

On arithmetic operations with M-out-of-N-codes

Citation for published version (APA):
van Overveld, W. M. C. J. (1985). On arithmetic operations with M-out-of-N-codes. (Computing science notes;
Vol. 8502). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1985

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/9062986b-b5db-4a54-91e9-6e6753babf39

On arithmetic operations with

M-out-of-N-codes

by

Wilhelmina M.C.J. van Overveld

85/02

February 1985

COMPUTING SCIENCE NOTES

Thi6 i6 a 6e~ie6 06 note6 06 the Computing

Science Section 06 the Vepa~tment 06

Mathematic6 and Computing Science 06

Eindhoven Univ[~6ity 06 Technology.

Since many 06 thehe note6 a~e p~elimina~y

ve~4ionh o~ may be publi6hed el6ewhe~e, they

have a limited di6t~ibution only and a~e not

60~ ~eview.

Copie6 06 the6e note4 a~e available 6~om the

autho~ O~ the edito~.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: M.L. Potters

- 1 -

On arithmetic operations with M-out-of-N- codes

Wilhelmina M. C. J. van Overveld

Department of Mathematics and Computing Science,

Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Abstract

We consider an M-out-of-N- code with M=n, N=2n. This means that all

rows of 2n bits with exactly n ones are used as codewords to represent

the numbers 0,1, ••• ~~)-l. We are interested in arithmetic operations

on these codewords; of course algorithms for addition and multiplication

depend on the code chosen. We give several examples of this.

To obtain nice, efficient algorithms, it appears to be advantageous to

use only part of all codewords.

Contents,

o
1

1.0

1.1

1.2

2

2.0

2.1

2.2

2.3
2.4

3
3.0

3.1

3.2

The problem

Codes that use all words

The lexicographical ordering

Variants of the lexicographical ordering

Further remarks and conclusions

Codes that do not use all words

Motivation

A code that uses permutations

Examples of positional systems

An iterative approach

Summary

Unsolved problems

Partitioning all words into equivalence classes

A connection with Catalan numbers

Another kind of lexicographical ordering

Acknowledgement

References

Appendix

~

2

4

4

9
17
19
19

19
27
34

39
40
40
41
42

43

43

- 2 -

O. The problem

Suppose we have N channels with output '0' or 'I' for each channel.

The input of the channels does not matter here. With these N channel

bits we want to represent integers. An obvious way to do this is to

use binary representation: each bit can be '0' or '1', so we can repre

sent 2N numbers (0,1, •.. 2N_I).

In practice this representation has the following disadvantage.

It is possible that the N channels do not deliver their outputs at the

same time; some may be slower than others. Suppose the initial state

of all bits is '0'. Some of them may change into 'I' after a while. but

we don't know how long it will take before all bits have reached their

final state. Only when we are sure that no '0' will turn into 'I' any

more. we have reached the final state and we can read the represented

number.

A solution to this problem uses so called 'M-out-of-N- codes'.

This means that we allow only those final states where exactly M of

the N bits are 'I' and N-M bits are '0'.

Indeed, as soon as M bits have turned into 'I'. we know that there

will be no more changes: we are in the final state and the represented

number is known.

However. this solution also has its disadvantages, since we can't

represent 2N numbers anymore. There are OnlY(~) possible rows of N bits

with exactly M ones. so there are(~) final states allowed. A final

state of this form will also be called a 'codeword' or just 'word'.

Still. we would like to represent as many numbers as possible in this

way. It can be easily seen that the best choices for M and N are:

N=2n. M=n (n6 IN).

In the sequel we shall only consider 'n-out-of-2n- codes': the

codewords are rows of 2n bits with n ones. With these words we represent

the integers 0.1 ••.• (2~)_1.
There is one more problem concerning this way of coding: in the

binary system there is an easy way to add or multiply two numbers as

bit sequences. but it is not clear whether this is also possible with

n-out-of-2n- codes!

Of course there is one trivial way to add codewords: convert the

words to the corresponding numbers, add these numbers and convert the

- 3 -

sum back to a codeword. We wonder whether there is also a way to add

two words directly, without converting.

This paper is the result of some research done into the question

of 'how difficult' it is to use arithmetic operations with n-out-of-2n

codes. Obviously we can construct many different codes of this type, and

the addition algorithm for a code will depend on the construction of

the code. That is why we shall consider quite a few examples of codes,

and for each code we shall give algorithms for converting words to num

bers and vice versa, and an algorithm for adding two words. In some cases

we shall even be able to multiply words in a fairly easy way.

For the sake of simplicity, we shall never consider overflow.

The structure of this paper is as follows.

In chapter I we shall consider a number of ways to code all numbers

0,1, ..• ~~)-l. In most cases, it will appear that the addition algorithms

come down to a somewhat disguised form of 'convert to binary numbers,

add the numbers and convert back to a word'.

In chapter 2 we shall see that we do find ways to perform a 'direct'

addition of codewords, if only we weaken our constraints. We shall not

code all of the (2~) numbers, but we shall consider a limited number of

the (2~)possible codewords.

For the codes we find in this manner we shall be able to give some

nice addition algorithms, but we shall also prove that the number of

used codewords (i.e. the number of represented numbers) is a very small

fraction of the total number of words which is (2~).
In fact, in all cases the fraction

codewords

r~)
vanishes for n ~OQ If we look at the quotient of the logarithms, i.e.

log2 (* codewords)

we have a measure for the number of bits used for the codewords compared

to the number of bits it would take if we would code all words. The be

haviour of this quotient for n 900 will also be investigated.

- 4 -

Chapter 3, finally, consists of some ideas for coding that gave

rise to problems during research. However, it is imaginable that the

principles of the ideas are nevertheless useful, and they may yield

practical addition algorithms.

1. Codes that use all words

1.0 The lexicographical ordering

We consider all words of length 2n with n zeros and n ones, and

we order them lexicographically. Let ,~, denote 'lexicographically

less than', then 0 ~ 1. E.g. for n=4 we have:

00001111 ~ 00010111 ~ 00011011 ~

With each word we associate a 'lexicographical number': the number that

word has in the lexicographical ordering. So, in our example:

00001111 +-+ 0, 00010111 ~ 1, 00011011 ~ 2, etcetera.

These numbers lie in the range 0 •.• (2~)_1.
We now define the coding; let g e {O, 1, ... ,(2~)_1 } .

The number g will be coded as the gth word in the lexicographical ordering,

that is, the word with lexicographical number g. This word will be writ

ten as .eg : a rowvector over {O,l} of length 2n.

There are algorithms known for the conversion of g to x , and x to
-g -g

g (cf. [lJ). The most straightforward algorithms are th~ following.

Convert x to g. Given
-g

10;; i~2n: w(i)e {O,l} •

an integer array w(i :1 ... i"; 2n) satisfying

This array contains the word x . We calculate -g
the lexicographical number, g.

i:= 2n; g:= 0; a:= 0;

do i f 0 ~ if w(i)= 0 ___

o w(i)= 1 ~

fi;

i:= i-I

od

skip

g:= g + (2n-i). a:= a + 1
a+l '

Invariant relation: a= the number of ones in wej: i < j S; 2n)

g= \' ("Positions in w(j:i<js2n) to the right of this '1')

~ #ones in w(j:iejf2n) to the right of this '1' +1

all ones in w(j :i< jS; 2n)

- 5 -

h (2n-i) From t is we see that the '1' in the figure below causes the term a+l

in the sum of g.

L (n-a-l ones) J 11 (a ones) I
t ... ""---v---'
i-l positions 2n-i positions

Apparently, the lexicographical number of the word in w(i:l"; i,;; 2n) is

= ~ (* positions to the right of
g ~ * ones to the right of this

all ones in w(i:l';; i~ 2n)

this
'1' '1') +1

We can see this using the following argument. The number corresponding

to a word.! equals the number of words that are lexicographically less

than.!. Suppose the first bit of x (on the left) is a '1', then all

words starting with '0' are lexicographically less than x. There are

(2~-1) of them. So this first '1' causes a term (2~-1) in-g.

Note that this is indeed one of the terms in the given expression for g.

We can argue in the same way if x starts with Okl (k zeros followed by

a 1). Analogously the remaining n-l ones in x each yield a term in the

summation of g. The interested reader is referred to [lJ.

BO Convert g to x . Given -g
struct x • The word x will -g -g

a number g, 01ig,. (2~)
be stored in the array

-1, we want to

w(i:l,.i,.2n).

con-

i:= 1; a:= 0; s:= 0;

do a t n if g ~ s + (2~=~) ~ w(i):= 1;

(2~=;) w(i): = 0

(2n-i) 8:= S + ; a:= a + 1
n-a

o g< s +

fi;

i:= i + 1

od;

do i t 2n+l ->- w(i):= 0; i:= i + 1 od

Invariant relation: a= the number of ones in w(j: IS" j<i)

\ (" positions to the right of the '1')
s=~ ~ ones to the right of the '1' +1

all ones in w(j: 1 ~ j < i)

Explanation: we check position i to see if we can put a 'I' in that

position. This '1' would contribute (2~=~) to the lexicographical

- 6 -

number. If the total contribution of all ones in w(j' 1 ~ j ~ i) does not

exceed g, we may indeed set wei) to '1', otherwise it will have to be '0'.

After termination of the first 'do'- loop, all ones are in the right

positions. If necessary, we complete the word with zeros in the final

positions.

We can easily generalize the algorithms AO and BO for words of length

e with exactly k ones and e-k zeros. The lexicographical number of such

a word can be found in exactly the same way' the '1' in the word below

(! -i) contributes a+1 to the number.

(k-a-l ones)
I I

1 I (a ones) I
,

i-l pos. ~ ,,-l pos.

We give both algori thms (called Al and Bl) in A. version that is at

the same time more efficient than the one above. Indeed, the programs

AO and BO need a computing time of 0(n2), a loop is executed n times and

each time we calculate (2n-i). By introducing an extra variable we can
n-a

compute the binomial coefficients more efficiently, thus reducing the

computing time to O(n) - or O(l) in the generalized case.

