

Machine scheduling and Lagrangian relaxation

Citation for published version (APA):
Velde, van de, S. L. (1991). Machine scheduling and Lagrangian relaxation. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Centrum voor Wiskunde en Informatica.
https://doi.org/10.6100/IR350591

DOI:
10.6100/IR350591

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR350591
https://doi.org/10.6100/IR350591
https://research.tue.nl/en/publications/0541bee1-7793-43b8-9fbe-9adbb224f6ee

MAC HINE SCHEDULING
AND

LAGRANGIAN RELAXATION

0
0

Steef van de Velde

0

MACHINE SCHEDULING
AND

LAGRANGIAN RELAXATION

MACHINE SCHEDULING
AND

LAGRANGIAN RELAXATION

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus, prof. dr. J.H. van Lint, voor
een commissie aangewezen door het College van

Dekanen in het openbaar te verdedigen op
vrijdag 5 april 1991 te 16.00 uur

door

STEVEN LEENDERT VAN DE VELDE

geboren te Sint Philipstand

1991
CWI, Amsterdam

Dit proefschrift is goedgekeurd door
de promotor

Prof. dr. J. K. Lenstra

Voor mijn vader

Acknowledgements

Many people contributed in one way or another to this thesis. Gerard Kinder
vater, Ben Lageweg, Martin Savelsbergh, and Peter de Waal were always
prepared to help me with text processing and computer programming. Tobias
Baanders designed the cover. Emile Aarts, Mohamed Dessouky, Antoon Kolen,
dr. Lebedev, Anne Marie van Luijt, Henk Oosterhout, Udatta Palekar, Chris
Potts, Maurice Queyranne, and Auke Woerlee gave valuable comments on the
thesis or on the papers constituting it. Bert Gerards helped me with two particu
lar proofs. Han Hoogeveen conducted joint research on the subjects of the last
two chapters; he gave candid comments on the others. Laurence Wolsey
reviewed an earlier version scrupulously; his comments on Lagrangian relaxation
were particularly helpful.

lt has been a great privilege and pleasure to have Jan Karel Lenstra as a super
visor. I have benefited and leamed a lot from his expertise.

I am grateful to them all.

Steef van de Velde

T ABLE OF CONTENTS

1. Introduetion
l.I. Machine 8Cheduling
1.2. Combinatorial optimization
1.3. Lagrangian relaxation and duality
1.4. Machine scheduling and Lagrangian re1axation

2. Single-machine schedu1ing
2.1. The Lagrangian dua1 of Ijprec I ~w1c1
2.2. Approximation
2.3. Prima1 decomposition
2.4. The total weighted tardiness prob1em

3. Flow-shop scheduling
3.1. Introduetion
3.2. Formu1ation and re1axation
3.3. Dominanee criteria
3.4. The a1gorithm
3.5. Extensions

4. Parallel-machine scheduling
4.1. Introduetion
4.2. Minimizing makespan and its dua1 prob1em
4.3. Duality-based beuristic search
4.4. The branch-and-bound a1gorithm
4.5. Computational experiments
4.6. Conclusions

5. Common due date scheduling
5.1. Introduetion
5.2. Emmons" matching algorithm for the unrestricted problem
5.3. A new lower bound for the restricted variant
5.4. A new upper bound for the restricted variant
5.5. Branch-and-bound
5.6. Computational results

6. Just-in-time scheduling
6.1. Introduetion
6.2. The insertion of idle time for a given sequence
6.3. The branch-and-bound algorithm
6.4. Lower bounds
6.5. Computational results
6.6. Conclusions

Reierences

Samenvatting

,.

I
I
8

17
35

39
40
47
49
51

55
55
56
61
62
64

67
67
69
78
80
82
88

89
89
91
91
95
96
97

101
102
I04
107
111
I26
126

129

137

1

Introduetion

1.1. MACHINE SCHEDULING

Motivated and stimulated by the practical relevanee of production planning and
computer scheduling problems, scheduling has become an important area of
operations research. In the broadest sense, 'scheduling is the allocation of
resources over time toperfarm a collection of tasks' [Baker, 1974], and the theory
of scheduling is concerned with 'the optimal allocation of scarce resources to
activities over time' [Lawler, Lenstra, Rinnooy Kan, and Shmoys, 1989] and with
'the optimal utilization of the usually limited resources in accomplishing the
variegated tasks or objectives' [Bellman, Esogbue, and Nabeshima, 1982].

We confine ourselves to scheduling problems in which each task or activity
requires at most one resource at a time. In this case, scheduling problems are
usually seen as problems that concern the scheduling of jobs on machines of lim
ited capacity and availability. Such problems are traditionally referred to as
machine scheduling problems. A job consists of an ordered list of operations, each
of which requires processing during a certain period of time on some machine.
Each machine can process at most one job at a time and is continuously available
from time 0 onwards. A job can he processed by at most one machine at a time.
A schedule specifies for each job when and by which machine it is executed. The
objective is to find a schedule that optimizes some criterion function. Usually,
this is a function of the job completion times.

The variety of machine environments, job characteristics, and objective func
tions give rise to a myriad of machine scheduling problems. In this thesis, we
consider only deterministic machine scheduling problems: we assume perfect
knowied ge of the data beforehand.

In this introductory chapter, we give a flavor of what machine scheduling
problems and their associated salution techniques are about. We familiarize the
reader with some scheduling rnadeis and concepts in Section 1.1, in which we

2 Chapter 1. Introduetion

consider problems involving the following machine environments: the single
machine shop, the flow shop, and the parallel-machine shop. These machine
environments are the subject of further study in the subsequent chapters. In Sec
tion 1.2, we point out how machine scheduling problems fit into the beoader
framework of combinatorial optimization and give an informal introduetion to
the theory of computational complexity. With the help of this theory, it is possi
bie to classify problems as easy or probably hard to solve.

Introductions to these fields necessarily have to be selective and concise: only
those concepts that are relevant for the subsequent chapters are discussed; others
are merely touched upon. For more elaborate introductions to the respective
areas, we refer to Conway, Maxwell, and Milier [1967], Baker [1974], French
[1982], and Law1er, Lenstra, Rinnooy Kan, and Shmoys [1989] for machine
scheduling, to Lawler, Lenstra, Rinnooy Kan, and Shmoys [1985] fora guided
tour through combinatorial optimization, and to Garey and Johnson [1979] for
computational complexity.

The subject of this thesis is the application of Lagrangian relaxation and dual
ity to machine scheduling problems. Although the technique of Lagrangian
relaxation is known to be helpful in solving many types of hard combinatorial
optimization problems, its use for machine scheduling problems is limited thus
far. However, the message of this thesis is that Lagrangian relaxation has much
to offer to machine scheduling theory. In Section 1.3, we introduce the basic con
cepts and issues involved in the application of Lagrangian relaxation, thereby
focusing on machine schedu1ing problems. In Section 1.4, we give an overview of
the literature on Lagrangian relaxation applied to machine scheduling problems,
describe what our objectives are, and give a preview of the scheduling problems
that are dealt with in the subsequent chapters.

1.1.1. Single-machine scheduling
The usual setting for the single-machine job shop is as follows. A set of n jobs
~ { J 1, ••• , J n} has to be scheduled on a single machine. Each job Jj
(j = 1, ... ,n) consistsof one operation requiring processingduringa period of
1ength p1. Each Jj is only available for processingduringa prespecified period:_it
becomes available at its release date r1 and must be completed by its deadline dj.
In addition, each job may have a positive weight wj, which expresses its impor
tance with respect to the other jobs, and a due date dj, by which it should be com
pleted. The weights and the due dates are typically used to define the objective
function. The machine can handle no more than one job at a time and is continu
ously available from time 0 onwards.

Consider the data of the 5-job example in Table l.I. All release dates are
assumed to be 0, and all deadlines are set to infinity. We have represented an
arbitrary schedule in the form of a so-called Gantt chart in Figure l.I. The
schedule is feasible in termsof machine capacity and availability: it specifies for
each job Jj a completion time Cj such that the jobs do not overlap in their execu
tion, and such that Cj-p1 ;;;.o 0 for j I, ... , n. Each job once started is pro
cessed without interruption. We say that a job is preempted if its execution is
interrupted and resumed at a later point in time.

1. 1. Machine scheduling 3

Jl '2 '3 J4 ls

PJ 6 3 4 6 8
wJ 5 2 2 2 I

T ABLE l.I. Processing times and weights.

FIGURE l.I. Gantt chart.

We consider an elementary single-machine problem. Suppose the objective is
to find a schedule that minimizes the sum of the weighted completion times, that
is, ~J 1 w1c1. This objective function is often interpreted as a measure for the
work-in-process inventory as well as for the speed by which the producer
responds to the consumers' demands. The data given in Table 1.1 specify an
instanee of the problem type of minimizing ~J = 1 w1c1 on a single machine. In
general, a problem instanee is formed by specific choices for the parameters of
the problem type. We make now the following observations.

ÜBSERVATION l.I. In any optimal schedule, the jobs are processed consecutively
in the in terval [0, ~ J 1 PJ].

After all, the objective function is non-decreasing in the job completion times.
If there were idle time before the completion of the last job, then the objective
value could be reduced by shiftingjobs to the left, thereby removing the machine
idle time.

ÜBSERVATION 1.2. There is no optimal schedule in which some job is preempted.
Suppose there were an optimal schedule with some job interrupted and its exe

cution resumed at a later point in time. By processing the different portions of
the interrupted job immediately before the execution of its last portion, we do
not change its completion time, but reduce the completion times of the jobs that
were previously finished between the execution of the first and last portion of the
preempted job.

These two observations reduce the single-machine scheduling problem of minim
izing ~J = 1 w1c1 to a sequencing problem: we should determine the sequence in
which the jobs go through the machine. There is a fundamental algorithm by
Smith [1956] that solves this problem in an easy way.

THEOREM l.I. The single-machine problem of minimizing ~}=t w1c1 is solved by
processing the jobs in order of non-increasing values w1 I p1.

PROOF. First, we prove that such an order is necessary for optimality. The proof,

4 Chapter 1. Introduetion

typical of a number of proofs in machine scheduling, proceeds by contradiction
and by use of an interchange argument. Suppose there is an optima} sequence, in
which h is immediately scheduled before J1 although wk I Pk < w11 p1• These jobs
are hence not processed in compliance with Smith's rule. If Ck is the completion
time of Jh thenJ1 is completedat time C1 Ck + p1. Hence, the cost contributed
by the two jobs is

wi(Ck +PI)+ wkck. (1.1)

If we swap J1 and h, the costof their execution amounts to

w,(Ck + p,- Pk) + wk(Ck + p,).

Subtracting (1.2) from (1.1) yields

W1Pk -wkPI = (wllpl-wkiPk)(PkPI) > 0,

which contradiets the optimality of the first schedule.

(1.2)

Second, we need the observation that each sequenee has the same objective
value if all jobs have equal ratios w1 I p1. This is easi1y established by an inter
change argument.

The combination of these two arguments leads to the condusion that the
necessary condition, fully prescrihing the scheduling order, is also sufficient for
optimality. D

Notice that the schedule depicted in Figure 1.1 is optimal for the 5-job problem.
In Chapter 2, we consider the same setting except that there are preeedenee rela
tions between the jobs; this means that each job has a number of jobs, each of
which has to preeede this job in any feasible sequence. It will turn out that this
problem is much more difficult to solveto optimality.

1.1.2. Flow-shop scheduling
An m-machine flow shop is described as follows. There are m machines, each of
which can handle at most one job at a time and is continuously available from
time 0 onwards. There is a set of n jobs ~ = {J I> ••• ,J n}, each of which consists
of a chain of m operations. The ith operation of job 11 has to be executed on
machine M; duringa positive processing time Pu (i 1, ... ,m, j =I, ... ,n).
Note that this means that the jobs pass through the machines in the same order.
Each job can be executed by at most one machine at a time: operations of the
samejob may not overlap in their execution.

Consider the 2-machine 5-job example from Baker [19741 in Table 1.2; we
have depicted a feasible schedule in Figure 1.2. Observe that both machines pro
eess the jobs in the same order.

We address the problem of minimizing the maximum job completion time in
the 2-machine flow shop. The maximum completion time C max = maXJ..,;;,j..,;;, n Cj
is referred to as the makespan. Note that we have Cmax = 24 for the schedule in
Figure 1.2. In parallel to the single-machine problem, we make some easy obser
vations. First, there is an optimal schedule in which all the operations are per
formed without any unnecessary delay and without interruption. Second, there is

1. 1. Machine schedu/ing 5

Jl J2 J3 J4 Js

PlJ 1 3 6 7 5

P21 2 6 6 5 2

T ABLE I.2. Processing times.

0 24

FIGURE 1.2. Gantt chart.

an optima} schedule in which both machines process the jobs in the same order.
A schedule with this feature is called a permutation schedule. The latter observa
tion, easily validated by an interchange argument, is particularly useful: the
scheduling problem reduces again to a sequencing problem. Let a be some
sequence with the jobs reindexed in order of appearance. Using the earlier obser
vations, we note that the minimum makespan fora can be expressedas

k n

Cmax maxl.;;;k.;;;n(~PlJ + ~P2J).
j I j=k

Observe that the makespan of the schedule in Figure 1.2 can be expressed in this
way. We stipulate the following elementary rule, which is due to Johnson [1954].

THEOREM 1.2. The problem of minimizing the makespan in the 2 -machine flow shop
is solved by scheduling first the jobs with p 11 "";;; p 21 in order of non-decreasing p IJ•
and then by scheduling the remainingjobs in order of non-increasingp2f D

Note that the schedule presented in Figure 1.2 is an optimal schedule for the
instanee in Table 1.2. For the case of m:;;.. 3 machines, there is no easy rule to
solve the makespan problem. In Chapter 3, we analyze the 2-machine flow shop
with the objective to minimize the sum of the job completion times, that is,
~J = 1 c1. It wilt appear that we have to go through a lot more trouble to solve this
problem. ·

1.1.3. Parallel-machine scheduling
Suppose there are m parallel machines available for processing a set of n
independent jobs}= {J 1, •.• .Jn }. Each of these machinescan handle at most
one job at a time. The processing of J1 (i I, ... ,n) on machine M,
(i= I, ... ,m) requires a positive uninterrupted period of length p11 • Each job
has to be scheduled on exactly one of the m machines. We may assume n :;;.. m.

Consider the following 8-job 3-machine example for which the processing
times are given in Table I.3. A feasible schedule is given in Figure 1.3; the length

6 Chapter 1. Introduetion

of the schedule, or the makespan, is equal to 33. This schedule is obtained by
simply scheduling each job on the machine that handles it fastest.

Jl J2 J3 J4 ls J6 J1 Js
MI 30 6 3 10 12 11 8 6
M2 20 10 00 15 6 6 14 7
M3 10 11 9 14 14 00 10 9

TABLE 1.3. Processing time matrix.

FIGURE 1.3. Gantt chart for the parallel-machine shop.

The objective is to find a schedule of minimum length. Again, we make some
easy observations. Apparently, there is an optimal schedule with each machine
processing the jobs assigned to it without delay. Furthermore, the order in which
each machine processes its jobs is immaterial. This scheduling problem reduces
to an assignment problem: for a given assignment of jobs to machines, it is easy
to construct a corresponding schedule with minimum makespan.

The schedule in Figure 1.3 is not optima!. If we decide to assign J 4 to M 3
rather than to M ~> then we get a schedule with makespan 24, which, as it hap
pens, is not optimal either.

Obvious and intuitively appealing assignment rules cannot be expected to pro
duce optimal solutions for allinstances of the problem. We will give evidence for
this in Section 1.2. If we insist on finding the optimal solution, then we could fol
low the approach to enumerate and examine all feasible solutions. Since each of
the n jobs can be assigned to m machines, there are mn such solutions to con
sider. Since this number grows exponentially with the number of jobs, this
approach is viabie only for instances of very limited size. An alternative
approach is to solve the problem to optimality by means of a dynamic program
ming algorithm. For such an algorithm, we need some principle of optimality. If
we compare all partial schedules for the jobs J 1, ••• , Jj that occupy the machines
exactly up to times t 1, ••• , tm, then apparently we need only to consider the one
with least cost, as the other schedules, having higher cost, can never lead to an
optima! solution. This notion of dominanee is valid, since the order in which the
jobs are processed on the machines is irrelevant for the length of the schedule.

This optimality principle can be recursively applied in the following way. Let
Fj(t" ... , tm) denote the minimum oost for scheduling the jobs J b ... ,Jj
without idle time subject to the constraint that the last job on M; is completed at
time t;, for i = 1, ... , m. The initialization of the recursion is

1. 1. Machine scheduling

{

0, if t; 0 for i

oo, otherwise ,

and the recursion for j = l, ... , n is given by

l, ... ,m,

Fj(t J, ••. , tm) mini.;;: i.;;: mmaxg,Fj 1 (tb ... , l;-Ptj• ... , tm) },

for t1 = l, ... , T1,

where T; = };j = 1 Pij· The optima} solution value is then equal to

mino.;;: t,.;;: T,, ... ,o.;;: t.,.;;: T., Fn(t 1> • • • , tm),

7

and the optimal schedule can be found by backtracing. The recursion shows that
the time required to execute this algorithm grows linearly with the number of
jobs and the processing times, and exponentially with the number of machines.
Since we may assume that n ~ m, the dynamic programming algorithm seems to
be preferabie to complete enumeration, as the time for the latter depends
exponentially on n. However, the linear dependency on the processing times may
be prohibitive, even in case of few machines. In addition, the space required to
effectuate the optimality principle also grows linearly with the processing times
and grows exponentially with the number of machines. These time and space
requirements seriously limit the applicability of the dynamic programming algo
rithm. In that sense, the parallel-machine problem seems to he much more diffi
cult to solve than the first two problems we considered.

1.1.4. Problem classification
Because of the huge variety of machine scheduling problems, we need a classifi
cation scheme to make them rapidly accessible and easy to refer to. We adopt the
notation and terminology of the dassification scheme for deterministic machine
scheduling probieros as proposed by Graham, Lawler, Lenstra, and Rinnooy
Kan [1979]. Classification takes place by use of a three-field notation a I /31 y.

The first field a specifies the machine environment. For instance, I refers to
the special case of a single machine and F denotes the flow-shop situation. In
case of parallel machines, we have a E { P, Q, R }, since three cases can be dis
tinguished. We have a= P if Pu = pj for each J1 and M1; in this case, the
machines are said to be identical. If Ptj I s1, where s; denotes the speed of
machine M 1, then the machines are uniform, which is denoted by Q. In the gen
eral case, the machines are unrelated, which is specified by R. In general, the
number of machines is specified as part ofthe problem instance. However, if the
symbols F, P, Q, or R, are immediately foliowed by an integer, then the number
of machines is specified as part of the problem type and is equal to this integer.
For example, F2 refers to the 2-machine flow shop.

The second field contains the job characteristics. If it is empty, then the default
assumptions apply. This means that preeroption oJ;_jobs is not allowed, that no
preeedenee relations are specified, that rj = 0 and d1 = oo for all jobs, and that
the processing times are arbitrary non-negative inte_gers. The most common acro
nyms that occur in this field are pmtn, pree, rj, and d1, indicating that preeroption

8 Chapter 1. Introduetion

is allowed, that there are preeedenee relations between the jobs, that the jobs
have release times, and that the jobs have deadlines, respectively.

The third field specifies the objective function. For instance, y C max denotes
the makespan criterion, and y = '2:.} 1 w1Ci means that the objective is to minim
ize the sum of the weighted job completion times. Other important objective
functions are the sum of weighted tardiness '2:.} = 1 w1 ~, where ~ denotes the tar
diness of J1, defined as Tj::::: max { Cj- dj, 0}, and the maximum lateness Lmax•

defined as Lmax = max1 ,;;;j ,;;;n (Cj- dj). Lj = Cj dj is called the lateness ofJ1.
The three scheduling problems introduced earlier are denoted by 11 I '2.w1c1,

F2ll Cmax• and R 11 Cmax• respectively.

l.2. COMBINATORIAL OPTIMIZATION

Machine scheduling problems belong to the area of combinatorial optimization.
Combinatorial optimization involves problems in which we have to choose the
best from a finite number of relevant solutions. For the first two scheduling
problems, for instance, we can restriet ourselves to the n ! permutations of the n
jobs: for each permulation (or sequence) there is only one relevant schedule,
since the schedules with avoidabie machine idle time before or between the exe
cution of jobs are dominated by the schedules without avoidabie machine idle
time. For the third problem, there are at most mn assignments. Given an assign
ment of jobs to machines, we can easily compute the associated minimum mak
espan.

The finiteness of the solution set suggests the brute-force approach of exhaus
tive or explicit enumeration to be effective: simply generate all feasible solutions,
examine their costs, and select the best one. Such an approach can be very time
consuming, since the required effort to examine all schedules grows exponen
tially with the number of jobs. It is to be expected that the number of basic arith
metic operations (additions, subtractions, and multiplications) to be performed
will at least be of the order n !, n !, and mn, respectively. As there is an upper
bound on the number of operations that a computer can perform per period of
time, problems of only very limited size are effectively solvable by explicit
enumeration.

We have therefore good reasons to search for faster algorithms. Such algo
rithms are apparently available for the problems II I '2.wjCj and F21 I C max:

both are solvable by simple scheduling rules that ask us to arrange the jobs in a
certain order. The R I I C max problem seems to be much harder to solve.
Although under certain circumstances the dynamic programming algorithm may
be preferred to complete enumeration, the effort to solve the problem compares
very poorly with the effort needed for the first two problems. The fundamental
question is whether there exists a simple algorithm for R I I C max or not. If not,
then this problem may considered to be 'hard' in comparison with the 'easy'
problems lil '2.w1Cj and F211 Cmax·

The distinction between easy and hard problems apparently involves the effort
required to solvethem to optimality. Since the effort grows with the size of the
problem instance, it makes sense to express the effort as some function of this
size. The size of an instanee is defined as the number of symbols required to

1.2. Combinatorial optimization 9

represent it. The size is encoding-dependent: it makes a difference which
representation system we employ. Integers may be represented by an arithmetic
system to some fixed base B ;;;:. 2, in which case ~og8 n 1 symbols are required to
represent an integer n. If B = 2, then we have a binary encoding. If B = 10, then
we have a decimal encoding. Another system is a unary encoding. Under a unary
encoding, integers are represented by a series of l's, the lengthof which is equal
to the value of the integer: to represent an integer n, weneed n symbols. We will
see that the differenee between a unary encoding and an arithmetic encoding to
some fixed base i~ relevant for number problems. A problem is called a number
problem if no polynomial function p exists such that for any instanee I the larg
est integer occurring in I is bounded from above by the value that p assumes for
the size of I.

For the representation of integers by arithmetic systems to some fixed base it
does not really matter what base is used. Sinee B is fixed and log8 n =
logn 11ogB, the number of symbols required to represent an integer n grows as a
logarithmic function of n for any B ;;;:. 2. In the remainder, we only consider a
binary encoding. The results, however, apply also to arithmetic systems to other
fixed base B > 2.

The running time of an algorithm for a given problem is measured by an upper
bound on the number of elementary steps that the algorithm performs on any
valid input, expressed as a function of the size of the input. If the size of the
instanee is measured by n, then the running time of an algorithm is expressed as
0(/(n)) if there are constants c and n0 such that the number of steps for any
problem instanee with n ;;;:. n0 is bounded from above by cf (n). A similar defini
tion can he given for the space requirement of an algorithm. These measures
express the rate of growth [Papadimitriou and Steiglitz, 1982] of the complexity of
the algorithm.

If we reconsider 11 I ~w1c1 , then the size of a problem instanee is the number
of symbols required to represent PJ and w1 for j = I, ... , n. This size is
O(~J= 1 (Iogp1 + logw1)) under a binary encoding. However, we will assume
throughout that each basic arithmetic operation requires constant time. We
assert that complete enumeration canthen be implemenled to run in O(n !) time.

DEFINITION 1.1. A problem is solvable in polynomial time with respect to a certain
encoding if there exists an algorithm for it whose running time is bounded from
above by a function that is a polynomial in the length of that encoding.

Hence, if the length of the encoding is measured by n, then an algorithm is a
polynomial-time algorithm if its running time is O(nk), forsome fixed k. From
now on, a problem is said to be easy if it is solvable in polynomial time. The
problems II I ~w1c1 and F21 I C max are easy. Both Smith's and Johnson's rule
require that the jobs be arranged in a certain order. Sinee sorting a list of n ele
ments takes O(nlogn) time (see e.g. Aho, Hopcroft, and Uilman [1982]), both
problems are solved in O(nlogn) time. Note that the space required is also poly
nomially bounded. In general, the spaee requirement is polynomially bounded if
the running time is.

10 Chapter 1, Introduetion

The dynamic programming algorithm for the R I I C max problem requires
O(nmCm) time and O(nCm) space, where Cis an upper bound on the optimal
makespan. If the length of the encoding is measured in the obvious terms of the
number of jobs n, the number of machines m, and log(~ i"= 1 ~J = 1 Pu), then tbis is
clearly not a polynomial procedure: the number of machines appears in the
exponent and C cannot be bounded in the above terms.

1.2.1. Computational complexity: the classes 15' andC!lli5'
There is an elegant theory of computational complexity that classifies problems
as hard or easy. It carries strong evidence that it is very unlikely that there exist
polynomial-time algorithms for problems that are classified as hard. For an
introduetion to this theory, we refer to the seminat works by Cook [1971] and
Karp [1972], and to the textbook by Garey and Johnson [1979]. Intbis section,
we confine ourselves to an informal description and a review of the basic con
cepts.

The theory involves decision problems rather thari optimization problems. We
define a decision problem to be a question to wbich the answer is either 'yes' or
'no'. Any optimization problem can be viewed as a finite series of decision prob
lems. Soppose the objective is to minimize some function f (x) over x; the associ
ated decision problems are then of the type: is f(x)..;:;; k?, where kis repeatedly
adjusted by binary search over ar1 appropriate interval for k. If a particular deci
sion problem is solvable in polynomial time, then the related optimization prob
lem is so1vable in polynomial time if its optimal solution value is an integer
whose logarithm is polynomially bounded in the size of the input.

DEFINITION 1.2. The class 15' contains all the decision problems that are solvable
in polynomial time.

The decision variant of the I I I ~wjCj problem is as follows: given an integer k,
is there a schedule for wbich ~J 1 wjCj..;:;; k? If the answer is 'yes', then we cari
verify the correctnessof the answer in polynomial time when provided with a
schedule. After all, the schedule specifies the job completion times, wbich in turn
serve as input for some algorithm that checks whether the schedule is feasible
and whether ~j 1 wjCj ..;:;; k. Under a binary encoding, both the input and the
running time of the algorithm can be polynomially bounded. The job completion
times are then a concise certificate for a polynomial-time certificate-checking algo
rithm. The decision problems for F 11 Cmax and R 11 Cmax are of the same type:
given ari integer k, is there a schedule with C max .s; k? It is easy to verify that con
cise certificates and polynomial certificate-checking algorithms exist for these
problems.

At this point, we are ready to introduce the class 'Jti5'.

DEFINITION 1.3. The class 'Jti5' oomprises all decision problems for wbich concise
certificates and polynomial-time certificate-checking algorithms exist.

Note that we have that 15Jç;;'Jti5'. The crudal question is whether 15' = 'Jti5', that is,

1.2. ComQinatorial optimization 11

are the problems in '1UP solvable in polynomial time? It is widely conjectured that
this is not the case, i.e., that '!P;:f::9U5', since 9L'!P contains so many difficult prob
lems, including the decision versions of the traveling salesman problem and
integer programming, for which polynomial-time algorithms have not been .
found, in spite of the many man years devoted to these problems. The notion of
polynomial reducibility is very important in complexity theory; we give the
definition as formulated by Lawler, Lenstra, Rinnooy Kan, and Shmoys [1989].

DEFINITION 1.4. A problem A is polynomially reducible to problem B if and only
if there exists a polynomial-time eomputable funetion T that transforms inputs
for A into inputs for B such that x is a 'yes' input for A if and only if T(x) is a
'yes' input for B.

The notion of redueibility in polynomial time is transitive: if a problem A
reduces polynomially to problem B, and if problem B reduces polynomially to
problem C, then problem A reduces polynomially to problem C.

DEFINITION 1.5. A problem is said to be 9L'!P-eomplete if it is a member of the
elass 9L'!P, and if every problem in 9L'!P is polynomially reducible to it.

The notion of 9L'!P-completeness interconnects the hardest problems in 9L'!P in the
sense that if there would be a polynomial-time algorithm for one partienlar 9L'!P
eomplete problem, then it could be transformed into polynomial-time algorithms
for all other 9L'!P-complete problems. In order to prove that a partienlar problem
is 9L'!P-complete, we must show that it is a member of 9L'!P and that all other prob
lems in 9L'!P are polynomially reducible to it. Cook [1971] proves this for the so
called satisfiability problem. Since the notion of reducibility is transitive, it suf
fices for any other alleged 9L'!P-complete problem to show that it is in 9L'!P and
that some known 9L'!P-complete problem polynomially reduces to it. The above
definitions and concepts imply that it is very unlikely that there exist
polynomial-time algorithms for problems that are 9L'!P-eomplete.

Garey and Johnson [1979] present an extensive list of problems that have been
shown to be 9L'!P-complete, including the P ARTITION problem.

PARTITION

Given a multiset & = {a 1, ••• , a1} of t integers, does & include a subset &1 such
that

t

~ aj = ~ a112?
a,EB, j==l

We now prove what we alluded to before: the deeision problem of the R 11 C max

problem is 9L'!P-eomplete; henee, it is very unlikely that there exists a
polynomial-time algorithm for the optimization problem. We give a polynomial
rednetion from PARTITION.

12 Chapter 1. Introduetion

TIIEOREM 1.3. The decision variant of the R I I C max problem is !.?JL<?Y-complete, even
in the case of two identical machines.

PROOF. It is obvious that the problem is a memher of the class !.?JL<?Y. We prove
that PARTITION is polynomially reducible to our decision problem. For any
instanee of PARTITION, construct the following instanee of the scheduling prob
lem:

m=2,

n = t,
piJ=a1, for i=I, ... ,m,j=I, ... ,n,

t

k = ~a1 12.
j=l

It is easy to verify that the question whether there exists a schedule with
C max .;;;;; k has an affirmative answer if and only the instanee of the P ARTITION
problem is a 'yes' instance. Clearly, the reduction is polynomial. 0

Optimization problems are not in !.?JL<?Y, but they are said to be !.?JL<?Y-hard if their
decision variants are !.?JL<?Y-complete: apparently, such problems are at least as
hard as the problems in !.?JL<?Y.

We comeback to the difference between a binary and a unary encoding of the
input. The distinction is relevant for those number problems that are !.?JL<?Y
complete under a binary encoding, but salvabie in polynomial time under a
unary encoding. For PARTITION, for instance, there is a dynarnic programming
algorithm that runs in O(tL}=I aj) time and space, which is polynomially
bounded under a unary encoding. Such an algorithm is not polynoniial under a
binary encoding, and is therefore called a pseudo-polynomial-time algorithm.
Problems that are !.?JL<?Y-complete under bath encodings are called strongly !.?JL<?Y
complete. Problems are said to be ordinarily !.?JL<?Y-complete if they are !.?JL<?Y
complete under a binary encoding.

Note that the Rm 11 Cmax problem is salvabie in polynomial time under a
unary encoding. The number of machines is here specified as part of the problem
type and not of the problem instance. In other words, the number of machines is
fixed. The dynarnic programming algorithm runs in 0 (nmCm) time and 0 (nCm)
space, with C some upper bound on the makespan. Since we have that
C.;;;;minJ.;;;;.;;;mLj=IPiJ' the running time can altematively be written as
O(nm(min1.;;;;.;;;m Lj=IPiJ)m) time. For fixed m, this time requirement is polyno
mial under a unary encoding.

Although we have shown that the decision variant of R I I C max is !.?JL<?Y
complete in the ordinary sense for a fixed number of machines by a reduction
from PARTITION, it is possible to prove that the problem is !.?JL<?Y-complete in the
strong sense in case of an arbitrary number of machines. The reduction is from
3-PARTITION, one of the basic strongly !.?JL<?Y-complete problems.

1.2. Combinatorial optimization 13

3-PARTffiON

Given an integer b and a multiset ée = {ah ... , a 3t} of 3t positive integers with
tb< aj <tb for each j, j = 1, ... , 3t, and with -:z:jt 1 aj =tb, is there a parti
lion of ée into t mutually disjoint subsets ée1, ... , &r such that

ée= ée1 U · · · Uéfr

and

The reduction is omitted, but proceeds in the samespirit as the former.

1.2.2. Optimization
Although optimization algorithms for hard combinatorial optimization algo
rithms are unavoidably enumerative in nature, the aim is still to develop algo
rithms that perform satisfactorily well on the average for instances of reasonable
size. The main concern is to avoid exhaustive enumeration of the solution space,
since this would imply computational suïcide. There are a number of generic
optimization methods: dynamic programming, branch-and-bound, and cutting
plane methods.

Both dynamic programming and branch-and-bound aim at implicit enumeration
of the solution space. For the application of dynamic programming, we need to
identify some underlying principle of optimality. We have seen an example of
dynamic programming for the R 11 C max problem. Application of the optimality
principle may require both time and space that is not bounded by a polynomial
in the length of the input. Nonetheless, dynamic-programming based pseudo
polynomial algorithms may be very efficient.

Branch-and-bound solves a combinatorial optimization problem 'by breaking
up the feasible set of solutions into successively smaller subsets, calculating
bounds on the objective function value over each subset, and using them to dis
card certain subsets from forther consideration' [Balas and Toth, 1985].

For the R I I C max problem, for instance, a simple lower bound on the objec
tive function over the entire set of solutions is given by
r-:z:J 1 mini ,.;; i,.;; mPiJ I m l, where r x 1 denotes the smallest integer not smaller
than x. After all, the n jobs combined require at least :Z:J = 1 min1,.;; i< mPiJ time,
and it is ideal to split this requirement equally over the m machines. This bound
may be rounded up to the nearest integer, since the optimal makespan will be
inlegral due to integrality of the processing times. Partitioning of the set of all
feasible schedules into m subsets could proceed according to the assignment of
some job. For the instanee given in Table 1.3, we partilion the feasible set into
three subsets according to whether we assign J 1 to M 1, M 2, or M 3• Bearing in
mind that 24 is an upper bound on the optimal makespan, we discard the assign
ment of J 1 to M 1, since this requires 30 units of time. Hence, we ignore all feasi
ble solutions in which J 1 is scheduled on M 1 • N ow consider the scheduling of J 1

on M 2. A lower bound is then given by (p 12 + 2::J=2min1..;;,.;;mPij)lm = 21-}.
As we cannot discard the assignment of J 1 to M 2 at this stage, we may forther

14 Chapter 1. Introduetion

partition this set of feasible solutions with J 1 scheduled on M 2 according to
whether we assign J 2 to Mb M 2, or M 3• We proceed in this way until we have
discarded alJ possible subsets.

The feasible set of sequencing problems, including single-machine and flow- .
shop problems, is usually partitioned according to the job that is sequenced in
the next available position, starting either at the beginning or at the end of the
sequence.

It is helpfut to visualize the partitioning of the feasible set as a tree tumed
upside down, having nodes and branches. The nodes represent the subsets; the
branches indicate a further partitioning of these subsets.

Several factors affect the performance of a branch-and-bound algorithm. The
growth of the search tree depends largely on the strength of the lower bound. The
stronger the lower bound the fewer nodes have to be examined, but strong lower
bounds usually ask more computing time than weaker bounds. The size of the
tree is also affected by the quality of the upper bound, the use of other elimina
tion criteria, and the partitioning (or branching) strategy. Furthermore, the stra
tegy that dictates the order in which the nodes are examined is also very impor
tant.

Lagrangian relaxation (Section 1.3) is a generic technique to compute strong
lower bounds; it may also behelpfut for the development of upper bounds, elimi
nation criteria, and partitioning strategies.

The aim of cutting plane methods, finally, is to solve integer linear program
ming problems by linear programming. This is possible if we have a complete
description of the convex huil of the solution space by means of linear inequali
ties. In genera1, it is difficult to find such a description. A partial description,
however, is also useful, since the solution of the linear program may then induce
a strong lower bound, which in turn can be used in a branch-and-bound or
branch-and-cut algorithm. The latter has been shown to be successful for a
number of combinatorial optimization problems including the traveling sales
man problem (see e.g. Grötschel and Padberg [1985] and Padberg and Rinaldi
[1987]), but its success for machine scheduling problems is modest up to now.
Cutting planes will not be considered here; we refer to Schrijver [1987] for an ela
borate treatment of this subject.

1.2.3. Approximation
If a combinatorial optimization prob1em is 0t~-hard, then we know that an
optimization algorithm is likely to take a spperpolynomial amount of time in the
worst case. This makes optimization algorithms unreliable, since it is usually
impossible to gauge beforehand how much time will be needed. Instead of pursu
ing an optimal solution, we could settie for a good approximate solution that
hopefully can be obtained at the expense of considerably less effort. The
dilemma is to spend an uncontrollable and possibly exponential amount of time
to find an optimal solution, or to spend an acceptable amount of time to find a
near-optimal solution. For the second option, we also have to deal with the
trade-off between the quality of the approximate solution and the time invested
to find it. How can we measure the quality of an approximate solution, or at a

1.2. Combinatorial optimization 15

higher level, how can we evaluate the performance of an approximation algo
rithm? There are a few methods for this, including empirica/ analysis,probabilistic
analysis, and worst-case analysis.

The empirical analysis of an approximation algorithm can be oonducted in
various ways. Usually, it oornes down to running a oonsiderable number of tests
on different instances of the problem, and oomparing the approximate salution
value with the solutions generated by other approximation algorithms, with the
optimal salution value (if this can be found), or with a lower bound on the
optimal value. By performing empirical analysis, the aim is to get some feeling of
the average performance of the approximation algorithm.

FortheR 11 C max instance, we applied a simple dispatching rule: while running
through the list of jobs, we assigned each job to the machine that has the smallest
processing time for it, thereby obtaining a schedule with C max = 33. Reeall that a
lower bound is given by p-:j 1 min1 ..;; i..;; mPiJ I m 1, which gives 19 for the
instanee of Table 1.3. This renders little information about this instance: the
approximate salution in Figure 1.3 is poor, or the lower bound is.

The probabilistic performance analysis of an approximation algorithm takes
place subject to a ebasen probability distribution of the instances, and all state
ments are made subject to this distribution. The goal is usually to establish that
the algorithm is asymptotically optimal under a certain probability distribution
of the instances. Another, equally important, aim is to get a pro babilistic charac
terization of the optimal salution value. This, in itself, is aften the basisfora pro
babilistic performance analysis of the algorithm.

A worst-case analysis measures the behavior of the algorithm in the worst case
rather than in the average case. Such an analysis oonveys a pessimistic view, since
the worst case may not be representative. However, a worst-càse analysis
proceeds independently of the distri bution of problem instances, and gives there
fore a performance guarantee for all instances. An approximation algorithm that
asymptoticaliy never delivers a salution value of more than p times the optimal
salution value is called a p-approximation algorithm. We refer top as the worst
case ratio.

The dispatching ruie for the R I I C max problem has worst-case ratio m. After
all, we have that the resulting makespan is no more than "i.J = 1 min1 <i <mPij• and
alower bound is given by "i.J 1 min1 < 1 ..;;mPulm. To show that this ratio is tight,
consider the following instance:

n =km,

pij= I, forj I, ... ,n,

Pij = 1 + E:, for i 2, ... , m, j = 1, ... , n,

where k is some given constant, and 0 < E: < I Ik. The approximation algorithm
assigns all jobs to M 1, thereby producing a schedule with makespan n. In any
optimal schedule, however, exactly k jobs are assigned to each machine; this
gives the makespan k(l +E:). It is easy to see that the ratio p = nl(k +kE:)-m if
E:-0.

A number of popular techniques are applicable to the design of approximation

16 Chapter 1. Introduetion

algorithms for machine scheduling problems. We wil1 only give a sample of these
techniques, nota complete classification. We have already seen a memher of a
simple but widely applicable class of approximation algorithms: the class of
dispatching rules. These rules make use of priority functions that associate an
urgency measure with each job, according to which it is assigned or sequenced.
Such priority functions are based upon intuitively reasonable but often only
locally valid arguments that estimate the urgencies of the jobs. Not surprisingly,
they may produce myopie and erroneous schedules. Dispatching rules are
nonetheless widely applied in complex and large job-shop systems. On the one
hand, they are easy to develop and to imptement no matter the problem setting;
on the other hand, their robustness tends to grow with the size of the problem.

The second class contains the approximation algorithms based upon dynamic
programming and rounding. This technique is only applicable to a problem if
there is a pseudo-polynomial algorithm available for its solution. The central
idea is not to consider the entire state space, but only a specific part of it. In fact,
this part is chosen such that the dynamic programming, running in pseudo
polynomial time on the entire state space, runs in polynomial time on the
reduced state space. Such algorithms usually have a performance guarantee. This
is achieved by rounding down all the data of the problem to a multiple of the
desired accuracy p > 1, by which only a limited number of distinct data remain,
and by running the dynamic programming-based procedure. For the R I I C max

problem, for instance, Horowitz and Sahni (1976] apply this principle to develop
a p-approximation algorithm, running in O(nm(nml(p l))m 1) time and
space.

Third, there are the so-called truncated branch-and-bound algorithms. The
idea bere is to discard some of the feasible subsets, even if there is no valid rea
son to do so. The decision what subsets to discard can be made arbitrarily; for
instance, termination may occur upon reaching a prespecified number of nodes.
It makes more sense, however, to develop a more involved strategy for this. The
following strategy gives rise to an approximation algorithm with a performance
guarantee. Instead of discarding a node if the associated lower bound LB is no
less than the upper bound UB, we now discard a node if pLB ;;;;;. UB for some
predetermined p > I. This is a p-approximation algorithm, but, in genera!, it is
still impossible to bound its running time by a polynomial in the size of the
input.

Local-search algorithms, finally, are two-phase approximation algorithms. In
the first phase, a schedule is generated that serves as input for the second phase;
in the second phase, the schedule is adjusted somewhat in order to improve on its
value. For the second phase, the usual procedure is to define fora given schedule
a a neighborhood N" as the set of schedules that can be obtained from a by carry
ing out a prespecified type of changing operations. For parallel-machine schedul
ing problems, for instance, we could define the neighborhood of the schedule a as
the set of schedules that are obtained eithe-r by reassigning one job, or by swap
ping two jobs that are scheduled on different machines in a. For sequencing
problems, like single-machine and flow-shop problems, it is customary to define
the neighborhood of a schedule as those schedules that are obtained either by

1.3. Lagrangian relaxation and duality 17

repositioning one job in the sequence, or by interchanging two jobs. The pro~
eedure proceeds by searching the neighborhood N" fora schedule with smaller
objective value, which wilt be our new approximate solution. This process is
repeated and terminates when no further improvement can be found. Evidently,
procedures based upon this concept provide locally optimal solutions; in general,
they cannot be guaranteed to find globally optimal solutions.

