

Automatic verification of regular protocols in P/T nets

Citation for published version (APA):
Rambags, P. M. P. (1993). Automatic verification of regular protocols in P/T nets. (Computing science notes;
Vol. 9342). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d8362c93-cf38-4b47-bae8-492aae384380

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere. they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Automatic Verification of Regular Protocols
PIT Nets

P.M.P. Rambags

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven

The Netherlands
e-mail: paulr@win.tue.nl

Abstract

In this article, we present two algorithms to determine whether a given place/transition
(PIT) net N with t.ransitions T satisfies a given protocol II, where II consists of an alphabet
A ~ T and a regular language over A.
The first algorithm checks whether N can not do more than II allows (trace-safety)l. The
second olle verifies whether N does not stop too early (weak progress).

• In

Keywords: Protocols, automatic verification, PIT nets, regular languages, finite automata,
decidability, coverability, reachability, liveness.

1 Introduction

Automatic protocol verification differs from other kinds of protocol verification in the sense that
the entire verification is performed by a computer, without human interaction. The process
of protocol verification can be very complex and only this kind of verification yields a reliable
result, because human mistakes are impossible [5,15].
Up to now, some algorithms have been described for t.he automatic verification of protocols
in Pet.ri nets. However, these algorithms arc often very specific, for most of them have been
designed for just one protocol 'anJ a limited class of Petri nets. Examples can be found in
[10,15,18,29,31], furthermore, in [3,8,11], invariants are used for the automatic verification
and in [6] a reachabilily analysis.
In this article, we give algorithms for the automatic verification of a broad class of protocols: All
protocols that can be described as a regular language over the transitions of a place/transition
(I' /T) net. We denote such protocols with all alphabet and a regular expression. Regular
expressions consist of transition names, choice operators (+), concatenations, Kleene stars (.)
and parentheses. For example, ({a,b,c},a + aa + b) is the protocol where transition c does
not fire and where either transition a fires once or twice, or transition b fires once. It differs
from protocol ({ a, b, c), £ + a + aa + b), because the latter allows that a and b do not fire at all
(e is the empty string). The protocol that prescribes that one Of more a's or b's fire, can be
described as ({a,b),(a+b)(a+b)').

We present two algorithms. The first one checks whether a given PIT net N is trace~safe w.r.t.
a given regular protocol II, i.e. whether N can not do more than n allows. The second one
verifies whether N does not stop prematurely (weak progress). For example, a PIT net where
transition a can fire infinitely often is not trace-safe w.r.t. protocol {{ a, b}, aa + b), because the

1 In non-Petri net literature, trace-safdY is usually called safdy [1]. We have chosen for a different name
here, because safety has already a certain meaning in Petri net terminology. .

1 Introduction 2

protocol forbids the firing of more than two a's. A PIT net with two transitions a and b of
which only one can fire once, is trace-safe w.r. t. protocol {{a, b}, aa + b}, but there is no weak
progress, because stopping after a single a is not desired.
Even protocols of high-level nets can be verified, as long as the high-level net can be transformed
to a PIT net, i.e., as long as the high-level net has a finite number of places, transitions, arcs,
and values (colours).

Both algorithms are based on the following idea: The protocol, which is given by an alphabet
and regular expression, is transformed into a deterministic finite automaton which accepts the
language of the regular expression. That automaton is converted to a PIT net N', which we call
the test net. It has always one token. We distinguish three kinds of places in N': Forbidden,
intermediate and final places. The original net N and the test net N' are composed into a
PIT net Nil. A characteristic of N' is that it does not restrict the behaviour of N in Nil.
We prove that N is trace-safe w.r .t. n iff no forbidden place of N" can get a token. We also
prove that N and IT satisfy the weak progress criterion iff N" does not stop with a token in an
intermediate place.
The automatic verificat.ion of t.race-safety comprises a coverability analysis on Nil and weak
progress is checked with reachability analyses on Nil.

This approach can be applied t.o several interesting areas:

• In systems engineering, usually a global specification is made first. After that, repeatedly,
a part of the system (a module) is replaced by a more detailed one. Such a replacement
is correct jff the environment can not detect a difference between both modules.
We have derived sufficient and necessary conditions for the replacement of modules, in case
the environment can interact unlimitedly with the modules [25,26)_ These conditions can
be weak~·ned if the environment and the module maintain some communication protocol.

• In Petri net literature, many so-called behaviour preserving construction rules have been
described. Nets that have a certain property (Iiveness, deadlock freeness, divergence free
nesS, safeness, boundeducss, covering by place invariants, etc.) are composed in such a
way, that the resulting net has the same property [2,4,12,13,14,29,30,34].
For protocols, similar preservation rules can be derived. This allows a bottom-up con
struction of the system. If the building blocks of a system have a certain protocol (which
can be checked by our algorithms), and a system is built according to the protocol preser
vation rules, the constructed system will automatically have the same protocol.
The derivation of protocol preservation rules is a topic of further research.

• PIT nets can be analysed with our algorithms. It can be checked whether a system
satisfies a regular protocol. There are two different approaches here: At first, systems can
be analysed as a whole. We recommend this for small nets only, because our algorithms
can be quite inefficient. (see Section 7). The other approach, which corresponds to the
reverse of the previous item, is a partitioning the system into small parts in such a way
that the overall system satisfies a certain protocol iff the parts obey that protocol. The
parts can be analysed with our algorithms; which is often much easier than an analysis
of the system as a whole [9].

This article is organised as follows. First, we review the definitions of finite automata and
PIT nets and we introduce (regular) p'rotocols. Then we discuss what is meant by 'a PIT net
satisfies a regular protocol' and we come up with several correctness criteria. For two of them,
viz. trace-safety and weak progress, we present algorithms that determine whether an arbitrary
PIT net and regular protocol satisfy them. The other correctness criteria are stronger and deal
with infinite loops. Language theory, however, does not support infinite strings and therefore,
those correctness criteria are beyond the scope of regular protocols. But we mention some cases
for which infinite loops can be handled. After that, we make some remarks on the complexity

2 Preljminaries 3

of our algorithms and we end with some conclusions.
We introduce some notations in an appendix and in another appendix, we prove that the sub
marking reachability problem, for PIT nets with a constant number of tokens, is NP-complete.

2 Preliminaries

See Appendix A for the notations used in this article.

We use the concepts regular expression and deterministic finite automaton. These concepts are
well-known from language theory (see [20]).

Definition 2.1 Regular expression
The set S of regular expressions over an alphabet E is defined as follows: € E S, E ~ S, if
r1 E 5 and r2 E 5 then (r1r2) E 5 and (r1 + r2) E 5, if r E 5 then r' E 5, and nothing else is
in 5.
To each regular expression 1', a regular language L(r) ~ S· corresponds: L(€) = 0i for all
a E E, L(a) = {a}; if "1 and r2 are regular expressions, then L«r1r2)) = L(rd' L(r2) and
L« r1 + ")) = L(rd U L(",) and if r is a regular expression, then L(r') = L(r)" .
o

Usually, we omit a lot of bracket.s ill regular expressions: We use the convention that· binds
stronger than concatenation and + binds the weakest, and we use the associativity of con
catenation and +. For example, ala + ab' + c)' corresponds to (a«a + (ab')) + c)') and
(a(a + «ab') + c))'), and they all evaluate to the same language.

