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On arithmetic operations with M-oui-of-N- codes

Wilhelmina M. C. J. van Overveld

Department of Mathematics and Computing Science,
Eindhoven University of Technology,

P.0. Box 513, 5600 MB Eindhoven, The Netherlsands.

Abstract

We consider an M-out-of-N- code with M=n, N=2n., This means that all

rows of 2n bits with exacily n ones are used as codewords to represent
the numbers 0,1,... GE)—I. We are interested in arithmetic operations

on these codewords; of course algorithms for addition and multiplication
depend on the code chosen. We give several examples of this,

To obtain nice, efficient algorithms, it appears to be advantageous to

use only part of all codewords.
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0. The problem

Suppose we have N channels with output 'C' or '1' for each channel.

The input of the channels does not matter here. With these N channel
bits we want to represent integers. An obvious way to do this is to

use binary representation: each bit can be 'Q' or '1', so we can repre-
gent 2 numbers (O,l,...2N-1).

In practice this representation has the following disadvantage.

It is possible that the N channels do not deliver their outputs at the
same time; some may be slower than others. Suppose the initial state

of all bits is 'O'. Some of them may change into '1l' after a while, but
we don't know how long it will take before all bits have reached their
final state. Only when we are sure that no '0' will turn into '1' any
more, we have reached the final state and we cah read the represented
number.

A solution to this problem uses so called 'M-out-of-N- codes'.
This means that we allow only those final states where exactly M of
the N bits are '1' and N-M bits are '0'.

Indeed, as soon as M bits have turned into '1', we know that there
will be no more changes: we are in the final state and the represented
number is known.

However, this solution also has its disadvantages, since we can't
represent 2N numbers anymore. There are only(g) possible rows of N bits
with exactly M onea, so there arean) final states allowed. A final
state of this form will also be called a 'codeword' or just 'word'.
Still, we would like to represent as many numbers as possible in this
way. 1t can be easily seen that the best choices for M and N are:

N=2n, M=n (ne ).

In the seguel we shall only consider 'n-out-of-2n- codes': the
codewords are rows of 2n bits with n ones. With these words we represent
the integers 0,1,...(22)—1.

There is one more problem concerning this way of coding: in the
binary system there is an easy way to add or multiply two numbers as
bit sequences, but it is not clear whether this is also possible with
n-out-of-2n- codes!

Of course there is one trivial way to add codewcrds: convert the

words to the corresponding numbers, add these numbers and convert the
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sum back to a codeword. We wonder whether there is alsc a way toc add
two words directly, without converting.

This paper is the result of some regsearch done into the question
of 'how difficult' it is to use arithmetic operations with n-out-of-2n-
codes. Obviously we can construct many different codes of this type, and
the addition algorithm for a code will depend on the construction of
the code., That is why we shall consider quite a few examples of codes,
and for each code we shall give algorithms for converting words %o num-
bers and vice versa, and an algorithm for adding two words. In some cases
we shaell even be able to multiply words in a fairly easy way.

For the sake of simplicity, we shall never consider overflowu.

The structure of this paper is as follows.
- In chapter 1 we shall congider a number of ways to code all numbers
O,l,...(?g)—l. In most cases, it will appear that the addition algeorithms
come down to a somewhat disguised form of 'convert to binary numbers,
add the numbers and convert back to a wordt.
- In chapter 2 we shall see that we do find ways to perform a 'direct!
addition of codewords, if only we weaken our constraints. We shall not
code all of the (Qn) numbers, but we shall consider 2 limited number of
the (22)possible codewords.

For the codes we find in this manner we shall be able to give some
nice addition algorithms, but we shall also prove that the number of
used codewords (i.e. the number of represented numbers) is a very small
2n)-

fraction of the total number of words which is ( n

In fact, in all cases the fraction
# codewords
()
n

vanishes for n -+0Q If we look at the quotient of the logarithms, i.e.

log, ( # codewords )

b4t
log, (21'1)

we have a measure for the number of bits used for the codewords compared

b

to the number of bits it would take if we would code all words. The be-

haviour of this quotient for n »o0 will also be investigated.
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- Chapter 3, finally, consists of some ideas for coding that gave
rise to0 problems during research. However, it is imaginable that the
principles of the ideas are nevertheless useful, and they may yield

practical addition algorithms.

l. Codes that use all words

1.0 The lexicographical ordering

We consider all words of length 2n with n 2Zeros and n cnes, and
we order them lexicographically. Let '<€' denote 'lexicographically
less than', then 0 < 1. E.g. for n=4 we have:
00001111 < 00010111 < 00011011 < ...
With each word we associate a 'lexicographical number': the number that
word has in the lexicographical ordering. So, in our example:
00001111 « 0, 00010111 <+ 1, 00011011 «*> 2, etcetera.
These numbers lie in the range 0...(22)-1.
We now define the coding; let gé {0,1,...,(22)-1}.
The number g will be coded as the g word in the lexicographical ordering,
that is, the word with lexicographical number g. This word will be writ-
ten as gg: a rowvector over {O,l} of length 2n.
There are algorithms known for the conversion of g to Eg’ and Eg to

g (c¢f. [1]). The most straightforward algorithms are the following.

AO0  Convert x_to g. Given an integer array w(i:1€i€ 2n) satisfying
Vi: 1€i<2n: w(i)e {0,1} . This array contains the word X We calculate

the lexicographical number, g.

od

Invariant relation: a= the number of ones in w(j: i< j< 2n)
g=§:: #positions in w(j:i<js2n) to the right of this '1!
gsones in w(j:i<j€2n) to the right of this '1' +1

all ones in w(j:i< j< 2n)
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From this we see that the '1' in the figure below causes the term (22;})

in the sum of g.

| {(n-a-1 ones)}}1}(a ones) |
4 e L ~

i-1 poggtions 2n-iypositions
Apparently, the lexicographical number of the word in w(i:l1€ i< 2n) is

g= z ’ (# positions to the right of this '1')

# ones to the right of this '1l' +1

all ones in w(i:1ls i< 2n)

We can see this using the following argument. The number corresponding
to a word x egquals the number of words that are lexicographically less
than x. Suppose the first bit of x (on the left) is a '1', then all
words starting with 'O' are lexicographically less than x. There are
qu%) of them. So this first 'l' causes a term (?2_{) in g.

Note that this is indeed one of the terms in the given expression for g.
We can argue in the same way if x starts with Okl (k zeros followed by
a 1). Analogously the remaining n-1 ones in x each yield a term in the

summation of g. The interested reader is referred to [l].

BO Convert g to Eg' Given a number g, Oggg (22) -1, we want to con-

struct Eg' The word lg will be stored in the array w(i:l1<i< 2n).

is= 1; a:= 0; s:= 0O

do a Fn > if gxs + (22"1) - w(i)i= 1; 83= s + (21’1—1); ar=a + 1

-a n-a
2n-1i .

0 g<s + (n—a) - w({i):;= 0O

fis

i:= 1 + 1

0d;
do i £ 2n+l - w(i):

O; i:= 1 + 1 od

Invariant relation: a= the number of ones in w{j: 1< j<i)
s=§::: (# positions to the right of the '1')
# ones to the right of the *1' +1
all ones in w(j: 1€ j<i)

Explanation: we check position i to see if we can put a 'l' in that

position. This '1' would contribute (22::) to the lexicographical
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number. If the total contribution of all ones in w(j: 1€ jsi) does not
exceed g, we may indeed set w(i) to 'l', otherwise it will have to be *'0Of.
After termination of the first *do'- loop, all ones are in the right
positions. If necessary, we complete the word with zeros in the final

positions.

We can easily generalize the algorithms A0 and BO for words of length
2 with exactly k ones and {-k zeros. The lexicographical number of such
a word can be found in exactly the same way: the '1' in the word below
contributes (i:i) to the number.

l (k-a-1 ones)I 1 l(a ones)|

-

- - T
i-1 368. £-1i"pos.

We give both algorithms (called Al and Bl) in a version that is at
the same time more efficient than the one above. Indeed, the programs
AO and BO need a computing time of 0(n2): a loop is executed n times and
each time we calculate (?2:;

compute the binomial coefficients more efficiently, thus reducing the

). By introducing an extra variable we can

computing time to 0{(n) - or O(f) in the generalized case.

We can do this by using the following relations:
£-i+1) _ f£-isd [{-d f=i+41)  foisl [f-i ete
a+2 = a+2 a+l ! a+l / = f-i-a \ a+l :

Al i:={ ; g:= 0; bin:= 03

doi £ 0 if w(i) = 0 = bin = 0 = bin:= 1

bin > 0 - bin:= bin*%f-iﬂg
f-i-=
i;

U w(i) = 1 - g:= g + bin; bin:= bina+§9-i+12; ai= a8 + 1
. a+2

fi;

is= i--1

if
[

Hy

|

od

Invariant relation: a= 4 ones in w(j: i< jgé ), bin= i;i) and

- # positions to the right of the 1t
€ E ; 4 ones to the right of the '1' +1

ones in w(j: i< jgé)



)
if i <4 - bin:= bin*{ﬁ%
0 i ={ > bin:=0 £-1
f
ﬂ g< s + bin =

w(i
if i <¥ & bin:= binx (£-i-k+a
7 -1
Ji=f+ vin:=o0
fi

fij =i + 1
od;

do i A€+l o w(i) :=0; i:= 1 + 1 o0d

Invariant relation: a= # ones in w(j: 1< j<1i), bin= (8-1) ’

k-a
s_j : (# positions to the right of the *1°
4 ones to the right of the '1' +1

ones in w(j: 1€ j<i)

In the next paragraphs we shall use these generalized algorithms
frequently, for arbitrary k and E; for this reason we have given them
explicitly.