We can do this by using the following relations,

(e-i+l) -l-i+l (e -i) (t-i+l) e-i+l (f- i) etc.
a+2 a+2 a+l a+l = f.-i-a a+l

Al i ,= e ; g' = 0; bin, = 0;

do i f 0 -jo if w(i) = 0 -+ if bin = 0 -+ bin, = 1

o bin> 0 bin,= bin It if-i+ll
e-i-a

o wei)

fi;

fi;

= 1 g' = g + bin; bin, = bin * (i-i+P;
a+2

i,= i-- 1

od

(e) ' (e-i) Invariant relation, a= # ones in w j' i<: j,. ,bln= a+l

= ~ (# positions to the right of the 'I')
g ~ ~ ones to the right of the '1' +1

ones in w(j' i <: j ~ e)

and

a::. a + 1

- 7 -

Bl i: = 1; a: = 0; bin: = (.e~l); s:= 0;

do a I k ~ if g;;.s + bin -. w(i):= 1; s:= s + bin;

o g<s + bin-.

if i<-€

o i =f

bin:=

bin:=

fi; a:= a + 1

w(i):= 0;

if i <f ~ bin:=

bin * 11c-§.)
v=D o

bin* (f-i-k+a)

o i = e ~ bin: = 0
(e-i)

fi

fi; i: = i + 1

od;

do i le+l -lo w(i) := 0; i:= i + 1 od

Invariant relation: a= # ones in w(j: 1,. j < i), bin= (~=~) ,
s= \' ('" positions to the right of the 'I')
~ # ones to the right of the 'I' +1
ones in w(j: 1", j < i)

In the next paragraphs we shall use these generalized algorithms

frequently, for arbitrary k and e; for this reason we have given them

explici tly.

At this point, we can already draw an important conclusion from the

fact that the conversion algorithms have a computing time that is linear

in n. Suppose we want to add :t. and x., then we can do
-l. -J

that by conver-

ting to i and j and afterwards converting i+j to x. .' From the fore
-l.+J

going we conclude that this addition also has a computing time of O(n).

Further, we realize that any addition algorithm must be at least O(n):

we shall have to take a look at all bits of X.
-l.

Hence our conclusion is that we can't possibly

and x.
-J

design

at least once.

an addition algo-

rithm that is more efficient than the one above. This only holds for

worst-case behaviour; we may be able to construct an algorithm with a

better average-case behaviour.

Nevertheless we are going to make an attempt to add two words ~i and

x. directly, without the use of i and j. For example, there is an easy
-J
way to derive the lexicographical successor of a word X.

-l.

ponds to increasing i by 1.Description of the algorithm:

; this corres-

i) determine the rightmost pair '01' in x This pair always exists, -i·

- 8 -

ii)

. (2n) n n except when 1= -1: then x.= 1 0 .
n -1

Replace this pair by '10'.

iii) Make the part of the word to the right of this pair lexicographi

cally as small as possible, that is, put all ones in this part in

the r;i.ghtmollt ·.posi tions. Thus the word will look like ... 10 Oal b ,

a,b~O.

E.g. if ~i 01001110 then ~i+l = 01010011 (i= IS).

It is just as easy to determine the lexicographical predecessor of a

word (in fact, this algorithm is obtained from the one above by merely

interchanging '1' and '0'.). Both algorithms are O(n).

Thus we arrive at the trivial addition algorithm below.

if x. ~ x. x:- X.; Z: =- x. - -1 -J -J -1

0 ~i ~ ~j ... x:= .!i; if.: = x.
-J

fi; {~~ if.}
do if. I Onln x:= lex . sucessor of .!;

if.:= lex. predecessor of if.
od

O(12n
n
). Of course this is not a practical algorithm, since it is \

However, apart from increasing i by 1, there are more 'elementary'

additions possible, even of order 0(1). Suppose x. is of the following
-1

type.

I (n-a ones) I

~ 2n-k-2

0,1 , (a-l ones) 1

The indicated '1' contributes (~) to the lexicographical number. If we

change the pair '01' into '10', the 'I' contributes (k:l); the other

terms in the Bummation do not change. Hence, by this replacement we add

\k:l) _ (~) = (a~l) to the

The consequence is ,

initial word x ..
-1

that for every word x. there are cel'tain num
-1

bers j such that

i,j we call this

~i+j can be easily derived from ~i. For such a pair

an elementary addition. The general problem is still

open; an addition will have to be split up into elementary additions and

subtractions.

It is not clear how this can be implemented.

- 9 -

1.1 Variants of the lexicographical ordering

1.1.0

For a word ~ we define the numbers iO and jO:

iO is defined as the number of ones preceding the leftmost '0' in

the word ~;

- jo is the lexicographical number of the word ~', consisting of the

rightmost 2n-i
O
-l bits of x. This word x' has n-i

O
ones; see figure

below.

x = 11. .. 1 0 (n-iO I I I
ones)

" = x'

The word x will be denoted as x. . • The ordering in the words x. .
-10 , JO -10 , JO

is defined according to the lexicographical ordering of the pairs (io,jO)'

Hence: x. . -< x. . <'p) (io,joH (il,jl) <=> (iO< il)V (iO= i l /\ jO< jl)' -10 ,Jo -11,J~

Note that this ordering in the words is exactly the same as the

lexicographical ordering of § 1.0.

The number of words with i ones preceding the first '0'

Hence the number corresponding to x. . is given by
-lo,Jo

is (2n-i~1).
n-1

(\-/e count all words x .. with i< iO; there are jo words x. . with j< jO')
-l,J -10,J

Now we shall give an algori thm to add x. . and x. .
-10,Jo -l~,Ji

the sum x. .' We use two tables, stored in integer arrays:
-12. , J2.

sigma(iO: O~ iO~ n) with~Sigma(O) = 0, io-l

lSigma(io) = ~
i=O

and term(i: 0,. i~ n) with

term(i) =C2n-~-1)
n-1

Algorithm:

(2n-i~l) n-1

; we call

i) Convert x. . and x. . to (io,jo) and (il,jl)' For jo we use the
-10,Jo -11,J1

algorithm Al (§ 1.0) with t= 2n-iO-l, k = n-iO' and the word x' mentioned

in the definition of x. .'
-1.0, Jo

ii) Now the following holds:

Analogously we find

the number of x.
-10 ,jo

the number of x.
-11 ,jl

jl'
sigma(io) + jo

= sigma(i l) + jl

- 10 -

We add these numbers in two steps:

calculate sigma(i
O

) + jo + y for y sigma (i
l
); write the sum as

sigma (i 2 ') + j2'.

calculate sigma(i 2 ') + j2' + y for y jl; the sum is sigma (i
2

) + j2·

We only give the first step.

s:= sigma(io); i
2

':= iO; y:= y+jo;

do y~term(i2') s:= s + term (i 2 '); y:= y - term(i 2 '); i 2 ':= i2' + 1

od ; j2':= y

Invariant relation: sigma(io) + jo + sigma(i
l

) = s + y, s= sigma(i
2
').

After termination: answer= Sigma(i
O

) + jo + sigma (i
l

) = sigma(i
2
') + j2'.

iii) Convert (i
2

,j2) to x. . using algorithm Bl.
-12' J2

About the complexity of this algorithm, we can say that step ii)

is certainly O(n), and in the average case it ie much better. Steps i)

and iii) are 0(2n-i
O
-l) because of the algorithms Al and Bl. So we

see that for small values of i
O

' there is hardly any difference with

the addition algorithm of § 1.0 that uses conversion.

For large values of iO the algorithms Al and Bl need much less

computing time, and step ii) does not really take more time than it

does for small i
O

• We conclude that this algorithm js somewhat more

efficient in the average case than the one in § 1.0, but it makes use

of O(n) tables.

All of the following algorithms in § 1.1 are also based on the

handling of indices like iO and jO.

1.1.1

For a word ~ we define i O' jo and kO:

- iO: = the number of ones in the first n positions of ~ (0", i O'" n).

- jO:= the lexicographical number of the word ~', formed by the

first n positions of ~. ~' has length nand iO ones.

kO:= the lexicographical number of the word xn , formed by the

last n positions of ~. It has n-i
O

ones.

Note that O~ jo«(~o) and 0,. ko < (n~io)= (~o)·
Again we denote ~ as x. . k

~-lO , Jo, 0

- 11 -

The ordering in these words corresponds to the lexicographical ordering

in (iO,jO,kO); this is not the same as the lexicographical ordering in

the words! To illustrate this, I<e give the first 11 words for n=4:

on the left, ordered lexicographically; on the right, ordered according

to (iO,jO,kO)' Note the differences in the last two words.

o
1

2

3

4

5
6

7
8

9
10

00001111

00010111

00011011

00011101

00011110

00100111

00101011

00101101

00101110

00110011

00110101

00001111

00010111

00011011

00011101

00011110

00100111

00101011

00101101

00101110

01000111

01001011

iO,jO,kO
0·, 0, 0

1, 0, 0

1, 0, 1

1, 0, 2

1, 0, 3

1. 1, 0

1, 1, 1

1, 1, 2

1, 1, 3

1, 2, 0

1, 2, 1

(n) (n) _ (n,) 2 There are i n-i - ~ words with i ones in the first n

posi tions. Hence the number of words x. . k with i < iO is
-l.,J,

fl (n 2 .
i=O

The number of words x. . k with j< jo is jo(n.) = j (~) (for

(

-10,J, n-lo 0 10
every j we have n.) possibilities for k).

n- 1 o
For the number represented by x. . k we find

-l.o,Jo, 0

For the addition of x. . k and x. . k -with result x. . k -
-lo,Jo, 0 -It,J1' 1 -ll,J2, 2

we use three integer arrays:

nchoosei (iO) : = (~o), nchoosei2 (iO): = (~o) 2 and

Sigma(iO):= ~ (~) 2

i=O

- 12 -

Algorithm.

i) Determine (io,jo,kO) and (il,jl,k l) with algorithm AI.

ii) Calculate sigma(i
o

) + jo nchoosei(i
O

) + kO + y for y= sigma(i
l
)·

Write the result as sigma(i 2 ') + j2' nchoosei(i
2
') + k2' and a.dd to this

y= jl nchoosei(i
l

) and y= k
l

, respectively.

