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Abstract 

In this article, we present two algorithms to determine whether a given place/transition 
(PIT) net N with t.ransitions T satisfies a given protocol II, where II consists of an alphabet 
A ~ T and a regular language over A. 
The first algorithm checks whether N can not do more than II allows (trace-safety)l. The 
second olle verifies whether N does not stop too early (weak progress). 

• In 
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1 Introduction 

Automatic protocol verification differs from other kinds of protocol verification in the sense that 
the entire verification is performed by a computer, without human interaction. The process 
of protocol verification can be very complex and only this kind of verification yields a reliable 
result, because human mistakes are impossible [5,15]. 
Up to now, some algorithms have been described for t.he automatic verification of protocols 
in Pet.ri nets. However, these algorithms arc often very specific, for most of them have been 
designed for just one protocol 'anJ a limited class of Petri nets. Examples can be found in 
[10,15,18,29,31], furthermore, in [3,8,11], invariants are used for the automatic verification 
and in [6] a reachabilily analysis. 
In this article, we give algorithms for the automatic verification of a broad class of protocols: All 
protocols that can be described as a regular language over the transitions of a place/transition 
(I' /T) net. We denote such protocols with all alphabet and a regular expression. Regular 
expressions consist of transition names, choice operators (+), concatenations, Kleene stars (.) 
and parentheses. For example, ({a,b,c},a + aa + b) is the protocol where transition c does 
not fire and where either transition a fires once or twice, or transition b fires once. It differs 
from protocol ({ a, b, c), £ + a + aa + b), because the latter allows that a and b do not fire at all 
(e is the empty string). The protocol that prescribes that one Of more a's or b's fire, can be 
described as ({a,b),(a+b)(a+b)'). 

We present two algorithms. The first one checks whether a given PIT net N is trace~safe w.r.t. 
a given regular protocol II, i.e. whether N can not do more than n allows. The second one 
verifies whether N does not stop prematurely (weak progress). For example, a PIT net where 
transition a can fire infinitely often is not trace-safe w.r.t. protocol {{ a, b}, aa + b), because the 

1 In non-Petri net literature, trace-safdY is usually called safdy [1]. We have chosen for a different name 
here, because safety has already a certain meaning in Petri net terminology. . 
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protocol forbids the firing of more than two a's. A PIT net with two transitions a and b of 
which only one can fire once, is trace-safe w.r. t. protocol {{a, b}, aa + b}, but there is no weak 
progress, because stopping after a single a is not desired. 
Even protocols of high-level nets can be verified, as long as the high-level net can be transformed 
to a PIT net, i.e., as long as the high-level net has a finite number of places, transitions, arcs, 
and values (colours). 

Both algorithms are based on the following idea: The protocol, which is given by an alphabet 
and regular expression, is transformed into a deterministic finite automaton which accepts the 
language of the regular expression. That automaton is converted to a PIT net N', which we call 
the test net. It has always one token. We distinguish three kinds of places in N': Forbidden, 
intermediate and final places. The original net N and the test net N' are composed into a 
PIT net Nil. A characteristic of N' is that it does not restrict the behaviour of N in Nil. 
We prove that N is trace-safe w.r .t. n iff no forbidden place of N" can get a token. We also 
prove that N and IT satisfy the weak progress criterion iff N" does not stop with a token in an 
intermediate place. 
The automatic verificat.ion of t.race-safety comprises a coverability analysis on Nil and weak 
progress is checked with reachability analyses on Nil. 

This approach can be applied t.o several interesting areas: 

• In systems engineering, usually a global specification is made first. After that, repeatedly, 
a part of the system (a module) is replaced by a more detailed one. Such a replacement 
is correct jff the environment can not detect a difference between both modules. 
We have derived sufficient and necessary conditions for the replacement of modules, in case 
the environment can interact unlimitedly with the modules [25,26)_ These conditions can 
be weak~·ned if the environment and the module maintain some communication protocol. 

• In Petri net literature, many so-called behaviour preserving construction rules have been 
described. Nets that have a certain property (Iiveness, deadlock freeness, divergence free
nesS, safeness, boundeducss, covering by place invariants, etc.) are composed in such a 
way, that the resulting net has the same property [2,4,12,13,14,29,30,34]. 
For protocols, similar preservation rules can be derived. This allows a bottom-up con
struction of the system. If the building blocks of a system have a certain protocol (which 
can be checked by our algorithms), and a system is built according to the protocol preser
vation rules, the constructed system will automatically have the same protocol. 
The derivation of protocol preservation rules is a topic of further research. 

• PIT nets can be analysed with our algorithms. It can be checked whether a system 
satisfies a regular protocol. There are two different approaches here: At first, systems can 
be analysed as a whole. We recommend this for small nets only, because our algorithms 
can be quite inefficient. (see Section 7). The other approach, which corresponds to the 
reverse of the previous item, is a partitioning the system into small parts in such a way 
that the overall system satisfies a certain protocol iff the parts obey that protocol. The 
parts can be analysed with our algorithms; which is often much easier than an analysis 
of the system as a whole [9]. 

This article is organised as follows. First, we review the definitions of finite automata and 
PIT nets and we introduce (regular) p'rotocols. Then we discuss what is meant by 'a PIT net 
satisfies a regular protocol' and we come up with several correctness criteria. For two of them, 
viz. trace-safety and weak progress, we present algorithms that determine whether an arbitrary 
PIT net and regular protocol satisfy them. The other correctness criteria are stronger and deal 
with infinite loops. Language theory, however, does not support infinite strings and therefore, 
those correctness criteria are beyond the scope of regular protocols. But we mention some cases 
for which infinite loops can be handled. After that, we make some remarks on the complexity 
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of our algorithms and we end with some conclusions. 
We introduce some notations in an appendix and in another appendix, we prove that the sub
marking reachability problem, for PIT nets with a constant number of tokens, is NP-complete. 

2 Preliminaries 

See Appendix A for the notations used in this article. 

