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0 Introduction

0.0 Communication of values and parallel computations

In this thesis we discuss the description of the communication of values between mech-
anisms, and parallel computations. This is done using trace theory, a formalism for
concurrent processes developed by Martin Rem ([Re85]), Jan L.A. van de Snepscheut
([Sn]), and Anne Kaldewaij ([Ka]).

In trace theory mechanisms are described by processes. Interaction of a mechanism
with its environment is described by the occurrence of events. In order to describe
communication of values we introduce events that are pairs consisting of a channel name
and a message (value). This is done also by C.A.R. Hoare in Communicating Sequential
Processes ([Ho]). Occurrence of pair {(¢,m) is interpreted as the passing of message m
via channel ¢. By introducing these pairs one can fully describe communication of
values within trace theory.

An important aspect is the extent to which the values that are communicated deter-
mine the communication behaviours of the processes. A process is said to be data
independent if its communication behaviour is independent of the values that it sends
and receives.

Consider the following program

com adder(in a,b : int,out c: int) :
var z,y : int rav
(a?z, bly; cl(z +y))*

moc

where a?z denotes the receiving of a value via input channel a and the assignment of
that value to local variable z, and cl(z + y) denotes the sending via output channel ¢
of the sum of the values of the variables z and y (the program notation used here is
introduced in chapters 1 and 4). Program adder defines a data independent process
that describes a mechanism that repeatedly computes the sum of pairs of integer values.
Its communication behaviour is described by program

com adder omm(a,b,¢) : (a, b; ¢)* moc
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Let a(i) denote the i-th value that is communicated via channel a (i > 0). Let b(z)
and c(?) be defined analogously. We then have for ¢, 7 > 0,

(i) = a(i) + b(2)

This relation is called the input/output relation. Observe that the communication
behaviour and the input/output relation are independent.

Next, consider a mechanism that filters negative values {rom an incoming stream of
integer numbers, and that is described by the following program

com filter(in a : int,out b: int) :
var z : int rav
(a?z;if2 >0 —blzz <0 — efi)

moc

The process defined by the above program is not data independent. Its communication
behaviour cannot be described independently of the values that it sends and receives.
After the occurrence of (a,m) for some m < 0 no communication via channel b can
tollow directly.

Data independence of processes allows us to express phenomena like deadlock and di-
vergence ([Ka],[Ho]) in terms of the communication behaviours the of processes instead
of in terms of the processes themselves.

Parallel computations are networks of processors or cells that can be described by
processes. We are mainly interested in networks that can be characterized as follows

— the network is a regular arrangement of cells (for instance, a rectangular grid
or a tree)

— communication between cells in the network and between cells and the envi-
ronment of the network takes place via unidirectional channels

— cells are simple and communicate via a fixed number of channels with neigh-
bour cells and/or the environment of the network (fixed means independent of
the total number of cells)

— the communication behaviours of the cells are independent of the values that
they send and receive, i.e. their processes are data independent

— cells synchronize by message passing only
Networks that satisfy the first four conditions are often referred to as systolic arrays

([Ku]). Systolic arrays usually have a global clock to synchronize the cells and, there-
fore, do not satisfy the fifth condition.
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In this thesis we discuss a programming method with which one can derive programs
from specifications that describe data independent processes ([Re87]). Data indepen-
dence plays an important role in this method since it allows us to treat communication
behaviours and input/output relations in isolation. The programs that are derived
define networks of processes that satisfy the above conditions. The derived programs
are formally proved to satisfy the given specifications and to have no divergence or

deadlock.

0.1 Overview

In chapter 1 we give an overview of trace theory. Some new concepts are introduced,
among them the notion of systems. A system describes a network of processes. Pro-
grams as defined in [Sn] and [Ka] denote a special class of systems. A recursive program
defines a system consisting of an infinite number of processes. The process of a pro-
gram is defined to be the process of the system specified by the program. As a result
of this definition the process of a recursive program is equal to the least fixpoint of a
recursive equation defined by the program, which was the definition in [Sn] and [Ka].

In chapter 2 we first discuss nondeterminism and divergence. The concepts of non-
disabling and transparent sets of events (alphabets) are introduced (non-disabling cor-
responds to I; in [Ka]). Absence of divergence is characterized in several ways. A
number of results is presented on non-disabling, non-divergent or transparent alpha-
bets after composition and projection.

Secondly, we discuss termination and deadlock ([Ka]). If one wants to investigate the
absence or presence of deadlock one may project on transparent alphabets that contain
the common symbols.

Finally, we introduce the class of conservative processes and the class of cubic processes
([Ve86]). The latter is a subclass of the former. A process is conservative if its future
behaviour depends only on the numbers of past events and not on their order. Cu-
bic processes are the processes that can be described by partial orders on occurrences
of events ([Ve86]). These classes are closed under composition and projection. Each
subset of the alphabet of a conservative process is non-disabling. For cubic processes
so-called sequence functions are introduced. A sequence function for a cubic process
defines a subprocess that is cubic and that may be interpreted as a restricted (clocked)
behaviour of the original process. Existence of a sequence function for a system of
cubic processes implies the absence of deadlock. The notion of constant response time
is defined in terms of sequence functions.

In chapter 3 we show how to model communication of values in terms of trace theory.
Data independence is defined and is shown to be expressible in terms of transparence.
Data independence is preserved by projection on alphabets that are non-disabling with
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respect to the communication behaviour. Conditions are given such that composition
of data independent processes yields a data independent process. Split specifications
are introduced. The class of processes described by split specifications equals the class
of data independent processes. In case of data independence phenomena like divergence
and deadlock can be expressed in terms of communication behaviours only. Finally,
we introduce channel order independence, expressing that the future behaviour of a
process does not depend on the order in which the channels were used by the process.
[ts definition closely resembles that of conservative processes.

In chapter 4 we extend the program notation introduced in chapter 1 in order to express
communication of values within programs. The notations have partly been adopted
from CSP ([Ho]). In this chapter we make a distinction between input and output.

In chapter 5 we introduce, by means of examples, the programming method that was
mentioned in the previous section.

0.2 Notation

We conclude with some remarks concerning notations that are used in this thesis.

Universal quantification is denoted by
(Al:R:E)

where A is the quantifier, [ is a list of bound variables, R is a predicate, and £ is the
quantified expression. Both R and F, in general, contain variables from [. Predicate
R delineates the range of the bound variables and expression E is defined for values
in that range. Likewise, we denote existential quantification, summation, union, and
intersection using quantifiers E, S, U, and N, respectively.

[or expressions £ and (7, an expression of the form £ = G will often be proved in
a number of steps by introduction of intermediate expressions. Ifor instance, if we can
prove that £ = G by proving E = F and I' = G, we record this proof as follows

E

= {hint why E = F'}
F

= {hint why FF = G}
G

In this way we avoid writing down intermediate expressions like I twice. These nota-
tions have been adopted from [Dij].

With A/ and Z we denote the set of natural numbers and the set of integer numbers,
respectively.



1 Trace theory

1.0 Introduction

In this chapter we present an overview of trace theory. Most of the subjects that are
also treated elsewhere ([Ka],[Sn]) will be described only briefly. The material p1esented
in this chapter forms the basis for the rest of this thesis.

The basic notion of trace theory is that of processes. A process is a mathematical
model of a mechanism. For instance, a variable that has no initial value interacts with
its environment through two kinds of events, namely

a : a value is assigned to the variable

b : the variable returns its value

Sequences of a’s and b’s describing possible behaviours of the variable are abab,
abbaa, aab etc.. The sequence b is not a behaviour of the variable.

[Finite sequences of events are called traces. A process describing a mechanism consists
of the set of relevant events and the set of all possible traces. These sets are called the
alphabet and trace set of the process, respectively. The process describing the variable
has {a,b} as its alphabet and the set of all sequences of a’s and ’s not starting with
a b as its trace set.

It is clear that for every trace all initial parts thereof should also be allowed. Fur-
thermore, the empty trace — meaning that the mechanism has not yet engaged in any
event — should always be in the trace set. These two properties characterize processes.

The alphabet of a process contains the events that we are interested in. Depending on
the aspects that are considered a mechanism may be described by different processes.
If we are interested in the values that are assigned to the variable we might have chosen
{a,b} x Z (Z denotes the set of integer numbers) for the alphabet — assuming that the
variable can store only integer values — where for n € Z

(a,n) : the value n is assigned to the variable

(b,n) : the variable returns the value n
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Typical traces are (a,4) (b,4) (b,4) {(a,—1) (b, —1), and (a,0) (a, 1) (b, 1) (a,0) (b,0).
In trace theory neither time nor speed plays a role. Events do not occur at a cer-

tain speed. Events are assumed to be atomic : they have no duration, they happen
instantaneously, and they do not overlap.

Composition of mechanisms is represented by composition of corresponding processes.
Interaction between mechanisms is assumed to be instantaneous. A common event

takes place only if all processes having the event in their alphabets are able to engage
in the event.

1.1 Trace calculus

With every kind of event a name (a symbol) is associated. We assume the existence
of a set Q of names. An element of ) is called a symbol. A subset of Q is called an
alphabet.

The set of all finite-length sequences of symbols is denoted by Q*. The empty sequence
€ is an element of 2". An element of Q* is called a frace. A subset of Q* is called a
trace set. For an alphabet A, set A* is defined similarly. Notice that @* = {e}.

In our notatlon we employ the following conventions.

Small and capital letters near the beginning of the Latin alphabet denote
symbols and alphabets respectively.

Small and capital letters near the end of the Latin alphabet denote traces and
trace sets respectively.

The length of trace ¢, denoted by £(t), is defined by

£(e)
sa)

0

£ £(s)+1

The concatenation of traces s and ¢ is denoted by st. In order to save parentheses,
concatenation is given the highest priority of all operators.

Trace s is called a prefiz of trace t, denoted by s < ¢, if
(BEu:u€eQ":su=t)

The prefiz closure of a trace set X, denoted by PREF(X), is the trace set consisting
of all prefixes of elements of X.

PREF(X)={s|seQ A (Et:te X:s<1t)}
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Trace set X is called prefiz-closed if X = PREF(X).

The projection of trace t on alphabet A, denoted by ¢[A, is obtained by removing from
t all symbols that are not in A. It is defined as follows

elA =
salA
salA =

€
slA ag A
(slA)a a€ A

We write tla as an abbreviation of ¢[{a}. The projection of trace set X on alphabet
A, denoted by XA, is the trace set {t |t € 0* A (Bu:u€ X :ulA=1)}.

A trace structure T is a pair (A, X') where A is an alphabet and X is a trace set such
that X C A*. We call A the alphabet of the trace structure and X the trace set of the
trace structure.

The alphabet of a trace structure 7' is denoted by aT and its trace set by t7" . Notice
that for a trace structure T we have T = (aT,tT).

We will denote trace structures using capital letters near the end of the Latin alphabet.

The projection of trace structure T' on alphabet A, denoted by T'[A, is defined by
TIA = (aT N A, tTA)

The prefiz closure of trace structure T, denoted by PREF(T), is defined by
PREF(T) = (aT,PREF(tT))

Trace structure T is called prefiz-closed if tT is prefix-closed. Trace structure T is
called nonempty if tT # O.

A process 1s a nonempty prefix-closed trace structure. A process T is thought of as
an abstraction of a mechanism. The alphabet of T is the set of relevant events the
mechanism may engage in. It is assumed that events have rio duration and that they do
not overlap (events are said to be atomic). The state of the mechanism is described by
the so called current trace being the sequence of events the mechanism has participated
in. The behaviour of the mechanism in operation is described as follows. Initially, the
current trace is empty. On occurrence of an event the current trace is extended with the
symbol associated with that event. Clearly, the current trace should, at any moment,
belong to the trace set of T. Moreover, if s is the current trace and sa € t7T' then
the event associated with @ may happen. Notice that we do not make a distinction
between events initiated by the mechanism and events initiated by the environment of
the mechanism.

Example 1.1.0

A variable that has no initial value may be specified by a process T in the following
way. The relevant events are
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a : a value is assigned to the variable

b : the variable returns its value

Therefore, we choose al' = {a, b}.

Any trace in {a,b}" that does not start with a b is a trace of T' or, equivalently, any
trace in {a,b}" that is either empty or starts with an a is a trace of T. The variable
can be specified by

T =({a,b},{t|t € {a,b}* A(t=¢Vast)})

Notice that T is a process, i.e. a nonempty prefix-closed trace structure.

(End of Example)

Property 1.1.1
If T is a process and A is an alphabet then T1A is a process.
(End of Property)

We now define some special processes that play an important role. For alphabet A
processes STOP(A) and RUN(A) are defined by

STOP(A) = (A,{e})
RUN(A) = (A4,A")

Process STOP(@) (= RUN(@) ) is also denoted by STOP .

Let A and B be alphabets and let p and ¢ be natural numbers. Process SYNC, ,(A, B)
is defined by

SYNGC, (A, B)

=(AUB,{t|t€(AUB)* A (As:s<t:—q<{(slA)—L(sIB) < p)})
Let k be a natural number. Process SEM(A, B) is defined by

SEM(A, B) = SYNCy (A4, B)

We will often write SEM(a, b) instead of SEM({a}, {b})
and SYNC, ,(a,b) instead of SYNC, ,({a}, {b}).

Intersection, union, and inclusion are defined for trace structures having equal alpha-

bets. Let (A, X) and (A4,Y) be trace structures.
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(AL X)C(AY)=XCY

Let X be a nonempty set of trace structures all having alphabet A. We define
UT:TeX:T)=(A(UT:Te X :tT))

and
(NT:TeX:T)=(A,(NT:T e X :tT))

The set of all processes with alphabet A is denoted by 7(A) . We have that (T(A), C)
is a complete lattice ([Bi]) with least element STOP(A) and greatest element RUN(A).

Theorem 1.1.2

If X is a nonempty set of processes from 7 (A),
then (UT :T € X :T)and (NT :T € X : T) are processes in T(A).

(End of Theorem)

Let T be a process and let ¢ € tT'. Process after(t,T') is defined by
after(t,T) = (aT,{u|u € aT* A tu € tT})

The successor set of trace ¢, denoted by suc(#,T), is the set of all symbols that may
follow ¢ in tT, i.e.

suc(t,T)={a|a € aT A ta € tT}

Property 1.1.3
Let T and U be processes with equal alphabets. Let ¢ € tT and A C aT.

a € suc(t,T) = a € tafter(t,T)
suc(t,T) = suc(e, after(t,T))
suc(t,T) N A C suc(tlA, TA)
suc(t!A,TIA) = (Us:s € tT A slA =t[A: suc(s,T) N A)
3 after(t,T)IA C after(tlA,TIA)

after(t/A,T1A) = (Us: s € tT A s|A=tlA: after(s, T A)
4 TCU = suc(t,T)C suc(t,U) A after(t,T) C after(t,U)

N o= O
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Let X be a nonempty set of processes with equal alphabets.
Letuet(UT:TeX :T)andvet(NT:TeX:T).

5 suc(u,(UT:TeX:T)=UT:TeX Auetl:suc(y,T))
suc(v,(NT:TeX:T)=(NT:T € X : suc(v,T))
after(u, UT:Te€ X :T))=(UT:T€ X Au€tT:after(u,T))
after(v,(NT:Te€ X :T))=(NT:T € X : after(v,T))

(End of Property)

If s and t are traces of process T such that after(s,T) = after(t,T) we say that s and
t belong to the same state of 7. More formally the states of T are defined to be the
equivalence classes of the equivalence relation L defined on tT by

s At = after(s,T) = after(t,T)
With [t]r we denote the class to which ¢ belongs. The set of all classes (states) of T is
denoted by [T].

Property 1.1.4
Let T be a process. Let s, € tT.

0 sit= suc(s, T) = suc(t,T)
1 s&t= (Au:ue€al™ A su€tT A tu€tT: suc(su,T) = suc(tu,T))
(End of Property)

The definitions of after and suc may be extended to the states of T

after([tlr,T) = after(t,T) fort € tT
suc([tlr, T) = suc(t,T) for t € tT

We then have
after(a,T) = after(3,T) = a=p for a, 8 € [T

If T has a finite number of states, then T is called regular.

Theorem 1.1.5
Let T be a process and A be an alphabet. If T is regular then TTA is regular.
(End of Theorem)
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Parallel composition of mechanisms is described in terms of the composition of the
associated processes. Assume mechanism P is specified by process T and mechanism
@ by process U. We specify the mechanism that is obtained by composing P and @
by a process V defined in terms of 7' and U. The alphabet of V' is aT’ U aU. Let ¢
be the current trace of the composite. Then tlaT is the current trace of P and tfal
the current trace of Q. Trace t can be extended with a symbol from a7 N aU if both
P and @ can engage in the event associated with the symbol, i.e. both the current
trace of P and the current trace of Q may be extended with the symbol. Trace ¢ can
be extended with a symbol from aT + aU if the mechanism having that symbol in its
alphabet can engage in the associated event. From the above we infer that ¢ is a trace
of V if and only if ¢!aT is a trace of T and tlalU is a trace of U. This leads to the
following definition.

The weave of processes T and U, denoted by 7"w U, is defined by
TwU = (aTuUal,{t|te (aTUal)* A tlaT € tT A tlaU € tU})

It is easily shown that T'w U is a process. Weaving is interleaving with synchronization
on common symbols. Therefore, weaving of processes with disjoint alphabets amounts
to just interleaving.

Example 1.1.6
RUN(A)w RUN(B) = RUN(AU B)
SEM;(a, b) w RUN({c}) = SEM;({qa, c}, {b, c})
SYNC, ,(A,B)wRUN(C) = SYNC, ,(AUC\ B,BUC\ A)
SEM;(a,b) w SEM;(b,a) = STOP({a, b})
RUN(A)w STOP(B) = RUN(A \ B)w STOP(B)
=(AUB,(A\ B)")
(End of Example)

The following property shows that weaving is symmetric, idempotent, associative, and
monotonic. Its unit element is STOP and its zero element is STOP(Q).

Property 1.1.7
Let 7', U, and V be processes. Let A be an alphabet.

0 TwU=UwT
1 TwT=T
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2 (Twl)ywV=Tw({UwV)
TwSTOP =T
aT C A = TwSTOP(A) =STOP(A)
T wSTOP()) = STOP(Q)

4 TwTIA=T

TwUldT CT

TCU == TwU=T

7wRUN(A) =TwRUN(A\ aT)

TCU = TwVCUwWV

S S Ot

End of Property)

In view of the above property we can generalize the definition of weaving to arbitrary
sets of processes. Let X be a set of processes. The weave of the processes in X, denoted
by (WT:T € X :T), is defined to be process

((UT:Te X :al)
At|te(UWT:TeX:al)*A(AT:Te X :tlaT € tT)})

Instead of (WT : T € X : T') we also write W(X). The next property shows W to be
a generalization of w .

Property 1.1.8

Let X and Y be sets of processes. Let U be a process. Let A be an alphabet.

W(@) = STOP

W{U})=U

W(XUY)=W(X)wW(Y)

XCY AACaW(X) = W(X)IADW(Y)'A

W o = O

(End of Property)

The following results show the relation between weaving and projection. Observe the
important role played by the intersection of the alphabets. In the sequel 7' and U are
processes and A and B are alphabets.

Property 1.1.9
0 (TwU)(AuaT)CTwUlA
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1 (TwU)IACTIAwWUA
(End of Property)

Theorem 1.1.10

0 aTnalUCA = (TwU)l(AuaT)=TwUlA
1 aTNalUCA = (TwU)[A=TIAwUA

(End of Theorem)

Theorem 1.1.11

Let ACaTl, BCal,and aT'Nal = AN B. Then

(TwU)(AUB)=TIAwUIB
Proof
We derive

aT'N(AUB)
{ACaT}

AU (al' N B) ‘
{aTNnBCaT'nall = AN B}

f

i

A
Likewise, one can derive all N (AU B) = B.

(TwU)I(AU B)

= {aT'nalU = AN B, theorem 1.1.10.1 }
TI(AuB)wU[(AU B)

= {Tl1aT =T, UlaU = U, property projection, above derivation }
TIAwUIB

(End of Proof)

Corollary 1.1.12
(TwU)l(aT nal) =TNaT nal)wUl(aT nal)
(End of Corollary)
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The continuation of process Tw U after trace ¢, process after(t,T wU), equals the
weave of after(t/aT,T) and after(tlalU,U) as the following theorem expresses.

Theorem 1.1.13
Let T and U be processes. For every ¢t € t(T'w U) we have

after(t, TwU) = after(t!aT,T) w after(t]al,U)
Proof
Let t € t(Tw U). For trace u we have

u € tafter(t,TwU)
{ definition after }
vea(TwlU)* Atuet(Twl)
{ definition weave, property projection }
u € (aT Ual)* A (tlaT)(ulaT) € tT A (tlalU)(ulal) € tU
{ definition after, t!aT € tT, tlalU € tU }
u € (aT Ual)* A ulaT € tafter(tlal,T) A ulalU € tafter(tlal,U)
{ definition weave }
u € t(after(tlal, T) w after(tlal,U))
(End of Proof)

A direct consequence of the above theorem is

Theorem 1.1.14
Let T and U be processes. Let s and t be traces of Tw U. Then
slaT £ t1aT A slalU K tlalU = s TXY ¢

(End of Theorem)

[From theorem 1.1.14 we infer

Theorem 1.1.15

Let 7" and U be processes. The number of states of 7w U is at most the product of
the number of states of T and the number of states of U.

(End of Theorem)
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Corollary 1.1.16
If T and U are regular processes, then T'w U is a regular process.

(End of Corollary)

Successor sets of T'w U can be expressed in terms of successor sets of 7" and U.

Theorem 1.1.17
Let T and U be processes. For all ¢t € t(Tw U) we have
suc(t, TwU) = (suc(tlaT,T)N suc(tlal,U))
U suc(tlaT,T)\ aU U suc(tial,U)\ aT
Proof
Let t € t(TwU). We have

suc(t,TwU)
= { definition successor set and weaving }

{a|la€aTual A (ta)laT € tT A (ta)lalU € tU}
= { definition projection, ¢t € t(T w U), set calculus }

{alaeal nalU A (t'aT)a € tT A (tlal)a € tU}

U{a|la€aT\aU A (tlaT)a € tT} U {a|a € aU \ aT A (tlal)a € tU}
= { definition successor set, set calculus }

(suc(ttaT, T) N suc(t!al,U)) U suc(tlaT,T)\ alU U suc(tlal,U)\ aT
(End of Proof)

Theorem 1.1.18

Let T and U be processes. Let A be an alphabet. If aT’ N all € A then for all
t € t(T'wU) we have

I

suc(t, TwU)C A
Proof

suc(tlaT,T) U suc(tlalU,U) C A

Assume alT'Nal C A. Let t € t(T wU). We have

suc(t, TwU)C A
= {theorem 1.1.17}
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(suc(t!aT, T) N suc(tlal,U)) U suc(tlaT,T) \ alU U suc(tlalU,U)\ al C A
{aT'nalU C A}

suc(tlaT,T)\ aU U suc(tfalU,U)\aT C A

= { suc(t!aT,T) C aT, suc(tlalU,U) C aU, set calculus }

(suc(tlaT,T) U suc(tlal,U))\ (aT Nnal) C A
{aT nalU C A, set calculus }

suc(tiaT,T) U suc(tlal,U) C A

(End of Proof)

1l

Corollary 1.1.19
Let T" and U be processes. Let A be an alphabet. For all ¢t € t(T'w U) we have

suc(t, TwU) C A = suc(tlaT,T) U suc(tlalU,U) € AU (aT Nal)
(End of Corollary)

1.2 Description of processes

In this section we present two ways in which processes may be described, by specifica-
tions and by a generalized form of regular expressions.

A specification of a process is a pair (A, P) where A is an alphabet and P is a predicate
on A* such that P(e) holds. The process specified by specification (A, P) is

(A {t|te A" A (As:s<t:P(s))})

It is easily shown that this trace structure is indeed a process. A specification will
usually be written as (A, ¢ : P(¢)).

Example 1.2.0

0  Process SEM;(a,b) is specified by
- ({a,b},1:0 < {(tla) — £(tIb) < 1)
1 The process describing the variable in section 1.0 is specified by
({a,b},t:t=€¢ Va<t)

(End of Example)

[t (A, P) specifies process T, then tT is determined by
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e etT
tetT Aa€ AN P(ta) = ta €tT

tT contains no other traces than those that belong to it on account of (0) and

(1)

The following theorem, called the Conjunction-Weave Rule ( CW-Rule ), shows the
relation between the specifications of two processes and the specification of the weave
of the two processes.

—~ N~
N = O

Theorem 1.2.1 Conjunction-Weave Rule

Let (A, P) and (B, Q) specify processes T and U respectively. Then
(AUB,t: P(tlA) A Q(tIB))

specifies Tw U.
(End of Theorem)

Commands form an extension of the notion of regular expressions. With each command
S a trace structure TR(S) is associated. Commands and associated trace structures
are defined inductively by the following rules.

- ¢ is a command and TR(¢) = STOP
- ais a command and TR(e) = ({a}, {a}) for all symbols a
- if §is a command then S* is a command and
TR(S*) = (aTR(S), (tTR(S))*)
- if S and T are commands then S | T is a command and
TR(S | T) = (aTR(S) U aTR(T), tTR(S) U tTR(T))
- if S and T are commands then S; T is a command and
TR(S; T) = (aTR(S)U aTR(T), {uv | u € tTR(S) A v € tTR(T)})
- if S and T are commands such that aTR(S) N aTR(T) = & then S, T is a
command and
TR(S,T) = (aTR(S)UaTR(T)
,{t| t € (aTR(S)UaTR(T))"
A tlaTR(S) € tTR(S) A tlaTR(T) € tTR(T)})
- if §is a command then S°is a command and TR(S°) = STOP(aTR(S))

Observe that definition of TR(S, T') resembles the definition of the weave of two pro-
cesses. Moreover, it differs from the definition in [Sn] and [Ka] where the condition
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aTR(S)NaTR(T) = & is not imposed. Listed in order of decreasing priority the opera-
tors are the star, the zero, the comma, the semicolon, and the bar. Commands are said
to be equivalent (S = T') if and only if their trace structures coincide (TR(S) = TR(T)).

Observe that for all commands S trace structure TR(S) is nonempty. Therefore
PREF(TR(S)) is a process. The process PR(S) associated with command S is de-
fined by

PR(S) = PREF(TR(S))

Theorem 1.2.2

0 If Sisacommand, then PR(S) is a regular process.
1 If T is a regular process, then there exists a command S such that 7' = PR(S)

(End of Theorem)

As a useful abbreviation we introduce for all commands S and all n, n > 0, the
command S ™ being the concatenation of n times the command S. More formally

8 = §
5h = Fi 5% n>0

Example 1.2.3

SEM;(a,b) = PR(a; (a, b)*)

SEMa(a,b) = PR{(d; (a5 b)"; ")

STOP({a}) = PR(a%
SYNC1,1(a,b) = PR(((Z, b)*)

(End of Example)

1.3 Systems

The composite of mechanisms can be described by the weave of the processes corre-
sponding to these mechanisms. Sometimes, however, we want to retain the information
on the partition into submechanisms. This can be done by describing the composite
by a so-called system being a pair consisting of an alphabet and a set of processes. The
set of processes consists of the processes corresponding to the (sub)mechanisms. The
alphabet consists of the symbols that represent the exzternal events of the composite.
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This reflects that the other events of the composite are not observable from the outside.
These events are called internal events.

More formally, a system S is a pair (A4, X} where A is an alphabet and X is a set of
processes such that A C aW/(X). Alphabet A is called the (external) alphabet of the
system and set X is called the set of processes, or process set, of the system.

Let S be a system. The external alphabet of S is denoted by €S and its process set is
denoted by pS . The condition imposed on the alphabets now reads eS C aW(pS).
The (external) process of S, denoted by PR(S), is defined by PR(S) = W(pS)leS.

The external process of certain systems is given in the following theorem.

Theorem 1.3.0 ([Ka])
Let p, g, m, and n be natural numbers such that p+¢>1and m+n > 1. Let A, B,
and C be nonempty alphabets such that AN B =& and BNC = &. Then
PR‘( ( A+ Cv {SYNCZMI(A$ B)v SYNCm,n(B’ O)} ) )
= SYNCpimgin(A\C,C\ A)
(End of Theorem)

Corollary 1.3.1 ([Ka])

Let p and ¢ be natural numbers such that p+ ¢ > 1. Let A, B, and C be nonempty
alphabets that are mutually disjoint. Then

PR((AUC,{SEM,(A, B),SEM,(B,C)})) = SEM,4+,(A4,C)
(End of Corollary)

The set of all systems having external alphabet A is denoted by £(A).

External symbols of a system can be hidden by projection of the system on an alphabet.
They then become internal symbols. Projection has no effect on the process set of the
system. The projection of system S on alphabet A, denoted by S[A, is defined by

S1A = (eSN A, pS)

Notice that p(S[A) = pS and, hence, aW(pS) = aW (p(STA)).

Let S and T be systems. Then S and T' describe networks of processes with external
alphabets eS and eT, respectively. Composition of systems S and T should reflect
the composition of these networks of processes. Obviously, the only synchronization
between both networks should be done on common external symbols. This implies
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that common symbols should be external symbols of both networks. More formally,
aW(pS)NaW(pT) = eS NeT. The external alphabet of the composite consists of
the external symbols of both S and T. Furthermore, the network of the composite
consists of both the processes of S and the processes of T, i.e. the process set ol
the composite of § and T is pS U pT. Therefore, for systems S and 7' satis(ying
aW(pS)NaW(pT) = eS NeT the composite of S and T, denoted by S || T (read “S
parallel 7)), is defined by

S| T = (eSueT,pSUpT)

Example 1.3.2
0 (@,9) is a system
p(2,0) =0
e(@,2) = &
PR((®,2)) = W(@)!@ = STOP
1 Let S ={({a,b},{SEM,;(a,b)}) and T = ({b,c}, {SEM,(b,¢)}).
We have
S| T = ({a,b,c}, {SEMi(a, b), SEM;(b,¢)}),
(S| T){a,c} = ({a,c}, {SEM(a, b), SEM,(b,c)}),
and, by corollary 1.3.1,
PR((S || T)M{a,c}) = SEMy(a,c)
(End of Example)

Below we list a number of properties of systems and their processes.

Property 1.3.3

Let .S, and T be systems such that aW(pR) N aW(pS) = eRNeS,
aW(pR)NaW(pT) =eRNeT, and aW(pS)NaW(pT)=eSnNeT.
Let A be an alphabet.

(@,@)||R=R

RIS=S|R
(RISYIT=RI(SIT)

PR(S1@) = STOP

eS =eT A pSCpT = PR(S) 2 PR(T)

W N - O
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5 PR(SIA) = PR(S)]A
6 PR(S || T) = PR(S)w PR(T)
7 eSNeT CA = (S| T)A=(SIA) || (TIA)

Proof

4  See property 1.1.8.3

PR(STA)

{ definition PR}
W(p(STA))le(StA)

{ definition projection }
W(pS)i(eSN A)

{ property projection, definition PR}
PR(S)IA

PR(S || T)
{ definition PR}
W(p(S || T)le(S || T)
{ definition composition }
W(pSuUpT)l(eSuUeT)
{ property 1.1.8.2 }
(W(pS)w W (pT))l(eSUeT)
= {aW(pS)NaW(pT) = eSNeT, theorem 1.1.11 }
W(pS)leSw W (pT)leT
= { definition PR}
PR(S)w PR(T)
7 Assume eSNeT C A. We derive
aW(p(STA)) NaW(p(TI1A)) = e(STA)Ne(TA)
{ definition projection }
aW(pS)NnaW(pT)=eSNANel'NA
= { assumption }
eSNel'=eSNeT'NA
= { set calculus }
eSNel' C A

Il

Il

21
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Hence, systems S[A and TlA have only external symbols in common and can be
composed. The equality between (S || T')[A and (S1A) || (T'TA) follows immediately.

(End of Proof)

We conclude with two definitions. If 7" is a process then the system corresponding to
T, denoted by sys(T), is defined by sys(T) = (aT, {T}). Notice that PR(sys(T)) = T.
If S is a command then the system corresponding to S, denoted by sys(S), is defined
by sys(S) = (aPR(S), {PR(S)}). Notice that PR(sys(S)) = PR(S).

1.4 A program notation

In this section we introduce a program notation similar to the one in [Ka]. Here,
however, a program — also called a component — defines a system. The process of a
component will be defined to be the process of the corresponding system. This results
in a process equal to the one obtained by applying the definition from [Ka].

Before introducing the program notation we have to say somewhat more on the nature
of the set of symbols 2. We assume the existence of a set 2,. An element of Q, is
called a simple symbol. For n > 0 the set Q7 is defined to be the set of all n-tuples of
symbols in ,. We assume that

N=Un:n>0:07%)

An clement of O\ Q; is called a compound symbol. Element (ag, a1,...,a,_;) of Q is
denoted by ag-ay- ... a,-;. If @ and b are symbols then a-b is a symbol as well. Let p
be a symbol. With p we can associate a function in 2 —  that maps each symbol «
onto symbol p-a. This function is denoted by p-. Notice that function p- is injective.
For n > 0 function (p-)" is defined inductively by

(p)la=a fora € Q)
(p)*'a =p(p)a ; fora€Q,i>0

Furthermore, we define

pA={pala€ A} for AC

pE=E

p-(ta) = (p-t)p-a forte N*,a e

pX ={pt|te X} for X C Q"

pT = (p-al,ptT) for T' a trace structure

p-S = (peS,{pT|T e pS}) for S a system
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The program
com ¢(A) : S moc

denotes a component without subcomponents, where ¢ is the name of the component,
A is a finite alphabet, the external alphabet of the component, and S is a command.

