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boundary I 

impedance of plane waves 1n free space 

= wavelength in free space 



H(2) (kr') 
\i 

f(2) (e') 
I v 

G(!..!.') 

T 

z spherical Hankelfunction of the second kind and 

order \i 

1 
= jk 

d H(2)(kr') 
\i 

dr' H(2) (kr') • 
\i 

a complex function 

= arg ~\i(kr') 

\ 

= the e'-dependence of the components of the HEI~I)mode 

= the e'-dependence of the components of the HEI~2)mode 

= Green's free space scalar function 

= Bessel function of first kind and order n 

= radiation pattern function 

• 



Title 

Authors 

Institute 

-1.0-

DEPARTMENT OF ELECTRICAL ENGINEERING 

The Scalar Feed 
part I: The boundary conditions 

J .K.M. Jansen 

Department of ~~thematics 

Technological University 

Eindhoven 

Hetherlands 

M.E.J. Jeuken 

Technological University 

Insulindelaan 2 

Eindhoven 

Netherlands 

c.w. Lambrechtse 

Technological University 

Eindhoven 

The Netherlands 

Technological University Eindhoven 

th 20 November,I969 

T E C H N 0 LOG I CAL U N I V E R SIT Y E I N D H 0 V E N 



I 
I 
I 

I' , 

-1.1-

Abstract 

The electromagnetic field in the grooves of a corrugated conical horn antenna 

has been investigated. The investigation started by modifying the boundaries 

of the grooves in such a way that they coincided with the spherical 

coordinate system. The purpose of the study has been to find the conditions 

under which E , and Z H~, are zero at the opening of the grooves, because in 
¢ 0 ~ 

that case a symmetrical radiation pattern is obtained. This assertion will be 

proved in the second part of the paper. Under the condition that the width of 

the grooves is small compared with the wavelength, the following results are 

obtained. The dominant mode is a TM-mode and, neglecting the effect of the 

higher modes, we found that E¢.« Er . The second conclusion is that the depth 

of the grooves should be equal for all grooves not too close to the apex of 

the cone and equal to a quarter of a wavelength. In that case we found ZoH¢. 

equal to zero. 
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I. Introduction 

The illumination of a paraboloid reflector antenna depends on the proper-

ties of the feed used. In order to obtain a high efficiency it is neces-

sary that the radiation pattern of the feed is as flat as possible and 

produces little spillover energy. Besides, it is desirable that the ra-

diation pattern of the feed is symmetrical. Finally, the feed should 

possess a well-defined phase centre.' For some applications, for instance 

for an antenna for line-an-sight communications it is necessary that the 

feed possesses the above properties in a large frequency range. A feed 

having all these properties has been proposed by Simmons and Kay [I] and 

they called it scalar feed. The scalar feed is a conical horn antenna 

with grooves, perpendicular to the wall of the horn. The flare angle of 

this feed can be small or large. The paper of Simmons and Kay gives only 

some experimental results without a theoretical explanation of the radia-

tion pattern of the scalar feed. A shortcoming of this paper is that it 

does not contain useful design information concerning the scalar feed. 

This is mainly caused by the fact that a theoretical explanation of the 

radiation pattern of these feeds was not available at the moment of pu-

blication. 

The investigation of the scalar feed is greatly facilitated by making a 

distinction between scalar feeds with a small and with a large flare 

angle. The radiation pattern of a scalar feed with small flare angle can 

be found by treating it as an open circular waveguide radiator and, if 

necessary, with a quadratic phase field distribution across the aperture. 

This has already been done by Jeuken and Kikkert [2]. They studied, both 

theoretically and experimentally, the radiation pattern of a conical horn 

antenna wi th small flare angle. The inner wall of the cone cons isted of a 

corrugated boundary, composed of circumferential grooves. They found a 



good agreement between the experimental and theoretical radiation 

pattern for the frequency range where the depth of the grooves was 

approximately a quarter of a wavelength. In het paper [2J the effect of 

the corrugations has been described by means of a impedance boundary 

condition, thus neglecting the detailed behaviour of the electromagnetic 

fields in the grooves. 

Especially the frequency -dependent behaviour of the electromagnetic 

field in the grooves has not been taken into occount. Therefore it was 

not possible to find a theoretical explanation of the fact that the an-

tenna has a symmetrical radiation pattern in the frequency range where 

the depth of the grooves is approximately a quarter of a wavelength. 

Summarising, we may say that there is a need of a better understanding 

of the effect of the corrugation, especially as a function of the fre-

quency. Moreover, it is desirable to compute the radiation pattern of 

the scalar feed with large flare angle in order to obtain useful design 

information concerning this feed. It is the purpose of the present 

paper to provide this information. 

The paper consists two parts. In the first part the electromagnetic 

fields in the grooves will be thoroughly discussed and is the basis for 

the second part of the paper where the electromagnetic fields in the feed 

and the radiation pattern of the feed will be computed for various dimen-

sions of the horn antennas. 

Besides, a comparison with experimental results will be made and detailed 

information concerning the design of a scalar feed will be given. 



2. The electromagnetic field in the groove. 

The scalar feed is a conical horn antenna with grooves perpendicular to 

the wall of the horn (Fig. I). The computation of the electromagnetic 

field in a groove is a difficult task, because the boundaries of the 

groove do not coincide with a coordinate system in which Maxwell's 

equations can be easily solved. Therefore, we change the boundaries of 

the groove in such a way that they coincide with the spherical coordi-

nate system. For a groove not to close the apex of the cone this is a 

good approximation. 

One such groove is sketched in Fig. 2. 

Fig. I The scalar feed. 