Again, only the first part is written in full.

s.c sigma(io); i 2 '.= iO; y.a y + jO*nchoosei(i
O

) + k
O

;

do y~ nchoosei2(i 2 ') S.a S + nchoosei2(i
2
');

y'= y - nchoosei2(i 2 '); i 2 ',= i2' + 1

od' -'

Invariant relation. answer= sigma(i
o

) + jo nchoosei(i
O

) + kO + sigma (i
l

)

a S + Y and s = sigma(i 2 ').

iii) Convert (i2 ,j2,k2) to.!. . k with algorithm Bl.
J.l,J2,2-

This, too, is an algorithm of O(n).

1.1.2

We abbreviate a.= 00, b.c 01, C.a 10, d.= 11.

A word in {o,ll 2n corresponds to a word in {a.,b,c,d} n we take two

successive bits together to form a word in {a,b,c,d} n

E.g. 01100111101 = badb.

Further, if.! c {a,b,c,d} n, we denote #a.= the number of a's in.!.

Similarly we write #b, *c, *d. For the words in our n-out-of-2n- code

we know the number of 'l's is n. For a corresponding word in {a,b,c,d~ n

this means _b + #0 + 2*d = nand #a + ~b + #0 + #d = n,

hence #a a #d.

We define the numbers io,jO,kO and -fo for a word .!€.{a,b,c,d}n

- i O'= #a, so 0~io$Ln/2J

- jO'= the lexicographical number of the word we get from.! if we

distinguish between a's and non-a's only. Let a correspond to 'I'

and non-a to '0'. This word has length nand iO ones, so O~jo<"(~)
- k O'= the lexicographical number of the word of length n-i

O
that re

mains if we delete all a's from .!' where we distinguish between d's

and n.oon-d' s. d corresponds to '1', non-d to '·0'. We find 0 ~ kO < (n~~o).

- 13 -

- eO:= the number represented by the b's and c's in the word ~ if we

regard the b's and c'e as O's and l's ,respectively, in a binary

representation. There are n-2i O positions that are b or c, thus

o ~ eo.; 2n
- 2io •

Example: consider the word abbacdbd (n=S). Then iO = ~a = 2.

jo can be

10010000.

We find kO

found by substituting '0' for b,c and d and 'I' for a:

jO= lex. number of 10010000 = (i) + (~) = 25.

by deleting the a's: bbcdbd. Write d= 1, b= c= 0 to get

kO = lex. number of 000101 = 1. To find eO we delete the d's: bbcb,

and think of this as the binary number 0010. Hence fO= 2.

The word corresponding to iO,jO,ko,fO is denoted as~, , ~ D
1.0, Jo ,eoo}o

the ordering in these words is defined as before. Reasoning as in

§ 1.1.0 and § 1.1.1 we deduce the number of x, , lr D; it is:
-1.0 ' .10 ' ."0' to

From the example we see that the conversion of x, , k D to
-~o ,Jo, 0, (,0

(io,jo,ko,eO) and vice versa is somewhat more complicated than in the

previous examples, but the computation remains O(n).

For the addition we use some tables, containing

n-2i 2 , and

For transparency, we shall not use arraynames for these tables

, h (n,o)(n~, oio) 2n-io , ~n t e program below, but write ~ ~

Keep in mind that these are not O(n) computations,

etc.

but direct accesses

to a table. Like the preceding algorithms, we only give the addition

io-l

~ (~)(n~i) 2n-2i + J'O (n~, 0; -) 2n-2io n-2i p ~~ + kO 2 Q + LO + y.

i=aO

Here and in the next sections we shall omit the steps i) and iii),

since they are the same for every algorithm.

- 14 -

s;=

(n) (n-il) n-2i' 2 '2 2n-2i1 ; do y>- i{ i~

2n- 2ii; i
2
': = i2' + 1

od' -' e I. = 2 .

Invariant relation: answer = y+s; s =

This algorithm may be preferred to the one in § 1.1.1 in the

sense that the tables are of length rn/2l instead of n, since from

the definition of iO it follows that iO~ Ln/2J.

Apart from this, the algorithm is O(n).

A final remark of this section deals with a generalized form of the

algorithm. If we have words with even length e and exactly k ones, we

can also use a's, b's, c's and d's. The requirements change into:

~a + _b + .c + .d c f/2 and *b + #c + 2#d = k.

Hence _a - #d = C/2 - k. Once we choose #a for a word, .d is fixed:

.d = #a - e/2 + k. The b' sand c' s Can be chosen arbitrarily on the

e/2 - ~a - !I'd ('" e - k - Ua) remaining positions.

Again, let iO:= ~a, jO:= lexicographical number only minding the

a's, kO:= lexicographical number in the d's, and fo:'" the binary number

represented by the b's and c's. The number of x. . k e we find is:
-lo ,Jo, 0' 0

. (£/2-io) e -k-2io
+ J O io f/2+k 2 + 2f -k-2io 0

kO +(.0'

1.1.3

A method related to the idea of § 1.1.1: now we don't devide the word

x into the first n positions and the last n positions, but we look at

the distribution of the ones. Let n be even. We split ~ into two parts,

where the first part consists of the first position upto and including

the position of the (n/2)th one. The second part consists of the re

maining rightmost positions. Therefore we define:

- 15 -

iO:= the length of the first part of ~ (defined as above)

jo:= the lexiccgraphical number of the

positions of ~. It contains n/2-1

kO:= the lexicographical number of the

word formed bY,the first iO-l

, (~o-l) ones: 0 ~ J O < n/2-1

word formed by the last 2n-i
O

positions, with n/2 ones (= the second part of x).

As an illustration, see the sketch below.

FIRST PART

I (n/2-1 ones)

SECOND PART

1 I (n/2 ones)

and ordering the words as usual we find for the

, (2n-ie) + J O n/2 + kO'

For the addition algorithm we use tables containing

i" -1

L(n/;:l) C:i~)
i=O

(ie-I) (2n- io)
, n/2-1 n/2 (

2n-io \
and n/2 J'

Again, we shall not refer to these tables with arraynames. We calculate

~ (i-I) (2n-i)
~ln/2-1 n/2
~=O

(
2n- io)

+ jo n/2 +

s:= 'I i ,,,,-(2n-io) k ~2:= 0; y:= y + JO~ n/2 + 0;

S:a: s + (ii -1) (2n-il)
n/2-1 n/2

(
i,' -1) (2n-ii)
n/2-1 n/2

y:s y _

od' -'
(

2n-it)
n/2 (

2n-i{)
n/2

There is not really any reason to prefer this algorithm to the

one in § 1.1.1; they are equally efficient -O(n)~, and in fact they

resemble each other very much.

- 16 -

1.1.4

Finally we mention a somewhat less practical variant. Define for a

word ~ iO' jo and ko as follows:

iO': the number of positions starting at the first '1', upto and in

cluding the last '1' in the word. So n -" iO~ 2n.

jo'= the lexicographical number of the word of length i O-2 occupying

the positions between the first and nth one: 0 <: jO< (i~=~).
k

O
' = 2n-i

O
- (the number of leading zeros in~) , 0 ~ kO~ 2n-iO'

See figure below.

I (n-2 ones) I

Order the words x. . k according to (iO,jO,kO)' Note that all
-l.o, Jo, 0

words x. . k
-10, Jo,

(for fixed iO and jo) are cyclic shifts of each other.

If we start from the

shifting k positions

of the type ~io,jo,k

tG=n
i=O

word x. . 0' the word x. . k is derived by
-1.0 , Jo , -1.0 ,Jo ,

to the left. Obviously there are 2n-i
O
+l words

U sing this we find for the number of x. . k
-10' Jo' 0

The conversion x. . k ~ (io ' jo' ko) can be easily performed;
-10 ,Jo, 0

the computing time is O(n). Again we give the algorithm for increasing

the number represented by~. . ko by y.
l.O , Jo ,

We use two arrays containing

(2n-i+l)

io-l

~ (~=~) (2n-i+l);

od' -'
j2"= Y div

k2"= Y mod

(2n-i 2 '+1);

(2n-i '+1)
2

l.' f. = 2 •

- 17 -

For large values of iO this is not a practical algorithm: the

conversion 1£. . k -- (iO' jo' kO) consumes the lion's share of the
l.o ,Jo, 0

computing time. Thus we do essentially the same work as we did in the

algorithm of § 1.0 (converting words and adding the lexicographic num

bers). In the average case however, the conversions will consume less

time, whilst the middle part of the algorithm consumes even less time

than the conversion. So in fact we can make the same remark we made

in § 1.1.0.

1.2 Further remarks and conclusions

1.2.0

Firstly, we make a general remark. In

we assigned a word x. to every number
-1

all cases we

i (O~ i<e~)
have seen so fa.r,

). However, it

suffices to assign codewords to half of the numbers, e.g. the even

numbers only. We must do this in such a way that the codeword for the

odd number 2k+l can be easily derived from the word assigned to 2k.

We give two examples of this.

