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Abstract

The electromagnetic field in the grooves of a corrugated conical horn antenna
has been investigated. The investigation started by modifying the boundaries
of the grooves in such a way that they coincided with the spherical
coordinate system. The purpose of the study has been to find the conditions
under which E¢, and ZDH¢. are zero at the opening of the grooves, because in
that case a s&mmetrical radiation pattern is obtaimed. This assertion will be
proved in the second part of the paper. Under the condition that the width of
the grooves is small compared with the wavelength, the following results are
obtained. The dominant mode is a TM-mode and, neglecting the effect of the
higher modes, we found that E¢,<< E v The second coanclusion is that the depth
of the grooves should be equal for all grooves not too close to the apex of
the cone and equal to a quarter of a wavelength. In that case we found ZOH¢_

equal to zero,
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Introduction

The illumination of a paraboloid reflector antenna depends on the proper-
ties of the feed used. In order to obtain a high efficiency it is neces-
sary that the radiation pattern of the feed is as flat as possible and
produces little spillover energy. Besides, it is desirable that the ra-
diation pattern of the feed is symmetrical. Finally, the feed should
possess a well-defined phase centre. For some applications, for instance
for an antenna for line-on-sight communications it is necessary that the
feed possesses the above properties in a large frequency range. A feed
having all these properties has been proposed by Simmons and Kay [I:]and
they called it scalar feed. The scalar feed is a conical horn antenna
with grooves, perpendicular to the wall of the horn. The flare angle of
this feed can be small or large. The paper of Simmons and Kay gives only
some experimental results without a theoretical explanation of the radia-
tion pattern of the scalar feed. A shortcoming of this paper is that it
does not contain useful design information concerning the scalar feed.
This is mainly caused by the fact that a theoretical explanation of the
radiation pattern of these feeds was not available at the moment of pu-
blication.

The investigation of the scalar feed is greatly facilitated by making a
distinction between scalar feeds wiLh a Qmall and with a large flare
angle. The radiation pattern of a scalar feed with small flare angle can
be found by treating it as an open circular waveguide radiator and, if
necessary, with a quadratic phase field distribution across the aperture.
This has already been done by Jeuken and Kikkert [2:]. They studied, both
theoretically and experimentally, the radiation pattern of a conical horn
antenna with small flare angle. The inner wall of the cone consisted of a

corrugated boundary, composed of circumferential grooves. They found a
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good agreement between the experimental and theoretical radiation

pattern for the frequency range where the depth of the grooves was
approximately a quarter of a wavelength. In het paper[:Z] the effect of
the corrugations has been described by means of a impedance boundary
condition, thus neglecting the detailed behaviour of the electromagnetic
fields in the grooves.

Especially the frequency -dependent behaviour of the electromagnetic
field in the grooves has not been taken into occount. Therefore it was
not possible ko find a theoretical explanation of the fact that the an-
tenna has a symmetrical radiation pattern in the frequency range where
the depth of the grooves is approximately a quarter of a wavelength.
Summarising, we may say that there 1s a need of a better understanding

of the effect of the corrugation, especially as a function of the fre-
gquency. Moreover, it is desirable to compute the radiation pattern of

the scalar feed with large flare angle in order to obtain useful design
information concerning this feed. It is the purpose of the present

paper to provide this information.

The paper consists two parts. In the first part the electromagnetic
fields in the grooves will be thoroughly discussed and is the basis for
the second part of the paper where the electromagnetic fields in the feed
and the radiation pattern of the feed will be computed for various dimen-
sions of the horn antennas.

Besides, a comparison with experimental results will be made and detailed

information concerning the design of a scalar feed will be given.
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2. The electromagnetic field in the groove,

The scalar feed is a conical horn antenna with grooves perpendicular to
the wall of the horn (Fig.l)}. The computation of the électromagnetic
field in a groove is a difficult task, because the boundaries of the
groove do not coincide with a coordinate system in which Maxwell's
equations can be easily solved. Therefore, we change the boundaries of
the groove in such a way that they coincide with the spherical coordi-
nate system. For a groove not to close the apex of the cone this is a
good approximation.

One such groove is sketched in Fig., 2.

Fig. 1 The scalar feed.

Fig. 2 Spherical groove and spherical coordinate system.
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The TE-mode

The characteristic equation of the TE-mode

In this section we study the conditions under which a TE-mode can
exist in a groove. The components of a TE-mode can be derived from

the potential Fr (r,0,¢) in the following way [31 :

2
] 3 2
E =0 H == (—+ k" )F
T r o Julg ar22 r
g F
E = —) oFy H o 1 ° r 1
0 r sin® 3¢ 0 Jjwhp T 9rad
2
1 %% S WO U WO
E¢ T 30 () jwug, T sin@ 3ara¢

The function Fr {r,0,¢) has the form

F_ (1,0,9) = kr (anjn (kr) + by, (kr))(cnm P: (cos 0) + dan: (cos G)x

(em cos m¢ + fm sin mrb) (2)

In this expression the symbols used have the following meaning

jn (kr) and y_ (kr) are the spherical Bessel function
n . .
and the spherical Neumann function
respectively.
P: {cos @) and Q: (cos 9) are the associated Legendre func-

tions of the first kind and the
second kind respectively,

bn' c d

e and f i i
om® %am’ ©m " are constants which are determined

by the boudary conditions and the
strength of the electromagnetic
field at the opening of the groove
0 = 0,.

