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0 Introduetion 

0.0 Communication of values and parallel computations 

In this thesis we discuss the description of the communication of values between mech
anisms, and parallel computations. This is clone using trace theory, a formalism for 
concurrent processes developed by Martin Rem ([Re85]) , Jan L.A. van de Snepscheut 
([Sn]), and Anne Kaldewaij ([Ka]) . 

In trace theory mechanisms are described by processes. Interaction of a mechanism 
with its environment is described by the occurrence of events . In order to describe 
communication of val u es we introduceevents that are pairs consisting of a channel name 
and a message (value). This is clone also by C.A.R. Hoare in Communicating Sequentia! 
Processes ([Ho]). Occurrence of pair (c, m} is interpreted as the passing of message m 
via channel c. By introducing these pairs one can fully describe communication of 
values within trace theory. 

An important aspect is the extent to which the values that are communicated deter
mine the communication behaviours of the processes. A process is said to be data 
independent if its communication behaviour is independent of the values that it sends 
and receives. 
Consider the following program 

com adder(in a, b : int, out c: int) : 

var x, y : int rav 

(a?x, b?y; c!(x + y))* 
moe 

where a?x denotes the receiving of a value via input channel a and the assignment of 
that value to local variabie x, and c!(x + y) denotes thesending via output channel c 
of the sum of the values of the variables x and y (the program notation used here is 
introduced in chapters 1 and 4). Program adder defines a data independent process 
that describes a mechanism that repeatedly computes the sum of pairs of integer values. 
lts communication behaviour is described by program 

com addercomm(a, b, c) : (a, b ; c)* moe 

1 



0 Introduetion 

Let a(i) denote the i-th value that is communicated via channel a (i > 0). Let b(i) 
and c(i) be defined analogously. Wethen have for i, i~ 0, 

c(i) =a( i)+ b(i) 

This relation is called the inputfoutput relation. Observe that the communication 
behaviour and the input/output relation are independent. 
I\ext, consider a mechanism that filters negative valnes from an incoming st.ream of 
integer numbers, and that is described by the following program 

com filter( in a: int, out b: int) : 

var x : int rav 

(a?x; ifx ~ 0--+ b!xl]x < 0--+ di)* 
n1oc 

The process defined by the above program is not data independent. lts communication 
behaviour cannot be described independently of the values that it sends and receives. 
After the occm-rence of (a, m) for some m < 0 no communication via channel b can 
follow directly. 

Data independenee of processes allows us to express phenomena like deadlock and di
vergence ([I<a],[Ho]) in termsof the communication behaviours the of processcs instead 
of in tcrms of the processes themselves. 

Parallel computations are networks of processors or cells that can be described by 
processes. We are mainly interested in networks that can be characterizcd as follows 

- tbe network is a regular arrangement of cells (for instance, a rectangular grid 
or a tree) 

communication between cells in the network and between cells ancl the cnvi
ronment of the network takes place via unidirectional channels 

- cells are simple and communicate via a fixed number of channels with neigh
bour cells and/or the environment of the network (fixed means independent of 
the tot al number of cells) 

- the communication behaviours of the cells are independent of the values that 
they send and receive, i.e. their processes are data independent 

cells synchronize by message passing only 

Networks that satisfy the first four conditions are often referred to as systolic arrays 
([I<u]). Systolic arrays usually have a global doek to synchronize the cells ancl, there
fore, do not satisfy the fifth condition. 



0.1 Overview 3 

In this thesis we discuss a programming metbod with which one can derive programs 
from specifications that describe data independent processes ([Re87]). Data indepen
denee plays an important role in this metbod sirree it allows us to treat communication 
behaviours and inputfoutput relations in isolation. The programs that are derived 
define networks of processes that satisfy the above conditions. The derived programs 
are formally proved to satisfy the given specifications and to have no divergence or 
deadlock. 

0.1 Overview 

In chapter 1 we give an overview of trace theory. Some new concepts are introducecl, 
among them the notion of systems. A system describes a network of processes. Pro
grams as defined in [Sn] and [Ka] denote a special class of systems. A recursive program 
clefines a system consisting of an infinite number of processes. The process of a pro
gram is defined to be the process of the system specified by the program. As a result 
of this definition the process of a recursive program is equal to the least fixpoint of a 
recursive equation defined by the program, which was the definition in [Sn] and [Iü] . 

In chapter 2 we first discuss nondeterminism and divergence. The concepts of non
disabling and transparent sets of events (alphabets) are introduced (non-disabling eer
responels to J1 in [Ka]). Absence of divergence is characterized in several ways. A 
number of results is presented on non-disabling, non-divergent or transparent alpba
hets after composition and projection. 
Secondly, we discuss terminatien and deadlock ([Ka]). If one wants to investigate the 
absence or preserree of deadlock one may project on transparent alphabets that contain 
the common symbols. 
Finally, we introduce the class of conservative processes and the class of cubic processes 
([Ve86]). The latter is a subclass of the former. A processis conservative if its future 
behaviour depends only on the numbers of past events and not on their order. Cu
bic processes are the processes that can be described by partial orders on occurrences 
of events ([Ve86]). These classes are closed under composition and projection. Each 
subset of the alphabet of a conservative process is non-disabling. For cubic processes 
so-called sequence functions are introduced. A sequence function for a cubic process 
defines a subprocess that is cubic and that may be interpreteel as a restricted ( doekeel) 
behaviour of the original process. Existence of a sequence function for a. system of 
cubic processes implies the absence of deadlock. The notion of constant response time 
is defined in terms of sequence functions. 

In chapter 3 we show how to model communication of values in terms of trace theory. 
Data independenee is defined and is shown to be expressible in terms of transpa.rence. 
Data independenee is preserveel by projection on alpbahets that are non-disabling with 
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respect to the communication behaviour. Conditions are given such that composition 
of data independent processes yields a data independent process. Split specifications 
are .introducee!. The class of processes described by split specifications equals the class 
of data independent processes. In case of data independenee phenomena like divergence 
:·md cleadlock can be expressed in terms of communication behaviOtn·s only. Fimdly, 
we introduce channel order independence, expressing that the future behaviour of a 
l)rocess does not depend on the order in which the channels were used by the process . 
lts clefinition closely resembles that of conservative processes. 

In chapter 4 we extend the program notation introducee! in chapter 1 in order to exprcss 
communication of values within programs. The notations have partly been adoptecl 
from CSP ([Ho]). In this chapter we make a distinction between input ancl output. 

ln chapter 5 we introduce, by means of cxamples, the programming methocl that was 
mentioned in the previous section . 

0.2 Notation 

We conclude with some remarks concerning notations that are used in th is thesis. 

f niversal quantification is denoted by 

(Al : R : E) 

where A is the quantifier, lis a list of bound variables, Ris a predicate, and E is thc 
quantified expression. Both Rand E, in genera!, contain variables from I. Predicate 
R ddineates the range of the bound variables and expression E is defined for va lues 
in that range. Likewise, we denote existential quantification, summation, union , and 
intersectien using quantifiers E , S , U, and n, respectively. 

Por expressions E and C, an exprcssion of the form E :::} G willoften be proved in 
a number of steps by introduetion of intermediate expressions. Por instance, if we can 
prove that E :::} G by proving E = F and F :::} C, we record this proof as follows 

E 

{hintwhyE F} 

F 

:::} {hint why F:::} G} 

G 

In this way we avoiel writing down intermcdiate expressions like F twice. These not.é\
tions have been adopted from [Dij ]. 

With JV ancl Z we denote the set of natura! numbers and the set of integer numbers, 
respectively. 



1 Trace theory 

1.0 Introduetion 

In this chapter we present an overview of trace theory. Most of the suhjects that are 
also treated elsewhere ([Ka],[Sn]) will bedescribed only briefly. The material presenled 
in this chapter forms the basis for the rest of this thesis. 

The basic notion of trace theory is that of processes. A process is a mathematica! 
model of a mechanism. For instance, a variabie that has no initia! value interacts with 
its environment through two kinds of events, namely 

a : a value is assigned to the variabie 

b : the variabie returns its value 

Sequences of a's and b's descrihing possible behaviours of the variabie are a ba b, 
a b ba a, a a b etc .. The sequence b is not a behaviour of the varia bie. 

Fini te sequences of events are called traces. A process descrihing a mechanism consists 
of the set of relevant events and the set of all possible traces. These sets are called the 
alphabet and trace set of the process, respectively. The process descrihing the variabie 
has {a, b} as its alphahet and the set of all sequences of a's and b's not starting with 
a b as its trace set . 

It is clear that for every trace all initia! parts thereof should also be allowed . Fur
thermore, the empty trace - meaning that the mechanism has not yet engaged in any 
event- should always be in the trace set. These two properties characterize processes. 

The alphabet of a process contains the events that we are interested in. Depending on 
the aspects that are considered a mechanism may be described by different processes. 
If we are interested in the values that are assigned to the variabie we might have chosen 
{a, b} x Z (Z denotes thesetof integer numbers) for the alphabet - assuming that the 
variabie can store only integer values - where for n E Z 

(a, n} : the value n is assigned to the variabie 

(b, n} : the variabie returns the value n 

5 



6 1 Trace theory 

Typical traces are (a,4) (b,4) (b,4) (a, -1) (b, -1), and (a,O) (a, 1) (b, 1} (a ,O) (b,O) . 

In trace theory neither time nor speed plays a role. Events do not occur at a eer
taio speed. Events are assumed to be atomie : they have no duration , they happen 
instantaneously, and they do not overlap. 

Composition of mechanisms is represented by composition of conesponding processes. 
Interaction between mechanisms is assumed to be instantaneous. A common event 
takes place only if all processes having the event in their alphabets are able to engage 
in the event. 

1.1 Trace calculus 

With every kind of event a name (a symbol) is associated. We assume the existence 
of a set n of names. An element of n is called a symbol. A subset of n is called an 
alphabet. 

Thesetof all finite-length sequences of symbols is denoted by n•. The empty sequence 
e is an element of n·. An element of n· is called a i race. A subset of n· is called a 
trace set. For an alphabet A, set A* is defined similarly. Notice that 0" = {e}. 

In our notation we employ the following conventions. 

Small and capita! letters near the beginning of the Latin alphabet denote 
symbols and alphabets respectively. 

Small and capita! letters near the end of the Latin alphabet denote traces ancl 
trace sets respectively. 

The lengthof trace t, denoted by l(t) , is defined by 

l(e) 0 
l(sa) l(s ) + 1 

The concatenation of traces s and t is denoted by st. In order to save parentheses, 
concatenation is given the highest priority of all operators. 

Trace s is called a prefix of trace t, denoted by s ::::; t, if 

(Eu:uEn" :su =t) 

The prefix ciosure of a trace set X, denoted by PREF( X), is the trace set consisting 
of all prefix es of elements of X. 

PREF( X) = { s 1 s E n· A (Et : t E x : s ::::; t)} 
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Trace set X is called prefix-closed if X= PREF(X). 

The projection of trace t on alphabet A, denoted by t ~A, is obtained by removing from 
t all symbols that are not in A. It is defined as fellows 

a\l'A 
a E A 

We write ti a as an abbreviation of t f {a}. The projection of trace set X on alphabet 
A, denoted by X~A, is the trace set {tI tEn* 1\ (Eu: u EX: dA = t)}. 

A trace structure T is a pair (A, X) where A is an alphabet and X is a trace set such 
that X Ç A*. We call A the alphabet of the trace structure and X the trace set of the 
trace structure. 

The alphabet of a trace structure T is denoted by aT and its trace set by tT . Notice 
that for a trace structure T we have T = (aT, tT) . 

We wil! denote trace structures using capita! letters near the end of the Latin alphabet. 

The projection of trace structure T on alphabet A, denoted by T t A, is defined by 

T~ A= (aT nA, tT ! A) 

The prefix dosure of trace structure T, denoted by PREF(T), is defined by 

PREF(T) = (aT, PREF(tT)) 

Trace structure T is called prefix-closed if tT is prefix-closed. Trace structure T is 
called nonempty if tT -=f=. 0. 

A process is a nonempty prefix-closed trace structure. A process T is thought of as 
an abstraction of a mechanism. The alphabet of T is the set of relevant events the 
mechanism may engage in. It is assumed that events have rio duration and that they do 
notoverlap (events are said to be atomie). The state of the mechanism is described by 
the so called current trace being the sequence of events the mechanism has participated 
in. The behaviour of the mechanism in operation is described as follows. Init ially, the 
current trace is empty. On occurrence of an event the current trace is extended with the 
symbol associated with that event. Clearly, the current trace should, at any moment, 
beleng to the trace set of T. Moreover, if s is the current trace and sa E tT then 
the event associa.ted with a may happen. Notice that we do not make a distinction 
between events initiated by the mechanism and events initiated by the environment of 
the mechanism. 

Example 1.1.0 

A variabie that has no initia! value may be specified by a process T in the following 
way. The relevant events are 
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a : a value is assigned to the variabie 

b : the variabie returns its value 

Therefore, we choose aT = {a, b}. 

1 Trace theory 

Any trace in {a,b}* that doesnotstart with a bis a trace of Tor, equivalently, any 
trace in {a, b} • that is either empty or starts with an a is a trace of T. The variabie 
can be specified by 

T = ( {a, b}, { t I t E {a, b} • 1\ ( t = e V a :::; t)} ) 

Notice that T is a process, i.e. a nonempty prefix-closed trace structure. 

(End of Example) 

Property 1.1.1 

If T is a process and A is an alp ha bet then T Î A is a process. 

(End of Property) 

We now define some special processes that play an important role. For alphabct A 
processes STOP(A) and RUN(A) are defined by 

STOP(A) = (A, {t:}} 
RUN(A) = (A, A*} 

Process STOP(0) (= RUN(0)) is also denoted by STOP . 

Let A and B be alphabets and letpand q be natura! numbers. Process SYNCp,q(A , H) 
is defined by 

SYNCp,q(A, B) 
=(AUB, {titE(AUB)*I\ (As:s::=;t:-q::=;f(sÎA)-f(sÎB):::;p)}) 

Let k be a natura! number. Process SEMk(A, B) is defined by 

SEMk(A, B) = SYNCk,o(A, B) 

We wil! often write SEMk(a,b) insteadof SEMk({a}, {b}) 
and SYN Cp,q( a, b) instead of SYNCp,q( {a}, { b} ). 

Intersection, union, and inclusion are defined fortrace structures hav ing cqual a.lpha· 
bets. Let (A, X} and (A, Y} be trace structures. 



1.1 Trace calculus 9 

(A, X) Ç (A, Y) =: X Ç Y 

Let X be a nonempty set of trace structures all having alphabet A. We define 

(UT : T E X : T) = (A, (UT : T E X : tT)) 

and 

( n T : T E X : T) = {A, ( n T : T E X : tT)) 

Thesetof all processes with alphabet A is denoted by T(A) . We have that {T(A), Ç) 
is a complete lattice ([Bi]) with least element STOP( A) and greatest element RUN( A). 

Theorem 1.1.2 

lf X is a nonempty set of processes from T(A), 
then (UT: TE X : T) and (n T: TE X : T) are processes in T(A) . 

(End of Theorem) 

Let T be a process and let t E tT. Process after(t, T) is defined by 

after(t, T) = {aT, {u I u E aT* I\ tu E tT}) 

The successor set of trace t, denoted by suc(t, T), is the set of all symbols that may 
follow t in tT, i.e. 

suc(t,T) ={a I a E aT I\ ta E tT} 

Property 1.1.3 

Let T and U be processes with equal alphabets. Let t E tT and A Ç aT. 

0 a E suc(t,T) = a E tafter(t,T) 

suc(t, T) = suc(t:, after(t, T)) 

2 suc(t, T) nA Ç suc(tîA, TîA) 
suc(tÎA,TîA) = (Us : sE tT I\ s îA = tîA: suc(s,T) nA) 

3 after(t,T)ÎA Ç after(tÎA,TfA) 
after(tÎA,TîA) = (Us: sE tT I\ sÎA = tÎA: after(s,T)ÎA) 

4 T Ç U =} suc(t, T) Ç suc(t, U) I\ after(t, T) Ç after(t, U) 
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Let X be a nonempty set of processes with equal alphabets. 
Let u E t(U T: TE X: T) and v E t(n T: TE X: T). 

5 suc(u,(UT:TEX:T))=(UT:TEX 1\ uEtT:suc(u,T)) 
suc(v,(nT: TE X: T)) = (nT: TE X: suc(v,T)) 
after(u, (UT: TE X: T)) =(UT: TE X 1\ u E tT: after(u,T)) 
after(v,(nT: TE X: T)) = (nT: TE X: after(v,T)) 

(End of Property) 

1 Trace theory 

If s and t are traces of process T such that ajter(s, T) = after(t, T) we say that s and 
t belong to the same state of T. More formally the states of T are defined to be the 

T equivalence classes of the equivalence relation "' defined on tT by 

s ! t = aft er( s, T) = after( t, T) 

With [t]T we denote the class to which t belongs. Thesetof all classes (states) of T is 
denoted by [T]. 

Property 1.1.4 

Let T be a process. Let s, t E tT. 

T 0 s "' t => suc(s, T) = suc(t, T) 
T 

1 s "' t = (A u: u E aT* 1\ su E tT 1\ tu E tT: suc(su, T) = suc(tu, T)) 

(End of Property) 

The definitions of after and suc may be extended to the states of T: 

aft er( [t]T, T) = aft er( t, T) 

suc([t]T, T) = suc(t, T) 

Wethen have 

aft er( a, T) = after(/3, T) = a = f3 

fortE tT 

fort E tT 

for a, f3 E [T] 

If T has a finite number of states, then T is called regular. 

Theorem 1.1.5 

Let T be a process and A be an alphabet. If T is regular then T~A is regular. 

(End of Theorem) 
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Parallel composition of mechanisms is described in terms of the composition of the 
associated processes. Assume mechanism P is specified by process T and mechanism 
Q by process U. We specify the mechanism that is obtained by composing P and Q 
by a process V defined in terms of Tand U. The alphabet of V is aT U aU. Let t 
be the current trace of the composite. Then t laT is the current trace of P and t îaU 
the current trace of Q. Trace t can be extended with a symbol from aT n aU if both 
P and Q can engage in the event associated with the symbol, i.e. both the current 
trace of P and the current trace of Q may be extended with the symbol. Trace t can 
be extended with a symbol from aT+ aU if the mechanism having that symbol in its 
alphabet can engage in the associated event. From the above we infer that t is a trace 
of V if and only if t îaT is a trace of T and t laU is a trace of U. This leads to the 
following definition . 

The weave of processes T and U, denoted by T w U, is defined by 

Tw u = (aT u aU, { t I tE (aT u au)• 1\ tlaT E tT 1\ tîaU E tU}) 

It is easily shown that T w U is a process. Weaving is interleaving with synchronization 
on common symbols. Therefore, weaving of processes with disjoint alphabets amounts 
to just interleaving. 

Example 1.1.6 

RUN(A) w RUN(B) = RUN(A u B) 

SEM1(a,b)wRUN({c}) = SEM1({a,c}, {b,c}) 

SYNCp,9(A, B) w RUN(C) = SYNCp,9(A U C \ B , B U C \A) 
SEM1 (a,b)wSEM 1(b,a) = STOP({a,b}) 

RUN(A) w STOP(B) = RUN(A \ B) w STOP(B) 
= (A U B, (A\ B)•) 

(End of Example) 

The following property shows that WP.aving is symmetrie, idempotent, associative, and 
monotonie. Its unit element is STOP and its zero element is STOP(D). 

Property 1.1.7 

Let T, U, and V be processes. Let A be an alphabet . 

0 TwU = UwT 
1 TwT=T 
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2 (TwU)wV=Tw(UwV) 

3 TwSTOP = T 
aT Ç A ==> Tw STOP( A)= STOP(A) 
T w STOP(O) = STOP(O) 

4 TwTIA=T 
TwUiaT Ç T 
TÇU ==> TwU=T 

5 T w RUN( A)= Tw RUN( A\ aT) 
6 TÇU=>TwVÇUwV 

(End of Property) 

In view of the above property we can generalize the definition of wea.ving to arbit.ra.ry 
sets of processes. Let X be a set of processes. The weave of the processes in X, denoted 
by (W T: TE X : T) , is defined to be process 

((UT: TE X: aT) 
, { t I t E (U T : T E X : aT) • 1\ (A T : T E X : t I aT E tT)} ) 

lnstead of (W T : TE X : T) we also write W(X). The next propcrty shows W to be 
a generalization of w . 

Property 1.1.8 

Let X and Y be sets of processes. Let U be a process. Let A be an aJphabet. 

0 W(0) = STOP 

W({U}) =U 
2 W(X U Y) = W(X) w W(Y) 

3 X Ç Y 1\ A Ç aW(X) ==> W (X) IA ~ W(Y) i A 

(End of Property) 

The following results show the relation between weaving and projection. Observe the 
important role played by the intersection of the alphabets. In the seguel T and U are 
proccsses and A a nd B are alphabets. 

Property 1.1.9 

0 (T wU)I(AU aT) ç TwUIA 
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(TwU)iA ç TiAwUiA 

(End of Property) 

Theorem 1.1.10 

0 aTnaUÇA => (TwU)i(AuaT)=TwUIA 
1 aTnaUÇA => (TwU)IA = T iAwUIA 

(End of Theorem) 

Theorem 1.1.11 

Let A Ç aT, B Ç aU, and aT n aU= A n B . Then 

(Tw U) i( A u B) = TiAw UIB 

Pro of 

We derive 

aTn(AUB) 

{A Ç aT} 

AU(aTnB) 

{ aT n B ç aT n aU = A n B } 

A 

Likewise, one can derive aU n (A U B) = B. 

(TwU)I(AuB) 

{aT n aU= A n B, theorem 1.1.10.1} 

Tî(A U B) w UI( A u B) 

{ TîaT = T, U laU = U, property projection, above derivation} 

TfAwUIB 

(End of Proof) 

Corollary 1.1.12 

(Tw U)l(aT n aU) = Tl( aT n aU) wUI( aT n aU) 

(End of Corollary) 

13 
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The continuation of process Tw U after trace t, process after(t, Tw U), equals the 
weave of aft er( t faT, T) and aft er( t fa U, U) as the following theorem expresses. 

Theorem 1.1.13 

Let T and U be processes. For every t E t(T w U) we have 

after(t, Tw U) = after(tfaT, T) w after(tfaU, U) 

Pro of 

LettE t(Tw U). Fortrace u wc have 

u E tafter(t,TwU) 

{ definition after } 

u E a(TwU)* 1\ tu E t(Tw U) 

{ definition weave, prope1-ty projection } 

u E (aT U aU)* 1\ (tfaT)(ufaT) E tT 1\ (tfaU)(ufaU) E tU 

{ definition after·, tfaT E tT, tfaU E tU} 

u E (aT U aU)* 1\ u faT E tafter(tlaT, T) 1\ ufaU E tajter(tfaU, U) 

= { definition weave } 

u E t( after(tfaT, T) w after(tfaU, U)) 

(End of Proof) 

A direct consequence of the above theorem is 

Theorem 1.1.14 

Let T and U be processes. Let s and t be traces of Tw U. Then 

sfaT I., t faT 1\ sfaU!!., tfaU => s r-::y t 

(End of Theorem) 

from theorem 1.1.14 we infer 

Theorem 1.1.15 

Let T and U be processes. The number of states of T w U is at most t lw product of 
t he number of states of T and the number of states of U. 

(End of Theorem) 
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Corollary 1.1.16 

If T and U are regular processes, then T w U is a regular process. 

(End of Corollary) 

Successor sets of T w U can be expressed in terms of successor sets of T and U. 

Theorem 1.1.1 7 

Let T and U be processes. For all t E t(T w U) we have 

suc(t, Tw U)= (suc(daT, T) n suc(tlaU, U)) 
U suc(t laT, T) \aU U suc(t laU, U)\ aT 

Pro of 

LettE t(Tw U). We have 

suc(t, Tw U) 

= { definition successor set and weaving} 

{a I a E aT U aU 1\ (ta)îaT E tT 1\ (ta)îaU E tU} 
{ definition projection, tE t(Tw U), set calculus} 

{a I a E aT n aU 1\ (tîaT)a E tT 1\ (tîaU)a E tU} 
U {a I a E aT\ aU 1\ (tîaT)a E tT} U {a I a EaU\ aT 1\ (tlaU)a E tU} 

{ definition successor set, set calculus} 

(suc(tîaT, T) n suc(tÎaU, U)) U suc(tîaT, T) \aU U suc(tîaU, U)\ aT 

(End of Proof) 

Theorem 1.1.18 

15 

Let T and U be processes. Let A be an alphabet. If aT n aU C A then for all 
tE t(T w U) we have 

suc(t,TwU) Ç A 

Pro of 

suc(t laT, T) U suc(t laU, U) Ç A 

Assume aT n aU Ç A. Let t E t(T w U). We have 

suc(t,TwU) Ç A 

{ theorem 1.1.17} 
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(suc(tlaT, T) n suc(tlaU, U)) U suc(tlaT, T) \aU U suc(tlaU, U)\ aT Ç A 

= {aT n aU Ç A} 

suc(tlaT, T) \aU U suc(t laU, U)\ aT Ç A 

{suc(tlaT,T) Ç aT, suc(tlaU,U) Ç aU, set calculus} 

(suc(t laT, T) U suc(t laU, U))\ (aT n aU) Ç A 

{ aT n aU Ç A, set calculus} 

suc(daT, T) U suc(tlaU, U) Ç A 

(End of Proof) 

Corollary 1.1.19 

Let T and U be processes. Let A be an alphabet. For all t E t(T w U) we have 

suc(t,TwU) Ç A=? suc(tlaT,T) U suc(tlaU,U) Ç AU(aTnaU) 

(End of Corollary) 

1.2 Description of processes 

In this sectien we present two ways in which processes may be described, by specifica
tions and by a generalized form of regular expressions. 

A specification of a processis a pair (A, P} where A is an alphabet and Pis a predicate 
on A* such that P(t:) holds. The process specified by specificatien (A, P} is 

(A,{titEA* 1\ (As:s .S:: t:P(s))}} 

It is easily shown that this trace structure is indeed a process. A specificatien will 
usually be written as (A, t : P(t) }. 

Example 1.2.0 

0 Process SEM1 (a,b) is specified by 

({a, b}, t: 0 :::; fi(tla) - fi(tlb):::; 1} 

The process descrihing the variabie in section 1.0 is specified by 

( {a, b} , t : t = c V a .S:: t} 

(End of Example) 

[f (A, P} specifies process T, then tT is determined by 
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(0) e- E tT 

(1) tE tT 1\ a E A 1\ P(ta) => ta E tT 
(2) tT contains no other traces than those that belong to it on account of (0) and 

(1) 

The following theorem, called the Conjunction-Weave Rule ( CW-Rule ), shows the 
relation between the specifications of two processes and the specification of the weave 
of the two processes. 

Theorem 1.2.1 Conjunction-Weave Rule 

Let (A, P) and (B, Q) specify processes T and U respectively. Th en 

(A u B, t: P(t~A) 1\ Q(dB)) 

specifies T w U. 

(End of Theorem) 

Commands form an extension of the notion of regular expressions. With each command 
S a trace structure TR(S) is associated . Commands and associated trace structures 
are defined inductively by the following rules. 

- ê is a command and TR(ê) =STOP 

- a is a command and TR(a) =({a} , {a}) for all symbols a 

- if S is a command then s• is a command and 
TR(S*) = ( aTR(S), (tTR(S))*) 

- if S and T are commands then S I T is a command and 
TR(S I T) = ( aTR(S) U aTR(T), tTR(S) U tTR(T)) 

- if S and T are commands then S; T is a command and 
TR(S; T) = ( aTR(S) U aTR(T), {uv I u E tTR(S) 1\ v E tTR(T)}) 

- if S and T are commands such that aTR(S) n aTR(T) = 0 then S, T is a 
command and 
TR(S, T) = { aTR(S) U aTR(T) 

, { t I t E (aTR(S) U aTR(T))* 
1\ tlaTR(S) E tTR(S) 1\ tlaTR(T) E tTR(T)}) 

- if Sis a command then S 0 is a command and TR(S 0 ) = STOP(aTR(S)) 

Observe that definition of TR(S, T) resembles the definition of the weave of tiYo pro
cesses. Moreover, it differs from the definition in [Sn] and [Ka) where the condition 
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aTR( S) n aTR(T) = 0 is not imposed. Listed in order of decreasing priority the opera
tors are the star, the zero, the comma, the semicolon, and the bar. Commands are said 
to be equivalent (5 = T) if and only if their trace structures coincide (TR(S) = TR(T)) . 

Observe that for all commands S trace structure TR(S) is nonempty. Therefore 
PREF(TR(S)) is a process. The process PR(S) associated with command S is de
fined by 

PR(S) = PREF(TR(S)) 

Theorem 1.2.2 

0 If Sis a command, then PR(S) is a regular process. 

If T is a regular process, then there exists a command S such that T = PR(S) 

(End of Theorem) 

As a useful abbreviation we introduce for all commands S and all n, n > 0, the 
command Sn being the concatenation of n times the command S. More formally 

sn+l S;Sn 

Example 1.2.3 

SEM2(a, b) 
SEM2(a, b) 

STOP( {a}) 
SYNC1 ,1 (a,b) 

(End of Example) 

1.3 Systems 

n>O 

PR(a; (a, b)*) 
PR((a; (a; b)*; b)") 
PR(a0 ) 

PR((a, b)*) 

The composite of mechanisms can be described by the weave of the processes eerre
sponding tothese mechanisms. Sometimes, however, we want to retain the information 
on the partition into submechanisms. This can be clone by descrihing the composi te 
by aso-called system being a pair consisting of an alphabet and a set of processes. The 
set of processes consists of the processes conesponding to the (sub )mechanisms. The 
alphabet consists of the symbols that represent the external events of the composite. 
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This reflects that the other events of the composite are not observable from the outside. 
These events are called internal events. 

More formally, a system S is a pair (A, X) where A is an alphabet and X is a set of 
processes such that A Ç aW(X). Alphabet A is called the (external) alphabet of the 
system and set X is called the set of processes, or process set, of the system. 

Let S be a system. The external alphabet of S is denoted by eS and its process set is 
denoted by pS . The condition imposed on the alphabets now reads eS Ç aW(pS). 
The (external) processof S, denoted by PR(S), is defined by PR(S) = W(pS) feS. 

The external process of certain systems is given in the following theorem. 

Theorem 1.3.0 ([Ka]) 

Let p, q, m, and n be natura! numbers such that p + q;:::: 1 and m + n;:::: 1. Let A, B, 
and C be nonempty alphabets such that A n B = 0 and B n C = 0 . Then 

PR( (A 7 C, {SYNCp,q(A, B), SYNCm,n(B, C)})) 

= SYNCp+m,q+n(A \ C, C \A) 

(End of Theorem) 

Corollary 1.3.1 ([Ka]) 

Let pand q be natura! numbers such that p + q ;:::: 1. Let A, B, and C be nonempty 
alphabets that are mutually disjoint. Then 

PR( (A u C, {SEMp(A, B), SEMq(B, C)})) = SEMp+q(A, C) 

(End of Corollary) 

Thesetof all systems having external alphabet A is denoted by I;(A). 

External symbols of a system can be hidden by projection of the system on an alphabet . 
They then become internal symbols. Projection has no effect on the process set of the 
system. The projection of system S on alphabet A, denoted by St A, is defined by 

StA= {eS nA, pS) 

Notice that p(SîA) = pS and, hence, aW(pS) = aW(p(S îA)). 

Let S and T be systems. Then S and T describe networks of processes with external 
alphabets eS and eT, respectively. Composition of systems S and T should reflect 
the composition of these networks of processes. Obviously, the only synchronization 
be tween both networks should be clone on common external symbols. This implies 
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that common symbols should be external symbols of both networks. More formally, 
aW(pS) n aW(pT) = eS neT. The external alphabet of the composite consistsof 
the cxternal symbols of both S and T. Furthermore, the network of the compositc 
consists of both the processes of S and the processes of T, i.e. the process set. of 
the composite of S and T is pS U pT. Therefore, for systems S and T satisfying 
aW(pS) n aW(pT) =eS neT the composite of S and T, denoted by S 11 T (read "S' 
parallel T"), is defined by 

S 11 T =(eS u eT, pS U pT) 

Example 1.3.2 

0 (0, 0) is a system 

p(0,0} = 0 
e(0, 0} = 0 
PR((0,0)) = W(0)Î0 =STOP 

LetS= ({a,b},{SEM1 (a,b)}) and T = ({b,c}, {SEr-.1 1(b,c)}). 
We have 

S 11 T = ({a,b,c}, {SEM1(a,b),SEM1 (b, c)}), 

(S 11 T) r{a,c} = ({a,c},{SEM1 (a,b) ,SEM1(b,c)}), 

and, by corollary 1.3.1, 

PR((S 11 T)l{a,c}) = SEM2(a,c) 

(End of Example) 

Below we list a number of properties of systems and their processes. 

Property 1.3.3 

Let R,S, and T be systems such that aW(pR) n aW(pS) =eR neS, 
aW(pR) n aW(pT) = eR neT, and aW(pS) n aW(pT) = eS neT. 
Let A be an alphabet. 

0 (0, 0} 11 R = R 

R 11 S = S 11 R 

2 (R 11 S) 11 T = R 11 (S' 11 T) 

:3 PR(S'f0) = STOP 

4 eS = eT 1\ pS Ç pT ~ PR(S ) :2 PR(T) 
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5 PR(SIA) = PR(S)fA 

6 PR(S 11 T) = PR(S) w PR(T) 

7 eS neT Ç A =? (S 11 T)îA = (SfA) 11 (Tl A) 

Pro of 

4 See property 1.1.8.3 

5 

6 

PR(S ÎA) 

= { definition PR} 

W(p(SÎ A)) Îe(SÎA) 

= { defmition projection} 

W(pS) î(eSnA) 

= { property projection, definition PR} 

PR(S)îA 

PR(S 11 T) 

{ definition PR} 

W(p(S 11 T))Îe(S 11 T) 
= { definition composition} 

W(pS u pT)î(eS u eT) 

= { property 1.1.8.2} 

(W(pS) w W(pT)) Î(eS U eT) 

= { aW(pS) n aW(pT) = eS neT, theorem 1.1.11} 

W(pS) îeSw W(pT) leT 

{ definition PR} 

PR(S) w PR(T) 

7 Assume eS n eT Ç A. We derive 

aW(p(SÎA)) n aW(p(TÎA)) = e(SîA) n e(TIA) 

{ definition projection} 

aW(pS) n aW(pT) =eS nA n eT nA 

= { assumption } 

eS n eT = eS n eT n A 

= {set calculus} 

eS neT Ç A 

21 
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Hence, systems S~A and TfA have only external symbols in common and caJ1 bc 
composed. The equality between (S 11 T)f A and (S ~A) 11 (T~A) follows immediately. 

(End of Proof) 

'vVe conclude with two definitions . If T is a process then the system corresponding to 
T , denoted by sys(T), is defined by sys(T) = (aT, {T} ). Notice that PR(s ys(T)) = T . 
If Sis a command then the system conesponding toS, denoted by sys(S), is c\efined 
by sys(S) = (aPR(S), {PR(S)}}. Notice that PR(sys(S)) = PR(S) . 

1.4 A program notation 

In this section we introduce a program notation similar to the one in [Ka]. Here, 
however, a program - also called a component - defines a system. The process of a 
component will be defined to be the processof the conesponding system. This result.s 
in a process equal to the one obtained by applying the definition from [I<a]. 
Before introducing the program notation we have to say somewhat more on the nature 
of the set of symbols D. We assume the cxistence of a set n.. An element of n. is 
called a simple symbol. For n > 0 the set n~ is defined to be the set of all n-tuplcs of 
symbols in D,. 'vVe assume that 

D = (U n : n > 0 : D~) 

An element of n \ n. is called a compound symbol. Element ( ao, al, . .. , an-I) of n is 
clenoted by a0 ·a1 · ... ·an-l· If a and bare symbols then a·b is a symbol as wel!. Let p 
be a symbol. With p we can associate a function in n -+ n that maps each symbol a 

onto symbol p·a. This function is denoted by p·. Notice that function p· is injective. 
For n ~ 0 function (p· )n is defined inductively by 

(p·) 0a =a 
(p·)i+la = p·(p·);a 

Furthermore, we define 

p·A = {p·a I a E A} 
p·é = é 

p·(ta) = (p ·t)p·a 

p·X = {p·t I tE X} 
p·T = (p·aT,p·tT} 
p·S = (p·eS , {p·T I T E pS}} 

fora E D 

fora E D, i~ 0 

for A Ç n 

fortED•,aED 

for x ç n· 
for T a trace structure 

for S a system 
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The program 

com c(A) : S moe 

denotes a component without subcomponents, where c is the name of the component, 
A is a finite atphabet, the external alphabet of the component, and S is a command. 

The onty restrictions imposed on such a program text are A= aPR(S) and A consists 
of simpte symbots onty. The system of component c, denoted by sys( c), is defined by 

sys(c) = sys(S)tA 

Notice that sys(c) =(A, {PR(S)}) = sys(S). The processof component c, denoted by 
PR(c), is defined by PR(c) = PR(sys(c)). Notice that PR(c) = PR(S). 