We use the concepts regular expression and deterministic finite automaton. These concepts are 
well-known from language theory (see [20]). 

Definition 2.1 Regular expression 
The set S of regular expressions over an alphabet E is defined as follows: € E S, E ~ S, if 
r1 E 5 and r2 E 5 then (r1r2) E 5 and (r1 + r2) E 5, if r E 5 then r' E 5, and nothing else is 
in 5. 
To each regular expression 1', a regular language L( r) ~ S· corresponds: L( €) = 0i for all 
a E E, L(a) = {a}; if "1 and r2 are regular expressions, then L«r1r2)) = L(rd' L(r2) and 
L« r1 + ")) = L( rd U L( ",) and if r is a regular expression, then L( r') = L( r)" . 
o 

Usually, we omit a lot of bracket.s ill regular expressions: We use the convention that· binds 
stronger than concatenation and + binds the weakest, and we use the associativity of con
catenation and +. For example, ala + ab' + c)' corresponds to (a«a + (ab')) + c)') and 
(a(a + «ab') + c))'), and they all evaluate to the same language. 

Definition 2.2 Deterministic finite automaton 
A deterministic finite automaton A is a quintuple (I{, E, 6, s, F), where I< is a finite set of 
states, E is an alphabet, 6 E [{ x E -+ J{ is the transition function, s E [( is the initial state 
and F ~ f{ is the set of final states. 
The transition function 8 can be extended to domain K x E' as follows: For k E 1<, 8'(k,£) = k 
and for I; E E' and a E E, 8'(k,I;' a) = 8(8'(k,a), a). 
The language accepted by A, L(A), is {I; E E' I 8'(s,I;) E Fl. 
o 

We review the classical notion of a PIT net (see, e.g., [27]). 

Definition 2.3 Place/Transition (PIT) Net 
A PIT net is a quadruple {P, T, W, Mo}, where P is a finite set of places, T is a finite set of 
transitions, such that l' n T = 0, W E DJ«P x T) U (T x P)) gives the bag of arcs between 
places and transitions and Mo E 18(P) is the initial marking. 
o 

Definition 2.4 Functions D, R, and Is 
For any PIT net N = (P, T, W, Mo) and for ME fB(P) and I; E T', D(N, M, 1;) is the resulting 
marking when, start.ing from marking M, all transitions in u have fired consecutively. 
fs(N) is the set of firing sequences of Nand R(N) is the set of reachable markings of N. 
Formally, 

D(N,M,E) = M and for a E T' and t E T, 

D(N, M, a· t) is defined iff 
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D(N,M,u) is defined and 'Ip E P: D(N,M,u)(p) 2: W(p,t). 

If defined, D(N,M,u·t) = ApEP: D(N,M,u)(p)-W(p,t)+W(t,p). 

fs(N) {u E T' I D(N, Mo, u) is defined} 

R(N) = {D(N, Mo, u) I u E fs(N)} 

Transition t E T is enabled (can fire) in marking M E !B(P) iff D(N, M, t) is defined. 
o 

Definition 2.5 (Regular) protocol 

4 

A protocol is a tuple II = (",(II). B(I1)), where ",(II) is an alphabet and B(I1) c::; (",(II))" is a set 
of strings over ",(II). 
Protocol IT is regular if 8(n) can be described by a regular expression) or, if it is accepted by a 
finite automaton. 
o 

In this article, alphabet a(I1) is always a subset of the transitions T of a PIT net. Not all 
transitions T need to be involved in II. We often denote O(lI) by a regular expression. 
In trace theory, a protocol is called a trace structure (see [32]). 

Consider a case where we have two sets A and B of transitions and we want to express that 
transitions of both sets fire alternately. This can be described conveniently as follows: Label 
the transitions of A and B with an a and b, respectively, and let the protocol be ({a, b), (ab)'). 
Without transition labels, the protocol would have been (A U B, (LxEA,YEB xY)'). 

Transition labels are a kind of syntactical sugar: 

Lenlnla 2.6 Transition labelling 
Let a PIT net N = (P, T, w, Mol. a labelling function I with dam (I) c::; T, and a regular 
protocol II with ,,(II) c::; rng(l) be given, i.e., the alphabet of II is a subset of the labels instead 
of the transitions. 

There is a regular protocol II', with ,,(II') c::; dom(l) c::; T, loa(I1') = a(I1) and loB(I1') = B(I1). 

Proof 
Put ,,(II') = 1- 1

0 ",(II) ',,,,d let A = (J{, E, 6, s, F) be a deterministic finite automaton that 
accepts B(I1). Put A' = (Ie,E',b',s',?) with J{' = J(, E' = {t E T I I(t) E E}, b' = 
A (k,a) E j( x E': b(k,/(a)) and F' = F, and let B(II') be the language accepted by A', then 
B(I1') is a regular language over a(II') c::; dom(ll c::; T, 10 a(I1') = ,,(II) and 10 O(I1') = O(I1). 
o 

Hence, any protocol based on transition labels can be rewritten to a protocol without such 
labels. Transition labels are not more general. 

3 Correctness criteria 

Under what conditions does a PIT net N = (P, T, W) Mo) satisfy a given protocol II? Different 
correctness criteria can be formulated. We shall illustrate them with examples. 

Of course) the net may not do more than the protocol allows. Net N is called trace-safe w.r.t. 
protocol II iff 
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Is(N) r n(II) <; prelo O(II) (1 ) 

Figure 1 gives five PIT nets and five protocols, which are described by regular expressions. 
Net N, is not trace-safe w.r.t. protocol II" as aa E Is(Nd and aa fie prel oO(IId. 

N,: ~ II,: ({a},a) 

a 

N3: 8-1 
a 

N.: ~ II.: ({a,b},a'b) 

a b 

~ 
b 

Ns: 

N,: ~ II,: ({a},aa) 

a 

II3: ({a},aa) 

~ lis: ({a,b},a'b) 

a b 

Figure 1: Correctness criteria. 