The value of m depends on the way in which the electromagnetic
field in the groove is excited. In most practical cases we have

m= |,
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Application to the boundary condition E, = 0 for the boundaries I

and III yields the equations

a jn (kry) + bn Yn (krl) = 0

(3)
a, jn (kry) + bn ¥, (krp) = 0
These equations have a solution only if the determinant
i CGery) v, (erp)
= 0 (4)
5, (krp) y, (kry)

1f there exists a solution of (4), then the value of n is known
a%/%
and (3) gives the value of the ratio n. A special solution of

{4) exists if k b = 7, then n = 0. The condition E¢ = 0 for the

boundaries I and IIT is satiesfied automatically. The third

boundary condition, E, = 0 for boundary II, yields:

¢

Pz' (cos Q) + dnm Qﬁ' (cos 0) =0 (5)

cnm
O = @2

where the prime denotes differentiating with respect to cos O.

From equation (5) we find the ratio cnm/dnm. From the considera-
tions made so far still another conclusion can be drawn. The fact
that e and fm do not depend on the boundary conditions implies

that two solutions Fr are possible; one with fm = 0 and the other
with e, = 0. Summarising, we may say that if there exists a scolution
of {4), which means that a value of n can be found which satisfies
(4), then there exists a TE-mode in the groove and the components of

this electromagnetic field can be derived from the function

Fr (r,0 ¢) = kr(yn(krl) jn(kr) - jn(krl) yn(kr))(Q: {cos ()2) P: (cost)

= P:'(COS ©2) Qﬁ ( cos 9)) (em cos m¢r + fm sin md)) (6)
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If (4) has no solufion, then Fr (r,0 ¢) = 0 and no TE-mode can exist
in the groove. The question whether (4) has a sclution can be
answered only after numerical analysis. However, in case the width of
the groove is small compared with the wavelength, equation (4) can

be simplified.

Using the abbreviations kr; = x kb =h and kr, = x + h and
applying the Taylor expansions
L}
Jx e m) =5 0+ f ()4 0(n2) )
1
2
and yn(x + h) = yn(x) + h Y (x) + 0(h<) (8)
we may replace the determinant in (4) by

: jn(x) yn(X)
h = bWl i O,y ()} =

' : (9)
iy ® ¥, (%)

xmt:r

e = [ —— —— . [ —

In this expression W represents the Wronskian [4:]. So if kb << 1
then the determinant in (4) is never zero and (4) has no solutions,
so that no TE-mode van exist in the groove.

A numerical analysis fo? finding the value of n as a function of kr;
and kb is described in Appendix A. The results are given in Fig. 3.
From tpgﬁswgﬂggsimwe see that n is approximagﬁ}y a linear function
of kr|. In conclusion we may say that no TE-mode exists in the

groove, provided the width of the groove is smaller than half a

wavelength.
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2.2 The TM-mode

2.2.1 The characteristic equation of the TM-mode

The TM-mode in the groove can be derived from the potential

A (r,2,9) [3:] by means of the following expressions

r
2 .

E o= —— (2= +k2)a H =0

r Jjweg ar2 r T

a2

B e ) AL g o= 1 aér (10)

0 jmsor arao 0  rsind 8¢

2 -

PR I - P e

¢ jwe, r sin® drs¢ ¢ r d

The function Ar (r,9,¢) has the form

Ar (r,0,4) = kr (anjn(kr) + bn yn(kr))(cnmP: (cos 0) + dani_{]1 (cos G))x

(%m cos mp + fm sin m¢) . (1

Application of the boundary condition E¢ = 0 for the boundaries I
and IT1 gives rise to the next equation
jn (kr ) + kr, j; (kr) ¥, (kry) + kr) y; (kry)
0 (12)
. :t
i, (kx) + kry g (krp) Y, (kry) + krop y; (krz)
Again, a special solution exists if kb = n; then n = 0
If there is a solution of (12), then Ar {r,0,¢) has the following

form
AL (,0,4) = kr [(yn(krl) s ke, y! (krl)) 5 (ke) = (jn(krl) . kr!j['l(krl));.
xyn(krglx
(Q: (cosd,) P: (cos Q) - pz (cos 09) Ql:: (cos e))x

(%m cos m¢ + f_ sin m¢) (13)
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In the derivationof (13) use has been made of the boundary condi-

tions E¢ = 0 for O = 0, and E? =0 for 9 = 9y 0f course, also in

this case we see that (13) represents two solutions; one with fm =0
and the other with e = 0. Next, we assume that the width of the groove
is small compared with the wavelength, so kb << 1. Applying the
recurrence formulae [5]

£, () =2 f () - £ (x) and

n+l (14)

£, 0 =f_ -2l 0,

Where fn(x) stands for jn(x), yn(x) respectively. Using the
expansions (7) and (8) in (12) we ohtain the equation

o & oy (X
[.h x][f.l_ﬁl:x_‘l - x] n+l n+l - - h—z[n(nﬂ) - xZ] a0 (15)
i, @) ¥, (%) x

So the solution of (12) for small values of kb is given by
n(n+l) = (kr)2  or (16)

ne=-4z [} + (kr])Z] 4 (17)

e ——— —

In the following considerations we shall omit the minus sign

because it represents the same solution as the plus sign. From
equation (17) we now see that n® kry if kry >> 1 and kb << 1 (18)
This result will be used in the following section. In conclu-

sion, we see that a TM-mode can exist in the groove if i1ts width

is small compared to the wavelength.

A numerical analysis of equation (12), based on the method des-
cribed in Appendix B gives n as a function of kry,for several

values of kb. The results are also collected in Fig. 3. Note that

n is approximately a linear function of kry, which is in agreement

with (18).