The only restrictions imposed on such a program text are A = aPR(S) and A consists
of simple symbols only. The system of component ¢, denoted by sys(c), is defined by

sys(c) = sys(S)1A

Notice that sys(c) = (A, {PR(S)}) = sys(S). The process of component c, denoted by
PR(c), is defined by PR(c) = PR(sys(c)). Notice that PR(c) = PR(S).

A component with subcomponents is denoted by the program

com c(A):
sub po : co,p1: Cly- -y Pn1: Cn—1 DUS
[:Eo =Y%0,%71 = Y1y Tm—-1 = ym—l]
S

moc

where ¢ is the name of the component, A is a finite alphabet, the external alphabet
of the component, S is a command, and ¢, ¢, ..., and ¢,_1 are previously defined
components, called the subcomponents of ¢ and having names po, p1, ..., and p,_y
respectively. We require that A contains simple symbols only and that po, p1,...,Pn-1

are n distinct, simple symbols. With subcomponent p; system p;-sys(c;) is associated.
The set

B=(U::0<:<n:ep;sys(c))

is called the set of internal symbols of component ¢ (notice that B consists of the ex-
ternal symbols of all subcomponents). The equalities represent (internal) connections.
An internal connection links two subcomponents or a subcomponent and the external
alphabet. Since we do not want external symbols of the same subcomponent to be
connected either directly or indirectly we impose some restrictions. First, we define

C={A} U {ep;i-sys(c;) | 0 <i<n}

and observe that C is collection of n + 1 mutually disjoint alphabets. The restrictions
are as follows
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- (Aj:0<j<m:z;€B)
(Aj:0<j<m:y;€ BUA)
- Ha|0<i<m}=m
{mi|0§i<m}ﬂ{yjl0§j<m}:®
for all j, 0 < 7 < m, symbols z; and y; belong to two different alphabets in C
~ forall 7 and j, 0 <1 < j < m, such that y; = y; symbols z; and z; belong to
two different alphabets in C

[Furthermore, we require that every external symbol appears in the command S or is
connected to an internal symbol

ACaPR(S)U{y; [0<j<m)

The alphabet of command S should consist of external symbols and internal symbols
not in {z;|0<j <m},ie.

aPR(S) € AUB\{z;|0<j<m}
We now define the system of component ¢, denoted by sys(c), by

sys(c) = ((|| 1:0 <z < n:(pirsys(c;))zomm2m-t) || sys(S)) A

Y0 Y1 e Ym—1

Notice that due the above restrictions sys(c) is well defined. With (p;-sys(c;))zoteom-

Yo Y1 v Ym—1
we denote system p;-sys(c;) in which every occurrence of symbol a; has heen substi-

tuted by symbol y; for all j, 0 < j < m. In this way we will, in general, denotc
substitution (renaming). The process of component ¢, denoted by PR(c), is defined by
PR(c) = PR(sys(c)). Notice that esys(c) = A and aPR(c) = A. We derive

PR(c)
{ definition }
PRO((|] 7:0 <4 <n:(prsys(e))iomom=t) || sys(S))IA)
{ property 1.3.3 }
((Wi:0<i<ns PR((proys(c)simt)) wPR(S)) 1A
= {note 1.4.0'}
((Wi:0<i<n:(p;PR(¢))merm-1)w PR(S))[A

YO,Y1,000 Ym—1

Note 1.4.0

I this note we show that weaving and substitution commute and that projection and
substitution commute due to the restrictions imposed on the component. Let 0 <@ < n.
l.et 20,2y, ...,2k—1 be the subsequence of 0,1,...,m — 1 such that
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{o 10<s <k} ={2;]0<j <m A z; € e(prsys(c:)))
Notice that
(*) (As,t:0<s<t<k:iy,#yi) A (As:0<s<k:y;, &e(pisys(c)))
We derive

PR( (p;i-sys(c;))zorzr-em=1)

Y0,¥1,5-Ym—1
= { definition process of a system, definition of 2g,41,...,%x-1 }

B govny i By v Ciaigs Ty

(WT:T € p(pi-sys(ci))vigwirriprs + T) 1 e(pi-sys(:))uig iy rorvip s
{ property substitution, property dot }

Tipn yTiq yee s Ty - Tin s Liq yeery Iy -

(WT:T € psys(c) : (Pi‘T)y;:,y-',l,---.y-‘:_,‘) r(P"‘esy-‘-?(ci))y.'gyy-:.-.-,y.',f_,l

= { (%), restrictions on component }

(pir(WT:T € psys(c) : T));‘g :‘: ,’.'.'..,’yﬁ'::: T(Presys(c.-))z:: ,;r:‘.: ;.':_‘l‘
= { (%), restriction on component }
(pi((WT:T € psys(ci) : T)lesys(c:)) );‘2:‘:;:_-:
= { definition process of a system, definition zg,44,...,%24_1 }
(Pi-PR(ci)) g amy

(End of Note)
Example 1.4.1
Component sem, is defined by
com sem,(a,b) : (a; b)* moc
We then have
sys(semq) = ({a, b}, {SEM,(a,b)})
and

PR(sem,) = SEM/(a, b)

Component semj is defined by
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com semgz(a,b):
sub p, ¢ : sem, bus
[pa=a,qb=1
(pb; ga)*

moc

We then have
sys(sems) = ({a,b}, {SEM,(a, p-b),SEM,(p-b,q-a), SEM;(g-a, b)} )
From corollary 1.3.1 we infer

PR(sem3) = SEM3(a, b)
(End of Example)

We now drop the requirement that the subcomponents of a component are previously
defined components. We say that component d occurs in component ¢ if d is a subcom-
ponent of ¢ or if d occurs in a subcomponent of ¢. A component is called recursive if it
occurs in itself. Here, we will restrict ourselves to the most simple form of recursion.
Let component ¢ be defined by

com c¢(A):
sub p : ¢ bus
s

moc
where A is a finite alphabet of simple symbols, p is a simple symbol, and
aPR(S) = AU p-A. Applying the previous definition of a component yields
sys(c) = (p-sys(c) || sys(S))IA, in other words sys(c) is a solution of
ReXI(A): R=(pR| sys(S))IA
or, using A C aPR(S),
ReT(A): pR = p(p-R) U {PR(S))
I'rom lattice theory ([Bi]) it is known that this equation has a least fixpoint, namely

(A, {(p)'PR(S) | i 2 0})

Thercfore, we define
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sys(c) = (A, {(p-)'PR(S) | i 2 0})

The process of component ¢, denoted by PR(c), is defined by PR(c) = PR(sys(c)). In
[Ka] the process of component c is defined to be the least fixpoint of f : T(A) — T (A)
where f(T) = (p-T w PR(S))IA for all T € T(A). This least fixpoint equals

(Ui:i>0: f(STOP(A)))

We will prove that PR(c) equals this fixpoint, thereby showing that the choice in [Ka]
is the right one.

Theorem 1.4.2
PR(c) = (Ui:7>0: f{(STOP(A)))
Proof
We have
PR(c) = (Wi:i>0:(p-)'PR(S))lA4
It is easily seen that PR(c) is indeed a fixpoint of f. Define for j > 0
=(Wi:0<i<j:(p)PR(S)w(Wi:i>j:(p)'STOP(A))
We observe that

0) To=STOP((U 'i>0'(p)‘A))
) (Aj:720:pT;wPR(S)="Tj41)
) (A] 7=20: T CT]+1)
) (

Uj:3>0:T;)=(Wi:i>0:(p)PR(S))

(
(1
(2
(3
By induction we show that for j > 0
(4) T;lA= fi(STOP(A))

base

Tol A
{STOP(B)IC = STOP(BNC), (0)}
STOP(A)
= { definition f°}
f%(STOP(A))
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step
Let k& > 0. Suppose Ti[A = f¥(STOP(A)). We derive

75 (STOP(A))

= { definition f**1}
J(FHSTOP(A)))

= {induction hypothesis, definition f}
(p(T,1A) w PR(S)) A

= { calculus }
((pTi)[(p-A) w PR(S)) A

= {a(pTi) NaPR(S) =pAC AUpA}
(pTewPR(S))I(AU p-A) A

= { property projection, (1) }
Trs1lA

Therefore, we have

PR(c)

= { definitions }
(Wi:i>0:(p)'PR(S))IA

- e
(Uj:520:T5)MA

e { property projection, (2) }
(Uj:j=>0:T;lA)

= {(4)}
(Uj:j>0: fI(STOP(A)))

(End of Proof)



2 Properties of processes and systems

2.0 Introduction

In this chapter we discuss the phenomena nondeterminism, divergence, and deadlock
in relation to processes and systems. Properties of processes and systems are defined
expressing the absence of one or two of the above phenomena. Furthermore, we in-
troduce two special classes of processes: conservative processes and cubic processes,
the latter forming a subclass of the former. The relation between cubic processes and
processes defined by partial orders on sets of occurrences is shown. Finally, for cubic
processes sequence functions are introduced describing restricted (clocked) behaviours
of the processes.

2.1 Nondeterminism and divergence

In this section we study conditions under which the (external) process of a system forms
an adequate description of the external behaviour of the mechanism corresponding to
the system.

Let S be the system sys(c; a | d; b)[{a,b}. We have PR(S) = PR(a | b). However,
process PR(S) does not adequately describe the external behaviour of system S: after
occurrence of internal event ¢ external event b is not possible any more. We say that
b is disabled by an internal event. The same holds for internal event d and external
event a. On the other hand, though, one may infer from PR(S) that both a and b are
possible. We say that system S has (internal) nondeterminism.

Let S be the system sys((b | a)*)/{a}. We have PR(S) = PR(a*). Again process
PR(S) does not adequately describe the external behaviour of system S. Before the
first external event a and between any two consecutive external events ¢ an unbounded
number of internal events, b’'s, may occur. This phenomenon is called divergence.

We first investigate the relation between the mechanism corresponding to a process I’
and the mechanism corresponding to T'| A, where A is a subset of aT. In the sequel T
is a process and A an alphabet such that A C aT.

29
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Alphabet A is called non-disabling with respect to T if
(At:t€tT: after(t, T)I A = after(t!A, TTA))

This notion is called I, in [Ka]. It may be interpreted as follows: after the occurrence
of trace ¢ of T one may expect every external (i.e. in A) continuation as given by
process T A after trace {1A. We say that A is disabling with respect to T if A is not
non-disabling with respect to T. Notice that both @ and aT are non-disabling witl
respect to T'. Notice that {a,b} is disabling with respect to PR(c; a | d; b).

A system S is called non-disabling if €S is non-disabling with respect to W(pJS).

Theorem 2.1.0
The following assertions are equivalent:
0) A is non-disabling with respect to T
) (As,t:s€tT AtetT AslA=tIA: after(s,T)IA = after(t, T) /)

1
2) (Asl:s€tT ANtetT AslA<tIA:(Eu:suctT:suA=1l1))
Proof

(0) = (1)

We derive

(
(
(

A is non-disabling with respect to T
= { definition non-disabling }
(At:tetT: after(t,T)IA = after(LtA,TTA))
= { property 1.1.3 }
(At:tetT:after(l,T)IA=(Us:setT AslA=1tlA: after(s,T)IA))
{ set calculus }
(At:tetT:(As:setT AstA=tlA: after(s,T)IA C after(t, T)IA))
= { idempotence conjunction, renaming dummies }
(Ast:setT ANtetT AslA=11A: after(s,T)IA C after(t, 1) A)
AN(Asit:se€tT AL et AstA=tlA:after(t,T)'A C after(s, T)A)
{ calculus }

(Ast:setT ANLetDl AslA=11A: after(s,T) A = after(t, 1)1 A)

(1) = (2)

Assume (1), Let s € t71" and ¢ € tT such that s'A < t'4. Choose Lg and £, such that
I =1yt and sTA = 1,1 4. We now have
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toty € tT
= { definition after, property projection }
t;1A € tafter(to, T)[A
= {slA =114, (1)}
t,1A € tafter(s,T)A
{ definition projection, definition after}
(Eu:suetl:ulA=t[A)
= {slA=1tolA, t =tot1}
(Eu:su€tl:(su)lA=1tlA)

2) = (1)
Assume (2). Let s € tT and ¢ € tT be such that s[A = t]A. We derive

r € tafter(s, T)[A
= { definition projection, definition after}
(Eu:suetT:ulA=r)
= {slA=1t14A, (2)}
(BEu:suetT:ulA=r A (Bv:tv € tT :tvlA =sulA))
= {slA =tlA, calculus }
(Eu,v:su€tT AtvetT:ulA=r AvlA=r)

Observe that the last predicate in the derivation is symmetric in s and ¢. Hence, it is
equivalent to r € tafter(t,T)[ A as well.
(End of Proof)

The next two theorems give conditions under which an alphabet is non-disabling with
respect to the weave of two processes.

Theorem 2.1.1

Let T and U be processes. Let A and B be alphabets such that A C aT, B C aU, and
aT'Nnal = AN B. If A is non-disabling with respect to T and B is non-disabling with
respect to U then A U B is non-disabling with respect to Tw U.

Proof

Assume A is non-disabling with respect to T and B is non-disabling with respect to
U. Let t € t(TwU). We have
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after(t!(AU B),(TwU)I(AU B))
= {theorem 1.1.11}
after(t/(AU B), TIAw U|B)
{ theorem 1.1.13}
after(t!A,T1A) w after(t!B,UIB)
{ A is non-disabling w.r.t. T, B is non-disabling w.r.t. U}
after(t!aT,T)!A w after(tfalU,U)!B
{ theorem 1.1.11}
(after(t!aT, T) w after(tlalU,U)) [ (AU B)
= {theorem 1.1.13}
after(t, TwU)I(AU B)
(End of Proof)

Corollary 2.1.2

If R and S are non-disabling systems and aW(pR) N aW(pS) = eRNeS,
then R || S is a non-disabling system.

(End of Corollary)

Theorem 2.1.3

Let T and U be processes. Let A be an alphabet such that A C alU \ aT.
If UlaT nal) C Tl(aT NnalU), aT N aU is non-disabling with respect to T and A is
non-disabling with respect to U, then A is non-disabling with respect to T'w U.

Proof
Assume Ul(aT NnalU) C T(aT Nal). We derive

(TwU)laU

= {aT' naU C aU, theorem 1.1.10 }
Ti@aTnal)wU

{theorem 1.1.7 }
TlaT nalU) w Ul(aT nal) w U

{Ul(aT nal) C TN(aT nal), theorem 1.1.7}
UlaTnal) w U

{ theorem 1.1.7 }

Il

I

U
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Assume aT'Nal is non-disabling with respect to 7" and A is non-disabling with respect
to U. Let t € t(TwU). We derive

after(t, TwU)lA
= {theorem 1.1.13}
(after(tlaT, T)w after(tfalU,U)) [ A
= {ACaU,aT nalU C aU, theorem 1.1.10 }
(after(tfaT, T)N(aT N al) w after(tfal,U)) | A
{aT n aU is non-disabling with respect to T', theorem 1.1.13 }
after(tlal, Tl(aT nalU)wU )IA
{Tl(aT NnaU)wU = U, A is non-disabling with respect to U }
after(t!A,UTA)
{(TwU)laU =U, ACalU}
after(t!A,(TwU)A)
(End of Proof)

Corollary 2.1.4

Let R and S be systems such that aW(pR)NaW (pS) =eRNeS andeR CeS. If B
and Sl(eS \ eR) are non-disabling systems and PR(S)!eR C PR(R) then
(R || S)I(eS \ eR) is a non-disabling system.

(End of Corollary)

The next theorem gives a condition under which an alphabet is non-disabling with
respect to the projection of a process on some alphabet.

Theorem 2.1.5

Let T be a process. Let A and B be alphabets such that B C A C aT. If A is
non-disabling with respect to T' then

B is non-disabling with respect to T = B is non-disabling with respéct to TTA
Proof
Assume A is non-disabling with respect to 7. We derive

B is non-disabling with respect to T’
= { definition non-disabling }
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(At:t €tT: after(t,T)IB = after(t|B,TIB))
{ B C A, property projection }

(At:tetT: after(t,T)IAIB = after(t!AlB,TIAIB))
= { A is non-disabling with respect to T'}

(At:t €tT: after(t!A, T1A)|B = after(t!AIB,TTAIB))
= { calculus }

(Au:u€tTlA: after(u, TIA)IB = after(ulB,(T1A)IB))
= { definition non-disabling } ‘

B is non-disabling with respect to T'1A
(End of Proof)

Corollary 2.1.6
If S is a non-disabling system and A C eS then

SIA is a non-disabling system = A is non-disabling with respect to PR(S)
(End of Corollary)

In the sequel let T be a process and A an alphabet such that A C aT. Alphabet aT'\ A
will be denoted by A. Alphabet A is called divergent with respect to T if

(Et:tetl': (An:n>0:(Eu:u€ (A)" Atuetl:{(u) >n)))

For instance, {a} is divergent with respect to both PR((b | a)*) and PR(b* | a).
Alphabet A is called non-divergent with respect to T if A is not divergent with respect
to T, i.e.

(At:tetT:(En:n>0:(Au:u€ (A)" Atuetl:{(u) <n)))

Notice that aT is non-divergent with respect to T'.

A system S is called divergent if S is divergent with respect to W(pS). A system is
called non-divergent if it is not divergent.

The next theorem gives two alternative characterizations of non-divergence in case the
alphabet of process T is finite.

Theorem 2.1.7
Let

Py, = A is non-divergent with respect to 7'
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P, = (At:tetT:tafter(t,T)N (A)" is finite )
P, = (As:setTlA:{t|tetT A tlA=s} is finite )

Thean = P1 a.ndP; = Po.
If aT is finite, then Py, P;, and P are equivalent.

Proof
1) We prove that P; implies Py. We derive

(At:tetT:tafter(t,T) N (A)" is finite )
= { calculus }

(At:t€tT:(En:n>0:(Au:u€ tafter(t,T)N(A)*:L(u)<n)))
= { definition after }

(At:t€tT:(En:n>0:(Au:tu€tT Au€ (A):Lu)<n)))

i1) We prove that P, implies P;. Assume P,. Let t € tT. We have

{tu | u € tafter(t,T) N (A)*}
= { definition after, property projection }
{tu|tuetT Aue(A) A (tu)l[A=tlA}
Cc {set calculus }
{r|retT ArlA=1tlA}

The last set being finite due to P,, we have that tafter(¢,T) N (A)* is finite.
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iii) Assume aT is finite. We prove that =P, implies P,. Assume —P,. Let s € tT[A

be such that {¢ |t € tT A t[A = s} is infinite. Define

U=PREF({t|tetT AtlA=s})

Obviously U is infinite and U € aT™. Since aT is finite Konig’s lemma [K9)] is appli-

cable. Let a(z:¢ > 0) be a sequence of symbols in aT such that
(An:n>0:a(::0<i<n)eU)

From the definition of U we infer that
(Au:ueU:Luld) <{L(s))

Hence, let ny > 0 be such that

(An:n>np:a(n)€ A)
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We then have

(An:n>ng:a(i:0<i<ng)a(i:ng<i<n)etT
A a(i:ng <i<n)e(A)* )

From this we infer that A is divergent with respect to 7.

(End of Proof)

Theorems 2.1.8 and 2.1.11 give conditions under which an alphabet is non-divergent
with respect to the weave of two processes.

Theorem 2.1.8

Let T and U be processes. Let A and B be alphabets such that A C aT, B C aU, and
ANnalU = BnaT. If Ais non-divergent with respect to 7' and B be non-divergent
with respect to U then A U B is non-divergent with respect to Tw U.

Proof

Assume A is non-divergent with respect to T and B is non-divergent with respect to
U. Let A=aT\ A and B = aU \ B. Notice that (aT’ UaU)\ (AU B) = AU B and
AnalU=BnaT. Lett € t(TwU).

Let m > 0 be such that (Au:u € (A)* A (tfaT)u € tT : £(u) < m), and let n > 0 be
such that (Av:v € (B)* A (tlalU)v € tU : £(v) < n). We now have

w € (AUB)* A tw € t(TwU)
{ definition weave, wl(AU B) = w }
w € (AUB)* A (t1aT)(wl((AUuB)NaT)) € tT
A (tlal)(wl((AUB)Nal)) € tU
{ACaT,BCalU,Anal =BnaT}
w € (AUB)* A (tlaT)(wlA) € tT A (tlal)(wlB) € tU
= { definition of m and n }
w € (AUB)* A L(wlA) <m A (wlB) < n
=> { calculus }
w)<m+n

il

Il

(End of Proof)
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Corollary 2.1.9

Let R and S be systems such that aW(pR) N aW(pS) = eRNeS. If R and S are
non-divergent systems, then R || S is a non-divergent system.

(End of Corollary)

Lemma 2.1.10
Let T and U be processes. Let A be an alphabet such that A C aU \ aT. If

(0) (As:setTl(aT nal):{t|tetT A tl(aT Nal) = s} is finite)

(1) (Av:vetUlA:{u|u€tU A ulA =0} is finite)
then

(Az:zet(TwU)A: {w|wet(TwU) A wlA =z} is finite)
Proof

Assume (0) and (1) hold.

Define X(s) = {t |t € tT A tl(@al’' Nnal) = s} for s € tTI(aT N al), and Y (v)
={u|u€tUAulA=nv}forv e tUlA Notice that X(s) is finite for all s €
tT1(aT Nal), and Y (v) is finite for all v € tUTA.

Let z € t(TwU)[A. Notice that z € tU A. We now have

{w|lwet(TwU) A wlA ==z}
= { definition weave }
{w|we (aTUalU)* A wlaT € tT A wlaU € tU A wlA =z}
= {wlA = wlaUlA, calculus }
(Uu:ueY(z) Aul(al' nal) € tT|(aT nal)
{w|we (@l ual)* A wlaT € tT A wlalU =u})
= { calculus }
(Uu:u€eY(z) Aul(@al'nal) e tT(aT Nnal)
t(Ut:t e X(ul(aT nal))
H{w|lwe@Tual)* AwlaT =t A wlalU =u}))

The set {w | w € (aT UalU)* A wlaT =t A wlaU = u} being finite for all t € tT
and u € tU we have that {w |w € t(TwU) A wlA =z} is finite.

(End of Proof)
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Combining theorem 2.1.7 and lemma 2.1.10 yields

Theorem 2.1.11

Let T and U be processes such that aT' and aU are finite. Let A be an alphabet such
that A C aU\aT. If aT'Nal is non-divergent with respect to T', and A is non-divergent
with respect to U then A is non-divergent with respect to Tw U.

(End of Theorem)

Corollary 2.1.12

Let R and S be systems such that aW(pR) and aW (pS) are finite,
aW(pR)NaW(pS) = eRNeS, and eR C eS. If R and S[(eS\ eR) are non-divergent
systems then (R || S)[(eS \ eR) is a non-divergent system.

(End of Corollary)

The following example shows that the above theorem need not hold in case the alpha-
bets are infinite.

Example 2.1.13
T = PREF(({a: i >0} U {y}, {zw's: [i20}))
U=PREF(({zi|i>0}U{a},{azizia|i>0}))
{zi|¢ >0} is non-divergent with respect to T
{a} is non-divergent with respect to U
{a} is divergent with respect to T w U

(End of Example)

Next we investigate non-divergence with respect to the projection of a process on some
alphabet.

Lemma 2.1.14
Let T be a process. Let A and B be alphabets such that B C A C aT.
0 (As:setTIB:{t|tetT AtIB=s}is finite)
= (As:s€tTIB:{r|retTlA A rIB=s} is finite)
1 IH(Ar:retTlA:{t|tetT AtlA=r} is finite) then
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(As:s€tTIB:{t|tetT A tIB=s} is finite)
= (As:s€tTIB: {r|r€tT/A A rIB=s} is finite)

Proof

0 Assume (As:s €tTIB:{t|tetT At'B=s}isfinite). Let s € tT[B. We
have that {t |t € tT A t/B = s} is finite. Hence, the set

{r|retT!lAArIB=s}={t|tetT AtIB=s}lA

is finite.

1 Let (Ar:retT[A:{t|tetT A tlA=r}isfinite). Assume
(As:s€tTIB:{r|re€tTIA A rIB=s}is finite)

Let s € tT1B. We now have that {u |u € tTIA A ulB = s} is finite, and that for all
retTlA {t|tetT AtlA=r}is finite. Therefore, the set

{t|tetT AtIB=s}
=Ur:re{u|luetTfAAulB=s}:{t|tetT AtlA=r})
is finite.

(End of Proof)

Combining theorem 2.1.7 and lemma 2.1.14 yields

Theorem 2.1.15

Let T be a process such that aT is finite. Let A and B be alphabets such that
BC ACaT.

0 B is non-divergent with respect to T
= B is non-divergent with respect to T'fA

1 If A is non-divergent with respect to 7' then

B is non-divergent with respect to T
= B is non-divergent with respect to T'[A.

(End of Theorem)

The following example shows the above theorem not to hold in case aT is infinite.
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Example 2.1.16

T = PREF({{a,b} U{z;|i>0},{z:ba’'d|i>0}))
{a, b} is non-divergent with respect to T

{b} is non-divergent with respect to T

{b} is divergent with respect to T'[{a, b}

(End of Example)

Corollary 2.1.17

Let S be a system such that aW(pS) is finite. Let B C eS.
If S is non-divergent then

SIB is a non-divergent system = B is non-divergent with respect to PR(S)
(End of Corollary)

Theorem 2.1.18

Let command S in

com c¢(A):
sub p : ¢ bus
S

moc
satisfy
(At:t€tPR(S) A t#e:L(tlpA) < L(tlA))

Then sys(c) is non-divergent.
Proof
We have

PR(c) = (Wi:1>0: (p)'PR(S))IA
For ¢t € tPR(c) we define
Vit)={s|s€et(Wi:i>0:(p)PR(S)) A sl[A=1t}

Let t € tPR(c) and s € V(). Then s[4 =t and
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(Ai:i>0:sl(p)(AUp-A) € t(p)PR(S))
It follows that

(Ai:i>0 A sl(p)(AUp-A) #e: Lsl(p) 1 A) < L(sl(p-)A))
and, hence,

(0) (Ad:0<i<l(t): &sh(p)A) <o) —i)
(1) (Aii>L(0): &sl(p)A) = 0)

We derive

£(s)
= { calculus }
(Si:i>0:£(sl(p)'A))
= {1}
(Si:0 < i< £(t): £ sl(p-)'A))
< {)}
(Si:0<s<£(t):£4(t)—1)
= { calculus }

3 A) - (€t) +1)
Observe that
Vt)=V(@)N(Ui:0<i<L(t): (p)A)

We conclude that V/(¢) is finite. Therefore, by theorem 2.1.7, A is non-divergent with
respect to (W2 :4>0: (p)'PR(S)).

(End of Proof)

The condition on the command in the above theorem is also found in [Ud] and [Ka]
where it is shown to imply the existence of a unique fixpoint for the recursive equation
defined by a recursive component.

As we already illustrated in the introduction to this section, nondeterminism and di-
vergence are properties to be avoided. Therefore, we now introduce a third notion that
is a combination of non-disabling and non-divergent. This notion was first introduced
by Anne Kaldewaij in [Ka).

Let T be a process and let A be an alphabet such that A C aT. Alphabet A is called
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transparent with respect to T if A is both non-disabling and non-divergent with re-
spect to T. If A is transparent with respect to T, then after the occurrence of trace ¢
in process T performing internal events (i.e. events in A) is guaranteed to terminate
in a state after which no events in A are possible. The events that are possible are
exactly the successors of ¢/ A in TTA. Notice that aT is transparent with respect to 7T'.

System S is called transparent if S is transparent with respect to W(pS).

Property 2.1.19

0 A is transparent with respect to T

= (At:tetT:(Bu:u€ (A)* A tu€ tT : suc(tu,T) = suc(t!A, TIA)))
1 A is transparent with respect to T

= (As:s€tTIA: (Et:t €tT A tlA=s:suc(t,T) = suc(s,TIA)))

(End of Property)

Transparence may be characterized differently ([Ka]):

Theorem 2.1.20

A is transparent with respect to T
= (At:t€tT Asuc(t,T) C A: suc(t,T) = suc(t/A, T1A))
A (A is non-divergent with respect to T')

(End of Theorem)

Combining 2.1.1 and 2.1.8 yields

Theorem 2.1.21

Let T and U be processes. Let A and B be alphabets such that A C aT', B C aU, and
aT' Nnal = AN B. If A is transparent with respect to 7', and B is transparent with
respect to U then AU B is transparent with respect to Tw U.

(End of Theorem)

Corollary 2.1.22

If R and S are transparent systems and aW(pR) N aW(pS) = eRNeS, then R || S
is transparent.

(End of Corollary)
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Combining 2.1.3 and 2.1.11 yields

Theorem 2.1.23

Let T and U be processes such that aT’ and al are finite. Let A be an alphabet such
that A C aU \ aT. If aT' N aU is transparent with respect to T', A is transparent with
respect to U, and Ul(aT'nalU) C Ti(aT Nal), then A is transparent with respect to
TwU. :

(End of Theorem)

Corollary 2.1.24

Let R and S be systems such that aW(pR) and aW(pS) are finite,
aW(pR) NaW(pS) = eRNeS, and eR C eS. If R and Sl(eS \ eR) are transparent
systems, and PR(S)!eR C PR(R) then (R || S)[(eS \ eR) is a transparent system.

(End of Corollary)

Example 2.1.13 shows that the above theorem does not hold in case the alphabets are
infinite. Combining 2.1.5 and 2.1.15 yields
Theorem 2.1.25

Let T be a process such aT is finite. Let A and B be alphabets such that B C A C aT.
If A is transparent with respect to T then

B is transparent with respect to 7' = B transparent with respect to T'[A

(End of Theorem)

The following theorem shows how the results in theorem 2.1.25 change if the condition
aT is finite is dropped.

Theorem 2.1.26

Let T be a process. Let A and B be alphabets such that B C A C aT. If A is
transparent with respect to 7' then

B is transparent with respect to T => B is transparent with respect to 7'[A
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Proof

Due to theorem 2.1.5 it remains to show that non-divergence of B with respect to T'
implies non-divergence of B with respect to T'A.

Assume B is divergent with respect to TIA. Choose r € tT[A such that
(An:n>0:(Ev:v€(A\B)* ArvetTlA:£f(v) >n))

Choose t € tT such that t[A =r. Let n > 0. Let v € (A\ B)" be such that rv € tT[A
and £(v) > n. Let u € (B)* be such that tu € tT and (tu)lA = rv (such traces
exist since A is transparent with respect to 7' and B C A). Since #(u) > ¢(ulA) and
ul A = v, we have £(u) > n. Hence B is divergent with respect to 7.

(End of Proof)

The reverse implication in the above theorem does not hold as the following example
shows.

Example 2.1.27

T = PREF(({a,y}U{zi|:>0},{aziy'zia|i>0}))
{a} U {=;|:>0} is transparent with respect to T

{a} is not transparent with respect to T ( divergence )
{a} is transparent with respect to T'I({a} U {z;|:>0})

(End of Example)

Corollary 2.1.28

Let S be a system. Let A C eS. If S is transparent then

0 SIlAis a transparent system => A is transparent with respect to PR(S)
1 if aW(pS) is finite then

STA is a transparent system = A is transparent with respect to PR(S)
(End of Corollary)
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2.2 Deadlock

Consider the system
= ( {ao, ay, bO, bla Co, clydo’ dl}) {UO, Ul, RO, Rl} )
where

Uo = PR((ao, bo; o, do)”)
R((a bi; e, dl)‘)

"U

=PR ap; o | a1; &

(( )
Ry = PR((bo; do | b1 ; d1)")

Processes Ry and R; describe resources that may be accessed by processes Up and U,
under mutual exclusion. Both process Uy and process U, first need to gain access to
both resources, before they can continue. We observe that trace ag b, of W(pS) has no
successors in W(pS). However, the projection of agb; on the alphabet of each of the
processes in the process set of S does have a successor in that process. The system has
terminated whereas none of the composing processes has terminated. This situation is
referred to as deadlock.

Let T be a process. Let t € tT. We say that T has terminated after t if after(t,T) =
STOP(aT) or, equivalently, suc(t,T) = @. Process T is called non-terminating if after
each trace t of tT process T has not terminated, i.e.

(At:tetT:suc(t,T)+#O3)

Notice that a process that is not non-terminating may terminate.

Theorem 2.2.0

Let T be a non-terminating process. Then there exists a non-terminating process S
such that S C T and (As,t: s €tS At ELS:s<tViI<s) le tSistotally
ordered.

(End of Theorem)

In the sequel X is a set of processes.

