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Abstract. We compare two Petri net semantics for the Web Services
Business Process Execution Language (BPEL). The comparison reveals
different modeling decisions. These decisions together with their conse-
quences are discussed. We also give an overview of the different properties
that can be verified on the resulting models. A case study helps to eval-
uate the corresponding compilers which transform a BPEL process into
a Petri net model.
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1 Introduction

The Web Services Business Process Execution Language (BPEL) [1] is emerging
as the de facto standard for implementing business processes on top of the Web
service technology. However, BPEL lacks of a formal semantics; that is, it has
been defined informally. Especially its predecessor specification, BPEL 1.1 [2],
contained many ambiguities. Over the years, several attempts have been made
to formalize BPEL, using among others Petri nets, process algebra, abstract
state machines, or state machines (see [3] for a survey). Fortunately, the current
BPEL 2.0 specification [1]4 is more precise although it is still informally defined.

The language constructs found in BPEL, especially those related to control
flow, are close to those found in workflow definition languages [4]. In the area of
workflows, it has been shown that Petri nets [5] are appropriate both for modeling
and analysis. More specifically, with Petri nets several elegant technologies such
4 We use the term “BPEL” if we do not need to distinguish between the 1.1 and the

2.0 specification.



as the theory of workflow nets [6], a theory of controllability [7,8], a long list
of verification techniques, and tools (see [9] for an overview) become directly
applicable.

In this paper, we compare two Petri net semantics for BPEL. One is de-
veloped by the Theory of Programming Group at the Humboldt-Universität zu
Berlin (HUB) [10], the other mainly by the BPM Group at the Queensland Uni-
versity of Technology (QUT) [11], which we hereafter simply refer to as HUB and
QUT semantics, respectively. The BPEL semantics of both groups are feature
complete; that is, covering the standard and the exceptional behavior of BPEL.
Also, each of the groups has developed tools to support the translation and the
analysis of BPEL processes.

The goal of this paper is twofold. On the one hand, we compare both seman-
tics. We reveal their differences and discuss their consequences with respect to
the model and the verification. On the other hand, we also evaluate the com-
pilers which translate a BPEL process into a Petri net model according to the
respective semantics. By help of a case study, we compare the sizes of the nets
and their state spaces. This helps to identify the impact on the complexity of the
analysis resulting from the different modeling approaches and decisions. In ad-
dition, we also give an overview what properties can be analyzed on the models.
The result can be used to guide future tool integration for better performance.

The remainder of the paper is organized as follows. Section 2 gives a brief
overview of BPEL. Next, Sect. 3 discusses the basics of both QUT and HUB
semantics. Then, a number of differences between the BPEL semantics of the
two approaches are highlighted in Sect. 4. Section 5 discusses to what extent both
approaches allow for verification of the original BPEL processes. In Sect. 6, we
present the results of several case studies. Finally, Sect. 7 concludes and outlines
future work.

2 Overview of BPEL

The Web Services Business Process Execution Language (BPEL) [1], is a lan-
guage for describing the behavior of business processes based on Web services.
For the specification of a business process, BPEL provides activities and distin-
guishes between basic and structured activities. A basic activity can communi-
cate with the partners by message exchange (<invoke>, <receive>, <reply>),
manipulate and validate data (<assign>, <validate>), wait for some time
(<wait>) or just do nothing (<empty>), signal faults (<throw>, <rethrow>), or
end the entire process instance (<exit>).

A structured activity defines a causal execution order on basic activities
and can be nested in another structured activity itself. The structured activ-
ities include sequential execution (<sequence>), parallel execution (<flow>),
data-dependent branching (<if>), timeout- or message-dependent branching
(<pick>), and repeated execution (<while>, <repeatUntil>, <forEach>).
Within activities executed in parallel, the execution order can further be con-
trolled by the usage of a nonstructural construct called control links (<link>).



In addition, there is also a structured activity <scope>, which groups activi-
ties into a block, links this block to transaction management, and provides fault,
compensation, termination, and event handling. The <process> is the outmost
scope of the described business process. A <faultHandler> is a component of
a scope that provides methods to handle faults which may occur during the
execution of its enclosing scope. Moreover, a <compensationHandler> can be
used to reverse some effects of successfully executed activities. The termina-
tion of scopes can be controlled with a <terminationHandler>. With the help
of an <eventHandler>, external message events and specified timeouts can be
handled.

3 Semantics Basics

In both HUB and QUT groups, the main motivation to develop a formal seman-
tics for BPEL is to detect inconsistencies in the BPEL specification on the one
hand, and to formally analyze BPEL processes using techniques of computer-
aided verification on the other hand. Furthermore, both groups translate real-life
BPEL processes into Petri nets to validate their (Petri net-based) verification
techniques for analyzing service behavior. Besides BPEL-specific analysis goals,
the QUT semantics is built for analyzing soundness [6], an established correct-
ness property of workflows. In contrast, the HUB semantics is built for analyzing
the communication behavior of BPEL processes [12].