Although the procedure above is typical of a plain local~search algorithm, the
main danger is to get trapped in a relatively poor local optimum. We may cir~
cumvent this pitfall by using multiple schedules as starting points, which may
lead us to multiple locally optimal solutions. Hopefully, one of them is a good
approximate solution.

More sophisticated techniques to avoid early entrapment have been
developed, among which simulated annealing and tabu search take prominent
places. Simulated annealing (see e.g. Van Laarhoven and Aarts [1987]) leaves the
possibility open to travel from one local optimum to another. This is achieved by
accepting deteriorations of the objective value with a probability that is a
decreasing function of running time. Tabu search [Glover, 1989; De Werra and
Hertz, 1989] is much similar to simulated annealing, but provides a deterministic
mechanism to accept deteriorations.

Globally, we can say that local~search algorithms are easy to develop and to
implement, and are known to produce excellent results.

1.3. Lagrangian re/axation and duality
In Section 1.2, we mentioned the need for strong lower bounds if we want to
apply branch~and-bound. Mathematica} formulations often provide the insight
to derive good lower bounds. A common strategy is to relax some of the con
straints such that the resulting problem is easier to solve and provides a lower
bound to the original problem. The simplest way is the linear programming relax
ation: formulate the problem as an integer linear prograrnming problem, drop
the integrality constraints on the variables, and then solve the linear program
ming relaxation. Other relaxation methods, such as Lagrangian relaxation and
surrogate relaxation, are more intricate to perform, but give lower bounds that
are theoretically at least as good. In this thesis, we consider Lagrangian relaxa
tion and Lagrangian duality, and their opportunities for the development of
optimization and approximation algorithms for machine scheduling problems.
Although it is common practice to speak about the Lagrangian relaxation of a
combinatorial optimization problem, it is more correct to refer to the Lagrangian
relaxation of a partienlar formulation of the problem. An optimization problem
often allows different formulations, and one formulation may offer completely
different opportunities than others.

Lagrangian relaxation is already a conventional technique, dating back to the
work by Held and Karp [1970, 1971] on the traveling salesman problem. Since
then, it has shown its merits for a gamut of hard combinatorial optimization
problems, running from the traveling · salesman problem, partienlar plant Ioca
tion and machine scheduling problems, to general integer linear programming
problems. Excellent introductions to Lagrangian relaxation are given by

18 Chapter 1. Introduetion

Geoffrion [1974A], Shapiro [1979] and Fisher [1981]; an overview of its applica
tions is given by Fisher [1981, 1985].

Traditionally, though, the emphasis has been on problems that are formulated
in terms of integer (usually 0-1) linear programming prob1ems. In this section, we .
give a broader introduetion to the basicconceptsof Lagrangian relaxation than
found in the literature referred to earlier, since we do not confine ourselves to
problems that are formulated as 0-1 linear programs. It will be oriented towards
machine scheduling, and will place earlier applications of Lagrangian re1axation
to machine scheduling problems in a specific context. It is unavoidable, however,
that our introduetion partly parallels other expositions. The undertone of this
thesis is that Lagrangian relaxation has a wider range of applications than found
in and suggested by the literature. We do consider other formulations, and, in the
subsequent chapters, we show that they facilitate the application of Lagrangian
relaxation to machine scheduling prob1ems.

To show that combinatorial optimization prob1ems al1ow different formu1a
tions, and to demonstrate what we mean by formu1ations other than integer
linear programming formulations, we give three different formulations for the
I I I };w1c1 prob1em.

The first one is an integer linear programming formulation, an extension of
which is emp1oyed by Potts [1985A] and Dyer and Wolsey [1990] to obtain lower
bounds for the problems lipree I };w1c1 and I! r1 I };w1C1, respectively. We intro
duce 0-1 decision variables x1k (j, k 1, ... , n) that assume the value I if job J1
is sequenced before Jk> and the value 0 otherwise. Naturally, we must have
xjj 0, for j 1, ... , n. The completion time of J1 is then given by
};k 1 fkXkj +Pi· The prob1em is to minimize

subject to

n n n

~ ~ WJfkXkj + ~ WJPJ
j=lk=l j I

Xkj + Xjk =I,

Xkj + X[k + Xjf;;;;. 1,

x1k E {0, 1},

Xjj = 0,

forj, k = 1, ... ,n,j=Fk, (1.3)

for j, k, I= 1, ... , n, j=Fk, j=Fl, k=j::.l, (1.4)

forj, k = 1, ... ,n, (1.5)

forj I, ... ,n. (1.6)

The constraints (1.3) ensure that J1 is sequenced either beforeh or after h- The
conditions (1.4) are transitivity constraints'that disallow cycles: if J1 is sequenced
before h and h before Jr, then we cannot have J1 sequenced after h

The second formulation is a gencric one; extensions are found for multiple
machine prob1ems (see e.g. Thompson and Zawack [1985/6]). We define
T };j 1p1. We now introduce integer variables xJt that take the value I if J1
starts at timet, and the value 0 otherwise. The 111 };w1c1 problem canthen be
formulated as to minimize

n T-1

~ ~ wj(t + p1)x11
J=l t=O

1.3. Lagrangian relaxation and duality 19

subject to
T-l

L Xjt = 1, forj = 1, ... ,n, (1.7)
t=O

n I I

L L x1s = 1, fort = 0, ... , T 1, (1.8}
j=l s=max{t-p1,0}

Xjt E {0, 1 }, forj=l, ... ,n,t=O, ... ,T 1. (1.9)

The conditions (1.7) ensure that each job is started exactly onee in the interval
[0, T -1], the oonditions (1.8) reflect that the machine can handle on1y one job at
any point in time between 0 and T, and the conditions (1.9) are the integrality
constraints on the variab1es. The major handicap of this formu1ation is the
number of variables: we have nT of them. This formulation requires a pseudo
po1ynomia1 number of variables and oonstraints.

We now give a formulation that is not an integer linear programming formula
tion. Let c1 be the completion time of J1, for j = I, ... , n. The 11 I ~w1c1 prob
lem is then todetermine job completion times C 1, ••• , Cn that minimize

subject to

Ck ;;;;. c1 + Pk or c1 ;;;;. Ck + p1,

c1 -p1 ;;;;.o,

forj, k =I, ... ,n,j=/=-k, (1.10)

forj=l, ... ,n. (1.11)

The constraints (1.10) stipulate that the machine handles at most one job at a
time: for every pair of jobs J1 and Jb it must be that J1 precedes Jk or that h
preeedesJ1. The conditions (1.11) express the availability of the machine: no job
can he started before time 0.

The tricky issue is actually the lormulation of the capacity constraints of the
machine. In the integer programming formulations, these capacity constraints
are formulated by means of 0-1 variables, which accounts for the relatively large
number of variables. In the third formulation, the capacity oonstraints are for
mulated by means of the '1ogical' disjunctive constraints (1.10). It is important to
realize that, in spite of the glossy formulations, each one still represents a polyno-
mially solvable problem. ·

Such formulations provide the basis for formulations of hard problems. For
instance, suppose we impose preeedenee constraints between the jobs. It is con
venient to represent such oonstraints by an acyclic preeedenee graph G with ver
tex set {J I> •.• ,Jn} and are set A, which equals its transitive reduction; i.e., no
are in A can beremovedon the basis of transitivity. A path in G from J1 to Jk
implies that J1 bas to be sequenced before Jk. The lipree I ~w1C1 problem has
been shown to be 'E>Ll!P-hard in the strong sense by Lawler [1978] and Lenstra and
Rinnooy Kan [1978].

20 Chapter 1. Introduetion

The preeedenee constraints require the addition of the following type of con
straint in the first formulation,

for each (J1, h) E A,

of the following type in the second formulation,
t

~Xks;;;.O, fort=O, ... ,T 1, foreach(J1,h)EA,
s=O

and the following conditions in the third formulation,

Lower bounds for the lipree I }";w1c1 problem can be obtained by disregarding
the preeedenee constraints. Consirlering the first two formulations, we can also
obtain them by dropping the integrality constraints on the 0-1 variables, and by
subsequently solving the resulting linear programming problems. For the second
formulation, this approach is only feasible if T is not too large. At this point, it is
not clear how the third formulation can be of use. This will become apparent in
the next section, where we introduce the concept of Lagrangian relaxation.

1. 3.1. Basic concepts of Lagrangian relaxation
The main idea behind Lagrangian relaxation is to see an '~Uj-hard combinatorial
optimization problem as an 'easy-to-solve' problem complicated by a number of
'nasty' side constraints. These nasty side constraints are removed from the set of
constraints, and put into the objective function, each weighted by a given
Lagrangian multiplier. This is what we refer to as dualizing the nasty constraints.
Dualizing the nasty constraints, we get an easy-to-solve problem, and its solution
provides a lower bound on the optimal solution value of the original problem.

Examining the lipree I }";w1c1 problem, we may identify the preeedenee con
straints as the nasty constraints. However, Potts [1985A], using the first formola
tion for the 1 !pree I }";w1c1 problem, does not particularly focus on the pre
eedenee constraints when dualizing. For a specific formulation of the problem,
there may be no unique set of nasty constraints. In addition, whether constraints
are nasty or not can often only be decided for a specific formulation of the prob
lem. This gives rise to competing formulations, and to competing relaxations of
the same formulation. In Section 1.3.2, we present an example of the latter.

Consider the typical formulation for a combinatorial optimization problem,
relerred to as problem (P): minimize

subject to

ex

Ax ;;;ob,

x EX,

(P)

where A is a given m X n matrix, b a given m X I vector, and c is a given 1 X n

1.3. Lagrangian relaxation and duality 21

vector; x is an n X I vector of decision variables. It is assumed that X is a non
empty closed set and that X bas some computationally convenient structure not
shared by the entire problem. We denote by v (P) the optimal objective value of
problem (P). If we now introduce a non-negative vector of Lagrangian multi
pliers À (Àb ... ,Àm) to dualize the constraints Ax ~ b with, we obtain the
Lagrangfan problem (LÀ). This problem is to find the value L (À), whlch for a
given À ;;;;. 0 is the minimum of

(e M)x + Àb

subject to

x EX

Since we have assumed that X possesses some convenient structure, we may
assume that the Lagrangian problem is easier to solve than the original problem.

1REOREM 1.4. The value L (À) is a lower bound on v (P) for a19' À;;;;. 0.

PROOF. Let x* be an optimal solution to problem (P). Since À;;;;;;, 0 and Ax* ;;;;. b,
we have that

L (À) EO; (e-ÀA)x* + Àb = ex* + À(b-Ax*) EO; v (P). 0

It is easy to verify that if the dualized constraints are equality constraints of
the type Ax = b, then the associated vector of Lagrangian multipliers is unres
tricted in sign. We assume throughout that the dualized constraints are inequali
ties. This assumption can be made without loss of generality, since any system of
linear equations can be rewritten in terros of linear inequalities.

Since L(À) provides a lower bound on v (P), we are interested in determining
the Lagrangian multiplier À* that yields the best lower bound. Thls problem is
called the Lagrangian dual problem, referred to as problem (D): maximize

L(À) (D)

subject to

À;;;;.O.

In general, we cannot guarantee to have v(P) = L(À*); the difference
v (P) - L(À *)is referred to as the duality gap. In contrast to problem (D), prob
lem (P) is call~ the prima/ problem. If (P) is an integer linear _prograrnming
problem, then (P) denotes i~ linear programming relaxation; v (P) denotes the
optimal objective value for (P). As a matter of convenience, we use also an alter
native notation for mathematical programming problems. For instance, we write
problem (P) as v (P) = min (ex I A x EO; b, x E X}.

If X (x I x;;;;. 0}, then problem (D) boils down to the dual problem in linear
programming. Consider

L(À*) = max(min{(e- M)x + Àb I x;;;;. 0} I À;;;;. 0 }.

22 Chapter 1. Introduetion

If the vector (e- i\A) would be negative in one of its components, then the
minimization over x would require that we put the corresponding c0mponent of
x equa1 to +co, thereby making the lower bound worthless. We :may confine
ourselves, therefore, to those veetors À for which e i\A ;;;;. 0. This gives

L(À*)=max{M I e-i\A ;;;;.O,À;;;;.O},

which is clearly the dua1 of the linear program

min{ex I Ax ;;;ob, x ;;;;oO}.

In the proof of the following theorem we make use of these arguments.

TIIEOREM 1.5. /f(P) is an integer linear programmingproblem, then L(À*);;;;. v(P).

PRooF. Without loss of generality, we may assume that X=
{x 1 Dx ;;;;;. e, x ;;;;. 0, x integral} with D a matrix and e a column vector, both of
appropriate dimensions. We now have that

L(À*) = max{min{(e- i\A)x+M I x EX} I À;;;;;. 0}

;;;;.max{min{(e-i\A)x+M IDx;;;;oe,x;;;;oO} IÀ;;;;.O}

= max{min{(e- i\A p.D)x +M + pe I x;;;;;. 0} I À;;;;. 0, I';;;;;. 0}}

= max{M + pe Ie- i\A -~tD;;;;. 0, À;;;;;. 0, I';;;;;. 0}

= min{ ex I Ax ;;;;. b, Dx ;;;;;. e, x ;;;;. 0}
-= v(P). D

The proof _ of Theorem 1.5 indicates a sufficient condition for having
L(À*) = v(P).

COROLLARY l.I. IJ (P) is an integer linear programming problem, and the problem
min {ex I x E X } ean be solved as a linear programming problem Jor any given
I X n veetor_e, i.e., the integrality eonstraints on x are redundant, then we have that
L(À*)=v(P). D

Adopting the terminology of Geoffrion [1974B], we say that the Lagrangian
problem possesses the integrality property if the integrality constraints on x are
redundant.

1.3.2. An example: the generalized assignment problem
The generalized assignment problem is a usefu1 problem for expository purposes
because of its rich underlying structure. This accounts no doubt for the number
of papers on the prob1em, in which various relaxations and variants of existing
relaxations are proposed [Klastorin, 1979; Fisher, Jaikumar, and Van
Wassenhove, 1986; Jörnsten and Näsberg, 1986; Sarin and Karwan, 1987;
Karwan and Ram, 1987; Guignard and Rosenwein 1989, 1990; Barcia and

1. 3. Lagrangian refaxation and duality 23

Jörnsten, 1990]. The. generalized assignment probiem has many interpretations,
and therefore many potentiai appiications. We interpret it as a machine schedul
ing problem closely reiated to the R 11 C max problem (see Section 1.1.3). Suppose
we have a set of n independent jobs :}- { J I> ... , J n} and a set of m unreiated .
parallel machines 01L = { M 1, ••• , M m}. Each of the jobs has to be scheduled on
one of the machines. The processing of Jj on machine M; requires an uninter
rupted time PiJ for which a penalty cu > 0 is inflicted, for i= I, ... ,m,
j I, ... ,n. Each M; (i = l, ... ,m) can handle at most one job at a time, and is
avaiiable for processing from time 0 up to time b;: the total time required by the
jobs assigned to it may not exceed b;. The objective is to find a scheduie of
minimum totai cost.

It is easy to verify that this problem is 'X':'P-hard. The proof proceeds by a
reduction from PARTITION, and is simiiar to the one fortheR 11 Cmax probiem.
In the same spirit as for the R I I C max probiem, we can deveiop a dynamic pro
gramming algorithm for it that requires O(nmb~) time and space, where
bmax max, ,;;;;; ,;;;mb;.

We formulate the problem as an integer program in the following way. We
introduce variables xiJ that assume the vaiue I if Jj is assigned to M;, and the
vaiue 0 otherwise, for i = 1, ... , m, j = 1, ... , n. The problem is then to minim
ize

m n

:L :L CyXij
i=lj=l

subject to
n

:L PuxiJ..;; b;, for i = I, ... , m, (1.12)
)=1

m

:L Xtj I, for j 1, ... , n, (1.13)
t=l

Xij E {0, 1 }, for i = 1, ... , m,j = l, ... , n. (1.14)

The constraints (1.12) in this formulation make sure that the capacities of the
machines are not exceeded, the constraints (1.I3) enforce that each job •is
assigned, and the constraints (1.14) prohibit preemption. From a different angle,
we can say that the constraints (1.12) are the knapsack constraints, the con
straints (1.13) are the assignment constraihts, and the constraints (1.14) are the
integrality constraints.

First, we focus on the relaxation of the constraints (1.13). At first sight, it
seems that the vector associated with them must be unsigned. However, since the
equa1ity constraints can without any consequence be replaced with the inequality
constraints ::i:7'=t xu ;;;" 1, we introduce a non-negative vector p. (P.l> ... ,p.n) of
Lagrangian multipliers to dua1ize the constraints (1.13). We obtain the following
Lagrangian problem: minimize

m n n

:L :L (cu - P.j)xu + :L iLJ
i=lj I j I

24 Chapter 1. Introduetion

subject to (1.12) and (1.14), for a given p. ~ 0.
This prob1em reduces to m knapsack prob1ems, each of which can be so1ved in

pseudo-polynomial time: solving the prob1em for machine M1 requires O(nb1)

time. Hence, the Lagrangian is easy re1ative to the original problem.
Another option is to introduce a non-negative vector À (À1, ••• , Àm) of

Lagrangian multipliers and to dualize the constraints (1.12). In this fashion, we
obtain another Lagrangian problem, which is to minimize

m n m

~ ~ (cij+À1pu)xu- ~ À1b1
i IJ I 1=1

subject to (1.13) and (1.14), fora given À~ 0.
This Lagrangian problem is solvable in 0 (nm) time: assign each J1 to the

machine that has minimum dual cost c11 + À1p 11 for it among the m machines. We
note that this problem has the integrality property, implying that the best bound
in this framework equals the optimal value of the linear programming rela.xation.
The latter is obtained by replacing the integrality constraints (1.14) by the condi
tions x u ~ 0, thereby allowing preemption.

1.3.3. Solving the Lagrangian dual problem
Since we have an interest in finding the best lower bound, we pursue the optimal
Lagrangian multiplier À*. Two fundamental questions arise: (i) how can we find
À*?, and (ii) how time-consuming is it to find À*? The secoud question red u ces to
the common trade-off between quality and speed. On the one hand, À* yields the
best bound, but may be time-consuming to compute. On the other hand, it may
be easier to compute an approximate value for À*, but this gives a lower bound
of lesser quality.

An important observation is that the Lagrangian dual problem (D) is actually
the problem of maximizing a linear function subject to a finite number of linear
constraints. Since we have assumed problem (P) to be a combinatorial optimiza
tion problem, X contains only a finite uurober of relevant solutions. Hence, X
can berepresentedas X= {x<l), ... ,x<K>}. Problem (D) is then equivalent to
the following prob1em: maximize

subject to

z

z ";;;;; (c M)x(k) + i\b, for k 1, ... ,K,

À~O.

The reformulation makes it clear that the function L:À~L(À) is the 1ower
envelope of a finitesetof linear functions. We have depicted in Figure 1.4 the
shapeof Lform = 1 andK = 5.

The retormulation also indicates that (D) is solvable to optimality through
techniques for linear programming probieros with constraints given implicitly. In
Section 1.3.3.1, we prove that, under certain conditions, problem (D) can be
solved in polynomial time through Khachiyan's ellipsoid method [Khachiyan,

1. 3. Lagrangian relaxation and duality 25

L(À)

(c -M)x(l)
(c -M)x<2>

(c -M)x<4>

'•,

(c -M)x<3> -- '•,

(c -M)x<5>

'•,

0

FIGURE 1.4. The form of L(À).

1979]. General techniques to solve problem (D) are the subgradient method and
the column generation method. The former is easy to implement, and therefore

· frequently applied; it is described in Section 1.3.3.2. The latter is not discussed
bere, since it is rarely used; the metbod is difficult to imp1ement and very slow in
practice. For an exposition of these methods in a general context, we refer to the
textbooks by Minoux [1986], Schrijver [1987], and Nemhauser and Wolsey
[1988].

Any À~ 0 induces a lower bound on v(P). Approximation algorithms for
problem (D) are therefore usually local search methods. We discuss two types:
aseent direction methods (Section 1.3.3.3) and one-shot methods (Section 1.3.3.4).
In Section 1.3.3.5, we consider some miscellaneous approaches.

1.3.3.1. The ellipsoid method
The ellipsoid metbod is a polynomia1 algorithm for linear programming [Khachi
yan, 1979]. We prove bere that, under certain conditions, it can be applied to
problem (D). The applicability of the ellipsoid metbod is only of theoretica!
interest; in practice, it is a very slow algorithm that is never used.

THEOREM 1.6. Problem (D) is solvable in polynomial time if the problem
min{p.x I x EX} is solvable in polynomial time for any 1 X n vector p.

PROOF. Let~= { (z,À) I z E IJl, À E Rm, z ~(c -M)x(k) +Àb, for k = 1, ... ,K,
À~O}. To prove that the ellipsoid metbod is applicab1e to problem (D), it suf
fices to show that the following separation problem for ~is solvable in polynomial
time (see Grötschel, Lovász, and Schrijver [1981] and Padberg and Rao [1982]): - -
given (Ï,À) E Q X Qm, decide whether (z,À) E ~; if not, give a separating

26 Chapter 1. Introduetion

hyperplane, that is, an inequality)\(jT + az ".;;; /3 (dT stands for the transpose of
the row vector d), such that

(z,À) E :K~ÀdT + az ".;;; /3,

and

ÀcJT + az >/3.
- -

Observe now that for a given (Z,À) we can determine the value L(À) and the
corresponding solution vector i in polynomial time, si!!_ce we have ass!:!_med that
OU!:_ subproblem i~ solvable in polynomial time. If L(À) ;;;;.- z, then (z,À) E :J{; if
L(À) <z, then (z,À) fJ. ~ and

z>(c M)i +:V,

is a separating hyperplane. 0

1.3.3.2. The subgradient method
We have seen that the function L : À~ L (À) is the lower envelope of a fini te set
of linear functions; hence, L is continuous, piecewise linear, and concave in À,
but, unfortunately, not everywhere differentiable. The function Lis not differen
tiable at any À where (L;~,) bas more than one optimal solution. We call such À the
points of non-differentiability of the function L; for m I, they are also called the
breakpoints of L. However, the function Lis everywhere subdifferentiable. A vec
tor 8 E ~m is called a subgradient of Lat À if it satisfies

L(À +u) L(À) ".;;; u8, for each u E ~m.

Hence, À is optimal if and only if 0 is a subgradient of L at À. In general, it is
impossible to prove whether 0 is a subgradient, and we may only establish
optimality if a sufficient condition for optimality (like the complementary slack
ness condition) is satisfied. The above suggests, nonetheless, that the solution for
problem (D) can be approximated by an iterative procedure that generates a
series of veetors of Lagrangian multipliers by moving a specified step size along a
subgradient vector. lf i is an optimal solution of problem (LÀ), then the vector
(b - Ai) is such a subgradient at À. After all, for each u E ~m we have that

- - - - -
L(À +u) L(À) ".;;; (c (À+ u)A)i +(À+ u)b- (c -À)Ai + M

u(b-Ai).

This observation is the core of the subgradient metbod for solving problem (D).
Let À(r) denote the vector of Lagrangian multipliers after the tth iteration, and let
x<tl be an optimal solution to problem (L;~,'''). If À(O) is the initial vector, then a
series of veetors is generated by the following rule:

À{r+l) = À(t) + s<t)(b -Ax<tl),

where s<tl > 0 is some scalar step size. The theoretical conditions for convergence
of À(r) to À* are that s<tl ~ 0 and that ~i =o s(i) ~ oo [Polyak, 1967]. These
stringent conditions can of course not be observed in practice. However, for the

1.3. Lagrangian relaxation and duality 27

step size

s<t) = ft(
1)[z-L(À)]

IIAx<tl -bll2

with z :::= L (À*) and 0:::;:. ft(t) ~ 2 for each t, À (t) converges either to À*, or to a
vector À such that L(À) > z [Polyak, 1969; Held and Karp, 1971]. There are
many ru1es to choose the sequence ft(t) and the value z [Held, Wolfe, and
Crowder, 1974; Camerini, Fratta, and Maffioli, 1975; Bazaraa and Goode, 1979;
Karwan and Sarin, 1987]; usually, they are problem-specific and have an empiri
ca! justification.

In practice, the subgradient metbod is a non-polynomial approximation
method. We are unable to establish whether it has converged to the optima} vec
tor of Lagrangian multipliers. The main handicap of the subgradient method,
however, is that it does not produce a series of monotonically increasing lower
bounds. It is known for its zig-zagging in the beginning and slow convergence at
the end (see, e.g., Held, Wolfe, and Crowder [1974]). The metbod is usually ter
minated when there is no significant increase of the objective value, or upon
reaching a predetermined number of iterations. The subgradient metbod is
undoubtedly the most frequently applied technique, since it is easy to implement.
Furthermore, the ample computational experiments with the subgradient metbod
reported in the Iiterature give the impression that it produces invariably good
approximate solutions.

1.3.3.3. Aseent direction methods
Consirlering the handicap of the subgradient method, it is natura} tolook for an
iterative metbod that generates a series of monotonically increasing 1ower
bounds. The key feature of such a metbod is the adjustment of only a limited
number of multipliers per iteration, as opposed to the subgradient metbod where
all multipliers are adjusted simultaneously. If tbe consequences of particular
multiplier adjustments can he evaluated, then one guaranteeing an improved
lower bound is chosen. Such methods are often referred to as multiplier adjust
ment methods, but we pref er to call them aseent direction methods.

An aseent direction metbod is problem-specific: it exploits tbe special stroc
ture of tbe problem and of the formulation. In genera}, an aseent direction
metbod requires typically significantly less iterations than the subgradient
metbod [Guignard and Rosenwein, 1989]; per iteration, the effort is of the same
order. Hence, an aseent direction metbod is in general much faster than the
subgradient method. However, it cannot he guaranteed to produce lower bounds
tbat are as good. Aseent direction methods have shown to he successful for a
wide range of combinatorial optimization problems. They include plant location
problems [Bilde and Kramp, 1977; Erlenkotter, 1978; Guignard and Spielberg,
1979], the traveling salesman problem [Christofides, 1970; Balas and Christo
fides, 1981], the generalized assignment prob1em [Fisher, Jaikumar, and Van
W assenhove, 1985], and the set covering problem [Fisher and Kedia, 1990].
These applications indicate that the gain in speed over the subgradient metbod
compensates the possib1e 1oss in lower bound qua1ity more than sufficiently.

28 Chapter 1. Introduetion

In spite of the numerous problems in machine scheduling, the use of aseent
direction methods in this area has remained limited to two applications: Hariri
and Potts [1984] and Potts [1985A] use aseent direction methods for the problems
F2lprec I C max and lipree I ~wiCi, respectively. The problems were formulated
in terms of 0-1 variables. The formulation of the latter problem is given in Sec
tion 1.3; the formulation of the farmer is similar. This thesis examines logical for
mulations for scheduling problems, such as the one we presented for the
lipree I ~wjCj problem in Section 1.3. In the subsequent chapters, we show that
logical formulations facilitate the development of aseent direction methods.

In this subsection, we consider the ideas bebind the design of aseent direction
algorithms. We note that Guignard and Rosenwein [1989] present an
application-oriented guide for designing Lagrangian aseent direction algorithms.
Our discussion here is of a theoretica} nature.

The notion of directional derivative plays a central role in aseent direction algo
rithms. The directional derivative of the function L at À is defined as

Lu(À) = lim L(À + w)- L(À),
EJ.O €

(1.15)

for any vector u E Rm. Hence, À is optimal if and only if

Lu(À) ~ 0, for all u E Rm; (1.16)

note that this is equivalent to 0 being a subgradient at À. If Lj;(À) > 0 for some
ïi E Rm, then ü is called an aseent direction of L at À: we get an irnproved lower
bound by rnaving some scalar step size à along ïi. In general, it is difficult to
compute directional derivatives. However, it is easy to compute them for the
primitive vectors. A vector u = (u 1, ••• , um) is primitive if all u1 = 0 for all i but
one. Hence, there are at most 2m different primitive directional derivatives at
anyÀ.

We show that the primitive directional derivatives can almast he found by
inspection. For i = I, ... , m, let tt (À) he the directional derivative at À for any
primitive vector with the ith component positive. For i = 1, ... , m, let Ç (À) he
the directional derivative at À for any primitive vector with the ith component
negative. The first step is to rewrite definition (1.15) forthese directional deriva
tives; accordingly, we get that

+ . L(ÀJ, ... ,Ài + €, ... ,Àm)- L(ÀJ, ... ,Àm)
~00=~ '

<~0 €

and

Ç(À) = lim L(Àb ... ,À; t:, •.. ,Àm)- L(ÀI> ... ,Àm)
<J,O €

for i = I, ... , m. Directional derivatives may not exist at the boundaries of the
feasible region of À; for instance, Ç (À) is undefined for À = (0, ... , 0), for any
i= 1, .. . ,m.

The second step is to sirnplify the above expressions. First, reeall that any
problem (L;-.) may have multiple optimal solutions; let x<;>.) he the set containing

1 .3. Lagrangian retaxation and duality 29

them. Second, for any existing primitive direction at À, a sufficiently small step
size E > 0 exists such that some x+ E x<'-l remains optima!. This claim is proved
as follows.

For any i (i = I, ... , m), define À(8) À +8él, where él is the ith unity vec
tor; accordingly, let x<'-<8Jl denote thesetof optima} solutions for problem (Lt.(8J).
Let 8(x) = {8ER+ u {0} 1 x E x<'-<8ll}; 8(x) may be empty.

LEMMA l.I. 8(x) is a closed interval.

PROOF. This is true because

p. E 8(x)#(c -À(8)A)x,.,;; (c -À(5)A)x for all x EX

(See also Figure 1.4). 0

THEOREM 1.7. There exists a sufficiently small value E > 0 such that some
x+ E x<'-J is also optima/ for problem (Lt.((J).

PROOF. For each x EX and 5(.X) not empty, let 5(x) [/(x),r(x)]. Determine

E +min{{l(x) ll(x)>O,xE x<'-<8J>},I}.

Choose x+ such that E E 5(x +); i.e., x+ is an optimal solution for the problem
(Lt.(<))· But this implies that I (x+) ,.,;; 0 and r (x+) ;;:;. E. 0

Let now À= {À" ... ,À;+ E, ... ,Àm) for an arbitrary i (i= 1, ... ,m) with E > 0,
and let x + E x<'-J also be optimal for problem (LÀ) if E is sufficiently small.
Hence, x + must be such that

a<ilx + = maxx Ex"' (a<ilx),

where a<il denotes the ith row of the matrix A. We get then that

L(ÀI> ... ,À;+ E, ••• ,Àm) = L(ÀJ, ... ,Àm) + t:(b; a(ilx+),

if E > 0 and E sufficiently small. Using this, we observe that the associated primi
tive direction reduces to

Jt(À)=b; a(ilx+.

Note that

L(À)- L(À) = E lt (À)

if Eis sufficiently small; hence, if tt (À)> 0, then we obtain an improved objec
tive value by moving along the corresponding primitive direction. Similarly, we
get

/j(À)=a(ilx- -bi,

where x- is such that

a<il x- = minx x'" (a<ilx).

30 Chapter 1. Introduetion

We now address the issue how to compute an appropriate step size to move by
along an aseent direction. In genera!, we like to choose the step size so as to max
imize the increment to the Lagrangian objective value. First of all, the step size
must he feasibk: it may not take us beyond the boundary of the feasible region ·
of À. Moving along a specified aseent direction but not crossing the boundary of
the feasible region, we reach points where the directional derivative changes;
possibly, we reach the point where the direction is no Jonger an aseent direction.
Hence, any feasible step size that does not take us beyond this point induces an
improved objective value. The step size maximizing the increment to the Lagran
gian objective value either takes us to this point, or to a point at the boundary of
the feasible region, whichever is closer. For instance, if Ç (À)> 0, then the
appropriate step size is found by maximizing

L(ÀJ, ... ,À;-~' ... ,Àm)

subject to

o.;;;;~.;;;;À;.

Sometimes, other step sizes are preferable. Depending on the application, it may
he more convenient to compute the step size that takes us to the first point where
the directional derivative changes. We will see an example of this in Chapter 4.

The effectiveness of an aseent direction depends on our ability to specify an
appropriate step size; the efficiency of an aseent direction algorithm depends on
the effort to compute it. Apparently, weneed toperfarm some kind of sensitivity
analysis; the easier the Lagrangian problem, the easier it is to determine an
appropriate step size.

In each iteration, weneed to identify a primitive aseent direction, to specify an
appropriate step size, and to adjust the vector of Lagrangian multipliers. This
leaves freedom for implementation. For each application, we must determine in
which order we scan the primitive directions, which one to choose (for instance,
the direction of steepest ascent), which step size to compute, and so on.

An aseent direction methad can of course he terminated if there is no signifi
cant increase of the objective value. Otherwise, termination occurs if no aseent
direction among the existing primitive directions c~ he found anymore. Sup
pose an aseent direction methad terminates at some À; if all primitive directional
derivatives exist, then we have

It (À).;;;; 0 and Ç (À).;;;; 0, for i = 1, ... , m,

or, equivalently,

a(i>x- .;;;;b;.;;;;a(i>x+, fori= l, ... ,m.

(1.17)

We call these the terminalion conditions. Examining them, we see that they are
!!ecessary but not sufficient for optimality; hence, termination may occur having
À =#=À~' i.e., befare finding the optima! vector of Lagrangian multipliers. In addi
tion, À depends on the initia! vector of Lagrangian multipliers, and on the aseent
direction and the step size at each iteration. However, in view of the successful

1.3. Lagrangian relaxa/ion and duality 31

applications we mentioned earlier, aseent direction methods are generally con
sidered to be good approximation algorithms for problem (D).

In case m 1, i.e., if only one constraint has been dualized, the conditions
(1.17) are sufficient for optimality.

TimoREM 1.8. An aseent direction algorithm solves problem (D) to optimality in a
finite number of iterations if m l.

PROOF. This follows immediately from the form of the function L for m = I (see
Figure 1.4). Hopping from one point of non-differentiability to another in the
direction of an optima} solution, we findan optimum in a finite number of itera
tions, since there is only a fini te number of such points. 0

For m 1, binary search over the feasible interval of À is an alternative
approach to solve problem (D).

Many problems can be viewed as easy problems complicated by a single con
straint. We mention the constrained shortest path problem [Handler and Zang,
1980] and the constrained linear assignment problem [Aggarwal, 1985]. For both
problems, the Lagrangian problem possesses the integrality property, implying
that the best Lagrangian lower bound equals the optimal solution of the linear
programming relaxation (see Corollary 1.1). The latter can he obtained by use of
a generallinear programming algorithm; an aseent direction method, however, is
much faster, since it employs the specialized algorithm for solving the Lagran
gian problem. In Chapter 5, we address a scheduling problem with a single nasty
constraint. lts Lagrangian dual problem is easy, and renders a lower bound that
concurs with the upper bound for virtually all instances if the number of jobs is
not too small.

lt is often overlooked that the analysis of the conditions (1.17), which also
apply to À*, may give valuable information about À* and the structure of an
optima) dual solution. These conditions may be so forcing that À* can he par
tially or completely determined a priori. For instance, if some primitive direc
tional derivative is non-negative everywhere, then the optimal value of the
corresponding Lagrangian multiplier is attained at a boundary of the feasible
region. In Chapters 2 and 6, we see examples of this phenomenon. Also in
Chapter 2, we develop an approximation algorithm that is based upon the termi
nation conditions (1.17).

Finally, we give here a sketch of an aseent direction metbod that illustrates the
basic principles. We reconsider the generalized assignment problem, and analyze
the Lagrangian problem obtained by dualizing the knapsack constraints. Since
the Lagrangian problem is solvable in polynomial time, it is easy to develop an
aseent direction method. Klastorin [1979] describes such a method for this prob
lem; the aseent direction method we describe partly concurs with his.

Reeall that in the solution to this Lagrangian problem, each job Jj is assigned
to a machine Mi such that

c,j + Àipij mini < k < m (ckj + ÀkPkj),

32 Chapter 1. Introduetion

for j 1, ... , n. From among the optima1 solutions to the Lagrangian problem
(L.\), let x (i)+ be the solution with the least jobs assigned to M;, and let x (i)- be
the solution with the most jobs assigned to Mi> for i I, ... , m. Fdrthermore,
define ~i (À) as the set of jobs assigned to M; in x (i)+, and define ~~-(À) as the
set of jobs assigned to M; in x (i)- , for i = 1, ... , m. Hence, we have that

~f(À) {Jj I cij + À;pij <mini...;k...;m,ko;éi(ckj + ÀkPkj)},

for i = I, ... , m; jobs with ties concerning the minimum dual oost cij +À; pij

have been assigned toother machines than M1• Similarly, we have that

~~(À)= {Jj I cij + À;pij = minJ...;k ...;m (ckj + ÀkPkj)},

for i = 1, ... , m; jobs with ties have been assigned to M;. The primitive direc
tional derivatives are then simply

lf(À) ~ pij-b;, fori=l, ... ,m,
1

1
E !f;(.\)

and

1;-(À) = b1- ~ pij, for i 1, ... ,m.
1; E!f,-(.\)

Suppose now that ti (À)> 0; hence, the capacity b; of M; is exceeded, even if all
ties have been settled in favor of other machines. Increasing À;, thereby making
M; more expensive, is an aseent direction. Moving along this direction by a
specified step size à, we reach the first point where some job currently scheduled
on M 1 can equally well be scheduled on some other machine Mk; i.e., A is the
smallest positive value for which there exists some job Jj E ~;+(À) and some Mk

such that

cij +(À; + A)p;j = ckj + ÀkPkj;

hence, we have that

A -À;+ mini...;k...;m,ko;éi,1
1

e!f,+(.\)(ckj +ÀkPkj-cij)IPij·

At this point, the directional derivative changes. It is easy to verify that
L(À1, ••. ,À;+A, ... ,Àm)- L(À1, ••• ,À;, ... ,Àm) = àli (À)> 0. Suppose now
that Ç (À) < 0; M; has spare capacity, even if jobs with ties have been assigned
to M;. Decreasing À;, thereby making M1 cheaper, is an aseent direction. Moving
along this direction, we eventually reach the point where some Jj currently
scheduled on Me/=M; is forced to go to M;; i.e., the desired step size A is the
smallest positive value for which there exists some Jj currently scheduled on Mk

such that

hence,

A= À; min11 e!f-:r(>.).l...;k...;m,ko#i (ckj + ÀkPkj -cij)l Pij·

Any aseent direction method built upon this principle terminates at some À for

1, 3. Lagrangian relaxation and duality 33

which

~ _PiJ ~bi ~ ~ _ PiJ• for i 1, ... , m.
1

1
E ~.,+(À) Jj q.; (À)

We note that Fisher, Jaikumar, and Van Wassenhove [1985] propose an aseent
direction metbod for the alternative Lagrangian problem of the generalized
assignment problem, which is obtained by dualizing the assignment constraints.
Since this Lagrangian problem is only solvable in pseudo-polynomial time, the
computation of the step size is difficult. Computational results exhibit, however,
that the additional effort is worthwhile.

1.3.3.4. One-shot methods
A proruising strategy, completely different from the iterative procedures we dis
cussed, proceeds as follows. Reeall that problem (D) can be represented as a
linear program with a finite but huge number of constraints. The transition to a
linear program ~roceeds by the representation of the finite set X as
X {x(!>, ... ,x< >}. Definenow A(k) as

A(k) = {À;;;.O I (c-ÀA)x(k) Àb min{(c-ÀA)x+M I x EX}},

for t l, ... , T. Put in words, A (k) contains all the Lagrangian multipliers À;;;;. 0
for which x<k) EX solves the associated Lagrangian problem. Obviously, the
optimal objective value of the following problem, referred to as problem (S<kl),
which is to maximize

(c -ÀA)x(k) + Àb

subject to

À E A(kl,

provides a lower bound on L(À*), and therefore, on v(P), for each k,
k =I, ... ,K. We denote the optimal objective value of (S(k)) by v(S(k>). Note
that v(S<kl) = L(À) forsome À E A(kl. It is not feasible to solveeach of these
problems; the strategy is therefore to single outsome x<kl that can be expected to
correspond to a comparatively strong lower bound v (S(kl); this is why we call it a
one-shot method. An attractive choice for x<k) seems to be a feasible and good
approximate solution for problem (P). The underlying logic comes from linear
programming: if (P) is a linear program and if x<k> is its optimal solution, then
we have v(S(kl) = L(À*) = v(P). The whole idea is of course only feasible if
problem (S(k)) displays some agreeable structure that makes it not too difficult to
solve.

When stated formally, the problem (s<k>) has an intricate structure, mainly due
to the requirement to specify A (k). For some single-machine scheduling prob
lems, however, this requirement is easy to satisfy. Hariri and Potts [1983] and
Potts and VllJ! Wassenhove [1983,1985] exploit this for the problems
1 I r1 I ~w1c1 , 1 I d1 I ~w1c1, and 1 I I ~w1 ~, respectively. The first two problems
are formulated in terms of the job completion times C 1, .•. , C11 , similar to the
formulation we gave for lipree I ~w1c1 . The total weighted tardiness problem is

34 Chapter 1. Introduetion

formulated similarly in terms of both the job completion times and the job tar
dinesses T 1, ••• , Tn. After dualizing the proper constraints, determining a primal
!5:asible ~equence a, computing the corresponding job completion times
C 1, ••• , Cn, and reindexing the jobs in order of appearance, each problem (S(k)) ·
for each of the applications is basically of the following type: maximize

subject to

:\.1IP1 ~:\.2/P2 ~ ·· · ~:\.n1Pn•

;\J ~ 0, for j I, ... , n,

(1.18)

(1.19)

where aJ (i = I, ... , n) is a non-negative integer that depends on the parameters
of the problem. After all, the prespecified sequence a is optimal for this problem
only if the jobs are sequenced in compliance with Smith's rule; this is expressed
by the conditions (1.18). This type of problem is solvable in O(nlogn) time, and
has been empirically shown to provide satisfactorily strong lower bounds for the
respective applications. For the 1 I I kWJ TJ problem in particular, this lower
bound approach has led to an efficient branch-and-bound algorithm. For the
machine scheduling probieros dealt with in Chapters 2, 4, and 5, we work in a
reverse manner: we present there empirica! evidence that the x<k) that are good
approximate solutions for the Lagrangian dual problem (D) are also good
approximate solutions for the primal problem (P).

1.3.3.5. Miscellaneous approaches
Since any ;\ ~ 0 induces a lower bound, many approaches for approximating the
optimal solution of problem (D) are conceivable. Many of these are hybrids,
often with some flavor of the subgradient metbod and of an aseent direction
method. Sometimes, different approximation algorithms for problem (D) are
used at the different levels of the search tree. For instance, for the R I I C rnax

problem in Chapter 4, we find a good approximation for ;\ * and use this approxi
mation throughout the search tree with some minor adjustments. Many variants
of this concept exist. In general, they are empirically motivated.

1.3.4. Competing relaxations andformulations
As the trade-off between lower bound quality and the time needed to compute it
is the most important issue involved in the· application of Lagrangian relaxation,
we must be prepared to consider a variety of relaxations. We may have to
analyze different relaxations coming from the same formulation (cf. the general
ized assignment problem), but also relaxations that come from different formula
tions of the problem (cf. the lipree I kwJCJ problem}. Furthermore, a problem
may not only have multiple integer linear programming formulations, but it may
also permit completely different formulations.

