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Abstract— In this paper, we consider residual vibration sup-
pression in flexible structures performing a point-to-point mo-
tion, based on Hankel ILC. Initially, design freedom in Hankel
ILC is discussed, including different choices for the actuation
time window and the observation time window. Subsequently,
a three input three output flexible beam is presented as an
experimental setup for Hankel ILC. The different practical and
theoretical issues related to implementation of Hankel ILC on
the setup are discussed extensively. Thereby, versatility in the
choice for the time windows is shown to be essential for a
successful implementation. Experimental results illustrate the
capability of Hankel ILC to suppress the residual vibrations in
the flexible beam.

I. INTRODUCTION

In this paper, we address the issue of residual vibration

suppression of multi input multi output (MIMO) flexible

structures performing a point-to-point motion. The challenge

in residual vibration suppression is to find a command

signal actuating the system during the point-to-point motion,

resulting in the system to be at rest after arrival at the desired

position.

In existing literature, input shaping techniques are pro-

posed to handle these residual vibrations, e.g., [1–3]. Re-

cently though, an alterative technique for residual vibration

suppression is presented based on Iterative Learning Control

(ILC), [4–6]. ILC is a control strategy used to iteratively

improve the performance of a repeated batch process by

updating the command signal from one experiment (trial) to

the next. This command signal is updated using measurement

data from previous trials, i.e., by learning from previous

trials. Treatment of different topics in ILC can be found in,

e.g., [7–10].

Originally, ILC is used to let a system follow a given

reference, e.g., [11–13]. In [4–6] however, actuation and

observation time windows are introduced to separate the

actuation and observation time intervals, thereby making

ILC capable of handling residual vibrations in systems

performing point-to-point motions. Due to the choice of non-

overlapping adjacent time windows, ILC applied to point-

to-point problems is referred to as Hankel ILC. In [4–

6], different Hankel ILC control strategies are derived and

different alternatives for the time windows are presented.

What is missing in [4–6] though, are extensive experimental

results of Hankel ILC to support the theory.

The contribution of this paper is threefold. First of all,

we will illustrate the concept of Hankel ILC on a relatively

complex MIMO flexible structure and show, by means of

experiments, that residual vibrations after a point-to-point

motion can indeed be suppressed. Second, we will show the

consequence of applying different actuation and observation

time windows on the attainable performance of ILC. And

third, we will demonstrate that Hankel ILC incorporates the

possibility to manipulate the command signal form.

The outline of this paper is as follows. In Section II,

the applied ILC notations are introduced, together with

theoretical results of Hankel ILC. In Section III, the flexible

beam setup is introduced and modified to be suitable for ILC.

Subsequently, in Section IV, the results of ILC and Hankel

ILC on the flexible beam are presented. This paper ends with

concluding remarks in Section V.

II. HANKEL ILC

In subsection II-A, the different signals and systems

present in (Hankel) ILC are presented. This is followed by a

brief discussion on actuation and observation time windows

in subsection II-B. Finally, in subsection II-C two Hankel

ILC control strategies are presented.

A. Iterative Learning Control

The ILC control problem in this paper is studied in the

lifted setting, [13–15]. In this setting, the behavior of a

discrete-time linear time invariant (LTI) system J during a

trial is represented by its convolution matrix. This matrix

contains the systems impulse response data H(t) for time

t = 0, 1, · · · , N − 1, with N the total number of samples in

a trial:

J =






H(0) 0
...

. . .

H(N − 1) · · · H(0)




 . (1)

For MIMO systems, the impulse response H(t) contains the

impulse response from each input to each output. Given a

system with qi inputs and qo outputs, H(t) is represented by

H(t) =






H11(t) · · · H1qi(t)
...

...

Hqo1(t) · · · Hqoqi(t)




 , (2)
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with Hij(t) the impulse response from input j to output i.

With H(t) of (2), matrix J ∈ R
Nqo×Nqi is a lower triangular

matrix with a block Toeplitz structure.

The system matrix J maps an input vector fk to an output

vector yk, i.e., yk = Jfk, with k the trial number. The vectors

correspond to the lifted notation of time signals during a trial,

fk =
[
fT

k (0) fT
k (1) · · · fT

k (N − 1)
]T

(3)

yk =
[
yT

k (0) yT
k (1) · · · yT

k (N − 1)
]T

, (4)

with fT
k (t) =

[
f1

k (t) · · · f
qi

k (t)
]

and yT
k (t) =

[
y1

k(t) · · · y
qo

k (t)
]
.