- g =

2.2.2 The components of the electromagnetic field of the TM-mode

From the preceding considerations we know that only a TM-mode can
exist in the groove, provided the width of the groove is smaller
than half a wavelength. So it is now interesting to investigate

the components of the electromagnetic field of this mode in more

detail,

In the second part of the paper we shall prove that the boundary
conditions E¢ = 0 and ZOH¢ = 0 give rise to a symmetrical radiation

pettern. Therefore, we shall first investigate the conditions

under which ZgH, = 0. From the general expression of Ar {(13) we see

¢

that ZOH = 0, if we can find a value of Oo which satisfies the

¢

the equation
1

P:' (cos ©_) Q‘: (cos 0,) = PT (cos 0,) Q (cos 9,) = 0 (20)

where the prime means differentiating with respect to the argument.
Useful insight into the behaviour of the groove can be obtained

if for the moment we restrict our considerations to the case that

kb << | and krI >> |. Then we know from equation (18) that n >> |,

So an as i ion " R
yuptotic expansion of Pn (cos Q) and Qn (cos 0) can be

substituted in (20).

These expansions are [6]

m o D{m+n+l) . -
Pn (cos Q) ?7313757 (47 sino) écos [(n+§)e -<% - %%] + 0(%) (21)
and

m . I(m+n+1)
Q (cos 0) T(n¥3/2) (251.:“6))i cos [(n+§)e + %-+ %ﬂ] + O(%) (22)

Substitution of (21) and (22) in (20) and using the relation[:7]
Lm'(u) = :EEZ Lm(u) - ————L——I i where

n I=u n (|..u2) n(u) » (23)
o (u) stands for PT (u) o i

n o (u) or Qn (u), we find after several algebraical

manipulations
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tan(n+}) (92-60) = tan(n+i)00 = (n+2) tand (24)
The solution of this equation is

o arctan  (n+2) tanfg + 1=

e, . (25)
1=20,1t, 2,

and for large value of n the approximation Olilégiil)is valid.

We know that n ¥ kr, so 9, = lzr-g-i%:-l-) (26)
The depth of the groove s (Fig.4) is now given by

s =y 0 = TEIDLA Gy, (27)

and the important conclusion can be drawn that the depth of the groove
is the same for &ll grooves that are far enough from the apex of the

cone.

Fig. 4 Spherical groove with definition of s.
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In the proof of (27) we have agssumed that the flare angle @0 is
large enough. So there is need for an exact computation of the depth

of the groove under the condition that Z, = 0 at the opening of

¢
the groove. Such a computation can be carried out starting from the
Runga-Kutta method and is described in some detail in Appendix C.

The results are given in Fig. 5 and we may draw the following con-

clusions:

6530°

85-45°

" 0,260°
8575°

e, rad

| 1 | 1 1 1
0 5 10 n 15

———————

Fig; 5 e against n with flare angle @, as parameter.
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(1) for grooves for which n > 15 the depth of the grooves
can be found using (27);

{(ii) for grooves for which 5 < n < 15, the depth of the
grooves is virtually independent of 90, if 0, < 30;

(iii)for grooves characterized by a low value of n and a
low value of OO we see that the depth of the grooves

is a function of both n and eo.

So it is always possible to design the grooves in such a way that
on¢ = () at the opening of 1he grooves. Let us now study the elec-
tric field at the opening of the grooves. First we note that E_ = 0
if on¢ = (), For the case of kb << ] some useful results can be

derived from the general expressions (10) and (13). After a large

amount of algebra we find

da_ (r-r|)2
0T " .y [n(nH) - (kr.)2] (28)
|

Using (10) en (15) we see that E¢ is zero in the groove. In the
proof of (28) use has been made of the Taylor expansion (7). This
expansion is not valid for low values of kr;. Se, for grooves in

the vicinity of the apex of the cone E¢ cannot be neglected.
Extensive calculations, which are not included, show that E¢IE “ 10‘3
r

for kr < 10 and kb=~ 1.
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2.2.3. The boundary conditions at the wall of the corrugated horn

The electromagnetic field at the opening of a narrow groove consists

of the dominant TM—mode and evanescent modes. Experlence teaches us
that calculations congcerning corrugated boundaries give useful results
if the evaescent modes are neglected [8:}. Accepting this approximation,
we find that Er is non-zero at the opening of the groove, while Er is
zero at the perfectly conducting dam between two successive grooves.
onr is zero at the cpening of a groove, but onr i8 non—zero at a

dan, because currents on the dam in the ¢ ~direction are possible.
Currents in the r-direction are not possible if the width of the dams
is small. This implies that Zoﬂ¢i8 zero at a dam. Moreover, we choose
the depth of the grooves in such a way that on¢ is zefo at the opening

of a groove. Finally, E_ is zero at the dam and at the opening of the

¢

grooves. Suppose that there are many grooves per wavelength. Then we

may formulate the following average boundary conditions at o = eo

(i) E_ and Z H_ are non-zero
r or g

{(1i) E¢ and ZOH are zero

$

Starting from these boundary conditions the electromagnetic field in

a corrugated horn will be calculated in the second part of the paper.
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3,1 Abstract

The electromagnetic field in the corrugated conical horn and its radiation
pattern have been calculated for the case that the depth of the grooves
was a quarter of a wavelength. The calculations are based on the boundary
conditions, discussed in the first part of the paper. Several antennas
have been constructed for verifying the theory. The conclusion is that

a good agreement has been observed between the experimental and the
theoretical results, at least for the frequency for which the depth of

the grooves is a quarter of a wavelength. From the many measurements

which have been carried out the following conclusions have been drawn.

For large horn antennas with a flare angle smaller than 75° there is a
good agreement between experimental results and the calculations based

on the assumption that

.and Z H  are zero at o' = Oo, even at frequencies

%y .
for which the depth of the grooves is not equal to a quarter of a wave-
length. When the flare angle was smaller than 75° and the antennas

were short, again a resonable agreement between theory and experiment
was found.