How to choose between competing formulations and relaxations? Often, it can
only be established empirically what the most attractive relaxation is. Quality-

1. 4. Machine schedu/ing and Lagrangian relaxation 35

wise, we have seen that the lower bounds from different relaxations from the
same formulation can be compared analytically under certain circumstances. In
a recent paper, Dyer and Wolsey [1990] even manage to establish a hierarchy of
relaxations for the 11 r1 I ".i.w1c1 problem that stem from different formulations. ·
Y et, the quality of the lower bound is not the decisive factor in the choice of a
relaxation; the time needed to compute it should also be taken into considera
tion. As a coarse guideline, Lagrangian problems with few constraints dualized
seem to be more attractive; on the one hand, fewer Lagrangian multipliers are
involved, on the other hand, the Lagrangian problem bears a stronger resem
blance to the original problem.

In addition to the efficiency and effectiveness of the lower bound, other issues
may play a role, too. Relaxations may give rise to elimination criteria, by which
some feasible subsets can be excluded from further consideration. For the
R I I C max problem, for instance, it is possible to reduce the problem size by fix
ing some of the assignment variables as aresult of the lower bound (see Chapter
4). For lipree I ".i.w1c1, it is possible to derive additional preeedenee constraints
between the jobs (see Chapter 2). Another important feature is the ex tent to
which Lagrangian problems induce approximate solutions. Sometimes, the solu
tion to the Lagrangian problem is also feasible for the primal problem, or it may
suffice to perturb the salution slightly to obtain one. Solving the Lagrangian
problem of the generalized assignment problem obtained by dualizing the knap
sack constraint, we get for each vector À an assignment of jobs to machines.
Perhaps this assignment is already feasible, perhaps only minor adjustments suf
fice to make it feasible. In the subsequent chapters, we show examples of this,
and provide empirica! evidence that good approximate solutions for scheduling
problems can be obtained in this manner.

1.4. MACHINE SCHEDULING AND LAGRANGJAN RELAXATION

1.4.1. A review ofthe literature
Lagrangian relaxation has been intensively analyzed for and successfully applied
toa wide variety of combinatorial optimization problems (see Fisher [1985] and
Guignard and Rosenwein [1989]). This assertion can be challenged, however, as
far as machine scheduling problems are concemed. The analysis of Lagrangian
relaxation and its application form a relatively small portion of the voluminous
research, including branch-and-bound algorithms, in this area.

A likely reason for this is the inclination to formulate machine scheduling
problems as integer Iinear programs. Integer Iinear programming formulations
usually suffer severely from a high number of variables or constraints. It is not so
surprising then that they seldom give rise to promising relaxations. The inclina
tion towards integer linear programming formulations may prohibit the exami
nation of other formulations, in which attractive underlying structures may
beoome apparent. By 'other formulations', we specifically refer to formulations
in terms of the job completion times and disjunctive constraints like the one for
lipree I ".i.w1C1 inSection 1.3.

A review of the literature on papers invalving Lagrangian relaxation applied to

36 Chapter 1. Introduetion

machine scheduling can be brief and reverts mostly to the reierences given in
Section 1.3. If we make a distinction between integer linear programming formu
lations and other formulations, then the following papers fall in the first
category. Fisher [1973] explores the possibilities of Lagrangian relaxation for
machine scheduling problems in a broad context, and was probably the first to
do so. We mention Hariri and Potts [1984] and Potts [1985A], who consider the
problems F2lpree I Crnax and lipree I :2:w1c1, respectively. The formulation for
lipree I :2:w1c1 employed by Potts is given in Section 1.3. The formulation for
F2lpree I C max is also based upon variables x1k that take the value I if J1 is
sequenced before J k and the value 0 otherwise. For both applications, aseent
direction methods are developed.

For applications that fall in the second category, we refer to Hariri and Potts
[19_ll3] and Potts and Van Wassenhove [1983,1985] for the problems 11 r1 I :2:w1c1,

11 d1 I :2:w1c1, and III :2:w1 Ij, respectively. Lower bounds for these problems are
obtained by the one-shot methods we discussed in Section 1.3.3.4. Furthermore,
Fisher [1976] presents a formulation in terms of the job start times for the
I I I :2:T1 problem, but uses a pseudo-polynomial number of constraints to make
sure that the machine handles no more than one job at a time. The subgradient
metbod is applied to find strong lower bounds.

1.4.2. A preview ofthis thesis
The following chapters deal with the application of Lagrangian relaxation and
Lagrangian duality to a variety of machine scheduling problems. These include
single-machine, flow-shop, and parallel-machine problems, and involve assign
ment, partitioning, sequencing, and scheduling problems. We particularly exam
ine logical formulations that facilitate the development of aseent direction
methods. The application of Lagrangian relaxation is not only focused on lower
bounds, but also on upper bounds. In general, Lagrangian relaxation and duality
are problem-specific, and provide additional opportunities beyond lower bound
and upper bound computations. In these cases, we give full descriptions of the
branch-and-bound algorithms. The design of these branch-and-bound algo
rithms is usually steered by the analysis of the Lagrangian problems.

In Chapter 2, however, we immediately deviate from this course, since the
analysis bere is not problem-specific, but problem-class-specific. We consider
Lagrangian relaxation and Lagrangian duality for single-machine problems that
can be formulated in termsof the job completion times. For such a problem, it is
relatively simpte to design an aseent direction method. Upon terminatien of the
aseent direction method, we obtain a decomposition of the problem, which we
call dual deeomposition. We try to verify to what extent the dual decomposition
concurs with a correct decomposition. The dual decomposition serves as a frame
work or as a guide for the design of approximative and enumerative methods.
We demonstrate this by a detailed analysis of the lipree I :2:w1c1 problem. This
chapter is based on Van de Velde [1990B].

In Chapter 3, we consider the problem of minimizing the sum of the job com
pletion times in the 2-machine flow-shop. This problem is formulated in termsof
the job completion times on both machines. It is not so surprising that the

1 .4. Machine scheduling and Lagrangian relaxation 37

Lagrangian problem decomposes initially into two single-machine problems.
However, it reduces to a linear ordering problem when a restrietion is added that
is redundant for the primal problem. Although the linear ordering problem is
0L0'-hard, it turns out to be well-solvable for eertaio choices of the Lagrangian
multipliers. lt is also shown how this approach can be extended to the general
case of m machines. This chapter draws upon from Van de Velde [1990A].

In Chapter 4, we analyze the problem of minimizing the makespan on unre
lated parallel machines. This problem bas already been introduced in Section
1.1.3. We give an integer linear programming formulation, and dualize a set of
constraints by which we obtain a Lagrangian problem with the integrality pro
perty. We show, nonetheless, that the Lagrangian problem provides asolid basis
for the development of an optimization algorithm and an approxîmation algo
rithm. Chapter 4 is closely related to work presented in Van de V el de [1990c].

In Chapter 5, we consider a single-machine problem where the jobs have a
common due date. The objective is to minimize the sum of deviations of the job
completion times from the common due date. The machine scheduling problems
in which early completions of jobs are penalized as well form a rapidly evolving
field of research, which is inspired by the just-in-time concept for manufacturing.
Much concurrent research concerns problems of this type, and this problem in
particular. When formulated as an easy partitioning problem complicated by a
single constraint, the successof Lagrangian relaxation and duality is remarkable:
the Lagrangian dual problem gives rise to a lower and an upper bound that con
cur for virtually all instauces with the number of jobs not too small. Chapter 5 is
based upon Hoogeveen, Oosterhout, and Van de Velde [1990].

In Chapter 6, we examine the single-machine scheduling problem of minimiz
ing total inventory oost. This objective is reflected by a linear combination of two
cost functions, one of which penalizes early completions. Apart from the objec
tive function, this problem differs on two counts from the problem exarnined in
Chapter 5. The due dates may be distinct, and it may be profitable to insert
machine idle time between the execution of jobs. The latter is the intriguing
aspect of this problem. lt may seem to be a scheduling problem at first sight. Yet,
there is a one-to-one correspondence between sequencing and scheduling, as
there is a polynomial metbod to optimally insert machine idle time for a given
sequence. Hence, the problem reduces toa sequencing problem after all. Very lit
tle is known about the denvation of lower bounds and the development of
branch-and-bound algorithms for such problems. The possible occurrence of
machine idle time complicates the matter of scheduling significantly, since this
aspect is hard to capture in lower bound methods of any nature. We show that
even for such problems Lagrangian relaxation is a useful method. We present a
number of other lower bound strategies and elimination criteria for this problem
as well, as it appears that Lagrangian relaxation is a less dominant technique
bere than it is for the previous problems. Chapter 6 is based upon Hoogeveen
and Van de Velde [1991B].

39

2

Single-Machine Scheduling

We present in this chapter a framework for the analysis of Lagrangian problems
associated with single-machine scheduling problems that can be formulated as
follows: deterrnine job completion times C 1, ••• , C,. that rninirnize

j(C~o ... ,CmTJ, ... ,T,.,E~> ... ,E,.)

subject to

gh(C~>····C,.,Tb····T,.,EI>···,En)~O, forh = l, ... ,H, (2.1)

the capacity and availability of the machine, (2.2)

where f and gh (h I, ... , H) are functions that are linear in their arguments. Ij
is the tardiness of Jj, defined as Ij = max{ Cj -dj, 0}, and Ej is the earliness of
Jj, defined as Ej = max{ dj- Cj,O}. In addition, we assume that H is bounded by
a polynornial in n, the number of jobs.

The conditions (2.2) generally state that the machine can handle no more than
one job at a time and that it is continuously available only from time 0 onwards.
The conditions (2.1) are assumed to be the nasty constraints: if they are absent,
then the problem is solvable in polynornial. time.

The formulation covers many single-machine scheduling problems, including
miniruizing "2-J = 1 wjCj subject to preeedenee constraints and miniruizing total
weighted tardiness. These problems are considered in this chapter. Such a formu
lation followed by the Lagrangian relaxation of the type (2.1) constraints is also
used by Hariri and Potts [1983] for the problem of miniruizing total weighted
completion time subject to release times, by Potts and Van W assenhove (1984)
for miniruizing total weighted completion time subject to deadlines, and by Potts
and Van Wassenhove (1985) for miniruizing total weighted tardiness. These
authors use application-specific one-shot methods to approximate the optima!

40 Chapter 2. Single-machine scheduling

solution value of tbe Lagrangian dual problem (see Section 1.3.3.4).
The Lagrangian problem, obtained by dualizing the constraints (2.1), offers

attractive opportunities for tbe development of both optimization and approxi
mation algorithms. We demonstrate this by tbe analysis of lipree I ~wjCj (i.e.,
the problem of minimizing total weighted completion time subject to preeedenee
constraints). The analysis is typical of single-machine scbeduling problems tbat
allow tbe genetic formulation.

This cbapter is organized as follows. In Section 2.1, we introduce the
lipree I ~w1c1 problem, formulate it in termsof tbe job completion times, derive
the Lagrangian problem, develop a quick aseent direction metbod, and analyze
the termination conditions. Upon termination of the aseent direction method, we
get a decomposition of the jobs into subsets; we call this a dual deeomposition. In
Section 2.2, we show bow sucb a dual decomposition can he emp1oyed to find
approximate solutions for the primal problem. Computational results exhibit the
high quality of sucb solutions. In Section 2.3, we discuss bow the dual decompo
sition can he of use for the design of enumerative methods. In Section 2.4, we
show tbat a similar analysis can he conducted for the prob1em of minimizing
total weighted tardiness.

2.1. ThE LAGRANGJAN DUAL OF lipree I ~w1c1
We consider the following single-machine problem. A set~ {J1, •.• ,J11 } of n
independent jobs bas to he scheduled on a single machine that can handle no
more that one job at a time. The machine is continuously available from time 0
onwards. Each job J1 (j 1, ... , n) requires processing during an uninterrupted
period of a given length p1. In addition, eacb job J1 bas a weight w1, expressing its
urgency relative toother jobs. We assume that tbe processing times and weights
are integral. There are preeedenee constraints present between the jobs. They are
represented by an acyclic preeedenee graph G with vertex set {J1, ••• ,J11 } and
are set A, which equals its transitive reduction. A path in G from J1 to h implies
that J1 bas to he executed before h; J1 is a predeeessor of Jb and h is a suecessor
of J1. Incasethere is an are (J1,Jk) E A, tben J1 is said to he an immediate prede
eessor of h; h is tben an immediate sueeessor of J1. Wedefine <!Y1 and &1 as tbe
set of immediate predecessors and immediate successors of J1, respectively
(j = 1, ... ,n). A sehedule is a specification of the job completion times, denoted
by c1 (j =I, ... ,n), sucb tbat the jobs do notoverlap intheir execution. The
objective is to find a feasible schedule that minimizes the total weighted comple-
tion time, w1c1.

If tbere are no preeedenee constraints, then tbe problem is solvable by Smitb's
ratio rule [Smith, 1959]: simply process the jobs in order of non-increasing values
w1 tp1 in the interval [0, ~}=tPJ] (see Theorem 1.1). For special classes of pre
eedenee constraints, the prob1em is still solvab1e in O(nlogn) time; this is the
case for tree-like preeedenee constraints [Hom, 1972; Adolphson and Hu, 1973;
Sidney, 1975] and for series-parallel preeedenee constraints [Lawler, 1978]. In
general, the problem is 'Dt<!f-bard in the strong sense [Lawler, 1978; Lenstra and
Rinnooy Kan, 1978]. This justifies the development of· approximative and
enumerative a1gorithms. Morton and Dharan [1978] propose several heuristics.

2. 1. The Lagrangian dual of lipree ll:wjc, 41

Specifically, the so-called tree-optimal-heuristie, producing optima} solutions in
case the preeedenee constraints take the form of a tree, generales high-quality
solutions. Potts [1985A] presents a branch-and-bound that solves instauces up to
100 jobs; he employs Lagrangian lower bounds obtained from a 0-1 linear pro
gramming formulation of the problem.

In contrast to Potts (1985A], we formulate the lipree I ~w1c1 problem in terms
of the job oompletion times. Fora comparison of the two formulations, we refer
to Section 1.3. The problem is then formulated as follows: delermine job comple
tion times that minimize

subject to

Ck ;;;. CJ + Pk• for each (JJ,h) E A, (2.3)

c1 ;;;;;. Ck +Pi or Ck;;;. C1 + Pk• for i· k I, ... , n, i =I= k, (2.4)

c1 PJ;;;. 0, for i= 1, ... , n. (2.5)

The oonditions (2.3) stipulate the preeedenee constraints; the conditions (2.4)
and (2.5) reflect the traditional assumptions regarding machine capacity and
availability.

The lipree I ~w1c1 problem can beseen as an easy-to-solve problem compli
cated by the conditions (2.3). Accordingly, we introduce a vector À E IRA that
oontains a Lagrangian multiplier ÀJk ;;;. 0 for each are (J1,J k) E A and put the
oonstraints (2.3), each weighted by its multiplier, into the objective function. For
a given vector À ;;;. 0, the Lagrangian relaxation problem, referred to as problem
(LÀ), is to find L(À), which is the minimum of

.± [<wJ+ L ~k- L ÀkJ)CJ + L ÀJkPkl (LÀ)
] = l J, E :;;1 J, E '!l'1 J, E $1

subject to the machine capacity and availability conditions (2.4) and (2.5).
Fori l, ... ,n,letw/(À) (w1 +~1,e;;;1 ~k ~J,E'!l'1 Àkj)lp1 ;wecallw/(À)

the relative weight of job 11. Using Smith's ratio rule, we solve problem (LÀ) by
sequencing the jobs in order of non-increasing relative weights. For any À;;;. 0,
L(À) is a lower bound for the ljpree I ~w1c1 problem; we like therefore to find
the vector À* that induces the best Lagrangian lower bound. This is the Lagran
gian dual problem, referred to as problem (D): maximize

L(À) (D)

subject to

F ollowing the lines of Section 1.3.3, we first prove that problem (D) is solvable to
optimality in polynomial time. For problem (D), at most n ! feasible sequences
are involved; the tth feasible sequence in duces the vector (c~t J, c~>, ... , C~)) of

42 Chapter 2. Single-machine scheduling

job completion times, where t I, ... , T and T ~ n!. Problem (D) is then
equivalent to the following problem: maximize

z

subject to

for each (Jj,h) E A.

Problem (D) has been transformed into a problem of maximizing a linear func
tion subjecttoa finite number of linear constraints.

THEOREM 2.1. Problem (D) is solvable in polynomial time through Khachiyan's
ellipsoid method [Khachiyan, 1979].

PROOF. The proof proceeds in the samespirit as the proof of Theorem 1.6; it is
included for sake of completeness. Let

:X:={(z,:\)lzEill,ÀXIRA,z~ :± [(wj+ ~ \k- ~ Àkj)C)t)+ ~ ÀjkPkl·
J = 1 J, E l§;J J, E '!J'J J, E S1

fort I, ... , T, ÀJk;;;;. 0, for each (J1,Jk) E A }.

Reeall that it suffices to show that the following separation problem for :X: is solv
able in polynomial time (see Grötschel, Lovász, and Schrijver [1981], and Pad
berg and Rao [1982]): given (:Z,À) E Q XQA, decide whether (:Z,À) E :JC; if not,
give a separating hyperplane, that is, an inequality ÀdT + az ~ fJ, such that

(z,À) E :JC=*ÀdT + az ~ fJ,
and

- -
Observe now that for_ a _given (~À) we determine the value L(À) and the
corresponding vector (C 1, C 2 , ••• , Cn) of job _Eompletion tim_!s by solving_prob
lem (L>;t_ this is done in O(nlogn) time. If L(À);;;;. z, then (Z,À) E :X:; if L(À) <z,
then (z,À) ft: :X, and ·

:Z > f [(wj + ~ Àjk- ~ Àkj)CJ + ~ ÀJkPkl,
j = 1 J, E)i;/ J, E 'iJ'1 J, E l§;1

is a separating hyperplane. D

In practice, the ellipsoid method is very slow; we develop therefore a quick
aseent direction algorithm to approximate the optima} solution of problem (D).
First, we derive expressions for the primitive directional derivatives. In an

2. 1. The Lagrangian dua/ of lipree I ~wj ei 43

optimal solution for the Lagrangian problem, the position of J1 depends on its
relative weight: the larger its relative weight, the smaller its completion time. If
its weîght is tied, then its position also depends on the way ties are settled. Let
now Cf (À) denote the earliest possible completion time of J1 in an optimal .
schedule for problem (L>,); let CT (À) denote the latest possible completion time
of J1 in an optimal schedule for problem (L>,). Increasing ÀJk by a specific f. > 0
will increase the relative weight of J1 from w/(À) to w/(À) + f.! p1; simultane
ously, it will decrease the relative weight of Jk from w/(À) to wk'(À)- d Pk· It is
possible to choose e > 0 small enough to ensure that at least one optimal
schedule for problem (L>.) remains optimal (see Theorem I. 7). In such an optimal
schedule, J1 must be completed on time Cf (À) and Jk must be completed on
time c; (À). Increasing ÀJk by such a small f. affects the Lagrangian objective
value by !(Cf(À)-C;(À)+Pk). From this, we derive that the primitive direc
tional derivative for increasing ÀJk at À, denoted by 111 (À), is

I1t(À) Cf(À)-C; (À)-t:Pk> for each (J1,Jk) E A.

lf Jjt(À) > 0, then increasing ÀJk is an aseent direction: we get an improved
objective value by moving along this direction. The sign of each ljt (À) is deter
mined in constant time. Note that for each are (J1,h) E A, we have

Cf(À) > c;(À)+Pk ~ w/(À) < wk'(À);

hence, l1t(À) > 0 ~ w/(À) < wk'(À). In a similar fashion, we find that ljk(À), the
primitive directional derivative for decreasing ÀJk at each À with ÀJk > 0, is

lj"k(À) = ct(À)-CT(À)-Pk, foreach(Jj,h) EA.

If ljk(À) > 0, then decreasing ÀJk is an aseent direction: we get an improved
objective value by moving along this direction.

Given an aseent direction, we invariably move by the step size that maximizes
the iocrement to the objective value. If 111 (À) > 0, then the iocrement is maxim
ized by moving to the first point where increasing ÀJk is no longer an aseent
direction. At this point, the relative weights of J1 and h are equal. Hence, the
required step size is the value Ll for which

w/(À) + Ll!p1 = wk'(À)- Ll!pk;

it is determined in constant time. Consider now the case lji(À) > 0. To eosure
that the Lagrangian vector remains non-negative, we impose the condition that
Ll ~ ~- If this condition is not restrictive,.then we move to the first point where
decreasing ÀJ is no Jonger an aseent direction. lf it is restrictive, then we take the
step size as large as possible. Henee, the step size that maximizes the iocrement
of the objective value is computed as the largest value Ll ~ ÀJ for which

W/(À)-Lllp1 ;;;. w/(À) + Ll!pk.

Eventually, termination occurs at some À at which no aseent direction exists
anymore. Later on, we will analyze the termination conditions. We first give a
step-wise description of the aseent direction algorithm.

44 Chapter 2. Single-machine schedu/ing

AseENT DIRECTION ALGORlTHM

Step 0. Set ÀJk = 0 for each (J1,J k) E A, and compute the relative weights w/(À).
Step 1. For each (J1,h) E A, do the following:
(a) If w/(À) > wk'(À), then compute the step size

~ = [wk'(À) w/(À)]p1fkl(pi+pk).

Put ÀJk ~ ~k + ~. and update w/(À) and wk'(À).
(b) If w/(À) < w/(À), then compute the step size

ll = max{À1, [w/(À)- wk'(À)]p1pkl(p1+pk) }.

Put ÀJk ~ ÀJk - ~. and update w/(À) and w/(À). .
Step 2. If no multiplier adjustment has taken place, then compute L (À) and stop;
otherwise, return to Step 1.

Let I be the number of times that Step 1 is executed. The aseent direction algo
rithm runs then in O(I IA I +nlogn) time. Since we cannot bound I by a poly
nomial in n and I A I , the aseent direction algorithm is presumably not a
polynomial-time method. In practice, however, the algorithm is very fast, pro
ducing very good approximate solutions.

THEOREM 2.2. The aseent direction algorithm described above generates a series of
monotonically increasing lower bounds for problem (P).

PRooF. Given an arbitrary À;;;;.: 0, we first assume w/(À) < wk'(À); hence,
IJ (À)= Cf(À)-C'k (À)+h > 0, and increasing ÀJk is an aseent direction. We
reindex the jobs according to non-increasing relative weights, setding all ties
arbitrarily except for J1 and h: we give J1 the smallest index possible and Jk the
largest index possible. Let C 1, ..• , Cn be the job completion times for the
sequence (J" ... ,Jn); note that c1 = Cf (À) and Ck = Ci: (À). Hence, in more
detail, the schedule under consideration is (J" ... ,J k- ~>!..k>h + t> ••• , J1 - "J1,
J1 +" ... ,Jn). Let ll be the step size as prescribed, and let À d~note the vector of
Lagrangjan multipliers after increase of ~k by ll. Since À and À differ only in one
component, the relative weights for all jobs but J1 and h remain the same. An
optima! schedule for problem (LA) is then (J I> ... ,Jk l>Jk + 1> ... ,It,
JJ.;Fk>JI +I> ... ,J1 I>JJ +" ... ,Jn), for some J, with k +I .;.;;;; [.;_;;;; j I; the job
completion times for this schedule can CO_!lveniently be expressed in terms of
C" ... , Cn. We now demonstrate that L(À) > L(À); it is basically a matter of
writing out. For brevity, we let JL; =w1 +~J.E!;;Ah-~J. ".,Àh; for each i
(i= 1, ... ,n). We have

_ k-1 n l j I

L(À) = ~ p,;C; + ~ P,;C; + ~ JL;(C1-pk) + ~ p,1(C1+p1) +
i=I i=j+l i=k+I i=/+1

(JLk-ll) [c;;(À)+p1 +i=*+/~] + (p,1+1l) [cf(À)-pk- ~~i/i] +

2. 1. The Lagrangian dual of lipree 1 }";w1Cj 45

n

~ ~ ÀmPh + l!.pk
i=JJ, E:!;,

j-I l

= L(À) + ~ (Jl.ipJ-p.Jp;) + ~ (Jl.kp;-p.;pk} + P.kPJ-P.JPk +
i=l+l i=k+I

Since J1 and h are adjacent in the second schedule, we have that

j-I l

(C/(À)-Pk- ~ p;)-(Ck(À)+pJ+ ~ pi} -pk·
i=/+1 i=k+l

This implies that
j-1 I

L(À) = L(À) + ~ (Jl.;pJ-P.JPt) + ~ (p.kp;-p.;fk) + P.kPJ-P.JPk
i=l+l i=k+l

I j I

= L(À) + ~ (p.klpk-p.;lp;)p;fk + ~ (Jl.;lp;-p.JIP)P;PJ +
i=k+l i=l+l

I j I

= L(À) + ~· [wk'(À)-w;'(À)]p;p1 + ~ [w/(À) w/(À)]p;p1 +
i=k+l i=/+1

Since wk'(À) > w/(À), w/(À) < w/(À) for each i (i = }5 + 1, ... , /), and w;'(À) >
w/(À) for each i (i =I+ I, ... ,j -1), we find that L(À) > L(À).

The analysis for the case l)k.(À) > 0 proceeds in a similar fashion. D

Consider the 10-job example from Potts [1985A] for which the processing times,
weights, and preeedenee graph are given in Tab1e 2.1 and Figure 2.1. If we put
ÀJk = 0 for all (J1,h) E A, then an optima] schedule is
(J 3.,.! JO.,./ 4.,./ 9,J 7,J 6,J 2,J 5,J 8,J 1) with total oost 1055. The same schedule and
lower bound a:re obtained by disregarding the preeedenee constraints and solving
11 I '2.w1c1. The schedule is not feasib1e for the original problem; for instance, J JO
is executed befare J 6 although (J6,J 10) E A. Since w6'(À) < wJO'(À), increasing
À6, JO is an aseent direction. The appropriate step size is a = 17 I 7, giving
À6,JO = 1717. We get (J3,J4,J9,J7,J6,JJO,h,Js,Js,JI) as an optima] schedule
for the new Lagrangian problem, having va1ue L(À) = 1106. Proceeding a1ong
these 1ines, we get the value L(À) = 1526.69 upon termination. Potts' procedure,
requiring O(n4

) time, produces the 1ower bound 1519; the upper bound gen
erated by the tree-optima1-heuristicis 1530. The duality gap is therefore no more
than 3.31.

46 Chapter 2. Single-machine scheduling

Jl '2 '3 J4 Js J6 J? Jg J9 lw

Pi 6 9 1 3 9 5 7 7 6 2

wi 2 5 9 6 5 4 9 3 8 5

T ABLE 2010 Processing times and weightso

FIGURE 2010 Preeedenee grapho

In the remainder of this chapter, we let À denote the vector of Lagrangian mul
tipliers upon termination of the aseent direction methodo Using the termination
conditions that all e_rimitive directional derivatives are non-positive, we derive
some properties for À and for the optimal solutions of problem (L:Oo These pro
perties are important for the development of approximation and optimization
algorithms for lipree I ~wiCio

DEFINITION 2olo The job set <i:B Ç~ is called a b/ock fora given À;;;;;. 0 if

(wi + ~ À ik - ~ Àk)! Pi = c, for each Ji E <i:B,
J, E)iil J, E'!J'I

where cis some positive real constant.

In any optimal schedule to problem (LÀ), the jobs in a block are interchangeable
without affecting the Lagrangian objective value L(À)o For any given À;;;;;. 0, the
job set ~is decomposed into B (À) blocks·<i:Bb 0 0 0 , <i:BB(À)' B (À) depending on À,
indexed such that

(wi- ~ À ik + ~ Àki)l Pi = eb, for each Ji E <!:Bb,
J, E)ii1 J, E<3'1

with CJ > 0 0 0 > CB(À) > 00

THEOREM 2030 Any vector À satisfYing the terminalion conditions induced a decom
posi/ion of~ into B (À) blocks <i:B 1, 0 0 0 , <i:BB(À), such that, if(Ji,Jd E A and Jk E <!:Bb,
then

2.2. Approximation 47

JJ E ij, I U · · · U ij,b,

ÀJk 0 if JJ E ij,l U··· Uij,b-1·

PROOF. If one of these claims is not true, then we can still identify an aseent
direction, contradicting the assumption that the terminalion conditions are satis
fied. D

Such a decomposition, i.e., a decomposition induced by a vector ~tisfying the
terminalion conditions, is called a dua/ deeomposition. Both À* and À in~uce dual
decompositions. Por our example, the dual decomposition induced by À consists
of three blocks: ij,l {J3}, ij,2 = {J2,J4}, and ij,3 = {J"Js,J6,h,Js,
J 9,J w}, with e, =9, e2 ll/12, and e3 = 617, respectively.

2.2. APPROXIMATION

We present an approximation algoriQlm that exploits the Jtgreeable structure of
the dual decomposition induced by À. Por b = I, ... ,B(À), let ob he a feasible
sequence for the jobs in <j,b. Prom Theorem 2.3, we derive the following.

COROLLARY 2.1. The sequenee o (o1 ,o2, .•. , oB(~)) is a feasible sequenee Jor the
overall problem. 0

If each ob is optima! for the lipree I~~~ Eqs, w1c1 problem (b = 1, ... , B (À)), then
we have the best such o. Prom a theoretica! point of view, each
lipree I ~J,E qs, w1c1 problem is as hard as the overall problem; from a practical
point of view, each problem, being of smaller dimension, is simpler. Dynamic
programming, when using a compact labeling scheme as proposed by Schrage
and Baker [1978] and Lawler [1979], solves small instances quickly. If the size of
a block is too large for the application of dynamic programming, then we resort
to the tree-optimal-heuristic, presented by Morton and Dharan [1978], to findan
approximate solution. However, even if the dual decomposition is induced by À*

and o is composed of optima} subsequences, then we still have no guarantee that
o is an optima} sequence; all optimal sequences may have been excluded by the
dual decomposition.

Por the example, the optimal sequences for the first two blocks are trivial:
o1 = (J3), and o2 (J2,J4); using dynamic programming, we find
o3 = (J ~>J 1,J 5,J 9,J 6,J g,J w); the tree;optimal-heuristic gives the same
sequence. We obtain o (J 3,J2,J4,J"J1,J5,J9,J6,J8,J 10), having total cost
1530.

We tested the approximation algorithm on problems with 20, 30, ... , 100
jobs. The processing times were drawn from the uniform distribution [1,100]; the
weights were generated from the uniform distribution [I, 1 0]. The preeedenee
graph was induced by the probability P with which each are (J1,Jk) with j < k
was included. The graph obtained in this way was then subsequently stripped
down to its transitive reduction. We generated problems for P = 0.001, 0.02,

48 Chapter 2. Single,.machine scheduling

0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.30, and 0.50. For each combination of n and P
we generated five problems; hence, 45 problems were generated for ~h value P.
This procedure parallels Potts' procedure to generate instances. Furthermore, we
solved each subprob1em to optimality if 1ess than 15000 labels were needed; oth
erwise, we used the tree-optimal-heuristic.

p Tree-Opt-Heuristic Dual Decomposition •

0.001 0.007 (42) 0.007 (42) I
0.02 0.074 (15) 0.069 (15)

•

0.04 0.516 (8) 0.248 (10)
0.06 1.214 (2) 0.675 (2)
0.08 1.446 (1) 1.076 (1)
0.10 2.040 (2) 1.518 (4)
0.15 2.252 (0) 2.024 (0)

0.20 2.551 (0) 2.113 (2)

0.30 4.111 (0) 3.733 (2)
0.50 4.334 (2) 4.116 (3)

T ABLE 2.2. Experimental results. For each value of P, the average re
lative deviation of the upper bound from the lower bound is given.
The figures within brackets indicate the number of times out of 45
that the upper bound equalled the lower bound.

In Table 2.2, the computational results are given. Potts already pointed out
that the re1ative difficulty of an instanee depends more on JA J than on n. We
have therefore classified the results according to the value P rather than n. For
each P, we present the relative deviation between upper bound and lower bound
for both the tree-optimal-heuristic and the dual-decomposition approach. Within
brackets we indicate for how many problems (out of 45) the upper bound
equalled the lower bound; this figure gives the number of times we found a prov
ably optimal solution. On the average, the dual-decomposition algorithm outper
farms the tree-optimal-heuristic approach for any problem class. For the 450
instances altogether, the tree-optimal-heuristic produced only 16 solutions that
were better; moreover, each of these was only marginally better.

The tree-optimal-heuristic requires O(n JA J) time, and is therefore sensitive
to instances with many preeedenee constraints. The running time of the dual
decomposition approximation algorithm mainly depends on the number of calls
on the dynamic programmingprocedure and the maximum label number. We
have coded both algorithms in the computer language C; all experiments were
conducted on a Compaq-386/20 Personal Computer. For n ~ 40, the tree
optimal-heuristic needed a few secouds at most. On the average, our approxima
tion required only slightly more computation; there were, however, occasional
peaks due to high labels in the dynamic programming subroutine. For n ;;;;:. 60,
the tree-optimal-heuristic needs about twice or three times as much computation

2.3. Prima/ decomposition 49

time as the dual-decomposition algorithm; even the peaks of the latter remain
below the average of the former.

Potts also points out that small and large values of P generate relatively easy
problems. For small P, only few preeedenee constraints are involved; for large P,
most disjunctive constraints are settled. Our results support the claim for small
P: the duality gap is very small. Since the optimal-tree-heuristic generates good
approximate solutions for all values of P [Potts, 1985A], there are two possible
explanations for the growth of the gap between upper bound and upper bound
for largervalues of P. It may he that the aseent directio~ metbod produces worse
approximate solutions in casePis large; it is more likely, however, that the dual
ity gap is an increasing function of P.

2.3. PRIMAL DECOMPOSITION

For b I, ... ,B, let ob* denote an optimal sequence for the problem
lipree I ~J1 Et, wjCj, where ~bç~. A decomposition of the job set~ into B mutu
ally disjoint subsets :h, ... , ~B is said to he a prima[deeomposition if the sequence
o = o1 *, ... , oB* is optimal for the overall I I pree I ~wjCj problem. We already
mentioned that a dual decomposition may exclude all optimal sequences; a dual
decomposition only suggests a primal decomposition. In this section, we try to
establish to what extent a dual decomposition coincides with a primal decompo
sition.

If a dual decomposition excludes all optimal solutions, then there are at least
two jobs belonging to different blocks withno path in A between them for which
the processing order should he reversed. Suppose Jj E ~b and J k E ~b +m

(m > 0) are such jobs. In all feasible sequences obtained by the dual
decomposition approach, J1 precedes h; but in all optimal sequences, h pre
cedes Jj. Hence, the are (h, Jj) can he added to the are set A without impunity.
Let problem (L,. (k,j)) he the Lagrangian problem for the are set A U (h,Jj), and
let À(k,j);;;;. 0 he a vector of Lagrangian multipliers. Since the are (Jk>JJ) does not
exclude the optimal solution, L(À(k,j)) is still a lower bound on the optimal solu
tion, for any À(k,j) ;;;;. 0.

This observation gives rise to the following theorem. Let ~ 1 , ••• , ~B he the
blocks of some dual decomposition.

THEOREM 2.4. IJ there are two jobs Jj E ~b and Jk E ~b +m (b = I, ... , B 1,
m = 1, ... , B - b) with no path in A between them for whieh

L(À(k,j)) > UB 1,

then J1 preeedes h in all optima/ solutions for the I I pree I ~wjCj problem. D

If Theorem 2.4 applies to all pairs of such jobs, then the dual decomposition is a
primal decomposition; in fact, due to transitivity, it only has to apply to specific
pairs of jobs.

CoROLLARY 2.1. IJ for each pair of jobs J1 E ~b and Jk E ~b +m

(b 1, ... ,B -1, m 1, ... ,B -b) sueh that

50 Chapter 2. Single-machine scheduling

(i) there is no path in A from J1 to h,

(ii) J1 has no successors in ~b U · · · U ~b +m -1, and

(iii)h has no predecessors in ~b + 1 U · · · U ~b +m•

we have that L(A(k,j)) > UB I forsome À(k,j);;;;;. 0, then the dual decomposition
is a prima/ decomposition. 0

Accordingly, if the dual decomposition induces a primal decomposition and if
UB is associated with the sequence that is composed of optimal subsequences,
then UB is the optimal solution value of the lipree I ~w1c1 problem.

CoROLLARY 2.2. lffor some block ~b• each pair ofjobs J1 E ~band hE ~b+m
(m = 1, ... ,B-b)suchthat

(i) there is no path in A from J1 to h,

(ii) J1 has no successors in ~b U · · · U ~b+m-b and

(iii)h has no predecessors in ~b+ 1 U · · · U ~b+m•

satisjies L (À(k,j)) > UB -I forsome À(k,j);;;;;. 0, then the subsets ~1 U · · · U ~b
and ~b + 1 U · · · U ~ 8 constitute a prima/ decomposition of~. 0

In this case, we say that the dual decomposîtion concurs partly wîth a primal
decomposition.

Whether we succeed to establish that a dual decomposition concurs partly or
completely with a primal decomposition depends on the quality of the lower
bounds L(À(k,j)). From this point of view, we like to have available the vector of
optimal Lagrangian multipliers for problem (L>. (k,j)); let À* (k,j) denote this
vector. Of course, À* (k,j) is as difficult to find as the vector À*. However, an
aseent direction metbod to approximate À* (k,j) is readîly available: we apply
the direction method for problem (D), adjusted for th~ additional are (Jk>J1),
usîng as initial vector À(k,j)<0> obtained as À(k,j)f{}.> = À;h for each (J;,Jh) E A
and À(k,j)ffj = 0. We note that L(À(k,j)<0>) L(À). At À(k,j)<0

\ all primitive
directional derivatives are non-positive but one: we have /~(À(k,j)<0l) > 0;
increasing À(k,})kj is an aseent direction. If J1 and J k be1ong to blocks that lîe far
apart from each other, then the Lagrangian lower bound corresponding with the
point where the sign of this directional derivative changes may already exceed
UB -1. This Lagrangian 1ower bound is oonvenienily computed; this is stipu-
1ated in the next theorem, where p(~b) is defined as p (~b) = ~J, E r,r;,,p;.

THEOREM 2.5. ljthere are two jobs J1 E ~band Jk E ~b+m (b = 1, ... ,B(À.) I,
m = 1, ... , B (À)- b) for which there is no path in A from J1 to h such that

_ I b+m-1
L(À)+(cb-cb+m)PJPk+ ~ (cb-c;)p(~;)pj+ ~ (c;-cb+m)P(~;)fk

i=b+1 i=/+1

exceeds UB -I, where I is the largest index with c,;;;;;. (p1ch + pkcb +m)l (pk + PJ1
then J1 precedes Jk in all optima/ solutions for the lipree I ~w1c1 problem.

2.4. The total weighted tardiness problem 51

PR.ooF. The validation of this theorem requires the same logic applied in the
proof of Theorem 2.2. 0

lf Theorem 2.5 does nat apply, then we run the aseent direction algorithm until ·
!!O aseent directions can he found anymore; upon termination, we get the vector
À(k,j).

We now workout the effects of these theorems on our example. According to
Corollary 2.2, we need consider only the pairs (J 3,J 2) and (J 3,J 1) in order to
decompose the jobs into ~ 1 on the one hand and ~2 U~3 on the other. Including
(J 2,J 3) in A, we get, by use of Theorem 2.5, that
L(À*)+(ci-c2)P2P3=1526.69+(9-ll/12)·1·9>1529; we conclude that J3
preeerles J 2 in any schedule with cast less than 1530. Similarly, if we include
(J 1 ,J 3) in A, then, according to Theorem 2.5 (where we have I= 1), we must ver
ify if

L(À*) +(ei -c3)PIP3 + (c2 -c3)p(~2)P1 > UB -1.

This is so; hence, J 3 must preeede J 1, implying that we may decompose the job
set into subsets ~1 and ~2 U ~3 . We must consider the pairs (J 4 ,J 1), (J 4 ,J 5),

and (J 4 ,J 8) to separate the blocks ~2 and ~3._More thllQ_ one iteration _in the
aseent direction procedure is required. Since L(À(l,4)), L(À(5,4)), and L("J\(8,4))
exceed 1529, we conclude that the dual decomposition concurs with a primal
decomposition. Furthermore, the schedule with value 1530 is optimal, since it
was obtained from the optimal sequences for the individual blocks.

The theorems and corollaries presented in this section are applicable in a
preprocessing phase in conjunction with any existing branch-and-bound algo
rithm. Their main purpose is to derive additional preeedenee coristraints and to
primally decompose the problem in order to reduce the size of the search tree.

2.4. THE TOT AL WEIGHTED TARDINESS PROBLEM

We claimed earlier that the methodology applied to analyze the lipree I "'i:.w1c1
problem is a generic tooi for the analysis of single-machine problems that can he
cast in the formatpresentedat the beginning of this chapter. The effectiveness of
the dual decomposition method, however, largely depends on the structure of the
problem and the nature of the dualized constraints. We consider here in brief the
total weighted tardiness problem; at first sight, it may nat he so apparent that
the generic format also covers this problem.

The problem setting for the total weighted tardiness problem is the same as for
the lipree I "'i:.w1c1 problem, albeit that the jobs are now independent and have a
due date d1 by which they should he completed. Given a schedule, the tardiness
T1 of J1 is defined as T1 = max { c1- d1, 0}. The objective is to find a schedule
that minimizes total weighted tardiness, that is, "'i:.J = 1 w1 T1.

The 111 "'i:.w1T1 problem is 'DU~i'-hard in the strong sense. The best branch-and
bound algorithm is due to Potts and Van Wassenhave [1985], and solves
instances up to 50 jobs. Potts and Van Wassenhave [1988] also investigate the
performances of a number of approximation algorithms for this problem.

52 Chapter 2. Single-machine scheduling

The problem can be formulated as follows. Determine job tardinesses
Th ... , Tn and job completion times C" ... , Cn that minimize

subject to

Tj ;;;;.: Cj - dj, for j = 1, ... , n,

~;;;;.: 0, for j = I, ... , n,

(2.6)

(2.7)

the capacity and availability of the machine. (2.8)

The conditions (2.6) and (2.7) simply reflect the definition of job tardiri.ess. It is
easy to verify that this formulation, first employed by Potts and Van
Wassenhove [1985], matches the generic formulation.

Using a given vector À = (À1, ••• , Àn) ~ 0 of Lagrangian multipliers to dualize
the conditions (2.6), we obtain the following Lagrangian problem: determine the
value L(À), which is the minimum of

n n n

~ (wj-Àj)~ + ~ ÀjCj- ~ Àjdj
j I j=l j I

subject to the conditions (2.7) and (2.8).
The conditions (2. 7) only affect the fust component of the Lagrangian objec

tive function; the conditions (2.8) affect only the second component. Accord
ingly, the Lagrangian problem decomposes into two subproblems. Requiring
that wj - Àj ;;;;.: 0 for each j (j = 1, ... , n), we minimize the first component by
setting Tj = 0 for each j. After all, we get Tj = oo if wj Àj < 0, resulting in
L(À) = - oo. The second component reduces to the lil "2.~Cj problem; it is sim
ply solved by scheduling the jobs in order of non-increasing values Àj I pj in the
interval [0,"2.J=IPj].