':;t-V' 
I 
I 

Fig. 2 Spherical groove and spherical coordinate system. 
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2.1 The TE-mode 

2.1.1 The characteristic equation of the TE-mode 

In this section we study the conditions under which a TE-mode can 

exist in a groove. The components of a TE-mode can be derived from 

the potential Fr (r,e,~) in the following way [3 J : 

E • 0 
r 

-1 aF 
E • 

sine e r a~ 

aF r E • ---
~ r ae 

The function F r 

F (r,0,¢)· kr 
r 

+ f 
m 

r 

2 
k2 

H = -,-- ( _a _ + ) F 
r JW~o 2 r 

ar 2 
1 a Fr 

He 
m _, __ 

r arae JW~o 

a2F r 
H~ = 

sinG ara~ jw~o r 

(r,G,~) has the form 

( a j (kr) + b y (kr»)( c pm n n n n nm n 
(cos 0) + 

sin m~) 

(1 ) 

d Qm (cos 0)X 
om n 

(2) 

In this expression the symbols used have the following meaning 

J. (kr) and y (kr) 
n n 

pm (cos 0) and Qm (cos 0) 
n n 

are the spherical Bessel function 
and the spherical Neumann function 
respectively. 

are the associated Legendre func
tions of the first kind and the 
second kind respectively. 

are constants which are determined 
by the boudary conditions and the 
strength of the electromagnetic 
field at the opening of the groove 
o • 0

0
, 

The value of m depends on the way in which the electromagnetic 

field in the groove is excited. In most practical cases we have 

m - 1. 

'f'!···I. 

I, 

I.; 
Ii , , 
II 
j' 'I I· 
",I 

! , 
i 



Application to the- boundary condition Ee - 0 for the boundaries I 

and III yields the equations 

(3) 

These equations have a solution only if the determinant 

m 0 (4) 

If there exists a solution of (4), then the 
anib 

the ratio f' n. 

value of n is known 

and (3) gives the value of A special solution of 

(4) exists if k b - n, then n - O. The condition E~ = 0 for the 

boundaries I and III is satiesfied automatically. The third 

boundary condition, E~ - 0 for boundary II, yields: 

p m' 
n 

m' 
( COS e) + d Q nm n (cos 0)] 0 . 

(el
2 

- 0 (5) 

where the prime denotes differentiating with respect to cos 0. 

From equation (5) we find the ratio cnm/dnm From the considera-

tions made so far still another conclusion can be drawn. The fact 

that em and fm do not depend on the boundary conditions implies 

that two solutions Fr are possible; One with fm = 0 and the other 

with em • o. Summarising, we may say that if there exists a solution 

of (4), which means that a value of n can be found which satisfies 

(4), then there exists a TE-rnode in the groove and the components of 

this electromagnetic field can be derived from the function 

pm (cos0) 
n 
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If (4) has no solution, then Fr (r,e ~) = 0 and no TE-mode can exist 

in the groove. The question whether (4) has a solution can be 

answered only after numerical analysis. However, in case the width of 

the groove is small compared with the wavelength, equation (4) can 

be simplified. 

Using the abbreviations krl = x kb = hand krZ - x + hand 

applying the Taylor expansions 

, 
and Yn(x + h) ~ Yn(x) + h Yn (x) + O(hZ) 

we may replace the determinant in (4) by 

j (x) 
n 

h , 
j (x) 
n 

y (x) 
n 
, 

y (x) 
n 

In this expr".;cion W represents the Wronskian [4]. So if kb « I, 

then the determinant in (4) is never zero and (4) has no solutions, 

so that no TE-mode ~dn exist in the groove. 

(7) 

(8) 

(9 ) 

A numerical analysis for finding the value of n as a function of krl 

and kb is described in Appendix A. The results are given in Fig. 3. 

of krto In conclusion we may say that no TE-mode exists in the 

groove, provided the width of the groove is smaller than half a 

wavelength. 
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... 

z.z The TM-mode 

Z.Z.1 The characteristic equation of the TM-mode 

The TM-mode in ·the groove can be derived from the potential 

Ar (r,e,$) [3 J by means of the following expressions 

E 
1 (~+ kZ) Ar H 0 --,--r JWE O ar2 r 

aZA aA 

Ee 
1 r 

He 
r 

= jWEo r arae 
= rsine a$ 

aZA 
1 

aA 
r 

H~ 
r E z = - ---

$ jWEo r sine ara$ r ae 

The function A (r,(),~) has the form 
r 

( 10) 

Ar (r,e,~) kr (a j (kr) + b Y (kr)) (c pm (cos 0) + d Qrn (cos 0)) x 
n n n n nm n nrn a 

sin m$) . (em 
cos m~ + f ( 11 ) m 

Application of the boundary condition E¢ = 0 for the boundaries I 

and III gives rise to the next equation 

D 0 (12) 
jn (krZ) + krZ j~ (krZ) Yn (krZ) + kr2 y~ (kr2) 

Again, a special solution exists if kb = n; then n = 0 

If there is a solution of (12), then Ar (r,e,~) has the following 

form 

cos m¢ + f 
m 

(kr 1 )) 

sin m¢ ) (13) 
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In the derivationof (13) use has been made of the boundary condi-

tions E~ • 0 for 0 • 82 and Er • 0 for 8 • 82 , Of course, also in 

this case we see that (13) represents two solutions; one with f • 0 
m 

and the other with e - O. Next, we assume that the width of the groove 
m 

is small compared with the wavelength, so kb « I. Applying the 

recurrence formulae [5 ] 

ff 
n (x) n • - f (x) - f I (x) and 

x n n+ 

Where fn(x) stands for jn(x), Yn(x) respectively. Using the 

expansions (7) and (8) in (12) we obtain the equation 

So the solution of (12) for small values of kb is given by 

In the following considerations we shall omit the minus slgn 

because it represents the same solution as the plus sign. From 

(14 ) 

( IS) 

(16) 

(17) 

equation (17) we now see that n ~ kq if krl » I and kb « (18) 

This result will be used in the following section. In conclu-

sion, we see that a TM-mode can exist in the groove if its width 

is small compared to the wavelength. 

A numerical analysis of equation (12), based on the method des-

cribed in Appendix B gives n as a function of krl,for several 

values of kb. The results are also collected in Fig. 3. Note that 

n is approximately a linear function of krl' which is in agreement 

with (18). 
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2.2.2 The components of the electromagnetic field of the TM-mode 

From the preceding considerations we know that only a TM-mode can 

exist in the groove, provided the width of the groove is smaller 

than half a wavelength. So it is now interesting to investigate 

the components of the electromagnetic field of this mode in more 

detail. 