Both semantics follow an hierarchical approach. The translation is guided
by the syntax of BPEL. In BPEL, a process comprises a number of language
constructs that are connected in certain execution orders. Each construct of the
language is translated separately into a Petri net. Such a net forms a pattern of
the respective BPEL construct. Each pattern has an interface for connecting it
with other patterns as is done with BPEL constructs. Also, patterns capturing
BPEL’s structured activities may carry any number of inner patterns as its
equivalent in BPEL can do. Overall, the collection of patterns forms the Petri net
semantics for BPEL. It is worth mentioning that both HUB and QUT semantics
are feature complete, covering the standard and exceptional behavior of BPEL,
and both semantics are formal, meaning that they are suitable for computer-
aided verification.

The HUB group developed a Petri net semantics for BPEL 1.1 [10]. This
semantics was later enhanced [13] to cover BPEL 2.0. The QUT group developed
a semantics for the activities and constructs of BPEL 1.1 [11] based on the
description given by the (more precise) BPEL 2.0 specification.

Despite the above commonalities, one major difference between the two se-
mantics is that they are specified at different levels of abstraction. The QUT
semantics is restricted to the control flow of a BPEL process; that is, it abstracts
from data (i. e., no BPEL variable is modeled) and message exchange (i. e., the
sending and receiving of messages is not explicitly modeled). The resulting se-
mantics is defined as a low-level Petri net, where the control flow is modeled
by undistinguishable black tokens and a data dependent branch is modeled by



a nondeterministic choice. Consequently, the QUT semantics leads to a direct
implementation based on low-level Petri nets. In contrast, the HUB semantics is
defined using a high-level Petri net. It allows on the one hand to model not only
control flow but also data information (such as data values, message content,
and Boolean expressions of the link semantics), while on the other hand, it is
possible to apply data abstraction techniques during the translation process [14].
This way, in the HUB’s implementation, a data abstraction is performed, and as
a result, it yields a low-level Petri net as in the QUT’s implementation. We fo-
cus on the compilers BPEL2PNML (QUT semantics) and BPEL2oWFN (HUB
semantics) in Sect. 5.1.

In contrast to the QUT semantics, the HUB semantics models message ex-
change explicitly via a message interface. This results in the next difference of
the two approaches. In the QUT semantics, a model of a BPEL process is a work-
flow net (WFN) [6]. In contrast, due to the definition of a message interface, the
resulting model of a BPEL process in the HUB semantics has a structure of
an open workflow net (oWFN) [15]. oWFNs are a generalized form of WFNs.
As a substantial difference, in an oWFN the interface of a service is explicitly
represented as sets of input and output places. As it can be seen later on, the dif-
ferent models allow for the analysis of different properties. The main motivation
in the QUT group to have a WFN is to apply existing verification techniques
for WFNs, such as the analysis of soundness which is implemented in the tool
Woflan [16]. In the HUB group, the explicit representation of the interface is
essential for analyzing the communication behavior of BPEL processes using the
tool Fiona [12].

4 Different Modeling Concepts

In this section, we compare the modeling of three important BPEL constructs
in the QUT semantics and in the HUB semantics. For each construct, we first
discuss its modeling details in each semantics, and then review the different
modeling decisions made in the two semantics and if applicable, their impacts
to the resulting behavior of the construct.

4.1 Patterns of Activities

We first discuss the patterns of basic activities modeled in the two semantics.
To model BPEL’s structured activities, the embedded activities are ordered and
connected canonically. The patterns for the structured activities are very similar
in both semantics and are thus not discussed.

QUT Each basic activity is considered as an atomic action, for example, a
<receive> activity performs a receive action, and an <invoke> performs a send
action. Due to the abstraction from data and message exchanges, all basic ac-
tivities share the general pattern shown in Fig. 1. For normal processing of an
activity X, place rx models an initial state when it is ready to start X, and



place fx indicates a final state when X has finished its execution. The transition
labeled X models the action to be performed. It has an input place sx capturing
the state when X has started, and an output place cx for the state when X
is completed. Two unlabeled transitions (drawn as solid bars) model internal
actions for checking pre-conditions or evaluating post-conditions for activity X.
The skip path of X is defined to facilitate the mapping of control links (see
Sect. 4.2).