Definition 2.2 Deterministic finite automaton
A deterministic finite automaton A is a quintuple (I{, E, 6, s, F), where I< is a finite set of
states, E is an alphabet, 6 E [{ x E -+ J{ is the transition function, s E [(is the initial state
and F ~ f{ is the set of final states.
The transition function 8 can be extended to domain K x E' as follows: For k E 1<, 8'(k,£) = k
and for I; E E' and a E E, 8'(k,I;' a) = 8(8'(k,a), a).
The language accepted by A, L(A), is {I; E E' I 8'(s,I;) E Fl.
o

We review the classical notion of a PIT net (see, e.g., [27]).

Definition 2.3 Place/Transition (PIT) Net
A PIT net is a quadruple {P, T, W, Mo}, where P is a finite set of places, T is a finite set of
transitions, such that l' n T = 0, W E DJ«P x T) U (T x P)) gives the bag of arcs between
places and transitions and Mo E 18(P) is the initial marking.
o

Definition 2.4 Functions D, R, and Is
For any PIT net N = (P, T, W, Mo) and for ME fB(P) and I; E T', D(N, M, 1;) is the resulting
marking when, start.ing from marking M, all transitions in u have fired consecutively.
fs(N) is the set of firing sequences of Nand R(N) is the set of reachable markings of N.
Formally,

D(N,M,E) = M and for a E T' and t E T,

D(N, M, a· t) is defined iff

3 Correctness criteria.

D(N,M,u) is defined and 'Ip E P: D(N,M,u)(p) 2: W(p,t).

If defined, D(N,M,u·t) = ApEP: D(N,M,u)(p)-W(p,t)+W(t,p).

fs(N) {u E T' I D(N, Mo, u) is defined}

R(N) = {D(N, Mo, u) I u E fs(N)}

Transition t E T is enabled (can fire) in marking M E !B(P) iff D(N, M, t) is defined.
o

Definition 2.5 (Regular) protocol

4

A protocol is a tuple II = (",(II). B(I1)), where ",(II) is an alphabet and B(I1) c::; (",(II))" is a set
of strings over ",(II).
Protocol IT is regular if 8(n) can be described by a regular expression) or, if it is accepted by a
finite automaton.
o

In this article, alphabet a(I1) is always a subset of the transitions T of a PIT net. Not all
transitions T need to be involved in II. We often denote O(lI) by a regular expression.
In trace theory, a protocol is called a trace structure (see [32]).

Consider a case where we have two sets A and B of transitions and we want to express that
transitions of both sets fire alternately. This can be described conveniently as follows: Label
the transitions of A and B with an a and b, respectively, and let the protocol be ({a, b), (ab)').
Without transition labels, the protocol would have been (A U B, (LxEA,YEB xY)').

Transition labels are a kind of syntactical sugar:

Lenlnla 2.6 Transition labelling
Let a PIT net N = (P, T, w, Mol. a labelling function I with dam (I) c::; T, and a regular
protocol II with ,,(II) c::; rng(l) be given, i.e., the alphabet of II is a subset of the labels instead
of the transitions.

There is a regular protocol II', with ,,(II') c::; dom(l) c::; T, loa(I1') = a(I1) and loB(I1') = B(I1).

Proof
Put ,,(II') = 1- 1

0 ",(II) ',,,,d let A = (J{, E, 6, s, F) be a deterministic finite automaton that
accepts B(I1). Put A' = (Ie,E',b',s',?) with J{' = J(, E' = {t E T I I(t) E E}, b' =
A (k,a) E j(x E': b(k,/(a)) and F' = F, and let B(II') be the language accepted by A', then
B(I1') is a regular language over a(II') c::; dom(ll c::; T, 10 a(I1') = ,,(II) and 10 O(I1') = O(I1).
o

Hence, any protocol based on transition labels can be rewritten to a protocol without such
labels. Transition labels are not more general.

3 Correctness criteria

Under what conditions does a PIT net N = (P, T, W) Mo) satisfy a given protocol II? Different
correctness criteria can be formulated. We shall illustrate them with examples.

Of course) the net may not do more than the protocol allows. Net N is called trace-safe w.r.t.
protocol II iff

3 Correctness criteria 5

Is(N) r n(II) <; prelo O(II) (1)

Figure 1 gives five PIT nets and five protocols, which are described by regular expressions.
Net N, is not trace-safe w.r.t. protocol II" as aa E Is(Nd and aa fie prel oO(IId.

N,: ~ II,: ({a},a)

a

N3: 8-1
a

N.: ~ II.: ({a,b},a'b)

a b

~
b

Ns:

N,: ~ II,: ({a},aa)

a

II3: ({a},aa)

~ lis: ({a,b},a'b)

a b

Figure 1: Correctness criteria.

If a net and a protocol satisfy Eq. 1, then it is still not guaranteed that the net does not stop
prematurely. For example, net N2 and protocol fh satisfy Eq. 1, though termination after a
single a is not desired. If it were, ll2 would have been ({a},a+aa) or ({a},e:+a+aa). The
requirement which guarantees that the net does not stop too early is called weak progress, i.e.

lIu E Is(N) : u r n(II) E prel 0 O(II)\O(II) =? 31 E T: u· t E Is(N) (2)

Weak progress means that the net will not stop if the protocol has not been completed yet.
But even if the net does not stop prematurely, there may be no real progress, because some
transitions that do not belong to the protocol might be able to fire infinitely often, without
finalising the protocol. Consider, for example, net N3 with protocol II 3 . N3 is an extension
of N2 with a kind of environment, viz. transition b and a place. There is weak progress, because
transition b can always fire. But b is not part of the protocol (b fie n(II3»' After a has fired,
no transition that belongs to the protocol will ever fire. Strong progress requires that there is
progress even within the protocol:

lIu E Is(N) : u r n(II) E pre! 0 O(II)\O(II) =?

3u' ET': u·u' EIs(N) II u'rn(II);i£

Please note that strong progress implies weak progress.

(3)

A PIT net that has weak progress but not strong progress w.r.t. a protocol II, has a set of
transitions that are not part of the protocol and that can fire infinitely often. The difference
between weak and strong progress is an infinite loop of firings of transitions from T\a(II).
A net which obeys a protocol according to Eqs. 1, 2 and 3 may still not be able to complete
its task. Consider, e.g., N4 and n4 . Net N4 is trace-safe w.r.t. n4 and there is strong progress.

4 Trace-safety 6

However, no firing sequence of N4 can be completed to an element of B(II4), because transition b
can never fire. The completeness requirement is

fs(N) = pref({u E fs(N} I ur,,(n) E 8(n))) (4)

N. and n. do not satisfy Eq. 4, as {u E fs(N.} I ur,,(n.) E 8(n.)} = 0. Please note that
Eq. 4 implies Eqs. 1,2 and 3.
A net satisfying Eq. 4 may still enter an undesirable infinite loop (often referred to as livelock).
For example, Ns and IIs satisfy Eq. 4, though Ns may do an infinite number of a's, while Ih
prescribes a finite number of a's followed by a b.