Potts and Van Wassenhove do not solve the Lagrangian dual problem to
optimality (which is possible in polynomial time by use of the ellipsoid method),
but apply a specific one-shot metbod to set the Lagrangian multipliers (cf. Sec
tion 1.3.3.4). On the other hand, a quick aseent direction method, similar to the
one for the 1 !pree I "2.wjCj problem, is easily developed. The termination condi
tions for a_!! aseent direction metbod provide that the dual decomposition
induced by À bas the following structure. The job set ~is decomposed into blocks
'&)I> ••• , '&)B(À) such that for eachJj E '&)b we have

dj :E;; ~ Pk>
J, E~,u ···u~,

and

Àj = Wj if dj < pj + ~ Pk·
'• E~1 u ··· u~•-•

Furthermore, we must have
n

À/* = 0 if dj ;;;;.: ~ Pk·
k=l

2.4. The total weighted tardiness prob/em 53

This block structure can be exploited for the design of approximative and
enumerative methods for the 11 I ~wi ~ problem in the same fashion as for the
lipree I ~wiCi problem. For instance, the combination of optimal (or feasible)
sequences for the individual blocks yields a feasible schedule for the entire prob
lem. It remains to be seen, however, whether such algorithms outperform existing
algorithms.

55

3

Flow-Shop Scheduling

We consider the F211 ~c1 problem, and develop a branch-and-bound algorithm
for its solution that employs a Lagrangian lower bound. InSection 3.1, we intro
duce the problem. In Section 3.2, we formulate it in terms of the job completion
times on both machines. The initial Lagrangian relaxation decomposes the prob
lem into two single-machine scheduling problems. If we add a constraint that is
redundant for the primal problem, then the Lagrangian problem becomes a
linear ordering problem. Although the linear ordering problem is, in general,
'DL0>-hard, it is polynomially solvable in case of appropriate choices for the
Lagrangian multipliers. The best choice within this class yields a lower bound
that dominates previous bounds. In fact, the bounds that have been proposed
before correspond to partienlar choices of the multipliers. It is shown how the
new 1ower bound can be strengthened and how preeedenee constraints can be
derived from the Lagrangian problem. Section 3.3 presents dominanee criteria to
restriet the search tree. A complete description of the branch-and-bound algo
rithm and a presentation of some computational results are given in Section 3.4.
These results show that the proposed algorithm outperforms the previously best
method. Finally, we demonstrate inSection 3.5 how a similar bound is obtained
for the general case of m machines.

3.1. INTRODUCTION

An m-machine flow shop is described as follows. There is a set of m machines
~ { M h ... , Mm} that are continuously available from time 0 onwards for
processing a set of n independent jobs~= {J 1, ••. ,Jn }. Each machine can han
dle no more than one job at a time. Each job consists of a chain of m operations.
The ith operation of job J1 bas to be processed on machine M; during a positive
uninterrupted timep11 (i= 1, ... ,m, j = 1, ... ,n). Eachjob can be executed by
at most one machine at a time, implying that operations of the samejob may not

56 Chapter 3. Flow-shop scheduling

overlap in their execution. N ote that the jobs go through the machines in the
same order. A schedule specifies a completion time Cij for the ith operation
(i I, ... , m) of each J1 (j = I, ... , n) such that the above con di ti ons are met.
The completion time of job J1 is then simply CmJ·

A voluminous part of flow-shop research has been focused on the minimiza
tion of the length of a schedule or the so-called makespan. Gupta and Dudek
[1971], however, plead that criteria reflecting the cost of each job individually
have a better economie interpretation than the makespan objective has. We con
sider here the F21 I "2.C1 problem, that is, the problem of minintizing the sum of
the job completion times in the 2-machine flow shop.

It is well known that for this problem it suffices to optimize over all permuta
tion schedules [Conway, Maxwell, and Miller, 1967]. A permutation schedule is a
schedule in which every machine has the samejob sequence. Ignall and Schrage
[1965], the first to study this problem, present a branch-and-bound algorithm
that is based on two lower bounds. Their paper is a classic, as they are the first to
describe a branch-and-bound algorithm for a machine scheduling problem. The
beuristics presenled by Krone and Steiglitz [1974] are applied by Kohier and
Steiglitz [1975] in further developing and testing the Ignall and Schrage algo
rithm. Garey, Johnson, and Sethi [1976] prove that the problem is ~'3'-hard in
the strong sense by a reduction from 3-PARTITION.

For the general case of m machines, Szware [1983] derives some properties of
an optimal schedule, and identifies a class of well-solvable cases. A more ela
borate treatment of well-solvable cases is found in Adiri and Amit [1984]. Bansal
[1977] extends the Ignall and Schrage lower bounds to the m-machine case.

3.2. FORMULATION AND RELAXATION
We give a formulation of the F21 I "2.C1 problem in terms of the completion times
of the operations. The problem, in the remainder of this chapter referred to as
problem (P), is then as follows: determine completion times Cij (i = 1,2,
j = I, ... , n) that minimize

(P)

subject to

the preeedenee constraints between the operations of the jobs, (3.1)

the capacity constraints of the machines, (3.2)

the availability constraints of the machines. (3.3)

The conditions (3.1) are formulated as

c2j;;;;.clj+p2J• forj 1, ... ,n.

We introduce a vector of multipliers À = (À1, ••. , Àn);;;;. 0 to dualize the condi
tions (3.1). Lagrangian relaxation of these conditions yields the following
Lagrangian problem, referred to as problem (LA): for a given À;;;;. 0, determine
the value L (À) which is the minimum of

3.2. Formulation and relaxat/on

n
~ (ÀjClj + (l-Àj)C2j + Àjp2j)
j=l

subject to (3.2) and (3.3).

57

From Section 1.3, we know the value L(À) provides a lower bound to (P) for
any À;;;;. 0. In order to prevent L(À) from becoming arbitrarily small, we must
require that ÀJ ~ 1 for j = 1, ... , n. After all, if Àj > I forsome j (j I, ... , n),
then we get C 2j = oo, thereby disqualifying the strengthof the Iower bound.

The preeedenee relations between the operations are absent in the Lagrangian
problem; operations betonging to the samejob can now be processed simultane
ously. The Lagrangian problem decomposes into two single-machine problems,
which are solved by Smith's [1956] ratio rule: schedule the jobs on M 1 and M 2 in
order of non-increasing ratios ÀJ I pIj and (1-Àj}/ p 2j, respectively. The Lagran
gian dual problem of finding the vector of Lagrangian multipliers that gives the
best lower bound can be solved to optimality by use of the ellipsoid method (see
Section 1.3.3.1). In addition, an aseent direction method for approximating the
optima! solution of the Lagrangian dual problem is easily developed along the
lines of Chapter 2.

We choose another approach. lts gist lies in imposing the restrietion to solve
(L;-.) over all permutation schedules. This condition is redundant for the primal
problem, but is not redundant for the Lagrangian problem; hence, it may
increase the valueL(À). We will choose the multipliervector À in such a way that
solving (L;-.) over all permutation schedules can still be accomplished in polyno
mial time.

To that end, we first reformulate the problem of solving (L;-.) over all permuta
tion schedules as a linear ordering problem. The linear ordering problem is the
following: given an n Xn matrix A (ajk) of weights, find a permutation a of
{I, ... , n} that maxiruizes the sum

~ ajk•
(j,k):o(j)<a(k)

where o(j) denotes the position of elementjin the sequence a. In our application,
we identify o(j) with the position of job Jj. Since we have in problem (L;-.) that

cij ~ Pik> (3.4)
k :a(k).;;o(j)

it follows that
n
~ (ÀjC Ij+ (l-Àj)C2j)
j=l

= ± [Àj ~ Pik] + ± [(1-Àj) ~ P2k]
j I k :a(k).;;o(j) j =I k:a(k).;;o(j)

± ± [Àjplk(I-À)P2l<]- ± ~ [ÀjPik+(l-Àj)P2k]·
j=Jk=l j=l k:a(j)<a(k)

Hence, solving (L;-.) over all permutation schedules is equivalent to finding a

58 Chapter 3. Flow-shop scheduling

permulation a that maximizes

~ (À1p 1k + (I-À1)p2k).
(j,k):a(j)<o(k)

Bergmans [1972] and Pratt [1972] show, using an adjacent pairwise inter
change argument, that the linear ordering problem is polynomially solvab1e for
two special cases; see also Picard and Queyranne [1982] and Kolen [1986]. If the
weights are in product form, i.e., a1k = x .!Yk• the linear ordering prob1em is so1ved
by ordering the elements according to non-increasing ratios x1 I y1. This order is
exactly induced by Smith's rule for the lil "'2w1C1 probiem. The linear ordering
probiem is also solved in polynomial time if the weights are in sum form, i.e.,
a1k = x1 + yk; an optima! permutation is then obtained by ordering the e1ements
according to non-increasing values x1 - y1. The choice ÀJ = c for each j
(j = I, ... , n), for some constant c (0 ..:;;; c ..:;;; I), converts (3.4) into an even
simpter poiynomially solvabie case of the linear ordering probiem: we get the
form a1k solved by ordering the elements according to non-decreasing
values Yk· Hence, for those particular values of À, solving problem (Lx) over all
permulation scheduies amounts to scheduling the jobs in order of non-decreasing
values c pIk + (1-c)p 2k· The values c = 0 and c = I render exactly the Ignall
and Schrage lower bounds; in fact, these bounds result from applying Smith's
rule to each of the machines separately.

In the remainder of this chapter, the notation (Lc) refers to the problem (Lx)
with ÀJ c for each j (j 1, ... , n), and L (c) denotes its optima! objective
value.

3.2.1. Solving the Lagrangion dual
We are interested in solving the restricted Lagrangian dual, referred to as prob
lem (D), that is, in finding the value c (0..:;;; c..:;;; 1) that maximizesL(c):

n

max{min ~ [C2j + c(C Ij+ P2J- c2j)] I 0..:;;; c..:;;; 1 }. (D)
j=I

The function L : c _,. L (c) bas nice properties that make it easy to solve problem
(D) to optimality.

First, there is only one variabie involved. Second, L is a continuous, concave,
and piecewise linear function in c (see Section 1.3.3). Hence, an optima! solution
is found in one of the breakpoints of the function. These breakpoints are charac
terized in the following way. Job J1 ~s said to be c-preferable to Jk if
c PIJ+ (l-c)p2J < c Pik+ (l-c)p2k; this means thatJ1 is scheduled beforeh
in any optima! solution to problem (Lc)· If J1 is c-preferable to Jk for all c
(0..:;;; c..:;;; 1), then J1 is strongly preferabie to h· For each pair (J1,h) without a
strong preferenee relation, we define the critica/ value as the value c for which
both jobs are equally preferable, i.e., c p 11 + (l-c)p2J = c pIk+ (l-c)p2k·
These critica! values are precisely the breakpoints of the function L. Third, the
problem (Lc) is solvable in polynomial time for given c. Hence, an aseent direc
tion algorithm is easy to develop; furthermore, such an algorithm gives an
optima! solution, as only one variabie is involved.

3.2. Formulation and relaxation 59

The procedure to solve (D) is the following. Find the O(n 2) critical values and
sort them in non-decreasing order. Starting with an arbitrary critical value ë, we
solve (Lë), settling ties arbitrarily. Subsequently, we evaluate the directional
derivatives at ë. Inspecting the Lagrangian dual problem, we derive that 1+ (ë), ·
the directional derivative for increasing ë, is

n
l+(ë) ~ (CIJ+ P21- C21),

)=I

and that /- (ë), the directional derivative for decreasing ë, is
1'1

r(ë) = ~ (C21- P21 c,1).
j I

If both 1+ (ë)...;; 0 and r (ë)...;; 0, then there is no direction of ascent: ë is
optimal. Otherwise, we perform binary search over the appropriate interval. The
appropriate interval is [ë, 1] in case I+ (ë) > 0, i.e., in case increasing ë is an
aseent direction; the appropriate interval is [O,ë] in case r (ë) > 0, i.e., in case
decreasing ë is an aseent direction. Since sorting the critical values takes
O(n 2logn) time, binary search over O(n 2

) points takes O(logn) iterations, and
each problem (Lc) requires O(nlogn) time, the Lagrangian dual problem is
solved in O(n 2logn) time. Since max0 .;;c.., 1 L(c);;;;., max{L(O), L(l) }, problem
(D) produces a lower bound that dominates the Ignall and Schrage lower
bounds.

3.2.2. Strengthening the lower bound
Let c* be the value of c that solves problem (D). Suppose now that the multiplier
vector À. is perturbed in the jth component by a term 6.1, i.e.,~·= c* + 6.1; sup
pose further that this perturbation does not change the processing order. Obvi
ously, the lower bound would be affected by the term

ö.1(Cv + P21 - c21) (3.5)

if the value c* p 11 +(1-c*)p21 is not tied, i.e., if the position of J1 is the same in
all optimal solutions to problem (Lc•).

Let a1k =~pIk+ (l-~)P2k· If ~ were perturbed by 6.1, then the jth row in
the weight matrix A for the linear ordering problem would become
a1k + 6./p 1k- P2k), for k l, ... ,n. The issue now is todetermine the range
for 6.1 such that the optimal solution to the perturbed problem is the same as to
(Lc•). Reeall that the choice À.J = c for each j (j = I, ... , n) implies for the solu
tion of problem (Lc) that

akJ > a1k ~ a(j) > a(k), for k = I, ... , n.

Hence, a sufficient condition to ensure that the optimal solution remains the
same is that for each k (k = 1, ... , n, k =1=-j) we have

akJ;;;;., aJk + 6./Pik- P2k) if a(j) > a(k),

if a(j) < a(k).

(3.6)

(3.7)

60 Chapter 3. Flow-shop scheduling

The next step is therefore to compote for each k, k =I= j, the value 811(for which
the valnes akJ and a1k + 81k(p Ik-p 2k) coincide, if such a value exists. From this
weget

8Jk (akJ-aJk)l(p,k-P2k) if Ptk=I=Pz.k·

Defining ll/ = mink{8Jk i81k;;;;. 0 and Pik =l=p 2k} and llT = maxk{81k i8Jk..;;; 0
and pIk =I= P2k }, respectively, we conclude that as long as ÀJ is pertorbed by ll1
with ll1 ",.,;; ll1 ",.,;; ll/, the optimal solution to (Lc•) is also optimal to the per
torbed problem. Therefore, the current lower bound can be improved by maxim
izing (3.5) subject to ll1 ",.,;; ll1 ",.,;; ll/ and 0 ",.,;; ~ + ll1 ",.,;; 1. Hence, the Lagran
gian weights are pertorbed in the following way:

(a) ÀJ <E- min{e*+ll/,1} if C1J+P2J>C2J•

(b) ÀJ <E- max { e* + llj-:-, 0 } if C IJ + P2J < C 2)'

This analysis can consecutively be performed for each J1 with untied value
e*piJ+(I-e*)p 21. It takes O(n 2

) time altogether. We note that the finallower
bound depends on the order in which the multipliers have been adjusted.

3.2.3. Preeedenee constraints
Job J1 is said to have preeedenee to job Jk> denoted by J1 ~Jk, if there is an
optimal solution in which J1 precedes h· This type of preeedenee constraint is
not given a priori, but it is derived a posteriori to reduce the set of relevant
schedules. We try to derive such preeedenee constraints from the Lagrangian
problem. The technique for this is based upon the following concept. Let
(Lc(i,k)) denote the problem (Lc) to which we added the constraint that J1 pre
cedes Jk> while Jk is e-preferable to J1; let L1k(e) denote its optimal objective
value. Clearly, we have L1k(e) > L(e). If L1k(e) exceeds a known upper bound,
then there is obviously an optimal solution to (P) in which Jk ~J1. We only have
to deal with the question whether (Lc(i,k)) is polynomially solvable. Fortunately,
this is the case. A single-machine result from Monma and Sidney [1979] for
objective functions that possess the adjacent pairwise interchange property
applies to problem (Lc(i,k)). This result, proved by an interchange argument,
clears the way for solving (Lc(i,k)) in a straightforward way.

THEOREM 3.1. For the problem (Lc(i,k)) with Jk e-preferable to J1, there is an
optima! sehedule in whieh J k is sequeneed immediately aft er J1. 0

An optimal sequence for (Lc(i,k)) canthen be obtained in the following way.
Start by scheduling all jobs as in the solution of problem (Lc) and remove J1 and
Jk from this sequence. We call this sequence w. The module {J1,Jk} is then
inserted just before the first job J1 in "' for which
2(e Pil+ (l-e)P2t) > e(p,1 +Pik)+ (l-c)(p 21 + P2k)· If no such job exists,
then {J1, Jk} is scheduled last. This condition sterns from oomparing the objec
tive valnes for the partial sequences J1JkJ1 and J1J1Jk. The lower bound L1k(e)
can be strengthened in the samespirit as described in Section 3.2.2.

3.3. Dominanee criteria 61

3.3. DoMINANCE CRITERIA

A node at level I of the branch-and-bound procedure corresponds to an initial
partial sequence '11' in which I jobs have been put in the first I positions. For each
node at level/, at mostn-Idescendant nodes are created, one for everyjob
without unscheduled predecessors. Let C1('11') be the completion time of the last
job in the sequence '11' on M 1• The sum of the job completion times on M 2 of the
jobs in '11' is denoted by TC('11'). Then there is noneed tobranch from a node hav
ing '11' as an initial sequence if there is a permutation '11'* of the jobs in '11', '11'* =1='11',

that satisfies the following conditions:

TC('11'*).;;;;; TC('11'),

C2('11'*).;;;;; max:{ C 2('11'), C 1('11') + minJ
1
e,.,plj }.

(3.8)

(3.9)

In this case, we say that the sequence '11' is dominaled by '11'*. The condition (3.9)
ensures that the unscheduled jobs can start on M 2 at least as soon in case of '11'*

as initial sequence as in case of '11'. Of course, finding out whether a given perrnu
tation '11' is dominated or not is as hard as the original problem. A dominanee role
gives an easy-to-check sufficient condition for the existence of dominance.

The following three rules are checked as soon as we are about to add a new job
JJ to the current initial sequence. The dynamic programming dominanee criterion
is probably the most obvious one: a node that corresponds with the sequence
'11' phJJ can be eliminated if the sequence '11' is dominated by the sequence
'11'* pJJJ k; p is here a subsequence of jobs.

The second one reschedules the jobs in '11' = pJ1 into '11'* according to Johnson's
rule [Johnson, 1954] for minimizing the maximum completion time (the mak
espan) in the 2-machine flow shop. Then certainly, the condition (3.9) is satisfied.
It is nothard to find out whether TC('11'*).;;;;; TC('11'); if so, then '11' is dominated by
'11'*. Note that, if JJ appears befare Jk in '11'*, while we have derived in Section
3.2.3 that Jr·~JJ, then we still can eliminate the node associated with '11' if the
conditions (3.8) and (3.9) are satisfied.

The third rule looksfora job h E '11' such that PIJ .;;;;pik and p 2J .;;;;p2k· Thus,
'11' can be written as '11' = p1J 1p2JJ, where p1 and P2 are subsequences. If we let
'11'* p1J1P2Jh then the condition (3.8) for the dominanee of '11' by '11'* is satisfied.
This is stated in the following lemma.

LEMMA 3.l. IJ we have PIJ .;;;;Pik and P2J .;;;;p2k, then TC(piJJp2Jk).;;;;;
TC(piJkP2Jj)•

PROOF. We have C 1(p!JJ) = C 1(p1Jk) + p 11 -piJ.;;;;; C 1(p1Jk); this implies

C2(P!JJ) ~ C2(P2h) + P2J-P2k· (3.10)

Furtherrnore, we have C 1 (p1JJprf;)
for every job J1 E fJ2, and hence that

C 2(PIJJPrfi).;;;;; C 2(P1Jkp;J,), for every J1 E P2, (3.11)

where p1 denotes the jobs of subsequence p2 that are scheduled befare J;. In

62 Chapter 3. Flow-shop scheduling

addition, we have Ci(p11;P2h) = C 1(Pihp211). Beeause of this: and sinee
C 2(Pi1;P2).;;;:, C 2(Pi1kP2), we have

C2(Pi1jP21k).;;;:, C2(PthP21)+p2k -p2j· (3.12)

Totaling all completion times by use of the expressions (3.10), (3.11), and (3.12)
yields the desired result. 0

As can beseen from (3.12), there is no guarantee beforehand that the condition
(3.9) is satisfied as well. It has yet to be verified if this is the case; only then is
'IT = Pl1kp211 dominated by 'IT* p111p2h. We may discard the node associated
with 'IT even if some of the preeedenee relations obtained in Section 3.2.3 are
violaled in the sequence 'IT*. In that case, we have
TC(PJhP21;P3) ~ TC(pl1JP2hP3) > UB, where PihP21jP3 and Pl1jP2hP3 are
complete schedules.

Conway et al. [1967] claim that there is an optimal solution in which 1j pre
cedes h if pij.;;;:, p lk and p 21 .;;;:, P2k· As can be seen from the expression (3.12),
this cannot be established by the interchange argument used in the proof of
Lemma 3.1. Szware [1983] shows the claim to be faulty by a counterexample.

Under a more stringent condition, however, we deduce the following result,
which can be used to generale a priori preeedenee constraints.

THEOREM 3.2. IJ jor 11 and 1k it holds that p 2j = p 2k and pij .;;;:, p ik• then there is
an optima/ permulation in which 1j precedes 1 k·

PROOF. We have to show that under these conditions any subsequence of the
type p111p21k is dominated by p11kp211 in termsof the conditions (3.8) and (3.9).
The condition (3.8) is satisfied as can be seen from Lemma 3.1. Sinee p 21 = p 2k>

the expression (3.12) reduces to C 2(p 111p2h).;;;:, C 2(p11kP21;), which implies that
C2('1T*).;;;:, C2('1T); hence, the condition (3.9) is satisfied, too. 0

Of course, if for 11 and h we have p 2j = P2k and p 11 = p lk> we allow either
1;-~h or h-+1j in order to avoid the inconsistency to have both 1j-+h and
h-+11. Note that the combination of the preeedenee relations from Theorem 3.2
and the preeedenee relations generated as described in Section 3.2.3 cannot
result in inconsistencies.

3.4. THE ALGORITHM

Before starting the actual branch-and-bound procedure, we do some preprocess
ing in order to find an upper bound, to derive preeedenee constraints, and to
accelerate the calculations in a node of the tree. To obtain an upper bound, say,
UB, we begin with a random permulation and we try to improve its sum of the
job completion times by local interchanges. This procedure turned out to be
robust, providing us with satisfactory initia} upper bounds.

In addition, we approximate the search over the O(n 2
) points as described in

Section 3.2.1 by a search over 21 points. Therefore, we store the 21 sequences
that solve the problems (Lc) with c = x/20, x= 0, 1, ... ,20, respeetively. This

3.4. The algorithm 63

search works sufficiently well due to the flatness of the function L : c ---'? L (c)
around the optimum. The storage implies a significant reduction in lower bound
computation time, since we have tosort the jobs for each of these values of c only
in the preprocessing phase; it takes then only linear time to compute L(c) in a .
node of the tree.

In a similar fashion, we store the maximum perturbation values D. f and D. T
for each J1 (j 1, ... ,n), which are computed as described inSection 3.2.2.
These values depend on the set of unscheduled jobs and should actually be com
puted in each node of the tree. Although they are likely to increase if we go down
the search tree, the toss in strength was more than compensated for by the reduc
tion in computation time. The storage reduces the cost of 1ower bound
strengthening in a node of the tree from 0 (n 2) to 0 (n) time.

Preeedenee constraints are only derived from the so1ution of problem (Lc•),
where c* is the best choice among the 21 va1ues for c. The completion times on
both machinescan easi1y be computed from (3.3), requiring linear time, albeit we
can altematively put C 21 ~ C 21 + min J.;;k .;;nP ik for each J1 (j = I, ... , n), since
the second machine is surely idle until min1.;;k.;;nPik· For problem (Lc•), we try
to derive preeedenee constraints as described inSection 3.2.3. For that purpose,
we introduce an n Xn matrix B with elements b1k = (Lc(j,k)) and b11 = 0. It is
necessary to store this matrix, since new preeedenee constraints may be derived if
we find a better upper bound.

IGNALL and SCHRAGE PROPOSED
ALGORITHM ALGORITHM

max.#
active total # time total # time

data set nodes nodes sec nodes sec
10.1 5 53 0.9 9 1.5
10.2 13 84 0.9 10 1.3
10.3 18 152 1.0 14 1.5
10.4 117 728 3.1 57 1.9
10.5 135 957 3.9 169 2.7
15.1 1462 13718 93.0 693 9.5
15.2 2097 11156 116.9 388 7.4
15.3 1721 17712 142.4 603 9.7
15.4 676 2946 18.6 169 5.0
15.5 4280 35442. 958.8 380 6.0
20.1 5213 (98.81 %) 336.7 963 19.0
20.2 6411 (95.28%) 281.0 9235 95.4
20.3 5266 (97.12%) 182.2 1282 21.7
20.4 8909 (90.43%) 490.0 8846 102.6
20.5 8184 (96.72%) 422.4 4913 56.3

TABLE 3.1. Computational results on a VAX-780 computer.

The Ignal1 and Schrage algorithm follows a best bound strategy. For each of the

64 Chapter 3. Flow-shop scheduling

new nodes the corresponding lower bound is calculated and, if this lower bound
is smaller than the current upper bound, this new node is inserted in a list of
active nodes. This list is sorted in order of non-decreasing lower bóunds. The
node on top of this list is chosen to branch from. A significant advantage of such
a list is that it facilitates dominanee checking. However, in the worst case, the
size of this list is exponential in the number of jobs. Computational experiments
made it clear to us that this dominanee checking was only advantageous for
instances with n up to 10.

In contrast to the Ignall and Schrage procedure, we use an active node strategy.
This means that we generate descendant nodes, of which there are at most n -I,
for only one non-discarded node at level/. These descendant nodes are stored in
a separate list and sorted according to a branching rule. We then branch from
the node on the top of this list. Such a procedure requires only O(n 2) space,
since at each level I we have a list of at most n -'- l jobs. The only thing that
remains to explain is the branching rule. The new nodes that add some job J1
without unscheduled predecessors to an initial sequence 7T are sorted in non
decreasing order of ~J,e:{"} bkJ· This sum is supposed to reflect some notion of
'costs' if we schedule J1 before the other unscheduled jobs.

Both algorithms were coded in C, implemented on a V AX-780 computer, and
tested on problems with 10, 15 and 20 jobs. The processing times for each job
were taken from the uniform distribution [1,10], as Kohier and Steiglitz [1975]
did in carrying out their experiments. Table 3.1 presents the results. The entties
in the column 'maximum number of active nodes' give an indication of the space
required by the Ignall and Schrage algorithm. The new algorithm outperforms
the Ignall and Schrage procedure, although incasen = 10 it is sometimes slower.
The main reason for this lies in the preprocessing phase.

As to the Ignall and Schrage algorithm with 20 jobs, computation was ter
minated after 10000 nodes. An entry within brackets represents the ratio in per
centage upon termination between the lower bound of the first node in the list
and the current upper bound.

Although the presented approach shows a significant improvement with
respect to the Ignall and Schrage algorithm, the F211 ~c1 problem remains diffi
cult to solve. 1t appeared from additional experiments that major difficulties are
encountered for instances beyond 25 jobs.

3.5. ExTENSIONS

3.5.1. The F2ll ~w1c1 problem
Most of the results obtained bere carry over to the more general F2ll~w1c1
problem. In this problem, each J1 bas some weight w1, which expresses its impor
tance relative to other jobs. By performing an analysis along the lines of Section
3.2, we find that the resulting linear ordering problem is solvable in polynomial
time in case that either 'A1 = 0 for each j, or that 'A1 = w1 for each j, or that
'A1 = w1 /2 for each j (j = I, ... , n). Por this last choice of À the weights of the
linear ordering problem are in product form.

3.5. Extensions 65

3.5.2. The F 11 ~CJ problem
A similar analysis can be performed for the general problem with m machines if
only permutation schedules are allowed. Although non-permutation schedules
should be considered as well, optimization is usually confined to the set of per
mulation schedules. If the capacity and availability consiraints are assumed to be
implicitly present, then the permulation scheduling problem can be formulated
as follows: de termine completion times Cu (i 1, ... , m, j ::::: I, ... , n) that
minimize

subject to

C;+I,J ~Cu+ Pi+l,J• for i::::: 2, ... ,m, j =I, ... ,n. (3.13)

The conditions (3.13) state the preeedenee relations between each pair of con
secutive operations of the same job. If we introduce Lagrangian multip1iers
ÀiJ;,;;;. 0 (i I, ... , m -l, j ::::: 1, ... , n) to dualize the constraints (3.13), then the
Lagrangian problem, referred to as problem (L;>.), is to minimize

J ~I [~I ;C Ij + ~;,\~;+ I,j- ~'1)C; + I,j + (I -À,;, -IJ)Cm} l + : ~1
1

1 ~/';!' 1 + I,j·

Let L(À) be the optima] value of this problem. Oearly, we must ensure that

0E;;;ÀijE;;;À2JE;;;···E;;;Àm I,JE;;;l, forj=l, ... ,n, (3.14)

in order to avoid that L (À) = - oo. For given Lagrangian multipliers that satisfy
these requirements, the Lagrangian problem decomposes into m single-machine
problems, each of which is easily solvable by Smith's rule. In parallel to the 2-
machine case, the requirement to solve the Lagrangian problem over all permula
tion schedules transfarms the Lagrangian problem into a linear ordering prob
lem. The following theorem gives a sufficient condition for solving this linear
ordering problem in polynomial time.

THEOREM 3.3. The problem of finding a permulation schedule that solves the
Lagrangion prob/em (L;>.) is solvable in polynomia/ time ij Àu a1 for
i= I, ... ,m 1, j::::: 1, .•. ,n, with 0 E;;; a 1 E;;; · · · E;;; am-I o;;;;; I; in this case, the
prob/em is solved by sequencing the jobs in order of non-decreasing values
alp ij+~~ (ai+l -a;)Pi+I,J + (1-am-J)Pm)'

PROOF. For this specific choice of the Lagrangian multipliers, the weights of the
linear ordering problem are in product form. 0

Let L(al> ... ,am t) denote the value L(À) with Àu::::: ai> for i I, ... ,m 1,
j = 1, ... , n. The restricted Lagrangian dual problem for the m-machine case is
then to maximize

66 Chapter 3. Flow-shop scheduling

subjeèt to

Thls problem is solvable in polynomial time by use of the ellipsoid algorithm (see ·
Theorem 1.6). Since the ellipsoid algorithm is very slow in practice, it is better to
consider an approximation problem for the Lagrangian dual problem. Since the
Lagrangian problem is solvable in polynomial time, an aseent direction method
can be easily developed; it will be similar to the one for the Lagrangian dual
problem of the lipree I 'J:.wjCj problem (see Chapter 2).

Bansal [1977] extends the Ignall and Schrage lower bounds in a straightfor
ward fashion to the m-machine case. A series of m relaxed versions of the original
problem are considered, of which the ith version (i = I, ... , m) is of the follow
ing type: minimize 'J:.Cmj if all machines but Mi are assumed to have infinite
capacity. Clearly, the ith such problem is solved by sequencing the jobs in order
of non-decreasing values Pij· Bearing in mind that Mi cannot start processing
before time t = '2:.~ -;;,11min1 ..;j..;nPhj• we compute the completion times Cij
(j= I, ... ,n)as

m

Cmj = Cij + ~ Phj• for j = I, ... ,n;
h=i+!

'J:.j 1 Cmj is then a lower bound on the optimal objective value.
lt is easy to verify that the value L (1, I, ... , I) concurs with Bansal' s first

lower bound, L(O,I, ... , 1) with the second, and so on; L(O,O, ... ,0), finally,
concurs with Bansal's mth lower bound. Hence, the lower bound produced by an
aseent direction method is at least as good as Bansal's best lower bound.

67

4

Parallel-Machine Scl1eduling

We consider the R I I C max problem in this chapter. We present a 0-1 linear pro
gr,!Uilming formulation for it, and subsequently dualize a set of constraints to
obtain a Lagrangian problem with the integrality property; i.e., the optimal solu
tion value ofthe linear programming relaxation equals the optima! solution value
of the Lagrangian dual problem (see Corollary 1.1). The Lagrangian problem
offers nonetheless attractive opportunities for the design of both an optimization
algorithm and an approximation algorithm. The optimization algorithm solves
large problems within reasonable time limits. The approximation algorithm is
based upon a novel concept for iterative local search, where the search direction
is guided by Lagrangian multipliers.

The organization of this chapter is as follows. InSection 4.1, we describe the
problem in detail and give an overview of the literature for this problem. In Sec
tion 4.2, we formulate the R I I C max problem as an integer linear program,
examine the Lagrangian dual problem, and develop a quick aseent direction
algorithm. In Section 4.3, we present the approximation algorithm. A complete
description of the branch-and-bound algorithm is given in Section 4.4. Some
computational results are presented inSection 4.5. Conclusions are given in Sec
tion 4.6.

4.1. INTRODUCTION

We first reeall the specification of the R 11 C max problem. There are m parallel
machines available for processing a set of n independent jobs~= {J I> •.• ,Jn }.
Each of these machines can handle at most one job at a time. The processing of
job Jj (j = 1, ... , n) on machine M; (i = 1, ... , m) requires a positive time Pij.
We may assume that these processing times are integral. Each job bas to be
scheduled on one of the machines and bas to be processed without interruption.
A schedule is an assignment of each of the jobs to exact1y one machine. The

68 Chapter 4. Parallel-machine scheduling

length of the schedule, also referred to as the makespan, is the maximum job
completion time; by definition, the makespan is also equal to the maximum
machine completion time. The objective is to find a schedule of minimum length.

The R I I C max problem has a range of potential applications. It arises in the
context of computer system scheduling, where the machines are processors of a
distributed computing environment with varying capabilities across the tasks.
Other applications are found in the area of flexible manufacturing systems. For
instance, a cluster of parallel machines may form a single or bottleneck stage in
the production process. The problem also occurs in the context of machine load
balancing, where machines have to be equipped with the appropriate tools for
the jobs assigned to them. If production follows a cyclic pattem, and if the sys
tem set-up time (the time to load the machine with the appropriate tools) is costly
relative to production time, then an obvious objective is to minimize the cycle
time; note that cycle time minimization is equivalent to throughput maximiza
tion. Berrada and Stecke [1986] consider such à problem with limited capacities
of the machines' tooi magazines.

In Chapter I, we have shown that the R I I C max problem is already '~U!il-hard
in case of two identical machines. The traditional problem is then to balance
solution quality with running time. An optimal solution may only be found at
the expense of an exponential amount of computation time; a polynomial-time
algorithm cannot be guaranteed to produce the optimal solution.

Two attempts have been made to solvetheR 11 Cmax prob1em to optimality.
Stem [1976] presents a branch-and-bound algorithm; Horowitz and Sahni [1976)
develop a dynamic programming procedure. In either case, no computational
results are reported.

Much research effort has been invested in the development of approximation
algorithms with a guaranteed accuracy. Ibarra and Kim [1977] and Davis and
J affe [1981] propose various approximation algorithms with worst-case perfor
mance ratios that increase with the nUm.her of machines. For fixed m (i.e., the
number of machines is specified as part of the problem type and not of the prob
lem instance), Horowitz and Sahni [1976] give a fully polynomial approximation
scheme with time and space complexity O(nm(nml(p-I))m-J). A polynomial
approximation scheme is a family of algorithms that contains for any p > I a p
approximation algorithm with a running time that is bounded by a polynomial in
the problem size; this running time may depend on p. A family of algorithms is
called a fully polynomial approximation scheme if it contains for any p > 1 a p
approximation algorithm for which the running time is bounded by a polynomial
in the problem size as well as in 1 I (p- 1).

Potts [1985B] presents a 2-approximation algorithm. lts time requirement is
polynomial only for fixed m; its space requirement, however, is polynomial in m.
For the 2-machine case, Potts improves the worst-case ratio to (I+ Vs)/2. The
algorithm is a two-phase procedure. In the first phase, linear programmingis
used to assign at least n - m + I jobs; in the second phase, complete enumeration
is used to schedule the remainingjobs. Using Potts' algorithm as the basis, Lens
tra, Shmoys, and Tardos [1987] present a 2-approximation algorithm that is
polynomia1 in m. They also present a polynomial approximation scheme for a

4.2. Minimizing makespan and its dual problem 69

fixed number of machines, requiring space bounded by a polynomial in the prob
lem size and log(l/(p-1)). In addition, they prove a notabie negative result:
unless <@ = 'X<@, no polynomial p-approximation algorithm exists for any p < f.

Two papers consider R 11 Cmax from an empirical point of view. De and Mor
ton [1981] present several hybrid list scheduling algorithms and performa large
scale computational testing. Our computational experiments exhibit, however,
that their algorithms produce poor results. Hariri and Potts [1990] propose
several two-phase beuristics that proceed in the spirit of Potts' 2-approxirnation
algorithm. The first phase is identical: linear programmingis used to schedule at
least n - m + 1 jobs. The second phase proceeds differently: a beuristic is used as
a substitute for complete enumeration to schedule the remainingjobs. Note that
Potts' 2-approximation algorithm dominates such two-phase beuristics in terms
of quality but not in terms of speed. Hariri and Potts also consider several con
structive heuristics, using them in conjunction with iterative local improverneut
procedures.

In spite of the considerable attention that the R I I C max problem bas received,
there is still a lack of practical algorithms and computational insight. We address
this issue bere. We are concerned with methods that solve R I I C max satisfac
torily from a practical standpoint We develop an exact algorithm and an
approximation algorithm; both are based on Lagrangian relaxation and duality.

4.2. MINIMIZING MAKESPAN AND lTS DUAL PROBLEM

In this section, we present an aseent direction metbod for the Lagrangian dual
problem of R 11 Cmax. We will also show that the search fora good approximate
solution for the Lagrangian dual problem can almost be integrated with the
search for a good approximate solution for the primal problem. First, we give a
0-1 linear programming formulation.

Evidently, there is an optimal so1ution in which the jobs are processed without
delay. In addition, the ordering of the jobs on the machines is irrelevant for the
1ength of the schedule. We are therefore actually 1ooking for an assignment of
jobs to machines. Accordingly, we introduce assignment variables xiJ
(i 1, ... , m, j = 1, ... ,n) that take the value 1 if J1 is schedu1ed on M 1, and 0
otherwise. If we let C1 denote the completion time of machine M1, then we have
C; '2j 1piJx11 • The maximum value of the machine completion times, denoted
by Cmax• is then the 1ength of the schedule.

The R I I C max problem, hereafter referred to as problem (P), is to determine
values xiJ that minimize

subject to

Cmax

11

~ PIJXij .,;;; C max•
j=l

m

~ X;j = 1,
i I

(P)

fori =I, ... ,m, (4.1)

forj = 1, ... ,n, (4.2)

70 Chapter 4. Parallel-machine scheduling

xiJ E {0,1}, for i= I, ... ,m, j =I, ... ,n. (4.3)

The conditions (4.1) ensure that the completion time of each machine is less than
or equal to the length of the schedule; the conditions (4.2) guarantee that each
job is assigned. The conditions (4.3) ensure that each job is scheduled on exactly ·
one machine, thereby precluding preemption. If we replace the integrality con
straints (4.3) with the weaker conditions xiJ ;;:,: 0 ji = I, ... , m, j = I, ... , n),
then we obtain the linear programming relaxation (P); this problem is salvabie in
polynomial time. Note the close resemblance between the R 11 Cmax problem
and the generalized assignment problem (see Section 1.3.2).

When consiclering Lagrangian relaxation, we may he hesitant to dualize the
conditions (4.1), since the resulting Lagrangian problem possesses the integrality
property (see Corollary 1.1). Nonetheless, we choose to do so for two good rea
sans. First, a quick aseent direction methad produces good approximate solu
tions for the associated Lagrangian dual problem. Second, for each vector of
Lagrangian multipliers, we get a feasible salution for the R I I C max problem.

The Lagrangian problem can he obtained by dualizing the constraints (4.1),
and then by simplifying the objective function through normalization of the
Lagrangian multipliers. However, the Lagrangian problem is easier to obtain by
the so-called technique of surrogate relaxation. The central idea for this type of
relaxation is to replace a set of nasty constraints with a single condition that is a
weighted aggregation of these constraints. We aggregate the conditions (4.1). We
introduce a vector of multipliers À = (À1, ••• , Àm);;:,: 0 with À; > 0 for at least one
i (i= I, ... , m), and replace the conditions (4.1) with

m n m

~À;~ piJxiJ ";;;;; ~ À;Cmax' (4.la)
i=l j=l i=l

or, equivalently,
m n m

C max ;;:,: ~ ~ À;pijxij I ~ À;. (4.lb)
i=lj=l i=l

The surrogate relaxation problem, referred to as problem (LÀ), is then to deter
mine L (À), which is the minimum of

m n m

~ ~ À;piJxiJ I ~ À;
i=lj=l i=l

subject to
m

~ xiJ =I, forj =I, ... ,n, (4.2)
i=l

Xij E { 0, I}, for i = I, ... , m, j = I, ... , n. (4.3)

It is a matter of writing out to verify that the Lagrangian problem obtained by
dualizing the constraints (4.1) boils down to exactly the same problem. There
fore, we refer to the above problem as the Lagrangian problem. It is due to the
special structure of this problem that the surrogate relaxation problem and the

4.2. Minimizing makespan and its dual problem 71

Lagrangian relaxation problem coincide. Generally, these problems are different.
In theory, the best surrogate bound is at least as good as the best Lagrangian
bound; in practice, the former is much harder to obtain. Greenberg and Pier
skalla [1970] and Karwan and Rardin [1979] compare both relaxation methods.

Along the lines of Section 1.3, we make now some observations concerning the
structure, the properties, and the solution of the Lagrangian problem. In the
remainder, we let v O denote the optimal solution value of problem (-).

ÛBSERVATION 4.1. Problem (L~) provides a lower bound on v(P), since any solu
tion that satisfies (4.1) also satisfies (4.lb) (but not necessarily vice versa). We
have therefore that L(À) ~ v(P) for any vector À =(À" ... ,Àm);;;;;.: 0 of Lagran
gian multipliers with À; > 0 for at least one i (i 1, ... , m).

ûBSERVATION 4.2. Problem (L~) is solvable in O(nm) time by assigning each job
Jj to a machine Mh for which ÀhfJhj min1 <i< m ÀiPiJ· Ties may be settled arbi
trarily.

Note that L(À) = '2-}=t min1";;;";;mÀ;piJ/'2.?' 1À;. We refer to À;piJ as the dual
processing time of Jj on M;. The conditions (4.3) of the Lagrangian relaxation
problem can be replaced with the conditions x iJ ;;;;;.: 0 (i 1, ... , m, j = 1, ... , n)
without affecting the optimal value L(À). Hence, problem (L~) has the integrality
property, since it can be solved as a linear programming problem.

