

(1.17) 

We call these the terminalion conditions. Examining them, we see that they are 
!!ecessary but not sufficient for optimality; hence, termination may occur having 
À =#=À~' i.e., befare finding the optima! vector of Lagrangian multipliers. In addi
tion, À depends on the initia! vector of Lagrangian multipliers, and on the aseent 
direction and the step size at each iteration. However, in view of the successful 
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applications we mentioned earlier, aseent direction methods are generally con
sidered to be good approximation algorithms for problem (D). 

In case m 1, i.e., if only one constraint has been dualized, the conditions 
(1.17) are sufficient for optimality. 

TimoREM 1.8. An aseent direction algorithm solves problem (D) to optimality in a 
finite number of iterations if m l. 

PROOF. This follows immediately from the form of the function L for m = I (see 
Figure 1.4). Hopping from one point of non-differentiability to another in the 
direction of an optima} solution, we findan optimum in a finite number of itera
tions, since there is only a fini te number of such points. 0 

For m 1, binary search over the feasible interval of À is an alternative 
approach to solve problem (D). 

Many problems can be viewed as easy problems complicated by a single con
straint. We mention the constrained shortest path problem [Handler and Zang, 
1980] and the constrained linear assignment problem [Aggarwal, 1985]. For both 
problems, the Lagrangian problem possesses the integrality property, implying 
that the best Lagrangian lower bound equals the optimal solution of the linear 
programming relaxation (see Corollary 1.1). The latter can he obtained by use of 
a generallinear programming algorithm; an aseent direction method, however, is 
much faster, since it employs the specialized algorithm for solving the Lagran
gian problem. In Chapter 5, we address a scheduling problem with a single nasty 
constraint. lts Lagrangian dual problem is easy, and renders a lower bound that 
concurs with the upper bound for virtually all instances if the number of jobs is 
not too small. 

lt is often overlooked that the analysis of the conditions (1.17), which also 
apply to À*, may give valuable information about À* and the structure of an 
optima) dual solution. These conditions may be so forcing that À* can he par
tially or completely determined a priori. For instance, if some primitive direc
tional derivative is non-negative everywhere, then the optimal value of the 
corresponding Lagrangian multiplier is attained at a boundary of the feasible 
region. In Chapters 2 and 6, we see examples of this phenomenon. Also in 
Chapter 2, we develop an approximation algorithm that is based upon the termi
nation conditions (1.17). 

Finally, we give here a sketch of an aseent direction metbod that illustrates the 
basic principles. We reconsider the generalized assignment problem, and analyze 
the Lagrangian problem obtained by dualizing the knapsack constraints. Since 
the Lagrangian problem is solvable in polynomial time, it is easy to develop an 
aseent direction method. Klastorin [ 1979] describes such a method for this prob
lem; the aseent direction method we describe partly concurs with his. 

Reeall that in the solution to this Lagrangian problem, each job Jj is assigned 
to a machine Mi such that 

c,j + Àipij mini < k < m ( ckj + ÀkPkj ), 
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for j 1, ... , n. From among the optima1 solutions to the Lagrangian problem 
(L.\), let x (i)+ be the solution with the least jobs assigned to M;, and let x (i)- be 
the solution with the most jobs assigned to Mi> for i I, ... , m. Fdrthermore, 
define ~i (À) as the set of jobs assigned to M; in x (i)+, and define ~~-(À) as the 
set of jobs assigned to M; in x (i)- , for i = 1, ... , m. Hence, we have that 

~f(À) {Jj I cij + À;pij <mini...;k...;m,ko;éi(ckj + ÀkPkj)}, 

for i = I, ... , m; jobs with ties concerning the minimum dual oost cij +À; pij 

have been assigned toother machines than M1• Similarly, we have that 

~~(À)= {Jj I cij + À;pij = minJ...;k ...;m (ckj + ÀkPkj)}, 

for i = 1, ... , m; jobs with ties have been assigned to M;. The primitive direc
tional derivatives are then simply 

lf(À) ~ pij-b;, fori=l, ... ,m, 
1

1 
E !f;(.\) 

and 

1;-(À) = b1- ~ pij, for i 1, ... ,m. 
1; E!f,-(.\) 

Suppose now that ti (À)> 0; hence, the capacity b; of M; is exceeded, even if all 
ties have been settled in favor of other machines. Increasing À;, thereby making 
M; more expensive, is an aseent direction. Moving along this direction by a 
specified step size à, we reach the first point where some job currently scheduled 
on M 1 can equally well be scheduled on some other machine Mk; i.e., A is the 
smallest positive value for which there exists some job Jj E ~;+(À) and some Mk 

such that 

cij +(À; + A)p;j = ckj + ÀkPkj; 

hence, we have that 

A -À;+ mini...;k...;m,ko;éi,1
1

e!f,+(.\)(ckj +ÀkPkj-cij)IPij· 

At this point, the directional derivative changes. It is easy to verify that 
L(À1, ••. ,À;+A, ... ,Àm)- L(À1, ••• ,À;, ... ,Àm) = àli (À)> 0. Suppose now 
that Ç (À) < 0; M; has spare capacity, even if jobs with ties have been assigned 
to M;. Decreasing À;, thereby making M1 cheaper, is an aseent direction. Moving 
along this direction, we eventually reach the point where some Jj currently 
scheduled on Me/=M; is forced to go to M;; i.e., the desired step size A is the 
smallest positive value for which there exists some Jj currently scheduled on Mk 

such that 

hence, 

A= À; min11 e!f-:r(>.).l...;k...;m,ko#i (ckj + ÀkPkj -cij)l Pij· 

Any aseent direction method built upon this principle terminates at some À for 
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which 

~ _PiJ ~bi ~ ~ _ PiJ• for i 1, ... , m. 
1

1 
E ~.,+(À) Jj q.; (À) 

We note that Fisher, Jaikumar, and Van Wassenhove [1985] propose an aseent 
direction metbod for the alternative Lagrangian problem of the generalized 
assignment problem, which is obtained by dualizing the assignment constraints. 
Since this Lagrangian problem is only solvable in pseudo-polynomial time, the 
computation of the step size is difficult. Computational results exhibit, however, 
that the additional effort is worthwhile. 

1.3.3.4. One-shot methods 
A proruising strategy, completely different from the iterative procedures we dis
cussed, proceeds as follows. Reeall that problem (D) can be represented as a 
linear program with a finite but huge number of constraints. The transition to a 
linear program ~roceeds by the representation of the finite set X as 
X {x(!>, ... ,x< >}. Definenow A(k) as 

A(k) = {À;;;.O I (c-ÀA)x(k) Àb min{(c-ÀA)x+M I x EX}}, 

for t l, ... , T. Put in words, A (k) contains all the Lagrangian multipliers À;;;;. 0 
for which x<k) EX solves the associated Lagrangian problem. Obviously, the 
optimal objective value of the following problem, referred to as problem (S<kl), 
which is to maximize 

(c -ÀA)x(k) + Àb 

subject to 

À E A(kl, 

provides a lower bound on L(À*), and therefore, on v(P), for each k, 
k =I, ... ,K. We denote the optimal objective value of (S(k)) by v(S(k>). Note 
that v(S<kl) = L(À) forsome À E A(kl. It is not feasible to solveeach of these 
problems; the strategy is therefore to single outsome x<kl that can be expected to 
correspond to a comparatively strong lower bound v (S(kl); this is why we call it a 
one-shot method. An attractive choice for x<k) seems to be a feasible and good 
approximate solution for problem (P). The underlying logic comes from linear 
programming: if (P) is a linear program and if x<k> is its optimal solution, then 
we have v(S(kl) = L(À*) = v(P). The whole idea is of course only feasible if 
problem (S(k)) displays some agreeable structure that makes it not too difficult to 
solve. 

When stated formally, the problem (s<k>) has an intricate structure, mainly due 
to the requirement to specify A (k). For some single-machine scheduling prob
lems, however, this requirement is easy to satisfy. Hariri and Potts [1983] and 
Potts and VllJ! Wassenhove [1983,1985] exploit this for the problems 
1 I r1 I ~w1c1 , 1 I d1 I ~w1c1, and 1 I I ~w1 ~, respectively. The first two problems 
are formulated in terms of the job completion times C 1, .•. , C11 , similar to the 
formulation we gave for lipree I ~w1c1 . The total weighted tardiness problem is 
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formulated similarly in terms of both the job completion times and the job tar
dinesses T 1, ••• , Tn. After dualizing the proper constraints, determining a primal 
!5:asible ~equence a, computing the corresponding job completion times 
C 1, ••• , Cn, and reindexing the jobs in order of appearance, each problem (S(k)) · 
for each of the applications is basically of the following type: maximize 

subject to 

:\.1IP1 ~:\.2/P2 ~ ·· · ~:\.n1Pn• 

;\J ~ 0, for j I, ... , n, 

(1.18) 

(1.19) 

where aJ (i = I, ... , n) is a non-negative integer that depends on the parameters 
of the problem. After all, the prespecified sequence a is optimal for this problem 
only if the jobs are sequenced in compliance with Smith's rule; this is expressed 
by the conditions (1.18). This type of problem is solvable in O(nlogn) time, and 
has been empirically shown to provide satisfactorily strong lower bounds for the 
respective applications. For the 1 I I kWJ TJ problem in particular, this lower 
bound approach has led to an efficient branch-and-bound algorithm. For the 
machine scheduling probieros dealt with in Chapters 2, 4, and 5, we work in a 
reverse manner: we present there empirica! evidence that the x<k) that are good 
approximate solutions for the Lagrangian dual problem (D) are also good 
approximate solutions for the primal problem (P). 

1.3.3.5. Miscellaneous approaches 
Since any ;\ ~ 0 induces a lower bound, many approaches for approximating the 
optimal solution of problem (D) are conceivable. Many of these are hybrids, 
often with some flavor of the subgradient metbod and of an aseent direction 
method. Sometimes, different approximation algorithms for problem (D) are 
used at the different levels of the search tree. For instance, for the R I I C rnax 

problem in Chapter 4, we find a good approximation for ;\ * and use this approxi
mation throughout the search tree with some minor adjustments. Many variants 
of this concept exist. In general, they are empirically motivated. 

1.3.4. Competing relaxations andformulations 
As the trade-off between lower bound quality and the time needed to compute it 
is the most important issue involved in the· application of Lagrangian relaxation, 
we must be prepared to consider a variety of relaxations. We may have to 
analyze different relaxations coming from the same formulation (cf. the general
ized assignment problem), but also relaxations that come from different formula
tions of the problem (cf. the lipree I kwJCJ problem}. Furthermore, a problem 
may not only have multiple integer linear programming formulations, but it may 
also permit completely different formulations. 

How to choose between competing formulations and relaxations? Often, it can 
only be established empirically what the most attractive relaxation is. Quality-
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wise, we have seen that the lower bounds from different relaxations from the 
same formulation can be compared analytically under certain circumstances. In 
a recent paper, Dyer and Wolsey [1990] even manage to establish a hierarchy of 
relaxations for the 11 r1 I ".i.w1c1 problem that stem from different formulations. · 
Y et, the quality of the lower bound is not the decisive factor in the choice of a 
relaxation; the time needed to compute it should also be taken into considera
tion. As a coarse guideline, Lagrangian problems with few constraints dualized 
seem to be more attractive; on the one hand, fewer Lagrangian multipliers are 
involved, on the other hand, the Lagrangian problem bears a stronger resem
blance to the original problem. 

In addition to the efficiency and effectiveness of the lower bound, other issues 
may play a role, too. Relaxations may give rise to elimination criteria, by which 
some feasible subsets can be excluded from further consideration. For the 
R I I C max problem, for instance, it is possible to reduce the problem size by fix
ing some of the assignment variables as aresult of the lower bound (see Chapter 
4). For lipree I ".i.w1c1, it is possible to derive additional preeedenee constraints 
between the jobs ( see Chapter 2). Another important feature is the ex tent to 
which Lagrangian problems induce approximate solutions. Sometimes, the solu
tion to the Lagrangian problem is also feasible for the primal problem, or it may 
suffice to perturb the salution slightly to obtain one. Solving the Lagrangian 
problem of the generalized assignment problem obtained by dualizing the knap
sack constraint, we get for each vector À an assignment of jobs to machines. 
Perhaps this assignment is already feasible, perhaps only minor adjustments suf
fice to make it feasible. In the subsequent chapters, we show examples of this, 
and provide empirica! evidence that good approximate solutions for scheduling 
problems can be obtained in this manner. 

1.4. MACHINE SCHEDULING AND LAGRANGJAN RELAXATION 

1.4.1. A review ofthe literature 
Lagrangian relaxation has been intensively analyzed for and successfully applied 
toa wide variety of combinatorial optimization problems (see Fisher [1985] and 
Guignard and Rosenwein [ 1989]). This assertion can be challenged, however, as 
far as machine scheduling problems are concemed. The analysis of Lagrangian 
relaxation and its application form a relatively small portion of the voluminous 
research, including branch-and-bound algorithms, in this area. 

A likely reason for this is the inclination to formulate machine scheduling 
problems as integer Iinear programs. Integer Iinear programming formulations 
usually suffer severely from a high number of variables or constraints. It is not so 
surprising then that they seldom give rise to promising relaxations. The inclina
tion towards integer linear programming formulations may prohibit the exami
nation of other formulations, in which attractive underlying structures may 
beoome apparent. By 'other formulations', we specifically refer to formulations 
in terms of the job completion times and disjunctive constraints like the one for 
lipree I ".i.w1C1 inSection 1.3. 

A review of the literature on papers invalving Lagrangian relaxation applied to 
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machine scheduling can be brief and reverts mostly to the reierences given in 
Section 1.3. If we make a distinction between integer linear programming formu
lations and other formulations, then the following papers fall in the first 
category. Fisher [1973] explores the possibilities of Lagrangian relaxation for 
machine scheduling problems in a broad context, and was probably the first to 
do so. We mention Hariri and Potts [1984] and Potts [1985A], who consider the 
problems F2lpree I Crnax and lipree I :2:w1c1, respectively. The formulation for 
lipree I :2:w1c1 employed by Potts is given in Section 1.3. The formulation for 
F2lpree I C max is also based upon variables x1k that take the value I if J1 is 
sequenced before J k and the value 0 otherwise. For both applications, aseent 
direction methods are developed. 

For applications that fall in the second category, we refer to Hariri and Potts 
[19_ll3] and Potts and Van Wassenhove [1983,1985] for the problems 11 r1 I :2:w1c1, 

11 d1 I :2:w1c1, and III :2:w1 Ij, respectively. Lower bounds for these problems are 
obtained by the one-shot methods we discussed in Section 1.3.3.4. Furthermore, 
Fisher [1976] presents a formulation in terms of the job start times for the 
I I I :2:T1 problem, but uses a pseudo-polynomial number of constraints to make 
sure that the machine handles no more than one job at a time. The subgradient 
metbod is applied to find strong lower bounds. 

1.4.2. A preview ofthis thesis 
The following chapters deal with the application of Lagrangian relaxation and 
Lagrangian duality to a variety of machine scheduling problems. These include 
single-machine, flow-shop, and parallel-machine problems, and involve assign
ment, partitioning, sequencing, and scheduling problems. We particularly exam
ine logical formulations that facilitate the development of aseent direction 
methods. The application of Lagrangian relaxation is not only focused on lower 
bounds, but also on upper bounds. In general, Lagrangian relaxation and duality 
are problem-specific, and provide additional opportunities beyond lower bound 
and upper bound computations. In these cases, we give full descriptions of the 
branch-and-bound algorithms. The design of these branch-and-bound algo
rithms is usually steered by the analysis of the Lagrangian problems. 

In Chapter 2, however, we immediately deviate from this course, since the 
analysis bere is not problem-specific, but problem-class-specific. We consider 
Lagrangian relaxation and Lagrangian duality for single-machine problems that 
can be formulated in termsof the job completion times. For such a problem, it is 
relatively simpte to design an aseent direction method. Upon terminatien of the 
aseent direction method, we obtain a decomposition of the problem, which we 
call dual deeomposition. We try to verify to what extent the dual decomposition 
concurs with a correct decomposition. The dual decomposition serves as a frame
work or as a guide for the design of approximative and enumerative methods. 
We demonstrate this by a detailed analysis of the lipree I :2:w1c1 problem. This 
chapter is based on Van de Velde [ 1990B ]. 

In Chapter 3, we consider the problem of minimizing the sum of the job com
pletion times in the 2-machine flow-shop. This problem is formulated in termsof 
the job completion times on both machines. It is not so surprising that the 
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Lagrangian problem decomposes initially into two single-machine problems. 
However, it reduces to a linear ordering problem when a restrietion is added that 
is redundant for the primal problem. Although the linear ordering problem is 
0L0'-hard, it turns out to be well-solvable for eertaio choices of the Lagrangian 
multipliers. lt is also shown how this approach can be extended to the general 
case of m machines. This chapter draws upon from Van de Velde [1990A]. 

In Chapter 4, we analyze the problem of minimizing the makespan on unre
lated parallel machines. This problem bas already been introduced in Section 
1.1.3. We give an integer linear programming formulation, and dualize a set of 
constraints by which we obtain a Lagrangian problem with the integrality pro
perty. We show, nonetheless, that the Lagrangian problem provides asolid basis 
for the development of an optimization algorithm and an approxîmation algo
rithm. Chapter 4 is closely related to work presented in Van de V el de [1990c ]. 

In Chapter 5, we consider a single-machine problem where the jobs have a 
common due date. The objective is to minimize the sum of deviations of the job 
completion times from the common due date. The machine scheduling problems 
in which early completions of jobs are penalized as well form a rapidly evolving 
field of research, which is inspired by the just-in-time concept for manufacturing. 
Much concurrent research concerns problems of this type, and this problem in 
particular. When formulated as an easy partitioning problem complicated by a 
single constraint, the successof Lagrangian relaxation and duality is remarkable: 
the Lagrangian dual problem gives rise to a lower and an upper bound that con
cur for virtually all instauces with the number of jobs not too small. Chapter 5 is 
based upon Hoogeveen, Oosterhout, and Van de Velde [1990]. 

In Chapter 6, we examine the single-machine scheduling problem of minimiz
ing total inventory oost. This objective is reflected by a linear combination of two 
cost functions, one of which penalizes early completions. Apart from the objec
tive function, this problem differs on two counts from the problem exarnined in 
Chapter 5. The due dates may be distinct, and it may be profitable to insert 
machine idle time between the execution of jobs. The latter is the intriguing 
aspect of this problem. lt may seem to be a scheduling problem at first sight. Yet, 
there is a one-to-one correspondence between sequencing and scheduling, as 
there is a polynomial metbod to optimally insert machine idle time for a given 
sequence. Hence, the problem reduces toa sequencing problem after all. Very lit
tle is known about the denvation of lower bounds and the development of 
branch-and-bound algorithms for such problems. The possible occurrence of 
machine idle time complicates the matter of scheduling significantly, since this 
aspect is hard to capture in lower bound methods of any nature. We show that 
even for such problems Lagrangian relaxation is a useful method. We present a 
number of other lower bound strategies and elimination criteria for this problem 
as well, as it appears that Lagrangian relaxation is a less dominant technique 
bere than it is for the previous problems. Chapter 6 is based upon Hoogeveen 
and Van de Velde [1991B]. 
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2 

Single-Machine Scheduling 

We present in this chapter a framework for the analysis of Lagrangian problems 
associated with single-machine scheduling problems that can be formulated as 
follows: deterrnine job completion times C 1, ••• , C,. that rninirnize 

j(C~o ... ,CmTJ, ... ,T,.,E~> ... ,E,.) 

subject to 

gh(C~>····C,.,Tb····T,.,EI>···,En)~O, forh = l, ... ,H, (2.1) 

the capacity and availability of the machine, (2.2) 

where f and gh ( h I, ... , H) are functions that are linear in their arguments. Ij 
is the tardiness of Jj, defined as Ij = max{ Cj -dj, 0}, and Ej is the earliness of 
Jj, defined as Ej = max{ dj- Cj,O}. In addition, we assume that H is bounded by 
a polynornial in n, the number of jobs. 

The conditions (2.2) generally state that the machine can handle no more than 
one job at a time and that it is continuously available only from time 0 onwards. 
The conditions (2.1) are assumed to be the nasty constraints: if they are absent, 
then the problem is solvable in polynornial. time. 

The formulation covers many single-machine scheduling problems, including 
miniruizing "2-J = 1 wjCj subject to preeedenee constraints and miniruizing total 
weighted tardiness. These problems are considered in this chapter. Such a formu
lation followed by the Lagrangian relaxation of the type (2.1) constraints is also 
used by Hariri and Potts [1983] for the problem of miniruizing total weighted 
completion time subject to release times, by Potts and Van W assenhove ( 1984) 
for miniruizing total weighted completion time subject to deadlines, and by Potts 
and Van Wassenhove (1985) for miniruizing total weighted tardiness. These 
authors use application-specific one-shot methods to approximate the optima! 
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solution value of tbe Lagrangian dual problem (see Section 1.3.3.4). 
The Lagrangian problem, obtained by dualizing the constraints (2.1 ), offers 

attractive opportunities for tbe development of both optimization and approxi
mation algorithms. We demonstrate this by tbe analysis of lipree I ~wjCj (i.e., 
the problem of minimizing total weighted completion time subject to preeedenee 
constraints). The analysis is typical of single-machine scbeduling problems tbat 
allow tbe genetic formulation. 

This cbapter is organized as follows. In Section 2.1, we introduce the 
lipree I ~w1c1 problem, formulate it in termsof tbe job completion times, derive 
the Lagrangian problem, develop a quick aseent direction metbod, and analyze 
the termination conditions. Upon termination of the aseent direction method, we 
get a decomposition of the jobs into subsets; we call this a dual deeomposition. In 
Section 2.2, we show bow sucb a dual decomposition can he emp1oyed to find 
approximate solutions for the primal problem. Computational results exhibit the 
high quality of sucb solutions. In Section 2.3, we discuss bow the dual decompo
sition can he of use for the design of enumerative methods. In Section 2.4, we 
show tbat a similar analysis can he conducted for the prob1em of minimizing 
total weighted tardiness. 

2.1. ThE LAGRANGJAN DUAL OF lipree I ~w1c1 
We consider the following single-machine problem. A set~ {J1, •.• ,J11 } of n 
independent jobs bas to he scheduled on a single machine that can handle no 
more that one job at a time. The machine is continuously available from time 0 
onwards. Each job J1 (j 1, ... , n) requires processing during an uninterrupted 
period of a given length p1. In addition, eacb job J1 bas a weight w1, expressing its 
urgency relative toother jobs. We assume that tbe processing times and weights 
are integral. There are preeedenee constraints present between the jobs. They are 
represented by an acyclic preeedenee graph G with vertex set {J1, ••• ,J11 } and 
are set A, which equals its transitive reduction. A path in G from J1 to h implies 
that J1 bas to he executed before h; J1 is a predeeessor of Jb and h is a suecessor 
of J1. Incasethere is an are (J1,Jk) E A, tben J1 is said to he an immediate prede
eessor of h; h is tben an immediate sueeessor of J1. Wedefine <!Y1 and &1 as tbe 
set of immediate predecessors and immediate successors of J1, respectively 
(j = 1, ... ,n). A sehedule is a specification of the job completion times, denoted 
by c1 (j =I, ... ,n), sucb tbat the jobs do notoverlap intheir execution. The 
objective is to find a feasible schedule that minimizes the total weighted comple-
tion time, w1c1. 

If tbere are no preeedenee constraints, then tbe problem is solvable by Smitb's 
ratio rule [Smith, 1959]: simply process the jobs in order of non-increasing values 
w1 tp1 in the interval [0, ~}=tPJ] (see Theorem 1.1). For special classes of pre
eedenee constraints, the prob1em is still solvab1e in O(nlogn) time; this is the 
case for tree-like preeedenee constraints [Hom, 1972; Adolphson and Hu, 1973; 
Sidney, 1975] and for series-parallel preeedenee constraints [Lawler, 1978]. In 
general, the problem is 'Dt<!f-bard in the strong sense [Lawler, 1978; Lenstra and 
Rinnooy Kan, 1978]. This justifies the development of· approximative and 
enumerative a1gorithms. Morton and Dharan [ 1978] propose several heuristics. 
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Specifically, the so-called tree-optimal-heuristie, producing optima} solutions in 
case the preeedenee constraints take the form of a tree, generales high-quality 
solutions. Potts [1985A] presents a branch-and-bound that solves instauces up to 
100 jobs; he employs Lagrangian lower bounds obtained from a 0-1 linear pro
gramming formulation of the problem. 

In contrast to Potts (1985A], we formulate the lipree I ~w1c1 problem in terms 
of the job oompletion times. Fora comparison of the two formulations, we refer 
to Section 1.3. The problem is then formulated as follows: delermine job comple
tion times that minimize 

subject to 

Ck ;;;. CJ + Pk• for each (JJ,h) E A, (2.3) 

c1 ;;;;;. Ck +Pi or Ck;;;. C1 + Pk• for i· k I, ... , n, i =I= k, (2.4) 

c1 PJ;;;. 0, for i= 1, ... , n. (2.5) 

The oonditions (2.3) stipulate the preeedenee constraints; the conditions (2.4) 
and (2.5) reflect the traditional assumptions regarding machine capacity and 
availability. 

The lipree I ~w1c1 problem can beseen as an easy-to-solve problem compli
cated by the conditions (2.3). Accordingly, we introduce a vector À E IRA that 
oontains a Lagrangian multiplier ÀJk ;;;. 0 for each are (J1,J k) E A and put the 
oonstraints (2.3), each weighted by its multiplier, into the objective function. For 
a given vector À ;;;. 0, the Lagrangian relaxation problem, referred to as problem 
(LÀ), is to find L(À), which is the minimum of 

.± [<wJ+ L ~k- L ÀkJ)CJ + L ÀJkPkl (LÀ) 
] = l J, E :;;1 J, E '!l'1 J, E $1 

subject to the machine capacity and availability conditions (2.4) and (2.5). 
Fori l, ... ,n,letw/(À) (w1 +~1,e;;;1 ~k ~J,E'!l'1 Àkj)lp1 ;wecallw/(À) 

the relative weight of job 11. Using Smith's ratio rule, we solve problem (LÀ) by 
sequencing the jobs in order of non-increasing relative weights. For any À;;;. 0, 
L(À) is a lower bound for the ljpree I ~w1c1 problem; we like therefore to find 
the vector À* that induces the best Lagrangian lower bound. This is the Lagran
gian dual problem, referred to as problem (D): maximize 

L(À) (D) 

subject to 

F ollowing the lines of Section 1.3.3, we first prove that problem (D) is solvable to 
optimality in polynomial time. For problem (D), at most n ! feasible sequences 
are involved; the tth feasible sequence in duces the vector ( c~t J, c~>, ... , C~)) of 
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job completion times, where t I, ... , T and T ~ n!. Problem (D) is then 
equivalent to the following problem: maximize 

z 

subject to 

for each (Jj,h) E A. 

Problem (D) has been transformed into a problem of maximizing a linear func
tion subjecttoa finite number of linear constraints. 

THEOREM 2.1. Problem (D) is solvable in polynomial time through Khachiyan's 
ellipsoid method [Khachiyan, 1979]. 

PROOF. The proof proceeds in the samespirit as the proof of Theorem 1.6; it is 
included for sake of completeness. Let 

:X:={(z,:\)lzEill,ÀXIRA,z~ :± [(wj+ ~ \k- ~ Àkj)C)t)+ ~ ÀjkPkl· 
J = 1 J, E l§;J J, E '!J'J J, E S1 

fort I, ... , T, ÀJk;;;;. 0, for each (J1,Jk) E A }. 

Reeall that it suffices to show that the following separation problem for :X: is solv
able in polynomial time (see Grötschel, Lovász, and Schrijver [1981], and Pad
berg and Rao [1982]): given (:Z,À) E Q XQA, decide whether (:Z,À) E :JC; if not, 
give a separating hyperplane, that is, an inequality ÀdT + az ~ fJ, such that 

(z,À) E :JC=*ÀdT + az ~ fJ, 
and 

- -
Observe now that for_ a _given (~À) we determine the value L(À) and the 
corresponding vector ( C 1, C 2 , ••• , Cn) of job _Eompletion tim_!s by solving_prob
lem (L>;t_ this is done in O(nlogn) time. If L(À);;;;. z, then (Z,À) E :X:; if L(À) <z, 
then (z,À) ft: :X, and · 

:Z > f [(wj + ~ Àjk- ~ Àkj)CJ + ~ ÀJkPkl, 
j = 1 J, E )i;/ J, E 'iJ'1 J, E l§;1 

is a separating hyperplane. D 

In practice, the ellipsoid method is very slow; we develop therefore a quick 
aseent direction algorithm to approximate the optima} solution of problem (D). 
First, we derive expressions for the primitive directional derivatives. In an 
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optimal solution for the Lagrangian problem, the position of J1 depends on its 
relative weight: the larger its relative weight, the smaller its completion time. If 
its weîght is tied, then its position also depends on the way ties are settled. Let 
now Cf (À) denote the earliest possible completion time of J1 in an optimal . 
schedule for problem (L>,); let CT (À) denote the latest possible completion time 
of J1 in an optimal schedule for problem (L>,). Increasing ÀJk by a specific f. > 0 
will increase the relative weight of J1 from w/(À) to w/(À) + f.! p1; simultane
ously, it will decrease the relative weight of Jk from w/(À) to wk'(À)- d Pk· It is 
possible to choose e > 0 small enough to ensure that at least one optimal 
schedule for problem (L>.) remains optimal ( see Theorem I. 7). In such an optimal 
schedule, J1 must be completed on time Cf (À) and Jk must be completed on 
time c; (À). Increasing ÀJk by such a small f. affects the Lagrangian objective 
value by !(Cf(À)-C;(À)+Pk). From this, we derive that the primitive direc
tional derivative for increasing ÀJk at À, denoted by 111 (À), is 

I1t(À) Cf(À)-C; (À)-t:Pk> for each (J1,Jk) E A. 

lf Jjt(À) > 0, then increasing ÀJk is an aseent direction: we get an improved 
objective value by moving along this direction. The sign of each ljt (À) is deter
mined in constant time. Note that for each are (J1,h) E A, we have 

Cf(À) > c;(À)+Pk ~ w/(À) < wk'(À); 

hence, l1t(À) > 0 ~ w/(À) < wk'(À). In a similar fashion, we find that ljk(À), the 
primitive directional derivative for decreasing ÀJk at each À with ÀJk > 0, is 

lj"k(À) = ct(À)-CT(À)-Pk, foreach(Jj,h) EA. 

If ljk(À) > 0, then decreasing ÀJk is an aseent direction: we get an improved 
objective value by moving along this direction. 

Given an aseent direction, we invariably move by the step size that maximizes 
the iocrement to the objective value. If 111 (À) > 0, then the iocrement is maxim
ized by moving to the first point where increasing ÀJk is no longer an aseent 
direction. At this point, the relative weights of J1 and h are equal. Hence, the 
required step size is the value Ll for which 

w/(À) + Ll!p1 = wk'(À)- Ll!pk; 

it is determined in constant time. Consider now the case lji(À) > 0. To eosure 
that the Lagrangian vector remains non-negative, we impose the condition that 
Ll ~ ~- If this condition is not restrictive,.then we move to the first point where 
decreasing ÀJ is no Jonger an aseent direction. lf it is restrictive, then we take the 
step size as large as possible. Henee, the step size that maximizes the iocrement 
of the objective value is computed as the largest value Ll ~ ÀJ for which 

W/(À)-Lllp1 ;;;. w/(À) + Ll!pk. 