1) Consider only those words in {O,l} 2n with n

'0'. There are ~n~l) = t (2~)2words like this.

ones that start with

some way as Xk ' for 0 ~ k <! (~) .
Denote (X

k
)* := the complement of the

swapped in Xk' Now we define codeword

A2k:= Xk
1£2k+l:= (Xk)lI"

Order these \fords in

d . '0' war Xk ' 1.e.

x. for O~ i«2n):
-1 n

and 'I'

Assume we have some addition algorithm for the words Xk ' with the addi

tion operator denoted as e .. Then we can define the addition for the

words x.:
-1

1£2k Gl 1£2e : = Xk (£> Xc corresponding to 2k + 2l=2(k+,e)

1£2 k Gl 1£2(+ 1 : = (Xk EEl Xe)*' " " 2k + (21' +1) = 2(k+n + 1

1£2k+l e 1£2e+1 : = Xk Gl Xe. EEl Xl " " (2k+l)+(2e+l) = 2(k+e+1)

We shall encounter this method once more in chapter 3.

2) Consider the code of §l.l.l, restricted to the

with iO~ In/21. These words will play the role of

words x. , k
-10, Jo, 0

the words Xk in

- 18 -

example no. 1) • We assume n even; in that case our 'restricted code'

contains exactly t e~) words. The ordering in the words .Yk is of course

the same as in § 1.1.1, and we use the same addition algorithm for

these words. Again we define ~2k := .Yk and ~2k+l := (.Yk)* , with the

addition defined as in the above Qxample.

Note that the words (.Y
k
)* are exactly the words with more than

n/2 ones in the left half: the words~. . k with i
O

> n/2.
1. 0 ,Jo, 0

The tables of §l.l.l can thus be reduced in length to n/2; the algo-

rithm will also decrease in computing time. These savings can also be

applied to some of the other algorithms given.

1.2.1

We summarize the results of this chapter.

Apart from the lexicographical ordering, all algorithms are based

on the same principle. To every word ~ we assign indices like i O' jo' •..

and we denote the word as x. . . From
-1.0 ,Jo ...

can be calculated represented by x. .
-10 ,Jo •.•

these indices, the

directly (by means

number

of a more

or less complicated expression). If we want to add the words x. .
-10 ,Jo .•.

, we start by deter-and x.. wi th the result called x. .
-It , Jl • • • -12 , J2 •••

mining the indices (iO' jo"") and (iI' jl"")' Then we calculate

(i 2 , j2"") from these; this algorithm works in such a way that we add

the numbers corresponding to (iO' jo"") and (i l , jl"") in several

steps, and we deduce the numbers (i 2 , j2"") from the sum.

Afterwards we convert (i 2 , j2"") to x.. •
-12 ,J.2 , •••

The only difference in the algorithms is the efficiency of the

middle part: calculating (i2 , j2"") from the known indices. Using

'div' and 'mod' operations, this can be done very easily.

Nevertheless we have seen that all algorithms are O(n) and that

no addition can possibly need less computing time.

- 19 -

2. Codes that do not use all words

2.0 Motivation.

From chapter 1 we have learned that all algorithms we could think

of make use of the lexicographical ordering, and that addition is never

done directly: we make use of an intermediate step (the indices).

Indeed we have never been able to really add two bit sequences, as can

be done in the binary system -or in any positional system, for that

matter.

We can construct direct algorithms if we drop the requirement

that all integers 0, 1 through (2~) -1 must be coded. In that case

we can design a number of algorithms that rather deviate from the ones

in chapter I, and are much easier in general. It will even be possible

to give programs for multiplication; something that is hardly feasible

for the codes in chapter 1 ! Section 2.3 contains a very interesting

example of this.

Therefore, the main reason for giving the codes in this chapter

is the fact that we can show a variety of nice addition algorithms.

The practical use of these codes is rather doubtful, since we can only

code a very small part of the (2~) numbers. As mentioned before, the

fraction of codable numbers goes to 0 for n ~ 00 • We shall prove this

in all cases. However, the quotient

log2 (~ codewords)

log2 (2~)
has also been examined for all codes, as announced in the introduction.

In most cases it will appear that this quotient does not vanish for

large n. For some codes we even find that the limit of this quotient

for n ~co is 1. So in those cases, the result is not too bad: we can

still code a considerable amount of numbers.

2.1 A code that uses permutations

2.1.0

Arbitrarily, we pick a word ~O as codeword for the number O. Let ~€ S2n'

Consider the effect rr has on the positions of ~O' By this permutation

we get a new word that we call ~l' We denote this as rr ~O = ~l'

- 20 -

Note that ~l can be equal to ~O even if rr is not the identical permu-

tation. We give an example of this for n=4.

~O:= 00001111. Number the positions from left

then 1C~0 = ~O·

to right as 1,2, •. 8.

Let 7t':= (1 2 3)(6 8),

Let 11":= (1 2 5) then 1!"~0 01000111 ~ ~O·

Repeated actions of 1!' on ~O yield ~l' ~2' ~3""; in general,
i

x. = '[t' XO.
-J. -

Let ~i be the codeword for i, then we can easily add ~i and.2!:j:

'" = _i+j x i j
~i '" ~j " -0 = Tl' ~j = tt ~i'

In case the permutations rri are not too difficult to compute, this is

a simple algorithm. Multiplication can be achieved in the same way:

x. ® x. =Tl'ij x = (TCi)j _xC etc. , where ® denotes multiplication.
-]. -J -0

However,
_i
" ~O

j
= It' ~O'

we must recall that for i I j it is possible that

or x. = x. holds. In the above example this holds for -]. -J
i=l, j=O. Apparently, if this occurs, we cannot represent both i and j

in the code, since coding should be one-to-one.

For this reason we shall investigate how many words the set{«i ~o\ i~~}
can contain, for anyn€S2n' Maximizing this over S2n' we find the

largest possible number of codewords such a code can have.

In fact, we shall not be able to calculate this number, but we

can give an upper bound for it which guarantees that it is an infinitely

small fraction of (2:) for n _ "" . As for log2 (*codewords), this

number is also unknown, but the quotient mentioned in § 2.0 will be

bounded. We shall come back to this later.

2.1.1

A first upper bound for the number of codewords can be derived as

follows. Let~.S2n' Let k be the largest length of any cycle in the

disjunct cycle notation of It •

W.1. o. g. we wri t e "It = (1 2 ... k)(...) (...) ... wi th 1 E k'" 2n.

(Here, the identical permutation is denoted as (1), so k=l.)

The first k positions of rri ~O for any i, can only be a cyclic

permutation of the first k positions of ~O. Hence there are only k

possibilities for this part of the word.

If ~O has m ones in the final 2n-k positions, any word ~i also has m

- 21 -

ones

this

most

in those positions: there are at most (2n~k) possibilities for

part ~~_ii. Since en~k)~(I*(~~~k)J) fO~ all m, we can have at

k (Li(2n-k~) words of the type 1£i = TI' 1£0·

We have thus derived the upper bound:

(
2n-k)

k \t(2n-k)J
(1)

5 C

Here IAI denotes the number of elements of the set A.

This bound is very weak for small k, but strong for large k.

Fortunately our next bound behaves just the other way around: it is

weak for large k and strong for small k. This bound is derived by

considering the order of 1l'; obviously, the order of'!l' is an upper

bound for the number of words tt
i 1£0. Again we write '!l' with disjunct

cycles, rr a (1 , •.• k)(••.) ••. Observe that the order of TI' is equal

to the least common multiple (lorn) of all cyclelengths occurring in

~. Since all cycles have length at most k, we have

order ofTI' S lcm {1,2, ••. ,k-l,k} . Hence:

Combining (1) and (2) we find

{ (
2n-k)

min k LM 2n-k ~

Lemma 2.1.1.0 : lcm {1,2, •• ,k} is a not-decreasing function of k for

k= 1,2, .. 2n.

(
2n-k)

If n ~ 3, k· 1*(2n-k)J is a not-increasing function of k for k= 2,3 •• 2n-l.

Proof: for lcm {1,2 •• ,k}

Let k be even.

trivial.

() (
2n-k-l)

k+l 11(2n-k-l)j = () (
2n-k-l)

k+l i(2n-k)-1

for k.:} 1.

Let k be odd.

() (
2n-k-l)

k+l i(2n-k-l) =

- 22 -

= (k+l)(2n-k+l~ •
2k (2n-k

We have to prove:

k (2n-k \
!(2n-k-l)j

(k+l) f2n-k+1) ~
2k 2n-k)

1 for

We determine the roots of the equation (in k)

(k+l)(2n-k+l) = 2k(2n-k) or k2-2nk+2n+l = 0

The roots are kl Is n + -Vn
2
-2n-l

Since n" 3, n 2_2n_l > (n_2)2. Hence

So, for k10S b. k2 or 2" k~ 2n-2

(k+l)(2n-k+l) ~ 2k(2n-k)

and k
2

1= n _~n2_2n_l
kl < 2 and k2> 2n-2.

o

From this lemma and some special checking of the cases k=l and k=2n-l

we learn that the situation is as in the picture below •

. ~
~ lcm{1,2, •. ,k}

:.... ~ ___ Jt

M

2

1

----------~---k
-' "" .. ··v

..en 2n-l 2n

~ (2n-k \
k Lt(2n-k~)

~ k

Of course the functions are not continuous; the picture is only

meant to give a rough idea of the situation.

We are interested in the number

min {k (It(~~~k~) , lcm {1,2, •• ,k}} max
k

since this is an upper bound for the number of codewords ~i ~O that

can be obtained using any 7(f:S
2n

• We call this number Hn; it is also

indicated on the vertical axis of the figure.

We are now ready to state our theorem.

Theorem 2.1.1.1 I the fraction of usable codewords in any code of the

type described in § 2.1.0 is upper bounded by Mnl (2~) , and

lim
n-+'"

M
n

= O.

- 23 -

Proof: we already know that the expression is an upper bound for the

fraction of words. To prove the rest, we shall show that there exists

an "'E (0,1) such that:

(i) for 0< k,;c<n, lim

(ii)for OCn,.k:;; 2n, lim
n .. co

lcm {1,2, .. ,k} = °
(2~)

(
2n-k)

k Lt(2n-k)j = °
e~)

That it suffices to show this, is a consequence of lemma 2.1.1.0.