If a net and a protocol do not satisfy Eq. 1 or Eq. 2, then an undesired behaviour exists that is
reached within finitely many steps. This is not the case with Eq. 3. Reconsider, for example,
net N3 and protocol lh. Strong progress (Eq. 3) requires that eventually, two a's will occur,
but after finitely many steps of N3 it can still not be concluded that something wrong has
happened.
A PIT net that satisfies Eqs. 1 and 2 w.r.t. a given prot.ocol, but not Eq. 3 (and hence, not
Eq. 4), has a kind of undesired infinite behaviour, because all undesired finite behaviour has
been captured by Eqs. I and 2.
Infinite loops are beyond the scope of regular expressions. The behaviours of N3 , N4 and Ns
may be described by b·abw + bW ~ aW and aW + a·b~ respectively, where x"'" denotes an infinite
sequence of x's. However, language theory does not support infinite strings.

As a consequence, we shall confine ourselves to trace-safety (Eq. 1) and weak progress (Eq. 2).
The first algorithm presented below checks trace-safety and the next one weak progress.
We shaH return to infinite strings in Section 6.

4 Trace-safety

In this section~ we present an algorithm to determine whether a PIT net N = (P,T, W,Mo)
and a regular protocol II with a(Il) ~ T are trace-safe (Eq. 1), i.e., whether

fs(N) r ,,(IT) <; pref 0 8(n) .

First, we present the algorithm. Then we give an example and after that we prove the correct
ness of our algorithm.

We shall apply a coverability analysis to solve trace-safety. The general form of the coverability
problem is: To determine, for a PIT net and some marking M, whether the PIT net has a
reachable marking Al' 2 M. This is known to be decidable in exponential space [24,28].

Algorithm 4.1 Trace·safety

1. Construct a deterministic finite automaton A with alphabet E = ,,(IT) that accepts 8(n).
See [20) how to construct a deterministic finite automaton A' = (I{', 1:;', fl, s', F') with
alphabet E' = {t E T I 3., yET' : x· t . y E O(n)} that accepts 8(U).
Automaton A = (]{ ~ E, 6, s, F) can be derived from A' as follows: Introduce a new state k',
k' tJ.]{', and when automaton A reads a symbol from a(Il)\1:;', it moves to state k', which
is a trap: k' is not a final state~ and whenever A enters state k', it will always remain
there.
Formally:

4 Trace-safety 7

o

I< = J(' u {k'}, where k' is a new state (k' '¢ I<')

E = a(lI)

6 = 6' U P (k,a) E J(' x (a(II)\E'): k') U (-\ (k,a) E {k'} x ",(II): k')

s s'

F = F'.

Property: I; ~ T.

2. Construct a test net N' based Oil A.
This test net is a PIT net which has always exactly one token in one of its places. We
distinguish three kinds of places in N':

End places, denoted by EP.
Termination in such a place is allowed~

Illternlediate places, denoted by I P.
Termination in such a place is not allowed, but an end place is still reachable;

Forbidden places, denoted by FP.
These places may never contain a token (t.ermination here is not allowed and there
is no reachable end place).

N' = (P', T', W', M~), with:

pi = f{
T' = dom(6) = Ii x E

W' = A (k, (k', a)) E J(x (J{ x E): if k = k' then I else 0 fi
~ A «k,a),k') E (I(x E) x f{: if k' = 6(k,a) then I else 0 fi

M~ = is}
Moreover,

EP=F

IP = {ko E I\\F I 3n E IN, : 3k" ... , kn E f(: 3a" ... ,an E E :
kn E F /\ ViE {I, ... ,n}: k; =6(k;_"a;)}

FP = f{\(EP U IP)

3. Lay N over N' , which results in a PIT net Nil = (P",T", W",M~/), as follows.
We assume without loss of generality: P n P' = 0 and (T\E) nT' = 0.

P" = puP' = PuEPulPuFP

T" = (T\E) U T'

W" = W' ~ A (p,t) E P x (T\E): W(p,t)
~ A (t,p) E (T\E) x P: W(t,p)
~ A (p,(k,a)) E P x T': W(p,a)
~ A «k, a),p) E T' x P: W(a,p)
~ A (k,t) E P' x (T\E): 0
~ A (t, k) E (T\E) x P' : 0

Mo = Al0 l:tJ Ala

4. Determine, for all k E FP, whether Nil has a reachable marking Mil E R(N") that
covers {k}, i.e., M":2 {q.
If such an Al" exist.s for some k E FP, I.hell Nil is not trace-safe w.r.t. protocol II,
i.e. N and II do Hot satisfy Eq. 1. Otherwise, N and II are trace-safe.

1 'l'race-~a{ety 8

Please note that alphabet 1:' of the first step of this algorithm, may really be smaller than a(II).
For example, in protocol ({ a, b}, E), transitions a and b are not allowed to fire, while other
transitions still may fire. The derived alphabet 1:' would be empty in this case.

Some properties of test net N': (these properties are easily verified, we omit the proofs)

• N' is a PIT net, i.e., pi and T' are finite.

• There is always exactly one token in N ' .
I.e., I' = (A s' E 5' : 1) is a place invariant of N' and it adds up to 1 in each reachable
marking: For all M' E R(N'), L"ES' I'(s')M'(s') = 1.

• Let M' he a reachable marking of N' and let k E l(be the place with a token (i.e.
M'(k) = I), then all transitions (k, 0) (a E ~) are enabled. In other words: For all a E E,
there is always a k E J(such that {k, a} can fire.
This property indicates that the test net NI does not influence the behaviour of N, when
we lay N ,over N' in step 4, N' allows the firing of each transition of N at any time.

Because N' is contained in Nil and all places pi of N ' have no additional arcs in Nfl, net Nil
has a similar place invariant as N ' : There is always one token in one of the places of P'.
Formally,1" = (A s E S : 0) U (,\ s' E S' : I) is a place invariant of N" and for all M" E R(N"),
L'ES" I"(s)M"(s) = 1.

In the last step of the algorithm, IFPI coverability analyses are performed. Verification of
trace-safety can be easier with the aid of an a.dditional place x in Nil, Let all transitions with
all output arc to a forbidden place, have an output arc to x as well. No other arcs go to or
from place x. With this construction, N is trace-safe w.r.t. II iff there is no reachable marking
in Nil with one or more tokens in x. Thus, a single coverability analysis suffices.

a

II = ({a, bj, (b+ ab)')
c

b

a

bGk!
•

)k2 k30a,b
d a

• S3 • b

Figure 2: Net. N Figure 3: Automat.on A

Example 4.2
Let PIT net N be given in Figure 2 and let regular protocol II be given by ({a, b j, (b + ab)').
To determine whether N is trace-safe w.r .t. n,

1. From n. !'he finite determinist.ic automat.oll A = {1{, E, 6, 5, F} can be derived, with:

4

o

Trace-safety 9

Legend
(klo a) (k2 ,a) (b,a)

0 Original
place

b 0 End place

@ Intermediate
place

(k"b) (k2 ,b) (b,b)

® Forbidden
place

Figure 4', Test net N'

I ?-r-- (k3, 0)

s,

d

Figure 5: Net Nil, which is N over N'

E = {a,b}

6 = {((k" a), k2), ((k" b), k,), ((k2 , a), k3), ((k2,b), kIl, ((k3, a), k3)' ((k3,h), k3)}

F = {k,J .