Eventually, termination occurs at some À at which no aseent direction exists 
anymore. Later on, we will analyze the termination conditions. We first give a 
step-wise description of the aseent direction algorithm. 
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AseENT DIRECTION ALGORlTHM 

Step 0. Set ÀJk = 0 for each (J1,J k) E A, and compute the relative weights w/(À). 
Step 1. For each (J1,h) E A, do the following: 
(a) If w/(À) > wk'(À), then compute the step size 

~ = [wk'(À) w/(À)]p1fkl(pi+pk). 

Put ÀJk ~ ~k + ~. and update w/(À) and wk'(À). 
(b) If w/(À) < w/(À), then compute the step size 

ll = max{À1, [w/(À)- wk'(À)]p1pkl(p1+pk) }. 

Put ÀJk ~ ÀJk - ~. and update w/(À) and w/(À). . 
Step 2. If no multiplier adjustment has taken place, then compute L (À) and stop; 
otherwise, return to Step 1. 

Let I be the number of times that Step 1 is executed. The aseent direction algo
rithm runs then in O(I IA I +nlogn) time. Since we cannot bound I by a poly
nomial in n and I A I , the aseent direction algorithm is presumably not a 
polynomial-time method. In practice, however, the algorithm is very fast, pro
ducing very good approximate solutions. 

THEOREM 2.2. The aseent direction algorithm described above generates a series of 
monotonically increasing lower bounds for problem (P). 

PRooF. Given an arbitrary À;;;;.: 0, we first assume w/(À) < wk'(À); hence, 
IJ (À)= Cf(À)-C'k (À)+h > 0, and increasing ÀJk is an aseent direction. We 
reindex the jobs according to non-increasing relative weights, setding all ties 
arbitrarily except for J1 and h: we give J1 the smallest index possible and Jk the 
largest index possible. Let C 1, ..• , Cn be the job completion times for the 
sequence (J" ... ,Jn); note that c1 = Cf (À) and Ck = Ci: (À). Hence, in more 
detail, the schedule under consideration is (J" ... ,J k- ~>!..k>h + t> ••• , J1 - "J1, 
J1 +" ... ,Jn). Let ll be the step size as prescribed, and let À d~note the vector of 
Lagrangjan multipliers after increase of ~k by ll. Since À and À differ only in one 
component, the relative weights for all jobs but J1 and h remain the same. An 
optima! schedule for problem (LA) is then (J I> ... ,Jk l>Jk + 1> ... ,It, 
JJ.;Fk>JI +I> ... ,J1 I>JJ +" ... ,Jn), for some J, with k +I .;.;;;; [.;_;;;; j I; the job 
completion times for this schedule can CO_!lveniently be expressed in terms of 
C" ... , Cn. We now demonstrate that L(À) > L(À); it is basically a matter of 
writing out. For brevity, we let JL; =w1 +~J.E!;;Ah-~J. ".,Àh; for each i 
(i= 1, ... ,n). We have 

_ k-1 n l j I 

L(À) = ~ p,;C; + ~ P,;C; + ~ JL;(C1-pk) + ~ p,1(C1+p1) + 
i=I i=j+l i=k+I i=/+1 

(JLk-ll) [c;;(À)+p1 +i=*+/~] + (p,1+1l) [cf(À)-pk- ~~i/i] + 
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n 

~ ~ ÀmPh + l!.pk 
i=JJ, E:!;, 

j-I l 

= L(À) + ~ (Jl.ipJ-p.Jp;) + ~ (Jl.kp;-p.;pk} + P.kPJ-P.JPk + 
i=l+l i=k+I 

Since J1 and h are adjacent in the second schedule, we have that 

j-I l 

(C/(À)-Pk- ~ p;)-(Ck(À)+pJ+ ~ pi} -pk· 
i=/+1 i=k+l 

This implies that 
j-1 I 

L(À) = L(À) + ~ (Jl.;pJ-P.JPt) + ~ (p.kp;-p.;fk) + P.kPJ-P.JPk 
i=l+l i=k+l 

I j I 

= L(À) + ~ (p.klpk-p.;lp;)p;fk + ~ (Jl.;lp;-p.JIP)P;PJ + 
i=k+l i=l+l 

I j I 

= L(À) + ~· [wk'(À)-w;'(À)]p;p1 + ~ [w/(À) w/(À)]p;p1 + 
i=k+l i=/+1 

Since wk'(À) > w/(À), w/(À) < w/(À) for each i (i = }5 + 1, ... , /), and w;'(À) > 
w/(À) for each i (i =I+ I, ... ,j -1), we find that L(À) > L(À). 

The analysis for the case l)k.(À) > 0 proceeds in a similar fashion. D 

Consider the 10-job example from Potts [1985A] for which the processing times, 
weights, and preeedenee graph are given in Tab1e 2.1 and Figure 2.1. If we put 
ÀJk = 0 for all (J1,h) E A, then an optima] schedule is 
(J 3.,.! JO.,./ 4.,./ 9,J 7,J 6,J 2,J 5,J 8,J 1) with total oost 1055. The same schedule and 
lower bound a:re obtained by disregarding the preeedenee constraints and solving 
11 I '2.w1c1. The schedule is not feasib1e for the original problem; for instance, J JO 
is executed befare J 6 although (J6,J 10) E A. Since w6'(À) < wJO'(À), increasing 
À6, JO is an aseent direction. The appropriate step size is a = 17 I 7, giving 
À6,JO = 1717. We get (J3,J4,J9,J7,J6,JJO,h,Js,Js,JI) as an optima] schedule 
for the new Lagrangian problem, having va1ue L(À) = 1106. Proceeding a1ong 
these 1ines, we get the value L(À) = 1526.69 upon termination. Potts' procedure, 
requiring O(n4

) time, produces the 1ower bound 1519; the upper bound gen
erated by the tree-optima1-heuristicis 1530. The duality gap is therefore no more 
than 3.31. 
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Jl '2 '3 J4 Js J6 J? Jg J9 lw 

Pi 6 9 1 3 9 5 7 7 6 2 

wi 2 5 9 6 5 4 9 3 8 5 

T ABLE 2010 Processing times and weightso 

FIGURE 2010 Preeedenee grapho 

In the remainder of this chapter, we let À denote the vector of Lagrangian mul
tipliers upon termination of the aseent direction methodo Using the termination 
conditions that all e_rimitive directional derivatives are non-positive, we derive 
some properties for À and for the optimal solutions of problem (L:Oo These pro
perties are important for the development of approximation and optimization 
algorithms for lipree I ~wiCio 

DEFINITION 2olo The job set <i:B Ç~ is called a b/ock fora given À;;;;;. 0 if 

(wi + ~ À ik - ~ Àk)! Pi = c, for each Ji E <i:B, 
J, E)iil J, E'!J'I 

where cis some positive real constant. 

In any optimal schedule to problem (LÀ), the jobs in a block are interchangeable 
without affecting the Lagrangian objective value L(À)o For any given À;;;;;. 0, the 
job set ~is decomposed into B (À) blocks·<i:Bb 0 0 0 , <i:BB(À)' B (À) depending on À, 
indexed such that 

(wi- ~ À ik + ~ Àki)l Pi = eb, for each Ji E <!:Bb, 
J, E)ii1 J, E<3'1 

with CJ > 0 0 0 > CB(À) > 00 

THEOREM 2030 Any vector À satisfYing the terminalion conditions induced a decom
posi/ion of~ into B (À) blocks <i:B 1, 0 0 0 , <i:BB(À), such that, if(Ji,Jd E A and Jk E <!:Bb, 
then 
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JJ E ij, I U · · · U ij,b, 

ÀJk 0 if JJ E ij,l U··· Uij,b-1· 

PROOF. If one of these claims is not true, then we can still identify an aseent 
direction, contradicting the assumption that the terminalion conditions are satis
fied. D 

Such a decomposition, i.e., a decomposition induced by a vector ~tisfying the 
terminalion conditions, is called a dua/ deeomposition. Both À* and À in~uce dual 
decompositions. Por our example, the dual decomposition induced by À consists 
of three blocks: ij,l {J3}, ij,2 = {J2,J4}, and ij,3 = {J"Js,J6,h,Js, 
J 9,J w}, with e, =9, e2 ll/12, and e3 = 617, respectively. 

2.2. APPROXIMATION 

We present an approximation algoriQlm that exploits the Jtgreeable structure of 
the dual decomposition induced by À. Por b = I, ... ,B(À), let ob he a feasible 
sequence for the jobs in <j,b. Prom Theorem 2.3, we derive the following. 

COROLLARY 2.1. The sequenee o (o1 ,o2, .•. , oB(~)) is a feasible sequenee Jor the 
overall problem. 0 

If each ob is optima! for the lipree I~~~ Eqs, w1c1 problem (b = 1, ... , B (À)), then 
we have the best such o. Prom a theoretica! point of view, each 
lipree I ~J,E qs, w1c1 problem is as hard as the overall problem; from a practical 
point of view, each problem, being of smaller dimension, is simpler. Dynamic 
programming, when using a compact labeling scheme as proposed by Schrage 
and Baker [1978] and Lawler [1979], solves small instances quickly. If the size of 
a block is too large for the application of dynamic programming, then we resort 
to the tree-optimal-heuristic, presented by Morton and Dharan [1978], to findan 
approximate solution. However, even if the dual decomposition is induced by À* 

and o is composed of optima} subsequences, then we still have no guarantee that 
o is an optima} sequence; all optimal sequences may have been excluded by the 
dual decomposition. 

Por the example, the optimal sequences for the first two blocks are trivial: 
o1 = (J3), and o2 (J2,J4); using dynamic programming, we find 
o3 = (J ~>J 1,J 5,J 9,J 6,J g,J w); the tree;optimal-heuristic gives the same 
sequence. We obtain o (J 3,J2,J4,J"J1,J5,J9,J6,J8,J 10), having total cost 
1530. 

We tested the approximation algorithm on problems with 20, 30, ... , 100 
jobs. The processing times were drawn from the uniform distribution [1,100]; the 
weights were generated from the uniform distribution [I, 1 0]. The preeedenee 
graph was induced by the probability P with which each are (J1,Jk) with j < k 
was included. The graph obtained in this way was then subsequently stripped 
down to its transitive reduction. We generated problems for P = 0.001, 0.02, 
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0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.30, and 0.50. For each combination of n and P 
we generated five problems; hence, 45 problems were generated for ~h value P. 
This procedure parallels Potts' procedure to generate instances. Furthermore, we 
solved each subprob1em to optimality if 1ess than 15000 labels were needed; oth
erwise, we used the tree-optimal-heuristic. 

p Tree-Opt-Heuristic Dual Decomposition • 

0.001 0.007 (42) 0.007 (42) I 
0.02 0.074 (15) 0.069 (15) 

• 

0.04 0.516 (8) 0.248 (10) 
0.06 1.214 (2) 0.675 (2) 
0.08 1.446 (1) 1.076 (1) 
0.10 2.040 (2) 1.518 (4) 
0.15 2.252 (0) 2.024 (0) 

0.20 2.551 (0) 2.113 (2) 

0.30 4.111 (0) 3.733 (2) 
0.50 4.334 (2) 4.116 (3) 

T ABLE 2.2. Experimental results. For each value of P, the average re
lative deviation of the upper bound from the lower bound is given. 
The figures within brackets indicate the number of times out of 45 
that the upper bound equalled the lower bound. 

In Table 2.2, the computational results are given. Potts already pointed out 
that the re1ative difficulty of an instanee depends more on JA J than on n. We 
have therefore classified the results according to the value P rather than n. For 
each P, we present the relative deviation between upper bound and lower bound 
for both the tree-optimal-heuristic and the dual-decomposition approach. Within 
brackets we indicate for how many problems (out of 45) the upper bound 
equalled the lower bound; this figure gives the number of times we found a prov
ably optimal solution. On the average, the dual-decomposition algorithm outper
farms the tree-optimal-heuristic approach for any problem class. For the 450 
instances altogether, the tree-optimal-heuristic produced only 16 solutions that 
were better; moreover, each of these was only marginally better. 

The tree-optimal-heuristic requires O(n JA J) time, and is therefore sensitive 
to instances with many preeedenee constraints. The running time of the dual
decomposition approximation algorithm mainly depends on the number of calls 
on the dynamic programmingprocedure and the maximum label number. We 
have coded both algorithms in the computer language C; all experiments were 
conducted on a Compaq-386/20 Personal Computer. For n ~ 40, the tree
optimal-heuristic needed a few secouds at most. On the average, our approxima
tion required only slightly more computation; there were, however, occasional 
peaks due to high labels in the dynamic programming subroutine. For n ;;;;:. 60, 
the tree-optimal-heuristic needs about twice or three times as much computation 
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time as the dual-decomposition algorithm; even the peaks of the latter remain 
below the average of the former. 

Potts also points out that small and large values of P generate relatively easy 
problems. For small P, only few preeedenee constraints are involved; for large P, 
most disjunctive constraints are settled. Our results support the claim for small 
P: the duality gap is very small. Since the optimal-tree-heuristic generates good 
approximate solutions for all values of P [Potts, 1985A], there are two possible 
explanations for the growth of the gap between upper bound and upper bound 
for largervalues of P. It may he that the aseent directio~ metbod produces worse 
approximate solutions in casePis large; it is more likely, however, that the dual
ity gap is an increasing function of P. 

2.3. PRIMAL DECOMPOSITION 

For b I, ... ,B, let ob* denote an optimal sequence for the problem 
lipree I ~J1 Et, wjCj, where ~bç~. A decomposition of the job set~ into B mutu
ally disjoint subsets :h, ... , ~B is said to he a prima[ deeomposition if the sequence 
o = o1 *, ... , oB* is optimal for the overall I I pree I ~wjCj problem. We already 
mentioned that a dual decomposition may exclude all optimal sequences; a dual 
decomposition only suggests a primal decomposition. In this section, we try to 
establish to what extent a dual decomposition coincides with a primal decompo
sition. 

If a dual decomposition excludes all optimal solutions, then there are at least 
two jobs belonging to different blocks withno path in A between them for which 
the processing order should he reversed. Suppose Jj E ~b and J k E ~b +m 

(m > 0) are such jobs. In all feasible sequences obtained by the dual
decomposition approach, J1 precedes h; but in all optimal sequences, h pre
cedes Jj. Hence, the are (h, Jj) can he added to the are set A without impunity. 
Let problem (L,. (k,j)) he the Lagrangian problem for the are set A U (h,Jj ), and 
let À(k,j);;;;. 0 he a vector of Lagrangian multipliers. Since the are (Jk>JJ) does not 
exclude the optimal solution, L(À(k,j)) is still a lower bound on the optimal solu
tion, for any À(k,j) ;;;;. 0. 

This observation gives rise to the following theorem. Let ~ 1 , ••• , ~B he the 
blocks of some dual decomposition. 

THEOREM 2.4. IJ there are two jobs Jj E ~b and Jk E ~b +m (b = I, ... , B 1, 
m = 1, ... , B - b) with no path in A between them for whieh 

L(À(k,j)) > UB 1, 

then J1 preeedes h in all optima/ solutions for the I I pree I ~wjCj problem. D 

If Theorem 2.4 applies to all pairs of such jobs, then the dual decomposition is a 
primal decomposition; in fact, due to transitivity, it only has to apply to specific 
pairs of jobs. 

CoROLLARY 2.1. IJ for each pair of jobs J1 E ~b and Jk E ~b +m 

(b 1, ... ,B -1, m 1, ... ,B -b) sueh that 
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(i) there is no path in A from J1 to h, 

(ii) J1 has no successors in ~b U · · · U ~b +m -1, and 

(iii)h has no predecessors in ~b + 1 U · · · U ~b +m• 

we have that L(A(k,j)) > UB I forsome À(k,j);;;;;. 0, then the dual decomposition 
is a prima/ decomposition. 0 

Accordingly, if the dual decomposition induces a primal decomposition and if 
UB is associated with the sequence that is composed of optimal subsequences, 
then UB is the optimal solution value of the lipree I ~w1c1 problem. 

CoROLLARY 2.2. lffor some block ~b• each pair ofjobs J1 E ~band hE ~b+m 
(m = 1, ... ,B-b)suchthat 

(i) there is no path in A from J1 to h, 

(ii) J1 has no successors in ~b U · · · U ~b+m-b and 

(iii)h has no predecessors in ~b+ 1 U · · · U ~b+m• 

satisjies L (À(k,j)) > UB -I forsome À(k,j);;;;;. 0, then the subsets ~1 U · · · U ~b 
and ~b + 1 U · · · U ~ 8 constitute a prima/ decomposition of~. 0 

In this case, we say that the dual decomposîtion concurs partly wîth a primal 
decomposition. 

Whether we succeed to establish that a dual decomposition concurs partly or 
completely with a primal decomposition depends on the quality of the lower 
bounds L(À(k,j)). From this point of view, we like to have available the vector of 
optimal Lagrangian multipliers for problem (L>. (k,j)); let À* (k,j) denote this 
vector. Of course, À* (k,j) is as difficult to find as the vector À*. However, an 
aseent direction metbod to approximate À* (k,j) is readîly available: we apply 
the direction method for problem (D), adjusted for th~ additional are (Jk>J1), 
usîng as initial vector À(k,j)<0> obtained as À(k,j)f{}.> = À;h for each (J;,Jh) E A 
and À(k,j)ffj = 0. We note that L(À(k,j)<0>) L(À). At À(k,j)<0

\ all primitive 
directional derivatives are non-positive but one: we have /~(À(k,j)<0l) > 0; 
increasing À(k,})kj is an aseent direction. If J1 and J k be1ong to blocks that lîe far 
apart from each other, then the Lagrangian lower bound corresponding with the 
point where the sign of this directional derivative changes may already exceed 
UB -1. This Lagrangian 1ower bound is oonvenienily computed; this is stipu-
1ated in the next theorem, where p(~b) is defined as p (~b) = ~J, E r,r;,,p;. 

THEOREM 2.5. ljthere are two jobs J1 E ~band Jk E ~b+m (b = 1, ... ,B(À.) I, 
m = 1, ... , B (À)- b) for which there is no path in A from J1 to h such that 

_ I b+m-1 
L(À)+(cb-cb+m)PJPk+ ~ (cb-c;)p(~;)pj+ ~ (c;-cb+m)P(~;)fk 

i=b+1 i=/+1 

exceeds UB -I, where I is the largest index with c,;;;;;. (p1ch + pkcb +m)l (pk + PJ1 
then J1 precedes Jk in all optima/ solutions for the lipree I ~w1c1 problem. 
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PR.ooF. The validation of this theorem requires the same logic applied in the 
proof of Theorem 2.2. 0 

lf Theorem 2.5 does nat apply, then we run the aseent direction algorithm until · 
!!O aseent directions can he found anymore; upon termination, we get the vector 
À(k,j). 

We now workout the effects of these theorems on our example. According to 
Corollary 2.2, we need consider only the pairs (J 3,J 2) and (J 3,J 1) in order to 
decompose the jobs into ~ 1 on the one hand and ~2 U~3 on the other. Including 
(J 2,J 3) in A, we get, by use of Theorem 2.5, that 
L(À*)+(ci-c2)P2P3=1526.69+(9-ll/12)·1·9>1529; we conclude that J3 
preeerles J 2 in any schedule with cast less than 1530. Similarly, if we include 
(J 1 ,J 3) in A, then, according to Theorem 2.5 (where we have I= 1), we must ver
ify if 

L(À*) +(ei -c3)PIP3 + (c2 -c3)p(~2)P1 > UB -1. 

This is so; hence, J 3 must preeede J 1, implying that we may decompose the job 
set into subsets ~1 and ~2 U ~3 . We must consider the pairs (J 4 ,J 1), (J 4 ,J 5), 

and (J 4 ,J 8) to separate the blocks ~2 and ~3._More thllQ_ one iteration _in the 
aseent direction procedure is required. Since L(À(l,4)), L(À(5,4)), and L("J\(8,4)) 
exceed 1529, we conclude that the dual decomposition concurs with a primal 
decomposition. Furthermore, the schedule with value 1530 is optimal, since it 
was obtained from the optimal sequences for the individual blocks. 

The theorems and corollaries presented in this section are applicable in a 
preprocessing phase in conjunction with any existing branch-and-bound algo
rithm. Their main purpose is to derive additional preeedenee coristraints and to 
primally decompose the problem in order to reduce the size of the search tree. 

2.4. THE TOT AL WEIGHTED TARDINESS PROBLEM 

We claimed earlier that the methodology applied to analyze the lipree I "'i:.w1c1 
problem is a generic tooi for the analysis of single-machine problems that can he 
cast in the formatpresentedat the beginning of this chapter. The effectiveness of 
the dual decomposition method, however, largely depends on the structure of the 
problem and the nature of the dualized constraints. We consider here in brief the 
total weighted tardiness problem; at first sight, it may nat he so apparent that 
the generic format also covers this problem. 

The problem setting for the total weighted tardiness problem is the same as for 
the lipree I "'i:.w1c1 problem, albeit that the jobs are now independent and have a 
due date d1 by which they should he completed. Given a schedule, the tardiness 
T1 of J1 is defined as T1 = max { c1- d1, 0}. The objective is to find a schedule 
that minimizes total weighted tardiness, that is, "'i:.J = 1 w1 T1. 

The 111 "'i:.w1T1 problem is 'DU~i'-hard in the strong sense. The best branch-and
bound algorithm is due to Potts and Van Wassenhave [1985], and solves 
instances up to 50 jobs. Potts and Van Wassenhave [1988] also investigate the 
performances of a number of approximation algorithms for this problem. 
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The problem can be formulated as follows. Determine job tardinesses 
Th ... , Tn and job completion times C" ... , Cn that minimize 

subject to 

Tj ;;;;.: Cj - dj, for j = 1, ... , n, 

~;;;;.: 0, for j = I, ... , n, 

(2.6) 

(2.7) 

the capacity and availability of the machine. (2.8) 

The conditions (2.6) and (2.7) simply reflect the definition of job tardiri.ess. It is 
easy to verify that this formulation, first employed by Potts and Van 
Wassenhove [1985], matches the generic formulation. 

Using a given vector À = (À1, ••• , Àn) ~ 0 of Lagrangian multipliers to dualize 
the conditions (2.6), we obtain the following Lagrangian problem: determine the 
value L(À), which is the minimum of 

n n n 

~ (wj-Àj)~ + ~ ÀjCj- ~ Àjdj 
j I j=l j I 

subject to the conditions (2.7) and (2.8). 
The conditions (2. 7) only affect the fust component of the Lagrangian objec

tive function; the conditions (2.8) affect only the second component. Accord
ingly, the Lagrangian problem decomposes into two subproblems. Requiring 
that wj - Àj ;;;;.: 0 for each j (j = 1, ... , n ), we minimize the first component by 
setting Tj = 0 for each j. After all, we get Tj = oo if wj Àj < 0, resulting in 
L(À) = - oo. The second component reduces to the lil "2.~Cj problem; it is sim
ply solved by scheduling the jobs in order of non-increasing values Àj I pj in the 
interval [0,"2.J=IPj]. 

Potts and Van Wassenhove do not solve the Lagrangian dual problem to 
optimality (which is possible in polynomial time by use of the ellipsoid method), 
but apply a specific one-shot metbod to set the Lagrangian multipliers ( cf. Sec
tion 1.3.3.4). On the other hand, a quick aseent direction method, similar to the 
one for the 1 !pree I "2.wjCj problem, is easily developed. The termination condi
tions for a_!! aseent direction metbod provide that the dual decomposition 
induced by À bas the following structure. The job set ~is decomposed into blocks 
'&)I> ••• , '&)B(À) such that for eachJj E '&)b we have 

dj :E;; ~ Pk> 
J, E~,u ···u~, 

and 

Àj = Wj if dj < pj + ~ Pk· 
'• E~1 u ··· u~•-• 

Furthermore, we must have 
n 

À/* = 0 if dj ;;;;.: ~ Pk· 
k=l 
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This block structure can be exploited for the design of approximative and 
enumerative methods for the 11 I ~wi ~ problem in the same fashion as for the 
lipree I ~wiCi problem. For instance, the combination of optimal (or feasible) 
sequences for the individual blocks yields a feasible schedule for the entire prob
lem. It remains to be seen, however, whether such algorithms outperform existing 
algorithms. 
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3 

Flow-Shop Scheduling 

We consider the F211 ~c1 problem, and develop a branch-and-bound algorithm 
for its solution that employs a Lagrangian lower bound. InSection 3.1, we intro
duce the problem. In Section 3.2, we formulate it in terms of the job completion 
times on both machines. The initial Lagrangian relaxation decomposes the prob
lem into two single-machine scheduling problems. If we add a constraint that is 
redundant for the primal problem, then the Lagrangian problem becomes a 
linear ordering problem. Although the linear ordering problem is, in general, 
'DL0>-hard, it is polynomially solvable in case of appropriate choices for the 
Lagrangian multipliers. The best choice within this class yields a lower bound 
that dominates previous bounds. In fact, the bounds that have been proposed 
before correspond to partienlar choices of the multipliers. It is shown how the 
new 1ower bound can be strengthened and how preeedenee constraints can be 
derived from the Lagrangian problem. Section 3.3 presents dominanee criteria to 
restriet the search tree. A complete description of the branch-and-bound algo
rithm and a presentation of some computational results are given in Section 3.4. 
These results show that the proposed algorithm outperforms the previously best 
method. Finally, we demonstrate inSection 3.5 how a similar bound is obtained 
for the general case of m machines. 

3.1. INTRODUCTION 

An m-machine flow shop is described as follows. There is a set of m machines 
~ { M h ... , Mm} that are continuously available from time 0 onwards for 
processing a set of n independent jobs~= {J 1, ••. ,Jn }. Each machine can han
dle no more than one job at a time. Each job consists of a chain of m operations. 
The ith operation of job J1 bas to be processed on machine M; during a positive 
uninterrupted timep11 (i= 1, ... ,m, j = 1, ... ,n). Eachjob can be executed by 
at most one machine at a time, implying that operations of the samejob may not 
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overlap in their execution. N ote that the jobs go through the machines in the 
same order. A schedule specifies a completion time Cij for the ith operation 
(i I, ... , m) of each J1 (j = I, ... , n) such that the above con di ti ons are met. 
The completion time of job J1 is then simply CmJ· 

A voluminous part of flow-shop research has been focused on the minimiza
tion of the length of a schedule or the so-called makespan. Gupta and Dudek 
[1971], however, plead that criteria reflecting the cost of each job individually 
have a better economie interpretation than the makespan objective has. We con
sider here the F21 I "2.C1 problem, that is, the problem of minintizing the sum of 
the job completion times in the 2-machine flow shop. 

It is well known that for this problem it suffices to optimize over all permuta
tion schedules [Conway, Maxwell, and Miller, 1967]. A permutation schedule is a 
schedule in which every machine has the samejob sequence. Ignall and Schrage 
[ 1965], the first to study this problem, present a branch-and-bound algorithm 
that is based on two lower bounds. Their paper is a classic, as they are the first to 
describe a branch-and-bound algorithm for a machine scheduling problem. The 
beuristics presenled by Krone and Steiglitz [1974] are applied by Kohier and 
Steiglitz [1975] in further developing and testing the Ignall and Schrage algo
rithm. Garey, Johnson, and Sethi [1976] prove that the problem is ~'3'-hard in 
the strong sense by a reduction from 3-PARTITION. 

For the general case of m machines, Szware [1983] derives some properties of 
an optimal schedule, and identifies a class of well-solvable cases. A more ela
borate treatment of well-solvable cases is found in Adiri and Amit [ 1984]. Bansal 
[ 1977] extends the Ignall and Schrage lower bounds to the m-machine case. 

3.2. FORMULATION AND RELAXATION 
We give a formulation of the F21 I "2.C1 problem in terms of the completion times 
of the operations. The problem, in the remainder of this chapter referred to as 
problem (P), is then as follows: determine completion times Cij (i = 1,2, 
j = I, ... , n) that minimize 

(P) 

subject to 

the preeedenee constraints between the operations of the jobs, (3.1) 

the capacity constraints of the machines, (3.2) 

the availability constraints of the machines. (3.3) 

The conditions (3.1) are formulated as 

c2j;;;;.clj+p2J• forj 1, ... ,n. 

We introduce a vector of multipliers À = (À1, ••. , Àn);;;;. 0 to dualize the condi
tions (3.1). Lagrangian relaxation of these conditions yields the following 
Lagrangian problem, referred to as problem (LA): for a given À;;;;. 0, determine 
the value L (À) which is the minimum of 
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n 
~ (ÀjClj + (l-Àj)C2j + Àjp2j) 
j=l 

subject to (3.2) and (3.3). 
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From Section 1.3, we know the value L(À) provides a lower bound to (P) for 
any À;;;;. 0. In order to prevent L(À) from becoming arbitrarily small, we must 
require that ÀJ ~ 1 for j = 1, ... , n. After all, if Àj > I forsome j (j I, ... , n), 
then we get C 2j = oo, thereby disqualifying the strengthof the Iower bound. 

The preeedenee relations between the operations are absent in the Lagrangian 
problem; operations betonging to the samejob can now be processed simultane
ously. The Lagrangian problem decomposes into two single-machine problems, 
which are solved by Smith's [1956] ratio rule: schedule the jobs on M 1 and M 2 in 
order of non-increasing ratios ÀJ I pIj and (1-Àj}/ p 2j, respectively. The Lagran
gian dual problem of finding the vector of Lagrangian multipliers that gives the 
best lower bound can be solved to optimality by use of the ellipsoid method (see 
Section 1.3.3.1). In addition, an aseent direction method for approximating the 
optima! solution of the Lagrangian dual problem is easily developed along the 
lines of Chapter 2. 

We choose another approach. lts gist lies in imposing the restrietion to solve 
(L;-.) over all permutation schedules. This condition is redundant for the primal 
problem, but is not redundant for the Lagrangian problem; hence, it may 
increase the valueL(À). We will choose the multipliervector À in such a way that 
solving (L;-.) over all permutation schedules can still be accomplished in polyno
mial time. 

To that end, we first reformulate the problem of solving (L;-.) over all permuta
tion schedules as a linear ordering problem. The linear ordering problem is the 
following: given an n Xn matrix A (ajk) of weights, find a permutation a of 
{I, ... , n} that maxiruizes the sum 

~ ajk• 
(j,k):o(j)<a(k) 

where o(j) denotes the position of elementjin the sequence a. In our application, 
we identify o(j) with the position of job Jj. Since we have in problem (L;-.) that 

cij ~ Pik> (3.4) 
k :a(k).;;o(j) 

it follows that 
n 
~ (ÀjC Ij+ (l-Àj)C2j) 
j=l 

= ± [Àj ~ Pik] + ± [(1-Àj) ~ P2k] 
j I k :a(k).;;o(j) j =I k:a(k).;;o(j) 

± ± [Àjplk(I-À)P2l<]- ± ~ [ÀjPik+(l-Àj)P2k]· 
j=Jk=l j=l k:a(j)<a(k) 

Hence, solving (L;-.) over all permutation schedules is equivalent to finding a 
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permulation a that maximizes 

~ (À1p 1k + (I-À1)p2k). 
(j,k):a(j)<o(k) 

Bergmans [1972] and Pratt [1972] show, using an adjacent pairwise inter
change argument, that the linear ordering problem is polynomially solvab1e for 
two special cases; see also Picard and Queyranne [1982] and Kolen [1986]. If the 
weights are in product form, i.e., a1k = x .!Yk• the linear ordering prob1em is so1ved 
by ordering the elements according to non-increasing ratios x1 I y1. This order is 
exactly induced by Smith's rule for the lil "'2w1C1 probiem. The linear ordering 
probiem is also solved in polynomial time if the weights are in sum form, i.e., 
a1k = x1 + yk; an optima! permutation is then obtained by ordering the e1ements 
according to non-increasing values x1 - y1. The choice ÀJ = c for each j 
(j = I, ... , n ), for some constant c (0 ..:;;; c ..:;;; I), converts (3.4) into an even 
simpter poiynomially solvabie case of the linear ordering probiem: we get the 
form a1k solved by ordering the elements according to non-decreasing 
values Yk· Hence, for those particular values of À, solving problem (Lx) over all 
permulation scheduies amounts to scheduling the jobs in order of non-decreasing 
values c pIk + (1-c )p 2k· The values c = 0 and c = I render exactly the Ignall 
and Schrage lower bounds; in fact, these bounds result from applying Smith's 
rule to each of the machines separately. 