In the second part of the paper we shall prove that the boundary 

conditions E~ • 0 and ZoH~ = 0 give rise to a symmetrical radiation 

pettern. Therefore, we shall first investigate the conditions 

under which ZoH~ • O. From the general expression of Ar (13) we see 

that ZoH~ ~ 0, if we can find a value of 00 which satisfies the 

the equation 

(20) 

where the prime means differentiating with respect to the argument. 

Useful insight into the behaviour of the groove can be obtained 

if for the moment we restrict our considerations to the case that 

kb « I and kr l » I. Then we know from equation (18) that n » I. 

So an asymptotic expansion of pm (cos 0) and Qm (cos 0) can b~ 
n n 

substituted in (20). 

These expansions are [ 6 ] 

Pm (cos 0) a r(m+n+l) (!11 . )-! [ 11 mrr~ 
n r (n+3/2) nnO cos (n+j)S - Ii - 2"J 

and 

Qm ( 0) r (m+n+ I ) 11 j [ rr mrr] 
n cos - ~ r(n+3/2) (2sinS) cos (n+j)S + 4 + 2" + O(~) 

in and using the relation 7 Suhstitution of (21) and (22)' (20) [ ] 

, 

(21 ) 

(22) 

L mn (u) -mu m - ~ Ln (u) - ---!..~ Lm 
(l-u2)! n(u) 

• where (23) 

L: (u) stands for P: (u) or Q: (u), we find after several algebraical 

manipulations 
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The solution of this equation is 

8 • arctan 
I 

1-0,1,2, 

(n+2) tan()o 
n + ! 

+ 111 

and for large value of n the approximation () on (n + 1) is valid. 
I 2n 

We know that n -:r kr I' so 
() = 11(21+1) 

I 2 krl 

The depth of the groove s (Fig.4) is now given by 

°
1 

_ 11(21+)_ ~ (21+1) 
2k 4 

(24) 

(25) 

(26) 

(27) 

and the important conclusion can be drawn that the depth of the groove 

is the same for all grooves that are far enough from the apex of the 

cone. 

Fig. 4 Spherical groove with definition of s. 
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In the proof of (27) we have assumed that the flare angle ° is o 

larie enough. So there is need for an exact computation of the depth 

of the groove under the condition that ZoH~ = 0 at the opening of 

the groove. Such a computation can be carried out starting from the 

Runga-Kutta method and is described in some detail in Appendix c. 

The results are given in Fig. 5 and we may draw the following eon-

elusions: 

1.0 

90=600 

~ 9 0=750 

... . 
q; 

0.5 

o 5 10 n 15 

Fig. 5 01 against n with flare angle 00 as parameter. 
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(i) for grooves for which n > 15 the depth of the grooves 

can be found using (27); 

(ii) for grooves for which 5 < n < IS, the depth of the 

grooves is virtually independent of e if e < 30; 
o 0 

(iii)for grooves characterized by a low value of n and a 

low value of e we see that the depth of the grooves o 

is a function of both nand e . 
o 

So it is always possible to design the grooves in such a way that 

ZOH$ • 0 at the opening of fue grooves. Let us now study the elec

tric field at the opening of the grooves. First we note that E = 0 
9 

if Z H - O. For the case of kb « I some useful results can be 
o $ 

derived from the general expressions (10) and (13). After a large 

amount of algebra we find 

dA (r-r l )2 ( 
- (kr l )2] 

r 
~ 2 n(n+l) d(kr) 

(krl) 

Using (10) en (IS) we see that E$ is zero in the groove. In the 

proof of (28) use has been made of the Taylor expansion (7). This 

expansion is not valid for low values of krl. So, for grooves in 

(28) 

the vicinity of the apex of the cone E$ cannot be neglected. 

Extensive calculations, which are not included, show that E / ' 10-
3 

$ E 
r 

for kr < 10 and kb ~ I. 
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2.2.3. The boundary conditions at the wall of the corrugated horn 

The electromagnetic field at the opening of a narrow groove consists 

of the dominant TM-mode and evanescent modes. Experience teaches us 

that calculations concerning corrugated boundaries give useful results 

if the evaescent modes are neglected [8]. Accepting this approximation, 

we find that Er is non-zero at the opening of the groove, whi Ie Er is 

zero at the perfectly conducting dam between two successive grooves. 

ZoHr is zero at the opening of a groove, but ZoHr is non-zero at a 

dam, because currents on the dam in the ~ -direction are possible. 

Currents in the r-direction are not possible if the width of the dams 

is small. Thi. implies that ZoH~is zero at a dam. Moreover, we choose 

the depth of the grooves in such a way that Z H is zero at the opening 
o ~ 

of • groove. Finally, E~ i. zero at the dam and at the opening of the 

grooves. Suppose that there are many grooves per wavelength. Then we 

may formulate the following average boundary condi tions at ;,-) D P 
'0 

( i) E and Z H are non-zero r 0 r 

(ii ) E 
~ 

and Z H 
o ~ 

are zero 

Starting from these boundary conditions the electromagnetic field in 

a corrugated horn will be calculated in the second part of the paper. 
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3.1 Abstract 

The electromagnetic field in the corrugated conical horn and its radiation 

pattern have been calculated for the case that the depth of the grooves 

was a quarter of a wavelength. The calculations are based on the boundary 

conditions, discussed in the first part of the paper. Several antennas 

have been constructed for verifying the theory. The conclusion is that 

a good agreement has been observed between the experimental and the 

theoretical results, at least for the frequency for which the depth of 

the grooves is a quarter of a wavelength. From the many measurements 

which have been carried out the following conclusions have been drawn. 