See Figure 3, Final states are indicated by a circle, and the initial state is shown by a >.

2. From automaton A, test net N' of Figure 4 is derived.

3. Nil is N over N': See Figure 5.

4. N" has a reachable marking that covers {k3}, viz. {s2,k3}. That marking is obtained
after firing sequence c(k1 ,a)(k2 ,a). Hence, net N is not trace-safe w.r.t. protocol II.

4 'frace-safety 10

Theorem 4.3
Algorithm 4.1 is correct. In other words,

fs(N) ro(l1) ~ pref oB(I1) <0} 'VM" E R(N"): 'Vk E FP : M"(k) = 0 .

o

Defore we prove this theorem, we introduce three functions, viz. f, K and A, and we prove three
lemmas.

Function f E Til ---+ T maps each transition of Nil to a transition of N:

f = (A t E T\E : t) U (A (k, a) E J(x E : a)

The mentioned place invariants imply that there is one place k E J{ in each reachable marking
of N' and Nil that has a token. Function K gives this place.

~ = AM E R(N')UR(N"): 'the kEf{ with M(k) = l'

Function ~ E TOO _ JB(f{) gives the marking of test net N' after a sequence of transitions of N
has fired.

ll(e) = M~ = is}, and for II E T" and a E T,

ll(ll . a) _ { ll(ll) , a It E
- D(N',ll(ll),(~oll(ll),a)), aEE

In net Nfl) the behaviour of test net N' is restricted: NI has to follow original net N. The
following lemma expresses that. test Ilet, N' validates firing sequences of N. As we have argued,
test net N' has always olle token. If this token is in an end place, the firing sequence processed
so far agrees with a string of the protocol. If it is in an intermediate state, the current firing
sequence corresponds to a real prefix of the protocol and else, if it resides in a forbidden place,
the current firing sequence can not be completed anymore to a string of the protocol.

Lelnma 4.4

{

llrEEB(I1)
'Vll E fs{N) : II fE E pref 0 8(11)\8{11)

,dE It pref 0 0(11)

<0} ~ 0 ll(ll) E EP
<0} ~oll(ll)E[P
<0} ~ 0 ll(ll) E FP

Proof
Let II E fs(N). If llrE E O(fI), then aut.omaton A accepts llrE, i.e., after llrE is A in a state
kEF = EP.
If II r E E pref 0 B(I1)\8(I1), then A is not in a final state after II r E, but such a state can be
reached, because there is a ll' E E' with (ll .ll') rE E B(I1).
If II rE It pref 0 B(I1), then, after II r E, A is in a state from which no final state can be reached
anymore.
Now apply functions Ii, and .6. to N'.
o

4 nace-safety 11

Lemma 4.5

fs(N) f ° fs(N")

Proof
<;: Let. tT E fs(N). To be proven: 3tT" E fs(N") : f(tT"} = ".

We define markings Af;, 111: and 111:' (i E {I, ," ,#u}) for nets N, N' and Nil, respectively,
and a string u" E (Tilt with #(111 = #u.

M. = D(N, Mo, tT[!..i])

Mi = Ll(tTr!..i])

"['J - { ("(ML,),,,[i)) ,
" ,- ['J '" ,

,,[iJ E E
,,[iJ E T\E

Then f("") =" and by the construction of N", ,," E fs(N").

:2 : Let ,," E fs(N"). Put M[' = D(N", Mi~" ,,"[i)) for all i E {l, ... ,#u}. Mi' can be split
into Mj = M{' r P and M: = Mf' r P'.

o

If u"{i] E T\E, i.e. if af/[i] is a transition that is not part of the alphabet of the protocol,
then M; = D(N, M;_" ,,"[i)) and Mi = Mi_,. Otherwise, if u"[i] E E, i.e. u"[i] = (k, a)
for some k E [(and a E E, then M. = D(N,M._"a) and M! = D(N',Mi_,,(k,a».
Hence, f(u") E fs(N).

The following lemma indicates that each marking of net Nil consists of two separate parts, viz.
an N - and an N'-part.

Lemma 4.6

'Vu" E /s(N"): D(N", M~', (7") D(N, Mo,f(u"» I±J Ll 0 f(u")

Proof
We use induction. If u" = E, then D(N", M~', "") = M!f = MoI±JM~ = D(N, Mo, f(£))I±JLlof(£)·
Otherwise, ull = (To' x for some 0'0 E (T"t and x E Til, Put X = D(N",M~/,UO), then by
induction, X = D(N, Mo, f("o»I±J!'..0f(uo). There are two possibilities: x E [(x E or x E T\E.

x E J{ x E: D(N",M~',u") = 1: def. D:} D(N",X,x} = 1: def. N", def. f:}
D(N, X r P, f(x)) I±J D(N', X r P', x} = 1: induct.ion :}
D(N, D(N, Mo,f(uo)),f(x)) I±J D(N',!'.. ° f(uo), x) =
1: def. D, and because of place invariant I", x = (" ° !'.. ° f(uo),f(x» :}
D(N, Mo ,f(u")) I±J D(N',!'.. ° f(uo}, (" ° !'.. 0 f(uo),f(x») = 1: def. !'.. :}
D(N, Mo,f(u")) I±J!'.. 0 f(u"}.

x E T\E: D(N", M~', u") = 1: def. D :} D(N", X, x} = 1: def. N", def. f:}

o

D(N,Xr P, f(x»I±JXr P' = 1: induction:} D(N, D(N, Mo, f(uo)), f(x»I±J!'..of(uo) =
1: def. D, def. !'.. :} D(N, Mo, f(u"» I±J!'.. 0 f(u").

The correctness of our trace-safety algorithm can now be proven.

5 Wea.k progress

Proof of Theorem 4.3

fs(N)to(ll) <; prefoO(ll)
'1u E fs(N) : utE E pref 0 O(ll)
'1u E fs(N) : K 0 Ll.(u) rt FP
I< 0 Ll. 0 fs(N) n FP = 0
KoLl.ofofs(N")nFP = 0

¢} {o(ll) = E:}
¢} {Lemma 4.4 t
¢}

¢} {Lemma 4.5 :}

'1u" E fs(N") : K 0 Ll. 0 f(u") rt FP ¢} {Lemma 4.6 t

o

'1u" Efs(N"): KoD(N",M~',u") rt FP ¢} {def. Rt
I<oR(N")nFP=0 ¢} {def. Kt
'1M" E R(N"): '1k E FP: M"(k) = 0

5 Weak progress

12

Below, we present an algorit.hm to determine whether a PIT net N == (P,T, W,Mo) and a
regular protocol IT with u(ll) <; T satisfy weak progress (Eq. 2), i.e., whether

'1u E fs(N) : u t u(ll) E pref 0 O(ll)\O(ll) =;. 31 E T : u· t E fs(N) .