In the remainder of this chapter, the notation (Lc) refers to the problem (Lx) 
with ÀJ c for each j (j 1, ... , n ), and L ( c) denotes its optima! objective 
value. 

3.2.1. Solving the Lagrangion dual 
We are interested in solving the restricted Lagrangian dual, referred to as prob
lem (D), that is, in finding the value c (0..:;;; c..:;;; 1) that maximizesL(c): 

n 

max{min ~ [C2j + c(C Ij+ P2J- c2j)] I 0..:;;; c..:;;; 1 }. (D) 
j=I 

The function L : c _,. L ( c) bas nice properties that make it easy to solve problem 
(D) to optimality. 

First, there is only one variabie involved. Second, L is a continuous, concave, 
and piecewise linear function in c (see Section 1.3.3). Hence, an optima! solution 
is found in one of the breakpoints of the function. These breakpoints are charac
terized in the following way. Job J1 ~s said to be c-preferable to Jk if 
c PIJ+ (l-c)p2J < c Pik+ (l-c)p2k; this means thatJ1 is scheduled beforeh 
in any optima! solution to problem (Lc)· If J1 is c-preferable to Jk for all c 
(0..:;;; c..:;;; 1), then J1 is strongly preferabie to h· For each pair (J1,h) without a 
strong preferenee relation, we define the critica/ value as the value c for which 
both jobs are equally preferable, i.e., c p 11 + (l-c)p2J = c pIk+ (l-c)p2k· 
These critica! values are precisely the breakpoints of the function L. Third, the 
problem (Lc) is solvable in polynomial time for given c. Hence, an aseent direc
tion algorithm is easy to develop; furthermore, such an algorithm gives an 
optima! solution, as only one variabie is involved. 
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The procedure to solve (D) is the following. Find the O(n 2) critical values and 
sort them in non-decreasing order. Starting with an arbitrary critical value ë, we 
solve (Lë), settling ties arbitrarily. Subsequently, we evaluate the directional 
derivatives at ë. Inspecting the Lagrangian dual problem, we derive that 1+ (ë), · 
the directional derivative for increasing ë, is 

n 
l+(ë) ~ (CIJ+ P21- C21), 

)=I 

and that /- (ë), the directional derivative for decreasing ë, is 
1'1 

r(ë) = ~ (C21- P21 c,1). 
j I 

If both 1+ (ë)...;; 0 and r (ë)...;; 0, then there is no direction of ascent: ë is 
optimal. Otherwise, we perform binary search over the appropriate interval. The 
appropriate interval is [ ë, 1] in case I+ ( ë) > 0, i.e., in case increasing ë is an 
aseent direction; the appropriate interval is [O,ë] in case r (ë) > 0, i.e., in case 
decreasing ë is an aseent direction. Since sorting the critical values takes 
O(n 2logn) time, binary search over O(n 2

) points takes O(logn) iterations, and 
each problem (Lc) requires O(nlogn) time, the Lagrangian dual problem is 
solved in O(n 2logn) time. Since max0 .;;c.., 1 L(c);;;;., max{L(O), L(l) }, problem 
(D) produces a lower bound that dominates the Ignall and Schrage lower 
bounds. 

3.2.2. Strengthening the lower bound 
Let c* be the value of c that solves problem (D). Suppose now that the multiplier 
vector À. is perturbed in the jth component by a term 6.1, i.e.,~·= c* + 6.1; sup
pose further that this perturbation does not change the processing order. Obvi
ously, the lower bound would be affected by the term 

ö.1(Cv + P21 - c21) (3.5) 

if the value c* p 11 +(1-c*)p21 is not tied, i.e., if the position of J1 is the same in 
all optimal solutions to problem (Lc• ). 

Let a1k =~pIk+ (l-~)P2k· If ~ were perturbed by 6.1, then the jth row in 
the weight matrix A for the linear ordering problem would become 
a1k + 6./p 1k- P2k), for k l, ... ,n. The issue now is todetermine the range 
for 6.1 such that the optimal solution to the perturbed problem is the same as to 
(Lc• ). Reeall that the choice À.J = c for each j (j = I, ... , n) implies for the solu
tion of problem (Lc) that 

akJ > a1k ~ a(j) > a(k), for k = I, ... , n. 

Hence, a sufficient condition to ensure that the optimal solution remains the 
same is that for each k (k = 1, ... , n, k =1=-j) we have 

akJ;;;;., aJk + 6./Pik- P2k) if a(j) > a(k), 

if a(j) < a(k). 

(3.6) 

(3.7) 
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The next step is therefore to compote for each k, k =I= j, the value 811( for which 
the valnes akJ and a1k + 81k(p Ik-p 2k) coincide, if such a value exists. From this 
weget 

8Jk (akJ-aJk)l(p,k-P2k) if Ptk=I=Pz.k· 

Defining ll/ = mink{8Jk i81k;;;;. 0 and Pik =l=p 2k} and llT = maxk{81k i8Jk..;;; 0 
and pIk =I= P2k }, respectively, we conclude that as long as ÀJ is pertorbed by ll1 
with ll1 ",.,;; ll1 ",.,;; ll/, the optimal solution to (Lc•) is also optimal to the per
torbed problem. Therefore, the current lower bound can be improved by maxim
izing (3.5) subject to ll1 ",.,;; ll1 ",.,;; ll/ and 0 ",.,;; ~ + ll1 ",.,;; 1. Hence, the Lagran
gian weights are pertorbed in the following way: 

(a) ÀJ <E- min{e*+ll/,1} if C1J+P2J>C2J• 

(b) ÀJ <E- max { e* + llj-:-, 0 } if C IJ + P2J < C 2)' 

This analysis can consecutively be performed for each J1 with untied value 
e*piJ+(I-e*)p 21. It takes O(n 2

) time altogether. We note that the finallower 
bound depends on the order in which the multipliers have been adjusted. 

3.2.3. Preeedenee constraints 
Job J1 is said to have preeedenee to job Jk> denoted by J1 ~Jk, if there is an 
optimal solution in which J1 precedes h· This type of preeedenee constraint is 
not given a priori, but it is derived a posteriori to reduce the set of relevant 
schedules. We try to derive such preeedenee constraints from the Lagrangian 
problem. The technique for this is based upon the following concept. Let 
(Lc(i,k)) denote the problem (Lc) to which we added the constraint that J1 pre
cedes Jk> while Jk is e-preferable to J1; let L1k(e) denote its optimal objective 
value. Clearly, we have L1k(e) > L(e). If L1k(e) exceeds a known upper bound, 
then there is obviously an optimal solution to (P) in which Jk ~J1. We only have 
to deal with the question whether (Lc(i,k)) is polynomially solvable. Fortunately, 
this is the case. A single-machine result from Monma and Sidney [1979] for 
objective functions that possess the adjacent pairwise interchange property 
applies to problem (Lc(i,k)). This result, proved by an interchange argument, 
clears the way for solving (Lc(i,k)) in a straightforward way. 

THEOREM 3.1. For the problem (Lc(i,k)) with Jk e-preferable to J1, there is an 
optima! sehedule in whieh J k is sequeneed immediately aft er J1. 0 

An optimal sequence for (Lc(i,k)) canthen be obtained in the following way. 
Start by scheduling all jobs as in the solution of problem (Lc) and remove J1 and 
Jk from this sequence. We call this sequence w. The module {J1,Jk} is then 
inserted just before the first job J1 in "' for which 
2(e Pil+ (l-e)P2t) > e(p,1 +Pik)+ (l-c)(p 21 + P2k)· If no such job exists, 
then {J1, Jk} is scheduled last. This condition sterns from oomparing the objec
tive valnes for the partial sequences J1JkJ1 and J1J1Jk. The lower bound L1k(e) 
can be strengthened in the samespirit as described in Section 3.2.2. 
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3.3. DoMINANCE CRITERIA 

A node at level I of the branch-and-bound procedure corresponds to an initial 
partial sequence '11' in which I jobs have been put in the first I positions. For each 
node at level/, at mostn-Idescendant nodes are created, one for everyjob 
without unscheduled predecessors. Let C1('11') be the completion time of the last 
job in the sequence '11' on M 1• The sum of the job completion times on M 2 of the 
jobs in '11' is denoted by TC('11'). Then there is noneed tobranch from a node hav
ing '11' as an initial sequence if there is a permutation '11'* of the jobs in '11', '11'* =1='11', 

that satisfies the following conditions: 

TC('11'*).;;;;; TC('11'), 

C2('11'*).;;;;; max:{ C 2('11'), C 1('11') + minJ
1
e,.,plj }. 

(3.8) 

(3.9) 

In this case, we say that the sequence '11' is dominaled by '11'*. The condition (3.9) 
ensures that the unscheduled jobs can start on M 2 at least as soon in case of '11'* 

as initial sequence as in case of '11'. Of course, finding out whether a given perrnu
tation '11' is dominated or not is as hard as the original problem. A dominanee role 
gives an easy-to-check sufficient condition for the existence of dominance. 

The following three rules are checked as soon as we are about to add a new job 
JJ to the current initial sequence. The dynamic programming dominanee criterion 
is probably the most obvious one: a node that corresponds with the sequence 
'11' phJJ can be eliminated if the sequence '11' is dominated by the sequence 
'11'* pJJJ k; p is here a subsequence of jobs. 

The second one reschedules the jobs in '11' = pJ1 into '11'* according to Johnson's 
rule [Johnson, 1954] for minimizing the maximum completion time (the mak
espan) in the 2-machine flow shop. Then certainly, the condition (3.9) is satisfied. 
It is nothard to find out whether TC('11'*).;;;;; TC('11'); if so, then '11' is dominated by 
'11'*. Note that, if JJ appears befare Jk in '11'*, while we have derived in Section 
3.2.3 that Jr·~JJ, then we still can eliminate the node associated with '11' if the 
conditions (3.8) and (3.9) are satisfied. 

The third rule looksfora job h E '11' such that PIJ .;;;;pik and p 2J .;;;;p2k· Thus, 
'11' can be written as '11' = p1J 1p2JJ, where p1 and P2 are subsequences. If we let 
'11'* p1J1P2Jh then the condition (3.8) for the dominanee of '11' by '11'* is satisfied. 
This is stated in the following lemma. 

LEMMA 3.l. IJ we have PIJ .;;;;Pik and P2J .;;;;p2k, then TC(piJJp2Jk).;;;;; 
TC(piJkP2Jj)• 

PROOF. We have C 1(p!JJ) = C 1(p1Jk) + p 11 -piJ.;;;;; C 1(p1Jk); this implies 

C2(P!JJ) ~ C2(P2h) + P2J-P2k· (3.10) 

Furtherrnore, we have C 1 (p1JJprf;) 
for every job J1 E fJ2, and hence that 

C 2(PIJJPrfi).;;;;; C 2(P1Jkp;J,), for every J1 E P2, (3.11) 

where p1 denotes the jobs of subsequence p2 that are scheduled befare J;. In 
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addition, we have Ci(p11;P2h) = C 1(Pihp211). Beeause of this: and sinee 
C 2(Pi1;P2).;;;:, C 2(Pi1kP2), we have 

C2(Pi1jP21k).;;;:, C2(PthP21)+p2k -p2j· (3.12) 

Totaling all completion times by use of the expressions (3.10), (3.11), and (3.12) 
yields the desired result. 0 

As can beseen from (3.12), there is no guarantee beforehand that the condition 
(3.9) is satisfied as well. It has yet to be verified if this is the case; only then is 
'IT = Pl1kp211 dominated by 'IT* p111p2h. We may discard the node associated 
with 'IT even if some of the preeedenee relations obtained in Section 3.2.3 are 
violaled in the sequence 'IT*. In that case, we have 
TC(PJhP21;P3) ~ TC(pl1JP2hP3) > UB, where PihP21jP3 and Pl1jP2hP3 are 
complete schedules. 

Conway et al. [ 1967] claim that there is an optimal solution in which 1j pre
cedes h if pij.;;;:, p lk and p 21 .;;;:, P2k· As can be seen from the expression (3.12), 
this cannot be established by the interchange argument used in the proof of 
Lemma 3.1. Szware [ 1983] shows the claim to be faulty by a counterexample. 

Under a more stringent condition, however, we deduce the following result, 
which can be used to generale a priori preeedenee constraints. 

THEOREM 3.2. IJ jor 11 and 1k it holds that p 2j = p 2k and pij .;;;:, p ik• then there is 
an optima/ permulation in which 1j precedes 1 k· 

PROOF. We have to show that under these conditions any subsequence of the 
type p111p21k is dominated by p11kp211 in termsof the conditions (3.8) and (3.9). 
The condition (3.8) is satisfied as can be seen from Lemma 3.1. Sinee p 21 = p 2k> 

the expression (3.12) reduces to C 2(p 111p2h).;;;:, C 2(p11kP21;), which implies that 
C2('1T*).;;;:, C2('1T); hence, the condition (3.9) is satisfied, too. 0 

Of course, if for 11 and h we have p 2j = P2k and p 11 = p lk> we allow either 
1;-~h or h-+1j in order to avoid the inconsistency to have both 1j-+h and 
h-+11. Note that the combination of the preeedenee relations from Theorem 3.2 
and the preeedenee relations generated as described in Section 3.2.3 cannot 
result in inconsistencies. 

3.4. THE ALGORITHM 

Before starting the actual branch-and-bound procedure, we do some preprocess
ing in order to find an upper bound, to derive preeedenee constraints, and to 
accelerate the calculations in a node of the tree. To obtain an upper bound, say, 
UB, we begin with a random permulation and we try to improve its sum of the 
job completion times by local interchanges. This procedure turned out to be 
robust, providing us with satisfactory initia} upper bounds. 

In addition, we approximate the search over the O(n 2
) points as described in 

Section 3.2.1 by a search over 21 points. Therefore, we store the 21 sequences 
that solve the problems (Lc) with c = x/20, x= 0, 1, ... ,20, respeetively. This 
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search works sufficiently well due to the flatness of the function L : c ---'? L ( c) 
around the optimum. The storage implies a significant reduction in lower bound 
computation time, since we have tosort the jobs for each of these values of c only 
in the preprocessing phase; it takes then only linear time to compute L(c) in a . 
node of the tree. 

In a similar fashion, we store the maximum perturbation values D. f and D. T 
for each J1 (j 1, ... ,n), which are computed as described inSection 3.2.2. 
These values depend on the set of unscheduled jobs and should actually be com
puted in each node of the tree. Although they are likely to increase if we go down 
the search tree, the toss in strength was more than compensated for by the reduc
tion in computation time. The storage reduces the cost of 1ower bound 
strengthening in a node of the tree from 0 (n 2 ) to 0 (n) time. 

Preeedenee constraints are only derived from the so1ution of problem (Lc• ), 
where c* is the best choice among the 21 va1ues for c. The completion times on 
both machinescan easi1y be computed from (3.3), requiring linear time, albeit we 
can altematively put C 21 ~ C 21 + min J.;;k .;;nP ik for each J1 (j = I, ... , n ), since 
the second machine is surely idle until min1.;;k.;;nPik· For problem (Lc•), we try 
to derive preeedenee constraints as described inSection 3.2.3. For that purpose, 
we introduce an n Xn matrix B with elements b1k = (Lc(j,k)) and b11 = 0. It is 
necessary to store this matrix, since new preeedenee constraints may be derived if 
we find a better upper bound. 

IGNALL and SCHRAGE PROPOSED 
ALGORITHM ALGORITHM 

max.# 
active total # time total # time 

data set nodes nodes sec nodes sec 
10.1 5 53 0.9 9 1.5 
10.2 13 84 0.9 10 1.3 
10.3 18 152 1.0 14 1.5 
10.4 117 728 3.1 57 1.9 
10.5 135 957 3.9 169 2.7 
15.1 1462 13718 93.0 693 9.5 
15.2 2097 11156 116.9 388 7.4 
15.3 1721 17712 142.4 603 9.7 
15.4 676 2946 18.6 169 5.0 
15.5 4280 35442. 958.8 380 6.0 
20.1 5213 (98.81 %) 336.7 963 19.0 
20.2 6411 (95.28%) 281.0 9235 95.4 
20.3 5266 (97.12%) 182.2 1282 21.7 
20.4 8909 (90.43%) 490.0 8846 102.6 
20.5 8184 (96.72%) 422.4 4913 56.3 

TABLE 3.1. Computational results on a VAX-780 computer. 

The Ignal1 and Schrage algorithm follows a best bound strategy. For each of the 
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new nodes the corresponding lower bound is calculated and, if this lower bound 
is smaller than the current upper bound, this new node is inserted in a list of 
active nodes. This list is sorted in order of non-decreasing lower bóunds. The 
node on top of this list is chosen to branch from. A significant advantage of such 
a list is that it facilitates dominanee checking. However, in the worst case, the 
size of this list is exponential in the number of jobs. Computational experiments 
made it clear to us that this dominanee checking was only advantageous for 
instances with n up to 10. 

In contrast to the Ignall and Schrage procedure, we use an active node strategy. 
This means that we generate descendant nodes, of which there are at most n -I, 
for only one non-discarded node at level/. These descendant nodes are stored in 
a separate list and sorted according to a branching rule. We then branch from 
the node on the top of this list. Such a procedure requires only O(n 2) space, 
since at each level I we have a list of at most n -'- l jobs. The only thing that 
remains to explain is the branching rule. The new nodes that add some job J1 
without unscheduled predecessors to an initial sequence 7T are sorted in non
decreasing order of ~J,e:{"} bkJ· This sum is supposed to reflect some notion of 
'costs' if we schedule J1 before the other unscheduled jobs. 

Both algorithms were coded in C, implemented on a V AX-780 computer, and 
tested on problems with 10, 15 and 20 jobs. The processing times for each job 
were taken from the uniform distribution [1,10], as Kohier and Steiglitz [1975] 
did in carrying out their experiments. Table 3.1 presents the results. The entties 
in the column 'maximum number of active nodes' give an indication of the space 
required by the Ignall and Schrage algorithm. The new algorithm outperforms 
the Ignall and Schrage procedure, although incasen = 10 it is sometimes slower. 
The main reason for this lies in the preprocessing phase. 

As to the Ignall and Schrage algorithm with 20 jobs, computation was ter
minated after 10000 nodes. An entry within brackets represents the ratio in per
centage upon termination between the lower bound of the first node in the list 
and the current upper bound. 

Although the presented approach shows a significant improvement with 
respect to the Ignall and Schrage algorithm, the F211 ~c1 problem remains diffi
cult to solve. 1t appeared from additional experiments that major difficulties are 
encountered for instances beyond 25 jobs. 

3.5. ExTENSIONS 

3.5.1. The F2ll ~w1c1 problem 
Most of the results obtained bere carry over to the more general F2ll~w1c1 
problem. In this problem, each J1 bas some weight w1, which expresses its impor
tance relative to other jobs. By performing an analysis along the lines of Section 
3.2, we find that the resulting linear ordering problem is solvable in polynomial 
time in case that either 'A1 = 0 for each j, or that 'A1 = w1 for each j, or that 
'A1 = w1 /2 for each j (j = I, ... , n ). Por this last choice of À the weights of the 
linear ordering problem are in product form. 
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3.5.2. The F 11 ~CJ problem 
A similar analysis can be performed for the general problem with m machines if 
only permutation schedules are allowed. Although non-permutation schedules 
should be considered as well, optimization is usually confined to the set of per
mulation schedules. If the capacity and availability consiraints are assumed to be 
implicitly present, then the permulation scheduling problem can be formulated 
as follows: de termine completion times Cu (i 1, ... , m, j ::::: I, ... , n) that 
minimize 

subject to 

C;+I,J ~Cu+ Pi+l,J• for i::::: 2, ... ,m, j =I, ... ,n. (3.13) 

The conditions (3.13) state the preeedenee relations between each pair of con
secutive operations of the same job. If we introduce Lagrangian multip1iers 
ÀiJ;,;;;. 0 (i I, ... , m -l, j ::::: 1, ... , n) to dualize the constraints (3.13), then the 
Lagrangian problem, referred to as problem (L;>.), is to minimize 

J ~I [~I ;C Ij + ~;,\~;+ I,j- ~'1 )C; + I,j + (I -À,;, -IJ )Cm} l + : ~1
1

1 ~/';!' 1 + I,j· 

Let L(À) be the optima] value of this problem. Oearly, we must ensure that 

0E;;;ÀijE;;;À2JE;;;···E;;;Àm I,JE;;;l, forj=l, ... ,n, (3.14) 

in order to avoid that L (À) = - oo. For given Lagrangian multipliers that satisfy 
these requirements, the Lagrangian problem decomposes into m single-machine 
problems, each of which is easily solvable by Smith's rule. In parallel to the 2-
machine case, the requirement to solve the Lagrangian problem over all permula
tion schedules transfarms the Lagrangian problem into a linear ordering prob
lem. The following theorem gives a sufficient condition for solving this linear 
ordering problem in polynomial time. 

THEOREM 3.3. The problem of finding a permulation schedule that solves the 
Lagrangion prob/em (L;>.) is solvable in polynomia/ time ij Àu a1 for 
i= I, ... ,m 1, j::::: 1, .•. ,n, with 0 E;;; a 1 E;;; · · · E;;; am-I o;;;;; I; in this case, the 
prob/em is solved by sequencing the jobs in order of non-decreasing values 
alp ij+~~ (ai+l -a;)Pi+I,J + (1-am-J)Pm)' 

PROOF. For this specific choice of the Lagrangian multipliers, the weights of the 
linear ordering problem are in product form. 0 

Let L(al> ... ,am t) denote the value L(À) with Àu::::: ai> for i I, ... ,m 1, 
j = 1, ... , n. The restricted Lagrangian dual problem for the m-machine case is 
then to maximize 
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subjeèt to 

Thls problem is solvable in polynomial time by use of the ellipsoid algorithm (see · 
Theorem 1.6). Since the ellipsoid algorithm is very slow in practice, it is better to 
consider an approximation problem for the Lagrangian dual problem. Since the 
Lagrangian problem is solvable in polynomial time, an aseent direction method 
can be easily developed; it will be similar to the one for the Lagrangian dual 
problem of the lipree I 'J:.wjCj problem (see Chapter 2). 

Bansal [1977] extends the Ignall and Schrage lower bounds in a straightfor
ward fashion to the m-machine case. A series of m relaxed versions of the original 
problem are considered, of which the ith version (i = I, ... , m) is of the follow
ing type: minimize 'J:.Cmj if all machines but Mi are assumed to have infinite 
capacity. Clearly, the ith such problem is solved by sequencing the jobs in order 
of non-decreasing values Pij· Bearing in mind that Mi cannot start processing 
before time t = '2:.~ -;;,11min1 ..;j..;nPhj• we compute the completion times Cij 
(j= I, ... ,n)as 

m 

Cmj = Cij + ~ Phj• for j = I, ... ,n; 
h=i+! 

'J:.j 1 Cmj is then a lower bound on the optimal objective value. 
lt is easy to verify that the value L (1, I, ... , I) concurs with Bansal' s first 

lower bound, L(O,I, ... , 1) with the second, and so on; L(O,O, ... ,0), finally, 
concurs with Bansal's mth lower bound. Hence, the lower bound produced by an 
aseent direction method is at least as good as Bansal's best lower bound. 
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4 

Parallel-Machine Scl1eduling 

We consider the R I I C max problem in this chapter. We present a 0-1 linear pro
gr,!Uilming formulation for it, and subsequently dualize a set of constraints to 
obtain a Lagrangian problem with the integrality property; i.e., the optimal solu
tion value ofthe linear programming relaxation equals the optima! solution value 
of the Lagrangian dual problem (see Corollary 1.1). The Lagrangian problem 
offers nonetheless attractive opportunities for the design of both an optimization 
algorithm and an approximation algorithm. The optimization algorithm solves 
large problems within reasonable time limits. The approximation algorithm is 
based upon a novel concept for iterative local search, where the search direction 
is guided by Lagrangian multipliers. 

The organization of this chapter is as follows. InSection 4.1, we describe the 
problem in detail and give an overview of the literature for this problem. In Sec
tion 4.2, we formulate the R I I C max problem as an integer linear program, 
examine the Lagrangian dual problem, and develop a quick aseent direction 
algorithm. In Section 4.3, we present the approximation algorithm. A complete 
description of the branch-and-bound algorithm is given in Section 4.4. Some 
computational results are presented inSection 4.5. Conclusions are given in Sec
tion 4.6. 

4.1. INTRODUCTION 

We first reeall the specification of the R 11 C max problem. There are m parallel 
machines available for processing a set of n independent jobs~= {J I> •.• ,Jn }. 
Each of these machines can handle at most one job at a time. The processing of 
job Jj (j = 1, ... , n) on machine M; (i = 1, ... , m) requires a positive time Pij. 
We may assume that these processing times are integral. Each job bas to be 
scheduled on one of the machines and bas to be processed without interruption. 
A schedule is an assignment of each of the jobs to exact1y one machine. The 
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length of the schedule, also referred to as the makespan, is the maximum job 
completion time; by definition, the makespan is also equal to the maximum 
machine completion time. The objective is to find a schedule of minimum length. 

The R I I C max problem has a range of potential applications. It arises in the 
context of computer system scheduling, where the machines are processors of a 
distributed computing environment with varying capabilities across the tasks. 
Other applications are found in the area of flexible manufacturing systems. For 
instance, a cluster of parallel machines may form a single or bottleneck stage in 
the production process. The problem also occurs in the context of machine load 
balancing, where machines have to be equipped with the appropriate tools for 
the jobs assigned to them. If production follows a cyclic pattem, and if the sys
tem set-up time (the time to load the machine with the appropriate tools) is costly 
relative to production time, then an obvious objective is to minimize the cycle 
time; note that cycle time minimization is equivalent to throughput maximiza
tion. Berrada and Stecke [ 1986] consider such à problem with limited capacities 
of the machines' tooi magazines. 

In Chapter I, we have shown that the R I I C max problem is already '~U!il-hard 
in case of two identical machines. The traditional problem is then to balance 
solution quality with running time. An optimal solution may only be found at 
the expense of an exponential amount of computation time; a polynomial-time 
algorithm cannot be guaranteed to produce the optimal solution. 

Two attempts have been made to solvetheR 11 Cmax prob1em to optimality. 
Stem [1976] presents a branch-and-bound algorithm; Horowitz and Sahni [1976) 
develop a dynamic programming procedure. In either case, no computational 
results are reported. 

Much research effort has been invested in the development of approximation 
algorithms with a guaranteed accuracy. Ibarra and Kim [1977] and Davis and 
J affe [ 1981] propose various approximation algorithms with worst-case perfor
mance ratios that increase with the nUm.her of machines. For fixed m (i.e., the 
number of machines is specified as part of the problem type and not of the prob
lem instance), Horowitz and Sahni [1976] give a fully polynomial approximation 
scheme with time and space complexity O(nm(nml(p-I))m-J). A polynomial 
approximation scheme is a family of algorithms that contains for any p > I a p
approximation algorithm with a running time that is bounded by a polynomial in 
the problem size; this running time may depend on p. A family of algorithms is 
called a fully polynomial approximation scheme if it contains for any p > 1 a p
approximation algorithm for which the running time is bounded by a polynomial 
in the problem size as well as in 1 I (p- 1 ). 

Potts [1985B] presents a 2-approximation algorithm. lts time requirement is 
polynomial only for fixed m; its space requirement, however, is polynomial in m. 
For the 2-machine case, Potts improves the worst-case ratio to (I+ Vs)/2. The 
algorithm is a two-phase procedure. In the first phase, linear programmingis 
used to assign at least n - m + I jobs; in the second phase, complete enumeration 
is used to schedule the remainingjobs. Using Potts' algorithm as the basis, Lens
tra, Shmoys, and Tardos [ 1987] present a 2-approximation algorithm that is 
polynomia1 in m. They also present a polynomial approximation scheme for a 
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fixed number of machines, requiring space bounded by a polynomial in the prob
lem size and log(l/(p-1)). In addition, they prove a notabie negative result: 
unless <@ = 'X<@, no polynomial p-approximation algorithm exists for any p < f. 

Two papers consider R 11 Cmax from an empirical point of view. De and Mor
ton [1981] present several hybrid list scheduling algorithms and performa large
scale computational testing. Our computational experiments exhibit, however, 
that their algorithms produce poor results. Hariri and Potts [1990] propose 
several two-phase beuristics that proceed in the spirit of Potts' 2-approxirnation 
algorithm. The first phase is identical: linear programmingis used to schedule at 
least n - m + 1 jobs. The second phase proceeds differently: a beuristic is used as 
a substitute for complete enumeration to schedule the remainingjobs. Note that 
Potts' 2-approximation algorithm dominates such two-phase beuristics in terms 
of quality but not in terms of speed. Hariri and Potts also consider several con
structive heuristics, using them in conjunction with iterative local improverneut 
procedures. 

In spite of the considerable attention that the R I I C max problem bas received, 
there is still a lack of practical algorithms and computational insight. We address 
this issue bere. We are concerned with methods that solve R I I C max satisfac
torily from a practical standpoint We develop an exact algorithm and an 
approximation algorithm; both are based on Lagrangian relaxation and duality. 

4.2. MINIMIZING MAKESPAN AND lTS DUAL PROBLEM 

In this section, we present an aseent direction metbod for the Lagrangian dual 
problem of R 11 Cmax. We will also show that the search fora good approximate 
solution for the Lagrangian dual problem can almost be integrated with the 
search for a good approximate solution for the primal problem. First, we give a 
0-1 linear programming formulation. 

Evidently, there is an optimal so1ution in which the jobs are processed without 
delay. In addition, the ordering of the jobs on the machines is irrelevant for the 
1ength of the schedule. We are therefore actually 1ooking for an assignment of 
jobs to machines. Accordingly, we introduce assignment variables xiJ 
(i 1, ... , m, j = 1, ... ,n) that take the value 1 if J1 is schedu1ed on M 1, and 0 
otherwise. If we let C1 denote the completion time of machine M1, then we have 
C; '2j 1piJx11 • The maximum value of the machine completion times, denoted 
by Cmax• is then the 1ength of the schedule. 

The R I I C max problem, hereafter referred to as problem (P), is to determine 
values xiJ that minimize 

subject to 

Cmax 

11 

~ PIJXij .,;;; C max• 
j=l 

m 

~ X;j = 1, 
i I 

(P) 

fori =I, ... ,m, (4.1) 

forj = 1, ... ,n, (4.2) 
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xiJ E {0,1}, for i= I, ... ,m, j =I, ... ,n. (4.3) 

The conditions (4.1) ensure that the completion time of each machine is less than 
or equal to the length of the schedule; the conditions ( 4.2) guarantee that each 
job is assigned. The conditions ( 4.3) ensure that each job is scheduled on exactly · 
one machine, thereby precluding preemption. If we replace the integrality con
straints ( 4.3) with the weaker conditions xiJ ;;:,: 0 ji = I, ... , m, j = I, ... , n ), 
then we obtain the linear programming relaxation (P); this problem is salvabie in 
polynomial time. Note the close resemblance between the R 11 Cmax problem 
and the generalized assignment problem (see Section 1.3.2). 

When consiclering Lagrangian relaxation, we may he hesitant to dualize the 
conditions (4.1), since the resulting Lagrangian problem possesses the integrality 
property (see Corollary 1.1). Nonetheless, we choose to do so for two good rea
sans. First, a quick aseent direction methad produces good approximate solu
tions for the associated Lagrangian dual problem. Second, for each vector of 
Lagrangian multipliers, we get a feasible salution for the R I I C max problem. 