For large horn antennas with a flare angle smaller than 75 0 there is a 

good agreement between experimental results and the calculations based 

on the assumption that E •• and Z H ,are zero at 8' = 0 , even at frequencies 
~ 0 $ a 

for which the depth of the grooves is not equal to a quarter of a wave-

length. When the flare angle was smaller than 75 0 and the antennas 

were short, again a resonable agreement between theory and experiment 

was found. 

The paper concludes with rather detailed imformation concerning the 

design of the scalar feed. Besides, design charts are included. 
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3'2 The electromagnetic field in the corrugated conical horn 

In the first part of this paper we have studied the boundary conditions 

which should be applied at the boundary 8'= 0 for the calculation of 
o 

the electromagnetic field in the region bounded by 0'< 00' By inspection 

we see that neither a TE-mode nor a TM-mode can satisfy the boundary 

conditions. In fact, the electromagnetic field in the region ()' <. Co is 

a spherical hybrid mode. This mode can be understood as the sum of a 

TE-mode and a TM-mode. The components of this hybrid mode can be found by 

substituting 

A pI (cos (')') " (2) 
A (r' ,0' ,~') = cos <p' H (kr' ) r I v v 

and 

F (r' ,0' ,~') = A pI (cos 0') sin ~ , " (2) (kr' ) H r 2 v v 

in equations (10) and (I) respectively and summing the TE part and 

" (2) TM part. In (29) and (30) H (kr') represents the spherical Hankel 
v 

(29) 

(30) 

function of the second kind. It should be noted that primed coordinates 

are used for the description of the electromagnetic field in the horn. 

For the electromagnetic field" in the grooves we have used unprimed 

coordinates. Finally, the coordinates of a point outside the horn 

antenna will be unprimed again. For the components of the spherical 

hybrid mode we find 

A Z R (2)(kr') [dP1v(COSO') I a v 
E (J' = -'-''-c,r"''',---- dO' 

l 
sinl~ I 

COS l~' 

(31 ) 

(32) 



E~, 

Z H , o r 

Azli(2)(kr') 
I 0 v [ pI (cosf)') I 

d~ (2)(kr') 
v 

r' [ sin 0' v jI<Hv (Z) (kr') 

AZ dP v I (cos:)')] 
+ --- -~~~--

AIZo dO' 

dr' 

sin ,p' 

= Z A v (v+ I ) P I (cos 

j'::,,: r' 2 v[ ll') sin~'H (2) (kr') 

= 

v 

AZH(2)(kr') A 
I 0 v 2 

r' AZ 
I 0 

dpl (cos8') 
v -~-71~----
d8' JkH(2)(kr') 

v 

d~ (2)(kr') 

dr' 

- ,I pI (COSO'~sin¢' 
I 0 'J 

AZH(2)(kr')t dpl (cos[)') 
v 

s,nll' v J 
A2 I 

+ --- --- pi (COSI;') x 
AIZo sinO' v r' dO' 

jkH (2) (kr') 
v 

dHv(Z)(kr'] 
coscP' dr' 

AI 
In the expressions (31) to (36) incl. the unknown quantities are 

A2 

and v, and can be found after applying the boundary conditions E" 0 
'" 

and ZoHq = 0 for 0' = 00 From these conditions we find that 

± 

and we observe that the simple solution (37) is possible because 

ZOH¢, = 0, which is the case for grooves with a depth equal to a 

quarter of a wavelength. 

So two modes with the same ¢'-dependence, but different O'-dependence 

can exist in the corrugated conical horn. The mode for which AZ=Z"A I 

is called the m/vl)-mode, while the other is the HEI~2)-mode. 

(33) 

(34) 

(35 ) 

(36) 

(37) 
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Substitution of (37) in the equation ZoH~/= 0 yields the characteristic 

equations 

IdP~(COS(-)') 
l dO' ± sinO' 

pi 
v (cosO') tv (kr'~ 

dH (Z) (kr') 

(J=o 
a 

o (38) 

The function ~v (kr') = 
I 
jk 

v 
dr' Hv (Z)(kr') 

and is a complex function 

Using the asymptotic expansion of H (2)(kr') we see that 
v 

lim ;v(kr')= -I 
kr I ~'Y 

For this case we have solved (38)for the lowest value v. The results are 

plotted in Fig. 6. For purposes of comparison we have also plotted the 

value of v of the TElv-mode and the ~Iv-mode in a perfectly conducting 

conical horn. The function Cv (kr') has also been computed for finite 

( I ) 
values of kr' and for those values of " which occur for the HEI v -mode 

in a very large horn and with flare angles 0 = 15°, 30°, 45°, 60° 
° a and 75 • The results are plotted in Fig. 7 and show that the approxLma-

tion F,v(kr') g -I is also valid for rather low values of kr'. Let us now 

calculate the transverse electric and magnetic field components of the 

( I ) HE
lv 

-mode. 

Substitution of Allo = AZ in (3Z) to (36) incl. glves 

E 
0' 

=-

Z H , 
o ¢ 

A Z H (2)(kr') 
lov £(1) 

r' I v 

A Z H (2)(kr') 
f (I) I 0 v 

\ . 
r I v 

A Z H (2)(kr') 
lov £(1) 

r' I v 

(0') cos ¢' 

(0' ) sin q,' 

«() , ) SLn ¢ , 

({)') cos ¢' 

+ -,..:.......,. pi (cos')') 
5 in!) I \! 

(39) 

(40) 

(41) 

( 42) 

(4 J) 
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Comparing (43) with (JtlJ we see that all the transverse electric and 

magnetic components are zero for D' = 0 • Especially the fact that 
a 

E 
8' 

with 

rise 

tion 

o for l)' = 0
0 

is important. IJecause in a conical Ilurll ~lntt'lllla 

perfectly conducting walls bothZ H ,and E , are non-zero and give 
o ~ U 

to the high side-lobes in the E-plane [2]. In Fig.S the func-

f (I) (8') has been plotted for the same values of vas in Fig.7. 
Iv 

The main conclusion is that the function f (1)((,,) has a maximum for 
Iv 

()' = O. 

-100 

-50 

o 30 60 a'.deg. 