Property 2.2.1
(At:tetW(X): (AT:T € X : suc(tlal,T) = @) = suc(t, W(X))=2)
(End of Property)
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Set X is called lockfree if the reverse implication holds, i.e.

lockfree(X) =
(At:tetW(X):suc(t, W(X)=@ = (AT:T € X : suc(tlaT,T)=))

Notice that due to property 2.2.1 the implication sign in the definition of lockfree may
be replaced by an equivalence sign. If X is not lockfree, we say that X has danger of
lock.

System S is called lockfree if lockfree(pS) holds.

Property 2.2.2

0 lockfree(D)
1 lockfree({T}) for any process T

(End of Property)

Theorem 2.2.3

0 lockfree(X)
1 lockfree(X)

(End of Theorem)

(AT :T € X : lockfree({T,W(X \ {TH}))
(AY :Y C X : lockfree({W(Y),W(X \Y)}))

Theorem 2.2.4
Let X and Y be sets of processes. If lockfree(X) and lockfree(Y) then

lockfree(X UY) = lockfree({W(X),W(Y)})
Proof
Assume lockfree(X) and lockfree(Y').

lockfree(X UY)
= { definition lockfree }
(At:tetW(XUY)
csuc(t, W(XUY) =0 =
= { lockfree(X), lockfree(Y )}

(At:tet(W(X)wW(Y))
ssuc(t, W(X)wW(Y)) =2
= suc(tlfaW(X),W(X)) = @ A suc(tlaW(Y),W(Y)) = &)

(AT:TeXUY :suc(tlal,T)=@))
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= { definition lockfree }
lockfree({W(X),W(Y)})

(End of Proof)

The next theorem shows that processes may be projected on transparent alphabets
when one investigates the absence of lock.

Theorem 2.2.5

Let T and U be processes. Let A and B be alphabets such that A C aT', B C aU, and
ANB=aTnaU. If A is transparent with respect to T, and B is transparent with
respect to U then

lockfree({T,U}) = lockfree({T|A,UIB})
Proof

Assume A is transparent with respect to 7' and B is transparent with respect to U.
From theorem 2.1.21 we infer that A U B is transparent with respect to 7w U. Due
to theorem 1.1.11 we have (TwU)[(AU B) = TIAw U[B.

i) Assume lockfree({T,U}). Let u € t(TTAw U|B) be such that
suc(u,T!AwUIB) = @. Choose t € t(T wU) such that

tl(AUB) =u A suc(t,TwU) = suc(u, T'Aw U|B)

(theorem 2.1.19.1).

Since suc(t,TwU) = @ and lockfree({T,U}) we now have suc(tlaT,T) = & C A and
suc(tlalU,U) = @ C B.

By theorem 2.1.20 it follows that suc(t[4,T1A) = @ and suc(t|B,U[B) = @.

Since ¢[(AU B) = u this implies that suc(ul4,T1A4) = @ and suc(ulB,U|B) = @.

ii) Assume lockfree({TA,U[B}). Let t € t(T w U) be such that suc(t,TwU) = @.
By theorem 1.1.17 we have suc(taT,T) C aT NalU C A and
suc(tfalU,U) C aT' N alU C B. We derive

suc(t, TwU) =@
{suc(t,TwU) C AU B, theorem 2.1.20 }
suc(tl(AUB),(TwU)I(AUB)) =@
= { calculus }
suc(tl(AUB),TIAwUIB) = &

Il
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{ lockfree({T1A,UIB}) }
suc(t!A,T1A) = @ A suc(t!B,UIB) = @

{ suc(tfaT,T) C A, suc(tlalU,U) C B, theorem 2.1.20 }
suc(tlaT,T) = @ A suc(tfalU,U) = @

(End of Proof)

Corollary 2.2.6

Let T and U be processes such that aT N all is transparent with respect to both T'
and U. Then

lockfree({T,U}) = lockfree({TI(aT Nal),UN(aT nal)})

If, moreover, T'l(aT Nal) = Ul(aT N al), then lockfree({T,U}).
(End of Corollary)

Combining theorems 2.2.4 and 2.2.5 yields the following two corollaries.

Corollary 2.2.7

Let X and Y be sets of processes. Let A and B be alphabets such that A C aW(X),
B C aW(Y), and aW(X)NaW(Y) = AN B. If A is transparent with respect to
W (X), B is transparent with respect to W(Y'), and both lockfree(X) and lockfree(Y)
hold then

lockfree(X UY) = lockfree( {W(X)IA, W(Y)IB})
(End of Corollary)

Corollary 2.2.8

Let R and S be systems such that aW(pR) N aW(pS) = eRNeS. If R and S are
lockiree and transparent, then

R || S is a lockfree system = lockfree( {PR(R),PR(S)})
(End of Corollary)
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2.3 Conservative processes
Consider process T' = PR((a, b; ¢)*). The states of T are

lelr = {t | t € tT A £(tla) = £(t b)—ff( le) }

lalr = {t |t € tT A £(tla) — 1 = £(t1b) = £(t)c) }
[b]T={t|tetTAé(trb)—1 g(tla) = £(tlc) }

[ablr = {t |t € tT A £(tla) — 1 = £(t1b) — 1 = £(tlc) }

The states of T only depend on the number of occurrences of events. Furthermore,
it is easily shown that all subsets of aT' are non-disabling with respect to 7. In this
section we will introduce a class of processes having these properties. Process T will
be an element of that class. Due to the first property they will be called conservative
processes ([Ve86]).

Process T is called persistent if
(At,a,b:ta€etT AthetT Aa#b:tabetT A tha € tT)

Process T is called commutative if
(At,a,b:tab € tT A tha € tT : [tab] = [tba])

Process T is called conservative if T is both persistent and commutative, i.e.
(Atya,b:ta€tT AthetT Aas#b:tab€etT A tha € tT A [tabd] = [tha])

In order to give a different characterization of conservativity we first define a new
operation on traces. Let ¢ be a trace and B be a bag (multiset) of symbols. Trace ¢
minus bag B, denoted by t\ B, ( see [Ve85] ) is obtained by removing from ¢ from left
to right £(tfa) min (N b: b€ B : b = a) occurrences of a for each symbol a in B. It is
defined by

e\B = ¢
as\ B = a(s\B) ag B
as\B = s\(B- {a}) a€B

Projection on an alphabet can be expressed in terms of the minus operator. Let A be

an alphabet. If B is the bag consisting of the elements of 1 \ A, each infinitely often,
then

A=t\B
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For trace t the bag of symbols of ¢, denoted by #t, is defined by
H#e = O
#as = {a}+#s
Notice that symbol a occurs £(tla) times in #t.

In the following s, t, and u are traces, A is an alphabet, and B and C are bags.

Property 2.3.0 (bag of symbols of a trace)

0 #st = Fs+ #t
1 #(s\B)=#s—B
2 s<t => #sCHt
#s CH#t = {(s) <L)

(End of Property)

Property 2.3.1 (minus)
0 s\B=s\(BnN#s)

1 s\B=s = BN#s=0 (s\D=s,s\#ec=3)
2 s\B=¢ = #sCB (s\#s=¢)
3 L(s\ B)={(s)—|BN+#s|

(s) - |B < t(s\ B) < €(s)
s\ B =(s\ B)(t\ (B — #5))
s<t = s\B<Lt\B
6 (s\B)\C=s\(B+0)=(s\0)\B
(s \ #2) \ #u = s \ #(tu) = s \ #(ut) = (s \ #u) \ #
7 (s\#1)[A = (s[A) \ #(tlA)
8 (st)\ #(su) =1\ #u
(End of Property)

(AT

Example 2.3.2
Let s=abacdba. We have

sl{a,c} =aaca
#s = {a,a,a,b,b,¢,d}
s\ {a,c} =badba s\ {a,a,b,b} =cda

(End of Example)
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Lemma 2.3.3
If T is a conservative process then

(At,u,a:ta € tT A tu € tT : ta(u\ #a) € tT)
Proof

Let T be a conservative process. The proof is given by induction on the length of trace
u. Let tu € tT.

base {(u) =0
We have u = ¢. Let ta € tT. Then ta(u\ #a) = ta € tT.
step £(u) >0
Assume
(At,w,a:ta € tT A tw € tT A (w) < £(u) : ta(w \ #a) € tT)

Let ta € tT and u = bv. We distinguish two cases.

) a=b
ta((bv) \ #a)
= {a = b, property 2.3.1}
tav
€ {a=1btuetT}
tT

i) a#b We derive

taetT AthvetT A a#b
= {T is a conservative process }
tab € tT A tba € tT A [tab] = [tha] A tbv €tT A a#b
= {induction hypothesis }
tab € tT A tba(v\ #a) € tT A [tad] = [tha] A a # b
= { calculus }
tab(v\ #a) EtT A a#b
= { property 2.3.1}
ta(bv \ #a) € tT

(End of Proof)
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Theorem 2.3.4

T is conservative = (As,t:s€tT At etT :s(t\#s)etl)
Proof

i) Let T be conservative. We prove the right hand side by induction on the length of
trace s. Let s € tT.

base {(s)=0
Let t € tT. We derive

s(t\ #s)
= {s = ¢, property 2.3.1}

€ { assumption }
tT

step £(s) >0

Assume (Ar,t:r €tT At €tT AL(r) <£(s):r(t\#r) etT).
Let s = ua and t € tT. We derive

ua €tT ANtetT
= {T is a process, induction hypothesis }
u(t\ #u) € tT A ua € tT
= {lemma 2.3.3 }
wa((t\ #u) \ #0) € tT
= { property 2.3.1}
ua(t \ #(ua)) € tT

i) Let (As,t:s€tT At etT:s(t\#s)€tl). Let ta € tT, th€ tT, and a # b.
We derive

ta e tT A tbetT
= { assumption }
ta((td) \ #(ta)) € tT

{ property 2.3.1, a # b}
tab € tT

For reasons of symmetry we infer that tab € tT and tba € tT'. Furthermore, we derive
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tabu € tT
= {tba € tT, assumption }
tha((tabu) \ #(tba)) € tT
{ property 2.3.1}
tbau € tT

Likewise, we have thau € tT = tabu € tT.
Hence, [tad] = [tba].

(End of Proof)

From theorem 2.3.4 and property 2.3.1 the next theorems follow.

Theorem 2.3.5
Let T be a process. Let A be an alphabet. If T is conservative then

0 (As,t:s€tT AtetT A#s=#t:[s]=[t])

1 T1A is conservative

(End of Theorem)

Theorem 2.3.6

If X is a set of conservative processes then W(X) is a conservative process.

(End of Theorem)

If S is a system such that (AT : T € pS : T is conservative ), then due to theorems
2.3.5 and 2.3.6 process W(pS) and, hence, process PR(S) are conservative.

Theorem 2.3.7

If (Tn)n>o is a sequence of conservative processes such that (An:n>0: 7, C Thi1)
then (Un:n >0:7T,) is conservative.

(End of Theorem)

The next theorem shows that all subsets of the alphabet of a conservative process are
non-disabling with respect to that process.
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Theorem 2.3.8

Let T be a process. Let A be an alphabet such that A C aT'. If T' is conservative then
A is non-disabling with respect to T

Proof

Assume T is conservative.

Let ¢t € tT. Property 1.1.3 yields after(t, T)[A C after(t!A, TTA).

We will show that after(t!A, T1A) C after(t,T)IA. Let u € tafter(t!/A, T1A). Choose
r and s such that rs € tT, r[A = t|A, and s|A = u. By theorem 2.3.4 we have that
t((rs) \ #t) € tT. Furthermore,

(rs \ #t)IA
{ property 2.3.1}
(rTA)(slA) \ #(¢1A)
= {rlA =1l A, property 2.3.1}
slA

Il

Since s!A = u, we conclude u € tafter(t,T)[ A.
(End of Proof)

Corollary 2.3.9

If S is a system such that (AT : T € pS : T is conservative )
then system S is non-disabling.

(End of Corollary)

The next theorems show some results concerning (non-)termination and absence of
deadlock. First, we show that for conservative T the negation of “T is non-terminating”
is “T" terminates”.

Theorem 2.3.10

Let T be a conservative process. We have

0 (At:tetT:suc(t,T)=2 = (As:setl:#sC #t))
(As,t:se€tT At etT Asuce(s, T) =3 A suc(t,T) =D : #s = #t)

1 —(T is non-terminating) = (Et:t€tT:(As:se€tT:L(s) <L(t)))

2 The following three assertions are equivalent
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a.
b.

C.

T is non-terminating

(ES:SCT:S is non-terminating)

(ES:SCTA(As,t:setSAtetS:s<tVi<s)
: S is non-terminating )

Proof
0 LettetT.
Assume suc(t,T) = @. We derive

i)

i)

=

setT

{T is conservative }
t(s\ #t) € tT

{suc(t,T) =02}
s\#t=¢

{ property 2.3.1}
#s C #t

Assume (A s:s € tT : #s C #t). We derive

a € suc(t,T)

{ definition successor set }
ta € tT

{ assumption }
H(ta) C #1

{ definition bag }

false

The second assertion is a direct consequence of the first one.

We derive

1

=

—( T is non-terminating )

{ definition }
(Et:tetl:suc(t,T)=2)

{0}
(Et:tetlT:(As:setT:#sC#t))

{ property 2.3.0 }
(Et:tetT:(As:setT:L4(s)<L(t)))

55
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= {(Aa:taetT:L(ta) > L))}
(Bt:tetl:suc(t,T)=9)

a=>b TakeS=T.
b=c¢ Theorem 2.2.0
c=b Trivial

b=a Let S CT besuch that S is non-terminating. Let ¢t € tT. Choose
s € t§ such that £(s) > £(t). Since S C T and T is conservative, we
have t(s\#t) € tT. Furthermore, we have £(s\#t) > £(s)—£(t) > 0
which implies s \ #t # €. Hence, suc(t,T) # .

(End of Proof)

The next theorem provides a method to prove the absence of deadlock.

Theorem 2.3.11

Let X be a set of conservative processes. If
(At,T:Te X NtetT:(Es:se€tW(X):£4(slaT)=£(t)))

then lockfree(X) holds.
Proof

Assume
(At,T:TeX NtetT:(Es:setW(X):£(sfaT) = £(t)))

Let t € tW(X). Let T € X and a € aT be such that a € suc(¢fal’,T). Choose
s € tW(X) such that £(s) = £((tfaT)a) = £(tfaT) + 1. By theorem 2.3.6 we have that
W (X) is conservative. Hence, #(s \ #t) € tW(X). Furthermore,

(s \ #t)

> { calculus }
{((s\ #t)laT)

= { property 2.3.1}
£((slaT) \ #(ttaT))
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> { property 2.3.1}
{(staT) — £(tlaT)

> { choice of s}

1

Therefore, s \ #t # € and, hence, suc(t, W(X)) # @.
(End of Proof)

2.4 Cubic processes

In this section we introduce the cubic processes forming a subclass of the conservative
processes. A process T is said to be cubic if T is conservative and satisfies

(At,a,b,c:tacetT Atbc€tT Aa#b:tcetT)

Example 2.4.0

Process PR(a; b;c|a;¢;b]|b;a;c|b;c;a)is conservative but not cubic.
Process PR(a, b, c) is cubic.

(End of Example)

Theorem 2.4.1

T is cubic = ( T is conservative )
A (Atu,v,cituc €tT Atvc€tT A #unN#Hv =D :tc € tT)

Proof

Obviously, the right hand side implies the left hand side.

Assume T is cubic. Let t € tT. Let u, v, and ¢ be such that tuc € tT, tvc € tT, and
#u N #v = @. The proof is done by induction on £(u) - £(v).

base £(u)-£4(v) =0
Then v = € V v = ¢. From this and tuc € tT A tvc € tT we infer tc € tT.
step  £(u)-£(v) >0

Assume

(Ar,s,d:trd € tT A tsd € tT
AL(r)-£(s) < £(u)-£(v) A #rNfts =@ :td € tT).
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We have £(u) > 0 and #(v) > 0. Let u = az and v = by. We distinguish two cases.
i. a=cVb=c

Since ta € tT A tb € tT we now have tc € tT.

. a#cAb#c

We derive

tazc € tT A tbyc € tT
{T is conservative, theorem 2.3.4 }
tazc € tT A ta(tbyc\ #(ta)) € tT A tbyc € tT A tb(tazc\ #(td)) € tT
{ property 2.3.1, #(az) N #(by) = B, a # ¢, b#c}
tazc € tT A tabyc € tT A tbyc € tT A tbazc € tT
= {L=z)L(by) < Uu)L(v), Laz)-L(y) < L(u)£(v), #(u) N #(v) = O}
tac € tT A tbe € tT
= {T is cubic, a # b}
tc € tT
(End of Proof)

Theorem 2.4.2

Let X be a set of processes. If
(*) (AT:TeX:(At,a,byc:tacetT ANtbhcetT ANa#b:tcetl))
then process W(X) satisfies
(At,a,b,c:tac e tW(X) A thce tW(X) Aa#b:tce tW(X))
Proof
Assume (%) holds. Let tac € tW(X), the € tW(X), and a # b. Let T € X. We derive

tac € tW(X) A tbhc e tW(X) Aa#b

= { definition W }
(t1aT)(alaT)(claT) € tT A (t!aT)(blaT)(claT) € tT A a #b

= {(agalT vVbgaTl :alaT =€ V blaT =¢), (a€aT A beal:(x))}
(t!aT)(claT) € tT

Therefore, (AT : T € X : (tc)laT € tT). Hence, we have tc € tW(X).
(End of Proof)
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Combining theorems 2.3.6 and 2.4.2 yields

Corollary 2.4.3
If X is a set of cubic processes, then W(X) is a cubic process.

(End of Corollary)

In order to prove that projection of a cubic process on an alphabet yields a cubic process
we need another characterization of cubic processes. First, we introduce projection on
bags of symbols. The projection of trace t on bag B, denoted by ¢t T B, is defined by

etB = ¢
asTB = sTB a¢ B
asTB = a(sT(B-{a})) a€B

Notice that aala = aa whereas aa T {a} = a.

In the following s, ¢, and u are traces, A is an alphabet, and B and C are bags.

Property 2.4.4
#(s1B) = #s0 B
(End of Property)

Property 2.4.5

0 sTB=sT(BN#s)

1 s1B=s= #sCB (sT#Hs=3)

2 s1B=¢ = #sNB=0@ (st @=¢)

3 £(sT B)<{(s)

4 st1B=(s1B)tT(B-4)

5 s<t=>sTB<LtTB

6 (sTB)1C=s1(BNC)=(s1C)TB
(sTHO)THu=sTHETH#u)=sTH#(ul#t)=(s T #u) T #

7 (sTB)lA= (F)TB
(s T#)IA = (s14) 1 #(t14)
8 (st) T #(su) = s(t T #u)
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9 (s1B)\C=(s\C)1(B-C)
(s\B)1C=(sT(B+C))\B

(End of Property)

Theorem 2.4.6

T is cubic = ( T is conservative ) A (As,t:setT AtetT:sT#t€etT)
Proof

0 Assume T is conservative and
(As,t:setT ANtetT:sT#tetT)
Let tac € tT, tbc € tT, and a # b. We derive

(tac) T #(tbe)
{ property 2.4.5}

t(ac T #(bc))
{a # b, definition T }

I

Il

tc

Since (tac) T #(tbc) € tT, we have tc € tT.
1  Assume T is cubic. We prove that

(As:setT:(At:tetT:sT#t€tT))

by induction on the length of trace s. Let s € tT.
base £(s)=0

We have s =¢ and for all t € tT e | #t =¢ € tT.
step £(s)>0

Assume

(Ar:retT ALr)<f(s): (At:tetT:rT#t€tT))

Let s = ua. Let t € tT. We distinguish two cases.
1. {(tla) < f(ula).

We derive
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(ua) T #¢
{ property 2.4.5}
(u T #t)(a T (F#t — #u))
{£(tla) < L(ula)}
u T #t
€ {induction hypothesis }
tT '

i £(tla) > £(ula)
Let ¢\ #u = vaw such that £(vfa) = ¢.

us €tT At etl
{induction hypothesis }
ul#te€tT ANua€etl ANtetT
= {T is conservative, theorem 2.3.4 }
(u T #t)(ua\ #(u T #0) € LT A (u 1 #2)(\ #(u T #1)) € ¢T
{ property 2.4.4, property 2.4.5, property 2.3.1, £(tla) > £(ula) }
(w1 #0(u\ #t)a € tT A (u ] #2)(2\ #u) € 4T
= {t\ #u =vaw}
(u T #t)(u\#t)a € tT A (u 1 #t)va € tT
= {theorem 2.4.1, #(u \ #t) N#v =2}
(u T #t)a€etT
= { definition 1, property 2.4.5, £(tla) > £(ula) }
ua T #t € tT

(End of Proof)

Theorem 2.4.7
If T is cubic then T'[A is cubic.
Proof

Let T be a cubic process. By theorem 2.3.5 we have that T[A is conservative. Let
u € tT1A and v € tTIA. Let s € tT and t € tT such that sf[A = u and t[4 = v. We

derive

seEtT AtetT
= {T is cubic, theorem 2.4.6 }
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sT#tetT
= { projection }
(s T#t)IA € tTIA
= { property 2.4.5}
(sA) T #(t1A) € tT1A
= {slA=u,tl[A=v}
ul#vetTlA

(End of Proof)

We introduce restricted commands, forming an important subclass of the commands,
and show that their processes are cubic. Restricted commands are defined inductively
by the following rules.

— ¢ is a restricted command
— a is restricted command for all symbols a

— if S is a restricted command not containing any star then S* and S° are
restricted commands

— if § and T are restricted commands and S contains no star then S; T is a
restricted command

— if S and T are restricted commands such that aTR(S) N aTR(T') = @ then

S, T is a restricted command

Property 2.4.8
Let S be a restricted command. If § contains no stars then for every alphabet A

(As,t:s €tTR(S) At €tTR(S): £(slA) = £(tlA))
(End of Property)

The projection of restricted command S on alphabet A, denoted by S[A, is defined
inductively as follows.

clA=¢
alA=a a€ A
alA=¢ ad A
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[4), (T14) aTR(S)NaTR(T) = @

Property 2.4.9

Let S be a restricted command and A an a.lpha.bef. Then SlA is a restricted command
and TR(STA) = TR(S)IA.

(End of Property)

By induction on the structure of restricted commands one can prove

Theorem 2.4.10

If S is a restricted command, then PR(S) is cubic.

(End of Theorem)

Corollary 2.4.11
0 Let component ¢ be defined by
com ¢(A) : S moc

where S is a restricted command. Then PR(c) is cubic.
1 Let component ¢ be defined by

com c¢(A) :
sub pg : €o,P1 i €C1y- .-y Pnot : Cn-1 DUS
[xo = Y0, %1 = Y1, -+ L1 = Ym—-1]
S

moc

where S is a restricted command and for 7, 0 < i < n, PR(¢;) is a
cubic process. Then PR(c) is cubic.
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2 Let component ¢ be defined by

com ¢(A) :
sub p: ¢ bus
S

moc

where S is a restricted command. Then PR(c) is cubic.
(End of Corollary)

2.5 Partial orders and sequence functions

In this section we address the subject of ordering (sequencing) the events of a process.
For process T the set of occurrences of T, denoted by occ(T'), is defined by

oce(T) = {(a,£(tla)) | ta € tT}
Notice that
(a,i) €occ(T) = (Et:taetT:£(tla) =1)

In the sequel we show that the ordering of events of process T' can be expressed as a
partial order on oce(T).

For process T and occurrence (a,1) € occ(T) the set pre(a,i,T) of all occurrences that
have to precede (a,:) in T is defined by

pre(a,i,T) =
{(b,7)|beaT AN j>0A (At:ta€tT A £(tla) =1:£(t]b) >j)}

Observe that pre(a,i,T) C oce(T).

Property 2.5.0
Let (a,t) € occ(T) and (b,5) € oce(T).

0 pre(a,i,T) is finite

1 (a,2) & pre(a,:,T)
(Ak:0<k<i:(a,k)e€ pre(a,i,T))
|pre(a,i,T)| > 1

2 (b7) € pre(a,:,T) = pre(b,5,T) C pre(a,i,T)
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3 ((a,1) € pre(b,5,T) A (b,5) € pre(a,i, T))
(End of Property)

A process defines a partial order on its set of occurrences. The binary relation <7 on
oce(T) is defined by

(a,i) <7 (b,7) = (a,i) € pre(b,j,T) (a,2), (b,7) € oce(T)

From property 2.5.0 it follows that relation <r is both anti-reflexive and transitive,
and, hence,

Theorem 2.5.1

{oce(T), <r) is a partially ordered set.
(End of Theorem)

Theorem 2.5.2

Let T and U be processes with equal alphabets. Let X be a set of processes.
Let A be an alphabet. Then

0 oce(TTA) = {(a,2) | (a,i) €Eocc(T) A a€ A}
I oce(W(X))C(US:S € X :oceS))
2 TCU = oce(T) C oce(U)
3 (Aa,bi,j:(a,i) € occ(TTA) A (b,5) € oce(TIA)
: (@,3) <114 (5,5) = (a,3) <1 (8,))
4 (AS:SGX:(Aa,b,z',j:(a,i)éocc( (X)) Noce(S)
A (b,7) € occ(W (X)) Noce(S)
i (a,4) <s (b,7) = (a,%) <w(x) (5,7)))
5 TCU = (Aa,b,i,j:(a,i) € occ(T) A (b,7) € oce(T)
(aaz) ( ) = (aaz) <r (b’J))
(End of Theorem)

Partial order <o on oce(T') is said to respect partial order <; on occ(T) if

(Aa,bi,j: (a,i) € oce(T) A (b,5) € oce(T) A (a,d) < (b,3) : (a,5) <o (b,7))
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We are interested in partial orders on occ(T') that respect partial order <.

For partial order < on occ(T) process PR(T, <) is defined to be the least process U
satisfying

0 aU=aT
1 eetU

2 (Atya:tetU A (a,€(tla)) € occ(T)
A (Abj:(bj) € oce(T) A (b,7) < (a,€(tla)) : £(t1b) > j) : ta € tU)

We have

Theorem 2.5.3

0 T CPR(T,<r)

1 If partial order <o on oce(T) respects partial order <; on occ(T)
then PR(T, <0) Q PR(T, <1)

Proof

0 We prove that t7T C tPR(T, <r) by induction on the length of traces from tT.
base 4(t) =0 t=c¢ € tPR(T,<7)

step £(t) >0

Assume (A s:s €tT A £(s) <£(t):s € tPR(T,<7)). Let t = ua. We derive

ua € tT
{T is a process, £(u) < £(t), definition occ }

u € tPR(T, <) A (a,£(ula)) € oce(T) A ua € tT

= { definition <7 and pre}

u € tPR(T, <) A (a,£(ula)) € oce(T)

A (Ab,j:(d,7) € occ(T) A (b,7) <r (a,€(ula)) : £(ulb) > j)
{ definition PR(T, <7) }

ua € tPR(T, <7)

I

1 Let partial order <q on occ(T') respect partial order <; on oce(T'). We prove that
tPR(T, <o) C tPR(T, <;) by induction on the length of traces from tPR(T, <;).

base £(1)=0 =€ € tPR(T, <,)
step £(1) >0
Assume (A s :s € tPR(T, <o) A £(s) < £(t) : s € tPR(T, <) ). Let t = ua. We derive
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ua € tPR(T, <o)
= { definition PR(T, <o) }
u € tPR(T, <o) A (a,4(ula)) € oce(T)
A (A b,j:(b,5) € oce(T) A (b,5) <o (a,b(ula)) : £(ulb) > j)
= {£(u) < £(t), <o respects <; }
u € tPR(T, <1) A (a,€(ula)) € oce(T)
A (Ab,j:(b,5) € oce(T) A (b,7) <1 (a,8(ula)) : £(ulb) > j)
= { definition PR(T, <,) }
ua € tPR(T), <4)

(End of Proof)

Theorem 2.5.4

Let T be a process. If < is a partial order on occ(T') then PR(T, <) is cubic.
Proof

Let < be a partial order on occ(T).
i.  Let ta € tPR(T, <), th € tPR(T, <), and a # b. We derive

ta € tPR(T, <)
= { definition PR(T, <)}
(a,(tla)) € oce(T)
A (Acyk: (c,k) € occ(T) A (c, k) < (a,£(tla)) : £(tlc) > k)
= {a#b}
(a,£(tbla)) € occ(T)
A (Ac,k: (c,k) € oce(T) A (c,k) < (a,£(tbla)) : £(tblc) > k)
= {tb € tPR(T, <), definition PR(T, <) }
tha € tPR(T, <)
Analogously, one can derive tab € tPR(T), <).
ii.  Let tab € tPR(T, <) and tba € tPR(T, <). We prove by induction on the length
of trace u
(Au:u € al™": tabu € tPR(T, <) = tbau € tPR(T,<))
base {(u) =0
We have u = ¢ and tabe € tPR(T,<) = tbae € tPR(T, <).

step £(u) >0
Let u = ve. We derive
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tabve € tPR(T, <)
= { definition PR(T, <) }
tabv € tPR(T, <) A (¢, £(tabvlc)) € oce(T)
A (Adk: (d,k) € occ(T) A (d,k) < (c,€(tabuvlc)) : £(tabvld) > k)
= {£(v) < £(u), property £}
tbav € tPR(T, <) A (c,£(tbavlc)) € occ(T')
A (Ad,k:(d k) € occ(T) A (d,k) < (c,£(thavlc)) : £(tbavld) > k)
{ definition PR(T, <) }
tbave € tPR(T, <)

iii. Let tac € tPR(T, <), tbc € tPR(T, <), and a # b. We derive

tac € tPR(T, <) A tbc € tPR(T, <)
= { definition PR(T, <) }
(c,L(talc)) € occ(T) A (c,L(tblc)) € oce(T)
A (Adk:(d k) € occ(T) A (d,k) < (c,£(talc)) : £(tald) > k)
A (Adyk: (d,k) € oce(T) A (dy k) < (c, £(tblc)) : £(tbld) > k)
= {a # b, property 2.5.0, < is a partial order }
(c,€(tlc)) € oce(T)
A (Ad,k:(d k) € oce(T) A (d, k) < (c,8(tlc)) : £(tald) > k A £(tbld) > k)
= {a #b,t € tPR(T, <), definition PR(T, <) }
tc € tPR(T, <)

(End of Proof)

Example 2.5.5
Let T =PR(a; b; c|b; c; a). Then partial order <7 is characterized by
(5,0) <r (¢,0)
and PR(T,<r) =PR(a; b; c|b;a; c|b;c;a). Define partial order < on occ(T') by

< (a,0)
(¢,0) < (c0)

Then < respects <7, and we have PR(T,<) = PR(b; a; ¢). Notice that neither
PR(T,<) C T nor T C PR(T, <) holds.

(End of Example)
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The above example shows that if partial order < respects <r we need not have that
PR(T,<) C T. From theorem 2.5.3 it follows that in case T = PR(T, <r) we have
that PR(T, <) C T for all partial orders < respecting <r. Therefore, we concentrate
on the class of processes T satisfying T' = PR(T, <r). Tom Verhoeff ([Ve86]) showed

Theorem 2.5.6

Let T be a process. We have

T =PR(T,<r) = T is cubic
Proof

If T'=PR(T, <r) then by theorem 2.5.4 T is cubic.

Assume T is cubic. By theorem 2.5.3 we have that T C PR(T, <r). By theorem 2.5.4
we have that PR(T, <r) is cubic. We prove by induction on the length of trace ¢ that

(At:tetPR(T,<7):t€tT)

base {(t)=0 t=c€tT

step £(t) >0
Assume

(Au:u e tPR(T,<7) A £(u) <L(t):u€tT)
Let ¢t = ua. Since t € tPR(T, <r) we have

u € tT A (a,€(ula)) € occ(T)
A (Ab,j: (b7) € oce(T) A (b5) <7 (a,4(tla)) : £(ulb) > j)

Since (a,£(ula)) € occ(T) choose s such that

sa € tT A £(sla) = b(ula)
A (Ar:ra €tT A £(rla) = L(ula) : £(r) > £(s))

We prove that
(Av,b:vb< s:(bL(vlb)) <7 (a,8(ula)))

Let vb < s. Assume —( (b,£(v1b)) <7 (a,£(ula))) or, equivalently,
(b,£(vb)) & pre(a,£(ula), T). Choose w such that '

wa € tT A f(wla) = L(ula) A £(w(b) S.l(v 1)
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We derive

sa € tT A wa € tT
= {T is cubic, theorem 2.4.6 }
sa 1 #(wa) € tT
{ property 2.4.5, (wla) = £(ula) = £(sla) }
(s T #w)a € tT

Furthermore; we have

(s 1 #w)la) = £(sla) = E(ula)
and

£(w!b) < £(v1b) < L(vblb) < £(s!b)

The above implies that £(s T #w) < £(s) which contradicts the assumption made about
s. Therefore, we have (b,£(v[b)) <7 (a,(ula)) and

(Av,b:vb< s:L(ulb) > L(vlb))
This implies that #s C #u and, since £(sla) = £(ula),

ua = u(sa \ #u) € tT
(End of Proof)

We now focus on the orderings of events of cubic processes that can be expressed by
so-called sequence functions. Let 7' be a cubic process. Let o € occ(T") — N. Define
binary relation <, on oce(T) by

(a,7) <o (b,7) = o(a,1) < a(b,j) (a,2) € oce(T), (b, 7) € oce(T)

Then (oce(T), <,) is a partially ordered set.
Function o is called a sequence function for process T if

(Aa,bi,j:(a,i) € oce(T) A (b,7) € oce(T) A (a,) <t (b,7) : (a,2) <o (b,7))

i.e. partial order <, respects partial order <7 ([Ee]). For occurrence (a,i) € occ(T)
o(a,?) may be interpreted as the moment in time at which (a,t) takes place. Then
function o describes a possible synchronous (clocked) behaviour of the mechanism
corresponding to process T'.
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Theorem 2.5.7
Let T be a cubic process. Let o € occ(T) — N be defined by

o(ayi) = [pre(ayi, T)| (a,3) € oce(T)
Then o is a sequence function for 7.