The Lagrangian problem can he obtained by dualizing the constraints (4.1), 
and then by simplifying the objective function through normalization of the 
Lagrangian multipliers. However, the Lagrangian problem is easier to obtain by 
the so-called technique of surrogate relaxation. The central idea for this type of 
relaxation is to replace a set of nasty constraints with a single condition that is a 
weighted aggregation of these constraints. We aggregate the conditions ( 4.1 ). We 
introduce a vector of multipliers À = (À1, ••• , Àm);;:,: 0 with À; > 0 for at least one 
i (i= I, ... , m), and replace the conditions (4.1) with 

m n m 

~À;~ piJxiJ ";;;;; ~ À;Cmax' (4.la) 
i=l j=l i=l 

or, equivalently, 
m n m 

C max ;;:,: ~ ~ À;pijxij I ~ À;. (4.lb) 
i=lj=l i=l 

The surrogate relaxation problem, referred to as problem (LÀ), is then to deter
mine L (À), which is the minimum of 

m n m 

~ ~ À;piJxiJ I ~ À; 
i=lj=l i=l 

subject to 
m 

~ xiJ =I, forj =I, ... ,n, (4.2) 
i=l 

Xij E { 0, I}, for i = I, ... , m, j = I, ... , n. (4.3) 

It is a matter of writing out to verify that the Lagrangian problem obtained by 
dualizing the constraints ( 4.1) boils down to exactly the same problem. There
fore, we refer to the above problem as the Lagrangian problem. It is due to the 
special structure of this problem that the surrogate relaxation problem and the 
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Lagrangian relaxation problem coincide. Generally, these problems are different. 
In theory, the best surrogate bound is at least as good as the best Lagrangian 
bound; in practice, the former is much harder to obtain. Greenberg and Pier
skalla [1970] and Karwan and Rardin [1979] compare both relaxation methods. 

Along the lines of Section 1.3, we make now some observations concerning the 
structure, the properties, and the solution of the Lagrangian problem. In the 
remainder, we let v O denote the optimal solution value of problem (-). 

ÛBSERVATION 4.1. Problem (L~) provides a lower bound on v(P), since any solu
tion that satisfies (4.1) also satisfies (4.lb) (but not necessarily vice versa). We 
have therefore that L(À) ~ v(P) for any vector À =(À" ... ,Àm);;;;;.: 0 of Lagran
gian multipliers with À; > 0 for at least one i (i 1, ... , m ). 

ûBSERVATION 4.2. Problem (L~) is solvable in O(nm) time by assigning each job 
Jj to a machine Mh for which ÀhfJhj min1 <i< m ÀiPiJ· Ties may be settled arbi
trarily. 

Note that L(À) = '2-}=t min1";;;";;mÀ;piJ/'2.?' 1À;. We refer to À;piJ as the dual 
processing time of Jj on M;. The conditions (4.3) of the Lagrangian relaxation 
problem can be replaced with the conditions x iJ ;;;;;.: 0 (i 1, ... , m, j = 1, ... , n) 
without affecting the optimal value L(À). Hence, problem (L~) has the integrality 
property, since it can be solved as a linear programming problem. 

ÛBSERVATION 4.3. Any solution to (L~) is also a feasible solution to the primal 
problem (P), for any vector À = (À1, ••• , Àm) ;;;;;.: 0 of Lagrangian multipliers with 
À;> 0 forat least one i (i= 1, ... ,m). 

The constraints (4.2) and (4.3) enforce the assignment of each job to exactly 
one machine. Fora specific optimal solution of problem (L~), let Ci(À) denote 
the completion time of M;. The approximate solution value is then 
C max(À)= maxi< i< m ClÀ). The way we settie ties when solving problem (L~) 
affects C max(À). 

ÛBSERVATION 4.4. The objective value L(À) is a convex combination of the 
machine completion times. This implies that min1 <i< m C;(À).;;;:; L(À) ~ 
max1 <i< m C;(À). 

Consider the following instanee of the R I I C max problem, where eight jobs are 
to be schedu1ed on three machines with the processing times given in Tab1e 4.1. 
We also used this instanee in Chapter I. Let À (1, 1, 1) be the vector of Lagran
gian multipliers. The Lagrangian problem (L~) is solved by assigning each job to 
the machine with the smallest processing time for it. The resulting schedu1e is 
represented by the Gantt chart of Figure 4.1. The initial choice À = ( 1, 1, 1) gives 
an elementary lower bound: it is the sum of the minimum processing times 
divided by the number of machines. The lower bound is L(À) = 18+; the upper 
bound is Cmax(À) = 33. 
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Jl h J3 J4 Js J6 J7 Jg 
MJ 6 3 10 12 11 14 8 6 
M2 10 00 15 6 6 11 14 7 
M3 11 9 14 14 00 10 10 9 

T ABLE 4.1. Processing time matrix. 

M2 I J4 

M3 I J6 I 
ö 10 

FIGURE 4.1. Gantt chart for À= (1, 1, I); the dotted line indicates the 
Iower bound L(À). 

The best Lagrangian lower bound is found by solving the Lagrangian dual prob· 
lem, referred to as problem (D). It is defined as 

v(D) = max{L(À) I À ;;ï!: 0 }. (D) 

In the remainder, we let À* denote the vector of optimal Lagrangian multipliers. 

Ü!_SERVATION 4.5. Since (L;\) possesses the integrality property, we have 
v (P) = v (D): the Lagr~gian dual yields the same lower bound as the linear pro
gramming relaxation (P) (see Corollary 1.1). 

This result is also derived in the following direct way. Geoffrion [1974] points 
out that it is possible to take the dual of a linear programming problem with 
r~pect to only a portion of the constraints. We assert that doing so for problem 
(P) with respect to the conditions ( 4.1) yields exactly the Lagrangian dual prob
lem (D), since the conditions (4.3) in problem (L;\) can he replaced with xij ;;ï!: 0 
(i= 1, ... ,m,j 1, ... ,n). 

Like the Lagrangian objective functions we examined in the previous chapters, 
the function L : À~ L (À) is continuons in À and everywhere differentiable except 
at the points where the Lagrangian problem (L;\) has multiple optima) solutions. 
Unlike those other functions, the function L is not piecewise linear and not con
cave; this is because the term .If2 1 À1 appears in the denominator of the Lagran
gian objective function. However, we can still develop an aseent direction algo
rithm for approximating the optima) salution of problem (D). Some effort is 
required to find the primitive directional derivatives. The Lagrangian problem 
here apparently does not belong to the class of Lagrangian problems for which 
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we have shown that the primitive directional derivatives reduce to the dualized 
constraints (cf. Section 1.3.3.3). We will show, however, that the primitive direc
tional derivatives for this particular Lagrangian objective function also reduce to 
simple expressions. Using the primitive directional derivatives, we also show that 
the shape of L between the points of non-differentiability does not matter: at any 
À not being a point of non-differentiability, we can travelalong a primitive direc
tion to a point of non-differentiability where the Lagrangian function value is no 
worse than L(À). For the Lagrangian problem (D), this means that the optimiza
tion over all À ~ 0 can be reduced to the optimization over all À ~ 0 that 
correspond to points of non-differentiability. For the aseent direction procedure, 
we will therefore invariably compute step sizes that take us from one point of 
non-differentiability to another. 

The aseent direction method for approximating the optima} solution of prob
lem (D) is similar to the aseent direction method we described for the generalized 
assignment problem (see Secdon 1.3.3.2). First, we derive the primitive direc
tional derivatives. Let It (À) be the primitive directional derivative for increasing 
À1; let Ç (À) be the primitive directional derivative for decreasing \. From 
among the optimal solutions for problem (LÀ), let x (i)+ be a solution with least 
jobs assigned to M 1, and let x(i)- be a solution with most jobs assigned to M 1, 

for i = 1, ... , m. To get an x (i)+, each job J1 with À1piJ minimal and with 
ÀhPhJ = À1piJ forsome Mh M 1 is not assigned to M 1; all other ties are settled 
arbitrarily. To get an x(i)-, each J1 with À1piJ minimal is assigned to M 1; all 
other ties are settled arbitrarily. Let ct (À) be the completion time of M1 for such 
an x (i)+; let Ci (À) be the completion time of M 1 for such an x (i)-. Let ~i (À) 
denote thesetof jobs on M 1 for such an x(i)+; let~~- (À) denote thesetof jobs 
on M 1 for such an x (i)- . 

Recall that, at a higher level, the primitive directional derivatives are defined 
as 

and 

_ L(Àl> ... ,À1 11 (À)= llm·-----------'-----'-
<,J..O E: 

for i= I, ... ,m. For any h (h I, ... ,m), let À (À" ... ,Àh +t:, ... ,Àm) with 
t: > 0. We choose t: > 0 sufficiently small to ensure that x(h)+ remains optimal 
for problem (L~); such an.! exists (see Theorem 1.7). Fora specific x(h)+, we 
have therefore that C1(À) =C1(À) for each i (i= 1, ... ,m), and that 
Ch(À) = ct (À). Hence, we have 

m- m 

~ À1 C1(À) t:Ct (À)+ ~ À1 C1(À) 
1=1 1=1 L (À) = ..:........::..._m ___ = ___ _;_m_;;__ __ 

~À; t:+ ~À; 
i=I i 1 
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m 

~ À;C;(À) 

t:C;i (À) + i 1 m f À; 

~À; i=l 

i=l 
m 

t:+ ~À; 
i=l 
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m 
t:C;i (À) + L(À) ~ À; 

I 
m 

t:+ ~À; 
i=l 

This gives that 
m 

L(À) L(À) = t:[C;i(À) L(À))/(t: + ~À;). 
i=! 

Using this, we obtain for the primitive directional derivative that 
m 

/;i(>.)= [C;i(>.) L(À)]/ ~À;. 
i I 

In a similar fashion, we get that 
m 

/i;(À) = [L(À)-Ci;(À))/ ~À;. 
i=l 

If ct (À)> L(À), then machine Mh is overloaded; maintaining the parallel with 
the generalized assignment problem, we say that L (À) is the virtual capacity of 
Mh. lncreasing Àh is then an aseent direction: we will obtain an improved 
Lagrangian objective value by moving along this direction. If Ci; (À)< L(À), 
then machine Mh is called underloaded; decreasing Àh is an aseent direction. 

Now we show that the shape of L between the points of non-differentiability 
does not matter. Suppose À is not a point of non-differentiability: the Lagrangian 
problem (L>.) has a single optimum. For h = I, ... , m, let ~: be the step size for 
increasing Àh to reach the nearest point of non-differentiability, and let ~h be 
the step size for decreasing Àh to reach the nearest point of non-differentiability. 
For h =I, ... ,m, let À(h)+ =(À" ... ,Àh + ~:, ... ,Àm), and let À(h)- = 
(À~> ... , Àh ~h, ... , Àm). Using the denvation of the primitive directional 
derivatives, we have 

m 
L(À(h)+) L(À) ~:rch(>-)- L(>-)J!<~t + ~ >.;), 

i=! 

and 
m 

L(À(h)-) L(À) ~h [L(À)- Ch(À)]/(-~i; +~À;). 
i=l 

Since L(À) is a convex combination of the machine completion times 
C 1 (À), ... , Cm(À), we have L (À(h) + )";;;;:. L (À) for at least one h, or 
L (À(h)-) ~ L (À) for at least one h. Hence, for problem (D), we can restriet our
selves to the optimization over all À ~ 0 corresponding to points of non
differentiabili ty. 

If we find an aseent direction, then we travel along this direction to the nearest 
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point where the associated primitive directional derivative changes. The required 
step size is easily determined. Suppose lii (À)> 0: M~z is overloaded. Increasing 
À~z makes M~z less attractive to schedule jobs on. Eventually, we reach the first 
point where someJ1 currently scheduled on M~z can equally well be scheduled on 
some other machine Mg; moving on beyond this point, weenforce the removal of 
J1 from Mh. The step size A to reach this point is the smallest positive value for 
which (À~z + A)PhJ ÀgPgj for some J1 on M~z and some Mg (Mg=I=M~z); hence, it 
is computed as 

A - À~z + min,",;; i",;; m, i=/=h, J
1 

E :~-:(À) À;PiJ I Ph}" 

Accordingly,_we get À= (À1, ••• , Àh +A, ... , Àm); the increment to the objective 
value is L(À)-L(À)=A[Cii(À)-L(À)]I(A+~r;" 1 À;)>O. Furthermore, we 
move J1 from M~z to Mg, and examine whether increasing À~z is also an aseent 
direction. 

Now, suppose r;; (À) > 0: Mh is underloaded. Decreasing À~z makes M~z more 
attractive. Eventually, we reach the first point where some J1 on Mg (Mg=/=M;) 
can equally well be scheduled on Mh; moving on beyond this point will force J1 
to go to Mh. The required step size A is the smallest positive value for which 
(Àh A)phJ = Àg/Jgj• forsome J1 scheduled onsome Mg; ît is computed as 

A = Àh - min,..; i",;; m, i=/=h, J1 E :~--:~-;(À) À;pij I Ph}· 

Accordingly, we ge_! À (À I> ••• , Àh-A, ... , Àm), and the in erement to the 
objectivevalueis L(À)- L(À) = A[L(À) Ch"(À)]I( -A+~( 1 À;)> 0; we move 
J1 to Mh, and examine whether decreasing Àh is also an aseent direction. 

1f the aseent direction method is started in some À > 0, then the aseent direc
tion can never reach a boundary point where Ài = 0 forsome i (i 1, ... ,m). 
Also, we must have À;* > 0 for each i (i = 1, ... , m ); ü À;* = 0, then increasing 
À;* is an aseent direction, thereby contradicting its opt~ity. Termination of 
the aseent direction method happens_ therefore at some À where all primitive 
directional derivatives exist. At such a À, we have 

1/ (À)".;; 0, and Ç (À)".;; 0, 

or equivalently, 

for i I, ... ,m, 

~ PiJ..;L(À)..; ~ p;1, fori=l, ... ,m 
J1 E :ft (Ä) J1 E :f,-{Ä) 

The identification of the aseent direction "and the computation of the step size 
can be implemented in different ways. We have freedom concerning the choiee of 
the initia} vector, and, for each iteration, the choice of the aseent direction. Sinee 
Àj * > 0 for each i (i = 1, ... , m ), we best start with a positive vector. Moreover, 
since the Lagrangjan multipliers are normalized values, we can fix one multiplier 
a priori without running the risk of missing the optimum. The choice of the 
aseent direction affects the upper bounds that we get as by-products: for 
machine load balancing, it may be better to choose the direction of steepest 
ascent. Nonetheless, we give below a step-wise description of a rudimentary ver
sion, stripped from most of such considerations. 
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ASCENT DIRECTION ALGORITHM POR PROBLEM (D) 

Step 0. For h = 1, ... , m, set Àh ~I. Solve problem (L>.), setding ties arbitrarily. 
Determine L(À). 
Step 1. For h = 1, ... , m, do the following: 

(a) While ct (À)> L(À), compute 

a -Àh + min,.;;,;.;;m,i=f=h,J
1

Er;<>.>À;pijlph1, 

set À;~ À; + a, and update L (À) and Ct (À). · 
(b) While c;; (À)< L(À), compute 

a= Àh -min,.;;;.;;, m. i=f=h,J
1 
E~-~~(À) À;p,1 lph1, 

set~~ À; a, and update L(À) and C;; (À). 

Step 2. Stop ü no aseent direction was identüied; otherwise, go to Step I. 

Let us reconsider our example and the solution of (L>.) with À= (1, 1, 1). Machine 
M 1 is overloaded. The step size to remove some job from M 1 is a = f: increas
ing À1 by + allows us to move J 8 to M 2• We get À=(-}, 1, 1), a schedule with 
makespan 27, and L(À) = 19.1 (see Figure 4.2; the dotted line indicates the vir
tual capacity of the machines). 

M, I J, I J 2 I J3 J, 

M2 I J4 I J5 Jg 

M3 I J6 I 
ó tb 

. I 

:20 27 3'o 
FIGURE 4.2. Gantt chart for À=(-}, 1, 1). 

M, J, lhl J3 I ~ 
M2 J4 I J5 Jg I! 
M3 J6 J, :I 

0 10 10 30 

FIGURE 4.3. Gantt chart for À= (1-, 1, 1). 

Machine M 1 remains overloaded; we increase À1 to +, and subsequently move 
J, to M 3• We getÀ = (1-, 1, 1), a schedulewith makespan 20, and L(À) = 19.3 (see 
Figure 4.3). Since all processing times are integral, the optimal makespan is 
integral as well. Hence, we have found an optimal primal solution. However, an 
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aseent direction still exists: M 2 is underloaded. If we decrease À2 by then J 6 

goes to M 2 • We obtain À= (f, :~, 1) and L(À) I9 1~9 • At this point, no primi
tive aseent direction exists anymore: the aseent direction method is terminaled at 
À (f,fl-, 1). 

- -
The vector À is no_! optimal for the Lagrangian dual problem, i.e., À=f=À *. For 

À*, we have that v(P) L(À*) (Observation 4.5), and that the complementary 
slackness conditions hoid (Corollary 1.1). These conditions can be shown to 
impiy that 

xiJ >0 <==:> À;*piJ minimal, for i= I, ... ,m,j =I, ... ,n. 
- -

Consirlering Figure 4.3, we wouid obtain a feasible solution with v(P) = L(À) 
that satisfies the complementary slackness relations if and only if we could split 
J 6 over _M 3 and M 2 and J 1 over M 3 and M 1 in order to process them before 
time L(À). This is not possible. 

We now discuss Potts' 2-approximation algorithm and its relation to the 
aseent direction algorithm. For an arbitrary number of machines, t~e first phase 
of Potts' algorithm is to solve the linear programming relaxation (P). The solu
tion of (P) shows at least n - m + I jobs each assigned to exactly one machine, 
and at most m 1 jobs split over two or more machines. The jobs assigned to 
exactly one machine are retained as a partial schedule. The split jobs ar~ assigned 
so as to minim:ize the makespan, given the partial schedule. Since v (P) ~ v (P), 
the length of the partial schedule is no more than v (P). The scheduling of the 
split jobs proceeds by complete enumeration; this adds at most v (P) to the length 
of the partial schedule. Hence, the resulting schedule has a makespan at most 
twice the optimal makespan. Since (P) is solvable in polynomial time and com
plete enumeration for at most m -1 split jobs requires O(mm) time, the pro-
cedure is polynomial for fixed m. _ 

Consider now an optimal solution of problem (L~J Since À is the vector upon 
terminalion of the aseent direction method, we have 

~ PiJ~L(À)~ ~ p;1, fori=I, ... ,m. 
Jj ~:(À) Jl E f (À) 

Exploiting these terminalion conditions, we point out a 2-approximation algo
rithm that proceeds entirely in the spiri_! of Potts' 2-approximation algorithm. In 
the first phase, we assign each J1 E ~t (À) to M;, thus obtaining a partial schedule 
with length _!!O more than v (P). The remaining jobs, contained in the set 
~- U~ 1 ~t (À), have ties concerning their minimal dual processing times. In the 
second phase, we assign these jobs by complete enumeration so as to minimize 
the makespan, given the partial schedule; this adds at most v (P) to the length of 
the partial schedule. Hence, the resulting schedule has makespan no more than 
2v(P). 

In fact, we get also a schedule with wor~-case ratio 2 wit~ fewer jobs to assign 
in the second phase as follows. Let ~?(À) Ç ~i- (À)- ~t (À) (i = I, ... , m) be 
mutually disjoint subsets of jobs such that 
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~ PiJ.,;;;;.. L('X), for each i= 1, ... ,m; 
J1 E ;1-7 (À)U;I-~(À) 

hence, ~?('X) contains on1y jobs with ties concerning the!!' mini~ dual process
ing time. In the first phase, we assign each Jj E ~t0)U~?(À) to M;; in the 
second phase, we assign the remainingjobs. The sets ~?(À) should be chosen so as 
to minimize the number of jobs left for the second phase. In general, we cannot 
bound the numb~r of jobs to be assigned in the second phase by a polynomial in 
m. However, if À À*, then this procedure is exactly Potts' 2~pproximation 
a1gorithm; since th~ complementary slackness relations hold for À= À*, we can 
choose the sets ~?(À) in such a way that no more than m I jobs remain for the 
second phase. _ _ 

Por the special case m = 2, we have v(P) = L(À). Since the Lagrangian multi
pliers represent normalized values, only m -1 multipliersneed in generalto be 
involved to find À*: onl_y one multiplier is involved for the case m 2. The ter
mination conditi~ns at À are then sufficient for optimality (see Theorem 1.7). Por 
m =2, problem (P) is solvable in O(n) time [Gonzalez, Lawler, and Sahni, 1990]. 
Moreover, there is at most one split job. Considering the aseent direction algo
rithm, we observe that the solution generated by Potts' 2-approximation algo
rithm concurs with the best upper bound found when solving prob1em (D) by use 
of the aseent direction procedure. 

4.3. DUALITY-BASED HEURISTIC SEARCH 

The principle of Potts' 2-approximation algorithm and specifically the termina
lion conditions of the aseent direction algorithm give rise to the idea that a near
optimal so1ution for the Lagrangian dual problem induces a near-optimal solu
tion for the primal problem. In this respect, weneed a scheme that generates a 
series of promising Lagrangian multipliers. The example suggests that the aseent 
direction method, perhaps with some minor adjustments, is such a scheme. The 
aseent direction method, however, is too restrictive for our purpose. Computa
tional experiments show that is usually terminaled after only a small number of 
iterations. Weneed a scheme that allows us to browse quickly through many 
near-optimal solutions for problem (D). The approximation algorithm differs 
therefore from the aseent direction metbod on two counts. 

Pirst, the machine with the largest overload is always selected for multiplier 
adjustment. Prom a primal point of view, this is an obvious choice: one of the 
jobs on this machine must be removed in. order to reduce the machine comple
tion time that induces the current makespan. Second, we make the step size 
larger than necessary to ~orce such a removal: this avoids early termination. 
Specifically, we move to the second point where the primitive directional deriva
tive changes. Let machine Mh be the machine with the largest overload in the 
solution of problem (L;\.); hence, we have C ma"(À) .,;;;;.. C;i (À). Th..::n we compute 

.:l -Àh + min21 ..:;;..:;m,J
1 

E;I-:(À) À;piJIPhj• 

where min2 denotes the second minimum of these values. If we put 
X (ÀJ, ...• ~+.:i, ... ,Àm), then weenforce the move of some Jk from Mh to 
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some Mg, and that another job on Mh can equally well be scheduled on some 
other machine. Nonetheless, this ~cond job is kept on Mh. The next step is to 
compute the new makespan C max(À), and the machine with the largest overlaad; 
this machine is determined by computing max1E;;;..;;m Ci(À). We have no · 
guarantee th~ the rescheduling of J t_induces an improved schedule: we can _!!ave 
either Cmax(À) ~Cmax(À) or Cmax(À) >Cmax(À). The latter occurs if Cg(À) = 
Cg(À) + Pgk > Cmax(À). Hence, the approximation algorithm is equipped with a 
mechanism that accepts deteriorations of the makespan. We repeat this process 
for the machine with the largest load, and store the best salution on the way. We 
put an upper bound on the number of iterations, since this procedure does not 
have any convergence properties. Below we give a stepwise description of the 
algorithm; maxiter is a prespecified maximum number of iterations and UB is 
the currently best salution value. 

APPROXIMATION ALGORITHM 

Step 0. Put À~ (1, ... , I), t ~ 1. Solve (LÀ), settling ties arbitrarily. Let 
UB ~ Cmax(À), and store the schedule. 

Step 1. Determine Mh with the largest overload: ct (À) ~ ct (À) for each i 
(i= 1, ... ,m). Compute a, and identify a job h and a machine Mg such that 
Àg{'gkiPhk = min,..;;;..;;m,i#,J, e;t;(À) ÀifJijiPhJ· Put t~t + 1. 

Step2. Put À~(À., ... ,Àh+Ll, ... ,Àm), Ch(À)~Ch(À)-Phk> Cg(À)~Cg(À)+Pgk· 
If Cmax(À) < UB, then UB~Cmax(À), and store the schedule. If t < maxiter, then 
go to Step I; if not, then stop. 

We call the approximation algorithm described above the duality-based approxi
mation algorithm, and the particular strategy employed as duality-based heuristic 
search. For the example, the approximation algorithm goes through the same 
steps as described in Section 4.2. 

Many beuristic search strategies are applicable to the parallel machine 
scheduling problem (see Section 1.2.3). An iterative /oca/ improvement procedure 
is a local-search type of algorithm, which can be designed as follows for the 
R I I C max problem. Let a be some arbitrary schedule and let ajk be the schedule 
obtained from a by swapping Jj and h (j=l=k). Wedefine the so-called single 
pairwise interchange neighborhood for a as the set Na containing the schedules ajk 
for all i= I, ... ,n I, k i+ 1, ... ,n. Suppose Mh is such that 
Ch(a) = Cmax(a), where Ch(a) and Cmax(a) denote the completion time of Mh 
and the maximum machine completion time in a, respectively. Let (Jj,h) be a 
pair of jobs such that Jj is scheduled on Mh and J k on some other machine Mg 
(g=l=h) for which we have 

Cg + Pgj-Pgk < Ch, and Ch Phj + Phk < Ch. 

If we interchange Jj and Jk, that is, we put Jj on Mg and Jk on Mh, then we 
reduce the makespan. In other words, we have identified a schedule ajk E Na 
with Cmax(ajk) < Cmax(a). This processis repeated until no further impravement 
is found. As said before, the danger is to get stuckin a poor local optimum. 
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Simulated annealing and tabu search are techniques that try to avoid such an 
entrapment by allowing deteriorations of the objective value under eertaio cir
cumstances. The willingness to accept deteriorations unconditionally distin
guishes the duality-based search technique from simulated annealing, tabu 
search, and general iterative local improverneut schemes. 

Anticipating on the implementation and the evaluation of the duality-based 
approximation algorithm inSection 4.5, however, we will consider two versions 
of the algorithm. On the one hand, we evaluate the duality-based algorithm on its 
own; on the other hand, we evaluate the algorithm in conjunction with the itera
tive local improvement procedure we described. We only submitted the best solu
tion to the improverneut procedure. The duality-based algorithm in conjunction 
with the iterative local improverneut procedure produces very good results. 
Apparently, the duality-based approximation algorithm finds an attractive initia! 
solution for the iterative local improverneut procedure. 

4.4. 1'HE BRANCH-AND-BOUND ALGORITHM 

The first step in the branch-and-bound algorithm is to run the aseent direction 
metbod to approxim_!tte Qle optiJEal solution of problem (D). Upon termination, 
we have the vector À=(ÀI> ... ,Àm) of Lagrangian multipliers. On the way, we 
store the best prima! solution. We also use the duality-based approximation algo
rithm and the constructive beuristics presented by De and Morton [ 1980], Ibarra 
and Kim [1977], and Davis and Jaffe [1981] to find approximate solutions for 
problem (P}: The implementation of these algorithms is described in Section 4.5. 
The vector À plays an important role in the truncation of the search tree. 

4.4.1. Initia! reductions 
The size of an instanee may be reduced by a simpte reduction test, which is com
mon for linear programming theory. It can be conducted for any vector of 
Lagrangian multipliers, but successis most likely for À* and veetors close to it. 

'T'HEOREM 4.3. IJ fora given vector of multipliers À= (ÀI> ... ,Àm1 we have for 
some J k and Mh that 

m 
(ÀhPhk -minl.;;;;.;;;mÀ;p;k)/ ~À;> UB-L(À)-1, 

i I 

where UB is a given upper bound on v (P), then xhk = 0 in a'!)' schedule with 
Cmax < UB, ifsuch a schedule exists. 

P:RooF. Suppose there is a schedule with makespan less than UB, and yet with J k 

scheduled on Mh. Solving the Lagrangian relaxation problem (LÀ) under the 
additional constraint xhk = I gives the lower bound LB with 

n m 

LB (ÀhPhk+ ~ minl.;;;;.;;;mÀif;j)/~À; 
j=l;ft=k i=l 

n m 
[(À/J)hk minl.;;;;.;;;mÀ;p;k) + ~ mini.;;;;.;;;mÀ;pij]/ ~À;> UB-l, 

j I i=l 

which is a contradiction. D 
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4.4.2. The search tree 
A node at level k of the search tree corresponds to a partial schedule with a 
specific assignment of J h ... ,Jk. Each node at levelk (k = I, ... ,n -1) bas at 
most m descendant nodes: one node for the assignment of job h + 1 to each 
machine M1, for i= 1, ... ,m. The jobs and the machines will be reindexed in 
compliance with the branching rule we propose in the next subsection. The algo
rithm weuseis of the 'depth-first' type. We employ an active node search: at each 
level, we consider only one node to branch from, thereby adding some job to the 
partial schedule. The nodes are branched from in order of increasing indices of 
the associated machines. We backtrack if we reach the bottorn of the tree or if we 
can discard the active node. 

4. 4.3. Branching ru/e 
The dual processing times À1p11 (i 1, ... ,m, j =_I, ... ,n) also se~e to stroc
ture the search tree. Wedefine YJ min21.;;;; 1,;;;;mÀ1piJ minl<l<mÀJ11;, where 
min2 denotes the second minimum. In view of Theorem 4.3, a large value YJ sug
gests that there exists an optimal solution with J1 scheduled on the machine with 
minimum dual processing time for it; we call this machine the Javarite machine 
for J1. We like to structure the search tree in such a way that we first explore the 
configurations with jobs with large Y; assigned to their favorite machines. This is 
achieved by reindexing the jobs in order of non-increasing values y1 and by rein
dexing_!he machines at each levelk (k 1, ... ,n -1) in order of non-decreasing 
values À1Pt,k+I (i= I,.,. ,m). We note that the first complete schedule encoun
tered in the tree is an optimal solution for the Lagrangian problem (LÀ). 

Such a structure of the search tree bas two advantages. First, for the optimal 
solution and good approximate solutions of the primal problem, most jobs are 
expected to have been assigned to their favorite machines. Second, if we find an 
improved upper bound, then most of the additional variabie reductions are asso
ciated with the nodes of the still unexplored part of the search tree. 

4.4.4. Discarding nodes 
Here, we describe in detail the various rules to discard nodes. Computational 
experiments show, surprisingly enough, that even a quick aseent direction 
metbod is not worthwhile to be run in each node of the tree. We use therefore the - - -
vector À= (À1, •.. ,Àm) thr~ughout the search tree. The reduction test and the 
following rules depend on À. The vector À* may therefore be more effective; it 
may be worthwhile to use a linear E!ograrnming algorithm in the root of the tree 
to obtain À*. On the other hand, if À is close to À*, then the additional effect will 
be negligible. Suppose the values z11 (i = 1, ... , m, j = 1, ... , k) record the 
current partial schedule at level k of the t~. That is, z11 = 1 if J1 bas been 
assigned to M 1, and z11 = 0 otherwise. Let L(À, k) denote the optimal solution of 
problem (LÀ) subject to x11 = ziJ for i = 1, ... , m, j = I, ... , k. Then we have 

_ _ k m _ _ m_ 

L(À, k) = L(À) + ~(~ (ÀJ't}- minl<i<mÀtPiJ)Zt;)l ~À,. 
j=l /=l /=l 
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- -
Note that L(À, k) > L(À). A node at levelk that assigns h to machine Mh can 
he discarded if 

- m- -
min1 ,;;,;,;;,mÀ;p;k)l ~À;> UB -L(À, k -1) -I. 

i I 
(Fl). 

This test requires constant time per node. In addition, the node can he discarded 
if 

k I 

~ PnJzhJ + Phk > UB -I. (F2) 
j I 

The third test tries to establish whether the current partial schedule is dom
inated by another partial schedule for the same k jobs. Suppose we have some 
job J1 (I ~ I ~ k - I) that is currently scheduled on M; for which 

Pu > P;k and Pnt <phk· (F3) 

InterchangingJ1 and Jk reduces the load of both M; and M 11 • The current partial 
schedule can then he discarded, since there is at least one optimal schedule with 
no such pair of jobs. 