At this point, we can already draw an important conclusion from the
fect that the conversion algorithms have a computing time that is linear
in n. Suppose we want tc add Ei and Zj’ then we can do that by conver-
ting to i and j and afterwards converting i+j to £i+j' From the fore-
going we conclude that this addition also has a computing time of 0{(n).
Further, we realize that any addition algorithm must be at least O{(n):
we shall have to take a look et all bits of .9} and Ej at least once.
Hence our conclusion is that we can't possibly design an addition algo-
rithm that is more efficient than the one above. This only holds for
worst-case behaviour; we may be able to construct an algorithm with a
better average-case behaviour.

Nevertheless we are going to make an attempt to add two words X, and
Ej directiy, without the use of i and j. For example, there is an easy
way to derive the lexicographical successor of a wecrd X3 this corres-
ponds to increasing i by l.Description of the algorithm:

i) determine the rightmost pair 'Ol' in X , This pair always exists,
i



except when i= (?2)-1: then X;= 10",

ii) Replace this pair by '10'.

iii) Make the part of the word to the right of this pair lexicographi-
cally as small as possible, that is, put all ones in this part in
the rightmesat positions. Thus the word will loock like ...10 Oalb s

a,b=20.

E.g. if x, = 01001110 then x, . = 01010011 (i= 18).

It is Jjust as easy to determine the lexicographical predecessor of a
word (in fact, this algorithm is obtained from the one above by merely
interchanging '1' and '0'.). Both algorithms are 0(n).

Thus we arrive at the trivial addition algorithm below.

AL x4 Xy > Xim Xy yie X

D % =x, = x:= x5 yi= x,

fis {x >y}

do y # o"1" & X:= lex. sucessor of x;

¥:= lex. predecessor of y

Of course this is not a practical algorithm, since it is O((?g)).
However, apart from increasing i by 1, there are more ‘'elementary’

additions possible, even of order 0(1l). Suppose x; is of the following

type.

l(n-a ones) J_Ojl [(a-l ones)}

[ —— [e—
2n=k-~2 k

The indicated '1l' contributes (k) to the lexicographical number. If we
change the pair '0Ol' intc *'10', the '1' contributes k;l); the other
terms in the summation deo not change. Hence, by this replacement we add
(k;l)- (l;) - (al_‘l) to the initial word X, .

The consegquence is , that for every word X5 there are certain num-
bers j such that £i+j can be easily derived from X, - For such a pair
i,j we call this an elementary addition. The general problem is still
open; an addition will have to be split up into elementary additions and
subtractions.

It is not clear how this can be implemented.
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1.1 Variants of ithe lexicographical crdering

1.1.0

For a word x we define the numbers i_ and jO:

0

- iO is defined as the number of ones preceding the leftmost 'O' in

the word x;

- jo is the lexicographical number of the word x', consisting of the
rightmost 2n—io-1 bits of x. This word x' has n—iO ones; see figure
below.
x=  1...10, (n-i ones)_I

—
: Mg
i, pos. X
The word x will be denoted as x, . . The ordering in the words Xx,

ipyJo =ip,Jo
is defined according to the lexicdographical ordering of the pairs (io,jo).

Hence: x. . = (io,jo)<(il,gl) & (104 il)v(10= i, A ,jo<j1).

X, .
—lg,sJdo < “lysdq

Note thet this ordering in the words is exactly the same as the

lexicographical ordering of § 1.0.

The number of words with i ones preceding the first '0O' is (2n;f;%).
Hence the number corresponding to x5 i is given by
Q)
ig-1 2n-i-1 + 3
n=i 90
i=0
' . D d . R 3L
(We count 211 wordsg Ei,j with i 1y there are Jg words zio,J with 3<:30 }
Now we shall give an algorithm to add x, . and x, . 1§ we call
—losyJo “ly4da
the sum Eiz 3" We use two tables, stored in integer arrays:
]

sigma(ioz O0giyg n) with{éigma(O) =0, s i1
81gma(10) = iéo ( n-i ) y 1O> 0
and term{i: O0gign) with ‘ _—

term(1i) =(?g:;-1 .

Algorithm:
i) Convert Xi0 0 and S to (10,30) and (11,31). For j, we use the
algorithm Al (§ 1.0) with £ = 2n-iy-1, k = n-i,, and the word x' mentioned

in the definition of x, . Analogously we find j,.
1oy Jo 1

ii) Now the following holds: the number of x. . = sigma(i.) + j
g s Jo 0 0

the number of x. . = sigma(i + J
X3, 5 gma(i,) + 3,
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We add thege numbers in twc steps:
- calculate sigma(io) + Jg + ¥ for y = sigma (il); write the sum as
1 ¥ 1 s
sigma (12 ) o+ 3o
- calculate sigma(iz') + J,' +y for y = j;; the sum is sigma (i2) + dge
We only give the first step.

8= sigma(io); ip0e= 15 yi= y+igs
do yz;term(iz') - s8:= 8 + term (iz'); yi= y - term(i2'); iyti= iyt 41

Invariant relation: sigma(io) + g+ sigma(il) =8 + Yy, 8= sigma(iz').

After termination: answers sigma(io) + jg + sigma (il) = sigma(iz') + 3,

iii) Convert (iz,jz) to x

. ., using algorithm Bl.
12442

About the complexity of this algorithm, we can say that step ii)
igs certainly 0(n), and in the average case it is much better. Steps i)

and iii) are 0(2n-i.-1) because of the algorithms Al and Bl. So we

0

gsee that for small values of i there is hardly any difference with

0’
the addition algorithm of § 1.0 that uses conversion.

For large values of i. the algorithms Al and Bl need much less

0
computing time, and step ii) does not really take more time than it

does for small i We conclude that this algorithm is somewhat more

0.
efficient in the average case than the one in § 1.0, but it makes use
of 0(n) tables.

All of the following algorithms in § l.1 are alsc based on the

handling of indices like iO and jo.
l.1.1
For a word x we define i 3y and ko:
- iyt= the number of ones in the first n positions of x (0.5105 n).
- jozz the lexicographical number of the word x', formed by the
first n positions ¢f x. x' has length n and iO ones.
- k0== the lexicographical number of the word x"™ , formed by the

last n positiols of x. It has n-i_ ones.

Note that Ox j0<(;1 ) and 0Sk < (nf_‘.l )= (‘: )
0 0 0

Again we dencte x as X. . .
€ - ~lpsdo 1ko
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The ordering in these words corresponds to the lexicographical ordering
in (io,jo,ko); this is not the same as the lexicographical ordering in
the words! To illustrate this, we give the first 11 words for n=4:

on the left, ordered lexicographically; on the right, ordered according

to (i

ordgr O) Note the differences in the last twc words.

lo’Jo!k

0 00001111 00001111 o, C, 0

1 00010111 00010111 l, 0, O

2 00011011 00011011 1, 0, 1

3 00011101 00011101 1, 0, 2

4 00011110 00011110 1, 0, 3%

5 00100111 00100111 i, 1, O

6 00101011 00101011 1, 1, 1

7 00101101 00101101 1, 1, 2

8 00101110 00101110 1, 1, 3

9 00110011 01000111 i, 2, O
10 00110101 01001011 1, 2, 1

There are (?)(nfi) = (?) 2 words with i1 ones in the first n
positions. Hence the number of words x. with i< i, is
=i,j,k 0
i -1
56
i
i=0

The number of words x

. n
= JO (io) (for

n
sk with 3<fJO is JO( -io)

every Jj we have( ) p0831b111tles for k)

For the number represented by x we find
10;JOskO
i -1
n\ 2 . n

E : (1) * Jo (io) *+ Koo

i=0
For the addition of x and x, -with result x

“iosJosko “iq4J1.ky 17_332’1(9_

we use three integer arrays:

s n . . n\?2
nchoosel(lo).= (io)’ nchoosei? (10).= (io) and

O ny\ 2
E : (1) for 0§ iy ¥ n.

31gma(1o):=
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Algorithm:

i) Determine (io,jo,ko) and (i kl) with algorithm Al.

19j19
ii) Calculate sigma(io) *+ 3g nchoosei(io) + k, +y for y= sigma(il).

Write the result as sigma(i2') + 3, nchoosei(iz') + k,' and add to this

y= J; nchoosei(il) and y= k_, respectively.

l’
Again, only the first part is written in full.

cw gi i Vs Tem i 3 Vis : (4 .
St 81gma(1o), i, igi yi=y + Joé&nch00591(10) + ko3

do ¥y nchoosei2(i2') > si= 5 + nchoosei2(iz');
.o - 005 t)e 4 tew 5 8
Yi= y - nchoose12(12 ) i,M0= 1,0 + 1

t= y div nchoosei(iz'); ky':= y mod nchoosei(iz')
Invariant relation: answer= sigma(io) + dg nchoosei(io) + k, + sigma (il)

=58 +y and 8 = sigma(iz').

iii) Convert (i ,k2) to x with algorithm Bl.

2132 Xin,32,k

This, too, is an algorithm of 0(n).

1l.1.2
We abbreviate a:= 00, b:= 01, c:= 10, d:= 11.

A word in {0,1] en corresponds to a word in {a,b,c,d} . we take two

successive bits together to form a word in {é,b,c,d] n,
E.g. 01J00[11f01 = badb.
Further, if E;e{h,b,c,d} n, we dencte #a:= the number of a's in x.

Similarly we write #b, #c, #d. For the words in our n-out-of-2n- code

we know the number of 'l's is n., For a corresponding word in {é,b,c,d} n

this means #b + #c + 24d = n and #a + #b + #c + #d = n,
hence #a = #d.