(End of Theorem)

Example 2.5.8
Let T = PR(a, b; ¢). Then oy defined by

Uo(a, 0) = 0
0'0(b, 0) =0
oo(c,0) = 2
and o, defined by
01(a,0) = 0
O'I(b, 0) = 1
o1(c, 0) 2

are sequence functions for 7. Notice that

oo(d,1) = |pre(d,,T)| (d, ) € oce(T)
(End of Example)

From the following theorem it follows that if o is a sequence function for T and f €
N — N is an increasing function then f o o is a sequence function for T as well.

Theorem 2.5.9

Let T be a cubic process. Let o be a sequence function for T. If p € occ(T) —» N
satisfies

(Aa,b,i,j: (a,3) € 0ce(T) A (b,5) € oce(T) A (a,2) <t (b,5)
: U(b,]) - 0’((1, Z) < p(b,]) - p(aa Z) )
then p is a sequence function for T. V

(End of Theorem)
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In order to give a different characterization of sequence functions we need two lemmas.

Lemma 2.5.10

Let T be a cubic process. Let o be a sequence function for T'. Then

(At a,b:tab € tT A o(a,£(tla)) > o(b,£(tID)) : tha € tT')
Proof

Let tab € tT and o(a,£(tla)) > o(b,£(tIb)). The case a = b being trivial we assume
a # b. We derive

o(a,{(tla)) > a(b,£(t1b))
= { calculus }
—(o(a,£(tla)) < a(b,£(t)))
= { ¢ is a sequence function for T}
~( (@ (t1a)) <1 (b, (218)))
= { definition <7}
(a,€(tla)) & pre(b, £(1b),T)
= { definition pre }
(Es:sbetT A £(slb) = £(tb) : £(sla) < L(tla))

Choose trace s such that sb € tT, £(slb) = £(t[b), and £(sla) < £(tla). Then #(ab) N
(#s — #t) = . We derive

sb(tab\ #(sb))
= { property 2.3.1}
sb((tab\ #s)\ #b)
{ property 2.3.1}
sb( (2 \ #s)(ab\ (#s — #1)) \ #b)
{#(ab) N (#s — #t) = @, property 2.3.1}

sb((t\ #s)ab\ #b)
= {#bN (#t — #s) = @, property 2.3.1,a # b}
sb(t\ #s)a

Since T is conservative we conclude that sb(t \ #s)a € tT. Furthermore,
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t(sb(t\ #s)a\ #t)
{ property 2.3.1}
t(sb\ #t)( (1 \ #s)a \ (#1 — #(sh)))
{ property 2.3.1, £(slb) = £(¢[b) }
t(s \ #)b((t\ #s)a \ #(t \ #s))
{ property 2.3.1}
(s \ #t)ba

Since T is conservative we conclude that t(s \ #t)ba € tT. Since £(sla) < £(tla) we
have #(s \ #t) N #a = B. From this, t(s\ #t)b € tT, and tab € tT we infer, since T
is cubic, that tb € tT. From ta € tT, tb € tT, and a # b it now follows that tba € tT.

(End of Proof)

Lemma 2.5.11

Let T' be a cubic process. Let o € oce(T) — N be such that

() (Aa,i:(a,d)€oce(T): (Aj:0<j<i:o(aj)<o(ai)))
and

(ii) (At,a,b:tabe€tT A tha & tT : o(a,£(tla)) < o(b,£(t1b)))
Then for all ¢, t € tT, we have

(Es:s €tT:#t=H#sA
(Au,v,c,d: ucvd < s: o(c, b(ule)) < o(d,L(ucvld))))

Proof
Let t € tT. We construct a trace s € tT such that #t = #s and

(Au,v,c,d:ucvd < s:o(c,b(ulc)) < o(d, L(ucvld)))
or, equivalently,

(Au,c,d:ucd < s:o(c,b(ulc)) < a(d,L(ucld)))
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Consider the following algorithm.

s,k:=1,(Nu,v,¢,d: ucvd < t: o(c,b(tlc)) > a(d, (ucvld)))
{ invariant: s € tT A #s = #t
A k= (Nu,v,¢,d:ucvd < s:0(c,b(ulc)) > o(d, l(ucvld)))
, variant function: k }
;do k#0 — {k>0}
let s = ucdv such that o(c, £(ulc)) > o(d, £(ucld))
{ (i) implies ¢ # d, (ii) implies udc € tT,
T is conservative and therefore udev € tT'}
i 8, k:=udev, k — 1
od
{ k=0, hence (A u,c,d: ucd < s:0(c,b(ulc)) < o(d,€(ucld)))}

(End of Proof)

Theorem 2.5.12 ([Ee])

Let T be a cubic process. Let o € occ(T) — M. Function o is a sequence function for
T if and only if

(i) (Aa,i:(a,i) €oce(T):(Aj:0<3<1:0(a,j)<o(a,z)))

and

(i) (At,a,b:tabe tT A tha & tT : o(a,£(tla)) < o(b,£(tD)))
Proof
0 Assume o is a sequence function for T. Let (a,¢) € oce(T) and 0 < j < 1.
Then (a,j) € pre(a,i,T) and
(a,j) € pre(a,:,T)
= { definition <7}
(a,7) <r (a,7)
= { o is a sequence function for T'}
o(a,j) < o(a,i)
From lemma 2.5.10 it follows that (ii) holds.
1 Assume o satisfies (i) and (ii). Let (b,5) € occ(T) and (a,7) € pre(b, 5, T). If
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a = b, then ¢ < j and, by (i), o(a,2) < o(b,j). Hence, we assume a # b. Choose trace
t such that tb € tT and £(t[b) = j. We now have £(t!a) > i. Using lemma 2.5.11 we
choose s € tT such that #s = #tb and

(Au,v,¢,d:ucvd < s:0(c,b(ule)) < o(d, (ucvld)))
Let ub < s and £(ulb) = j. We now have £(ula) > i. Let u = vaw be such that
{(vla) = 5. Then o(a,£(vla)) < o(b, £(vawlb)).
Assume that equality holds. Consider the following algorithm.

yi=w

{ invariant : vayb € tT A vay < s A o(a,£(vla)) = o(b,£(vaylb)),

variant function : £(y) }
;doy#eolety=zc
{ o(c,£(vazlc)) = a(b,L(vayld)),
(i) implies ¢ # b, (ii) implies vazb € tT }

s yi=2
od
{ vab € tT A o(a,£(vla)) = o(b,£(valb)), (i) implies vba € tT}

Thus vba € tT. This implies that £(v]a) > ¢ which contradicts £(vla) = 1.
Hence o(a,1) = o(a,£(vla)) < o(b,(vawlb)) = a(b, ;).

(End of Proof)

Theorem 2.5.13

Let X be a set of cubic processes. Let for all T € X o7 be a sequence function for 7.
If ‘

0) (AT,U:TeX AUEX
: (Aa,i: (a,2) € oce(T) Noce(U) N occ(W (X)) : or(a,i) = ou(a,z)))

then o € occ(W(X)) — N defined by
(1) o(a,i) = or(a,1) T € X, (a,1) € occ(W(X)) N oce(T)

is a sequence function for W(X).

Proof

Assume (0) holds. Let o be defined by (1). Function o is well defined due to condition
(0). Clearly, function o satisfies condition (i) of theorem 2.5.12. We will show that
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condition (ii) is also satisfied.
Let tab € tW(X) and tba ¢ tW(X). Observe that a # b. We have

tab € tW(X) A tba g tW(X)

= (AT:TeX AacaT A b¢aT:(tlaT)a € tT)
A(AT:TeX AacaT AbeaT : (tlaT)ab € tT)
ANAT:TeX NagaT A beaT:(tlal)be tT)
ANET:TeX ANa€caT AbeaTl: (tlaT)ba & tT)

Choose T' € X such that a € aT, b € aT, (t]aT)ab € tT, and (tlaT)ba & tT. We

derive

(tlaT)ab € tT A (t!aT)ba & tT
= { o7 is a sequence function for T', theorem 2.5.12, a # b}
or(a,f(t!aTla)) < or(b,£(tlaT b))
{a € aT, b € aT, property projection }
or(a,(tla)) < ar(b,£(t1b))
{ definition o, (a,£(tla)), (b,£(tIb)) € occ(W(X)) N oce(T) }
o(a,l(tla)) < a(b,£(t1b))

(End of Proof)

Theorem 2.5.14

Let X be a set of cubic processes. Let for all T, T € X, or be a sequence function for
T. If

(0) (AT\U:Te€ X AUE€ X :oce(Tlal) = occ(U!aT))
and

() (ATWU:TeXANUeX

:(Aa,i: (a,1) € oce(T) Noce(U) : or(a,i) = oy(a,1)))
then lockfree(X).
Proof

Assume (0) and (1). Let ¢ € tW(X) be such that (EU : U € X : suc(tlal,U) # @).
Choose T € X and a € suc(t!aT,T) such that

JT(a‘, £(tla)) = (MINU,b:U € X A b€ suc(tlal,U) : ay(b,£(1b)))
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We show that ta € tW(X). Define Y = {U |U € X A a € aU}. Let S € Y. Since
(a,£(tla)) € oce(S) and S is cubic, there exists a trace z such that

(tlaS)za € tS A zla=¢
{(z) = (MINy: (tlaS)ya € tS A yla=¢: £(y))

On basis of the algorithm given in the proof of lemma 2.5.11 we assume
(A u,v,b,c: ubve < za : o5(b,L((t1aS)ulb)) < os(c,L((tlaS)ubvlc)))

Assume z = dz. From the algorithm given in the proof of theorem 2.5.12 and the
definition of z it follows that

os(d,£(tld)) = os(d,£((t1aS)d)) < os(a,£((t1aS)dzla)) = os(a,£(tla))
This, however, contradicts
os(a,€(tla)) = or(a,l(tla)) < as(d, £(td))
We conclude that z = ¢ and, hence, a € suc(tlaS,S). We now have
(AU.: U€X Aae€al:a € suc(tlalU,U))
and, therefore, ta € tW(X).
(End of Proof)

Theorem 2.5.15

Let T and U be cubic processes such that U C T. Let o € occ(U) — N be a sequence .
function for U. Define 7 € occ(T) — N as follows

7(a,1) = o(a,1) for (a,z) € ocec(U)
7(a,1) = (MAX ¢,k : (¢, k) € occ(U) A (¢, k) <7 (a,) : 0(c,k) + 1 ) max0
+ |pre(a,:,T) N oce(T) \ occ(U)|
for (a,t) € oce(T) \ occ(U)

Then 7 is a sequence function for 7.
Proof

Let (a,%) € oce(T), (b,7) € oce(T), and (a,i) <7 (b,7). Assume (a,i) € occ(T) \
occ(U) and (b,7) € occ(U). Let ub € tU be such that £(ulb) = j. Since U C T and
(a,2) <7 (b,7), we now have #(ula) > i and, hence, (a,7) € occ(U) which contradicts
(@,7) € occ(T) \ oce(U). Therefore, we only have to distinguish the following cases

i.  (a,i) € occ(U) A (b,7) € occ(U)

We derive
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(a,i) <T (b»j)
= {U C T, theorem 2.5.2 }
(a»i) <v (bvj)
= { o is a sequence function for U }
o(a,t) < o(b,j)
= { definition 7 }
7(a,1) < 7(b,7)

. (a,2) € oce(T) \ occ(U) A (b,3) € oce(T) \ oce(U)
We derive

(a,2) <7 (b,7)
= { definition <r, property 2.5.0}
pre(a,i,T) U {(a,i)} C pre(b,5,T)
= { set calculus, (a,?) € oce(T) \ oce(U) }
pre(a,i,T) Noce(U) C pre(b,3,T) N oce(U) _
A (pre(a,i,T) Noce(T) \ occ(U)) U {(a,2)} C pre(b,j,T) Noce(T) \ oce(V)
= { definition <7, definition 7}
T(a,1) < 7(b,7)
. (a,2) € occ(U) A (b,7) € oce(T) \ oce(V)
We derive

7(a,1)
= { definition 7}

o(a,1)
< { calculus }
o(a,i) +1

{ definition 7, (a,?) <r (b,7), (a,1) € occ(U) }

7(5,)
(End of Proof)

IA

Theorem 2.5.16

Let T be a cubic process and let A be an alphabet. Let o € occ(T) — N be sequence
function for T'. Define 7 € occ(T1A) — N by

7(a,1) = o(a,1) (a,1) € oce(TIA)
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Then 7 is a sequence function for T'lA.
Proof
Let (a,4) € occ(TTA) and (b,5) € occ(TTA). We derive
(a,2) <7ta (b,5)
= { theorem 2.5.2 }
(avi) <r (b»])
= { o is a sequence function for T'}
(a,3) <o (b))
= { definition 7}
7(a,2) < 7(b,7)
(End of Proof)

Theorem 2.5.17

Let T be a cubic process. Let A be an alphabet. Let o € occ(T) — N be a sequence
function for T. Let p € occ(T1A) —» N. If

(0) (Aa,b,i,j:(a,i) € oce(TIA) A (b,7) € occ(TTA)
A (a,i) <TtaA (b,J) : U'(b,]) - O'(G,i) < p(bvj) - p(a,z))

and
(1) (Aa:(a,0)€ occ(T1A): o(a,0) < p(a,0))

then there exists a function 7 € oce(T) — N that is a sequence function for T" and
satisfies

(Aa,i:(a,1) € occ(T1A) : 7(a,1) = p(a,1))
Proof

Let p satisfy (0) and (1). From theorems 2.5.9 and 2.5.16 it follows that p is a sequence
function for T'TA. Furthermore, we have that

(Aa,i:(a,1) € occ(T1A) : o(a,i) < p(a,i))
Define for (a,z) € oce(T)

M(a,?)
= (MAXc,k: (¢, k) € occ(TTA) A (c,k) <t (a,1) : p(c, k) — o(c, k) ) max 0
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Define 7 € occ(T) — N by

7(a,1) = p(a,1) (a,i) € OCC(TYA)
7(a,t) = o(a,) + M(a,?) (a,) € occ(T) \ occ(TA)

Let (a,2) € occ(T), (b,7) € oce(T), and (a,i) <7 (b,7). We distinguish four cases.
i.  (a,1) € oce(T1TA) A (b,j) € occ(TTA)
We now have

7(a,1) = p(a,1) < p(b,5) = 7(b, )

ii.  (a,2) € oce(T) \ oce(T1A) A (b,7) € oce(T) \ occ(TA)
We derive

7(a,1)
= { definition 7}
o(a,1) + M(a,1)
< {(a,2) <1 (b,7), o is a sequence function for T, property 2.5.0 }
o(8,5) + M(b, )
{ definition 7}

7(b,5)
iii.  (a,2) € oce(TTA) A (b,5) € oce(T) \ occ(TTA)
We derive

7(b,7)

{ definition 7}
o(8,5) + M(b,5)

{(a,1) <r (3,3), (a,i) € oce(T1A), 0(a,3) < p(a,3))
o(8,1) + plari) — o(ay)

{(a,%) <1 (b,7), o is a sequence function for 7'}
p(a,1)

{ definition 7}

7(a,?)

v

Vv

iv. (a,) € occ(T) \ occ(TTA) A (b,5) € oce(T1A)
We derive
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7(a,1)
{ definition 7}
o(a,1) + M(a,1)
{(a,3) <1 (b,7), (b,4) € occ(T1A4), (0)}
o(a,?) +
(MAX ¢,k : (c,k) € oce(TTA) A (c,k) <t (a,1) : p(b,j) — o(b,7) ) max 0
{p(d,j) — o(b,j) 2 0}
o(a,1) + p(b,5) — (b, 7)
{(a,?) <7 (b,j), o is a sequence function for T }
p(b,5)
{ definition 7}
7(b,5)
(End of Proof)

IN

IN

A

Let X be a set of cubic processes. Let o be a sequence function for W(X). Let T' € X.
Define pr € occ(W(X)!1aT) —» N by

pr(a, i) = o(a,1) (a,1) € occ(W(X)!aT)

On account of theorem 2.5.16 pr is a sequence function for W(X)laT.
Since W(X)!aT C T, there exists, on account of theorem 2.5.15, a sequence function
or for T such that

or(a,i) = pr(a,i) = o(a,?) (a,i) € occ(W(X)laT)
On the other hand, let for all T, T € X, o1 be a sequence function for T' and let

(AT, U:TeX AUEX
1 (Aa,i:(a,2) € oce(T) Nocc(U) Nocc(W(X)) : or(a,i) = oy(a,i)))

Then, by theorem 2.5.13 the function o € occ(W(X)) — N defined by
o(a,1) = or(a,?) T € X,(a,2) € occ(W(X)) Noce(T)

is a sequence function for W(X).
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Let S be a system such that (AT : T € pS : T is cubic).
A function ¢ € occ(PR(S)) — N is called a sequence function for system S if there
exists a sequence function 7 for W(p(S)) such that

(Aa,i:(a,i) € oce(PR(S)) : 7(a,i) = o(a,z))

Observe that o is a sequence function for PR(S).

Corollary 2.5.18

Let S be a system such that (AT : T € pS : T is cubic). Let o € occ(PR(S)) - N
be a sequence function for S. Let p € occ(PR(S)) —» N. If

(Aa,b,i,j: (a,1) € occ(PR(S)) A (b,7) € occ(PR(S))
A (a’i) <PR(S) (b,]) : O’(b,]) - a(aii) < p(b,]) - p(a,i))
and
(Aa:(a,0) € occ(PR(S)) : o(a,0) < p(a,0))
then p is a sequence function for §.

(End of Corollary)

In the following we consider components whose corresponding systems contain cubic
processes only. This is, for instance, the case when all occurring commands are re-
stricted commands. Let ¢ be a component satisfying the above condition. A function
o € occ(PR(c)) = N is called a sequence function for c if o is a sequence function for
sys(c).

The following theorem will be applied in the proof of a theorem concerning sequence
functions for simple recursive components.

Theorem 2.5.19

Let T be a cubic process and A an alphabet such that a7’ = AU p-A,
(0) (Aa,i:a€ A:(a,i) € oce(T) = (p-a,i) € oce(T))

and

(1) (Aa,i:a€ AN (a,i) € oce(T) : (a,12) <71 (p-a,i))

Let o € oce(T) — N be a sequence function for T satisfying
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(x) (Aaybi,j:ac AANbeE AN (a,i) € oce(T)
A (b, 7) € oce(T) A (a,i) <r (b,7)
:0(b,7) — o(a,i) < o(pd,j) — o(p-a,))
Define for (p-a,?) € occ(T)
M(p-a,i) = (MAXc,k:c€ A A (¢, k) € oce(T)
A (e k) <t (p-a,i) : o(p-c, k) — o(c, k))
Then 7 € oce(T) — N defined by
7(a,7) = o(p-a,i) a € A,(a,i) € oce(T)
7(p-a,1) = o(p-a,i)+ M(pa,i) a € A,(p-a,i) € oce(T)
is a sequence function for T'. If, moreover, T satisfies
(Aa,bi,j:a,b€ A A (a,i),(b,7) € oce(T)
: (CL, z) <rT (b,]) = (p'aai) <r (pb,]))
then 7 satisfies (x).
Proof
Observe that 7 is indeed a function mapping oce(T) into M. We will show that 7

satisfies the condition in theorem 2.5.9. Let a € A and b € A. We distinguish four
cases.

1. (a,2) € occ(T) A (b,7) € occ(T) A (a,i) <1 (b,7)
We derive

T(b,j) - T(a’i)
{ definition 7}
o(p-b,5) — o(p-a,i)
{(aai) <r (baj)’ (*)}
o(b,5) — o(a,?)

. (pa,i) € oce(T) A (pb,j) € oce(T) A (p-a,i) <7 (p-b,7)
We derive

Il

v

7(p-b,7) — 7(p-a,?)
{ definition 7}
o(pb,5) — o(p-a, i) + M(p-b,5) — M(p-a,2)
{(pa,i) < (p-b,7), definition M, (1)}
o(p-b,j) — o(p-a,i)

v
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iii.  (pa,i) € oce(T) A (b,7) € oce(T) A (p-a,i) <t (b,7)
We derive

7(6,5) — 7(pa,9)

= { definition 7 }
o(pb,j) — o(p-a,i) — M(p-a,i)

2 {(p-a,1) <7 (b,7), (*), definition M }
o(pb,j) — o(p-a,i) — o(pb,j) + o(b,])

= { calculus }

o(b,j) — o(p-a,i)

iv.  (a,2) € oce(T) A (pb,7) € oce(T) A (a,i) <t (p-b,j)
We derive

m(p-b,5) — 7(a,%)
{ definition 7}
o(p-b,j) — o(p-a,i) + M(pd,5)
2 {(a,1) <1 (p-b,7) }
o(p-b,5) — o(p-a,2) + o(p-a,i) — o(a,1)
= { calculus }

U(p'b,j) —o(a, l)

From the above we infer that 7 is a sequence function for 7.
Assume T satisfies

(Aa,bi,j:a,be AN (a,i),(b,]) € oce(T)
: (aai) <r (b’]) = (p'aai) <r (pb,]))

Let a € A, b€ A, (a,2) € oce(T), (b,7) € oce(T'), and (a,i) <t (b,7). We derive

7(p-b,j) — 7(p-a,1)
s Cpraod) 2 Lo}
o(p-d,j) — o(p-a,1)
{ definition 7 }
7(b,5) — 7(a,1)
(End of Proof)

[\
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Theorem 2.5.20

Let component ¢ be recursive component

com ¢(A) :
sub p: cbus
S

moc

where aPR(S) = A U p-A and PR(S) is a cubic process satisfying the conditions in
theorem 2.5.19. If o € occ(PR(S)) — N is a sequence function for PR(S) satisfying
condition (*) in theorem 2.5.19. then 7 € occ(PR(c)) — N defined by

7(a,1) = o(a,1) (a,7) € oce(PR(c))

is a sequence function for ¢ and sys(c) is a lockfree system.

Proof

Let o € oce(PR(S)) — N be a sequence function for PR(S) satisfying condition (*) in
theorem 2.5.19. We have

sys(c) = (A, { (p-)PR(S) |12 0})

We define functions oy, | > 0 A o7 € oce((p-)'PR(S)) — N, inductively by

ora((p)*la, )= oy((p)*la,i) for 1 > 0, a € A, (a,i) € occ(PR(S))
ai11((p)*?a,0)= ou((p)*a,0)
+ (MAXc,k:ce A A (¢, k) € occ(PR(S))
A (e, k) <prs) (pra,1) : ou((p) e, k) — au((p-)'e, k) )
for [ >0, a € A, (p-a,i) € occ(PR(S))

Then o, is a sequence function for (p-)'PR(S) for all I > 0 and

(Ak,l,e,m:0 <k <1 A (c,m) € oce((p-)*PR(S)) N oce((p-) PR(S))
: ok(c,m) = ay(e,m)))

Then p € oce(W(psys(c))) — N defined by

p(a,i) = ox(a,1) k> 0,(a,i) € occ(W(psys(c))) Noce((p-)*PR(S))
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is a sequence function for W(psys(c)) such that

T(a,1) = p(a,1) (a,2) € occ(PR(c))
(End of Proof)

Application of the above theorem is illustrated in examples 2.5.21 and 2.5.22.

Let T be a cubic process and ¢ be a sequence function for 7. We already mentioned
that for (a,t) € oce(T) o(a,i) may be interpreted as the moment at which (a,%) is
to take place. Likewise, one may interpret for (a,i) € oce(T), (b,j) € oce(T), and
(a,3) <1 (b,j) o(bj) — o(a,?) as the time elapsed between the i-th occurrence of
a and the j-th occurrence of b. Based on this interpretation we give the following
definition of constant response time.

Let S be a system such that (AT : T € pS : T is cubic). System S is said to have
constant response time if there exists a sequence function o for S such that

(En:n>1:(At,a,b:tab€ tPR(S) A (a,(tla)) <prs) (b, £(talb))
: o(b,£(tald)) — o(a,L(tla)) < n))

i.e. there exists a restricted (clocked) behaviour of the system such that there exists a
global upperbound for the time elapsed between any two consecutive external events.
A component c is said to have constant response time if sys(c) has constant response
time. Observe that the constant in the above condition may be interpreted as a measure
for the response time of the system.

Example 2.5.21

Consider the following recursive component

com c(a,b) :
sub p: ¢ bus
(a5 pa; b; pb)*
moc

We have PR(c) = SEM;(a,b). Let U = PR((a; p-a; b; p-b)*). Define for 7, i > 0,

ola,1) =4

o(p-a,i)=4i+1
o(b,i) =4i+2
o(p-bi) =4i +3
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We now have that o is a sequence function for U satisfying condition (*) from theorem
2.5.19. By theorem 2.5.20 we have that o restricted to occ(PR(c)) is a sequence function
for component ¢. Furthermore, we have

(At,c,d: ted € tPR(c) A (c,£(tlc)) <pr(e) (d, £(tcld))
: a(d, L(tcld)) — a(c, £(tlc)) < 2)

Therefore, component ¢ has constant response time.

(End of Example)

Example 2.5.22

Consider the following recursive component

com c(a,b) :

sub p: c bus

a; b; (p-a;a; b; p-b)*
moc

We have PR(c) = SEM;(a,b). Let U = PR(a; b; (p-a; a; b; p-b)*). Define for i,z > 0,

o(a,i) =(+1)2-1
ofbi) =(i+1)

olpayi) = (i +2)? ~2
o(pbi)=(:+2)2+1

Then o is a sequence function for U satisfying condition (*) from theorem 2.5.19 and,

therefore, theorem 2.5.20 is applicable. Component ¢ does not have constant response
time.

(End of Example)



3 Communication of values and data independence

3.0 Introduction

In this and the following chapters we restrict ourselves to processes describing mech-
anisms that can interact with their environment by sending and receiving values or
messages via channels. The transmission of a value or message via a channel is repre-
sented by a pair consisting of the channel name followed by the message. Such pairs
are considered to be symbols.

In section 1.0 we presented an example of such a mechanism, viz. the variable capable
of storing integer values. The process describing such a variable is given by

VAR = PREF(({a,b} x Z,(Un:n€ Z: {{(a,n)t|t € {{b,n)}*})*))

Abstraction from the actual messages that are sent, i.e. abstraction from the values
that the variable can store, results in process VAR om = PR((a; *)*). Process VAR ¢om
describes the so-called communication behaviour of the variable. As process VAR is
identified with the variable, process VAR o Will be identified with the communication
behaviour of the variable. Let ¢ be the current trace of the variable (¢ € tVAR).
Let trace u describe the communication pattern corresponding to t (u € tVARcom)-
Observe that ua € t VAR o implies the existence of m € Z such that ¢(a,m) € tVAR
(according to process VAR communication of an actual message via channel a may
occur). The same observation can be made about channel b. In other words, the
communication pattern does not depend on the messages (data) that are sent and
received. Process VAR is called data independent.

An example of a process that is not data independent is FILTER, defined by

FILTER =PREF(( {a,b} x Z
((Un:n>0: {{a,n}{bn)}) U (Un:n<0:{(a,n)}))*))

Process FILTER describes a mechanism that filters the negative numbers received via
channel a: it only transmits via channel b the nonnegative numbers received.

In this chapter we give a formal definition of data independence. It is shown that data
independence can be expressed in terms of transparence. Furthermore, a number of
properties of data independent processes are given.

88
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3.1 Communication of values

Transmission of value or message m via channel ¢ is modelled by the pair {¢,m). We
assume the existence of a set I' of names and a set M (capital x) of values or messages.
Elements of I' are called channels. Subsets of I' are called channel sets.

Some channels are used to transmit only one kind of message, a so-called signal. These
channels are used for synchronization only. In order to model signal transmission we
introduce the so-called empty message / (read "tick”). We assume that / ¢ M. We
define My = MU {,/}. From here on we take @ =T x M,,.

We observe that every process T from the previous chapters can be identified with a
process that is obtained from T by substituting every symbol in T by a pair consisting of
that symbol followed by /. Due to this identification we often denote pairs containing
/ by their channel names only.

Abstraction from the messages being sent is represented by the function y €  —» T
defined by

({e,m)) = ¢
Function 4 is extended to traces by defining

() = ¢
v(tle,m)) = 7(t)e

Likewise, function 7 is extended to trace sets, trace structures, and processes. Function
~ may be interpreted as the projection on the channel names.

Let s and t be traces, X and Y trace sets, and T and U trace structures such that
al = aU.

Property 3.1.0
0 ~(s)er™
1 ~(st) = 7v(s)¥(2)
2 £(v(s)) = £(s)
3 s<t = 9(s) <H(t)
XCY = v(X) CH(Y)
TCU = +(T) <)
4 PREF(y(X)) = 7(PREF(X))
5 Let T be a process. Let t € tT. Then
v(T) is a process '
Y(suc(t, T)) C suc(v(t), %(T))
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suc(y(2),y(T)) = (Us :s € tT A ~(s) = (t) : v(suc(s,T)))
7(after(t,T)) C after(y(),7(T))
after(4(t),7(T)) = (Us : s € £T A (s) =2(8) : A(after(s, T)))

(End of Property)

Notice that in the above property process 4(T') is identified with a process whose
alphabet is y(aT) x {1/}, since formally speaking y(aT) is not a subset of ' x M, = 2.
Process 4(T') describes the communication behaviour of process T'.

Due to our interpretation of the pairs in Q projection is almost always done on alphabets
of the form C x M,y where C is a channel set (C C I'). Therefore, we introduce the
following abbreviation. Projection of trace t on channel set C, denoted by t[C, is
defined by

tlc = tNC x My)

Accordingly, projection of trace sets, trace structures, and processes on channel sets
is defined. Projection on channel sets has properties similar to properties of ordinary
projection. We only mention one extra property.

Property 3.1.1

1(sIC) = ~(s)lC
HTIC) = A(T)IC

(End of Property)

Let T be a process. The channel set of T, denoted by cT, is defined by
cT = y(aT)

The elements of ¢T are called the channels of process T'. Let ¢ be a channel of T. The
type of channel ¢ in T, denoted by type(c,T), is defined by

type(c,T) ={m|meMy A (c,m) € aT'}

Notice that type(c,T) equals the set of all messages that T' may transmit via channel
c according to its alphabet. The empty message / was introduced explicitly to model
signal transmission. Obviously, we must require that

(Ac:cecT:/€type(e,T) = {V} = type(c,T))
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In the following we tacitly assume all processes to satisfy this condition. Observe that
for process T satisfying this condition and channel set C process T'C satisfies this
condition as well.

Property 3.1.2

Let T be a process and C be a channel set.

0 aT' =(Uc:c€cT: {c} x type(c,T))

1 ¢(TIC)=cTNC

2 type(c, TIC) = type(e, T) cecT'nC
(End of Property)

Next, we investigate the composition of processes. The following two examples show
that weaving of two processes may yield a result that is not in accordance with our
appreciation of processes and their composition.

Example 3.1.3

Process T = ({{a,0)},{(a,0)}") describes a mechanism that can repeatedly send
zeroes via channel a. Process U = ({a} x Z,({a} x Z)*) describes a mechanism
that can repeatedly receive arbitrary integer values via channel a. On basis of our
appreciation we would expect the composite of T and U to be described by ({a} x
Z,{(a,0)}*). However, by just applying the definition of weaving we obtain

TwU = ({a} x Z,({a} x ') (=U)
(End of Example)

Example 3.1.4

Let T = RUN({{a, false)}) and U = RUN({(a, true)}).
We now have TwU = RUN({(a,false), (a,true)}). On basis of our appreciation we
would expect the composite of T and U to be ( {(a, false), (a, true)}, {e} ).

(End of Example)

Observe that in both examples the type of channel a in process T differs from the type
of a in process U. If in example 3.1.3 type(a,T) and type(a,U) were both Z, and in
example 3.1.4 type(a,T) and type(a,U) were both {false, true}, the weave of T and U
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would yield the expected result.
Hence, we define the following notion. Processes T' and U are said to be compatible if

(Ac:cecT ncU :type(c,T) = type(c,U))

It is easily seen that if two processes are compatible their weave will be the process we
expect on basis of our appreciation. Moreover, if processes T and U are compatible,
process T'w U satisfies the tacit assumption

(Ac:cec(TwU):+/€type(c, TWU) = {\/} = type(c, TWU))

provided that 7' and U satisfy it. In the following we consider composition of compatible
processes only. Therefore, we tacitly assume processes that are to be composed to be
compatible.