Also, see the picture; note that the point k= «n does not necessarily

coincide with the value of k where M is reached.
n

Since (ii) is the easiest part to prove, we shall start with this.

(ii) Let exe(O,l) (an appropriate value of oc will be fixed later),

and k '-' ocn_._

k (Li(~~~k)J)
(2~)

k = o(k)' (k "'00).
(l{2)k

The first inequality is based on (2~)~(1t(~~~k)j)(li~J) ; this is a special

case of a wellknown combinatorial fact: choosing n out of 2n can be

done by choosing LikJ out of the first k, e,nd rt(2n-k~ out of the re

maining 2n-k.

The second inequality is in fact the same as (2~)~ 2n , which is trivial

if we write

(
2nn) = (2n) (2n-l~ ..!...!.-'-(n+l)

(n)(n-l •.. (1)

Since k i!> o<:.n, the above inequality implies

lim (
2n-k)

k I!(2n-k)j • lim k = 0 .
n -+IXl

C~)
k "0;) (\f2)k

(i) We need some number theory (cf. [2J); we define for xe. IR:

~(x):= the number of prime numbers less than or equal to x.

A wellknown theorem states that there are constants Cl and C2 such

that, forx'-'2,

C
l

~ '!!J..!l log2 (x) ~ C2
x

- 24 -

In fact, we only need the second inequality: C2 "" 12 log
2

(e),:::; 17-3.

lcm {1,2, •• ,k} (for any k) is the product of prime powers: if p is a

prime, we ge t pill em {I, 2 , •• , k} and pi + 1 { 1 cm {I, 2 , •• , k 1 iff pi

is the largest power of p occurring in the prime decompositions of 1,2

through k. Hence

if pi.:; k and pi+l> k we find i';; log k, i+l> log k
p P

This yields

11 pLI0
glJ 11 lcm {1,2, •• ,k1 =

,;; k =
p~k p,.: k

P prime p prime

Let 0< E (0 ,1) and k.s om. Then

{ } { }
1't' (<X.n)

1 em 1 , 2 , •• , k " 1 em 1 , 2 , •• '" n ~ O(n •

p rlog2 (o(n)l ; OCn ~ 2! , 0Ul.> /-1
Define t. :=

lcm h.2 k) ~ OUlTl'(O(n) ~ 2f7t (OI.n)

e~) (2~) 2n
=

Let n lr 2 , then with (*):

Then

ffT'(Oi.n) -n
2

= C 2 r log 2 (oc.n)l,-:",OG,-!!n'---,-..-.,
log

2
(oc n)

- n

k 'J"t(k)

- n

- n = {C2CX + C20(- I} n

log2 (<xn)

.

Next we choose an appropriate value for OC : 0(0:= 1 then 0(06. (0,1).
2C

2

Let n > max(2 ,4C
2
), then log2 ("'On) ~ log22 + d = 1 + c5 for some .5 > O.

This yields

.err ("'on) - n .s {t + t
~10-g-2""(~O<-0-n"<")

~ - £n, for some c> O.

Hence lem {1,2, •• ,k} ~
/Tt ("'On)-n

~ 2-En

(2~)

So lim lcm {1,2, •• ,k} = O. 0
n oo (2~)

- 25 -
In the appendix we list:

min {lcm {l,2, .. ,kl ' k(lt(~~~k)j)} for 1 ~ k <. 2n, i'I and
- n

for

some values of n: n= 4, 5, 10, 20.

From these tables we can already see that Mn j (2nn) O.

In the appendix we also list the fractions

we Bee that 0.64 for large n.

After the next section we shall be able to show that there exists

a code that sat1efies

10g2 (*codewords) () :,. 0.30 for reasonable values of n 2n <:; 100 •

(2nn\ 10g2)

As mentioned in § 2.1.0. the exact value of lim 10g2 (max. # codewords)
n ... ""

10g2 (2~) could not be determined.

2.1.2

Suppose that we do want to use a code as described in § 2.1.0, not

withstanding the negative results of the preceding paragraph. In that

case we use a permutation ~€S2n that yields as many words as possible.

This can be done by taking the cycle lengths of rt relatively prime

(remember that the order of rr is the least common multiple of all cycle

lengths) •

W.l.o.g., let one Df the cycles of 'It be (1 2 •.• k-l k). We have

~i = ~i ~O for all i, where ~O is chosen s.t. the first k positions

are 00 •• 01 •• 1: l!kjzeros and f!klones. The other positions of ~O are also

chosen accDrding to the cycles of 'It: for any cycle of length f, we put

zeros in the first Ltj2J positions of ~ (corresponding to the numbers

in the cycle), and ones in the other positions. We must take care tha.t

there are n zeros and n ones, so we must sometimes take ~/21 zeros

instead of li/2j.

Now suppose we want to add x. and x .• Suppose the first k positions
-1 -J

of x. resp. x. contain the m.th resp. m.th permutation of symbols,
-1 -J 1 th . J

compared with 00 •• 01 •• 1. (The m permutation means: a cyclic shift

to the left over m positions.)

Then we know that i;;; m
i

(mod k), j == mj (mod k). So the sum i+j

satisfies i+j:; m. + m. (mod k).
1 J

- 26 -

The only thing we have to do is to determine m. , which is easy, and
J

shift the first k positions of x. over m. positions to the left.
-l J

After that, these k positions contain the (m. + m.)th permutation of
l J

00 •• 01 •. 1. This means that these k positions now contain the right

configuration for x .. '
-l+J

Do the same for all other cycles.

This algorithm is O(n). We can also do this for multiplication: in

the same notation, if we know m. and m.
l J

and is m. (mod k), j=m. (mod k)
l J

then ij:m.m. (mod k). So we must shift
l J

00 •• 01 •• 1 over m.m. positions
l J

to the left to find the first k symbols of x .. '
-lJ

Note that conversion of i to x.
-l

is not difficult (determine m. =
l

mod k, shift over m. positions),
--- l

but x. _ i is more complicated.
-l·

2.1. 3

Using the code of § 2.1.2, we want to calculate

log2(.codewords)

log2 e~)
For this code we choose the cycle lengths relatively prime; we shall

take prime numbers for these lengths. Let Pi denote the ith prime num

ber (PI = 2), 8.nd let 'Il'(k) be a permutation with k disjunct cycles of

lengths PI' P2 "'Pk respectively, such that ~(k) is a permutation of

k
~ Pi positions.

i=l

So, w.l.o.g. rr(4) = (1 2)(3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17)
"2" --3--+ <-- 5 -----.' 7 •

k
'Tt(k) If L. Pi is even, i=l corresponds to a code as in §2.l.2 with

~ n(k) := t (Pi) .
i=l

If the sum is odd, we can a.dd a cycle of length 1 to obtain a. code;

in that case:

n(k):= t(+ 1).

In either case we have a code, of length 2·n(k) with n(k) ones and zeros.
k

of ,/k». The code contains i1Tl Pi words (= the order
k

Now log2(~codewords) / log2 enG<l) =
nrkl log2 n. Pi / 10g2 Cn(J())

n(k)

- 27 -

Since (2n(k))
n(k) ~

22n.(k) , we have

k k
log 'IT' Pi log2 ITl Pi 2 i=l ~

log2 en(k») 2n(k)
n(k)

k

In the appendix we list the value of log2 Jrl Pi

2n(k)

for l~k~l2.

We find that log2 (jlcodewords) ~ 0.30 for 2n(k)<: 100.

(
2n(k»)

lOg2 n(k)

2.2 Examples of positional systems

2.2.0

In the proof of theoremc2.1.l.1 we have already encountered the in

equali ty (2~) > 2n. We give an easy way to code 2
n

numbers in an n-out-
n of-2n- code. Let • ~ i <.2 •

To code i, we write i in the binary system. This representation of i

has at most n ones, and a length at most n. We always make the length

equal to n, by adding leading zeros. If this 'word' of length n does not

have n ones, we must put the remaining ones to the right of this 'word',

followed by remaining zeros, if any.

Example: n=4, i=5: 010111100.

If we want to add words in this code, we only consider the first

n positions. These first halves of the words can be added using binary

addition. Afterwards we complete the word with remaining ones and zeros

on the right. This is a very trivial algorithm.

However, from the next lemma we see that lim

Lemma 2.2.0.0 : if n ~ 4, e~) > 2 l.!n/2 J
Proof: let n be even, n= 2m, m" 2.

=

(2n)l
n~ n! • =

= o.

- 28 -

m-l
IT

i=O
(4m-2i-l)

(m-i) = 2m . (4m-l) . (2m+l)

For m ~ 2, we find

Hence

2
8m - 14m - 1> 0

m

(zeros are

(4m-l) * (2m+l)
2

= 8m + 2m - 1 > 16.
m m

For i ~ 1: 4m - 2i - 1 > 4(m - i) so ~m - 2i
m--

m-2 ..•
(2:) = 2m

(~m-l) (2m+l) TT (4m- 2i -l)
m i=l m-i

2m.16.4(m-2) 2 3m 23n/2

Let n be odd, n= 2m+l, then analogously

-
i

m=

1

m-2

TI
i=l

(4m-2i-l)
(m-i)

14 .± V228
16

> 4

)

(2~) = (4m+l)(4m-l) .•• (2m+2) =
m (m-l) ... 2.1

m-I
2m+l IT (~1l-2i+l) ,. 2m+l .4m 2 3m+l = 2(3n-l)/2

m-i =
i=O

where the inequality follows from 4m - 2i + 1 > 4(m - i), for all i ~ O. 0

As for lim
n .. co

n
log2 2

> -E-..
log2 (2~)' 2n

1 for all n.
= 2

As a matter of fact the limit of this quotient for n +00 is t, which

will follow from theorem 2.2.1.0.