The rest of the pattern in Fig. 1 is modeled to capture the fact that activity X
can only be executed if none of its enclosing scopes (Q1 to Qn) has faulted. The
pattern of each scope has two places to continue and to stop. Place to continue
is marked as long as the scope is not faulted, otherwise place to stop will be
marked. As a result, the transition labeled X has read arcs (depicted as arcs
with two arrowheads) to the to continue place of every enclosing scope. Assume
that one of these enclosing scopes Qi gets faulted and has to stop before activity
X can occur. The stop signal will get propagated through the hierarchy of the
enclosed scopes of Qi in such a way that, for each active scope, its to stop place
is marked. As a result, once the to stop place of Q1 (the immediately enclosing
scope of X) is marked, the bypass transition will fire, indicating that activity X
gets bypassed.
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Fig. 1. Pattern of a basic activity X. The
structure of the pattern can be divided into
three parts: one (drawn in solid lines) mod-
els the normal processing of X, one (drawn
in dashed lines) models the skipping of X,
and one (drawn in dot-dashed lines) models
whether to execute or to bypass X based on
the status of all the enclosing scopes (Q1 to
Qn) of X.

HUB Each pattern of an activity has five interface places: initial, final, stop,
stopped, and fault. The places initial and final correspond to the places rx and
fx of the QUT semantics, respectively. Marking the initial place starts an ac-
tivity. Upon faultless completion of the activity, the final place is marked. The
places stop and stopped model the termination of activities. Faults thrown by
the activity are signaled by marking the fault place.

In contrast to the QUT semantics, each BPEL activity is specified by a differ-
ent high-level Petri net pattern, modeling both control-flow and data aspects of
that activity, including data values, correlation sets, and messages. In addition,
the HUB group implements several low-level versions of this high-level pattern
which are used for computer-aided verification. The low-level patterns differ in
their level of detail, and are chosen by the compiler BPEL2oWFN according to



the verification goal. Two patterns for a <receive> activity with different degree
of abstraction are depicted in Fig. 2.
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fault

fault
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stop
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fault

correlation set
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cs
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faultedthrow1

throw2

(a) high-level pattern

inital

receivechannel

final

finish

stop

stopped

fault

faulted

(b) implemented low-level pattern

Fig. 2. Patterns for a <receive> activity. The detailed behavior is modeled with a
high-level pattern (a). The message channel is explicitly modeled. When a message is
received, its correlation set is read. Subsequently, the message is stored in a variable.
During the execution, two faults can occur: the received message may not match the
correlation set or the received message type may not match the variable type (transi-
tion throw1, throw2). In these cases, the respective BPEL standard fault is thrown on
place fault. A simplified low-level pattern (b) abstracts from data and does not model
variables or correlation sets.

Conclusion The QUT semantics abstracts from data and actual communica-
tion, whereas the HUB semantics explicitly specifies them in the model. As a
result, in the QUT approach all basic activities share the same general pattern.



4.2 Links and Dead-Path-Elimination

Activities embedded within a <flow> activity are executed concurrently. How-
ever, it is possible to add control dependencies between these activities using
links. A link is a directed connection between a source activity and a target ac-
tivity. After the source activity is executed, the link is set to true, allowing the
target activity to start. As links express control dependencies, they may never
form a cycle.

More precisely, when the source activity is executed faultlessly, the outgo-
ing links are set according to their corresponding transition conditions which
return a Boolean value for each outgoing link. After the status of all incoming
links of a target activity is determined, a join condition —again a Boolean ex-
pression5 — is evaluated. If this condition holds, the target activity is executed.
Otherwise, if the condition is false, the activity is skipped. In this case, all out-
going links recursively embedded to the skipped activity are also set to false to
avoid deadlocks. This concept is called dead-path-elimination (DPE) [17].

QUT Each control link is modeled by two places named lst and lsf capturing
respectively the true and false status of the link. Figure 3 shows the pattern of a
basic activity with links. Places named tc are used to hold the transition condi-
tion for each of the outgoing links. Since transition conditions are not explicitly
specified in the pattern, their Boolean evaluation is modeled nondeterministically
upon firing either of the two transitions that follow a tc place. Places jct and jcf
capture the true and false result of the join condition evaluation, respectively.

If the join condition evaluates to true, activity X starts. Otherwise, transition
sjf can fire. Then, activity X is not executed and will end up in the finished state
(fx) as if it was completed. This ensures that the processing of any following
activity can still continue, thus capturing the semantics of dead-path-elimination.

If activity X has to be skipped (e. g., X is embedded in a non-chosen branch
of an <if> activity), the join condition is evaluated. The evaluation result will
not effect the skipping behavior: the skip transition — like transition sjf —will
set all outgoing links to false. As a result, when skipping an activity, the outgoing
links will be set to false, but only after all incoming links have been resolved.