Fig, 8 fJ~I) (0') against e' with v as parameter 

a 0 · 150 v · 8.74 
a 

b 8 · 30
0 

v · 4.19 
a 

c, 0 · a 
45

0 
v · 2.71 

d 0 · 60
0 

v · 2.00 
a 

e 0 · 75
0 

v · I. 59 
0 

90 
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For the H E (2) 
Iv -mode we find 

A Z Ii (2)(kr') 
f (2) 

EO' 
I 0 v 

(0' ) cos $' - r' I v 

A Z Ii (2)(kr') 
f (2) I a v 

(0' ) sin ~ , E<p' = - r' Iv 

A Z II (2)(kr') 
f (2) 

ZOH() , 
I 0 v «()' ) sin ~' r' Iv 

A Z Ii (2)(kr') 
Z H =-o <p' 

I 0 v 
r' 

f (2) 
Iv «()' ) cos rp' 

with f (2) (0') 
Iv 

dp 1(cosO') 
v 

dO' 

(44) 

(45) 

(46) 

(47) 

( 48) 

Tile function fl~2) ( 0') has been plotted in Fig. 9 for the same values 

of ~ as in Fig. 8. We observe that fl~2)(O) = O. In the next section we 

shall prove that the radiation pattern of the HEI~2)-mode has a dip for 

(.)' = O. 

So this mode 15 not suitable for antenna applications. 



-3.9-
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4. The radiation pattern of the corrugated conical horn antenna 

4.1 Computation of the radiation pattern 

The elec.tromagnetic field of a radiating conical horn antenna can be 

found from the following representation theorem. ~~. 

G(r,r')dS 

-jkir-r'i e --
4rr i r-r' i 

-------------

z 
Il' 

I-I' 

1: 

--- --

Fig. 10 Conical horn antenna with coordinate system. 

p 

I 

I 

I 

y 
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In these expressions we have assumed that the outside of the horn antenna 

is perfectly conducting and no currents flow on'the outside of the antenna. 

The aperture SA is part of a spnere with radius r'. 

The far field approximation gives 

-jkr 
e 

EO (r.O.~) = r 
jl( 
4ij 

A 

cos a' - Z H I cos 0 } sin a () 

+ {E , o + Z H", cos 0' cos (J} cos (</> -' ¢') + Z H , 
a ~ a ¢ 

sin 0 sin 

($ - t') + 

exp [+ jkr' {cos ') cos Ii' + sin (I sin Ii' cos 0 - 'P')}] (r'l2 sino'd'" d'p' (51) 

E (r.O,¢) = 
~ 

-jkr 
e 

r 
cos H + Z H ,cos 

a ¢ 

+ E , cos (J' cos (j t cos (¢ - ¢') + E , 
¢ , ¢ 

sinl l sin 

exp [+ jkr' {cos I) cos 0' + sinO sin ()' cos (p - .,.'l}] (r'l2 sin ,'d,;' d.~' ('>2) 

Substituting (39) to (42) incl. i (el) d ( n J an 52) and uSing the relation 

ejkr' sino sin lJ' cos(~-¢') 

We obtain 

'k - jkr 
E =-~~AZ 

,: 4 r I a 

~ (2)(kr') 

v r' (r,)2 cos ¢ 

and 

E 
,t = 

wi tli 

'k -jkr Hv (2) (kr') 
~ ~ A Z -'---,~_ (r,)2 
4 r lor' 

F(".',<"kr') =1'''0 [{(,OSli + COSlJ'}{'u(kr' 

cos n (1'-')') 

+ cos 0 cos G'} {Jo(kr' sin G sin iI') -J2(kr' sin 0 sm (J')} + 

(53) 

(54) 

(55) 

+ 2j sin0 sinO' JI(kr'sl'nosl'n(J')l f (1)(rJ') r'k' :1 I., ' exp J r cos(lcos(", sin' 'd" (,", 

-
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2 0 
From the equation (54) and (55) we derive that IE I + IE'hl - is 

U ~ 

independent of ,r. It should be noted that the same result has already 

been found in [zJ for the case that the flare angle was small. So the 

radiation pattern of a corrugated conical horn antenna is symmetrical, 

provided tile depth of the grooves is a quarter of a wavelength, because 

in that case Z H = O. o 1'< 

Substitution of (44) to (47) incl. in (51) and (52) shows that the 

HE(Z)-mode has also a synunetrical radiation pattern, but with a dip 
i'J 

for = O. This type of radiation pattern is not studied in tllis paper. 

From equations (54) and (55) we derive that 

I E,('J, okr') 

E ("," kr') 
o 

E (I," ,kr') 
'1, 0 

E (0,'; ,kr') 
'1 0 

FC',(l ,kr') 
o 

F(O"I ,kr') 
" 

10 IF (0 ,0 ,kr') I 
The function 20 log F(l),Oo,kr') has been 

° 
calculated for several values 

of lJ and kr'. From these calculations the beamwidth has been derived as 
° 

I 0 0 0 0 0 a function of kr for 0 = 15 , 30 , 45 ,60 and 75 . The results are 
a 

plotted in Fig.11 to Fig.15 incl. It should be noted that these results 

are found under the assumption that the function c (kr') = -I. However, 
v 

this is not valid for small values of kr' as can be seen from Fig.7. 

For the case that c$kr');t -I we see that (38) has no real solutions 

for v. As (38) will have to give real values of v, we assume that 

with w 

= exp-j [w 

= arg c (kr'). Again it is still possible to satisfy the condi
v 

tion ZoH~, = O. However, then E~,~ 0, which is in agreement with the 

results of the first part of this paper (equation (Z8) et seqq.) 

(571 

To satisfy the boundary condition E~, ~ 0 one needs a set of infinite 

modes. So the assumption (58) can give only an approximation of the aperture 

fields of small corrugated horn antennas. Starting from (58) several compu-

tations of the radiation pattern of small corrugated horns have been carried 
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out. The conclusion is that there exists a slight difference between the 

E-plane pattern and the H-plane pattern. This difference has also been 

found experimentally. ~4J . However, the difference is so small that it 

does not impair the performance of the antenna. So for a practical design 

of these antennas one can use the average value of the beamwidths in the 

E-plane and the H-plane. 