2.2.1

With the preceding lemma, we can generate 2 L3n/ 2j words, and in fact

even more. Let n be even. Partition the words into k blocks of length

2n/k, from left to right. Now we require

and n/k ones. Here we suppose 2k I n.

that every block has n/k zeros

The number of words that can be

(e~j~) possibili ties per block).

If n/k~ 4 we can apply lemma 2.2.0.0

generated in this way is (
2n/k) k
n/k

- 29 -

(
2n/k) k
n/k >-0

2 U 3n)/2kJ k =

Indeed, we have more than 23n/ 2 words with a very nice property: they

are written in a positional system with base (2~j~) . In the positional

system, each position corresponds to a block of length 2n/k.

The arithmetic in such a sysfem is just as in the binary (or deci

mal) system: addition and multiplication can be performed in a straight

forward manner. We shall not give the algorithms for this; we only

remark that they are O(n).

It is clear that arithmetic in a system with base b is easiest when b

is as small as possible. Since we have base (2~j~) wi th the restriction

n/k ~ 4, 2kl n, we must take n/k = 4, so n = 4k.

Thus we find a system with base (:) = 70. With this system we can repre

sent 70k numbers, which is more than the promised 2L3n/ 2J = 26k = 64k •

Regrettably, this is still not enough: lim 70k = 0, as can be

k ,,0) (:~)

concluded from the following theorem. From this theorem we can also

conc-Iude

lim log2 (70
k

) JOg2 (70)
k -+00

=

(~~) 8
log2

~ 0.766 , but we come back to this later.

Theorem 2.2.1. 0

Vat!. (0,4) 1 9(a-n)
(2~)

= ,(n .. ca).

Proof: let 0< a< 4 and N€ IN s. t. 2n+l >.. ta for all n~N.
n+l

Then for all n ~ N

(2n+2) =
n+l e~) :;: a (2~) ~ ... ~ a n-N+l (2~) .

Let C:= a-Ne~) , then for n~N

1 1

e~) ~ Can

1!L = O((~)
k

for 0 < a 4< 256. CorOllar;y:) ,(k .. "")

(:~)
If we write theorem 2.2.1.0 in a different way:

- 30 -

Taking logarithms and using log2 (2~) $ 2n:

(2nn)_ -an + C :$ 10g2 - 2n

Therefore

V a <: 8 :.3 C~ lR 3 Nt N V k> N ~
10g2 70

k
%

k .10g
2 10

10g2 (:~) C + ak

Applying the domination principle, we find for all a<8

log2 70 c< lim log2 70
k

log2 10
~ k +co ~

8
10g2 (:~) a

thus lim k
10g2 10 (""'-0.166) 10g2 10 =

k ""
10g2(:~) 8

Note that the base of this number system does not depend on n.

In the next section we shall construct a code that also uses a positio

nal system, but the base will depend on n. The idea behind this is,

that we can represent more words if the base of the system is larger:

if the blocks with equally many zeros and ones are larger, the con

straints on the words are weaker so we allow more words.

However, ·addi tion and multiplication will be harder in a system with

larger base.

2.2.2

In this section 2n will be a square: n = 2.8 2 , 2n = (2s)2 for some 8~~.
We think of a word as a 2s by 2s grid with (2s)2 little squares.

26
2

of these squares contain a '0' and 28
2

contain a 'I'. Thus, the word

can be found reading the successive rows from left to right.

We make the restriction that the words (or grids) must have s zeros

and s ones per row.

We give an example of this for s=3

(so n=18): we only write the 'l's;

the blank squares are to be filled

with 'O's. This grid corresponds to

the word

101100110100010110100101110010001011.

1

1 1

1

1

1 1

1 1

1

1 1

1 1

1

1 1 1

- 31 -

Per row we have e:) p08sibili tie8, in total (2:) 2s. So we. have con

structed (2:)S words in a number system with base (2:).
Since the lexicographical number of a row can be determined in O(s),

addition and multiplication algorithms are also O(s). O(s) = O(n).

Again we shall investigate the asymptotic behaviour of

and

Theorem 2.2.2.0 ,

(2Ss) 2s log2

Let f(s),= (2:) 2s / G:~) • Then f(s)

Proof, we want to compare f(8+1) to f(s); in fact, we want to show

that f(s+l) Et fee) since this yields f(s) = o(ts), s ~oo .

For the numerator of f(8)'

(
2S+2) 28+2
s+l

= { } 2s+2 e:) 2s+2

= {2. ~ } 28+2 C:) 2 e:) 28

For the denominator:

2
(48 +

2
(2e +

8s + 4). •• (4s
2

+ 1) (48
2

)
222 2

4s + 2) ... (2s + 1) 2s

Hence

f(8+1)

For all

= 2 28 +2

= 2
-2s

48+2

(1T
i=l

(4s 2+ 2i _ 1)(4s2+ 2i)

(2s2+ i)(28 2+ i)

{ 2::i } 28+2 (2:) 2

48+2 2 n (28 + il
2

i=l 2(48 + 2i

28+2 e:) 2

48+2
(28

2
+ il {28+l } n 8+1 2

i=l (48 + 2i -

i we have 28
2

+ i ~
28 2 (i :'1)

48
2

+ 2i
2 1 - 1 48 -

* f(8)

- 1)

* f(s) •

1)

Hence

f(s+l) ~ 2-2s (2S+1)2S+2
s+l

It can be readily checked

and
s4

2 (2s+1)(2s-1) (s+l)

that

~ 1
8

Therefore, if s~2: f(s+l) ~

Finally we

228 =
28

L
i=O

2s
s+l

So (2:)

show that (2:)

(2n~ (~~1) +

2-28 ~
s+l
3!'1+L

Theorem 2.2.2.1 lim
S -1'0'

2-2s

(2:)

~
1
2

10g2

10g
2

- 32 -

* f(s)

* f(s)

8
4

~
1 for s:;' 1,

2 2 4 (s+l) (28-1)

for S?; 2.

2- 48 C:) 2 f(s) .

~t (-4s so 2 (2:) 2 !S .!.) • 4 •

+ (~:1) = 2. (~~1) + e:)

for s ~ 1.

(2:) 2s = l.

(:::)
Proof: this can be found in the same way as in § 2.2.1. We have:

V a < 2 ::3 C ,N V s > N as + C '" 10g2 (2:)~ 2s and similarly

Va'<23C',N.\jS>N' a'2s
2

+ C'~ 10g2 c:~) ~ 4s
2

So:

'rj a,a'< 23 C,C' ,N V s >N

Again this yields \(a,a'< 2

2s(as + c)

4s
2

- 33 -

So lim 10g2 (2:) 2s

s ~oo (:::) 10g2

o

We could consider to extend this code: >Ie could also allow words

that have exactly s zeros and s ones per column. Notice that some of

these words are already in the code, so the number of words would not

even double if we added these words. For the asymptotic behaviour this

would not make any difference. Therefore it is not a wise thing to do,

since we would loose the nice properties of a positional system.

To conclude this section, we come back on the remark made in the

previous section about the number of words increasing with the base

of the number system (or the block length).

Of course, if we would take block length 2n, we would have base (2nn)

In other >lords, we would allow all sequences with n zeros and nones.

We already know from chapter 1 that addition is very

case. The next largest block length is n; this means

(let n~2k) and we would have only t .. o positions in a

complex in this

a base (n/2)
word. Addition

is still complex, and it would not be very practical to do this.

However, to illustrate the remark in § 2.2.1 we shall investigate the

fractions

(2n 2 / (~n and log2 e~r/ log2 (~~) for k Do •

Theorem 2.2.2.2 (2~) 2 (~~)
~

1 , or = O(k), (k co)

(~~) 1+2k e~) 2

Proof: from ~ 1.1.1 we can see that

(~~)
2k

(2~) 2 e~) 2 k-L ~k) 2
= L = + 2'C .

i=O i=O 1

(1 + 2k) e~) 2
o

Theorem 2.2.2.~ lim log
2 (2~) 2 1

k co log2 (~~)
Proof: analogous to theorem 2.2.2.1 o

- 34 -

2.3 An iterative approach

2.3.0

In this section we shall introduce a code with particularly nice

algorithms for conversion, addition and multiplication. The code

words will be constructed in an iterative way.

Let n", 1. Let V be a set of words of length 2n with n ones and n
n

zeros. V
n

all words

is partitioned into the sets A and B , where A contains
n n n

ending on '0', and B contains the words ending on 'I'.
n

We need one more notation for concatenation of sequences: if x is a

sequence of bits, the ~ + '0' denotes the sequence we get if we attach

a '0' to the right end of ~. We define x + '0100' etc. in the same way.

We construct V 1 from V as follows:
n+ n

1) for all x + '0 ' in A n' x + '010' x + '- '100' and x + '001' are in V

2) for all x + '1 ' in B n' x + '110' '.! + '101' and x + '011' are in V

3) V
n+l

contains no other words than the ones constructed with the

rules 1) and 2).

It is easy to check that all these words in V 1 are different, pro
n+

vided that all words in V are different.
n

Starting with Vl := {Ol, 10} , we can prove by induction that

IAnl = IBnl = 3n
-

l
, IVnl = 2.3n

-
l

for n ~l.
We already know that = O((~P ,(n -+00) for 0 < a < 4,

n+l

n+l

and lim = <=::: 0.792 (compare tho 2.2.2.1)
n .,..""