Conditions similar to (F2) apply to each job J1 (j = k + I, ... , n ). In case 
there is ajobJ1 (k +I~ I~ n) for which 

k 
~ piJziJ +Pil > UB- I, for each M;, i = 1, ... , m, (F4) 

j I 

we discard the node, too. Similariy, if the condition (F4) applies to some J1 
(k +I~ I~ n) for all machines M; (i= I, ... , m) but one, we can assign J1 to 
this machine. Subsequently, we can possibly carry out additional assignments; 
these, in turn, enhance the likelihood that the node is closedon account of (FI), 
(F2), (F3), or (F4). 

In addition, we try to identify a machine M 11 (I ~ h ~ m) for which 
I 
~ PhJzhJ + Pht > UB -I, foreach lt, l = k +I, ... ,n. 

j I 

In this case, Mh is ignored for the assignment of any remaining job. Therefore, 
we discard the node if 

[

k m _ n _ l m _ 
~ ~ À;piJziJ+ ~ minlo;;,;,;;,rn, i=fohÀ;p;1 I ~ À;> UB 

j=l i l,i=foh j=k+l . i=J;i=foh 
I. 

4.5. COMPUTATIONAL EXPERIMENTS 

Both algorithms have been coded in the computer language C; the experiments 
were conducted on a Compaq-386120 Personai Computer. 

The algorithms were tested on a broad range of instances with n and m varying 
from 20 to 200 and from 2 to 20, respectiveiy, giving rise to 80 combinations 
altogether. The processing times were generated from the uniform distribution 
[I 0, I 00]. For each combination of n and m we considered I 0 instances. 



ntm---')o 2 3 4 5 6 8 10 12 15 20 

20 0 0 0 0 0 0 0 

30 0 

40 0 

50 0 

60 0 

80 0 

100 0 

200 0 0 

T ABLE 4.2. Number of unresolved problems out of 10 for each cell. 

ntm---')o 2 8 10 12 15 20 

20 16 75 33 37 11 0 

30 31 1440 784 145 4784 64 

40 37 6786 23936 3800 192 342 

50 59 5848 

60 68 10669 

80 85 

100 132 

200 330 

TABLE 4.3. Average number of nodes. 

nt m---')o 2 3 4 5 6 8 10 12 15 20 

20 1 1 1 1 1 

30 1 1 2 2 9 6 2 43 2 

40 I 1 2 12 39 39 214 63 3 10 

50 1 3 16 57~ 285 204 

60 1 105 373 

80 1 

100 

200 3 

TABLE 4.4. Average computation time in seconds. 
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4.5.1. The branch-and-bound algorithm 
For the branch-and-bound algorithm we put an upper bound of 100,000 nodes; 
computation for any instanee was discontinued at this limit. In Table 4.2, we 
present for each combination the number of unresolved problems. An empty cell 
indicates that the branch-and-bound algorithm was not run; consirlering adja
cent cells or initial computations, we expected that most of the instances would 
remain unresolved. Table 4.3 shows the average number of norles explored. The 
average for a particular combination of n and m is computed by aggregating the 
number of nodes for each of the instances and dividing the sum by 10, the total 
number of instances for each combination. Unresolved instances contribute 
therefore 10,000 norles each to the average number of nodes. Table 4.4 presents 
the average computation time for the branch-and-bound algorithm, indoding the 
running time for the beuristics and the duality-based approximation algorithm. 
The timespent on unresolved instances is included, too. The average computa
tion time for a particular combination is computed in a similar fashion as the 
average number of nodes. 

From a practical point of view, the instances with a few machines are easy. 
The effort required to solve a problem seems to increase more with the number 
of machines than with the number of jobs. Surprising exceptions are the 
instances with m ;;;:. 12 and n ".;;; 40. Note that the 100,000-node limit for the 
branch-and-bound algorithm is arbitrary: it induces distinct time limits across 
the instances. For example, instances with m = 20 and n = 50 or 60 require 
about 10,000 nodes on the average; however, they require about 5 minutes of 
running time. Nonetheless, one can easily form some idea about the instances 
that are within reach of, say, one minute of computation time. 

Significant deviations from the averages occur. For the combination n =30 
and m = 15, for example, a single instanee accounts for the remarkably large 
number of nodes and large running time. lt is also conceivable that the perfor
mance of the algorithm is enhanced by fine-tuning the algorithm to particular 
instances. For large values of n and m, for example, it may be worthwhile to use 
the aseent direction methad in each node of the tree after all. Even then, how
ever, such instances are not salvabie within reasanabie time limits. 

4.5.2. The duality-based approximation algorithm 
Implementing the duality-based approximation algorithm, we have put 
maxiter = nm. Note that cycling may occur. This happens, for instance, if J1 can 
be scheduled on both M 1 and M 2• lf J1 is scheduled on M 1, then M 1 has the 
largest overlaad; if J1 is scheduled on M 2, then M 2 has the largest overlaad. In 
such a situation, J1 would oscillate between M 1 and M 2• The procedure is dis
continued upon detection of this phenomenon. 

The duality-based approximation algorithm was compared with the construc
tive beuristics of De and Morton [ 1980], Ibarra and Kim [ 1977], Davis and Jaffe 
[1981J, and with our version of Potts' 2-approximation algorithm [Potts, 1985B] 
(see Section 4.2); the latter is easy to embed in the branch-and-bound algorithm. 
We have evaluated neither Potts' original version, nor the 2-approximation algo
rithm presented by Lenstra, Shmoys, and Tardos [1990], nor the two-phase 
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beuristics presented by Hariri and Potts [ 1990]. All these algorithms proceed in 
the same spirit; none is expected to outperferm the others significantly in prac
tice. In the remainder, when referring to Potts' 2-approximation algorithm, we 
are actually referring to our version of it. Reeall that the versions are identical for . 
m =2. The constructive beuristics display a very erroneous behavior. For 
instance, the De and Morton heuristic, taking the best result from 10 underlying 
heuristics, produces solutions with an average deviation from the best solution of 
27%. We have therefore treated the constructive beuristics as a single algorithm 
by consirlering only the best schedule. 

In Table 4.5, we present the average relative deviation for the best schedu1e 
generated by the constructive beuristics from the optima} solution, or if this is 
not available, from the best known solution. In the latter case, brackets have 
been p1aced around the figures. Table 4.6 shows the same information for the 
duality-based approximation algorithm. 

ntm-'? 3 4 5 6 8 10 12 20 

20 8.0 6.8 12.8 19. 

30 2.2 6.3 8.2 18.0 
40 3.0 6.5 10.8 14.6 

50 2.0 7.2 12.0 12.1 
60 6.0 

TABLE 4.5. Average relative deviation for the constructive heuristics. 

n}m-'? 2 3 4 5 6 8 10 20 

20 4.2 5.4 6.6 10.5 11.3 16.4 

30 1.5 4.9 6.0 9.8 8.9 14.7 16.7 

40 1.9 4.2 3.5 9.0 8.3 (10.0) (19.0) 
50 1.6 3.3 4.9 7.4 (6.5) (8.3) (4.1) 
60 1.2 1.1 4.1 5.5 (5.0) (4.0) (1.8) 
80 1.4 2.3 2.9 (3.5) (2.4) (1.9) (2. 

100 2.4 (3.6) (1.8) (2.2) (1. 
200 (1.1) (1.2) (1.8) (3.3) 

T ABLE 4.6. Average relative deviation for the duality-based approxi-
mation algorithm. 

As a whole, the duality-based approximation algorithm performs much better 
than the constructive heuristics, which hebave poorly. This certainly applies to 
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instances with a larger number of machines. Tbe performance of the constructive 
heuristics is easily improved by submitting them to an iterative local improve
ment scheme. Tberefore, the schedules generated by the constructive heuristics 
should merely he seen as initial solutions that serve as input for some iterative 
local impravement procedure. 

Each schedule generated by the constructive heuristics was therefore subse
quently submitted to the iterative local improvement procedure we described in 
Section 4.3. In contrast, only the best schedule generaled by the duality-based 
approximation algorithm was submitted to the impravement procedure. 

In Tables 4.7, 4.8, and 4.9, we present the results for the constructive heuris
tics, Potts' 2-approximation algorithm, and the duality-based approximation 
algorithm after local improvement, respectively. Tbe sign '*' bebind an entry in 
these tables indicates that the corresponding algorithm has the best average per
formance for the associated instances. Table 4.7 exhibits that the iterative local 
improvement technique is effective for the constructive heuristics in case of few 
machines or jobs. However, its effectiveness deteriorates with an increasing 
number of machines. Only two machines at a time are involved in the job inter
changes. For large m, it is more difficult to find an attractive local neighborhood, 
even in case of multiple start solutions. Generally, the running time, which seerns 
to he increasing with n, is modest: instances up ton= 100 require only one or 
two seconds; approximately 10 seconds of computation time are required for 
instances with n = 200. Because the job interchanges affect only two machines at 
a time, the number of machines hardly seems to play a role in the computation 
time. 

Potts' 2-approximation algorithm was embedded in a branch-and-bound algo
rithm that differs on two points from the branch-and-bound algorithm described 
in Section 4.4. First, we omitted the dominanee rule (F3); second, we initially put 
UB oo. Tbe condition (F3) is useful for finding an optimal solution, but might 
eliminale good approximate solutions. Tbat is why Potts' 2-approximation algo
rithm sometimes took more time than the optimization algorithm. Occasionally, 
more than m -1 jobs remained for the second phase. It is surprising that the 
final solution was rarely improved by the local impravement procedure, although 
it was applied to all jobs. Tbe computational effort for the algorithm was modest 
and seemed to increase more with the number of machines than with the number 
of jobs. For instances up to m = 12, it was one or two seconds; for instances with 
m 15 and m 20, it was about 15 to 20 seconds. Instances with n =20 and 
m =20 were not run; for these instances, Potts' algorithm requires explicit 
enumeration of almost the entire state space. 

As can he seen from the number of '*' signs in Table 4.9, the duality-based 
approximation algorithm has the best performance on the average. Note that the 
entries for m =2 are identical for the duality-based algorithm and Potts' algo
rithm. In spite of their close relation, the duality-based approximation algorithm 
perforrns considerably better than Potts' algorithm. 

Table 4.10 presents the number oftimes (out of 10) that the duality-based 
approximation algorithm produced the bestor equally best solution. Tbe algo
rithm perforrns remarkably well if m and n are large; apparently, these instances 



n~m~ 2 3 4 5 6 8 15 20 

20 0.0* 1.0* 7.1 8.3* 10.4 4.9* 11.1 1.9* 5.1 
4.4* 7.6 13.3* 15.0 17.4* 11.0 9.2 

1.7* 3.8* 7.9 (13.6) (15.4) 17.8 22.2 14.7* 
5.2 (7.8) (11.6) (5.0) (6.9) (7.0) 20.4 
3.8 (5.9) (4.8) (2.5) (7.4) (10.6) (32.8) 

(2.8) (1.9) (1.9) (4.7) (6.7) (12.5) (12.4) 
100 0.7 1.9 (2.9) (1.7) (2.1) (6.1) (6.1) (6.1) (10.6) 
200 0.2 (0.6) 1.1 (0.8) (1.3) (1.8) (3.5) (4.1) (3.5) (8.7) 

TABLE 4.7. Average re1ative deviation for the constructive beuristics 
after iterative local improvement. 

3 4 

20 1.7 3.0 

30 
40 

50 
60 

8 10 12 

(7 .2) ( 10.3) 

(3.9) (9.3) 
(6.3) (5.0) 

20 

TABLE 4.8. Average relative deviation for Potts' 2-approximation algo
rithm after iterative 1ocal improvement. 

n~~ 2 3 4 5 6 8 10 12 15 20 

20 1.7 1.0* 5.4 5.4* 9.8 14.5 14.0 10.8* 7.4 3.0* 
30 0.2 2.6 3.9 5.2 6.7* 14.2 15.0 19.7 11.3 14.8 
40 0.4 1.0* 2.8 5.2 4.4* (9.3)* (15.2)* 13.9* 12.0* 16.4 
50 0.4 1.5 2.3* 4.1* (4.2)* (7.2)* (1.3)* (0.0)* (1.2)* 17.0* 
60 0.3 (0.8)* (0.8)* (0.9)* (22.8)* 

(1.6)* (4.5)* 
(0.3)* (0.7)* 
(1.2)* (0.0)* 

TABLE 4.9. Average re1ative deviation for the duality-based approxi
mation algorithm after iterative local improvement. 
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n.j. m-;. 2 3 4 10 12 

20 1 7 5 3 6 
30 7 4 4 4 7 

40 5 6 3 4 7 
50 7 4 5 7 7 6 6 10 

60 4 8 7 6 8 4 5 9 8 

80 2 5 7 6 9 6 8 6 9 

100 9 4 5 6 5 6 8 8 9 

200 6 7 6 7 9 7 8 8 8 

TABLE 4.10. Number of times (out of 10) that the duality-based ap
proximation algorithm performed at least as wen as the other approxi
mation algorithms. 

20 

9 

4 

5 

9 

9 
7 
9 

10 

are beyond the reach of the iterative local improvement procedure and Potts' 2-
approximation algorithm. In a sense, the duality-based approximation algorithm 
and the branch-and-bound algorithm are supplementary: the latter is effective 
for instances for which the former performs not so well as the other approxima
tion algorithms. The running time is about a factor of two more than the running 
time of the constructive beuristics and Potts' approximation algorithm, but it is 
oomparabie or less in the extreme combinations with n = 200 or m = 20. 

4.6. CONCLUSIONS 

The R I I C max problem is a practical scheduling problem for which we have pro
posed a branch-and-bound algorithm and an approximation algorithm. The 
branch-and-bound algorithm solves large instances to optimality within reason
able time limits. The approximation algorithm is based upon a simple and intui
tively appealing idea for local search: beuristic duality-based search in conjunc
tion with iterative local improvement. For instances that are beyond the reach of 
an optimization algorithm, it produces very good results. 
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5 

Common Due Date Scheduling 

We consider here the single-machine problem of minimizing the sum of the devi
ations of the job completion times from a given common due date that is restric
tively small, i.e., smaller than the sum of the processing times. This problem is 
known to be 0L'~i'-hard. Previous algorithms include a pseudo-polynomial algo
rithm solving instances up to 1000 jobs, and a branch-and-bound algorithm solv
ing instances up to only 25 jobs. We apply Lagrangian relaxation to find new 
lower and upper bounds that coincide for virtually allinstances with the number 
of jobs not too small. The crux is the 'logic' formulation of the problem: it can be 
formulated as an easy matching problem complicated by only one constraint. 

This chapter is organized as follows. InSection 5.1, we introduce the problem. 
InSection 5.2, we review Emmons' matching algorithm [Emmons, 1987] to solve 
the umestricted variant of the common due date problem. In Section 5.3, we 
develop a lower bound based upon Lagrangian relaxation for the restricted vari
ant. InSection 5.4, we use the insight gained inSection 5.3 to develop a heuristic 
for the restricted variant. InSection 5.5, we describe some details of the branch
and-bound algorithm. Finally, in Section 5.6, we present some computational 
results. 

5.1. INTRODUeTION 

The just-in-time concept for manufacturing has induced a new type of machine 
scheduling problem in which both early and tardy completions of jobs are penal
ized. We consider the following single-machine scheduling problem that is asso
ciated with this concept. 

A set of n independent jobs has to be scheduled on a single machine, which 
can handle no more than one job at a time. The machine is continuously avail
able from time 0 onwards. Job J1 requires processing during a given uninter
rupted time p1 and is ideally completed exactly on a given due date d1. Without 
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loss of generality, we assume that the processing times and the due dates are 
integral. We assume furthermore that the jobs are indexed in order of non
increasing processing times. A schedule a defines for each job Jj a completion 
time Cj, such that the jobs do not overlap in their execution. The earliness and 
tardiness of Jj are defined as Ej = max {dj - Cj , 0} and ~ max { Cj - dj , 0}, 
respectively. The just-in-time philosophy is reflected in the objective function 

11 

j(a) = ~ (ajEj + Pj Tj), 
j=l 

where the deviation of Cj from dj is penalized by either aj or pj, depending on 
whether Jj is early or tardy, for j = I, ... ,n. Fora review of problems with this 
type of objective function, we refer toBaker and Scudder [1990]. 

An important subclass contains problems with a due date d that is common to 
all jobs. Either the common due date is specified as part of the problem instance, 
or the common due date is a decision variabie that has to he optimized simul
taneously with the job sequence. As the frrst job may start later than time 0, the 
optimal schedule is identical for both problems unless the common due date dis 
restrictively small (d < '2-j 1pj). The first variant is therefore referred to as the 
restricted problem (i.e., d is fixed) and the second variant as the unrestricted 
problem (i.e., dis a variable). 

We consider the restricted variant of the problem in which all earliness penal
ties are equal to a and all tardiness penalties are equal to {3. Bagchi, Chang, and 
Sullivan [1987] propose a branch-and-bound approach for this problem, and 
Szware [1989] presents a branch-and-bound approach for the case that a= {3. 
These branch-and-bound algorithms are able to solve instauces up to 25 jobs. 
Sundararaghavan and Ahmed [1984] present an approximation algorithm for the 
case a = P that shows a remarkably good performance from an empirical point 
of view. Hall, Kubiak, and Sethi [1991] and Hoogeveen and Van de Velde 
[l991A] establish the '!JL~-hardness of the problem, even if a p, thereby justify
ing the enumerative and approximative approaches. Furthermore, Hall et al. 
[1991] propose a pseudo-polynomial time algorithmrunning in O(n'î.j=tPj) time 
and space, and provide computational results for instauces up to 1000 jobs. 

Their experiments, however, show that the space requirement rather than the 
time requirement limits the applicability of the algorithm. In general, there is 
always need for a branch-and-bound algorithm that solves instauces for which 
the space requirement is prohibitive. We present a branch-and-bound algorithm 
that solves virtually all instauces without branching. It is based upon new lower 
and upper bounds, which are computed in O(nlogn) time. If these bounds do 
not concur, they can be refmed by solving a subset-surn problem to optimality by 
a pseudo-polynomial algorithm. This can he done very fast, since the subset-surn 
problem in our application is of a considerably smaller dirneusion than the com
mon due date problem. Hence, the branch-and-bound algorithm is more than 
competitive with the pseudo-polynomial algorithm for the common due date 
problem. 
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the property that the work processed before time dis minimal among all optima! 
schedules for the Lagrangian problem (LÀ). In the same fashion, the schedule 
oÀax is defined as the optimal schedule for the Lagrangian problem (LÀ) with a 
maximal amount of work processed before time d, for À= 0, ... ,n. Wedefine 
W'Àin and wrax aS the amOUDt Of WOTk processed before time d in OÀin and OÀax, 
respectively. Straightforward calculations show that orn is identica1 to orf\ and 
that wrn W"r.f1• This implies that L(À) is a piecewise linearand concave 
function of À. The breakpoints correspond to the integral values À I, ... ,n, 
and the gradient of the function between the integral breakpoints À and À+ 1 is 
equal to W"rin d, for À = 0, ... , n - 1. The Lagrangian dual problem is there
fore solved by putting À* equal to the index À for which wrax ~ d > W"rin. Due 
to the indexing of the jobs, the theorem follows. D 

Let o* be an optimal schedu1e for the Lagrangian dual prob1em. lf À* 0, then 
o* = o/Fn is feasib1e for the original prob1em, and hence optimal. Note that this 
also implies that d ~ p 1 + p 3 + · · · + Pn if n is odd, and 
d ~ p 1 + p 3 • · • + Pn -I if n is even. This agrees with the observation by Bagchi 
et al. [1987] that the schedules (J 1, J 3, ••. , Jn, Jn 1, ... ,J 2) and 
(J 1 , J 3, ... Jn -I Jn, . .. ,J 2) are optimal under the respective conditions. 

In the remainder, we assume that À* ~ 1. Depending on whether n À* is odd 
or even, o* has the following structure. First, suppose n - À* is odd. Then the 
jobs J 1, ••• ,J À* 1 occupy the last À* 1 positions in o*, the pair {J À*•J À*+ 1} 

occupies the first early position and the À *tb tardy position, the pair 
{J À*+2,J À* +3 } occupies the second early position and the (À*+ l)th tardy posi
tion, and so on. Final1y, the pair { Jn _ t.fn} occupies the positions around the 
due date. Second, if n À* is even, then o* has the same structure, except that Jn 
is positioned between Jn _ 2 and Jn -t, and is started somewhere in the interval 
[d-pn,d]. 

THEOREM 5.5. IJ there exists a schedule o* that is optima/ for the Lagrangian dual 
problem in which the first job is started at time 0, then the Lagrangian lower bound 
L (À*) is tight and o* is an optima/ schedule for the original problem. D 

If no such schedule o* exists, then there is a gap between the optimal value for 
the original problem and the Lagrangian lower bound. This lower bound, how
ever, can be strengthened by solving the modified Lagrangian problem, which is 
to find a schedu1e that minimizes 

n 

~ I cj dI + À*(W- d) + I w dI· 
j 1 

C1ear1y, the modilied Lagrangian problem yields a lower bound for the original 
problem if À* ~ I. 

THEOREM 5.6. The modified Lagrangion problem is so/ved by a schedule from 
among the schedules that are optima/ for the Lagrangian dua/ problem. for which 
I W - d I is minima/. 
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PROOF. Suppose that 'TT is optimal for the modified Lagrangian problem, but not 
for the Lagrangian dual problem. We show that 'TT can be transformed without 
additional costinto a schedule 'TT that is optimal for the Lagrangian dual problem 
by conducting pairwise interchanges. Let '1T1 be the schedule after t interchanges; 
hence, 'TTo 'TT, and 'TTT =Ti, for some T;;;;. I. Note that it is possible to specify a 
series of pairwise interchanges that lowers the Lagrangian cost 
~7 = 1 I Cj d I + À* ( W - d) at every interchange. Consider two successive 
schedules '1T1 and '1T1 + 1 , and suppose that Ji and Jj with p1 > pj have been inter
changed. The interchange must have decreased the Lagrangian cost by at least 
p1 - pj, and may have increased the term I W - d I by at most p1 - Pj· This 
observation implies that every interchange does not increase 
~7 = 1 I Cj dI + À *(W- d) + I W- d I· Therefore, 1i must also he· optimal. 
D 

Let a* now he an optimal schedule for the modified Lagrangian problem. Sup
pose that the first job in a* is not started at time 0. First, suppose that the first 
job is started before time 0. We then shift a* to make it feasible. Shifting a* 
implies that some jobs or parts of jobs are transferred to the other side of the due 
date. Let !::..j he the amount of the jth job that bas been transferred. If n -À* is 
odd, then shifting a* increases ~7 1 I Cj- d I by À* + 1 per unit of the first job 
that is transferred, by À* + 3 per unit of the second job that is transferred, and so 
on. As W- dis weighted by À*, the cost of the schedule after shifting is equal to 
L (À*)+ 1::..1 + 31::..2 + · · · . If n -À* is even, then a similar analysis shows that the 
cost of the schedule af ter shifting is equal to L (À*)+ 21::..2 + 41::..4 • • • • 

Second, suppose that the first job is started after time 0. Shifting by transfer
ring jobs or parts of jobs to the other side of the due date decreases 
~j = 1 I Cj- d I as long as the number of jobs started before the due date is not 
greater than the number of jobs completed after the due date plus one. This 
implies that no more than rÀ *I 21 jobs are transferred. If n -À* is odd, then 
shifting a* decreases ~7 =I I cj-d I by À* - 1 per unit of the first job that is 
transferred, À* -3 per unit of the second job that is transferred, and so on. As 
W- d is weighted by À*, the cost of the schedule after shifting is equal to 
L(À*)+À*(d- W)+!::..1 +31::..2 • • ·, where Wis theamount ofwork befored after 
shifting. If n -À* is even, then a similar analysis shows that the cost of the 
scheduling af ter shifting is equal to L (À*)+ À* ( d W) + 21::..2 + 41::..3 • · • ; Wis the 
amount of work before d after shifting. 

THEOREM 5.7. The schedule obtained after shifting a* has cost equal to the 
strengthened lower bound if À* 1 and the jirst job is started after time 0, or if 
n -À* is odd and either ln -J or ln is executed attime d D 

However, in order to determine that schedule, we have to solve the tie-breaking 
problem. We will deal with this problem in the next section. 

The lower bound approach can he extended to the restricted variant of the 
problem with a =I= fJ. Without loss of generality, we assume that a and P are 
integral and relatively prime. A similar analysis shows that the optimal value À* 
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can be determined as the value À* E {I, ... , n IJ} for which wr.ax ;;;.. d > ~n. 
Theorem 5.6 still holds, but the strengthening of the bound is less meaningful, 
since the oost of transferring one unit of processing time of the first job to the 
other side of d has been increased from 1 to either a or {J, in case n -À* is odd. 

5.4. A NEW UPPER BOUND FOR THE RESTRICTED VARIANT 
We start with the case a= {J. The analysis in the previous section suggests to find 
an optimal schedule for the Lagrangian dual problem with minimal I W- d I· 
This requires the development of a tie-breaking rule in Emmons' matching algo
rithm that Ininiinizes I W- d I· Such a schedule induces an approximate solu
tion to the common due date problem. This schedule is provably optimal if 
W = dor if the conditions of Theorem 5.7 are satisfied. 

We show that the problem of minimizing I W- d I boils down to solving the 
optimization version of the subset-surn problem. This problem will be defined 
below; it will henceforth be referred to as the subset-surn problem. Although this 
problem is ~~-hard in the ordinary sense [Garey and Johnson, 1979], the 
instances occurring in our application virtually always belong to an easy-to-solve 
subclass if n is not too small. In general, the subset-surn problem is solvable by a 
dynainic programmingprocedure that requires significantly less effort than the 
O(n~j 1pj) time and space algorithm for the common due date problem. 

The problem of miniinizing I W - d I can be transformed into an instanee of 
the subset-surn problem in the following way. Define aj =. p 2j-2H· p 2j-IH•, 

for j = 1, ... , l(n -À* + 1)12J, and define D = d ~n. Note that all aj;;;.. 0. 
Remove the values aj that are equal to 0; let m be the number of remaining 
valnes aj, and let él be the multiset that contains the valnes a 1, ••. , am. First, sup
pose that n -À* is odd. The problem of Ininimizing I W- d I is then equivalent 
to determining a subset A ç él, whose sum is as close to D as possible. 

Second, suppose that n -À* is even. An optimal schedule for the Lagrangian 
dual problem is also optimal for the original problem if WE [d- Pn, d]. Find
ing such a schedule is equivalent to determining a subset A Çél whose sum falls in 
the interval [D - Pm D ]. If no such subset exists, then the goal is to find a subset 
A ç él whose sum is as close as possible to either D - Pn or D. 

Given a subset A Çél (optimal or approximate), we deterinine the conespond
ing schedule for the common due date problem in the following way. Start with 
o~n. Interchange the jobs that correspond to aj E A for j = I, ... , m, thereby 
increasing the amount of work processed before d by aj. Finally, shift the 
schedule to ensure that the first job is started at time 0. 

We show now how todetermine a suitable set A. We reindex the valnes ai in 
order of non-decreasing values. Por n not too small, the instances of the subset
surn problem virtually always possess the. divisibility property. 

DEFINITION 5.1. A set of integers {at. ... ,am}, with I= a 1 :e;;; a2 .:e;;; • • • .:e;;; am, 
is said to possess the divisibility property if for every value 
DE {1,2, ... ,~=I a1} there exists a subset A E {a., ... ,aj}, whose sum is 
equal toD. 
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THEOREM 5.8. A multiset of inlegers {a 1, ••. , am }, with 1 = a 1 "'a 2 ~ · • • ~ am, 
possesses the divisibility property if and only if a1 + 1 "''}";{ = 1 a1 + 1, for 
j = 1, ... ,n 1. D 

An intuitive reason explains why virtually all instances with n not too small have 
this property. Every a1 is equal to the difference in processing times between two 
successive jobs in the shortest processing time order. This implies that for ran
domly generated instances of the common due date problem the values a1 tend to 
be small if nis not too small. Note that }";j=J a1 ~ max1 ~J ~nPj· 

THEOREM 5.9./f an instanee ofthe subset-surn problem possesses the divisibility pro
perty, then Johnson's greedy algorithm for subset-surn [Johnson, 1974] solves this 
instanee to optimality in O(mlogm) time. D 

JOHNSON'S ALGORITHM 

Step 0. Reindex the values aj in order of non-increasing values. 
Step 1. Select the largest remaining value aj with a1 ~ D. If there is no such 
value, then stop. 
Step 2. Put aj in the subset; D ~ D - a1. 
Step 3. If D ;;;;;.. a 1 and if a 1 is not in the subset, then go to Step 1. 

Johnson's algorithm always yields a subset whose sum is no more than D. This 
handicap is overcome by not only ap_plying the algorithm with the value D but 
also with the value '}";j = 1 a1 - D. Let A be the subset in the latter case for whi~h 
an approximateschedule can be constructed as described above, withA =&\A. 

If Johnson's algorithm does not yield a provably optimal solution, then we 
solve the instanee to optimality by dynamic programming. This requires O(mD) 
time and space. By this, we may improve both on the upper and lower bound. If 
the lower and the upper bound still do not coincide, then we need to apply 
branch-and-bound to solve the common due date problem to optimality. 

The approximation algorithm described above can be adjusted in an obvious 
fashion to deal with the restricted variant of the common due date problem with 
a:=/=fJ. 

5.5. BRANCH-AND-BOUND 

We describe the branch-and-bound algorithm for the case a {J. The first step i:» 
the algorithm is to solve the Lagrangian dûal problem. If À* 0, then o* = olfn 
is an optimal solution for the common due date problem, and we are done. Oth
erwise, wedetermine upper bounds as described in Section 5.4; we also apply the 
heuristic presented by Sundararaghavan and Ahmed. If the lower and the best 
upper bound do not concur, then we solve the subset-surn problem to optirnality 
by dynamic programming. If the bounds still do not concur, then we apply 
branch-and-bound. In the remainder, we assume that the jobs have been rein
dexed in order of non-increasing processing times. 

There is an optimal schedule in which either the jobs are scheduled in the 
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interval [O,~J=IPJ], or d coincides with the start time or completion time of the 
job with the smallest processing time; see also Theorem 5.2. To cope with these 
possibilities, we need to design two search trees. We make use of the following 
observation. In any optimal schedule, the jobs completed before or at the com- . 
mon due date d are scheduled in order of non-increasing processing times; the 
jobs started at or after d are scheduled in order of non-decreasing processing 
times. In case the jobs are scheduled in the interval [0, ~J = 1 Pi], there may he a 
job that is started before and finished after d; for this partienlar job, it holds that 
the early fr the tardy jobs have larger processing times. Due to this structure, 
optima) schedules are said to he V -shaped. This observation is easily verified by 
use of an interchange argument. 

For the case that the jobs are scheduled in the interval [O,~J= 1 p1], the search 
tree has the following form. A node at level j (j = I, ... , n) of the search tree 
corresponds to a partial schedule in which the completion times of the jobs 
J 1, ••• , J1 are fixed. Each node at level j has at most (n - j) descendants. In the 
kth (k =I, ... ,n-j) descendant, JJ+k is started before d; if k;;;. 2, then the 
jobs J1 + 1, ... , J1 + k -I are to he completed af ter d. Given the partial schedule for 
J 1 , ••• ,J1, a partial schedule for J 1, ••. ,J1 +kis easily computed. 