The ILC control structure used in this paper is shown in

Fig. 1, [5]. The system matrices LL and LR correspond to

the “left” and “right” ILC controller matrices, w−1I to the

one trial delay operator, Wi and Wo to the actuation and

observation time windows respectively, and JH to the time

weighted system JH = WoJWi. The signal f̃k in Fig. 1

represents the input of JH , ỹk the output of JH , r the

reference signal to be followed, ẽk the error ẽk = Wo(r−yk),
and uk the trial domain state with u0 = 0.

The trial domain dynamics corresponding to the control

scheme of Fig. 1 are:

uk+1 = uk + LLWoek with ek = r − yk (5)

fk = WiLRuk (6)

uk+1 = (I − LLJHLR)uk + LLWor. (7)

While implementation of ILC on an experimental setup

requires the use of (5) and (6), (7) is essential in the stability

analysis of the ILC controlled system. Asymptotic stability

of (7) is guaranteed if and only if ρ(I − LLJHLR) < 1,

i.e., if max(|λi(I − LLJHLR)|) < 1, with λi(∗) the ith

eigenvalue of ∗. For more stability results, see [5], [6].

B. Actuation and observation time windows

The actuation time window Wi and observation time win-

dow Wo can be used to separate actuation and observation

time intervals during a trial, thereby making ILC capable of

handling residual vibrations in systems preforming a point-

to-point motion, [5]. A consequence of introducing Wi is that

outside the actuation interval, fk can not be manipulated by

Hankel ILC. A consequence of introducing Wo is, that errors

ek outside the observation time interval are not compensated

for by Hankel ILC.

w - 1 I
u k + 1 u k+

+ W i J

L L

W o
y k

u 0
f k

W o

r

+-y kL R
f k e k
~ ~ ~

J H

Fig. 1. General ILC control structure.

In this paper, we separate actuation and observa-

tion as given in Fig. 2. The actuation interval spans

t = {m1,m1 + 1, · · · ,m2}, the observation interval t =
{n1, n1 + 1, · · · , n2}, with n1 := m2 + 1. Hence the total

number of samples in the actuation and observation time

intervals equals m := m2 −m1 + 1 and n := n2 − n1 + 1
respectively.

While for a standard ILC problem Wi = INqi×Nqi
and

Wo = INqo×Nqo
, for the Hankel ILC problem illustrated by

Fig. 2 Wi and Wo equal

Wi =
[
0mqi×(m1−1)qi

Imqi
0mqi×(N−m2)qi

]T
(8)

Wo =
[
0nqo×(N−n)q0

Inqo

]
. (9)

C. Hankel ILC controller design

Hankel ILC controller design, i.e., design of LL and LR, is

based on the time weighted system JH . To find expressions

for LL and LR, we first rewrite JH ∈ R
nqo×mqi , with

rank(JH) =: p ≤ min(nqo,mqi), using the non-unique full

rank decomposition (10).

JH = JLJR, with JL ∈ R
nqo×p and JR ∈

p×mqi . (10)

In this paper, explicit expressions for JL and JR are found

by using the Singular Value Decomposition (SVD) of JH ,

see Appendix,

JL = U1, JR = Σ1V
T
1 . (11)

Based on (11) and [4], [6], LL and LR are expressed by

(12) and (13) respectively.

LL = J
†
L := (JT

L JL)−1JT
L = UT

1 (12)

LR = X1 + (Imqi
− J

†
RJR)Y

= X1 + V2V
T
2 Y, (13)

X1 = γJT
R (JRJT

R + βIp)
−1

= γV1Σ1(Σ
2
1 + βIp)

−1, (14)

with Y ∈ R
mqi×p arbitrary, and β ≥ 0 and 0 < γ < 2

controller parameters. In [5], [6], it is shown that the ILC

controlled system of Fig. 1, with LL and LR given by (12)

and (13):

• is asymptotically stable, due to X1.

• achieves optimal performance, i.e., min limk→∞ ||ẽk||
in an appropriate norm, through LL.
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n
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Fig. 2. Reference signal with separated actuation and observation time
interval. m1, m2, n1, and n2 are sample instants, with n1 = m2 + 1.
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• can be used to manipulate the signal form of the

command signal f̃k, using Y .

The Hankel ILC controllers studied in this paper use LL

and X1 as given in (12) and (14) respectively. The difference

between the controllers is found in the expression for Y .