A component with subcomponents is denoted by the program 

com c(A): 

lllOC 

sub Po: Co,PI: C1, ••• ,Pn-1 : Cn-1 bus 
[xo = Yo, X1 = Yl> · · ·, Xm-1 = Ym-d 
s 

where c is the name of the component, A is a finite atphabet, the external atphabet 
of the component, S is a command, and c0 , c1 , ... , and Cn-l are previously defined 
components, called the subcomponents of c and having narnes p0, PI> ... , and Pn-l 
respectivety. We require that A contains simpte symbols only and that p0 , p1 , . . . , Pn-l 
are n distinct, simp ie symbols. With subcomponent p; system Pïsys( c;) is associated. 
The set 

B =(U i : 0 ::::; i< n: epïsys(c;)) 

is called thesetof internat symbols of component c (notice that B consists of the ex
ternal symbols of all subcomponents). The equalities represent (internal) connections. 
An internal conneetion links two subcomponents or a subcomponent and the ex ternal 
alphabet. Since we do not want external symbols of the same subcomponent to be 
connected either directly or indirectly we impose some restrictions. First, we define 

C ={A} U { epïsys(c;) I 0::::; i< n} 

and observe that C is collection of n + 1 mutually disjoint atphabets. The restrictions 
are as follows 



(Aj : O~j<m:x1 EB) 
(Aj: 0 ~ j < m: Yi EB U A) 
I { J'i I o ~ i < m} I = m 
{ .1:; I 0 ~ i < m} n { Y1 I 0 ~ j < m} = 0 

1 Tra.ce theory 

for all j, 0 ~ j < m, symbols x j and y1 belong to two different alphabets in C 
- for all i and j, 0 ~ i < j < m, such that y; = y1 symbols x; and x j belong to 

two different alphabets in C 

Furthermore, we require that every external symbol appears in the cornmand S or is 
connected to an internal symbol 

A Ç aPR(S) U { Y1 I 0 ~ j < m} 

The alphabet of command S should consist of external symbols and internal symbols 
not in { x 1 I 0 ~ j < m}, i.e. 

aPR(S) Ç A U B \ { Xj I 0 ~ j < m} 

We now define the system of component c, denoted by sys( c), by 

sys (c) = ( (\\ i: 0 ~i < n: (pïsys(c;))xo,x, , ... ,xm - t ) 1\ sys(S)) : A 
!lo,Yt ... ·,Ym -1 

Notice that due the above restrictions sys(c) is well defined. Wi th (7Jï81'S(c; ) )",·0 ·",· ' • . ,oe," _ , 
;_] !10 •!1 1 ,. · oYm - l 

we denote system Pïsys(c;) in which every occurrcnce of symbol :r j l1as bcc·n whs l i-
tuted by symbol Yi for all j, 0 ~ j < m. In th is way wc wiJl , in general, clenotc 
substitution (renaming). The processof component c, denoted by PR(c), is clefinccl by 
PR(c) = PR(sys(c)). Notice that esys(c) =A and aPR(c) =A. Wc clcrive 

PR(c) 

{ defin ition } 

PR( ( (11 i : 0 ~i< n: (pïsys(c;))~;~,': ·.·:::::::i ) 11 sys(S)) fA ) 

{ property 1.3.3} 

( (W i : 0 ~ i < n : PR( (p;-sys( c; ) )~g :~i:::·,;:;:.=-,')) w PR( S) ) fA 
{ note 1.4.0} 

( (W i: 0 ~ i< n: (Pï PR(c;))~;~,','.'.'.','::;:::i) w PR(S)) fA 

Note 1.4.0 

ltt til is note wP s how that wea.ving and su bstitution commu te ancl that p ro jcction ancl 

substitution cornmute due to t bc restrictions imposed on the component. LPt 0 ~ i < n. 

l.ct ia, ih . .. , ik - I be the subsequence of 0, 1, .. . , rn- 1 such that 
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{x;, I 0:::; s < k} = { Xj I 0:::; j < m 1\ Xj E e(p,sys(c;))} 

Notice that 

(*) (As,t: 0:::; s < t < k: y;, :/:- y;,) 1\ (As: 0:::; s < k: y;, ~e(pïsys(c;))) 

We derive 

PR( (pïsys(c;))xo,x,, ... ,xm-1) 
!JO,yl, ... ,Ym-1 

{ definition process of a system, definition of ia, i 1, •.• , ik-I } 

(W T: TE p(pïsys(c;)):;~::,',','.·.·.·:~·;~,' : T) Î e(pïsys(c;)):;~::,',','.·.·::~·;~,' 
{ property substitution, property dot} 

(w T ( ) ( )Xio ,x;, , ... ,x •• _,) Î ( ( ))Xio ,x;, , ... ,x;k-1 :TE psys c; : PïT y;0 ,y; 1 , •. . ,y;._1 Pïesys c; y;0 ,y;1 , .. . ,y;• -• 

{ ( * ), restrictions on component } 

( (w T ( ) ))Xio ,x;, , ... ,x;k-1 Î ( ( ))Xio ,x;, , ... ,x;k-1 p;· : T E psys c; : T y;0 ,y; 1 , .•. ,y;._1 p;·esys c; y;0 ,y; 1 , •.. ,y'•-• 

{ ( *), restrietion on component } 

(pï((WT: TE psys(c;): T)Îesys(c;)))~;~::,•::.·.-_-::·:~,1 

{ definition processof a system, definition ia, i1, ... , ik-l} 

(p ï PR(c;))xo,xJ , ... ,Xm-1 
Yo ,yl" .. ,Ym-1 

(End of Note) 

Example 1.4.1 

Component sem1 is defined by 

com sem1 (a, b): (a; b)* moe 

Wethen have 

sys(sem1 ) = ({a,b},{SEM1 (a,b)}) 

and 

PR(sem1) = SEM1(a, b) 

Component sem3 is defined by 
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com sem3(a, b): 

moe 

sub p, q : sem1 bus 
[p·a = a, q·b = b] 
(p ·b; q·a )* 

We then have 

sys(sem3 ) = ({a, b}, {SEM1(a,p·b),SEM 1(p·b, q·a), SEM 1(q·a, b)}) 

From corollary 1.3.1 we infer 

PR(sem3) = SEM3(a, b) 

(End of Example) 

1 Trace thcory 

vVe now drop the requirement that the subcomponents of a component are previously 
defined components. vVe say that component d occurs in component c if dis a subcom
ponent of c or if d occurs in a subcomponent of c. A component is called rec1trsivc if it 
occurs in itself. Here, we will restriet ourselves to the most simple form of recursion. 
Let component c be defined by 

com c(A): 

moe 

sub p: c bus 
s 

where A is a finite alphabet of simple symbols, pis a simple symbol, and 
aPR(S) =A U p·A. Applying the previous clefinition of a component yielcls 
sys(c) = (p·sys( c) 11 sys( S)) fA, in other worels sys( c) is a salution of 

RE E(A) : R = (p·R 11 sys(S))!A 

or, using A Ç aPR(S), 

RE E(A): pR = p(p·R) U {PR(S)} 

1-'I·om lattice theory ([Bi]) it is known that this equation has a least fix point, namely 

(A, { (p·)iPR(S) I i~ 0}) 

Thercfore, we define 
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sys(c) =(A, {(p·)iPR(S) I i~ 0}) 

The processof component c, denoted by PR(c), is defined by PR(c) = PR(sys(c)). In 
[Ka] the processof componentcis defined to betheleast fixpoint of f : T(A) --+ T(A) 
where J(T) = (p·TwPR(S))tA for all TE T(A). This least fixpoint equals 

(ui: i~ 0: Ji(STOP(A))) 

We wil! prove that PR( c) equals this fixpoint, thereby showing that the choice in [Ka] 
is the right one. 

Theorem 1.4.2 

PR(c) = (u i : i~ 0: P(STOP(A))) 

Pro of 

We have 

PR(c) = (Wi: i~ 0: (p·);PR(S))IA 

It is easily seen that PR( c) is indeed a fixpoint of f. Define for j ~ 0 

Ti = (W i: 0::::; i < j: (p·);PR(S)) w (W i: i~ j: (p·);STOP(A)) 

We observe tha.t 

(0) To =STOP( (U i : i ~ 0: (p·) ;A)) 

(1) (Aj: j ~ 0: p·Ti wPR(S) = Ti+1 ) 

(2) (Aj : j ~ O : TiÇ Ti+1 ) 

(3) (Uj: j ~ 0 : Ti)= (Wi: i~ 0: (p·);PR(S)) 

By induction we show that for j ~ 0 

base 

Tol A 

= { STOP(B)IC = STOP(B n C), (0)} 

STOP( A) 

= { definition f 0 } 

jO(STOP(A)) 
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step 

Let k 2: 0. Suppose Tk I A= Jk(STOP(A)). We derive 

Jk+1(STOP(A)) 

{ definition Jk+1 } 

J(Jk(STOP(A))) 

{ induction hypothesis, definition f} 
(p·(Td A) w PR(S)) IA 

{calculus} 

((p·Tk) l(p·A) w PR(S)) IA 

= { a(p·Tk) n aPR(S) = p·A Ç A U p·A} 

(p·Tk w PR(S))I(A u p·A)IA 

{ property projection, (1)} 

Tk+1IA 

Therefore, we have 

PR(c) 

{ definitions} 

(Wi: i?: 0: (p·);PR(S))IA 

{ (3)} 

(U j : j ?: 0 : Tj) I A 

{ property projection, (2) } 

(u j : j 2: 0 : T) A) 

{ ( 4)} 

(U j: j ?: 0: Ji(STOP(A))) 

(End of Proof) 

1 Trace theory 



2 Properties of processes and systems 

2.0 Introduetion 

In this chapter we discuss the phenomena nondeterminism, divergence, and deadlock 
in relation to processes and systems. Properties of processes and systems are defined 
expressing the absence of one or two of the above phenomena. Furthermore, we in
troduce two special classes of processes: conservative processes and cubic processes, 
the latter forming a subclass of the former . The relation between cubic processes and 
processes defined by partial orders on sets of occurrences is shown. Finally, for cubic 
processes sequence functions are introduced descrihing restricted (clocked) behaviours 
of the processes. 

2.1 Nondeterminism and divergence 

In this sectien we study conditions under which the (external) processof a system forms 
an adequate description of the external behaviour of the mechanism conesponding to 
the system. 

LetS be the system sys(c; a I d; b)l{a,b}. We have PR(S) = PR(a I b). However, 
process PR(S) does not adequately describe the external behaviour of system S: after 
occurrence of internal event c external event b is not possible any more. \Ne say that 
b is disabled by an internal event. The same holcis for internal event d and external 
event a. On the other hand, though , one may infer from PR(S) that both a and bare 
possible. We say that system S has (internal) nondeterminism. 

Let S be the system sys((b I a)*)l{a}. We have PR(S) = PR(a*). Again process 
PR(S') does not adequately describe t he external behaviour of system S . Bcforc t.he 
first externalevent a and between any two consecutive externalevents aan unbounded 
number of internat events, b's, may occur. This phenomenon is called divergen ce. 

We first investigate the relation between the mechanism conesponding to a process ]' 
a.ncl the mechanism corresponding to TI A, where A is a subset of aT. In the sequel T 
is a process and A an alphabet such that A Ç aT. 
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:\I ph ct bet A is called non-disabling wi th respect to T if 

(At: tE tT: after(t,T)ÎA = after(t rA,TfA)) 

This notion is called ] 1 in [Ka]. Jt may be interpreled as fellows: after t he occurrencc 
of trace t of T one may expect every external (i.e. in A) continuation as given by 

process T :A after trace t ~A. We say that A is disabling with respect to T if A is not 
non-disabling with respect toT. Notice that both 0 and aT are non-disabling with 

respect toT. Notice that {a,b} is disabling with respect to PR(c; a I d ; b) . 

A system Sis called non-disabling if eS is non-disabling with respect to \V(pS). 

Theorem 2.1.0 

Thc following assertions are equivalent: 

(0) A is non-disabling with respect to T 

(l) (As, t: sE tT 1\ tE tT 1\ s fA =ti A: ajle1·(s , T) fA= after(t, T) ' ; l) 

(2) (As,l: sE tT 1\ tE tT 1\ s ÎA::; tÎA: (Eu: su E tT: su ~A = tltl)) 

Pro of 

(0) = (1) 

\Ve derive 

A is non-disabling with respecttoT 

{ definition non-disabling} 

(At: tE tT : after(t,T)fA = aftcr(lÎA,T fA)) 

{ property 1. L)} 

(At: t E tT: aflcr(t,T)fA = (Us: s E tT 1\ s /11 = t fA: afle7·(s,T)IA)) 

{ sPt calculus} 

(Al : l E tT: (As: sE tT 1\ siA = tÎA: aft cr(s,T)f;t Ç aftcr(t ,T)ÎA )) 

{ icl crnpotence conjunction, rcna.rning dummics} 

(As,t: sE tT 1\ tE tT 1\ s ÎA = tiA: after( s ,T)fA Ç afler(I ,T ) fA) 
1\ (As , t : s E tT 1\ t E tT 1\ s/;1 = t /A : after(t,T)rA Ç ufler(s,T)IA) 

{ ca.lcul us } 

(A.s , t: " E tT 1\ L E t'J' 1\ s lA= tfA: aftcr(s ,T) ;A = ajlcr(t,T) fA) 

(I) ==;. (2) 

:\ ,.;,.; unw ( l ) . Let. .s E t'l' and l E t'f sucl1 lh<lt s 'A ::; t ~A. Choose t0 ill id / 1 snelt th a t 
I = / 1111 and s ~A = t 0 f.4. \Ve now have 



2.1 Nondeterminism and divergence 

t 0t 1 E tT 

=> { definition after, property projection} 

t1rA E tafter(to,THA 

{srA=tarA,(l)} 

ttrA E tafter(s,T)IA 

= { definition projection, definition after} 

(Eu : su E tT : u rA= t1 rA) 

{ s rA = tot A, t = tatt} 

(Eu: su E tT: (su)ÎA = ÛA) 

(2) =} (1) 

Assume (2). LetsEtTandt E tT be such that slA= ûA. We derive 

rE tafter(s, T)IA 

{ definition projection, definition after} 

(Eu : SU E tT : u rA = r ) 

= {siA=tîA,(2)} 

(Eu:suEtT:uÎA=r 1\ (Ev:tvEtT:tvÎA=suÎA)) 

= {sÎA=tÎA,calculus} 

(Eu, v : su E tT 1\ tv E tT : u Î A = r 1\ vIA = r) 
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Observe that the last predicate in the derivation is symmetrie in s and t. Hence, it is 

equivalent to r E tafter( t, T) Î A as well. 

(End of Proof) 

The next two theorems give conditions under which an alphabet is non-disabling with 
respect to the weave of two processes. 

Theorem 2.1.1 

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and 
aT n aU= A n B. If A is non-disabling with respecttoT and Bis non-disabling with 
respect to U then A U B is non-disabling with respect to T w U. 

Pro of 

Assume A is non-disabling with respect to T and B is non-disabling with respect to 
U. Let t E t(T w U). We have 
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after(t\(A U B), (Tw U)Î(A U B)) 

{ theorem 1.1.11 } 

after(t î(A U B), TîAw UÎB) 

= { theorem 1.1.13} 

after(ttA,TîA) w after(tîB,UiB) 

2 Properties of processes and systems 

{A is non-disabling w.r.t. T, Bis non-disabling w.r.t. U} 

after(t laT, T)r A w after(tlaU, U) îB 
{ theorem 1.1.11 } 

( after(t laT, T) w after(t laU, U)) I (A U B) 

= { theorem 1.1.13} 

after(t, Tw U) î(A U B) 

(End of Proof) 

Corollary 2.1.2 

If Rand S are non-disabling systems and aW(pR) n aW(pS) =eR neS, 
then R 11 S is a non-disabling system. 

(End of Corollary) 

Theorem 2.1.3 

Let T and U be processes. Let A be an alphabet such that A Ç aU \ aT. 
If U Î( aT n aU) Ç T Î( aT n aU), aT n aU is non-disabling with respect to T and A is 
non -disabling wi th respect to U, then A is non-disabling with respect to T w U. 

Pro of 

Assume U I( aT n aU) Ç Tl( aT n aU). We derive 

(TwU)IaU 

{aT n aU Ç aU, theorem 1.1.10} 

Tî(aTn aU) w U 

{ theorem 1.1. 7 } 

Tî(aTnaU) w UÎ(aTnaU) w U 

= {U l(aT n aU) Ç Tl( aT n aU), theorem 1.1.7} 

UI( aT n aU) w U 

{ theorem 1.1. 7 } 

u 
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Assume aTnaU is non-disabling with respecttoT and A is non-disabling with respect 
to U. Let t E t(Tw U). We derive 

after(t, Tw U) ~A 

{ theorem 1.1.13} 

( after(tlaT, T) w after(tlaU, U)) ~A 

= {A Ç aU, aT n aU Ç aU, theorem 1.1.10} 

( after(tlaT, T)t(aT n aU) w after(tlaU, U)) I A 

{aT n aU is non-disabling with respect to T, theorem 1.1.13} 

after(t ~aU, Tl(aT n aU) w u) IA 

{TI( aT n aU) w U = U, A is non-disabling with respect to U} 

aft er( tÎ A, Ut A) 
{ (TwU)taU =U, A Ç aU} 

after(t IA, (Tw U) I A) 

(End of Proof) 

Corollary 2.1.4 

LetRand S be systems such that aW(pR) naW(pS) =eR neSandeR Ç eS. If R 
and SI( eS\ eR) are non-disabling systems and PR(S) teR Ç PR(R) then 
( R 11 S) I( eS \ eR) is a non-disabling system. 

(End of Corollary) 

The next theorem gives a condition under which an alphabet is non-disabling with 
respect to the projection of a process on some alphabet. 

Theorem 2.1.5 

Let T be a process. Let A and B be alphabets such that B C A C aT. If A is 
non-disabling with respect toT then 

B is non-disabling with respect to T 

Pro of 

B is non-disabling with respect to TI A 

Assume A is non-disabling with respect to T. We derive 

B is non-disabling with respect toT 

{ definition non-disabling} 
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(At: tE tT: after(t, T)tB = after(tiB, TIE)) 

{ B Ç A, property projection} 

(At: t E tT: after(t, T)tA\B = after(dA\B, T tAI B)) 
{ A is non-disabling with respect to T} 

(At: tE tT: after(tiA, TIA)IB = after(tiA tB, TIAIB)) 

{calculus} 

(Au: u E tTIA: after(u,T IA)IB = after(uiB,(TIA)IB)) 

{ definition non-disabling} 

B is non-disabling with respect to TI A 

(End of Proof) 

Corollary 2.1.6 

If S is a non-disabling system and A Ç eS then 

SI A is a non-disabling system = A is non-disabling with respect to PR( S) 

(End of Corollary) 

In the sequellet T be a process and Aan alphabet such that A Ç aT. Alphabet aT\ A 
will be denoted by A. Alphabet A is called divergent with respect to T if 

(Et: tE tT: (An: n;:::: 0: (Eu: u E (A)* A tu E tT: f(u) > n))) 

For instance, {a} is divergent with respect to both PR((b I a)") and PR(b* I a). 
Alphabet A is called non-divergent with respect to T if A is not divergent with respect 
toT, i.e. 

(At : t E tT: (En : n ;:::: 0 : (A u : u E (A)* A tu E tT : f( u) ::::; n))) 

Notice that aT is non-divergent with respect toT. 

A system S is called divergent if eS is divergent with respect to W(pS). A system is 
called non-divergent if it is not divergent. 

The next theorem gives two alternative characterizations of non-divergence in case the 
alphabet of process T is finite. 

Theorem 2.1. 7 

Let 

P0 A is non-divergent with respect to T 
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P1 = (At :tE tT: tafter(t, T) n (A)* is finite) 

P2 _ (As : sEtTÎA:{tltEtT/\tiA=s}isfinite) 

Then P2 :::} P1 and P1 :::} Po. 
If aT is finite, then P0 , P1, and P2 are equivalent. 

Pro of 

i) We prove that P1 implies P0 . We derive 

(At: t E tT: tafter(t, T) n (A)* is fini te) 

:::} {calculus} 

(At: tE tT: (En: n ~ 0: (Au: u E tafter(t,T) n(A)*: f(u) Sn ) )) 

{ definition after } 

(At: tE tT: (En: n ~ 0: (Au: tu E tT 1\ u E (A)*: f(u) Sn))) 

ii) We prove that P2 implies P1 . Assume P2 . LettE tT. We have 

{ tu I u E tafter(t, T) n (A)*} 

{ definition aft er, property projection} 

{tuI tu E tT 1\ u E (A)* 1\ (tu)ÎA = dA} 
Ç {set calculus} 

{ r I r E tT 1\ r Î A = t Î A } 

The last set being finite due to P2 , we have that tafter(t, T) n (A)* is finite. 
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iii) Assume aT is finite. We prove that •P2 implies •P0 . Assume •P2. LetsE tTîA 
be such that { t I t E tT 1\ t Î A = s} is infinite. Define 

u= PREF( { t I tE tT 1\ t ÎA = s}) 

Obviously U is infinite and U Ç aT*. Since aT is finite König's lenuna [Kö] is appli
cable. Let a( i: i ~ 0) be a sequence of symbols in aT such that 

(An: n;::: 0: a(i: 0 Si< n) EU) 

From the definition of U we infer that 

(Au: u EU: f(uÎA) S f(s)) 

Hence, let n 0 ~ 0 be such that 

(An: n ~ n0 : a(n) E A) 
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Wethen have 

(A n : n 2:: na: a( i: 0 :=:;i< na)a(i: na:=:; i< n) E tT 

1\ a(i: na:=:; i< n) E (A)* ) 

From this we infer that A is divergent with respect to T. 

(End of Proof) 

Theorems 2.1.8 and 2.1.11 give conditions under which an alphabet is non-divergent 
with respect to the weave of two processes. 

Theorem 2.1.8 

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and 
A n aU = B n aT. If A is non-divergent with respect to T and B be non-divergent 
with respect to U then A U Bis non-divergent with respect to Tw U. 

Pro of 

Assume A is non-divergent with respect to T and B is non-divergent with respect to 
U. Let A= aT\ A and B =aU\ B. Notice that (aT u aU)\ (A u B) =A u Band 
A n aU = B naT. Let t E t(T w U). 
Let m 2:: 0 be such that (Au : u E (A)* 1\ (daT)u E tT: e(u) :=:; m ), and let n 2::0 be 
such that (Av: v E (B)* 1\ (daU)v E tU: l(v) :=:; n). We now have 

w E (A U B)* 1\ tw E t(Tw U) 

{ definition weave, w i(A U B) = w} 

wE (A U B)" 1\ (tlaT)( wi((Au B) naT)) E tT 

1\ (tlaU)( wi((A U B) n aU)) E tU 

{A ç aT, B ç aU, A n aU = B n aT } 

wE (AU B)* 1\ (tlaT)(w tA) E tT 1\ (tlaU)(wiB) E W 

=> { definition of m and n} 

wE (A U B)* 1\ l(wiA):::; m 1\ l(wÎB):::; n 

=> {calculus} 

l(w):=;m +n 

(End of Proof) 
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Corollary 2.1.9 

Let Rand S be systems such that aW(pR) n aW(pS) =eR neS. If Rand S are 
non-divergent systems, then R 11 S is a non-divergent system. 

(End of Corollary) 

Lemma 2.1.10 

Let Tand U be processes. Let A be an alphabet such that A Ç aU\ aT. If 

(0) (As: sE tT~(aTnaU): {tI tE tT A. tî(aTnaU) = s} is finite) 

and 

(1) (A v : v E tUf A: {u I u E tU A. u fA = v} is fini te) 

then 

(Az: zE t(TwU)ÎA: { w I wE t(TwU) A. w~A = z} is finite) 

Pro of 

Assume (0) and (1) hold. 
Define X(s) = { t I t E tT A. tî(aT n aU) = s} for s E tTî(aT n aU), and Y(v) 
= {u I u E tU A. u~A = v} for v E tUl A. Notice that X(s) is finite for all s E 
tTI(aT n aU), and Y(v) is finite for all v E tU~A. 
Let z E t(T w U) Î A. Notice that z E tU ~A. We now have 

{ w I wE t(Tw U) A. wÎA = z } 
{ definition weave } 

{w I wE (aT U aU)* A. wlaT E tT A. w~aU E tU A. wÎA= z} 

= { w~A = w~aUIA, calculus} 

(u u: u E Y(z) A. uî(aT n aU) E tTî(aT n aU) 
: { w I wE (aT U aU)* A. wfaT E tT A. wîaU =u}) 
{calculus} 

(u u: u E Y(z) A. uf(aT n aU) E tTî(aT n aU) 
:(Ut: tE X(uÎ(aTnaU)) 

: { w I wE (aT U aU)* A. w ~aT= t A. w ~aU= u})) 

The set { w I wE (aT U aU)* A. wîaT = t A. wfaU =u} being finite for all t E tT 
and u E tU we have that { w I wE t(Tw U) A. wîA = z } is finite. 

(End of Proof) 
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Combining theorem 2.1.7 and lemma 2.1.10 yields 

Theorem 2.1.11 

Let T and U be processes such that aT and aU are finite. Let A be an alphabet such 
that A Ç aU\ aT. If aTnaU is non-divergent with respect toT, and A is non-divergent 
with respect to U then A is non-divergent with respect to Tw U. 

(End of Theorem) 

Corollary 2.1.12 

LetRand S be systems such that aW(pR) and aW(pS) are finite, 
aW(pR)naW(pS) = eRneS, andeR Ç eS. If Rand Sl(eS\eR) are non-divergent 
systems then (R 11 S) I( eS\ eR) is a non-divergent system. 

(End of Corollary) 

The following example shows that the above theorem need not hold in case the alpha
bets are infinite. 

Example 2.1.13 

T = PREF( ( {x; I i 2: 0} U {y }, { x;yix; I i 2: 0})) 

U = PREF( ( {x; I i 2: 0} U {a}, { ax;x;a I i 2: 0})) 
{x; I i 2: 0 } is non-divergent with respect to T 

{a} is non-divergent with respect to U 
{a} is divergent with respect to Tw U 

(End of Example) 

Next we investigate non-divergence with respect to the projection of a process onsome 
alphabet. 

Lemma 2.1.14 

Let T be a process. Let A and B be alphabets such that B Ç A Ç aT. 

0 (As: sE tTIB: {tI tE tT 1\ tiB = s} is finite) 
:::} (A s : s E tT I B : { r I r E tT I A 1\ rIB = s } is fini te ) 

1 If (Ar : r E tT I A : { t I t E tT 1\ tI A = r} is fini te) then 
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(,A s : s E tT I B : { t I t E tT 1\ tl B = s } is fini te) = (A s : s E tT I B : { r I r E tT I A Ä rIB = s } is fini te ) 

Pro of 

0 Assume (As: sE tTIB: {t \tE tT Ä tiE= s} is finite). LetsE tTIB. We 
have that { t I t E tT 1\ tI B = s} is fini te. Hence, the set 

{ r Ir E tTIA 1\ dB= s} = {tI tE tT 1\ tiE= s }IA 

is finite. 

1 Let (Ar : r E tT rA : { t I t E tT " d A = r } is fini te). A ss urne 

(As : s E tT I B : { r I r E tT I A 1\ dB = s } is fini te) 

LetsE tTIB. We now have that {u I u E tTIA 1\ uiB = s} is finite, and that for all 
rE tTIA {tI tE tT 1\ tiA = r} is finite. Therefore, the set 

{ t I t E tT " tiE= s} 
= (u r : r E { u I u E tT rA " u I B = s } : { t I t E tT " t I A = r } ) 

is finite. 

(End of Proof) 

Combining theorem 2.1.7 and lenuna 2.1.14 yields 

Theorem 2.1.15 

Let T be a process such that aT is finite. Let A and B be alphabets such that 
B Ç A Ç aT. 

0 B is non-divergent with respect to T 
=> B is non-divergent with respect to TI A 

1 If A is non-divergent with respect to T then 

B is non-divergent with respect to T 

= B is non-divergent with respect to TI A. 

(End of Theorem) 

T he following example shows the above theorem not to hold in case aT is infinite. 
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Example 2.1.16 

T =PREF( ( {a, b} U {x; I i ~ 0}, { x;ba1b I i ~ 0}}) 
{a, b} is non-divergent with respect to T 
{b} is non-divergent with respecttoT 

{ b} is divergent with respect to TI {a, b} 

(End of Example) 

Corollary 2.1.17 

LetS be a system such that aW(pS) is finite. Let B Ç eS. 
If S is non-divergent then 

SI B is a non-divergent system _ B is non-divergent with respect to PR(S) 

(End of Corollary) 

Theorem 2.1.18 

Let command S in 

com c(A): 

moe 

satisfy 

sub p: c bus 

s 

(At : tE tPR(S) 1\ t f. t:: f(tlp·A) < f(tiA)) 

Then sys(c) is non-divergent. 

Pro of 

We have 

PR(c) = (Wi: i~ 0: (p·)'PR(S) )IA 

FortE tPR(c) wedefine 

V(t) = {sIs E t(Wi: i~ 0 : (p·)iPR(S)) 1\ slA= t} 

Let t E tPR( c) and s E V(t). Then sI A = t and 
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It follows that 

and, hence, 

(0) (Ai: 0 :s; i< f(t): f(sÎ(p·);A) :s; f(t)- i) 
(1) (Ai: i~ f(t): f(sÎ(p·)iA) = 0) 

We derive 

f(s) 

{calculus} 

(Si: i~ 0: f(sÎ(p·);A)) 

{ (1) } 
(Si: 0 :s; i< f(t): f(sÎ(p·);A)) 

< { (0)} 

(Si: 0 :s; i< f(t): f(t)- i) 

= {calculus} 

t. f(t). (f(t) + 1) 

Observe that 

V(t) = V(t) n (Ui: 0 :s; i< f(t): {p·);A)* 
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We conclude that V(t) is finite. Therefore, by theorem 2.1.7, A is non-divergent with 
respect to (W i: i~ 0: (p·)iPR(S) ). 

(End of Proof) 

The condition on the command in the above theorem is also found in [Ud] and [Ka] 
where it is shown to imply the existence of a unique fixpoint for the recursive equation 
defined by a recursive component. 

As we already illustrated in the introduetion to this section, nondeterminism and di
vergence are properties to be avoided. Therefore, we now introduce a third not ion that 
is a combination of non-disabling and non-divergent. This notion was first introduced . 
by Anne Kaldewaij in [Ka]. 
Let T be a process a.nd let A be an alphabet such that A Ç aT. Alphabet A is called 
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transparent with respect to T if A is both non-disabling and non-divergent with re
spect to T. 1f A is transparent with respect to T, then after the occurrence of trace t 
in process T perforrning internal events (i.e. events in A) is guaranteed to terminate 
in a state after which no events in A are possible. The events that are possible are 
exactly the successors of dA in Tl A. Notice that aT is transparent with respect toT. 

System Sis called transparent if eS is transparent with respect to W(pS). 

Property 2.1.19 

0 A is transparent with respect to T 

::::} (At: tE tT: (Eu: u E (A)* 1\ tu E tT: suc(tu,T) = suc(tiA,TÎA))) 

1 A is transparent with respect to T 

::::} (As: sE tTÎA: (Et : tE tT 1\ tÎA = s: suc(t,T) = suc(s,T ÎA))) 

(End of Property) 

Transparenee may be characterized differently ([Ka]): 

Theorem 2.1.20 

A is transparent with respect to T 

=: (At : tE tT 1\suc(t,T) Ç A: suc(t,T) = suc(tÎA,TIA)) 

1\ ( A is non-divergent with respect to T ) 

(End of Theorem) 

Combining 2.1.1 and 2.1.8 yields 

Theorem 2.1.21 

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and 
aT n aU = A n B. If A is transparent with respect to T, and B is transparent with 
respect to U then A U B is transparent with respect to T w U. 

(End of Theorem) 

Corollary 2.1.22 

If Rand S are transparent systems and aW(pR) n aW(pS) =eR neS, then R 11 S 
is transparent. 

(End of Corollary) 
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Combining 2.1.3 and 2.1.11 yields 

Theorem 2.1.23 

Let T and U he processes such that aT and aU are finite. Let A be an alphahet such 
that A Ç aU\ aT. If aT n aU is transparent with respect to T, A is transparent with 
respect to U, and U î(aT n aU) Ç Tî(aT n aU), then A is transparent with respect to 
TwU. 

(End of Theorem) 

Corollary 2.1.24 

LetRand S he systems such that aW(pR) and aW(pS) are finite, 
aW(pR) n aW(pS) =eR neS, andeR Ç eS. If Rand SI( eS\ eR) are transparent 
systems, and PR(S) IeR Ç PR(R) then (R 11 SH( eS\ eR) is a transparent system. 

(End of Corollary) 

Example 2.1.13 shows that the above theorem does not holdincase the alphabets are 
infinite. Combining 2.1.5 and 2.1.15 yields 

Theorem 2.1.25 

Let T he a process such aT is finite. Let A and B be alphabets such that B Ç A Ç aT. 
If A is transparent with respect to T then 

B is transparent with respect to T = B transparent with respect to T Î A 

(End of Theorern) 

The following theorem shows how the results in theorem 2.1.25 change if the condition 
aT is finite is dropped. 

Theorem 2.1.26 

Let T be a process. Let A and B be alphabets such that B Ç A Ç aT. If A is 
transparent with respect to T then 

B is transparent with respect to T => B is transparent with respect to T Î A 
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Pro of 

Due to theorem 2.1.5 it remains to show that non-divergence of B with respect to T 
implies non-divergence of B with respect to T t A. 

Assume Bis divergent with respect to TtA. Choose rE tTI A such that 

(An: n:::: 0: (Ev: v E (A \B)* 1\ rv E tTIA: f(v):::: n)) 

Choose tE tT such that tiA = r. Let n:::: 0. Let v E (A \B)* be such that rv E tT IA 
and f(v) :::: n. Let u E (B)* be such that tu E tT and (tu)IA = rv (such traces 
exist since A is transparent with respecttoT and B Ç A). Since f(u):::: f(utA) and 
ut A = v, we have f( u) :::: n. Hence B is divergent with respect to T. 

(End of Proof) 

The reverse implication in the above theorem does not hold as the following example 
shows. 

Example 2.1.27 

T = PREF( { {a, y} U {x; I i :::: 0}, { ax;yix;a I i :::: 0}}) 

{a} U { Xi I i:::: 0} is transparent with respectto T 

{a} is not transparent with respect to T ( divergence ) 

{a} is transparent with respect to Tl( {a} U {x; I i:::: 0}) 

(End of Example) 

Corollary 2.1.28 

Let S be a system. Let A Ç eS. If S is transparent then 

0 St A is a transparent system => A is transparent with respect to PR( S) 

1 if aW(pS) is finite then 

St A is a transparent system A is transparent with respect to PR(S) 

(End of Corollary) 
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2.2 Deadlock 

Consicier the system 

where 

Ua = PR((ao, ba; ca, do)*) 

Ut= PR((at, bt; Ct, dt)*) 
Ra= PR((ao; ca I a1; Ct)*) 
Rt = PR((bo; do I b1; dt)*) 
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Processes Ra and R 1 describe resources that may be accessed by processes Ua and Ut 
under mutual exclusion. Both process U0 and process U1 fi.rst need to gain access to 
both resources, before they can continue. We observe that trace a0 b1 of W(pS) has no 
successors in W(pS). However, the projection of a0 b1 on the alphabet of each of the 
processes in the process set of S does have a successor in that process. The system has 
terrninated whereas none of the composing processes has terminated. This situation is 
referred to as deadlock. 

Let T be a process. Let t E tT. We say that T has terminated after t if after(t, T) = 
STOP(aT) or, equivalently, suc(t, T) = 0 . Process T is called non-terminating if after 
each trace t of tT process T has not terminated, i.e. 

(At: tE tT: suc(t,T) =/:- 0) 

Notice that a process that is not non-terminating may terminate. 

Theorem 2.2.0 

Let T be a non-terrninating process. Then there exists a non-terrninating process S 
such that S Ç T and (As, t : s E tS 1\ t E tS : s S t V t S s ), i.e. tS is totally 
ordered. 

(End of Theorem) 

In the sequel X is a set of processes. 

Property 2.2.1 

(At: tE tW(X): (AT: TE X: suc(tfaT,T) = 0) '* suc(t, W(X)) = 0) 

(End of Property) 
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Set X is called lockfree if the reverse implication holds, i.e. 

lockfree(X) = 
(At : t E tW(X) : suc(t, W(X)) = 0 ::::} (AT: TE X : suc(tlaT, T) = 0)) 

Notice that due to property 2.2.1 the implication sign in the definition of lockfree may 
be replaced by an equivalence sign. If X is not lockfree, we say that X has danger of 
loek. 

System S is called lockfree if lockfree(pS) holds. 