If a net and a protocol satisfy Eq. 1, then it is still not guaranteed that the net does not stop 
prematurely. For example, net N2 and protocol fh satisfy Eq. 1, though termination after a 
single a is not desired. If it were, ll2 would have been ({a},a+aa) or ({a},e:+a+aa). The 
requirement which guarantees that the net does not stop too early is called weak progress, i.e. 

lIu E Is(N) : u r n(II) E prel 0 O(II)\O(II) =? 31 E T: u· t E Is(N) (2) 

Weak progress means that the net will not stop if the protocol has not been completed yet. 
But even if the net does not stop prematurely, there may be no real progress, because some 
transitions that do not belong to the protocol might be able to fire infinitely often, without 
finalising the protocol. Consider, for example, net N3 with protocol II 3 . N3 is an extension 
of N2 with a kind of environment, viz. transition b and a place. There is weak progress, because 
transition b can always fire. But b is not part of the protocol (b fie n(II3»' After a has fired, 
no transition that belongs to the protocol will ever fire. Strong progress requires that there is 
progress even within the protocol: 

lIu E Is(N) : u r n(II) E pre! 0 O(II)\O(II) =? 

3u' ET': u·u' EIs(N) II u'rn(II);i£ 

Please note that strong progress implies weak progress. 

(3) 

A PIT net that has weak progress but not strong progress w.r.t. a protocol II, has a set of 
transitions that are not part of the protocol and that can fire infinitely often. The difference 
between weak and strong progress is an infinite loop of firings of transitions from T\a(II). 
A net which obeys a protocol according to Eqs. 1, 2 and 3 may still not be able to complete 
its task. Consider, e.g., N4 and n4 . Net N4 is trace-safe w.r.t. n4 and there is strong progress. 
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However, no firing sequence of N4 can be completed to an element of B(II4 ), because transition b 
can never fire. The completeness requirement is 

fs(N) = pref({u E fs(N} I ur,,(n) E 8(n))) (4) 

N. and n. do not satisfy Eq. 4, as {u E fs(N.} I ur,,(n.) E 8(n.)} = 0. Please note that 
Eq. 4 implies Eqs. 1,2 and 3. 
A net satisfying Eq. 4 may still enter an undesirable infinite loop (often referred to as livelock). 
For example, Ns and IIs satisfy Eq. 4, though Ns may do an infinite number of a's, while Ih 
prescribes a finite number of a's followed by a b. 

If a net and a protocol do not satisfy Eq. 1 or Eq. 2, then an undesired behaviour exists that is 
reached within finitely many steps. This is not the case with Eq. 3. Reconsider, for example, 
net N3 and protocol lh. Strong progress (Eq. 3) requires that eventually, two a's will occur, 
but after finitely many steps of N3 it can still not be concluded that something wrong has 
happened. 
A PIT net that satisfies Eqs. 1 and 2 w.r.t. a given prot.ocol, but not Eq. 3 (and hence, not 
Eq. 4), has a kind of undesired infinite behaviour, because all undesired finite behaviour has 
been captured by Eqs. I and 2. 
Infinite loops are beyond the scope of regular expressions. The behaviours of N3 , N4 and Ns 
may be described by b·abw + bW ~ aW and aW + a·b~ respectively, where x"'" denotes an infinite 
sequence of x's. However, language theory does not support infinite strings. 

As a consequence, we shall confine ourselves to trace-safety (Eq. 1) and weak progress (Eq. 2). 
The first algorithm presented below checks trace-safety and the next one weak progress. 
We shaH return to infinite strings in Section 6. 

4 Trace-safety 

In this section~ we present an algorithm to determine whether a PIT net N = (P,T, W,Mo) 
and a regular protocol II with a(Il) ~ T are trace-safe (Eq. 1), i.e., whether 

fs(N) r ,,(IT) <; pref 0 8(n) . 

First, we present the algorithm. Then we give an example and after that we prove the correct
ness of our algorithm. 

We shall apply a coverability analysis to solve trace-safety. The general form of the coverability 
problem is: To determine, for a PIT net and some marking M, whether the PIT net has a 
reachable marking Al' 2 M. This is known to be decidable in exponential space [24,28]. 

Algorithm 4.1 Trace·safety 

1. Construct a deterministic finite automaton A with alphabet E = ,,(IT) that accepts 8(n). 
See [20) how to construct a deterministic finite automaton A' = (I{', 1:;', fl, s', F') with 
alphabet E' = {t E T I 3., yET' : x· t . y E O(n)} that accepts 8(U). 
Automaton A = (]{ ~ E, 6, s, F) can be derived from A' as follows: Introduce a new state k', 
k' tJ. ]{', and when automaton A reads a symbol from a(Il)\1:;', it moves to state k', which 
is a trap: k' is not a final state~ and whenever A enters state k', it will always remain 
there. 
Formally: 
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o 

I< = J(' u {k'}, where k' is a new state (k' '¢ I<') 

E = a(lI) 

6 = 6' U P (k,a) E J(' x (a(II)\E'): k') U (-\ (k,a) E {k'} x ",(II): k') 

s s' 

F = F'. 

Property: I; ~ T. 

2. Construct a test net N' based Oil A. 
This test net is a PIT net which has always exactly one token in one of its places. We 
distinguish three kinds of places in N': 

End places, denoted by EP. 
Termination in such a place is allowed~ 

Illternlediate places, denoted by I P. 
Termination in such a place is not allowed, but an end place is still reachable; 

Forbidden places, denoted by FP. 
These places may never contain a token (t.ermination here is not allowed and there 
is no reachable end place). 