The paper concludes with rather detailed imformation concerning the

design of the scalar feed. Besides, design charts are included.
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3., The electromagnetic field in the corrugated conmical horn

In the first part of this paper we have studied the boundary conditions
which should be applied at the boundary 9'= Oo for the calculation of

the electromagnetic field in the region bounded by 0'< O,. By inspection
we see that neither a TE-mode nor a TM-mode can satisfy the boundary
conditions. In fact, the electromagnetic field in the region 0'< Gy s

a spherical hybrid mode. This mode can be understood as the sum of a
TE-mode and a TM-mode. The components of this hybrid mode can be found by

substituting

A (2)

Pt 4ty = 1 3 ' '
A (r',0",9") AR (cos ©') cos ¢' H N (kr') (29)

and

(2)

F_(r',0",6") = APl (cos 0') sin ¢ 0% (ke (30)

in equations (10) and (1) respectively and summing the TE part and

A (2)
™ part. In (29) and (30) H

{kr'} represents the spherical Hankel
function of the second kind. It should be noted that primed coordinates
are used for the description of the electromagnetic field in the horn-
For the electromagnetic field in the grooves we have used unprimed
coordinates. Finally, the coordinates of a point outside the horn

antenna will be unprimed again. For the components of the spherical

hybrid mode we find

E.v = A 7*1— y(vrl) p! (cos 0') cos ¢' ﬁ(z)(kr') (31)
r Juwegy r'2 v v

l al, Py M
L} T 1]
0 r do jkﬁv(z)(kr') dr A]Z

o}

-
l

31;0, Pi (cosO’)J cos §' (32)
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. n
Az H (2)(kr') dit (‘)(kr')
o=l = —1 Pl (coso") ] 2
1 [] * [] ]
$ r sin 0' v jkﬁv(z)(kr') dr
1 I
. A2 dP\J (cosi') sin o
A Z ao” &
170
= X&X:ll 1 31 : N (2) '
ZOHr, ZOA2 %] Pv {cos Q') sing Hv (kr")
Jwpe ¥
& (2) ' 1 ~ 1 ” (2) ]
A]ZoHv (k: ) A2 dPV(cosO ) 1 dH (kr')
Z H;' = 1 - ¥ E - t
o0 r AIZO de j kﬁ-v(z) (krl) dr
- ! 1 1 + '
oo Pv (cos O')l sin¢
?
A Z ﬁ‘(“)(kr') dPl(cosO') A
7 H - 10y . v . 2 1 Pi(coqu'\ %
o'¢! r' do’ AZ, sin0' TviTT g
A
| de(z)(kr'
: cosd’
jkﬁU(Z)(kr') dr
Al
In the expressions (31) to (36) incl. the unknown quantities are i
2
and v, and can be found after applying the boundary conditions E¢, =0
and Zoﬂf = g for 0' = Oo. From these conditions we find that
A
= + l
A.Z -
170

and we observe that the simple solution (37) is possible because
on¢' = 0, which is the case for grooves with a depth equal to a
quarter of a wavelength.

So two modes with the same ¢'~dependence, but different 0'-dependence

can exist in the corrugated conical horn. The mode for which A2=ZUA]

(1) (2)

v W

-mode.

is called the Hﬁ -mode, while the other is the H%

(33)

(34)

(35)

(36)

(37)
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Substitution of (37) in the equation ZOH¢,= 0 yields the characteristic

equations
dP! (cosa') , 1
AT ' =
o t TToo Ly (cos@') £, (kr") 0 (38)
=0
o
| dﬁv(z)(kr') : _

The functien ¢, (kr) = T T and is a complex function

~ (2) '
H, (kr')

& (2)

Using the asymptotic expansion of Hv {kx') we see that 1lim ¢ (kr')= -1

=V
kp'

For this case we have solved (38)for the lowest value v. The results are
plotted in Fig. 6. For purposes of comparison we have also plotted the
value of v of the TE!v-mode and the TN]v-mode in a perfectly conducting
conical horn. The function £, {kr') has also been computed for finite
(n
Tv

values of kr' and for those values of v which occur for the HE ~mode

in a very large horn and with flare angles 0, = 15, 30°, 45°, 60°
and 75°. The results are plotted in Fig. 7 and show that the approxima-
tion §£,(kr') ¥ ~1 is also valid for rather low values of kr'. Let us now

calculate the transverse electric and magnetic field components of the

HE (])—mode.
lv

Substitution of Alzo = A2 in (32) to (36) incl. gives

a2z 8 @Dy
E . =-—toV g1 (0') cos &' (39)
0! r' 1v

Azl (2)(kr')

_ 1%0v (1) b
E¢. = =a f]\J (0') sin ¢ (40
Alzoﬁv(z)(kr') Y e a1
ZOH“, == = flv (O'Y sin ¢ (4]
mzf P ) (42)
= - F 1) L} .
ZoH¢' = £, {(()') cos ¢
dP! (cos0")
. (]) ) 34 | 1 N 4
with flu @7 = dan' Y Sinot Ty (cos’) (43)
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Fig. 6

v against flare angle jo

— = — - TE mode
Tv

------ ™ mode
Iy

HE (I)mode

50 8, .deg.

for gseveral mocdes.

in perfectly conducting conical horn antenna
in perfectly conducting conical horn antenna
in corrugated conical horn antenna

in corrugated conical horn antenna
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Comparing (43) with (38) we see that all the transverse electric and
magnetic components are zero for 9' = @0. Especially the fact that

E@,= o for 0' = Yy is important, because in a conical horn antenna

with perfectly conducting walls bochOH¢,and EO, are non-zero and give

rise to the high side-lobes in the E-plane [2:]. In Fig.8 the fune~

(1
flv

tion (@') has been plotted for the same values of v as in Fig.7.

. . . . i .
The main conclusion is that the function flf )(O‘) has a maximum for

8' = 0.

-100

1N

0 30 60 o deg.