Property 2.2.2 

0 lockfree( 0) 

1 lockfree( {T}) for any process T 

(End of Property) 

Theorem 2.2.3 

0 lockfree(X) = (AT:TEX:lockfree({T,W(X\{T})})) 

1 lockfree(X) = (A Y : Y Ç X : lockfree( {W(Y), W(X \ Y)})) 

(End of Theorem) 

Theorem 2.2.4 

Let X and Y be sets of processes. If lockfree(X) and lockfree(Y) then 

lockfree(X U Y) = lockfree( {W(X), W(Y)} ) 

Pro of 

Assume lockfree(X) and lockfree(Y). 

lockfree(X U Y) 

= { definition lockfree} 

(At: tE tW(X UY) 
: suc(t, W(X U Y)) = 0 

{ lockfree(X), lockfree(Y) } 

(At: tE t(W(X) w W(Y)) 
: suc(t,W(X)wW(Y)) = 0 

(AT: TE X U Y: suc(daT, T) = 0)) 

= suc(tîaW(X), W(X)) = 0 1\ suc(tîaW(Y), W (Y)) = 0) 
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{ definition lockfree } 

lockfree( {W(X), W(Y)}) 

(End of Proof) 
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The next theorem shows that processes may be projected on transparent alphabets 
when one investigates the absence of loek. 

Theorem 2.2.5 

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and 
A n B = aT n aU. If A is transparent with respect to T, and B is transparent with 
respect to U then 

lockfree( {T, U}) 

Pro of 

lockfree( {T \A, U\ B}) 

Assurne A is transparent with respect to T and B is transparent with respect to U. 
Frorn theorern 2.1.21 we infer that A U B is transparent with respect to Tw U. Due 
to theorern 1.1.11 we have (Tw U)\(A U B) = T\Aw mB. 

i) Assurne lockfree({T,U}). Let u E t(TIAwU\B) be such that 
suc( u, TI A w U IE) = 0. Choose t E t(Tw U) such that 

t\(AUB) =u 1\ suc(t,TwU) = suc(u,T[AwU\B) 

( theorem 2.1.19.1 ). 
Si nee suc( t, T w U) = 0 and lockfree( { T, U}) we now have suc( tl aT, T) = 0 Ç A and 
suc(t \aU, U) = 0 Ç B. 
By theorern 2.1.20 it follows that suc(tiA,T\A) = 0 and suc(t\B,U\B) = 0. 

Since ti(AU B) =u this implies that suc(u\A,T\A) = 0 and suc(ufB,U \B) = 0. 

ii) Assurne lockfree({T\A,U\B}). LettE t(TwU) he such that suc(t,TwU) = 0. 
By theorem 1.1.17 we have suc(t\aT,T) Ç aTnaU Ç A and 
suc(tlaU, U) Ç aT n aU Ç B. We derive 

suc(t, Tw U)= 0 

= { suc(t, Tw U) Ç A U B, theorern 2.1.20} 

suc(ti(A U B), (Tw U)\( A u B)) = 0 

= {calculus} 

suc(ti(AUB),T\AwU\B) = 0 
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{ loek/ree( {T ~A, U~ B}) } 

suc(dA,T ~A) = 0 1\ suc(dB,U~B) = 0 

2 Properties of processes and systems 

{ suc(tfaT, T) Ç A, suc(tfaU, U) Ç B, theorem 2.1.20} 

suc( daT, T) = 0 1\ suc( d aU, U) = 0 

(End of Proof) 

Corollary 2.2.6 

Let T and U be processes such that aT n aU is transparent with respect to both T 
and U. Then 

lockfree( {T, U}) ::: lockfree( {T~(aT n aU), U ~(aT n aU)}) 

If, moreover, T~(aTnaU) = U~(aTnaU), then lockfree({T,U}). 

(End of Corollary) 

Combining theorems 2.2.4 and 2.2.5 yields the following two corollaries. 

Corollary 2.2.7 

Let X and Y besets of processes. Let A and B be alphabets such that A Ç aW(X), 
B Ç aW(Y), and aW(X) n aW(Y) = A n B . If A is transparent with respect to 
W(X), B is transparent with respect to W(Y), and both lockfree(X) and lockfree(Y) 
hold then 

lockfree(X U Y) = lockfree( {W(X) ~A, W(Y) ~B}) 

(End of Corollary) 

Corollary 2.2.8 

Let Rand S be systems such that aW(pR) n aW(pS) = eR neS. If Rand S are 
lockfree and transparent, then 

R 11 Sis a lockfree system = lockfree( {PR(R), PR(S)}) 

(End of Corollary) 
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2.3 Conservative processes 

Consicier process T = PR((a, b; c)*). The statesofT are 

[ê]T = {tI tE tT 1\ f(tla) = f(tlb) = f(tk)} 

[a]T = {tI tE tT 1\ f(tla) -1 = f(tlb) = f(tk)} 
[b]T = {tI tE tT 1\ f(tlb)- 1 = f(tla) = f(ttc)} 

[ab]T = { t I tE tT 1\ f(tla)- 1 = f(tfb)- 1 = R(dc)} 
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The states of T only depend on the number of occurrences of events. Furthermore, 
it is easily shown that all subsets of aT are non-disabling with respect to T. In this 
section we will introduce a class of processes having these properties. Process T will 
he an element of that class. Due to the first property they will he called conservative 
processes ([Ve86]). 

Process T is called persistent if 

(At, a, b : ta E tT 1\ tb E tT 1\ a -:f:. b: tab E tT 1\ tba E tT) 

Process T is called commutative if 

(At, a, b: tab E tT 1\ tba E tT : [tab] = [tba]) 

Process T is called conservative if T is both persistent and commutative, i.e. 

(At, a, b : ta E tT 1\ tb E tT 1\ a -:f:. b: tab E tT 1\ tba E tT 1\ [tab] = [tba]) 

In order to give a different characterization of conservativity we first define a new 
operatien on traces. Let t be atrace and B be a bag (multiset) of symbols. Trace t 
minus bag B, denoted by t \ B, ( see [Ve85] ) is obtained by removing from t from left 
to right f( tl a) min (N b : b E B : b = a) occurrences of a for each symbol a in B. It is 
defined by 

t:\B 
as\ B 
as\ B 

ê 

a(s \ B) 
s\(B:_{a}) 

a(j.B 
a EB 

Projection on an alphabet can be expressed in terrns of the minus operator. Let A be 
an alphabet. If B is the bag consisting of the elements of S1 \A, each infinitely often , 
then 

tiA=t\B 
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For trace t the bag of symbols of t, denoted by #t, is defined by 

#E. = 0 

#as = {a}+ #s 

Notice that symbol a occurs f(tla) times in #t. 

In the following s, t, and u are traces, A is an alphabet, and B and C are bags. 

Property 2.3.0 (bag of symbols of a trace) 

0 #st= #s + #t 
1 #(s \ B) = #s- B 

2 s :::; t :::} #s Ç #t 
#s Ç #t :::} f(s):::; R(t) 

(End of Property) 

Property 2.3.1 (minus) 

0 s\B=s\(Bn#s) 

1 s \ B = s = B n #s = 0 

2 s \ B = E. ::::: #s Ç B 

3 R(s\B)=l(s)-IBn#sl 
R(s) -IEl:::; f(s \ B):::; f(s) 

4 st\B=(s\B)(t\(B-#s)) 

5 s:::;t:::} s\B:::;t\B 

( s \ 0 = s ) s \ #E. = s) 
(s\#s=E.) 

6 (s\B)\C=s\(B+C)=(s\C)\B 
(s \ #t) \#u= s \ #(tu) = s \#(ut)= (s \#u)\ #t 

7 (s\#t)ÎA=(sÎA)\#(tÎA) 

8 (st)\#(su)=t\#u 

(End of Property) 

Example 2.3.2 

Let s = a ba cd ba. We have 

s Î {a, c} = a a ca 
#s = {a, a , a, b, b, c, d} 
s \ {a, c} = bad ba s \ {a,a,b,b} =c d a 

(End of Example) 
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Lemma 2.3.3 

If T is a conservative process then 

(At, u, a: ta E tT À tu E tT: ta(u \#a) E tT) 

Pro of 
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Let T he a conservative process. The proof is given by induction on the length of trace 
u. Let tu E tT. 

base e(u) = 0 

We have u= ê. Let ta E tT. Then ta(u \#a)= ta E tT. 

step e(u) > 0 

Assume 

(At,w,a: ta E tT À tw E tT À e(w) < e(u): ta(w\ #a) E tT) 

Let ta E tT and u= bv. We distinguish two cases. 

i) a= b 

ta((bv) \#a) 

{a = b, property 2.3.1} 

tav 

E { a = b, tu E tT} 
tT 

ii) af:. b We derive 

ta E tT À tbv E tT À a f:. b 

=> { T is a conservative process} 

tab E tT À tba E tT À [tab] = [tba] À tbv E tT À af:. b 

=> { induction hypothesis} 

tab E tT À tba(v \#a) E tT À [tab]= [tba] À af:. b 

=> {calculus} 

tab( v \ #a) E tT À a f:. b 

=> { property 2.3.1 } 

ta(bv \#a) E tT 

(End of Proof) 
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Theorem 2.3.4 

T is conservative (As, t : s E tT 1\ t E tT : s(t \ #s) E tT) 

Pro of 

i) Let T be conservative. We prove the right hand side by induction on the lengthof 
trace s. Let s E tT. 

base e(s) = 0 

Let t E tT. We derive 

s(t\#s) 

= { s = e, property 2.3.1} 

E { assumption } 

tT 

step e(s) > 0 

Assume (Ar,t : rE tT 1\ tE tT 1\ e(r) < e(s): r(t \ #r) E tT) . 
Let s = ua and t E tT. We derive 

ua E tT 1\ t E tT 

=> { T is a process, induction hypothesis} 

u(t \#u) E tT 1\ ua E tT 

=> { lemma 2.3.3 } 

ua((t \#u)\ #a) E tT 

{ property 2.3.1 } 

ua(t \ #(ua)) E tT 

ii) Let (As ,t: sE tT 1\ tE tT: s(t \ #s) E tT) . Let ta E tT, tb E tT, and a =f b. 
We derive 

ta E tT 1\ tb E tT 

=> { assumption } 

ta((tb) \ #(ta)) E tT 

= { property 2.3.1, a =f b} 
tab E tT 

For reasons of symmetry we infer that tab E tT and tba E t T . Furthermore, we derive 
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tabu E tT 

:::} { tba E tT, assumption } 

tba((tabu) \ #(tba)) E tT 
{ property 2.3.1 } 

tbau E tT 

Likewise, we have tbau E tT :::} tabu E tT. 
Hence, [tab] = [tba]. 

(End of Proof) 

From theorem 2.3.4 and property 2.3.1 the next theorems follow. 

Theorem 2.3.5 

Let T be a process. Let A be an alphabet. If T is conservative then 

0 (As, t : s E tT /1. t E tT /1. #s = #t : [s] = [t)) 

1 TI A is conservative 

(End of Theorem) 

Theorem 2.3.6 

If X is a set of conservative processes then W(X) is a conservative process. 

(End of Theorem) 
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If S is a system such that (AT : T E pS : T is conservative ), then due to theorems 
2.3.5 and 2.3.6 process W(pS) and, hence, process PR(S) are conservative. 

Theorem 2.3. 7 

If (Tn)n~o is a sequence of conservative processes such that (A n : n ;::: 0 : Tn Ç Tn+d 
then (U n : n ;::: 0 : Tn) is conservative. 

(End of Theorem) 

The next theorem shows that all subsets of the alphabet of a conservat ive process are 
non-disabling with respect to that process. 
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Theorem 2.3.8 

Let T be a process. Let A be an alphabet such that A Ç aT. If T is conservative then 
A is non-disabling with respect toT. 

Pro of 

Assume T is conservative. 
LettE tT. Property 1.1 .3 yields after(t,T)IA Ç after(tiA,TIA). 
We wil! show that after(tÎA,TÎA) Ç after(t,T)ÎA. Let u E tafter(t\A,T iA) . Choose 
rand s such that rs E tT, dA = dA, and sÎA =u. By theorem 2.3.4 we have that 
t((rs) \ #t) E tT. Furthermore, 

(rs\#t)ÎA 

= { property 2.3.1} 

(rÎA){siA) \ #(tÎA) 

= { dA =tI A, property 2.3.1} 

slA 

Since slA= u, we conclude u E tafter(t,T)ÎA. 

(End of Proof) 

Corollary 2.3.9 

If S is a system such that (AT : T E pS : T is conservative) 
then system S is non-disabling. 

(End of Corollary) 

The next theorems show some results concerning (non- )termination and absence of 
deadlock. First, we show that for conservative T the negation of "T is non-terminating" 
is "T terrrilnates". 

Theorem 2.3.10 

Let T be a conservative process. We have 

0 (At :tE tT: suc(t, T) = 0 =: (As :sE tT: #s Ç #t)) 

(As,t: sE tT 1\ tE tT 1\ suc(s ,T) = 0 1\ suc(t,T) = 0: # s = #t) 

1 -,(T is non-terrrilnating) =: (Et : tE tT: (As : sE tT: e(s) ~ e( t) ) ) 

2 The following three assertions are equivalent 
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a. T is non-terminating 

b. (ES : S Ç T : S is non-terminating) 

c. (ES : S Ç T 1\ (As, t : s E tS 1\ t E tS: s :St V t :S s) 
: S is non-terminating) 

Pro of 

0 LettE tT. 

i) Assume suc(t, T) = 0. We derive 

sE tT 

=} { T is conservative} 

t(s \ #t) E tT 

= { suc(t, T) == 0} 

s \ #t = ê 

{ property 2.3.1} 

#s Ç #t 

ii) Assume (As: sE tT: #s Ç #t ). We derive 

a E suc(t, T) 

{ definition successor set } 

ta E tT 

=} { assumption } 

#(ta) Ç #t 
{ definition bag} 

fa! se 

The second assertion is a direct consequence of the first one. 

1 We derive 

•( T is non-terminating) 

{ definition } 

(Et: tE tT : suc(t,T) = 0) 

= {0} 

(Et : t E tT : (As : s E tT : #s Ç #t)) 

=} { property 2.3.0 } 

(Et: tE tT: (As: sE tT: f(s) :S f(t))) 
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2 

::} {(Aa:taEtT:f(ta)>f(t))} 

(Et: tE tT: suc(t,T) = 0) 

a ::} b Take S = T. 

b ::} c Theorem 2.2.0 

c ::} b Trivia! 

b::} a Let S Ç T be such that S is non-terminating. Let t E tT. Choose 
sEtS such that f(s) > f(t). SinceS Ç TandT is conservative, we 
have t(s\#t) E tT. Furthermore, we have f(s\#t) ;::=: f(s)-f(t) > 0 
which implies s \ #t =f. e. Hence, suc(t, T) =f. 0. 

(End of Proof) 

The next theorem provides a methad to prove the absence of deadlock. 

Theorem 2.3.11 

Let X be a set of conservative processes. If 

(At,T:TEX 1\ tEtT:(Es:sEtW(X):f(s taT)=f(t))) 

then lockfree(X) holds. 

Pro of 

Assume 

(At,T: TE X 1\ tE tT: (Es: sE tW(X): f(s taT) = f(t))) 

Let t E tW(X). Let T E X and a E aT he such that a E suc(t taT, T). Choose 
sE tW(X) such that f(s) = f((ttaT)a) = f(daT) + 1. By theorem 2.3.6 we have that 
W(X) is conservative. Hence, t(s \ #t) E tW(X). Furthermore, 

f(s \ #t) 

> {calculus} 

f((s \ #t)taT) 

{ property 2.3.1 } 

f((staT) \#(daT)) 
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> { property 2.3.1 } 

l(staT)- i( daT) 

~ { choice of s } 

1 

Therefore, s \ #t-:/: t: and, hence, suc(t, W(X))-:/: 0. 

(End of Proof) 

2.4 Cubic processes 
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In this section we introduce the cubic processes forming a subclass of the conservative 
processes. A process T is said to be cubic if T is conservative and satisfies 

(At, a, b, c: tac E tT 1\ tbc E tT 1\ a -:/: b :teE tT) 

Example 2.4.0 

Process PR(a; b; c I a; c; bIb; a; eI b; c; a) is conservative but not cubic. 
Process PR(a, b, c) is cubic. 

(End of Example) 

Theorem 2.4.1 

T is cubic = ( T is conservative ) 

1\ (At, u, v, c: tuc E tT 1\ tvc E tT 1\ #u n #v = 0 :teE tT) 

Pro of 

Obviously, the right hand side implies the left hand side. 

Assume T is cubic. LettE tT. Let u, v, and c be such that tuc E tT, tvc E tT, and 
#u n #v = 0. The proof is clone by induction on i( u)· l(v). 

base i( u)· i(v) = 0 

Then u= ê V v = ê. From this and tue E tT 1\ tvc E tT we infer teE tT. 

step i( u)· l(v) > 0 
Assume 

(Ar,s,d: trd E tT 1\ tsd E tT 

1\ l(r) · l(s) <i( u)· l(v) 1\ #r n #s = 0: td E tT) . 
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We have R(u) > 0 and R(v) > 0. Let u= ax and v = by. We distinguish two cases. 

1. a=cVb=c 
Since ta E tT A tb E tT we now have teE tT. 

11. a =f. c A b =f. c 

We derive 

taxe E tT A tbyc E tT 

= { T is conservative, theorem 2.3.4} 

taxe E tT A ta(tbyc \ #(ta)) E tT A tbyc E tT A tb( taxe\ #(tb)) E tT 

{ property 2.3.1, #(ax) n #(by) = 0, a =I c, b =I c} 

taxe E tT A tabyc E tT A tbyc E tT A tbaxc E tT 

=} { f(x)·f(by) < f(u)·f(v), R(ax)·f(y) < f(u)·f(v), #(u) n #(v) = 0} 

tac E tT A tbc E tT 

=} { T is cubic, a =I b} 

teE tT 

(End of Proof) 

Theorem 2.4.2 

Let X be a set of processes. If 

( *) (AT : T E X : (At, a, b, c: tac E tT A tbc E tT A a =/:- b : te E tT)) 

then process W(X) satisfies 

(At,a,b,c:tacEtW(X) A tbcEtW(X) A a=f:-b:tcEtW(X)) 

Pro of 

Assume (*) holds. Let tac E tW(X), tbc E tW(X), and a =f. b. LetTE X. We clerive 

tac E tW(X) A tbc E tW(X) A a =f. b 
=} { definition W} 

(tfaT)(aîaT)(daT) E tT A (daT)(bîaT)(cÎaT) E tT A a=/:- b 

=} {(a rf. aT V b rf. aT: a laT= é V MaT= é), (a E aT A bEaT:(*))} 

(tÎaT)(daT) E tT 

Therefore, (AT: T E X : (te) îaT E tT ). Hence, we havete E tW(X). 

(End of Proof) 
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Combining theorems 2.3.6 and 2.4.2 yields 

Corollary 2.4.3 

If X is a set of cubic processes, then W(X) is a cubic process. 

(End of Corollary) 
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In order to prove that projection of a cubic process on an alphabet yields a cubic process 
weneed another characterization of cubic processes. First, we introduce projection on 
bags of symbols. The projection of trace ton bag B, denoted by t l B, is defined by 

t: l B = t: 

as l B = s l B 
aslB = a(sl(B-{a})) 

Notice that aala = aa whereas aal {a}= a. 

In the following s, t, and u are traces, A is an alphabet, and B and C are bags. 

Property 2.4.4 

#( s l B) = #s n B 

(End of Property) 

Property 2.4.5 

s l B = s l (B n #s) 

s l B = s = #s ç B 

s l B = t: = #s n B = 0 

f(s l B) ~ f(s) 

st l B = (s l B)(t l (B- #s)) 
s~t => slB~tlB 

(si #s = s) 

(sl0=t:) 

0 

1 

2 

3 

4 

5 

6 (si B) i C = s l (B n C) = (s l C) l B 

7 

8 

(si #t) i #u= si #(tj #u) = s l #(u l #t) = (s l #u) i #t 
(s l B)IA =(slA) i B 
(si #t)IA =(slA) l #(tiA) 

(st) i #(su) = s(t i #u) 
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9 (si B) \ C = (s \ C) i (B- C) 
(s \ B) i C =(si (B + C)) \ B 

(End of Property) 

Theorem 2.4.6 

T is cubic = ( T is conservative) 1\ (As,t: sE tT 1\ tE tT : si #tE tT) 

Pro of 

0 Assume T is conservative and 

(As, t : s E tT 1\ tE tT: si #tE tT) 

Let tac E tT, tbc E tT, and a =Ib. We derive 

(tac) i #(tbc) 

= { property 2.4.5 } 

t( ac i #(bc)) 

{ a =I b, definition i } 

te 

Since (tac) i #(tbc) E tT, we haveteE tT. 

1 Assume T is cubic. We prove that 

(As: s E tT: (At: tE tT: si #tE tT)) 

by induction on the length of trace s. Let s E tT. 

base R(s) = 0 
We have s = e and for all t E tT e i #t = e E tT. 

step R(s) > 0 
Assume 

(Ar: rE tT 1\ R(r) < R(s): (At: tE tT: r i #tE tT)) 

Let s = ua. Let t E tT. We distinguish two cases. 
1. R(tla) ::_:; R(uîa). 
We derive 
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(ua) î #t 

= { property 2.4.5} 

(u î #t)(a i (#t- #u)) 

= {f(da):::; f(ula)} 

u i #t 
E { induction hypothesis} 

tT 

ii. f(tla) > f(ula) 
Let t \#u= vaw such that f(vîa) = t:. 

ua E tT 1\ t E tT 

= { induction hypothesis} 

u j #t E tT 1\ ua E tT 1\ t E tT 

:::} { T is conservative, theorem 2.3.4 } 

(u i #t)(ua \#(u î #t)) E tT 1\ (u î #t)(t\ #(u i #t)) E tT 
{ property 2.4.4, property 2.4.5, property 2.3.1, f(da) > f(ula)} 

(u i #t)(u \ #t)a E tT 1\ (u i #t)(t \#u) E tT 
:::} { t \ #u = vaw } 

(u î #t)(u \ #t)a E tT 1\ (u i #t)va E tT 

=> { theorem 2.4.1, #(u\ #t) n #v = 0} 

(u i #t)a E tT 

= { definition j, property 2.4.5, f(tla) > f(ula)} 

ua i #tE tT 

(End of Proof) 

Theorem 2.4. 7 

If T is cu bic then TI A is cu bic. 

Pro of 
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Let T be a cubic process. By theorem 2.3.5 we have that TI A is conservative. Let 
u E tTIA and v E tTIA. LetsEtTandt E tT such that slA= u and ti A= v. We 
derive 

s E tT 1\ tE tT 

:::} { T is cubic, theorem 2.4.6 } 
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si #tE tT 

=} { projection} 

(si #t)rA E tTîA 

{ property 2.4.5} 

(sÎA) i #(tÎA) E tTÎA 

{ s Î A = u, t Î A = V } 

u i #v E tTîA 

(End of Proof) 

2 Properties of processes and systems 

We introduce restricted commands, forming an important subclass of the commands, 
and show that their processes are cubic. Restricted commands are defined inductively 
by the following rules. 

é is a restricted oommand 

a is restricted oommand for all symbols a 

if S is a restricted cammand not containing any star then S* and S 0 are 
restricted commands 

- if S and T are restricted oommands and S contains no star then S; T is a 
restricted cammand 

- if S and T are restricted oommancis such that aTR(S) n aTR(T) = 0 then 
S, T is a restricted cammand 

Property 2.4.8 

Let S be a restricted command. If S oontains no stars then for every alphabet A 

(A s, t : s E tTR( S) 1\ t E tTR( S) : i( s î A) = i( tî A) ) 

(End of Property) 

The projection of restricted cammand S on alphabet A, denoted by S Î A, is defined 
inductively as follows. 

dA=c 

aîA =a 

a ÎA = c 

a E A 

a~A 



2.4 Cubic processes 

S*ÎA = (SîA)* 

(S; T) ÎA = (SÎA); (TÎA) 

(S, T)ÎA =(StA), (TîA) 

S 0 ÎA = (SÎA)0 

Property 2.4.9 
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aTR(S) n aTR(T) = 0 

Let S be a restricted command and A an alphabet. Then S Î A is a restricted cornmand 
and TR(SIA) = TR(S)IA. 

(End of Property) 

By induction on the structure of restricted commands one can prove 

Theorem 2.4.10 

If Sis a restricted command, then PR(S) is cubic. 

(End of Theorem) 

Corollary 2.4.11 

0 Let component c be defined by 

com c(A): S moe 

where Sis a restricted command. Then PR(c) is cubic. 
1 Let component c be defined by 

com c(A) : 

moe 

sub Po: ca, PI: Ct, ... ,Pn-1: Cn-1 bus 
[xo = Yo, X1 = YI, . . ·, Xm-1 = Ym-1] 
s 

where Sis a restricted command and for i, 0 ~ i < n, PR(ci) is a 
cubic process. Then PR( c) is cubic. 
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2 Let component c be defined by 

com c(A): 
subp:cbus 
s 

moe 

where Sis a restricted command. Then PR(c) is cubic. 

(End of Corollary) 

2.5 Partial orders and sequence functions 

In this section we address the subject of ordering (sequencing) theevents of a process. 
For process T the set of occurrences of T, denoted by occ(T), is defined by 

occ(T) = { (a,f(tla)) I ta E tT} 

Notice that 

(a, i) E occ(T) := (Et: ta E tT: f(tÎa) =i) 

In the sequel we show that the ordering of events of process T can be expressed as a 
partial order on occ(T). 

For process T and occurrence (a, i) E occ(T) the set pre( a, i, T) of all occurrences that 
have to preeede (a, i) in T is defined by 

pre( a, i, T) = 

{ (b,j) I bEaT 1\ j 2: 0 1\ (At: ta E tT 1\ f(tîa) =i : f(tîb) > j)} 

ûbserve that pre( a, i, T) Ç occ(T). 

Property 2.5.0 

Let (a, i) E occ(T) and (b,j) E occ(T). 

0 pre(a,i,T)isfinite 

(a, i) rt pre( a, i, T) 
(Ak: 0::::; k < i: (a,k) E pre(a,i,T)) 
lpre(a,i,T)I2: i 

2 (b,j) E pre(a,i,T) => pre(b,j,T) Ç pre(a,i,T) 



2.5 Partial orders and sequence functions 

3 ,_,((a, i) E pre(b,j,T) 1\ (b,j) E pre(a,i,T)) 

(End of Property) 
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A process defines a partial order on its set of occurrences. The binary relation <T on 
occ(T) is defined by 

(a, i) <r (b,j) = (a, i) E pre(b,j, T) (a, i), ( b, j) E occ(T) 

From property 2.5.0 it follows that relation <T is both anti-re:flexive and transitive, 
and, hence, 

Theorem 2.5.1 

(occ(T), <r) is a partially ordered set. 

(End of Theorem) 

Theorem 2.5.2 

Let T and U be processes with equal alphabets. Let X be a set of processes. 
Let A be an alphabet. Then 

0 occ(T~A) = {(a, i) I (a, i) E occ(T) 1\ a E A} 

1 occ(W(X)) Ç (US: SE X : occ(S)) 

2 T Ç U =? occ(T) Ç occ(U) 

3 (Aa,b,i,j: (a, i) E occ(T~A) 1\ (b,j) E occ(TIA) 
: (a, i) <TrA (b,j) = (a, i) <T (b,j)) 

4 (AS: SE X : (A a, b, i,j : (a, i) E occ(W(X)) n occ(S) 
1\ (b,j) E occ(W(X)) n occ(S) 

: (a, i) <s (b,j) =? (a, i) <w(x) (b, j))) 
5 T Ç U =? (A a, b, i,j : (a, i) E occ(T) 1\ (b,j) E occ(T) 

:(a, i) <u (b,j) =? (a, i) <T (b,j)) 

(End of Theorem) 

Partial order < o on occ(T) is said to respect partial order < 1 on occ(T) if 

(Aa,b,i,j: (a,i) E occ(T) 1\ (b,j) E occ(T) 1\ (a,i) < 1 (b,j): (a,i) <o (b,j)) 



66 2 Properties of processes and systems 

We are interested in partial orders on occ(T) that respect partial order <r. 

For partial order < on occ(T) process PR(T, <) is defined to be the least process U 
satisfying 

0 aU= aT 

1 t: E tU 

2 (At,a: tE tU 1\ (a,l(da)) E occ(T) 
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) < (a,R(da)): f(tÎb) > j): ta E tU) 

We have 

Theerem 2.5.3 

0 T Ç PR(T, <r) 

If partial order <o on occ(T) respects partial order < 1 on occ(T) 
then PR(T, <o) Ç PR(T, < 1) 

Pro of 

0 We prove that tT Ç tPR(T, <r) by induction on the lengthof traces from tT. 

base R(t) = 0 t = t: E tPR(T, <r) 

step l(t) > 0 

Assume (As: sE tT 1\ f(s) < l(t): sE tPR(T, <r) ). Let t = ua. We derive 

ua E tT 

{ T is a process, l(u) < f(t), definition occ} 

u E tPR(T, <r) 1\ (a,f(uîa)) E occ(T) 1\ ua E tT 

=} { definition <r and pre} 

u E tPR(T, <r) 1\ (a,f(uîa)) E occ(T) 
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) <r (a,l(uîa)): l(uîb) > j) 

{ definition PR(T, <r)} 

ua E tPR(T, <r) 

1 Let partial order <o on occ(T) respect partial order< 1 on occ(T). We prove that 
tPR(T, < 0 ) Ç tPR(T, < 1 ) by induction on the lengthof traces from tPR(T, < 0). 

base l(t) = 0 t = t: E tPR(T, <1) 

step l(t) > 0 

Assume (As: sE tPR(T, < o) 1\ l(s) < l(t): sE tPR(T, < 1) ). Let t = ua. We derive 
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ua E tPR(T, <o) 

= { definition PR(T, <o) } 

u E tPR(T,<o) 1\ (a,i(uîa)) E occ(T) 
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) <o (a,l(uîa)): l(ulb) > j) 

::} {i( u)< l(t), <o respects < 1 } 

u E tPR(T,< 1) 1\ (a,l(uÎa)) E occ(T) 
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) < 1 (a,l(u îa)): l(uÎb) > j) 

= { definition PR(T, < 1)} 

ua E tPR(T, <t) 

(End of Proof) 

Theorem 2.5.4 

Let T be a process. If < is a partial order on occ(T) then PR(T, <) is cubic. 

Pro of 

Let < be a partial order on occ(T). 

1. Let ta E tPR(T, <),tb E tPR(T, <), and a :j:. b. We derive 

ta E tPR(T, <) 
::} { definition PR(T, <)} 

(a,l(tîa)) E occ(T) 
1\ (Ac,k: (c,k) E occ(T) 1\ (c,k) < (a,l(tîa)): l(tîc) > k) 

=> {a:j:.b} 
(a,l(tbîa)) E occ(T) 

1\ (Ac, k: (c, k) E occ(T) 1\ (c, k) < (a,l(tMa)): l(tbîc) > k) 

=> {tb E tPR(T, <), definition PR(T, <)} 

tba E tPR(T, <) 

Analogously, one can derive tab E tPR(T, <). 
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ii. Let tab E tPR(T, <) and tba E tPR(T, < ). We prove by induction on the length 
of trace u 

(A u :u E aT" :tabu E tPR(T, <) :: tbau E tPR(T, <)) 

base l(u) = 0 
We have u= ê and tabeE tPR(T, <) = tbae E tPR(T, <). 

step l(u) > 0 
Let u= vc. We derive 
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tabvc E tPR(T, <) 
= { definition PR(T, <)} 

tabv E tPR(T, <) 1\ (c,f(tabvlc)) E occ(T) 
1\ (Ad,k: (d,k) E occ(T) 1\ (d,k) < (c,i(tabvlc)) :i(tabv~d) > k) 

= {f(v) < i(u), property i} 
tbav E tPR(T, <) 1\ (c,f(tbavk)) E occ(T) 

1\ (Ad, k : (d, k) E occ(T) 1\ (d, k) < (c,i(tbav ~c)): i(tbav~d) > k) 

{ definition PR(T, <)} 

tbavc E tPR(T, <) 

111. Let tac E tPR(T, <), tbc E tPR(T, <), and a -:/:- b. We derive 

tac E tPR(T, <) 1\ tbc E tPR(T, <) 
=> { definition PR(T, <)} 

(c,f(tak)) E occ(T) 1\ (c,i(tblc)) E occ(T) 
1\ (Ad,k: (d,k) E occ(T) 1\ (d,k) < (c,i(tatc)): f(ta~d) > k) 
1\ (Ad, k: (d, k) E occ(T) 1\ (d, k) < (c,f(tbk)): f(tb~d) > k) 

=> {a -:/:- b, property 2.5.0, < is a partial order} 

(c,f(tîc)) E occ(T) 
1\ (Ad, k: (d, k) E occ(T) 1\ (d, k) < (c,f(tîc)): i(ta~d) > k 1\ f(tbld) > k) 

=> {a-:/:- b, t E tPR(T, <), definition PR(T, <)} 

teE tPR(T, <) 

(End of Proof) 

Example 2.5.5 

Let T = PR( a; b; c I b; c ; a) . Then partial order <r is characterized by 

(b,O) <r (c,O) 

and PR(T, <r) = PR( a; b; c I b; a; c I b; c; a). Define partial order < on occ(T) by 

(b,O) < (a,O) 
(a,O) < (c,O) 

Then < respects <r, and we have PR(T, <) = PR( b; a; c ). Notice that neither 
PR(T, <) Ç T nor T Ç PR(T, <) holds. 

(End of Example) 
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The above example shows that if partial order < respects <r we need not have that 
PR(T, <) Ç T. From theorem 2.5.3 it follows that in case T = PR(T, <r) we have 
that PR(T, <) Ç T for all partial orders < respecting <r. Therefore, we concentrate 
on the class of processes T satisfying T = PR(T, <r ). Tom Verhoeff ([Ve86]) showed 

Theorem 2.5.6 

Let T be a process. We have 

T = PR(T, <r) = T is cubic 

Pro of 

If T = PR(T, <r) then by theorem 2.5.4 T is cubic. 

Assume T is cubic. By theorem 2.5.3 we have that T Ç PR(T, <r). By theorem 2.5.4 
we have that PR(T, <r) is cubic. We prove by in duetion on the length of trace t that 

(At: tE tPR(T,<r): tE tT) 

base i(t) = 0 t = é. E tT 

step i(t) > 0 
A ss urne 

(Au: u E tPR(T, <r) A. i( u)< i(t): u E tT) 

Let t = ua. Since t E tPR(T, <r) we have 

u E tT A. (a,i(u~a)) E occ(T) 
A. (A b,j : (b,j) E occ(T) A. (b,j) <r (a,i(da)): i(ulb) > j) 

Since (a,i(u~a)) E occ(T) choose s such that 

sa E tT A. i(s~a) = i(u~a) 
A. (Ar: ra E tT A. l(rÎa) = i(u~a): i(r) ~ i(s)) 

We prove that 

(Av, b: vb::; s: (b,l(vÎb)) <r (a,i(uÎa))) 

Let vb::; s. Assume --.( (b,i(v~b)) <r (a,i(ufa))) or, equivalently, 
(b,i(vfb)) ft pre(a,i(ufa), T). Choose w such that 

wa E tT A. i(wfa) = i(uÎa) A. i(wfb)::; i(vÎb) 
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We derive 

sa E tT I\ wa E tT 
=> { T is cubic, theorem 2.4.6} 

sa i #(wa) E tT 

= { property 2.4.5, C( w la) = C( u ta) = C(s la)} 

(si #w)a E tT 

Furthermore, we have 

R((s i #w)la) = C(sia) = R(u ia) 

and 

R(wib):::; C(vib) < R(vblb):::; C(sib) 

The above implies that R( s i #w) < C( s) which contradiets the assumption made a bout 
s. Therefore, we have (b,R(vib)) <r (a,C(uia)) and 

(Av,b: vb:::; s: C(uib) > C(vib)) 

This implies that #s Ç #u and, since C(sla) = C(uta), 

ua =u( sa\ #u) E tT 

(End of Proof) 

We now focus on the orderings of events of cubic processes that can be expressed by 
so-called sequence functions. Let T be a cubic process. Let 0' E occ(T) --> N. Define 
binary relation <u on occ(T) by 

(a, i)<" (b,j) = O'(a, i)< O'(b,j) (a, i) E occ(T), ( b, j) E occ(T) 

Then (occ(T), <"} is a partially ordered set. 
Function 0' is called a sequence function for process T if 

(Aa,b,i,j: (a, i) E occ(T) I\ (b,j) E occ(T) I\ (a, i) <r (b,j): (a, i) <u (b,j)) 

J.e. partial order <u respects partial order <r ([Ee]). For occurrence (a, i) E occ(T) 
0'( a, i) may be interpreted as the moment in time at which (a, i) takes place. Th en 
function 0' describes a possible synchronous ( clocked) behaviour of the mechanism 
conesponding to process T . 
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Theorern 2.5. 7 

Let T be a cubic process. Let u E occ(T) --t N be defined by 

u( a, i) = I pre( a, i, T) I (a, i) E occ(T) 

Th en u is a sequence function for T. 