ÛBSERVATION 4.3. Any solution to (L~) is also a feasible solution to the primal
problem (P), for any vector À = (À1, ••• , Àm) ;;;;;.: 0 of Lagrangian multipliers with
À;> 0 forat least one i (i= 1, ... ,m).

The constraints (4.2) and (4.3) enforce the assignment of each job to exactly
one machine. Fora specific optimal solution of problem (L~), let Ci(À) denote
the completion time of M;. The approximate solution value is then
C max(À)= maxi< i< m ClÀ). The way we settie ties when solving problem (L~)
affects C max(À).

ÛBSERVATION 4.4. The objective value L(À) is a convex combination of the
machine completion times. This implies that min1 <i< m C;(À).;;;:; L(À) ~
max1 <i< m C;(À).

Consider the following instanee of the R I I C max problem, where eight jobs are
to be schedu1ed on three machines with the processing times given in Tab1e 4.1.
We also used this instanee in Chapter I. Let À (1, 1, 1) be the vector of Lagran
gian multipliers. The Lagrangian problem (L~) is solved by assigning each job to
the machine with the smallest processing time for it. The resulting schedu1e is
represented by the Gantt chart of Figure 4.1. The initial choice À = (1, 1, 1) gives
an elementary lower bound: it is the sum of the minimum processing times
divided by the number of machines. The lower bound is L(À) = 18+; the upper
bound is Cmax(À) = 33.

72 Chapter 4. Parallel-machine scheduling

Jl h J3 J4 Js J6 J7 Jg
MJ 6 3 10 12 11 14 8 6
M2 10 00 15 6 6 11 14 7
M3 11 9 14 14 00 10 10 9

T ABLE 4.1. Processing time matrix.

M2 I J4

M3 I J6 I
ö 10

FIGURE 4.1. Gantt chart for À= (1, 1, I); the dotted line indicates the
Iower bound L(À).

The best Lagrangian lower bound is found by solving the Lagrangian dual prob·
lem, referred to as problem (D). It is defined as

v(D) = max{L(À) I À ;;ï!: 0 }. (D)

In the remainder, we let À* denote the vector of optimal Lagrangian multipliers.

Ü!_SERVATION 4.5. Since (L;\) possesses the integrality property, we have
v (P) = v (D): the Lagr~gian dual yields the same lower bound as the linear pro
gramming relaxation (P) (see Corollary 1.1).

This result is also derived in the following direct way. Geoffrion [1974] points
out that it is possible to take the dual of a linear programming problem with
r~pect to only a portion of the constraints. We assert that doing so for problem
(P) with respect to the conditions (4.1) yields exactly the Lagrangian dual prob
lem (D), since the conditions (4.3) in problem (L;\) can he replaced with xij ;;ï!: 0
(i= 1, ... ,m,j 1, ... ,n).

Like the Lagrangian objective functions we examined in the previous chapters,
the function L : À~ L (À) is continuons in À and everywhere differentiable except
at the points where the Lagrangian problem (L;\) has multiple optima) solutions.
Unlike those other functions, the function L is not piecewise linear and not con
cave; this is because the term .If2 1 À1 appears in the denominator of the Lagran
gian objective function. However, we can still develop an aseent direction algo
rithm for approximating the optima) salution of problem (D). Some effort is
required to find the primitive directional derivatives. The Lagrangian problem
here apparently does not belong to the class of Lagrangian problems for which

4.2. Minimizing makespan and its dual problem 73

we have shown that the primitive directional derivatives reduce to the dualized
constraints (cf. Section 1.3.3.3). We will show, however, that the primitive direc
tional derivatives for this particular Lagrangian objective function also reduce to
simple expressions. Using the primitive directional derivatives, we also show that
the shape of L between the points of non-differentiability does not matter: at any
À not being a point of non-differentiability, we can travelalong a primitive direc
tion to a point of non-differentiability where the Lagrangian function value is no
worse than L(À). For the Lagrangian problem (D), this means that the optimiza
tion over all À ~ 0 can be reduced to the optimization over all À ~ 0 that
correspond to points of non-differentiability. For the aseent direction procedure,
we will therefore invariably compute step sizes that take us from one point of
non-differentiability to another.

The aseent direction method for approximating the optima} solution of prob
lem (D) is similar to the aseent direction method we described for the generalized
assignment problem (see Secdon 1.3.3.2). First, we derive the primitive direc
tional derivatives. Let It (À) be the primitive directional derivative for increasing
À1; let Ç (À) be the primitive directional derivative for decreasing \. From
among the optimal solutions for problem (LÀ), let x (i)+ be a solution with least
jobs assigned to M 1, and let x(i)- be a solution with most jobs assigned to M 1,

for i = 1, ... , m. To get an x (i)+, each job J1 with À1piJ minimal and with
ÀhPhJ = À1piJ forsome Mh M 1 is not assigned to M 1; all other ties are settled
arbitrarily. To get an x(i)-, each J1 with À1piJ minimal is assigned to M 1; all
other ties are settled arbitrarily. Let ct (À) be the completion time of M1 for such
an x (i)+; let Ci (À) be the completion time of M 1 for such an x (i)-. Let ~i (À)
denote thesetof jobs on M 1 for such an x(i)+; let~~- (À) denote thesetof jobs
on M 1 for such an x (i)- .

Recall that, at a higher level, the primitive directional derivatives are defined
as

and

_ L(Àl> ... ,À1 11 (À)= llm·-----------'-----'-
<,J..O E:

for i= I, ... ,m. For any h (h I, ... ,m), let À (À" ... ,Àh +t:, ... ,Àm) with
t: > 0. We choose t: > 0 sufficiently small to ensure that x(h)+ remains optimal
for problem (L~); such an.! exists (see Theorem 1.7). Fora specific x(h)+, we
have therefore that C1(À) =C1(À) for each i (i= 1, ... ,m), and that
Ch(À) = ct (À). Hence, we have

m- m

~ À1 C1(À) t:Ct (À)+ ~ À1 C1(À)
1=1 1=1 L (À) = ..:........::..._m ___ = ___ _;_m_;;__ __

~À; t:+ ~À;
i=I i 1

74

m

~ À;C;(À)

t:C;i (À) + i 1 m f À;

~À; i=l

i=l
m

t:+ ~À;
i=l

Chapter 4. Parallet-machine scheduling

m
t:C;i (À) + L(À) ~ À;

I
m

t:+ ~À;
i=l

This gives that
m

L(À) L(À) = t:[C;i(À) L(À))/(t: + ~À;).
i=!

Using this, we obtain for the primitive directional derivative that
m

/;i(>.)= [C;i(>.) L(À)]/ ~À;.
i I

In a similar fashion, we get that
m

/i;(À) = [L(À)-Ci;(À))/ ~À;.
i=l

If ct (À)> L(À), then machine Mh is overloaded; maintaining the parallel with
the generalized assignment problem, we say that L (À) is the virtual capacity of
Mh. lncreasing Àh is then an aseent direction: we will obtain an improved
Lagrangian objective value by moving along this direction. If Ci; (À)< L(À),
then machine Mh is called underloaded; decreasing Àh is an aseent direction.

Now we show that the shape of L between the points of non-differentiability
does not matter. Suppose À is not a point of non-differentiability: the Lagrangian
problem (L>.) has a single optimum. For h = I, ... , m, let ~: be the step size for
increasing Àh to reach the nearest point of non-differentiability, and let ~h be
the step size for decreasing Àh to reach the nearest point of non-differentiability.
For h =I, ... ,m, let À(h)+ =(À" ... ,Àh + ~:, ... ,Àm), and let À(h)- =
(À~> ... , Àh ~h, ... , Àm). Using the denvation of the primitive directional
derivatives, we have

m
L(À(h)+) L(À) ~:rch(>-)- L(>-)J!<~t + ~ >.;),

i=!

and
m

L(À(h)-) L(À) ~h [L(À)- Ch(À)]/(-~i; +~À;).
i=l

Since L(À) is a convex combination of the machine completion times
C 1 (À), ... , Cm(À), we have L (À(h) +)";;;;:. L (À) for at least one h, or
L (À(h)-) ~ L (À) for at least one h. Hence, for problem (D), we can restriet our
selves to the optimization over all À ~ 0 corresponding to points of non
differentiabili ty.

If we find an aseent direction, then we travel along this direction to the nearest

4.2. Minimizing makespan and its duat problem 75

point where the associated primitive directional derivative changes. The required
step size is easily determined. Suppose lii (À)> 0: M~z is overloaded. Increasing
À~z makes M~z less attractive to schedule jobs on. Eventually, we reach the first
point where someJ1 currently scheduled on M~z can equally well be scheduled on
some other machine Mg; moving on beyond this point, weenforce the removal of
J1 from Mh. The step size A to reach this point is the smallest positive value for
which (À~z + A)PhJ ÀgPgj for some J1 on M~z and some Mg (Mg=I=M~z); hence, it
is computed as

A - À~z + min,",;; i",;; m, i=/=h, J
1

E :~-:(À) À;PiJ I Ph}"

Accordingly,_we get À= (À1, ••• , Àh +A, ... , Àm); the increment to the objective
value is L(À)-L(À)=A[Cii(À)-L(À)]I(A+~r;" 1 À;)>O. Furthermore, we
move J1 from M~z to Mg, and examine whether increasing À~z is also an aseent
direction.

Now, suppose r;; (À) > 0: Mh is underloaded. Decreasing À~z makes M~z more
attractive. Eventually, we reach the first point where some J1 on Mg (Mg=/=M;)
can equally well be scheduled on Mh; moving on beyond this point will force J1
to go to Mh. The required step size A is the smallest positive value for which
(Àh A)phJ = Àg/Jgj• forsome J1 scheduled onsome Mg; ît is computed as

A = Àh - min,..; i",;; m, i=/=h, J1 E :~--:~-;(À) À;pij I Ph}·

Accordingly, we ge_! À (À I> ••• , Àh-A, ... , Àm), and the in erement to the
objectivevalueis L(À)- L(À) = A[L(À) Ch"(À)]I(-A+~(1 À;)> 0; we move
J1 to Mh, and examine whether decreasing Àh is also an aseent direction.

1f the aseent direction method is started in some À > 0, then the aseent direc
tion can never reach a boundary point where Ài = 0 forsome i (i 1, ... ,m).
Also, we must have À;* > 0 for each i (i = 1, ... , m); ü À;* = 0, then increasing
À;* is an aseent direction, thereby contradicting its opt~ity. Termination of
the aseent direction method happens_ therefore at some À where all primitive
directional derivatives exist. At such a À, we have

1/ (À)".;; 0, and Ç (À)".;; 0,

or equivalently,

for i I, ... ,m,

~ PiJ..;L(À)..; ~ p;1, fori=l, ... ,m
J1 E :ft (Ä) J1 E :f,-{Ä)

The identification of the aseent direction "and the computation of the step size
can be implemented in different ways. We have freedom concerning the choiee of
the initia} vector, and, for each iteration, the choice of the aseent direction. Sinee
Àj * > 0 for each i (i = 1, ... , m), we best start with a positive vector. Moreover,
since the Lagrangjan multipliers are normalized values, we can fix one multiplier
a priori without running the risk of missing the optimum. The choice of the
aseent direction affects the upper bounds that we get as by-products: for
machine load balancing, it may be better to choose the direction of steepest
ascent. Nonetheless, we give below a step-wise description of a rudimentary ver
sion, stripped from most of such considerations.

76 Chapter 4. Parallel-machine scheduling

ASCENT DIRECTION ALGORITHM POR PROBLEM (D)

Step 0. For h = 1, ... , m, set Àh ~I. Solve problem (L>.), setding ties arbitrarily.
Determine L(À).
Step 1. For h = 1, ... , m, do the following:

(a) While ct (À)> L(À), compute

a -Àh + min,.;;,;.;;m,i=f=h,J
1

Er;<>.>À;pijlph1,

set À;~ À; + a, and update L (À) and Ct (À). ·
(b) While c;; (À)< L(À), compute

a= Àh -min,.;;;.;;, m. i=f=h,J
1
E~-~~(À) À;p,1 lph1,

set~~ À; a, and update L(À) and C;; (À).

Step 2. Stop ü no aseent direction was identüied; otherwise, go to Step I.

Let us reconsider our example and the solution of (L>.) with À= (1, 1, 1). Machine
M 1 is overloaded. The step size to remove some job from M 1 is a = f: increas
ing À1 by + allows us to move J 8 to M 2• We get À=(-}, 1, 1), a schedule with
makespan 27, and L(À) = 19.1 (see Figure 4.2; the dotted line indicates the vir
tual capacity of the machines).

M, I J, I J 2 I J3 J,

M2 I J4 I J5 Jg

M3 I J6 I
ó tb

. I

:20 27 3'o
FIGURE 4.2. Gantt chart for À=(-}, 1, 1).

M, J, lhl J3 I ~
M2 J4 I J5 Jg I!
M3 J6 J, :I

0 10 10 30

FIGURE 4.3. Gantt chart for À= (1-, 1, 1).

Machine M 1 remains overloaded; we increase À1 to +, and subsequently move
J, to M 3• We getÀ = (1-, 1, 1), a schedulewith makespan 20, and L(À) = 19.3 (see
Figure 4.3). Since all processing times are integral, the optimal makespan is
integral as well. Hence, we have found an optimal primal solution. However, an

4.2. Minimizing makespan and its dual problem 77

aseent direction still exists: M 2 is underloaded. If we decrease À2 by then J 6

goes to M 2 • We obtain À= (f, :~, 1) and L(À) I9 1~9 • At this point, no primi
tive aseent direction exists anymore: the aseent direction method is terminaled at
À (f,fl-, 1).

- -
The vector À is no_! optimal for the Lagrangian dual problem, i.e., À=f=À *. For

À*, we have that v(P) L(À*) (Observation 4.5), and that the complementary
slackness conditions hoid (Corollary 1.1). These conditions can be shown to
impiy that

xiJ >0 <==:> À;*piJ minimal, for i= I, ... ,m,j =I, ... ,n.
- -

Consirlering Figure 4.3, we wouid obtain a feasible solution with v(P) = L(À)
that satisfies the complementary slackness relations if and only if we could split
J 6 over _M 3 and M 2 and J 1 over M 3 and M 1 in order to process them before
time L(À). This is not possible.

We now discuss Potts' 2-approximation algorithm and its relation to the
aseent direction algorithm. For an arbitrary number of machines, t~e first phase
of Potts' algorithm is to solve the linear programming relaxation (P). The solu
tion of (P) shows at least n - m + I jobs each assigned to exactly one machine,
and at most m 1 jobs split over two or more machines. The jobs assigned to
exactly one machine are retained as a partial schedule. The split jobs ar~ assigned
so as to minim:ize the makespan, given the partial schedule. Since v (P) ~ v (P),
the length of the partial schedule is no more than v (P). The scheduling of the
split jobs proceeds by complete enumeration; this adds at most v (P) to the length
of the partial schedule. Hence, the resulting schedule has a makespan at most
twice the optimal makespan. Since (P) is solvable in polynomial time and com
plete enumeration for at most m -1 split jobs requires O(mm) time, the pro-
cedure is polynomial for fixed m. _

Consider now an optimal solution of problem (L~J Since À is the vector upon
terminalion of the aseent direction method, we have

~ PiJ~L(À)~ ~ p;1, fori=I, ... ,m.
Jj ~:(À) Jl E f (À)

Exploiting these terminalion conditions, we point out a 2-approximation algo
rithm that proceeds entirely in the spiri_! of Potts' 2-approximation algorithm. In
the first phase, we assign each J1 E ~t (À) to M;, thus obtaining a partial schedule
with length _!!O more than v (P). The remaining jobs, contained in the set
~- U~ 1 ~t (À), have ties concerning their minimal dual processing times. In the
second phase, we assign these jobs by complete enumeration so as to minimize
the makespan, given the partial schedule; this adds at most v (P) to the length of
the partial schedule. Hence, the resulting schedule has makespan no more than
2v(P).

In fact, we get also a schedule with wor~-case ratio 2 wit~ fewer jobs to assign
in the second phase as follows. Let ~?(À) Ç ~i- (À)- ~t (À) (i = I, ... , m) be
mutually disjoint subsets of jobs such that

78 Chapter 4. Parallel-machine scheduling

~ PiJ.,;;;;.. L('X), for each i= 1, ... ,m;
J1 E ;1-7 (À)U;I-~(À)

hence, ~?('X) contains on1y jobs with ties concerning the!!' mini~ dual process
ing time. In the first phase, we assign each Jj E ~t0)U~?(À) to M;; in the
second phase, we assign the remainingjobs. The sets ~?(À) should be chosen so as
to minimize the number of jobs left for the second phase. In general, we cannot
bound the numb~r of jobs to be assigned in the second phase by a polynomial in
m. However, if À À*, then this procedure is exactly Potts' 2~pproximation
a1gorithm; since th~ complementary slackness relations hold for À= À*, we can
choose the sets ~?(À) in such a way that no more than m I jobs remain for the
second phase. _ _

Por the special case m = 2, we have v(P) = L(À). Since the Lagrangian multi
pliers represent normalized values, only m -1 multipliersneed in generalto be
involved to find À*: onl_y one multiplier is involved for the case m 2. The ter
mination conditi~ns at À are then sufficient for optimality (see Theorem 1.7). Por
m =2, problem (P) is solvable in O(n) time [Gonzalez, Lawler, and Sahni, 1990].
Moreover, there is at most one split job. Considering the aseent direction algo
rithm, we observe that the solution generated by Potts' 2-approximation algo
rithm concurs with the best upper bound found when solving prob1em (D) by use
of the aseent direction procedure.

4.3. DUALITY-BASED HEURISTIC SEARCH

The principle of Potts' 2-approximation algorithm and specifically the termina
lion conditions of the aseent direction algorithm give rise to the idea that a near
optimal so1ution for the Lagrangian dual problem induces a near-optimal solu
tion for the primal problem. In this respect, weneed a scheme that generates a
series of promising Lagrangian multipliers. The example suggests that the aseent
direction method, perhaps with some minor adjustments, is such a scheme. The
aseent direction method, however, is too restrictive for our purpose. Computa
tional experiments show that is usually terminaled after only a small number of
iterations. Weneed a scheme that allows us to browse quickly through many
near-optimal solutions for problem (D). The approximation algorithm differs
therefore from the aseent direction metbod on two counts.

Pirst, the machine with the largest overload is always selected for multiplier
adjustment. Prom a primal point of view, this is an obvious choice: one of the
jobs on this machine must be removed in. order to reduce the machine comple
tion time that induces the current makespan. Second, we make the step size
larger than necessary to ~orce such a removal: this avoids early termination.
Specifically, we move to the second point where the primitive directional deriva
tive changes. Let machine Mh be the machine with the largest overload in the
solution of problem (L;\.); hence, we have C ma"(À) .,;;;;.. C;i (À). Th..::n we compute

.:l -Àh + min21 ..:;;..:;m,J
1

E;I-:(À) À;piJIPhj•

where min2 denotes the second minimum of these values. If we put
X (ÀJ, ...• ~+.:i, ... ,Àm), then weenforce the move of some Jk from Mh to

4.3. Duality-based heuristic search 79

some Mg, and that another job on Mh can equally well be scheduled on some
other machine. Nonetheless, this ~cond job is kept on Mh. The next step is to
compute the new makespan C max(À), and the machine with the largest overlaad;
this machine is determined by computing max1E;;;..;;m Ci(À). We have no ·
guarantee th~ the rescheduling of J t_induces an improved schedule: we can _!!ave
either Cmax(À) ~Cmax(À) or Cmax(À) >Cmax(À). The latter occurs if Cg(À) =
Cg(À) + Pgk > Cmax(À). Hence, the approximation algorithm is equipped with a
mechanism that accepts deteriorations of the makespan. We repeat this process
for the machine with the largest load, and store the best salution on the way. We
put an upper bound on the number of iterations, since this procedure does not
have any convergence properties. Below we give a stepwise description of the
algorithm; maxiter is a prespecified maximum number of iterations and UB is
the currently best salution value.

APPROXIMATION ALGORITHM

Step 0. Put À~ (1, ... , I), t ~ 1. Solve (LÀ), settling ties arbitrarily. Let
UB ~ Cmax(À), and store the schedule.

Step 1. Determine Mh with the largest overload: ct (À) ~ ct (À) for each i
(i= 1, ... ,m). Compute a, and identify a job h and a machine Mg such that
Àg{'gkiPhk = min,..;;;..;;m,i#,J, e;t;(À) ÀifJijiPhJ· Put t~t + 1.

Step2. Put À~(À., ... ,Àh+Ll, ... ,Àm), Ch(À)~Ch(À)-Phk> Cg(À)~Cg(À)+Pgk·
If Cmax(À) < UB, then UB~Cmax(À), and store the schedule. If t < maxiter, then
go to Step I; if not, then stop.

We call the approximation algorithm described above the duality-based approxi
mation algorithm, and the particular strategy employed as duality-based heuristic
search. For the example, the approximation algorithm goes through the same
steps as described in Section 4.2.

Many beuristic search strategies are applicable to the parallel machine
scheduling problem (see Section 1.2.3). An iterative /oca/ improvement procedure
is a local-search type of algorithm, which can be designed as follows for the
R I I C max problem. Let a be some arbitrary schedule and let ajk be the schedule
obtained from a by swapping Jj and h (j=l=k). Wedefine the so-called single
pairwise interchange neighborhood for a as the set Na containing the schedules ajk
for all i= I, ... ,n I, k i+ 1, ... ,n. Suppose Mh is such that
Ch(a) = Cmax(a), where Ch(a) and Cmax(a) denote the completion time of Mh
and the maximum machine completion time in a, respectively. Let (Jj,h) be a
pair of jobs such that Jj is scheduled on Mh and J k on some other machine Mg
(g=l=h) for which we have

Cg + Pgj-Pgk < Ch, and Ch Phj + Phk < Ch.

If we interchange Jj and Jk, that is, we put Jj on Mg and Jk on Mh, then we
reduce the makespan. In other words, we have identified a schedule ajk E Na
with Cmax(ajk) < Cmax(a). This processis repeated until no further impravement
is found. As said before, the danger is to get stuckin a poor local optimum.

80 Chapter 4. Parallel-machine scheclu/ing

Simulated annealing and tabu search are techniques that try to avoid such an
entrapment by allowing deteriorations of the objective value under eertaio cir
cumstances. The willingness to accept deteriorations unconditionally distin
guishes the duality-based search technique from simulated annealing, tabu
search, and general iterative local improverneut schemes.

Anticipating on the implementation and the evaluation of the duality-based
approximation algorithm inSection 4.5, however, we will consider two versions
of the algorithm. On the one hand, we evaluate the duality-based algorithm on its
own; on the other hand, we evaluate the algorithm in conjunction with the itera
tive local improvement procedure we described. We only submitted the best solu
tion to the improverneut procedure. The duality-based algorithm in conjunction
with the iterative local improverneut procedure produces very good results.
Apparently, the duality-based approximation algorithm finds an attractive initia!
solution for the iterative local improverneut procedure.

4.4. 1'HE BRANCH-AND-BOUND ALGORITHM

The first step in the branch-and-bound algorithm is to run the aseent direction
metbod to approxim_!tte Qle optiJEal solution of problem (D). Upon termination,
we have the vector À=(ÀI> ... ,Àm) of Lagrangian multipliers. On the way, we
store the best prima! solution. We also use the duality-based approximation algo
rithm and the constructive beuristics presented by De and Morton [1980], Ibarra
and Kim [1977], and Davis and Jaffe [1981] to find approximate solutions for
problem (P}: The implementation of these algorithms is described in Section 4.5.
The vector À plays an important role in the truncation of the search tree.

4.4.1. Initia! reductions
The size of an instanee may be reduced by a simpte reduction test, which is com
mon for linear programming theory. It can be conducted for any vector of
Lagrangian multipliers, but successis most likely for À* and veetors close to it.

'T'HEOREM 4.3. IJ fora given vector of multipliers À= (ÀI> ... ,Àm1 we have for
some J k and Mh that

m
(ÀhPhk -minl.;;;;.;;;mÀ;p;k)/ ~À;> UB-L(À)-1,

i I

where UB is a given upper bound on v (P), then xhk = 0 in a'!)' schedule with
Cmax < UB, ifsuch a schedule exists.

P:RooF. Suppose there is a schedule with makespan less than UB, and yet with J k

scheduled on Mh. Solving the Lagrangian relaxation problem (LÀ) under the
additional constraint xhk = I gives the lower bound LB with

n m

LB (ÀhPhk+ ~ minl.;;;;.;;;mÀif;j)/~À;
j=l;ft=k i=l

n m
[(À/J)hk minl.;;;;.;;;mÀ;p;k) + ~ mini.;;;;.;;;mÀ;pij]/ ~À;> UB-l,

j I i=l

which is a contradiction. D

4.4. The branch-and-bound algorithm 81

4.4.2. The search tree
A node at level k of the search tree corresponds to a partial schedule with a
specific assignment of J h ... ,Jk. Each node at levelk (k = I, ... ,n -1) bas at
most m descendant nodes: one node for the assignment of job h + 1 to each
machine M1, for i= 1, ... ,m. The jobs and the machines will be reindexed in
compliance with the branching rule we propose in the next subsection. The algo
rithm weuseis of the 'depth-first' type. We employ an active node search: at each
level, we consider only one node to branch from, thereby adding some job to the
partial schedule. The nodes are branched from in order of increasing indices of
the associated machines. We backtrack if we reach the bottorn of the tree or if we
can discard the active node.

4. 4.3. Branching ru/e
The dual processing times À1p11 (i 1, ... ,m, j =_I, ... ,n) also se~e to stroc
ture the search tree. Wedefine YJ min21.;;;; 1,;;;;mÀ1piJ minl<l<mÀJ11;, where
min2 denotes the second minimum. In view of Theorem 4.3, a large value YJ sug
gests that there exists an optimal solution with J1 scheduled on the machine with
minimum dual processing time for it; we call this machine the Javarite machine
for J1. We like to structure the search tree in such a way that we first explore the
configurations with jobs with large Y; assigned to their favorite machines. This is
achieved by reindexing the jobs in order of non-increasing values y1 and by rein
dexing_!he machines at each levelk (k 1, ... ,n -1) in order of non-decreasing
values À1Pt,k+I (i= I,.,. ,m). We note that the first complete schedule encoun
tered in the tree is an optimal solution for the Lagrangian problem (LÀ).

Such a structure of the search tree bas two advantages. First, for the optimal
solution and good approximate solutions of the primal problem, most jobs are
expected to have been assigned to their favorite machines. Second, if we find an
improved upper bound, then most of the additional variabie reductions are asso
ciated with the nodes of the still unexplored part of the search tree.

4.4.4. Discarding nodes
Here, we describe in detail the various rules to discard nodes. Computational
experiments show, surprisingly enough, that even a quick aseent direction
metbod is not worthwhile to be run in each node of the tree. We use therefore the - - -
vector À= (À1, •.. ,Àm) thr~ughout the search tree. The reduction test and the
following rules depend on À. The vector À* may therefore be more effective; it
may be worthwhile to use a linear E!ograrnming algorithm in the root of the tree
to obtain À*. On the other hand, if À is close to À*, then the additional effect will
be negligible. Suppose the values z11 (i = 1, ... , m, j = 1, ... , k) record the
current partial schedule at level k of the t~. That is, z11 = 1 if J1 bas been
assigned to M 1, and z11 = 0 otherwise. Let L(À, k) denote the optimal solution of
problem (LÀ) subject to x11 = ziJ for i = 1, ... , m, j = I, ... , k. Then we have

_ _ k m _ _ m_

L(À, k) = L(À) + ~(~ (ÀJ't}- minl<i<mÀtPiJ)Zt;)l ~À,.
j=l /=l /=l

82 Chapter 4. Parallet-machine scheduling

- -
Note that L(À, k) > L(À). A node at levelk that assigns h to machine Mh can
he discarded if

- m- -
min1 ,;;,;,;;,mÀ;p;k)l ~À;> UB -L(À, k -1) -I.

i I
(Fl).

This test requires constant time per node. In addition, the node can he discarded
if

k I

~ PnJzhJ + Phk > UB -I. (F2)
j I

The third test tries to establish whether the current partial schedule is dom
inated by another partial schedule for the same k jobs. Suppose we have some
job J1 (I ~ I ~ k - I) that is currently scheduled on M; for which

Pu > P;k and Pnt <phk· (F3)

InterchangingJ1 and Jk reduces the load of both M; and M 11 • The current partial
schedule can then he discarded, since there is at least one optimal schedule with
no such pair of jobs.

Conditions similar to (F2) apply to each job J1 (j = k + I, ... , n). In case
there is ajobJ1 (k +I~ I~ n) for which

k
~ piJziJ +Pil > UB- I, for each M;, i = 1, ... , m, (F4)

j I

we discard the node, too. Similariy, if the condition (F4) applies to some J1
(k +I~ I~ n) for all machines M; (i= I, ... , m) but one, we can assign J1 to
this machine. Subsequently, we can possibly carry out additional assignments;
these, in turn, enhance the likelihood that the node is closedon account of (FI),
(F2), (F3), or (F4).

In addition, we try to identify a machine M 11 (I ~ h ~ m) for which
I
~ PhJzhJ + Pht > UB -I, foreach lt, l = k +I, ... ,n.

j I

In this case, Mh is ignored for the assignment of any remaining job. Therefore,
we discard the node if

[

k m _ n _ l m _
~ ~ À;piJziJ+ ~ minlo;;,;,;;,rn, i=fohÀ;p;1 I ~ À;> UB

j=l i l,i=foh j=k+l . i=J;i=foh
I.

4.5. COMPUTATIONAL EXPERIMENTS

Both algorithms have been coded in the computer language C; the experiments
were conducted on a Compaq-386120 Personai Computer.

The algorithms were tested on a broad range of instances with n and m varying
from 20 to 200 and from 2 to 20, respectiveiy, giving rise to 80 combinations
altogether. The processing times were generated from the uniform distribution
[I 0, I 00]. For each combination of n and m we considered I 0 instances.

ntm---')o 2 3 4 5 6 8 10 12 15 20

20 0 0 0 0 0 0 0

30 0

40 0

50 0

60 0

80 0

100 0

200 0 0

T ABLE 4.2. Number of unresolved problems out of 10 for each cell.

ntm---')o 2 8 10 12 15 20

20 16 75 33 37 11 0

30 31 1440 784 145 4784 64

40 37 6786 23936 3800 192 342

50 59 5848

60 68 10669

80 85

100 132

200 330

TABLE 4.3. Average number of nodes.

nt m---')o 2 3 4 5 6 8 10 12 15 20

20 1 1 1 1 1

30 1 1 2 2 9 6 2 43 2

40 I 1 2 12 39 39 214 63 3 10

50 1 3 16 57~ 285 204

60 1 105 373

80 1

100

200 3

TABLE 4.4. Average computation time in seconds.

84 Chapter 4. Parallel-machine schedu/ing

4.5.1. The branch-and-bound algorithm
For the branch-and-bound algorithm we put an upper bound of 100,000 nodes;
computation for any instanee was discontinued at this limit. In Table 4.2, we
present for each combination the number of unresolved problems. An empty cell
indicates that the branch-and-bound algorithm was not run; consirlering adja
cent cells or initial computations, we expected that most of the instances would
remain unresolved. Table 4.3 shows the average number of norles explored. The
average for a particular combination of n and m is computed by aggregating the
number of nodes for each of the instances and dividing the sum by 10, the total
number of instances for each combination. Unresolved instances contribute
therefore 10,000 norles each to the average number of nodes. Table 4.4 presents
the average computation time for the branch-and-bound algorithm, indoding the
running time for the beuristics and the duality-based approximation algorithm.
The timespent on unresolved instances is included, too. The average computa
tion time for a particular combination is computed in a similar fashion as the
average number of nodes.

From a practical point of view, the instances with a few machines are easy.
The effort required to solve a problem seems to increase more with the number
of machines than with the number of jobs. Surprising exceptions are the
instances with m ;;;:. 12 and n ".;;; 40. Note that the 100,000-node limit for the
branch-and-bound algorithm is arbitrary: it induces distinct time limits across
the instances. For example, instances with m = 20 and n = 50 or 60 require
about 10,000 nodes on the average; however, they require about 5 minutes of
running time. Nonetheless, one can easily form some idea about the instances
that are within reach of, say, one minute of computation time.

Significant deviations from the averages occur. For the combination n =30
and m = 15, for example, a single instanee accounts for the remarkably large
number of nodes and large running time. lt is also conceivable that the perfor
mance of the algorithm is enhanced by fine-tuning the algorithm to particular
instances. For large values of n and m, for example, it may be worthwhile to use
the aseent direction methad in each node of the tree after all. Even then, how
ever, such instances are not salvabie within reasanabie time limits.

4.5.2. The duality-based approximation algorithm
Implementing the duality-based approximation algorithm, we have put
maxiter = nm. Note that cycling may occur. This happens, for instance, if J1 can
be scheduled on both M 1 and M 2• lf J1 is scheduled on M 1, then M 1 has the
largest overlaad; if J1 is scheduled on M 2, then M 2 has the largest overlaad. In
such a situation, J1 would oscillate between M 1 and M 2• The procedure is dis
continued upon detection of this phenomenon.

The duality-based approximation algorithm was compared with the construc
tive beuristics of De and Morton [1980], Ibarra and Kim [1977], Davis and Jaffe
[1981J, and with our version of Potts' 2-approximation algorithm [Potts, 1985B]
(see Section 4.2); the latter is easy to embed in the branch-and-bound algorithm.
We have evaluated neither Potts' original version, nor the 2-approximation algo
rithm presented by Lenstra, Shmoys, and Tardos [1990], nor the two-phase

4.5. Computational experiments 85

beuristics presented by Hariri and Potts [1990]. All these algorithms proceed in
the same spirit; none is expected to outperferm the others significantly in prac
tice. In the remainder, when referring to Potts' 2-approximation algorithm, we
are actually referring to our version of it. Reeall that the versions are identical for .
m =2. The constructive beuristics display a very erroneous behavior. For
instance, the De and Morton heuristic, taking the best result from 10 underlying
heuristics, produces solutions with an average deviation from the best solution of
27%. We have therefore treated the constructive beuristics as a single algorithm
by consirlering only the best schedule.

In Table 4.5, we present the average relative deviation for the best schedu1e
generated by the constructive beuristics from the optima} solution, or if this is
not available, from the best known solution. In the latter case, brackets have
been p1aced around the figures. Table 4.6 shows the same information for the
duality-based approximation algorithm.

ntm-'? 3 4 5 6 8 10 12 20

20 8.0 6.8 12.8 19.

30 2.2 6.3 8.2 18.0
40 3.0 6.5 10.8 14.6

50 2.0 7.2 12.0 12.1
60 6.0

TABLE 4.5. Average relative deviation for the constructive heuristics.

n}m-'? 2 3 4 5 6 8 10 20

20 4.2 5.4 6.6 10.5 11.3 16.4

30 1.5 4.9 6.0 9.8 8.9 14.7 16.7

40 1.9 4.2 3.5 9.0 8.3 (10.0) (19.0)
50 1.6 3.3 4.9 7.4 (6.5) (8.3) (4.1)
60 1.2 1.1 4.1 5.5 (5.0) (4.0) (1.8)
80 1.4 2.3 2.9 (3.5) (2.4) (1.9) (2.

100 2.4 (3.6) (1.8) (2.2) (1.
200 (1.1) (1.2) (1.8) (3.3)

T ABLE 4.6. Average relative deviation for the duality-based approxi-
mation algorithm.

As a whole, the duality-based approximation algorithm performs much better
than the constructive heuristics, which hebave poorly. This certainly applies to

86 Chapter 4. Parallel-machine scheduling

instances with a larger number of machines. Tbe performance of the constructive
heuristics is easily improved by submitting them to an iterative local improve
ment scheme. Tberefore, the schedules generated by the constructive heuristics
should merely he seen as initial solutions that serve as input for some iterative
local impravement procedure.

Each schedule generated by the constructive heuristics was therefore subse
quently submitted to the iterative local improvement procedure we described in
Section 4.3. In contrast, only the best schedule generaled by the duality-based
approximation algorithm was submitted to the impravement procedure.

In Tables 4.7, 4.8, and 4.9, we present the results for the constructive heuris
tics, Potts' 2-approximation algorithm, and the duality-based approximation
algorithm after local improvement, respectively. Tbe sign '*' bebind an entry in
these tables indicates that the corresponding algorithm has the best average per
formance for the associated instances. Table 4.7 exhibits that the iterative local
improvement technique is effective for the constructive heuristics in case of few
machines or jobs. However, its effectiveness deteriorates with an increasing
number of machines. Only two machines at a time are involved in the job inter
changes. For large m, it is more difficult to find an attractive local neighborhood,
even in case of multiple start solutions. Generally, the running time, which seerns
to he increasing with n, is modest: instances up ton= 100 require only one or
two seconds; approximately 10 seconds of computation time are required for
instances with n = 200. Because the job interchanges affect only two machines at
a time, the number of machines hardly seems to play a role in the computation
time.

Potts' 2-approximation algorithm was embedded in a branch-and-bound algo
rithm that differs on two points from the branch-and-bound algorithm described
in Section 4.4. First, we omitted the dominanee rule (F3); second, we initially put
UB oo. Tbe condition (F3) is useful for finding an optimal solution, but might
eliminale good approximate solutions. Tbat is why Potts' 2-approximation algo
rithm sometimes took more time than the optimization algorithm. Occasionally,
more than m -1 jobs remained for the second phase. It is surprising that the
final solution was rarely improved by the local impravement procedure, although
it was applied to all jobs. Tbe computational effort for the algorithm was modest
and seemed to increase more with the number of machines than with the number
of jobs. For instances up to m = 12, it was one or two seconds; for instances with
m 15 and m 20, it was about 15 to 20 seconds. Instances with n =20 and
m =20 were not run; for these instances, Potts' algorithm requires explicit
enumeration of almost the entire state space.

As can he seen from the number of '*' signs in Table 4.9, the duality-based
approximation algorithm has the best performance on the average. Note that the
entries for m =2 are identical for the duality-based algorithm and Potts' algo
rithm. In spite of their close relation, the duality-based approximation algorithm
perforrns considerably better than Potts' algorithm.

Table 4.10 presents the number oftimes (out of 10) that the duality-based
approximation algorithm produced the bestor equally best solution. Tbe algo
rithm perforrns remarkably well if m and n are large; apparently, these instances

n~m~ 2 3 4 5 6 8 15 20

20 0.0* 1.0* 7.1 8.3* 10.4 4.9* 11.1 1.9* 5.1
4.4* 7.6 13.3* 15.0 17.4* 11.0 9.2

1.7* 3.8* 7.9 (13.6) (15.4) 17.8 22.2 14.7*
5.2 (7.8) (11.6) (5.0) (6.9) (7.0) 20.4
3.8 (5.9) (4.8) (2.5) (7.4) (10.6) (32.8)

(2.8) (1.9) (1.9) (4.7) (6.7) (12.5) (12.4)
100 0.7 1.9 (2.9) (1.7) (2.1) (6.1) (6.1) (6.1) (10.6)
200 0.2 (0.6) 1.1 (0.8) (1.3) (1.8) (3.5) (4.1) (3.5) (8.7)

TABLE 4.7. Average re1ative deviation for the constructive beuristics
after iterative local improvement.

3 4

20 1.7 3.0

30
40

50
60

8 10 12

(7 .2) (10.3)

(3.9) (9.3)
(6.3) (5.0)

20

TABLE 4.8. Average relative deviation for Potts' 2-approximation algo
rithm after iterative 1ocal improvement.

n~~ 2 3 4 5 6 8 10 12 15 20

20 1.7 1.0* 5.4 5.4* 9.8 14.5 14.0 10.8* 7.4 3.0*
30 0.2 2.6 3.9 5.2 6.7* 14.2 15.0 19.7 11.3 14.8
40 0.4 1.0* 2.8 5.2 4.4* (9.3)* (15.2)* 13.9* 12.0* 16.4
50 0.4 1.5 2.3* 4.1* (4.2)* (7.2)* (1.3)* (0.0)* (1.2)* 17.0*
60 0.3 (0.8)* (0.8)* (0.9)* (22.8)*

(1.6)* (4.5)*
(0.3)* (0.7)*
(1.2)* (0.0)*

TABLE 4.9. Average re1ative deviation for the duality-based approxi
mation algorithm after iterative local improvement.

88 Chapter 4. Parallel-machine scheduling

n.j. m-;. 2 3 4 10 12

20 1 7 5 3 6
30 7 4 4 4 7

40 5 6 3 4 7
50 7 4 5 7 7 6 6 10

60 4 8 7 6 8 4 5 9 8

80 2 5 7 6 9 6 8 6 9

100 9 4 5 6 5 6 8 8 9

200 6 7 6 7 9 7 8 8 8

TABLE 4.10. Number of times (out of 10) that the duality-based ap
proximation algorithm performed at least as wen as the other approxi
mation algorithms.

20

9

4

5

9

9
7
9

10

are beyond the reach of the iterative local improvement procedure and Potts' 2-
approximation algorithm. In a sense, the duality-based approximation algorithm
and the branch-and-bound algorithm are supplementary: the latter is effective
for instances for which the former performs not so well as the other approxima
tion algorithms. The running time is about a factor of two more than the running
time of the constructive beuristics and Potts' approximation algorithm, but it is
oomparabie or less in the extreme combinations with n = 200 or m = 20.

4.6. CONCLUSIONS

The R I I C max problem is a practical scheduling problem for which we have pro
posed a branch-and-bound algorithm and an approximation algorithm. The
branch-and-bound algorithm solves large instances to optimality within reason
able time limits. The approximation algorithm is based upon a simple and intui
tively appealing idea for local search: beuristic duality-based search in conjunc
tion with iterative local improvement. For instances that are beyond the reach of
an optimization algorithm, it produces very good results.

89

5

Common Due Date Scheduling

We consider here the single-machine problem of minimizing the sum of the devi
ations of the job completion times from a given common due date that is restric
tively small, i.e., smaller than the sum of the processing times. This problem is
known to be 0L'~i'-hard. Previous algorithms include a pseudo-polynomial algo
rithm solving instances up to 1000 jobs, and a branch-and-bound algorithm solv
ing instances up to only 25 jobs. We apply Lagrangian relaxation to find new
lower and upper bounds that coincide for virtually allinstances with the number
of jobs not too small. The crux is the 'logic' formulation of the problem: it can be
formulated as an easy matching problem complicated by only one constraint.

This chapter is organized as follows. InSection 5.1, we introduce the problem.
InSection 5.2, we review Emmons' matching algorithm [Emmons, 1987] to solve
the umestricted variant of the common due date problem. In Section 5.3, we
develop a lower bound based upon Lagrangian relaxation for the restricted vari
ant. InSection 5.4, we use the insight gained inSection 5.3 to develop a heuristic
for the restricted variant. InSection 5.5, we describe some details of the branch
and-bound algorithm. Finally, in Section 5.6, we present some computational
results.

5.1. INTRODUeTION

The just-in-time concept for manufacturing has induced a new type of machine
scheduling problem in which both early and tardy completions of jobs are penal
ized. We consider the following single-machine scheduling problem that is asso
ciated with this concept.