First, we give the algorithm alld then we prove its correctness.

We have solved the trace-safety problem with the aid of a coverability analysis. For weak
progress, we shall use sub marking reachability analyses. The general form of the submarking
reach ability problem is: Given a PIT net N = (P, T, W, Mo), a subset of places P' <; P
and a submarking M' E IB(P'), does a reachable marking M E R(N) exist with '1p E P' :
M(p) = M'(p)?
Van Leeuwen [33) showed that the submarking reachability problem reduces to the reachability
problem (see also [23]), i.e., a PIT net N" and a marking M" can be constructed from N, T'
and M /, such that an above-mentioned reachable submarking exists iff M" is a reachable state
of Nil.
The reachability problem is solvable [19,21,22).

For the verification of trace-safety, we have constructed an automaton A with alphabet E ==
a(n). Alphabet E does 1I0t have to contain all transitions of net N: E ~ T, hut not necessarily
E == T. For trace-safety, it is irrelevant whether transitions that do not appear in n can fire,
or not. For example, the protocol might require that two transitions a and b fire after each
other all the time (ll = ({a,b},{ab)')), while the net has many more transitions than only a
and b. Those other transitions are irrelevant to the protocol and do not have to be part of
automaton A and test net N' .
For weak progress, we need to check whether any transition in N can fire, or not. We have to
involve all transitions T of N. To this end, we extend automaton A in such a way that E == T.

Algorithm 5.1 Weak progress

1. Let A = (f(,.E, 6, 5, F) be the deterministic finite automaton of Step 1 of Algorithm 4.1,
i.e. u(ll) = E <; T and A accepts O(ll).
Put AI = (f(',E',o/,S',F'), with

1\.' == Ii

E' = T

5 Weak progress 13

o

6' 6 U P (k, I) E J(x (T\E) : k)

s' s

F' F,

then A' is a deterministic finite automaton that accepts O(n'), where ll' =
(T, {u E T' I ufa(n) E O(n)}).

2. Construct a test net N' ba'3cd on A' instead of A.
See the construction in Algorithm 4.1.

3. Lay Novel' N'.
See also the construction ill Algorithm 4.1.
Remark: Because T\E' = 0, Til = T' and

W" = W' 1oJ" (p,(k,a» E P x 1": W(I>,")
IoJ .. «k, a),p) E 1" x P: W(a,p)

4. Test whether Nil can stop in an intermediate state.
We use a finite number of submarking reachability tests for this.
Net N" can stop in an intermediate state kElP iff there is a reachable marking
Mil E R(N") with M"(k) = 1 and no transition that consumes tokens from k, can fire,
I.e.

'lIE 1': 3p E P: M"(!') < W"(p, (k,t»

(see Figure 6 for an example). Since W"(p,(k,I» = W(p,I), the phrase "N" can stop in
an intermediate state" can be rephrased as

3M" E R(N"): 3k E IP: (M"(k) = 1 /\ 'It E T: 31' E P: M"(p) < W(p, I)) (5)

This equation can be verified with the aid of finitely many submarking reachability anal
yses, as follows:
Choose kElP, X <; P alld M <; IB(X) such that:

• 'IiET: 3xEX: M(x) < W(x,i).
In other words, submarking }vI disables all transitions of N and hence, submarking
M l!J {k} disables all transitions of N". For each transition t E T, there is a place
x E X that has too less tokens for t to fire .

• X is as small as possible, i.e. the previous item does not hold if one place is omitted
from X.
Formally: \Ix' EX: 3t E T: \Ix E X\{x'}: M(x):::: W(x,I).

An upper bound for the number of ways to choose such a k, X and M can be found
as follows. Choose a kElP, and for all transitions t E T, choose a place where t
consumes from and let it have less tokens than t needs to fire. This can be done in at
most IIPI x 11'1 x IPI x max or1l9(W) different ways. That number may be large, but it
is finite.
For each such k, X and M, apply a submarking reachability analysis on Nfl to determine
whether there is an M" E R(N") with MU(k) = 1 and 'Ix EX: M"(x) = M(x). If so,
Eq. 5 is satisfied, which means that Nil can stop in an intermediate state. Otherwise\
Nil can not stop in an intermediate state.
Below we prove that Nand n satisfy the weak progress criterion iff Nil can not stop in
an intermediate state.

6 Infinite behaviour 14

p p

p''S---1
(k, t)

k 6(k,t)

Net N Net Nil

Figure 6: Part of an original net N and corresponding Nil. If place k in Nil has a token and
transition (k, t) can not fire, then p or pi does not have enough tokens.

TheorCIU 5.2
The above algorithm is correct. In other words, the negation of Eq. 5 is equivalent with Eq. 2.

Proof

'1M" E R(N"): Vk E IP: (M"(k) = 1 =} 31 E T: Vp E P: M"(p) <: W(p,t»

¢> 1: def. R, def. D:I-

V<r"Efs(N"): VkEIP: (D(N",M~',<r")(k)= 1 =}

3t E T: Vp E P: D(N", M~', <r")(p) <: W(p, t»

¢> 1: predicate calculus :I-

Vu" Efs(N"): (3k E IP: D(N",M~',<r")(k)= 1) =}

3t E T: VpE P: D(N", Mo',u")(p) 2: W(p,t)

¢> 1: Lemma 4.6 :I-

Vu" E fs(N"): (3k E IP : Ll ° f(u")(k) = 1) =}

3t E T: Vp E P : D(N, Mo'/(u"»)(p) <: W(p,t)

¢> 1: def. ", Lemma 4.5 :I-

Vu Efs(N): "0 Ll(u) E IP =} 3tET: VpE P: D(N,Mo,u)(p) <: W(p,t)

{::} 1: Lemma 4.4 with IT and E replaced by IT' and E' = T, respectively; defs. D and Is i
Vu E fs(N) : u E pref ° 8(11')\0(11') =} 3t E T: u· t E fs(N)

¢> 1: 0(11') = {u E T' I uru(l1) E O(I1)}:I-

Vu E fs(N) : ur ,,(II) E pref ° 0(11)\8(11) =} 3t E T: <r. t E fs(N)

o

6 Infinite behaviour

\Ve have mentioned four correctness criteria for PIT net.s and regular protocols, viz. trace-safety,
weak progress, strong progress and completeness. This list is not complete. For example, net Ns
and protocol ITs of Figure 1 satisfy the completeness requirement (Eq. 4), though Ns can do an
infinite number of a's, while IT!) prescribes a finite number of a's followed by a b. Such undesired
infinite loops might be forbidden by another correctness criterium.
We have given algorithms for the verification of the first two correctness criteria. As we have

7 Complexity 15

argued in Section 3, the other correctness criteria. concern undesired infinite behaviour.

c

a b

"
IV

a b
III

Figure 7: Different kinds of infinite behaviour.

In Figure 7, we distinguish four kinds of infinite behaviour. Transition b can fire unboundedly
often in all four cases. In case I, after b has fired once, it can fire finitely often and then it will
stop. In case IV, b will fire forever. II and III are intermediate cases: In case II, b may keep on
firing until a has fired (which may never happen) and in case III, b suffers from livelock: b is
stuck if a keeps on firing.