(End of Theorem) 

Exarnple 2.5.8 

Let T = PR( a, b; c ). Then u0 defined by 

u0(a, 0) = 0 
uo(b,O) 0 
u0 (c,O) 2 

and u 1 defined by 

u1(a, 0) = 0 
u 1(b, 0) = 1 
u 1(c, O) 2 

are sequence fundions for T. Notice that 

u0 ( d, i) = I pre( d, i, T) I 
(End of Example) 

( d, i) E occ(T) 

71 

From the following theorem it follows that if u is a sequence function for T and f E 

N --t N is an increasing function then f o u is a sequence function for T as well. 

Theorern 2.5.9 

Let T be a cubic process. Let u be a sequence nmction for T. If p E occ(T) --t N 
satisfies 

(Aa,b, i ,j: (a, i) E occ(T) 1\ (b,j) E occ(T) 1\ (a , i) <r (b,j) 
: u(b,j)- u(a,i) ~ p(b,j)- p(a,i)) 

then p is a sequence fundion for T. 

(End of Theorem) 
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In order to give a different characterization of sequence functions we need two lemmas. 

Lemma 2.5.10 

Let T be a cubic process. Let a be a sequence function forT. Then 

(At,a,b: tab E t T I\ a(a,l(tîa)) ~ a(b,l(tîb)): tba E tT) 

Pro of 

Let tab E tT and a(a,l(tÎa)) ~ a(b,l(tîb)). The case a= b being trivia! we assume 
a "f. b. We derive 

a(a, l(tfa)) ~ a(b,l(tîb)) 

{calculus} 

•( a(a,l(tîa)) < a(b,l(tîb)) ) 

:::} { a is a sequence function for T} 

•( (a,l(tîa)) <r (b,l(tfb))) 

{ definition <r} 
(a,l(tîa)) rf. pre(b,l(tîb), T) 

{ definition pre } 

(Es : sb E tT I\ l(s lb) = l(tîb) : l(s Îa) :S l(tîa)) 

Choose trace s such that sb E tT, l(sîb) = l(tîb) , and l(sîa) ::=:; l(tîa) . Then #(ab) n 
(# s - #t) = 0 . We derive 

sb( tab\ #(sb)) 

= { property 2.3.1} 

sb( (tab\ #s) \ #b) 
{ property 2.3.1} 

sb( (t \ # s )(ab \ (#s- #t)) \ #b) 

{ #(ab) n (#s- #t) = 0, property 2.3.1} 

sb( (t \ #s)ab \ #b) 

= { #b n (#t- #s) = 0, property 2.3.1, a i- b} 
sb(t \ #s)a 

Since T is conservative we conclude that sb( t \ #s )a E tT. Furthermore, 
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t( sb(t \ #.s)a \ #t) 

= { property 2.3.1} 

t( .sb \ #t )( (t \ #s)a \ (#t- #(sb))) 

= {property2.3.1,f(slb)=f(tlb)} 

t(s \ #t)b( (t \ #s)a \ #(t \ #s)) 
= { property 2.3.1 } 

t(s \ #t)ba 

Since T is conservative we conclude that t(s \ #t)ba E tT. Since l(sla) :::; l(tla) we 
have #(.s \ #t) n #a= 0. From this, t(.s \ #t)b E tT, and tab E tT we infer, since T 
is cubic, that tb E tT. From ta E tT, tb E tT, and a =j:. bit now follows that tba E tT. 

(End of Proof) 

Lemma 2.5.11 

Let T be a cubic process. Let a E occ(T) ---t .N be such that 

(i) (A a, i: (a, i) E occ(T): (Aj: 0:::; j <i: a(a,j) < a(a,i))) 

and 

(ii) (A t,a, b: tab E tT Á tba f/. tT: a(a,l(tla)) < a(b,l(tlb))) 

Then for all t, t E tT, we have 

(Es : s E tT : #t = #s /\ 
(A u, v,c, d: ucvd:::; s: a(c, f(ulc)):::; a(d,f(ucvld)))) 

Proof 

Let t E tT. We construct a trace s E tT such that #t = #s and 

(Au, v,c, d: ucvd:::; s : a(c,l(ulc)):::; a(d,l(ucvld))) 

or, equivalently, 

(A u, c, d: ucd:::; s: a(c, f(u Ie)):::; a(d, l(udd))) 



74 2 Properties of processes and systems 

Consicier the following algorithm. 

s, k:= t, (Nu, v, c, d: ucvd s; t : a(c, f!(tÎc)) > a(d, I!( ucv rd))) 

{ invariant: s E tT A. #s = #t 
A. k = (Nu,v,c,d: ucvd s; s: a(c,f!(uk)) > a(d,f!(ucv rd))) 

, variant function: k } 

; do k f. 0--+ {k > 0} 

od 

let s = ucdv such that a(c,f!(uk)) > a(d,f!(ud d)) 

{ (i) implies c f. d, (ii) implies udc E tT, 

T is conservative and therefore udcv E tT} 

; .s, k:= udcv, k - 1 

{ k = 0, hence (A u, c, d: ucd s; s: a(c,f!(uk)) s; a(d,f!(udd)))} 

(End of Proof) 

Theorem 2.5.12 ([Ee]) 

Let T be a cubic process. Let a E occ(T) --+ N. Function a is a sequence function for 
T if and only if 

(i) (A a, i: (a, i) E occ(T): (Aj: 0 s; j <i: a(a,j) < a(a,i))) 

and 

(ii) (At, a, b: tab E tT A. tba (j_ tT : a(a,C(da)) < a(b,f!(tÎb))) 

Pro of 

0 Assume a is a sequence function forT. Let (a, i) E occ(T) and 0 s; j <i. 
Then (a,j) E pre( a, i, T) and 

(a,j) E pre(a,i,T) 

{ definition <r} 

(a,j) <r (a, i) 

=> { a is a sequence function for T } 

a(a,j) < a(a,i) 

From lemma 2.5.10 it follows that (ii) holds. 

1 Assume a satisfies (i) and (ii) . Let (b,j) E occ(T) and (a, i) E pre(b,j, T ). If 
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a= b, then i< j and, by (i), a-( a, i) < a-(b,j). Hence, we assume a-:/:- b. Choose trace 
t such that tb E tT and i(t/b) = j. We now have l(tla) >i. Using lemma 2.5.11 we 
choose s E tT such that #s = #tb and 

(A u,v, c, d: ucvd ~ s: o-(c,l(ulc)) ~ o-(d,l(ucvld))) 

Let ub ~ s a.nd l(utb) = j. We now have l(ula) > i. Let u = vaw be such that 
l(vla) =i. Then a-(a,l(vla)) ~ o-(b,l(vawlb)). 

Assume that equality holds. Consicier the following algorithm. 

y:=w 
{invariant: vayb E tT 1\ vay ~ s 1\ a-(a,l(vla)) = o-(b,l(vaylb)), 

variant function : l(y) } 

; do y -:/:- ê -+ let y = ze 

{ o-(c,l(vaztc)) = o-(b,l(vaylb)), 

(i) implies c -:/:- b, (ii) implies vazb E tT } 

j y:= z 

od 

{ vab E tT 1\ o-(a,l(vla)) = o-(b,l(valb)), (ii) implies vba E tT} 

Thus vba E tT. This implies that i( vla)> i which contradiets l(vla) =i. 
Hence o-(a,i) = a-(a,l(vla)) < o-(b,l(vawlb)) = a-(b,j). 

(End of Proof) 

Theorem 2.5.13 

Let X be a set of cubic processes. Let for all T E X O"T be a sequence function for T. 
If 

(0) (AT, U : TE X 1\ U E X 
: (A a, i: (a, i) E occ(T) n occ(U) n occ(W(X)) :a-T( a, i)= a-u( a, i))) 

then a- E occ(W(X))-+ N defined by 

(1) a-( a, i) = a-T( a, i) 

is a sequence function for W(X). 

Pro of 

TE X, (a, i) E occ(W(X)) n occ(T) 

Assume (0) holds. Let a- be defined by (1). Function a- is well defined due to condition 
(0). Clearly, function a- satisfies condition (i) of theorem 2.5.12. We will show that 
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condition (ii) is also satisfied. 
Let tab E tW(X) and tba (/_ tW(X). Observe that a-:/:- b. We have 

tab E tW(X) 1\ tba (/_ tW(X) 
(AT: TE X 1\ a E aT 1\ b (/_aT: (t laT)a E tT) 
1\ (AT : T EX 1\ a E aT 1\ b E aT: (t faT)ab E tT) 
1\ (AT: T E X 1\ a(/_ aT 1\ b E aT : (tlaT)b E tT) 
1\ (ET : TE X 1\ a E aT 1\ b E aT: (daT) ba (/_ tT) 

Choose T E X such that a E aT, b E aT, (tfaT)ab E tT, and (tfaT )ba (/_ tT. We 
derive 

(tîaT)ab E tT 1\ (tlaT)ba (/_ tT 

=> {aT is a sequence function forT, theorem 2.5.12, a-:/:- b} 

aT(a,i(tfaTia)) < aT(b,i(tfaTib)) 

{a E aT, bEaT, property projection} 

aT(a,i(tfa)) < aT(b,i(tlb)) 

= { definition a, (a,i(tla)), (b,i(tlb)) E occ(W(X)) n occ(T ) } 

a(a, i (tla)) < a(b,f(tîb)) 

(End of Proof) 

Theorem 2.5.14 

Let X be a set of cubic processes. Let for all T , T E X, aT be a sequence fundion for 
T. If 

(0) (AT, U: TE X 1\ U E X : occ(TiaU) = occ(U laT)) 

and 

(1) (AT,U:TEX 1\ UE X 
:(A a, i : (a, i) E occ(T) n occ(U): aT( a, i)= au( a, i ))) 

then lockfree(X). 

Pro of 

Assume (0) and (1). LettE tW(X ) be such that (EU : U EX : suc(tfaU, U) -:/:- 0 ) . 
Choose T E X and a E suc(t laT, T) such that 

aT( a, f( ti a)) = (MIN U, b : U E X 1\ b E suc( t Î aU, U) : au( b, f( t lb)) ) 
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We show that ta E tW(X). Defi.ne Y = {U I U EX I\ a EaU}. LetSE Y. Since 
(a,f(tfa)) E occ(S) and Sis cubic, there exists a trace x such that 

(tfaS)xa EtS I\ x la= ê 

f(x) =(MIN y: (tfaS)ya EtS I\ yla = ê: l(y)) 

On basis of the algorithm given in the proof of lemma 2.5.11 we assume 

(Au, v, b, c: ubvc ~ xa: O"s(b,f((daS)ulb)) ~ O"s(c,f((tlaS)ubvlc))) 

Assume x = dz. From the algorithm given in the proof of theorem 2.5.12 and the 
definition of x it follows that 

O"s(d,l(tld)) = O"s(d,l((tlaS) ld)) < O"s(a,l((daS)dzla)) = O"s(a,l(da)) 

This, however, contradiets 

O"s(a,f(tla)) = O'T(a,f(tla)) ~ O"s(d,l(tld)) 

We conclude that x = ê and, hence, a E suc(t laS, S). We now have 

(A U: U EX I\ a EaU: a E suc(t laU, U)) 

and, therefore, ta E tW(X). 

(End of Proof) 

Theorem 2.5.15 

LetTand U be cubic processes such that U Ç T. Let 0' E occ(U) -t N be a sequence 
function for U. Define T E occ(T) -t N as follows 

T(a,i) = O'(a,i) for (a, i) E occ(U) 

T(a,i) = (MAXc,k: (c,k) E occ(U) I\ (c,k) <T (a, i): O'(c,k) + 1 )maxO 

+ lpre(a, i, T) n occ(T) \ occ(U)I 

Then T is a sequence function for T . 

Pro of 

for (a, i) E occ(T) \ occ(U) 

Let (a, i) E occ(T), (b,j) E occ(T), and (a, i) <T (b,j). Assume (a, i) E occ(T) \ 
occ(U) and (b,j) E occ(U). Let ub E tUbe such that f(ulb) = j. Since U Ç Tand 
(a, i) <T (b,j), we now have f(uta) >i and, hence, (a, i) E occ(U) which contradiets 
(a, i) E occ(T) \ occ(U). Therefore, we only have to distinguish the following cases 

1. (a, i) E occ(U) I\ (b,j) E occ(U) 
We derive 
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(a, i) <T (b,j) 

=> {U Ç T, theorem 2.5.2} 

(a, i) <u (b,j) 
=> { a is a sequence function for U } 

a(a,i) < a(b,j) 

{ definition T} 

T(a,i) < T(b,j) 

2 Properties of processes and systems 

11. (a, i) E occ(T) \ occ( U) 1\ ( b, j) E occ(T) \ occ( U) 
We derive 

(a, i) <T (b,j) 

=> { definition <T, property 2.5.0} 

pre(a,i,T) U {(a, i)} Ç pre(b,j,T) 

=> {set calculus, (a, i) E occ(T) \ occ(U)} 

pre(a,i,T)nocc(U) Ç pre(b,j,T)nocc(U) . 
1\ (pre(a,i,T)nocc(T)\occ(U))U{(a,i)} Ç pre(b,j,T)nocc(T)\occ(U) 

=> { definition <T, defini t ion T} 
T(a, i)< T(b,j) 

111. (a,i) E occ(U) 1\ (b,j) E occ(T) \occ(U) 
We derive 

T( a, i) 
{ definition T } 

a( a, i) 

< {calculus} 

a( a, i)+ 1 

< { definition T, (a, i ) <T (b,j) , (a, i) E occ(U) } 

T(b,j) 

(End of Proof) 

Theorem 2.5.16 

Let T be a cubic process and let A be an alphabet. Let a E occ(T) --+ N be sequence 
function for T . Define T E occ(TIA) --+ N by 

T(a, i)= a( a, i) (a, i) E occ(TIA) 
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Then ris a sequence function for TîA. 

Pro of 

Let (a, i) E occ(T IA) and (b,j) E occ(TIA). We derive 

(a,i) <rrA (b,j) 
{ theorem 2.5.2} 

(a, i) <r (b,j) 

=> { 0' is a sequence function for T} 

q(a, i) < q(b,j) 

= { definition r } 

r(a, i) < r(b,j) 

(End of Proof) 

Theorem 2.5.17 
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Let T be a cubic process. Let A be an alphabet . Let 0' E occ(T) ~ N be a sequence 
function forT. Let p E occ(TÎA) ~ N. If 

(0) (Aa,b,i,j: (a, i) E occ(TIA) /\ (b,j) E occ(TÎA) 
/\(a, i) <rtA (b,j): O'(b,j)- q(a,i) ~ p(b,j)- p(a,i)) 

and 

(1) (A a: (a,O) E occ(TIA): q(a,O) ~ p(a,O)) 

then there exists a function r E occ(T) ~ .N that is a sequence function for T and 
satisfies 

(A a, i: (a, i) E occ(TIA): r(a,i ) = p(a,i)) 

Pro of 

Let p satisfy (0) and (1 ). From theorems 2.5.9 and 2.5.16 it follows that pis a sequence 
function for TI A. Furthermore, we have that 

(Aa,i: (a,i) E occ(TîA): q(a,i) ~ p(a,i)) 

Define for (a, i) E occ(T) 

M(a, i) 
= (MAXc, k: (c, k) E occ(T ÎA) /\ (c, k) <r (a, i) : p(c, k)- q(c, k)) max 0 
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Define r E occ(T) ~ N by 

r(a, i) = p(a, i) (a, i) E occ(TIA) 

r(a,i) = a(a,i) + M(a,i) (a, i) E occ(T) \ occ(Ti A) 

Let (a, i) E occ(T), (b,j) E occ(T), and (a, i) <T (b,j). We distinguish four cases. 

1. (a, i) E occ(TIA) 1\ (b,j) E occ(TIA) 
We now have 

r(a,i) = p(a,i) < p(b,j) = r(b,j) 

11 . (a, i) E occ(T) \ occ(TIA) 1\ (b,j) E occ(T) \ occ(TIA) 
We derive 

r( a, i) 

{ definition r } 

a(a,i) + M(a,i) 

< {(a, i) <T (b,j), a is a sequence function forT, property 2.5.0} 

a(b,j) + M(b,j) 
{ definition r} 

r(b,j) 

111. (a, i) E occ(TIA) 1\ (b,j) E occ(T) \ occ(T IA) 
We derive 

r(b,j) 

{ definition r } 

a(b,j) + M(b,j) 

> {(a, i ) <T (b,j), (a, i) E occ(TIA), a( a, i)~ p(a, i)} 

a(b,j) + p(a,i)- a(a,i) 

> {(a, i) <T (b,j), a is a sequence function forT} 

p( a, i) 

{ definition r } 

r( a, i) 

IV. (a, i) E occ(T) \ occ(TIA) 1\ (b,j) E occ(TIA) 
We derive 
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r(a, i) 

= { definition "T } 

u( a, i)+ M(a, i) 

< {(a, i) <T (b,j), (b,j) E occ(TIA), (0)} 

u( a, i)+ 
(MAX c, k: (c, k) E occ(Tt A) 1\ (c, k) <T (a, i) : p(b,j)- u(b,j)) max 0 

< {p(b,j)- u(b,j) 2 0} 

u( a, i)+ p(b,j)- u(b,j) 
< {(a, i) <y (b,j), u is a sequence function forT} 

p( b, j) 

{ definition "T } 

r(b,j) 

(End of Proof) 
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Let X be a set of cu bic processes. Let u be a sequence function for W (X). Let T E X. 
Define PT E occ(W(X) laT) --+ N by 

PT( a, i) = u( a, i) (a, i) E occ(W(X) laT) 

On account of theorem 2.5.16 PT is a sequence function for W(X) laT. 
Since W(XHaT Ç T, there exists, on account of theorem 2.5.15, a sequence function 
uy for T such that 

uy( a, i) = py( a, i) = u( a, i) (a, i) E occ(W(XHaT) 

On the other hand, let for all T, T E X, uy be a sequence function for T and let 

(AT, U: TE X 1\ U EX 
:(A a, i :(a, i) E occ(T) n occ(U) n occ(W(X)) : uy(a, i)= uu(a, i))) 

Then, by theorem 2.5.13 the function u E occ(W(X))--+ N defined by 

u( a, i) = uy( a, i) TE X, (a, i) E occ(W(X)) n occ(T) 

is a sequence function for W(X). 
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Let S be a system such that (AT: TE pS: T is cubic). 
A function e> E occ(PR(S)) --+ Nis called a sequence function for system S if there 
exists a sequence function T for W(p(S)) such that 

(A a, i: (a, i) E occ(PR(S)): T(a,i) = e>(a,i)) 

Observe that e> is a sequence function for PR(S). 

Corollary 2.5.18 

Let S be a system such that (AT: T E pS : T is cubic). Let e> E occ(PR(S)) --+ N 
be a sequence function for S. Let p E occ(PR(S)) --+ N. If 

(Aa,b,i,j: (a,i) E occ(PR(S)) 1\ (b,j) E occ(PR(S)) 
1\ (a, i) <PR(S) (b,j): e>(b,j)- e>(a, i):::; p(b,j)- p(a, i)) 

and 

(A a :(a, 0) E occ(PR(S)) : e>(a, 0) :::; p(a, 0)) 

then p is a sequence function for S. 

(End of Corollary) 

In the following we consider components whose corresponding systems contain cubic 
processes only. This is, for instance, the case when all occurring commands are re
stricted commands. Let c be a component satisfying the above condition. A function 
e> E occ(PR(c))--+ Nis called a sequence function for c if e> is a sequence fundion for 
sys( c). 

The following theorem will be applied in the proof of a theorem concerning sequence 
fundions for simple recursive components. 

Theorem 2.5.19 

Let T be a cubic process and Aan alphabet such that aT= A U p·A, 

(0) (A a, i :a E A: (a, i) E occ(T) = (p·a, i) E occ(T)) 

and 

(1) (A a, i: a E A 1\ (a, i) E occ(T): (a,i) <r (p·a,i)) 

Let e> E occ(T) --+ N be a sequence fundion for T satisfying 
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(*) (Aa,b,i,j: a E A I\ b E A I\ (a, i) E occ(T) 
I\ (b,j) E occ(T) I\ (a, i) <r (b,j) 

: a( b, j) - a( a, i) ~ a(p·b, j) - a(p·a, i)) 

Define for (p·a, i) E occ(T) 

M(p·a,i)=(MAXc,k:cEA I\ (c,k)Eocc(T) 
I\ (c, k) <r (p·a, i): a(p·c, k)- a(c, k)) 

Then rE occ(T) -4 N defined by 

r( a, i) = a(p·a, i) 

r(p·a, i) = a(p·a, i)+ M(p·a, i) 

a E A, (a, i) E occ(T) 

a E A, (p·a, i) E occ(T) 

is a sequence fundion forT. If, moreover, T satisfies 

(Aa,b,i,j: a,b E A I\ (a,i),(b,j) E occ(T) 
:(a, i) <r (b,j) => (p·a,i) <r (p·b,j)) 

then r satisfies ( * ). 
Pro of 
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Observe that T is indeed a function mapping occ(T) into N. We wiJl show that T 

satisfies the condition in theorem 2.5.9. Let a E A and b E A. We distinguish four 
cases. 

1. (a, i) E occ(T) I\ (b,j) E occ(T) I\ (a, i) <r (b,j) 
We derive 

r(b,j)- r(a, i) 

{ definition T } 

a(p·b, j) - a(p·a, i) 

> {(a, i) <r (b,j), (*)} 

a( b, j) - a( a, i) 

11. (p·a,i) E occ(T) I\ (p·b,j) E occ(T) I\ (p·a,i) <r (p·b,j) 
We derive 

r(p·b,j)- r(p·a, i) 

{ definition r} 

a(p·b,j)- a(p·a, i)+ M(p·b,j)- M(p·a, i) 

> { (p·a, i) <r (p·b,j), definition M, (1)} 

a(p·b, j) - a(p·a, i) 
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m. (p·a,i) E occ(T) /\ (b,j) E occ(T) /\ (p·a,i) <r (b,j) 

We derive 

r(b,j)- r(p·a,i) 

{ definition T } 

O"(p·b,j)- O"(p·a, i)- M(p·a, i) 

> { (p·a, i) <r (b,j), (*), definition M} 

O"(p·b,j)- O"(p·a, i)- O"(p·b,j) + O"(b,j) 

{calculus} 

D"(b,j)- D"(p·a,i) 

1v. (a, i) E occ(T) /\ (p·b,j) E occ(T) /\ (a, i) <r (p·b,j) 
We derive 

r(p·b,j) - r(a, i) 

{ definition T } 

D"(p·b,j)- O"(p·a,i) + M(p·b, j) 

> {(a, i) <r (p·b,j)} 

O"(p·b, j) - D"(p·a, i) + O"(p·a, i) - O"( a, i) 
{calculus} 

D"(p·b, j) - O"( a, i) 

From the above we infer that T is a sequence function for T. 
Assume T satisfies 

(A a, b, i,j: a, b E A /\ (a, i), (b,j) E occ(T) 
:(a, i) <r (b,j) =? (p·a, i) <r (p·b,j)) 

Let a E A, b E A, (a, i) E occ(T), (b, j) E occ(T), and (a,i) <r (b,j) . We derive 

r(p·b, j) - r(p·a, i) 
> { ii., (p·a, i) <T(p·b,j)} 

D"(p·b,j)- D"(p·a, i) 

= { definition T } 

r(b,j) - r(a,i) 

(End of Proof) 
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Theorem 2.5.20 

Let component c be recursive component 

com c(A): 

moe 

sub p: c bus 
s 
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where aPR(S) = A U p·A and PR(S) is a cubic process satisfying the conditions in 
theorem 2.5.19. If u E occ(PR(S)) ~ ./1! is a sequence function for PR(S) satisfying 
condition (*)in theorem 2.5.19. then TE occ(PR(c)) ~ ./1! defined by 

r(a, i)= u( a, i) (a, i) E occ(PR(c)) 

is a sequence {u netion for c and sys( c) is a lockfree system. 

Pro of 

Let u E occ(PR( S)) ~ ./1! be a sequence function for PR( S) satisfying condition ( *) in 
theerem 2.5.19. We have 

sys(c) = (A, { (p·)1PR(S) ll ~ 0}} 

Wedefine functions Ut, l ~ 0 1\ u 1 E occ((p·)1PR(S))--+ ./1!, inductively by 

O'o =u 

u1+1 ( (p· )1+1a, i)= ut( (p· )1+1a, i) for l ~ 0, a E A, (a, i) E occ(PR( S)) 

O't+I((p·) 1+2a, i)= O't((p·)1+1a, i) 
+ (MAXc,k: c E A 1\ (c,k) E occ(PR(S)) 

1\ (c, k) <PR(S) (p·a, i): O't((p·)1+1c, k)- ut((p·)1c, k)) 

for l ~ 0, a E A, (p·a, i) E occ(PR(S)) 

Then u 1 is a sequence function {or (p·)1PR(S) for all l ~ 0 and 

(Ak,l, c,m: 0:::; k < l 1\ (c,m) E occ((pfPR(S)) n occ((p·)1PR(S)) 

: uk(c, m) = O't(c, m))) 

Then p E occ(W(psys(c)))--+ ./1! defined by 

p( a, i) = uk( a, i) k ~ 0, (a, i) E occ(W(psys(c))) n occ((p-)"PR(S)) 
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is a sequence function for W(psys(c)) such that 

T(a, i)= p(a, i) 

(End of Proof) 

(a, i) E occ(PR(c)) 

Application of the above theorem is illustrated in examples 2.5.21 and 2.5.22. 

Let T be a cubic process and a be a sequence function for T. We already mentioned 
that for (a, i) E occ(T) a( a, i) may be interpreted as the moment at which (a, i) is 
to take place. Likewise, one may interpret for (a,i) E occ(T), (b,j) E occ(T), and 
(a, i) <r ( b, j) a( b, j) - a( a, i) as the time elapsed between the i-th occurrence of 
a and the j-th occurrence of b. Based on this interpretation we give the following 
definition of constant response time. 

Let S be a system such that (AT : T E pS : T is cubic) . System S is said to have 
constant response time if there exists a sequence function a for S such that 

(En : n ;:::: 1 : (At, a, b : tab E tPR( S) 1\ (a, f( ti a)) <PR(S) ( b, f( ta Îb)) 
: a(b, i (taîb))- O"(a,i(tla)) Sn)) 

i.e. there exists a restricted ( clocked) behaviour of the system such that there exists a 
global upperbound for the time elapsed between any two consecutive external events. 
A component cis said to have constant response time if sys(c) has constant response 
time. Observe that the constant in the above condition may be interpreted as a measure 
for the response time of the system. 

Example 2.5.21 

Consicier the following recursive component 

comc(a,b): 

moe 

sub p: c bus 
(a; p·a; b; p·b)* 

We have PR(c) = SEM1 (a,b). Let U= PR((a; p·a; b; p·b)*). Define for i, i;:=:: 0, 

a( a, i) = 4i 

a(p·a, i)= 4i + 1 

a( b, i) = 4i + 2 

a(p·b, i) = 4i + 3 
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We now have that u is a sequence function for U satisfying condition ( *) from theorem 
2.5.19. By theerem 2.5.20 we have that u restricted to occ(PR(c)) is a sequence function 
for component c. Furthermore, we have 

(At,c,d: tcd E tPR(c) 1\ (c,l(dc)) <PR(c) (d,l(tdd)) 
: u(d,l(tdd))- u(c,l(ttc)) ::=; 2) 

Therefore, component c has constant response time. 

(End of Example) 

Example 2.5.22 

Consicier the following recursive component 

com c(a,b): 
sub p: c bus 
a· b· (p·a· a· b· p·b)* 

' t ' , ' 

moe 

We have PR(c) = SEM1 (a, b). Let U= PR(a; b; (p·a; a; b; p·b)*). Define for i, i 2: 0, 

u(a,i) =(i+1)2 -1 

u(b,i) =(i+ 1)2 

u(p·a, i)= (i+ 2)2 - 2 

u(p·b,i) =(i +2)2 + 1 

Then u is a sequence function for U satisfying condition (*) from theerem 2.5.19 and, 
therefore, theorem 2.5.20 is applicable. Component c does not have constant response 
time. 

(End of Example) 



3 Communication of values and data independenee 

3.0 Introduetion 

In this and the following chapters we restriet ourselves to processes descrihing mech
anisms that can interact with their environment by sending and receiving values or 
messages via channels. The transmission of a value or message via a channel is repre
sented by a pair consisting of the channel name foliowed by the message. Such pairs 
are considered to be symbols. 

In section 1.0 we presented an example of such a mechanism, viz. the variabie capable 
of storing integer values. The process descrihing such a variabie is given by 

VAR= PREF( ( {a,b} x Z, (Un: n EZ: { (a,n)t I tE {(b,n)}*})*)) 

Abstraction from the actual messages that are sent, i.e. abstraction from the values 
that the varia.ble can store, results in process VARcom = PR((a; b*)*). Process VARcom 
describes the so-called communication behaviour of the variable. As process VAR is 
identified with the variable, process VARcom will he identified with the communication 
behaviour of the variable. Let t be the current trace of the variabie (t E tVAR). 
Let trace u descri he the communication pattern corresponding to t (u E t VARcom). 
Observe that ua E tVARcom implies the existence of mE Z such that t(a, m) E tV AR 
(according to process VAR communication of an actual message via channel a rnay 
occur). The same observation can be made about channel b. In other words, the 
cornrnunication pattern does not depend on the messages (data) that are sent and 
received. Process VAR is called data independent. 

An example of a process that is not data independent is FILTER, defined by 

FILTER =PREF( ( {a, b} x Z 
,( {Un: n ~ 0: {(a,n)(b,n)}) U (Un: n < 0: {(a,n)}) )*)) 

Process FILTER describes a mechanism that filters the negative numbers received via 
channel a: it only transmits via channel b the nonnegative numbers received. 

In this chapter we give a forma! definition of data independence. It is shown that data 
independenee can be expressed in terros of transparence. Furthermore, a nurnber of 
properties of data independent processes are given. 

88 
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3.1 Communication of values 

Transmission of va.lue or message m via cha.nnel c is modelled by the pair (c, m). We 
a.ssume the existence of a set r of narnes and a set M ( capita.l J.l) of values or messa ges. 

Elements of r are called channels. Subsets of r are called channel sets. 

Some cha.nnels are used to transmit only one kind of message, a so-qilled signal. These 
channel.s are used for synchronization only. In order to model signal transmission we 
introduce the so-called empty message .../ (read "tick"). We assume that .../ (/. M. We 
define M,; = M U { .../}. From bere on wetaken = r x M,;. 

We observe that every process T from the previous chapters can he identified with a 
process that is obta.ined from T by substituting every symbol inT by a pair consisting of 
that symbol foliowed by V· Due to this identification we often denote pairs containing 
v by their cha.nnel narnes only. 

Abstraction from the messages being sent is represented by the function ï E n -+ r 
defined by 

ï((c,m))=c 

Function Î is extended to traces by defining 

ï(ê) ê 
ï(t(c,m)) = ï(t)c 

Likewise, function ï is extended to trace sets, trace structures, a.nd processes. Function 
ï may he interpreted as the projection on the cha.nnel names. 

Let s a.nd t he traces, X a.nd Y trace sets, and T a.nd U trace structures such that 
aT= aU. 

Property 3.1.0 

0 ï(s) E f* 

1 ï(st) = ï(s)ï(t) 

2 i(ï(s)) = l(s) 

3 s :5 t => ï(3) :5 ï(t) 
X Ç Y => ï(X) Ç ï(Y) 
T Ç U => ï(T) Ç ï(U) 

4 PREF(ï(X)) = ï(PREF(X)) 
5 Let T he a process. LettE tT. Then 

ï(T) is a process 

ï(suc(t,T)) Ç suc(ï(t),ï(T)) 
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suc(-y(t),-y(T)) = (Us: sE tT A -y(s) = -y(t): -y(suc(s,T))) 
-y( after(t, T)) Ç after(-y(t), -y(T)) 
after(-y(t), -y(T)) =(U s: sE tT A -y(s) = -y(t): -y( after(s, T))) 

(End of Property) 

Notice that in the above property process -y(T) is identified with a process whose 
alphabet is -y(aT) x h/}, since formally speaking -y(aT) is nota, subset of r x M,; = n. 
Process -y(T) describes the communication behaviour of process T. 

Due to our interpretation of the pairs in n projection is almost always clone on alphabets 
of the form C x M,; where C is a channel set (C ç f). Therefore, we introduce the 
following abbreviation. Projection of trace t on channel set C, denoted by tÎC, is 
defined by 

ttC = tt(C x M,;) 

Accordingly, projection of trace sets, trace structures, and processes on channel sets 
is defined. Projection on channel sets has properties similar to properties of ordinary 
projection. We only mention one extra property. 

Property 3.1.1 

-y(stC) = -y(s)tC 
-y(T te) = -y(T) te 

(End of Property) 

Let T be a process. The channel set of T, denoted by cT, is defined by 

cT= -y(aT) 

The elementsof cT are called the channels of process T . Let c he a channel of T. The 
type of channel c inT, denoted by type(c,T), is defined by 

type(c,T) = {mImE M,; A (c,m} E aT} 

Notice that type( c, T) equals the set of all messages that T may transmit via channel 
c a.ccording to its alphabet. The empty message .../was introduced explicitly to model 
signa! transmission. Obviously, we must require that 

(Ac : c E cT : .../ E type( c, T) = { .../} = type( c, T)) 
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In the following we tacitly assume all processes to satisfy this condition. Observe that 
for process T satisfying this condition and channel set C process T~C satisfies this 
condition as well. 

Property 3.1.2 

Let T be a process and C be a channel set. 

0 aT = (U c : c E cT : { c} x type( c, T)) 

1 c(T~C)=cTnC 

2 type(c, T~C) = type(c, T) c E cT n C 

(End of Property) 

Next, we investigate the composition of processes. The following two examples show 
that weaving of two processes may yield a result that is not in accordance with our 
appreciation of processes and their composition. 

Example 3.1.3 

Process T = ( {(a, 0) }, {(a, 0) }*) describes a mechanism that can repeatedly send 
zeroes via channel a. Process U = ( {a} x Z, ( {a} x Z)") describes a mechanism 
that can repeatedly receive arbitrary integer values via channel a. On basis of our 
appreciation we would expect the composite of T and U to be described by ( {a} x 
Z, {(a, 0) }* ). However, by just applying the definition of weaving we obtain 

TwU = ({a} x Z,({a} x Z)*) 

(End of Example) 

Example 3.1.4 

(=U) 

Let T = RUN({(a,false)}) and U= RUN({(a,true)} ). 
We now have TwU = RUN({(a, false),(a,true)}). On basis of our appreciation we 
would expect the composite of T and U to be ( { (a, false), (a, true)}, { e} ) . 

(End of Example) 

Observe that in both examples the type of channel a in process T differs from the type 
of a in process U. If in example 3.1.3 type( a, T) and type( a, U) were both Z, and in 
example 3.1.4 type( a, T) and type( a, U) were both {false, true}, the weave of T and U 
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would yield the expected result. 
Hence, we define the following notion. Processes T and U are said to be compatible if 

(Ac : c E cT n cU : type( c, T) = type( c, U) ) 

It is easily seen that if two processes are compatible their weave will be the process we 
expect on basis of our appreciation. Moreover, if processes T and U are compatible, 
process T w U satisfies the tacit assumption 

(Ac: c E c(TwU): v E type(c,TwU) = {v} = type(c,TwU)) 

provided that Tand U satisfy it . In the following we consider composition of compatible 
processes only. Therefore, we tacitly assume processes that are to be composed to be 
compatible. 

Property 3.1.5 

Let T and U be processes. Then 

0 t(Tw U)= { t I tE (aT U aU)* A tieT E tT A tlcU E tU} 

1 c(T w U) = cT u cU 

2 "t(TwU) ç "t(T)w"t(U) 

Pro of 

We prove only 2. We derive 

r(TwU) 

= { definition 1 } 

( l(a(Tw U)), { r(s) Is E t(Tw U)}) 

{ definition channel set, 0 } 

(c(TwU), { r(s) Is E (aT U aU)* 1\ sleT E tT A slcU E tU}) 

C { 1, property 3.1.1, definition channel set} 

(cT u cU, { r(s) lr(s) E (cT u cU)* A r(sHcT E t'Y(T) A r(s) lcU E tr(U)}) 
{ definition weave, definition channel set} 

"t(T) w1(U) 

(End of Proof) 

The inclusion in property 3.1.5.2 may be a true inclusion as the following example 
shows. 
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Example 3.1.6 

T = ({a} x Z, {é, (a,O)}) 
U= ({a} x Z,{é,(a,l)}) 
Tw U= STOP( {a} x Z) 

1(T) = 1(U) = PR(a) 
1(Tw U)= STOP( a) c PR(a) = 1(T) w1(U) 

(End of Example) 
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We modify the definition of systems. We require that the processes of a system are 
compatible with one another, and replace the external alphabet of a system by a 
channel set consisting of the external channels of the system. More formally, a system 
is a pair ( C, X} where C is a channel set and X is a set of processes such that every 
process T E X and every process U E X are compatible, and C Ç cW(X). Let S 
be a system. Instead of derroting the external alphabet, eS now denotes the external 
channel set of system S. The (external) process of system S, denoted by PR(S), is 
defined by PR(S) = W(pS) ~eS. The type of external channel c of system S, denoted 
by type(c, S), is defined by 

type(c, S) = type(c, W(pS)) 

The projection of system S on channel set C, denoted by S~C, is defined by 

src = (eS n C,pS) 

For every system S the system 1( S) is defined by 

1(S) = (eS, !(PS)) 

Let S and T be systems. In order to compose S and T we require that 
cW(pS) n cW(pT) =eS neT and 

(A c : c E eS n eT : type( c, S) = type( c, T) ) 

If S and T satisfy this last condition they are said to be compatible. For compatible 
systems S and T satisfying cW(pS) n cW(pT) =eS neT the composite of S and T, 
denoted by S 11 T, is defined by 

S 11 T = (eS U eT, pS U pT} 
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Notice that due to the imposed restrictions S 11 T is indeed a system. In the following 
we tacitly assume that systems that are to be composed are compatible. 