A set of n independent jobs has to be scheduled on a single machine, which
can handle no more than one job at a time. The machine is continuously avail
able from time 0 onwards. Job J1 requires processing during a given uninter
rupted time p1 and is ideally completed exactly on a given due date d1. Without

90 Chapter 5. Common due date scheduling

loss of generality, we assume that the processing times and the due dates are
integral. We assume furthermore that the jobs are indexed in order of non
increasing processing times. A schedule a defines for each job Jj a completion
time Cj, such that the jobs do not overlap in their execution. The earliness and
tardiness of Jj are defined as Ej = max {dj - Cj , 0} and ~ max { Cj - dj , 0},
respectively. The just-in-time philosophy is reflected in the objective function

11

j(a) = ~ (ajEj + Pj Tj),
j=l

where the deviation of Cj from dj is penalized by either aj or pj, depending on
whether Jj is early or tardy, for j = I, ... ,n. Fora review of problems with this
type of objective function, we refer toBaker and Scudder [1990].

An important subclass contains problems with a due date d that is common to
all jobs. Either the common due date is specified as part of the problem instance,
or the common due date is a decision variabie that has to he optimized simul
taneously with the job sequence. As the frrst job may start later than time 0, the
optimal schedule is identical for both problems unless the common due date dis
restrictively small (d < '2-j 1pj). The first variant is therefore referred to as the
restricted problem (i.e., d is fixed) and the second variant as the unrestricted
problem (i.e., dis a variable).

We consider the restricted variant of the problem in which all earliness penal
ties are equal to a and all tardiness penalties are equal to {3. Bagchi, Chang, and
Sullivan [1987] propose a branch-and-bound approach for this problem, and
Szware [1989] presents a branch-and-bound approach for the case that a= {3.
These branch-and-bound algorithms are able to solve instauces up to 25 jobs.
Sundararaghavan and Ahmed [1984] present an approximation algorithm for the
case a = P that shows a remarkably good performance from an empirical point
of view. Hall, Kubiak, and Sethi [1991] and Hoogeveen and Van de Velde
[l991A] establish the '!JL~-hardness of the problem, even if a p, thereby justify
ing the enumerative and approximative approaches. Furthermore, Hall et al.
[1991] propose a pseudo-polynomial time algorithmrunning in O(n'î.j=tPj) time
and space, and provide computational results for instauces up to 1000 jobs.

Their experiments, however, show that the space requirement rather than the
time requirement limits the applicability of the algorithm. In general, there is
always need for a branch-and-bound algorithm that solves instauces for which
the space requirement is prohibitive. We present a branch-and-bound algorithm
that solves virtually all instauces without branching. It is based upon new lower
and upper bounds, which are computed in O(nlogn) time. If these bounds do
not concur, they can be refmed by solving a subset-surn problem to optimality by
a pseudo-polynomial algorithm. This can he done very fast, since the subset-surn
problem in our application is of a considerably smaller dirneusion than the com
mon due date problem. Hence, the branch-and-bound algorithm is more than
competitive with the pseudo-polynomial algorithm for the common due date
problem.

5.3. A new lower bound tor the restricted variant 93

the property that the work processed before time dis minimal among all optima!
schedules for the Lagrangian problem (LÀ). In the same fashion, the schedule
oÀax is defined as the optimal schedule for the Lagrangian problem (LÀ) with a
maximal amount of work processed before time d, for À= 0, ... ,n. Wedefine
W'Àin and wrax aS the amOUDt Of WOTk processed before time d in OÀin and OÀax,
respectively. Straightforward calculations show that orn is identica1 to orf\ and
that wrn W"r.f1• This implies that L(À) is a piecewise linearand concave
function of À. The breakpoints correspond to the integral values À I, ... ,n,
and the gradient of the function between the integral breakpoints À and À+ 1 is
equal to W"rin d, for À = 0, ... , n - 1. The Lagrangian dual problem is there
fore solved by putting À* equal to the index À for which wrax ~ d > W"rin. Due
to the indexing of the jobs, the theorem follows. D

Let o* be an optimal schedu1e for the Lagrangian dual prob1em. lf À* 0, then
o* = o/Fn is feasib1e for the original prob1em, and hence optimal. Note that this
also implies that d ~ p 1 + p 3 + · · · + Pn if n is odd, and
d ~ p 1 + p 3 • · • + Pn -I if n is even. This agrees with the observation by Bagchi
et al. [1987] that the schedules (J 1, J 3, ••. , Jn, Jn 1, ... ,J 2) and
(J 1 , J 3, ... Jn -I Jn, . .. ,J 2) are optimal under the respective conditions.

In the remainder, we assume that À* ~ 1. Depending on whether n À* is odd
or even, o* has the following structure. First, suppose n - À* is odd. Then the
jobs J 1, ••• ,J À* 1 occupy the last À* 1 positions in o*, the pair {J À*•J À*+ 1}

occupies the first early position and the À *tb tardy position, the pair
{J À*+2,J À* +3 } occupies the second early position and the (À*+ l)th tardy posi
tion, and so on. Final1y, the pair { Jn _ t.fn} occupies the positions around the
due date. Second, if n À* is even, then o* has the same structure, except that Jn
is positioned between Jn _ 2 and Jn -t, and is started somewhere in the interval
[d-pn,d].

THEOREM 5.5. IJ there exists a schedule o* that is optima/ for the Lagrangian dual
problem in which the first job is started at time 0, then the Lagrangian lower bound
L (À*) is tight and o* is an optima/ schedule for the original problem. D

If no such schedule o* exists, then there is a gap between the optimal value for
the original problem and the Lagrangian lower bound. This lower bound, how
ever, can be strengthened by solving the modified Lagrangian problem, which is
to find a schedu1e that minimizes

n

~ I cj dI + À*(W- d) + I w dI·
j 1

C1ear1y, the modilied Lagrangian problem yields a lower bound for the original
problem if À* ~ I.

THEOREM 5.6. The modified Lagrangion problem is so/ved by a schedule from
among the schedules that are optima/ for the Lagrangian dua/ problem. for which
I W - d I is minima/.

94 Chapter 5. Common due date scheduling

PROOF. Suppose that 'TT is optimal for the modified Lagrangian problem, but not
for the Lagrangian dual problem. We show that 'TT can be transformed without
additional costinto a schedule 'TT that is optimal for the Lagrangian dual problem
by conducting pairwise interchanges. Let '1T1 be the schedule after t interchanges;
hence, 'TTo 'TT, and 'TTT =Ti, for some T;;;;. I. Note that it is possible to specify a
series of pairwise interchanges that lowers the Lagrangian cost
~7 = 1 I Cj d I + À* (W - d) at every interchange. Consider two successive
schedules '1T1 and '1T1 + 1 , and suppose that Ji and Jj with p1 > pj have been inter
changed. The interchange must have decreased the Lagrangian cost by at least
p1 - pj, and may have increased the term I W - d I by at most p1 - Pj· This
observation implies that every interchange does not increase
~7 = 1 I Cj dI + À *(W- d) + I W- d I· Therefore, 1i must also he· optimal.
D

Let a* now he an optimal schedule for the modified Lagrangian problem. Sup
pose that the first job in a* is not started at time 0. First, suppose that the first
job is started before time 0. We then shift a* to make it feasible. Shifting a*
implies that some jobs or parts of jobs are transferred to the other side of the due
date. Let !::..j he the amount of the jth job that bas been transferred. If n -À* is
odd, then shifting a* increases ~7 1 I Cj- d I by À* + 1 per unit of the first job
that is transferred, by À* + 3 per unit of the second job that is transferred, and so
on. As W- dis weighted by À*, the cost of the schedule after shifting is equal to
L (À*)+ 1::..1 + 31::..2 + · · · . If n -À* is even, then a similar analysis shows that the
cost of the schedule af ter shifting is equal to L (À*)+ 21::..2 + 41::..4 • • • •

Second, suppose that the first job is started after time 0. Shifting by transfer
ring jobs or parts of jobs to the other side of the due date decreases
~j = 1 I Cj- d I as long as the number of jobs started before the due date is not
greater than the number of jobs completed after the due date plus one. This
implies that no more than rÀ *I 21 jobs are transferred. If n -À* is odd, then
shifting a* decreases ~7 =I I cj-d I by À* - 1 per unit of the first job that is
transferred, À* -3 per unit of the second job that is transferred, and so on. As
W- d is weighted by À*, the cost of the schedule after shifting is equal to
L(À*)+À*(d- W)+!::..1 +31::..2 • • ·, where Wis theamount ofwork befored after
shifting. If n -À* is even, then a similar analysis shows that the cost of the
scheduling af ter shifting is equal to L (À*)+ À* (d W) + 21::..2 + 41::..3 • · • ; Wis the
amount of work before d after shifting.

THEOREM 5.7. The schedule obtained after shifting a* has cost equal to the
strengthened lower bound if À* 1 and the jirst job is started after time 0, or if
n -À* is odd and either ln -J or ln is executed attime d D

However, in order to determine that schedule, we have to solve the tie-breaking
problem. We will deal with this problem in the next section.

The lower bound approach can he extended to the restricted variant of the
problem with a =I= fJ. Without loss of generality, we assume that a and P are
integral and relatively prime. A similar analysis shows that the optimal value À*

5.4. A new upper bound tor the restricted variant 95

can be determined as the value À* E {I, ... , n IJ} for which wr.ax ;;;.. d > ~n.
Theorem 5.6 still holds, but the strengthening of the bound is less meaningful,
since the oost of transferring one unit of processing time of the first job to the
other side of d has been increased from 1 to either a or {J, in case n -À* is odd.

5.4. A NEW UPPER BOUND FOR THE RESTRICTED VARIANT
We start with the case a= {J. The analysis in the previous section suggests to find
an optimal schedule for the Lagrangian dual problem with minimal I W- d I·
This requires the development of a tie-breaking rule in Emmons' matching algo
rithm that Ininiinizes I W- d I· Such a schedule induces an approximate solu
tion to the common due date problem. This schedule is provably optimal if
W = dor if the conditions of Theorem 5.7 are satisfied.

We show that the problem of minimizing I W- d I boils down to solving the
optimization version of the subset-surn problem. This problem will be defined
below; it will henceforth be referred to as the subset-surn problem. Although this
problem is ~~-hard in the ordinary sense [Garey and Johnson, 1979], the
instances occurring in our application virtually always belong to an easy-to-solve
subclass if n is not too small. In general, the subset-surn problem is solvable by a
dynainic programmingprocedure that requires significantly less effort than the
O(n~j 1pj) time and space algorithm for the common due date problem.

The problem of miniinizing I W - d I can be transformed into an instanee of
the subset-surn problem in the following way. Define aj =. p 2j-2H· p 2j-IH•,

for j = 1, ... , l(n -À* + 1)12J, and define D = d ~n. Note that all aj;;;.. 0.
Remove the values aj that are equal to 0; let m be the number of remaining
valnes aj, and let él be the multiset that contains the valnes a 1, ••. , am. First, sup
pose that n -À* is odd. The problem of Ininimizing I W- d I is then equivalent
to determining a subset A ç él, whose sum is as close to D as possible.

Second, suppose that n -À* is even. An optimal schedule for the Lagrangian
dual problem is also optimal for the original problem if WE [d- Pn, d]. Find
ing such a schedule is equivalent to determining a subset A Çél whose sum falls in
the interval [D - Pm D]. If no such subset exists, then the goal is to find a subset
A ç él whose sum is as close as possible to either D - Pn or D.

Given a subset A Çél (optimal or approximate), we deterinine the conespond
ing schedule for the common due date problem in the following way. Start with
o~n. Interchange the jobs that correspond to aj E A for j = I, ... , m, thereby
increasing the amount of work processed before d by aj. Finally, shift the
schedule to ensure that the first job is started at time 0.

We show now how todetermine a suitable set A. We reindex the valnes ai in
order of non-decreasing values. Por n not too small, the instances of the subset
surn problem virtually always possess the. divisibility property.

DEFINITION 5.1. A set of integers {at. ... ,am}, with I= a 1 :e;;; a2 .:e;;; • • • .:e;;; am,
is said to possess the divisibility property if for every value
DE {1,2, ... ,~=I a1} there exists a subset A E {a., ... ,aj}, whose sum is
equal toD.

96 Chapter 5. Gomman due d<i!te schedu/ing

THEOREM 5.8. A multiset of inlegers {a 1, ••. , am }, with 1 = a 1 "'a 2 ~ · • • ~ am,
possesses the divisibility property if and only if a1 + 1 "''}";{ = 1 a1 + 1, for
j = 1, ... ,n 1. D

An intuitive reason explains why virtually all instances with n not too small have
this property. Every a1 is equal to the difference in processing times between two
successive jobs in the shortest processing time order. This implies that for ran
domly generated instances of the common due date problem the values a1 tend to
be small if nis not too small. Note that }";j=J a1 ~ max1 ~J ~nPj·

THEOREM 5.9./f an instanee ofthe subset-surn problem possesses the divisibility pro
perty, then Johnson's greedy algorithm for subset-surn [Johnson, 1974] solves this
instanee to optimality in O(mlogm) time. D

JOHNSON'S ALGORITHM

Step 0. Reindex the values aj in order of non-increasing values.
Step 1. Select the largest remaining value aj with a1 ~ D. If there is no such
value, then stop.
Step 2. Put aj in the subset; D ~ D - a1.
Step 3. If D ;;;;;.. a 1 and if a 1 is not in the subset, then go to Step 1.

Johnson's algorithm always yields a subset whose sum is no more than D. This
handicap is overcome by not only ap_plying the algorithm with the value D but
also with the value '}";j = 1 a1 - D. Let A be the subset in the latter case for whi~h
an approximateschedule can be constructed as described above, withA =&\A.

If Johnson's algorithm does not yield a provably optimal solution, then we
solve the instanee to optimality by dynamic programming. This requires O(mD)
time and space. By this, we may improve both on the upper and lower bound. If
the lower and the upper bound still do not coincide, then we need to apply
branch-and-bound to solve the common due date problem to optimality.

The approximation algorithm described above can be adjusted in an obvious
fashion to deal with the restricted variant of the common due date problem with
a:=/=fJ.

5.5. BRANCH-AND-BOUND

We describe the branch-and-bound algorithm for the case a {J. The first step i:»
the algorithm is to solve the Lagrangian dûal problem. If À* 0, then o* = olfn
is an optimal solution for the common due date problem, and we are done. Oth
erwise, wedetermine upper bounds as described in Section 5.4; we also apply the
heuristic presented by Sundararaghavan and Ahmed. If the lower and the best
upper bound do not concur, then we solve the subset-surn problem to optirnality
by dynamic programming. If the bounds still do not concur, then we apply
branch-and-bound. In the remainder, we assume that the jobs have been rein
dexed in order of non-increasing processing times.

There is an optimal schedule in which either the jobs are scheduled in the

5. 6. Computational resu/ts 97

interval [O,~J=IPJ], or d coincides with the start time or completion time of the
job with the smallest processing time; see also Theorem 5.2. To cope with these
possibilities, we need to design two search trees. We make use of the following
observation. In any optimal schedule, the jobs completed before or at the com- .
mon due date d are scheduled in order of non-increasing processing times; the
jobs started at or after d are scheduled in order of non-decreasing processing
times. In case the jobs are scheduled in the interval [0, ~J = 1 Pi], there may he a
job that is started before and finished after d; for this partienlar job, it holds that
the early fr the tardy jobs have larger processing times. Due to this structure,
optima) schedules are said to he V -shaped. This observation is easily verified by
use of an interchange argument.

For the case that the jobs are scheduled in the interval [O,~J= 1 p1], the search
tree has the following form. A node at level j (j = I, ... , n) of the search tree
corresponds to a partial schedule in which the completion times of the jobs
J 1, ••• , J1 are fixed. Each node at level j has at most (n - j) descendants. In the
kth (k =I, ... ,n-j) descendant, JJ+k is started before d; if k;;;. 2, then the
jobs J1 + 1, ... , J1 + k -I are to he completed af ter d. Given the partial schedule for
J 1 , ••• ,J1, a partial schedule for J 1, ••. ,J1 +kis easily computed.

For the case that d coincides with the start time or completion time of the job
with the smallest processing time, i.e., Jn, the tree has the following form. A node
at level j (j = 1, ... , n) of the search tree corresponds to a partial schedule in
which the completion times of the jobs Jn, ... ,Jn _ 1 + 1 are fixed. Each node at
level j has at most (n - j) descendants. In the kth (k = n - j, ... , I) descendant,
Jn -j-k + 1 is started before d; if k;;;. 2, then the jobs Jn -J•Jn -J-k +2 are to
he completed after d. Given the partial schedule for JmJn-J+b a partial
schedulefor Jn,Jn-J-k+I can easily he computed.

Both trees are successively explored according to a 'depth-first' strategy. We
employ an active node search: at each level we choose one node to branch from.
Inthetree for the case the jobs are scheduled in the interval [O,~J= 1 p1], we con
sistently choose the node, whose job has the smallest remaining index; in the tree
for the case d coincides witheither the completion or start time of Jn, we choose
the node, whose job bas the largest remaining index.

A simple but powerful rule to restriet the growth of each search tree is the foi
lowing. A node at level j (j I, ... , n) corresponding to some J k can he dis
carded if another node at the same level corresponding to some J1 with Pk = p1
has already been considered. This rule obviously avoids duplication of schedules.

As far as lower bonnding in the nodes of the tree is concerned, we only com
pute the lower bound L(À*). Hence, we neither solve the modified Lagrangian
dual probiem nor compute additional upper bounds.

5.6. CoMPUTATIONAL RESULTS

The processing times were drawn from the uniform distribution [I, 1 00]. Compu
tational experiments were performed with d = Lt~}=IPJJ for t
0.1, 0.2, 0.3, 0.4, respectively, and with the number of jobs ranging from 10 to
1000. For each combination of n and t we generated I 00 instances. The algo
rithm was coded in the computer language C; the experiments were conducted

98 Chapter 5. Common due date scheduling

on a Compaq-386/20 Personal Computer.
The results are shown in Table 5.1, the design of which reflects our three-phase

approach. The third column'# O(nlogn)' shows the number of times (out of
lOO) that Johnson's subset-surn algorithm gave rise to a schedule with cost equal
to the Lagrangian lower bound L (À*); this is the number of times that the com
mon due date problem was provably solved to optimality in O(nlogn) time. The
fourth column '# DP' shows how many of the remaining instances were prov
ably solved to optimality by dynamic programming applied to subset-sum. The
fifth column 'maximum # nodes' shows the maximum number of nodes that was
needed for the branch-and-bound algorithm. The sixth column '# greedy
optimal' shows the number of times that Johnson's algorithm induced an optimal
schedule. The seventh column '# SA optimal' gives the same informatión for the
approximation algorithm presented by Sundararaghavan and Ahmed. The last
column '# LB tight' shows the number of times that the lower bound
(strengthened or not) was equal to the optimal salution value.

We conclude that the common due date problem is easy to solve from a practi
cal point of view. As pointed outinSection 5.4, a randomly generated instanee
with n not too small can he expected to possess the divisibility property; if an
instanee possesses this property, then a greedy algorithm gives an optimal solu
tion. If n;;;:. 40, then the O(nlogn) algorithm solves allinstances to optimality;
for n ;;;;. 30, dynamic programming applied to subset-surn suffices to solve the
instances that are not solved by the O(nlogn) algorithm; for n.;;;;; 20, branch
and-bound is occasionally needed, but requires only a small number of nodes,
and always less than I second of running time.

n t # O(n1ogn) # DP maximum # greedy #SA # LB
nodes optimal optimal tight

10 0.1 66 20 12 72 77 86
10 0.2 69 20 22 72 58 89
10 0.3 68 23 22 68 59 93
10 0.4 82 1 40 85 62 85
20 0.1 81 12 94 84 51 94
20 0.2 94 5 167 94 43 99
20 0.3 99 0 320 100 42 99
20 0.4 99 1 0 99 35 100
30 0.1 100 0 0 100 50 100
30 0.2 98 2 0 98 51 100
30 0.3 100 0 0 100 57 100
30 0.4 100 0 0 100 68 100
40 0.1 100 0 0 100 63 100
40 0.2 100 0 0 100 64 100
40 0.3 100 0 0 100 63 100
40 0.4 100 0 0 100 54 100
50 0.1 100 0 0 100 72 100
50 0.2 100 0 0 100 63 100
50 0.3 100 0 0 100 69 100
50 0.4 100 0 0 100 75 100
75 0.1 100 0 0 100 75 100
75 0.2 100 0 0 100 79 100
75 0.3 100 0 0 100 78 100
75 0.4 100 0 0 100 83 100

100 0.1 100 0 0 100 81 100
100 0.2 100 0 0 100 86 100
100 0.3 100 0 0 100 78 100
100 0.4 100 0 0 100 78 100
200 0.1 100 0 0 100 96 100
200 0.2 100 0 0 100 98 100
200 0.3 100 0 0 100 99 100
200 0.4 100 0 0 100 97 100
500 0.1 100 0 0 100 99 100
500 0.2 100 0 0 100 100 100
500 0.3 100 0 0 100 100 100
500 0.4 100 0 0 100 100 100

1000 0.1 100 0 0 100 100 100
1000 0.2 100 0 0 100 100 100
1000 0.3 100 0 0 100 100 100
1000 0.4 100 0 0 100 100 100

TABLE 5.1. Computational results.

101

6

Just-In-Time Scheduling

The just-in-time concept decrees not to accept ordered goods before their due
dates in order to avoid inventory oost. This bounces the inventory cost back to
the manufacturer: products completed before their due dates have to be stored,
thereby entailing storage oost. Preelusion of early completion conflicts with the
traditional policy of keeping work-in-process inventories down. This chapter
addresses the single-machine scheduling problem of minimizing total inventory
oost, comprising cost due to work-in-process inventories and storage cost due to
early completions. The oost components are measured by the sum of the job
completion times and by the sum of the job earlinesses. This problem is known
to be 'Jtt?.P-hard. In Section 6.1, we describe the problem in detail and give an
overview of the literature on scheduling probieros with earliness penalties.

The problem differs from traditional scheduling problems, as machine idle
time between the execution of jobs may reduce total inventory oost. The search
for an optimal schedule can still be limited to the set of job sequences; for any
given sequence, a polynomial-time algorithm can be applied to insert machine
idle time between the jobs so as to minimize total inventory cost. This algorithm
is presented inSection 6.2.

The a11owance of machine i die time between the execution of jobs singles out
our problem from most concurrent research on problems with earliness penalti es.
To our knowledge, we present the first branch-and-bound algorithm for a
single-machine scheduling problem where machine idle time between the jobs is
a11owed. In Section 6.3, we discuss the components of the branch-and-bound
algorithm including the upper bound, the branching rule, the search strategy,
and the many dominanee rules. The denvation of lower bounds is significantly
complicated by the possibility of machine idle time. The range of the due dates in
proportion to the processing times mainly delermines how much idle time is
desired; this gives rise to many different classes of problem instances. To cope

102 Chapter 6. Just-in-time schedu/ing

with the different problem instances, we present five approaches for lower bound
computation; each of these is only suitable · for a specific class of problem
instances. Lagrangian relaxation is one of them; its application proceeds in the
spirit of Chapter 2. The lower bounds are presentedin Section 6.4. The branch
and-bound algorithm is inelegant: it is based upon many dominanee rules and
various lower bound approaches. Unfortunately, it is nat very efficient either;
the computational results presented in Section 6.5 exhibit that we can solve only
specific instauces with up to 20 jobs. Conclusions are given in Section 6.6.

6.1. INTRODUCTION

The just-in-time concept has affected the attitude towards inventories signifi
cantly. In order to keep inventories down, there is a reinetanee to accept ordered
goods prior to their due dates. This implies that manufacturers have to store
early goods befare they can be shipped to their destinations. This has added a
relatively new aspect to machine scheduling theory: the preelusion of earliness.
In principle, earliness can be avoided by allowing machine idle time, thereby
delaying jobs. Machine idleness, however, runs counter to minimizing work-in
process inventories, to maximizing machine utilization, and to observing due
dates.

Within this context, we address the following situation. A set~= (J I> ••• ,Jn}
of n independent jobs has to be scheduled on a single machine, which is continu
ously available from time 0 onwards. The machine can handle at most one job at
a time. Job Jj (j = I, ... , n) requires processing during an uninterrupted period
of length pj and is ideally completed exactly on its due date dj. We may assume
that the processing times and the due dates are integral. A schedule specifies for
each job Jj a completion time c1 such that the jobs do not overlap in their execu
tion. The order in which the machine processes the jobs is called the job sequence.
Fora given schedule, the earliness of J1 is defined as Ej = max(dj-c1, 0} and
its tardiness as Tj max { Cj- dj, 0}. In addition, we define maximum earliness
as Emax = maxl<j<n Ej and maximum tardiness as T max maxl<J<n ~
Accordingly, Jj is called early, just-in-time, or tardy, if Cj < d1, Cj =dj, or
Cj >dj, respectively.

Since earliness is a performance measure that is non-increasing in the job com
pletion times, permitting machine idle time is advantageous. The inclusion of the
acronym nmit in the second field of the three-field notation introduced in Section
1.1.4 signifies that no machine idle time is allowed.

Three single-machine scheduling problems invalving job earliness have been
considered in the literature. The best-known is the minimization of Emax. If
machine idle time is nat allowed, then the problem is solved by scheduling the
jobs in non-decreasing order of dj -pj; this is known as the minimum slack time
order. lf machine idle time is allowed, then the problem is trivia!: for any given
sequence, we delay the jobs until all are just-in-time or tardy. This approach also
applies to lil "2.Ej, but, surprisingly, 11 nmit I "2.Ej is 0Lt!P-hard in the ordinary
sense [Du and Leung, 1990]. The thirdproblem is to maximize "2.J 1 wjEj, where
Wj is the weight of J1, denoted as III "2.wjE1; it is so1vable in pseudo
polynomial time by an algorithm due to Lawler and Moore [1969]. Note that the

6. 1. Introduetion 103

objective function is non-decreasing in the job completion times.
The combination of earliness with another performance measure, reflecting

other considerations, takes us into the arena of bicriteria scheduling. The state of
the art, as far as a measure of earliness is concemed, is as follows. For the
I Jpmtn, nmit I a~Cj +,BE max problem, Hoogeveen and Van de Velde [1990]
present an algorithm that runs in O(n4) time. They show that the same algorithm
also solves 1 I I a~Cj +,BE max in the case that a ;;;;;. ,B. Hoogeveen [1990] presents
an algorithm that solves lJJ aE max + ,BT max and IJ nmit I F(Emax, T max) in
O(n 2logn) time; Fis bere an arbitrary non-decreasing function of Emax and
T max· For the 11 nmit I ~(ajEj+,B1T1) problem, Ow and Morton [1989] propose a
local search metbod to generale approximate solutions. A voluminous part of
research is concemed with common due date scheduling. Here, we have d1 = d
for each Jj (j = 1, ... , n); the objective is to minimize some function of earliness
and tardiness. A survey of problems, algorithms, and computational comp1exity
is provided by Baker and Scudder [1990].

In thischapter, we consider the problem of minimizing total inventory oost,
comprising two components: oost due to work-in-process inventory and storage
oost due to early completions. These components are assumed to depend linearly
on the sum of the job completion times and the sum of the job earlinesses. If a
and fJ denote the cost per job per unit time for work-in-process inventory and
storage of finished product, respectively, then the total inventory oostfora given
schedule a is

n. n

f (a) = a ~ c1 + ,B ~ E1.
j=l j=l

Without loss of generality, we assume a and ,B to be integral, positive, and rela
tively prime. Since we have by definition that E1 = Tj Cj + dj for
j = I, ... , n, the objective function can altematively be written as

n n
(a-,B)~ Cj + ,B~ (Tj +dj)·

j 1 j=l

If a > ,B, then this objective function is increasing in the job completion times;
hence, any optimal schedule has no machine idle time. The case a ,B reduces to
IJl~~. which is 0L<3'-hard in the ordinary sense [Du and Leung, 1990]. Garey,
Tarjan, and Wilfong [1988] prove that the case a< {J is 0L<3'-hard too. We note
that the case na < ,B reduces to IJ r1 I~ Cj, which is 0L<3'-hard in the strong sense
[Lenstra, Rinnooy Kan, and Brucker, 1977].

In this chapter, we exarnine the case a < fJ with machine idle time allowed.
Each Jj (j = I, ... ,n) is then ideally comp1eted exactly on its due date dj. The
purpose is to find a feasible schedule a that minimizes j(a). Fry and Keong
Leong [1987 A], formulating the problem as an integer linear program, use a stan
dard code for integer linear programming to find an optimal solution. Not
surprisingly, they report that their approach is effective for instances withup to
12 jobs only.

104 Chapter 6. Just-in-time scheduling

6.2. THE INSERTJON OF IDLE TIMEFORA GIVEN SEQUENCE

The search for an optimal schedule can be reduced to a search over 1the n ! dif
ferent job sequences, as there is a clear-cut procedure to insert machine idle time
so as to minimize total cost fora given sequence.

This procedure, however, is not new. Similar methods have been presenled (cf.
Baker and Scudder [1990]), including the ones proposed by Fry and Keong
Leong [1987B] for the lll~(o:C1 +,BE1 +y7j) problem and by Garey, Tarjan,
and Wilfong [1988] for the 11 I ~(E1 + T) problem. This is not surprising: as we
have already noted, 1j = c1 + E1 d1 for all j; for specific choices for a and ,8,
our problem is equivalent with theirs.

Suppose that the scheduling order is u (Jm ... ,J 1). Accordingly,
c1 = ~Z=JPk is the earliest possible completion time of J1 in this sequence. We
introduce a vector x= (x~> ... ,xn) of variables, with x1 (j = 1, ... ,n) denoting
the amount of idle time immed:!!!tely before the execution of J1. The actual com
pletion time of J1 is then c1 = c1 + ~Z=Jxk. The problem of minimizing inven
tory cost for the given job sequence is then equivalent to determining values
x1 (j = 1, ... , n) that minimize

n n n n

o:~(C1 + ~ xk) + ,B~max(O,d1 -c1 - ~xk)
j=l k=j j=l k=j

subject to

forj =I, ... ,n.

By the introduetion of auxiliary variables E1 denoting the earliness of J1
(j = I, ... ,n), we can easily transfarm this problem into a linear programming
problem. We know therefore that the optimum is attained in a vertex of the
unspecified LP polytope. In addition, we know that the optimal x1 are integral,
since the due dates, the prqcessing times, o:, and ,B are integral. A necessary con
dition for x to be optimal is that all existing primitive directional derivatives at x
are non-negative (cf. Section 1.3.3). For this particular problem, the primitive
directional derivatives are equal to the change of the scheduling oost if x1 is
increased by one unit, and the change of the scheduling oost if x1 is decreased by
one unit, for j = 1, ... ,n. The increase of x1 by one unit only affectsJ1 and the
jobs succeeding J1 up to the first period of machine idle time after J1. We call
these jobs the immediate successors of J1. Let Q1 denote the set containingJ1 and
its immediate successors, let n1 be the number of early jobs in Q1, and let g1 be
the primitive directional derivative for ·increasing x1. We have then that
g1 = a I Q1 I - ,B n1. Reeall that each J1 is ideally completed on its due date d1.

Using the above observations, we develop an inductive procedure for finding
an optimal schedule for o. This procedure finds an optimal schedule for the
subsequence (h ... , J 1), given an optimal schedule for the subsequence
(J1_ 1, ••• ,J 1), for I = 2, ... , n. The first step is to find out whether putting
C1 d1 is feasible; if it is, then we have an optimal schedule for (h ... , J 1). Sup
pose C1 = d1 is not feasible, because J1 overlaps with some other job. We then ten
tatively put C1 = C1 1 - p1- t. and compute the optimal delay of the jobs in Q1,

6.2. The insertion of idle time tor a given sequence 105

disregarding the jobs not in QJ. The optimal delay, denoted by a, is specified by
the first point where g, beoomes non-negative. This delay is feasible if a is not
larger than the length of the period of idle time immediately after the last job in
Ql; let this length be amax· If a.;;; amax• then we get an optimal schedule for
(ft, ... ,J J) by delaying the jobs in Qt by a. If a > ama:o then we delay the jobs in
Q1 by amax· At this point, we repeat the process for J1: we update Qt, and evalu
ate if further delay of the jobs in Q1 is advantageous. We now give a step-wise
description of the idle time insertion algorithm.

IDLE TIME INSBRTION ALGORITHM

Step 0. C 1 = d 1 ; I = 2.
Step 1. If I n + 1, go to Step 9.
Step 2. Put Ct min{dt,Ct_ 1-p1-t}. If Ct dt. then go to Step 8.
Step 3. Delermine Qt and evaluate gt. If gt ~ 0, then go to Step 8.
Step 4. Compute E1 for each job J1 E Qt.
Step 5. Compute amax• i.e., the lengthof the period of idle time immediately after
the last job in Q1•

Step 6. Compute a = l (I Q1 I)a I ,8 J. Let k I Qt I -a. Determine the kth smal
lest value of the earlinesses of the jobs in Q1; this value is denoted as E!kJ· If the
jobs in Q1 are delayed by ö = E[kJ• then at most a jobs in Qt remain early; due to
the choice of a, gt then beoomes non-negative.
Step 7. Delay the jobs in Qt by A= min{a,ömax}· If ö > Ömax• then go to Step 3.
Step 8. I -1 + I; go to Step 1.
Step 9. An optimal schedule for the sequence (Jn, ... ,J 1) has been determined.

THEOREM 6.1. The idle time inserfion algorithm generat es an optima/ schedule for a
given sequence.

PRooF. The proof proceeds by induction. The algorithm clearly produces the
optimal schedule in case of a single job. Suppose now we want to find an optimal
schedule for the sequence (ft, ... ,J 1), having an optimal schedule for the
sequence (Jt-t, ... ,J 1) available. There are two cases to consider. First, suppose
dt .;;; Ct- 1 - p1- 1; in this case, we let C1 dt, and retain the completion times of
the other jobs; this specifies an optimal schedule for the sequence (ft, ... ,J 1).

Suppose now d1 > Ct-Pt; for this case, delaying J1 1 and thereby its immedia te
successors, i.e., the jobs contained in the s~t Qt- 1, may be advantageous. We can
compute the cost of delaying Q1_ 1 by one unit; we know that the benefit of
delaying J1 by one unit is equal to ,8-a. If the cost is higher than or equal to the
benefit, then we put Ct = C1_ 1 - Pt- 1, and we have an optimal schedule for
(Jt. ... ,J 1); otherwise, we postpone the jobs in Qt- 1 by one unit, and evaluate
whether further postponement is advantageous. The idle time insertion algorithm
shortcuts this procedure by computing the break-even point, that is, the point
where further delay is not advantageous. 0

106 Chapter 6. Just-in-time scheduling

Consider the example for which the data are given in Table 6.1. Let a 1, and
let /3 == 4. We construct the optimal schedule for the sequence (J 3,J 2,:J 1). First,
we put C1 d1 15. Next, we let C2 d2 10, as d2 ~Cl-PI· Note that
d 3 > C2 - p 2. Therefore, we tentatively put C3 = C2-P2 = 7, and consider
delaying J 3 and J 2 . Apparently, we have Q 3 ={h,J2 }, n 3 =1,
g 3 = 2a- /3 < 0, and E 121 == 3. However, 8max C 1 - p 1 - C 2 = 2, therefore, we
delay J 2 and J 3 by 2 units. At this point, the three jobs are processed consecu
tively. Now we have g 3 = 3a- /3, and further delay is still advantageous. As
E 131 = 1, we insert one more unit of machine idle time. The optimal schedule for
each subproblem is depicted in Figure 6.1.

JJ PJ dJ
Jl 3 15
J2 3 10
J3 6 10

T ABLE 6.1. Data for the example.

0

FIGURE 6.1. Schedu1es for the example.

The algorithm runs in O(n 2
) time. A complete run through the main part of

the algorithm, i.e., steps 2 through 8, takes 0 (n) time: this is needed to identify
the set Q" to compute the primitive directional derivative g1, the values 8max and
8, and to delay the jobs, if necessary. The value 8 is determined in O(n) time
through a median-finding technique; see Aho, Hopcroft, and Uilman [1982].
Aftereach run through the main part of the algorithm, a gap between two suc
cessive jobs is closed. As at most n 2 such gaps exist, the algorithm runs in
0 (n 2) time. For the case 2a = /3, i.e., for the problem 1 1 I "'2.(E1 + T;), Garey, Tar
jan, and Wilfong [1988] show that the idle time insertion procedure can be imple
mented to run in 0 (n1ogn) time.

The problem of inserting machine idle time is also solved by a symmetrie pro
cedure starting with the first job in er. Because of our specific branching rule,
however, we choose to start at the end.

In the remainder, we use the terms sequence and schedule interchangeably.
Unless stated otherwise, er also refers to the optimal schedule for the sequence er
and to the set of jobs in the sequence er. Throughout the chapter, we let
p(er) ~J1 E aPJ·

6.3. The branch-and-bound a/gorithm 107

6.3. THE BRANCH-AND-BOUND ALGORITHM

We adopt a backward sequencing branching rule: a node at levelk of the search
tree corresponds to a sequence 'lT with k jobs frxed in the last k positions. We
assume from now on that the first job in a partial schedule 'lT is not started before
time p (~-'lT); this additional restriction, imposed to leave space for the remain
ing jobs, is easily incorporated in the idle t!!ne insertion algorithm. Let f ('1T)
denote the minimal inventory cost for 'lT. Let j('lT) denote the minim~ inventory
cost for 'lT if the first job may start before time p(~-'lT); the notation j('lT) is only
needed in this section. F or any partial schedule 'lT, we have f ('lT) ;;;;. j('1T); equality
holds for any complete schedule o.

We employ a depth-first strategy to explore the tree: at each level, we generale
the descendant nodes for only one node at a time. At level k, there are n k des
cendant nodes: one for each unscheduled job. The completion times for the jobs
in 'lT are only temporary. Branching from a node that corresponds to 'lT, we add
some job Jj leading to the sequence Jj'lT. Subsequently, we delermine the associ
ated optimal schedule for Jj'lT, and possibly delay some jobs in 'lT. We branch
from the nodes in order of non-increasing due dates of the associated jobs.
Before entering the search tree, we delermine an upper bound on the optima!
solution value. We use the optimal schedule conesponding to the minimum slack
time sequence as an initial solution, and try to reduce its cost by pairwise adja
cent interchanges.

A node is discarded if its associated partial schedule 'lT cannot lead to a com
plete schedule with cost 1ess than UB; UB denotes the currently best solution
value. Let LB (~-'lT) be some lower bound on the minimal oost of scheduling the
jobs in the set ~-'lT. Obviously, we discard a node ifj('lT)+ LB(~-'lT);;;;. UB. The
following ruleis usually overlooked. Let g(obo2) be a lower bound on the oost
for scheduling the jobs in o1 given the final partial schedule o2•

'THEOREM_6.2. The partial schedule 'lT can be discarded if there exists a Jj E ~-'lT
Jor which j(Jj'lT) + g(~-'lT-Jj, '1T);;;;. UB.

PROOF. Consider a complete sequence o that has 'lT as final subsequence. Thus, o
can be written aso= 'lT1Jj'lT2'1T. Accordingly, we have

j(o) = j('1TJJj'lT2'1T);;;;. j(Jj'lT) + g('1Tt'1T2,'1T);;;;. UB. 0

It is_essential ihat g(~-'lT-Jj,'lT) depends only on 'lT and not on Jj'lT, and that we
use j(Jj'lT) insteadof f (Jj'lT). We derive two corollaries from Theorem 6.2.

CoROLLARY 6. I. Ij for a given partial schedule 'lT, we have that
f(JjJk'lT) +g(~-'11"-Jj-h, '1T);;;;. UB forsome JjE ~-'lT and Jk E 1 then Jk pre
cedesJk in any complete scheduleo'lT with j(o'lT) < UB. 0

COROLLARY 6.2. The partial schedule 'lT can be d!!carded [two jobs Jj E ~-'lT and
hE~-'lTexistwithg(~-'11"-Jj-h,'lT) + min{j(JjJk'lT),j(J~;'lT)};;;;. UB. 0

108 Chapter 6. Just-in-time scheduling

If a partial sehedule w* =I= w exists eomprising the same jobs as w and having
f(ow*) :s;,j(ow) for any sequenee o for the remaining n -k jobs, then we ean
also diseard w. If f (ow*) < f (ow) for some o, then w is dominaled by w*. If
f (ow*) = f (ow) for every o, then we discard either w* or w. The dominanee con
dition above can henarrowed by the requirement thatf (TT*) :s;,j(w) and that the
cireumstanees to add the remaining n - k jobs to TT* are at least as good as the
cireumstances to add the remaining jobs to TT. The question whether sueh a
sequence TT* exists is of course already ~'3'-coinplete. We strive therefore to iden
tify sufficient conditions to discard w. The temporary nature of the job comple
tion times for TT complicates the achievement of this goal We have to he eareful
with dominanee conditions that arebasedon interchange arguments: the condi
tions must remain valid if the jobs in TT are delayed.

Suppose the jobs in TT have been reindexed in order of inereasing completion
times. In each of the following theorems, stating the dominanee rules, the
sequenee TT* is obtained from TT by swapping two jobs, say, J1 and Jk. We do not
eompute the optima] completion times for the sequenee TT*. Instead, we deter
mine the job completion times for the sequenee TT* as follows. Let C1 and C; * he
the completion time of J; in the sehedule TT and TT*, respectively. Then we let

for i = 1, ... ,j -1, i = k + 1, ... , I TT I,
C*=C;-p1+pb fori=j+I, ... ,k I,

ck * = c1-p1+pb

Cf* Ck.

Let F(TT*) he the cost associated with the completion times C1*, for
i = I, ... , I TT I· Henee, F (w*) ";;!~: f (TT*). To validate the following dominanee
rules, we must verify thatj(TT) ";;!I:F(w*), even if the jobs are delayed. Due to the
relation betweenTTand TT*, this comes down to verifying that for each ~ ";;!~: 0

k k k k
a2: C;+fJ2: max{O,d1 -C;-~} ";;!~: a2: C1* +fJ2: max{O,d1 C;* -~}. (6.1)

i=j i=j i=j

We start with a straightforward result.

THEOREM 6.3. There is an optima/ schedule with J1 preceding h if p1 and
d1 :;;;;, dk. D

THEOREM 6.4. The partial sequence TT can be discarded if there are two jobs J1 and
Jk with Ck = C1+'2.f=J+IPtforwhich

p1 >ph and
k k k k

a2: C; + fJ 2: max{O,d1 C;} ";;!~: a2: C1* +{J 2: max{O,d1-C;*}. (6.2)
i=j i=j+l i=j i=j+l

PROOF. Define c(~) as the change of oost due to the interchange, after delaying
the jobs by ~ ";;!~: 0; i.e.,

6.3. The branch-and-bound algorithm 109

k k k k
c(.:l) =a~ e; + {3~ max{O,d;-e;-Ll} -a~ e;* -{3~ max{O,d;-e;* -.:l}.

i=j i=j i=j i=j

We prove that c(.:l);;;;;.: 0 for all Ll;;;;;.: 0. From condition (6.2), it follows immedi
ately that c(O) ~ 0. Furthermore, e1 < e/ implies max{O,d1- e1 - Ll} ;;;;;.: .
max{O,d1-e/ -.:l} for all ,:l;;;;.O; C; > e;* for i= j +I, ... ,k implies
max{O,d;- e; -Ll} -max{O,d; -e;* -.:l};;;;. max{O,d;-e;}- max{O,d;- e;*}
for all .:l~O. Combining the inequalities, we get the desired result. 0

The possible increase of E1 is excluded here. The following theorem shows that in
case no idle time exists between two adjacent jobs, then dominanee already exists
if condition (6.1) is satisfied for Ll = 0.