. ] ; -
Fig. 8 fl& ! {0') against ©' with v as parameter

a: =15 ; v = 8.74
a
b:05 =30 ; vw=s4.19
Q
cio) . 452 5y =71
o
d:o =60 ; uw=2.00

a0



For the H Elgz)-mode we find o T
Alzoﬁv(Z)(kr') (2
Bor = r' £, (®@") cos ¢' , (4)
Alzoﬁv(z)(kr') 2
E¢' T r' fl\) (¢') sin ¢' | (45)
a2 P )
= ' . ,
ZOHOI ' f]\) (@ ) sin ¢ | (46)
Alzoﬁv(Z)(kr') (2)
ZOH¢1= - 7 fl\) (@') cos ¢| (&7)
dP l(cos 0")
1 (2) [] = v _ l ) o
Wlth flv (O ) dol Sinl’f)' PU (COS ) ) (‘}48)

The function fléz)( 0') has been plotted in Fig. 9 for the same values

(2)

N (0) = 0. In the next section we

(2)

W

of v as in Fig. 8. We cobserve that f]
shall prove that the radiation pattern of the HE, -mode has a dip for

n' = 0,

So this mode is not suitable for antenna applications.
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The radiation pattern of the corrugated conical horn antenna

Computation of the radiation pattern

The electromagnetic field of a radiating conical horn antenna can be

found from the following representation theorem. [Jﬂ‘

£ 8]

~ r - ~
E(r) = curl{/. n' x E(x"){ G(r,r')ds + jl“ curlpcurlg{ E'xﬂ(r’%G(;,;')dS
S S '

A A (49)
i T T 1 ] ! [ t J
H(r) = curl n' x H(z")] G(x,r')ds - = curl curl n'xE{r'YG(z,r')dS
= p - - = Juu p — = =
A B Sa (50)
-jk|re-zr'

with G(r,r') = +—

Fig. 10 Conical horn antenna with coordinate system,
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In these expressions we have assumed that the outside of the horn antenna
is perfectly conducting and no currents flow on the outside of the antenna.

The aperture S, is part of a spnere with radiys r'.

The far field approximation gives

e-jkr
EG (r,O,cb) = ';:'

she

{E¢, cos G - ZDHO, cos O } sin (¢ - p') +
A

+ {EO' + ZoH¢' cos O' cos (J}cos (¢ - ") + ZoH¢' sin O §in 0l x

exp (* jkr'’ {Cos y cos ' + sin G sin 0" cos (¢ - ¢')}I (r')z slopfant det G

e-jkr ik
_ _ . . . bt
E¢ (r,0,¢) = " i {EO' cos 0 + ZOH¢,cos 0 }Sln (¢ 'y o+
A
+ {- ZHr * E¢, cos ' cos 0} cos (¢ — ¢") + E¢, sine sin O'] x
exp [+ jkr'{.cos f) cas O' + sind sin O cos {p - ¢')}] (r')2 sin"do' da' (32

-—_

Substituting (39) to (42) incl. in (51) and (52) and using the relation

ejkr' sint sin 0' cos(¢~¢')

= Jo(kr'sinUsinu') +:E; 2784 (kr'sing sin")
n:

cos n (3-49") (53)
we obtain
. A (2)
. -jkr H (kr")
k J
EC = - %— £ AZ ——— (r')2 cos ¢ EKo,o ,kr')
; T 170 r ACIa ' (56)
and A (2
O W A
N Sl YA = (x')” sin ¢ Ku,0,,kr") (55)
with

0
SN SR = t o iy . ‘
F (o, ke') u/ [{(uau + cusu'}{JU(kr' sint sin 0"y + dy(kr' sino Himi”}+
A 2
+ {I + cos O cos O'}.{Jo(kr' sin O sin ¢') -Jy(kr' sin O sin O’)} +

+ 23 sin® sinp!? Ji(kr'sinOsinn") f'Fl)(O‘) exp[}kr' cosllcosnN'l gin ' ' (8&N
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From the equation (34} and (55) we derive that |EU|2 + |E | is

¢
independent of 4. It should be noted that the same result has already
been found in [2] for the case that the flare angle was small. So the
radiation pattern of a corrugated conical horn antenna is symmetrical,
provided the depth of the grooves is a quarter of a wavelength, because
in that case Z H = 0.

o1
Substitution of (44) to (47) incl. in (51) and (52) shows that the
HEi?)*mode has also a symmetrical radiation pattern, but with a dip

for : = 0. This type of radiation pattern is not studied in this paper.

From equations (54) and (55) we derive that

E (0, kr } E (r,u kr') F(o,0 k')
- l' = © (571
! kr € (7, k') ()-, kr') F(O,0 ,kr’)

F(0,0_,kr")

e M 2l 1 E :
FIO.0 ke has been calculated for several values

The function 20 "log
of 0y and kr', From these calculations the beamwidth has been derived as
a function of kr' for OD = 150, 300, 450, 60° and 75°. The results are
plotted in Fig.!ll to Fig.15 incl. It should be noted that these results
are found under the assumption that the function £v(kr') = —-]. However,
this is not valid for small values of kr' as can be seen from Fig.7.
For the case that &Skr')?f-l we see that (38) has no real solutions
for v. As (38) will have to give real values of v, we assume that

2 eapnify - ]
AZ

170

with | = arg Ev(kr'). Again it is still possible to satisfy the condi-

tion ZOH¢, = (0. However, then E¢,;t'0, which is in agreement with the
results of the first part of this paper (equation (28) et seqq.)