The first LR controller uses an analytical expression for

Y derived from the optimization problem min f̃T
∞Wf̃∞.

Here, f̃∞ equals f̃k for k → ∞ and W ∈ R
mqi×mqi is a

weighting matrix penalizing the entries in f̃∞. The resulting

LR controller is given by [4], [6]:

LR = (Imqi
− V2(V

T
2 WV2)

−1V T
2 W )X1. (15)

The second LR controller focusses on minimizing the

maximum command signal amplitude during the actuation

time interval fk+1,act:

fk+1 = Wif̃k+1, fk+1,act = Wactfk+1 (16)

Wact =
[
0mqi×(m1−1)qi

Imqi
0mqi×(N−m2)qi

]
.

With fk+1,act = WactWi

(
X1uk+1 + V2V

T
2 Y uk+1

)
, the

corresponding optimization problem equals [6]:

min
θk+1

|WactWi

(
X1uk+1 + V2V

T
2 θk+1

)
|, subject to (17)

|fk+1,act(t + 1)− fk+1,act(t)| ≤ ∆f , ∀ t ∈ [1,m],

with θk+1 = Y uk+1 ∈ R
mqi×1, and ∆f > 0 an additional

rate bound on fk+1 in time domain.

The command signal for trial k + 1 is now given by:

fk+1 = Wi(X1uk+1 + V2V
T
2 θk+1,opt), (18)

where θk+1,opt is the minimizing solution of (17).

III. EXPERIMENTAL SETUP

The experimental setup used for Hankel ILC is presented

in Fig. 3. The steel beam (500mm × 20mm × 2mm) is fixed

to the environment by five leaf springs, which remove four

degrees of freedom (DOF). The two remaining DOFs consist

of a translation in x direction and rotation around ϕ.

The system is actuated by three current driven Lorentz’

voice coil actuators. Two actuators are required to control the

two DOFs, while the third actuator can be used to suppress

flexible modes in the beam. The input of an actuator is

provided by an amplifier (voltage-to-current converter) with

an input voltage approximately proportional to the output

Actuator 1 Actuator 2 Actuator 3

Sensor 1 Sensor 2 Sensor 3

Beam

x

j

Fig. 3. The flexible beam setup.

current. The input of the amplifier is limited to [-2.5, 2.5]

volt.

The position of the beam is measured with fiberoptic

sensors. These sensors perform non-contact measurements

of the displacement of the beam by transmitting light and

measuring the intensity of the reflected light. In our range

of operation, the displacement-to-intensity ratio is approxi-

mately constant. The experimentally determined noise level,

i.e., standard deviation of the measured output, is approxi-

mately 0.35 µm.

For control implementation on the flexible beam, we use

a rapid prototyping environment. It consists of real-time

hardware which is connected to the amplifiers and sensors,

in combination with Matlab Simulink. In this paper, the

experiments are performed with a sample time Ts of 1 ms.

For ILC to be implementable on the experimental setup,

the ILC control problem and setup should satisfy the follow-

ing conditions [7].

• A trial has a fixed and finite time span.

• The reference signal r is known over the complete trial

time interval.

• Repetition of initial time domain state for each trial, i.e.,

xk(0) = x0.

• Invariance of the system dynamics is ensured through-

out all trials.

The reference signal applied to the system is given in Fig.

2, thereby we satisfy the first two conditions. To meet the

third condition, we have developed a homing procedure

which brings the system within 0.4 µm of the desired initial

position.

The fourth condition has provided more difficulties. When

repeatedly applying a pulse with an amplitude of 1 volt to

the three actuators (20 trials with a trial length of 1 second),

the three measured outputs vary much more than 0.4 µm,

Table I second column. Without knowing the exact source

for the non-repetitiveness of the outputs, spectral analysis of

the outputs reveals that the non-repetitiveness is dominated

by the low frequent rigid body frequencies.

TABLE I

REPETITIVENESS OF THE SYSTEMS DYNAMICS, (STANDARD DEVIATION

IN [µm]).

noise open loop closed loop closed loop with integrator

0.35 3.53 0.95 0.85

To improve the repetitiveness of our system, we intro-

duce feedback control into the time domain loop. With the

variances in the outputs dominated by the two rigid body

frequencies, we use time domain feedback control to control

these two rigid body modes. The output y1 and y3 are first

transformed to the rigid body coordinates y1,rb (translations)

and y2,rb (rotation), using matrix Ty . Matrix Ty is determined

based on the geometry of the system, resulting in (19).