Theorem 3.1.7 

Let S and T be systems. Let C be a channel set. Then 

r(StC) 
r(S 11 T) 

= ,(s) re 
r(S) 11 r(T) 

(End of Theorem) 

3.2 Data independenee 

A process is said to be data independent if the communication behaviour after the 
current trace depends on the communication pattem associated with the current trace, 
and not on the messages that have been sent and received. Formally, process T is called 
data independent if 

(At: tE tT: r(after(t,T)) = after(r(t),r(T))) 

Example 3.2.0 

Process 

ADDER= PREF( ( {a,b,c} x Z 

,({(a,m)(b,n)(c,m+n) lm,nEZ} 
u{ (b,n)(a,m)(c,m + n) I m,n EZ})*)) 

is data independent. 

(End of Example) 

The next theorem gives three alternative characterizations of data independence. 



3.2 Data independenee 

Theorem 3.2.1 

Let T be a process. The following four assertions are equivalent. 

0 (At: tE tT: 1( after(t, T)) = after(1(t), 1(T))) 

1 (As,t: sE tT 1\ tE tT 1\ 1(s) = 1(t): 1(after(s,T)) = 1(after(t,T))) 

2 (At: tE tT: 1(suc(t, T)) = suc(1(t), 1(T))) 

3 (As, t: sE tT 1\ tE tT 1\ 1(s) = 1(t): 1(suc(s,T)) = 1(suc(t,T))) 

Pro of 
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Using property 3.1.0 one easily establishes the equivalence of 0 and 1, and of 2 and 3. 
Furthermore, it is easily seen that 1 implies 3. It remains to prove that 3 implies 1. 

Assume that 3 holds. Let s, t E tT be such that 1( s) = 1( t). By induction on the 
length of trace u we prove 

(Au: u E n•: u E t1(ajter(s,T)) :=u E t1(ajter(t,T))) 

base f(u) = 0 

e E t1( aft er( s, T)) 

= {se E tT} 

true 

= {teE tT} 

é E t1( aft er( t, T)) 

step f(u) > 0 
Assume 

(Aw: wE !l* 1\ f(w) < f(u): wE t1(ajter(s,T)) :=wE t1(ajter(t,T))) 

Let u = va. We derive 

u E t1( aft er( s, T)) 

{u= va} 

v E t1( after( s, T)) 1\ va E t1( after(s, T)) 

= { induction hypo thesis, f( v) < f( u)} 

v E t1( aft er( t, T)) 1\ va E t1( aft er( s, T)) 

= { definition after, successor set, and 1} 

(Ey,z: y,z E aT*: v = 1(Y) 1\ ty E tT 
1\ v = 1(z) 1\ sz E tT 1\ a E 1(suc(sz, T))) 
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Analogously, one can derive 

uEt')'(after(t,T)) =: 

(Ey, z: y,z E aT*: v = 'Y(Y) 1\ ty E tT 
1\ v = 'Y(z) 1\ sz E tT 1\ a E 'Y(suc(ty,T))) 

From 'Y( s) = 'Y( t) and 3 it now follows that 

u E t')'( after( s, T)) == u E t')'( aft er( t, T)) 

(End of Proof) 

Gomparing the definition of data independenee with the definition of non-disabling 
we see a close resemblance. Data independenee can indeed be expressed in terros of 
transparence. To do this we first introduce the function B E (f x M,;)* --+ (f U M,;)* 
defined by 

B(t:) 
B(t(c, m}) 

t: 
B(t) cm 

Function B is defined for trace sets in the obvious manner. For every process T the 
process B(T) is defined by 

B(T) =PREF( (cT U (U c: c E cT: type(c, T)), B(tT)}) 

Furthermore, we assume that r n M,; = 0. 

Lemma 3.2.2 

Let T be a process and let t E tT. 

0 'Y(t) = B(t)fcT 

'Y(T) = B(T) I cT 

2 'Y(suc(t, T)) = suc(B(t), B(T)) Ç cT 
'Y(after(t,T)) = after(B(t),B(T))IcT 

3 (Au:uEtB(T):suc(u,B(T))ÇcT =: (Es : sEtT:B(s)=u)) 

4 cT is non-divergent with respect to B(T) 

(End of Lemma) 



3.2 Data independenee 

Theorem 3.2.3 

Let T be a process. Then 

T is data independent 

Pro of 

T is data independent 

{ theorem 3.2.1 } 

cT is transparent with respect to 8(T) 

(At: t E tT: 1(suc(t, T)) = suc('Y(t), 1(T))) 

{lemma 3.2.2} 

(A u : u E t8(T) 1\ suc( u, 8(T)) Ç cT : suc( u, 8(T)) = suc( u leT, 8(T) kT)) 

= {cT is non-divergent with respect to 8(T), theorem 2.1.20} 

cT is transparent with respect to 8(T) 

(End of Proof) 
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Next, we investigate when the projection of a data independent process on a channel 
set is data independent. We have the following result. 

Theorem 3.2.4 

Let T be a data independent process. Let C be a channel set such that C Ç cT. If C 
is non-disabling with respect to 1(T) then TIC is data independent . . 

Pro of 

Assume C is non-disabling with respect to 1(T). Let t E tT. We derive 

1( after(tiC, TIC)) 

C { property 3.1.0} 

after('Y( tiC), 1(T IC)) 

= { property 3.1.1} 

after('Y(t) IC, 1(T) IC) 

= { C is non-disabling with respect to 1(T)} 

after('Y(t ), 1(T)) IC 

{ T is data independent } 

1( after(t, T))rC 

= { property 3.1.1} 
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1( after(t, T) ~C) 

C { property projection} 

1( after(dC, TIC)) 

{End of Proof) 

The following example shows that if TIC is data independent C does not necessarily 
have to be non-disabling with respect to 1(T). 

Example 3.2.5 

T =PREF( ( {a,b,c,d,e} x Z, {(a,O)(c,O}(d,O), (b,O)(c,O}(e,O)}) ) 
C = {c,d,e} 
T is data independent 

TIG= PREF( ( {c,d,e} x Z, {(c,O)(d,O), (c,O)(e,O)})) 
TIC is data independent 

1(T) = PR(a; c; dI b; c; e) 
C is not ~on-disabling with respect to 1(T) 

U=PREF(({a,b,c,d,e} xZ, {(a,O)(c, O)(d,O), (b,O)(c,l)(e, l)})) 
U is data independent 

UIC =PREF( ( {c,d,e} x Z, {(c,O}(d,O}, (c, l}(e, 1}}}) 
U IC is not data independent 

1(U) = 1(T) 

(End of Example) 

We now investigate the data independenee of the weave of two data independent pro
cesses. First, we have the following lemma. 

Lemma 3.2.6 

Let T and U be data independent processes. Then 

(At: tE t(TwU) 

Pro of 

: 1( suc(tlcT, T) n suc(ttcU, U))= 1(suc(dcT, T)) n l(suc(tîcU, U)) 
_ 1(suc(t,TwU)) = suc(r(t),!(T)wi(U))) 

Let t E t(Tw U). We derive 
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"Y( suc(t, Tw U)) 

= { theorem 1.1.17, calculus} 

and 

"Y( suc(tlcT, T) n suc(tîcU, U)) 
U -y(suc(tlcT,T)\aU) U -y(suc(tîcU,U)\aT) 

{ T and U are compatible, T and U are data independent } 

"Y( suc(tlcT, T) n suc(tîcU, U)) 
U suc("Y(t)kT,")'(T))\cU U suc("Y(t)kU,-y(U))\cT 

suc( 1(t), 1(T) w -y(U)) 
{ theorem 1.1.17} 

( suc( "Y( t) ÎcT, 1(T)) n suc("Y(t) Ie U, "Y( U))) 
U suc("Y(t)~cT,"Y(T))\cU U suc("Y(t)kU,"Y(U))\cT 

{ T and U are data independent } 

( "Y(suc(tîcT, T)) n -y(suc(tîcU, U))) 
U suc("Y(t)kT,")'(T))\cU U suc("Y(t)îcU,"Y(U))\cT 
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Observe that in the above derivations only unions of disjoint sets occur. Hence, we 
infer 

"Y(suc(t, Tw U)) = suc("Y(t), -y(T) w 'i'( U)) 
= -y( suc(tlcT, T) n suc(t ÎcU, U))= -y(suc(tlcT, T)) n l(suc(tlcU, U) ) 

(End of Proof) 

Theorem 3.2.7 

Let T and U be data independent processes. Then 

(At : tE t(TwU): l(suc(tîcT,T) n suc(tîcU, U)) 
= 1(suc(t îcT, T)) n "Y(suc(tlcU, U))) 

_ (Tw U is data independent ) 1\ 1(Tw U) = -y(T ) w 1( U) 

Pro of 

(At : t E t(Tw U) : 1( suc(t îcT, T) n suc(tlcU, U)) 
= -y(suc(t îcT, T)) n 1(suc(t ÎcU, U))) 

= {lemma 3.2.6} 

(At : t E t(Tw U) : 1(suc(t, T w U)) = suc("Y(t), 1(T) w 'i'( U))) 
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= { see note} 

(At: tE t(Tw U): 1(suc(t,Tw U))= suc(!(t),!(Tw U))) 
1\ (At : t E t(Tw U) : suc(!(t), 1(Tw U)) = suc(!(t), 1(T) w 1(U))) 

= { theorem 3.2.1, calculus} 

(T w U is data independent) 1\ 1(Tw U) = 1 (T) w 1( U) 

note 

Assuming tE t(TwU) 1\ 1(suc(t,TwU)) = suc(!(t),!(T)w!(U)) we derive 

1(suc(t, Tw U)) 

C { property 3.1.0} 

suc(!(t), 1(Tw U)) 

C { property 3.1.5} 

suc(!(t), 1(T) w 1(U)) 

= { assumption } 

1(suc(t, Tw U)) 

(End of Proof) 

The following theorem provides conditions implying data independenee of the weave 
that are stronger than the left hand side of the equivalence in 3.2.7. 

Theorem 3.2.8 

Let T and U be data independent processes. Let C and D be channel sets such that 
C Ç cT, D Ç cU, and cT n cU Ç C U D. If Tand C satisfy 

(At,c: tE tT 1\ c E 1(suc(t,T)) n C: {c} x type(c,T) Ç suc(t , T) ) 

and U and D satisfy 

(A u, d: u E tU 1\ dE 1(suc(u, U)) n D: {d} x type(d, U) Ç suc(u, U)) 

then Tw U is data independent, 1(Tw U) = 1(T) w 1(U), and 
Tw U and E = (C n D) U C \ cU U D \cT satisfy 

(At,c: tE t(TwU) 1\ c E !(suc(t,TwU))nE : 
{c} x type(c, Tw U) Ç suc(t, Tw U)) 

(End of Theorem) 
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Being rather straightforward the proof of the above theorem is omitted. 

Notice that the conditions in theorem 3.2.8 are both in terms of one process only. 
These conditions are met if we, for instance, distinguish between input and output 
channels in both processes thereby requiring that a process puts no restrictions on the 
values it is willing to receive via its input channels, and that each channel connecting 
the processes is an input channel in one process and an output channel in the other 
process. 

Theorem 3.2.9 

Let X be a set of data independent processes. Let for every process T E X Cr be a 
channel set such that Cr Ç cT. If 

0 (At: tE tT 1\ c E î(suc(t, T)) n Cr: {c} x type(c, T) Ç suc(t, T)) 

1 (AT, U: TE X 1\ U EX: cT n cU Ç Cr U Cu) 

then W(X) is data independent, 'Y(W(X)) = W(î(X)), and 

(At : t E tW(X) 1\ c E 1(suc(t, W(X))) n C : 
{c} x type(c, W(X)) Ç suc(t, W(X))) 

where 

C = { c I c E cW(X) 1\ (AT : T E X 1\ c E cT : c E CT)} 

U (UT : T E X : CT\ (U U : U E X\ {T} : cU)) 

If S is a system such that pS = X and 1(S) is non-disabling, then PR(S) is data 
independent. 

(End of Theorem) 

Theorem 3.2.10 

Let (Tn)n~o be a sequence of data independent processes such that 
(A n: n ;:=: 0 : Tn Ç Tn+t) · Then (U n : n ;:=: 0: Tn) is data independent. 

Pro of 

Let t E t(U n : n ;:=: 0 : Tn)· We derive 

!( after(t, (Un : n ;:=: 0: Tn))) 

{ property 1.1.3 } 

1( (U n : n ;:=: 0 1\ t E tTn : after(t, Tn))) 
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{calculus} 

(U n: n ~ 0 1\ tE tTn: -y(after(t, Tn))) 

= {(A n: n ~ 0: Tn is data independent ) } 

(U n : n ~ 0 1\ t E tTn : after('Y(t), -y(Tn))) 

{(A n : n ~ 0 : Tn Ç Tn+l), property 1.1.3} 

(Un: n ~ 0 1\ -y(t) E t-y(Tn): after('Y(t),-y(Tn))) 

= { property 1.1.3} 

after( -y(t), (U n: n ~ 0 : -y(Tn))) 

{calculus} 

after( 'Y(t),-y((Un: n ~ 0: Tn))) 

(End of Proof) 

3.3 Split specifications 

In section 1.2 we introduced specifications as a way to describe processes. A data 
independent process, however, may bedescribed in a somewhat different manner. It is 
completely determined by its communication behaviour, the types of its channels, and 
the relation between the messages it sends and receives, i.e. its input/output relation. 
This is formalized as follows. 

A split specification is a triple ( T, j, P) where T is a process with aT Ç r, 
f E aT --+ (P(M) \ { 0}) U { { ,j}} is a function, and P is a predicate on 
A= (U c: c E aT: {c} x f(c) )* such that 

P(t:) 

(Ac,t: c E aT 1\ tE A": -y(t)cE tT 1\ (As: s:::; t: P(s)) 

:::::} (Em: mE f(c): P(t(c,m)))) 

Process T describes the comrnunication behaviour and fundion f the types of the 
channels. The last condition mentioned above states that predicate P may put no 
further restrictions on the communication behaviour described by T. The process 
specified by split specification ( T, J, P) is 

((U c: c E aT: {c} x f(c)) 
, { t I t E (U c : c E aT : { c} x f ( c) )" 1\ 'Y ( t) E tT 1\ (A s : s :::; t : P ( s) ) } ) 

The process specified by a split specification is data independent as the following the
orem shows. 
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Theorem 3.3.0 

Let ( T, J, P) be a split specification specifying process U. 
Then U is data independentand 1(U) = T. 

Pro of 

Obviously !(U) Ç T. By a simple inductive argument one can prove 

(A k : k ~ 0 : { t I t E tT 1\ f(t) ::; k} ç t,(U)) 

which implies T Ç 1(U). 
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LettE tU. We will show that suc(!(t),!(U)) = 1(suc(t,U)). Since tE tU we have 
1(t) E tT and (As: s :St: P(s) ). We derive 

c E suc(!(t),!(U)) 

= {!(U)= T,(As: s :St: P(s))} 

1(t)c E tT 1\ (As : s :St: P(s)) 

{ ( T, J, P) is a split specification} 

(Em: mE f(c): 1(t)c E tT 1\ (As: s :S t(c,m): P(s))) 

{ 1(t(c, m)) = 1(t)c, definition U} 

(Em: mE f(c): t(c,m) E tU) 

{ definition 1 en suc} 

c E 1(suc(t, U)) 

(End of Proof) 

The following theorem shows that every data independent process can be specified by 
a split specification. 

Theorem 3.3.1 

Let U be a data independent process. Define f E cU --+ (P(M) \ { 0}) U { { J}} by 
f(c) = type(c,U) for all c EcU. Then (!(U),J, t: tE tU) is a split specification 
specifying U. 

Pro of 

Notice that e E tU. LettE aU* and c EcU. We derive 

1(t)c E t1(U) 1\ (A s : s :S t : s E tU) 

{ definition suc, U is a process } 
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c E suc(l( t), 1(U)) 1\ t E tU 

{ U is data independent } 

c E 1(suc(t, U)) 1\ tE tU 
{ definition 1 and suc} 

(Em: mE type(c,U): t{c,m) E tU) 

Therefore, (!(U), J, t : t E tU) is a split specification. Furthermore, we derive 

{(Uc:cEcU:{c}xf(c)) 
, {tI tE (U c: c EcU: {c} x f(c) )* 1\ 1(t) E t1(U) 

1\ (As : s ~ t : s E tU)}) 

{ definition J, property 3.1.2, U is a process} 

( aU, { t I t E aU* 1\ t E tU } ) 
{ definition process } 

u 

(End of Proof) 

The above two theorems show that the class of data independent processes and the 
class of processes generated by split specifications are identical. 

Before presenting an example we introduce some notation. Function fl E !1* --+ M:J is 
defined by 

fl(ê) = ê 
fl(t( c, m}) = fl(t)m 

Let t be a trace. Notice that fl(t) is a trace whose symbols are elements of M,;. The 
i-th element of trace fl(t) is denoted by fl(t)[i] (0 ~i< l(t)) . Let c be a channel name. 
Wedefine c(i,t) = fl(tlc)[i] for all i, 0 ~i< l(tk). Message c(i,t) is the i-th message 
transm.itted via channel c intracet (0 ~i< l(tfc)). Whenever t is obvious from the 
context, we write c(i) insteadof c(i,t). 

Example 3.3.2 

The process ADDER in example 3.2.0 may be specified by split specification 

(PR((a, b; c)*), {(a,Z),(b,Z),(c,Z)} 
, t: (A i: 0 ~ i < l(tla) minl(tfb) minl(tlc): c(i) =a( i)+ b(i))) 

(End of Example) 
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Theorem 3.3.3 

Let ( T, J, P} be a split specification specifying process V. Let S be a process such 
that S Ç T. Then ( S, J, P} is a split specification. If U is the process specified by 
( S, J, P} we have U Ç V. 

(End of Theorem) 

Theorem 3.3.4 

Let ( S,J, P} and ( T, g, Q} be split specifications specifying processes U and V, re
spectively. Then 

UÇV 
- SÇTI\f=g 

1\ (At: tE aU* 1\ Î(t) EtS: (As: s::; t: P(s))::::} (As: s::; t: Q(s))) 

and 

U=V 
= S=TI\f=g 

1\ (At : t E aU* 1\ Î( t) E tS : (As : s ::; t : P( s)) - (As : s ::; t : Q( s) ) ) 

(End of Theorem) 

The next two theorems give conditions under which the Conjunction-Weave Rule holds 
(cf. theorems 3.2.7 and 3.2.8). 

Theorem 3.3.5 

Let ( S, f, P} and ( T, g, Q} be split specifications specifying processes U and V, re
spectively. Let f(c) = g(c) for all c E aS naT. Then 

(Ac,t:cEaSnaT 1\ tE(aUUaV)* 1\ Î(t)cEt(SwT) 
1\ (As : s::;daS : P(s)) 1\ (As:s::;daT:Q(s)) 

: (E m : mE f(c) n g(c) : P(t(c, m}) 1\ Q(t(c, m})) 

- ( S w T, f U g, t: P(t laS) 1\ Q(t laT)} is a split specification for Uw V 

(End of Theorem) 

Theorem 3.3.6 

Let (S,J,P} and (T,g,Q} be split specifications specifying processes U and V, re
spectively. Let f(c) = g(c) for all c E aS naT. Let C Ç aS and D Ç aT such that 
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aS n aT Ç C u D . If 

and 

(Ac,t : cEC A tE aU• A 7(t)cEtS A (As : s$t : P(s)) 
: (Am : mE J(c) : P(t{c,m))) 

(Ad, t : dE D A tE a V• A ")'(t)d E tT A (As : s $ t : Q(s)) 
: (Am : mE g(d) : Q(t{d,m})) 

then { SwT, f U g , t : P(tfaS) A Q(tfaT)) is a split specification specifying Uw V . 

(End of Theorem) 

Example 3 .3 . 7 

Let ADDER be the processin example 3.3.2. Let process COPY be specified by split 
specification 

{PR((d; a, b)*), {(d,Z), (a, Z), (b,Z)}, t : J.L(tfa) $ J.L(tfd) A J.L(tfb):::; !-L(tfd)) 

The process DOUBLE= ( COPY wADDER )t{d,c} is then specified by 

{PR(d ; c, d)"), {(c,Z),(d,Z)} 
, t : (A i : 0 $ i < e( tf d) mine( t fc) : c( i) = 2 · d( i) ) ) 

(End of Example) 

In sections 5.1 and 5.2 examples are given of how, under certain conditions, one easily 
derives a split specification for the projection. Such a derivation can also be given in 
the above example. 

3.4 Properties of processes 

In chapter 2 we introduced properties of processes expressing the absence of divergence 
or nondeterminism (or both), and the absence of deadlock. In this section we investigate 
the relationship between properties of a process T and properties of "Y(T), especially 
in the case that T is data independent . 

In the sequel T is a process and C is a channel set such that C Ç cT. We define AC 
to be 

AC= (uc : c E C : {c} x type(c,T)) 
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Observe that AC Ç aT, -y(AC) = C, and -y(Aë) = C. 

Theorem 3.4.0 

C is non-divergent with respect to -y(T) 

=> AC is non-divergent with respect to T 

Pro of 

Assume C is non-divergent with respect to -y(T). Let t E tT. Let n 2: 0, be such that 

(A u: u E (C)• I\ -y(t)u E t-y(T) : i( u) :::; n) 

Let s E (AC)•. Then 

ts E tT 

=> {calculus} 

-y(t)"Y(s) E t-y(T) 
=> {-y(s)E(C)*} 

l("Y( s)) ::::; n 

= { property 3.1.0} 

l(s)::::; n 

(End of Proof) 

The following example shows that the reverse implication does not hold in generaL 

Example 3.4.1 

T =PREF( { {a, b, c} x Z, { {a, n){b, O)n(c, 0) I n 2: 0})) 

{a, c} x Z is non-divergent with respect to T 

{a, c} is divergent with respect to -y(T) 
T is not data independent 

(End of Example) 

Provided T is data independent the reverse impHeation in theorem 3.4.0 does hold as 
the following theorem shows. 

Theorem 3.4.2 

Let T be data independent. Then 
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C is non-divergent with respect to 1(T) 

_ AC is non-divergent with respect to T 

Pro of 

Assume that AC is non-divergent with respect toT. Let u E t1(T). Choose t E tT 
such that 1(t) =u. Let n 2: 0 be such that 

(As: sE (AC)" 1\ ts E tT: l(s):::; n) 

Let v E (C)•. We derive 

uv E t1(T) 

= {u= 1(t), definition after} 

v E tafter(!(t),!(T)) 

{ T is data independent } 

v E t1(ajter(t,T)) 

{calculus} 

(Es: sE tafter(t,T): 1(s) = v) 

= {vE(C)•} 
(Es: sE tafter(t, T): 1(s) = v 1\ l(s):::; n) 

=} { property 3.1.0} 

l(v)::; n 

(End ofProof) 

Corollary 3.4.3 

Let S be a system such (AT : T E pS : T is data independent). If W(pS) is data 
independentand 1(W(pS)) = W(!(pS)) then 

S is non-divergent = 1( S) is non-divergent 

(End of Corollary) 

The following two examples show that we do not have theorems on non-disabling 
analogous to theorems 3.4.0 anà 3.4.2. 

Example 3.4.4 

Let ADDER be the process defined in examples 3.2.0 and 3.3.2. We have that {a, c} 
is non-disabling with respect to !(ADDER)= PR((a, b; c)"). Sirree 
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(c, 1} \t tajter( (a, O}(b, 0}, ADDER) 

and 

(c,1} E tafter((a,O}, ADDERÎ{a,c}) 

we have that {a,c} x Z is disabling with respect to ADDER. 

(End of Example) 

Example 3.4.5 

Let T be the process specified by split specification 

( PR( ( b; b)*; (a; d I b; a; c)), { (a, Z)} U ( { b, c, d} x {hl}}) 
, t: (As: sa 5 -y(t): a(l(sîa),t) = l(sîb)mod2)} 
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Let C = {a,c,d} and AC= ({a} x Z) U ({c,d} x h/}). We have that AC is non
disabling with respect toT. Since tajter(a,-y(T)) = {d} and tajter(a,-y(T)îC) 
{ c, d}, we have that C is disabling with respect to -y(T). 

(End of Example) 

Transparenee of AC with respect to T implies transparenee of C with respect to -y(T) 
in case T is data independent as is shown by the following lemma and theorem. 

Lemma 3.4.6 

Let T be data independent. Let cT be finite. If AC is transparent with respect to T 
then 

(As,t: sE tT 1\ tE tT 1\ -y(s)ÎC = -y(t)ÎC 
: (Eu, V : u E tT 1\ V E tT 

: -y(u) = -y(v) 1\ uîC =siC 1\ vtC =tiC 
1\ suc('y(u),-y(T)) Ç C 1\ suc('Y(v),-y(T)) Ç C)) 

Pro of 

Assume AC is transparent with respect to T. Since AC is non-divergent with respect 
to T we have that C is non-divergent with respect to -y(T). Let s E tT and t E tT be 
such that -y(s)ÎC = -y(t)îC. 
By theorem 2.1.7 we have that {w I w E t-y(T) 1\ wfC 5 -y(t) fC} is fini te. Observe 
that this set is nonempty. An algorithm to construct traces u and v is described by 
the following program. 
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u,v,x,y,h:= e,e,sfC,tfC,e 

{ invariant : u E tT 1\ v E tT 1\ ï(u) = ï(v) = h 
1\ (ufC)x =s iC 1\ (vfC)y =tiC, 

variant fundion : 

f(h) bounded by (MAXw: wE tï(T) 1\ wiG S ï(t)fC: f(w))} 

; do (x :f:. e 1\ y :f:. e) V --.(suc(h,ï(T)) Ç C) 

- if --.( suc(h, ï(T)) Ç C) 

od 

- choose d: dE suc(h,ï(T)) \ C 
{ d (j. C 1\ dE ï(suc(u,T)) 1\ dE ï(suc(v,T))} 
; choose m, n: m, n E type(d, T) 1\ u(d, m) E tT 1\ v(d, n) E tT 

; u, v, h := u(d, m), v(d, n), hd 

Osuc(h,ï(T)) Ç C 

fi 

- { suc(u,T) Ç AC 1\ suc(v,T) Ç AC 1\ x :f:. e 1\ y :f:. e} 

{ suc(u,T) = suc(ufC,TfC) 1\ suc(v,T) = suc(vfC,T fC) 
1\x:f:.e/\y:f:.e} 

choose c, m, n, x0 , y0 : c E C 1\ m, n E type( c, T) 
1\ x = (c, m}x0 1\ y = (c, n}y0 

{ (c, m) E suc( u, T) 1\ (c, n) E suc( v, T) } 

; u,v,x,y,h:= u(c,m),v(c,n),xo,Yo,hc 

{u E tT 1\ v E tT 1\ ï(u) = '"Y(v) 1\ suc('"Y(u),ï(T)) Ç C 
1\ suc('"Y(v),ï(T)) Ç C 1\ ufG = sfC 1\ viC = tfC} 

(End of Proof) 

Theorem 3.4. 7 

Let T be data independent. Let cT be finite. Then 

AC is transparent with respect to T 

::::} C is transparent with respect to ï(T) 

Pro of 

Assume that AC is transparent with respect to T. Then by theorem 2.1.20 

(At: tE tT 1\ suc(t, T) Ç AC: suc(t, T) = suc(tiC, TIC)) 
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and AC is non-divergent with respect to T. The latter is equivalent with channel set 
C is non-divergent with respect to 'Y(T). We will show that 

(Aw: wE t'Y(T) 1\ suc(w,'Y(T)) Ç C: suc(w,'Y(T)) = suc(wiC,'Y(T) IC)) 

Let wE t'Y(T) be such that suc(w,'Y(T)) Ç C. LettE tT and 'Y(t) = w. By property 
1.1.3 we have 

suc(wiC,'Y(T)IC) = (Us: sE tT 1\ 'Y(s)IC = wW : suc('Y(s),'Y(T)) n C) 

Let s E tT be such that 'Y( s )tG = w te. Using lemma 3.4.6 choose u E tT and v E tT 
such that 'Y(u) = 'Y(v), suc('Y(u),'Y{T)) Ç C, suc('Y(v),'Y(T)) Ç C, u iC =siC, and 
vW =tiC. We derive 

suc('Y( s ), 'Y(T)) n C 

= { T is data independent, calculus } 

'Y(suc(s, T) n AC) 

C { property 1.1.3} 

'Y( suc( s te, T W)) 
= {siC= u IC, suc(u, T) Ç AC, theorem 2.1.20} 

'Y( suc( u, T)) 

{ T is data independent, 'Y( u) = 'Y( v) } 

'Y( suc( v, T)) 

{tiC= vW, suc(v,T) Ç AC, theorem 2.1.20} 

'Y( suc(ttC, TIC)) 

= { suc(t,T) Ç AC, theorem 2.1.20} 

'Y( suc( t, T)) 

{ T is data independent, 'Y(t) = w} 

suc(w,'Y(T)) 

(End of Proof) 

Example 3.4.4 shows that the reverse implication does not hold in generaL 

We now focus on (non-)termination and absence of deadlock. 



112 3 Communication of values and data independenee 

Lemma 3.4.8 

Let T be a data independent process. Then 

(At: tE tT: suc(t,T) = 0 = suc('y(t),-y(T)) = 0) 

Pro of 

Let t E tT. We derive 

suc(t, T) = 0 

{ definition 1' } 

-y(suc(t,T)) = 0 

{ T is data independent } 

suc('Y(t),-y(T)) = 0 

(End of Proof) 

Theorem 3.4.9 

Let T be a data independent process. 

0 (At: tE tT: T has terminated after t = -y(T) has terminated after -y(t) ) 

1 T is non-terminating = -y(T) is non-terminating 

(End of Theorem) 

Theorem 3.4.10 

Let X be a set of data independent processes. If -y(W(X)) = W('Y(X)) then 

lockfree(X) => lockfree('Y(X)) 

Pro of 

Assume -y(W(X)) = W('y(X)) and lockfree(X). LettE tW(-y(X)). 
Since -y(W(X)) = W('y(X)) we choose sE tW(X) such that -y(s) = t. We derive 

suc(t, W('Y(X))) = 0 

= { -y(s) = t, -y(W(X)) = W('y(X))} 

suc('Y(s),-y(W(X))) = 0 

=> { property 3.1.0} 

suc(s, W(X)) = 0 
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{ lockfree(X)} 

(AT: TE X: suc(stcT,T) = 0) 

{(AT: TE X: T is data independent), ï(s) = t, lemma 3.4.8} 

(AT: TE X: suc(tlcT,ï(T)) = 0) 

(End of Proof) 

113 

The following example shows that the reverse implication in the above theorem does 
not hold in generaL 

Example 3.4.11 

T=PREF(({a,b} xZ, {(a,O}(b,O},(a,l}(b,l}}}) 
U=PREF(({b} xZ, {(b,l}})) 
T and U are data independent 

ï(TwU) = PR(a; b) = ï(T)wï(U) 
•lockfree({T,U}) 
lockfree( { ï(T), ï( U)}) 
T w U is not data independent 

(End of Example) 

Theorem 3.4.12 

Let X be a set of data independent processes. If W(X) is data independent and 
ï(W(X)) = W(ï(X)) then 

lockfree(X) = lockfree(ï(X)) 

Pro of 

By theorem 3.4.10 we have lockfree(X) => lockfree(ï(X)). Assume lockfree(ï(X)). 
Let t E tW(X). We derive 

suc(t, W(X)) = 0 

{ W(X) is data independent, lemma 3.4.8} 

suc(ï(t),ï(W(X))) = 0 

= { ï(W(X)) = W(ï(X))} 
suc(ï(t), W(ï(X))) = 0 

= { lockfree(ï(X))} 
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(AT: TE X: suc("y(t)fcT,"Y(T)) = 0) 

= {(AT: TE X: T is data independent), lemma 3.4.8} 

(AT : TE X: suc(tÎCT,T) = 0) 

(End of Proof) 

Corollary 3.4.13 

Let S be a system such that (AT : T E pS : T is data independent). If W(pS) is 
data independent, and "Y(W(pS)) = W("y(pS)) then 

S is lockfree = "Y(S) is lockfree 

(End of Corollary) 

3.5 Channel order independenee 

Insection 3.2 we introduced the notion of data independenee expressing that the com
munication behaviour of a process does not depend on the messages that are being 
transmitted. In this sectien we introduce the notion of channel order independenee 
that expresses that at any moment the future behaviour of a process does not depend 
on the order in which the channels were used by the process. Formally, process T is 
said to be channe/ order independent if 

(At,a,b: ta E tT 1\ tb E tT 1\ "Y(a) ::j:. "Y(b) 
:tab E tT 1\ tba E tT 1\ [tab] = (tba]) 

Observe the close resemblance to the definition of a conservative process. Conservativ
ity expresses that at any moment the future behaviour of a process does notdepend on 
the order in which theevents have taken place. The following examples are to il\ustrate 
that channel order independenee is a useful notion for the processes introduced in this 
chapter whereas conservativity is a notion more apt for the communication behaviours 
of these processes. 

Example 3 .5.0 

Consicier the process ADDER from example 3.2.0. This processis both data indepen
dent and channel order independent. Observe that the communications via channel a 

and b may take place simultaneously. If ADDER were to be conservative, it should 
contain traces like (a,O)(a,l) . . . (a,n) (n ~ 0). Clearly, this is not the case. Process 
"Y(T), on the ether hand, is conservative. 

(End of Example) 
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Example 3.5.1 

Consicier data independent process VAR as defined in section 3.0. Since (a, 0} (a, 1} E 
tV AR and (a, O}(b, 0} E tV AR, but (a, O}(a, 1}(b, 0} f/. tV AR, process VAR is not 
channel order independent. Obviously, communications via channels a and b can not 
take place simultaneously. Observe that !(VAR) is conservative. 

(End of Example) 

Process ADDER from example 3.5.0 can be specified by 

(PR((a, b; c)"), 

t: (A i: 0 :5 i< l(tla) minl(tlb) minl(tlc): c(i) =a( i)+ b(i))) 

Predicate c( i) = a( i) + b( i) does not depend on the order of events in trace t. Th is is 
due tothefact that process ADDER is channel order independent. Process VAR from 
example 3.5.1 is not channel order independent and can be specified by 

( PR(a; (a I b)"), 
t: (Ai: 0:5 i< l(tîb) A f(i,t) 2:0: b(i) = a(f(i,t)) )) 

where fortE {a, b}* and 0:5 i< l(tîb) 

f( i, t) = (MIN s : s :5 t A l( s Îb) = i + 1 : l( s Î a) - 1 ) 

Notice that predicate b(i) =a(!( i, t)) depends on the order of a's and b'sintrace t. 

In genera!, specifications of data independent processes that are channel order inde
pendent as well resembie the above specification of process ADDER. In section 5.1 
we introduce a new notation for specifications of data independent processes that are 
channel order independent. It is, to a large extent, based on the observations made 
above. 

The following theorem shows that data independenee and channel order independenee 
of a process imply that the process descrihing its communication behaviour is conser
vative. 

Theorem 3.5.2 

If T is a data independent and channel order independent process, then 1(T) is con
servative. 

Pro of 

Assume T is data independent and channel order independent. Let t E tT, c E cT, 
and dE cT such that 1(t)c E t1(T), 1(t)d E t1(T), and c =/: d. We derive 
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-y(t)c E t-y(T) 1\ -y(t)d E t-y(T) 

{ definition successor set, T is data independent } 

c E -y(suc(t, T)) 1\ dE -y(suc(t, T)) 

{ definition Î, defini tion successor set } 

(Em,n: mE type(c,T) 1\ n E type(d,T): t(c,m) E tT 1\ t(d,n) E tT) 

::::} { c i d, T is channel order independent} 

(Em,n : mE type(c,T) 1\ n E type(d,T) 
: t(c,m)(d,n) E tT 1\ t(d,n)(c,m) E tT 

1\ after(t(c,m)(d,n),T) = after(t(d,n)(c,m),T)) 

::::} { definition -y, T is data independent } 

-y(t)cd E t-y(T) 1\ -y(t)dc E t-y(T) 1\ after(î(t)cd, T) = after(î(t)dc, T)) 

(End of Proof) 

The reverse does not hold as is shown in the following example. 