To satisfy the boundary condition E¢,;zf 0 one needs a set of infinite
modes. So the assumption (58) can give only an approximation of the aperture

fields of small corrugated horn antennas. Starting from (58) several compu-~

tations of the radiation pattern of small corrugated horns have been carried
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out. The conclusion is that there exists a slight diffe?ence between the
E-plane pattern and the H-plane pattern. This difference has also been
fognd experimentally. [}4] . However, the difference is so small that it
does not impair the performance of the antenna. So for a practical desién
of these antennas one can use the average value of the beamwidths in the
E-plane and the H-plane.

For purposes of illustration the results of calculations based on (58)
and those based on the assumption Qv(kr') = -] are included in Fig,16.
The results are in agreement with the previocus conclusions. So it was
decided to use the aperture fields (39} to (42) incl. also for the calcu-

lation of the radiation pattern of small antennas.

90—

BEAMWIDTH , DEG.
S
I

w
o
|

10 20 30 L0 . 50

Fig. i! Beamwidth against kr' for O 15° ; dots indicate experimental
results obtained with antenna 1 at a frequency of 8.33 GHz ;

diameter waveguide is 28 -m.
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Fig. 12 Beamwidth against kr' for v, = 10° ; dots indicate experimental
results obtained with the antennas 2, 3, & and 5 at a frequency

of 14 GHz.
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Fig. 13 Beamwidch against kr' for @0 - 457 ; dots indicate experimental
results obtained with the antennas 6, 7, 8, 9 and 10 at a fre-

quency of 14 GHz.
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of 14 GHz,
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It should be noted that the computations from which the Fig.Il to Fig.l5

incl. are derived, are based on the assumption that Ep'= 0 and ZOH 0

o "
at the boundary ' =0, If it is possible to realise the above boundary
condition independent of the frequency, then broadband feeds can be
realised and Fig.!l to Fig. 15 incl. can be used as design charts.

{n section 4.2 we shall discuss the practical use of these charts and

their limitations.
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Experimental investigation of the corrugated conical horn antenna

v
/4 - grooves

A comparison of the theory of 4.1 with experimental results is possible,
provided the depth of the grooves is a quarter of a wavelength, because
only in that case the houndary condition ZOH¢,= 0 is satisfied. However,
there are two exceptions. First, we conclude from Fig.5 that the depth
of the grooves should be larger than a quarter of a wavelength if the
flare angle O, is small. For the case of a flare angle 0, = 15° some
experimental results have already been published ESj}. Secondly, for

short horn antennas the boundary condition E, ,= 0 cannot be satisfied

¢!
with the simple electromagnetic field given in the expressions (39) to
(42) incl. However, a useful approximation is discussed 1in [}AJ , where
experimental results are also given. Although the experimental results
of [14] and 15] show good agreement with the theoretical predictions,
there is a need for a more extensive experimental verification of the
theoretical curves of Fig. 11 to Fig. !5 incl. Therefore, several
antennas have been constructed in such a way that a wide variation in
both the flare angle OD and the length r' of the antennas was obtainéd.
All the grooves were of the same depth and this was a quarter of a
wavelength at the frequency 14 GHz.

Tt should be noted that the antenna with “o = 15° is an exception to

this rule. The relevant dimensions of the antennas are listed in Table [.
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Table I
antenna o r' d b t

° ) ) & £

| 15° 17.60 0.9 0.20 0.20
2 30° | 3.50 0.535 0.26 0.04
3 30° 4,20 0.535 0.26 0.04
4 30° 6.60 0.535 0.26 0.04
5 30° 9.00 0.535 0.26 0.04
b 45° 2.78 0.535 0.26 0.04
7 45° 3,71 0.535 0.26 0.04
8 45° 6.17 0.535 0.26 0.04
9 45° 8.66 0.535 0.26 0.04
10 45° 13.57 0.535 0.26 0.04
1 60° 2.80 0.535 0.26 0.04
12 60° 4,00 0. 535 0.26 0.06
13 60" 13.64 0.535 0.26 0.04
P4 75° 5.08 " 0.535 0.26 0.04
15 75° 10.23 0.535 0,26 0.04

[he radiation pattern of these antennas has been measured for 14 CHz and the

results are plotted in Fig. 1! to Fig. 15 incl. For short antennas the average

values of the beamwidths in the H-plane and the E-plane have been plotted

I'he conclusion is that the experimental results are in goad agreement with
the theoretical predictions, ex i 59

, pecially for 00 © 757, If the flare angle
= 75

o y then there exists a discrepancy between theory and eXperiment, but

the radiation pattern is still symmetrical,
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-it is very interesting to investigate the effect of the length r' of the

antenna on the radiation pattern. For this purpose the radiation patterns
of two antennas with the same flare angle bug different lengtiis have been
given in Fig. 17. lo hold the picture clear we have not plotted the theo-
retical patterns in Fig. 17, but the agreement is good, especially for the
large antenna. We see that a large antenna has a flatlradiation pattern and
1s very suitable as a feed in a paraboloid reflector antenna. It seems

that the greatest length that can be used is not determined by electrical

requirements but morely by mechanical ones, such as weight and space.

For the application of corrugated conical horn antennas it is necessary
that they can be used also for other frequencies than for which the

grooves have a depth of a quarter of a wavelength. This question is dis-

cussed In section 4.2.2.

Fig. i iaci
8- |7 Experimental radiarion pattern of a large antenna and a short
antenna with the same flare angle; frequency 14 GHz
4 ! antenna |

b ! antenna 13

a .
©
- E-plane
L% ._10 L —---~ H-plane
=
O
a.
L
=
— -
<[
¥

i
[
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4.2.2 The bapdwith of the corrugated conical horn antenna

The bandwidths of the antennas listed in Table I have been studied by
measuring the radiation pattern of each of them as a function of the
frequency. Lack of space compels us to give only some illustrative
examples. Before discussing the experimental results obtained with these
antennas we would prefer to summarise first the considerations which
have led to the cholce of the dimensions of the antennas. From the
results of section 4.1 we conclude that good radiation patterns are
obtained if we choose kr' large. To obtain the physical dimensions of
the antennas within reasonable limits it was decided to carry out the
measurements for frequencies higher than [0 GHz.