HUB In the HUB semantics, each link is modeled by a colored place with
Boolean type.6 The status of the link can then be modeled by a token true or
false. If the place is not marked, the link status is unknown. Similar to the QUT
semantics, we model the setting and evaluation of links with patterns that wrap
the corresponding source or target activity. An example of an activity that is
both source and target of links is depicted in Fig. 4. As a graphical convention,
dashed places indicate a place with the same label existing in the same pattern
that has to be merged with the dashed place (e. g., place stop).
5 While transition conditions are expressions over arbitrary variable values, join con-

ditions only evaluate the status of the incoming links.
6 In the implementation, this place is unfolded to two places, link.true and link.false.
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which takes the status of all incoming links and produces an evaluation result.
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Upon completion of the in-
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to false, transition skip sets
all outgoing links to false.

When implemented, the join condition is, just like in the QUT semantics,
“unfolded” and the transition condition is replaced by nondeterminism. However,
instead of recursively skipping activities and setting their outgoing links to false
as it is required by the BPEL specification [1], we deviate from the specified



behavior and set the status of all links recursively embedded to the skipped
activity to false at once. This way, the modeling of dead-path-elimination reduces
(concurrent) link status propagation, and as a result, the state space may be
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Fig. 5. An example for links and dead-path-elimination.

A DPE Example We use the example shown in Fig. 5 to demonstrate the
different modelings of DPE in the two semantics. In this example, two scenarios
are possible, depending on the condition of the <if> activity: In case that the
condition evaluates to true, we have the execution order shown in Fig. 6(a).
Firstly, activity A is executed and sets link AtoB to true, then B is executed and
sets link BtoC to true, and finally, C and D are executed sequentially.

A DB C

(a) condition true

E DB C

A

(b) condition false (QUT)

E DC

A

(c) condition false (HUB)

Fig. 6. Possbile execution orders of the activities of the example in Fig. 5. Skipped
activities are depicted with dashed and shaded boxes.

In case the condition evaluates to false, E is executed and, due to the DPE,
activity B is skipped; that is, B has to wait until A has set its link AtoB. Then,
B’s outgoing link, BtoC, is set to false and C is also skipped. Finally, D is exe-
cuted. This yields the execution order of Fig. 6(b). Due to a transitive control
dependency, D is executed after A. This execution is exactly modeled by the
QUT semantics.



However, if the branches to be skipped are more complex, the skipping of
activities yields a complex model due to the DPE. In particular, skipping of ac-
tivities and execution of non-skipped activities is interleaved which might result
in state explosion problems. To this end, the HUB semantics differs from the
described behavior of [1]: an overapproximation of the process’s exact behavior
is modeled. In the example, activity B is not skipped explicitly, but its outgoing
link, BtoC, is set to false when E is selected. This yields the execution order
of Fig. 6(c). Compared to the QUT semantics, no control dependency between
A and D exists and two additional runs are modeled by the HUB semantics,
namely A and D being executed concurrently, and D being executed before A.
Due to the overapproximation, it is possible that the HUB model contains errors
that are not present in the BPEL process. However, static analysis of the BPEL
process can help to identify these pseudo-errors. We will come back to this in
Sect. 5 where the tools are discussed.

Conclusion When skipping an entire path (e. g., a path that was not chosen in a
<if> activity), the QUT semantics sets all outgoing links to false until all causal
related incoming links have been resolved, whereas the HUB semantics sets all
outgoing links to false immediately; that is, without waiting for the incoming
links to be resolved. While the QUT approach conforms the BPEL specification,
the HUB semantics uses an overapproximation which still allows to find any
design flaw of a BPEL process.

4.3 Scopes and Fault Handling

The <scope> activity is BPEL’s most important structured activity. It provides
fault, event, and compensation handling. Scopes are hierarchically ordered: every
scope has a parent scope and an arbitrary number of child scopes. The <process>
activity is the root scope. The scope hierarchy plays an important role in fault
propagation and compensation.

Fault handling allows for reaction on faults that may occur during the execu-
tion of a BPEL process. There are many sources of runtime faults: wrongly typed
data, WSDL faults, or explicitly thrown faults as a result of a <throw> activity,
just to name a few. When a fault occurs, the positive control flow (i. e., the exe-
cution of the scope that encloses the faulty activity) has to stop. Subsequently,
the fault handler of the enclosing scope may catch the fault and execute a user-
defined activity to undo or “repair” the effects of the partial executed scope.

As the definition of fault handlers is optional, a fault might not be caught
by the enclosing scope. Consequently, this fault is re-thrown to the parent scope
until it is either handled by a fault handler or, if it can not be handled by the
process’s fault handler, yielding the termination of the entire BPEL process.