Example 3.5.3 

T =PREF( ( {a,b} x Z,{(a,O)(b,1), (b,O)(a,l)})) 
T is data independent 

-y(T) is conservative 

T is not channel order independent 

U = PREF( ( {a, b, c}, x Z, {(a, 0) (a, 1 )(b, 0) (c, 0} , (a, 1) (a, 0) (c, 1) (b, 1)}) ) 

U is not data independent 

U is channel order independent 

-y( U) is conservative 

(End of Example) 

Theorem 3.5.4 

Let T and U be channel order independent processes. Then Tw U is channel order 
independent. 

Pro of 

ta E t(Tw U) 1\ tb E t(Tw U) 1\ 1(a) i "f(b) 

{ definition weave} 
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tab E (aT U aU)• 1\ talaT E tT 1\ tbtaT E tT 
1\ tataU E tU 1\ tMaU E tU 1\ 'Y(a) -::j:. 'Y(b) 

=> { T and U are channel order independent } 

tab E (aT U aU)" 
1\ tablaT E tT 1\ tba laTE tT 1\ after(tablaT, T) = after(tba laT, T) 
1\ tablaU E tU 1\ tbalaU E tU 1\ after(tabtaU,U) = after(tbalaU,U) 

=> { definition weave, theorem 1.1.13} 

tab E t(TwU) 1\ tba E t(TwU) 1\ after(tab,TwU) = after(tba,TwU) 

(End of Proof) 

Theorem 3.5.5 

Let T be a channel order independent process. 
Let C Ç cT and AC= (U c: c E C: {c} x type(c, T)). 
If AC is transparent with respect to T then TIC is channel order independent. 

Pro of 
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Assume AC is transparent with respect toT. LettE tT IC. Choose sE tT such that 
stG =tand suc(s,T) = suc(t,TIC) (AC is transparent with respect toT, property 
2.1.19). We derive 

ta E tTIC 1\ tb E tTIC 1\ 'Y(a) -::j:. 'Y(b) 

= { suc(s, T) = suc(t, TIC)} 

sa E tT 1\ sb E tT 1\ 'Y(a) -::j:. 'Y(b) 1\ 'Y(a) E C 1\ 'Y(b) E C 
=> { T is channel order independent } 

sab E tT 1\ sba E tT 1\ aft er( sab, T) = aft er( sba, T) 1\ 'Y( a) E C 1\ 'Y( b) E C 
=> {calculus} 

sabiC E tTW 1\ sbaiC E tTW 
1\ after(sab,T)IC = after(sba,T)IC 1\ 'Y(a) E C 1\ 'Y(b) E C 

{ AC is non-disabling with respect to T, sIC = t } 

tab E tTIC 1\ tba E tTIC 1\ after(tab, TIC)= after(tba, TIC) 

(End of Proof) 

The following example shows that the condition "AC is transparent with respect to T" 
in the above theorem may not be replaced by "C is transparent with respect to 'Y(T)" 
even if T is data independent. 
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Example 3.5.6 

T =PREF( {{a, b,c} x Z 

, {{a,l){b,l){c,O), {a,l){c,O){b,l) 
,{a,O){b,O){c,l), {a,O){c,l){b,O)})) 

T is channel order independent 

T is data independent 

{ b, c} is transparent with respect to 1(T) 
{ b, c} x Z is not transparent with respect to T 
TI { b, c} is not channel order independent 

(End of Example) 

Theorem 3.5. 7 

Let (Tn)n~o be a sequence of channel order independent processes such that 
(A n: n ;:::: 0 : Tn Ç Tn+l ). Then (U n : n ;:::: 0 : Tn) is channel order independent. 

(End of Theorem) 
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4.0 Introduetion 

Consicier process ADDER in example 3.2:0. This process describes a mechanism that 
repeatedly receives two integer values via its input channels and sends the sum of these 
values via its output channel. In the program notation to be presented in this chapter 
this process can be specified by the following component or program 

com adder(in a, b: int, out c: int) : 
var x, y, z: int rav 
(a? x, b?y; z:= x+ y; c!z)* 

moe 

Here, x,y, and z are internal variables of the component, a? x denotes the receiving of a 
value via channel a and the assignment of that value to variabie x, and c!z denotes the 
sending of the value of variabie z via channel c. These notations have been adopted 
from CSP (see (Ho)). Variabie z can be eliminated from the above program: one may 
replace "z:= x+ y; c!z" by "c!(x + y)". Notice that all channels and variables have a 
type (in this case they are all of type integer). 

In this chapter we introduce a program notation generallzing the one presented in 
section 1.4. The above is an example of a program text. We will, however, not 
explicitly mention types in program texts when defining the program notation, but 
we wiJl assume all channels and variables to be of the same type, namely M, the set 
of messages. This is clone for simplicity's sake. Generalization to the case where the 
types of channels and variables may differ is rather straightforward. 

4.1 Commands 

In this section we extend the definition of a oommand from section 1.2. First we 
introduce some notions that shall be used in the definition of commands. 

We assume the existence of a set of (names of) variables, denoted by VAR. The set of 
expressions EXP is defined to be the smallest set satisfying 
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- mE EXP mEM 

- x E EXP x E VAR 

- '1/;(eo, e1, ... , et-dE EXP I ;::: 0, '1/; E M1 ---t M, e0 , e1, ... , e1-1 E EXP 

The function var : EXP ---t P(VAR) is defined recursively by 

var(m)=0 mEM 

var(x) ={x} x E VAR 

var('!f;(e0 , eh ... , et-1)) =(U i: 0 Si< I: var(e;)) 

N otice that for all expressions e such that var( e) = 0 we have that for all expressions 
e, appearing in e var( e,) = 0 holds. 
The function val : { e I e E EXP 1\ var( e) = 0} ---t M is defined recursively by 

val(m) = m 

val( '1/;( e0 , e1, ... , et-1)) = '1/;( val( e0), val( e1), ... , val( et-1)) 

var(e1 ) = var(e1) =···=var( ei-!)= 0 

Let <P E VAR ---t EXP. We wiJl represent function <P with the set 
{(x, <P(x)) I x E VAR 1\ x=/:- <P(x) }. With function <P we associate substitution function 
S<l> E EXP ---t EXP defined recursively by 

S<!>(m) = m 
S<!>(x) = <P(x) 
S</>('1/;(eo, el> ... , e1-1)) = '1/;(S<!>(e0 ), S<!>(ei), .. . , S</>(ei-1)) 

Let <P,x E VAR ---t EXP. Function <P8x E VAR ---t EXP, the cornposit ion of <Pand x, 
is defined by 

(<P 8 x)( x)= S"'(x(x)) 

Si nee v (j. M we also have v (j. EXP. 

The functions var, val, and S,p are generalized to functions ha ving their domain in 
( r x (EXP u {V}))*. The function var: ( r x (EXP u { v}) )* ---t P(VAR) is defined 
by 

var(t:) = 0 

var(t(c, e)) = var(t) U var(e) 

var(t(c,v)) = var(t) 

The function val : { t I ( r x (EXP u {V}))* 1\ var( t) = 0} ---t n· ( = (r x M,; )*) is 
defined by 
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val(t:) = t: 
val(t(c, e)) = val(t)(c, val(e)} 
val(t(c, ..j)) = val(t)(c, ..j} 
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Let 4; E VAR--+ EXP. The function S4> E ( r x (EXPU { ..j}) )* --+ ( r x (EXPU { ..j}) )* 
is defined by 

S4>(t:) = t: 
S4>(t(c,e)) = S4>(t)(c,S4>(e)) 
S4>(t(c, ..j)) = S4>(t)(c, ..j) 

A cammand structure is a quadrupJe (C, D, E, X} where C, D, and E are channel sets 
andX Ç ((Cx{..j})U((DUE)xEXP))*x(VAR--+ EXP). WecallCthesetofsignals 
of the command structure, D its set of input channels, E its set of output channels, 
and X its extended trace set. Elements of X are called extended traces. Notice that 
extended traces are pairs consisting of a trace and a substitution function. 

Let T be a command structure. The set of signals of T is denoted by sT, the set of 
input channels of T by iT, the set of output channels of T by oT, and the extended 
trace set of T by etT. Furthermore wedefine 

var(T) = (Ut,f/;: (t,f/;) E etT: var(t)) 

We now introduce commands. With each command S we associate a command struc
ture CO(S) and a set of variables bind(S). Commands, associated command structures, 
and associated sets of variables are defined inductively by the following rules (remember 
our convention in representing functions in VAR--+ EXP) . 

- t: is a command 

CO(t:) = ( 0, 0, 0, {(t:, 0)}) 
bind(t:) = 0 

- c is a command for all c E f 

CO(c) = ({c},0,0,{((c,..j),0)}) 
bind(c) = 0 

- c?x is a command for all c E rand x E VAR 

CO ( c? x) = ( 0, { c}, 0, { ( ( c, m), { (x, m)}) I m E M } ) 
bind(c?x) ={x} 

- c! e is a command for all c E r and e E EXP 

CO(c!e) = (0,0,{c},{((c,e),0)}) 
bind(c!e) = 0 
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- xo,x 1 , ••• ,xm_1:= e0 , e 1, ..• ,em-l is a command 
for all m > 0, x0 , x 11 ... , Xm-l E VAR, eo, e1, ... , em-1 E EXP 

CO(xo, X), ... ' Xm-1:= eo, el, ... ' em-1) 

= ( 0,0, 0,{(é,{ (x;,e;) I 0::::; i< m 1\ x; =j:. e;})}) 
bind(xo, XI, ... , Xm-1:= eo, et, ... , em-1) 

= {x; I 0 ::=;i < m} \(U i : 0 ::::; i < m : var( e;)) 

- S I T is a command for all commands S and T such that 
sCO(S) u sCO(T), iCO(S) u iCO(T), and oCO(S) U oCO(T) are disjoint sets 

CO(S I T) = ( sCO(S) u sCO(T), iCO(S) u iCO(T) 
, oCO(S) u oCO(T), etCO(S) u etCO(T)} 

bind(S I T) = bind(S) U bind(T) 

- S ; T is a command for all commands S and T such that 
sCO(S) U sCO(T), iCO(S) u iCO(T), and oCO(S) u oCO(T) are disjoint sets 

CO(S; T) = ( sCO(S) u sCO(T), iCO(S) u iCO(T), oCO(S) u oCO(T), 
{(sSq,(t),r/>8x) I (s,r/>) E etCO(S) 1\ (t,x) E etCO(T)}) 

bind(S; T) = bind(S) U bind(T) 

- S , T is a command for all commands S and T such that 
sCO(S), sCO(T), iCO(S), iCO(T), oCO(S), and oCO(T) are disjoint sets, 
bind(S) n ( bind(T) U var(CO(T))) = 0, 

and bind(T) n ( bind(S) U var(CO(S))) = 0 

CO(S, T) = ( sCO(S) U sCO(T), iCO(S) u iCO(T), oCO(S) U oCO(T), 
{ (t, 4> u x) I tE (As u ATt 1\ (t i As, 4>) E etCO(S) 

1\ (tÎAT,X) E etCO(T)}} 
where Ax = (sCO(X) x h/}) u ((i CO( X) U oCO(X)) x EXP) 
for X = S and X = T 

bind(S, T) = bind(S) u bind(T) 

- S 0 is a command for all commands S 

CO(S 0 ) = ( sCO(S), iCO(S),oCO(S), {(é, 0)}) 
bind(S 0 ) = 0 

- s• is a command for all commands S 

CO(S• = (sCO(S),iCO(S),oCO(S),(un: n 2 0: etCO(S"))) 

where S"+1 = S"; S (n 2 0) 
bind(S•) = bind(S) 

Command c?x may be interpreted as the reception of a value via channel c and the 
assignment of that value to variabie x. Command c!e may be interpreted asthesending 



4.1 Commands 123 

of the value of expression e via channel c. Observe that the commands as defined in 
section 1.2 form a subclass of the commands defined above. 

With each command S we associate a trace structure whose alphabet is a subset of 
r x (EXP u{."/}). For command S trace structure TRE(S) is defined by 

TRE(S) = ( sCO(S) x { y'} U (iCO(S) U oCO(S)) x EXP 
,{tI (E<P: <P E VAR~ EXP: (t,<P) E etCO(S))}) 

Observe that for all commands S extended trace set etCO(S) is nonempty. Therefore, 
PRE(S) defined by 

PRE(S) = PREF(TRE(S)) 

is a process. 

A command Sis called closed if var(CO(S)) = 0 . Notice that the commands defined 
in section 1.2 are closed commands. With each closed comrnand S we associate a trace 
structure TR(S) defined by 

TR(S) = ( sCO(S) x {y'} u (iCO(S) u oCO(S)) x M 
, { val(t) I (E <P: <P E VAR~ EXP : (t, <P) E etCO(S))}) 

Notice that tTR(S) = { val(t) I tE tTRE(S) }. For closed command S process PR(S) 
is defined by PR(S) = PREF(TR(S)) and system sys(S) is defined by sys(S) = 
(cPR(S), {PR(S)}). 

Example 4.1.0 

LetS= (a?x, b?y; z:= x+ y; c! z )*. Then var(S) = bind(S) = {x,y ,z} and 

CO(S) = 
(0,{a,b},{c} 
,({((a,m)(b,n)(c,m+n),{(x,m),(y,n),(z,m+n)}) lm,n EZ} 

U { ( (b, n) (a, m)(c, m + n), {(x, m), (y , n), (z , m + n)}) I m, n E Z} )*) 

This leads to 

TRE(S) = ({a, b,c} x EXP 

,({ (a, m)(b,n)(c,m+n) I m,n EZ} 
U { (b, n)(a, m)(c, m + n) I m, n E Z} )*) 

and PR(S) = ADDER where ADDER is the process defined in example 3.2.0. 

(End of Example) 
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Observe that for a command S as defined in section 1.2 the definitions of TR(S) , 
PR(S), and sys(S) given here are equivalent to the definitions in section 1.2. 

For command S command 1(S) is defined inductively by 

/(é) = é 
1(c) = c 
1(c?x) = c 

1(c!e) = c 

I(Xo, X}) ... ) Xm-l:= eo, el, ... ) em-I) = é 

I(S I T) = i(S) I I(T) 

1(S; T) = 1(S); 1(T) 

1(S, T) = 1(S), 1(T) 

1(S 0 ) = 1(S)0 

i(S*) = i(S)* 

Command 1(S) refl.ects the communication pattem conesponding to command S . 

Let T be a command structure. Command structure 1(T) is defined by 

1(T) = (sTuiT U oT, 0, 0, 
{ (l(t),0) I (E<P: <P E VAR-+ EXP: (t,<P) E etT)}) 

Property 4.1.1 

Let S be a command. 

0 1(S) is a closed command. 

1(CO(S)) = CO(I(S)) 
i(TRE(S)) = TR(I(S)) 

i(PRE(S)) = PR(I(S)) 

2 If S is a closed command, then 

1(TR( S)) = TR(I( S)) 
1(PR(S)) = PR(I(S)) 

(End of Property) 

Analogously to the extension of the notion of commands we extend the notion of 
restrict ed commands. Restricted commands form a subset of the set of the commands 
introduced above and are defined inductively by the following rules (the conditions 
imposed by the operators given in the definition of commands remain valid but are 
omitted for clarity). 
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- E. is a restricted cammand 

- c is a restricted cammand for all c E f 

- c?x is a restricted cammand for all c Er and x E VAR 

- c!e is a restricted cammand for all c E r and e E EXP 

- x 0 , x 1, ..• , Xm_1:= e0 , e1, ..• , em-l is a restricted cammand 
for all m > 0, xo, x 1 , ... , Xm-1 E VAR, eo, el> ... , em-1 E EXP 

- if S and T are restricted commands and S contains no stars then S ; T is a 
restricted cammand 

- if S and T are restricted commands then S, T is a restricted command 

- if S is restricted command not containing any stars then S 0 and S* are re-
stricted commands 

Property 4.1.2 

If S is a restricted cammand then 1(S) is a restricted command. 

(End of Property) 
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Notice that the restricted commands as defined in section 1.2 form a subclass of the 
restricted commands defined above. 

Property 4.1.3 

Let S be a restricted command. If S contains no stars then for every channel set C 

(As,t,r/>,x : (s,r/>) E etCO(S) 1\ (t,x) E etCO(S): f(siC) = R(tiC)) 

(End of Property) 

We abserve that theorem 2.4.10 does not hold for ( closed) restricted commands as 
defined above (see example 3.5.0). In the sequel we will show that if S is a closed 
restricted command, then PR(S) is data independent and channel order independent. 
First, we have the following results. 

Theorem 4.1.4 

If Sis a closed restricted cammand and PRE(S) is data independent , 
then PR(S) is data independent. 

(End of Theorem) 
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The reverse does not hold as the following example shows. 

Example 4.1.5 

In this example we assume M = Z. LetS be the command 

b?x; (y:= x+ x; a!y I y:= 2 *x; a!y; c!x) 

Then S is closed, 

PRE(S) =PREF( ( {a,b,c} x EXP 
,{(b,m)(a,m+m) lmEZ} 

U { (b,m)(a,2 * m)(c,m) I mE Z})) 

4 Programs 

is not data independent ( m + m and 2 * m are different expressions for all m E Z), and 

PR(S) =PREF( ( {a,b,c} x Z, { (b,m)(a,2 · m}(c,m) I mE Z})) 

is data independent. 

(End of Example) 

In theorem 4.1.4 we may not replace "data independent" by "channel order indepen
dent" as the following example shows. 

Example 4.1.6 

Let M = Z. Let S be the command 

x, y:= 0,1; (a!( x+ y); b!x, c!y I a!(y +x); b!y, c!x) 

Then S is closed, 

PRE(S) =PREF( ( {a,b,c} x EXP 
, {(a, 0 + l}(b, O}(c, 1}, (a, 0 + l}(c, l}(b, 0} 

, (a, 1 + O}(b, l}(c, 0}, (a, 1 + O}(c, O}(b, 1}}}) 

is both data independent and channel order independent, but 

PR(S) =PREF( ( {a,b,c} x Z 
,{ (a,l}(b,O}(c,l), (a,l}(c,l}(b,O) 

, (a, 1}(b, l}(c, 0}, (a, l}(c, O}(b, 1}}}) 
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is not channel order independent. 

(End of Example) 

Theorem 4.1.7 
0 If cormnand Sis equal tot:, c, c?x, c?e, or xo,XI,···•Xm-1:= eo,ei, ... ,em-1 

then PRE(S) is both data independentand channel order independent. 

1 If S and T are commands such that S, T is a command, and PRE(S) and 
PRE(T) are data independent ( channel order independent) then PRE( S) is 
data independent ( channel order independent). 

2 If S and T are commands such that S; T is a command, PRE(S) and PRE(T) 
are data independent ( channel order independent), and 
(En: n ;:=:: 0 :(At: tE tTRE(S): l(t) = n)) then S; T is data independent 
( channel order independent). 

3 If S is a cammand such that for n, n ;:=:: 0, PRE(Sn) is data independent 
( channel order independent), then PRE( S*) is data independent ( channel order 
independent). 

4 If S is a command, then PRE(S0 ) is data independent and channel order 
independent. 

(End of Theorem) 

Corollary 4.1.8 
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If S is a restricted command, then PRE(S) is data independent and channel order 
independent. 

(End of Corollary) 

Combining theorem 4.1.4 and corollary 4.1.8 we have 

Theorem 4.1.9 

If S is a closed restricted command, then PR(S) is data independent. 

(End of Theorem) 

Lemma 4.1.10 

Let S be a closed restricted command. Let tu E tPR(S) and tv E tPR(S). Then 

(Ew, x, y: wx E tPRE(S) 1\ wy E tPRE(S): val(wx) = tu 1\ val(wy) =tv) 

(End of Lemma) 
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Using lemma 4.1.10 and corollary 4.1.8 one can prove 

Theorem 4.1.11 

If Sis a closed restricted command, then PR(S) is channel order independent. 

(End of Theorem) 

From theorem 2.4.10 or theorem 3.5.2 it follows that 

Theorem 4.1.12 

If Sis a closed restricted command, then 1(PR(S)) is cubic. 

(End of Theorem) 

Combining theorems 4.1.9, 4.1.12, 3.2.4, and 2.3.8 results in 

Corollary 4.1.13 

If S is a closed restricted command and C is a channel set such that C Ç cPR(S), 
then PR(S) te is data independent. 

(End of Corollary) 

This does not hold for channel order independenee as the following example shows ( cf. 
example 3.5.6) . 

Example 4.1.14 

Let M = Z . Let S be the closed restricted command 

a?x ; y:= 1- x ; (b! x , c!y) 

We have that 

PR(S) =PREF( ( {a,b,c} x Z 
, {(a, m}(b, m}(c, 1 - m} I mE Z} 
U {(a, m}(c, 1- m}(b, m} I mE Z}}) 

is channel order independent, but 
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PR(SH{b,c} =PREF( ( {b,c} x Z 
,{(b,m)(c,1-m) lmEZ} 
U { (c, 1- m)(b, m) I mE Z})) 

is not channel order independent ( (b, 1) (c, 1) !t' tPR( S) t { b, c} ). 

(End of Example) 
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Finally, we make some observations concerning possible extensions of the set of com
mands. Descrihing the filter mechanism in section 0.0 we already gave an example of 
a cammand containing an alternative statement: 

(a?x; ifx 2:0-+ b!xOx < 0-+ di)* 

The general form of such a cammand is 

where Bo, Bh ... , and BN_1 are boolean expressions and S0 , Sb . . . , and SN-1 

are commands. They can be incorporated in the theory presented above by making 
extended traces triples consisting of a trace, a substitution function, and a boolean 
expression that is a conjunction of all guards that have to be satisfied to obtain the 
given trace. Likewise, one can introduce commands that contain a repetitive statement: 

where B0 , B1 , ..• , and BN_1 are boolean expressions and S0 , S1 , ... , and SN_ 1 are 
commands. Both suggested extensions are generalizations since we have 

if true -+ S 0 true -+ T fi = S I T 

and 

do true -+ s od = s· 

We will not elaborate on these extensions any further since, in general, commands con
taining alternative or repetitive statements do not define data independent processes. 
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4.2 A program notation 

In this section we generalize the program notation introduced in section 1.4. As before, 
a program or component defines a system. The process of a program is defined to be 
the process of the conesponding system. 

We assume that with each channel set occurring in a processor a system a tripartition of 
that set is associated. The tripartition represents the distinction that is made between 
signals, input channels, and output channels. If C is a channel set, then sC denotes its 
set of signals , iC its set of input channels, and oC its set of output channels. Notice 
that this partition depends on the process or system in which C occurs. For a process 
T we abbreviate s( cT) to sT, i( cT) to iT, and o( cT) to oT. 

Let S he a system. Wedefine sS= s(eS), iS= i(eS), and oS= o(eS). Apart from 
the restrictions imposed on systems in the previous chapters we, furthermore, require 
that 

(Ac: c E cW(pS): (NT: TE pS: c E oT) :S 1) 

(AT,U,c:TEpS 1\ UEpS 1\ cEcTncU:cEsT 

sS= (UT: TE pS: sT) neS 

iS = (uT : T E pS : iT) n eS 

oS = (uT : T E pS : oT) neS 

c E sU ) 

Let S be a command. We define sPRE(S) = sCO(S), iPRE(S) = iCO(S), and 
oPRE(S) = oCO(S). If Sis closed, analogous definitions are given for PR(S). 

We make the same assumptions about the nature of the set f as we did about the nature 
of the set of symbols in section 1.4. Let f • be the set of simple channel names. We 
assume that f = (U n : n > 0 : f~ ). An element of f \ f • is called a compound channel 
name. For all channel narnes c and d c·d is a channel name as wel!. Furthermore, we 
define 

p·(c, m) = (p·c, m) 

for all p, c E f and m E M,;. Symbol (c, m) E !1 = f x M,; is called simple if channel 
name c is simple, otherwise it is called compound. 

For every command S we define the set of variables v(S) inductively by 

v(€) = 0 

v(c) = 0 

v(c?x) = {x} 

v(c!e) = var(e) 
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v(xo, XJ, ... , Xm-1:= eo, el> ... , em-I) = 
{x; I 0 :Si < m} U (U i : 0 :S i < m : var( e;)) 

v(S I T) = v(S) U v(T) 
v(S; T) = v(S) U v(T) 

v(S, T) = v(S) u v(T) 

v(S 0 ) = v(S) 

v(S*) = v(S) 

The set v(S) consistsof all variabie narnes that occur in rommand S. 

The program 

com c(sig C,in D,out E): 
var v0 , v1 , ... , Vt_1 rav 
s 

moe 
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denotes a component without subcomponents where cis the name of the component, C, 
D, and E are fini te channel sets consisting of simple channel nam es only ( the extern al 

· channels of the component), v0 , v1 , ..• , Vt-1 are l distinct variabie narnes (the internal 
variables of the component), and Sis a closed command. We require that 

- v(S)={vo,vt, ... ,Vt-d 

- sPR(S) = C iPR(S) = D oPR(S) = E 

The system of component c, denoted by sys( c), is defined by 

sys(c) = sys(S) 

Notice that sys(c) = (CU D U E, {PR(S)} ). The processof component c, denoted by 
PR(c), is defined to be PR(c) = PR(sys(c)). Notice that PR(c) = PR(S). 

The program 

com c(sig C, in D, out E) : 

moe 

sub Po: co,Pt: Ct, ... ,Pn-1: Cn-1 bus 

[xo = Yo, X1 = Y1, · · ·, Xm-1 = Ym-1] 
var v0 , v1 , • .• , Vt-I rav 
s 
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denotes a component with subcomponents where c, C, D, E, v0 , vl> ... , v/-t, and S 
play the same role as above, c0 , C1, ... , and Cn-t are previously defined components, 
called the subcornponents of c and having narnes po, p1 , •.• , and Pn-t, respectively. 
We require that C, D, and E contain sirnple channel narnes only and that po, p1, ... , 

and Pn-t are n distinct, sirnple names. With subcomponent Pi system p,sys( c;) is 
associated. The set 

B =(Ui: 0 ::=;i< n: ep,sys(c;)) 

is called the set of internal channels. We define 

C = {CU D U E} U { ep,sys( c;) I 0 ::=; i < n} 

Notice that C is a colledion of n + 1 mutually disjoint channel sets. The equalities 
represent (internal) connections. We irnpose the sarne restrictions as in section 1.4 and 
add two restrictions dealing with input and output. 

(Aj: 0::::; j < m: Xj EB) 

(A j : 0:::; j < m: Yi EB U CU D U E) 

I {x; I 0 ::=; i < m} I = m 

{x; I 0 :::; i < m} n { Yi I 0 :::; j < m} = 0 

for all j, 0 ::::; j < m, channels Xj and Yi belong to two different channel sets 
in C 
for all i and j, 0 ::=; i < j < m such that y; = Yi channels x; and Xj belong to 
two different channels sets in C 
(Aj: 0::::; j < m 

:(A Co, cl: Co E c A cl E c A Xj E Co A Yi E Ct 

: (xi E sCo =: Yi E sCt) 
A (xi E iCo :: Yi E oCt) 
A (xi E oCo:: Yi E iCt))) 

(A j : 0 :::; j < m A (E Co : Co E C : Yi E iCo) : (Ni : 0 :::; i < m : y; = Yi) = l) 

Furthermore, we require that every external channel appears in the command S or is 
connected to an internal channel 

CU D U E Ç cPR(S) U { Yi I 0 :::; j < m} 

The channel set of command S consists of external channels and internal channels not 
in{ xjiO :=;j< m} 

cPR(S) Ç CU D U EU B \ { Xj I 0 ::=; j < m} 
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The system of component c, denoted by sys(c), is defined by 

sys(c) = ( (11 i: 0 $i< n: (pïsys(Ci))~;:, .. ·:::::::~,') 11 sys(S) )Î(C U D U E) 

The process of component c, denoted by PR(c), is defined by PR(c) = PR(sys(c)). 
Notice that esys(c) =CU D U E and cPR(c) =CU D U E. We have 

PR(c) = ( (W i: 0 Si< n: (pïPR(c;))~~:::::::::~,') w PR(S)) î(C U D U E) 

Finally, we introduce recursive components. As in section 1.4 we restriet ourselves to 
the most simple form of recursion. Let component c be given by the program 

com c(sig C, in D, out E) : 
sub p : c bus 

var v0 , v1 , ... , VJ-l rav 
s 

moe 

where C, D, and E are finite channel sets consisting of simple channel narnes only, p 
is a simple name, and S is a closed command. We require that 

- v(S) = {vo,Vt, .. . ,v1-d 

- sPR(S) =Cu p·C iPR(S) = D U p·E oPR(S) =Eu p·D 

As in section 1.4 we define the system of component c, denoted by sys( c), to be the 
unique fixpoint of sys(c) = (p·sys(c) 11 sys(S) )Î(C U D U E), i.e. 

sys(c) = (CU D U E, { (p·)iPR(S) I i~ 0}} 

The processof component c, denoted by PR(c), is defined by PR(c) = PR(sys(c)). We 
now have 

PR(c) = (W i: i~ 0: (p·)iPR(S)) î(C u D u E) 

Finally, we present some results concerning components that have a restricted com
mand. By theorems 4.1.9, 4.1.11, and 4.1.12 we have 



134 4 Programs 

Theorem 4.2.0 

Let component c be given by program 

com c(sig C, in D, out E) : 
var v0 , v 1, ... , v1-1 rav 

s 
moe 

If Sis a restricted command then PR(c) is both data independent and channel order 
independent, and 1(PR(c)) is cubic. 

(End of Theerem) 

Theorem 4.2.1 

Let component c be given by program 

com c(sig C, in D, out E): 
sub Po: co,P1: Ct, . . . ,Pn-1: Cn-1 bus 

[xo = Yo, X1 = Y1, · · ·, Xm-1 = Ym-1] 

var v0 , v1 , ••• , v1_ 1 rav 
s 

moe 

If S is a restricted command, PR( c;) is data independent for all i , 0 :::; i < n, and 
i(PR(c;)) is cubic for all i, 0:::; i< n then PR(c) is data independentand 1(PR(c)) is 
cubic. 

Pro of 

Due to the restrictiens imposed we can apply theerem 3.2.9. We new have that 

W = (W i : 0 :Si < n: (pïPR(c;))"'0 ·"'1 ·····"'m-t ) w PR(S) Yo ,Yt , ... ,Ym-1 

is data independent and 

By corollary 2.4.3 and theerem 4.1.12 we new have that 1(W) is cubic and by theerem 
2.4. 7 that 1(PR( c)) = 1(W)t( CU D U E) is cubic. Using theorem 2.3.8 we infer that 
CU D U E is non-disabling with respect te 1(W). Using theorem 3.2.4 it follows that 
PR(c) = Wt(C U D U E) is data independent. 

(End of Proof) 
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By applying the same reasoning as in the proof of the above theorem one can prove 
the following theorem. 

Theorem 4.2.2 

Let component c be given by the program 

com c(sig C, in D, out E) : 
sub p: c bus · 
var v0 , vil .. . , v,_1 rav 

s 
moe 

If Sis a restricted command then PR(c) is data independentand -y(PR(c)) is cubic. 

(End of Theorem) 



5 Derivation and correctness of programs 

5.0 Introduetion 

In this chapter we show how one may derive programs from specifications and prove 
them to be correct. The way in which programs are derived is also presented in 
[Re87]. The specifications considered are split specifications descrihing the external 
behaviour of a program or component. Again, we point out that in that case the 
communication behaviour is specified independently of the inputfoutput relation, i.e. 
the interdependence between values received and values sent. In our derivations we 
see to it that this independenee is maintained.Furthermore, the systems of the derived 
programs describe networks of processes that are characterized by the conditions for 
networks given in section O.O. 

After deriving a program we formally prove that it satisfies the specification using 
results from the previous chapters. Moreover, it is shown that the derived program 
defines a non-divergent and lockfree system that has constant response time. 

In this chapter split specifications for data independent processes that are channel order 
independent as well are given in a form that differs somewhat from the form introduced 
in section 3.3. Moreover, a split specification also specifies the input channels, the 
output channels, and the signals. This new form is introduced in section 5.1. 

In each of the following four sections a programming problem is presented for which a 
solution is derived. In section 5.1 a program is derived that recognizes palindromes of 
length N in an incoming sequence of integers for some N, N ~ 0. The system defined 
by the derived program consists of ( N div 2) + 1 different processes. In sec ti on 5.2 a 
program is derived that determines whether or not the sequence of integers received 
thus far is a square. The derived program is recursive and, therefore, defines a system 
that consists of an infinite sequence of processes, all of the same type. In sections 
5.1 and 5.2 we show how one formally proves the derived programs to be correct. 
In [Ro,Tch] systolic arrays are given as solutions to the programming problem from 
section 5.2 and a programming problem similar to the one from section 5.1. 

In section 5.3 a program is derived that computes the coefficients of the product of an 
arbitrary polynomial with a given polynomial. The number of processes of the system 
that is finally derived equals the degree of the given polynomial plus two. Only two 

136 
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processes are of a type that differs from the type of the rest and of these two only 
one depends on the degree of the polynornial that is to be multiplied by the given 
polynornial. In [Re87] it is shown that such a component may be used to construct 
a component for the encoding of messages using a cyclic code. There it is mentioned 
that the program obtained differs totally from solutions found elsewhere. 

In section 5.4 a program is derived that is an acceptor for a given regular expression, 
i.e. it deterrnines whether the sequence of symbols received thus far is an element of 
the language defined by the regular expression. The derived system is a network of 
processes whose structure corresponds to the parse tree of the regular expression that 
is used in the derivation. The approach taken in the derivation is also found in [Fo,Ku), 
[We] and [An,Cl,Fo,Mi]. Different solutions can be found in [Fl,Ul] and [Sa]. 

Another example that illustrates this way of deriving programscan be found in [Ve88] . 

Finally, in section 5.5 we summarize the programming method presented in this chap
ter. 

5.1 Recognition of palindromes 

A finite sequence is called a palindrome if it is equal to its reverse. For N, N ~ 0, 
consider the following specification 

PALN = (PR(aN; (b; a)*) 

, { (a, Z) , ( b, { false, true}) } 

, t: (Ak: 0 ~ k < l(tlb)min(l(da)- N + 1) 
: b(k, t) =: (A i,j : 0 ~ i,j < N I\ i+ j = N- 1 

: a(k +i, t) = a(k + j, t)))) 

descrihing a process that recognizes palindromes of length N in an incoming sequence 
of integers. This informal interpretation shows that a is considered to be an input 
channel and b an output channel. In the sequel a specification as above is written as 
follows 

PALN : signals: 

input channels: a : int 

output channels: b : bool 

communication behaviour: aN; (b; a)* 
inputfoutput relation: 

b(k) =: (A i,j : 0 ~ i,j < N I\ i+ j = N- 1 

:a(k+ i)=a(k+ j )) k ~ O 
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The above form of a specification is more apt to our derivations. Notice that apart from 
specifying the types of the channels we also specify whether they are input channels, 
output channels, or signals. Furthermore, we dropped trace t in the input/output 
relation since it does not depend on the order of events within trace t (the specified 
process is channel order independent). We also omitted the upperbounds on k, since 
these restrictions on k are implied by the communication behaviour. We shall, however, 
interpret this differently. From the above input/output relation it can beseen that in 
order to compute b(k) , k 2: 0, one needs a(k), .. . , a(k + N "'- 1). The inputjoutput 
relation, therefore, requires that a( k + N -1) is received before b( k) is sent. It is easily 
seen that this requirement is met by the given communication behaviour; in fact, the 
communication behaviour is more restrictive, since it also requires that b(k) is sent 
before a(k + N) is received. This means b(k) is sent as soon as it can be computed. 
Whenever we derive new input/output relations we wil! adapt or derive communication 
behaviours according to the above interpretation. 