The diameter of the circular waveguide, which 1s coupled to the cone,
was so chosen that the cut-off frequency of the dominant TEI]-mode Was
approximately 10 GHz. The diameter of the waveguide is 18mm. In Table Il
we have collected the cut-off frequencies f. of the higher modes, which
will probably be excited at the transition of waveguide to cone if the

frequency is raised.

Table T1L

mode fo GHz
TEII g.767
TMO] 12.760
TE21 16.203
TM]1 20.332

From this table we see that three higher modes can be excited if the

lrequency is raised to above 20 Gliz. llowever, the TMO} mode aud the

"
'

,; mode do not have the same 4 ' ~dependence as the TE!I mode.
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So 1t 1s reasonable to assume that these two modes will not be excited.
This is not the case for the TMII mode, which has the same ¢'-dependence
as the dominant mode. So it was decided to restrict the measurements to
frequencies below 20 GHz. To prevent a large mismatch the lowest frequency
was chosen to be 12 GHz. In [lé} it 1s stated that the depth of the
grooves should be larger than a quarter of a wavelenéth in order tao
prevent the occurence of a surface wave. With a view to investigating
tiiis phenomenon we have chosen the depth of the grooves so that at |4 Gz
it is a quarter of a wavelength,

For conveniently constructing the antennas the depth of all the grooves

was chosen equal and the boundaries of the grooves as straight lines.

The purpose of the measurements which have been carried out can be Lormu-

lated as follows:

(1) to study surface wave phenomena, if any;

(i1) to prove that a symmetrical radiation pattern 1s obtained if the
depth of the grooves is a quarter of a wavelength. These measure-
ments have already been discussed in the previous section;

(iii) to investigate the deviation between the experimental and the
theoretical results of Fig. 11 te Fig. 15 incl., which are based

on the assumption that ZDH®,and E ,are zero, independent of the

b

frequency.

The results of the measurements of the antennas are plotted in Fig. 18
to Fig. 23 incl. The solid line indicates the theoretical beamwidth,

based on the assumption that ZOH¢,and [, ,are zero. The main conclustion

b
ts that the scalar feed is indeed a broadband feed. On closer eximination
we observe that for frequencies for which the depth of the grooves 1is

smaller than a quarter of a wavelength, a sudden change occurs in the

shape oi the radiation pattern.
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Probably this is caused by a surface wave, as discussed by Kay [}é] R
and it is claer that for the moment this phenomenon determines the‘
lower limit of the frequency band for which the scalar feed can be used.
For frequencies between 14 GHz and 20 GHz we observe a good agreement
between the experimental results and the theuretical ones represented by
the solid line, provided the flare angle is smaller than 75° and the
length of the horns is large. Apparently we may comclude that the

boundary conditions ZH, =0 and E = 0 are valid in a rather large

¥ $

frequency range. This fact gives us theopportunity to use Fig. 11 to

Fig. 15 incl. as design charts. We see that if the horns are short and
the flare angle is smaller than 75°, the patterns are still symmetrical

in the frequency band 14 GHz to 20 GHz, but the agreement between the
theory and the experimental results is not so good. In this case Fig. 11
to Fig. [5 incl. can be used only to estimate the beamwidth for frequen-
cies for which the depth of the grooves is not a gquarter of a wavelength.
From Fig. 22 and Fig. 23 we observe that there is a discrepancy between
theory and experiment, if the flare angle e, = 75° even if the length

of the horn is large.

e see that in this case, too, the radiation pattern is symmetrical. The
above discrepancy is probably caused by the excitation of higher

spherical hybrid modes.

We also have investigated the V.S.W.R. of the antennas as a function of
the frequency. Une typical example is given in Fig. 24. Unfortunately,there
is a large mismatch at the frequency for which the depth of the grooves is
8 quarter of a wavelength. However, we have also seen that for frequencies
higher than the cne mentioned above good radiation patterns are obtained.
50 it is recommendable to choose the depth of the grooves a little larger
than a quarter of a wavelength for the lowest frequency for which the an-

i

asna w1l he nwzed. To that case, a good matching and a rond patrtern are
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To study the influence of the thickness of the dams we have investigated
the properties of an antenna with the same flare angle and the same length
of the horn antenna as antenna 3. The depth of the grooves was also

$.535 cm, but the thickness of the dams was 0.34 cm. After measuring the
radiation pattern as a function of the frequency we observed that antenna
9 was better with regard to the bandwidth. Finally, we have constructed
two antennas, In the first antenna the depth of the grooves was a quarter
of a wavelength at the frequency of 14 GHz. The second antenna has grooves
with a depth equal to three quarters of a wavelength at the above frequency.
lhe other dimensions of the two antennas were identical. The antennas
exhibited the same radiation pattern at 14 GHz., This 15 in good agreement

with the theoretical prediction (27).
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Conclusions

The electromagnetic field in the conical corrugated horn antenna and its
radiation pattern have been studied theoretically. The main conclusion of
this investigation is that the conical corrugated horn antenna has a
symmetrical radiation pattern, provided the depth oi the grooves is a
quarter of a wavelength. The theory of the scalar feed has been formula-
ted for this case. An experimental investigation shows that there is a
good agreement between the experimental results and the theoretical
calculations if the depth of the grouves is a quarter of a wavelength.
Many measurements have been carried out at frequencies of 14 GHz to

20 Gliz. From these measurements we can draw the following conclusions.
For large antennas with a flare angle ' smaller than 75° there is a
good agreement between experimental results and calculations based on

1

the assumption that E and ZOH¢,are zero at the boundary =l even
{

B!
at frequencies for which the depth of the grooves is not equal to a
quarter of a wavelength. [n case the flare angle is smaller than 75"

and the antemnas are short, again resonable agreement between theory and
exper iment has been found. The measurement of the V.S.W.R. shows that
one should choose the depth of the grooves a little larger than a
quarter of a wavelength for the lowest frequency for which the antenna
will be used. The highest frequency which can be used is determined

by the fact that the excitation of higher modes has to be prevented.