In order to automatically verify the other correctness criteria as well, we need algorithms that
can distinguish among these four different kinds of infinite behaviour.

There is an algorithrn tha.t distinguishes between cases I or II on the one hand, and cases
III or IV on the other hand. III I and II, transition b is not live and in III and IV, b is. The
general form of the liveness problem is: To determine, for a PIT net N '" (P, T, W, Mol and a
transition t E T, whether

'1M E R(N): 3u E T" : ur it} oF [II D(N,M,u) is defined

The liveness problem is equivalent with the reachability problem [16J and therefore decidable
[19,21,22J.

7 Complexity

The input of our algorithms is a PIT net N and a regular protocol. If the protocol is given by
a regular expression, the following steps are performed by both of our algorithms:

1. Convert the regular expression to a non-deterministic automaton A. The construction
in [20J requires polynomial time and the number of states of A is linear w.r.t. the length
of the regular expression.

2. Convert the non-deterministic automaton to a deterministic one. The construction in (20}
requires exponential space: If the non-deterministic automaton has k states, then the
deterministic one has 2.1: states.

3. Convert the deterministic automaton A'to a test net N ' . Requires polynomial time w.r .t.
the size of A'.

4. Lay N over N ' , resulting in Nil. Requires polynomial time w.r.t. the size of Nand N'.2

2The size of a PIT net is the number of bits needed to represent it (see [17J).

8 Concluding remarks 16

Thus, due to the second step, the construction of net Nil requires exponential space w.r.t. the
length of the regular expression.
Algorithm 4.1, which checks trace-safety, performs a coverability analysis on N". The cov
erability problem is exponential space hard and an algorithm exists that uses exponential
space [24,28]. Hence, our trace-safety algorithm uses exponential exponential space w.e.t. the
length of the regular expression and exponential space w.e.t. the size of N.
Algorithm 5.1, which checks weak progress, performs a number of submarking reachability
analyses on net N'. The submarking reachability problem can be reduced to the reachability
problem in polynomial time [23], but the complexity of the reachability problem is unknown
and at best exponential space hard {7, 22]. Hence, the algorithm for weak progress is at best
exponential exponential space hard w.r.t. the length of the regular expression and a.t best ex
ponential space hard w.r.t. the size of N.

Qur algorithms may be inefficient. In fact, they give an upper bound for the complexity of
the trace-safety and weak progress problems. The actual complexity of these problems may be
much better than what is sketched above.

8 Concluding remarks

In this article, we have presented two algorithms to determine whether an arbitrary PIT net N
with transitions T satisfies a protocol fl, where IJ consists of an alphabet A ~ T and a regular
language over A.
The first algorithm (trace-safety) tests whether N does not do something wrong and the second
one (weak progress) checks wether N does not stop prematurely. These algorithms can be very
helpful in systems engineering and analysis.
Our algorithms are more general than existing algorithms for the automatic verification of pro
tocols, because they have not been designed for one particular protocol, nor for a very specific
class of Petri nets. For example, the automatic verification of the arbiter cascade {151 boils
down to a mutual exclusion check and a liveness test. The former can be handled with our
trace-safety algorithm and for the for the latter, an algorithm already exists (see Section 6).
We can handle the alternating bit protocol [5,10,31] as well, in a similar way.
Current research in the automatic verification of more specific protocols has not become super
fluous by our algorithms. Our algorithms are not very efficient (see Section 7) and it is still
very interesting to find efficient algorithms for special ca"es.

Topics of further research:

• An implementation of our algorithms, to gain an insight into the average-case efficiency;

• Efficiency enhancing. Qur algorithms consist of several steps and we did not investigate
whet.her each step is really necessary, nor whether each step can be replaced by a more
efficient olle;

• A derivation of efficient algorithms for special cases.
For example, the reachability problem is NP-complete for PIT nets where the number
of tokens never changes [17]. As a consequence, the sub marking reachability problem for
this kind of PIT nets is NP-complete, too (see Appendix BJ.
If the original, to be analysed, net N has a non-changing number of tokens, then net Nil
(on which submarking reachability tests are performed in Algorithm 5.1 J has this property,
too. Each submarking reachability test is now NP-complete instead of at best exponential
space w.r.t. the size of Nil;

• The definition of protocol preserving constru.ction rules for the engineering and analysis
of systems (see the introduction);

REFERENCES 17

• Besides trace-safety and weak progress, there are other correctness criteria. The list of
criteria. mentioned in Sect)on 3 is not complete (see Section 6). We would like to extend
this list and find decision algorithms for other correctness criteria as well;

• An extension to non-regular protocols and protocols with infinite strings.

References

[1] B. Alpern and F.B. Schneider. Defining Iiveness. Information Processing Letters, 21:181-
185, October 1985.

(2] G. Berthelot. Transformations and decompositions of nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Properties, volume 254 of
Leciure Notes in Computer Science, pages 359-376. Springer-Verlag, 1987.

[3] G. Berthelot and R. Terrat. Petri nets theory for the correctness of protocols. IEEE
Transactions on Communications, COM-30(12):2497-2505, December 1982.

[4] E. Best, R. Devillers, and J .G. Hall. The box calculus: a new causal algebra with multi
label communication. III G. Rozenberg, editor, Advances in Petri Nets, volume 609 of
Lecture Notes in Computer Science, pages 21-69. Springer-Verlag, 1992.

[5] M. Bezem and J.F. Groote. A formal verification of the alternating bit protocol in the
calculus of constructions. Logic Group Preprint Series 88, Utrecht University, Department
of Philosophy, March 1993.

[6] G.V. Bochmann and J. Gecsei. A unified method for the specification and verification of
protocols. In B. Gilchrist, editor, Information Processing, volume 77, pages 229-234. IFIP,
North-Holland, 1977.

(7) E. Cardoza, R. Lipton, and A. Meyer. Exponential space complete problems for Petri
nets and commutative semigroups. In Proceedings of the 8th Annual ACM Symposium on
Theory of Computing, pages 50-54, 1976.

[8] G. Chiola, S. Donatelli, and G. Solda. Construction and validation of a Petri net model
of a layered protocol architecture. In TENCON '89, Fourth IEEE Region 10 Interna
tional Conference, "Information Technologies for the 90's". E 2 C 2 ; Energy, Electronics,
Computers! C01U1I1-unicatious., pages 226-233, November 1989.

[9] S. Christensen and L. Petrucci. Towards a modular analysis of coloured Petri nets. In
K. Jensen, editor, Application and Theory of Petri Nets, volume 616 of Lecture Notes in
Computer Science, pages 113-133. Springer-Verlag, June 1992.

[101 J. Desel, W. Reisig, anJ R. Walter. The alternat.ing bit prot.ocol, fairness versus priority.
Pdri Net N('/mdellrt, :J!)::~- fl, April 1990.

[11] M. Diaz. Modeling and analysis of cOIlllliunicatioll and cooperation protocols using Petri
net based models. Computer Networks, 6:419-441, 1982.

[12] J. Esparza. Structure Th.eory of Free Choice Nets. PhD thesis, University of Zaragoza,
Spain, April 1990.