Assume N 2: 2. We derive for k , k 2: 0, 

b(k) 

{input/output relation PALN} 

(A i,j: 0 :S i,j < N 1\ i+ j = N- 1: a(k +i)= a(k + j)) 
{ N 2: 2, calculus} 

(A i,j: 1 :S i,j < N - 1 1\ i+ j = N- 1: a(k +i)= a(k + j)) 
1\ (a(k) = a(k + N- 1)) 

{calculus} 

(A i,j: 0 :S i,j < N- 2 1\ i+ j = (N- 2)- 1: a(k + 1 +i)= a(k + 1 + j)) 
1\ (a(k) = a(k + N- 1)) 

The first conjunct in the last predicate in the above derivation closely resembles the 
right hand side of the input/output relation of PALN_2 . Therefore, assume that there 
exists a component pa[N_2 whose process satisfies PALN_2 • We introduce a subcom
ponent pof type palN_2 , and we require 

(0) p·a(k) = a(k + 1) k 2: 0 

It now follows that for k, k 2: 0, 

p·b(k) 

{ inputjoutput relation PALN_2 } 

(A i, j : 0 :S i,j < N- 2 1\ i+ j = (N - 2)- 1: p·a(k +i)= p·a(k + j)) 
{ (0)} 

(A i,j: 0 :S i,j < N- 2 1\ i+ j = (N- 2)- 1: a(k + i + 1) = a(k + j + 1)) 
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and, hence, 

(1) b(k) :: p·b(k) 1\ (a(k) = a(k + N- 1)) 

In order to compute b( k) the values a( k + N - 1) and a( k) have to be available. The 
communication behaviour implies that a(k + N - 1) is received imrnediately befare 
b( k) has to be sent. To have a( k) available one could decide to store the last N val u es 
received via channel a. This, however, does not comply with the requirement that 
the processes in the system described by the component are simple. We have to solve 
this problem in another way. Observe that the values a(k + 1), k ~ 0, are sent to 
the subcomponent. Therefore, we could require that the subcomponent returns these 
values at a suitable moment via an additional output channel. As a consequence only 
value a(O) needs to be stored. Let subcomponent p have an additional output channel 
p·c of type integer. We require that 

(2) p·c(k) = p·a(k) 

which implies, using (0), 

(3) p·c(k) = a(k + 1) 

Combining (1) and (3) and distinguishing the cases k = 0 and k > 0 yields 

(4) b(O) = p·b(O) 1\ (a(O) = a(N- 1)) 
(5) b(k + 1) = p·b(k + 1) 1\ (p·c(k) = a(k + N)) k>O 

Adding output channel p·c to subcomponent p implies introducing an additional output 
channel c of the component. The inputjoutput relation in PALN is extended with 

(6) c(k) = a(k) 

Combining (3) and (6) yields 

(7) c(O) = a(O) 

(8) c(k + 1) = p·c(k) 

Relation (5) shows that p·b(k + 1) and p·c(k) are needed for the same computation. 
Therefore, we require that subcomponent p sends these values simultaneously, i.e. its 
communication behaviour is 

(p·a)N-2 ; p·b; (p·a; p·b, p·c)• 

Consequently, the communication behaviour in PALN is changed to 
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aN · b · (a· b c)* , ' , ' 

The remaining problem is to give a command whose process satisfies inputfoutput 
relations (0), (4), (5), (7), and (8). lts communication behaviour SN should satisfy 

SNÎ{a,b,c} = aN; b; (a; b , c)* 

and 

SNÎ{p·a,p·b,p·c} = (p·a)N- 2 ; p·b; (p·a; p·b, p·c)* 

The restrictions on SN imposed by (0), (4), (5), (7) , and (8) should be taken into 
account. Furthermore, we require that there is as little buffering of values as possible. 
This can be expressed as fellows 

SNÎ{a,p·a} 

SNÎ{b,p·b,p·c} 

SNÎ{c,p·c} 

a;(a;p·a)* 

p·b; (b; p·b, p·c)* 

(p·c; c)* 

A communication behaviour that satisfies all of the above requirements is 

SN = a; (a; p·a)N- 2 ; a, p·b ; b, p·a ; (a , p·b, p·c; b, c , p·a )* 

Observe the alternation of input and output in the repetition in the above command. 

This leads to the following program 

com palN(in a: int, out b: bool,c: int): 

sub p : palN- 2 bus 

moe 

var x, y, z: int, w: bool rav 

a? x ; (a?y; p·a!y)N-2 

; a?y, p·b?w; b!(w 1\ (x= y)), p·a!y 
; (a?y, p·b?w, p·c?z; b!(w 1\ (z = y)), c!x , p·a!y ; x:= z)* 

Observe that the values received via p·c have to be buffered thereby necessitating an 
additional local variable. 

Assume N = 0 or N = 1. We now have 

b(k) = true k:::::o 

This leads to 
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and 

eom pa/0 (in a : int, out b : bool, c : int) : 

var x : int rav 

b!true; (a?x; b!true, c!x)• 

moe 

eom pa/1 (in a: int, out b: hooi, c: int) : 

var x, y :int rav 

a?x; b!true; ( a?y; b!true, c!x; x:= y )• 

moe 
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We will now formally prove that PR(pa/N) is the process specifi.ed by PALN. First we 
derive some preliminary results. 

Let TN be the command of component pa/N. Then we have SN= !(TN)· Observe that 
PR(pal0) and PR(pa/1 ) are data independent, and that 1(PR(pa/0 )) and 1(PR(pal1)) 

are cubic. 

Let N ~ 2. Assume that PR(pa/N_2 ) is data independent, and I(PR(paiN-2)) is cubic. 
Since TN is a closed restricted command and, therefore, SN is a restricted command, 
we have by theorems 4.1.9 and 2.4.10 that PR(TN) is data independentand PR(SN) is 
cubic. The conditions of theorem 3.2.8 being met we have that p· PR(pa[N_2) w PR(T N) 
is data independent and 

Theorem 2.4.3 implies that l(p·PR(palN-z)) w PR(SN) is cubic. By theorem 2.3.8 
we have that {a,b,c} is non-disabling with respect to l(p·PR(paiN_2))wPR(SN), by 
theorem 3.2.4 that 

PR(pa/N) = ( p· PR(pa/N- 2 ) w PR(TN)) Î {a, b, c} 

is data independent, and by corollary 2.4.7 that I(PR(paiN)) is cubic. 

Since {a,b,c} is non-divergent with respect to PR(SN) and {p·a,p·b,p·c} is non-di
vergent with respect to !(p·PR(pa/N_2 )) we have by theorem 2.1.11 that {a, b, c} is 
non-divergent and, therefore, transparent with respect to l(p·PR(pa/N_2 )) w PR( SN). 

We now start with the actual proof. It is easily seen that PR(pa/0 ) and PR(pa/1) are 
the processes specifi.ed by PAL0 and PAL1 , respectively. 

Let N ~ 2. Assume that PR(pa/N_2 ) is the process specified by PALN_2 • Process 
PR(TN) is the process specified by ( PR(SN), QN) ( notice that we omit the function 
that describes the types of the channels ) where 
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QN(t) -
(A k: 0 ~ k ~ 0 < P(tib): b(O) =: p·b(O) A (a(O) = a(N- 1))) 
A (A k: 0 < k < P(tib) 

: b(k) = p·b(k) 1\ (p·c(k- 1) = a(k + N- 1))) 
A (A k : 0 ~ k ::; 0 < P(dc) : c(O) = a(O)) 
1\ (A k: 0 < k < P(tlc): c(k) = p·c(k- 1)) 

1\ (A k: 0 ~ k < P(tlp·a) : p·a(k) = a(k + 1)) 

Applying the Conjunction-Weave rule ( theorem 3.3.5) yields that 
p·PR(pa[N_2 ) w PR(TN) is the process specified by 

( PR(SN), 

t: (A k: 0 ~ k < P(tip·b) 
: p·b(k) = (A i,j : 0 ~ i,j < N - 2 

1\ i+ j = N- 3 : p·a(k +i) = p·a(k + j))) 

1\ (A k: 0 ~ k < f(tlp·c): p·c(k) = p·a(k)) 

1\ QN(t) 

The above specification can be transformed into 

( PR(SN), 

t : (A k : 0 ~ k < f(t lb) : b(k) =: (A i,j : 0 ~ i,j < N 
1\ i+ j = N: a(k +i)= a(k + j))) 

1\ (Ak: 0 ~ k < f(tlc): c(k) = a(k)) 
1\ (A k: 0 ~ k < f( t lp·a) : p·a(k) = a(k + 1)) 

A (Ak: 0 ~ k < f(dp·b) 
:p·b(k) =: (Ai,j:O~i,j<N-2 

1\ i + j = N - 3 : a( k +i + 1) = a( k + j + 1)) ) 
1\ (A k: 0 ~ k < P(tlp·c) : p·c(k) = a(k + 1)) 

Let U N he the process specified by PALN. From the above specification we infer that 

PR(palN) = (p·PR(palN_ 2 )wPR(TN))I{a,b,c} Ç UN 

We prove that the reverse inclusion holcis as weJl by induction on the length of traces 
from UN. LettE tUN. 

base f (t) = 0 t = é E tPR(palN) 
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step f(t) > 0 

Let t = u(d, m). Since f(u) < f(t) choose s E t(p·PR(palN-2) w PR(TN)) such that 
sl{a,b,c} =u. Since 

'Y( p·PR(palN-2 ) w PR(TN)) l{a, b,c} = PR(SNH{a,b, c} = 'Y(UN) 

we have that 'Y(u)d E t')'(p·PR(palN-2)wPR(TN))I{a,b,c}. Since {a,b,c} is trans
parent with respect to 'Y(p·PR(palN_2)wPR(TN)) and 'Y(s)l{a,b,c} = 'Y(u), choose v 
such that 

'Y(s)vd E t')'(p·PR(palN-2)wPR(TN)) 1\ vl{a,b, c} = e. 

Process p·PR(palN_2 )wPR(TN) being data independent choose r(d,n) such that 

sr(d,n} E t(p·PR(palN_2)wPR(TN)) 1\ 'Y(sr(d,n}) =')'(s)vd 

Notice that rl{a,b,c} = e. and, hence, (sr)l{a,b,c} =u. In case d =a value n may 
be chosen arbitrarily, especially n = m. In case d = b or d = c the specifications imply 
that n = m. From this we infer that 

u(d,m) E t(p·PR(palN-2)wPR(TN))I{a,b,c} 

The above implies that PR(palN) indeed is the process specified by PALN. 

We now show that sys(palN) is both non-divergent and lockfree. Observe that 

sys(palN) = ( {a,b,c}, { (p·)iPR(TN-2;) I 0 ~ 2i ~ N}) 

that W(psys(palN)) is data independent, and that 
'Y(W(psys(palN))) = W('Y(psys(palN))) . This can be shown by induction using the
orem 3.2.8. By corollary 3.4.3 and theorem 3.4.12 we have that in order to prove 
that sys(palN) is non-divergent and lockfree it suffices to prove that 'Y( sys(palN)) is 
non-divergent and lockfree. 

We prove that 'Y( sys(palN)) is transparent ( and, therefore, non-divergent) by in due
tion on N. Observe that 'Y(sys(pal0 )) and 'Y(sys(pal1)) are transparent. Let N 2 2. 
Assume that 'Y(sys(pa[N_2 )) is transparent. Since sys(SN)I{a,b,c} is transparentand 
PR(SN)I{p·a,p·b,p·c} = PR('Y(sys(palN_2))) we have according to corollary 2.1.24 
that 

is transparent. 

We can prove that 'Y( sys(palN)) is non-divergent in another way. Observe that 
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(Ak: k 2 2: (At: tE PR(Sk) 1\ t-::/: e: R(d{p·a,p·b,p·c}) < i(d{a,b,c}))) 

This condition for commands is also found in (Ud] and (Ka] where it is shown to 
imply the existence of a unique salution for the recursive equation defined by a simple 
recursive component. Let N 2 0. LettE t-y(PR(palN)) such that t-::/: e. Define 

V(t) = {sIs E tW(-y(psys(palN))) 1\ s~{a, b,c} = t} 

Sirree p-y(sys(palN)) = { (pYPR(SN- 2;) I 0:::; 2i:::; N} it follows that 

(Ak: 0 < k:::; Ndiv2 : (As: sE V(t): i(s~(PY{a,b,c}):::; R(t)) ) 

and, hence, 

(As: sE V(t): i(s):::; R(t)·(N div2 + 1)) 

We conclude that V(t) is finite. Choosing t = é we obtain V(e) = {é}. By theorem 
2.1.7 we have that -y(sys(palN)) is non-divergent . 

We prove that -y( sys(palN)) is lockfree by induction on N . Observe that -y( sys(pal0 )) 

and -y(sys(pa/1 ) ) are lockfree. Let N 2 2. Assume -y(sys(palN_2)) is lockfree. We have 
that sys( SN) is lockfree and transparent. We derive 

-y(sys(palN)) is lockfree 

{ definition palN} 

(-y(p·sys(palN-2)) 11 sys(SN))I{a, b, c} is lockfree 

{ definition lockfree system } 

-y(p·sys(palN_2)) 11 sys(SN) is lockfree 

{ corollary 2.2.8} 

lockfree( {PR(-y(p·sys(palN-2))),PR(SN)}) 

{ PR(SN) r{p·a,p·b,p·c} = PR(-y(p·sys(palN_2)))} 

true 

Finally, we show that -y(sys(palN)) has constant response time. Notice that by giving 
a sequence function for -y( sys(palN)) we once more show that this system is lockfree. 

Let ]{ 2 1. Define for k, 0 < k:::; K, a2k E occ(PR(S2k))-+ N 
and a2k+l E occ(PR(S2k+1))-+ N by 
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0"2k(a,i) =cr2k+1 (a,i) =3(K-k)+2i 

0"2k(p·a, i)= 0"2k+l(p·a, i) = 3(K- k) + 2i + 3 

cr2k(p·b, i) = cr2k+1(p·b, i)- 2 = 3K + k + 2i- 2 

cr2k( b, i) = cr2k+l ( b, i) - 2 = 3K + k + 2i - 1 

0"2k(p·c, i) = cr2k+1 (p·c, i) - 2 = 3]( + k + 2i 

cr2k(c, i) = 0"2k+1 (c, i)- 2 = 3]( + k + 2i + 1 

Define cr0 E occ(PR(S0)) --+ N a.nd cr1 E occ(PR(S1)) --+ N by 

cr0 ( a, i) = cr1 (a, i) = 3K + 2i 

cr0 (b, i) = cr1 (b, i)- 2 = 3/( + 2i- 1 

cro(c, i) = cr1 (c, i)- 2 = 3K + 2i + 1 

Define for k, 0 :=::; k :=::;I<, r2k E occ((p·)K-kPR(S2k))--+ N 
a.nd T2k+l E occ((p·)K-kPR(S2k+l))--+ N by 

T2k((p·)K-kd, i) = 0"2k(d, i) 

T2k+l((p·)K-kd, i) = 0"2k+l(d, i) 

0 bserve that 

(d, i) E occ(PR(S2k)) 
(d, i) E occ(PR(S2k+l)) 

(A k: 0 :::; k < K : (Ad, i : (d, i) E occ(p·PR(S2k)) n occ(PR(S2k+2)) 
: T2k((p· )K -k-ld, i) = T2k+2( (p· )K -k-ld, i) ) 

1\ (Ad, i : (d, i) E occ(p·PR(S2k+1)) n occ(PR(S2k+3)) 
: T2k+l((p·)K- k-ld, i)= T2k+3((py<-k-ld, i))) 
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Hence, T2K hK+l) restricted to occb(PR(pal2K))) ( occ(f(PR(pal2K+I))) ) is a se
quence fundion for 1( sys(pal2K)) ( 1( sys(pal2K +I)) ). Furthermore, we have for l = 2!( 
or 2K + 1 

(At,d,e: tde E t1(PR(pal1)) 1\ (d,f(tîd)) < (e,f(td îe)) 
: r1(e,f(tdÎe))- r1(d,e(tîd)):::; 2) 

Therefore, '"Y(sys(pal2K)) a.nd l(sys(pal2K+l)) have constant response time. Observe 
tha.t the given upperbound does notdepend on K. 
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5.2 Recognition of squares 

A fini te sequence is called a square if it is the concatenation of two identical sequences. 
Notice that the empty sequence is a square, and that the lengthof a square is even. We 
derive a component that deterrnines whether the sequence of integers received thus far 
is a square. Obviously only even length sequences have to be considered. Therefore, 
we propose the following specificatien 

SQUARE: signals: -

input channels : a : int 

output channels : b : bool 

communication behaviour : ( b; a ; a)" 

input/output relation : 

b(i) = (Aj:O:::;j<i:a(j)=a(i+j)) i2:0 

An approach like the one taken in sectien 5.1 does not yield predicates that closely 
resembie the input/output relation in the above specification. Hence, we wil! first 
investigate the following generalization of SQUARE 

GSQUARE : signals : -

input channels : a, c : int 

output channels : b: bool 

communication behaviour : ( b ; a ; a , c) • 

inputjoutput relation : 

b( i) = (A j : 0 :::; j < i : c(j) = a( i + j)) i 2: 0 

If the sequences of integers received via channels a and c are identical then the sequence 
of booleans sent via channel bis as specified by the inputjoutput relation of SQUARE. 

0 bserve that 

(0) b(O) = true 

For i , i 2: 0, we derive 

b(i + 1) 
{input/output relation GSQUARE} 

(Aj: 0:::; j < i+ 1 : c(j) =a( i+ 1 + j)) 

{i 2: 0} 

(A j : 0 :::; j < i : c(j) = a( i + 1 + j)) 1\ ( c( i) = a(2i + 1)) 
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We introduce a subcomponent p whose process is also specii1ed by GSQUARE ancl 

require that for i, i ~ 0, 

(1) p·a(i) = a(i + 1) 

(2) p·c( i) = c( i) 

Notice that the component we are dcriving is recursive due to the above decision tha.t 
amounts to introducing an infinite sequence of subprocesses of the same typ<?. 

We continue our derivation. 

b( i + 1) 
{ above derivation } 

(Aj: 0 S. j <i: c(j) = a(i + 1 + j)) 1\ (c(i) = a(2i + 1)) 

{ (1), (2)} 

(Aj: 0 S, j <i: p·c(j) = p·a(i + j)) 1\ (c(i) = a(2i + 1)) 

{ processof p satisfies GSQUARE} 

p·b(i) 1\ (c(i) = a(2i + 1)) 

The problem is reduced to deriving a command whose process satisfies inputfoutput 
relations (0), (1), (2), and 

(3) b(i + 1) = p·b(i) 1\ (c(i) = a(2i + 1)) i~ 0 

lts communication behaviour S should satisfy 

Sî{a,b,c} (b ;a; a,c)* 
s r {p·a, p·b, p·c} = (p·b; p·a; p·a' p·c)* 

Taking into account (0), (1), (2), and (3) and striving for as little buffering as poss ible 
leads to 

sr { b, p·b} 
Sî{a,p·a} 
sr { c, p·c} 

(b; p·b)" 
a;(a;p·a)* 
(c ; p·c)• 

Communication behaviour 

b; a; (a, c, p·b; b, p·a; a; p·a, p·c)• 

satisfies all of the above requirements. Again observe the altcrna.tion of input and 
output in the repetition. 

The above leads to the following program 
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com gsquare(in a, c : int, out b : bool) : 

sub p : gsquare bus 

lllOC 

var x, y : int, w : bool rav 

b!true; a?x 
; ( a?x , c?y, p·b?w; b! (w I\ (x= y)), p·a!x 

; a?x; p·a!x , p·c!y )" 

Let T9 be the command of the above component. Let U be the process that is speci
fied by GSQUARE. As insection 5.1 we can prove that (PR(T9 )wp·U) I{a,b,c} also 
satisfi.es GSQ"CARE and hence 

(PR(T9 )wp·U)r{a,b, c} =U 

Since T9 satisfi.es 

(At: tE tPR(T9 ) I\ t "/= e: R(d{p·a,p·b, p·c}) < R(tr{a,b, c}) ) 

equation 

Y : (PR(T9 )wp·Y) i{a,b,c} = Y 

has a unique salution ([Ud],[Ka]) being 

(W i : i 2'. 0 : (p· )iPR(T9 )) f {a , b, c} = PR(gsqum·e) 

Consequently PR(gsquare) is the process specifi.ed by GSQUARE. 

Tn order to obtain the output sequence specified by SQUARE we have to scnd o(i) \ "Î<l 

channel c at the moment we send a(2i + 1) via channel a. Since a( i) has alrcady bcc11 
sPnt via channel a, we require that the component generates a(i) just beforP it. has to 
be sent via channel c. We introduce an additional output channel d and cons idcr l.he 

following generalization of GSQU ARE 

GGSQUARE : signals: -

input channels : a, c: int 

ou tput channels : b: bool , d: int 

communication behaviour : (b; a; d; a, c)* 

input/output rclation: 

b(i) = (Aj:O s j <i : c(j)=a(i+j)) i2: 0 

d( i) = a(i) i 2: 0 
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Assuming a subcomponent p whose process satisfies GGSQUARE, a derivation again 
leads to inputjoutput relations (0), (1), (2), and (3) . Furthermore, we have 

(4) d(O) = a(O) 

For i, i ~ 0, we derive 

d(i + 1) 

{ inputjoutput relation GGSQUARE} 

a( i+ 1) 

{ (1), processof p satisfies GGSQUARE} 

p·d( i) 

We have to find a command whose process satisfies inputjoutput relations (0), (1), (2), 
(3), (4), and 

(5) d(i + 1) = p·d(i) 

and whose communication behaviour S satisfies, apart from the conditions imposed 
before, 

St{d,p·d} = (d; p·d)" 

We choose communication behaviour 

b; a; d; (a, c, p·b; b, p·a; a, p·d; d, p·a, p·c)* 

where input and output alternate. This leads to the following program 

com ggsquare(in a, c: int, out b: bool, d: int) : 

sub p: ggsquare bus 

ll10C 

var x,y,z : int,w: bool rav 

b!true; a?x; d!x 
; (a? x, c?y, p·b?w; b!(w 1\ (x= y)), p·a!x 

; a?x, p·d?z; d!z, p·a!x, p·dy )* 

It can be shown that PR(ggsquare) is the process specified by GGSQUARE. 

We now define component square to be 
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com square( in a : int, out b: bool) : 

sub p: ggsquare bus 

[ p·a = a, p·b = b J 

var x : int rav 

(p·d?x; p·c!x)* 

·moe 

5 Derivation and correctness of programs 

It is easily seen that PR(square) indeed is the process specified by SQUARE. 

Let T99 be the command of component ggsquare. Command S99 = "f(T99 ) satisfies 

(At: tE tPR(S99 ) 1\ t =J. t:: f(tl{p·a,p·b,p·c,p·d}) < f(tÎ{a, b, c, d}) ) 

1\ (At: tE tPR(S99 ): f(tî{a,b,c,d}::; 2·f(tÎ{a,b})) 

Analogously to the pro of of theorem 2.1.18 one can show that '"Y( sys(ggsquare)) t {a, b} 
is non-divergent. Since sys((d; c)") is non-divergent, we have by corollary 2.1.12 that 

"!( sys( square)) = ( "f(p·sys(ggsquare) )~:~·p·b 11 sys( (p·d; p·c)*) H {a , b} 

is non-divergent. 

Observe that S99 is a restricted command and, therefore, PR(S9 9 ) is cubic. Dellne 
function 0', 0' E occ(PR(S99 ))-+ .N, by 

0'( b, i) 4i 

O'(a, i) 2i + 1 

0'( d, i) = 4i + 2 

(}'( c, i) 4i + 3 

O'(p·b, i) 4i + 3 

O'(p·a, i) 2i + 4 

O'(p·d, i) = 4i + 5 

O'(p·c, i) 4i + 6 

for i, i 2: 0. Function 0' is a sequence fundion for PR( S99 ) that satisfies condition ( *) of 
theorem 2.5.19. By theorem 2.5.20 fundion r, rE occ(PR('"Y(sys(ggsquare)))) -+ .N, 
defined by 

r(e, i)= O'(e, i) ( e, i) E occ(PR('"Y( sys(ggsquare)))) 

is a sequence fundion for "!( sys(ggsquare) ), and system "!( sys(ggsquare)) is lockfree. 
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Since 

(At,e,g: teg E tPR(!(sys(ggsquare))) 1\ (e,f(tfe)) < (g,f(tdg)) 
: r(g,f(telg))- r(e,f(tle)):::; 1) 

system 1(sys(ggsquare)) has constant response time. 
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It easily seen that r restricted to occ(PR(I( sys( square)))) is a sequence function for 
1(sys(square)). Therefore, 1(sys(square)) is lockfree. Moreover, 1(sys(square)) has 
constant response time. 

5.3 Polynomial multiplication 

Multiplication of polynomials with integer coefficients is defined as follows . The prod
uct of polynomial p, 

p(X) = (S k: 0 :S k < M : Pk. xM- 1-k ), 

a.nd polynomial q, 

q(X) = (S k: 0 :::; k < N: qk. xN- 1-k ), 

is polynomial p * q, 

(p * q)(X) = (S k: 0 :S k < M + N- 1: (p * q)k-XM+N-2-k ), 

where for k, 0:::; k < M + N- 1, 

In the sequel we wil! represent polynomials by integer sequences containing their coef
ficients . Polynomial pis represented by sequence (Pk)O$k<M· We wil! identify polyno
mials with the sequences representing them. The length f (p) of sequence p is defi.ned 
in the obvious way. Only sequences p with f(p) ~ 1 wil! be considered. Purthermore, 
we define for all sequences p such that C(p) ~ 2 

Polynomial multiplication corresponds toa mapping of pairs of integer sequences onto 
integer sequences. Sequences p and q are mapped onto sequence 

P * q = ( (p * q)k )o$k<f(p)+l(q)-1 
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where for k, 0:::; k < f(p) + f(q)- 1, 

If p is an infinite sequence we define p * q to be the infinite sequence ((p * q )k)k~o w here 
for k, k ~ 0, 

(p * q)k = (S i,j: i~ 0 1\ 0 :S j < f(q) 1\ i+ j = k: Pi* qi) 

Let q be a given finite sequence such that f(q) ~ 1. Consicier the following specification 

GMULq : signals : -

input channels : a : int 

output channels : b: int 

communication behaviour : (a; b)* 
input/output relation : b =a* q 

Let p be a finite sequence. Define infinite sequence p by Pk = Pk for k, 0 :::; k < C(p), 
and Pk = 0 for k, k ~ f(p). Then for k, 0:::; k < f(p) + f(q)- 1, 

(p * q )k = (p * q )k 

and for k, k ~ f(p) +f(q) -1, 

Therefore, the process specified by GMULq can be used t o compute the coefficients of 

p * q. 

First assume R.(q) ~ 2. We derive for k, k ~ 0, 

b(k) 

{input/output relation GMULq} 

(a* q)k 

{ definition a * q} 

(Si, j : i ~ 0 1\ 0 :::; j < f( q) 1\ i + j = k : a( i) * qi ) 

= {e(q) ~ 2} 

(Si, j : i ~ 0 1\ 0 < j < R.( q) 1\ i + j = k : a( i) * qi ) + a( k) * q0 

{calculus} 

(Si, j: i ~ 0 1\ 0 :::; j < R.(q) -1 1\ i+ j = k -1: a(i) * qj+1 ) + a(k) * q0 
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Assume that there exists a component gmu/1.9 whose process satisfies GMULt·q· Intro
duce a subcomponentpof type gmult .9 , and require 

(0) p·a(k) = a(k) k?_O 

Then for k, k ?_ 0, 

b(k) 

{ above derivation, (0), definition t·q, R(q) ?_ 2} 

(Si,j :i ?_0 1\0 ':5j <R(t·q) 1\ i+j = k-1 :p·a(i)*(t·q}j)+a(k)*Qo 

Hence, 

(1) b(O) = a(O) * Qo 

and for k, k > 0, 

b(k) 

= { definition *, k > 0} 

((p ·a) * (t·q))k_ 1 + a(k)* Qo 

{ process of p satisfies GMULt.9 } 

p·b(k- 1) + a(k) * q0 

Our taskis reduced to giving a command whose process satisfies input/output relation 
(0), (1 ), and 

(2) b(k) = p·b(k - 1) + a(k) * q0 k>O 

a.nd whose communication behaviour S satisfies 

Sl{a,b} (a; b)" 

Sl{p·a,p·b} = (p·a; p·b)* 

Sf {a, p·a} = (a; p·a)* 

snb,p·b} ( b; p·b)* 

The last two conditions are imposed partly by (0), (1), and (2), and partly by the 
requirement that there is as little buffering as possible. lt llOW follows that 

S =a; (b, p·a; a, p·b)* 

This leads to component gmu/9 defined by 
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com gmul9(in a: int, out b: int): 

sub p : gmul1.9 bus 

var x, y : int rav 

a?x; b!(x * q0 ), p·a!x 

5 Derivation and correctness of programs 

; ( a?x, p·b?y; b!(y +x* qo), p·a!x )" 
moe 

In case f(q) = 1 we derive 

b(k) = a(k) * Qo k~O 

which leads to 

com gmulq(in a : int, out b: int): 

var x : int rav 

moe 

One may prove that PR(gmulq) is the process specified by GMULq in a way similar 
to the approach taken in section 5.1. Likewise, it can be shown that "Y(sys(gmulq)) is 
transparent (and, therefore, non-divergent) and lockfree. 

Define c>, c> E occ(PR((a; b)*)) ~ N, by 

c>( a, i) 
c>( b, i) 

2i 

2i + 1 

for i, i~ 0. We have that c> is a sequence fundion for "Y(sys(gmulq)) in case €(q) = 1. 

Assume €(q) ~ 2 and c> is a sequence function for "Y(sys(gmu/1.9 )). 

Define p, p E occ(PR(a; (b, p·a; a, p·b)*)) ~ N, by 

p(a, i) 2i 

p( b, i) 2i + 1 

p(p·a, i) 2i + 1 

p(p·b, i) 2i + 2 

for i, i ~ 0. Th en p is a sequence function for PR( a; ( b, p·a; a, p·b)"). By corollary 
2.5.18 we have that p restricted to occ(PR((p·a; p·b)")) is a sequence function for 
{(p·sys(gmul1.q)). Since p restricted to occ(PR((a; b)*)) equals c> we have that c> is a 
sequence function for 1(sys(gmul9 )). Observe that 
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(At,c,d : tcd E tPR(1(sys(gmulq))) A (c,f(tk)) < (d,f(tdd)) 

: a(d,f(tdd))- a(c,f(tk)) $ 1) 

Therefore, "t(sys(gmulq)) has constant response time. 

Let N 2: 1. Consider the following component. 

com mulq,N(in a: int, out b : int) : 

sub p : gmulq bus 

lUOC 

var x, y : int rav 
( (a?x; p·a!x; p·b?y; b!y)N-I 

; a? x; p·a!x; p·b?y 
; (b!y, p·a!O; p·b?y)l(q)-l ; b!y )* 
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Let TN be the command of component mulq,N· Process PR(TN) satisfies the following 
input/output relations 

(3) p·a(k·(N + f(q)- 1) + l) = a(kN + l) 
(4) p·a(k·(N + f(q) -1) + l) = 0 

(5) b(k) = p·b(k) 

Define sequence ak, k 2: 0 A f(ak) = N, by 

(6) (ak)i = a(kN +i) 0$ i< N 

We derive for k and l, k 2: 0 A 0 $ l < N + f( q) - 1, 

b(k·(N + f(q) - 1) + /) 
{ (5)} 

p·b(k·(N + f(q) -1) + l) 
= {input/output relation GMULq} 

k 2: 0, 0 $ l < N 

k 2:0, N $l < N +f(q) -1 

k;::O 

( S i, j : i 2: 0 A 0 $ j < e ( q) A i + j = k · ( N + e ( q) - 1 ) + l : p· a (i) * q i ) 

{ (3), (4)} 

(Sm,n,j: m 2:0 A 0$ n <NA 0 $ j < f(q) 

A m · (N + f(q)- 1) + n + j = k · (N + f(q)- 1) + l: a(mN + n) * qj ) 

= {calculus } 

(S n,j: 0 $ n < N A 0 $ j < f(q) A n + j = l: a(kN + n) * qj) 
= { (6), definition *} 

(ak*q)I 
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Therefore, component mulq,N can he repeatedly used to calculate the coefficients of 
the product of polynornials of length N and polynomial q. Observe that parameter N 
only appears in the cammand of component mulq,N and not in its subcomponent p of 
type gmulq. 

The above components for polynomial multiplication can he used in the design of 
components for polynomial division and for encoding messages, using a cyclic code 
( see [Re87]). 

5.4 Acceptors for regular expressions 

Regu/ar expressions are defined inductively as follows 

ê. is a regular expression 

a is a regular expression for all symhols a 

if Eo is regular expression then E0 is a regular expression 

if Eo and E 1 are regular expressions then E0 ; E 1 and E0 I E 1 are regldar 
expressions 

Notice that as we already mentioned in section 1.2 tbc set of regular expressions forms 
a subset of the set of commands. With each regular cxpression E a language I.(E) is 
associated that is defined by 

.C(E) = tTR(E) 

An acceptor for regu/ar expression E is a process that upon receiving an input symbol 
computes whether the sequence of symbols received thus far is an element of I-(E ). 
Formally, 

signals : 

input channels : c: sym 

output channels : r : hooi 

communication behaviour : ( c; r) • 

input/output relation : r(i) = c(k: 0 :::; k :::; i) E .C(E) i~ 0 

However, since we strive for a hierarchically structured component whose structurc 
reflects the st ructure of the regular expression, the ahove specification is not adequate. 
Problems arise with the star operator and the semicolon operator, in wh ich cases not 
only prefixes of the input sequence have to be accepted. 

Therefore, we generalize the ahove specification as follows 
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ACCs : signals : u 

input channels : e : bool, c : sym 

output channels : v , r : bool 

communication behaviour : 

inputfoutput relation: 

v(O) := ê E .C(E) 

u· v· (e c· r)• 
' ' l ' 

r(i) = (Ej: 0 S j Si : e(j) 1\ c(k: j S k Si) E .C(E)) i~ 0 

Notice that if 

e(O) 
e( i) 

true 
false i> 0 

we have r(i) = c(k: 0 S k Si) E .C(E) for i, i~ 0. 
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Since channel v is used only once one could elim.inate channel v by using channel r also 
for the message that is to be sent via channel v. We have not clone so for reasens of 
clarity. The same applies to signa! u whose role could be played by an additional first 
message via channel e, the contents of which is irrelevant. 