We define the numbers i k. and {0 for a word ge{a,b,c,d}n :

0’j0’ 0

- igi= #a, s0 Osioslp/a

Jo

distinguish between a's and non-a's only. Let a correspond to '1°
<3 (n

0 oneg, so G Jo< io)

- k0:= the lexicographical number of the word of length n-iO that re-
maing if we delete all a's from x, where we distinguish between d's

and non-d's. 4 corresponds to 'l', non-d to '0O'. We find Os!k0< ( Tiﬁ,
1o

:= the lexicographical number of the word we get from x if we

and non-a to '0O'., This word has length n and i
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- €O== the number represented by the b's and c¢'s in the word x if we
regard the b's and ¢'s as 0's and 1l's ,respectively, in a binary

representation. There are n~2i_., positions that are b or ¢, thus

n=21i 0
0g Q< 2 o,

Example: consider the word abbacdbd (n=8). Then i, = #a = 2.

jo can be found by substituting '0' for b,c and 4 and '1*' for a:
10010000, j0= lex. number of 10010000 = (i) + (g) = 25,

We find ko by deleting the a's: bbedbd. Write d= 1, b= ¢= 0 to get
k. = lex. number of 0001C1 = 1. To find EO we delete the d's: bbeb,

0
and think of this as the binary number Q0010. Hence {O= 2.

The word corresponding to 10,30, f is denocted as x, ;

=io s do 1koP°
the ordering in these words is defined as before. Reasoning as in

§ 1.1.0 and § 1.1.1 we deduce the number of x ; it is:
_10 1o koj?
ig-1
n nei n-21i n-1g n-2io n-2i,
E (i) ( 5 ) 2 + JO ( ) + ko 2 +-€O .
i=0

From the example we see that the conversion of x 2
—10a30uko’ o
(IO’JO’kO’E ) and vice versa is somewhat more complicated than in the
previous examples, but the computation remains O(n).
For the addition we use some tables, containing
i~1

E Z (?)(Htl) 2n-21 ’ (? )(nTiQ) 2n-2io and 2n-210 (nfio).
i i 1, i, lo

<

For transparency, we shall not use arraynames for these tables
in the program below, but write (25)(n;jo)2n-io , etc.
Keep in mind that these are not O(n) computations, but direct accesses
to a table. Like the preceding algorithms, we only give the additiorn

10-1

§ : n\/n-i n-2i . -ig} ne=2i, n-21i,
(i)( i ) 2 + Jo ( i )2 + ko 2 + fb + y.

i=0
Here and in the next sections we shall omit the steps i) and iii),

since they are the same for every algorithm.
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e E n\/n-i n-2i . , v e . n-ig}, n~2ig n=2i, .
B1= (i)( i ) 2 5 12 $= io, ¥i= ¥ 4 30 ( 10)2 + ko 2 + fo,

0

—.f - ! -iq - iy
b (M) 27 e e e (5) () 22
12 1. lqg 1a

* n \/n-il} 2n-21£ . .
Yi= ¥y - (ii)( iy ) g iyte= 1,0 4 1

a]

- s 1 vy
jore= (y-0,') 2 n+2i} div (n.ll)
2 2 -\ i} 1

ij-1

Invariant relation: answer = y+s; 8 = E (?) ( ;1> pn=2i
i=0

This algorithm may be preferred to the one in § 1.1.1 in the
sense that the tables are of length rh/é] instead of n, since from
the definition of 10 it follows that ios Lp/%J.

Apart from this, the algorithm is O(n).

A final remark of this section deals with a generalized form of the
algorithm, If we have words with even length £ and exactly k ones, we
can also use a's, b's, c¢'s and d's. The requirements change into:

#a + #b + 4c + #d = ¥/2 and #b + #c + 24d = k.

Hence #a - #d = 5/2 ~ k. Once we choose #a for a word, #d is fixed:
#d = #a - E/2 4+ k. The b's and c's can be chosen arbitrarily on the
€/2 - va - #d ( = - k - 2#a) remaining positions.

Again, let i _:= #a, jo:= lexicographical number only minding the

o’

a's, k,.:= lexicographical number in the d's, and £O== the binary number

0

represented by the b's and c's. The number of x. . g, we find is:
=ig sy Jo rkoslo

ig -1

872\ t/2.4 £-k-21 ' i, po-2i, fokooi,
T ) s s, (U)o s e,

i=0

1.1.3
A method related to the idea of § 1.1.1: now we don't devide the word

x into the first n positions and the last n positions, but we look at
the distribution of the ones. Let n be even. We split x into two parts,
where the first part consists of the first position upto and including
the position of the (n/Z)th one. The second part consists of the re-

maining rightmost positions. Therefore we define:
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i 1= the length of the first part of x (defined as above)

iz the lexiccgraphical number of the word formed by the first i -1

J

o . 0]
. - ] H 10-1

positions of x. It contains n/2-l oness 0530<(n/2-1)

k.:= the lexicographical number of the word formed by the last 2n-io

positions, with n/2 ones { = the second part of x).

As an illustration, see the sketch below.

1
FIRST PART ‘ SECOND PART
{
L(n/z-l ones) | 1 | (n/2 ones) |
) N J
7 b
i, 2n—1O
Writing x as x. . and ordering the words as usual we find for the
_lo,Jo,ka
number of x
1o!Josko
ig=1
i=1 2n~1 . 2n-ig
z ;(n/Z-l)( n/2> * Jo( n/2 ) * ¥o
i=0
For the addition algoriihm we use tables containing
is -1
i-1 2nei ig=-1 2n-ig and 2n-1ig
n/2-1 n/2 * \n/2-1 n/2 n/2
i=0

Again, we shall not refer to these tables with arraynames. We calculate

ig~1

;(nﬁil)( 22};) * 3o (22/20) MR

T B T R N T O Y -+
t= } n/2-1)\ n/2 )7 T2 i= pf Y=V Y Jo* /o
i=0
if -1 2n-i} o (iz' -1 on-if\ |
do y 2 (n/? 1)( n/2" ) ™ =8 * Ap/eca) n/2 )}
. if-1 2n-isy | .
¥i= Yy = (n/2 1) (.n/Q ) H 1 'sa 12t + 1
od;

. , 2n=-i} 2n-i
| I : L. ‘2.
32 tm y div ( /2 ) 3 k2 mod (

There is not really any reason to prefer this algorithm to the
one in § 1.1.1; they are equally efficient -O(n)i, and in fact they

resemble each other very much.
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1-1.4

Finally we mention a somewhat less practical varient. Define for a

word x 1 and ko as follows:

0’ jO
io.s the number of positions starting at the first '1', upto and in-

cluding the last '1' in the word. So nsgioé 2n.

:= the lexicographical number of the word of length i

0
the positions between the first and nth one: Osijo< (

-2 occupying
iD—ZJ

£ 2n-i_.

k= 2n-i - (the number of leading zeros in x) : 0k, o

0 0
See figure below.

| 00....0/1 I(n-2 ones)l 1,0...0
e ——e ——
2n-10—k0 1O~2 ko
Order the words X500 30 ko according to (1O,Jo,ko). Note that all
words X. . (for fixed i, and j.) are cyclic shifts of each other.
"lo,ao,k 0 0
If we start from the word x, . s, the word x, . is derived by
=i04J0 40 =ioy ok
shifting k positions to the left. Obviously there are 2n-io+1 words
of the type x. . +» Using this we find for the number of x. . :
YPE 244,40k g Ziosio ko
ig -1
j.2 . . .
E (n_2> (2n-i+l) + 30(2n-10+1) + k.
i=0
The conversion x, . &> i j k can be easil erformed;
_10’30’1{0 ( 0! Jo’ O) y p b

the computing time is 0{(n). Again we give the algorithm for increasing
the number represented by x, . b .

P Y Fo,jorko T
We ugse two arrays containing

ig-1
i-2 : ig-2 . .
§ (3'2) (2n-i+l1) and ( n-2) (2n—10+1), respectively.
i=0
ip-1

wi i-2 3 . 5 |-= 1 - .= ] - -
gt = E (n-?) {(2n-i+1); 1,002 155 ¥i= ¥ + JO(Bn 1O+1) + ko H

- .'-
_2 )(2n-12'+1) ~- 5iz S5 + (1; g) (2n-12'+1);

i} -2
.= - 2 -t ! s § Ve= 4t
yi=y ( n-2) (2n i, +1); i, it + 1

Jvs= y div (2n-12'+l);
k. ':= y mo (2n—12'+1)
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For large values of iO this is not a practical algorithm: the

conversion x, . <—>(i
Zioyjoske 0’

computing time. Thus we do essentially the same work as we did in the

jo, ko) consumes the lion's share of the

algorithm of § 1.0 {converting words and adding the lexicographic num-
bers). In the average case however, the conversions will consume less
time, whilst the middle part of the algorithm consumes even less time
than the conversion. So in fact we can make the same remark we made

in § 1.1.0.

1.2 Further remarks and ccnclusions

1.2.0

Firstly, we make a general remark., In all cases we have seen so far,

we assigned a word X, to every number i (Os-i<(?2) ). However, it
suffices to assign codewords to half of the numbers, e.g. the even
numbers only. We must do this in such a way that the codeword for the
0odd number 2k+1 can be egsily derived from the word assigned to Zk.

We give two examples of this.

1) Consider only those words in {0,1} 20 ith n ones that start with
'0'. There are (?n;l) = 4 (22) words like this. Order these words in
some way as y,  , for Osk<% (En) .