Property 3.1.5
Let T and U be processes. Then

0 t(TwU)={t|te(al'ual)* A tlcT €tT A tlcU € tU}
1 ¢(TwU)=cTUcU

2 A(TwU) SH(T)wr(U)

Proof

We prove only 2. We derive

YT wU)
= { definition « }

(v(@TwU)),{v(s) | set(TwU)})
— { definition channel set, 0 }

(c(TwU),{~(s) | s € (aTual)* A slcT € tT A slcU € tU})
C {1, property 3.1.1, definition channel set }

(eTUclU,{~v(s)|v(s) € (cTUcU)* A y(s)IcT € ty(T) A v(s)lcU € ty(U) })
= { definition weave, definition channel set }

1(T)wA(U)
(End of Proof)

The inclusion in property 3.1.5.2 may be a true inclusion as the following example
shows.



3.1 Communication of values 93

Example 3.1.6

T= ({a} X Z»{E)(a10>})

U= ({a} x Z, {e, (aal)})

TwU = STOP({a} x Z)

v(T) = v(U) = PR(a)

+(T'w U) = STOP(a) C PR(a) = ~(T) w~(U)

(End of Example)

We modify the definition of systems. We require that the processes of a system are
compatible with one another, and replace the external alphabet of a system by a
channel set consisting of the external channels of the system. More formally, a system
is a pair (C, X) where C is a channel set and X is a set of processes such that every
process T € X and every process U € X are compatible, and C C ¢cW(X). Let S
be a system. Instead of denoting the external alphabet, eS now denotes the external
channel set of system S. The (external) process of system S, denoted by PR(S), is
defined by PR(S) = W(pS)leS. The type of external channel ¢ of system S, denoted
by type(c, S), is defined by

type(c, 5) = type(c, W(pS))

The projection of system S on channel set C, denoted by SC, is defined by
SIC = (eSNC,pS)

For every system S the system «(S) is defined by
7(5) = (eS5,7(pS))

Let S and T be systems. In order to compose S and T we require that
cW(pS)NcW(pT) =eSNeT and

(Ac:ceeSnNeT :type(c, S) = type(c,T))
If S and T satisfy this last condition they are said to be compatible. For compatible
systems S and T satisfying cW(pS) N cW(pT) = eS NeT the composite of S and T,
denoted by S || T, is defined by

S||T=(eSUeT,pSUPpPT)
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Notice that due to the imposed restrictions S || T' is indeed a system. In the following
we tacitly assume that systems that are to be composed are compatible.

Theorem 3.1.7
Let S and T be systems. Let C be a channel set. Then

¥(SIC) y(S)IC
(S || T) Y(S) | +(T)

(End of Theorem)

3.2 Data independence

A process is said to be data independent if the communication behaviour after the
current trace depends on the communication pattern associated with the current trace,
and not on the messages that have been sent and received. Formally, process T is called
data independent if

(At:tetT:y(after(t,T)) = after(v(t),v(T)))

Example 3.2.0

Process

ADDER = PREF(({a,b,c} x Z
s ({{a,m)(b,n){c,m +n) | m,n € Z}
U{(b,n){a,m){c,m +n) |m,n€ Z})"))

is data independent.

(End of Example)

The next theorem gives three alternative characterizations of data independence.
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Theorem 3.2.1

Let T be a process. The following four assertions are equivalent.

0 (At:t€tT :A(after(t,T)) = after((t),(T)))

1 (As,t:setT AtetT Axy(s)=7(t): y(after(s,T)) = v(after(t,T)))
2 (At:tetlT:vy(suc(t,T)) = suc(y(t),v(T)))

3 (As,t:setT At etT A v(s) =) : v(suc(s, T)) = y(suc(t,T)))
Proof

Using property 3.1.0 one easily establishes the equivalence of 0 and 1, and of 2 and 3.
Furthermore, it is easily seen that 1 implies 3. It remains to prove that 3 implies 1.

Assume that 3 holds. Let s,t € tT be such that y(s) = v(¢). By induction on the
length of trace u we prove

(Au:u € Q" :u€ ty(after(s,T)) = u € ty(after(t,T)))
base {(u)=0
€ € ty(after(s,T))

{se etT}
true

{te e tT}
€ € ty(after(t,T))

step f(u) >0
Assume

(Aw:we Q* A L(w) < l(u) : w € ty(after(s,T)) = w € ty(after(t,T)))

Let u = va. We derive

u € ty(after(s,T))

{u=va}
v € ty(after(s,T)) A va € ty(after(s,T))
= {induction hypothesis, £(v) < £(u) }
v € ty(after(t,T)) A va € ty(after(s,T))

{ definition after, successor set, and 7 }
(By,z:y,z€aT*:v=7(y) Aty € tT

Av=7(z) A sz €tT A a € y(suc(sz,T)))
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Analogously, one can derive

u € ty(after(t,T)) =
(Ey,z:y,z€al*:v=7(y) A ty € tT
ANv=r(2) Asz€etl A aé€ vy(suc(ty,T)))
From «(s) = (t) and 3 it now follows that

u € ty(after(s,T)) = u € ty(after(t,T))
(End of Proof)

Comparing the definition of data independence with the definition of non-disabling
we see a close resemblance. Data independence can indeed be expressed in terms of
transparence. To do this we first introduce the function 6 € (I' x M))* — (T UM)*
defined by

6(e) = €
0(t{c,m)) = 6(t)em

Function 8 is defined for trace sets in the obvious manner. For every process T the

process 0(T') is defined by
6(T) = PREF((cT U (Uc: ce cT : type(c,T)), 0(tT)))

Furthermore, we assume that TN M, = &.

Lemma 3.2.2
Let T be a process and let t € tT.

0 (1) = 0(t)leT
1 y(T)=6(T)IcT
2 y(suc(t,T)) = suc(6(t),6(T)) C cT
y(after(t,T)) = after(6(t),6(T))IcT
(Au:u€etf(T): suc(u,d(T)) CcT = (Es:setT:8(s)=u))
4 T is non-divergent with respect to 6(T)
(End of Lemma)
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Theorem 3.2.3

Let T be a process. Then

T is data independent = T is transparent with respect to 6(T)
Proof

T is data independent
= { theorem 3.2.1}
(At:t et :vy(suc(t,T)) = suc(y(t),y(T)))
= {lemma 3.2.2 }
(Au:u€td(T) A suc(u,d(T)) C cT : suc(u,b(T)) = suc(ulcT,(T)cT))
{cT is non-divergent with respect to 8(T), theorem 2.1.20 }
cT is transparent with respect to 8(7T)

(End of Proof)

I

Next, we investigate when the projection of a data independent process on a channel
set is data independent. We have the following result.

Theorem 3.2.4

Let T be a data independent process. Let C be a channel set such that C C c¢T'. If C
is non-disabling with respect to y(7") then 7'[C is data independent. .

Proof

Assume C is non-disabling with respect to 4(7T"). Let ¢ € tT. We derive

v(after(tIC,TIC))
C { property 3.1.0 }

after(y(t1C),~(T1C))
{ property 3.1.1 }
after(y(t)1C,v(T)IC)
{ C is non-disabling with respect to v(T') }

after(y(t),7(T))IC
{T is data independent }

v(after(t,T))IC
{ property 3.1.1}
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v(after(t, T)IC)
G { property projection }
y(after(tIC,TIC))

(End of Proof)

The following example shows that if T'[C is data independent C' does not necessarily
have to be non-disabling with respect to (7).

Example 3.2.5
T = PREF(({a,b,c,d,e} x Z, {{a,0){c,0)(d,0), (b,0){c,0){e,0)}})
C = {c,d, e}
T is data independent
TIC = PREF(({c,d,e} x Z, {{c,0)(d,0), (c,0){e,0)}))
TIC is data independent
YT) =PR(a;c;d|b;¢;e)
C is not non-disabling with respect to ~¥(T)
U = PREF(({a,b,c,d,e} x Z, {{a,0){c,0)(d,0), (b,0){c,1)(e,1}}))
U is data independent
UIC = PREF(({c,d,e} x Z, {{¢,0)(d,0), {(c,1){e,1)}))
UIC is not data independent
(U) =~+(T)
(End of Example)

We now investigate the data independence of the weave of two data independent pro-
cesses. First, we have the following lemma.

Lemma 3.2.6
Let T and U be data independent processes. Then
(At:tet(Twl)

s y(suc(tleT, T) N suc(tlel,U)) = y(suc(tlcT, T)) N y(suc(tlcl,U))
= y(suc(t, T w ) = suc(x(t),1(T) w(U)))

Proof
Let ¢t € t(Tw U). We derive
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v(suc(t,TwU))
= {theorem 1.1.17, calculus }
v(suc(tleT, T) N suc(tleU,U))
U y(suc(tleT,T)\ al) U v(suc(tlcU,U)\ aT")
{T and U are compatible, T and U are data independent }
y( suc(tleT, T) N suc(t!cU,U))
U suc(y(t)1eT,v(T)) \ U U suc(y(t)lcU,v(U)) \ T

and

suc(v(2),y(T)w~(U))
= { theorem 1.1.17}

(sue(y(t)leT, (T)) N suc(y(t)Icl,¥(U)))
U suc(y(t)[eT,v(T)) \ cU U sue(y(t)!cU,7(U)) \ T

= {T and U are data independent }

(v(suc(t!cT, T)) N y(suc(tlcU,U)))
U suc(y(¢)IeT,y(T)) \ U U suc(y(t)lelU,v(U)) \ cT

Observe that in the above derivations only unions of disjoint sets occur. Hence, we
infer

v(suce(t, TwU)) = suc(y(t),y(T) wy(U))
= y(suc(tleT,T) N suc(tlcU,U)) = y(suc(tlcT,T)) N y(suc(t ch, U))

(End of Proof)

Theorem 3.2.7

Let T and U be data independent processes. Then

(At:tet(TwU):y(suc(tleT,T)N suc(ticU,U))
= y(suc(t!cT, T)) N y(suc(tlcl,U)))
+= (TwU is data independent ) A y(TwU) = 4(T)w~(U)

Proof

(At:t € t(TwU):~(suc(tlcT,T) N suc(tlel,UV))
= y(suc(tlcT, T)) Ny(suc(tcU,U)))
= {lemma 3.2.6 }
(At:tet(TwU):vy(suc(t,TwU)) = suc(y(t),y(T)w~(U)))
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= { see note }
(At:tet(TwU):vy(suc(t, Twl)) = suc(y(t),y(TwU)))
A(At:tet(TwU):suc(y(t),y(TwU)) = suc(y(t),y(T)w~(U)))
= { theorem 3.2.1, calculus }
(TwU is data independent ) Ay(Tw U) = v(T)w~(U)

note
Assuming t € t(TwU) A y(suc(t,TwU)) = suc(y(t),y(T)wy(U)) we derive
y(suc(t,TwU))

C { property 3.1.0 }

suc(r(1), 7(Tw U)
C { property 3.1.5}

suc(y(1),y(T) w(U))
= { assumption }

v(suc(t,TwU))
(End of Proof)

The following theorem provides conditions implying data independence of the weave
that are stronger than the left hand side of the equivalence in 3.2.7.

Theorem 3.2.8

Let T' and U be data independent processes. Let C and D be channel sets such that
CCcT,DCclU,and cTNclU CCUD. If T and C satisfy

(At,c:tetT A cey(suc(t,T))NC : {c} x type(c,T) C suc(t,T))
and U and D satisfy
(Au,d:u€etU A d e vy(suc(u,U)) N D : {d} x type(d,U) C suc(u,U))

then Tw U is data independent, y(T'w U) = 4(T) w 4(U), and
TwUand E=(CND)U C\cU U D\ cT satisty

(At,c:tet(TwU) A cevy(suct,TWU))NE:
{c} x type(e, TWU) C suc(t, TwU))

(End of Theorem)
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Being rather straightforward the proof of the above theorem is omitted.

Notice that the conditions in theorem 3.2.8 are both in terms of one process only.
These conditions are met if we, for instance, distinguish between input and output
channels in both processes thereby requiring that a process puts no restrictions on the
values it is willing to receive via its input channels, and that each channel connecting
the processes is an input channel in one process and an output channel in the other
process.

Theorem 3.2.9

Let X be a set of data independent processes. Let for every process T € X Cr be a
channel set such that Cr C eT. If

0 (At:tetT Acey(suc(t,T))NCr:{c} x type(e,T) C suc(t,T))
1 (AT U:TeXANU€eX:cTNecU CCrUCY)

then W(X) is data independent, y(W(X)) = W(y(X)), and
(At:tetW(X) A c€y(suct, W(X)))NC:
{e} x type(e, W(X)) C suc(t, W(X)))

where

C={clcecWX)A(AT:TeX ANcecT:ceCr)}
UUT:TeX:Cr\(WU:UeX\{T}:cl))

If S is a system such that pS = X and v(S) is non-disabling, then PR(S) is data
independent.

(End of Theorem)

Theorem 3.2.10

Let (Th)n>0 be a sequence of data independent processes such that
(An:n>0:T, CT,y1). Then (Un:n >0:T,) is data independent.

Proof
Let te t(Un:n>0:T,). We derive
(after(t,(Un:n>0:T,)))

= { property 1.1.3 }
Y((Un:n>0AtetT,: after(t,T,)))
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= { calculus }
(Un:n>0 A tetT,:y(after(t,Ty)))
= {(An:n>0:T, is data independent ) }
(Un:n>0AtetT,: after(v(t),v(Th)))
= {(An:n>0:T, C Tyy), property 1.1.3}
(Un:n >0 A 5(t) € ty(Ty) : after(y(t),v(Tn)))
{ property 1.1.3}
after(v(t),(Un:n>20:v(Tn)))
= { calculus }

after(y(t),y((Un:n>0:T,)))
(End of Proof)

I

3.3 Split specifications

In section 1.2 we introduced specifications as a way to describe processes. A data
independent process, however, may be described in a somewhat different manner. It is
completely determined by its communication behaviour, the types of its channels, and
the relation between the messages it sends and receives, i.e. its input/output relation.
This is formalized as follows.

A split specification is a triple { T, f, P) where T is a process with aT C T,
feal - (P(M)\ {2})U {{/}} is a function, and P is a predicate on
A= (Uc:ceaTl:{c} x f(c))* such that

- P(e)
(Acgt:cealT ANte A" :y(t)cetT A (As:s<t:P(s))
= (Em:me f(c): P(t(c,m))))

Process T describes the communication behaviour and function f the types of the
channels. The last condition mentioned above states that predicate P may put no
further restrictions on the communication behaviour described by T. The process
specified by split specification (T, f, P) is

((Ue:ceaT :{c} x f(c))
y{tlte(Ueciceal :{c} x f(e))* ANvy(#) €tT A (As:s<t:P(s))})

The process specified by a split specification is data independent as the following the-
orem shows.
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Theorem 3.3.0

Let (T, f, P) be a split specification specifying process U.
Then U is data independent and y(U) = T.

Proof

Obviously 4(U) C T. By a simple inductive argument one can prove
(Ak:k>0:{t|tetT ALt)<k}Cty(l))

which implies T C y(U).
Let t € tU. We will show that sue(v(t),y(U)) = v(suc(t,U)). Since t € tU we have
v(t) € tT and (As:s <t: P(s)). We derive

¢ € sucl(t),1(V))

{v(U)=T,(As:s<t:P(s))}
y(t)e€tT A (As:s <t:P(s))

{(T, f,P) is a split specification }
(Em:m € f(c) :y(t)c€tT A (As:s <t{e,m): P(s)))
= {7(t{e,m)) = ~4(t)c, definition U }

(Em:m € f(c) : t{c,m) € tU)

= { definition v en suc}

¢ € y(suc(t, U))
(End of Proof)

I

The following theorem shows that every data independent process can be specified by
a split specification.

Theorem 3.3.1

Let U be a data independent process. Define f € cU — (P(M) \ {@}) U {{\/}} by
f(e) = type(c,U) for all ¢ € cU. Then (y(U),f,t :t € tU) is a split specification
specifying U.

Proof
Notice that ¢ € tU. Let t € aU* and ¢ € cU. We derive
Y(t)cety(U) A (As:s<t:setl)

= { definition suc, U is a process }
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c € suc(y(t),y(U)) ANt etU
{U is data independent }
c € y(suc(t,U)) ANt etU
{ definition v and suc}
(Em :m € type(c,U) : t{c,m) € tU)

Therefore, (y(U), f, t : t € tU) is a split specification. Furthermore, we derive

((Ue:cecU:{c} x f(c))
Atlte(UeiceceU:{c} x f(e))* A ~(t) € ty(U)
A(As:s<t:setU)})
= { definition f, property 3.1.2, U is a process }
(alU,{t|teaU* AtetU})
= { definition process }
U

(End of Proof)

The above two theorems show that the class of data independent processes and the
class of processes generated by split specifications are identical.

Before presenting an example we introduce some notation. Function g € Q* — M¥ is
g IS v

defined by

pe) = ¢
p(t{e,m)) = pu(t)m

Let ¢ be a trace. Notice that u(t) is a trace whose symbols are elements of M,,. The
i-th element of trace u(t) is denoted by u(¢)[s] (0 < i < £(¢)). Let ¢ be a channel name.
We define c(i,t) = p(tlc)[z] for all 7, 0 < 4 < £(tlc). Message c(i,t) is the i-th message
transmitted via channel ¢ in trace t (0 <4 < £(t[c)). Whenever ¢ is obvious from the
context, we write ¢(z) instead of ¢(3,1).

Example 3.3.2

The process ADDER in example 3.2.0 may be specified by split specification

(PR((a, b; )"), {(a, 2), (b, 2), (¢, 2)}
yt:(A7:0 <1< {(tla) minf(t/b)minf(tle) : (i) = a(i) + b(2)))

(End of Example)
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Theorem 3.3.3

Let (T, f, P) be a split specification specifying process V. Let S be a process such
that S € T. Then (S, f,P) is a split specification. If U is the process specified by
(S,f,P) wehave U C V.

(End of Theorem)

Theorem 3.3.4

Let (S,f,P) and (T,g,Q) be split specifications specifying processes U and V, re-
spectively. Then

Ucv
= SCTAf=yg
AN(At:tealU* Ay(t)etS:(As:s<t:P(s)) = (As:s<t:Q(s)))
and

U=V
=S=TAf=g
AN(At:tealU* Ay(t)etS:(As:s<t:P(s)) = (As:s<t:Q(s)))
(End of Theorem)

The next two theorems give conditions under which the Conjunction-Weave Rule holds
(cf. theorems 3.2.7 and 3.2.8).

Theorem 3.3.5

Let (S,f,P) and (T,g,Q) be split specifications specifying processes U and V, re-
spectively. Let f(c) = g(c) for all c € aSNaT. Then

(Ac,it:ceaSNalT Ate(alUuUaV) A y(t)cet(SwT)
A(As:s<tlaS:P(s)) A (As:s<tlaT:Q(s))
:(Em:m e f(c)Ng(c): P(t{c,m)) A Q(t{c,m)))
= (SwT,fUg, t: P(tlaS) A Q(tlaT)) is a split specification for Uw V

(End of Theorem)

Theorem 3.3.6

Let (S,f,P) and (T,g,Q) be split specifications specifying processes U and V, re-
spectively. Let f(c) = g(c) for all c € aSNaT. Let C C aS and D C aT such that
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aSNaT’ CCuUD. If

(Ac,t:ceC AtealU* Ay(t)cetS A(As:s<t:P(s))
:(Am:m € f(c): P(t{c,m)))

and
(Ad,t:deDANteaV  Ay(t)detT A (As:s<t:Q(s))
:(Am:m € g(d): Q(t(d,m)))
then (SwT, fUg,t: P(tlaS) A Q(t!aT)) is a split specification specifying U w V.
(End of Theorem)

Example 3.3.7
Let ADDER be the process in example 3.3.2. Let process COPY be specified by split
specification

(PR((d7 a, b)‘) ’ {(d, Z)v(a» Z), (b,Z)} b l‘(tra) < ﬂ(trd) A /‘(trb) < /‘(trd))
The process DOUBLE = ( COPY w ADDER )[{d, c} is then specified by

(PR(d; c,d)"), {(C) Z)a(da Z)}

,ti (A0 << f(tld)minf(tlc) : c(i) =2-d(3)))

(End of Example)

In sections 5.1 and 5.2 examples are given of how, under certain conditions, one easily
derives a split specification for the projection. Such a derivation can also be given in
the above example.

3.4 Properties of processes

In chapter 2 we introduced properties of processes expressing the absence of divergence
or nondeterminism (or both), and the absence of deadlock. In this section we investigate
the relationship between properties of a process T' and properties of y(T'), especially
in the case that T is data independent.

In the sequel T is a process and C' is a channel set such that C C c¢T. We define AC
to be

AC = (Uc:c€ C:{c} x type(c,T))
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Observe that AC C aT', v(AC) = C, and v(AC) = C.

Theorem 3.4.0

C is non-divergent with respect to y(T')
= AC is non-divergent with respect to T

Proof
Assume C is non-divergent with respect to 4(T'). Let t € tT. Let n > 0, be such that

(Au:ue () Ay(t)u€ty(T): L(u) <n)
Let s € (AC)*. Then

ts € tT
= { calculus }

A{t)y(s) € t(T)
= {1 e (@)}
tr(s)) <n

{ property 3.1.0 }

£(s)<n
(End of Proof)

The following example shows that the reverse implication does not hold in general.

Example 3.4.1
T = PREF(({a,b,c} x Z,{(a,n)(5,0)*(c,0) | n>0}))
{a,c} x Z is non-divergent with respect to T'
{a,c} is divergent with respect to y(T")
T is not data independent

(End of Example)

Provided T is data independent the reverse implication in theorem 3.4.0 does hold as
the following theorem shows.

Theorem 3.4.2
Let T be data independent. Then
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C is non-divergent with respect to y(T')
= AC is non-divergent with respect to T'

Proof

Assume that AC is non-divergent with respect to T'. Let u € ty(T). Choose t € tT
such that 4(t) = u. Let n > 0 be such that

(As:s€(AC)* Ats€tT : 4(s) <n)
Let v € (C)*. We derive

uv € ty(T)
{u = 4(t), definition after}
v € tafter(y(t), v(T))
{T is data independent }
v € ty(after(t,T))
= { calculus }
(Es: s € tafter(t,T) : y(s) = v)
= {ve (0}
(Es:s € tafter(t,T):v(s) =v A €(s) <n)
= { property 3.1.0}
L(v) <n
(End of Proof)

I

Corollary 3.4.3

Let S be a system such (AT : T € pS : T is data independent). If W(pS) is data
independent and 4(W(pS)) = W(y(pS)) then

S is non-divergent = +(S) is non-divergent

(End of Corollary)

The following two examples show that we do not have theorems on non-disabling
analogous to theorems 3.4.0 and 3.4.2.

Example 3.4.4

Let ADDER be the process defined in examples 3.2.0 and 3.3.2. We have ytyhat {a,c}
is non-disabling with respect to y(ADDER) = PR((a, b; ¢)*). Since
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(c,1) ¢ tafter({a,0)(b,0), ADDER)
and
(¢,1) € tafter({a,0), ADDER{q,c})

we have that {a,c} x Z is disabling with respect to ADDER.
(End of Example)

Example 3.4.5

Let T be the process specified by split specification

(PR((b; b)"; (a5 d|b;a;¢)), {(a, Z)}U {b,c,d} x {{v/}})
t:(As:sa<y(t):a(l(sla),t) =£(sb)mod2))

Let C = {a,c,d} and AC = ({a} X Z) U ({¢,d} x {/}). We have that AC is non-
disabling with respect to T. Since tafter(a,v(T)) = {d} and tafter(a,y(T)IC) =
{¢,d}, we have that C is disabling with respect to (7).

(End of Example)

Transparence of AC with respect to T implies transparence of C with respect to y(T')
in case T is data independent as is shown by the following lemma and theorem.

Lemma 3.4.6

Let T be data independent. Let ¢T be finite. If AC is tra.nsparent with respect to T’
then

(As,t:s€tT AtetT Ay(s)IC=9(t)IC
(Bu,v:u€tl AvetT
ty(u) = y(v) A ulC =sIC A wlC =tIC
A suc(y(u),¥(T)) € C A suc(y(v),%(T)) CC))
Proof

Assume AC is transparent with respect to T'. Since AC is non-divergent with respect
to T we have that C is non-divergent with respect to y(T). Let s € tT and ¢t € tT be
such that y(s)IC = (¢)IC

By theorem 2.1.7 we have that {w | w € ty(T) A wlC < 4(t)[C} is finite. Observe
that this set is nonempty. An algorithm to construct traces u and v is described by
the following program.
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u,v,z,y,h:=¢,¢,8/C,tIC,e
{ invariant : u € tT A v € tT A y(u) = ()=
A (ulC)z =s!C A (vIC)y =tIC
variant function :
£(h) bounded by (MAX w : w € ty(T) A wlC <~(t)IC : L(w)) }
;jdo(z#e Ay#e)V ~(suc(h,y(T)) CC)
— if =(suc(h,y(T)) C C)
— choose d : d € suc(h,y(T))\ C
{dgC A dexy(suc(u,T)) A d € y(suc(v,T)) }
; choose m,n : m,n € type(d,T) A u(d,m) € tT A v(d,n) € tT
; Uy, 0, b= u(d,m),v{d,n), hd
[ suc(h,+(T)) € C
— { suc(u,T) C AC A suc(v,T)CACANz#eAy#e}
{ suc(u, T) = suc(ulC,TIC) A suc(v,T) = suc(v|C,TIC)
ANz#eANy#e}
choose ¢,m,n,zg,y0: ¢ € C A m,n € type(c, T)
Az =(c,m)zg A y=(c,n)yo
{ {¢,m) € suc(u,T) A (c,n) € suc(v,T) }

y U, 0,2, Y, h:= ’lL(C, m); v(c,n), Zo, Yo, he

od
{uetT ANvetlT A 7( ) = v(v) A suc(y(u),y(T)) C C
A suc(y(v),(T)) € C A ulC =sIC A v[C =tIC }

(End of Proof)

Theorem 3.4.7
Let T be data independent. Let cT be finite. Then

AC is transparent with respect to T’
= C is transparent with respect to v(T')

Proof

Assume that AC is transparent with respect to T. Then by theorem 2.1.20

(At:t€tT A suct,T) C AC : suc(t,T) = suc(t/C,TIC))
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and AC is non-divergent with respect to T. The latter is equivalent with channel set
C is non-divergent with respect to y(T"). We will show that

(Aw:w € ty(T) A suc(w,y(T)) C C : suc(w,y(T)) = suc(wlC,v(T)IC))

Let w € ty(T) be such that suc(w,y(T)) C C. Let t € tT and v(t) = w. By property
1.1.3 we have

suc(wlC,y(T)IC) = (Us :s € tT A 4(s)IC = wlC : suc(v(s),¥(T))NC)

Let s € tT be such that y(s)[C = wlC. Using lemma 3.4.6 choose u € tT and v € tT
such that y(u) = y(v), suc(y(u),¥(T)) C C, suc(y(v),(T)) C C, ulC = s[C, and
vlC =t]C. We derive

suc(y(s),¥(T))NC
{T is data independent, calculus }

v(suc(s, T) N AC)
C { property 1.1.3}
v(suc(slC, TIC))
= {s!C = ulC, suc(u,T) C AC, theorem 2.1.20 }
- y(suc(u,T))
{T is data independent, vy(u) = v(v) }
~(suc(v,T))
{tIC =v!C, suc(v,T) C AC, theorem 2.1.20 }
y(suc(t!C,TIC))
{suc(t,T) C AC, theorem 2.1.20 }
vy(suc(t, T))
{T is data independent, v(t) = w }
suc(w,y(T))

(End of Proof)

Example 3.4.4 shows that the reverse implication does not hold in general.

We now focus on (non-)termination and absence of deadlock.
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Lemma 3.4.8

Let T be a data independent process. Then

(At:tetT:suc(t,T)=2 = suc(y(t),y(T)) =92)
Proof
Let t € tT. We derive

suc(t,T) =@

{ definition v}
v(suc(t,T)) = @

{T is data independent }
suc(y(t),y(T)) = @
(End of Proof)

i

Theorem 3.4.9

Let T be a data independent process.

0 (At:tetT:T hasterminated after t = 4(T') has terminated after y(t) )
1 T is non-terminating = 4(T) is non-terminating

(End of Theorem)

Theorem 3.4.10
Let X be a set of data independent processes. If y(W(X)) = W(y(X)) then

lockfree(X) = lockfree(y(X))
Proof

Assume 7(W(X)) = W(v(X)) and lockfree(X). Let t € tW(y(X)).
Since y(W(X)) = W(y(X)) we choose s € tW(X) such that v(s) = t. We derive

= {19 =t(W
suc(y(s), v(W(X)))

= { property 3.1. 0}
suc(s, W(X)) =

suc(t, W(y(X))) =@
( (v(X))}
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= { lockfree(X) }
(AT:T € X : suc(sleT,T) = @)

= {(AT:T € X : T is data independent ), ¥(s) = t, lemma 3.4.8 }
(AT:T € X : suc(tlcT,v(T)) = @)

(End of Proof)

The following example shows that the reverse implication in the above theorem does
not hold in general.

Example 3.4.11
T = PREF(({a,b} x Z, {{a,0)(b,0),(a,1){b,1)}))
T and U are data independent
Y(TwU) = PR(a; b) = v(T) w(U)
=lockfree({T,U})
lockfree({v(T),v(U)})
T w U is not data independent

(End of Example)

Theorem 3.4.12

Let X be a set of data independent processes. If W(X) is data independent and
7(W(X)) = W(y(X)) then

lockfree(X) = lockfree(y(X))
Proof

By theorem 3.4.10 we have lockfree(X) = lockfree(v(X)). Assume lockfree(y(X)).
Let t € tW(X). We derive

suc(t, W(X)) =@

{W(X) is data independent, lemma 3.4.8 }
suc(y(t), v(W(X))) = @

{7(W(X)) = W(y(X)) }
suc(y(t), W(v(X))) = @

{ lockfree(v(X)) }
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(AT :T € X : suc(y(t)!eT,¥(T)) = @)
= {(AT:T € X : T is data independent ), lemma 3.4.8 }
(AT:T € X :suc(tlcT,T) = @)

(End of Proof)

Corollary 3.4.13

Let S be a system such that (AT : T € pS : T is data independent). If W(pJS) is
data independent, and y(W(pS)) = W(5(pS)) then

S is lockfree = () is lockiree
(End of Corollary)

3.5 Channel order independence

In section 3.2 we introduced the notion of data independence expressing that the com-
munication behaviour of a process does not depend on the messages that are being
transmitted. In this section we introduce the notion of channel order independence
that expresses that at any moment the future behaviour of a process does not depend
on the order in which the channels were used by the process. Formally, process T is
said to be channel order independent if

(At,a,b:taetT AtbetT A ~(a) # v(b)
:tab € tT A tba € tT A [tab] = [tba])

Observe the close resemblance to the definition of a conservative process. Conservativ-
ity expresses that at any moment the future behaviour of a process does not depend on
the order in which the events have taken place. The following examples are to illustrate
that channel order independence is a useful notion for the processes introduced in this
chapter whereas conservativity is a notion more apt for the communication behaviours
of these processes.

Example 3.5.0

Consider the process ADDER from example 3.2.0. This process is both data indepen-
dent and channel order independent. Observe that the communications via channel a
and b may take place simultaneously. If ADDER were to be conservative, it should
contain traces like {(a,0){a,1)...{a,n) (n > 0). Clearly, this is not the case. Process
4(T), on the other hand, is conservative.

(End of Example)
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Example 3.5.1

Consider data independent process VAR as defined in section 3.0. Since (a,0)(a, 1) €
tVAR and (a,0)(b,0) € tVAR, but (a,0)(a,1)(b,0) & tVAR, process VAR is not
channel order independent. Obviously, communications via channels a and b can not
take place simultaneously. Observe that y(VAR) is conservative.

(End of Example)

Process ADDER from example 3.5.0 can be specified by

(PR((a, b; c)*),
t:(Ai:0<i<f(tla)ming(t]b)minf(tlc) : ¢(i) = a(z) + b(s)))
Predicate ¢(i) = a(z) + b(¢) does not depend on the order of events in trace t. This is

due to the fact that process ADDER is channel order independent. Process VAR from
example 3.5.1 is not channel order independent and can be specified by

(PR(a; (a | &)%),
t:(Az:0<z<f(tlb) A f(i,t) = 0:8(:) =a(f(5,1))))

where for t € {a,b}* and 0 <7 < £(t[d)
fG,t) = (MINs:s<t A £lslb)=2+1:£(sla)—1)

Notice that predicate b(7) = a(f(%,t)) depends on the order of a’s and b’s in trace t.
In general, specifications of data independent processes that are channel order inde-
pendent as well resemble the above specification of process ADDER. In section 5.1
we introduce a new notation for specifications of data independent processes that are
channel order independent. It is, to a large extent, based on the observations made
above.

The following theorem shows that data independence and channel order independence
of a process imply that the process describing its communication behaviour is conser-
vative.