For the case that d coincides with the start time or completion time of the job 
with the smallest processing time, i.e., Jn, the tree has the following form. A node 
at level j (j = 1, ... , n) of the search tree corresponds to a partial schedule in 
which the completion times of the jobs Jn, ... ,Jn _ 1 + 1 are fixed. Each node at 
level j has at most (n - j) descendants. In the kth (k = n - j, ... , I) descendant, 
Jn -j-k + 1 is started before d; if k;;;. 2, then the jobs Jn -J• ... .Jn -J-k +2 are to 
he completed after d. Given the partial schedule for Jm ... .Jn-J+b a partial 
schedulefor Jn, ... .Jn-J-k+I can easily he computed. 

Both trees are successively explored according to a 'depth-first' strategy. We 
employ an active node search: at each level we choose one node to branch from. 
Inthetree for the case the jobs are scheduled in the interval [O,~J= 1 p1 ], we con
sistently choose the node, whose job has the smallest remaining index; in the tree 
for the case d coincides witheither the completion or start time of Jn, we choose 
the node, whose job bas the largest remaining index. 

A simple but powerful rule to restriet the growth of each search tree is the foi
lowing. A node at level j (j I, ... , n) corresponding to some J k can he dis
carded if another node at the same level corresponding to some J1 with Pk = p1 
has already been considered. This rule obviously avoids duplication of schedules. 

As far as lower bonnding in the nodes of the tree is concerned, we only com
pute the lower bound L(À*). Hence, we neither solve the modified Lagrangian 
dual probiem nor compute additional upper bounds. 

5.6. CoMPUTATIONAL RESULTS 

The processing times were drawn from the uniform distribution [I, 1 00]. Compu
tational experiments were performed with d = Lt~}=IPJJ for t 
0.1, 0.2, 0.3, 0.4, respectively, and with the number of jobs ranging from 10 to 
1000. For each combination of n and t we generated I 00 instances. The algo
rithm was coded in the computer language C; the experiments were conducted 
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on a Compaq-386/20 Personal Computer. 
The results are shown in Table 5.1, the design of which reflects our three-phase 

approach. The third column'# O(nlogn)' shows the number of times (out of 
lOO) that Johnson's subset-surn algorithm gave rise to a schedule with cost equal 
to the Lagrangian lower bound L (À*); this is the number of times that the com
mon due date problem was provably solved to optimality in O(nlogn) time. The 
fourth column '# DP' shows how many of the remaining instances were prov
ably solved to optimality by dynamic programming applied to subset-sum. The 
fifth column 'maximum # nodes' shows the maximum number of nodes that was 
needed for the branch-and-bound algorithm. The sixth column '# greedy 
optimal' shows the number of times that Johnson's algorithm induced an optimal 
schedule. The seventh column '# SA optimal' gives the same informatión for the 
approximation algorithm presented by Sundararaghavan and Ahmed. The last 
column '# LB tight' shows the number of times that the lower bound 
(strengthened or not) was equal to the optimal salution value. 

We conclude that the common due date problem is easy to solve from a practi
cal point of view. As pointed outinSection 5.4, a randomly generated instanee 
with n not too small can he expected to possess the divisibility property; if an 
instanee possesses this property, then a greedy algorithm gives an optimal solu
tion. If n;;;:. 40, then the O(nlogn) algorithm solves allinstances to optimality; 
for n ;;;;. 30, dynamic programming applied to subset-surn suffices to solve the 
instances that are not solved by the O(nlogn) algorithm; for n.;;;;; 20, branch
and-bound is occasionally needed, but requires only a small number of nodes, 
and always less than I second of running time. 



n t # O(n1ogn) # DP maximum # greedy #SA # LB 
# nodes optimal optimal tight 

10 0.1 66 20 12 72 77 86 
10 0.2 69 20 22 72 58 89 
10 0.3 68 23 22 68 59 93 
10 0.4 82 1 40 85 62 85 
20 0.1 81 12 94 84 51 94 
20 0.2 94 5 167 94 43 99 
20 0.3 99 0 320 100 42 99 
20 0.4 99 1 0 99 35 100 
30 0.1 100 0 0 100 50 100 
30 0.2 98 2 0 98 51 100 
30 0.3 100 0 0 100 57 100 
30 0.4 100 0 0 100 68 100 
40 0.1 100 0 0 100 63 100 
40 0.2 100 0 0 100 64 100 
40 0.3 100 0 0 100 63 100 
40 0.4 100 0 0 100 54 100 
50 0.1 100 0 0 100 72 100 
50 0.2 100 0 0 100 63 100 
50 0.3 100 0 0 100 69 100 
50 0.4 100 0 0 100 75 100 
75 0.1 100 0 0 100 75 100 
75 0.2 100 0 0 100 79 100 
75 0.3 100 0 0 100 78 100 
75 0.4 100 0 0 100 83 100 

100 0.1 100 0 0 100 81 100 
100 0.2 100 0 0 100 86 100 
100 0.3 100 0 0 100 78 100 
100 0.4 100 0 0 100 78 100 
200 0.1 100 0 0 100 96 100 
200 0.2 100 0 0 100 98 100 
200 0.3 100 0 0 100 99 100 
200 0.4 100 0 0 100 97 100 
500 0.1 100 0 0 100 99 100 
500 0.2 100 0 0 100 100 100 
500 0.3 100 0 0 100 100 100 
500 0.4 100 0 0 100 100 100 

1000 0.1 100 0 0 100 100 100 
1000 0.2 100 0 0 100 100 100 
1000 0.3 100 0 0 100 100 100 
1000 0.4 100 0 0 100 100 100 

TABLE 5.1. Computational results. 
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6 

Just-In-Time Scheduling 

The just-in-time concept decrees not to accept ordered goods before their due 
dates in order to avoid inventory oost. This bounces the inventory cost back to 
the manufacturer: products completed before their due dates have to be stored, 
thereby entailing storage oost. Preelusion of early completion conflicts with the 
traditional policy of keeping work-in-process inventories down. This chapter 
addresses the single-machine scheduling problem of minimizing total inventory 
oost, comprising cost due to work-in-process inventories and storage cost due to 
early completions. The oost components are measured by the sum of the job 
completion times and by the sum of the job earlinesses. This problem is known 
to be 'Jtt?.P-hard. In Section 6.1, we describe the problem in detail and give an 
overview of the literature on scheduling probieros with earliness penalties. 

The problem differs from traditional scheduling problems, as machine idle 
time between the execution of jobs may reduce total inventory oost. The search 
for an optimal schedule can still be limited to the set of job sequences; for any 
given sequence, a polynomial-time algorithm can be applied to insert machine 
idle time between the jobs so as to minimize total inventory cost. This algorithm 
is presented inSection 6.2. 

The a11owance of machine i die time between the execution of jobs singles out 
our problem from most concurrent research on problems with earliness penalti es. 
To our knowledge, we present the first branch-and-bound algorithm for a 
single-machine scheduling problem where machine idle time between the jobs is 
a11owed. In Section 6.3, we discuss the components of the branch-and-bound 
algorithm including the upper bound, the branching rule, the search strategy, 
and the many dominanee rules. The denvation of lower bounds is significantly 
complicated by the possibility of machine idle time. The range of the due dates in 
proportion to the processing times mainly delermines how much idle time is 
desired; this gives rise to many different classes of problem instances. To cope 
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with the different problem instances, we present five approaches for lower bound 
computation; each of these is only suitable · for a specific class of problem 
instances. Lagrangian relaxation is one of them; its application proceeds in the 
spirit of Chapter 2. The lower bounds are presentedin Section 6.4. The branch
and-bound algorithm is inelegant: it is based upon many dominanee rules and 
various lower bound approaches. Unfortunately, it is nat very efficient either; 
the computational results presented in Section 6.5 exhibit that we can solve only 
specific instauces with up to 20 jobs. Conclusions are given in Section 6.6. 

6.1. INTRODUCTION 

The just-in-time concept has affected the attitude towards inventories signifi
cantly. In order to keep inventories down, there is a reinetanee to accept ordered 
goods prior to their due dates. This implies that manufacturers have to store 
early goods befare they can be shipped to their destinations. This has added a 
relatively new aspect to machine scheduling theory: the preelusion of earliness. 
In principle, earliness can be avoided by allowing machine idle time, thereby 
delaying jobs. Machine idleness, however, runs counter to minimizing work-in
process inventories, to maximizing machine utilization, and to observing due 
dates. 

Within this context, we address the following situation. A set~= (J I> ••• ,Jn} 
of n independent jobs has to be scheduled on a single machine, which is continu
ously available from time 0 onwards. The machine can handle at most one job at 
a time. Job Jj (j = I, ... , n) requires processing during an uninterrupted period 
of length pj and is ideally completed exactly on its due date dj. We may assume 
that the processing times and the due dates are integral. A schedule specifies for 
each job Jj a completion time c1 such that the jobs do not overlap in their execu
tion. The order in which the machine processes the jobs is called the job sequence. 
Fora given schedule, the earliness of J1 is defined as Ej = max(dj-c1, 0} and 
its tardiness as Tj max { Cj- dj, 0}. In addition, we define maximum earliness 
as Emax = maxl<j<n Ej and maximum tardiness as T max maxl<J<n ~
Accordingly, Jj is called early, just-in-time, or tardy, if Cj < d1, Cj =dj, or 
Cj >dj, respectively. 

Since earliness is a performance measure that is non-increasing in the job com
pletion times, permitting machine idle time is advantageous. The inclusion of the 
acronym nmit in the second field of the three-field notation introduced in Section 
1.1.4 signifies that no machine idle time is allowed. 

Three single-machine scheduling problems invalving job earliness have been 
considered in the literature. The best-known is the minimization of Emax. If 
machine idle time is nat allowed, then the problem is solved by scheduling the 
jobs in non-decreasing order of dj -pj; this is known as the minimum slack time 
order. lf machine idle time is allowed, then the problem is trivia!: for any given 
sequence, we delay the jobs until all are just-in-time or tardy. This approach also 
applies to lil "2.Ej, but, surprisingly, 11 nmit I "2.Ej is 0Lt!P-hard in the ordinary 
sense [Du and Leung, 1990]. The thirdproblem is to maximize "2.J 1 wjEj, where 
Wj is the weight of J1, denoted as III "2.wjE1; it is so1vable in pseudo
polynomial time by an algorithm due to Lawler and Moore [1969]. Note that the 
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objective function is non-decreasing in the job completion times. 
The combination of earliness with another performance measure, reflecting 

other considerations, takes us into the arena of bicriteria scheduling. The state of 
the art, as far as a measure of earliness is concemed, is as follows. For the 
I Jpmtn, nmit I a~Cj +,BE max problem, Hoogeveen and Van de Velde [1990] 
present an algorithm that runs in O(n4) time. They show that the same algorithm 
also solves 1 I I a~Cj +,BE max in the case that a ;;;;;. ,B. Hoogeveen [ 1990] presents 
an algorithm that solves lJJ aE max + ,BT max and IJ nmit I F(Emax, T max) in 
O(n 2logn) time; Fis bere an arbitrary non-decreasing function of Emax and 
T max· For the 11 nmit I ~(ajEj+,B1T1) problem, Ow and Morton [1989] propose a 
local search metbod to generale approximate solutions. A voluminous part of 
research is concemed with common due date scheduling. Here, we have d1 = d 
for each Jj (j = 1, ... , n ); the objective is to minimize some function of earliness 
and tardiness. A survey of problems, algorithms, and computational comp1exity 
is provided by Baker and Scudder [ 1990]. 

In thischapter, we consider the problem of minimizing total inventory oost, 
comprising two components: oost due to work-in-process inventory and storage 
oost due to early completions. These components are assumed to depend linearly 
on the sum of the job completion times and the sum of the job earlinesses. If a 
and fJ denote the cost per job per unit time for work-in-process inventory and 
storage of finished product, respectively, then the total inventory oostfora given 
schedule a is 

n. n 

f (a) = a ~ c1 + ,B ~ E1. 
j=l j=l 

Without loss of generality, we assume a and ,B to be integral, positive, and rela
tively prime. Since we have by definition that E1 = Tj Cj + dj for 
j = I, ... , n, the objective function can altematively be written as 

n n 
(a-,B)~ Cj + ,B~ (Tj +dj)· 

j 1 j=l 

If a > ,B, then this objective function is increasing in the job completion times; 
hence, any optimal schedule has no machine idle time. The case a ,B reduces to 
IJl~~. which is 0L<3'-hard in the ordinary sense [Du and Leung, 1990]. Garey, 
Tarjan, and Wilfong [1988] prove that the case a< {J is 0L<3'-hard too. We note 
that the case na < ,B reduces to IJ r1 I~ Cj, which is 0L<3'-hard in the strong sense 
[Lenstra, Rinnooy Kan, and Brucker, 1977]. 

In this chapter, we exarnine the case a < fJ with machine idle time allowed. 
Each Jj (j = I, ... ,n) is then ideally comp1eted exactly on its due date dj. The 
purpose is to find a feasible schedule a that minimizes j(a). Fry and Keong 
Leong [ 1987 A], formulating the problem as an integer linear program, use a stan
dard code for integer linear programming to find an optimal solution. Not 
surprisingly, they report that their approach is effective for instances withup to 
12 jobs only. 
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6.2. THE INSERTJON OF IDLE TIMEFORA GIVEN SEQUENCE 

The search for an optimal schedule can be reduced to a search over 1the n ! dif
ferent job sequences, as there is a clear-cut procedure to insert machine idle time 
so as to minimize total cost fora given sequence. 

This procedure, however, is not new. Similar methods have been presenled (cf. 
Baker and Scudder [ 1990]), including the ones proposed by Fry and Keong 
Leong [1987B] for the lll~(o:C1 +,BE1 +y7j) problem and by Garey, Tarjan, 
and Wilfong [ 1988] for the 11 I ~(E1 + T) problem. This is not surprising: as we 
have already noted, 1j = c1 + E1 d1 for all j; for specific choices for a and ,8, 
our problem is equivalent with theirs. 

Suppose that the scheduling order is u (Jm ... ,J 1 ). Accordingly, 
c1 = ~Z=JPk is the earliest possible completion time of J1 in this sequence. We 
introduce a vector x= (x~> ... ,xn) of variables, with x1 (j = 1, ... ,n) denoting 
the amount of idle time immed:!!!tely before the execution of J1. The actual com
pletion time of J1 is then c1 = c1 + ~Z=Jxk. The problem of minimizing inven
tory cost for the given job sequence is then equivalent to determining values 
x1 (j = 1, ... , n) that minimize 

n n n n 

o:~(C1 + ~ xk) + ,B~max(O,d1 -c1 - ~xk) 
j=l k=j j=l k=j 

subject to 

forj =I, ... ,n. 

By the introduetion of auxiliary variables E1 denoting the earliness of J1 
(j = I, ... ,n), we can easily transfarm this problem into a linear programming 
problem. We know therefore that the optimum is attained in a vertex of the 
unspecified LP polytope. In addition, we know that the optimal x1 are integral, 
since the due dates, the prqcessing times, o:, and ,B are integral. A necessary con
dition for x to be optimal is that all existing primitive directional derivatives at x 
are non-negative (cf. Section 1.3.3). For this particular problem, the primitive 
directional derivatives are equal to the change of the scheduling oost if x1 is 
increased by one unit, and the change of the scheduling oost if x1 is decreased by 
one unit, for j = 1, ... ,n. The increase of x1 by one unit only affectsJ1 and the 
jobs succeeding J1 up to the first period of machine idle time after J1. We call 
these jobs the immediate successors of J1. Let Q1 denote the set containingJ1 and 
its immediate successors, let n1 be the number of early jobs in Q1, and let g1 be 
the primitive directional derivative for ·increasing x1. We have then that 
g1 = a I Q1 I - ,B n1. Reeall that each J1 is ideally completed on its due date d1. 

Using the above observations, we develop an inductive procedure for finding 
an optimal schedule for o. This procedure finds an optimal schedule for the 
subsequence (h ... , J 1 ), given an optimal schedule for the subsequence 
(J1_ 1, ••• ,J 1 ), for I = 2, ... , n. The first step is to find out whether putting 
C1 d1 is feasible; if it is, then we have an optimal schedule for (h ... , J 1 ). Sup
pose C1 = d1 is not feasible, because J1 overlaps with some other job. We then ten
tatively put C1 = C1 1 - p1- t. and compute the optimal delay of the jobs in Q1, 
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disregarding the jobs not in QJ. The optimal delay, denoted by a, is specified by 
the first point where g, beoomes non-negative. This delay is feasible if a is not 
larger than the length of the period of idle time immediately after the last job in 
Ql; let this length be amax· If a.;;; amax• then we get an optimal schedule for 
(ft, ... ,J J) by delaying the jobs in Qt by a. If a > ama:o then we delay the jobs in 
Q1 by amax· At this point, we repeat the process for J1: we update Qt, and evalu
ate if further delay of the jobs in Q1 is advantageous. We now give a step-wise 
description of the idle time insertion algorithm. 

IDLE TIME INSBRTION ALGORITHM 

Step 0. C 1 = d 1 ; I = 2. 
Step 1. If I n + 1, go to Step 9. 
Step 2. Put Ct min{dt,Ct_ 1-p1-t}. If Ct dt. then go to Step 8. 
Step 3. Delermine Qt and evaluate gt. If gt ~ 0, then go to Step 8. 
Step 4. Compute E1 for each job J1 E Qt. 
Step 5. Compute amax• i.e., the lengthof the period of idle time immediately after 
the last job in Q1• 

Step 6. Compute a = l ( I Q1 I )a I ,8 J. Let k I Qt I -a. Determine the kth smal
lest value of the earlinesses of the jobs in Q1; this value is denoted as E!kJ· If the 
jobs in Q1 are delayed by ö = E[kJ• then at most a jobs in Qt remain early; due to 
the choice of a, gt then beoomes non-negative. 
Step 7. Delay the jobs in Qt by A= min{a,ömax}· If ö > Ömax• then go to Step 3. 
Step 8. I -1 + I; go to Step 1. 
Step 9. An optimal schedule for the sequence (Jn, ... ,J 1) has been determined. 

THEOREM 6.1. The idle time inserfion algorithm generat es an optima/ schedule for a 
given sequence. 

PRooF. The proof proceeds by induction. The algorithm clearly produces the 
optimal schedule in case of a single job. Suppose now we want to find an optimal 
schedule for the sequence (ft, ... ,J 1 ), having an optimal schedule for the 
sequence (Jt-t, ... ,J 1) available. There are two cases to consider. First, suppose 
dt .;;; Ct- 1 - p1- 1; in this case, we let C1 dt, and retain the completion times of 
the other jobs; this specifies an optimal schedule for the sequence (ft, ... ,J 1 ). 

Suppose now d1 > Ct-Pt; for this case, delaying J1 1 and thereby its immedia te 
successors, i.e., the jobs contained in the s~t Qt- 1, may be advantageous. We can 
compute the cost of delaying Q1_ 1 by one unit; we know that the benefit of 
delaying J1 by one unit is equal to ,8-a. If the cost is higher than or equal to the 
benefit, then we put Ct = C1_ 1 - Pt- 1, and we have an optimal schedule for 
(Jt. ... ,J 1 ); otherwise, we postpone the jobs in Qt- 1 by one unit, and evaluate 
whether further postponement is advantageous. The idle time insertion algorithm 
shortcuts this procedure by computing the break-even point, that is, the point 
where further delay is not advantageous. 0 
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Consider the example for which the data are given in Table 6.1. Let a 1, and 
let /3 == 4. We construct the optimal schedule for the sequence (J 3,J 2,:J 1). First, 
we put C1 d1 15. Next, we let C2 d2 10, as d2 ~Cl-PI· Note that 
d 3 > C2 - p 2. Therefore, we tentatively put C3 = C2-P2 = 7, and consider 
delaying J 3 and J 2 . Apparently, we have Q 3 ={h,J2 }, n 3 =1, 
g 3 = 2a- /3 < 0, and E 121 == 3. However, 8max C 1 - p 1 - C 2 = 2, therefore, we 
delay J 2 and J 3 by 2 units. At this point, the three jobs are processed consecu
tively. Now we have g 3 = 3a- /3, and further delay is still advantageous. As 
E 131 = 1, we insert one more unit of machine idle time. The optimal schedule for 
each subproblem is depicted in Figure 6.1. 

JJ PJ dJ 
Jl 3 15 
J2 3 10 
J3 6 10 

T ABLE 6.1. Data for the example. 

0 

FIGURE 6.1. Schedu1es for the example. 

The algorithm runs in O(n 2
) time. A complete run through the main part of 

the algorithm, i.e., steps 2 through 8, takes 0 (n) time: this is needed to identify 
the set Q" to compute the primitive directional derivative g1, the values 8max and 
8, and to delay the jobs, if necessary. The value 8 is determined in O(n) time 
through a median-finding technique; see Aho, Hopcroft, and Uilman [ 1982]. 
Aftereach run through the main part of the algorithm, a gap between two suc
cessive jobs is closed. As at most n 2 such gaps exist, the algorithm runs in 
0 (n 2) time. For the case 2a = /3, i.e., for the problem 1 1 I "'2.(E1 + T;), Garey, Tar
jan, and Wilfong [1988] show that the idle time insertion procedure can be imple
mented to run in 0 (n1ogn) time. 

The problem of inserting machine idle time is also solved by a symmetrie pro
cedure starting with the first job in er. Because of our specific branching rule, 
however, we choose to start at the end. 

In the remainder, we use the terms sequence and schedule interchangeably. 
Unless stated otherwise, er also refers to the optimal schedule for the sequence er 
and to the set of jobs in the sequence er. Throughout the chapter, we let 
p(er) ~J1 E aPJ· 
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6.3. THE BRANCH-AND-BOUND ALGORITHM 

We adopt a backward sequencing branching rule: a node at levelk of the search 
tree corresponds to a sequence 'lT with k jobs frxed in the last k positions. We 
assume from now on that the first job in a partial schedule 'lT is not started before 
time p (~-'lT); this additional restriction, imposed to leave space for the remain
ing jobs, is easily incorporated in the idle t!!ne insertion algorithm. Let f ('1T) 
denote the minimal inventory cost for 'lT. Let j('lT) denote the minim~ inventory 
cost for 'lT if the first job may start before time p(~-'lT); the notation j('lT) is only 
needed in this section. F or any partial schedule 'lT, we have f ( 'lT) ;;;;. j( '1T); equality 
holds for any complete schedule o. 

We employ a depth-first strategy to explore the tree: at each level, we generale 
the descendant nodes for only one node at a time. At level k, there are n k des
cendant nodes: one for each unscheduled job. The completion times for the jobs 
in 'lT are only temporary. Branching from a node that corresponds to 'lT, we add 
some job Jj leading to the sequence Jj'lT. Subsequently, we delermine the associ
ated optimal schedule for Jj'lT, and possibly delay some jobs in 'lT. We branch 
from the nodes in order of non-increasing due dates of the associated jobs. 
Before entering the search tree, we delermine an upper bound on the optima! 
solution value. We use the optimal schedule conesponding to the minimum slack 
time sequence as an initial solution, and try to reduce its cost by pairwise adja
cent interchanges. 

A node is discarded if its associated partial schedule 'lT cannot lead to a com
plete schedule with cost 1ess than UB; UB denotes the currently best solution 
value. Let LB (~-'lT) be some lower bound on the minimal oost of scheduling the 
jobs in the set ~-'lT. Obviously, we discard a node ifj('lT)+ LB(~-'lT);;;;. UB. The 
following ruleis usually overlooked. Let g(obo2) be a lower bound on the oost 
for scheduling the jobs in o1 given the final partial schedule o2• 

'THEOREM_6.2. The partial schedule 'lT can be discarded if there exists a Jj E ~-'lT 
Jor which j(Jj'lT) + g(~-'lT-Jj, '1T);;;;. UB. 

PROOF. Consider a complete sequence o that has 'lT as final subsequence. Thus, o 
can be written aso= 'lT1Jj'lT2'1T. Accordingly, we have 

j(o) = j('1TJJj'lT2'1T);;;;. j(Jj'lT) + g('1Tt'1T2,'1T);;;;. UB. 0 

It is_essential ihat g(~-'lT-Jj,'lT) depends only on 'lT and not on Jj'lT, and that we 
use j(Jj'lT) insteadof f (Jj'lT). We derive two corollaries from Theorem 6.2. 

CoROLLARY 6. I. Ij for a given partial schedule 'lT, we have that 
f(JjJk'lT) +g(~-'11"-Jj-h, '1T);;;;. UB forsome JjE ~-'lT and Jk E 1 then Jk pre
cedesJk in any complete scheduleo'lT with j(o'lT) < UB. 0 

COROLLARY 6.2. The partial schedule 'lT can be d!!carded [two jobs Jj E ~-'lT and 
hE~-'lTexistwithg(~-'11"-Jj-h,'lT) + min{j(JjJk'lT),j(J~;'lT)};;;;. UB. 0 
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If a partial sehedule w* =I= w exists eomprising the same jobs as w and having 
f(ow*) :s;,j(ow) for any sequenee o for the remaining n -k jobs, then we ean 
also diseard w. If f ( ow*) < f ( ow) for some o, then w is dominaled by w*. If 
f (ow*) = f (ow) for every o, then we discard either w* or w. The dominanee con
dition above can henarrowed by the requirement thatf (TT*) :s;,j(w) and that the 
cireumstanees to add the remaining n - k jobs to TT* are at least as good as the 
cireumstances to add the remaining jobs to TT. The question whether sueh a 
sequence TT* exists is of course already ~'3'-coinplete. We strive therefore to iden
tify sufficient conditions to discard w. The temporary nature of the job comple
tion times for TT complicates the achievement of this goal We have to he eareful 
with dominanee conditions that arebasedon interchange arguments: the condi
tions must remain valid if the jobs in TT are delayed. 

Suppose the jobs in TT have been reindexed in order of inereasing completion 
times. In each of the following theorems, stating the dominanee rules, the 
sequenee TT* is obtained from TT by swapping two jobs, say, J1 and Jk. We do not 
eompute the optima] completion times for the sequenee TT*. Instead, we deter
mine the job completion times for the sequenee TT* as follows. Let C1 and C; * he 
the completion time of J; in the sehedule TT and TT*, respectively. Then we let 

for i = 1, ... ,j -1, i = k + 1, ... , I TT I, 
C*=C;-p1+pb fori=j+I, ... ,k I, 

ck * = c1-p1+pb 

Cf* Ck. 

Let F(TT*) he the cost associated with the completion times C1*, for 
i = I, ... , I TT I· Henee, F ( w*) ";;!~: f (TT*). To validate the following dominanee 
rules, we must verify thatj(TT) ";;!I:F(w*), even if the jobs are delayed. Due to the 
relation betweenTTand TT*, this comes down to verifying that for each ~ ";;!~: 0 

k k k k 
a2: C;+fJ2: max{O,d1 -C;-~} ";;!~: a2: C1* +fJ2: max{O,d1 C;* -~}. (6.1) 

i=j i=j i=j 

We start with a straightforward result. 

THEOREM 6.3. There is an optima/ schedule with J1 preceding h if p1 and 
d1 :;;;;, dk. D 

THEOREM 6.4. The partial sequence TT can be discarded if there are two jobs J1 and 
Jk with Ck = C1+'2.f=J+IPtforwhich 

p1 >ph and 
k k k k 

a2: C; + fJ 2: max{O,d1 C;} ";;!~: a2: C1* +{J 2: max{O,d1-C;*}. (6.2) 
i=j i=j+l i=j i=j+l 

PROOF. Define c(~) as the change of oost due to the interchange, after delaying 
the jobs by ~ ";;!~: 0; i.e., 
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k k k k 
c(.:l) =a~ e; + {3~ max{O,d;-e;-Ll} -a~ e;* -{3~ max{O,d;-e;* -.:l}. 

i=j i=j i=j i=j 

We prove that c(.:l);;;;;.: 0 for all Ll;;;;;.: 0. From condition (6.2), it follows immedi
ately that c(O) ~ 0. Furthermore, e1 < e/ implies max{O,d1- e1 - Ll} ;;;;;.: . 
max{O,d1-e/ -.:l} for all ,:l;;;;.O; C; > e;* for i= j +I, ... ,k implies 
max{O,d;- e; -Ll} -max{O,d; -e;* -.:l};;;;. max{O,d;-e;}- max{O,d;- e;*} 
for all .:l~O. Combining the inequalities, we get the desired result. 0 

The possible increase of E1 is excluded here. The following theorem shows that in 
case no idle time exists between two adjacent jobs, then dominanee already exists 
if condition (6.1) is satisfied for Ll = 0. 

THEOREM 6.5. The partial sequence 'TT can be discarded ifthere are two jobs J1 and 
Jk withek =ei+ Pkfor which 

and 

PJ>Pb 

a(p1 - fk) + [Jmax{O,d1-e1} + {Jmax{O,dk-ek};;;;;.: 

{Jmax{O,d1-ek} + {Jmax{O,dk-ek+p1}. (6.3) 

PRooF. Define c(.:l) as the change of cost due to the interchange, after delaying 
the jobs by ,:l;;;;. 0; i.e., 

c(.:l) = a(p1 - fk) + [Jmax{O,d1-e1-Ll}- {Jmax{O,d1-ek-Ll} + 
{Jmax{O,dk-ek-Ll}- {Jmax{O,dk-ek+p1-Ll}. 

Weneed to show that the condition (6.3), stating that c(O) > 0, implies c(.:l);;;;;.: 0 
for all Ll ~ 0. N ote that a < {3 implies that at least one due date is smaller than 
ek; otherwise, condition (6.3) is not valid. 

The expression c(.:l) has three components. The first component is a(p1-pk); 
it is a constant. The second component is [Jmax{O,d1-e1-Ll}
{3 max {O,d1- ek- Ll}; it is a piecewise linear function of Ll. The function value is 
{Jpk if dj ~ ek + Ll; if ek + Ll >dj ;;;;;.: ei+ Ll, then the gradient is -1. The func
tion value is 0 if d1 ~ e1 + Ll. The third component is 
{Jmax{O,dk-ek-Ll}- {Jmax{O,dk-ek+p1-Ll}; it is also a piecewise linear 
function of Ll. The function value is - {Jpj if dk ~ ek + Ll. The gradient is 1 if 
ek + Ll > dk ;;;;;.: ek-p1 + Ll. The function value is 0 for dk ~ ek-Pi+ Ll. Combin
ing the three components yields a piecewise linear function whose behavior 
depends on the due dates. We now make the following observations. First, 
c(Ll)>O if Ll;;;;.dk-ek+p1. Second, if c(t)>O forsome t ;;;;.dk-eb then 
c(.:l) > 0 for all Ll;;;;;.: t. As at least one due date is smaller than eb the second 
observation implies that, if dk ~ d1, then c(.:l) >0 for all Ll;;;;;.: 0. 

The only case left to consider is d1 < dk and 0 ~ Ll ~ dk- ek. Then, we have 
c(.:l) = a(p1-Pk)- {Jp1 + {Jmax{O,d1-e1-Ll}. As d1-e1-Ll ~ d1-e1 = 
d1-ek+Pk ~Pb we get c(O)~(a-{J)(p1 -Pk)~O, which contradiets the 
assumption. This completes the proof. [J 
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In Corollary 6.3, explicit conditions for the existence of dominanee ate derived 
from Theorem 6.5. This corollary is referred to when lower bounds are discussed 
in Section 6.4. 

CoROLLARY 6.3. The partial sequence '1f can be discarded if there are two jobs 11 
andh with Ck C1+pk such that 

PJ >ft, 

and one of the following conditions is satisfied: 

ck - p1 ;;;.. dt. 

Ck-PJ < dt. Ck;;;.. dt. C; ;;..d1, and a(p1 -ft);;;.. {J(dk Ck+p;), 

ck-PJ < dk> ck < dk, C; ;;;a. d;, anda(p;-pk) ;;;a. PP;· 

Ck -p1 < dt. Ck;;;.. dt. C1 < d1, and a(p1-pk);;;.. {3(dk -d1 -ft +p1). 