Denote (xk)* t= the complement of the word y,, i.e. '0' and 'l

swapped in Xy - Now we define codeword X for O i< 22):

Xo = Xy } Osk<%(2n)
* n

Xoe1t= (xg)

Assume we have some addition algorithm for the words b with the addi-
tion operator denoted as ® . Then we can define the addition for the

words x.:
=i

Xy @ Xpp = ¥y ®Yp corresponding to 2k + 28 = 2(k +4)

™ * " n =
oy ®Xop, ¢ (xk ® ¥p) 2k + (2€41) = 2(k+f) + 1
Xopel ® Xppyy T Y PXp @Yy " v (2k+1)+(20+41) = 2(k+P41)

We shall encounter this method once more in chapter 3.

2) Consider the code of §1.1.1, restricted to the words x, .
“ioyJosko

with ios rh/Zj. These words will play the role of the words b2 in
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example no. 1). We assume n even; in that case our 'restricted code!
contains exactly % (22) words. The ordering in the words Xy is of course
the same as in § 1.1.1, and we use the same addition algorithm for
these words. Again we define x, =y and x, 4 3= (xk)* , with the
addition defined as in the above example.

Note that the words (xk)* are exactly the words with more than
n/2 ones in the left half: the words Eia,jo,ko with i0>'n/2.
The tables of §1.1.1 can thus be reduced in length to n/2; the algo-
rithm will alsc decrease in computing time. These savings can also be

applied to some of the other algorithms given.

1.2.1

We summarize the results of this chapter,

Apart from the lexicographical ordering, all algorithms are based

on the same principle. To every word x we assign indices like io, jo, .
and we denote the word as b9 3 . Yrom these indices, the number
O’ o "

represented by x can be calculated directly (by means of a more

mi@,jo--o
or less complicated expression). If we want to add the words X j
IR
and x. . with the result called x, . y we start by deter-
—11,31 P _12’.]2-.-

mining the indices (io, jo,...) and (il, jl,...). Then we calculate
(12, j2,...) from thesej this algorithm works in such a way that we add
the numbers corresponding to (io, jO,...) and (il, jl,...) in several

steps, and we deduce the numbers (i j2,...) from the sun.

2!
Afterwards we convert (12, 32,...) to = I
The only difference in the algorithms is the efficiency of the

middle part: calculating (i ,...) from the known indices. Using

2! j2
*div' and 'mod' operations, this can be done very easily.
Kevertheless we have seen that all algorithms are O(n) and that

no addition can possibly need less computing time.
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2. Codes that do not use all words.

2.0 Motivation.

From chapter 1 we have learned that all algorithms we could think
of make use of the lexicographical ordering, and that addition is never
done directly: we make use of an intermediate step (the indices).
Indeed we have never been able t¢0 really add two bit sequences, as can
be done in the binary system -or in any positional system, for that
matter.

We can construct direct algorithms if we drop the requirement
that all integers O, 1 through (223 -1 must be coded. In that case
we can design a number of algorithms that rather deviate from the ones
in chapter 1, and are much easier in general. It will even be possible
to give programs for multiplication; something that is hardly feasible
for the codes in chapter 1 ! Section 2.3 contains a very interesting
example of this.

Therefore, the main reascn for giving the codes in this chapter
is the fact that we can show a variety of nice addition algorithms.
The practical use of these codes is rather doubtful, since we can only
code a very small part of the (Qi) numbers. As mentioned before, the
fraction of codable numbers goes to 0 for n -+ ¢ . We shall prove this

in 81l casges. However, the quotient

log, (# codewords)
2

2n
log2 ( n)

has alsc been examined for all codes, as announced in the introduction.

In most cases it will appear that this quotient does not vanish for
large n. For some codes we even find that the limit of this quotient
for n ey is 1. So in those cases, the result is not too bad: we can

still code & considerable amount of numbers.

2.1 A code that uses permutations

Arbitrarily, we pick a word x, as codeword for the number O. Let tTe SEn'

0

Consider the effect W has on the positions of x.. By this permutation

0

we get a new word that we call X - We denote this as X, = X,
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Note that x, can be equal to x, even if ™ is not the identical permu-

1 0]
tation. We give an example of this for n=4.

Xyi= 00001111, Number the positions from left to right as 1,2,..8.

Let W:= (1 2 3)(6 8), thenmx, = X,.

Let m':= (1 2 5) , then M'x. = 01000111 # x

0 0"

Repeated actions of Tt on yield El’ §2’ 53,...; in general,

i
x, = X
X 2

Lo

OI

Let x4 be the codeword for i, then we can easily add X, andugj:
B

Ei @_)_C_j—-ﬂ' EO T .J.F.J T Ei'

In case the permutations ' are not too difficult to compute, this is

a gimple algorithm. Multiplication can be achieved in the same way:

X ® Xy =ntJ X, = (r*)? X, etc. , where ® denotes multiplication.

However, we must recall that for i # J it is possible that
ﬂi Xg = Rj Xy Or X, = Ej holds. In the above example this holds for
i=1, J=0. Apparently, if this occurs, we cannot represent both i1 and j
in the code, since coding should be one-to-one.
For this reason we shall investigate how many words the set{Fi 50‘ ieiN}

can contain, for any ®€S_ . Maximizing this over SQn’ we find the

largest possible number 5? codewords such a code can have.

In fact, we shall not be able to calculate this number, but we
can give an upper bound for it which guarantees thet it is an infinitely
small fraction of (?E) for n =» oo . As for log2 ( #codewords), this
number is also unknown, but the guotient mentioned in § 2.0 will be

bounded. We shall come back to this later.

2.1.1
A first upper bound for the number of codewords can be derived as

follows. Let e 3

on* Let k be the largest length of any cycle in the

disjunct cycle notaticon of w.
Wel.o.g. we write ™= (1 2...k)(...){(...)... with 1 ¢ks 2n.
(Here, the identical permutation is denoted as (1), so k=1.)

The first k positions of e pd for any i, can only be a cyclic

O ’

permutation of the first k positions of x.. Hence there are only k

0
possibilities for this part of the word.

If X4 has m ones in the final 2n-k positions, any word X, also has m



- 21 =

ones in those positions: there are at most (2n-k) rossibilities for

this part of x.,. Since ( _k) ( %2’ k) for all m, we can have at
2n-k n= J

most k l%(2n kn) words of the tyoe Ei = ﬁ Xye

We have thus derived the upper bound:

< (]_gf?:fkﬁ) )

* X, l ie N}

—

Here |Al denotes the number of elements of the set A.

This bound is very weak for small k, but strong for large k.
Fortunately our next bound behaves just the other way around: it is
weak for large k and strong for small k. This bound is derived by
considering the order of ®; obviously, the order of ® is an upper
bound for the number of words rt Xy Again we write ® with disjunct
cycles, ™= (1 2...k)(...).. . Observe that the order of ¥ is equal
to the least common multiple (lcm) of all cyclelengths occurring in
. Since a2l1ll cycles have length at most k, we have
order of ™ = 1lcm {1,2,...,k-1,k} . Kence:

I{“i x, | 1e w} t < lem {1,2,...,1{-1,1{} (2)

Combining (1) and (2) we find

{tci x| i€ m}[ < min{ (L‘éfg;‘l:k).l) , lem {1,2,..,1:}}

Lemms 2.1.1.0 : lcm {l,2,..,k} is a not-decreasing function of k for
k= 1,2,..2n.

Ifn23, k-(l%?ggfky) is a not-increasing function of k for k= 2,3..2n-1.
2

Proof: for lcm {1,2..,k} : trivial.

Let k be even,

(i) = o0 (3nsda) - e (35) <

2n-k
< ( (2n-k)) for k1.
Let k be odd.

(k+1) (%%21:1:\21)) = (k+1) 1(2n-k+1) (2?21:_1( 1)) =

2n-k
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= (k+1)(2n-k+1) . k (%fggfk_li>

2k (2n=k)

We have to prove: (k+1)(2n-k+l) £ 1 for 2<k€ 2n-2.
2k(2n-k)

We determine the roots of the equation (in k) :

(k+1)(2n-k+1) = 2k(2n-k} or k2-2nk+2n+l = 0

The roots are k. t= n + Vn2-2n—1 and k.= n - \/n2~2n-1 .

1 2
Since n3» 3, n2-2n-1>(n-2)2. Hence k. <2 and k_>> 2n-2.

1 2
S0, for kls_ ks k2 or 2= k< 2n-2
(k+1)(2n-k+1) € 2k(2n-k) 0

From this lemma and some special checking of the cases k=1l and k=2n-1

we learn that the situation is as in the picture below.

v

ij : \/I k( %f;;}fk)ﬁ

=13 %, ®n 2n-1 2n - k

Of course the functions are not continucus; the picture is only
meant to give & rough idea of the situation.

We are interested in the number

m;.x min {k (E‘e‘f;ﬁkH) y lem {1,2,..,1{}}

since this is an upper bound for the number of codewcrds ﬂi X, that

can be obtained using any weS n We call this number Mn; it is also

2
indicated on the vertiecsal axis of the figure.

We are now ready to state our theorem.

Theorem 2.1.1.1 : the fraction of usable codewords in any code of the

type described in § 2.1.0 is upper bounded by M_/ (22) , and

lim M = 0.
n
I %0

C2)
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Proof: we already know that the expression is an upper bound for the
fraction of words. To prove the rest, we shall show that there exists
an *€(0,1) such that:

(i) for O< k<~n, 1lim lem {1,2,..,k} =0
n - (?n)

., . 2n-k

(ii)for %n <€ kg 2n, iliw k(Ll(zn X)) = 0

(a)

That it suffices to show this, is a consequence of lemma 2.1.1.0,.
Also, see the picture; note that the point k= «n does not necessarily
coincide with the value of k where Mn is reached.