Theorem 3.5.2

If T is a data independent and channel order independent process, then v(T') is con-
servative.
Proof

Assume T is data independent and channel order independent. Let t € tT', ¢ € cT,
and d € cT such that y(t)c € ty(T), v(t)d € ty(T), and ¢ # d. We derive
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v(t)e € ty(T) A x(t)d € ty(T)
= { definition successor set, T' is data independent }
c € y(suc(t,T)) A d € ~y(suc(t,T))
= { definition «, definition successor set }
(Em,n:m € type(c,T) A n € type(d,T) : t{c,m) € tT A t(d,n) € tT)
= {c¢# d, T is channel order independent }
(Em,n :m € type(c,T) A n € type(d,T)
: t{c,m)(d,n) € tT A t(d,n){c,m) € tT
A after(t{c,m){d,n),T) = after(t(d,n)(c,m),T))
= { definition «, T is data independent }
y(t)ed € ty(T) A y(t)dec € ty(T) A after(y(t)ed,T) = after((t)de,T))
(End of Proof)

The reverse does not hold as is shown in the following example.

Example 3.5.3
T = PREF(({a,b} x Z,{{a,0)(b,1), (b,0)(a,1)}))
T is data independent
v(T) is conservative
T is not channel order independent
U = PREF(({a,b,c} x Z,{(a,0){a,1)(b,0)(c,0), (a,1){a,0){(c,1){b,1)}))
U is not data independent
U is channel order independent
v(U) is conservative

(End of Example)

Theorem 3.5.4

Let T' and U be channel order independent processes. Then T'w U is channel order
independent.

Proof
tact(TwU) Atbe t(TwU) A v(a) # ~(d)

= { definition weave }



3.5 Channel order independence 117

tab € (aT Ual)* A talaT € tT A tblaT € tT
A talaU € tU A tblaU € tU A v(a) # v(b)
= {T and U are channel order independent }

tab € (aT U al)*
A tablaT € tT A tbalaT € tT A after(tablaT,T) = after(tbalaT,T)
A tablaU € tU A tbalaU € tU A after(tablalU,U) = after(tbalal,U)

= { definition weave, theorem 1.1.13}
tabe t(TwU) A tha € t(TwU) A after(tab,TwU) = after(tba, T wU)

(End of Proof)

Theorem 3.5.5

Let T be a channel order independent process.
Let C C cT and AC = (Uc:c€ C: {c} x type(c, T)).
If AC is transparent with respect to T then T'[C is channel order independent.

Proof

Assume AC is transparent with respect to T'. Let ¢t € tT'[C. Choose s € tT such that
s[C =t and suc(s,T) = suc(t,TIC) (AC is transparent with respect to T, property
2.1.19). We derive

ta € tTIC A th € tTIC A ~v(a) # ~(b)
{suc(s,T) = suc(t,TIC)}
sa € tT A sbetT A y(a) # () A v(a) e C Av(b)eC

= {T is channel order independent }
sab € tT A sba € tT A after(sab,T) = after(sba,T) A v(a) € C A 4(b) € C
= { calculus }

sablC € tTIC A sbalC € tTIC

A after(sab,T)IC = after(sba,T)IC A y(a) € C A y(b) € C
{ AC is non-disabling with respect to T', s/C =t}

tab € tTIC A tha € tTIC A after(tab,TIC) = after(tba, T[C)

(End of Proof)

The following example shows that the condition “AC is transparent with respect to 7
in the above theorem may not be replaced by “C' is transparent with respect to v(T)”
even if T is data independent.
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Example 3.5.6

T = PREF(({a,b,c} x Z

» {{a,1)(b,1){c, 0}, (a,1){c,0)(d,1)

»{a,0)(b,0){c,1), (a,0)(c,1)(b,0)}))

T is channel order independent
T is data independent
{b,c} is transparent with respect to y(T)
{b,¢} x Z is not transparent with respect to T
TI{b,c} is not channel order independent

(End of Example)

Theorem 3.5.7

Let (Th)n3o0 be a sequence of channel order independent processes such that
(An:n>0:T,CThy1). Then (Un:n >0:T,) is channel order independent.

(End of Theorem)



4 Programs

4.0 Introduction

Consider process ADDER in example 3.2.0. This process describes a mechanism that
repeatedly receives two integer values via its input channels and sends the sum of these
values via its output channel. In the program notation to be presented in this chapter
this process can be specified by the following component or program

com adder(in a,b : int,out c: int) :
var z,y,z : int rav
(alz, bly; =z +y; clz)*
moc

Here, z,y, and z are internal variables of the component, a?z denotes the receiving of a
value via channel a and the assignment of that value to variable z, and ¢!z denotes the
sending of the value of variable z via channel ¢. These notations have been adopted
from CSP (see [Ho]). Variable z can be eliminated from the above program: one may
replace “z:= z + y; c!2” by “c!(z +y)”. Notice that all channels and variables have a
type (in this case they are all of type integer).

In this chapter we introduce a program notation generalizing the one presented in
section 1.4. The above is an example of a program text. We will, however, not
explicitly mention types in program texts when defining the program notation, but
we will assume all channels and variables to be of the same type, namely M, the set
of messages. This is done for simplicity’s sake. Generalization to the case where the
types of channels and variables may differ is rather straightforward.

4.1 Commands

In this section we extend the definition of a command from section 1.2. First we
introduce some notions that shall be used in the definition of commands.

We assume the existence of a set of (names of) variables, denoted by VAR. The set of
expressions EXP is defined to be the smallest set satisfying

119
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- m € EXP meM
- z € EXP z € VAR
- Y(ep,€1,...,€1-1) € EXP 1>0,9 €M =M, eg,e1,...,e1_1 € EXP

The function var : EXP — P(VAR) is defined recursively by

var(m) = @ meM
var(z) = {z} z € VAR
var(p(ep, €1,..-,€1-1)) = (Ui: 0 <i < l:var(e;))

Notice that for all expressions e such that var(e) = @ we have that for all expressions
e, appearing in e var(e,) = @ holds.
The function val : {e | e € EXP A var(e) = @} — M is defined recursively by

val(m) =m
val(y(eo, €1,. .., e1-1)) = P(val(eo),val(ey),...,val(er_y))
var(e;) = var(e;) = --- = var(ej-1) = @

Let ¢ € VAR — EXP. We will represent function ¢ with the set

{(z,¢(z)) | = € VAR A = # #(z) }. With function ¢ we associate substitution function
S¢ € EXP — EXP defined recursively by

Sg(m) =m
Se(z) = é(x)
S¢('(/)(€0, €y o5 61_1)) = 1/)(S¢(e0), S¢(€1), ey S¢(el_1))

Let ¢, x € VAR — EXP. Function ¢ ® x € VAR — EXP, the composition of ¢ and ¥,
is defined by

(¢ 0 x)(=) = Sy(x(2))
Since \/ & M we also have / ¢ EXP.

The functions var, val, and S, are generalized to functions having their domain in
(I x (EXPU{+/}))". The function var : (I' x (EXPU {/}))* — P(VAR) is defined
by

The function val: {t | (T x (EXPU{\/}))* Awvar(t) =@} > Q" (= (T x My)") is
defined by
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val(t{c, e)) = val(t){c,val(e))
val(t(c,v/)) = val(t){c, /)

Let # € VAR — EXP. The function Sy € (I'x (EXPU{/}))* — (T x(EXPU{/}))"
is defined by

Sule) =€
Sa(t(c,€)) = Sy(t)(c, Ss(e))
Ss(tle, /) = Sg(t){e, /)

A command structure is a quadruple (C, D, E, X) where C, D, and E are channel sets
and X C ((Cx{/})U((DUE)xEXP))*x (VAR — EXP). We call C the set of signals
of the command structure, D its set of input channels, F its set of output channels,
and X its extended trace set. Elements of X are called extended traces. Notice that
extended traces are pairs consisting of a trace and a substitution function.

Let T be a command structure. The set of signals of T is denoted by sT', the set of
input channels of T by iT, the set of output channels of T by oT, and the extended
trace set of T' by etT. Furthermore we define

var(T) = (Ut, ¢ : (t,4) € etT : var(t))

We now introduce commands. With each command S we associate a command struc-
ture CO(S) and a set of variables bind(S). Commands, associated command structures,
and associated sets of variables are defined inductively by the following rules (remember
our convention in representing functions in VAR — EXP).

— € 1s a command
CO(e) = (2,2,2,{(¢,9)})
bind(e) = &
- ¢ isacommand forallceT
CO(e) = ({¢},2,2,{({c,V),9D)})
bind(c) = @
- ¢’z is a command for all c € I and z € VAR
CO(c?z) = (9, {c},9, { ({e,m), {(z,m)}) |me M})
bind(c?z) = {z}
~ cle is a command for all ¢ € I' and e € EXP

CO(cle) = (2,3, {c},{({(c,¢), @)} )
bind(cle) = @
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Ty T1ye-rsTme1:= €0, €1,...,Em_1 18 a command
for all m > 0, zg,Z;1,...,Zm_1 € VAR, ep,€1,...,€m—1 € EXP
CO(Z0yT1y- -+ y Tm—1:= €0y €1y -+ Em—1)
=(92,0,0,{(c,{ (zs,&;) |0 <t <m A z; # e })})
bind(To, T1,. - -y Tm—1:= €0,€1,- ., Em—1)
={z;|0<i<m}\(Ui:0<i<m:var(e))
- S |T is a command for all commands S and T such that
sCO(S) UsCO(T), iCO(S)UiCO(T), and oCO(S) U oCO(T) are disjoint sets
CO(S | T) = (sCO(S)UsCO(T),iCO(S)UiCO(T)
,0CO(S)UoCO(T),etCO(S) U etCO(T))
bind(S | T) = bind(S) U bind(T)
- §; T is a command for all commands S and T such that
sCO(S)UsCO(T), iCO(S)UiCO(T), and oCO(S) U oCO(T) are disjoint sets
CO(S; T) = (sCO(S) UsCO(T),iCO(S) UiCO(T),oCO(S) U oCO(T),
{(s55(1), 60 x) | (5,4) € etCO(S) A (t,x) € etCO(T) })
bind(S; T) = bind(S) U bind(T)
- 5,T is a command for all commands S and T such that
sCO(S), sCO(T), iCO(S), iCO(T), oCO(S), and oCO(T) are disjoint sets,
bind(S) N (bnd(T) U var(CO(T))) = @,
and bind(T) N (bind(S) U var(CO(S))) = @
CO(S, T) = (sCO(S)usCO(T),iCO(S) UiCO(T),oCO(S) U oCO(T),
{(t,dUx) |t € (AsU Ar)* A (t]As, $) € etCO(S)
A (tlAT,x) € etCO(T) })
where Ay = (sCO(X) x {/}) U((iCO(X)U oCO(X)) x EXP)
for X=Sand X =T
bind(S, T) = bind(S) U bind(T)
- S%is a command for all commands S
CO(S%) = (sCO(S),iCO(S),0CO(S),{(s,2)})
bind(S°) = @
- §*is a command for all commands S
CO(S™ = (sCO(5),iCO(S),0CO(S),(Un:n>0:etCO(S™)))
where ™1 =8"; § (n>0)
bind(S*) = bind(S)

Command c?z may be interpreted as the reception of a value via channel ¢ and the
assignment of that value to variable z. Command cle may be interpreted as the sending
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of the value of expression e via channel c. Observe that the commands as defined in
section 1.2 form a subclass of the commands defined above.

With each command S we associate a trace structure whose alphabet is a subset of
I' x (EXP U {4/}). For command S trace structure TRg(S) is defined by

TRE(S) = (sCO(S) x {+/} U (iCO(S) UoCO(S)) x EXP
A{t|(Ed: ¢ e VAR — EXP : (t,94) € etCO(S)) })

Observe that for all commands S extended trace set etCO(S) is nonempty. Therefore,
PRE(S) defined by

PRg(S) = PREF(TRg(S))

is a process.

A command S is called closed if var(CO(S)) = @. Notice that the commands defined
in section 1.2 are closed commands. With each closed command S we associate a trace
structure TR(S) defined by

TR(S) = (sCO(S) x {/} U (iCO(S) UoCO(S)) x M
,{val(t) | (E¢: ¢ € VAR — EXP : (t,¢) € etCO(S)) })

Notice that tTR(S) = {val(t) | t € tTRE(S) }. For closed command S process PR(S)
is defined by PR(S) = PREF(TR(S)) and system sys(S) is defined by sys(S) =
(cPR(S), {PR(S)}).

Example 4.1.0
Let S = (a?z, b7y ; z:= z + y; clz)". Then var(S) = bind(S) = {z,y, z} and
CO(S) =
(@,{a,b},{c}
i (

{ (@, m)(b,n}(c,m + n),{(z,m),(y,n),(z,m + n)}) | m,n € Z}
U {((&;n){a,m)(c,m + n),{(z,m), (y,n),(2,m +n)}) | m,n € 2})")

This leads to

TRE(S) = ({a,b,c} x EXP
»({{a,m)(b,n){c,m +n) | m,n € 2}
U {(b,n){a,m){c,m +n) | m,n € Z})")
and PR(S) = ADDER where ADDER is the process defined in example 3.2.0.
(End of Example)
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Observe that for a command S as defined in section 1.2 the definitions of TR(S),
PR(S), and sys(S) given here are equivalent to the definitions in section 1.2.

For command S command 7(S) is defined inductively by

(S| T) =~(S) | ¥(T)
(S5 T) =~(S); v(T)
(S, T) =~(S), (T)
(5 =~(5)°
Y(S8*) = ~(S)"

Command v(S) reflects the communication pattern corresponding to command S.

v(e) =

Y(e) =

’7(6793) =c

(cle) =c

Y(Zoy B1s- o s Eme1i= €05 €1y+ 2y Emay) = E
(
(

Let T be a command structure. Command structure 4(T') is defined by

¥(T) =(sTUiIT UoT,Q,d, '
{(v(t),2)| (E¢: ¢ € VAR - EXP: (t,4) € etT)})

Property 4.1.1

Let S be a command.

0 ~(S) is a closed command.

1 4(CO(S)) = CO(v(5))
7(TRg(S)) = TR(%(S))
7(PRg(S)) = PR(~(9))

2 If S is a closed command, then

7(TR(S)) = TR(~(S))
7(PR(S)) = PR(¥(5))

(End of Property)

Analogously to the extension of the notion of commands we extend the notion of
restricted commands. Restricted commands form a subset of the set of the commands
introduced above and are defined inductively by the following rules (the conditions
imposed by the operators given in the definition of commands remain valid but are
omitted for clarity).
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— € is a restricted command

— ¢ is a restricted command for all c€ T

~ c¢?z is a restricted command for all c € I' and z € VAR
— cle is a restricted command for all ¢ € I and e € EXP

- XgyT1y.r-3Tm_1:= €0,€1,.-.,€m_1 18 a restricted command
for all m > 0, zg,21,...,Zm_1 € VAR, €0, €1,...,€6m_1 € EXP

-~ if S and T are restricted commands and S contains no stars then S; T is a
restricted command
- if S and T are restricted commands then S, T is a restricted command

~ if S is restricted command not containing any stars then $° and S* are re-
stricted commands

Property 4.1.2
If S is a restricted command then v(S) is a restricted command.

(End of Property)

Notice that the restricted commands as defined in section 1.2 form a subclass of the
restricted commands defined above.

Property 4.1.3
Let S be a restricted command. If S contains no stars then for every channel set C

(As,t,d,x:(s,¢) € etCO(S) A (t,x) € etCO(S) : £(sIC) = £(¢]C))
(End of Property)

We observe that theorem 2.4.10 does not hold for (closed) restricted commands as
defined above (see example 3.5.0). In the sequel we will show that if S is a closed
restricted command, then PR(S) is data independent and channel order independent.
First, we have the following results.

Theorem 4.1.4

If S is a closed restricted command and PRg(S) is data independent,
then PR(S) is data independent.

(End of Theorem)
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The reverse does not hold as the following example shows.

Example 4.1.5

In this example we assume M = Z. Let S be the command
blz; (y:=z+z; aly |y:=2xz; aly; clz)
Then S is closed,

PRg(S) = PREF(({a,b,c} x EXP
{(bm){a,m+m)|me Z}
U{(b,m){a,2+m)({c,m) |m € Z}))

is not data independent (m + m and 2 xm are different expressions for all m € Z), and
PR(S) = PREF(({a,b,c} x Z,{(b,m)(a,2-m){c,m) |me Z}))

is data independent.

(End of Example)

In theorem 4.1.4 we may not replace “data independent” by “channel order indepen-
dent” as the following example shows.

Example 4.1.6
Let M = Z. Let S be the command

z,y:=0,1; (al(z + y); bz, cly | al(y + ) ; bly, clz)
Then S is closed,

PRg(S) = PREF(({a, b,c} x EXP
,{{a,0+ 1)(b, 0)(c, ), (2,0 + 1){c, 1)(b,0)
» (@, 1 +0)(b,1)(c,0), (a,1 +0){c,0)(5,1)}))

is both data independent and channel order independent, but

PR(S) = PREF(({a,b,c} x 2
,{(a 1)(b 0)(¢, 1), {a,1){c,1)(b,0)
» (a,1)(b,1){c,0), {a,1){c,0)(b,1)}))
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is not channel order independent.

(End of Example)

Theorem 4.1.7
0 If command S is equal to €, ¢, c?z, c?e, O To,T1y...,Tm-1= €0y €1,...;Em—1
then PRg(S) is both data independent and channel order independent.

1 If S and T are commands such that S, T is a command, and PRg(S) and
PRg(T) are data independent (channel order independent) then PRg(S) is
data independent (channel order independent).

2 If S and T are commands such that S; T is a command, PRg(S) and PRg(T)
are data independent (channel order independent), and
(En:n>0:(At:t € tTRE(S):£4(t) =n)) then S; T is data independent
(channel order independent).

3 If Sis a command such that for n, n > 0, PRg(S™) is data independent
(channel order independent), then PRg(S*) is data independent (channel order
independent).

4 If S is a command, then PRg(S°) is data independent and channel order
independent.

(End of Theorem)

Corollary 4.1.8

If S is a restricted command, then PRg(S) is data independent and channel order
independent.

(End of Corollary)

Combining theorem 4.1.4 and corollary 4.1.8 we have

Theorem 4.1.9

If S is a closed restricted command, then PR(S) is data independent.
(End of Theorem)

Lemma 4.1.10

Let S be a closed restricted command. Let tu € tPR(S) and tv € tPR(S). Then
(Ew,z,y : wz € tPRE(S) A wy € tPRg(S) : val(wz) = tu A val(wy) = tv)

(End of Lemma)
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Using lemma 4.1.10 and corollary 4.1.8 one can prove

Theorem 4.1.11
If S is a closed restricted command, then PR(S) is channel order independent.

(End of Theorem)

From theorem 2.4.10 or theorem 3.5.2 it follows that

Theorem 4.1.12
If S is a closed restricted command, then y(PR(S)) is cubic.
(End of Theorem)

Combining theorems 4.1.9, 4.1.12, 3.2.4, and 2.3.8 results in

Corollary 4.1.13

If S is a closed restricted command and C is a channel set such that C C cPR(S),
then PR(S)IC is data independent.

(End of Corollary)

This does not hold for channel order independence as the following example shows (cf.
example 3.5.6).

Example 4.1.14

Let M = Z. Let S be the closed restricted command
alz;yi=1—z; (blz, cy)
We have that

PR(S) = PREF(({a,b,¢c} x 2
,{(a,m)(b,m)(c,l _m> | m € Z}
U {{a,m){c,1 —m)(b,m) |me Z}))

is channel order independent, but
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PR(S)1{b,c} = PREF({ {b,c} x Z
{(bm){c,1 —m) |me Z}
U{{c,1=m)(bm)|me Z}))

is not channel order independent ( (b,1){c,1) & tPR(S)I{b,c}).
(End of Example)

Finally, we make some observations concerning possible extensions of the set of com-
mands. Describing the filter mechanism in section 0.0 we already gave an example of
a command containing an alternative statement:

(a?z;ifz >0 = blzlz<0—efi)*
The general form of such a command is
ifBo—* S()[lB] - S] |]...|]BN_1 _}SN—lﬁ

where By, By, ..., and By_; are boolean expressions and Sy, Si, ..., and Sy_;
are commands. They can be incorporated in the theory presented above by making
extended traces triples consisting of a trace, a substitution function, and a boolean
expression that is a conjunction of all guards that have to be satisfied to obtain the
given trace. Likewise, one can introduce commands that contain a repetitive statement:

dOBo—)Sol]B) —'Sll]...l]BN_l—’SN_lod

where By, By, ..., and By_, are boolean expressions and Sy, Sy, ..., and Sy_; are
commands. Both suggested extensions are generalizations since we have

if true — S[true = THi=S5|T
and
dotrue — Sod = S*

We will not elaborate on these extensions any further since, in general, commands con-
taining alternative or repetitive statements do not define data independent processes.
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4.2 A program notation

In this section we generalize the program notation introduced in section 1.4. As before,
a program or component defines a system. The process of a program is defined to be
the process of the corresponding system.

We assume that with each channel set occurring in a process or a system a tripartition of
that set is associated. The tripartition represents the distinction that is made between
signals, input channels, and output channels. If C is a channel set, then sC denotes its
set of signals, iC' its set of input channels, and oC its set of output channels. Notice
that this partition depends on the process or system in which C occurs. For a process
T we abbreviate s(cT) to sT, i(cT) to iT, and o(cT) to oT.

Let S be a system. We define sS = s(eS), 1S = i(eS), and oS = o(eS). Apart from
the restrictions imposed on systems in the previous chapters we, furthermore, require
that

(Ac:cecW(pS):(NT:TepS:ce€ol)<1)

(AT, U,c:TepSAUepSAcecTNclU :cesT = cesl)
sS=UT:TepS:sT)neS

iIS=(UT:TepS:iT)NneS

oS=(UT:TepS:0T)NeS

Let S be a command. We define sPRg(S) = sCO(S), iPRg(S) = iCO(S), and
oPREg(S) = oCO(S). If S is closed, analogous definitions are given for PR(S).

We make the same assumptions about the nature of the set I" as we did about the nature
of the set of symbols in section 1.4. Let T', be the set of simple channel names. We
assume that ' = (Un :n > 0:T7). An element of I'\ T, is called a compound channel
name. For all channel names ¢ and d ¢:d is a channel name as well. Furthermore, we

define
p-(c, m) = (p'c, m)

for all p,c € ' and m € M,,. Symbol (¢,m) € @ =T x M/ is called simple if channel
name c is simple, otherwise it is called compound.

For every command S we define the set of variables v(.9) inductively by

v(e) =@

v(c) = O

v(c?z) = {z}
(c!
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V(Toy T1yen vy Tne1i= €0y €1y- v+ s Emay) =

( {z;|0<i<m}U(Ui:0<1i<m:var(e))
(s |T)—U(5)UU(T)
(8;T)=v(S)U(T)
(§,T7) = U(S) U o(T)
(
(

v

<

[~

<

§°) = v($)
v(5%) = v(S5)
The set v(S) consists of all variable names that occur in command S.

The program

com c(sig C,in D,out E):
var vg, vy, - - -, Vj_1 rav
S

moc

denotes a component without subcomponents where ¢ is the name of the component, C,
D, and E are finite channel sets consisting of simple channel names only (the external
channels of the component), vg,vy,...,vi—1 are | distinct variable names (the internal
variables of the component), and S is a closed command. We require that

- U(S) = {vo, V15 .-+, 0121}

- sPR(S)=C iPR(S)=D oPR(S)=
The system of component ¢, denoted by sys(c), is defined by
sys(c) = sys(S)

Notice that sys(c) = (C U D U E,{PR(S)}). The process of component ¢, denoted by
PR(c), is defined to be PR(c) = PR(sys(c)). Notice that PR(c) = PR(S).

The program

com ¢(sig C,in D,out F) :

sub po : co,p1:C1y- -y Pno1: Cnoy Dus
[1:0 =Y%0,%1 =Yy T = ym—I]
var vg, vq, ..., V-1 Fav

S

moc
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denotes a component with subcomponents where ¢, C, D, E, vo, vq, ..., vj-1, and S
play the same role as above, cq, ¢i, ..., and c,_; are previously defined components,
called the subcomponents of ¢ and having names po, pi, ..., and p,_1, respectively.
We require that C, D, and F contain simple channel names only and that po, py, ...,
and p,_; are n distinct, simple names. With subcomponent p; system p;-sys(c;) is
associated. The set

B=(U::0<i<n:ep;sys(c))
is called the set of internal channels. We define
C={CUDUE}U{episys(c;)|0<i<n}

Notice that C is a collection of » + 1 mutually disjoint channel sets. The equalities
represent (internal) connections. We impose the same restrictions as in section 1.4 and
add two restrictions dealing with input and output.

- (Aj:0<j<m:z;€B)
- (Aj:0<j<m:y;E BUCUDUE)
- Hz|0<i<m}l=m
- {z|0<i<m}n{y;|0<j<m}=0
- for all j, 0 < j < m, channels z; and y; belong to two different channel sets
in C
- forallzand j, 0 <7< j < msuch that y; = y; channels z; and z; belong to
two different channels sets in C
- (Aj:0<j<m
:(ACO,Cl:COEC/\CIEC/\:L‘J‘ECO/\ijCl
:(.TJ‘GSC(] = ijSC1)
A (zj €iCy = y; € oCh)
A (zj €00, = y; €i1Cy)))
- (Aj:0L<j<mA(ECy:Co€C:y; €iCo):(Ni:0<i<m:y;=y;)=1)

Furthermore, we require that every external channel appears in the command S or is
connected to an internal channel

CUDUECcPR(S)U{y;|0<j<m}

The channel set of command S consists of external channels and internal channels not
m{a:J|0§]<m}

cPR(S)CCUDUEU B\ {z;|0<j<m}
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The system of component ¢, denoted by sys(c), is defined by

sys(e) = (I i:0 < i <n: (pesys(e))gpigms) | sys($))(CU DU E)

Y0,¥14¥m—1

The process of component ¢, denoted by PR(c), is defined by PR(c) = PR(sys(c)).
Notice that esys(c) = CUD U E and cPR(c) = CU DU E. We have

PR(c) = ((Wi:0 <i<n:(p-PR(c;))@= en=1 ) w PR(S))(CU D U E)

Y0 Y10 ¥Ym—

Finally, we introduce recursive components. As in section 1.4 we restrict ourselves to
the most simple form of recursion. Let component ¢ be given by the program

com c(sig C,in D,out E):
sub p: ¢ bus
Vvar vg, vy, . .., vj—1 rav
S

moc

where C, D, and E are finite channel sets consisting of simple channel names only, p
is a simple name, and S is a closed command. We require that

- U(S) = {7.)0,1)1, s 1vl—1}
~ SPR(S)=CUpC iPR(S)=DUpE oPR(S)=EUpD

As in section 1.4 we define the system of component ¢, denoted by sys(c), to be the
unique fixpoint of sys(c) = (p-sys(c) || sys(S))(CUDUE), i.e.

sys(c) = (CUDUE, { (p-)'PR(S) | i 2 0})

The process of component ¢, denoted by PR(c), is defined by PR(c) = PR(sys(c)). We

now have

PR(c) = (Wi:i>0: (p-)'PR(S))(CUDUE)

Finally, we present some results concerning components that have a restricted com-
mand. By theorems 4.1.9, 4.1.11, and 4.1.12 we have
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Theorem 4.2.0

Let component ¢ be given by program

com c(sig C,in D,out E) :
var vg, V1,...,0-1 rav
S

moc

If S is a restricted command then PR(c) is both data independent and channel order
independent, and y(PR(c)) is cubic.

(End of Theorem)

Theorem 4.2.1

Let component ¢ be given by program

com ¢(sig C,in D,out E):

sub po : €o,P1: C1y- -y Pro1: Cn-1 bus
[0 = Y0, 21 = Y1, - -, Tm-1 = Ym—1]
var vg, vq,...,0_y fav

S

moc

If S is a restricted command, PR(c;) is data independent for all ¢, 0 < i < n, and
¥(PR(c;)) is cubic for all 4, 0 <7 < n then PR(c) is data independent and y(PR(c)) is
cubic.

Proof

Due to the restrictions imposed we can apply theorem 3.2.9. We now have that

W= (Wi:0<i<n:(pPR(c;))2z2m1) w PR(S)

Y0,¥1 -9 Ym—1

is data independent and

Y(W)=(Wi:0 <1 <n:(piy(PR(ci))goimms ) w v(PR(S))

Y0,¥14-¥m -1

By corollary 2.4.3 and theorem 4.1.12 we now have that y(W) is cubic and by theorem
2.4.7 that y(PR(c)) = y(W)(C U D U E) is cubic. Using theorem 2.3.8 we infer that
C U D U E is non-disabling with respect to y(W). Using theorem 3.2.4 it follows that
PR(c) = WI(C U DU E) is data independent.

(End of Proof)
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By applying the same reasoning as in the proof of the above theorem one can prove
the following theorem.

Theorem 4.2.2

Let component ¢ be given by the program

com c(sig C,in D,out F) :
sub p: cbus -
Var vg, vq,.. ., V-1 rav
S

moc

If S is a restricted command then PR(c) is data independent and ¥(PR(c)) is cubic.
(End of Theorem)



5 Derivation and correctness of programs

5.0 Introduction

In this chapter we show how one may derive programs from specifications and prove
them to be correct. The way in which programs are derived is also presented in
[Re87]. The specifications considered are split specifications describing the external
behaviour of a program or component. Again, we point out that in that case the
communication behaviour is specified independently of the input/output relation, i.e.
the interdependence between values received and values sent. In our derivations we
see to it that this independence is maintained.Furthermore, the systems of the derived
programs describe networks of processes that are characterized by the conditions for
networks given in section 0.0.

After deriving a program we formally prove that it satisfies the specification using
results from the previous chapters. Moreover, it is shown that the derived program
defines a non-divergent and lockfree system that has constant response time.

In this chapter split specifications for data independent processes that are channel order
independent as well are given in a form that differs somewhat from the form introduced
in section 3.3. Moreover, a split specification also specifies the input channels, the
output channels, and the signals. This new form is introduced in section 5.1.

In each of the following four sections a programming problem is presented for which a
solution is derived. In section 5.1 a program is derived that recognizes palindromes of
length NV in an incoming sequence of integers for some N, N > 0. The system defined
by the derived program consists of (N div2) + 1 different processes. In section 5.2 a
program is derived that determines whether or not the sequence of integers received
thus far is a square. The derived program is recursive and, therefore, defines a system
that consists of an infinite sequence of processes, all of the same type. In sections
5.1 and 5.2 we show how one formally proves the derived programs to be correct.
In [Ro,Tch] systolic arrays are given as solutions to the programming problem from
section 5.2 and a programming problem similar to the one from section 5.1.

In section 5.3 a program is derived that computes the coefficients of the product of an
arbitrary polynomial with a given polynomial. The number of processes of the system
that is finally derived equals the degree of the given polynomial plus two. Only two

136
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processes are of a type that differs from the type of the rest and of these two only
one depends on the degree of the polynomial that is to be multiplied by the given
polynomial. In [Re87] it is shown that such a component may be used to construct
a component for the encoding of messages using a cyclic code. There it is mentioned
that the program obtained differs totally from solutions found elsewhere.

In section 5.4 a program is derived that is an acceptor for a given regular expression,
i.e. it determines whether the sequence of symbols received thus far is an element of
the language defined by the regular expression. The derived system is a network of
processes whose structure corresponds to the parse tree of the regular expression that
is used in the derivation. The approach taken in the derivation is also found in [Fo,Ku],
[We] and [An,Cl,Fo,Mi]. Different solutions can be found in [F1,Ul] and [Sa].

Another example that illustrates this way of deriving programs can be found in [Ve88].

Finally, in section 5.5 we summarize the programming method presented in this chap-
ter.

5.1 Recognition of palindromes

A finite sequence is called a palindrome if it is equal to its reverse. For N, N > 0,
consider the following specification

PALy = (PR(a"; (b; )*)
, {(a, 2), (b, {false, true}) }
,t:(Ak:0<k<£tb)min ({(tla) — N +1)
tb(k,t) = (Ai,j:0<i,j<NAitj=N—1
ca(k +1,t) =a(k+34,1))))

describing a process that recognizes palindromes of length N in an incoming sequence
of integers. This informal interpretation shows that a is considered to be an input
channel and b an output channel. In the sequel a specification as above is written as
follows

PALy : signals: —
input channels: a:int
output channels: b : bool
communication behaviour:  a¥; (b; a)*
input/output relation:
k) = (A4,j:0<4,j< NAi+j=N-1
ca(k+1) =a(k+7)) k>0
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The above form of a specification is more apt to our derivations. Notice that apart from
specifying the types of the channels we also specify whether they are input channels,
output channels, or signals. Furthermore, we dropped trace ¢ in the input/output
relation since it does not depend on the order of events within trace ¢ (the specified
process is channel order independent). We also omitted the upperbounds on k, since
these restrictions on k are implied by the communication behaviour. We shall, however,
interpret this differently. From the above input/output relation it can be seen that in
order to compute b(k), k > 0, one needs a(k), ..., a(k + N = 1). The input/output
relation, therefore, requires that a(k+ N — 1) is received before b(k) is sent. It is easily
seen that this requirement is met by the given communication behaviour; in fact, the
communication behaviour is more restrictive, since it also requires that b(k) is sent
before a(k + N) is received. This means b(k) is sent as soon as it can be computed.
Whenever we derive new input/output relations we will adapt or derive communication
behaviours according to the above interpretation.