THEOREM 6.5. The partial sequence 'TT can be discarded ifthere are two jobs J1 and
Jk withek =ei+ Pkfor which

and

PJ>Pb

a(p1 - fk) + [Jmax{O,d1-e1} + {Jmax{O,dk-ek};;;;;.:

{Jmax{O,d1-ek} + {Jmax{O,dk-ek+p1}. (6.3)

PRooF. Define c(.:l) as the change of cost due to the interchange, after delaying
the jobs by ,:l;;;;. 0; i.e.,

c(.:l) = a(p1 - fk) + [Jmax{O,d1-e1-Ll}- {Jmax{O,d1-ek-Ll} +
{Jmax{O,dk-ek-Ll}- {Jmax{O,dk-ek+p1-Ll}.

Weneed to show that the condition (6.3), stating that c(O) > 0, implies c(.:l);;;;;.: 0
for all Ll ~ 0. N ote that a < {3 implies that at least one due date is smaller than
ek; otherwise, condition (6.3) is not valid.

The expression c(.:l) has three components. The first component is a(p1-pk);
it is a constant. The second component is [Jmax{O,d1-e1-Ll}
{3 max {O,d1- ek- Ll}; it is a piecewise linear function of Ll. The function value is
{Jpk if dj ~ ek + Ll; if ek + Ll >dj ;;;;;.: ei+ Ll, then the gradient is -1. The func
tion value is 0 if d1 ~ e1 + Ll. The third component is
{Jmax{O,dk-ek-Ll}- {Jmax{O,dk-ek+p1-Ll}; it is also a piecewise linear
function of Ll. The function value is - {Jpj if dk ~ ek + Ll. The gradient is 1 if
ek + Ll > dk ;;;;;.: ek-p1 + Ll. The function value is 0 for dk ~ ek-Pi+ Ll. Combin
ing the three components yields a piecewise linear function whose behavior
depends on the due dates. We now make the following observations. First,
c(Ll)>O if Ll;;;;.dk-ek+p1. Second, if c(t)>O forsome t ;;;;.dk-eb then
c(.:l) > 0 for all Ll;;;;;.: t. As at least one due date is smaller than eb the second
observation implies that, if dk ~ d1, then c(.:l) >0 for all Ll;;;;;.: 0.

The only case left to consider is d1 < dk and 0 ~ Ll ~ dk- ek. Then, we have
c(.:l) = a(p1-Pk)- {Jp1 + {Jmax{O,d1-e1-Ll}. As d1-e1-Ll ~ d1-e1 =
d1-ek+Pk ~Pb we get c(O)~(a-{J)(p1 -Pk)~O, which contradiets the
assumption. This completes the proof. [J

110 6.3. The branch-and-bound afgorithm

In Corollary 6.3, explicit conditions for the existence of dominanee ate derived
from Theorem 6.5. This corollary is referred to when lower bounds are discussed
in Section 6.4.

CoROLLARY 6.3. The partial sequence '1f can be discarded if there are two jobs 11
andh with Ck C1+pk such that

PJ >ft,

and one of the following conditions is satisfied:

ck - p1 ;;;.. dt.

Ck-PJ < dt. Ck;;;.. dt. C; ;;..d1, and a(p1 -ft);;;.. {J(dk Ck+p;),

ck-PJ < dk> ck < dk, C; ;;;a. d;, anda(p;-pk) ;;;a. PP;·

Ck -p1 < dt. Ck;;;.. dt. C1 < d1, and a(p1-pk);;;.. {3(dk -d1 -ft +p1).

0

THEOREM 6.6. The partial sequence '1f with h scheduled last is dominaled if there is
a J1 such that

PJ > Pt. and c1-p1+ft ;;;a. dk.

PRooF. Let '1f = '1f 111'11'2Jk and '11'* = '1f 1h'IT2J1. We compute the effect of the inter
change on the scheduling cost. Since h is the last job in the optimal schedule 'lf,
we have Ck ;;;a.dk. In addition, we know C1* = max{d1,ck-pk+p1} and
Ck * = c1 - p1 + Pk ~ dk. First, suppose C;* = d1. The effect of the interchange is
then equal to

a(C1+ Ck -(C1-p1+pk)-d1)+ {J(d1-C1);;;..

a(Ck+p1-pk-d;)+a(d1-C1) >0,

as Ck-Pk;;;.. c1. Second, suppose that C;* = Ck -pk+p1. The effect of theinter
change is then equal to

a[C1 + Ck -(Ck-Pk + p;)-(C1- p1 +ft)]+ {3max{O,d1- c1} ;;;.. 0.

The effect remains non-negative if the jobs are delayed. 0

THEOREM 6. 7. There is an optima/ schedule in which h is not scheduled in the last
position, if there is some JJ with p1 > Pk and d1 - p1 ;;;.. dk-ft·

PRooF. We let '1f '1f 111'1f2Jk and 'lf* = '1f1lk'1F2J1 and compute the effect of the
interchange. We have Ck;;;.. dk and Ck-Pk ;;;a. C1; in addition, we define here
C;* = max{d1,ck-ft+p1}. The effect of the interchange has to be non
negative; we therefore have to prove that

aCk + f3max{O,d1 C1} ~ a(ft-p1+C1*) + Pmax{O,dk-Pk+P; C1}. (6.4)

6.4. Lower bounds 111

First, we examine the case C/ Ck -pk +pi. Expression (6.4) is then equivalent
to

f3max{O,di Cj};;;;. f3max{O,dk-pk+pj-Cj},

which is true for any Cj since dj-pj ;;;odk-Pk· Second, consider the case
C/ =dj. This implies dj>Cj, since dj;;;.ck-Pk+pj>Cj-pk+pj>Cj.
Hence, expression (6.4) is equivalent to

aCk + /3(d1-Cj);;;;. a(pk-p1+d) + /3max{O,dk-pk+p1-Cj}·

Supposemax{O,dk-Pk+p1-Cj} = dk-pk+pj- Cj. We must then verify that

aCk + /3dj;;;;. a(dj-pj+pk) + f3(dk -pk +pj).

As Ck ;;;;. db we only need to prove that

0;;;;. (a- /3)[(dj -pj)-(dk -pk)];

this expression is true since /3 >a and dj-Pj ;;;, dk-Pk· Conversely, suppose
max{O,dk-pk+pj Cj}=O. Since aCk+/3(di Cj);;;. a(Ck+dj-Cj);;;.
a(pk +dj)> a(pk-Pi+ dj), expression (6.4) is also true for this case. 0

COROLLARY 6.4. There is an optima/ schedule in which Jj is scheduled last if
PJ;;;;. Pk and dj -p1 ;;;, dk-Pk for each Jk E ~- 0

6.4. LûWER BOUNDS

In this section, we present five lower bound procedures. It seems to he impossible
to develop a lower bound procedure that copes satisfactorily with all conceivable
due date patterns. For example, imagine an instanee with due dates small with
respect to the sum of the processing times; little idle time needs then to he
inserted. In contrast, consider an instanee with dk > '2-J 1pj for each h; the
machine will then he idle forsome time before processing the first job. Numerous
variations and combinations of both pattems are possible.

Each of the lower bound methods is effective for a specific class of instances.
Nonetheless, weusethem supplementary rather than complementary. We parti
tion the job set ~ into subsets, apply each lower bound method to each subset,
and aggregate the best lower bounds. In this way, we hope to obtain a stronger
lower bound than the lower bounds obtained for the entire set~· Success depends
on the partitioning strategy. The jobs in a subset should he conflicting. If they
are not, then all jobs are completed exactly on their due dates, giving rise to the
weak lower bound a'2.J= 1 dj. In this sense, we prefer subsets such that the execu
tions of the jobs in the same subset interfere with each other, but not with the
execution of the jobs in the other subsets. We propose two partitioning strategies
that pursue this effect.

The first strategy is motivated by the structure of an optimal schedule. The
jobs that are consecutively processed between two periods of idle time interfere
with each other, but not with the other jobs. Such a partitioning is hard to
obtain. To mimic such a partitioning, we identify clusters. A cluster is a set of
jobs such that for each job Jj in the cluster there is another job h in the cluster

112 6.3. The branch-and-bou,nd algorithm

such that the intervals [dj-pj, dj] and [dk -pk> dk] overlap; hence, for each job in
the cluster there exists a conflict with at least one other job in the cluster. How
ever, clusters may interfere with each other in any optima! schedule.

The second strategy is the following. Given a partial schedule w, we try to
identify the jobs not in w that will he early in any optima} complete schedule of
the form ow. We call these jobs surely early. The idea is to derive an upper bound
Ton the completion times of the unscheduled jobs; accordingly, Jj E ~-w is
surely early if dj > T. For instance, let g he the primitive directional derivative
for delaying the first job in w by one unit. Suppose I~-w I (,8- a)";;;;; g. The
current set of completion times for the jobs in w is then optima! for any schedule
ow; an upper bound T is then the start time of the first job in w. Other upper
bounds are derived from the dominanee rules. Suppose Jj and h are adjacent in
w withpj >fk and Jj precedingJk. (lt is not necessary that Ck = Cj+pk.) The
first condition of Corollary 6.3 indicates that w is dominated if Ck ;;;;;. dk + pj;
hence, an upper bound is given by dk +pj -1- '2.1, E'll, c,.:;c,Pi· From the other
criteria in Corollary 6.3 and from Theorem 6.7, similar upper bounds are
derived. They can also he derived from Theorem 6.4, but this requires an intri
cate procedure. Finally, we set T equal to the minimum of all upper bounds. If
no upper bound is specified, then we let T = oo.

6.4.1. First method: relax the objective function
Let S denote the set of surely early jobs; let tiit he the set of remaining jobs.
Observe that

min a En/ (o);;;;;. min,. E 0.. ~ aCj + min,.E n., ~ [aCj + ,8Ej],
J 1 E'!Jl JJEfi,

where Sl'!ll and Slli> denote the set of feasible schedules for the jobs in tiit and $. The
problem of minimizing '2.11 Eli> [aCj + ,8Ej] is solvable in polynomial time. Since
we have Ej dj- Cj for each Jj E $, the scheduling cost reduces to
'2.1j Eli> [(a- ,B)Cj + /Jdj]. Applying an analogon of Smith's rule [Smith, 1956], we
minimize this cost component by scheduling the jobs in $ in the interval
[T-p ($), T] in order of non-increasing processing times; the correctness of this
rule is easily verified by an interchange argument. The other subproblem is
solved by Smith's rule: simply schedule the jobs in tiit in non-decreasing order of
their processing times in the interval [O,p(tiit)]. In the example, $ 0, and the
lower bound is 21 a.

A slight improverneut of the lower bound is possible. Let E max * he the
minimum maximum earliness for the jobs in tiit if they are processed in the inter
val [O,p(tiit)]. We can compute Emax * from the minimum-slack-time sequence,
that is, the sequence in which the jobs appear in order of non-decreasing values
dj-pj. Avoiding Emax * requires at least Emax *units of machine idle time. The
lower bound can therefore he improved by aE max *. If we have stored the
shortest-processing-time sequence and the minimum-slack-time sequence, then
we compute this lower bound in O(n) time per node. In the example, we have
E max * = 4; hence, the lower bound is 25a. This lower bound approach can only
he applied in conjunction with Theorem 6.2 if $ 0.

6.4. Lower bounds 113

Since all jobs in <fit are scheduled in the interval [O,p(<!it)], and since only one
early job in <8t is taken into account, this lower bound is only effective if the due
dates are small relative to the sum of the processing times.

6.4.2. Second method: relax the machine capacity
Reeall that we write the objective function alternatively as j(G) =
(JJ-a)'"2,j= 1 Ej+a'2-J= 1 ~ + a!.j 1 dj for each GE Sl. Since the job earlinesses
and tardinesses are non-negative by definition, we have that f (G) ;;;;. a'2-j = 1 dj for
each GE Sl.

We gain more insight deriving this bound in the following way. Suppose the
machine can process an infinite number of jobs at the same time; this is a relaxa
tion of the limited capacity of the machine. As a < f:J, the optimal schedule has
c1 = d1 for each J1; this gives rise to the lower bound a.'2.j= 1 dj. If none of the
jobs overlap in their execution, then this schedule is feasible and hence optimal
for the original problem. For the example, this relaxation gives the lower bound
35a. The corresponding schedule is not feasible: J 2 and J 3 overlap in their exe
cution (see Figure 6.2).

0 2 4 6 8 10 12 14 16 18

FIGURE 6.2. Gantt chart for machine with infinite capacity.

This conflict can be settled by executingJ 3 beforeJ 2 , or, conversely,J 2 before
J 3• If we intend to schedule J 2 after J 3, then we have basically two options: we
retain either the completion time of J 3 or the completion time of J 2 • F or the first
option, the additional cost is 3a; for the second option, the additional cost is
3({:J- a). Executing J 2 af ter J 3 costs therefore at least 3y extra, where
y = min {a, f:J- a}. Similarly, we find that executing J 3 af ter J 2 costs 6y extra.
Hence, the minimum additional cost required to settie the overlap is
min{3y, 6y} = 3y. Accordingly, an improved lower bound is 38a.

We now describe a general procedure to improve the lower bound a'2-j 1 dj by
taking the overlap between jobs into consideration. Overlap of Jj and h (Jf=f=J k)
occurs if the intervals [dj-p1,d1] and [dk-pk>dk] overlap. Let
c1k = y max{O, d1 -(dk -Pk)} denote the ádditiona/ cost to execute J1 immedi
ately before Jk; let G(i) = j denote that J1 occupies the ith position in the
sequence G. For any optimal schedule G, we have that f (G);;;;. a'2-j = 1 dj +
'2-j;;;; l co(i)o(J +I); the last term is the lengthof the Hamiltonian path G(l) · · · G(n).
The following procedure shows that the Hamiltonian path problem is solvable in
O(nlogn) time.

Parrition the set of jobs into a set of clusters Q 1, ••• , Qm as described above.
Let HP1 be the shortest Hamiltonian path for Q1, and let c(HP1) denote its
length. We have c(HP1)=y(p(Q1)-maxJ;,J,eQ,,J,#;cjk), for each I

114 6.3. The branch-and-bound algorithm

(l = 1, ... ,m). We have also ~J:;;; 11 c'IT(i)'n(j+l);;;;. ~'f 1 c(HP1) for any sequence 7T,

as can he easily verified. The individual Hamiltonian paths can he combined into
one Hamiltonian path of length no more than the sum of the lengths of the
separate paths.

6.4.3. Third method: relax the due dates
A major difficulty for the total inventory cost problem is that we cannot recog
nize a job as being early or tardy beforehand. However, if all jobs overlap, then
we can. Relaxing the machine availability condition, we now assume that it is
continuously available from time dmin-~}=IPj onwards, where dmin

min1..;;j..;;n dj. Using the idle time insertion procedure, we know that there is an
optimal schedule o with some Jj completed exactly on its due date dj. Doe to the
overlap, all jobs before Jj are early or just-in-time; all jobs after Jj are tardy or
just-in-time. Reindexing the jobs in order of increasing completion times in o, we
see that

f(o) (ft-a)±[(i l)p;+d;
n n

dj]+ a ~ [(n + l-i')p; +dj- d;] +a~ d;.
i=! i=j+l i=l

Rather than viewingf(o) as the sum of the job scheduling costs, we see it as the
sum of the positional costs. The cost of assigning J; (i = I, ... , n) to the kth
(k 1, ... ,n) posîtion before dj (k =I corresponds to the fîrst posîtion in o)
equals (J}-a)[(k -l)p; + d; -dj] and the cost of assigning J; to the kth
(k = 1, ... ,n -1) position after dj (k = I corresponds tothelast position in o) is
equal toa [k p; +dj-d;]. The costof assigning J; tosome position depends there
fore only on p;, on the position, and on Jj. For a given Jj, the problem of assign
ing jobs to positions is solved as a bipartite matching problem; this is done in
O(n 3) time hy use of the Hungarian method (see Papadimitriou and Steiglitz
[1982]). This leads to the following theorem.

'THEOREM 6.8. IJ all jobs overlap and if the machine is continuously available, then
an optima! schedule for the problem of minimizing total inventory cost is obtained by
taking the best solution after solving n assignment problems. 0

If dj ..;;;; dj for eachJj (j = 1, ... , n), then we have for any schedule o that
n n n n

/(o) =a~ Cj + fl ~ max{O, dj-Cj} ;;;;. a~ Cj + fl ~ max{O, dj Cj}·
j=l j=! j=l j=l

Hence we obtain a lower bound for the original problem by relaxing the due
dates until all jobs overlap, and subsequently solving the problem under the
assumption that the machine is continuous1y available. Such a procedure is
time-consuming; we propose therefore two simplifications that are implemenled
to run in O(nlogn) time per node. The first simplification concerns the case of
equal due dates; the second one concerns the case of equal slack times. The two
lower hound procedures are analyzed in Sections 6.4.3.1 and 6.4.3.2.

6.4. Lower bounds 115

6.4. 3.1. The common due date problem
Suppose the due dates have been replaced by a due date d common to all jobs.
Consider the following common due date problem: for a given d, determine a
schedule that minimizes

11 11 11

(P-a)~E1 +a~ 1j+and .B~max{O,d-d1 }. (CD)
j=I j=l j=I

For any d, the optimal solution value is a lower bound for the original problem,
since

11 11

f(o) a~ c1 + .B~ max{O,d1-c1}
j I j=l

11 11

=a~ C1 + .8~ max{O,d C1-d+d1 }
j=l j=l

11 11

~a~ Cj + .8 ~ max{O,d
j=l j=l

11

C1}- .B~ max(O,d dj}
j=l

11 11 n

(.8-a) ~ Ej +a~ 1j + and- .B~ max{O,d-dj}·
j=I j I j=l

There are two issues involved: (i) how to solve problem (CD)?, and (ii) how to
find the value d maximizing the lower bound?

Problem (CD) consists of two parts. The first part is the problem of mininriz
ing (/1-a)"2.j 1 E1 + a"2.J= 1 1J· If the machine is only available from time 0
onwards and if dis given, then this problem is '~)U~P-hard [Hall, Kubiak:, and Sethi,
1991; Hoogeveen and Van de Velde, 1991A]. However, a strong lower bound
L(d) is derived by applying Lagrangian relaxation (see Chapter 5). The second
part is the easy problem of maximizing the function G : d ~ and -
.8"2.)= 1 max{O,d -dj}· Rather than solvingproblem (CD) to optimality and find
ing the best d, we maximize the lower bound L(d) + G(d) over d.

First, we derive the best Lagrangian lower bound L(d) for a given d. The
denvation proceeds without details; we refer to Chapter 5 for an elaborate treat
ment. Let $ denote the set of early jobs. Since the machine is only available from
time 0 onwards, we have the condition that p ($) ~ d. We dualize this condition
by use of the Lagrangian multiplier À~ 0. For a given À~ 0, the Lagrangian
problem is then to find L(d,À), which is the minimum of

(P-a)"2.}=1 Ej + a"2.)=1 T1 + Àp(S)- Àd.

The Lagrangian problem is solvable in polynomial time by Emmons' matching
algorithm [Emmons, 1987], which proceeds by the concept of positional weights.
Straightforward arguments show that there exists an optimal schedule with some
job completed exactly on its due date. The weights for the ear1y positions are
then À, À+(P-a), À+2(P-a), ... ,À +(n 1)(.8-a); the smallest weight is for
the first position in the schedule. The weights for the tardy positions are
a , 2a, ... , na; the smallest weight is for the last position in the schedule.
Emmons' matching algorithm assigns the job with the jth largest processing time

116 6.3. The branch-and-bound algorithm

to the position with the jth smallest weight, for j = 1, ... , n. Ties are settled to
minimize the amount of work before d. Let oÀ he the optimal schedhle for the
Lagrangian problem, and let W (oÀ) he the amount of work before d in oÀ.

The best Lagrangian lower bound L(d) is found as

L(d) max{L(d,À) I À~O}.
Due to the integrality of a and /3, the optimization over À ~ 0 may he reduced to
the optimization over ÀEN0 • The optimal choice for À can he shown to be such
that W(oÀ_t) > d ~ W(oÀ); this choice gives us the Lagrangian lower bound
L(d).

We are now able to characterize the tunetion L : d ~ L (d). The tunetion L is
continuous and piecewise linear; the value L(d) only depends on d through the
choicefor À. Hence, there are at most min{n 2 , na} breakpoints: they correspond
to the values d = W(aÀ), for À = 0, 1, ... , na. The derivative of the trade-off
curve between two consecutive breakpoints, the first corresponding to W(oÀ), is
equal to -À.

The tunetion G:d~and ,8~J= 1 max{O,d-dj} is also continuous and
piecewise linear; the breakpoints correspond to the values d =dj, for j =
1, ... ,n. The lower bound L(d)+G(d) is therefore also continuons and piece
wise linear in d; the value d maximizing this lower bound is found at a break
point.

For a fven d, L(d) is determined in O(nlogn) time. The tunetion L has
O(min{n ,na}) breakpoints; the corresponding values are computed in O(n 2

)

time. (Every new breakpoint is derived from the previous one by interchanging
some jobs, requiring only constant time; O(n 2

) interchanges are needed to find
all breakpoints.) The tunetion G has O(n) breakpoints. Hence, maximizing
L(d)+ G(d) over dis achieved in O(n 2) time.

We ean also approximate the maximum of L(d)+G(d) over d. A fair choice
for d is the value that maximizes the tunetion G. The maximum of G is attained
at the kth smallest due date where k = rnal ,81. For constant a, this lower
bound is computed in O(nlogn) time.

In our 3-job example, we have d = 10. For the positions after d, the weights
are 1,2, and 3; for the positions before d, the weights are 0, 3, and 6. An optimal
schedule is depicted in Figure 6.3. lts objective value is 39a; this happens to he
the optimal solution value for the original problem.

0 d 13 16

FIGURE 6.3. Optimal schedule for the common due date problem.

In a node of the search tree, there are two ways to imptement this lower bound
procedure. Let '11' '11'1 '11'2 be the partial schedule associated with the node. Disre
garding '11', we get the lower bound j('11') + c~-'11'), where c(:f..-'11') denotes the
optimal solution value for the common due date problem for the jobs in :f.--'11'.

6.4. Lower bounds 117

However, if 'IT 1 and the optimal schedule for the common due date problem over
lap intheir execution, then it makes sense to take 'IT 1 into regard. We do this in
the following way. First of all, we require that dis common to each J1 f/:. 'IT2 • Sub
sequently, we solve the common due date problem under the condition that the.
jobs in 'IT 1 retain their positions. Given thesetof positions, it is easy to construct
an optimal schedule: assign the jobs in 'ITJ to the last I 'IT1 I positions, and assign
the other jobs to the remaining positions according to Emmons' algorithm.
Lemma 6.1 states that we may use the same set of positions as for the case
'ITI 0.

LEMMA 6.1. The optima/ schedu/e for the common due date problem with the last
1 'IT 1 1 Jobs fixed occupies the n postttons wtth least postttonat wetghts, where

n = n I'IT2I·

PROOF. Suppose to the contrary that the optima} schedule IJ for the jobs J1 f/:.'IT2

does not occupy the ïi positions with least positional weights. Let n 1 jobs in IJ be
early or just-in-time and let n 2 = n-n 1 jobs in IJ be tardy. Suppose the set of
optima} weights COrresponds ton 1 positions befare d, and to fi2 = n -n 1 posi
tions after d. Suppose n 1 < ïi 1 • We then transfer the job occupying the n 2 th
tardy position in IJ (the first tardy job) to the (n 1 + l)th early position. The latter
position is in the optimal set; the former is not. Hence, this transfer reduces the
objective value, thereby contradicting the optimality of IJ. If n 1 > ii 1, then a
similar argument applies. 0

The common due date lower bound can only be used in conjunction with
Theorem 6.2 if the lower bound is independent from the partial sequence j'IT. It is
effective if the due dates are close to each other.

6.4.3.2. The common slack time problem
Consider the special case of the 1 I I a'i:.C1 + P'i:.E1 problem where all jobs have
equal slack times; i.e., d1 - p1 s for each J1 (j = 1, ... ,n). This problem has
the samefeatures as the common due date problem. It is •;;Ju3>-hard, unless the
machine is continuously available from times + p max 'i:.j = 1 p1 onwards, where
Pmax maxi""'J""'nPJ· However, applying Lagrangian relaxation as described in
the previous subsection, we derive a strong lower bound. Furthermore, the best
lower bound is also computed in O(nmin{ a,n}) time; there are the same options
to imptement the lower bound. The common slack time lower bound is effective
if all slack times are closetoeach other.

6.4.4. Fourth method: relax the processing times
Again, we consider a special case of the 1 I I a'i:.C1 + P'i:.E1 problem. Assume that
all processing times are equal. Theorem 6.3 indicates that the earliest-due-date
sequence (i.e., the sequence with the jobs in order of non-decreasing due dates) is
optimal. This special case is solved in 0 (n 2) time, which is needed to compute
the optima! schedule for a given sequence.

118 6.3. The branch-and-bound algorithm

Let us return to our original problem. Define Prrrin mint..:} ..:nPJ· The
optimal salution value of the relaxed problem lip1 = p min I a"i.e1 + /J"i.E1 pro
vides a lower bound for the original problem: each set of job completion times
that is feasible for the original problem is also feasible for the relaxed problem
and has equal cost.

Given a partial schedule 'TT, let o be the earliest-due-date sequence for the jobs
in ~-'TT, and let g(o) he the optimal salution value for the relaxed problem.
Disregarding 'TT, we get the lower boundj('TT) + g(o). We can marginally imprave
on this lower bound. Suppose we have reindexed in order of non-decreasing due
dates. Corollary 6.4 indicates that ln is also scheduled last if we put its process
ing time equal to min {Pn ,p min + dn - dn _ 1 } • An improved lower bound is there
fore given by j('TT)+g(o)+a[min{pmPmin +dn -dn -I} -prrrin1·

If the execution of jobs in o overlap with the execution of jobs in 'TT, then it
pays to take '1T into regard. The lower bound is then equal to the cost for the
sequence O'TT with the jobs in '1T still having their original processing times.

Both bounds are computed in O(n 2
) time and dominate the lower bound

a"i.J = 1 d1. Only the first version can he used in conjunction with Theorem 6.2.
The common processing time lower bounds are only effective if the processing
times are close to each other.

In our 3-job example, we have Prrrin = 3, d 1 = 15, and d2 = d3 10. An
optimal schedule for the common processing time problem is depicted in Figure
6.4. lts objective value is 39a; this is equal to the optimal salution value for the
original problem.

0 lO 13 16

FIGURE 6.4. Optimal schedule for the common processing time problem.

6.4.5. Fifth method: Lagrangian relaxation
The problem of minimizing total inventory cost, referred to as problem (P), can
he formulated as follows. De termine values ei and E1 (j = I, ... , n) that minim
ize

subject to

n n

a~ e1 + p ~ E1
·i=l i=l

Ei;;;;. 0,

E.;;.d.-e.
J J }'

e1 ;;;;. ek +Pi or ek ;;;;. e1 + Pk>

ei-Pi;;;;. o,

(P)

for j = 1, ... ,n, (6.5)

for j 1, ... , n, (6.6)

forj,k l, ... ,n,j=/=k, (6.7)

for j = 1, ... , n. (6.8)

The conditions (6.5) and (6.6) reflect the definition of job earliness, while the

6.4. Lower bounds 119

conditions (6.7) ensure that the machine executes at most one job at a time. The
conditions (6.8) express that the machine is available only from time 0 onwards.
We note that the above formulation matches the generic formulation presented
in Chapter 2.

We introduce a non-negative vector À (À1, ••• , Àn) of Lagrangian multipliers
in order to dualize the conditions (6.5). Fora given vector À;;;;. 0, the Lagrangian
problem is to determine the value L (À), which is the minimum of

n n

a 2: C1 + 2: ({J-À1)E1
j=l j I

subject to the conditions (6.6), (6.7), and (6.8). We know that for any given À;;;;. 0
the value L(À) provides a lower bound to problem (P). If {J- ÀJ < 0 forsome J1,
we get E1 = oo, which disqualifies the lower bound. We therefore assume that

ÀJ..;;;. {J, for j = 1, ... , n. (6.9)

This, in turn, implies that, for any salution to the Lagrangian problem, condi
tions (6.6) hold with equality: E1 = d1 c1 for eachj (j = 1, ... ,n). Hence, the
Lagrangian problem, referred to as problem (LÀ), transfarms into the problem of
minimizing

subject to

n n
2: (a- {J+À1)C1 + 2: ({J-À1)di

j I j=l

c1 ;;;;. Ck +Pi or Ck ;;;;. Ci + Pt.

ei PJ;;;;. o,
forj, k = 1, ... ,n,j=l=k, (6.7)

forj = 1, ... ,n. (6.8)

If a-{J +À i < 0 for some Ji, we get c1 oo, which makes the lower bound
rather weak. However, as demonstrated at the beginning of Section 6.4, we can
determine an upper bound Ton the job completion times, which implies that

c1 ..;;;. T, forj = 1, ... ,n. (6.10)

Although the conditions (6.10) are redundant for the primal problem (P), they
are essential to admit valnes ÀJ <{J-a. For solving problem (LÀ) onder these
additional conditions, we first determine the sets of jobs~+ = {Ji I ÀJ >{J-a},
~- {Ji jÀi <{J-a}, and ~0 = {Ji jÀ1 ={J-a}. The following theorem stipu
lates that problem (LÀ) is solved by a simple extension of Smith's rule [Smith,
1956] for solving the lil }:w1Ci problem; the proof proceeds by an elementary
interchange argument (see Theorem 1.1).

ThEOREM 6.9. Problem (LÀ) with the additional conditions (6.10) is solved by
scheduling the jobs in ~ + in non-increasing order of ratios (a- {J +À i) I Pi in the
interval [O,p(~+)1 and scheduling the jobs in ~- in non-increasing order of ratios
(a- fJ+Àj)!p1 in the interval [T-p(r),T]. The remainingjobs can be scheduled
in any order in the intervalfp(~+),T-p(~-)]. 0

120 6.3. The branch-and-bound a/gorithm

We are interested in determining the vector À* = (À 1 *, ... , À11 *) of Lagrangian
multipliers that induces the best Lagrangian lower bound. The vector À* sterns
from solving the Lagrangian dual problem, referred to as problem (D): maximize

L(À)

subject to

0.,;;; Àj .,;;; {1, for j = I, ... , n.

Problem (D) is solvable to optimality in polynomial time by use of the ellip
soid metbod (see Theorems 1.6 and 2.1). Since the ellipsoid metbod is very slow
in practice, we take our resort to an approximation algorithm for problem (D).
Wedevelopan aseent direction algorithm that is similar to the one developed in
Section 2.1 forthelipree I ~wjCj problem.

First, we identify the primitive directional derivatives. In the solution to the
Lagrangian problem (L;,..), the position of Jj depends on the ratio (a- p + Àj) I pj;
we call this ratio the re/ative weight of Jj. The larger this relative weight, the
smaller the completion time of Jj. lf other jobs have precisely the same relative
weight as Jj, then the exact position of Jj is determined by settling ties. Let now
Cf (À) denote the earllest possible completion time of Jj in an optimal schedule
for problem (L;\.); let CT (À) denote the latest possible completion time of Jj in an
optimal sehedule for problem (LA)· If we increase Àj by t: > 0, then we can choose
t: small enough to make sure that at least one optimal sehedule for problem (L;\.)
remains optimal (see Theorem 1.7). In fact, all such optimal sehedules must have
Jj completed on time Cf (À). If we increase Àj by such a sufficiently small t: > 0,
then the Lagrangian objective value is affected by t:(Cf (À)- dj). The primitive
directional derivative for increasing Àj, denoted by lf (À), is therefore simply

lf (À) Cf (À)- dj, for j = 1, ... ,n.

Hence, if 1/ (À) > 0, then increasing Àj is an aseent direction. In a similar
fashion, we derive that the primitive directional derivative for decreasing ~.
denoted by Ç (À), is

Ç(À) = dj-CT(À), for j = 1, ... ,n.

If Ç (À)> 0, then decreasing Àj is an aseent direction.
Second, we determine an appropriate step size a > 0 to move by along a

chosen aseent direction. We compute the step size that takesus to the first point
where the corresponding primitive directional derivative is no Jonger positive. If
no such point exists, then we choose the step size as large as possible.

Suppose 1/ (À)> 0: Jj is tardy in any optimal sehedule for problem (L;\.)·
Increasing ~. thereby putting Jj earlier in the schedule, is an aseent direction.
We distinguish the cases pj -dj > 0, pj-dj= 0, and Pj- dj < 0. Consider the
case pj -dj> 0. Hence, Jj is unavoidably tardy, and tf (À)> 0 for all À;;;;. 0 with
Àj < {1; reeall that some primitive directional derivatives do not exist at the
boundaries. Therefore, we take the step size a {1-Àj. Accordingly, we must
also have that Àj * = {1; otherwise, increasing À/ would be an aseent direction. If
pj =dj, then there exists an optima! solution to problem (D) with À/ = {1. Find

6.4. Lower bounds 121

'5'= {Jj 1Pj;;a;:d1}. Wehaveproved thefollowingresult.

THEOREM 6.1 0. There exists an optima/ solution for the Lagrangfan dual problem
(D) with Àj * /3 for each J1 E 5. D

Suppose now p1 < d1. The step size à must satisfy À1+ à~ /3. We identify the
first job in the schedule, say, h, for which Ck - Pk + p1 ~ d1. Since p1 <dj, such
a Jk always exists. If J1 is scheduled in Jk's position, then J1 is not tardy. Hence,
if there were no upper bound on À, then increasing Àl would be an aseent direc
tion up to the point where the relative weight of J1 becomes equal to the relative
weight of Jk. Hence, the maximum step size along this aseent direction is the
largest value à such that

(a-f3+À1 + à)lp1 ~(a-f3+Àd1Pk, and

Àj +à ~/3.

Let now À = (À1, ••• , ÀJ + à, ... , À"). Suppose Àj + à < Pj· Since the relative
weights for all jobs but Jj have remained the same, optimal solutions for the
problems (LX) and (LA) exist with the samejobs scheduled before Jk. J1 and Jk
have now equal relative weights: in any optimal solution to problem (L>;), J1 can
be scheduled before Jk or after Jk. If J1 is scheduled before Jk> then Jj is not
tardy; if J1 is sch~uled after Jk> then Jj is not early. Hence, we have that
ct (À)~ dj ~ CT (À); the step size à has taken US to the first point wh~re the
primitive directional derivative for increasing ÀJ is no Jonger positive. lf ÀJ /3,
then the step size has been chosen as large as possible.

Suppose now IT (À)< 0: J1 is early in any optimal schedule for problem (LA)·
Decreasing À1, thereby delaying J1, is an aseent direction. We distinguish the
cases dj > T, d1 = T, and dj < T. Consider the case d1 > T; hence, J1 is unavoid
ably early, and IT (À) > 0 for all À with Àj > 0. Therefore, we choose the step size
as large as possible: à Àj. Accordingly, we also must have that À/ = 0; other
wise, decreasing ÀJ* would he an aseent direction. If d1 = T, then there exists an
optimal schedule to problem (D) with À/ = 0. Identify f9 = {J1 I dj;;;;;: T}. We
have proved the following result.

THEOREM 6.11. There exists an optima/ solution for the Lagrangian dua/ problem
(D) with À/ = 0 for each J1 E &. D

Consider now the case d1 < T. The proceäure to compute the appropriate step
size à proceeds in a similar fashion as above. We identify some J k as the first job
in the schedule with Ck ;;;;;: d1. If J1 is scheduled in h's position, then J1 is not
early. Hence, if there were no lower bound on À, then decreasing Àj would be an
aseent direction up to the point where the relative weight of Jj becomes equal to
the relative weight of Jk. Hence, the maximum step size along this aseent direc
tion is the largest value à for which

(a-/3+À1 - à)lpj;;;;;: (a-/3+Àk)lpk, and

122 6.3. The branch-and-bound algorithm

À_j-Ll ~ 0.

Let À= (À I> ••• ,Àj Ll, ... ,Àn). Suppose Àj > 0. Sinee the relative weights for
all jobs but Jj have remained the same, optima! solutions for the problems (L~)
and (LÀ) exist with the samejobs scheduled after h· Sinee Jj and J k have now
equal weights, Jj can be scheduled after J k or befare J k in any optima! schedule
for problem (LÀ). lf Jj is scheduled after J k> then Jj is not ell!!y; if Jj is .sch~uled
Qefore h, then Jj is not tardy. Henee, we find that C/ (À)~ dj ~ CT (À). If
À_j 0, then the step was taken as large as possible. _

Termination of the aseent direction procedure occurs at some À where all exist
ing primitive directional ~vatives are non-positive. If all primitive directional
derivatives exist at such a À, we have

C/(À) ~dj~ CT {À), for j = 1, ... ,n.

These termination conditions also apply to À*, sinee they are necessary for
optimality. Befare imptementing the aseent direction algorithm, we make use of
this fact to decompose the Lagrangian dual problem (D) into two subproblems.
This decomposition is achieved by partitioning ;!- into four subsets, including the
sets~ and t9 we already identified.

Consider some job Jj E ;1--to with dj> p(;f-to). If À_j >{J-a, then Jj wi1l be
early in any optima) salution to problem (LÀ.). This means that Ij- (À) > 0, and
hence we must have that 0 ~ Àj* ~{J-a. Thesetof jobs~ that share this pro
perty is determined by the following procedure.

P ARTITIONING ALGORITHM 1
Step 0. ~<(,-- 0, and reindex the jobs in ;1--to according to non-increasing due
dates. Let k <(,-I.
Step I. If k > n -1 tol or if dk <p(;f-to-'?f), then stop. Else ~<(,-~u {h}.
Step 2. Set k <(,-k + 1; go to Step 1.

Suppose some job Jj E ~ exists with dj> T-p(to). If we let Àj ={J-a, then
CT (À)< dj; henee, decreasing À_j is an aseent direction. Decreasing Àj gives
(a-{J+Àj)lpj < 0, as aresult of which the execution of Jj interferes with the
execution of the jobs in to. We now partition the set ~ into subsets ~1 and ~2
(~ = ~1 U ~2) such that dj ~ T-p (to U ~2) for each Jj E ~1 , and such that
dj> T -p(to U ~2) for each Jj E ~2 • To achleve this, we use the following parti
tioning procedure; it is similar to the first.

PARTITIONING ALGORITHM 2
Step 0. Put ~2 <(,-- 0 , let P <(,-- T-p (to), and reindex the jobs in ~ according to
non-increasing due dates. Let k <f,--1.
Step I. If k > I~~, then stop. If dk ~ P, then let ~1 <(,-- {h, ... ,J I<JI }, and stop.
Otherwise, ~2 <(,--~2 U {Jk}, and set P <(,-p -pk·
Step 2. Set k<(,-k + 1; go to Step I.

6.4. Lower bounds 123

Let cm,=~-~-$-'[

THEOREM 6.12. For each Jj E 'WI> we have that À/ ={j-a.

PROOF. Since we have p (~U cm,) ~ dj ~ T-p (& U <W2), the result follows. D

At this stage, we can decompose the Lagrangian dual problem (D) into two sub
problems. Since (a-fj+À/)Ip1 = 0 for eachJ1 E <W1, the jobs in 'W1 do not inter
fere with the execution of the other jobs. However, ~ and cm, interfere with each
other, and & and <W2 interfere with each other. On the one hand, we have the dual
problem restricted to the sets ~ and cm,; on the other hand, we have the dual prob
lem restricted to the sets '52 and &. In each optimal schedule for problem (D), the
jobs in ~ and cm, are scheduled in the interval [O,p (~U cm,)], and the jobs in 'Wand &
are scheduled in the interval [T-p (&U §2), T]. We give step-wise descriptions of
the aseent direction algorithms forthese two subproblems. Bothare based upon
the primitive directional derivatives and the step sizes we discussed earlier. The
jobs in 'W1 are scheduled somewhere in the interval [p(~ucm,),T-p(&U§2)]; they
areleftout of consideration. We introducesome new notation. Let (L~u~) and
(Lfu~) denote the Lagran~an problem restricted to the set ~U~ and to the set
& U 'W2 ; let L 'ilu~(À) and L & 'lf;(À) denote their optimal solution values.

AseENT DIRECTION ALGORITHM FOR THE SET ~U~
St~ 0. For each J1 E ~. set ÀJ ..,._~* = fj; for each J1 E t3t, set Àj ..,._ fj. Solve
(L;~. u'!i), settling ties arbitrarily; compute the job completion times.
Step 1. For each Jj E t3t, do the following:
(a) If CT (À)< d1, identify Jk as the first job in the schedule with Ck;;;:. dj. Com
pute the largest value ~ such that

(a-fj+À1 -~)Ip1 ;;;:. (a-fj+Àk)lpk> and

À1 -~;;. {j-a.

(6.11)

(6.12)

Decrease ÀJ by ~. reposition J1 according to its new relative weight, and update
the job completion times.
(b) If Cf (À)> dj, identify h that is the first job in the schedule with
Ck-Pk + PJ ~dj. Compute the largest value for ~ such that

(a-fj+Àj+~)lp1 = (a-fj+Àk)lpk> and

~ + ~~fj.
Increase ~ by ~. reposition J1 according to its new relative weight, and update
the job completion times.
Step 2. If no multiplier adjustment has taken place, then compute L 'ilu'!l(À) and
stop. Otherwise, go to Step 1.

THEOREM 6.13. The procedure described above generates a series of monotonically
increasing values L <ilu'!l(À).

124 6.3. The branch-and-bound algorithm

PRooF. The proof proeeeds in the samespirit as the proof of Theorem 2.2. First,
consider some J1 E l8t with CT (À)< d1: decreasing ÀJ is an aseent direction. For
brevity, we let p.1 =a-P+À1 for each j (j = 1, ... , l18tU'5!). We reindex the
jobs in order of non-increasing values p.1 I p1, settling all ties arbitrarily except for .
J1: we give J1 the largest index possible. Accordingll, we obtain the sequenee
(J 1, ••• , J l"ltu<;JI), which is optima! for problem (LÀ u~l), with job completion
times C 1> ••• , C l"itU~I· We note that C1 = Cj (À). Let a be the step size com
_euted as prescribed in the aseent direction algorithm, and let
À= (ÀI> ... ,À1 -aJ, ... ,ÀI"itU~I).