N' = (P', T', W', M~), with: 

pi = f{ 
T' = dom(6) = Ii x E 

W' = A (k, (k', a)) E J( x (J{ x E): if k = k' then I else 0 fi 
~ A «k,a),k') E (I( x E) x f{: if k' = 6(k,a) then I else 0 fi 

M~ = is} 
Moreover, 

EP=F 

IP = {ko E I\\F I 3n E IN, : 3k" ... , kn E f( : 3a" ... ,an E E : 
kn E F /\ ViE {I, ... ,n}: k; =6(k;_"a;)} 

FP = f{\(EP U IP) 

3. Lay N over N' , which results in a PIT net Nil = (P",T", W",M~/), as follows. 
We assume without loss of generality: P n P' = 0 and (T\E) nT' = 0. 

P" = puP' = PuEPulPuFP 

T" = (T\E) U T' 

W" = W' ~ A (p,t) E P x (T\E): W(p,t) 
~ A (t,p) E (T\E) x P: W(t,p) 
~ A (p,(k,a)) E P x T': W(p,a) 
~ A «k, a),p) E T' x P: W(a,p) 
~ A (k,t) E P' x (T\E): 0 
~ A (t, k) E (T\E) x P' : 0 

Mo = Al0 l:tJ Ala 

4. Determine, for all k E FP, whether Nil has a reachable marking Mil E R(N") that 
covers {k}, i.e., M":2 {q. 
If such an Al" exist.s for some k E FP, I.hell Nil is not trace-safe w.r.t. protocol II, 
i.e. N and II do Hot satisfy Eq. 1. Otherwise, N and II are trace-safe. 
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Please note that alphabet 1:' of the first step of this algorithm, may really be smaller than a(II). 
For example, in protocol ({ a, b}, E), transitions a and b are not allowed to fire, while other 
transitions still may fire. The derived alphabet 1:' would be empty in this case. 

Some properties of test net N': (these properties are easily verified, we omit the proofs) 

• N' is a PIT net, i.e., pi and T' are finite. 

• There is always exactly one token in N ' . 
I.e., I' = (A s' E 5' : 1) is a place invariant of N' and it adds up to 1 in each reachable 
marking: For all M' E R(N'), L"ES' I'(s')M'(s') = 1. 

• Let M' he a reachable marking of N' and let k E l( be the place with a token (i.e. 
M'(k) = I), then all transitions (k, 0) (a E ~) are enabled. In other words: For all a E E, 
there is always a k E J( such that {k, a} can fire. 
This property indicates that the test net NI does not influence the behaviour of N, when 
we lay N ,over N' in step 4, N' allows the firing of each transition of N at any time. 

Because N' is contained in Nil and all places pi of N ' have no additional arcs in Nfl, net Nil 
has a similar place invariant as N ' : There is always one token in one of the places of P'. 
Formally,1" = (A s E S : 0) U (,\ s' E S' : I) is a place invariant of N" and for all M" E R(N"), 
L'ES" I"(s)M"(s) = 1. 

In the last step of the algorithm, IFPI coverability analyses are performed. Verification of 
trace-safety can be easier with the aid of an a.dditional place x in Nil, Let all transitions with 
all output arc to a forbidden place, have an output arc to x as well. No other arcs go to or 
from place x. With this construction, N is trace-safe w.r.t. II iff there is no reachable marking 
in Nil with one or more tokens in x. Thus, a single coverability analysis suffices. 

a 

II = ({a, bj, (b+ ab)') 
c 

b 

a 

bGk! 
• 

)k2 k30a,b 
d a 

• S3 • b 

Figure 2: Net. N Figure 3: Automat.on A 

Example 4.2 
Let PIT net N be given in Figure 2 and let regular protocol II be given by ({a, b j, (b + ab)'). 
To determine whether N is trace-safe w.r .t. n, 

1. From n. !'he finite determinist.ic automat.oll A = {1{, E, 6, 5, F} can be derived, with: 
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Legend 
(klo a) (k2 ,a) (b,a) 

0 Original 
place 

b 0 End place 

@ Intermediate 
place 

(k"b) (k2 ,b) (b,b) 

® Forbidden 
place 

Figure 4', Test net N' 

I ?-r-- (k3, 0) 

s, 

d 

Figure 5: Net Nil, which is N over N' 

E = {a,b} 

6 = {((k" a), k2), ((k" b), k,), ((k2 , a), k3), ((k2,b), kIl, ((k3, a), k3)' ((k3,h), k3)} 

F = {k,J . 

See Figure 3, Final states are indicated by a circle, and the initial state is shown by a >. 

2. From automaton A, test net N' of Figure 4 is derived. 

3. Nil is N over N': See Figure 5. 

4. N" has a reachable marking that covers {k3}, viz. {s2,k3}. That marking is obtained 
after firing sequence c(k1 ,a)(k2 ,a). Hence, net N is not trace-safe w.r.t. protocol II. 
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Theorem 4.3 
Algorithm 4.1 is correct. In other words, 

fs(N) ro(l1) ~ pref oB(I1) <0} 'VM" E R(N"): 'Vk E FP : M"(k) = 0 . 

o 

Defore we prove this theorem, we introduce three functions, viz. f, K and A, and we prove three 
lemmas. 

Function f E Til ---+ T maps each transition of Nil to a transition of N: 

f = (A t E T\E : t) U (A (k, a) E J( x E : a) 

The mentioned place invariants imply that there is one place k E J{ in each reachable marking 
of N' and Nil that has a token. Function K gives this place. 

~ = AM E R(N')UR(N"): 'the kEf{ with M(k) = l' 

Function ~ E TOO _ JB(f{) gives the marking of test net N' after a sequence of transitions of N 
has fired. 

ll(e) = M~ = is}, and for II E T" and a E T, 

ll(ll . a) _ { ll(ll) , a It E 
- D(N',ll(ll),(~oll(ll),a)), aEE 

In net Nfl) the behaviour of test net N' is restricted: NI has to follow original net N. The 
following lemma expresses that. test Ilet, N' validates firing sequences of N. As we have argued, 
test net N' has always olle token. If this token is in an end place, the firing sequence processed 
so far agrees with a string of the protocol. If it is in an intermediate state, the current firing 
sequence corresponds to a real prefix of the protocol and else, if it resides in a forbidden place, 
the current firing sequence can not be completed anymore to a string of the protocol. 