Assume N > 2. We derive for k, k > 0,
b(k)

{input/output relation PALy }
(A4,7:0<4,j<NAi+j=N—-1:a(k+i)=a(k+j))

{N > 2, calculus }
(Aiyj:1<ij<N—1Ai+j=N—1:a(k+3)=alk+j))
A (a(k) =a(k+ N -1))
= { calculus }
(A4,j:0<4,j<N-2Ai+j=(N=-2)—1:a(k+1+i)=alk+1+j))
A (a(k) = a(k+ N —1))

The first conjunct in the last predicate in the above derivation closely resembles the
right hand side of the input/output relation of PALy_,. Therefore, assume that there
exists a component paly_» whose process satisfies PALy_;. We introduce a subcom-
ponent p of type paly_,, and we require

(0) pa(k)=a(k+1) k>0
It now follows that for &, k > 0,
p-b(k)

= {input/output relation PALx_, }
(A2,j:0<4,j<N—-2Ai+j=(N—-2)—1:palk+:)=palk+j))

= {(0)}
(A2,j:0<4, )< N-2Ai+j=(N—-2)—1:a(k+:i+1)=alk+j+1))
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and, hence,
(1) b(k) = pb(k) A (a(k) =a(k+ N —1))

In order to compute b(k) the values a(k + N — 1) and a(k) have to be available. The
communication behaviour implies that a(k + N — 1) is received immediately before
b(k) has to be sent. To have a(k) available one could decide to store the last N values
received via channel a. This, however, does not comply with the requirement that
the processes in the system described by the component are simple. We have to solve
this problem in another way. Observe that the values a(k + 1), k¥ > 0, are sent to
the subcomponent. Therefore, we could require that the subcomponent returns these
values at a suitable moment via an additional output channel. As a consequence only
value a(0) needs to be stored. Let subcomponent p have an additional output channel
p-c of type integer. We require that

(@) pe(k) = pak) £>0

which implies, using (0),

(3)  pe(k)=a(k+1) k>0

Combining (1) and (3) and distinguishing the cases kK = 0 and k > 0 yields

(4)  (0) = p:b(0) A (a(0) = a(N —1))
(5) b(k+1) = pblk+1) A (pec(k) =a(k+ N)) k>0

Adding output channel p-c to subcomponent p implies introducing an additional output
channel ¢ of the component. The input/output relation in PALy is extended with

(6) c(k) = a(k) k>0
Combining (3) and (6) yields

(1) <(0) = a(0)
(8) e(k+1)=pc(k) k>0

Relation (5) shows that p-b(k + 1) and p-c(k) are needed for the same computation.
Therefore, we require that subcomponent p sends these values simultaneously, i.e. its
communication behaviour is

(p-a)N=%; p-b; (pa; pb, pc)

Consequently, the communication behaviour in PALy is changed to
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aV;b;(a;b, )"

The remaining problem is to give a command whose process satisfies input/output
relations (0), (4), (5), (7), and (8). Its communication behaviour Sy should satisfy

Snl{a,b,c} = a"; b; (a; b, c)*
and
Sni{p-a,p-b,p-c} = (pa)V=%; pb; (p-a; pb, pc)”

The restrictions on Sy imposed by (0), (4), (5), (7), and (8) should be taken into
account. Furthermore, we require that there is as little buffering of values as possible.
This can be expressed as follows

SnHa,pa} = a;(a;pa)
Snl{b,p-b,p-c} pb; (b; pb, pe)*
Snl{e,pc} = (pc;e)

A communication behaviour that satisfies all of the above requirements is
Snv=a;(a;pa)¥?;a,pb; b, pa; (a,pb, pe; b, ¢, pa)”

Observe the alternation of input and output in the repetition in the above command.

This leads to the following program

com paly(in a:int,out b: bool,c: int) :
sub p : paly_, bus
var z,y, z : int, w : bool rav
a?z; (aly; praly)V 2

;aly, pblw; B (wA (z=y)), paly

i (a?y, pbtw, p-c?z; Bl (w A (2 =1y)), clz, paly; z:= 2)*

moc

Observe that the values received via p-c have to be buffered thereby necessitating an
additional local variable.

Assume N = 0 or N = 1. We now have
b(k) = true k>0

This leads to
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com palyp(in a : int,out b: bool,c: int) :
var z : int rav
bltrue; (a?z; bltrue, clr)*

moc

and

com paly(in a : int,out b: bool, ¢ : int) :
var z,y : int rav
alz; bltrue; (aly; bltrue, clz; z:= y)*

moc

We will now formally prove that PR(paly) is the process specified by PALy. First we
derive some preliminary results.

Let Ty be the command of component paly. Then we have Sy = v(Ty). Observe that
PR(paly) and PR(pal,) are data independent, and that v(PR(paly)) and y(PR(paly))
are cubic.

Let N > 2. Assume that PR(paly_;) is data independent, and y(PR(paly_.)) is cubic.
Since Ty is a closed restricted command and, therefore, Sy is a restricted command,
we have by theorems 4.1.9 and 2.4.10 that PR(Ty) is data independent and PR(Sy) is

cubic. The conditions of theorem 3.2.8 being met we have that p-PR(paly_;) w PR(Ty)
is data independent and

v(pPR(paln-2) w PR(Tn) ) = 7(p-PR(paly-2)) w PR(SN)

Theorem 2.4.3 implies that y(p-PR(paly—2)) w PR(Sn) is cubic. By theorem 2.3.8
we have that {a,b,c} is non-disabling with respect to v(p-PR(paly-2)) w PR(Sy), by
theorem 3.2.4 that

PR(paly) = (p'PR(paly_;) w PR(TN)){a,b,c}

is data independent, and by corollary 2.4.7 that y(PR(paly)) is cubic.

Since {a,b,c} is non-divergent with respect to PR(Sy) and {p-a,p-b,p-c} is non-di-
vergent with respect to vy(p-PR(paly_,)) we have by theorem 2.1.11 that {a,bd,c} is
non-divergent and, therefore, transparent with respect to y(p-PR(paln—_z)) w PR(Sn).
We now start with the actual proof. It is easily seen that PR(paly) and PR(pal,) are
the processes specified by PALy and PAL,, respectively.

Let N > 2. Assume that PR(paly_2) is the process specified by PALy_,. Process

PR(Tx) is the process specified by ( PR(Sn), @n) ( notice that we omit the function
that describes the types of the channels ) where
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QN(t) =
(Ak:0<Ek<0<£(tlb):b(0) = pb0) A (a(0) =a(N —1)))
A(Ak: 0<k<£(t b)
:b(k) = pb(k) A (pe(k—1)=a(k+ N —1)))
A(Ak: 0<k<0<€(tc) c0)=a

) =a(0))
A(Ak:0<Ek<(tle): c(k) =peclk—1))
A (Ak:0<k<L(tlpa):pa(k)=a(k+1))

Applying the Conjunction-Weave rule (theorem 3.3.5) yields that
p-PR(paly_2) w PR(Ty) is the process specified by

( PR(Sw),
t: (Ak:0< k< £(thpd)
:pb(k) = (A4,j:0<4,j<N-2
Ait+j=N—=3:palk+i)=palk+7)))
A(Ak:0<k<{(tlpc): pc(k)=pa(k))
A @n(t)
)

The above specification can be transformed into

( PR(Sw),
t: (Ak:0<k<(tb):bk)

It

(A24,j:0<4,j< N
Ai+3j=N:alk+1i)=alk+7)))
A(Ak:0<k<L(tle):c(k) =a(k))
A(Ak:0<k<{(tlpa):palk)=alk+1))
A(Ak:0<k<£(tlpd)
ipblk) = (A4,7j:0<i,j<N—-2
ANi+j=N-3:ak+i+1)=a(k+j+1)))
A(Ak:0<k<L(tlpc):pelk)=alk+1))
)

Let Un be the process specified by PALy. From the above specification we infer that
PR(paln) = (p-PR(paln_;) w PR(Ty)){a,b,c} C Uy

We prove that the reverse inclusion holds as well by induction on the length of traces
from Uy. Let t € tUy.

base {(t) =0 t = ¢ € tPR(paln)



5.1 Recognition of palindromes 143

step {(t)>0 _
Let t = u(d,m). Since £(u) < £(t) choose s € t(p-PR(palny_2) w PR(Tn)) such that
sM{a,b,c} = u. Since

v(p-PR(paly_2) w PR(Tn))!{a,b,c} = PR(SN)I{a,b,c} = v(Un)

we have that y(u)d € ty(p-PR(paln-2) w PR(Tn)){a,b,c}. Since {a,b,c} is trans-
parent with respect to v(p-PR(paly_2) w PR(Tw)) and v(s)/{a,b,c} = v(u), choose v
such that

v(s)vd € ty(p-PR(paly_2) w PR(TN)) A vl{a,b,c} = ¢
Process p-PR(palny—-2) w PR(Ty) being data independent choose r(d,n) such that
sr{d,n) € t(p-PR(paln_2) wPR(TN)) A y(sr{d,n)) = ~v(s)vd

Notice that r{a,b,c} = € and, hence, (sr)/{a,b,c} = u. In case d = a value n may
be chosen arbitrarily, especially n = m. In case d = b or d = ¢ the specifications imply
that n = m. From this we infer that

u(d, m) € t(p-PR(paly_2) w PR(Tn)){a,b,c}

The above implies that PR(paly) indeed is the process specified by PALy.

We now show that sys(paly) is both non-divergent and lockfree. Observe that
sys(paly) = ({a,b,c}, { (p-)'PR(Tn-2:) |0 <20 < N})

that W(psys(paly)) is data independent, and that

(W (psys(paln))) = W(y(psys(paly))). This can be shown by induction using the-
orem 3.2.8. By corollary 3.4.3 and theorem 3.4.12 we have that in order to prove
that sys(paly) is non-divergent and lockfree it suffices to prove that vy(sys(paly)) is
non-divergent and lockfree.

We prove that y(sys(paly)) is transparent (and, therefore, non-divergent) by induc-
tion on V. Observe that y(sys(paly)) and v(sys(pal,)) are transparent. Let N > 2.
Assume that y(sys(paln_2)) is transparent. Since sys(Sy)[{a,b,c} is transparent and
PR(Sn)[{p-a,p-b,p-c} = PR(y(sys(paly_;))) we have according to corollary 2.1.24
that

v(sys(paln)) = (py(sys(paln-2)) || sys(Sn))M{a,b,c}

1s transparent.

We can prove that y(sys(paln)) is non-divergent in another way. Observe that
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(Ak:k>2:(At:t€PR(SK) At#e:L(t{pa,pdpc}) <f(t{a,bec})))

This condition for commands is also found in [Ud] and [Ka] where it is shown to
imply the existence of a unique solution for the recursive equation defined by a simple
recursive component. Let N > 0. Let ¢ € ty(PR(paly)) such that t # €. Define

V(t) = {s| s € tW(y(psys(paln))) A sl{a,b,c} =1}
Since py(sys(paln)) = { (p)'PR(Sn_2) | 0 < 2i < N } it follows that
(Ak:0<k<Ndiv2:(As:se V() sl(p)*{a,b,c}) <&(1)))
and, hence,
(As:seV(t):ds) < L(t)(Ndiv2 +1))

We conclude that V(¢) is finite. Choosing t = ¢ we obtain V(e) = {¢}. By theorem
2.1.7 we have that y(sys(paly)) is non-divergent.

We prove that y(sys(paly)) is lockfree by induction on N. Observe that v(sys(palo))
and v(sys(paly)) are lockfree. Let N > 2. Assume v(sys(paly-2)) is lockiree. We have
that sys(Sn) is lockfree and transparent. We derive

v(sys(paln)) is lockfree
= { definition paly }
(v(p-sys(paln_2)) || sys(Sn))I{a,b,c} is lockiree
{ definition lock{ree system }
v(p-sys(paly—2)) || sys(Swn) is lockfree
= { corollary 2.2.8 }
lockfree( {PR(v(p-sys(paln-2))),PR(SN)})
{PR(Sn){p-a,pb,pc} = PR(y(p-sys(paln_»))) }

true

Finally, we show that y(sys(paly)) has constant response time. Notice that by giving
a sequence function for y(sys(paly)) we once more show that this system is lockfree.
Let K > 1. Define for k, 0 < k < K, 09x € occ(PR(S2k)) = N

and oak41 € occ(PR(S2k41)) = N by
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o(a,i) = oarsa(a,1) =3(K —k)+ 2
ou(p-a,i) = omp(pa,i) =3(K—k)+2i+3
o2u(p-b,i) = Tarsa(pd z) ~2=3K+k+2i—2
oau(b,t) = oppr(bi)—2 =3K+k+2i-1
oa(p-e,i) = oarp(pre z) —2=3K+k+2%
ow(c,t) = opyi(ci) -2 =3K+k+2+1

Define o € occ(PR(Sp)) = N and o € occ(PR(S;)) — N by

oo(a,t) = o1(a,1) =3K +2i
Uo(b, Z) = Ul(b,i) —-2=3K + 21 —1
oo(c,1) = 01(c,3) —2=3K +2:+1

Define for k, 0 < k < K, 9 € occ((p:)¥FPR(S2k)) = N
and Tor41 € oce((p )X *PR(Sak41)) — N by

mr((p) K 7*d,3) = ow(d,9) (d,1) € occ(PR(S2x))
Takr1((p)€7*d,0) = oaya(d, ) (d,7) € occ(PR(S2k+41))

Observe that

(Ak:0<k< K: (Ad,i :(d,2) € occ(p-PR(S2)) N occ(PR(S2k+2))
crar((p) K TF 1, 8) = Targa((p)€TF,10))
A (Ad,i :(d,1) € occ(p-PR(S2k+1)) N occ(PR(Sak+3))
s o ((p7) 747, 1) = Takga((p)7F1d,0) ) )
Hence, Tox (T2x4+1) restricted to oce(y(PR(palak))) ( oce(v(PR(palak+1))) ) is a se-

quence function for y(sys(palzx)) ( v(sys(palax+1)) ). Furthermore, we have for I = 2K
or 2K +1

(At,d,e: tde € ty(PR(pal)) A (d,£(td)) < (e, £(tdle))
s 7y(e, £(tdle)) — ni(d, e(t d)) <2)

Therefore, y(sys(palak)) and vy(sys(palakx+1)) have constant response time. Observe
that the given upperbound does not depend on K.
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5.2 Recognition of squares

A finite sequence is called a square if it is the concatenation of two identical sequences.
Notice that the empty sequence is a square, and that the length of a square is even. We
derive a component that determines whether the sequence of integers received thus far
is a square. Obviously only even length sequences have to be considered. Therefore,
we propose the following specification

SQUARE : signals : —
input channels : a : int
output channels : b: bool
communication behaviour : (b; a; a)*

input/output relation :
b(i) = (Aj:0<j<i:a(j)=a(t+7)) i>0

An approach like the one taken in section 5.1 does not yield predicates that closely
resemble the input/output relation in the above specification. Hence, we will first
investigate the following generalization of SQUARE

GSQUARE : signals : —
input channels : a,c: int
output channels : b: bool
communication behaviour : (b; a; a, ¢)*
input/output relation :
b(i) = (Aj:0<j<i:c(j)=a(i+3)) >0

If the sequences of integers received via channels @ and ¢ are identical then the sequence
of booleans sent via channel b is as specified by the input/output relation of SQUARE.

Observe that
(0) b(0) = true
For 2, 2 > 0, we derive

b(i+1)

= {input/output relation GSQUARE }
(Aj:0<j<i+1l:c(j)=a(i+147j))

= {i20)
(Aj:0<j<i:c(j)=ali+1+7)) A (c(2) = a(2i + 1))
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We introduce a subcomponent p whose process is also specified by GSQUARE and
require that for 2, ¢ > 0,

(1) pa()=a(+1)
(2)  pelz) = ¢(2)
Notice that the component we are deriving is recursive due to the above decision that

amounts to introducing an infinite sequence of subprocesses of the same type.

We continue our derivation.

b(i+1)

{ above derivation }
(Aj:0<j<i:c(j)=a(i+1+7)) A (c(i) =a(2i+1))
= {(1), (2}

(Aj:0<j<i:pe(i) = pali+) A (cli) = a(2i +1))
= { process of p satisfies GSQUARE }
p-b(i) A (c(z) = a(2: + 1))

The problem is reduced to deriving a command whose process satisfies input/output
relations (0), (1), (2), and

(3) b(z+1) = p-b(e) A (cz) =a(2e 4+ 1)) 12>0
[ts communication behaviour S should satisfy

SMa,bc} = (b;a;a,c)
SHpa,pbpec} = (pb;pa;pa,pc)
Taking into account (0), (1), (2), and (3) and striving for as little buffering as possible
leads to
SHb,pb} = (b5 p:b)
SHa,pa} = a;(a;pa)
SHe,pe} = (c;po)”

Communication behaviour

bia;(a,c,pb;b,pa;a;pa, pc)”

satisfies all of the above requirements. Again observe the alternation of input and
output in the repetition.

The above leads to the following program
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com gsquare(in a,c: int,out b : bool) :
sub p : gsquare bus
var z,y : int,w : bool rav
bltrue; a?z
i (alz, c?y, pblw; b{w A (z =y)), palz
;ale; pale, pcly)”
moc

Let T, be the command of the above component. Let U be the process that is speci-
fied by GSQUARE. As in section 5.1 we can prove that (PR(T,) w p-U){a,b,c} also
satisfies GSQUARE and hence

(PR(T,) wp-U)l{a,b,c} =U
Since T, satisfies
(At:tetPR(T,) At#e:L(tH{pa,pbpc}) <lt{abc}))
equation
Y : (PR(T,) wpY)!{a,bc} =Y
has a unique solution ([Ud],[Ka]) being
(Wi:i>0:(p:)'PR(T,)){a,b,c} = PR(gsquare)

Consequently PR(gsquare) is the process specified by GSQUARE.

In order to obtain the output sequence specified by SQUARE we have to send a(7) via
channel ¢ at the moment we send a(2: + 1) via channel a. Since a(7) has alveady been
sent via channel a, we require that the component generates a(z) just before it has to
be sent via channel ¢. We introduce an additional output channel d and consider the

following generalization of GSQUARE

GGSQUARE : signals : —
input channels : a,c: int
output channels : b: bool,d : int
communication behaviour : (b5 a; d; a, ¢)*
input/output relation :
bi) = (Aj:0<j<i:¢(j) =ali+7)) 1>0
d(7) = a(7) 120
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Assuming a subcomponent p whose process satisfies GGSQUARE, a derivation again
leads to input/output relations (0), (1), (2), and (3). Furthermore, we have

For 7, 1 > 0, we derive

d(i+1)

{input/output relation GGSQUARE }
a(i+1)

{(1), process of p satisfies GGSQUARE}
pd(z)

We have to find a command whose process satisfies input/output relations (0), (1), (2),
(3), (4), and

(5) d(i+1) = pd(i) i>0

and whose communication behaviour S satisfies, apart from the conditions imposed
before,

SNd,p-d} = (d; p-d)*

We choose communication behaviour
bja;d;(a,c,pb;b,pa;a,pd;d,pa,pc)

where input and output alternate. This leads to the following program

com ggsquare(in a,c : int,out b : bool,d : int) :
sub p : ggsquare bus
var z,y, 2 : int,w : bool rav
bltrue; a?z; d'z
; (a?z, c?y, pblw; b (w A (z =vy)), palz
;alz, pd?z; dlz, palz, pcly)*
moc

It can be shown that PR(ggsquare) is the process specified by GGSQUARE.

We now define component square to be
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com square(in a : int,out b : bool) :
sub p : ggsquare bus
(pa=a,pb=1b]
var z : int rav
(p-d?z; p-clz)*

‘moc

It is easily seen that PR(square) indeed is the process specified by SQUARE.

Let Ty, be the command of component ggsquare. Command Sy, = 7(T,,) satisfies

(At:tetPR(S,,) At#e: Lt pa,pbpcpd})<l(tabcd}))
A (At:t € tPR(Sy,) : £(t{a,b,c,d} < 2-4(tl{a,b}))

Analogously to the proof of theorem 2.1.18 one can show that y(sys(ggsquare)){a, b}
is non-divergent. Since sys((d; ¢)*) is non-divergent, we have by corollary 2.1.12 that

v(sys(square)) = (1(p-sys(ggsquare))ss™ || sys((p-d; p-c)”) ) {a, b}

is non-divergent.

Observe that S,y is a restricted command and, therefore, PR(S,,) is cubic. Deline
function o, o € occ(PR(S,,)) — N, by

o(b,1) 43
o(a,i) = 2i+1
o(d,i) = 4i+2
o(c,1) = 4143
o(p-b,i) = 4i+3
o(p-a,i) 244
o(p-d,?) 4145

o(p-c,t) = 4146

for 2,2 > 0. Function o is a sequence function for PR(S,,) that satisfies condition (*) of
theorem 2.5.19. By theorem 2.5.20 function 7, 7 € occ(PR(v(sys(ggsquare)))) — N,
defined by

T(e, 1) = o(e, 1) (e,2) € occ(PR(y(sys(ggsquare))))

is a sequence function for y(sys(ggsquare)), and system v(sys(ggsquare)) is lockfree.
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Since

(At,e,g:teg € tPR(y(sys(ggsquare))) A (e, €(tle)) < (g,£(telg))
1 7(g,L(telg)) — (e, £(tle)) < 1)

system ~(sys(ggsquare)) has constant response time.

It easily seen that 7 restricted to occ(PR(v(sys(square)))) is a sequence function for
v(sys(square)). Therefore, y(sys(square)) is lockfree. Moreover , y(sys(square)) has
constant response time.

5.3 Polynomial multiplication

Multiplication of polynomials with integer coefficients is defined as follows. The prod-
uct of polynomial p,

plX) =(8k: 05 k< Mpp-XY-178),
and polynomial ¢,
qX)=(Sk:0<k < N:g XN-1-F)
is polynomial p * q,
p*x)(X)=(Sk:0<k<M+N—1:(p*q)pXMtN-2-k),
where for kK, 0 < k< M+ N -1,
(P*q)rk=(S4,j:0<i<MAOLSj<NAi+j=k:pi*q;)
In the sequel we will represent polynomials by integer sequences containing their coef-
ficients. Polynomial p is represented by sequence (pi)o<k<m- We will identify polyno-
mials with the sequences representing them. The length £(p) of sequence p is defined

in the obvious way. Only sequences p with £(p) > 1 will be considered. FFurthermore,
we define for all sequences p such that £(p) > 2

tp = (Pr+1)o<k<t(p)-1

Polynomial multiplication corresponds to a mapping of pairs of integer sequences onto
integer sequences. Sequences p and ¢ are mapped onto sequence

p*xq= ( (P * q)k )05k<e(p)+t(q)-1
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where for k, 0 < k < £(p) +£(q) — 1,
(P*qQ)k=(S%4,7:0<i<l(p) NOLSj<lig) ANi+j=k:pi*xq;)

If p is an infinite sequence we define p* g to be the infinite sequence ((p* q)x)rz0 Where

for k, k > 0,
(p*q)=(Si,j1i20A0< <L) Ai+j=kipitq)
Let ¢ be a given finite sequence such that £(g) > 1. Consider the following specification

GMUL, : signals: —
input channels : a:int
output channels : b:int
communication behaviour : (a; b)*

input/output relation : b=a=xgq

Let p be a finite sequence. Define infinite sequence 7 by p, = pi for k, 0 < &k < ((p),
and P, = 0 for k, k > 4(p). Then for k, 0 < k < ¢(p) + 4(q) — 1,

P*q)k=(p*q)

and for k, k > £(p) + £4(q) — 1,
(P*q) =0

Therefore, the process specified by GMUL, can be used to compute the coefficients of
P *q.

[Mirst assume £(g) > 2. We derive for £, £ > 0,

b(k)
= {input/output relation GMUL, }

(axq)k
= { definition a * ¢ }
(St,j:220A0<j<llg)Ni+j=k:a(z)*q;)
= {dg9=2}
(St,j: e 20A0<j<llq) Ni+j=k:a(t)xq;)+a(k)*qo
= { calculus }

(S4,j:120A0<j<lg)—1Ai+j=k—1:a(t)*xqj41)+alk)*q
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Assume that there exists a component gmul,., whose process satisfies GMULy,.,. Intro-
duce a subcomponent p of type gmulyq, and require

(0)  pa(k) = a(k) k20

Then for k, k > 0,

b(k)
= { above derivation, (0), definition t¢-¢, £(¢q) > 2}
(S, 1t 20 AN0<j<l(tq) Ni+j=k—1:pa(s)*(tq);) +a(k)*qo

Hence,
(1) b(0) = a(0) * g0
and for k, k > 0,

b(k)

= { definition *, k > 0}
((p-a) * (t-9))k-1 + a(k) * go

= { process of p satisfies GMUL, }
p-b(k — 1) + a(k) * go

Our task is reduced to giving a command whose process satisfies input/output relation
(0), (1), and

(2)  b(k)=pblk—1)+a(k)*qo k>0

and whose communication behaviour S satisfies

SMa,b} = (a;b)"
SHpa,pb} = (pa;pb)”
SNa,pa} = (a;pa)
Sr{b,pb} = (b) p'b)*

The last two conditions are imposed partly by (0), (1), and (2), and partly by the
requirement that there is as little buffering as possible. It now follows that

S=a;(b,pa;a,pb)*

This leads to component gmul, defined by



154 5 Derivation and correctness of programs

com gmul,(in a:int,out b:int):

sub p : gmul,, bus

var z,y : int rav

alz; bl(z * qo) , p-alz

i (alz, pbly; bi(y + 2 % qo) , palz)”
moc

In case £(q) = 1 we derive
b(k) = a(k) * qo k>0
which leads to

com gmuly(in a: int,out b:int):
var z : int rav
(a?z; bl(z * qo))*

moc

One may prove that PR(gmul,) is the process specified by GMUL, in a way similar
to the approach taken in section 5.1. Likewise, it can be shown that y(sys(gmul,)) is
transparent (and, therefore, non-divergent) and lockfree.

Define o, o € occ(PR((a; b)%)) — N, by

o(a,i) = 2i
o(bi) = 2i+1

for 7, ¢« > 0. We have that o is a sequence function for y(sys(gmul,)) in case €(q) = 1.

Assume £(q) > 2 and o is a sequence function for y(sys(gmul,.,)).
Define p, p € occ(PR(a; (b, p-a; a, p-b)*)) = N, by

pla,i) = 2i

p(bi) = 2i+1
p(p-a,i) = 2i+1
p(pbyi) = 2042

for 2, 2 > 0. Then p is a sequence function for PR(a; (b, p-a; a, p-b)*). By corollary
2.5.18 we have that p restricted to occ(PR((p-a; p-b)™)) is a sequence function for
v(p-sys(gmuls.q)). Since p restricted to occ(PR((a; b)*)) equals o we have that o is a
sequence function for y(sys(gmul,)). Observe that
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(At,c,d :ted € tPR(y(sys(gmul,))) A (c,€(tlc)) < (d,£(tcld))
co(d,£(teld)) — a(c,b(tlc)) < 1)

Therefore, y(sys(gmul,)) has constant response time.

Let N > 1. Consider the following component.

com mul,n(in a :int,out b:int) :
sub p : gmul, bus
var z,y : int rav
((a?z; p-ala; p-b7y; bly)N !
;alz; pale; pbly
; (Bly, p-al0; p-b7y) @15 ply )
moc

Let Tv be the command of component mul, y. Process PR(Tw) satisfies the following
input/output relations

3) pak(N+4(qg)—1)+1) =alkN+1) k>0,0<I< N
(4) pak(N+£Lqg)—1)+0)=0 k>0, N<I<N+{q) -1
(5)  b(k) = p-b(k) k>0

Define sequence ay, k > 0 A £(ay) = N, by
(6) (ak),- = a(kN + 2) 0<i< N
We derive for k and [, k>0 A0 <I< N +4(q)—1,

b(k:(N +£(q)-1)+1)
= {(®}
pb(k-(N +4(q) —1)+1)
= {input/output relation GMUL, }
(S4,7:220A0<3<lg)N1+5=k-(N+2q)—1)+1:pa(i)*q;)
= {3), (4)}
(Smn,j:m>0A0<n<NAO<L;<{g)
Am-(N+0g)—1)+n+j=k (N+£q)—1)+1:a(mN +n)xq;)
= { calculus }
(Sn,7:0<n<NAOLj<{lg)An+j=1:a(kN+n)x*gq;)
= { (6), definition * }
(ak * q)
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Therefore, component mul, y can be repeatedly used to calculate the coefficients of
the product of polynomials of length IV and polynomial q. Observe that parameter NV
only appears in the command of component mul, 5 and not in its subcomponent p of
type gmul,.

The above components for polynomial multiplication can be used in the design of
components for polynomial division and for encoding messages, using a cyclic code

(see [Re8T]).

5.4 Acceptors for regular expressions
Regular expressions are defined inductively as follows

- € is a regular expression
- a is a regular expression for all symbols a
-~ if Ey is regular expression then Ef is a regular expression

- if Ey and E; are regular expressions then Ey; E; and Ey | E; are regular
expressions

Notice that as we already mentioned in section 1.2 the set of regular expressions forms
a subset of the set of commands. With each regular expression £ a language L(E) is
associated that is defined by

L(E) = tTR(E)

An acceptor for regular expression E is a process that upon receiving an input symbol
computes whether the sequence of symbols received thus far is an element of L(L).
Formally,

signals : —

input channels: ¢:sym

output channels : r : bool

communication behaviour : (c; r)*

input/output relation : r(i) = c(k:0< k<i)e L(L) 1>0

However, since we strive for a hierarchically structured component whose structure
reflects the structure of the regular expression, the above specification is not adequate.
Problems arise with the star operator and the semicolon operator, in which cases not
only prefixes of the input sequence have to be accepted.

Therefore, we generalize the above specification as follows
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ACCg: signals: wu
input channels : e : bool, ¢c:sym

output channels : v,7 : bool

communication behaviour : u;v; (e, ¢; r)*

input/output relation :
v(0) = € € L(E)

r(z) = (Ej:0<5<i:e(j) Aclk:j <k<i)€eL(E))

Notice that if
e(0) = true
e(l) =

we have r(7) = ¢(k:0 <k <i)€ L(E)fori,i>0.

false 1> 0

157

12>0

Since channel v is used only once one could eliminate channel v by using channel r also
for the message that is to be sent via channel v. We have not done so for reasons of
clarity. The same applies to signal u whose role could be played by an additional first

message via channel e, the contents of which is irrelevant.