(13} J. Esparza. Reduction and synthesis of live and bounded Free Choice nets. Hildesheimer
Illformatik-Berichte, 7/91, June 1991.

[14] J. Esparza and M. Silva. Top-down synthesis or live and bounded Free Choice nets. In
G. Rozenberg, editor, Advances in Peiri Nets, volume 524 of Lecture Notes in Computer
Science, pages 118-139. Springer-Verlag, 1991.

REFERENCES 18

[15] n.J. Genrich and R.M. Shapiro. Formal verification of an arbiter cascade. In K. Jensen,
editor, Application and Theory of Petri Nets, volume 616 of Lecture Notes in Computer
Science, pages 205-223. Springer-Verlag, June 1992.

[16J M.H.T. Hack. Decidability Questions for Petri Nets. Garland Publishing, Inc., 1979.

[17} M. Jantzen. Complexity of place/transition nets. In W. Brauer, W. Reisig, and G. Rozen
berg, editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 413-434. Springer-Verlag, 1987.

[18] G. Klas. Protocol optimization for a packet-switched bus in case of burst traffic by means
of GSPN. In M. Ajmone Marsan, editor, Application and Theory of Petri Nets, volume
691 of Lecture Notes in Computer Science, pages 572-581. Springer-Verlag, June 1993.

[19) S.R. Kosaraju. Decidability of reachability in vector addition systems. In Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, pages 267-281, May 1982.

[20J H.R. Lewis and C.II. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall, 1981.

[21J E.W. Mayr. Ein Algorithmus fur das allgemeine Erreichbarkeitsproblem bei Petrinetzen
und damit zusammenhiingende Prob/eme. PhD thesis, Technischen Universitat Munchen,
August 1980.

[22J E.W. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal
on Computing, 13:441-460, 1984. Also appeared in the proceedings of the 13,h Annual
ACM Symposium on Theory of Computing, pages 238-246, May 1981.

[23J J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs, 1981.

[24) C. Rackoff. The covering and bounded ness problems for vector addition systems. Theoret
ical Computer Science, 6:223-231, 1978.

[25J P.M.P. Rambags. Composition and decomposition in a CPN model. Computing Science
Notes 92/10, Eindhoven University of Technology, 1992.

[26J P.M.P. Rambags. Decomposition and Protocols in High-Level Petri Nets. PhD thesis,
Eindhoven University of Technology, 1994. To be published.

[27J W. Reisig. Place/Transition Systems. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Petri Nels: Ccutml Models and Their Prope1'iics, volume 254 of Lecture Notes in Computer
Science, pages 117-141. Springer-Verlag, 1987.

[28] L.E. Rosier and H.-C. Yen. A multiparameter analysis of the boundedness problem for
vector addition systems. In L. Budach, editor, Fundamentals of Computation Theory,
volume 199 of Lecture Notes ill Computer Sciellce, pages 361-370. Springer-Verlag, 1985.

[29J C. Sibertin-Blanc. A client-server protocol for the composition of Petri nets. In M. Aj
mone Marsan, editor, Application and Theory of Petri Nets, volume 691 of Lecture Notes
in Computer Science, pages 377-396. Sprin.ger-Verlag, June 1993.

[30] Y. Souissi. On Iiveness preservation by composition of nets via a set of places. In G. Rozen
berg, editor, Advances in Petri Nets, volume 524 of Lecture Notes in Computer Science,
pages 277-295. Springer-Verlag, 1991.

[31} I. Suzuki. Formal analysis of t.he alternating bit protocol by temporal Petri nets. IEEE
Transactions on Software Engineering, 16(11):1273-1281, November 1990.

[32] J.L.A van de Snepscheut. Trace The07'Y and VLSI Design, volume 200 of Lecture Notes in
Computer Science. Springer-Verlag, 1985.

A Notations 19

[33J J. Van Leeuwen. A partial solution to the reachability problem for vector addition systems.
In Proceedings of the 6th Annual ACM Symposium on Theory of Computing, pages 303~
309, 1974.

[34] W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets, vo]ume 625
of Lecture Notes in Computer Science. Springer-Verlag, 1992.

A Notations

INa = {O, 1, ... } is the set of natural numbers and INI = lNo\{O}. For A and B sets, A 2 B iff
B <; A and the set of aU total functions from A to B is A -----+ B. We denote function restriction
by r and function concatenation by o. The domain dom(f) of a function f E A - B is A and
the range, mg(!), is {f(a) I a E A}. The inverse of f is r 1

!P(A) denotes the set of all subsets of A and !B(A) = A - INa is the set of all bags (multisets)
over A. For b E !B(A) and x some eleUlent: x E b iff x E A and b(x) > O. The number of
elements in bag b is denoted by #b, i.e. #b = LOEA bra). We denote bag union with "': For
A; sets and b; E !B(A;) (i E {l,2}), bl '" b, = (,\ a E Al \A, : bl(a)) U (,\ a E Al n A, :
bl(a) + b,(a)) U (,\ a E A,\A I : b,(a)). Moreover, bl <; b, iff Va E bl : a E b, 1\ bl (a):5 b,(a);
bl 2 b, iff b, <; bl ; and bl = b, iff bl <; b, and bl 2 b,. Note: Any bag b E !B(A) can be
generalised to a larger domain A' 2 A: Put b' = b U (,\ a E A'\A : 0), then b' E J8(A') and by
our definition of bag equality, b = b' .
Sets can be viewed as bags. For S a set, the corresponding bag bE !B(S) is ,\ s E S: 1.

A'" is the set of all finite sequences (strings) over set A. The empty string is c. For u E A'",
#a is its length, ali] (1 :5 i :5 #a) is the it" element of a and alLi] (0 :5 i :5 #a) is the
prefix of a with length i. If S is a set of strings, then pref(S) is the set of all prefixes, i.e.
pref(S) = {aILi] I a E S 1\ 0:5 i:5 iff}. We denote string concatenation with ., but the·
is often omitted. We denote string restriction, like function restriction, with f: For A, B sets,
uE A'" and a E A, erB = e alld (a·a)rn = (afB)a if a E B,otherwise (o-·a)rB = urB.

We lift any function f with domain A to domains !P(A) and A', as follows: For S E !P(A),
f(S) = {f(s) I s E S} and for a1···an E A' (n E INa), f(a1···an) = f(ad··· fran).
We usc -4: ... :t for comment.

B The Submarking Reachability Problem For PIT Nets
With a Constant Number of Tokens is NP-Complete

In this appendix, we consider only PIT nets where the number of tokens does not change. We
denote this class with N: N is the class of PIT nets N = (P, T, W, Mo) with

Vt E T: L W(p,t) L W(t,p).
PEP pEP

The reachability problem for class N is: To del-ermine, for N = (P, T, W, Mo) E Nand
ME !B(P), whet.her AI E R(N).
The submarking reachabllit.y probleln for class N is: To determine, fOT N = (P, T, W, Mo) EN I
P' <; P and AI' E !B(P'), whether 3M E R(N): Vp E P' : M(p) = M'(p).

We shall show t.hat the reachability problem for class N is equivalent to the sub marking reach
ability problem for class N. It is known that the former is NP-complete [17J. Therefore, the
latter is NP-complete, too.