0 

THEOREM 6.6. The partial sequence '1f with h scheduled last is dominaled if there is 
a J1 such that 

PJ > Pt. and c1-p1+ft ;;;a. dk. 

PRooF. Let '1f = '1f 111'11'2Jk and '11'* = '1f 1h'IT2J1. We compute the effect of the inter
change on the scheduling cost. Since h is the last job in the optimal schedule 'lf, 
we have Ck ;;;a.dk. In addition, we know C1* = max{d1,ck-pk+p1} and 
Ck * = c1 - p1 + Pk ~ dk. First, suppose C;* = d1. The effect of the interchange is 
then equal to 

a(C1+ Ck -(C1-p1+pk)-d1)+ {J(d1-C1);;;.. 

a(Ck+p1-pk-d;)+a(d1-C1) >0, 

as Ck-Pk;;;.. c1. Second, suppose that C;* = Ck -pk+p1. The effect of theinter
change is then equal to 

a[ C1 + Ck -( Ck-Pk + p;)-(C1- p1 +ft)]+ {3max{O,d1- c1} ;;;.. 0. 

The effect remains non-negative if the jobs are delayed. 0 

THEOREM 6. 7. There is an optima/ schedule in which h is not scheduled in the last 
position, if there is some JJ with p1 > Pk and d1 - p1 ;;;.. dk-ft· 

PRooF. We let '1f '1f 111'1f2Jk and 'lf* = '1f1lk'1F2J1 and compute the effect of the 
interchange. We have Ck;;;.. dk and Ck-Pk ;;;a. C1; in addition, we define here 
C;* = max{d1,ck-ft+p1}. The effect of the interchange has to be non
negative; we therefore have to prove that 

aCk + f3max{O,d1 C1} ~ a(ft-p1+C1*) + Pmax{O,dk-Pk+P; C1}. (6.4) 
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First, we examine the case C/ Ck -pk +pi. Expression (6.4) is then equivalent 
to 

f3max{O,di Cj};;;;. f3max{O,dk-pk+pj-Cj}, 

which is true for any Cj since dj-pj ;;;odk-Pk· Second, consider the case 
C/ =dj. This implies dj>Cj, since dj;;;.ck-Pk+pj>Cj-pk+pj>Cj. 
Hence, expression (6.4) is equivalent to 

aCk + /3(d1-Cj);;;;. a(pk-p1+d) + /3max{O,dk-pk+p1-Cj}· 

Supposemax{O,dk-Pk+p1-Cj} = dk-pk+pj- Cj. We must then verify that 

aCk + /3dj;;;;. a(dj-pj+pk) + f3(dk -pk +pj). 

As Ck ;;;;. db we only need to prove that 

0;;;;. (a- /3)[(dj -pj)-(dk -pk)]; 

this expression is true since /3 >a and dj-Pj ;;;, dk-Pk· Conversely, suppose 
max{O,dk-pk+pj Cj}=O. Since aCk+/3(di Cj);;;. a(Ck+dj-Cj);;;. 
a(pk +dj)> a(pk-Pi+ dj), expression (6.4) is also true for this case. 0 

COROLLARY 6.4. There is an optima/ schedule in which Jj is scheduled last if 
PJ;;;;. Pk and dj -p1 ;;;, dk-Pk for each Jk E ~- 0 

6.4. LûWER BOUNDS 

In this section, we present five lower bound procedures. It seems to he impossible 
to develop a lower bound procedure that copes satisfactorily with all conceivable 
due date patterns. For example, imagine an instanee with due dates small with 
respect to the sum of the processing times; little idle time needs then to he 
inserted. In contrast, consider an instanee with dk > '2-J 1pj for each h; the 
machine will then he idle forsome time before processing the first job. Numerous 
variations and combinations of both pattems are possible. 

Each of the lower bound methods is effective for a specific class of instances. 
Nonetheless, weusethem supplementary rather than complementary. We parti
tion the job set ~ into subsets, apply each lower bound method to each subset, 
and aggregate the best lower bounds. In this way, we hope to obtain a stronger 
lower bound than the lower bounds obtained for the entire set~· Success depends 
on the partitioning strategy. The jobs in a subset should he conflicting. If they 
are not, then all jobs are completed exactly on their due dates, giving rise to the 
weak lower bound a'2.J= 1 dj. In this sense, we prefer subsets such that the execu
tions of the jobs in the same subset interfere with each other, but not with the 
execution of the jobs in the other subsets. We propose two partitioning strategies 
that pursue this effect. 

The first strategy is motivated by the structure of an optimal schedule. The 
jobs that are consecutively processed between two periods of idle time interfere 
with each other, but not with the other jobs. Such a partitioning is hard to 
obtain. To mimic such a partitioning, we identify clusters. A cluster is a set of 
jobs such that for each job Jj in the cluster there is another job h in the cluster 
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such that the intervals [dj-pj, dj] and [dk -pk> dk] overlap; hence, for each job in 
the cluster there exists a conflict with at least one other job in the cluster. How
ever, clusters may interfere with each other in any optima! schedule. 

The second strategy is the following. Given a partial schedule w, we try to 
identify the jobs not in w that will he early in any optima} complete schedule of 
the form ow. We call these jobs surely early. The idea is to derive an upper bound 
Ton the completion times of the unscheduled jobs; accordingly, Jj E ~-w is 
surely early if dj > T. For instance, let g he the primitive directional derivative 
for delaying the first job in w by one unit. Suppose I~-w I (,8- a)";;;;; g. The 
current set of completion times for the jobs in w is then optima! for any schedule 
ow; an upper bound T is then the start time of the first job in w. Other upper 
bounds are derived from the dominanee rules. Suppose Jj and h are adjacent in 
w withpj >fk and Jj precedingJk. (lt is not necessary that Ck = Cj+pk.) The 
first condition of Corollary 6.3 indicates that w is dominated if Ck ;;;;;. dk + pj; 
hence, an upper bound is given by dk +pj -1- '2.1, E'll, c,.:;c,Pi· From the other 
criteria in Corollary 6.3 and from Theorem 6.7, similar upper bounds are 
derived. They can also he derived from Theorem 6.4, but this requires an intri
cate procedure. Finally, we set T equal to the minimum of all upper bounds. If 
no upper bound is specified, then we let T = oo. 

6.4.1. First method: relax the objective function 
Let S denote the set of surely early jobs; let tiit he the set of remaining jobs. 
Observe that 

min a En/ (o);;;;;. min,. E 0.. ~ aCj + min,.E n., ~ [aCj + ,8Ej], 
J 1 E'!Jl JJEfi, 

where Sl'!ll and Slli> denote the set of feasible schedules for the jobs in tiit and $. The 
problem of minimizing '2.11 Eli> [aCj + ,8Ej] is solvable in polynomial time. Since 
we have Ej dj- Cj for each Jj E $, the scheduling cost reduces to 
'2.1j Eli> [(a- ,B)Cj + /Jdj]. Applying an analogon of Smith's rule [Smith, 1956], we 
minimize this cost component by scheduling the jobs in $ in the interval 
[T-p ($), T] in order of non-increasing processing times; the correctness of this 
rule is easily verified by an interchange argument. The other subproblem is 
solved by Smith's rule: simply schedule the jobs in tiit in non-decreasing order of 
their processing times in the interval [O,p(tiit)]. In the example, $ 0, and the 
lower bound is 21 a. 

A slight improverneut of the lower bound is possible. Let E max * he the 
minimum maximum earliness for the jobs in tiit if they are processed in the inter
val [O,p(tiit)]. We can compute Emax * from the minimum-slack-time sequence, 
that is, the sequence in which the jobs appear in order of non-decreasing values 
dj-pj. Avoiding Emax * requires at least Emax *units of machine idle time. The 
lower bound can therefore he improved by aE max *. If we have stored the 
shortest-processing-time sequence and the minimum-slack-time sequence, then 
we compute this lower bound in O(n) time per node. In the example, we have 
E max * = 4; hence, the lower bound is 25a. This lower bound approach can only 
he applied in conjunction with Theorem 6.2 if $ 0. 
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Since all jobs in <fit are scheduled in the interval [O,p(<!it)], and since only one 
early job in <8t is taken into account, this lower bound is only effective if the due 
dates are small relative to the sum of the processing times. 

6.4.2. Second method: relax the machine capacity 
Reeall that we write the objective function alternatively as j(G) = 
(JJ-a)'"2,j= 1 Ej+a'2-J= 1 ~ + a!.j 1 dj for each GE Sl. Since the job earlinesses 
and tardinesses are non-negative by definition, we have that f ( G) ;;;;. a'2-j = 1 dj for 
each GE Sl. 

We gain more insight deriving this bound in the following way. Suppose the 
machine can process an infinite number of jobs at the same time; this is a relaxa
tion of the limited capacity of the machine. As a < f:J, the optimal schedule has 
c1 = d1 for each J1; this gives rise to the lower bound a.'2.j= 1 dj. If none of the 
jobs overlap in their execution, then this schedule is feasible and hence optimal 
for the original problem. For the example, this relaxation gives the lower bound 
35a. The corresponding schedule is not feasible: J 2 and J 3 overlap in their exe
cution (see Figure 6.2). 

0 2 4 6 8 10 12 14 16 18 

FIGURE 6.2. Gantt chart for machine with infinite capacity. 

This conflict can be settled by executingJ 3 beforeJ 2 , or, conversely,J 2 before 
J 3• If we intend to schedule J 2 after J 3, then we have basically two options: we 
retain either the completion time of J 3 or the completion time of J 2 • F or the first 
option, the additional cost is 3a; for the second option, the additional cost is 
3({:J- a). Executing J 2 af ter J 3 costs therefore at least 3y extra, where 
y = min {a, f:J- a}. Similarly, we find that executing J 3 af ter J 2 costs 6y extra. 
Hence, the minimum additional cost required to settie the overlap is 
min{3y, 6y} = 3y. Accordingly, an improved lower bound is 38a. 

We now describe a general procedure to improve the lower bound a'2-j 1 dj by 
taking the overlap between jobs into consideration. Overlap of Jj and h (Jf=f=J k) 
occurs if the intervals [dj-p1,d1] and [dk-pk>dk] overlap. Let 
c1k = y max{O, d1 -(dk -Pk)} denote the ádditiona/ cost to execute J1 immedi
ately before Jk; let G(i) = j denote that J1 occupies the ith position in the 
sequence G. For any optimal schedule G, we have that f (G);;;;. a'2-j = 1 dj + 
'2-j;;;; l co(i)o(J +I); the last term is the lengthof the Hamiltonian path G(l) · · · G(n ). 
The following procedure shows that the Hamiltonian path problem is solvable in 
O(nlogn) time. 

Parrition the set of jobs into a set of clusters Q 1, ••• , Qm as described above. 
Let HP1 be the shortest Hamiltonian path for Q1, and let c(HP1) denote its 
length. We have c(HP1)=y(p(Q1)-maxJ;,J,eQ,,J,#;cjk), for each I 
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(l = 1, ... ,m). We have also ~J:;;; 11 c'IT(i)'n(j+l);;;;. ~'f 1 c(HP1) for any sequence 7T, 

as can he easily verified. The individual Hamiltonian paths can he combined into 
one Hamiltonian path of length no more than the sum of the lengths of the 
separate paths. 

6.4.3. Third method: relax the due dates 
A major difficulty for the total inventory cost problem is that we cannot recog
nize a job as being early or tardy beforehand. However, if all jobs overlap, then 
we can. Relaxing the machine availability condition, we now assume that it is 
continuously available from time dmin-~}=IPj onwards, where dmin 

min1..;;j..;;n dj. Using the idle time insertion procedure, we know that there is an 
optimal schedule o with some Jj completed exactly on its due date dj. Doe to the 
overlap, all jobs before Jj are early or just-in-time; all jobs after Jj are tardy or 
just-in-time. Reindexing the jobs in order of increasing completion times in o, we 
see that 

f(o) (ft-a)±[(i l)p;+d; 
n n 

dj]+ a ~ [(n + l-i')p; +dj- d;] +a~ d;. 
i=! i=j+l i=l 

Rather than viewingf(o) as the sum of the job scheduling costs, we see it as the 
sum of the positional costs. The cost of assigning J; (i = I, ... , n) to the kth 
(k 1, ... ,n) posîtion before dj (k =I corresponds to the fîrst posîtion in o) 
equals (J}-a)[(k -l)p; + d; -dj] and the cost of assigning J; to the kth 
(k = 1, ... ,n -1) position after dj (k = I corresponds tothelast position in o) is 
equal toa [k p; +dj-d;]. The costof assigning J; tosome position depends there
fore only on p;, on the position, and on Jj. For a given Jj, the problem of assign
ing jobs to positions is solved as a bipartite matching problem; this is done in 
O(n 3) time hy use of the Hungarian method (see Papadimitriou and Steiglitz 
[1982]). This leads to the following theorem. 

'THEOREM 6.8. IJ all jobs overlap and if the machine is continuously available, then 
an optima! schedule for the problem of minimizing total inventory cost is obtained by 
taking the best solution after solving n assignment problems. 0 

If dj ..;;;; dj for eachJj (j = 1, ... , n ), then we have for any schedule o that 
n n n n 

/(o) =a~ Cj + fl ~ max{O, dj-Cj} ;;;;. a~ Cj + fl ~ max{O, dj Cj}· 
j=l j=! j=l j=l 

Hence we obtain a lower bound for the original problem by relaxing the due 
dates until all jobs overlap, and subsequently solving the problem under the 
assumption that the machine is continuous1y available. Such a procedure is 
time-consuming; we propose therefore two simplifications that are implemenled 
to run in O(nlogn) time per node. The first simplification concerns the case of 
equal due dates; the second one concerns the case of equal slack times. The two 
lower hound procedures are analyzed in Sections 6.4.3.1 and 6.4.3.2. 
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6.4. 3.1. The common due date problem 
Suppose the due dates have been replaced by a due date d common to all jobs. 
Consider the following common due date problem: for a given d, determine a 
schedule that minimizes 

11 11 11 

(P-a)~E1 +a~ 1j+and .B~max{O,d-d1 }. (CD) 
j=I j=l j=I 

For any d, the optimal solution value is a lower bound for the original problem, 
since 

11 11 

f(o) a~ c1 + .B~ max{O,d1-c1} 
j I j=l 

11 11 

=a~ C1 + .8~ max{O,d C1-d+d1 } 
j=l j=l 

11 11 

~a~ Cj + .8 ~ max{O,d 
j=l j=l 

11 

C1}- .B~ max(O,d dj} 
j=l 

11 11 n 

(.8-a) ~ Ej +a~ 1j + and- .B~ max{O,d-dj}· 
j=I j I j=l 

There are two issues involved: (i) how to solve problem (CD)?, and (ii) how to 
find the value d maximizing the lower bound? 

Problem (CD) consists of two parts. The first part is the problem of mininriz
ing (/1-a)"2.j 1 E1 + a"2.J= 1 1J· If the machine is only available from time 0 
onwards and if dis given, then this problem is '~)U~P-hard [Hall, Kubiak:, and Sethi, 
1991; Hoogeveen and Van de Velde, 1991A]. However, a strong lower bound 
L(d) is derived by applying Lagrangian relaxation (see Chapter 5). The second 
part is the easy problem of maximizing the function G : d ~ and -
.8"2.)= 1 max{O,d -dj}· Rather than solvingproblem (CD) to optimality and find
ing the best d, we maximize the lower bound L(d) + G(d) over d. 

First, we derive the best Lagrangian lower bound L(d) for a given d. The 
denvation proceeds without details; we refer to Chapter 5 for an elaborate treat
ment. Let $ denote the set of early jobs. Since the machine is only available from 
time 0 onwards, we have the condition that p ($) ~ d. We dualize this condition 
by use of the Lagrangian multiplier À~ 0. For a given À~ 0, the Lagrangian 
problem is then to find L(d,À), which is the minimum of 

(P-a)"2.}=1 Ej + a"2.)=1 T1 + Àp(S)- Àd. 

The Lagrangian problem is solvable in polynomial time by Emmons' matching 
algorithm [Emmons, 1987], which proceeds by the concept of positional weights. 
Straightforward arguments show that there exists an optimal schedule with some 
job completed exactly on its due date. The weights for the ear1y positions are 
then À, À+(P-a), À+2(P-a), ... ,À +(n 1)(.8-a); the smallest weight is for 
the first position in the schedule. The weights for the tardy positions are 
a , 2a, ... , na; the smallest weight is for the last position in the schedule. 
Emmons' matching algorithm assigns the job with the jth largest processing time 
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to the position with the jth smallest weight, for j = 1, ... , n. Ties are settled to 
minimize the amount of work before d. Let oÀ he the optimal schedhle for the 
Lagrangian problem, and let W ( oÀ) he the amount of work before d in oÀ. 

The best Lagrangian lower bound L(d) is found as 

L(d) max{L(d,À) I À~O}. 
Due to the integrality of a and /3, the optimization over À ~ 0 may he reduced to 
the optimization over ÀEN0 • The optimal choice for À can he shown to be such 
that W(oÀ_t) > d ~ W(oÀ); this choice gives us the Lagrangian lower bound 
L(d). 

We are now able to characterize the tunetion L : d ~ L ( d). The tunetion L is 
continuous and piecewise linear; the value L(d) only depends on d through the 
choicefor À. Hence, there are at most min{n 2 , na} breakpoints: they correspond 
to the values d = W(aÀ), for À = 0, 1, ... , na. The derivative of the trade-off 
curve between two consecutive breakpoints, the first corresponding to W(oÀ), is 
equal to -À. 

The tunetion G:d~and ,8~J= 1 max{O,d-dj} is also continuous and 
piecewise linear; the breakpoints correspond to the values d =dj, for j = 
1, ... ,n. The lower bound L(d)+G(d) is therefore also continuons and piece
wise linear in d; the value d maximizing this lower bound is found at a break
point. 

For a fven d, L(d) is determined in O(nlogn) time. The tunetion L has 
O(min{n ,na}) breakpoints; the corresponding values are computed in O(n 2

) 

time. (Every new breakpoint is derived from the previous one by interchanging 
some jobs, requiring only constant time; O(n 2

) interchanges are needed to find 
all breakpoints.) The tunetion G has O(n) breakpoints. Hence, maximizing 
L(d)+ G(d) over dis achieved in O(n 2) time. 

We ean also approximate the maximum of L(d)+G(d) over d. A fair choice 
for d is the value that maximizes the tunetion G. The maximum of G is attained 
at the kth smallest due date where k = rnal ,81. For constant a, this lower 
bound is computed in O(nlogn) time. 

In our 3-job example, we have d = 10. For the positions after d, the weights 
are 1,2, and 3; for the positions before d, the weights are 0, 3, and 6. An optimal 
schedule is depicted in Figure 6.3. lts objective value is 39a; this happens to he 
the optimal solution value for the original problem. 

0 d 13 16 

FIGURE 6.3. Optimal schedule for the common due date problem. 

In a node of the search tree, there are two ways to imptement this lower bound 
procedure. Let '11' '11'1 '11'2 be the partial schedule associated with the node. Disre
garding '11', we get the lower bound j('11') + c~-'11'), where c(:f..-'11') denotes the 
optimal solution value for the common due date problem for the jobs in :f.--'11'. 
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However, if 'IT 1 and the optimal schedule for the common due date problem over
lap intheir execution, then it makes sense to take 'IT 1 into regard. We do this in 
the following way. First of all, we require that dis common to each J1 f/:. 'IT2 • Sub
sequently, we solve the common due date problem under the condition that the. 
jobs in 'IT 1 retain their positions. Given thesetof positions, it is easy to construct 
an optimal schedule: assign the jobs in 'ITJ to the last I 'IT1 I positions, and assign 
the other jobs to the remaining positions according to Emmons' algorithm. 
Lemma 6.1 states that we may use the same set of positions as for the case 
'ITI 0. 

LEMMA 6.1. The optima/ schedu/e for the common due date problem with the last 
1 'IT 1 1 Jobs fixed occupies the n postttons wtth least postttonat wetghts, where 

n = n I'IT2I· 

PROOF. Suppose to the contrary that the optima} schedule IJ for the jobs J1 f/:.'IT2 

does not occupy the ïi positions with least positional weights. Let n 1 jobs in IJ be 
early or just-in-time and let n 2 = n-n 1 jobs in IJ be tardy. Suppose the set of 
optima} weights COrresponds ton 1 positions befare d, and to fi2 = n -n 1 posi
tions after d. Suppose n 1 < ïi 1 • We then transfer the job occupying the n 2 th 
tardy position in IJ (the first tardy job) to the (n 1 + l)th early position. The latter 
position is in the optimal set; the former is not. Hence, this transfer reduces the 
objective value, thereby contradicting the optimality of IJ. If n 1 > ii 1, then a 
similar argument applies. 0 

The common due date lower bound can only be used in conjunction with 
Theorem 6.2 if the lower bound is independent from the partial sequence j'IT. It is 
effective if the due dates are close to each other. 

6.4.3.2. The common slack time problem 
Consider the special case of the 1 I I a'i:.C1 + P'i:.E1 problem where all jobs have 
equal slack times; i.e., d1 - p1 s for each J1 (j = 1, ... ,n). This problem has 
the samefeatures as the common due date problem. It is •;;Ju3>-hard, unless the 
machine is continuously available from times + p max 'i:.j = 1 p1 onwards, where 
Pmax maxi""'J""'nPJ· However, applying Lagrangian relaxation as described in 
the previous subsection, we derive a strong lower bound. Furthermore, the best 
lower bound is also computed in O(nmin{ a,n}) time; there are the same options 
to imptement the lower bound. The common slack time lower bound is effective 
if all slack times are closetoeach other. 

6.4.4. Fourth method: relax the processing times 
Again, we consider a special case of the 1 I I a'i:.C1 + P'i:.E1 problem. Assume that 
all processing times are equal. Theorem 6.3 indicates that the earliest-due-date 
sequence (i.e., the sequence with the jobs in order of non-decreasing due dates) is 
optimal. This special case is solved in 0 (n 2) time, which is needed to compute 
the optima! schedule for a given sequence. 
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Let us return to our original problem. Define Prrrin mint..:} ..:nPJ· The 
optimal salution value of the relaxed problem lip1 = p min I a"i.e1 + /J"i.E1 pro
vides a lower bound for the original problem: each set of job completion times 
that is feasible for the original problem is also feasible for the relaxed problem 
and has equal cost. 

Given a partial schedule 'TT, let o be the earliest-due-date sequence for the jobs 
in ~-'TT, and let g(o) he the optimal salution value for the relaxed problem. 
Disregarding 'TT, we get the lower boundj('TT) + g(o). We can marginally imprave 
on this lower bound. Suppose we have reindexed in order of non-decreasing due 
dates. Corollary 6.4 indicates that ln is also scheduled last if we put its process
ing time equal to min {Pn ,p min + dn - dn _ 1 } • An improved lower bound is there
fore given by j('TT)+g(o)+a[min{pmPmin +dn -dn -I} -prrrin1· 

If the execution of jobs in o overlap with the execution of jobs in 'TT, then it 
pays to take '1T into regard. The lower bound is then equal to the cost for the 
sequence O'TT with the jobs in '1T still having their original processing times. 

Both bounds are computed in O(n 2
) time and dominate the lower bound 

a"i.J = 1 d1. Only the first version can he used in conjunction with Theorem 6.2. 
The common processing time lower bounds are only effective if the processing 
times are close to each other. 

In our 3-job example, we have Prrrin = 3, d 1 = 15, and d2 = d3 10. An 
optimal schedule for the common processing time problem is depicted in Figure 
6.4. lts objective value is 39a; this is equal to the optimal salution value for the 
original problem. 

0 lO 13 16 

FIGURE 6.4. Optimal schedule for the common processing time problem. 

6.4.5. Fifth method: Lagrangian relaxation 
The problem of minimizing total inventory cost, referred to as problem (P), can 
he formulated as follows. De termine values ei and E1 (j = I, ... , n) that minim
ize 

subject to 

n n 

a~ e1 + p ~ E1 
·i=l i=l 

Ei;;;;. 0, 

E.;;.d.-e. 
J J }' 

e1 ;;;;. ek +Pi or ek ;;;;. e1 + Pk> 

ei-Pi;;;;. o, 

(P) 

for j = 1, ... ,n, (6.5) 

for j 1, ... , n, (6.6) 

forj,k l, ... ,n,j=/=k, (6.7) 

for j = 1, ... , n. (6.8) 

The conditions (6.5) and (6.6) reflect the definition of job earliness, while the 
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conditions (6.7) ensure that the machine executes at most one job at a time. The 
conditions (6.8) express that the machine is available only from time 0 onwards. 
We note that the above formulation matches the generic formulation presented 
in Chapter 2. 

We introduce a non-negative vector À (À1, ••• , Àn) of Lagrangian multipliers 
in order to dualize the conditions (6.5). Fora given vector À;;;;. 0, the Lagrangian 
problem is to determine the value L (À), which is the minimum of 

n n 

a 2: C1 + 2: ({J-À1)E1 
j=l j I 

subject to the conditions (6.6), (6.7), and (6.8). We know that for any given À;;;;. 0 
the value L(À) provides a lower bound to problem (P). If {J- ÀJ < 0 forsome J1, 
we get E1 = oo, which disqualifies the lower bound. We therefore assume that 

ÀJ..;;;. {J, for j = 1, ... , n. (6.9) 

This, in turn, implies that, for any salution to the Lagrangian problem, condi
tions (6.6) hold with equality: E1 = d1 c1 for eachj (j = 1, ... ,n). Hence, the 
Lagrangian problem, referred to as problem (LÀ), transfarms into the problem of 
minimizing 

subject to 

n n 
2: (a- {J+À1)C1 + 2: ({J-À1)di 

j I j=l 

c1 ;;;;. Ck +Pi or Ck ;;;;. Ci + Pt. 

ei PJ;;;;. o, 
forj, k = 1, ... ,n,j=l=k, (6.7) 

forj = 1, ... ,n. (6.8) 

If a-{J +À i < 0 for some Ji, we get c1 oo, which makes the lower bound 
rather weak. However, as demonstrated at the beginning of Section 6.4, we can 
determine an upper bound Ton the job completion times, which implies that 

c1 ..;;;. T, forj = 1, ... ,n. (6.10) 

Although the conditions (6.10) are redundant for the primal problem (P), they 
are essential to admit valnes ÀJ <{J-a. For solving problem (LÀ) onder these 
additional conditions, we first determine the sets of jobs~+ = {Ji I ÀJ >{J-a}, 
~- {Ji jÀi <{J-a}, and ~0 = {Ji jÀ1 ={J-a}. The following theorem stipu
lates that problem (LÀ) is solved by a simple extension of Smith's rule [Smith, 
1956] for solving the lil }:w1Ci problem; the proof proceeds by an elementary 
interchange argument ( see Theorem 1.1 ). 

ThEOREM 6.9. Problem (LÀ) with the additional conditions (6.10) is solved by 
scheduling the jobs in ~ + in non-increasing order of ratios (a- {J +À i) I Pi in the 
interval [O,p(~+ )1 and scheduling the jobs in ~- in non-increasing order of ratios 
(a- fJ+Àj)!p1 in the interval [T-p(r),T]. The remainingjobs can be scheduled 
in any order in the intervalfp(~+),T-p(~-)]. 0 
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We are interested in determining the vector À* = (À 1 *, ... , À11 *) of Lagrangian 
multipliers that induces the best Lagrangian lower bound. The vector À* sterns 
from solving the Lagrangian dual problem, referred to as problem (D): maximize 

L(À) 

subject to 

0.,;;; Àj .,;;; {1, for j = I, ... , n. 

Problem (D) is solvable to optimality in polynomial time by use of the ellip
soid metbod (see Theorems 1.6 and 2.1). Since the ellipsoid metbod is very slow 
in practice, we take our resort to an approximation algorithm for problem (D). 
Wedevelopan aseent direction algorithm that is similar to the one developed in 
Section 2.1 forthelipree I ~wjCj problem. 

First, we identify the primitive directional derivatives. In the solution to the 
Lagrangian problem (L;,..), the position of Jj depends on the ratio (a- p + Àj) I pj; 
we call this ratio the re/ative weight of Jj. The larger this relative weight, the 
smaller the completion time of Jj. lf other jobs have precisely the same relative 
weight as Jj, then the exact position of Jj is determined by settling ties. Let now 
Cf (À) denote the earllest possible completion time of Jj in an optimal schedule 
for problem (L;\.); let CT (À) denote the latest possible completion time of Jj in an 
optimal sehedule for problem (LA)· If we increase Àj by t: > 0, then we can choose 
t: small enough to make sure that at least one optimal sehedule for problem (L;\.) 
remains optimal (see Theorem 1.7). In fact, all such optimal sehedules must have 
Jj completed on time Cf (À). If we increase Àj by such a sufficiently small t: > 0, 
then the Lagrangian objective value is affected by t:(Cf (À)- dj). The primitive 
directional derivative for increasing Àj, denoted by lf (À), is therefore simply 

lf (À) Cf (À)- dj, for j = 1, ... ,n. 

Hence, if 1/ (À) > 0, then increasing Àj is an aseent direction. In a similar 
fashion, we derive that the primitive directional derivative for decreasing ~. 
denoted by Ç (À), is 

Ç(À) = dj-CT(À), for j = 1, ... ,n. 

If Ç (À)> 0, then decreasing Àj is an aseent direction. 
Second, we determine an appropriate step size a > 0 to move by along a 

chosen aseent direction. We compute the step size that takesus to the first point 
where the corresponding primitive directional derivative is no Jonger positive. If 
no such point exists, then we choose the step size as large as possible. 

Suppose 1/ (À)> 0: Jj is tardy in any optimal sehedule for problem (L;\.)· 
Increasing ~. thereby putting Jj earlier in the schedule, is an aseent direction. 
We distinguish the cases pj -dj > 0, pj-dj= 0, and Pj- dj < 0. Consider the 
case pj -dj> 0. Hence, Jj is unavoidably tardy, and tf (À)> 0 for all À;;;;. 0 with 
Àj < {1; reeall that some primitive directional derivatives do not exist at the 
boundaries. Therefore, we take the step size a {1-Àj. Accordingly, we must 
also have that Àj * = {1; otherwise, increasing À/ would be an aseent direction. If 
pj =dj, then there exists an optima! solution to problem (D) with À/ = {1. Find 
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'5'= {Jj 1Pj;;a;:d1}. Wehaveproved thefollowingresult. 

THEOREM 6.1 0. There exists an optima/ solution for the Lagrangfan dual problem 
(D) with Àj * /3 for each J1 E 5. D 

Suppose now p1 < d1. The step size à must satisfy À1+ à~ /3. We identify the 
first job in the schedule, say, h, for which Ck - Pk + p1 ~ d1. Since p1 <dj, such 
a Jk always exists. If J1 is scheduled in Jk's position, then J1 is not tardy. Hence, 
if there were no upper bound on À, then increasing Àl would be an aseent direc
tion up to the point where the relative weight of J1 becomes equal to the relative 
weight of Jk. Hence, the maximum step size along this aseent direction is the 
largest value à such that 

(a-f3+À1 + à)lp1 ~(a-f3+Àd1Pk, and 

Àj +à ~/3. 

Let now À = (À1, ••• , ÀJ + à, ... , À"). Suppose Àj + à < Pj· Since the relative 
weights for all jobs but Jj have remained the same, optimal solutions for the 
problems (LX) and (LA) exist with the samejobs scheduled before Jk. J1 and Jk 
have now equal relative weights: in any optimal solution to problem (L>;), J1 can 
be scheduled before Jk or after Jk. If J1 is scheduled before Jk> then Jj is not 
tardy; if J1 is sch~uled after Jk> then Jj is not early. Hence, we have that 
ct (À)~ dj ~ CT (À); the step size à has taken US to the first point wh~re the 
primitive directional derivative for increasing ÀJ is no Jonger positive. lf ÀJ /3, 
then the step size has been chosen as large as possible. 