If more than one fault occurs in a scope, only the first is handled by the fault
handlers; all subsequent faults are ignored. If a fault occurs inside a fault handler,
it is re-thrown to the parent scope. We skip the explanation of how event and
compensation handling is covered by the two semantics: the two approaches are
very similar.



QUT Figure 7 depicts the pattern of a scope Q that has a fault handler. It can
be seen that a scope is a special structured activity being attached with four flags.
Assume that no exception occurs. Scope Q remains in the status of to continue
during its normal performance (i. e., the execution of Q’s main activity X). Upon
the completion of activity X, a snapshot is preserved for scope Q.

Consider the case when a fault occurs during the normal process of scope Q.
The subnet enclosed in the dashed box labeled FH specifies the mapping of a
fault handler. Transition efault models a fault event that may occur when scope
Q is active. This fault event may signal any runtime fault or even a fault re-
thrown from a child scope of Q. Upon the firing of efault , the status of Q changes
from to continue to to stop. As a result, all active activities in Q need to be
stopped, and the occurrence of any other fault is disabled. This ensures that no
more than one fault handler can be invoked in the same scope.

A fault handler, once invoked, cannot start its main activity HF (i. e., han-
dling fault) until the main activity of the scope has been terminated. This results
in an intermediate state, as captured by place invokedFH , after the occurrence of
event efault but before the execution of activity HF . All the active activities in
the scope will be bypassed and finally end up in the finished state (fx). Hence, the
arc from place fx to the input transition of place rHF ensures that activity HF
can be started only if the normal process of scope Q has been terminated.
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Fig. 7. Pattern of a <scope>

activity with a fault han-
dler. Four flags are defined
for a <scope>: to continue,
indicating that the scope
is active and no fault has
occurred; to stop, signaling
a fault has occurred and all
active inner activities within
the scope have to stop;
snapshot, capturing the pre-
served state of a successfully
completed uncompensated
scope; and no snapshot,
indicating the absence of a
scope snapshot.

HUB The pattern of a <scope> activity of the HUB semantics is depicted in
Fig. 8. Firstly, the scope is initialized and the enclosed activity is started. The
scope is then in state Active. When the activity completes faultlessly, the scope
is completed (transition finalize) and is in state !Active again. Furthermore, the
scope is marked to be ready for compensation, similar to the snapshot place of



the QUT semantics. This place and the compensation handler is — to increase
the legibility of the pattern— not depicted.
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Fig. 8. Pattern of a <scope> activity without event, termination, or compensation
handlers. The fault place of the inner activity is merged with place fault in of the
scope. When a fault occurs, transition term stops the embedded activity and the scope
enters state !Active. When the embedded activity has stopped, the fault handlers start.
If the fault is handled successfully, the scope finishes and final is marked. Otherwise,
the fault is propagated: fault up is merged with place fault in of the parent scope.

However, the embedded activity can throw faults to its embedding scope.
The fault places of all enclosed activities are merged with the fault in of the
scope. If an activity throws a fault, a token with the fault name is produced
on this place. Transition term (forced termination) eventually propagates this
token to the fault handlers and also stops the embedded activity. All further
faults thrown to fault in are ignored.

Every running activity can be stopped by marking place stop, which even-
tually results in a token on place stopped. Given that a BPEL process is a
distributed system and the concurrency of multiple instances and scopes is un-
derlined in the BPEL specification, the HUB semantics decides not to instantly
stop activities, but to model forced termination concurrently. The motivation is
to allow for maximal concurrency in the modeling of distributed systems.

After the inner activity has stopped (i. e., place stopped is marked), the fault
handlers are started. If the fault can be caught by an enclosing <catch> or
<catchAll> branch, the respective activity is executed. The scope is completed
when the fault handler is completed faultlessly. However, if the fault cannot be
caught or if an activity embedded in the fault handler throws a fault, this fault
is propagated to the parent scope by marking place fault up.

While the QUT semantics uses global state places to continue and to stop
which have to be read by all embedded activities, the HUB stopping approach
is asynchronous and is executed in three steps: Firstly, a fault is thrown by



an activity. All concurrent activities can proceed as normal and even throw
faults themselves. Secondly, the scope’s inner activity is terminated; that is, its
stop place is marked. The inner activity and the termination mechanism are
concurrent: the moment the control flow stops is chosen nondeterministically
(cf. Fig. 2). Finally, after the inner activity has stopped, the fault handlers start.