Ty =

[
1√
2

1√
2

1√
2
− 1√

2

]

. (19)
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In this coordinate system, a diagonal controller is designed

consisting of a lead filter with a zero at 10 Hz, a pole at 90

Hz, and a gain of 0.15, in series with a low pass filter with

a cut-off frequency of 400 Hz. Subsequently, the feedback

controller outputs u1,rb and u3,rb are transformed back to u1

and u3, using matrix Tu. With the positions of the actuators

and sensors approximately equal, we choose Tu = T−1
y =

Ty .

The time domain closed loop system is shown in Fig. 4.

Note that, since the second actuator and output are not used

in the feedback loop, the system in Fig. 4 is partly open loop,

partly closed loop. If we again apply the pulse of 1 volt to

the three actuators, the repetitiveness of the output after 20

trials is significantly improved, Table I third column.

In an attempt to further improve the invariance of the

dynamics, we introduce an integrator in each of the two di-

agonal entries with a gain of 0.5. The result in repetitiveness

is indeed improved, Table I fourth column. A closer look at

the error signals of the closed loop system with and without

the integrator reveals, however, that for the integrator case

the non-repetitiveness during the transient time interval is

larger, but that the steady state offset is smaller.

Looking at the results of Table I, the closed loop system

including the integrator outperforms the closed loop system

without the integrator. Based on this, and the fact that our

reference signal contains relatively long constant outputs

which require small steady state errors, we decide to perform

ILC and Hankel ILC to the closed loop system with feedback

control including the integrator action.

To apply ILC to the flexible beam, we require the impulse

response of the system. This impulse response of the system

is obtained by separately applying a pulse with an amplitude

of 2 volt to each of the actuators and measure the response

of all three outputs. These experiments are repeated 20 times

for each actuator. Afterwards, the measurements are averaged

and divided by 2, to correct for the pulse amplitude. The

resulting impulse response of the time domain system is

presented in Fig. 5.

IV. EXPERIMENTAL RESULTS

A. Standard ILC

To apply standard ILC to the setup, we first construct the

convolution matrix J , (1), using the impulse response data of

Fig. 5. Furthermore, we define Wi = INqi
and Wo = INqo

such that JH = J . Now, LL and LR are designed based

on the SVD of JH , our choice p = 300, and W = INqi
,

resulting in LL of (12) and LR = γV1Σ1(Σ
2
1 + βIp)

−1.

T y C T u P
T y

e 1

e 3

r e f
r e f

f  1
f  3

r e f
e 2

y 1

y 3

y 2

-
+

T y - 1

++
- +

f  2

u 1

u 3

Fig. 4. Time domain closed loop system.
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Fig. 5. Impulse response of the MIMO flexible beam, for t = [0, 0.4]s.

The values γ = 0.5 and β = 0.01 have been determined

experimentally.

The error ek and command signal fk during trial k = 15
are presented in Fig. 6. Though the error norm ||ek||∞
decreases as function of k, the command signal has an

undesired signal form for t → 0.4s. Apparently, the ILC

controller has problems of generating a constant command

signal near the end of the trial. Increasing p and/or decreasing

β does improve the effect near t = 0.4 s, but results in non-

smoother command signals during the trial, or even in trial

domain instability.

The problem with the command form can be explained by

the fact that the system is type 0, [16]. A solution is found by

adding time domain integrators to the inputs of the system.

For the control scheme of Fig. 1, these integrators can be

incorporated in Wi, giving

Wi :=






Iqi
0

...
. . .

Iqi
· · · Iqi






︸ ︷︷ ︸

Wint





0
Imqi

0



 . (20)
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during trial k = 15.
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The ILC controllers are calculated with the SVD of

J ← JWint. The error and command signal results during

trial 30 are shown in Fig. 7. Now, the command signal is

capable of generating the constant output. Note that, although

the reference signal is constant for t ∈ [0.081, 0.4]s, the

command signal during that time interval is not constant.

B. Hankel ILC

For Hankel ILC, we define an actuation time interval with

m1 = 50 and m2 = 81, giving m = 32, and the observation

time interval by n1 = 82 and n2 = 400, giving n = 319.

The residual vibrations to be suppressed are shown in Fig.

8(a). These vibrations are dominated by a resonance of 5.5Hz

(translation mode), however, errors e1 and e2 also show

higher frequency resonances.