Since (ii) is the easiest part to prove, we shall start with this.

(ii) Let «€{(0,1) (an appropriate value of x will be fixed later),

and k » xn.

(lonn)) o e gox - () < o)
(2n) ) (L%EJ) o124 (V2)¥

2n-k
The first inequality is based n(n) )( )'th'sisasecial
rs quality is based o l§(2n ku 2/} i P
case of a wéllknown combinatorial fact: choosing n out of 2n can be

done by choosing [4k| out of the first k, and f%(?n-k) out of the re-
maining 2n-k.
The second inequality is in fact the same as (22)§ 2n, which is trivial

if we write

(2n) _ (em)(2n-1) ... (n+1)
n ( n)( ne1) ... (1)

Since k» exn, the above inequality implies

(ﬁfgg%ku) lim _k = = 0.
n +m (n) k+m(wj

(i) We need some number theory (cf. [2]); we define for xe& R:
R (x):= the number of prime numbers less than or equal to x.
A wellknown theorem states that there are constants C, and C

1 » such
that, for x=22,

x
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In fact, we only need the second inequality; C, =~ 12 logz(e)f.:::. 17.3.

2
lem {1,2,..,k} (for any k) is the product of prime powers: if p is a
1t Y ienm {1,2,..,k} iff p*

is the largest power of p occurring in the prime decompositions of 1,2

prime, we get pi l lem fl.,2,..,k} and

through k. Hence

ir plé k and p1+l

lem {1,2,..,1{} - (Tr leogka § TT k = k(R

psk psk
P prime P prime

Let =<€(0,1) and ks xn. Then

lem {1,2,..,k} s lem {1,2,.. ocn} < ocnw(“n;.
-1

Define { i= f'1°82(°<n)" ; oms 2t , on> 2"t Then
lem 91,2,..,KY < om'“'("‘n) - 237f(mn) ) 2PW'(ocn)-n
n n

Let n»2 ,then with (%):

Irt(xn)-n < 028- xn -n = C, I.logz(om)-] xn -n <
longocn) log2(<xn5
02( log2(ocn) +1)XIn =n = C2OC + 02°C -1lin

74

log, (xn) logziom)

Next we choose an appropriate value for & :o(oza 1 then O(Oe, (0,1).
2C
2

Let n>max(2,402), then log2(cton)a 10g22 +d =1 +d for some &> 0.
This yields

Ir(xpn) -ns]d+ % -1] n s 3 -3%|n

logzioconj 1 +4

N

€ -&En, for some &£>0.

Hence lcm {1,2,..,1{_}_ 2P1T(ocon)-n < p=én

(2n
(2)
$o 1im  lem {1,2,..,k} = 0. 0

n =o (Zn)
n
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In the appendix we list:

min {lcm {1,2,..,k} , k([ 2n“lfk)J)} for 1¢k¢?n, M_and M_  for

#(2n
some values of n: n= 4, 5, 10, 20, (22)
From these tables we can already see that M_ / (QE) - 0.

In the appendix we also list the fractions
1082 Mn ; we see that 10g2 Mn

2 2n
e, ) e )

After the next section we shall be able to show that there exists
a code that satisfies

~ 0.64 for large n.

1082 (#codewords) > 0.30 for reasonable values of n (2n <100).

2n
10g2 ( n)
As mentioned in § 2.1.0, the exact value of lim log, (max. # codewords)
n=+o o
could not be determined, 10g2 ( n)
2.1.2

Suppose that we do went to use a code as described in § 2.1.0, not-
withstanding the negative results of the preceding paragraph. In that
case we use a permutation ﬂsszn that yields as many words as possible.
This can be done by taking the cycle lengths of ® relatively prinme
(remember that the order of 1 is the least common multiple of all cycle
lengths).

W.l.0.8., let one of the cycles of ™ be {1 2 ...k-1 k). We have
Xy =‘ﬂi X for all i, where X is chosen s.t. the first k positions
are OO..Ol..I:L%szeros and [%K]ones. The other positions of X, are also
chosen according to the cycles of M: for any cycle of length f, we put
zeros in the first [%/2| positions of x (corresponding to the numbers
in the cycle), and ones in the other pesitions. We must teke care that
there are n zeros and n ones, so we must sometimes take @751 zZeros
instead of |[0/2].

Now suppose we want to add b and 53. Suppose the first k positions
of X, Tesp. Ej contain the mitht;espT mjth permutation of symbols,
compared with 00..01..1. (The m permutation means: a c¢yclic shift
to the left over m positions.)

Then we know that izmy (mod k), J = my (mod k). So the sum i+j

satisfies i+j=m  + mg (mod k}.
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The only thing we have to do is to determine mj s which is easy, and
s8hift the first k peositions of X, over m. positions to the left.
After that, these k positions contain the (mi + mj)th permutation of
00..01..1. This means that these k positions now contain the right
configuration for Xiv5 Do the same for all other cycles.
This algorithm is 0(n). We can also do this for multiplication: in
the same notation, if we know m  and m and i=m (mod X), J,_m (mod k)
then ij=s mmg (mod k). So we must shift OO..Ol..l over m;m, p051t10ns
to the left to find the first k symbols of Eij'

Note that conversion of i to b is not difficult (determine m, =

= i mod k, shift over m:.L positions), but Ei - i is more complicated.

2.1.3
Using the code of § 2.1.2, we want to calculate

1og2( s#codewords)

2n
108, ()

For this code we choose the cycle lengths relatively prime, we shall

take prime numbers for these lengths. Let Py denote the i prlme num-
ber (p1 = 2), and let W(k) be a permutatlon with k disjunct cycles of
lengths pl’ p2,..pk respectively, such that ﬁ( ) is a permutation of

k s
h pi positions.

i=1
S0, WeliOuge (4) ={12)(345)6789 10)(11 12 13 14 15 16 17)
~ 2 —3— « h 7
= (x)
if igg: Py is even, M corresponds to a code as in §2.1.2 with

a0) =3 ( 27 )

i=1
If the sum is odd, we can add a cycle of length 1 to obtain a code;

in that case:

k
n(k):= & égi he! + 1).

i

In either case we have a code of length 2:-n(k) with n(k) ones and zeros.
k

The code contains iU; Py words (= the order of'w(k)).
B k

2n®y 2n(k)
Now logz( #codewords) / 1og2 ( nﬂd)— log2 J]; Py / log2 (,nﬁd
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Since (zigtb < 22n(k), we have

k ‘ k
TP i
108, =1 P, 198 I, Py
1o (2ntk)) 2n(k)
€2 \ n(k)
k
In the appendix we list the value of log2 ;l]l 1 for 1€k <12,
2n(k)

We find that log, (#codewords) > 0.30 for 2n(k)< 100,
2 2l

2n(k))

log, ( n(k)

2.2 Examples of positional systems

2.2.0

In the proof of theorem.2.}.l1.1 we have already encountered the in=-

equality (?E)>-2n. We give an easy way to code 2™ numbers in an n-oute-
of-2n- code. Let ®<i<2™.
To code i, we write i in the binary system. This representation of i
has at most n ones, and a length at most n. We always make the length
equal to n, by adding leading zeros. If this 'word' of length n does not
have n ones, we must put the remaining ones to the right of this 'word‘',
followed by remaining zeros, if any.
Example: n=4, i=%5: 0101]1100.

If we want to add words in this code, we only consider the first
n positions. These first halves of the words can be added using binary
addition. Afterwards we complete the word with remaining ones and zeros
on the right. This is a very trivial algorithm.

However, from the next lemma we see that lim 2" = 0.
n -+co 2n)
n

Lemma 2.2.0.0 : if n> 4, (22)>2 3n/2]

Proof: 1let n be even, n= 2m, m3» 2.

(Zn) _ (en)t (4m) (4m=1)...(2m+1)

n nt nt ~  (2m)(em-1)... 2.1

(4m) (4m-2),..(2m+2) » (4m-1)(4m-3)...(2m+1)
(2m)(2m-1)...( m+l)} m(m=1l)... 2.1
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m=l

m Am=-2i-1 m 4m~-2i-1
= 2 ;EE ] 2"« (4m-1) « (2m+1) |

m

For m»2, we find 8m2 - 14m - 1>0 (zeros are m= 14 + V228 )

Hence 16
(4m-1) % (2m+l) = gm’ + 2m = 1 > 16.
m m

For i>1: 4m - 24 =1 > 4(m - i) so 4m ~2i =1 s 4
m-- 1

m=~2

- (22) = 20 (gm;l) (2m+1) ;T}a (4m;2i-12

o 16.4(B-2)  _ p3m _ ,3n/2

Let n be odd, n= 2m+l, then analocgously

(?n)zz (4m+2)(4m)...(2m+2) . (4m+1)(4m-1)...{(2m+3) =
n (2m+1)(2m) ... ( m+l) m {m-1) ... 2.1

-2 m=1
m+1 " (4m-2i+1) m+¢l m _ ,3m+l _ ,(3n-1)/2
=1 T i > 2T o 2o 2

i=0

where the inequality follows from 4m - 2i + 1 > 4(m - i), for all i2 0.

As for lim log2 2" , since (zi)é 22n’ we know
n o — ——a_.

en
logz( n)
n
log, 2 s.n_ _ 1 for all n.
log2(2n) 2n 2

As a matter of fact the limit of this quotient for n +co is %, which
will follow from theorem 2.2.1.0.

2.2.1

With the preceding lemma, we can generate 2 L3n/2j words, and in fact

even more, Let n be even. Partition the words into k blocks of length
2n/k, from left to right. Now we require that every block has n/k zeros
and n/k ones. Here we suppose 2kl n.