Conclusion In the QUT semantics, a global stopping mechanism is applied
to the mapping of termination. Once a fault is thrown during the execution
of an activity within its directly enclosing scope Q, all remaining activities in
scope Q stop immediately. For any activity that cannot execute any further, a
“bypassing” mechanism is adopted to ensure the control flow reaches the end of
scope Q. Then, the fault handling of scope Q starts. Since all remaining activities
are bypassed, no further faults can be thrown. In contrast, the HUB semantics
models forced termination asynchronously; that is, upon the termination of a
scope, all active activities within the scope do not have to stop immediately.
However, the fault handlers are only executed if the inner activity has stopped.

5 Verification

5.1 Comparing the Compilers

Both semantics consist of a collection of patterns that are used to translate
each BPEL activity into a Petri net pattern. Obviously, this translation is very
laborious and takes too much time to be done manually. Therefore, for each
semantics exists a compiler that automatically translates a BPEL process into
a Petri net model. The HUB compiler supports both BPEL 1.1 and BPEL 2.0,
whereas the QUT compiler is restricted to BPEL 1.1.

Currently, both implemented semantics abstract from data since variables in
BPEL have an infinite data domain in general. If we would translate the process
into a high-level Petri net, it may have an infinite state space which makes
subsequent analysis impossible. To this account, both compilers abstract from
time and instances due to the limitations of the semantics and they also abstract
from data. As a result, models generated by the compilers are low-level Petri
nets. Messages and the content of variables are modeled by undistinguishable
black tokens. Data dependent branches (e. g., BPEL’s <if>) are modeled by
nondeterministic choices. In terms of Petri nets such an abstract net is a skeleton
net [18].

QUT The QUT semantics is implemented straightforwardly in the BPEL2PNML
tool7. BPEL2PNML directly translates a BPEL process into low-level Petri net
in PNML format. Every activity is replaced by its predefined pattern, and nodes
(places and transitions, respectively) with identical names are merged to one
node.
7 BPEL2PNML is available at www.bpm.fit.qut.edu.au/projects/babel/tools.



As it can be seen from the QUT semantics in Sect. 4, the predefined pattern
of an activity must suit every possible environment of that activity. Even if
the actual activity cannot be skipped, the pattern will include a skip path, as
in some other environment the activity can be skipped. Likewise, the pattern
always includes support for links and termination, and the scope pattern always
includes support for fault handlers, event handlers, and compensation handlers.
As a result, the tool BPEL2PNML does not need to check the environment of
an activity (and to possibly tune the pattern towards the activity) on the one
hand; while on the other hand, the predefined pattern becomes very complicated,
which in turn may lead to a very complicated Petri net in the end. Also, it is
worth mentioning that a reduction of the unnecessary nodes, such as the skip
path of the top level BPEL activity which cannot get skipped by definition, will
be performed within the verification tool described in Sect. 5.2.

HUB The HUB semantics is implemented in the tool BPEL2oWFN8, a compiler
translating one or more9 BPEL processes into a Petri net model. This model
can be exported as oWFN or in other file formats (e. g., PNML, PEP, LoLA,
INA, SPIN) and thus supports a variety of analysis tools. It does not follow
a brute-force mapping approach. Instead, BPEL2oWFN employs flexible model
generation [14], an approach that minimizes the model both during and after
the translation process, allowing to generate a compact model tailored to the
analysis goal.

To this end, BPEL2oWFN builds a control flow graph (CFG) of the process
and applies standard static analysis techniques (see [19] for an overview) to gain
information about the activities, variables, scope hierarchy, and other aspects of
the process. This gained information together with the user-defined analysis goal
is used to generate the most abstract model fitting to this analysis goal. For this
purpose, we implemented a pattern repository which contains— in addition to
a generic pattern —several patterns for each activity or handler, each designed
for a certain context. As an example, consider the <scope> activity: For this
activity, we provide a pattern with all handlers, a pattern without handlers, a
pattern with an event handler only, etc. In general, specific patterns are much
smaller than a generic pattern where the absent aspects are just removed. In
addition, each pattern usually has diverse variants according to the user-defined
analysis goal. For example, a certain analysis goal demands the modeling of the
negative control flow or the occurrence of standard faults, whereas another goal
does not. In the translation process, for each activity, a Petri net pattern is
selected from this pattern repository according to the gained information.

After the translation process, structural reduction rules are applied to further
scale down the size of the generated model. For each user-defined analysis goal
(e. g., reachability), adequate reduction rules (adapted from [20]) preserving the
considered property are selected. Combined with a removal of structurally dead
8 BPEL2oWFN is available at www.gnu.org/software/bpel2owfn.
9 If more than one process is given, the resulting models are composed to a single

Petri net.



nodes, the rules are applied iteratively. In addition, the information gathered by
static analysis allows for further removal of Petri net nodes that are not affecting
the analysis.