An improvement of the bandwidth of the wavegulde coupled to the cone

will probably result in improvement of the bandwidth of the antenna.
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Appendix A

In this appendix we shall describe a method of finding the solution of
(4). This means to find n for prescribed kry; and kr;. The problem 1is
equivalent to the problem of finding the value of n in the Bessel equa-

tion

2 4R

d
dr dr

) + {(kl‘)z“n(n+ 1)}R=O (A.1)

subjected to the boundary conditions R{(r) = 0 for r = rp and r = 1,.
Let us use the abbreviations x = kr, kry = a, krp = b and n(n+l) = =,

Next we shall transform equation (A.1) to a set of difference equations.

The difference approximation of %; (x2 %5 } is given by [9] :

2 2 B
xl (Ri ) = Ry) = %%y (R; - R, )

1=V 4o 2 (A.2)
2
A

with Rj = R(xj), xj = a+ jA and 4 = (b—a)(M+1).
(S5ee Fig. A.1)

a j-2 402 b

= . "
X, TP M+

Fig. Al



Substitution of (A.2) in (A.1) gives

X, 2 x. 2 Xo o\ 4 ) X..1 Y4
ke R N s} B (k2 e T QN i B B PR .02
3 ind 3 A J J A I+l j
/ -

Applying the boundary conditlons R, =R = 0 by substitution of j = |

M+
and ] = M respectively in (A.3) gives rise to the next two equations
X,,,\ 2 X 2 X\ 2
- —‘/;) - —i' + x 2 R, + 3/2 R, = MR (A4
Y A l ! 8 hd 1
and

X 2 )LM | 2 XM_ 2 .
M- L + 5 _ E 2 ¥ = ALH)
T ) -1 7 _< A ) ( A ) For e T e

Equations {(A.3), (A.4) and (A.5) together can be written as an

problem of a symmetrical tridiagonal matrix

O R 1

Rg "2 (A.6)
o Rv=1 -1
, "u Y

Equation (A,6) has been used for the computation of

-]

e

+ and thus of n as

a function of kr; and kb [9] s [10] . The results are collected in Fig.3.

It shouls be noted that the value n is associated with the dominant mode.



AEEendix B

To find the wvalue of n which satisfied (12) we adopt the same procedure

as used in appendix A. Now we have to solve (A.}), but with the boundary

conditions

4.

(B8.1)
dr )

(rR) = 0 for r = r| and r = r,

In this case we find again

X. 1\ 2 X, 2 X. | 2 ) Xy 2
51l | I JJ S e} s xSk, {2} R, = k. (B.2)
& 3=1 . A j ] N 3+ 1

A difference approximation of the boundary conditions (B.1) yields

X R = x , R . =0 (B.3)
- = [ (B.4
and xM+2RM+2 XMRM = (}

Substitution of j = 0 in (B.2) and application of the condition (B.3)

gives

%)

. ‘ * X
i i 2 —i ] 1 _
Sl o) v xR — + |[—* R, = «R (B.95)
& 0 0 A b'd - 1 0

Subsilitution of jJ = M+l in (B.2) and application of the condition (B.4)

glves
2 N 2 . 2 % 2
el . [3i2 *M . Me1/2 [T 2 . B
; A M | M



Unfortunately, it Ls not possible to take the equatiens (B.2), (B.5) and
(B.6) together and to write them as an cvigenvalue problem of 2 symmetrical
tridiagonal matrix with the same eigenvalues which are of interest to us,
but with slightly different ecigenvectors. After some algebraical manupu-

lations we Iind the mwatrix mentioned abuve, provided we substitute

aR =R
o 0
x %\ 2 X 2 x
. - 1 o
with W= Ti - + **i — (B.7)
O H A A }(_I
d R =R
an e OMEL M
X AN Xy omon V2 X !
. M+ ] M+ M3, 2 M !
with My = ) " + — {B.8)
: ' ' K142
and +.R. = R,
1] ]
{5.9)
with ¥ =1 for j=1,2.,...M

After these preparations we find the eigenvalues ' and thus n trom the

fuation
i w
8] 3]
n F\’I
L (B, 1)
I ¥
A 1
»” %

| N
&n+] NEN




ApEendix C

The depth of the groove under the condition that Zqu = {} at the opening

of the groove can be computed by means of equation (20). However, to

find

the angle ©

1

£
'

2

-6, we do not use (20), but prefer another

numerical technique. We have to solve the differential equation of

Legendre

}

Sin B dr_\

(1)

4 (oin o D0,

[n(n+l) - — ]y (v =0
S1n B

with, for a ™-mode, the homogeneous boundary conditions

and

Integrating (C.!) by means of the Runga-Kutta method of second order

y (cos '

2

N
y' (cos 0)

)

0

[13:] with initlal wvalues

and

! ]
y'(cos LO)

y {cos o

until y (cos

.1)

)

Q

0, we find the value of 7, and thus ol ~ - -

2 o’

[t should be noted that the choice y ( cos 40) = | iy permissible

because both equations

(C.1) and the boundary conditions (C.2} and

(C..

(C.

(C.

{c.

(¢.3) are homogeneous. The results of the computations can be fuund in

Fig.

5.

2)

4)
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