Lelnma 4.4 

{ 

llrEEB(I1) 
'Vll E fs{N) : II fE E pref 0 8(11)\8{11) 

,dE It pref 0 0(11) 

<0} ~ 0 ll(ll) E EP 
<0} ~oll(ll)E[P 
<0} ~ 0 ll(ll) E FP 

Proof 
Let II E fs(N). If llrE E O(fI), then aut.omaton A accepts llrE, i.e., after llrE is A in a state 
kEF = EP. 
If II r E E pref 0 B(I1)\8(I1), then A is not in a final state after II r E, but such a state can be 
reached, because there is a ll' E E' with (ll .ll') rE E B(I1). 
If II rE It pref 0 B(I1), then, after II r E, A is in a state from which no final state can be reached 
anymore. 
Now apply functions Ii, and .6. to N'. 
o 
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Lemma 4.5 

fs(N) f ° fs(N") 

Proof 
<;: Let. tT E fs(N). To be proven: 3tT" E fs(N") : f(tT"} = ". 

We define markings Af;, 111: and 111:' (i E {I, ," ,#u}) for nets N, N' and Nil, respectively, 
and a string u" E (Tilt with #(111 = #u. 

M. = D(N, Mo, tT[!..i]) 

Mi = Ll(tTr!..i]) 

"['J - { ("(ML,),,,[i)) , 
" ,- ['J '" , 

,,[iJ E E 
,,[iJ E T\E 

Then f("") =" and by the construction of N", ,," E fs(N"). 

:2 : Let ,," E fs(N"). Put M[' = D(N", Mi~" ,,"[i)) for all i E {l, ... ,#u}. Mi' can be split 
into Mj = M{' r P and M: = Mf' r P'. 

o 

If u"{i] E T\E, i.e. if af/[i] is a transition that is not part of the alphabet of the protocol, 
then M; = D(N, M;_" ,,"[i)) and Mi = Mi_,. Otherwise, if u"[i] E E, i.e. u"[i] = (k, a) 
for some k E [( and a E E, then M. = D(N,M._"a) and M! = D(N',Mi_,,(k,a». 
Hence, f(u") E fs(N). 

The following lemma indicates that each marking of net Nil consists of two separate parts, viz. 
an N - and an N'-part. 

Lemma 4.6 

'Vu" E /s(N"): D(N", M~', (7") D(N, Mo,f(u"» I±J Ll 0 f(u") 

Proof 
We use induction. If u" = E, then D(N", M~', "") = M!f = MoI±JM~ = D(N, Mo, f(£))I±JLlof(£)· 
Otherwise, ull = (To' x for some 0'0 E (T"t and x E Til, Put X = D(N",M~/,UO), then by 
induction, X = D(N, Mo, f("o»I±J!'..0f(uo). There are two possibilities: x E [( x E or x E T\E. 

x E J{ x E: D(N",M~',u") = 1: def. D:} D(N",X,x} = 1: def. N", def. f:} 
D(N, X r P, f(x)) I±J D(N', X r P', x} = 1: induct.ion :} 
D(N, D(N, Mo,f( uo)),f(x)) I±J D( N',!'.. ° f(uo), x) = 
1: def. D, and because of place invariant I", x = (" ° !'.. ° f( uo),f( x» :} 
D(N, Mo ,f(u")) I±J D( N',!'.. ° f(uo}, (" ° !'.. 0 f(uo),f(x») = 1: def. !'.. :} 
D(N, Mo,f(u")) I±J!'.. 0 f(u"}. 

x E T\E: D(N", M~', u") = 1: def. D :} D(N", X, x} = 1: def. N", def. f:} 

o 

D(N,Xr P, f(x»I±JXr P' = 1: induction:} D(N, D(N, Mo, f(uo)), f(x»I±J!'..of(uo) = 
1: def. D, def. !'.. :} D(N, Mo, f(u"» I±J!'.. 0 f(u"). 

The correctness of our trace-safety algorithm can now be proven. 
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Proof of Theorem 4.3 

fs(N)to(ll) <; prefoO(ll) 
'1u E fs(N) : utE E pref 0 O(ll) 
'1u E fs(N) : K 0 Ll.(u) rt FP 
I< 0 Ll. 0 fs(N) n FP = 0 
KoLl.ofofs(N")nFP = 0 

¢} {o(ll) = E:} 
¢} {Lemma 4.4 t 
¢} 

¢} {Lemma 4.5 :} 

'1u" E fs(N") : K 0 Ll. 0 f(u") rt FP ¢} {Lemma 4.6 t 

o 

'1u" Efs(N"): KoD(N",M~',u") rt FP ¢} {def. Rt 
I<oR(N")nFP=0 ¢} {def. Kt 
'1M" E R(N"): '1k E FP: M"(k) = 0 

5 Weak progress 

12 

Below, we present an algorit.hm to determine whether a PIT net N == (P,T, W,Mo) and a 
regular protocol IT with u(ll) <; T satisfy weak progress (Eq. 2), i.e., whether 

'1u E fs(N) : u t u(ll) E pref 0 O(ll)\O(ll) =;. 31 E T : u· t E fs(N) . 

First, we give the algorithm alld then we prove its correctness. 

We have solved the trace-safety problem with the aid of a coverability analysis. For weak 
progress, we shall use sub marking reachability analyses. The general form of the submarking 
reach ability problem is: Given a PIT net N = (P, T, W, Mo), a subset of places P' <; P 
and a submarking M' E IB(P'), does a reachable marking M E R(N) exist with '1p E P' : 
M(p) = M'(p)? 
Van Leeuwen [33) showed that the submarking reachability problem reduces to the reachability 
problem (see also [23]), i.e., a PIT net N" and a marking M" can be constructed from N, T' 
and M /, such that an above-mentioned reachable submarking exists iff M" is a reachable state 
of Nil. 
The reachability problem is solvable [19,21,22). 