We order the words

such that the words
n-l n-l 3 , •.. ,2.3 -1.

iteratively. Suppose we have an
n-l in A represent 0,1, •• ,3 -1

n

ordering ir, V
n

and Bn represents

Let N(.!) denote the number represented by~, then we define the ordering

in Vn+l according to the list below:

for x + 'O'",A : N(.! + '100'):= N(x + '0')
n

for x + 'O'E-A: n N(~ + '010') : = N(x) + 3n - l

for x + '1' Ii B :
n N(.! + '110'):= N(~) + 3n - l

- 35 -

for x + '0' e A : n N(~ + '001'):= N(x) + 3
n

for x + '1' E B : N(~ + '101'):= N(x) + 3
n

n

for x + '1 ' €B : N(~ + '011'):= N(.! + ' l') + 3
n

+ 3n - 1
n

Example for n=2:
, {llOC:OI {1l0I'00 0 = 000 9 = 100

A2 1011:00 1 = 001 A2 _1010 1°1 10 = 101

0111' 00 2 = 002 0110101 11 = 102 , ,

{ { 1001 :0' 1100,10 3 = 010 12 = 110

A3 A2 1010;10 4 s 011 B3 B2 0101 :01 13 = III ,
01l0, 10 5 = 012 OOll,Ol 14 = ll2

I
,

{1001: 10 6 = 020 {'OOO :11 15 = 120

B2 0101:10 7 021 B2 0100 :11 16 = 121 ,
001l'10 8 = 022 0010,11 17 = 122

In this example, the first column contains the codeword; the second

column contains the number N(~) corresponding to that word, x' -' in the

third column this number is written in the ternary system.

The next two algorithms take care of the conversion from a word to its

ternary number and vice versa. It turns out that the ternary number can

be obtained almost directly from the structure of the word. We do not

need the 'real' number; for addition and multiplication, it suffices

to have the number represented in the ternary system. We shall not

give the algorithms for these well known arithmetic operations.

A) Convert a word, stored in array ,,(i: O~ i < 2n), to its ternary number;

the posi tiona of this number will be stored in an integer array t(i: 0 ~ i <; n)
n-l (0) n-i-l in such a way that the number is L t 1 .3 .
i=O

t(O):= w(2n-l); m:= 2n-l; j:=l;

do m>l if w(m-2) = 1 /\ w(m-l) = 0" w(m) = 0 ~ t(j):=O; w(m-2):=0

!J " 0 " 1 " 0 t(j):. 1

!J " 1 " 1 " 0 ~ t(j):= 2

n " 0 " • " 1 t(j) := 0

n " I " 0 " 1 ~ t(j):= 1

n " 0 " 1 " 1 -'> t(j):=2; w(m-2):=1

fi; j:= j + 1 ; m:= m - 2

od

- 36 -

Explanation: the last digit of the word, w(2n-l), determines whether

the word is in A or B : if w(2n-l) = 0, the word is in A so its number
nn_l n n

is smaller than 3 ,so t(O) should be O. If w(2n-l) we find t(O) = 1.

Furthermore, the last three digits of the word determine the position

of the word in one of the six parts of the list on page 34/35. From

the same list -and the example below it- we can derive t(l).

Then we make use of the iterative structure of the ordering: we omit

the last two symbols of the word, thus finding the word in V 1 it was
n-

constructed from. We must be careful if the word in V belongs to the
n

1st or 6th part of the list: to find the word in V 1 we must also
n-

change the third bit on the right.

We can go on omitting symbols until there are only two symbols left,

w(O) and w(l); they are '01' or '10'. From an example with n=l or n=2

it follows that these have already been taken care of in t(n-l).

B) A ternary number is stored in t(i: 0,,; i< n); we want to find the

corresponding word and store it in w(i: 0,. i< 2n). This algorithm works

in exactly the same way as the one under!; we just need two more

variables, satisfying k = 4! ones in w(i: m ~ i < 2n); w corresponds to

the last bit of the word in V(m+l)/2 This is not always the same as

w(m), since it is changed if this word is in the 1st or 6th part of

the list (see comment under A).

w(2n-l):= t(O); k:= t(O); m:= 2n-l; w:= w(m); j:= 1 ;

do m;:.l - if t(j) = Ol\w = 0 w(m-l):= 0; w(m-2):= 1 ; w:= 0; k:= k+l

a " 1 " 0 ~ " 1 " 0 " 0; k:= k+l

a " 2 " 0 ~ " 1 " 1 " 1 ; k:= k+2

Q " 0 " 1 .. " 0 " 0 " 0

0 " 1 " 1 - " 0 " 1 I' 1; k:= k+1

0 " 2 " 1 -!> " 1 " 0 " 1 ; k:= k+l

fi' -' m:= m - 2· , j:= j + 1

od; w(O):= n - k

After termination of the do-loop W(i: 1 ~ i< 2n) is filled; w(O) follows

from the fact that w(i: 0 ~ i < 2n) has n zeros and nones.

Both algorithms are O(n). Adding two ternary numbers can also be done

in O(n) computing time, so the total algorithm for addition is O(n).

- 37 -

Some final remarks on this way of coding:

- note that the ordering of the words in the list is quite arbitrary.

If we had put the six parts of the list in another order, we would

also have found conversion algorithms of the same type as A and B.

The ordering we have chosen has the property that the words are

ordered lexicographically, as can be seen from the list.

the first position of the ternary number of a word -t(O) in the

program- can never be 2. This may serve as an easy checking method

for overflow.

2.3.1

We generalize the method of the preceding section. The code of the

preceding section does not contain words ending on '000' or '111'.

We do get these words if we generalize as follows.

Again, let

partitioned into

V be a set of words of length 2n with n ones. V
n n

A u B uC VD : n n n n

is

A contains the words ending on '00'; B ,C and D contain words ending
n n n n

on '01', '10', and 'II' respectively.

Construction of V 2:
n+

1) for all x + '00' in A , x +
n -

'001100', ~ + '001010', ~ + '001001',

x + '000011', ~ + '000101', ~ + '000110' x + '110000', x +' {OOOl'
01 0010 '

and x + are in V 2' 0100
n+ 1000 \Olgg~~'

0100
1000

2) for all ~ + 'II' in D , x + '11
n

1100
1010, , _x + '001111', 1001

'ol{ii~~, x + 1011 '

and x +
{

1110
, 1101,
10 1011 are

0111

3) for all x + '01' in B , x + lOl
n

4) for all ~ + '10' in Cn' x + '11

0011
0101
0110

1100
1010
1001',
0011
0101
0110

110Q,
1'110
1001
0011
0101
0110

5) There are no other words in V 2' n+

x +

,~

0111

flO , 1101,
in V 00 1011 are n+2'

0111

f' , 0010, in V + 11 0100 are n+2'
1000

- 38 -

We can easily check that these words' are all different. Of course the

ordering in V is lexicographical again; it is essentially the same
n

as in § 2.3.0 and the conversion algorithms are constructed in the same

way. We shall not discuss this in detail. We only want to show that

this generalized code contains many more words than the original code.

To calculate IVnl, we use the recurrence relations (counting words):

(1)

IAn+21

IBn+21

IC n +2 1

IDn+21

~ 6 IAnl +

~ 4 IAnl +

~ 4 I Ani +

= IAnl +

IBnl

31 Bnl

31 Bn I
31 Bn I

+ 3 I Cn I
+ 3 I Cn I
+ 3 I Cn I
+ I Cn I

+

+

+

+

IDn I
4 I Dn I
4 I Dn I
6 I Dn I

Since VI ~ {Ol, II} , IAII ~ IDII ~ 0, IBII ~ lell = 1, we get

IAnl = IDnl and IBnl = ICnl for all n(induction).

(1) Reduces to

~An+21 ~ 7 IAn I + 4 I Bn I,
(2)

Bn+21 = 8 IAnl + 6 I Bn I
wi th Iv n I ~ 21 Anl + 21 Bn I for n ~ l.

We can write this as

(I 'od) oM (IAnl)
IBn+21 IBn I with M (: :).

Let Al and A2 be the eigenvalues of M:).1 ~ 12 -V 122 ,), 2 ~
2

so \ ::= 0.8211, \::= 12.18.

Then we know that Iv2t+l l ~~l Alt

and some unimportant constants ~l' ~2·

12 + V 12~'
2

So IV 2t+l lis asymptotically equal to ()(2 '>.2t and IVnlN 0(2'6; n , n .. <>o

for some ~2' •

Since ~ > 3, the number of codewords is very large compared

number of codewords in § 2.3.0 which was 2.3n- l • Also,

to the

logOC2tr2 n logffi
lim ~

n, log (:>~) 2 "'" 0,902 (compare 0.792, § 2.3.0)

- 39 -

The problem is how to generalize this iterative procedure in such a

way that we can construct all words. The construction would have to

like the following example.

Suppose ,.e have V containing all (2n) possible words. If xE V , n \n - n
we add x + '01' x + 'la' to V ; change a '0' in x into a '1' (n - , - n+l
possibilities to do this); call this x' and add x' + '00' to V l'

- - n+
Analogously we change a 'I' into 'a' and attach 'II' to the end of

the word. In this way we would have had every word ending on '00' n+l

times, and every word ending on '11' would also be there n+l times.

Delete all words occurring more than once. In this way we would have

all words exactly once, but we don't have a way to order them itera

tively. Therefore we will not be able to give conversion algorithms

like! and ~ (§ 2.3. 0) •

2.4 Summary

We have seen many examples of codes. In section 2.1 we used permutations;

addition and multiplication are easy but the code has very few words.

In section 2.2 we have seen some codes based on positional systems;

arithmetic is easy in such a code, but we have seen that the number of

words is quite small too, depending on the base of the system.

Section 2.3 deals with a totally different kind of code, using an

iterative construction method. We especially recommend this code be

cause of the elegant conversion algorithms.

- 40 -

3. Unsolved problems.

3.0 Partitioning all words into equivalence classes.

We define an equivalence relation r-o on all words.! E. {0,lj2n

that have n ones. Let.! and ~ be words, then

.! '" ~ ~ ~ can be obtained from.! by a cyclic shift on the positions

of x.

It is not true that all equivalence classes contain the same number

of words; this may be clear observing the following example.

For n=2 there are 2 equivalence classes: {0101, 10101 and {0011, 0110,

1100, 1001} •

For reasons that will be clear in a moment, we should like all

equivalence classes to have equally many words. This would be the case

if the word length e were prime: we could shift a word to the left and

get e different words, so every class would have f words in it.