The information gained by static analysis introduces domain knowledge into
the translation process. In contrast, only domain independent— and thus usually
weaker— reduction techniques such as structural reduction are applicable once
the model is generated. Case studies show that flexible model generation com-
bining domain-dependent and domain-independent reduction techniques is able
to generate very compact models especially tailored to the considered analysis
task [14].

Conclusion While the QUT compiler BPEL2PNML merges the patterns used
by the input process, the HUB compiler BPEL2oWFN implements several so-
phisticated reduction techniques to reduce the model during its generation with
respect to the verification goal. Furthermore, BPEL2oWFN applies standard
Petri net reduction rules that may further reduces the model size.

5.2 Possible Verification

QUT The resulting Petri nets generated by BPEL2PNML are —as mentioned
earlier— quite big and usually contain a lot of dead nodes, for instance unnec-
essary skip parts. For this reason, we “clean” the resulting Petri net from these
dead skip paths. In addition, the structure of the net is used applying stan-
dard reduction rules [20]. In contrast to the HUB approach, the model is only
minimized after the translation.

The QUT semantics is designed to verify the soundness property [6]. The
soundness property demands that the process can reach its final state from every
reachable state. Thus, a sound process is deadlock-free. Furthermore, a sound
net completes properly; that is, without any tokens except on the final place.
Soundness is a well-known sanity check for Petri nets that reflect workflows. To
verify soundness, we use the tool Woflan [16].

Soundness is verified by generating the reachability graph for the given Petri
net. If this is due to state explosion problems not possible, soundness cannot
be checked. In such a situation, we might still be able to check relaxed sound-
ness [21] instead. The relaxed soundness property verifies that every transition
is covered by some execution path that ends in the final state. If a transition is
not on such a path, it cannot help in reaching the final state. Relaxed sound-
ness can be approximated using techniques proposed in [22] and implemented in
WofBPEL [23].

To verify the correctness of a BPEL process, we can use the proposed tools
to translate the BPEL process into a Petri net. On the resulting net, we check
soundness and relaxed soundness. If the net is not (relaxed) sound, a coun-
terexample might help the BPEL designer to detect design flaws in the original
BPEL process. The generated Petri nets can also be used as input by any Petri
net-based model checkers to verify any temporal logic property.



Furthermore, if the reachability graph can be generated, WofBPEL also pro-
vides the analysis of BPEL-specific properties such as the existence of conflicting
message-receiving activities (a situation which should throw a runtime fault at
the BPEL level). In addition, messages that cannot be received anymore in fu-
ture states can be determined. This information is annotated to the original
BPEL model. These annotations can then be used by a BPEL engine to safely
remove incoming messages in the message queue, thus optimizing the resource
management.

HUB In addition to the translation, BPEL2oWFN also uses the CFG to check
54 of the 94 static analysis requirements10 proposed by the BPEL specification.
They enable BPEL2oWFN to statically detect cyclic control links, read access
to uninitialized variables, conflicting message-receiving activities, or other faulty
constellations.

Due to the explicit modeling of the interface of a BPEL process, we are able
to analyze its communicational behavior. Like the soundness property for WFNs,
the existence of a partner process (formalized by the notion of controllability [8])
is a minimal requirement for the correctness of an oWFN. An algorithm to decide
controllability of an oWFN is implemented in the tool Fiona [12]. This algorithm
is constructive; that is, if the oWFN is controllable, a partner is generated.
This partner can be translated back to BPEL using existing approaches, for
example [24].

Furthermore, to characterize all partners of an oWFN, the notion of an op-
erating guideline [25] can be used. The operating guideline is a data structure
that enables us to solve other problems concerning communicating services such
as consistency (a composition of services can always reach a final state), com-
patibility (two services have equivalent external behavior), or exchangeability of
services (a service can be replaced by another service without loosing a partner
service).

Finally, BPEL2oWFN allows to create a closed system of the BPEL process;
that is, a Petri net model without interface. This model is similar to a workflow
net and can be used to check temporal logic properties using existing model
checking tools.

Conclusion While the QUT semantics is tailored to verify (relaxed) soundness,
the HUB semantics using oWFNs allows for the analysis of the communication
behavior of a BPEL process. Furthermore, BPEL2oWFN can detect many design
flaws directly on the structured of the BPEL process. Finally, the resulting nets
of both semantics can be analyzed by common model checkers.

10 Most of the static analysis requirements that are not checked by BPEL2oWFN check
aspects of XPath and are out of scope of the analysis goals presented in this paper.



6 Case Studies

To underline the impact of the modeling decisions described earlier, we translated
several BPEL processes11 and calculated their state spaces. The processes are
toy examples taken from the BPEL specification as well as real-life processes
used in other papers.

Table 1. Comparison of net sizes (places and transitions) and state spaces (full state
space and reduced state space using partial order reduction).