For the verification of trace-safety, we have constructed an automaton A with alphabet E == 
a(n). Alphabet E does 1I0t have to contain all transitions of net N: E ~ T, hut not necessarily 
E == T. For trace-safety, it is irrelevant whether transitions that do not appear in n can fire, 
or not. For example, the protocol might require that two transitions a and b fire after each 
other all the time (ll = ({a,b},{ab)')), while the net has many more transitions than only a 
and b. Those other transitions are irrelevant to the protocol and do not have to be part of 
automaton A and test net N' . 
For weak progress, we need to check whether any transition in N can fire, or not. We have to 
involve all transitions T of N. To this end, we extend automaton A in such a way that E == T. 

Algorithm 5.1 Weak progress 

1. Let A = (f(,.E, 6, 5, F) be the deterministic finite automaton of Step 1 of Algorithm 4.1, 
i.e. u(ll) = E <; T and A accepts O(ll). 
Put AI = (f(',E',o/,S',F'), with 

1\.' == Ii 

E' = T 
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o 

6' 6 U P (k, I) E J( x (T\E) : k) 

s' s 

F' F, 

then A' is a deterministic finite automaton that accepts O(n'), where ll' = 
(T, {u E T' I ufa(n) E O(n)}). 

2. Construct a test net N' ba'3cd on A' instead of A. 
See the construction in Algorithm 4.1. 

3. Lay Novel' N'. 
See also the construction ill Algorithm 4.1. 
Remark: Because T\E' = 0, Til = T' and 

W" = W' 1oJ" (p,(k,a» E P x 1": W(I>,") 
IoJ .. «k, a),p) E 1" x P: W(a,p) 

4. Test whether Nil can stop in an intermediate state. 
We use a finite number of submarking reachability tests for this. 
Net N" can stop in an intermediate state kElP iff there is a reachable marking 
Mil E R(N") with M"(k) = 1 and no transition that consumes tokens from k, can fire, 
I.e. 

'lIE 1': 3p E P: M"(!') < W"(p, (k,t» 

(see Figure 6 for an example). Since W"(p,(k,I» = W(p,I), the phrase "N" can stop in 
an intermediate state" can be rephrased as 

3M" E R(N"): 3k E IP: (M"(k) = 1 /\ 'It E T: 31' E P: M"(p) < W(p, I)) (5) 

This equation can be verified with the aid of finitely many submarking reachability anal
yses, as follows: 
Choose kElP, X <; P alld M <; IB(X) such that: 

• 'IiET: 3xEX: M(x) < W(x,i). 
In other words, submarking }vI disables all transitions of N and hence, submarking 
M l!J {k} disables all transitions of N". For each transition t E T, there is a place 
x E X that has too less tokens for t to fire . 

• X is as small as possible, i.e. the previous item does not hold if one place is omitted 
from X. 
Formally: \Ix' EX: 3t E T: \Ix E X\{x'}: M(x):::: W(x,I). 

An upper bound for the number of ways to choose such a k, X and M can be found 
as follows. Choose a kElP, and for all transitions t E T, choose a place where t 
consumes from and let it have less tokens than t needs to fire. This can be done in at 
most IIPI x 11'1 x IPI x max or1l9(W) different ways. That number may be large, but it 
is finite. 
For each such k, X and M, apply a submarking reachability analysis on Nfl to determine 
whether there is an M" E R(N") with MU(k) = 1 and 'Ix EX: M"(x) = M(x). If so, 
Eq. 5 is satisfied, which means that Nil can stop in an intermediate state. Otherwise\ 
Nil can not stop in an intermediate state. 
Below we prove that Nand n satisfy the weak progress criterion iff Nil can not stop in 
an intermediate state. 
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p p 

p''S---1 
(k, t) 

k 6(k,t) 

Net N Net Nil 

Figure 6: Part of an original net N and corresponding Nil. If place k in Nil has a token and 
transition (k, t) can not fire, then p or pi does not have enough tokens. 

TheorCIU 5.2 
The above algorithm is correct. In other words, the negation of Eq. 5 is equivalent with Eq. 2. 

Proof 

'1M" E R(N"): Vk E IP: (M"(k) = 1 =} 31 E T: Vp E P: M"(p) <: W(p,t» 

¢> 1: def. R, def. D:I-

V<r"Efs(N"): VkEIP: (D(N",M~',<r")(k)= 1 =} 

3t E T: Vp E P: D(N", M~', <r")(p) <: W(p, t» 

¢> 1: predicate calculus :I-

Vu" Efs(N"): (3k E IP: D(N",M~',<r")(k)= 1) =} 

3t E T: VpE P: D(N", Mo',u")(p) 2: W(p,t) 

¢> 1: Lemma 4.6 :I-

Vu" E fs(N"): (3k E IP : Ll ° f(u")(k) = 1) =} 

3t E T: Vp E P : D(N, Mo'/(u"»)(p) <: W(p,t) 

¢> 1: def. ", Lemma 4.5 :I-

Vu Efs(N): "0 Ll(u) E IP =} 3tET: VpE P: D(N,Mo,u)(p) <: W(p,t) 

{::} 1: Lemma 4.4 with IT and E replaced by IT' and E' = T, respectively; defs. D and Is i
Vu E fs(N) : u E pref ° 8(11')\0(11') =} 3t E T: u· t E fs(N) 

¢> 1: 0(11') = {u E T' I uru(l1) E O(I1)}:I-

Vu E fs(N) : ur ,,(II) E pref ° 0(11)\8(11) =} 3t E T: <r. t E fs(N) 

o 

6 Infinite behaviour 

\Ve have mentioned four correctness criteria for PIT net.s and regular protocols, viz. trace-safety, 
weak progress, strong progress and completeness. This list is not complete. For example, net Ns 
and protocol ITs of Figure 1 satisfy the completeness requirement (Eq. 4), though Ns can do an 
infinite number of a's, while IT!) prescribes a finite number of a's followed by a b. Such undesired 
infinite loops might be forbidden by another correctness criterium. 
We have given algorithms for the verification of the first two correctness criteria. As we have 
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argued in Section 3, the other correctness criteria. concern undesired infinite behaviour. 

c 

a b 

" 
IV 

a b 
III 

Figure 7: Different kinds of infinite behaviour. 