For purposes of illustration the result~ of calculations based on (58) 

and those based on the assumption ~ (kr') = -I are included in Fig.16. 
v 

The results are in agreement with the previous conclusions. So it was 

decided to use the aperture fields (39) to (42) incl. also for the calcu-

lation of the radiation pattern of small antennas. 

90 0 
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Fig. II Beamwidth against kr' for ('0 '" 15° ; dots indicate experimental 

results obtained with antenna I at a frequency of 8.33 GHz ; 

diameter waveguide is 28 ~. 
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Fig. 12 Bea.tllWidth against kr' for U '" 30° ; dots indicate experimental 
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results obtained ~ith the antennas 2. 3, 4 and 5 at a frequency 

of 14 GHz. 
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results ohtained with the antennas II. 12 and 13 at a frequency 
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Fig. 16 Radiation pattern of antenna II. 

Calculated ~ \' (kr') = -] • H-plane ;. E-piane 

calculated [', .. (kr')" -I X H-plane ;OE-plane 

experimental results; frequency 14 Gliz. 

___ E-plane 

-------- H-plane 



It should be noted that the computations from which the Fig.1 I to Fig.IS 

incl. are derived, are based on the assumption that E 0 and Z H = 0 
IP' a ¢J' 

at the boundary'" =0 . If it is possible to realise the above boundary 
o 

condition independent of the frequency, tben broadband feeds can be 

realised and Fig.11 to Fig. IS incl. can be used as design charts. 

[n section 4.2 we shall discuss the practical use of these charts and 

tlleir limitations. 
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Experimental investigation of tile corrugated conical il0rn antenna 

\ 
/4 - gruoves 

A comparison of the theory of 4.1 with experimental results is possible, 

provided the depth of the grooves 1S a quarter of a wavelength, because 

only in that case the boundary condi t ion Z H" = 0 is sa t is fi ed. However, 
o :t' 

there are two exceptions. First, we conclude from Fig.S that the depth 

of the grooves should be larger than a quarter of a wavelengtll if tile 

flare angle 00 is small. For the case of a flare angle °
0 

= 150 some 

experimental results have already been published ~S J. Secondly, for 

short horn antennas the boundary condition E¢,= 0 cannot be satisfied 

with the simple electromagnetic field given in the expressions (39) to 

(42) incl. However, a useful approximation is discussed in [14J ' where 

experimental results are also given. Although the experimental results 

of [14J and Gs] show good agreement with the theoretical predictions, 

there is a need for a more extensive experimental verification of the 

theoretical curves of Fig. II to Fig. 15 incl. Therefore, several 

antennas have been constructed in such a way that a wide variation in 

both the flare angle 0 and the length r' of the antennas was obtained. 
o 

All the grooves were of the same depth and this was a quarter of a 

wHvelength at the frequency 14 GHz. 

It should be noted that the antenna with () = 15° is an exception to 
o 

this rule. The relevant dimensions of the antennas are listed in Table I. 
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Table [ 

antenna (I r I d b t 

° [enD @mJ G'Dil @ .. J 

I 15° 17.60 0.9 0.20 0.20 

2 30° 3.50 0.535 0.26 0.04 

1 30° 4.20 0.535 0.26 0.04 

4 30° 6.60 0.535 0.26 0.04 

5 30° 9.00 0.535 0.26 0.04 

6 45° 2.78 0.535 0.26 0.04 

7 45° 3.71 U. 53') U.26 0.04 

8 45° 6.17 U.S '35 0.26 0.04 

q 45° 8.66 0.535 0.26 0.04 

10 45° J 3.57 0.535 0.26 0.04 

1 I 60° 2.80 0.535 0.26 0.04 

12 bOO 4.00 D.535 0.26 0.04 

13 60° 13.64 0.535 0.26 0.04 

II. 75° 5.08 0.535 0.26 0.04 

I., 75° 10.23 0.535 0.26 0.04 

.~--------- --

The radiation pattern of these antennas has been measured for 14 GHz and the 

results are plotted in Fig. I I to Fig. 15 incl. For short antennas the average 

values (If the beamwidths in the H-plane and the E-plane have been plotted. 

'[lIe conclusion is tllat the experimental results are in good agreement witll 

the theoretical predictions, expecially for I) 

° 
75°. If the flare angle 

= 75, then there exists a discrepancy between theory and experiment, but o 

t\~e radiation pattern is still symmetrical. 
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It is very interesting to investigate the effect of tile length r' of the 

antenna on tIle radiation pattern. For tllis purpose tile.radiation patterns 

of two antennas with the same flare angle but different lengtits have been 

given in Fig. 17. fa hold the picture clear we have not plotted the theo-

retical patterns in Fig. 17, but the agreement is good, especially for the 

large antenna. We see that a large antenna has a flat radiation pattern and 

is very suitable as a feed in a paraboloid reflector antenna. It seems 

that the greatest length that can be used is not determined by electrical 

requirements but merely by mechanical ones, such as weight and space. 

For the application of corrugated conical horn antennas it 15 necessary 

that they can be used also for other frequencies than for which the 

grooves have a depth of a quarter of a wavelength. This question is dis-

cussed in section 4.2.2. 

-10 

-20 

Fig. 17 

I 
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I 
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I 

b 

Experimental radiation pattern of a large 
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antenna with the 5 fl arne are angle; frequency J4 GHz. 
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4.2.2 The bandwith of the corrugated conical horn antenna 

The bandwidths of the antennas listed in Table I have been studied by 

measuring the radiation pattern of each of them as a function of the 

frequency. Lack of space compels us to give only some illustrative 

examples. Before discussing the experimental results obtained with these 

antennas we would prefer to surmnarise first the considerations which 

have led to the choice of the dimensions of the antennas. From the 

results of section 4. I we conclude that good radiation patterns are 

obtained if we choose kr' large. To obtain the physical dimensions of 

the antennas within reasonable limits it v ... as decided to carry out the 

measurements for frequencies higher than 10 GHz. 