QUT HUB
Petri net state space Petri net state space

Process Activities Scopes P T full reduced P T full reduced

Booking 14 1 27 32 33 33 38 56 43 43
Loan 1 7 1 48 47 282 159 64 88 524 177
Loan 2 7 1 49 48 283 167 70 98 292 97
Identity 81 8 110 120 39,053 26,137 168 265 300 285
Purchase 35 4 53 50 190 86 48 80 42 42
Salesforce 22 2 38 43 100 95 68 117 71 71
Travel 8 1 34 32 73 41 37 52 30 28
Vacation 35 3 58 64 967 369 109 174 111 111
Shipping 16 1 21 21 73 43 27 53 23 23
Phone 43 1 74 79 1261 465 116 222 136 136
Auction 17 1 27 31 45 44 59 92 232 128

Table 1 summarizes the results. For each process, we present the sizes of
the resulting nets (in terms of places and transitions) after structural reduction.
Furthermore, we used the model checker LoLA [26] to calculate the complete
state space as well as the reduced state space using partial order reduction. To
receive an impression of the size of the processes, the number of activities and
in particular the number of scopes are shown.

In general, the nets of the HUB semantics have more nodes. This is due to
the more detailed patterns and the stopping concept which introduces many
transitions (cf. Fig. 2). For most of the processes with only one scope, the size of
the state spaces of the QUT and the HUB nets are very similar. If, however, a lot
of scopes and links are involved, the flexible model generation and the different
modeling of DPE implemented in BPEL2oWFN permits very compact models.
For instance, process “Identity” (a real-life process modeling the application of
an identity card) consists of 8 scopes and 17 links: the resulting state space of
the HUB net (300 states) is just a fraction of the state space of the QUT net
(39,053 states).

11 To use both compilers BPEL2PNML and BPEL2oWFN, the processes only use
features of BPEL 1.1.



7 Conclusion

Many researchers have spent efforts in formalizing and analyzing of BPEL pro-
cesses. In this paper, we compared two feature-complete Petri net semantics for
BPEL, their compilers, and tools to support the analysis of certain properties of
BPEL processes. The comparison has shown that due to some modeling decisions
the two semantics differ in the following issues:

– The HUB semantics is a high-level Petri net which adequately models data.
The current translation abstracts from data; thus, the resulting model is a
low-level Petri net. In contrast, the QUT semantics is defined as a low-level
Petri net from the start.

– The HUB semantics explicitly represents the interface whereas the QUT
semantics does not. As a result, the QUT and the HUB semantics result in
different models (workflow nets and open workflow nets, respectively) that
allow for analyzing different properties.

– In case of dead-path-elimination, the moment when an activity can set the
status of its outgoing links to false is different in the two semantics. While
the QUT implementation conforms to the BPEL specification, the HUB
approach uses an overapproximation resulting in smaller models.

– When a scope has to be terminated due to a fault, the moment when all the
activities within the scope stop is different in the two semantics. In the QUT
semantics, the activities stop immediately as soon as a fault has occurred
to the scope, because a global termination concept is used. In contrast in
the HUB semantics, an asynchronous termination concept is used; thus, the
activities may stop at any time after the fault occurrence, but before the
<faultHandlers> start.

Comparing the compilers, QUT’s BPEL2PNML applies a brute-force trans-
lation and the resulting net is reduced after the translation. The HUB compiler
BPEL2oWFN, in contrast, applies an approach of a flexible model generation
that reduces the Petri net model during and after the translation with respect
to the property to be analyzed. For this purpose, for each BPEL activity, several
Petri net patterns with different degree of abstraction are available in a pattern
repository. Using static analysis on the BPEL code, we select the most abstract
pattern applicable in a given context. As shown in the case study (see Sect. 6),
flexible model generation combined with the more efficient implementation of
the DPE usually results in very compact models for big BPEL processes. As
another difference, BPEL2oWFN allows to check many properties statically on
the BPEL code.

We further compared the different properties that can be analyzed on the
resulting Petri net model. All models can be analyzed for temporal logic prop-
erties using existing model checkers. QUT models, in particular, can be checked
for soundness. The workflow structure of the QUT models allows to use efficient
algorithms (i. e., performed on the structure of the net rather than on the reach-
ability graph) for WFNs implemented in the tools Woflan and WofBPEL. Since



the HUB models explicitly represent the interface of a BPEL process, they can
be used to check controllability of the and to calculate its operation guideline
using the tool Fiona.

In ongoing research we work on some tool integration. For example, we think
of implementing a global stop concept in the Berlin compiler BPEL2oWFN and
study its impact combined with flexible model generation. We also want to spend
additional efforts to detect more structural reduction rules that are specific for
BPEL processes.
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