Let E = E:. We derive 

v(O) 

= {input/output relation ACC,} 

E. E .C(ê) 

{.C(ê)={ê}} 

true 

and for i, i :::=: 0, 

r( i) 

= {input/output relation ACC,} 

(Ej : 0 S j Si: e(j) 1\ c(k: j S k Si) E .C(ê)) 

{i ~ 0, .C(ê) = {ê}} 

fa! se 

This yields 

con1 acc,(sig u, in e : bool, c: sym, out v, r : bool) : 

var x : bool, z : sym rav 

u; v!true; (e?x, c?z; r!false)* 

IUOC 
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Let E = a for some symbol a. We derive 

v(O) 
{ inputjoutput relation ACCa} 

e E .C(a) 

{ .C(a) ={a}} 

false 

and for i, i 2 0, 

r( i) 

{input/output relation ACCa} 

(Ej: 0 S j Si : e(j) 1\ c(k : j S k Si) E .C(a)) 

{ calculus, i ;::: 0} 

(Ej: 0::::: j <i: e(j) 1\ c(k: j::::: k Si) E .C(a)) 
V (e(i) 1\ c(k: iS k Si) E .C(a)) 

{ .C(a) ={a}} 

e(i) 1\ (c(i) =a) 

This yields 

com acca(sig u, in e: bool, c: sym, out v, r : bool) : 

var x : bool, z : sym rav 

u; v!false; ( e?x, c?z; r!(x 1\ (z =a)))* 
moe 

Let E = E0 I E 1. We assume the existence of cornponents accEo ancl accE, whose 
processes are specif1ed by ACCEo and ACCE,, respectively. Our goal is to derive <t 

component that has a subcomponent p of type a ccE0 and a subcomponent q of type 
accE, . We derive 

v(O) 

{ inputjoutput relation ACCEoiE1 } 

é E .C(Eo I E1) 

{ .C(Eo I EJ) = .C(Eo) U .C(E,)} 

e E .C(Eo) V é E .C(E1) 

{ processof p satisfies ACCE0 , processof q satisfies ACC E, } 

p·v(O) V q·v(O) 
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and for i, i 2: 0, 

r( i) 

{input/output relation ACCEoiE1 } 

(Ej: 0::; j::; i: e(j) 1\ c(k: j::; k::; i) E .C(Eo I Et)) 

{ .C(Eo I E1) = .C(Eo) U .C(E1)} 

(Ej: 0::; j::; i: e(j) 1\ c(k: j::; k::; i) E .C(Eo)) 
V (Ej: 0::; j::; i: e(j) 1\ c(k: j::; k::; i) E .C(E1)) 

Therefore, we require for i, i 2: 0, 

p·e(i) e(i) 

(0) 
p·c(i) c( i) 
q·e(i) - e( i) 
q·c( i) c( i) 

We continue for i, i 2: 0, 

r( i) 

{ above derivation, (0)} 

(E j : 0 ::; j ::; i : p·e(j) 1\ p·c( k : j ::; k ::; i) E .C( E0)) 

V (Ej: 0::; j::; i: q·e(j) 1\ q·c(k: j::; k::; i) E .C(E1)) 

{input/output relations ACCEo and ACCE, } 

p·r( i) V q·r( i) 

This yields 

com accEaiE, (sig u, in e : bool, c : sym, out v, r: bool) : 

sub p: accEo,q: accE, bus 

moe 

var x,px,qx: bool,z: sym rav 

u; p·u, q·u; p·v?px, q·v?qx; v!(px V qx) 
; ( e?x, c?z; p·e!x, q·e!x, p·c!z , q·c!z 

; p·r?px, q·r?qx; r!(px V qx) )• 
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Notice that the communication behaviour corresponding to the command of compo
nent accEoiE, satisfies the requirements that are imposed by the derived inputfoutput 
relations. Furthermore, observe that all of the above derivations could also have been 
given starting from the original specification. The following derivations , however, make 
it clear that the specification had to be generalized. 
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Let E = E0 ; E 1 • Again we assume the existence of components accEo and accE1 whose 
processes are specified by ACCEo and ACCE1 respectively. We strive fora component 
that has a subcomponentpof type accEo and a subcomponent of type accE1 • We derive 

v(O) 

{input/output relation ACCEo ;E1 } 

ê E .C(Eo; EI) 

= { .C(Eo; E1) = .C(Eo).C(EI)} 

E E .C(Eo) 1\ E E .C(E1) 

{ process of p satisfies ACC E<l, process of q satisfies ACC E 1 } 

p·v( 0) 1\ q·v( 0) 

and for i, i ~ 0, 

r( i) 

{input/output relation ACCE<l ;E1 } 

(E j : 0 :::; j :::; i : e(j) 1\ c( k : j :::; k :::; i) E .C( Eo; E1)) 

{ .C(Eo; E1) = .C(Eo).C(EJ)} 

(Ej: 0 :::; j :::; i: e(j) 1\ c(k: j :::; k :::; i) E .C(E0 ) 1\ E E .C(E1)) 
V (Ej: 0 :::; j:::; i: e(j) 1\ E E .C(Eo) 1\ c(k: j :::; k :::; i) E .C(EI) ) 
V (Ej: 0:::; j:::; i: e(j) 1\ (El : j:::; l <i: c(k: j:::; k:::; l) E .C(E0 ) 

1\ c(k: l+ 1:::; k:::; i) E .C(E1))) 

We require for i , i ~ 0, 

(1) 
p·e( i) 
p·c( i) 

e(i) 
c( i) 

\Ne continue for i, i ~ 0, 

r( i) 

{ above derivation, (1), processof p (q) satisfies ACCE<l (ACCE,)} 

(p·r(i) 1\ q·v(O)) 
V (Ej: 0:::; j :::; i: e(j) 1\ p·v(O) 1\ c(k: j:::; k:::; i) E .C(EJ)) 
V (El: 0:::; l <i: (Ej : 0 :::; j:::; l: e(j) 1\ c(k : j:::; k:::; I) E .C(E0 )) 

1\ c(k: l + 1 :::; k:::; i) E .C(E1)) 

{ (1), processof p satisfies ACCE0 , renaming dummy} 
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(p·r(i) 1\ q·v(O)) 
V (Ej: 0 ~ j ~i: e(j) 1\ p·v(O) 1\ c(k: j ~ k ~i) E .C(E1 )) 

V (Ej: 0 ~ j <i: p·r(j) 1\ c(k: j + 1 ~ k ~i) E .C(E1)) 

= {calculus} 

(p·r(i) 1\ q·v(O)) 
V (Ej: 0 ~ j ~i: e(j) 1\ p·v(O) 1\ c(k: j ~ k ~i) E .C(E1)) 

V (E j : 0 < j ~ i : p·r(j - 1) 1\ c( k : j ~ k ~ i) E .C( E 1) ) 

Therefore, we require 

(2) q·e(O) = e(O) 1\ p·v(O) 

and for i, i 2 0, 

(3) 
q·e(i + 1) 

q·c(i) 
= (e(i + 1) 1\ p·v(O)) V p·r(i) 

c( i) 

We continue for i, i 2 0, 

r( i) 

{ above derivation, (2), (3)} 

(p·r(i) 1\ q·v(O)) V (Ej: 0 ~ j ~i: q·e(j) 1\ q·c(k: j ~ k ~i) E .C(E1)) 

{ process of q satisfies ACC E, } 

(p·r(i) 1\ q·v(O)) V q·r(i) 

This leads to 

com accEo ;E1 (sig u, in e : bool, c: sym, out v, r : bool) : 

sub p : accEo, q : accE, bus 

lUOC 

var x,px,.qx,pv,qv: bool,z: sym rav 

u; p·u, q·u ; p·v?pv, q·v?qv; v!(pv 1\ qv), px:= false 
; ( e?x , c?z ; p·e!x, q·e!((x 1\ pv) V px), p·c!z, q·c!z 

; p·r?px, q·r?qx ; r!((px 1\ qv) V qx) )* 
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Let E = E~. Assume the existence of a component accEo whose processis specified by 
ACC Eo. Again we strive for a component that has a subcomponent p of type accEo. 

We derive 
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v(O) 
= {input/output relation ACCE.;} 

and 

t: E .C(E~) 

{ t: E .C(Eó)} 

true 

r(O) 

{input/output relation ACCE0} 

e(O) 1\ c(k: 0 S k S 0) E .C(E~) 

{a E .C(E~) = a E .C(E0 ) for all symbols a} 

e(O) 1\ c(k: 0 S k S 0) E .C(Eo) 

\Ve require 

(4) 

Th en 

p·e(O) 
p·c(O) 

r(O) 

e(O) 
= c(O) 

{ above derivation, ( 4) } 

p·e(O) 1\ p·c(k: 0:::; k:::; 0) E .C(E0 ) 

{ processof p satisfies ACCEo} 

p·r(O) 

Furthermore, we derive for i, i ~ 0, 

r( i + 1) 

{input/output relation ACCE;} 

(Ej: 0 S j Si+ 1: e(j) 1\ c(k: j S k S i + 1) E .C(Eó)) 

{ .C(E~) = .C(E0).C(Eo) U {t: }, i~ 0} 

(Ej: 0:::; j Si+ 1 : e(j) 1\ (El: j S l Si+ 1: c(k : j:::; k <I) E I-(E~) 

1\ c( k : l :::; k :::; i + 1) E .C ( Eo) ) ) 

{ t:E .C(E~)} 
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(E j : 0 ::; j ::; i + 1 : e(j) 1\ c( k : j ::; k ::; i + 1) E .C( Eo)) 
V (Ej : 0 ::; j ::; i+ 1 : e(j) 1\ (El: j < l::; i+ 1 : c(k: j ::; k < l) E .C(E~) 

1\ c( k : l ::; k ::; i + 1) E .C ( Eo) ) ) 

{calculus} 

(E j : 0 ::; j ::; i + 1 : e(j) 1\ c( k : j ::; k ::; i + 1) E .C( Eo)) 
V (El: 0 < l::; i+ 1: (Ej: 0::; j < l: e(j) 1\ c(k: j::; k < l) E .C(E0)) 

1\ c( k : I ::; k ::; i + 1) E .C ( Eo) ) 

{input/output relation ACCE0, renaming dummy} 

(E j : 0 ::; j ::; i + 1 : e(j) 1\ c( k : j ::; k ::; i + 1) E .C( E0 )) 

V (Ej: 0 < j::; i+ 1: r(j -1) 1\ c(k: j::; k::; i+ 1) E .C(Eo)) 

Therefore, we require for i, i 2:: 0, 

(5) 
p·e(i +l ) 
p·c(i+1) 

e( i + 1) V r( i) 
c( i+ 1) 

We continue for i, i 2:: 0, 

r( i + 1) 

{ above derivation, ( 4 ), (5) } 

(Ej: 0::; j::; i+ 1: p·e(j) 1\ p·c(k: j::; k::; i+ 1) E .C(Eo)) 

{ processof p satisfies ACCEo} 

p·r(i + 1) 

This leads to 

com accE0 (sig u, in e: bool, c : sym, out v, r : bool) : 

sub p : accEo bus 

var x, px : bool, z : sym rav 

u; p·u; p·v?px; v!true, px:= false 

; ( e?x, c?z; p·e!(x V p:c), p·c!z ; p·r?px; r!px )* 

moe 
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By induction on the structure of regular expressions one can prove that PR( accE) is 
indeed the process specified by ACCE· The proof is analogous to the proof in section 
5.1. 

We prove that 7( sys( accE)) is transparent by induction on the structure of regtdar 
expressions, i.e. the structure of components. Let TE be the command of component 
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accE and let Ss = 1(TE)· Obviously 1(sys(acc,)) and 1(sys(acca)), for all symbols 
a, <tre transparent . Assume 1( sys( accEo)) and 1( sys( aces,)) to be transparent. By 
corollary 2.1.22 we have that 1(p·sys( accs0 ) 11 q·sys( aces,)) is transparent. Since 
SEoiE1 = Ss0 ;s1 , system sys(SEoiE1 )f{u,v,e,c,r} is transparent, and 

PR(SsoiE1 ) f {p·u, p·v, p·e,p·c, p·r, q·u, q·v, q·e, q·c, q·r} 

{ definition SEoiS,, property projection} 

PR(p·u, q·u; p·v, q·v; (p· e , q·e, p·c, q·c ; p·r, q·r)*) 

C { calculus } 

PR(p·u; p·v; (p·e, p·c; p·r)*)wPR(q·u; q·v; (q·e, q·c ; q·r)*) 

{ PR(accs0 ) satisfies ACCE0 , PR(accE,) satisfies ACCE,} 

PR(1(p·sys( accEo))) w PR(1( q·sys( aces,))) 

{calculus} 

PR( 1(p·sys( accEo) 11 q·sys( accEJ)) 

we have by corollary 2.1.24 that 

1(sys(accEoiE,)) = 
(1(p·sys(accEo) 11 q·sys(accEJ) 11 sys(SEoiS,) ) f{u,v, e,c,r} 

and 

~t(sys(accEo ;E1 )) = 
(1(p ·sys(accEo) 11 q·sys(accs,)) 11 sys(Sso ;E,))Uu,v,e,c,r} 

are transparent . 

Since sys(SE0)f{u,v,e,c,r} is transparentand 

PR( S Eö )f {p·u, p·v, p·e, p·c, p·r} = PR(1(p·sys( accEo))) 

we have by corollary 2.1.24 that 

At(sys(accE0)) = (1(p·sys(accE0 )) 11 sys(Ss;))f{u., v,e,c,r} 

is transparent. Consequently, 1( sys( accE)) is non-divergent for all regLtlar expressions 
1-7. 

L' p to this point we did not mention that a regular expression might be parscel in more 
that one way. For instance, a ; b; c; d may be parsed in five different ways: 
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( ( (a) ; ( b)) ; ( c)) ; ( d) 
((a); ((b); (c))); (d) 
( (a) ; ( b)) ; ( ( c) ; ( d)) 
(a) ; ( ( b) ; ( ( c) ; ( d))) 
(a) ; ( ( ( b) ; ( c)) ; ( d)) 
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Consequently, one may obtain five different components when following the above 
method to construct an acceptor for E. The way in which a regular expression is 
parsed can be represented by a so-called parse tree. Notice that the parse tree of a 
regtdar expression and the structure of the component that is constructed using t.hal 
parse tree correspond. In the above example the third way of parsing yields a. pMse 
tree of depth 2; the other ways yield a parse tree of depth 3. 

As it turns out sequence fundions for l(sys(accs)) depend upon the depth of the 
chosen parse tree for E. This dependenee is such that components constructed by 
using parse trees of least depth are to be preferred . In the above exarnple the third 
way of pa.rsing is to be preferred above the other ways. 

We introduce parenthesized regular expressions: 

c is a parenthesized regular expression 

a is a parenthesized regtdar expression for all symbols a 

if E0 and E 1 are parenthesized regular expressions then (E0 ) I (E1) and 
(Eo); (E1 ) are parenthesized regular expressions 

if Eo is a parenthesized regular expression then ( E0 )* is a parenthesized reg u lar 
express10n 

Pa.renthesized regular expressions have a unique parse tree . I-Ience, the component 
aces that corresponds to parenthesized regular expression E is uniquely defined. In 
the sequel we only consider parenthesized regular expressions which we call rcgular 
cxpressions. 

For every reg u lar expression E the depth of ( the parse tree of) E, denoted by d( E), is 
defined inductively as follows 

d(t:) 

d(a) 

d((Eo) I (E,)) 

d((Eo); (Et)) 

d((Eo)*) 

0 

0 

d(E0 ) maxd(Et) + 1 

d(E0)maxd(E1) + 1 

d(Eo) + 1 
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By induction on the structure of regular expressions we prove that 

O'E E occ(PR(-y(sys(accE))))-+ N defined by 

O'E(u, 0) = 0 

O'E(v, 0) 2 · d(E) + 1 

O'E(e,i) = 2 · d(E) + 2 + i · (2 · d(E) + 2) 

O'E(c, i) 2 · d(E) + 2 +i· (2 · d(E) + 2) 

O'E(r, i) = 4 · d(E) + 3 +i · (2 · d(E) + 2) 

for i, i~ 0, is a sequence function for i(sys(accE)). 

It is obvious that O'E is a sequence function for ! (sys(accE)) in case E = E or E = a 

for some symbol a. 

Let E = (Eo) I (E1 ) or E = (Eo); (E1) . We have 

SE = u; p·u, q·u; p·v, q·v ; v ; ( e, c; p·e, q·e , p·c, q·c; p·r , q·r ; r )* 

Define TEE occ(PR(SE))-+ N by 

TE(u , O) = 0 

TE(p·u,O) = TE(q·u,O) = 1 

TE(p·v, 0) = TE( q·v, 0) = 2 · d(E) 
TE(v ,O) = 2 · d(E) + 1 

TE(e , i) = TE(c,i) = 2 · d(E) + 2 +i · (2 · d(E) + 2) 

TE(p·e, i ) = TE( q·e, i) = TE(p· c, i) = TE( q·c, i) = 2 · d( E) + 3 + i · (2 · d( E ) + 2) 

TE(p· r, i) = TE(q·r ,i) = 4 · d(E ) + 2 +i· (2 · d(E) + 2) 

TE(r , i) = 4 · d(E) + 3 + i · (2 · d(E) + 2) 

for i, i~ 0. Then TE is a sequence function for PR(SE)· 
Notice tha t TE restricted to occ(PR(-y(sys(accE) ))) equals O'E . 
. \Text, we define PEo E occ(PR(!(s ys(accE0 ))))-+ N by 

P Eo (a, i) = TE(p.a, i) (a, i ) E occ(PR(-y(s ys(accE0 ) ))) 

and PE, E occ(PR(i(sys(accE, ))) )-+ N by 

PE1 (a, i ) = TE(q .a, i) (a, i ) E occ(PR(i(s ys(accEo )))) 

We have 
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PEo(v,O)- PEo(u,O) 

= { definition PEo } 

2 · d(E)- 1 

= { definition d(E)} 

2 · (d(E0 )maxd(E1 ) + 1) -1 

> {calculus} 

2 · d(E0)+1 

= { definition aEo} 

aEo(v,O)- aEo(u,O) 

PEo(e,O)- PEo(v,O) 

= { definition PEo} 

2 · d(E) + 3- 2 · d(E) 
> {calculus} 

2 · d(Eo) + 2- (2 · d(E0 ) + 1) 

= { definition aEo} 

O"E0 (e, O)- aEo(v,O) 

for i, i ;::: 0, 

PEo(r,i)- PEo(e,i) 

= { definition p Eo } 

4 · d(E) + 2 +i· (2 · d(E) + 2) - 2 · d(E) - 3 -i · (2 · d(E) + 2) 
{ definition d(E)} 

2 · (d(Eo) maxd(E1 ) + 1)- 1 

> {calculus} 

2·d(Eo)+1 

= {calculus} 

4 · d(E0 ) + 3 +i· (2 · d(Eo) + 2) - 2 · d(Eo) - 2- i· (2 · d(E0 ) + 2) 
{ definition aEo} 

aEo(r,i)- aEo(e,i) 

and for i, i ;::: 0, 

PEo(e,i + 1)- PEo(r,i) 

= { definition PEo } 

16ï 
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2 · d(E) + 3 +(i+ 1) · (2 · d(E) + 2)- 4 · d(E)- 2- i· (2 · d(E) + 2) 

> {calculus} 

2 · d(Eo) + 2 +(i+ 1) · (2 · d(Eo) + 2)- 4 · d(Eo)- 3- i· (2 · d(Eo) + 2) 

= { de:finition O"Eo } 

O"EtJ(e,i + 1)- O"EtJ(r,i) 

From the above it follows that 

(Aa,b,i,j: (a,i),(b,j) E occ(PR('y(sys(accEo)))) 1\ (a,i) < (b,j) 
: uEo(b,j)- uEo(a,i) ::=; PEtJ(b,j)- PEo(a,i)) 

Furthermore, we have 

uEo(u,O) = 0 < 1 = PEo(u,O) 
uEo(v,O) = 2 · d(E0 ) + 1 < 2 · d(E) = PEo(v,O) 
uEo(e, 0) = 2 · d(Eo) + 2 < 2 · d(E) + 3 = PEtJ(e, 0) 

uEo(r, 0) = 4 · d(Eo) + 3 < 4 · d(E) + 2 = PEo(r, 0) 

By corollary 2.5.18 we now have that PEo is a sequence function for i(sys(acce0 )). 

Analogously, we can prove that PE, is a sequence function for i(sys(accE,)). 

From the above we infer that O"E is a sequence function for i(sys(acce)). 
Analogously, we can prove that in case E = (E0 )* ue is a sequence function for 
i(sys(accE)). 

By theorem 2.5.14 we have that 1(sys(accE)) is lockfree. Since 

(At,a,b :tab E tPR('y(sys(accE))) 1\ (a,l(da)) < (b,l(tatb)) 
: uE(b,l(tatb))- O"E(a,l(da)) ::=; 2 · d(E) + 1) 

system i(sys(accE)) has constant response time. 

One may interpret the constant 2 · d(E) + 1 in the above condition as a measure for 
the response time of component accE. Then it is obvious that when constructing a.n 
acceptor for regular expression E one should use a parse tree of E of minimal depth. 

Defining the lengthof regular expression E, denoted by l(E), by 

l(e:) = 

l(a) = 

l((Eo) I (Et)) = 
l((E0 ); (Et)) 

l((Eo)*) = 

one can show that 

1 

l(E0 ) + l(Et) + 1 

l(E0 ) + l(Et) + 1 

l(Eo) + 1 
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log(C(E))::; d(E)::; C(E) 

This implies that the least response time that one rnight achieve is 2 · flog(f(E))l + 1. 

Consicier regular expression Em = a 0 ; a 1 ; . . . ; am-l for m, m > 0. Regular exprcssion 
Em can be parsed to yield parsetrees of depth pog(2m- l)l and 2m- 1 (= f(Em)). 
Therefore, acceptors for Em can be constructed having response time 2· flog(2m-l )l + 1 
and 4m- 1, respectively. 

Every parse tree of regular expression E =a; ( b; c; d)* has depth 4 whereas f.(E) :=: 8 
and log(R(E)) = 3. This shows that the given lower bound is not always rcachable. 

Finally, we observe that sys( accE) describes a networkof processes that has the form of 
a. tree. The nocles in the network that correspond tooperators in E pass on the symbols 
they receive. The nocles that correspond tot: in E discard the symbols they receive. 
Only the nocles that correspond to symbols in E compare the symbols they receive 
with their own symbol. Observe that the nocles of the last two kinds are the leaves of 
the tree. Therefore, the processes in the network could be simplified by sending thc 
symbols directly to the nocles conesponding to symbols in E instead of letting them 
be passed by all other nodes. This reduces the processes in nocles conesponding to 
operators and ê in E to processes that have to deal with boolean values only. 

5.5 Final remarks 

In the previous sections we illustrated a way of deriving programs from (split) specifica
tions. Essentially, we employed the fact that the communication behaviour is specified 
independently of the inputfoutput relation, i.e. all processes specified are data inde
pendent, and the fact that the inputfoutput relation depends only on the numbers of 
events in the trace, i.e. all processes specified are channel order independent. Deriva
tions were clone primarilyin terros of inputfoutput relations. Programming techniques 
that were used are 

introduetion of one or more subprocesses having a similar specification. Sirn
ilar here means equal ( cf. recursive procedures and functions in sequentia! 
programrning) or with one or more parameters changed ( cf. e.g. invariants ob
tained by replacing one or more constants in the postcondition by variables in 
sequentiaJ programrning). In the former case one introduces an infinite nurnber 
of subprocesses, all of the same type. In the latter case one usually arrives at 
a fini te number of su bprocesses, all of different type. 

introduetion of one or more additional channels ( cf. the introduetion of auxil · 
iary variables in sequentia! programming) 

- generalization of the original specification 
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Communication behaviours were modified or derived according to the requirement.s im
posed by the derived input/output relations and by considerations concerning buffering 
of values. This was clone in such a way that the resulting systems are non-divergent 
and lockfree. The derived programs describe systems that satisfy the conditions for 
networks of processes given in section O.O. This is due to the fact that all specifications 
in our derivations are split specifications having commurication behaviours that are 
cubic, and to the way in which we introduced (sub)processes. 

Tbe forma[ proofs in sections 5.1 and 5.2 give an impression as to what kind of theorem 
may be formulated about deriving a split specification for the projection of a process 
from a split specificatien for that process. Among the conditions to be satisficu Me 

the requirements that the channel set C on which one projects is transparent with 
respect to the communication behaviour (cf. theorem 3.2.4) and that the predieale 
in the specificatien can be written as the conjunction of two predicates, one solely in 
termsof channels in C and the other descrihing the values sent via channels not in C as 
functions of the values sent via channels in C. 'vVe have, however, not farmuiateel such 
a theorem since the examples in 5.1 and 5.2 do illustrate the principle morr clciu·ly. 



6 Conclusions 

In this thesis we show how communication of values and parallel computations, es
pecially those that are characterized by the conditions given in section 0.0, can be 
described using trace theory as a formalism. Furthermore, we show how programs may 
be derived from specifications. These programs can be proved to be correct, i.e. they 
satisfy their specifications, and have neither deadlock nor divergence. 

To the above aim we introduced the notion of system. A system is a description for 
a networkof processes. Formally, it is a pair consisting of an alphabet (the external 
channels of the network) and a set of processes. The external process of a system 
is defined to be the composition of all processes in its process set projected on its 
external alphabet. Systems can be composed and projected on alphabets . The program 
notation of trace theory is viewed as a means to describe a certain class of systems. The 
process of a program or component is defined to be the external process of the system 
corresponding to the program or component. In case of a recursive component this 
definition yields, in a natura! way, the least fixpoint of the recursive equation defined 
by the component, thus confirming the choice that is made elsewhere ([Sn],[Ka]). 

The phenomena divergence and nondeterminism are captured by the introduetion of 
the conceptsof non-divergent, non-disabling, and transparent alphabets (non-disabling 
corresponds to 11 in [Ka]). These concepts are introduced for systems as wel!. Absence 
of divergence is characterized in several ways. A number of useful theorems dealing 
with the above phenomena in case of composition and projection is given. Absence of 
deadlock is modelled by defining what lockfree systems are. If one wants to investigate 
the absence or presence of deadlock one may project on transparent alphabets that 
contain the common symbols. 

The classes of conservative and cubic processes ([Ve85], [Ve86]) are introduced, the 
latter being a subclass of the former. Both classes are closed under composition and 
projection. The behaviour of a conservative process after trace t only depends on 
the numbers of events in t, not on their order in t. Furthermore, each subset of the 
alphabet of a conservative process is non-disabling with respect to that process. With 
each process we associate a set of occurrences of events. A process defines a partial 
order on its set of occurrences. Vice versa, a partial order on a set of occurrences defines 
a process. If process T equals the process defined by the partial order conesponding 
to T then T is cubic. A sequence fundion for a cubic process describes a part ial order 
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that is in accordance with the partial order defined by the process. It defines a cubic 
su bprocess that can be interpreted as a restricted ( clocked) behaviour of the original 
process. Sequence functions are also defined for systems consisting of cubic processes. 
Existence of a sequence function for such a system implies, under certain conditions, the 
absence of deadlock. Conditions for the existence of a sequence function for the system 
corresponding to a recursive component are given expressed in terms of the command 
of the component only. A system of cubic processes is said to have constant response 
time if there exists a sequence function for the system satisfying certain conditions. 

Corrununication of values is described in terms of trace theory. Essentially, this is clone 
by introducing symbols that are pairs consisting of a channel name and a value. Occur
rence of pair (c, m} is interpreted as the passing of value m via channel c. In genera!, 
the corrununication behaviour of a process depends on the values that the process sencis 
and receives. Processes for which this not the case are called data independent. Data 
independenee can be expressed in terms of transparence. Data independent processes 
form the class of processes that are specified by split specifications. The Conjunction
Weave rule is formulated for this class. The projection of a data independent process 
on a channel set that is non-disabling with respect to the communication behaviour 
is data independent. Conditions implying the data independenee of the composition 
of processes are formulated. They are easily verified if one introduces channel types , 
and distinguishes between input and output. Data independenee allows one to discuss 
phenomena like deadlock and divergence in terms of communication behaviours only. 
A process is called channel order independent if its future behaviour does not depend 
on the order in which the channels have been used in the past. For processes that 
do not describe communication of values, e.g. communication behaviours, this defini
tion equals the definition of conservativity. A new notation for specifications of data 
independent processes that are channel order independent as wel! is introduced. 

Making a distinction between input and output, the program notation of t race theory 
is extended to include communication of values. Conditions are given that imply the 
process of a component to be data independent and channel order independent and its 
communication behaviour to be cubic. 

Finally, a programming metbod is presented informally by means of examples. Among 
the examples given is the derivation of programs for accepters of regular expressions. 
The programming metbod is based on the data independenee and the channel or
der independenee of processes, and the application of the Conjunction-Weave rule. 
Programs derived using this metbod describe systems that satisfy the conditions for 
networks given in section O.O. We show that the derived programs can be proved to 
be correct. They satisfy the given specification, and their systems are free of deadlock 
and divergence. Furthermore, it is shown that the systems of the derived programs 
have constant response time. A number of analogies with sequentia! programming is 
mentioned. 
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Summarizing, we conclude that the material presented in the previous chapters provides 
adequate means to describe parallel computations, in particular the subclass we are 
mainly interested in. It also supports the reasoning in the programming method that 
is introduced. 
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Samenvatting 

Parallelle berekeningen vormen het onderwerp van dit proefschrift. We behandelen de 
beschrijving van parallelle berekeningen met behulp van tracetheorie (een formalisme 
voor de beschrijving van parallelle processen ontwikkeld door Martin Rem ([Re85]), 
Jan L.A. van de Snepscheut ([Sn)) en Anne Kaldewaij ([Ka])) en een methode om 
programma's voor parallelle berekeningen af te leiden vanuit specificaties. 

Onder parallelle berekeningen verstaan we netwerken van processoren of cellen die 
onderling waarden kunnen communiceren en die beschreven kunnen worden met pro
cessen. We richten ons daarbij voornamelijk op netwerken die als volgt gekarakteriseerd 
kunnen worden. 

het netwerk bestaat uit cellen die volgens een regelmatig patroon gerangschikt 
zijn (bijvoorbeeld een rechthoekig rooster ofeen boom) 

communicatie tussen cellen in het netwerk en tussen cellen en de omgeving van 
het netwerk vindt plaats via éénrichtingskanalen 

cellen zijn eenvoudig en communiceren via een va.st aantal kanalen met buur
cellen en/of de omgeving van het netwerk (vast betekent hier onafhankelijk 
van het totale aantal cellen) 

het communicatiegedrag van de cellen is onafhankelijk van de waarden die ze 
ontvangen en versturen 

cellen synchroniseren slechts op onderlinge communicaties (er is geen globale 
klok) 

Netwerken die voldoen aan de eerste vier voorwaarden worden vaak systolisch genoemd 
(systolic arrays) . Systolische netwerken hebben in het algemeen echter een globale klok 
voor de synchronisatie van de cellen. 

Om parallelle berekeningen te beschrijven dient communicatie van waarden gefor
maliseerd te worden binnen de tracetheorie. Daartoe voeren we symbolen in die paren 
zijn bestaande uit een (kanaal)naam en een waarde. Het voorkomen van een paar 
(c, m) wordt geïnterpreteerd als het verzenden of ontvangen van waarde m via kanaal 
c. Een belangrijk aspect van een proces is de mate waarin de waarden die gecommu
niceerd worden het communicatiegedrag van het proces bepalen. Een proces heet data 
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onafuankelijk als het communicatiegedrag van het proces niet afuangt van de waarden 
die het verstuurt en ontvangt. Het communicatiegedrag van een data onafuankelijk 
proces kan afzonderlijk beschreven worden. Een aantal eigenschappen zoals bijvoor
beeld divergentie hangt bij data onafhankelijke processen alleen af van het commu
nicatiegedrag. Het communicatiegedrag kan ook invloed hebben op de waarden die 
gecommuniceerd worden. Indien de volgorde waarin een proces van zijn kanalen ge
bruik maakt geen invloed heeft op de waarden die gecommuniceerd worden, spreken 
we van een kanaalvolgorde onafhankelijk proces. 

Bij de behandelde programmeermethode gaan we uit van specificaties van data on
afuankelijke en kanaalvolgorde onafhankelijke processen. Gebruikmakend van de vorm 
van de specificaties van dergelijke processen leiden we er p_~ogramma's uit af. De aflei
ding kenmerkt zich door het feit dat het communicatiegedrag en het verband tussen 
ontvangen en verstuurde waarden (input/output-relatie) onafuankelijk van elkaar be
handeld kunnen worden. De afgeleide programma's zijn correct, d.w.z. ze voldoen aan 
hun specificatie en vertonen geen deadlock of divergentie. De afgeleide programma's 
beschrijven netwerken die voldoen aan de eerder vermelde voorwaarden. Bovendien 
hebben ze een constante responstijd. 

We besluiten met een korte beschrijving van de inhoud van de hoofdstukken 1 t/m 5 
in dit proefschrift . 

In hoofdstuk 1 geven we een overzicht van tracetheorie. We voeren het begrip systeem 
in. Een systeem beschrijft een netwerk van processen en bestaat uit een alfabet (de 
externe kanalen van het netwerk) en een verzameling processen. Het externe proces van 
een systeem wordt gedefiniëerd als de compositie van de processen in de procesverzamel
ing van het systeem geprojecteerd op het externe alfabet. Systemen kunnen worden 
samengesteld en worden geprojecteerd op een alfabet. De programmanotatie uit de 
tracetheorie wordt beschouwd als een middel om een bepaalde klasse van systemen te 
beschrijven. Het proces van een programma of component wordt gedefiniëerd als het 
externe proces van het systeem behorend bij het programma of de component. In het 
geval van een recursieve component geeft deze definitie op natuurlijke wijze het kleinste 
dekpunt van de recursieve vergelijking die gedefiniëerd wordt door de component. Dit 
stemt overeen met de keuze in [Sn] en [Ka]. 

In hoofdstuk 2 komen eerst nondeterminisme en divergentie aan de orde. We concen
treren ons daarbij op het begrip transparantie uit [Ka]. Een aantal stellingen laat zien 
welke uitspraken omtrent transparantie gedaan kunnen worden bij samenstelling van 
processen en bij projectie van processen op een alfabet . Vervolgens komen beëindiging 
en deadlock aan de orde ([Ka]) en ten slotte voeren we de klasse van de conservatieve 
processen en de klasse van de cubische processen in ([Ve86]). De cubische processen 
vormen een deelklasse van de conservatieve processen. Een proces is conservatief als 
zijn toekomstig gedrag alleen afuangt van de aantallen gebeurtenissen in het verleden 
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en niet van de volgorde van die gebeurtenissen. De cubische processen zijn de pro
cessen die beschreven kunnen worden met een partiële ordening op voorkomens van 
gebeurtenissen ([Ve86]). Voor cubische processen en voor systemen bestaande uit cu
bische processen introduceren we sequence functies. Sequence functies beschrijven een 
beperkt (geklokt) gedrag van het proces of systeem. Met behulp van sequence functies 
definiëren we het begrip constante responstijd. 

In hoofdstuk 3 modelleren we communicatie van waarden binnen tracetheorie. We 
voeren het begrip data onafhankelijkheid in en laten zien dat data onafhankelijkheid 
uitgedrukt kan worden in termen van transparantie. Data onafhankelijkheid van een 
proces blijft behouden bij projectie op een alfabet dat transparant is ten opzichte van 
het communicatiegedrag van het proces. Data onafhankelijke processen kunnen worden 
beschreven met zogenaamde gesplitste specificaties. Dit zijn specificaties waarbij het 
communicatiegedrag apart wordt beschreven. Met behulp van gesplitste specificaties 
formuleren we een conjunctie-weefregel voor data onafhankelijke processen. We laten 
zien dat bij beschouwingen over bijvoorbeeld divergentie en deadlock men zich bij data 
onafhankelijke processen kan beperken tot het communicatiegedrag van de processen. 
Een proces heet kanaalvolgorde onafhankelijk als het toekomstige gedrag van het proces 
niet afhangt van de volgorde waarin de kanalen zijn gebruikt. Deze definitie lijkt veel 
op de definitie van conservatieve processe. Het communicatiegedrag van een data 
onafhankelijk en kanaalvolgorde onafhankelijk proces is conservatief. 

In hoofdstuk 4 breiden we de programmanotatie van tracetheorie uit zodat we in pro
gramma's communicatie van waarden kunnen beschrijven. Een aantal elementen in 
deze programmanotatie is ontleend aan CSP ([Ho]). In dit hoofdstuk maken we een 
onderscheid tussen input en output. Er worden voorwaarden gegeven waaronder het 
proces van een component data onafhankelijk en kanaalvolgorde onafhankelijk is en 
het communicatiegedrag cubisch is. 

In hoofdstuk 5 presenteren we aan de hand van voorbeelden een programmeermethode. 
De methode is gebaseerd op de data onafhankelijkheid en de kanaalvolgorde onafhanke
lijkheid van de onderhavige processen en op het toepassen van de conjunctie-weefregeL 
De afgeleide programma's definiëren systemen die voldoen aan de eerder genoemde 
voorwaarden voor netwerken van processen. De afgeleide programma's zijn correct in 
de zin dat ze voldoen aan hun specificatie en dat de bijbehorende systemen vrij zijn van 
divergentie en deadlock. De wijze van programmeren vertoont een aantal analogieën 
met sequentiëel programmaren. 
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0 Als het gedrag van filosofen als volgt kan worden gekenmerkt 

do true ~ think 

od 

; P(x) 
; n:= n + 1 
;ifnmod2 = 0 ~ V(d) 
~ nmod2= 1 ~ V(x); P(d); V(x) 
fi 

; eat 
; P(x) 
; n:= n -1 
;ifnmod2 = 0 ~ V(d) 
~ n mod 2 = 1 ~ V(x); P(d); V(x) 
fi 

waarin x en d binaire semaforen zijn, en als initieel n = 0 1\ x = 1 1\ d = 0 geldt, dan 
is het aantal etende filosofen te allen tijde even. 

!it. - E.W. Dijkstra, Hierarchical Ordering of Sequentia[ Processes, Acta Informatica 1 
(1971), pp. 115-138 

- E.W. Dijkstra, A tutorial on the split binary semaphore, 1979 (EWD 703) 

1 Rubik's doek is een uitstekend middel om het begrip invariant aanschouwelijk te maken. 

2 Een groot aantal graafalgoritmen laat zich eenvoudig afleiden door het gestelde pro
bleem te herleiden tot een stelsel ongelijkheden waarvan de kleinste oplossing berekend 
dient te worden. 

lit. - Joop van den Eijnde, A derivation for the reachable vertices algorithm, Eindhoven 
University of Technology, 1986 (Internal Memorandum JvdE 86/3) 

- Gerard Zwaan, Even and odd reachability, Eindhoven University ofTechnology, 1987, 
(Internal Memorandum GZ 87 /2) 

3 Het aantal traces van SEM4(a,b) ter lengte k, k > 0, is 2(k-I)mod 2 . 3(k-I)div 2 • 



4 De in hoofdstuk 5 van dit proefschrift beschreven parallelle programma's zijn op een
voudige wijze als circuits te implementeren. 

!it. - Anne KaJdewa.ij, The translation of processes into circuits, PARLE Parallel Architec
tures and Languages Europe, Volume 1: Parallel Arch.itectures, ed. J .W. de Bakker, 
A.J. Nijman, P.C. Treleaven, Springer Berlin 1987 (LNCS 258), pp. 195-212 

- Jo Ebergen, Translating programs into delay-insensitive circuits, Ph.D.-thesis, Eind
hoven University of Technology, 1987 

5 Voor regelmatige berekeningen zijn sequence functies een effectief middel om uitspraken 
te doen over de voortgang en het real-time gedrag. 

6 Ieder alfabet is non-disabling ten opzichte van een conservatief proces. Derhalve vallen 
bij conservatieve processen de begrippen transparantie en non-divergentie samen. 

7 Voor processen wordt de "scheiding van data en control" geformaliseerd door de be
grippen data onafhankelijkheid en kanaalvolgorde onafhankelijkheid. 

8 De klasse van processen beschreven door restricted commands vormt een echte deel
klasse van de klasse der reguliere, cubische processen. 

9 Bij het automatisch genereren van het trefwoordenregister van een boek denke men 
aan het spreekwoord "Overdaad schaadt". 

!it. - DonaJd E. Knuth, The Tf;Xbook, Addison-Wesley, 1984 

10 Bij hoogspringen en polsstokhoogspringen wordt, in tegenstelling tot andere onderdelen 
van de atletiek, de werkelijk geleverde prestatie niet gemeten. 