Let £ = ¢e. We derive

v(0)

= {input/output relation ACC, }
¢ € L)

= {L(e) = {e}}
true

and forz, 2 > 0,
r(2)
= {input/output relation ACC, }
(Ej:0<j<i:e(f)Aclk:j<k<i)eL(e))
= {i20, L(e) = {e}}

false

This yields

com acc.(sig u,in e : bool,c: sym, out v,r : bool) :

var z : bool, z : sym rav
u; vitrue; (e?z, c?z; r'false)*
) b )
moc
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Let E = a for some symbol a. We derive

v(0)

= {input/output relation ACC, }
€ € L(a)

= {£L(a)={a}}
false

and for 2,2 > 0,

(%)
= {input/output relation ACC, }
(Ej:0<j<i:e(j) Ae(k:j<k<1i)e L(a))
= {calculus, 7 >0}
(Ej:0<j<i:e(j) Ne(k:j<k<i)e L(a))
V (e(i) A e(k:i <k <i)€ L(a))
- {#y=dah]
e(z) A (c(2) = a)

This yields

com acc,(sig u,in e: bool, c: sym,out v, : bool) :
var z : bool,z : sym rav
u; vlifalse; (e?z, c?z;rl(z A (2 =a)))*

moc

Let £ = Eo | E;. We assume the existence of components accg, and accp, whose
processes are specified by ACCg, and ACCg,, respectively. Our goal is to derive a
component that has a subcomponent p of type accg, and a subcomponent ¢ of type
accg,. We derive

v(0)
= { input/output relation ACCpgg, }
e € L(Ey | Ey)
{L(Eo | Ex) = L(Eo) UL(E) }
€€ L(Ey) Vee€L(E)
{ process of p satisfies ACCg,, process of ¢ satisfies ACCg, }
pu(0) V g4(0)
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and for z, 7 > 0,

r(2)
= {input/output relation ACCg, g, }
(Ej:0<j<i:e(j) ANc(k:j<k<i)€L(Eo]| Er))
= {L(Eo | Ex) = L(Eo) U L(Er)}
(Ej:0<j<i:e(j) ANe(k:j <k<i)e L(Ep))
VE;:0<j<i:e(j)Ac(k:j<k<1i)eL(E))

Therefore, we require for ¢, 7 > 0,

*¥F
pc(l) = (i
(0) ge(r) = (i)

gci) = (i)

We continue for ¢z, 7 > 0,

7(2)
{ above derivation, (0) }
(Ej:0<j<i:pe(j) Apclk:j<k<zi)eL(Ey)
V(Ej:0<j<i:qe(j) Agelk:7<k<i)eL(E))
= {input/output relations ACCg, and ACCg, }
p(i) V 1)

This yields

com accpy|g, (sig u,in e : bool, ¢ : sym, out v, : bool) :
sub p : accg,, q : accg, bus
var z, pz, qz : bool, z : sym rav
u; pu, gu; pvlpz, gvlgz; vl(pz V qz)
; (elz, c?z; pelz, gelz, pclz, gclz
s prlpz, grlgz; rl(pz V gz))*
moc

Notice that the communication behaviour corresponding to the command of compo-
nent accg, |k, satisfies the requirements that are imposed by the derived input/output
relations. Furthermore, observe that all of the above derivations could also have been
given starting from the original specification. The following derivations, however, make
it clear that the specification had to be generalized.
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Let E = Ey; F,. Again we assume the existence of components accg, and accg, whose
processes are specified by ACCg, and ACCpg, respectively. We strive for a component
that has a subcomponent p of type accg, and a subcomponent of type accg,. We derive

v(0)
= {input/output relation ACCg . g, }
e € L(Ey; Ey)
{£(Fo; Bx) = L(Eo)L(E) )
e € L(Eo) A € € L(E)
{ process of p satisfies ACCE,, process of q satisfies ACCg, }
p-v(0) A g-v(0)

and for 7,z > 0,

r(2)

= {input/output relation ACCg, . g, }
(Ej:0<j<i:e(j)ANclk:j<k<1i)eL(Ey; E)))

= {L(Eo; E1) = L(Eo)L(E) }
(Ej:0<j<i:e(f)Aclk:j<k<i)eL(Ey) Aee€L(E))
VE;:0<j<i:e(j) Ne€ L(Ey) Aclk:3<k<i)eL(F))
V(Ej:0<j<i:e(j)AN(EBl:j<I<i:clk:j<k<I])e L(F)

ANcelk:1+1<k<i)eL(E)))

Il

We require for 2, 7 > 0,

pe(7)
W )

fm

®
—
e,
~

We continue for z, 2 > 0,

r(2)
= { above derivation, (1), process of p (¢) satisfies ACCg, (ACCg,) }
(pr(2) A gv(0))
V(Ej:0<3<i:¢e(j) Apv(0) Aclk:j <k<i)eL(E))
VENI0LSI<i:(Ej:0<j<!l:e(j) ANelk:j< k<) € L(Ey))
Ack:l4+1<k<i)eL(E))
= { (1), process of p satisfies ACCE,, renaming dummy }
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(pr(i) A g(0))
V(Ej:0<j<i:e(j) Apv(0) Aelk:7<k<i)eL(E))
V(E;:0<j<i:pr(f) Aelk:j+1<k<i5) e L(EY))

= { calculus }

(pr(i) A qv(0))
V(Ej:0<7<i:€(j) Apv(0) Ac(k:5<k<i)eL(E))
V(Ej:0<j<t:pr(—1)Aclk:j<k<i)e L(E))

Therefore, we require
(2)  q€(0) = €(0) A pv(0)
and for¢,2 > 0,

ge(i+1) (e(i+1) A pv(0)) V pr(s)
gct) = (i)

We continue for 2, 2 > 0,

3)

(1)
{ above derivation, (2), (3) }
(pr(i) A qo(0)) V (Bj:0<j <iqe(i) A qek:j <k <i)€ L(E))
= { process of ¢ satisfies ACCg, }
(pr(2) A gv(0)) V ¢7(2)

This leads to

com accg, g, (sig u,in e : bool, ¢ : sym, out v,r : bool) :
sub p : accg,, q : accg, bus
var z,pz, gz, pv, qu : bool, z : sym rav
u; pu, gu; pvlpy, ¢ulqu; vl{pv A qu), pz:= false
; (e7z, clz; p-elz, g-el((z Apv) V pz), p-clz, ¢g-clz
s pripz, grlgz; ri((pz Aqu) V gz))*
moc

Let £ = Ej. Assume the existence of a component accg, whose process is specified by

ACCg,. Again we strive for a component that has a subcomponent p of type accg,.
We derive



162 5 Derivation and correctness of programs

v(0)

{input/output relation ACCg; }
€ € L(EY)
= {eeL(BY)

true

and

r(0)
{ input/output relation ACCg; }
e(0) A e(k:0<k<0)e L(E])
= {a € L(E}) = a € L(E,) for all symbols a }
e(0) A c(k:0 <k <0) e L(Eo)

I

We require

pe(0) = €0)
W pe) = <)
Then

r(0)

{ above derivation, (4) }
pe(0) A pe(k:0<k<0)e L{Ey)
{ process of p satisfies ACCE, }
pr(0)

Furthermore, we derive for ¢, 1 > 0,

r(i+1)
= { input/output relation ACCg; }
(BEj:0<j<i+1l:e(f)Aclk:j<k<i+1)€eL(E}))
= {L(B3) = L(BSE(E) U {e), i 2 0)
(Ej:0<j<i+l:e(j)A(El:j<I<i+1l:elb:5<k<l)eL(E)
ANelk:1<k<i+1)eL(L)))
= {eeL(E))
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(Ej:0<j<i+1l:e(j) Ac(k:j<k<i+1)e€L(E))
V(Ej:0<j<i+1:e(j)A(Elij<i<i+l:clk:j<k<l)eL(E])
Aelk:1<k<i+1)€L(Fo)))

= { calculus }
(Ej:0<j<i+1l:e(f) Ac(k:j<k<i+1)eL(E))
V(EL:0<I<i+1: (Ej:0<j<l:e(y) Ne(k:j <k<l)e L(E}))

Aclk:1<k<i+1)e L(Ey))

= {input/output relation ACCgg, renaming dummy }
(Ej:0<j<i+1l:e(j)Ac(k:j<k<i+1)eL(E))
V(E;:0<j<i+1l:r(j—-1)Aclk:j<k<i+1)€L(E))

Therefore, we require for ¢, 2 > 0,

(5) pe(i+1) = e(i+1)Vr@)

pe(i+1) et +1)
We continue for ¢, 1 > 0,

r(z+1)
{ above derivation, (4), (5) }
(Ej:0<j<i+1l:pe(j) Apeclk:j<k<i+1)e L(Ey))
= { process of p satisfies ACCg, }
pr(i+1)

This leads to

com accp; (sig u,in e : bool, ¢ : sym,out v, : bool) :
sub p : aceg, bus
var z, pz : bool, z : sym rav
u; pu; pulpe; vltrue, px:= false
; (e?z, c?z; pel(z Vpa), pclz; pripe; ripz)*
moc

By induction on the structure of regular expressions one can prove that PR(accg) is
indeed the process specified by ACCg. The proof is analogous to the proof in section
5.1,

We prove that y(sys(accg)) is transparent by induction on the structure of regular
expressions, i.e. the structure of components. Let T be the command of component
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acep and let Sg = v(Tg). Obviously y(sys(acc.)) and v(sys(acc,)), for all symbols
a, are transparent. Assume v(sys(accg,)) and y(sys(accg,)) to be transparent. By
corollary 2.1.22 we have that ~(p-sys(accg,) || ¢-sys(accg,)) is transparent. Since
SEo B, = SEy:Ey, system sys(Sgy g )/ {u,v,e,¢,r} is transparent, and

PR(SEoz) {p-u, pv, prespe, prygu, g, g€, goc, g}
{ definition Sg,g,, property projection }
PR’(pu y U5 PV, @V (P'e yq'€,pC,qcC;pr, q-T)‘)
{ calculus }
PR(p-u; pv; (pe, pe; pr)) wPR(qu; gv; (ge, gc; ¢r)7)
{ PR(accg,) satisfies ACCg,, PR(accg, ) satisfies ACCg, }
PR(y(p-sys(accg,))) w PR(v(g-sys(accg,)))

{ calculus }

PR((p-sys(aceg,) || ¢-sys(acc,)))

Il

1N

Il

we have by corollary 2.1.24 that

v(sys(acegy k) =
(v(psys(aces,) || ¢-sys(ace,)) || sys(Seoe) ) {u, v, €, 0,7}

and

v(sys(accg, k) =
(v(p-sys(acer,) || ¢-sys(acc,)) || sys(Sks k) ) {u,v,e,¢,7}

are transparent.

Since sys(Sg;)[{u,v,e,¢,r} is transparent and
PR(Sg;) {pu,pv, pre,p-e,pr} = PR(v(psys(acc,)))
we have by corollary 2.1.24 that
v(sys(accg)) = (v(p-sys(accr,)) || sys(Seg) ), v,e,¢,7)

is transparent. Consequently, v(sys(accg)) is non-divergent for all regular expressions

1.

Up to this point we did not mention that a regular expression might be parsed in more
that one way. For instance, a; b; ¢; d may be parsed in five different ways:
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((a); (8)5 ()5 (d
(a); ((6); (¢))); (d
(a); (8)); ((e);5 (

Consequently, one may obtain five different components when following the above
method to construct an acceptor for E. The way in which a regular expression is
parsed can be represented by a so-called parse tree. Notice that the parse tree of a
regular expression and the structure of the component that is constructed using that
parse tree correspond. In the above example the third way of parsing yields a parse
tree of depth 2; the other ways yield a parse tree of depth 3.

As it turns out sequence functions for y(sys(accg)) depend upon the depth of the
chosen parse tree for F. This dependence is such that components constructed by
using parse trees of least depth are to be preferred. In the above example the third
way of parsing is to be preferred above the other ways.

We introduce parenthesized regular expressions:

— ¢ is a parenthesized regular expression
- a is a parenthesized regular expression for all symbols a

- if By and E; are parenthesized regular expressions then (E,) | (E;) and
(Eo); (Ey) are parenthesized regular expressions

- if Eg is a parenthesized regular expression then (FEp)* is a parenthesized regular
expression

Parenthesized regular expressions have a unique parse tree. Hence, the component
accp that corresponds to parenthesized regular expression E is uniquely defined. In
the sequel we only consider parenthesized regular expressions which we call regular
expressions.

Ior every regular expression E the depth of (the parse tree of) E, denoted by d(E), is
defined inductively as follows

) 0

)y = 0

d((Eo) | (E1)) = d(Eo)maxd(E;)+1
) = d(Ep)maxd(F,)+1
) = d(Eop)+1
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By induction on the structure of regular expressions we prove that
ok € occ(PR(y(sys(accg)))) — N defined by

) 0
) 2-d(E)
og(e,i) = 2-d(E)+2+1-(2-d(E)+2)
) 2-d(E)
) 4-d(E)

for i, 1 > 0, is a sequence function for y(sys(accg)).

It is obvious that og is a sequence function for y(sys(accg)) in case E =¢cor £ = a
for some symbol a.

Let £ = (Eo) | (E1) or E = (Ep); (Eq). We have
Sg=u;pu,qu;pv, qv;v; (e, c;pe, ge, pc, gc; pr, ¢r; )

Define 7g € occ(PR(Sg)) — N by

te(e, i) = 7g(c,t) =2-d(E)+2+41i-(2-d(E) +2)

Te(p-€,1) = TE(q€, z) 1E(pc,i) = 7E(gc,i) =2 -d(E)+3+41¢- (2-d(F) + 2)
TE(prz)—TE(qrz) 4-d(EY+2+1-(2-d(E)+2)

te(r,i) =4-d(E)+3+1i-(2-d(E)+2)

for ¢, 2 > 0. Then 7% is a sequence function for PR(SE).
Notice that 7g restricted to oce(PR(y(sys(accg)))) equals og.
Next, we define pg, € occ(PR(y(sys(accg,)))) — N by

pEo(a’i) = TE(p-‘Z’i) (a)i) € OCC(PR(7(3y5(acch))))

and pg, € occ(PR(7(sys(accg,)))) — N by

p5i(a,i) = T(q.,1) (a,3) € oce(PR(7(sys(acer,)))

We have
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PEy(v,0) — pio(u,0)

= { definition pg, }
2-d(E)—1

{ definition d(E) }
2 - (d(Eo) maxd(E,) +1) -1
> { calculus }
2.d(Eo) +1

{ definition og, }
05 (v,0) — o5 (u, 0)

PEo(€,0) — pEy(v,0)
{ definition pg, }
2.d(E)+3—2-d(E)
{ calculus }
2. d(Eo) +2 — (2- d(Eo) + 1)
{ definition og, }
og,(e,0) — og, (v,0)

[\

for z,z > 0,

PE(T,2) — pEo(e,1)
{ definition pg, }
4-dE)+2+4+:i-(2-d(E)+2)—2-d(E)—3—1i-(2-d(E)+2)
{ definition d(E) }
2. (d(Eg) maxd(E,) +1)—1
> { calculus }
2. d(Eo) +1
E { calculus }
4-d(Eg)+3+4+i-(2-d(Ep)+2)—2-d(Eo)—2—1-(2-d(Ep) +2)
{ definition o, }
OB (r,2) — ORy(e,1)

and for 2,7 > 0,

pEs(€,1+1) — ppo (1, )
= { definition pg, }
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2-d(E)+3+(i+1)-(2-d(E)+2)—4-d(E)—2—i-(2-d(E) +2)

vV

{ calculus } ,
2:d(Bo)+24+(i41)-(2-d(Eo)+2)—4-d(Eg) —3—i-(2:d(Eo)+2)
{ definition og, }
O'EO(e,i + 1) - OEO('I','i)

From the above it follows that

(Aa,b,i,j : (a,7),(b,) € oce(PR(v(sys(accg,)))) A (a,t) < (b,7)
: O'E'o(baj) - O'Eo(a')i) < PEo(b’j) - pEo(a,i))

Furthermore, we have

0E,(u,0) =0 < 1= pgy(u,0)

0B, (v,0) =2-d(Eo) +1<2-d(E) = pg(v,0)
0E(€,0) =2-d(Eo)+2<2-d(E)+3 = pg(e,0)
05 (r,0) =4-d(Eo) +3 <4-d(E)+2=pg(r,0)

By corollary 2.5.18 we now have that pg, is a sequence function for vy(sys(accg,)).
Analogously, we can prove that pg, is a sequence function for y(sys(accg,)).

From the above we infer that o is a sequence function for y(sys(accg)).
Analogously, we can prove that in case E = (Ep)* og is a sequence function for
v(sys(accg)).

By theorem 2.5.14 we have that y(sys(accg)) is lockfree. Since

(At,a,b :tab € tPR(v(sys(accg))) A (a,£(tla)) < (b, £(talb))
: og(b,£(talb)) — op(a,£(tla)) <2-d(E) +1)

system y(sys(accg)) has constant response time.

One may interpret the constant 2 - d(E) + 1 in the above condition as a measure for
the response time of component accg. Then it is obvious that when constructing an
acceptor for regular expression £ one should use a parse tree of F of minimal depth.

Defining the length of regular expression E, denoted by £(E), by

L) =1
£(a 1
U((Eo) | (E1)) = £(Eo)+€(E1)+1

)
)
t(Eo); (Ev)) = &(Eo)+£(Ey) +1
£((Eo)")

one can show that
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log(£(E)) < d(E) < (E)

This implies that the least response time that one might achieve is 2 - [log(£(E))] + 1.

Consider regular expression E,, = ag; a1; ... ; am—-1 for m, m > 0. Regular expression
E,, can be parsed to yield parse trees of depth [log(2m — 1)] and 2m — 1 (= ¢(E,,)).
Therefore, acceptors for E,, can be constructed having response time 2-[log(2m—1)]+1
and 4m — 1, respectively.

Every parse tree of regular expression £ = a; (b; ¢; d)* has depth 4 whereas £(E) = 8
and log(¢(E)) = 3. This shows that the given lower bound is not always reachable.
Finally, we observe that sys(accg) describes a network of processes that has the form of
a tree. The nodes in the network that correspond to operators in £ pass on the symbols
they receive. The nodes that correspond to € in E discard the symbols they receive.
Only the nodes that correspond to symbols in E compare the symbols they receive
with their own symbol. Observe that the nodes of the last two kinds are the leaves of
the tree. Therefore, the processes in the network could be simplified by sending the
symbols directly to the nodes corresponding to symbols in F instead of letting them
be passed by all other nodes. This reduces the processes in nodes corresponding to
operators and ¢ in F to processes that have to deal with boolean values only.

5.5 Final remarks

In the previous sections we illustrated a way of deriving programs from (split) specifica-
tions. Essentially, we employed the fact that the communication behaviour is specified
independently of the input/output relation, i.e. all processes specified are data inde-
pendent, and the fact that the input/output relation depends only on the numbers of
events in the trace, i.e. all processes specified are channel order independent. Deriva-
tions were done primarily in terms of input/output relations. Programming techniques
that were used are

— introduction of one or more subprocesses having a similar specification. Sim-
ilar here means equal (cf. recursive procedures and functions in sequential
programming) or with one or more parameters changed (cf. e.g. invariants ob-
tained by replacing one or more constants in the postcondition by variables in
sequential programming). In the former case one introduces an infinite number
of subprocesses, all of the same type. In the latter case one usually arrives at
a finite number of subprocesses, all of different type.

— introduction of one or more additional channels (cf. the introduction of auxil-
iary variables in sequential programming)

— generalization of the original specification
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Communication behaviours were modified or derived according to the requirements im-
posed by the derived input/output relations and by considerations concerning buffering
of values. This was done in such a way that the resulting systems are non-divergent
and lockfree. The derived programs describe systems that satisfy the conditions for
networks of processes given in section 0.0. This is due to the fact that all specifications
in our derivations are split specifications having commurication behaviours that are
cubic, and to the way in which we introduced (sub)processes.

The formal proofs in sections 5.1 and 5.2 give an impression as to what kind of theorem
may be formulated about deriving a split specification for the projection of a process
from a split specification for that process: Among the conditions to be satisfied are
the requirements that the channel set C on which one projects is transparent with
respect to the communication behaviour (cf. theorem 3.2.4) and that the predicate
in the specification can be written as the conjunction of two predicates, one solely in
terms of channels in C' and the other describing the values sent via channels not in C as
functions of the values sent via channels in C. We have, however, not formulated such
a theorem since the examples in 5.1 and 5.2 do illustrate the principle more clearly.
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In this thesis we show how communication of values and parallel computations, es-
pecially those that are characterized by the conditions given in section 0.0, can be
described using trace theory as a formalism. Furthermore, we show how programs may
be derived from specifications. These programs can be proved to be correct, i.e. they
satisfy their specifications, and have neither deadlock nor divergence.

To the above aim we introduced the notion of system. A system is a description for
a network of processes. Formally, it is a pair consisting of an alphabet (the external
channels of the network) and a set of processes. The external process of a system
is defined to be the composition of all processes in its process set projected on its
external alphabet. Systems can be composed and projected on alphabets. The program
notation of trace theory is viewed as a means to describe a certain class of systems. The
process of a program or component is defined to be the external process of the system
corresponding to the program or component. In case of a recursive component this
definition yields, in a natural way, the least fixpoint of the recursive equation defined
by the component, thus confirming the choice that is made elsewhere ([Sn],[Ka]).

The phenomena divergence and nondeterminism are captured by the introduction of
the concepts of non-divergent, non-disabling, and transparent alphabets (non-disabling
corresponds to I; in [Ka]). These concepts are introduced for systems as well. Absence
of divergence is characterized in several ways. A number of useful theorems dealing
with the above phenomena in case of composition and projection is given. Absence of
deadlock is modelled by defining what lockfree systems are. If one wants to investigate
the absence or presence of deadlock one may prOJect on transparent alphabets that
contain the common symbols.

The classes of conservative and cubic processes ([Ve85], [Ve86]) are introduced, the
latter being a subclass of the former. Both classes are closed under composition and
projection. The behaviour of a conservative process after trace t only depends on
the numbers of events in t, not on their order in ¢. Furthermore, each subset of the
alphabet of a conservative process is non-disabling with respect to that process. With
each process we associate a set of occurrences of events. A process defines a partial
order on its set of occurrences. Vice versa, a partial order on a set of occurrences defines
a process. If process T equals the process defined by the partial order corresponding
to T then T is cubic. A sequence function for a cubic process describes a partial order

17
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that is in accordance with the partial order defined by the process. It defines a cubic
subprocess that can be interpreted as a restricted (clocked) behaviour of the original
process. Sequence functions are also defined for systems consisting of cubic processes.
Existence of a sequence function for such a system implies, under certain conditions, the
absence of deadlock. Conditions for the existence of a sequence function for the system
corresponding to a recursive component are given expressed in terms of the command
of the component only. A system of cubic processes is said to have constant response
time if there exists a sequence function for the system satisfying certain conditions.

Communication of values is described in terms of trace theory. Essentially, this is done
by introducing symbols that are pairs consisting of a channel name and a value. Occur-
rence of pair (¢, m) is interpreted as the passing of value m via channel ¢. In general,
the communication behaviour of a process depends on the values that the process sends
and receives. Processes for which this not the case are called data independent. Data
independence can be expressed in terms of transparence. Data independent processes
form the class of processes that are specified by split specifications. The Conjunction-
Weave rule is formulated for this class. The projection of a data independent process
on a channel set that is non-disabling with respect to the communication behaviour
is data independent. Conditions implying the data independence of the composition
of processes are formulated. They are easily verified if one introduces channel types,
and distinguishes between input and output. Data independence allows one to discuss
phenomena like deadlock and divergence in terms of communication behaviours only.
A process is called channel order independent if its future behaviour does not depend
on the order in which the channels have been used in the past. For processes that
do not describe communication of values, e.g. communication behaviours, this defini-
tion equals the definition of conservativity. A new notation for specifications of data
independent processes that are channel order independent as well is introduced.

Making a distinction between input and output, the program notation of trace theory
is extended to include communication of values. Conditions are given that imply the
process of a component to be data independent and channel order independent and its
communication behaviour to be cubic.

Finally, a programming method is presented informally by means of examples. Among
the examples given is the derivation of programs for acceptors of regular expressions.
The programming method is based on the data independence and the channel or-
der independence of processes, and the application of the Conjunction-Weave rule.
Programs derived using this method describe systems that satisfy the conditions for
networks given in section 0.0. We show that the derived programs can be proved to
be correct. They satisfy the given specification, and their systems are free of deadlock
and divergence. Furthermore, it is shown that the systems of the derived programs
have constant response time. A number of analogies with sequential programming is
mentioned.
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Summarizing, we conclude that the material presented in the previous chapters provides
adequate means to describe parallel computations, in particular the subclass we are

mainly interested in. It also supports the reasoning in the programming method that
is introduced.
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Samenvatting

Parallelle berekeningen vormen het onderwerp van dit proefschrift. We behandelen de
beschrijving van parallelle berekeningen met behulp van tracetheorie (een formalisme
voor de beschrijving van parallelle processen ontwikkeld door Martin Rem ([Re85]),
Jan L.A. van de Snepscheut ([Sn]) en Anne Kaldewaij ([Ka])) en een methode om
programma’s voor parallelle berekeningen af te leiden vanuit specificaties.

Onder parallelle berekeningen verstaan we netwerken van processoren of cellen die
onderling waarden kunnen communiceren en die beschreven kunnen worden met pro-
cessen. We richten ons daarbij voornamelijk op netwerken die als volgt gekarakteriseerd
kunnen worden.

— het netwerk bestaat uit cellen die volgens een regelmatig patroon gerangschikt
zijn (bijvoorbeeld een rechthoekig rooster of een boom)

— communicatie tussen cellen in het netwerk en tussen cellen en de omgeving van
het netwerk vindt plaats via éénrichtingskanalen

— cellen zijn eenvoudig en communiceren via een vast aantal kanalen met buur-
cellen en/of de omgeving van het netwerk (vast betekent hier onafhankelijk
van het totale aantal cellen)

— het communicatiegedrag van de cellen is onafthankelijk van de waarden die ze
ontvangen en versturen

— cellen synchroniseren slechts op onderlinge communicaties (er is geen globale

klok)

Netwerken die voldoen aan de eerste vier voorwaarden worden vaak systolisch genoemd
(systolic arrays). Systolische netwerken hebben in het algemeen echter een globale klok
voor de synchronisatie van de cellen.

Om parallelle berekeningen te beschrijven dient communicatie van waarden gefor-
maliseerd te worden binnen de tracetheorie. Daartoe voeren we symbolen in die paren
zijn bestaande uit een (kanaal)naam en een waarde. Het voorkomen van een paar
(c,m) wordt geinterpreteerd als het verzenden of ontvangen van waarde m via kanaal
c. Een belangrijk aspect van een proces is de mate waarin de waarden die gecommu-
niceerd worden het communicatiegedrag van het proces bepalen. Een proces heet data
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onafhankelijk als het communicatiegedrag van het proces niet afhangt van de waarden
die het verstuurt en ontvangt. Het communicatiegedrag van een data onafhankelijk
proces kan afzonderlijk beschreven worden. Een aantal eigenschappen zoals bijvoor-
beeld divergentie hangt bij data onafhankelijke processen alleen af van het commu-
nicatiegedrag. Het communicatiegedrag kan ook invloed hebben op de waarden die
gecommuniceerd worden. Indien de volgorde waarin een proces van zijn kanalen ge-
bruik maakt geen invloed heeft op de waarden die gecommuniceerd worden, spreken
we van een kanaalvolgorde onafhankelijk proces.

Bij de behandelde programmeermethode gaan we uit van specificaties van data on-
afhankelijke en kanaalvolgorde onafthankelijke processen. Gebruikmakend van de vorm
van de specificaties van dergelijke processen leiden we er programma’s uit af. De aflei-
ding kenmerkt zich door het feit dat het communicatiegedrag en het verband tussen
ontvangen en verstuurde waarden (input/output-relatie) onafhankelijk van elkaar be-
handeld kunnen worden. De afgeleide programma’s zijn correct, d.w.z. ze voldoen aan
hun specificatie en vertonen geen deadlock of divergentie. De afgeleide programma’s
beschrijven netwerken die voldoen aan de eerder vermelde voorwaarden. Bovendien
hebben ze een constante responstijd.

We besluiten met een korte beschrijving van de inhoud van de hoofdstukken 1 t/m 5
in dit proefschrift.

In hoofdstuk 1 geven we een overzicht van tracetheorie. We voeren het begrip systeem
in. Een systeem beschrijft een netwerk van processen en bestaat uit een alfabet (de
externe kanalen van het netwerk) en een verzameling processen. Het externe proces van
een systeem wordt gedefini€erd als de compositie van de processen in de procesverzamel-
ing van het systeem geprojecteerd op het externe alfabet. Systemen kunnen worden
samengesteld en worden geprojecteerd op een alfabet. De programmanotatie uit de
tracetheorie wordt beschouwd als een middel om een bepaalde klasse van systemen te
beschrijven. Het proces van een programma of component wordt gedefiniéerd als het
externe proces van het systeem behorend bij het programma of de component. In het
geval van een recursieve component geeft deze definitie op natuurlijke wijze het kleinste
dekpunt van de recursieve vergelijking die gedefiniéerd wordt door de component. Dit
stemt overeen met de keuze in [Sn] en [Ka).

In hoofdstuk 2 komen eerst nondeterminisme en divergentie aan de orde. We concen-
treren ons daarbij op het begrip transparantie uit [Ka]. Een aantal stellingen laat zien
welke uitspraken omtrent transparantie gedaan kunnen worden bij samenstelling van
processen en bij projectie van processen op een alfabet. Vervolgens komen beéindiging
en deadlock aan de orde ([Ka]) en ten slotte voeren we de klasse van de conservatieve
processen en de klasse van de cubische processen in ([Ve86]). De cubische processen
vormen een deelklasse van de conservatieve processen. Een proces is conservatief als
zijn toekomstig gedrag alleen afhangt van de aantallen gebeurtenissen in het verleden
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en niet van de volgorde van die gebeurtenissen. De cubische processen zijn de pro-
cessen die beschreven kunnen worden met een partiéle ordening op voorkomens van
gebeurtenissen ([Ve86]). Voor cubische processen en voor systemen bestaande uit cu-
bische processen introduceren we sequence functies. Sequence functies beschrijven een
beperkt (geklokt) gedrag van het proces of systeem. Met behulp van sequence functies
definiéren we het begrip constante responstijd.

In hoofdstuk 3 modelleren we communicatie van waarden binnen tracetheorie. We
voeren het begrip data onafhankelijkheid in en laten zien dat data onafhankelijkheid
uitgedrukt kan worden in termen van transparantie. Data onafhankelijkheid van een
proces blijft behouden bij projectie op een alfabet dat transparant is ten opzichte van
het communicatiegedrag van het proces. Data onafhankelijke processen kunnen worden
beschreven met zogenaamde gesplitste specificaties. Dit zijn specificaties waarbij het
communicatiegedrag apart wordt beschreven. Met behulp van gesplitste specificaties
formuleren we een conjunctie-weefregel voor data onafhankelijke processen. We laten
zien dat bij beschouwingen over bijvoorbeeld divergentie en deadlock men zich bij data
onafhankelijke processen kan beperken tot het communicatiegedrag van de processen.
Een proces heet kanaalvolgorde onafhankelijk als het toekomstige gedrag van het proces
niet afhangt van de volgorde waarin de kanalen zijn gebruikt. Deze definitie lijkt veel
op de definitie van conservatieve processe. Het communicatiegedrag van een data
onafhankelijk en kanaalvolgorde onafthankelijk proces is conservatief.

In hoofdstuk 4 breiden we de programmanotatie van tracetheorie uit zodat we in pro-
gramma’s communicatie van waarden kunnen beschrijven. Een aantal elementen in
deze programmanotatie is ontleend aan CSP ([Ho]). In dit hoofdstuk maken we een
onderscheid tussen input en output. Er worden voorwaarden gegeven waaronder het
proces van een component data onafhankelijk en kanaalvolgorde onafhankelijk is en
het communicatiegedrag cubisch is.

In hoofdstuk 5 presenteren we aan de hand van voorbeelden een programmeermethode.
De methode is gebaseerd op de data onafhankelijkheid en de kanaalvolgorde onafhanke-
lijkheid van de onderhavige processen en op het toepassen van de conjunctie-weefregel.
De afgeleide programma’s definiéren systemen die voldoen aan de eerder genoemde
voorwaarden voor netwerken van processen. De afgeleide programma’s zijn correct in
de zin dat ze voldoen aan hun specificatie en dat de bijbehorende systemen vrij zijn van
divergentie en deadlock. De wijze van programmeren vertoont een aantal analogieén
met sequentiéel programmaren.
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0 Als het gedrag van filosofen als volgt kan worden gekenmerkt

do true — think
; P(z)
ini=n+1
;if nmod2 =0 — V(d)
| nmod2=1 - V(z); P(d); V(z)
fi
; eat
; P(z)
ini=n—1
;if nmod2 =0 — V(d)
[ nmod2=1— V(z); P(d); V(z)
fi
od

waarin z en d binaire semaforen zijn, en als initieel n =0 A z =1 A d =0 geldt, dan
is het aantal etende filosofen te allen tijde even.

lit. — E.W. Dijkstra, Hierarchical Ordering of Sequential Processes, Acta Informatica 1
(1971), pp. 115-138

- E.W. Dijkstra, A tutorial on the split binary semaphore, 1979 (EWD 703)

1 Rubik’s clock is een uitstekend middel om het begrip invariant aanschouwelijk te maken.

2 Een groot aantal graafalgoritmen laat zich eenvoudig afleiden door het gestelde pro-
bleem te herleiden tot een stelsel ongelijkheden waarvan de kleinste oplossing berekend
dient te worden.

lit. — Joop van den Eijnde, A derivation for the reachable vertices algorithm, Eindhoven
University of Technology, 1986 (Internal Memorandum JvdE 86/3)

— Gerard Zwaan, Even and odd reachability, Eindhoven University of Technology, 1987,
(Internal Memorandum GZ 87/2)

3 Het aantal traces van SEMy(a, b) ter lengte k, k > 0, is 2(k-1)mod2. g(k-1)div2,



4 De in hoofdstuk 5 van dit proefschrift beschreven parallelle programma’s zijn op een-
voudige wijze als circuits te implementeren.

lit. — Anne Kaldewaij, The translation of processes into circuits, PARLE Parallel Architec-
tures and Languages Europe, Volume I: Parallel Architectures, ed. J.W. de Bakker,
A.J. Nijman, P.C. Treleaven, Springer Berlin 1987 (LNCS 258), pp. 195-212

- Jo Ebergen, Translating programs into delay-insensitive circuits, Ph.D.-thesis, Eind-
hoven University of Technology, 1987

5 Voor regelmatige berekeningen zijn sequence functies een effectief middel om uitspraken
te doen over de voortgang en het real-time gedrag.

6 Ieder alfabet is non-disabling ten opzichte van een conservatief proces. Derhalve vallen
bij conservatieve processen de begrippen transparantie en non-divergentie samen.

7 Voor processen wordt de “scheiding van data en control” geformaliseerd door de be-
grippen data onafhankelijkheid en kanaalvolgorde onafhankelijkheid.

8 De klasse van processen beschreven door restricted commands vormt een echte deel-
klasse van de klasse der reguliere, cubische processen.

9 Bij het automatisch genereren van het trefwoordenregister van een boek denke men
aan het spreekwoord “Overdaad schaadt”.

lit. — Donald E. Knuth, The TgXbook, Addison-Wesley, 1984

10 Bij hoogspringen en polsstokhoogspringen wordt, in tegenstelling tot andere onderdelen
van de atletiek, de werkelijk geleverde prestatie niet gemeten.