The diameter of the circular waveguide, which is cuupJed to the COllE', 

was so chosen that the cut-off frequency of the dominant TEll-mode was 

approximately 10 GHz. The diameter of the waveguide is 18mm. In Table II 

we have collected the cut-off frequencies fc of the higher modes, which 

will probably be excited at the transition of waveguide to cone if the 

frequency is raised. 

Table II 

mode fc GHz 

TE f f 
9.767 

™OI 
12.760 

TEn 16.203 

TMII 20.332 

Frum trlis table we see that three higher modes can be excited if the 

! rt~quf'ncy 1.S ra i sed to above 20 (;]!z. lIowever, the TMO I mode and the 

n< mode' do nut have the same ,~,I-dependellce as lhe TEll mode. 
I! 



So it is reasonable to assume that these two modes will not be excited. 

This is not the case for the TIill mode, which has the same $'-dependence 

as the dominant mode. So it was decided to restrict the measurements to 

frequencies below 20 GHz. To prevent a large mismatch the lowest frequency 

was chosen to be 12 GHz. In [16J it is stated that the depth of the 

grooves should be larger than a quarter of a wavelength in order to 

prevent the occurence of a surface wave. Witli a V1ew to investigating 

this phenomenon we have chosen the depth of the grooves so tilat at 14 GHz 

it is a quarter of a wavelength. 

For conveniently constructing the antennas the depth of all the grooves 

was chosen equal and the boundaries of the grooves as straight lines. 

The purpose of the measurements which have been carried Dut can be [ormu-

lated as follows: 

(i) to study surface wave phenomena, if any; 

(ii) to prove that a symmetrical radiation pattern 1S obtained if the 

depth of the grooves is a quarter of a wavelength. These measure-

ments have already been discussed in the previous section; 

(iii) to investigate the deviation between tile experimental and ti,e 

theoretical results of Fig. II to Fig. 15 incl., which 3re hased 

on the assumption that ZoH~ ,and E,p ,are zero, independent of the 

frequency. 

The results of the measurements of the antennas are plotted in Fig. 18 

to Fig. 23 incl. The solid line indicates the theoretical beamwidth, 

based on the assumption that Z I{ ,and 1~~lare zero. The main conclusion 
a ~ '¥ 

IS that the scalar feed is indeed a broadband feed. On closer eximination 

w~ observe that for frequencies for which the depth of the grooves is 

smaller than a quarter of a wavelength, a sudden ctlange occurs in the 

shape oi the radiation pattern. 
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Probably this is caused by a surface wave, as discussed by Kay [16J ' 
and it is claer that for the moment this phenomenon determin~s the 

lower limit of the frequency band for which the scalar feed can be used. 

For frequencies between 14 GHz and 20 GHz we observe a good agreement 

between the experimental results and the the0retical ones represented by 

the solid line, provided the flare angle is smaller than 750 and the 

length of the horns 's large. Apparently we may conclude that the 

boundary conditions ZoH<j>' ~ 0 and E4>'. 0 are valid in a rather large 

frequency range. This fact gives us the opportunity to use Fig. II to 

Fig. 15 incl. as design charts. We see that if the horns are short and 

the flare angle is smaller than 75°, the patterns are still symmetrical 

in the frequency band 14 GHz to 20 GHz, but the agreement between the 

theory and the experimental resul ts is not so good. [n this case Fig. II 

to Fig. 15 incl. can be used only to estimate the beamwidth for frequen-

cies for which the depth of the grooves is not a quarter of a wavelength. 

From Fig. 22 and Fig. 23 we observe that there is a discrepancy between 

theory and experiment, if the flare angle (' ~ 75° even if the length 
° 

of the horn is large. 

We see that 'n this case, too, the radiation pattern is symmetrical. The 

above discrepancy is probably caused by the excitation of higher 

spherical hybrid modes. 

'tie also have investigated the V.S.W.R. of the antennas as a function of 

the frequency. One typical example is given in Fig. 24. Unfortunately,there 

is a large mismatch at the frequency for which the deptll of the grooves is 

• quarter of a wavelength. However, we have also seen that for frequencies 

higher than the one mentioned above good radiation patterns are Obtained. 

So it is recommendable to choose the depth of the grooves a little larger 

than a quarter of a wavelength for the lowest frequency [or which the an-
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To study the influence of the tllickness of the dams we llave investigated 

tile properties of an antenna witll the same flare angle and the same lengtll 

of the horn antenna as antenna 9. The depth of the grooves was also 

0.535 cm, but the thickness of the dams was 0.34 cm. After measuring the 

radiation pattern as a function of the frequency we observed that antenna 

9 was better with regard to the bandwidth. Finally, we have constructed 

two antennas. In the first antenna the depth of the grooves was a quarter 

of a wavelength at the frequency of 14 GHz. The second antenna has grouves 

with a deptll equal to three quarters of a wavelength at the above frequency. 

fhe other dimensions of the two antennas were identical. Tile antennas 

exhibited the same radiation pattern at 14 CHz. This is in good agreement 

with the theoretical prediction (27). 
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), Culll'iusinns 

The electromagnetic field in the conical corrugated horn antenna and its 

radiatilln pattern have been studied tilcoretically. Tile main conclusion uf 

this invl:.'stigation is that the conical corrugated horn antenna has a 

symmetrical radiation pattern, provided the depth of the grooves is a 

quarter of a wavelength. The theory of the scalar feed has been formula-

ted for this case. An experimental investigation sh?ws that there is a 

good agreement between the experimental results and the theoretical 

calculations if the depth of tile grooves is a quarter ()f a wavelengttl. 