B The Submarking Reachability Problem For PIT Nets With a Constant Number of. .. 20

Each reachability problem is a submarking reachability problem. Hence, the reachability prob
lem for class N reduces to the submarking reachability problem for class N in a trivial way.

Next, let a submarking reachability problem with net N = (P, T, W, Mo) E N, P' ~ P and
M' E IB(P') be given. If #Mo < #M' then submarking M' is not reachable. In the sequel, we
assume that #Mo ::: #M'.
We shall construct a P IT net Nil EN with places P" and a marking Mil E IB(P"), such that:

M" E R(N") ¢> 3M E R(N): \lp E P' : M(p) = M'(p). (6)

The idea is to extend N wit.h a place x and for each place p E P\P', an extra transition is
added with an input arc from p and an output arc to x.
Formally', Nfl = {PII, T", W", Mo}, with',

P" = P U {x}, where x is a new place (x '" P)

T" = T U r1l90

W" = W U {(p, -(p») I p E P\P') U {np), x) I p E P\P'}

!vl(-f = Mo.

where - is an injedive function on domain P\P' such that rngC), T and P U {x} are mutually
disjunct. (Such a function can always be constructed.)
Furthermore, M" = M' W {(x, #Mo - #M')}.

EXRluple D.I
Let N EN be the net of Figure 8. It has 4 places, viz. a, b, c and d. We would like to know
whether it has a reachable marking with 4 tokens in place a and 4 tokens in place b. 3

The corresponding net Nfl E N is shown ill Figure 9. It ha'i an additional place x, which is
empty at start.
Net N has a reachable submarking MI with A1 1 (a) = MI(b) = 4 iff Nfl has a reachable
marking M" with M"(a) = M"(b) = 4, M"(c) = M"(d) = 0 and M"(x) = 10 - 8 = 2.
o

~

t I /'5

4

b • d

Figure 8: Net N, N E N. Figure 9: Corresponding Nil,

Theorem B.2
The submarking reachability problem reduces to the reachability problem in class H.

3There is indeed such a reachable submarking. We leave it. to the reader to check this out.

H Tlw Submarking Readlability Problem For P /1' Nets With a Constant Number of . . ' 21

Proof
First, we remark that the constructions of net Nil and marking Mil require linear time w.r.t.
the size of N, p' and M'.
What is left to prove is Eq. 6.
=>: If M" E R(N"), then all places p E pi have the amount of tokens specified by M'. The

other original places, i.e. the places of P\P', are empty and place x has #Mo-#M' tokens.
Then, N must have a reachable marking with #Mo - #M' tokens somehow distributed
over places P\P', while all places pEP' have M'(p) tokens.

<= : If N has a reachable marking M with in each place pEP' exactly M'(p) tokens, then
Nfl has the same reachable marking M because N is contained in N". Then, all newly
added transitions call empty places P\P', thus leaving #Mo - #M' tokens in place :t.

o

lienee, like the reachability problem for class N, the submarking reachability problem for
class N is NP-complete.

In this series appeared:

91/01 D. Alstein

91/02 R.P. NederpeJt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schocnmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappcn

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.PolI

91/08 H. Sehepers

91/09 W.M.P.v.d.Aalsl

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogcndijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
1. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hec

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...;then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 1. Coenen
W.-P. de Roever
I.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
1. Hooman
R. Kuiper

91/26 P. de Bra
G.l. Houben
1. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 1.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 1. Coenen

91/35 F.S. de Boer
I.W. K10p
C. Palamidessi

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra lor Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.c. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J .S.C.P.v .d.Woude

92/12 F. Kamareddine

92/13 F. Kamarcddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement. p. 27.

A compositional semantics for fault tolerant real-time
systems. p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic graphs and related
problems. p. 90.

Conservative fixpoint functions on a graph. p. 25.

Discrete time process algebra. pA5.

The fine-structure of lambda calculus. p. 110.

On stepwise explicit substitution. p. 30.

Calculating the Warshall/Floyd path algorithm. p. 14.

Composition and decomposition in a CPN model. p. 55.

Demonic operators and monotype factors. p. 29.

Set theory and nominalisation. Part I. p.26.

Set theory and nominalisation. Part II. p.22.

The total order assumption. p. 10.

A system at the cross-roads of functional and logic
programming. p.36.

Integrity checking in deductive databases; an expoSition.
p.32.

Interval timed coloured Petri nets and their analysis. p.
20.

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes;
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-founded ness and type freeness can unify the
interpretation of functional application. p. 16.

92/22 R. Nederpclt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Pol1

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C. Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aans
I.H.M. Korst
P.J. Zwietering

93/05 I.C.M. Baeten
C. Verhoef

93/06 I.P. Veltkamp

93/07 P.O. Moerland

93/08 I. V crhoosel

93/09 K.M. van Hce

93/10 K.M. van Hee

93111 K.M. van Hee

93112 K.M. van Hee

93/13 K.M. van Hce

93/14 I.C.M. Baeten
I.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fro, p. IS.

A modelling mcthod using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quickson for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exerciscs in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engincering: a Formal Approach
Pan I: System Conccpts, p. 72.

Systems Enginccring: a Formal Approach
Pan II: Frameworks, p. 44.

Systems Enginecring: a Formal Approach
Pan 1Il: Modeling Methods, p. 101.

Systems Engincering: a Formal Approach
Pan IV: Analysis Methods, p. 63.

Systems Enginecring: a Formal Approach
Pan V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 1.C.M. Baeten
1.A. Bergstra
R.N. Bol

93/16 H. Schepers
I. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-I. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. KJoks and D. Kratsch

93/28 F. Kamareddine and
R. NederpeIt

93/29 R. Post and P. Dc Bra

93/30 I. Deogun
T. Kloks
D. Kratsch
H. MUller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and I. Moonen

A Real-Time Process Logic. p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system.
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Program
ming. p. IS.

Freeness Analysis for Logic Programs - And Correct
ness? p. 24.

A Typechecker for Bijective Pure Type Systems. p. 28.

Relational Algebra and Equational Proofs. p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems. p. 31.

Multi-dimensional Petri nets. p. 25.

Finding all minimal separators of a graph. p. II.

A Semantics for a fine A-calculus with de Bruijn indices.
p.49.

GOLD. a Graph Oriented Language for Databases. p. 42.

On Vertex Ranking for Permutation and Other Graphs.
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits. using directed commands and
production rule sets. p. 40.

On the Correctness of some Algorithms to generate Anite
Automata for Regular Expressions. p. 17.

]L1AS. a sequential language for parallel matrix
computations. p. 20.

93{34

93{35

93{36

93/37

93{38

93{39

93{40

93{41

J.C.M. Baeten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J. A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Vemoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

A. Bijlsma

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for SynChronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

	Abstract
	1. Introduction
	2. Preliminaries
	3. Correctness criteria
	4. Trace-safety
	5. Weak progress
	6. Infinite behavior
	7. Complexity
	8. Concluding remarks
	References
	A: Notations
	B: The submarking reachability problem for P/T nets with a constant number of tokens is NP-complete