In Figure 7, we distinguish four kinds of infinite behaviour. Transition b can fire unboundedly 
often in all four cases. In case I, after b has fired once, it can fire finitely often and then it will 
stop. In case IV, b will fire forever. II and III are intermediate cases: In case II, b may keep on 
firing until a has fired (which may never happen) and in case III, b suffers from livelock: b is 
stuck if a keeps on firing. 

In order to automatically verify the other correctness criteria as well, we need algorithms that 
can distinguish among these four different kinds of infinite behaviour. 

There is an algorithrn tha.t distinguishes between cases I or II on the one hand, and cases 
III or IV on the other hand. III I and II, transition b is not live and in III and IV, b is. The 
general form of the liveness problem is: To determine, for a PIT net N '" (P, T, W, Mol and a 
transition t E T, whether 

'1M E R(N): 3u E T" : ur it} oF [II D(N,M,u) is defined 

The liveness problem is equivalent with the reachability problem [16J and therefore decidable 
[19,21,22J. 

7 Complexity 

The input of our algorithms is a PIT net N and a regular protocol. If the protocol is given by 
a regular expression, the following steps are performed by both of our algorithms: 

1. Convert the regular expression to a non-deterministic automaton A. The construction 
in [20J requires polynomial time and the number of states of A is linear w.r.t. the length 
of the regular expression. 

2. Convert the non-deterministic automaton to a deterministic one. The construction in (20} 
requires exponential space: If the non-deterministic automaton has k states, then the 
deterministic one has 2.1: states. 

3. Convert the deterministic automaton A'to a test net N ' . Requires polynomial time w.r .t. 
the size of A'. 

4. Lay N over N ' , resulting in Nil. Requires polynomial time w.r.t. the size of Nand N'.2 

2The size of a PIT net is the number of bits needed to represent it (see [17J). 
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Thus, due to the second step, the construction of net Nil requires exponential space w.r.t. the 
length of the regular expression. 
Algorithm 4.1, which checks trace-safety, performs a coverability analysis on N". The cov
erability problem is exponential space hard and an algorithm exists that uses exponential 
space [24,28]. Hence, our trace-safety algorithm uses exponential exponential space w.e.t. the 
length of the regular expression and exponential space w.e.t. the size of N. 
Algorithm 5.1, which checks weak progress, performs a number of submarking reachability 
analyses on net N'. The submarking reachability problem can be reduced to the reachability 
problem in polynomial time [23], but the complexity of the reachability problem is unknown 
and at best exponential space hard {7, 22]. Hence, the algorithm for weak progress is at best 
exponential exponential space hard w.r.t. the length of the regular expression and a.t best ex
ponential space hard w.r.t. the size of N. 

Qur algorithms may be inefficient. In fact, they give an upper bound for the complexity of 
the trace-safety and weak progress problems. The actual complexity of these problems may be 
much better than what is sketched above. 

8 Concluding remarks 

In this article, we have presented two algorithms to determine whether an arbitrary PIT net N 
with transitions T satisfies a protocol fl, where IJ consists of an alphabet A ~ T and a regular 
language over A. 
The first algorithm (trace-safety) tests whether N does not do something wrong and the second 
one (weak progress) checks wether N does not stop prematurely. These algorithms can be very 
helpful in systems engineering and analysis. 
Our algorithms are more general than existing algorithms for the automatic verification of pro
tocols, because they have not been designed for one particular protocol, nor for a very specific 
class of Petri nets. For example, the automatic verification of the arbiter cascade {151 boils 
down to a mutual exclusion check and a liveness test. The former can be handled with our 
trace-safety algorithm and for the for the latter, an algorithm already exists (see Section 6). 
We can handle the alternating bit protocol [5,10,31] as well, in a similar way. 
Current research in the automatic verification of more specific protocols has not become super
fluous by our algorithms. Our algorithms are not very efficient (see Section 7) and it is still 
very interesting to find efficient algorithms for special ca"es. 

Topics of further research: 

• An implementation of our algorithms, to gain an insight into the average-case efficiency; 

• Efficiency enhancing. Qur algorithms consist of several steps and we did not investigate 
whet.her each step is really necessary, nor whether each step can be replaced by a more 
efficient olle; 

• A derivation of efficient algorithms for special cases. 
For example, the reachability problem is NP-complete for PIT nets where the number 
of tokens never changes [17]. As a consequence, the sub marking reachability problem for 
this kind of PIT nets is NP-complete, too (see Appendix BJ. 
If the original, to be analysed, net N has a non-changing number of tokens, then net Nil 
(on which submarking reachability tests are performed in Algorithm 5.1 J has this property, 
too. Each submarking reachability test is now NP-complete instead of at best exponential 
space w.r.t. the size of Nil; 

• The definition of protocol preserving constru.ction rules for the engineering and analysis 
of systems (see the introduction); 
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• Besides trace-safety and weak progress, there are other correctness criteria. The list of 
criteria. mentioned in Sect)on 3 is not complete (see Section 6). We would like to extend 
this list and find decision algorithms for other correctness criteria as well; 

• An extension to non-regular protocols and protocols with infinite strings. 
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A Notations 

INa = {O, 1, ... } is the set of natural numbers and INI = lNo\{O}. For A and B sets, A 2 B iff 
B <; A and the set of aU total functions from A to B is A -----+ B. We denote function restriction 
by r and function concatenation by o. The domain dom(f) of a function f E A - B is A and 
the range, mg(!), is {f(a) I a E A}. The inverse of f is r 1 