Suppose now IT (À)< 0: J1 is early in any optimal schedule for problem (LA)· 
Decreasing À1, thereby delaying J1, is an aseent direction. We distinguish the 
cases dj > T, d1 = T, and dj < T. Consider the case d1 > T; hence, J1 is unavoid
ably early, and IT (À) > 0 for all À with Àj > 0. Therefore, we choose the step size 
as large as possible: à Àj. Accordingly, we also must have that À/ = 0; other
wise, decreasing ÀJ* would he an aseent direction. If d1 = T, then there exists an 
optimal schedule to problem (D) with À/ = 0. Identify f9 = {J1 I dj;;;;;: T}. We 
have proved the following result. 

THEOREM 6.11. There exists an optima/ solution for the Lagrangian dua/ problem 
(D) with À/ = 0 for each J1 E &. D 

Consider now the case d1 < T. The proceäure to compute the appropriate step 
size à proceeds in a similar fashion as above. We identify some J k as the first job 
in the schedule with Ck ;;;;;: d1. If J1 is scheduled in h's position, then J1 is not 
early. Hence, if there were no lower bound on À, then decreasing Àj would be an 
aseent direction up to the point where the relative weight of Jj becomes equal to 
the relative weight of Jk. Hence, the maximum step size along this aseent direc
tion is the largest value à for which 

(a-/3+À1 - à)lpj;;;;;: (a-/3+Àk)lpk, and 
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À_j-Ll ~ 0. 

Let À= (À I> ••• ,Àj Ll, ... ,Àn). Suppose Àj > 0. Sinee the relative weights for 
all jobs but Jj have remained the same, optima! solutions for the problems (L~) 
and (LÀ) exist with the samejobs scheduled after h· Sinee Jj and J k have now 
equal weights, Jj can be scheduled after J k or befare J k in any optima! schedule 
for problem (LÀ). lf Jj is scheduled after J k> then Jj is not ell!!y; if Jj is .sch~uled 
Qefore h, then Jj is not tardy. Henee, we find that C/ (À)~ dj ~ CT (À). If 
À_j 0, then the step was taken as large as possible. _ 

Termination of the aseent direction procedure occurs at some À where all exist
ing primitive directional ~vatives are non-positive. If all primitive directional 
derivatives exist at such a À, we have 

C/(À) ~dj~ CT {À), for j = 1, ... ,n. 

These termination conditions also apply to À*, sinee they are necessary for 
optimality. Befare imptementing the aseent direction algorithm, we make use of 
this fact to decompose the Lagrangian dual problem (D) into two subproblems. 
This decomposition is achieved by partitioning ;!- into four subsets, including the 
sets~ and t9 we already identified. 

Consider some job Jj E ;1--to with dj> p(;f-to). If À_j >{J-a, then Jj wi1l be 
early in any optima) salution to problem (LÀ.). This means that Ij- (À) > 0, and 
hence we must have that 0 ~ Àj* ~{J-a. Thesetof jobs~ that share this pro
perty is determined by the following procedure. 

P ARTITIONING ALGORITHM 1 
Step 0. ~<(,-- 0, and reindex the jobs in ;1--to according to non-increasing due 
dates. Let k <(,-I. 
Step I. If k > n -1 tol or if dk <p(;f-to-'?f), then stop. Else ~<(,-~u {h}. 
Step 2. Set k <(,-k + 1; go to Step 1. 

Suppose some job Jj E ~ exists with dj> T-p(to). If we let Àj ={J-a, then 
CT (À)< dj; henee, decreasing À_j is an aseent direction. Decreasing Àj gives 
(a-{J+Àj)lpj < 0, as aresult of which the execution of Jj interferes with the 
execution of the jobs in to. We now partition the set ~ into subsets ~1 and ~2 
(~ = ~1 U ~2) such that dj ~ T-p (to U ~2) for each Jj E ~1 , and such that 
dj> T -p(to U ~2) for each Jj E ~2 • To achleve this, we use the following parti
tioning procedure; it is similar to the first. 

PARTITIONING ALGORITHM 2 
Step 0. Put ~2 <(,-- 0 , let P <(,-- T-p (to), and reindex the jobs in ~ according to 
non-increasing due dates. Let k <f,--1. 
Step I. If k > I~~, then stop. If dk ~ P, then let ~1 <(,-- {h, ... ,J I<JI }, and stop. 
Otherwise, ~2 <(,--~2 U {Jk}, and set P <(,-p -pk· 
Step 2. Set k<(,-k + 1; go to Step I. 
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Let cm,=~-~-$-'[ 

THEOREM 6.12. For each Jj E 'WI> we have that À/ ={j-a. 

PROOF. Since we have p (~U cm,) ~ dj ~ T-p (& U <W2), the result follows. D 

At this stage, we can decompose the Lagrangian dual problem (D) into two sub
problems. Since (a-fj+À/)Ip1 = 0 for eachJ1 E <W1, the jobs in 'W1 do not inter
fere with the execution of the other jobs. However, ~ and cm, interfere with each 
other, and & and <W2 interfere with each other. On the one hand, we have the dual 
problem restricted to the sets ~ and cm,; on the other hand, we have the dual prob
lem restricted to the sets '52 and &. In each optimal schedule for problem (D), the 
jobs in ~ and cm, are scheduled in the interval [O,p (~U cm,)], and the jobs in 'Wand & 
are scheduled in the interval [T-p (&U §2), T]. We give step-wise descriptions of 
the aseent direction algorithms forthese two subproblems. Bothare based upon 
the primitive directional derivatives and the step sizes we discussed earlier. The 
jobs in 'W1 are scheduled somewhere in the interval [p(~ucm,),T-p(&U§2)]; they 
areleftout of consideration. We introducesome new notation. Let (L~u~) and 
(Lfu~) denote the Lagran~an problem restricted to the set ~U~ and to the set 
& U 'W2 ; let L 'ilu~(À) and L & 'lf;(À) denote their optimal solution values. 

AseENT DIRECTION ALGORITHM FOR THE SET ~U~ 
St~ 0. For each J1 E ~. set ÀJ ..,._~* = fj; for each J1 E t3t, set Àj ..,._ fj. Solve 
(L;~. u'!i), settling ties arbitrarily; compute the job completion times. 
Step 1. For each Jj E t3t, do the following: 
(a) If CT (À)< d1, identify Jk as the first job in the schedule with Ck;;;:. dj. Com
pute the largest value ~ such that 

(a-fj+À1 -~)Ip1 ;;;:. (a-fj+Àk)lpk> and 

À1 -~;;. {j-a. 

(6.11) 

(6.12) 

Decrease ÀJ by ~. reposition J1 according to its new relative weight, and update 
the job completion times. 
(b) If Cf (À)> dj, identify h that is the first job in the schedule with 
Ck-Pk + PJ ~dj. Compute the largest value for ~ such that 

(a-fj+Àj+~)lp1 = (a-fj+Àk)lpk> and 

~ + ~~fj. 
Increase ~ by ~. reposition J1 according to its new relative weight, and update 
the job completion times. 
Step 2. If no multiplier adjustment has taken place, then compute L 'ilu'!l(À) and 
stop. Otherwise, go to Step 1. 

THEOREM 6.13. The procedure described above generates a series of monotonically 
increasing values L <ilu'!l(À). 
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PRooF. The proof proeeeds in the samespirit as the proof of Theorem 2.2. First, 
consider some J1 E l8t with CT (À)< d1: decreasing ÀJ is an aseent direction. For 
brevity, we let p.1 =a-P+À1 for each j (j = 1, ... , l18tU'5!). We reindex the 
jobs in order of non-increasing values p.1 I p1, settling all ties arbitrarily except for . 
J1: we give J1 the largest index possible. Accordingll, we obtain the sequenee 
(J 1, ••• , J l"ltu<;JI ), which is optima! for problem (LÀ u~l), with job completion 
times C 1> ••• , C l"itU~I· We note that C1 = Cj (À). Let a be the step size com
_euted as prescribed in the aseent direction algorithm, and let 
À= (ÀI> ... ,À1 -aJ, ... ,ÀI"itU~I). 

We distinguish the case that condition (6.11) holds with equality from the case 
that condition (6.12) holds with equality. Consider the first case; accordingly let 
h be the job specified in the aseent direction procedure. In more detail, the 
sequenee under consideration is (J 1, ... ,J1 -I ,J1,J1 + 1, ... ,h -I ,Jk> 
h + 1, ... ,J l"itU~I ); an optima! sequence for problem (Lr-u~) is then 
(J 1> ••• ,JJ 1 ,.IJ+ 1> ••• ,Jk,JJ, h + 1, ••• ,J l"itU~I ). The job completion times for 
the latter sequenee can CO_!lveniently be expressed in terms of C 1, ••• , C l"itu~l . 
We now prove that L "ltu'5"(À) > L "ltu'5"(À). We have 

- j l k 
L "ltu~(À) = ~ p.;C; +(p.1 a)(Cj (À)+ ~ p;)+ 

i=l i=j+l 
k l"itU~I I6JtU51 
~ P.;(C;-p1)+ ~ p.;C;+ ~ (p-À;)d;+M1 

i=j+l i=k+l i=l 
k k k 

= L"ltu~(À)-pJ ~ IJ.;+ IJ.j ~ p;-a(Cj(À) + ~ p;-d1) 
i=J+I i==j+l i=j+l 

k-J k-1 k-l 
=L(À)-p1 ~ p.;+p.1 ~ p;-a(Cj(À)+ ~ p;-d1)+ 

i=j+J i=j+l i=j+l 

Note that (IJ.1-a)tp1 IJ.k!Pk; hence, we have (p.1-a)pk- PJP.k = 0. This 
implies that 

_ k-1 r.. ] k-1 
L(À);;.L(À)+p1 ~ I:;(IJ.11p1 -p.;lp;) -a(Cj(À)+ ~ p;-d/). 

i=j+l i=j+l 

Since dJ> Cj(À) + ~f;;;}+IPiLIJ.JIPJ > p.;.lp; for each i (i= j + 1, ... ,k -1), 
and a> 0, we have that L "ltu'5"(À) > L "itU5(À). 

Now assume that the condition (6.12) holds with equality and the condition 
(6.11) does not: a= a- P+ À1. This implies thatJ1 will now be plaeed aftersome 
job Jh, with j ";;;; h < k. For this case, the second sequenee is 
(J 1> • • • ,JJ-l,JJ+l> ... ,Jh,JJ,Jh+l> ... ,Jk, ... ,J l"itU51 ). We perfarm a similar 
analysis as above to obtain 

- h h h 
L6Jtu~(À)=L6Jtu~(À)-p1 ~ v.;+v.1 ~ p;-a(Cj(À)+ ~ p;-d1)= 

i=j+l i=j+l i=j+l 
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h 

= L'll.U'if(À) + Pj ± ~i(JLjlpj- J.l.;lp;)] 
i=j+l 

t::.(cj-(À) + ~ p; dj). 
i=j+l 

At t~s point, similar arguments as before apply to show that . 
L 'll.U'if(À) > L 'll.U'if(À). 

Second, consider the case that Cf (À) >dj for some Jj E Cflt: increasing Àj is an 
aseent direction. Let t::. be the desired step size, computed as described in the 
aseent direction algorithm. The proof to show that 
L ~u'if(À~> •.. , À;+!::., ... , Àl'll.U'ifl) > L ~u'if(ÀI> ... , À_;, ••• , ÀI ~u'ifl) follows the 
same lines as above. 0 

ASCENT DIRECI'ION ALGORITHM FOR THE SET 'E'2 U f9 
St% 0. Set Àj ~ f3 :.._a for each Jj E '5'2, and À; ~À;* = 0 for each Jj E &. Solve 
(LÀ §;), setding ties arbitrarily; compute the job completion times. 
Step 1. For each Jj E '5'2 , do the following: 
(a) If CT (À)< dj, identify h as the first job in the schedule with ck ;;. dj. Com
pute the largest value!::. such that 

(a-{3+Àj-t::.)lpj ;a.(a-{3+Àk)lpk> and 

/::.E;;Àj. 

Decrease Àj by !::., reposition Jj according to its new relative weight, and update 
the job completion times. 
(b) If ct (À)> dj, identify Jk that is the first job in the schedule with 
Ck o;;;;; dj+ Pk - pj. Compute the largest value for t::. such that 

(a-{3+Àj+t::.)lpj (a-{3+Àk)lpb and 

Àj+t::.o;;;;;{3-a. 

Increase Àj by !::., reposition Jj according to its new relative weight, and update 
the job completion times. 
Step 2. If no multiplier adjustment has taken plaee, then compute L ~u'if(À) and 
stop. Otherwise, go to Step 1. 

THEOREM 6.14. The prOE_edure described above generates a series of monotonically 
increasing va/ues L 'll.u'5'(À). 

PRoOF. The proof proceeds along the same lines as the proof of Theorem 6.13. 
0 

For each Jj E ~- '5'1, let Cj and À; denote the completion time and the Lagran
gian multiplie..! upon termination of t!!e appropriate aseent direction ~gorithm. 
We note that À;= f3j for each Jj E ~ Àj {3-a for each Jj E '5'1> and À;= 0 for 
each Jj E f!J. Hence, the overall Lagrangian lower bound is given by 

L(À) = ~ aCj + ~ adj + ~ [<a- f3)Cj + /3dj] + 
~E'5' ~E§; ~E& 
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+ ~ [(a-,8+À)Cj-(p-Àj)dj] 
/ 1E'iitU'iJ, 

6.5. CoMPUTATIONAL RESULTS 

The algorithm was coded in the computer language C; the experiments were con
ducted on a Compaq-386/20 Personal Computer. The algorithm was tested on 
instauces with 8, 10, 12, 15, and 25 jobs. The processing times were generated 
from the uniform distribution [10,100]. The due dates were generated from the 
uniform distribution [P(l-T-R/2), P(l-T + R/2)], where P ~}=lPj and 
where R and T are parameters. For both parameters, we considered the values 
0.2, 0.4, 0.6, 0.8, and I.O. This procedure to generate due dates parallels the pro
cedure described by Potts and Van Wassenhove [1985} for the weighted tardiness 
problem. For each combination of T, P, and n, we generated 5 instances. Each 
instanee was considered with a= 1 and with ,8 running from 2 to 5. 

The general impression was that instauces beoome difficult with smaller values 
of T, with smaller values of R, and with smaller values of ,8. A small value of T 
induces relative large due dates, implying that the machine wilt be idlefor some 
time before processing the first job. A small value of R induces due dates that are 
close to each other; it is then harder to partition the jobs. A large value of ,8 
implies that earliness is severely penalized; most jobs will therefore be tardy. 
Accordingly, the instauces with T=0.2, R =0.2, and ,8 = 5 are the hardest; the 
instauces with T 1.0, R 1.0, and ,8 = 2 are the easiest. 

Table 6.2 exhibits a summary of our computational results; we only report the 
results for the instauces with Tand R equal. It shows that instauces withup to 10 
jobs are easy. For n = 12, the instauces with T =R =0.2 require already consid
erable effort. For n 20, only the choice T = R = 1.0 induces instauces that are 
solvable within reasonable time limits. It is likely, however, that the performance 
of the algorithm is considerably enhanced by fine-tuning the algorithm to 
specific instances. Currently, alllower bounds are computed in each node of the 
tree; Lagrangian relaxation, for instance, is useless for instauces with 
T=R =0.2. 

6.6. CONCLUSIONS 

Although machine idle time is a practical instrument to reduce inventory cost, a 
considerable Jack of theoretical analysis of related machine scheduling problems 
exists. Within this context, we have addressed the I I I a~Cj + ,B~Ej problem for 
the case that a< ,8. It is a very difficult problem from a practical point of view. 
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n 

8 
8 
8 
8 
8 

10 
IO 
10 
10 
10 

12 
12 
12 
12 
12 

15 
15 
15 
15 
15 

20 
20 
20 
20 
20 

{J=2 {J=3 {J=4 {J=5 
T,R nodes sec nodes sec nodes sec nodes sec 
0.2 417 2 406 2 301 2 58 I 
0.4 131 I 198 I 185 I 3I I 
0.6 34 I 48 I 29 I 5 I 
0.8 23 I 37 I 14 I 8 I 
1.0 20 I 36 I 33 I I5 I 

0.2 2438 8 2525 9 2088 7 484 2 
0.4 266 2 689 3 570 3 202 2 
0.6 123 I 110 I 88 I 52 I 
0.8 126 I 122 I 107 1 64 1 
1.0 109 I 140 1 78 I 40 1 

0.2 30182 103 26676 106 18358 78 10487 48 
0.4 15176 66 20756 100 15613 75 10391 50 
0.6 212 2 262 2 53 1 10 I 
0.8 380 2 576 4 300 2 170 1 
1.0 432 2 527 3 226 2 96 I 

0.2 - - - - - - (2) -
0.4 (3) - (2) - (2) - (30 -
0.6 14I4 10 2407 17 927 7 339 2 
0.8 1665 13 1865 15 1647 14 540 5 
1.0 493 6 402 17 2063 17 1082 9 

0.2 - - - - - - - -
0.4 - - - - - - - -
0.6 7991 80 13169 136 5529 62 2048 24 
0.8 8183 85 7244 84 4016 55 13I8 21 
1.0 5127 49 5243 41 2191 32 651 

TABLE 6.2. Computational results. For each combination of n 
(n =8,10,12,15,20), of Tand R (T=R =0.2,0.4,0.6,0.8,1.0), and of 
P ({J = 2,3,4,5), we present the average number of nodes and the 
average number of seconds; the average was computed over 5 in
stances. All averages were rounded up to the nearest integer. The 
sign '-' indicates that not allinstances of this particular combination 
couid be solved without exarnining more than 100,000 nodes. 

12 
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Samenvatting 

Produktieplanning en computer scheduling vormen een door de praktijk gemoti
veerd onderzoeksgebied binnen de mathematische besliskunde. Machinevolgorde
problemen nemen daarbij een belangrijke plaats in. Dergelijke problemen betref
fen het plannen van orders op machines met beperkte beschikbaarheid en capaci
teit. 

Een order bestaat uit een geordende lijst van operaties, die elk een van te voren 
vastgestelde tijd op een bepaalde machine vergen. Een machine kan niet meer 
dan één operatie tegelijkertijd uitvoeren en is continu beschikbaar vanaf tijdstip 
0. Verder kan een order niet meer dan één operatie tegelijkertijd ondergaan. Een 
plan legt voor elke order vast wanneer en door welke machines de bijbehorende 
operaties uitgevoerd worden. Het streven is de produktiekosten, over het 
algemeen gespecificeerd als een functie van de completeringstijdstippen van de 
orders, te minimaliseren. 

De verscheidenheid aan machineconfiguraties, eigenschappen van orders, en 
doelstellingsfuncties leidt tot een enorm aantal verschillende machinevolgorde
problemen. Niettemin komt ieder probleem uiteindelijk neer op het bepalen van 
óf een volgorde van de orders, óf een toewijzing van de orders aan machines, óf 
een partitie van de orders. Dit betekent dat voor ieder probleem in wezen een 
eindig, maar mogelijk enorm groot, aantal relevante oplossingen bestaat. Pro
blemen met deze eigenschap heten combinatorische optimaliseringsproblemen. 

Sommige problemen zijn gemakkelijk. Een probleem is gemakkelijk indien er 
een methode bestaat die een optimale oplossing vindt in een aantal basis
bewerkingen (optellen, aftrekken, vermenigvuldigen, enz.) dat van boven 
begrensd wordt door een polynoom in de grootte van het probleem. Het pro
bleem is dan oplosbaar in polynomiale tijd. De grootte van een machinevolgorde
probleem kan worden uitgedrukt in bijvoorbeeld het aantal orders en het aantal 
machines. 
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Veel machinevolgordeproblemen blijken echter q]Lqj!.[astig te zijn. Als een pro
bleem q]tqjl.lastig is, dan is het zeer onwaarschijnlijk dat het probleem opgelost 
kan worden in polynomiale tijd. De eindigheid van de oplossingsverzameling 
suggereert dat expliciete of volledige aftelling van de elementen een effectieve 
oplossingsmethode is. Dit is bedrieglijk. Het aantal relevante oplossingen neemt 
over het algemeen exponentiëel toe met het aantal machines of met het aantal 
orders. Daarom is deze methode slechts effectief voor problemen van bescheiden 
omvang. Door middel van impliciete aftelling vàn de oplossingsverzameling kun
nen problemen van ruimere omvang opgelost worden. Branch-and-bound en 
dynamische programmering zijn twee methoden die zich hierop richten. Beide 
methoden vergen in het slechtste geval niettemin meer dan polynomiale tijd. 
Branch-and-bound, bijvoorbeeld, komt in het slechtste geval neer op expliciete 
aftelling. 

Voor q]tqjl.lastige problemen staat men in wezen voor de keuze: óf men ontwik
kelt een optimaliseringsalgoritme, die een exponentiële hoeveelheid tijd kan ver
gen, óf men ontwikkelt een benaderingsalgoritme, die minder tijd vergt, maar 
geen optimaliteit van de oplossing garandeert. 

Lagrangiaanse relaxatie is een techniek die veel heeft bijgedragen aan de 
ontwikkeling van efficiëntere optimaliseringsalgoritmen voor q}tqjl-lastige com
binatorische problemen. Het idee achter Lagrangiaanse relaxatie is het zien van 
een q]tqJI.lastig probleem als een gemakkelijk probleem, gecompliceerd door een 
aantal 'vervelende' beperkingen. Elk van deze vervelende beperkingen wordt 
gewogen met een niet-negatieve factor, de zogenaamde Lagrangiaanse mul
tiplicator, en wordt vervolgens opgenomen in de doelstellingsfunctie. V oor gege
ven multiplicatoren verkrijgt men aldus het Lagrangiaanse probleem. Dit pro
bleem is eenvoudiger op te lossen; alle vervelende beperkingen zijn immers ver
wijderd. Bovendien kan men aantonen dat de optimale oplossingswaarde van het 
Lagrangiaanse probleem een ondergrens voor de optimale oplossingswaarde van 
het oorspronkelijke probleem is. Deze ondergrenzen worden gebruikt in branch
and-bound algoritmen. Het Lagrangiaanse duale probleem is het vinden van de 
Lagrangiaanse multiplicatoren die tot de beste ondergrens leiden. 

Om wat voor reden dan ook is Lagrangiaanse relaxatie relatief weinig toege
past op machinevolgordeproblemen, geheel ten onrechte. Dit proefschrift laat 
zien dat voor een scala van machinevolgordeproblemen met behulp van 
Lagrangiaanse relaxatie zowel betere optimaliserings- als betere benaderings
algoritmen ontwikkeld kunnen worden. 

Hoofdstuk I geeft een korte inleiding tot machinevolgordeproblemen, com
plexiteitstheorie en combinatorische optimalisering; het geeft een uitgebreide 
inleiding tot Lagrangiaanse relaxatie. 

De hoofdstukken 2 tot en met 6 behandelen ieder een specifiek type machine
volgordeprobleem. In Hoofdstuk 2 komen één-machineproblemen aan de orde. 
Lagrangiaanse relaxatie leidt hier tot een duale decompositie van dergelijke pro
blemen. Deze decompositie biedt aantrekkelijke mogelijkheden voor de ontwik
keling vanoptimaliserings-en benaderingsalgoritmen. Rekenexperimenten voor 
een specifiek één-machineprobleem laten zien dat een benaderingsalgoritme 
gebaseerd op deze duale decompositie betere resultaten geeft dan een bekend 
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benaderingsalgoritme. 
In Hoofdstuk 3 komen flow-shop problemen aan de orde. Lagrangiaanse 

relaxatie decomponeert het probleem in eerste instantie in verschillende één
machine problemen. Indien men echter een voorwaarde toevoegt die overbodig is 
voor het oorspronkelijke probleem, dan verkrijgt men een lineair ordeningspro
bleem. Dit probleem is in algemene zin '!)L0'-lastig; voor specifieke waarden van 
de Lagrangiaanse multiplicatoren kan men het echter in polynomiale tijd oplos
sen. Het blijkt dat de beste ondergrens die op deze manier verkregen wordt 
minstens zo goed is als reeds bekende ondergrenzen. 

Hoofdstuk 4 behandelt een parallel-machineprobleem. Voor dit probleem 
wordt op basis van Lagrangiaanse relaxatie zowel een benaderings- als een 
optimaliseringsalgoritme ontwikkeld. De benaderingsalgoritme is een locale 
zoekmethode waarbij de zoekrichting voorgeschreven wordt door de 
Lagrangiaanse multiplicatoren. In doorsnee geeft deze methode betere resultaten 
dan bekende algoritmen voor dit probleem. De optimaliseringsalgoritme kan 
problemen van behoorlijke omvang in redelijke tijd aan. 

In Hoofdstuk 5 komt het common due date probleem aan de orde. In dit één
machine probleem hebben alle orders een gemeenschappelijke aflevertijd en wor
den niet alleen te late maar ook te vroege leveringen bestraft. Een dergelijke visie 
past in het just-in-time principe. Problemen voortvloeiend uit dit principe, en dit 
probleem in het bijzonder, staan in het middelpunt van de belangstelling. Hoe
wel het common due date probleem in theoretische zin '!)L0'-lastig is, blijkt het in 
praktische zin gemakkelijk te zijn. Met behulp van Lagrangiaanse relaxatie wordt 
zowel een ondergrens als een bovengrens berekend die bijna altijd aan elkaar 
gelijk blijken te zijn. 

Hoofdstuk 6 behandelt, evenals Hoofdstuk 5, een just-in-time probleem met 
dien verstande dat nu iedere order zijn eigen aflevertijd kent. Hierdoor krijgt 
men te maken met een specifiek aspect van just-in-time problemen: het onge
bruikt laten van de machine tussen twee orders in kan voordelig zijn. 
Lagrangiaanse relaxatie is hier weliswaar nuttig, maar niet zo succesvol als bij 
andere problemen. Dit just-in-time probleem blijkt in rekenkundige zin zeer 
lastig. 
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Beschouw het volgende probleem. Een verzameling van n orders ~ = 
{J 1, ••• Jn} dient verwerkt te worden door een enkele machine. Deze machine is 
beschikbaar vanaf tijdstip 0 en kan niet meer dan één order tegelijkertijd ver
werken. Het verwerken van 11 vergt een tijd p1. De orders hebben een 
gemeenschappelijke aflevertijd d waarvoor geldt dat d < "2.J = 1 p1. Zonder verlies 
van algemeenheid mag men aannemen datden de p/s geheeltallig zijn. Een plan 
specificeert voor iedere order 11 een completeringstijd c1 zodanig dat aan de 
beschikbaarheid en de capaciteit van de machine wordt voldaan. Bepaal nu een 
plan dat de kosten "2. J =I I cj - d I minimaliseert. Hall, Kubiak en Sethi [ 1991] 
geven een pseudo-polynomiale algoritme die dit probleem oplost in O(n"2.J= 1p1) 
tijd en ruimte. Men kan het probleem zelfs oplossen in O(nd) tijd en ruimte. 

N.G. HALL, W. KUBIAK, S.P. SETHI (1991). Deviation of completion times about 
a common due date. Te verschijnen in Operations Research. 

11 

Hoewel het common due date probleem (zie Stelling I van dit proefschrift) in 
theoretische zin 'JL<jl-lastig is, is het in praktische zin gemakkelijk. 

J.A. HOOGEVEEN, S.L. VAN DE VELDE (1991). Scheduling around a small com
mon due date. Te verschijnen in European Journalof Operational Research. 

S.L. VAN DE VELDE (1991). Dit proefschrift, hoofdstuk 5. 

III 

Beschouw het volgende probleem. Een verzameling van n orders ~= { J 1, ••• , J n} 
moet door een enkele machine worden verwerkt. Deze machine begint met de 
eerste order op tijdstip 0 en kan slechts één order tegelijkertijd verwerken. De 
orders hebben een gemeenschappelijke kritieke tijd d. De verwerkingstijd van 11 
is een functie van het tijdstip t waarop aan 11 begonnen wordt: 
pif) =ai+ max{O,wi(t -d)}, waarbij ai de gegeven minimale verwerkingstijd 
en wi een gegeven positieve scalair is. Zonder verlies van algemeenheid mag men 
aannemen dat d, de a/sen de w/s geheeltallig zijn. Bepaal nu een volgorde van 
orders zodanig dat de machine zo spoedig mogelijk klaar is. Kunnathur en 
Gupta [ 1990] presenteren een branch-and-bound algoritme voor de oplossing van 
dit probleem. Het probleem kan ook opgelost worden door een pseudo
polynorniale algoritme die 0 (nd"2.J = 1 Pi) tijd en 0 (nd) ruimte vergt. 

A.S. KUNNATHUR, S.K. ÜUPTA (1990). Minirnizing the makespan with late start 
penalties added to processing times in a single facility scheduling problem. 
European Journalof Operational Research 47, 56-64. 
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Townsend [1978] en Gupta en Sen [1983] gebruiken de zogeheten maximum 
potential impravement method om een ondergrens te berekenen voor de minimale 
waarde van een kwadratische functie van de completeringstijden van orders op 
één machine. De ondergrens wordt verkregen door een specifieke bovengrens 
voor de minimale waarde te verminderen met de af te schatten maximum poten
ttal improvement. Deze afschatting is onnodig zwak. 

S.K. GUPTA, T. SEN (1983). Minimizing a quadratic function of job lateness on a 
single machine. Engineering Costs and Production Economics 7, 187-194. 

W. TOWNSEND ( 1978). The single machine problem with quadratic penalty lune
tion of completion times: a branch-and-bound solution. Management Science 
24, 530-534. 

V 

De maximum potentlal impravement method (zie Stelling IV van dit proefschrift) 
is ook toegepast op problemen met samengestelde functies van de com
pleteringstijden; zie o.a. Sen, Raiszadeh en Dileepan [ 1988]. Objective splitting 
domineert deze methode en is bovendien eenvoudiger. 

J.A. HOOGEVEEN, S.L. VAN DE VELDE (1990). A new lower bound approach jor 
single-machine mul/icriteria scheduling, Report BS-R9026, CWI, Amsterdam. 

T. SEN, F.M.E. RAISZADEH, P. DILEEPAN {1988). A branch-and-bound approach 
to the bicritenon scheduling problem involving total flowtime and range of 
lateness. Management Science 34, 254-260. 

VI 

De tweede ondergrens gepresenteerd door Bozoki en Richard [1970] is fout. 

G. BozoKI, J.-P. RICHARD (1970). A branch-and-bound algorithm for the 
continuous-process job-shop scheduling problem. A/IE Transactions 2, 246-
252. 



VII 

Dirickx, Baas en Dorhout [ 1987] stellen dat Lagrangiaanse relaxatie zinloos is in 
geval het Lagrangiaanse probleem de geheeltalligheidseigenschap bezit. Deze 
bewering gaat voorbij aan de afweging tussen snelheid en kwaliteit. 

Y.M.I. DIRICKX, S.M. BAAS, B. OORHOUT (1987). Operationele research, Acade
mie Service, Schoonhoven. 

VIII 

Het verdient aanbeveling de geplande hogesnelheidstrajecten parallel aan snel
wegen aan te leggen; een snellere trein demoraliseert de automobilist. 

IX 

De virtuele prijs die een beursstudent voor de OV-jaarkaart betaalt rechtvaardigt 
het herinvoeren van de derde klasse in het openbaar vervoer. 

x 

In de Algemene Richtlijnen bij Promoties van de Technische Universiteit Eind
hoven staat het volgende. 'Als laatste stelling wordt het de promovendus gegund 
om zijn wijsheid te laten schijnen op onderwerpen van zeer uiteenlopende aard. 
Hierbij is het gewenst dat de inhoud en/ of de vorm een zekere verrassende, soms 
paradoxale, zelfs enigszins provocerende inhoud heeft. Zo'n stelling wordt soms 
aangeduid als schertsstelling.' Dit is een schertsrichtlijn. 