The time weighted system JH for Hankel ILC equals

JH = WoJWi, with Wo from (9) and Wi from (20). Based

on the singular values of JH , Fig. 8(b), three Hankel ILC

controllers are designed with p = 12, γ = 0.5, and β = 1.

The first controller is based on (12) and (15) without any

additional weighting, i.e., with W = Imqi
. The error signals

as function of trial and time are presented in Fig. 9. As

expected, the residual vibrations during the observation time

interval are suppressed, while the error outside the interval

is not compensated for.

The second controller is also based on (12) and

(15), however, with a W which minimizes the con-

verged command signal during the actuation time interval:

min fT
∞,actWf∞,act. Using (16), matrix W is given by:

W := WT
i WT

actdiag(Iqi
, · · · , 1.5Iqi

)WactWi. (21)

The diagonal matrix in (21) is used to penalize the command

signal amplitudes linearly, with gain 1 for f∞,act(1) up to

gain 1.5 for f∞,act(m). Note that in general design of W is

based on the designers insight into the problem at hand.

The error results obtained with this second controller are

shown in Fig. 10. Though the error e30 is slightly larger than

e30 of Fig. 9, this Hankel ILC controlled system is still very

capable of suppressing the residual vibrations.
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Fig. 8. (a) Residual vibration for the three outputs corresponds to the error
signals during t ∈ [n1, n2]. (b) Singular values of JH .
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Fig. 9. Hankel ILC with W = Imqi
. Top: Maximum absolute error as

function of the trial. Center: Error signal during trial k = 30. Bottom: Error
signal during trial k = 30, zoomed in.

Finally, the third controller is based on (12), (14), (17),

and (18), with ∆f = 1 volt. The error signals corresponding

to this controller are given in Fig. 11. The error is again

slightly larger than e30 of Fig. 9, but still most of the residual

vibrations are removed.

Based on the error results, it looks like all three controllers

behave approximately equal. This is to be expected, since

all three controllers have similar LL and X1. The difference

between the controllers is related to Y , and hence to the

command signal forms applied to the system to obtain the

above error signals, Fig. 12. The differences in error can
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Fig. 10. Hankel ILC with W of (21). Top: Maximum absolute error as
function of the trial. Center: Error signal during trial k = 30. Bottom: Error
signal during trial k = 30, zoomed in.
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Fig. 11. Hankel ILC with minimized Maximum command signal amplitude.
Top: Maximum absolute error as function of the trial. Center: Error signal
during trial k = 30. Bottom: Error signal during trial k = 30, zoomed in.
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Fig. 12. Command signal f i, i = 1, 2, 3, for the three Hankel ILC
controllers.

be explained by looking at the smoothness of the different

command signals. While the first controller generates relative

smooth signals, the command signals of the second and third

controller are relatively non-smooth. This non-smoothness

causes the excitation of higher frequencies in the system

which can not be completely compensated for with p = 12.

The result: relatively high frequent error signals during the

observation time interval.

Clearly, the signal form of the different command signals

differ during the actuation time interval. After t = m2

though, all three command signals are constant and ap-

proximately equal (compare with standard ILC, Fig. 7).

Furthermore, when comparing the maximum amplitude of

the command signals from the first controller with the second

controller, a reduction in maximum signal amplitude of

25% is achieved. The maximum amplitude of the command

signals of the third controller is even 48% smaller than that

of the first controller.

V. CONCLUSIONS

In this paper, we studied residual vibration suppression

on a MIMO flexible structure performing a point-to-point

motion, based on Hankel ILC. After extensively discussing

the different design steps, we experimentally showed that

Hankel ILC is capable of suppressing residual vibrations in

a relatively complex MIMO flexible structure. The versatility

in choice of the actuation and observation time windows

turned out to be essential for the successful implementation

of Hankel ILC on this flexible structure. Next to vibration

suppression results, our experimental results also demon-

strated the possibilities of Hankel ILC to manipulate the

command signal form.

APPENDIX

The Singular Value Decomposition of JH ∈ R
nqo×mqi ,

with rank(JH) = p, is given by

JH = UΣV T

JH =
[
U1 U2

]
[
Σ1 0
0 Σ2

] [
V T

1

V T
2

]

= U1Σ1V
T
1

U1 ∈ R
nqo×p, U2 ∈ R

nqo×nqo−p,

V1 ∈ R
mqi×p, V2 ∈ R

mqi×mqi−p,

Σ1 ∈ R
p×p, Σ2 = 0nqo−p×mqi−p.
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