Many measurements have been carried out at frequencies of 14 GHz to 

20 Gllz. From these measurements we can draw tile following conclusions. 

For lQrge antennas with a flare angle , smaller than 75 0 there is a 
o 

good agreement between experimental results and calculations based on 

the assumption that E I and Z H I are zero at the boundary ,p 0 ~ 
=( '0' even 

at frequencies for which the depth of the grooves is not equal to a 

quarter of a wavelength. In case the flare angle is smaller than 7~)() 

and the antennas are short, ag.ain resonable agreement between theory and 

exper iment has been found. The measurement of the V. S. IV. R. siJt.)WS that 

one should choose the depth of the grooves a little larger than a 

qllarter of a w'avelength for the lowest frequency [or \.Jhich the ;:mtt~nna 

wil I be used. The highest frequency which can be used is determined 

by Lll€ fact that the excitation of higher modes has to be prcventeJ. 

An i;nprovement of the bandwidth of the waveguide coupled to the cone 

will probably result in improvement of the bandwidth of the anlenn;j. 
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A I 

Apppndix A 

In this appendix we shall describe a method of finding the solution of 

(4). This means to find n for prescribed krl and kr2' The problem is 

equivalent to the problem of finding the value of n in the Bessel equa-

tion 

d (r2 dR ) + {(kr)2 - n(n + I)l 
dr dr I R = 0 (A. 1 ) 

subjected to the boundary conditions R(r) = 0 for r 

I.et us use the abbreviations x = kr, kr l = a, krZ band n(n+l) = \ 

Next we shall transform equation (A. I) to a set of difference equations. 

The difference approximation of ~ (x 2 : ) is given by [9 J : 

2 
(R. I - R.) - x. ! 

J+ J r_ 

with R. = R(x.), x. = a + jA and A 
J J J 

(See Fig. A.I) 

a j -1/2 j+1/2 

j -1 J j+1 

Fig.AI 

(A. -,) 

(h-a) (H+I). 

b 



Substitution of (A.2) in (A. I) gives 

I, • ,. I 
r 2J x. R. 

J J 

Applying the boundary conditions R" ~ ~1+1 ~ 0 by substitution of j ~ 

and .i = M respectivply in (A. '3) givps rise to tile next two t:.'qu<lti.ons 

[_('1\2) 2 -(~r ] e3/2
\ 

2 z 
R2 ,1R\ + xI R +-) 

I " 

,1nu 

C~y 1\1-1 + [ -(~ r -(~y + x Z ] ,'\ ,'I ~1 Rn \RH 

Equations (A.3), (A.4) and (A.5) together can be written as an 

problem of a symmetrical tridiagonal matrix 

0 RI 

RZ 
= 

0 
~-l 

~1 

A.2 

(A.1) 

(,\.4) 

(t\. f) ) 

(A.6) 

Equation (A.6) has been used for the computation of .'. and thus of n as 

a function of krl and kb [9], Go] . The results are collected in Fig.3. 

It shouls be noted that the value n is associated with the dominant mode. 



Appendix B 

To find the value of n whi~h satis[i~d (12) we adopt the same procedure 

as used in app~ndix A. Now we have to solve (A. I), but with the boundary 

conditions 

d 
dr (rR) ~ 0 for r 

In this case we find again 

R. I + r 

(B. I) 

R. ~ 
J+I 

. [( . 
J 

(B.2) 

A difference approximatllm of t.he lHnltlJary conditions (B.t) yields 

(H. \) 

and (B.;,) 

Substitution of j ~ 0 in (B.2) and application of the "<lndition (B.3) 

gives 

SubsLltution of J 

• I{ 
() 

(B. ') 

H+I 1n (B.2) and application uf the condition (8.4) 

r'~~' , t'~ 'I~' ~,;] 'I, ' t ("": 'I)' (5'~)" ',;, J "", 
\1\1+1 (B.b) 

B .1 



Unfortunately. it LS nut possible to take the equations (B.2). (8.5) and 

(H.6) togetlier and to write them as an L'igenvalue problem of .:1 symmetrical 

tri.diagonal matrix with the same l'igenvalues which are of interest to us, 

\)ut with slightly different cigel1vectors. After some algebraical manupu-

lations we find the matrix mentioned abnve, provided we substitute 

" R R'" 
a 0 

~ ~:l) 2 . (~) , :,] with , t (B.7) 
0 ~ x_I 

.. 
ant! 

M+I 
I' 
'x+ I I'H+I 

~ [ ~";~ '( )' " J x, " 

'",' i til 
,+ 

+ ~i \ II. HJ (M+I ,\ 
'11+2 

;md 'j .R. R, 
J J J 

( !l . 9 ) 

with , , 
J 

for j • 2 .... ~!. 

,\fter these preparations we fi,nd lhe t'igpnJalu('s' and thus n from lilt:' 

I: 
1 

I' . '11 
pi< 
"'I , + I 

.. 
'{ 

" 
I~ 

'I 
" . 
"1. I 

(B, 10) 

B.2 



Appendix C 

The depth of the groove under the condition that Z H = () at the opening 
o t· 

uf the groove can be computed by means of equation (20). However, to 

find the angle [II = "2 - (; we do not use (20), but prefer another 
o 

numerical technique. We have to solve the differential equation of 

Legendre 

d ( . dY(i'), [ I Sln ,'+ n(n+l) - _---,'c-_ 
d" . 2 

S 1n \) 

} (I) o ----
sln,l dr. 1 

with, for a 'I'M-mode, the homogeneous boundary conditions 

y' (cos " ) 0 
0 

and 

y (cos ') ) 
2 

0 

integrating (C.I) by means of the Runga-Kutta methnd of second lIrder 

[I ~ with initial values 

dnd 

y'(cos " ) = 0 
o 

y (cos 0) 

unti 1 Y (cos I) :::: 0, we find the value of (1
2 

and thus of 2 

It should be noted that ti,e choice y ( cos ,) ) 
o 

lS permissibte 

because buth equations (C.l) and the boundary conditi()ns (C.~) and 

(C. I ) 

(C.2) 

(C. 3) 

(c . .') 

(C.4) 

(C.3) are homogeneous. The results of the computations can be fl)Und in 

(;.1 
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