The number of words that can be generated in this way is (Eﬁfi) k
( (szk possibilities per block).

If n/k;-4 we can apply lemms 2.2.0.0 :

0
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(22§§)k N ,103n) /2 3n/2

Indeed, we have more than 23n/2 words with a very nice property: they
are written in a positional system with base 22;;) . In the positional
system, each position corresponds to a block of length 2n/k.

The arithmetic in such a system is just as in the binary {or deci=-
mal) system: addition and multiplication can be performed in a straight-
forward manner. We shzll not give the algorithms for this; we only
remark that they are 0(n).

It is clear that arithmetic in a system with base b is easiest when b
is as small as possible. Since we have base ( ) with the restriction
n/k >4, 2k|n, we must take n/k = 4, so n = 4k.
Thus we find a system with base 3) = 70, With this system we can repre-
|3n/2) _ o6k _ 645,

Regrettably, this is still not enough: lim _IQE_ = 0, as can be

K o (Sk)

4k

concluded from the following thecrem. From this theorem we can also

sent 70k numbers, which is more than the promised 2

conclude .

lin  log, (70) _ log, (70)

k »o R BK 8
%8> {4k

0.766 , but we come back to this later.

Theorem 2.2.1.0 :

Vae (0,4) sz = 0(a™)  ,(n »w).
(2)

Proof: let O<a<4 and Ne N s.t. 2n+l » 4a for all nx N.

n+l
Then for all nz2 N
2n+2y _ (2n+2)(2n+1) (2n (2n n-N+1 (ZN
(ﬁ+1) “  (n+1)(n+l) n) z 8 n)? see 7 B N
Let C:= a-N(2§) , then for nzN \
1 o _1
(?n) cal
I
Kk oy K 4
Corollary: 705 = of 3—&) ) ,(k »e) for 0<at< 256,
8k a
4k

If we write theorem 2.2.1.0 in a different way:

Vae (0,4) 3‘-(}23& 3Ne INVn>N (zz)éc.an
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Taking logarithms end using log2 (22)5 2n:
Va<23 CEIRENEJNVn>N an+C$log2(22)£2n
Therefore
k
k-
Vaco Jeer Jrew \V/k>N log, 70 . log, 700 %.log, 70
8 lo 8k C + ak
€2 4k)

Applying the domination principle, we find for all a<8

. k
log2 70 < ilm log2770 < log2 70

8 8k a
log2 4k)
thus lin  log, 705 - log, 70 (=0.766) .
k""”;"_a'l?)" 8
g2(4k

Note that the base of this number system does not depend on n.
In the next section we shall construct a code that also uses a positio-
nal system, but the base will depend on n. The idea behind this is,
that we can represent more words if the base of the system is larger:
if the blocks with equally many zeros and ones are larger, the con-
straints on the words are weaker so we azllow more words.
However, 'addition and multiplication will be harder in a system with

larger base,

2.2.2

In this section 2n will be a square: n = 2.32, 2n = (23)2 for some se WN.
We think of a word as a 2s by 2s grid with (23)2 little sguares.
282 of these squares contain a '0' and 292 contain a '1f, Thus, the word
can be found reading the successive rows from left to right.

We make the restriction that the words (or grids) must have s zeros

and $ ones per rowv.

We give an example ¢f this for s=3 1l 111

(so n=18): we only write the 'lt's; 1

the blank squaree are to be filled 1 1]1
with '0's. This grid corresponds to 1 1 1
the word 1)1
101100110100010110100101110010001011. 1 11
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Per row we have (?z) possibilities, in total (28) 25. So we have con-
structed (?:)s words in a number system with base ( :

Since the lexicographical number of a row can be determined in 0(s),
addition and multiplication algorithms are also 0(s). 0(s) = 0{n).

Again we shall investigate the asymptotic behaviour of
2s> 2s 1o (23) 2s
8 and €s 8 .
482 432
2 log, 2
2s 28
Theorem 2.2.2.0 :

Let f(s):= (2:) 28 <4S:) . Then f£(s)

0(4™%) (s »e0).

2s

Proof: we want to compare f(s+l) to f(s); in fact, we want to show
that £(s+1) <% r(s) since this yields f£(s) = 0(%£°), &8 »o0 .

For the numerator of f(s):
28+2 25+2 - (28+2)(2s+1) 2542 5\ 2842
s+1 " (s+1)(8+1) 8
{ (25+l§ } 2942 (25) 2 (25) 28
2.
s5+1 s 5
For the denominator:
4s2+ 8s + 4\ _ (492+ 8s + 4)...(4s2+ 1) 452
252+ 4s + 2 (232+ As + 2)2...(252+ 1)2 232
4842

CTT L4s+21 -1)(4s+21) )(2 2}
8

i=1 (2s + 1)(2s + i)

Hence

4842
fs+1) = 2°8%2 { 2541 } 28+2 (25) 2 TT (25°+ 1) % f(s)
]

s+l 121 2(48°+ 24 - 1)

4s+2
{2s+l‘} 28+2 (25) 2 'IT (284 1) % f£(s).
s+l s 2 \
ie1 (48"+ 24 - 1)
. 2 . 2 .
For all i we have 28 + i < 23 (i 21)

2
4824 23 -1 4s°-1
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Hence
4542

f(s+1) ¢ 2-25 (23+1 )2S+2 (25)2 24S+2 (' 82 ) % f(s)

s+1 8 4s2_ 1

- 228+2 (25 2 84 84 2s * f(S)
8 2 2 2
(s+1)°(2s-1) (2s8+1){2s-1)"(s+1)
S4
It can be readily checked that 5 5 < 2 for 831,
(s+1)°(28-1)
4

and 8 < 1 for s3» 2.

(25+1)(28-1)2(s+1)

Therefore, if s3 2: f{s+l) < o4 (2:) 2 f(s).

Finally we show that (2:) 2728 ¢ 1 (g0 2748 (?z) 2 ¢ 1),
528 ff: (23 Jf2s \ , (2s (23 _ . (28 ) . (2sy
gy i)' s-1 s s+1) - ST A\s-1 s) -

) (3) - o

8 s+1 8
2s -28 s+1 1
: EC —— % = 21,
So ( s) 2 S T3arl- 5 for s 21 )

Theorem 2.2.2.1 : lim log2 (?:) 28 = 1.

B =@ >
log (49 )
2 2
2s

Proof: this can be found in the same way as in § 2.2.1. We have:

Va<2 3 c,N \V/s >N ag + € ¢ 1og2 (2:);; 2s and similarly

2
Va'<230',N'VB>N' a'282+C'__<_ log2 (4S2>$ 482 . So:

28

=]

4s 2 a'28° + G
4s
log
2 2
28

log (?s) 28
Again this yields \fa,a'< o 2a < lim 2 5 e _4

4 5 -»co ? ¥ oat
4s
log2 ( 2)
2s

2s
Va,a'( 2 3 C,C',NV sa>N _21(%"_2)_ < 28 108'2 ( )S (29)(23)
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lo (?s) 2s
So 1lim g2 8 = 1.

8 ~»0D e
8

log2 (4 2)

28

We could consider to extend this code: we could also allow words
that have exactly s zeros and s ones per column. Notice that some of
these words are slresdy in the code, so the number of words would not
even double if we added these words. For the asymptotic behaviour this
would not make any difference. Therefore it is not a wise thing to do,
since we would loose the nice properties of a positional system.

To conclude this section, we come back on the remark made in the
previcus secticn about the number of words increasing with the hase
of the number system (or the block length).
0f course, if we would take block length 2n, we would have base (22) .
In other words, we would allow all segquences with n zeros and n ones.
We already know from chapter 1 that addition is very complex in this
case. The next largest block length is n; this means a base (n?Z)

(let n%2k) and we would have only two positions in a word. Addition
is still complex, and it would nct be very practical to do this,
However, to illustrate the remark in § 2.2.1 we shall investigate the

fractions

2k\ 2 /(4k 2k \ 2 Ak
(k) / 2k) and 10g2 ( k) / 1og2 (21() for k +on.

_ 2k | 2 4k)
Theorem 2.2.2.2 : ( ) s 1 s OT (Qk

k

4k “ 1+2k 2k \ 2
Qk) k)
Proof: from § 1.1.1 we can see that

(gi) _ %%: (2§) 2 _ (Zi) 2 . 'izéj(?i) 2

i=0

0(k), (k »>co)

1

2K\ 2
(1 + 2k) ( k)
Lo (Qk) 2
Theorem 2.2.2.3 :  lim €0 Kk
k e 4k
log, (2k )

Proof: analogous to theorem 2.2.2.1 . O

=1
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2.3 An iterative approach

2,3.0

In this section we shsall introduce a code with particularly nice
algorithms for conversion, addition and multiplication. The code-

words will be constructed in an iterstive way.

Let n» 1, Let Vn be a Bet of words of length 2n with n ones and n
%eros. Vn is partitioned into the sets An and Bn’ where An contains

all words ending on '0', and Bn contains the words ending on f1'.

We need one more notation for concatenation of sequences: if x is a
sequence of bits, the x + '0' denotes the sequence we get if we attach
& '0' to the right end of x. We define x + '0100' etc. in the same way.

We construct V from V. as follows:
n+l n ,

1) for all x + '0' in A,

I

+ '010*',x + '100* and x + '001' are in V
= = n+l

2) for all x + '1' in Bn’ x + '110',x + '101' and x + '011' are in vn+l

3) Vn+1 contains no other words than the ones constructed with the
rules 1) and 2).