We distinguish the case that condition (6.11) holds with equality from the case
that condition (6.12) holds with equality. Consider the first case; accordingly let
h be the job specified in the aseent direction procedure. In more detail, the
sequenee under consideration is (J 1, ... ,J1 -I ,J1,J1 + 1, ... ,h -I ,Jk>
h + 1, ... ,J l"itU~I); an optima! sequence for problem (Lr-u~) is then
(J 1> ••• ,JJ 1 ,.IJ+ 1> ••• ,Jk,JJ, h + 1, ••• ,J l"itU~I). The job completion times for
the latter sequenee can CO_!lveniently be expressed in terms of C 1, ••• , C l"itu~l .
We now prove that L "ltu'5"(À) > L "ltu'5"(À). We have

- j l k
L "ltu~(À) = ~ p.;C; +(p.1 a)(Cj (À)+ ~ p;)+

i=l i=j+l
k l"itU~I I6JtU51
~ P.;(C;-p1)+ ~ p.;C;+ ~ (p-À;)d;+M1

i=j+l i=k+l i=l
k k k

= L"ltu~(À)-pJ ~ IJ.;+ IJ.j ~ p;-a(Cj(À) + ~ p;-d1)
i=J+I i==j+l i=j+l

k-J k-1 k-l
=L(À)-p1 ~ p.;+p.1 ~ p;-a(Cj(À)+ ~ p;-d1)+

i=j+J i=j+l i=j+l

Note that (IJ.1-a)tp1 IJ.k!Pk; hence, we have (p.1-a)pk- PJP.k = 0. This
implies that

_ k-1 r..] k-1
L(À);;.L(À)+p1 ~ I:;(IJ.11p1 -p.;lp;) -a(Cj(À)+ ~ p;-d/).

i=j+l i=j+l

Since dJ> Cj(À) + ~f;;;}+IPiLIJ.JIPJ > p.;.lp; for each i (i= j + 1, ... ,k -1),
and a> 0, we have that L "ltu'5"(À) > L "itU5(À).

Now assume that the condition (6.12) holds with equality and the condition
(6.11) does not: a= a- P+ À1. This implies thatJ1 will now be plaeed aftersome
job Jh, with j ";;;; h < k. For this case, the second sequenee is
(J 1> • • • ,JJ-l,JJ+l> ... ,Jh,JJ,Jh+l> ... ,Jk, ... ,J l"itU51). We perfarm a similar
analysis as above to obtain

- h h h
L6Jtu~(À)=L6Jtu~(À)-p1 ~ v.;+v.1 ~ p;-a(Cj(À)+ ~ p;-d1)=

i=j+l i=j+l i=j+l

6.4. Lower bounds 125

h

= L'll.U'if(À) + Pj ± ~i(JLjlpj- J.l.;lp;)]
i=j+l

t::.(cj-(À) + ~ p; dj).
i=j+l

At t~s point, similar arguments as before apply to show that .
L 'll.U'if(À) > L 'll.U'if(À).

Second, consider the case that Cf (À) >dj for some Jj E Cflt: increasing Àj is an
aseent direction. Let t::. be the desired step size, computed as described in the
aseent direction algorithm. The proof to show that
L ~u'if(À~> •.. , À;+!::., ... , Àl'll.U'ifl) > L ~u'if(ÀI> ... , À_;, ••• , ÀI ~u'ifl) follows the
same lines as above. 0

ASCENT DIRECI'ION ALGORITHM FOR THE SET 'E'2 U f9
St% 0. Set Àj ~ f3 :.._a for each Jj E '5'2, and À; ~À;* = 0 for each Jj E &. Solve
(LÀ §;), setding ties arbitrarily; compute the job completion times.
Step 1. For each Jj E '5'2 , do the following:
(a) If CT (À)< dj, identify h as the first job in the schedule with ck ;;. dj. Com
pute the largest value!::. such that

(a-{3+Àj-t::.)lpj ;a.(a-{3+Àk)lpk> and

/::.E;;Àj.

Decrease Àj by !::., reposition Jj according to its new relative weight, and update
the job completion times.
(b) If ct (À)> dj, identify Jk that is the first job in the schedule with
Ck o;;;;; dj+ Pk - pj. Compute the largest value for t::. such that

(a-{3+Àj+t::.)lpj (a-{3+Àk)lpb and

Àj+t::.o;;;;;{3-a.

Increase Àj by !::., reposition Jj according to its new relative weight, and update
the job completion times.
Step 2. If no multiplier adjustment has taken plaee, then compute L ~u'if(À) and
stop. Otherwise, go to Step 1.

THEOREM 6.14. The prOE_edure described above generates a series of monotonically
increasing va/ues L 'll.u'5'(À).

PRoOF. The proof proceeds along the same lines as the proof of Theorem 6.13.
0

For each Jj E ~- '5'1, let Cj and À; denote the completion time and the Lagran
gian multiplie..! upon termination of t!!e appropriate aseent direction ~gorithm.
We note that À;= f3j for each Jj E ~ Àj {3-a for each Jj E '5'1> and À;= 0 for
each Jj E f!J. Hence, the overall Lagrangian lower bound is given by

L(À) = ~ aCj + ~ adj + ~ [<a- f3)Cj + /3dj] +
~E'5' ~E§; ~E&

126 6.5. Computational resu/ts

+ ~ [(a-,8+À)Cj-(p-Àj)dj]
/ 1E'iitU'iJ,

6.5. CoMPUTATIONAL RESULTS

The algorithm was coded in the computer language C; the experiments were con
ducted on a Compaq-386/20 Personal Computer. The algorithm was tested on
instauces with 8, 10, 12, 15, and 25 jobs. The processing times were generated
from the uniform distribution [10,100]. The due dates were generated from the
uniform distribution [P(l-T-R/2), P(l-T + R/2)], where P ~}=lPj and
where R and T are parameters. For both parameters, we considered the values
0.2, 0.4, 0.6, 0.8, and I.O. This procedure to generate due dates parallels the pro
cedure described by Potts and Van Wassenhove [1985} for the weighted tardiness
problem. For each combination of T, P, and n, we generated 5 instances. Each
instanee was considered with a= 1 and with ,8 running from 2 to 5.

The general impression was that instauces beoome difficult with smaller values
of T, with smaller values of R, and with smaller values of ,8. A small value of T
induces relative large due dates, implying that the machine wilt be idlefor some
time before processing the first job. A small value of R induces due dates that are
close to each other; it is then harder to partition the jobs. A large value of ,8
implies that earliness is severely penalized; most jobs will therefore be tardy.
Accordingly, the instauces with T=0.2, R =0.2, and ,8 = 5 are the hardest; the
instauces with T 1.0, R 1.0, and ,8 = 2 are the easiest.

Table 6.2 exhibits a summary of our computational results; we only report the
results for the instauces with Tand R equal. It shows that instauces withup to 10
jobs are easy. For n = 12, the instauces with T =R =0.2 require already consid
erable effort. For n 20, only the choice T = R = 1.0 induces instauces that are
solvable within reasonable time limits. It is likely, however, that the performance
of the algorithm is considerably enhanced by fine-tuning the algorithm to
specific instances. Currently, alllower bounds are computed in each node of the
tree; Lagrangian relaxation, for instance, is useless for instauces with
T=R =0.2.

6.6. CONCLUSIONS

Although machine idle time is a practical instrument to reduce inventory cost, a
considerable Jack of theoretical analysis of related machine scheduling problems
exists. Within this context, we have addressed the I I I a~Cj + ,B~Ej problem for
the case that a< ,8. It is a very difficult problem from a practical point of view.

6. 6. Conclusions 127

n

8
8
8
8
8

10
IO
10
10
10

12
12
12
12
12

15
15
15
15
15

20
20
20
20
20

{J=2 {J=3 {J=4 {J=5
T,R nodes sec nodes sec nodes sec nodes sec
0.2 417 2 406 2 301 2 58 I
0.4 131 I 198 I 185 I 3I I
0.6 34 I 48 I 29 I 5 I
0.8 23 I 37 I 14 I 8 I
1.0 20 I 36 I 33 I I5 I

0.2 2438 8 2525 9 2088 7 484 2
0.4 266 2 689 3 570 3 202 2
0.6 123 I 110 I 88 I 52 I
0.8 126 I 122 I 107 1 64 1
1.0 109 I 140 1 78 I 40 1

0.2 30182 103 26676 106 18358 78 10487 48
0.4 15176 66 20756 100 15613 75 10391 50
0.6 212 2 262 2 53 1 10 I
0.8 380 2 576 4 300 2 170 1
1.0 432 2 527 3 226 2 96 I

0.2 - - - - - - (2) -
0.4 (3) - (2) - (2) - (30 -
0.6 14I4 10 2407 17 927 7 339 2
0.8 1665 13 1865 15 1647 14 540 5
1.0 493 6 402 17 2063 17 1082 9

0.2 - - - - - - - -
0.4 - - - - - - - -
0.6 7991 80 13169 136 5529 62 2048 24
0.8 8183 85 7244 84 4016 55 13I8 21
1.0 5127 49 5243 41 2191 32 651

TABLE 6.2. Computational results. For each combination of n
(n =8,10,12,15,20), of Tand R (T=R =0.2,0.4,0.6,0.8,1.0), and of
P ({J = 2,3,4,5), we present the average number of nodes and the
average number of seconds; the average was computed over 5 in
stances. All averages were rounded up to the nearest integer. The
sign '-' indicates that not allinstances of this particular combination
couid be solved without exarnining more than 100,000 nodes.

12

129

Raferences

I. ADIRI AND N. AMIT (1984). Openshop and flowshop scheduling to minimize
sum of completion times. Computers and Operations Research 11, 275-284.

D. ADOLPHSON AND T.C. Hu {1973). Optimallinear ordering. SIAM Journalof
Applied Mathernaties 25,403-423.

V. AGGARWAL (1985). A Lagrangian-relaxation metbod for the constrained
assignment problem. Computers and Operations Research 12, 97-106.

A.V. AHo, J.E. HOPCROFT, AND J.D. ULLMAN (1982). Data Structures and Algo
rithms, Addison-Wesley, Reading, Massachusetts.

U. BAGCHI, Y.L. CHANG, AND R.S. SULLIVAN (1987). Minimizing absolute and
squared deviation of completion times with different earliness and tardiness
penalties and a common due date. Naval Research Logistics 34, 739-751.

K.R. BAKER (1974). Introduetion to Sequencing and Scheduling, Wiley, New York.
K.R. BAKER AND G. ScUDDER (1990). Sequencing with earliness and tardiness

penalties: a review. Operations Research 38, 22-57.
E. BALAS (1985). On the facial structure of scheduling po1yhedra. Mathematica/

ProgrammingStudy 24, 179-218.
E. BALAS AND N. CHRISTOFIDES (1981). A restricted Lagrangeau approach to the

traveling salesman problem. Mathematieal Programming 21, 19-46.
E. BALAS AND P. Toru (1985). Branch-and-bound algorithms for the traveling

salesman problem. E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND
D.B. SHMOYS (eds.). The Traveling Salesman Problem: a Guided Tour of Com
binatorial Optimization, Wiley, Chichester, Chapter 8, 251-306.

S.P. BANSAL (1977). Minimizing the sum of completion times of n jobs over m
machines in a flowshop - a branch and bound approach. AllE Transactions 9,
306-311.

P. BARCIA AND K. JORNSTEN {1990). lmproved Lagrangian decomposition: an
application to the generalized assignment problem. European J ournal of

130

Operational Research 46, 84-92.
M.S. BAZARAA AND J.J. GooDE (1979). A survey of various tactics for generating

Lagrangean multipliers in the context of Lagrangian duality. European Jour
na/ ofOperational Research 3, 322-328.

R. BELLMAN, A.O. EsoGBUE, AND l. NABESillMA (1982). Mathematica/Aspectsof
Scheduling & Applications, Pergamon Press, Oxford.

P.P. BERGMANS (1972). Minhuizing expected travel time on geometrical patterns
by optima! probability rearrangements. Information and Contro/20, 331-350.

M. BERRADA AND K.E. STECKE (1986). A branch-and-bound approach for
machine load balancing in flexible manufacturing systems. Management Sci
ence 32, 1316-1335.

0. BILDE AND S. KRARuP (1977). Sharp lower bounds and efficient algorithms
for the simp Ie plant 1ocation problem. Annals of Discrete Mathernaties 1, 79-
88.

P.M. CAMERINI, L. FRAITA, AND F. MAFFlOU (1975). On improving relaxation
methods by modilied gradient techniques. Mathematica! Programming Study
3, 26-34.

N. CHRISTOFIDES (1970). The shortest hamiltonian chain of a graph. SIAM Jour
na/ of Applied Mathernaties 19,689-696.

R.W. CONWAY, W.L. MAXWELL, AND L.W. MILLER (1967). Theory ofScheduling,
Addison-W es1ey, Reading, Massachusetts.

S.A. CooK (1971). The comp1exity of theorem-proving procedures. Proceedings
of the Third Annual ACM Symposium on the Theory of Computing, 151-158.

E. DAVIS AND J.M.]AFFE (1981). Algorithms for scheduling tasks on unrelated
parallel processors. Joumal of the Association for Computing Machinery 28,
721-736.

P. DE AND T.E. MORTON (1980). Scheduling to minimize makespan on unequal
parallel processors. Decision Sciences 11, 586-603.

J. Du AND J.Y.-T. LEUNG (1990). Minimizing total tardiness on one machine is
~'?Jl-hard. Mathernaties ofOperations Research 15,483-495.

M.E. DYER AND L.A. WOLSEY (1990). Formulating the single machine sequenc
ing problem with release dates as a mixed integer program Discrete Applied
Mathernaties 26,255-270.

H. EMMONS (1987). Scheduling to a common due date on parallel uniform pro
cessors. Nava/ Research Logistics 34,803-810.

D. ERLENKOITER (1978). A dual-based procedure for uncapacitated facility 1oca
tion. Operations Research 26,992-1009.

M.L. FISHER (1973). Optimal solution of scheduling problems using Lagrange
multipliers: part I. Operations Research 21, 1114-1127.

M.L. FISHER (1976). A dual algorithm for the one-machine scheduling prob1em.
Mathematica/ Programming 11, 229-251.

M.L. FISHER (1981). The Lagrangian relaxation metbod for solving integer pro
gramming problems. Management Science 27, 1-18.

M.L. FISHER (1985). An applications oriented guide to Lagrangian relaxation.
Inteifaces 15, 10-21.

M.L. FISHER, R.]AIKUMAR, AND L.N. VAN WASSENHOVE (1986). A multiplier

131

adjustment method for the generalized assignment problem. Management Sci
ence 32, 1098-1103

M.L. FISHER AND P. KEDIA (1990). Optimal so1ution of set covering/partitioning
problems using dual heuristics. Management Science 36, 674-688.

S. FRENCH (1982). Sequencing and Scheduling: an Introduetion to the Mathernaties
oftheJob-Shop, Horwood, Chichester.

T.D. FRY AND G. KEoNG LEoNG (1987A). Single machine scheduling: a com
parison of two solution procedures. Omega 15,277-282.

T.D. FRY AND G. K.EONG LEONG (1987B). A bi-criterion approach to minimizing
inventory costs on a single machine when early shipments are forbidden.
Computers and Operations Research 14, 363-368.

M.R. GAREY AND D.S. JOHNSON (1979). Computers and lntractability: ei Guide to
the Theory of NP-Completeness, Freeman, San Francisco.

M.R. GAREY, D.S.]OHNSON, AND R. SEmi (1976). The complexity of flowshop
and jobshop scheduling. Mathernaties of Operations Research 1, 117-129.

M.R. GAREY, R.E. TARJAN, AND G.T. WILFONG (1988). One-processor schedul
ing with symmetrie earliness and tardiness penalties. Mathernaties of Opera
tions Research 13, 330-348.

A.M. GEOFFRION (1974A). Lagrangian relaxation and its uses in integer pro
gramming. Mathematica/ Programming Study 2, 82-114.

A.M. GEOFFRION (1974B). Duality in nonlinear programming: a simplified
applications-orienteddeve1opment. SIAM Review 13, 1-37.

F. GLOVER (1989). Tabu search- Part I. ORSA Journat on Computing 1, 190-206.
T. GONZALEZ, E.L. LAWLER, AND S. SAHNI (1990). Optimal preemptive schedul

ing of two unrelated processors. ORSA Joumal on Computing 2, 219-224.
R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G RlNNOOY KAN (1979).

Optimization and approximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathernaties 5, 287-326.

H.J. GREENBERG AND W.P. PIERSICALLA (1970). Surrogate mathematical pro
gramming. Operations Research 18, 924-939.

M. GROTSCHEL, L. LOVÁSZ, AND A. SCHRIJVER (1981). The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica 1, 169-197.
[Corrigendum (1984): Combinatorica 4, 291-295.]

M. GROTSCHEL AND M.W. PADBERG (1985). Polyhedral theory. E.L. LAWLER,
J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS (eds.). The Traveling
Salesman Problem: a Guided Tour of Combinatorial Optimization, Wiley, Chi
chester, Chapter 8, 251-306.

M. GUIGNARD AND M.B. ROSENWEIN (1989). An application-oriented guide for
designing Lagrangeau dual aseent algorithms. EuropeanJournal ofOperational
Research 43, 197-205.

M. GUIGNARD AND M.B. ROSENWEIN (1990). An improved dual based algorithm
for the generalized assignment problem. Operations Research 37, 658-663.

M. GUIGNARD AND K. SPIELBERG (1979). A direct dual method of the mixed
plant location problem with some side constraints. Mathematica/ Program
ming 17, 198-228.

J.N.D. GUPTA AND R.A. DUDEK (1971). Optimality criteria for flowshop

132

scbedules. AllE Transactions 3, 199-205.
N.G. HALL, W. KUBIAK, AND S.P. SETHI (1991). Deviation of completion times

about a common due date. To appear in Operations Research.
G. HANDLERAND I. ZANG (1980). A dual algorithm for tbe constrained shortest.

path problem. Networks 10,293-310.
A.M.A. HARIRI AND C.N. Porrs (1983). An algorithm for single machine

sequencing witb release dates to minimize total weigbted completion time.
Discrete Applied Mathernaties 5, 99-109.

A.M.A. HARIRI AND C.N. Porrs (1984). Algoritbms fortwo-machine flow-shop
sequencing witb preeedenee constraints. European Joumal of Operational
Research 17, 238-248.

A.M.A. HARIRI AND C.N. Porrs (1990). Beuristics fot scheduling unrelated paral
lel machines, Woricing Paper, Facu1ty of Matbematics, University of
Soutbampton.

M. HELD AND R.M. KARP (1970). Tbe traveling salesman prob1em and minimum
spanning trees. Operations Research 18, 1138-1162.

M. HELD AND R.M. KARP (1971). Tbe traveling salesman problem and minimum
spanning trees: Part IL Mathematica! Programming 1, 6-25.

M. HELD, P. WOLFE, AND H. CROWDER (1974). Validation of subgradient optim
ization. Mathematica! Programming 6, 62-88.

J.A. HOOGEVEEN (1990). Minimizing maximum earliness and maximum lateness
on a single machine. Proceedings of the First Conference on Integer Program
ming and Combinatorial Optimization, University of Waterloo, Waterloo, 283-
295.

J.A. HOOGEVEEN, H. ÛOSTERHOUT, AND S.L. VAN DE VELDE (1990). New Lower
and Upper Bounds for Scheduling Around a Smal/ Common Due Date, Report
BS-R9030, CWI, Amsterdam.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Polynomial-Time Algorithms
for Single-Machine Multicriteria Scheduling, Report BS-R9008, CWI, Amster
dam.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1991A). Scbeduling around a small
common due date. To appear in European Journalof Operational Research.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (l991B). Minimizing Total lnventory
Coston a Single Machine in Just-in-Time Manufacturing. In preparation.

J.E. HOPCROFT AND R.M. KARP (1973). An n 2·5 algoritbm for maximum match-
ing in bipartite graphs. SIAM Joumal on Computing 2, 225-231. .

W.A. HoRN (1972). Single-machine job sequencing with treelike preeedenee ord
ering and linear delay penalties. SIAM Joumal of Applied Mathernaties 23,
189-202.

E. HOROWITZ AND S. SAHNI (1976). Exact and approximate algorithms for
scbeduling nonidentical processors. Joumal of the Association for Computing
Machinery 23,317-327.

O.H. IBARRA AND C.G. KIM (1977). On beuristic algorithms for scheduling
independent tasks on nonidentical processors. Joumal of the Association for
Computing Machinery 24,280-289.

E. IONALL AND L. SCHRAGE (1965). Application of the branch and bound

133

technique for some flow-shop scheduling problems. Operations Research 13,
400-412.

S.M. 10HNSON (1954). Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly 1, 61-68.

K. 1öRNSTEN AND M. NÄSBERG (1986). A new Lagrangian relaxation approach
to the generalized assignment problems. European Joumal of Operational
Research 27, 313-323.

1.1. KANET (1981). Minimizing the average deviation of job completion times
a bout a common due date. N aval Research Logistics Quarterly 28, 643-651.

R.M. KARP (1972). Reducibility among combinatorial problems. R.E. MILLER
AND 1.W. THATCHER (eds.). Complexity of Computer Computations, Plenum
Press, New York, 85-103.

M.H. KARWAN AND B. RAM (1987). A Lagrangean dual-based solution metbod
for a specia11inear programming problem. Computers and Operations Research
14,67-73.

M.H. KARWAN AND R.L. RARDIN (1979). Some re1ationships between Lagran
gian and surrogate duality in integer programming. Mathematica/ Program
ming 17, 320-334.

L.G. KHACHIYAN (1979). A po1ynomial algorithm in linear programming. Dok
lady Akademii Nauk SSSR 244, 1093-1096 (English translation: Soviet
Mathernaties Doklady 20, 191-194).

T.D. KLASTORIN (1979). An effective subgradient a1gorithm for the generalized
assignment problem. Computers and Operations Research 6, 155-164.

W.H. KOHLER AND K. STEIGLITZ (1975). Exact, àpproxi!!late and guaranteed
accuracy algorithrns for the flow-shop problem n I 2 I F I F. Journalof the Asso
ciationfor Computing Machinery 22, 106-114.

A.W.1. KOLEN (1986). A Polynomial Algorithm for the Linear Ordering Problem
with Weights in Product Form. Report 86221 A, Erasmus University, Rotter
dam.

M.J. KRONE AND K. STEIGLITZ (1974). Henristic programming so1ution of a
flowshop-schedu1ing prob1em. Operations Research 22, 629-638.

P.J.M. VAN LAARHOVEN AND E.H.L. AARTS (1987). Simulated Annealing: Theory
and Applications, Reide1, Dordrecht.

E.L. LA WLER (1978). Sequencing jobs to minimize tota1 weighted completion
time subject to preeedenee constraints. Anna/sof Discrete Mathernaties 2, 75-
90.

E.L. LAWLER (1979). Efficient Implementation of Dynamic Programming Algo
rithmsfor Sequencing Problems, Report BW 106, CWI, Amsterdam.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS (eds.)
(1985). The Traveling Salesman Problem: a Guided Tour of Combinatorial
Optimization, Wi1ey, Chichester.

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS (1989).
Sequencing and scheduling: algorithms and complexity. To appear in the
Handhooks in Operations Research and Management Science, Volume 4: Logis
tics of Production and lnventory, edited by S.C. Graves, A.H.G. Rinnooy Kan
and P. Zipkin, and to be publisbed by North-Holland.

134

E.L. LAWLER AND J.M. MOORE (1969). A functional equation and its application
to resource allocation and sequencing problems. Management Science 16, 77-
84.

J.K. LENSTRA AND A.H.G. RlNNOOY KAN (1978). Complexity of scheduling
under preeedenee constraints. Operations Research 26, 22-35.

J.K. LENSTRA, D.B. SHMOYS, AND E. TARDOS (1990). Approximation algorithms
for scheduling unre1ated parallel machines. Mathematica/ Programming 46,
259-271.

M. MINOUX (1986). Mathematica/ Programming: Theory and Algorithms, Wiley,
Chiches ter.

C.L. MONMA AND J.B. SIDNEY (1979). Sequencing with series-parallel preeedenee
constraints. Mathernaties ofOperations Research 3, 215-224.

T.E. MORTON AND B.G. DHARAN (1978). Algonstics for single-machine sequenc
ing with preeedenee constraints. Management Science 24, 1011-1020.

G.L. NEMHAUSER AND L.A. WOLSEY (1988). Integer and Combinatorial Optimiza
tion, Wiley, New York.

P.S. Ow AND T.E. MORTON (1989). The single machine early/tardy problem
Management Science 35, 177-191.

M.W. PADBERG AND M.R. RAo (1982). Odd minimum cut-sets and b-matchings.
Mathernaties of Operations Research 7, 67-80.

M.W. PADBERG AND G. R!NALDI (1987). Optimization of a 512-city symmetrie
traveling salesman problem by branch and cut. Operations Research Letters 6,
1-8.

C.H. PAPADIMITRIOU AND K. STEIGLITZ (1982). Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

J.-C. PicARD AND M. QUEYRANNE (1982). On the one-dimensional space alloca
tion prob1em Operations Research 29, 371-391.

B.T. POLYAK (1967). A general metbod for solving extremum problems. Doklady
Akademii Nauk SSSR 174, 33-36 (English translation: Soviet Mathernaties
Doklady 8, 593-597).

B.T. POLYAK (1969). Minimization of unsmooth functiona1s. Zurnal Vycislite/noi
Matematiki i Matematiceskoi Fiziki 9, 509-521 (English translation: U.S.S.R.
Computational Mathernaties and Mathematica/ Physics 9, 14-29.

C.N. POTTS (1985A). A Lagrangeau based branch-and-bound algorithm for sin
gle machine sequencing with preeedenee constraints to minimize total
weighted completion time. Management Science 31, 1300-1311.

C.N. Porrs (l985B). Ana1ysis of a linear programming beuristic for scheduling
unrelated parallel machines. Discrete Applied Mathernaties 10, 155-164.

C.N. POTTS AND L.N. VAN WASSENHOVE (1983). An algorithm for single machine
sequencing with deadlines to minimize total weighted completion time. Euro
peanJournal ofOperationa/ Research 33, 363-377.

C.N. PoTTS AND L.N. VAN WASSENHOVE (1985). A branch and bound algorithm
for the total weighted tardiness problem. Operations Research 33,363-377.

C.N. POTTS AND L.N. VAN WASSENHOVE (1988). Single Machine Tardiness
Sequencing Heuristies, Report 8906/ A, Erasmos University, Rotterdam.

V.R. PRATT (1972). An O(nlogn) algorithm to distribute n records in a

135

sequentia! access file. R.E. MillERAND J.W. THATCHER (eds.). Complexity of
Computer Computations, Plenum Press, New York, 111-118.

M. QUEYRANNE AND Y. WANG (1988). Single Machine Scheduling Polyhedra with
Preeedenee Constraints, Woricing Paper No. 88-MSC-017, University of Brit
ish Colombia, Vancouver.

S. SARIN AND M.H. KARWAN (1987). A computational evaluation of two subgra
dient search methods. Computers and Operations Research 14,241-247.

L. SCHRAGE AND K.R. BAKER (1978). Dyriamic programming solution of
sequencing problems with preeedenee constraints. Operations Research 26,
444-449.

A. SCHRIJVER (1987). Theory of Linearand Integer Programming, Wiley, Chiches
ter.

J.F. SHAPIRO (1974). A survey of Lagrangian techniques for discrete optimiza
tion. Annals of Discrete Mathernaties 5, 113-138.

J.B. SIDNEY (1975). Decomposition algorithms for single-machine sequencing
with preeedenee relations and deferral costs. Operations Research 23, 283-298.

W.E. SMITH (1956). Various optiinizers for single-stage production. Naval
Research Logistics Quarterly 3, 59-66.

H.I. STERN (1976). Minimfzing Makespan for Independent Jobs on Nonidentical
Machines- an Optima/ Procedure, Woricing Paper 2175, Department of Indos
trial Engineering and Management, Ben-Gorion University of the Negev,
Beer-Sheva.

P.S. SUNDARARAGHAVAN AND M.U. AHMED (1984). Minimizing the sum of abso
lute latenessin single-machine and multimachine scheduling. Naval Research
Logistics Quarterly 31, 325-333.

W. Szw ARC (1983). The flow-shop problem with mean completion time criterion.
IIE Transactions 15, 172-176.

W. SZWARC (1989). Single machine scheduling to minimize absolute deviation of
completion times from a common due date. Nava/ Research Logistics 36,663-
673.

G.J. THOMPSON AND D.J. ZAWACK (1985/6). A problem expanding parametrie
method for solving the job shop scheduling prob1em. Annals of Operations
Research 4, 327-342.

S.L. VAN DE VELDE (1990A). Minimizing the sum of the job completion times in
the two-machine flow shop by Lagrangian relaxation. Annals of Operations
Research 26,257-268.

S.L. VAN DE VELDE (1990B). Dual decomposition of single machine scheduling
problems. Proceedings of the First Conference on Integer Programming and
Combinatorial Optimization, University of Waterloo, Waterloo, 495-507.

S.L. VAN DE VELDE (1990c). Duality-Based Algorithmsfor Scheduling Unrelated
Parallel Machines, Report BS-R9010, CWI, Amsterdam.

D. DE WERRA AND A. HERTZ (1989). Tabu search techniques: a totorialand an
application to neural networks. OR Spektrum 11, 131-141.

137

Samenvatting

Produktieplanning en computer scheduling vormen een door de praktijk gemoti
veerd onderzoeksgebied binnen de mathematische besliskunde. Machinevolgorde
problemen nemen daarbij een belangrijke plaats in. Dergelijke problemen betref
fen het plannen van orders op machines met beperkte beschikbaarheid en capaci
teit.

Een order bestaat uit een geordende lijst van operaties, die elk een van te voren
vastgestelde tijd op een bepaalde machine vergen. Een machine kan niet meer
dan één operatie tegelijkertijd uitvoeren en is continu beschikbaar vanaf tijdstip
0. Verder kan een order niet meer dan één operatie tegelijkertijd ondergaan. Een
plan legt voor elke order vast wanneer en door welke machines de bijbehorende
operaties uitgevoerd worden. Het streven is de produktiekosten, over het
algemeen gespecificeerd als een functie van de completeringstijdstippen van de
orders, te minimaliseren.

De verscheidenheid aan machineconfiguraties, eigenschappen van orders, en
doelstellingsfuncties leidt tot een enorm aantal verschillende machinevolgorde
problemen. Niettemin komt ieder probleem uiteindelijk neer op het bepalen van
óf een volgorde van de orders, óf een toewijzing van de orders aan machines, óf
een partitie van de orders. Dit betekent dat voor ieder probleem in wezen een
eindig, maar mogelijk enorm groot, aantal relevante oplossingen bestaat. Pro
blemen met deze eigenschap heten combinatorische optimaliseringsproblemen.

Sommige problemen zijn gemakkelijk. Een probleem is gemakkelijk indien er
een methode bestaat die een optimale oplossing vindt in een aantal basis
bewerkingen (optellen, aftrekken, vermenigvuldigen, enz.) dat van boven
begrensd wordt door een polynoom in de grootte van het probleem. Het pro
bleem is dan oplosbaar in polynomiale tijd. De grootte van een machinevolgorde
probleem kan worden uitgedrukt in bijvoorbeeld het aantal orders en het aantal
machines.

138

Veel machinevolgordeproblemen blijken echter q]Lqj!.[astig te zijn. Als een pro
bleem q]tqjl.lastig is, dan is het zeer onwaarschijnlijk dat het probleem opgelost
kan worden in polynomiale tijd. De eindigheid van de oplossingsverzameling
suggereert dat expliciete of volledige aftelling van de elementen een effectieve
oplossingsmethode is. Dit is bedrieglijk. Het aantal relevante oplossingen neemt
over het algemeen exponentiëel toe met het aantal machines of met het aantal
orders. Daarom is deze methode slechts effectief voor problemen van bescheiden
omvang. Door middel van impliciete aftelling vàn de oplossingsverzameling kun
nen problemen van ruimere omvang opgelost worden. Branch-and-bound en
dynamische programmering zijn twee methoden die zich hierop richten. Beide
methoden vergen in het slechtste geval niettemin meer dan polynomiale tijd.
Branch-and-bound, bijvoorbeeld, komt in het slechtste geval neer op expliciete
aftelling.

Voor q]tqjl.lastige problemen staat men in wezen voor de keuze: óf men ontwik
kelt een optimaliseringsalgoritme, die een exponentiële hoeveelheid tijd kan ver
gen, óf men ontwikkelt een benaderingsalgoritme, die minder tijd vergt, maar
geen optimaliteit van de oplossing garandeert.

Lagrangiaanse relaxatie is een techniek die veel heeft bijgedragen aan de
ontwikkeling van efficiëntere optimaliseringsalgoritmen voor q}tqjl-lastige com
binatorische problemen. Het idee achter Lagrangiaanse relaxatie is het zien van
een q]tqJI.lastig probleem als een gemakkelijk probleem, gecompliceerd door een
aantal 'vervelende' beperkingen. Elk van deze vervelende beperkingen wordt
gewogen met een niet-negatieve factor, de zogenaamde Lagrangiaanse mul
tiplicator, en wordt vervolgens opgenomen in de doelstellingsfunctie. V oor gege
ven multiplicatoren verkrijgt men aldus het Lagrangiaanse probleem. Dit pro
bleem is eenvoudiger op te lossen; alle vervelende beperkingen zijn immers ver
wijderd. Bovendien kan men aantonen dat de optimale oplossingswaarde van het
Lagrangiaanse probleem een ondergrens voor de optimale oplossingswaarde van
het oorspronkelijke probleem is. Deze ondergrenzen worden gebruikt in branch
and-bound algoritmen. Het Lagrangiaanse duale probleem is het vinden van de
Lagrangiaanse multiplicatoren die tot de beste ondergrens leiden.

Om wat voor reden dan ook is Lagrangiaanse relaxatie relatief weinig toege
past op machinevolgordeproblemen, geheel ten onrechte. Dit proefschrift laat
zien dat voor een scala van machinevolgordeproblemen met behulp van
Lagrangiaanse relaxatie zowel betere optimaliserings- als betere benaderings
algoritmen ontwikkeld kunnen worden.

Hoofdstuk I geeft een korte inleiding tot machinevolgordeproblemen, com
plexiteitstheorie en combinatorische optimalisering; het geeft een uitgebreide
inleiding tot Lagrangiaanse relaxatie.

De hoofdstukken 2 tot en met 6 behandelen ieder een specifiek type machine
volgordeprobleem. In Hoofdstuk 2 komen één-machineproblemen aan de orde.
Lagrangiaanse relaxatie leidt hier tot een duale decompositie van dergelijke pro
blemen. Deze decompositie biedt aantrekkelijke mogelijkheden voor de ontwik
keling vanoptimaliserings-en benaderingsalgoritmen. Rekenexperimenten voor
een specifiek één-machineprobleem laten zien dat een benaderingsalgoritme
gebaseerd op deze duale decompositie betere resultaten geeft dan een bekend

139

benaderingsalgoritme.
In Hoofdstuk 3 komen flow-shop problemen aan de orde. Lagrangiaanse

relaxatie decomponeert het probleem in eerste instantie in verschillende één
machine problemen. Indien men echter een voorwaarde toevoegt die overbodig is
voor het oorspronkelijke probleem, dan verkrijgt men een lineair ordeningspro
bleem. Dit probleem is in algemene zin '!)L0'-lastig; voor specifieke waarden van
de Lagrangiaanse multiplicatoren kan men het echter in polynomiale tijd oplos
sen. Het blijkt dat de beste ondergrens die op deze manier verkregen wordt
minstens zo goed is als reeds bekende ondergrenzen.

Hoofdstuk 4 behandelt een parallel-machineprobleem. Voor dit probleem
wordt op basis van Lagrangiaanse relaxatie zowel een benaderings- als een
optimaliseringsalgoritme ontwikkeld. De benaderingsalgoritme is een locale
zoekmethode waarbij de zoekrichting voorgeschreven wordt door de
Lagrangiaanse multiplicatoren. In doorsnee geeft deze methode betere resultaten
dan bekende algoritmen voor dit probleem. De optimaliseringsalgoritme kan
problemen van behoorlijke omvang in redelijke tijd aan.

In Hoofdstuk 5 komt het common due date probleem aan de orde. In dit één
machine probleem hebben alle orders een gemeenschappelijke aflevertijd en wor
den niet alleen te late maar ook te vroege leveringen bestraft. Een dergelijke visie
past in het just-in-time principe. Problemen voortvloeiend uit dit principe, en dit
probleem in het bijzonder, staan in het middelpunt van de belangstelling. Hoe
wel het common due date probleem in theoretische zin '!)L0'-lastig is, blijkt het in
praktische zin gemakkelijk te zijn. Met behulp van Lagrangiaanse relaxatie wordt
zowel een ondergrens als een bovengrens berekend die bijna altijd aan elkaar
gelijk blijken te zijn.

Hoofdstuk 6 behandelt, evenals Hoofdstuk 5, een just-in-time probleem met
dien verstande dat nu iedere order zijn eigen aflevertijd kent. Hierdoor krijgt
men te maken met een specifiek aspect van just-in-time problemen: het onge
bruikt laten van de machine tussen twee orders in kan voordelig zijn.
Lagrangiaanse relaxatie is hier weliswaar nuttig, maar niet zo succesvol als bij
andere problemen. Dit just-in-time probleem blijkt in rekenkundige zin zeer
lastig.

STELLINGEN

behorende bij het proefschrift van

STEVEN LEENDERT VAN DE VELDE

MACHINE SCHEDULING AND LAGRANGJAN RELAXATION

I

Beschouw het volgende probleem. Een verzameling van n orders ~ =
{J 1, ••• Jn} dient verwerkt te worden door een enkele machine. Deze machine is
beschikbaar vanaf tijdstip 0 en kan niet meer dan één order tegelijkertijd ver
werken. Het verwerken van 11 vergt een tijd p1. De orders hebben een
gemeenschappelijke aflevertijd d waarvoor geldt dat d < "2.J = 1 p1. Zonder verlies
van algemeenheid mag men aannemen datden de p/s geheeltallig zijn. Een plan
specificeert voor iedere order 11 een completeringstijd c1 zodanig dat aan de
beschikbaarheid en de capaciteit van de machine wordt voldaan. Bepaal nu een
plan dat de kosten "2. J =I I cj - d I minimaliseert. Hall, Kubiak en Sethi [1991]
geven een pseudo-polynomiale algoritme die dit probleem oplost in O(n"2.J= 1p1)
tijd en ruimte. Men kan het probleem zelfs oplossen in O(nd) tijd en ruimte.

N.G. HALL, W. KUBIAK, S.P. SETHI (1991). Deviation of completion times about
a common due date. Te verschijnen in Operations Research.

11

Hoewel het common due date probleem (zie Stelling I van dit proefschrift) in
theoretische zin 'JL<jl-lastig is, is het in praktische zin gemakkelijk.

J.A. HOOGEVEEN, S.L. VAN DE VELDE (1991). Scheduling around a small com
mon due date. Te verschijnen in European Journalof Operational Research.

S.L. VAN DE VELDE (1991). Dit proefschrift, hoofdstuk 5.

III

Beschouw het volgende probleem. Een verzameling van n orders ~= { J 1, ••• , J n}
moet door een enkele machine worden verwerkt. Deze machine begint met de
eerste order op tijdstip 0 en kan slechts één order tegelijkertijd verwerken. De
orders hebben een gemeenschappelijke kritieke tijd d. De verwerkingstijd van 11
is een functie van het tijdstip t waarop aan 11 begonnen wordt:
pif) =ai+ max{O,wi(t -d)}, waarbij ai de gegeven minimale verwerkingstijd
en wi een gegeven positieve scalair is. Zonder verlies van algemeenheid mag men
aannemen dat d, de a/sen de w/s geheeltallig zijn. Bepaal nu een volgorde van
orders zodanig dat de machine zo spoedig mogelijk klaar is. Kunnathur en
Gupta [1990] presenteren een branch-and-bound algoritme voor de oplossing van
dit probleem. Het probleem kan ook opgelost worden door een pseudo
polynorniale algoritme die 0 (nd"2.J = 1 Pi) tijd en 0 (nd) ruimte vergt.

A.S. KUNNATHUR, S.K. ÜUPTA (1990). Minirnizing the makespan with late start
penalties added to processing times in a single facility scheduling problem.
European Journalof Operational Research 47, 56-64.

IV

Townsend [1978] en Gupta en Sen [1983] gebruiken de zogeheten maximum
potential impravement method om een ondergrens te berekenen voor de minimale
waarde van een kwadratische functie van de completeringstijden van orders op
één machine. De ondergrens wordt verkregen door een specifieke bovengrens
voor de minimale waarde te verminderen met de af te schatten maximum poten
ttal improvement. Deze afschatting is onnodig zwak.

S.K. GUPTA, T. SEN (1983). Minimizing a quadratic function of job lateness on a
single machine. Engineering Costs and Production Economics 7, 187-194.

W. TOWNSEND (1978). The single machine problem with quadratic penalty lune
tion of completion times: a branch-and-bound solution. Management Science
24, 530-534.

V

De maximum potentlal impravement method (zie Stelling IV van dit proefschrift)
is ook toegepast op problemen met samengestelde functies van de com
pleteringstijden; zie o.a. Sen, Raiszadeh en Dileepan [1988]. Objective splitting
domineert deze methode en is bovendien eenvoudiger.

J.A. HOOGEVEEN, S.L. VAN DE VELDE (1990). A new lower bound approach jor
single-machine mul/icriteria scheduling, Report BS-R9026, CWI, Amsterdam.

T. SEN, F.M.E. RAISZADEH, P. DILEEPAN {1988). A branch-and-bound approach
to the bicritenon scheduling problem involving total flowtime and range of
lateness. Management Science 34, 254-260.

VI

De tweede ondergrens gepresenteerd door Bozoki en Richard [1970] is fout.

G. BozoKI, J.-P. RICHARD (1970). A branch-and-bound algorithm for the
continuous-process job-shop scheduling problem. A/IE Transactions 2, 246-
252.

VII

Dirickx, Baas en Dorhout [1987] stellen dat Lagrangiaanse relaxatie zinloos is in
geval het Lagrangiaanse probleem de geheeltalligheidseigenschap bezit. Deze
bewering gaat voorbij aan de afweging tussen snelheid en kwaliteit.

Y.M.I. DIRICKX, S.M. BAAS, B. OORHOUT (1987). Operationele research, Acade
mie Service, Schoonhoven.

VIII

Het verdient aanbeveling de geplande hogesnelheidstrajecten parallel aan snel
wegen aan te leggen; een snellere trein demoraliseert de automobilist.

IX

De virtuele prijs die een beursstudent voor de OV-jaarkaart betaalt rechtvaardigt
het herinvoeren van de derde klasse in het openbaar vervoer.

x

In de Algemene Richtlijnen bij Promoties van de Technische Universiteit Eind
hoven staat het volgende. 'Als laatste stelling wordt het de promovendus gegund
om zijn wijsheid te laten schijnen op onderwerpen van zeer uiteenlopende aard.
Hierbij is het gewenst dat de inhoud en/ of de vorm een zekere verrassende, soms
paradoxale, zelfs enigszins provocerende inhoud heeft. Zo'n stelling wordt soms
aangeduid als schertsstelling.' Dit is een schertsrichtlijn.