Obviously 2n cannot be prime unless n=l; therefore we don't look at

all positions of the word but only at the last 2n-l positions. We assume

that 2n-l is prime. Now we only consider words (of length 2n) that

start with a '0'. In § 1.2.0 we have seen that it suffices to use these

words; we shall call them ~k as in the example.

If we disregard the leading '0', which is the same for all words, we

now have words of length 2n-l. We introduce the equivalence relation

for these words and now all classes contain the same number of words,

namely 2n-l.

We choose fixed representatives of all classes, for instance the

lexicographically least word of the class. Let the classes be ordered

in some way: we call ,them CO' C
l

, C2 •• C
m

_
l

where m is the number of

classes. So

The representative of C. is denoted as ~. (0) (0"; i< m).
~ ~

As in chapter 1, we define the indices (iO' jO) for a word ~:

iO is the number of the equivalence class ~ belongs to, so ~ E

jo is the number of shifts to the left neede~ to~obtain ~ from

class representative, ~.(O).
~o

c. .
~o

the

- 41 -

Thus, if rr denotes a cyclic shift to the left over one position, we

have

::L =1T jO (::L. (0)) (still disregarding the leading zero!).
10

As usual the word ::L is called ::L. . and the words are ordered
10 ,Jo

according to the lexicographical ordering in (i
O

' jO)'

The number corresponding to::L. . is iO(2n - 1) + jo (trivial), so
10,Jo

the algorithms for addition and multiplication are very simple in this

case, using 'diY' and 'mod'.

The remaining preblem is the ordering in the equivalence classes

it must be such that can be determined for a word::L. . without
(0) 10 ,Jo

much computing time. we know iO and ::Lio ,jo can be found easily.

3.1 A connection with Catalan numbers

For a word ~ we define iO as the smallest number such that the first

2iO positions of .! have iO zeros and iO ones. So l~ iO~ n.

Let Mi be defined as the number of possibilities for these 2iO posi

tions. E.g. we have M2 = 2: the first 4 positions can be 0011 and 1100;

a word starting with 01 •• or 10 •• has iO = 1. We also see Ml = 2.

We arrive at a recurrence relation:

io -1

M. = (2~:)_ C M . e~o -~i)
10 i= 1

1 1.0 -l.

since M.' (2~o-~i) is the number of words of length 2iO that have i
1 l<) -1

zeros and i ones in the first 2i positions already.

We can also give the numbers M. explicitly, because they are closely
10

related to the Catalan numbers in combinatorics (cf. [3]):

M. =
10

2(2io - 2)!
(io - l)! i o !

Knowing this, we can also define jo and kO for a word:

jo is the lexicographical number for the first 2iO positions in the Mi

po ssi ble words.

kO is the lexicographical number of the remaining 2n-2iO positions.

Disadvantages of this code are: jo is probably very hard to find for

a given word. Besides, for small values of iO the determining of kO

consumes most of the computing time, and we are back to our original

algorithm for the lexicographical ordering.

Possibly this code is of combinatorial_ interest only because of the

link with Catalan numbers.

- 42 -

3.2 Another kind of lexicographical ordering.

Since many of the given algorithms rely heavily upon the lexico

graphical ordering, it is perhaps not a bad idea to take a closer look

at this lexicographical ordering. We could even consider to change it

into a more appropriate algorithm for ordering words.

This final section is devoted to an example of such a different

ordering. We certainly do not claim that this ordering is in any way

better than the lexicographical ordering; probably it is much worse,

but it only serves as an illustration to show that there are other

possibili ties.

Let 0 be coded as ~ = Onln. Every other number i will be coded as ~i;

the word x. will be associated with a permutation T(. satisfying
-~ 1

'l1i~O=~i'

Of course there are many permutations ~ that map ~O onto ~i' but we

shall make a special choice. This will be explained using an example.

Let the word x. be
-1

o 1 1 0 1 100
1 2 345 6 7 e

the positions are numbered 1,2 •• e.

Compare x.
-1

not have a

with ~O. The first 'I' in ~i is on position 2; since ~O does

'1' in that position, the permutation~. must put a '1' in
1

position 2. We assume that~. consists of disjunct transpositions only,
l.

so the cycle containing '2' can only be (2 5), (2 6), (2 7) or (2 e)

(it swaps a '0' and a '1' in ~O).

Looking at x. we see that the zeros in positions 1 and 4 have not changed;
-1

the first zero that has changed (compared with ~o) is in position 7.

Therefore we assume that this zero has been swapped with the '1' in

position 2: the cycle is (2 7).

There is one more 'I' that has changed its position compared with ~O:

it is in position 3. Reasoning in the same way we assume that it changed

places with the '0' in position e. Hence we find n. = (2 7)(3 e).
l.

In this way we can find permutations IT. for every word xi' Now we
1 -

order the permutations lexicographically, looking at their disjunct

cycle notation. E.g. (1 ·5)(2 7)(4 e) ~ (2 6)(3 e) etc.

Thus we find frO (1), ITI = (1 5), '1"(2 = (1 5)(2 6) etc., for n=4.

Since x. = rr. xo' the words x. are ordered im the same way.
-1 J. - -1

For n=3 we find the list on page 43.

- 43 -

i 'lt i 1£i i fli x.
-1

0 (1) 000111 10 (1 6) 100110

1 (1 4) 100011 11 (2 4) 010011

2 (1 4)(2 5) 110001 12 (2 4)(3 5) 011001

3 (1 4)(2 5)(3 6) 111000 13 (2 4)(3 6) 011010

4 (1 4)(2 6) 110010 14 (2 5) 010101

5 (1 4)(3 5) 101001 15 (2 5)(3 6) 011100

6 (1 4)(3 6) 101.1. 16 (2 6) 010110

7 (1 5) 111101 17 (3 4) 001011

8 (1 5)(2 6) 11.100 18 (3 5) 001101

9 (1 5)(3 6) 101101) 19 (3 6) 001110

we see that the conversion x. +rri is quite easy, but x .• i
-1 -l.

or rr. ... i is much mere ccmplex. In fact it is possible to calculate
1

i from tr., e.g. the number of permutations starting with '1' is
1

1 + (2~-1) ((
2n-l) 1 for trO and n for the words starting with '1').

These calculations resemble the algorithms for lexicographical ordering

in § 1.0; actually, they are even more difficult. Therefore we still

prefer the lexicographical ordering at the moment. However, other

orderings may be found that are better suitable for these purposes.

Acknowledgement

The author wishes to thank professor M. Rem for his stimulating support

during this work.

References

1 J.P.M. Schalkwijk, 'An algorithm for source coding', IEEE Trans.

Inform. Theory, vol IT-18, pp 395-399, May 1972

2 Hua Loo Keng, 'Introduction to Number Theory', Springer Verlag,

Berlin Heidelberg New York, 1982

3 L. Comtet, 'Advanced Combinatorics', D. Reidel Publishing Company

Dordrecht-Holland Boston- U.S.A.

- Al -
Appendix.

Examples for §2.1.1: we list fn(k):= min {lcm {1,2, .. ,k}, k(Lt(~~~k)J)}
for 1 ~ k".tn,

Mn = max {fn(k) 11~ k S' 2n and log2 Mn

10g2e~)
for n= 4, 5, 10, 20.

n = 4

k ~1 I ~

n = 5

n = 10

k 1 2

f (k) 1 2 n

_ l~ I
455

M = 2520,
n

n = 20

k 1 2

f (k 1 2
n

6 1215127

14 1~

1
16

/ 11 I 280 150 96 51

M = 15, M = 0.21,
n n

18 -112
36 19

(2~)

M = 50,
n

log Mn = 0.707

log e~)

10 11 12

2520 1386 840

1

20

20

= 0.014, log Mn = 0.646

10ge~)

34'si6 7 8 9 10 11 12

6 12 601 60 420 840 2520 2520 27720 27720

log M = 0.637
n

0.20,

13

360360

•.• ~1~ __ ~~ __ ~~1~6~ __ ~1~ ____ ~;1~8 ____ ~~1~9~ __ ~~2~0~ ______ ..•

720720 12252240 12252240 6701604 3695120

~21~ __ ~~2~2 ____ ~2~3~ __ ~2~4 ____ ~2~5~ __ ~12~6 __ ~~2~7 __ -r2~8~ ____ •.•

1939938 1069640 559130 308880 160875 I 89232 46332 25872

• •• 2

13398

40

2240 680 350 216 III 76 39 40

log Mn / log C~) 0.636.

- A2 -

Example of § 2·1.3: k k 11
k 2.n(k) 11 log2 (i=l Pi)

Pk i=l Pi 2.n(k}

1 2 2 2 0·5000
2 3 6 6 0.4308

3 5 10 30 0.4963

4 7 18 210 0.4286

5 11 28 2310 0.3991
6 13 42 30030 0.3541

7 17 58 510510 0.3269
8 19 78 9699690 0.2976

9 23 100 2.23093 '108
0.2773

10 27 128 6.02351.109 0.2538
11 29 156 1. 7 4682.1011

0.2394
12 31 188 5.41513"1012 0.2250

COMPUTING SCIENCE NOTES

In this series appeared:

Author (5)

85/01 R.H. Mak

85/02 W.M.C.J. van Overveld

Title

The Formal Specification and

Derivation of CMOS-circuits.

On arithmetic operations with

M-out-of-N-codes.

	Abstract
	0. The problem
	1. Codes that use all words
	1.0 The lexicographical ordering
	1.1 Variants of the lexicographical ordering
	1.2 Further remarks and conclusions
	2. Codes that do not use all words
	2.0 Motivation
	2.1 A code that uses permutations
	2.2 Examples of positional systems
	2.3 An iterative approach
	2.4 Summary
	3. Unsolved problems
	3.0 Partitioning all words into equivalence classes
	3.1 A connection with Catalan numbers
	3.2 Another kind of lexicographical ordering
	References