It is easy to check that all these words in Vn are different, pro-

+1
vided that all words in Vn are different.

Starting with V1== {01, 10} , We can prove by induction that
INE IBn[ - 301 lv | - 2.3%"1 por oy,

We already know that 2.§n-1 = 0( (é)n) ,{n +00) for O<a<4,

(?2) a

n-1
and 1lim log, 215 = 1082(5) == 0,792 (compare th. 2.2.2.1)
n - 1o (2n 2
2 n)

We order the words iteratively. Suppose we have an ordering in V

such that the words in A_ represent O,l,..,3n“1-l and Bn repregents
RSP IE Lot :

Let N(x) denote the number represented by x, then we define the ordering

in vn+l according to the list below:

for N(x + '0')

I

+ '0'c A : N(x + '100%):

for x + '0'eA : N(x + '010'):= N(x) + 5n-1
N(x) + 3%

for x + '1'€ B : N(x + '110'):
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H;
[&]
R

14
+

'O e An: N{x + '001'):= N(x) + 3n

for x + 'l'Ean: N(x + '101'):= N(E) + 5n

n-1

L}

for x + '1' €B : N(x + '011'):= N{(x + '1') + 37 + 3

Example for n=2:

A [1101:00 0O = 000 r "1100{01 9 = 100

A, 1011&00 1 =00l A, _ibi0501 10 = 101
0111'00 2 = 002 0110§01 11 = 102

1100/10 3 = 010 1001101 12 = 110

A5< A, 1010:’10 4 = 011 B, <3, 0101::01 13 = 111
0110.10 5 = 012 0011101 14 = 112

1001;10 6 = 020 1000:11 15 = 120

B, 0101510 7 = 021 B, {0100{11 16 = 121

. loollt10 8 = 022 Y 001011 1T = 122

In this example, the firsti column contains the codeword; the second
column contains the number N(E) corresponding to that word, x; in the
third column this number is written in the ternary system.

The next two algorithms tazke care of the conversion from a word to its
ternary number and vice versa. It turns out that the ternary number can
be obtained almeost directly from the structure of the word. We do not
need the 'real' number; for addition and multiplication, it suffices

to have the number represented in the ternary system. We shall not

give the algorithms for these well known arithmetic operations.

A) Convert a word, stored in array w(i: 0<i<2n), to its ternary number;

the positions of this number will be stored in an integer array t(i:0<¢ i< n)

in such a way that the number is %i% t(i).jn-i-l .

£(0):= w{2n-1); m:= 2n-1; j:=1; e

dom>1 =+ if w(m-2) = 1 Aw(m=1) = OA w(m) = 0 - £(j):=0; w(m-2):=0
0 " 0 " 1 "0 = t(j)i=1
a " 1 " 1 "0 > ()= 2
0 " 0 " ) "1 t(j)i=0
U " 1 " 0 "l e t(3):= 1
] " 0 " 1 "1 = t(§)i=2; w(m-2):=1
fiy Jj:= 3 + 13 mt=m - 2
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Explanation: the last digit of the word, w({2n-1), determines whether
the word is in An or Bn; if w(2n-1)} = 0, the word is in An so its number
1, so t(0) should be 0. If w(2n-1) we find t(0) = 1.

Furthermore, the last three digits of the word determine the positicn

is smaller than 3"

of the word in one of the six parts of the list on page 34/35. From
the same list -and the example below it- we can derive t(1).

Thernn we make use of the iterative structure of the ordering: we omit
the last two symbols of the word, thus finding the word in vn-l it was
constructed from. We must be careful if the word in Vn belongs to the
15t or 6'h part of the list: to find the word in V. _, we must also
change the third bit on the right.

We can go on omitting symbols until there are only two symbols left,
w(0) and w(l): they are '01' or '10'. From an example with n=1 or n=2

it follows that these have already been taken care of in t(n-1).

B) A ternary number is stored in t(i: O< i< n); we want to find the
corresponding word and store it in w(i: O< i< 2n). This algorithm works
in exactly the same way as the one under A; we just need two more
variables, satisfying k = # ones in w(ii: mgi< 2n); w corresponds to
the last bit of the word in v(m+l)/2 . This is not always the same as

8t

w(m), since it is changed if this word is in the 1 = or gth part of

the list (see comment under A).

w(2n-1):= t(0); ki= t(0); m:= 2n-1; wi= w(m); j:= 1;

dom>1 = if t(j) = 0OA w =0 = w(m-1):= 0; w(me2):= 1; wi= 0; k:= k+l
a " 1 "0 > " 1 " 0 " 0; ki= k+l
] " 2 "0 - " 1 " 1 " 13 ki= k+2
u " 0 "] " 0 " 0 L]
[I " 1 n 1 - H 0 " 1 * 1; k= k+l
U 1"t 2 L1} 1 e " 1 L1} O H 1; k:= k+l
fijy mi=m = 25 js= j + 1

od; w(0):=n - k

After termination of the do-loop w(i: 1€i< 2n) is filled; w{0) follows

from the fact that w(i: 0<€i<2n) has n zeros and n ones.

Both algorithms are 0{n). Adding two ternary numbers can also be done

in 0(n) computing time, so the total algorithm for addition is 0(n).
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Some finsl remarks on this way of coding:

- note that the ordering of the words in the list is quite arbitrary.
If we had put the six parts of the list in another order, we would
also have found conversion algorithms of the same type as A and B.
The ordering we have chosen has the property that the words are

ordered lexicographically, as can be seen from the list.

- the first position of the ternary number of a word -t(0) in the
program- can never be 2, This may serve as an easy checking method

for overflow.

2.3.1

We generalize the method of the preceding section. The code of the
preceding section does not contain words ending on '000' or '111°'.
We do get these words if we generalize as follows.

Again, let Vn be a set of words of length 2n with n ones. Vn is
partitioned into AnL!BnLJCng)Dn:
An contains the words ending on '00%; Bn’ Cn and Dn contain words ending

on '01', '10', and '11' respectively.

Construction of V :
n+2
1) for all x + '00' in A_, x + '001100', x + '001010', x + '001001',
x + '000011', x + '000101°', x + '000110' x + '110000', x + ! GO0l
0140010 '’
and x + '10 0001' are in V 0" 0100
0010 n+ 1000
0100
1000 1100 1110
. 1010, , , . .{1101,
2) for all x + '11l' in D» x+ "119759y"» X + '001111", x + 'O1Y 517"
1110 0011 0111
1101 0101
L] 1 3
and x + '10 1011 are in Vn+2. 0110
0111 1100
1110
. 1010 1101
3) for all x + '01' in B_, x + *0141001', x + '00 ' are in V__ ..
- n = = 1011 n+2
0011 0111
0101
0110 0001
1108, 11440010 .
4) for all x + '10' in C,» X+ '11 loo' ' E* 11 o100' @re in V_ ..
1001 1000
0011
0101
011¢
5) There are no other words in Vn+2.
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We can ecasily check that these words are all different. Of course the
ordering in Vn is lexicographical again; it is essentially the same

as in § 2.3.0 and the conversion algorithms are constructed in the same
way. We shall net discuss this in detail. We only want to show that
this generalized code contains many more words than the original code.

To calculate [vn[, we use the recurrence relations (counting words):

(]An+2| = 6 IAnI + an! + 3 lcni + ’Dn,
(1) 4|Bn+2l = 4 |An] + BIBnI + 3 Icnl v 4 ,Dnl
el = 4 [ag] v 3l ]+ 3o ]+ 4 ny|
UDpol = 8]+ 3lB.0 + e | + 6]
Since V, = {o1, 10}, |2} = lDll - 0, IBl| - |cll = 1, we get

IA I = |D | and lB | = [C I for all n(induction).
n n n n
(1) Reduces to

( {‘An+2} 7 |An|+ 4|Bnl,
2
; Bn+2l = 8 lAnl + 6 an,

with ]vn1 - 2]An| + 2|Bn] for ny 1.

We can write this as

A A
l n+2] i I !‘LI vith M - (7 4).

M
IBh+2] !Bnl 8 6

Let }1 and “2 be the eigenvaeliues of M: 11 = 1% -V 129 , 12 =13 + V12
2 2

so A, ™ 0.8211, ?szz 12.18.

Then we know that |V, | =0(17\lt + c<2)2t for 31, n= 2t+1

and some unimportant constants ul, ué.

So ]V Iis asymptotically equal to u2 )zt and Ianrd u2'V?r; n ,

2t+1 n - oo

for some N2'.

Since VZQ > 3, the number of codewords is very large compared to the
number of codewords in § 2.3%.0 which was 2.3%"1, Aleo,

log LR _ log\hz o~
En) - 2

n

lim
o -] log (

0,902 (compare 0,792, § 2.3.0)
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The problem is how to generalize this iterative procedure in such a
way that we can construct all words. The construction would have to
like the following example.

Suppose we have Vn containing all (22) possible words. If x& Vn,
we add x + 'Ol', x + '10' to Voe1}

possibilities to do this); call this x' and add x' + '00' to Vn

change a '0' in x into a '1! (n
+1°
Analogously we change a 'l!' into '0' and attach '11' to the end of
the word. In this way we would have had every word ending on '0O0' n+l
times, and every word ending on 'll' would also be there n+l times.
Delete all words occurring more than once. In this way we would have
all words exactly once, but we don't have a way to crder them itera-
tively. Therefore we will not be able to give conversion algorithms
like A and B (§ 2.3.0).

2,4 Summary
We have seen many examples of codes. In section 2.1 we used permutations;

addition and multiplication are easy but the code has very few words.
In section 2.2 we have seen some codes based on positional systems;
arithmetic is easy in such a code, but we have seen that the number of
words is quite small too, depending on the base of the system.