!P(A) denotes the set of all subsets of A and !B(A) = A - INa is the set of all bags (multisets) 
over A. For b E !B(A) and x some eleUlent: x E b iff x E A and b(x) > O. The number of 
elements in bag b is denoted by #b, i.e. #b = LOEA bra). We denote bag union with "': For 
A; sets and b; E !B(A;) (i E {l,2}), bl '" b, = (,\ a E Al \A, : bl(a)) U (,\ a E Al n A, : 
bl(a) + b,(a)) U (,\ a E A,\A I : b,(a)). Moreover, bl <; b, iff Va E bl : a E b, 1\ bl (a):5 b,(a); 
bl 2 b, iff b, <; bl ; and bl = b, iff bl <; b, and bl 2 b,. Note: Any bag b E !B(A) can be 
generalised to a larger domain A' 2 A: Put b' = b U (,\ a E A'\A : 0), then b' E J8(A') and by 
our definition of bag equality, b = b' . 
Sets can be viewed as bags. For S a set, the corresponding bag bE !B(S) is ,\ s E S: 1. 

A'" is the set of all finite sequences (strings) over set A. The empty string is c. For u E A'", 
#a is its length, ali] (1 :5 i :5 #a) is the it" element of a and alLi] (0 :5 i :5 #a) is the 
prefix of a with length i. If S is a set of strings, then pref(S) is the set of all prefixes, i.e. 
pref(S) = {aILi] I a E S 1\ 0:5 i:5 iff}. We denote string concatenation with ., but the· 
is often omitted. We denote string restriction, like function restriction, with f: For A, B sets, 
uE A'" and a E A, erB = e alld (a·a)rn = (afB)a if a E B,otherwise (o-·a)rB = urB. 

We lift any function f with domain A to domains !P(A) and A', as follows: For S E !P(A), 
f(S) = {f(s) I s E S} and for a1···an E A' (n E INa), f(a1···an) = f(ad··· fran). 
We usc -4: ... :t for comment. 

B The Submarking Reachability Problem For PIT Nets 
With a Constant Number of Tokens is NP-Complete 

In this appendix, we consider only PIT nets where the number of tokens does not change. We 
denote this class with N: N is the class of PIT nets N = (P, T, W, Mo) with 

Vt E T: L W(p,t) L W(t,p). 
PEP pEP 

The reachability problem for class N is: To del-ermine, for N = (P, T, W, Mo) E Nand 
ME !B(P), whet.her AI E R(N). 
The submarking reachabllit.y probleln for class N is: To determine, fOT N = (P, T, W, Mo) EN I 
P' <; P and AI' E !B(P'), whether 3M E R(N): Vp E P' : M(p) = M'(p). 

We shall show t.hat the reachability problem for class N is equivalent to the sub marking reach
ability problem for class N. It is known that the former is NP-complete [17J. Therefore, the 
latter is NP-complete, too. 



B The Submarking Reachability Problem For PIT Nets With a Constant Number of. .. 20 

Each reachability problem is a submarking reachability problem. Hence, the reachability prob
lem for class N reduces to the submarking reachability problem for class N in a trivial way. 

Next, let a submarking reachability problem with net N = (P, T, W, Mo) E N, P' ~ P and 
M' E IB(P') be given. If #Mo < #M' then submarking M' is not reachable. In the sequel, we 
assume that #Mo ::: #M'. 
We shall construct a P IT net Nil EN with places P" and a marking Mil E IB(P"), such that: 

M" E R(N") ¢> 3M E R(N): \lp E P' : M(p) = M'(p). (6) 

The idea is to extend N wit.h a place x and for each place p E P\P', an extra transition is 
added with an input arc from p and an output arc to x. 
Formally', Nfl = {PII, T", W", Mo}, with', 

P" = P U {x}, where x is a new place (x '" P) 

T" = T U r1l90 

W" = W U {(p, -(p») I p E P\P') U {np), x) I p E P\P'} 

!vl(-f = Mo. 

where - is an injedive function on domain P\P' such that rngC), T and P U {x} are mutually 
disjunct. (Such a function can always be constructed.) 
Furthermore, M" = M' W {(x, #Mo - #M')}. 

EXRluple D.I 
Let N EN be the net of Figure 8. It has 4 places, viz. a, b, c and d. We would like to know 
whether it has a reachable marking with 4 tokens in place a and 4 tokens in place b. 3 

The corresponding net Nfl E N is shown ill Figure 9. It ha'i an additional place x, which is 
empty at start. 
Net N has a reachable submarking MI with A1 1 (a) = MI(b) = 4 iff Nfl has a reachable 
marking M" with M"(a) = M"(b) = 4, M"(c) = M"(d) = 0 and M"(x) = 10 - 8 = 2. 
o 

~ 

t I /'5 

4 

b • d 

Figure 8: Net N, N E N. Figure 9: Corresponding Nil, 

Theorem B.2 
The submarking reachability problem reduces to the reachability problem in class H. 

3There is indeed such a reachable submarking. We leave it. to the reader to check this out. 
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Proof 
First, we remark that the constructions of net Nil and marking Mil require linear time w.r.t. 
the size of N, p' and M'. 
What is left to prove is Eq. 6. 
=>: If M" E R(N"), then all places p E pi have the amount of tokens specified by M'. The 

other original places, i.e. the places of P\P', are empty and place x has #Mo-#M' tokens. 
Then, N must have a reachable marking with #Mo - #M' tokens somehow distributed 
over places P\P', while all places pEP' have M'(p) tokens. 

<= : If N has a reachable marking M with in each place pEP' exactly M'(p) tokens, then 
Nfl has the same reachable marking M because N is contained in N". Then, all newly 
added transitions call empty places P\P', thus leaving #Mo - #M' tokens in place :t. 

o 

lienee, like the reachability problem for class N, the submarking reachability problem for 
class N is NP-complete. 
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