Section 2.3 deals with a totally different kind of code, using an
iterative construction method. We especially recommend this code be-

cause of the elegant conversion algorithms.
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3. Unsolved problems.

3.0 Partitioning all words_ into equivalence classes.

We define an equivalence relation > on all words Eéi{o,l}zn

that have n ones. Let x and y be words, then

X~y «» Yy can be obtained from x by & cyclic shift on the positions

of x.

It is not true that all equivalence classes contain the same number
of words; this may be clear observing the following example.

For n=2 there are 2 equivalence classes: {0101, 1010} and {0011, 0110,
1100, 10017§ .

For reasons that will be clear in a moment, we should like all

equivalence classes to have equally many words. This would be the case
if the word length ¢ vere prime: we could shift a word to the left and
get € different words, so every class would have { words in it.
Obviously 2n cannot be prime unless n=1; therefore we don't look at
all positions of the word buf only at the last 2n-1 positions. We assume
that 2n-1 is prime. Now we only consider words (of length 2n) that
start with a '0', In § 1.2.0 we have seen that it suffices to use these
words; we shall c¢all them Xk as in the example.
If we disregard the leading '0', which is the same for all words, we
now have words of length 2n~-l. We introduce the equivalence relation
for these words and now all classes contain the same number of words,
namely 2n-1.

We choose fixed representatives of 211 classes, for instance the
lexicographically least word of the class. Let the classes be ordered
in some way: we call them CO’ Cl’ 02.. Cm where m is the number of

-1
classes. So

m = (?2'1)/ (2n-1).

The representative of Ci is aenoted as Xi(o) (0€i<m).

As in chapter 1, we define the indices (i jo) for a word y:

O’
io is the number of the equivalence class y belongs to, so y € Cio'
jo is the number of shifts to the left needed to obtain y from the

class representative, Xiéo)-
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Thus, if T denotes a cyclic shift to the left over one position, we

have

¥ =TrJ°(Xio(0)) (still disregarding the leading zero!).

As usual the word y is called Xio i and the words are ordered
*

according to the lexicographical ordering in (io, jo).

The number corresponding to Xs, is io(2n - 1) + 3o (trivial), so
?

the algorithms for addition and g%ltiplication are very simple in this
case, using 'div' and 'mod'.

The remaining preblem is the ordering in the equivalence classes
Ci; it must be such that i, can be determined for a word y, jo without

0 1o
too much computing time., If we know io and Xy (0), jo can be found easily.
o

3.1 A connection with Catalan numbers

For a word x we define iO as the smallest number such that the first

zeros and i. ones. So 1€i <€ n.

0 0 0~
Let Mi be defined as the number of possibilities for these 21

210 positions of x have i
o Posi-
tions. E.g. we have M2 = 2: the first 4 positions can be 0011 and 1100;

8 word starting with 0l.. or 1C.. has i, = 1., We also see M, = 2.

O 1
We arrive at a recurrence relation:
ig-1
, (2) ) M..(Z%o-?l) ,
ig i ) i ig=-i
gince Mi-(zig:ii) is the number of words of length 2i0 that have i

zeros and i1 ones in the first 2i positions already.

We can also give the numbers Mi explicitly, because they are closely
o

related to the Catalan numbers in combinatories (ef. [5]):

M - 2(210"" 2)!
io (ig- 1)! io!

Knowing this, we can also define jo and ko for a word:

is the lexicographical number for the first 2i, positions in the Mi

do
possible words.

0

ko is the lexicographical number of the remaining Zn-2i

Disadvantages of this code are:

0 positions.

jo is probably very hard to find for
8. given word. Besides, for small values of i0 the determining of ko

consumes most of the computing itime, and we are back to our original
algorithm for the lexicographical ordering.
Possibly this code is of combinatorial_ interest only because of the

link with Catalan numbers.
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3.2 Another kind of lexicographical ordering.

Since many of the given algorithms rely heavily upon the lexico-
graphical ordering, it is perhaps not a bad idea to take a closer look
at this lexicographical ordering. We could even consider to change it

into a more appropriate algorithm for ordering words.

This final section is devoted to an example of such a different
ordering. We certainly do not claim that this ordering is in any way
better than the lexicographical ordering; probably it is much worse,
but it only serves as an illustration to show that there are other
possibilities.

Let O be coded as x. = 0"1"., Bvery other number i will be coded as Xy

—O
the word b9 will be associated with a permutation'ﬁi satisfying

Of course there are many permutations T that map x, onto X0 but we

shall make a special choice. This will be explaineg using an example.

Let the word x; be 01101100 : the positions are numbered 1,2..8,
12345678

0 The first *'1' in %, is on position 2; since X, does

not have a '1' in that position, the permutation ﬂi must put a '1' in

Compare X, with x

position 2. We assume that'Wi consists of disjunct transpositions only,

so the cycle containing '2' can only be (2 §), (2 6), (2 7) or (2 8)

(it swaps a '0O' and a 'l' in 50).

Looking at X; we see that the zeros in positions 1 and 4 have not changed;
the first zero that has changed (compared with EO) is in position 7.
Therefore we assume that this zero has been swapped with the 'l' in
position 2: the cycle is (2 7).

There is one more 'l' that hes changed its position compared with 50:

it is in position 3. Reasonhing in the same way we assume that it changed

places with the '0' in position 8. Hence we fird T, = {2 7)(3 8).

In this way we can find permutations ﬂ& for every word Xy Now we
order the permutations lexicographically, looking at their disjunct
cycle notation. B.g. (1 5)(2 7)(4 8)< (2 6)(3 8) etc.

Thus we find T, = (1), T, = (1 5),112 = (1 5)(2 6) ete., for n=4.

Since x. =1. X
X, =1 X

0? the words x; are ordered im the same way.

For n=3% we find the 1liat on page 43.



- 43 -

i, x, iom X

0| (1) 000111 10} (1 6) 100110
1] (1 4) 100011 11| (2 4) 010011
21 (1 4)(2 5) 110001 12| (2 4)(3 5) 011001
31 (1 4)(2 5)(3 6)! 111000 13 ) (2 4)(3 6) 011010
41(1 4)(2 6) 110010 141 (2 5) 010101
51 (1 4)(3 5) 101001 151 (2 5)(3 6) 011100
61 (1 4)(3 6) 101019 16| (2 6) 010110
71 (1 5) 100101 17) (3 4) 001011
8| (15)(26) 110100 18] (3 5) 001101
91(15)(3 6) 101100 19) (3 6) 001110

We asee that the conversion e T

or'l't'i + i is much mere cemplex. In fact it is possible to calculate

is guite easy, but X, - i

i from Hi' e.g. the number of permutations starting with '1' is
2n- 2ne
1+ ( 2 1) (1 for w, and ('nnl) for the words starting with '1').

These calculations resemble the algorithms for lexicographical ordering
in § 1.0; actually, they are even more difficult. Therefore we still
prefer the lexicographical ordering at the moment. However, other

orderings may be found that are beiter suitable for these purposes.
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Appendix.

Examples for §2.1.1: we list fn(k):= min {lcm {1,2 k} k(Ll

for 1< ke¢in,

2n-k

(2n—k)_|

M = mex {fn(k)lls_kszn ,Pn  ana %82 M, for n- 4, 5, 10, 20.
2n 2n
( n) 1082( )

nzﬂ

k 1 12 13 14 |5 16 17 18 M =15, M = 0.21, log M/
fn(k)ll !2 ‘6 112 |15 112 ]7 la (22) log(m)
n:—.ﬁ

k |il2y3/4 |5 |6 {7 J8 1910 M_ =50, ' =0.20,
fn(k)lll2l6|l2l50156[21116 19 110 (22)

log M 0.707
log 23)

n =10

k J1]2|3}4 |5 |6 ]7 |8 J9 Jio . j11 |12

(k)]1f2]6!12r60|601420|840|2520|2520 |1386 ]840

2% J a4 |15 j16 |y fis-}19 |20
455 l 280 l 150 ‘ 96 l 51 l 36 , 19 ' 20
M - 2520, M = 0.014, €M, . 0.646
(Qn) 1og(2n)
n n

n = 20

e nizlsladsie l7 ls Jo lio Ju  Ji  j13

fn(ki |2 |6 ,12‘ 60' 60 l420, 840‘ 2520 l2520 l27720| 27720 [360360

.14 |15 l16 |17 [ 18 [ 19 [ 20

360560' 360360! 720720, 12252240‘ 12252240' 6701604 15695120

... 21 22 | 23 | 24 25 26 27 |28

) - 2n
Mn = 12,252,240 ; Mn/( z) = 5.89 10 5 ;5 log Mn / log ( n) = 0.,636.

1939938 1069640' 559150' 308880 | 160875 | 89232 46332' 25872

29 |30 |31 |32 |32 [35 |36 37 [38]39 |40

15398| 7560| 5906l 2240| 680[ 350‘ 216‘ llll 76' 39, 40

= 0.637



Example of § 2.1.3:
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&8
L=l

log,( ;1Y »,)

kI py 2.n(k) Py 2.n(k)
1| 2 2 2 0.5000
2| 3 6 6 0.4308
3 5 10 30 0.4963
4l 7 18 210 0.£4286
51 11 28 2310 0.3991
6] 13 42 30030 0.3541
71 17 58 510510 0.3269
8] 19 78 9699690 0.2976
9| 23 100 2.23093.10° | 0.2773
10 27 128 6.02351.107 | 0.2538
11} 29 156 1.74682.10°1 | 0.2394
12| 31 188 5.41513-10%% | 0.2250
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