

Parallel computations

Citation for published version (APA):
Zwaan, G. (1989). Parallel computations. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and
Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR297029

DOI:
10.6100/IR297029

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR297029
https://doi.org/10.6100/IR297029
https://research.tue.nl/en/publications/bb1427f4-3785-4186-94ad-a725906e1e5d

Parallel Computations

! ! t
I * I

I

' I r I

I a I I ~ I

Gerard Zwaan

Parallel Computations

Parallel Computations

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR

AAN DE TECHNISCHE UNIVERSITEIT EINDHOVEN,

OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. IR. M. TELS,

VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN DEKANEN

IN HET OPENBAAR TE VERDEDIGEN OP

VRIJDAG 20 JANUARI 1989 TE 16.00 UUR

DOOR

GERARD ZWAAN

GEBOREN TE BREDA

Dit proefschrift is goedgekeurd door
de promotor

prof. dr. M. Rem

en de copromotor

dr. A. Kaldewaij

Aan mijn ouders en Hanny

Author's present adress

Department of Mathernaties and Computing Science
Eindhoven University of Technology
P.O. Box 513
5300 MB Eindhoven
The Netherlands

wsinz waan @heit ue5. bitnet

mcva.x!eutwsl !wsinswan

(EARN, BITNET)

(UUCP)

Contents

0 Introduetion 1

0.0 Communication of values and parallel computations 1

0.1 Overview. 3

0.2 Notation . 4

1 Trace theory 5

1.0 Introduetion 5

1.1 Trace calculus 6

1.2 Description of processes 16

1.3 Systems 18

1.4 A program notation . 22

2 Properties of processes and systems 29

2.0 Introduetion 29

2.1 Nondeterrninism and divergenee 29

2.2 Deadloek 45

2.3 Conservative proeesses 49

2.4 Cubic proeesses 0 • 0 • 57

2.5 Partial orders and sequenee functions 64

3 Communication of values and data independenee 88

3.0 Introduetion 88

3.1 Communieation of values . 89

3.2 Data independenee . . 94

3.3 Split speeifieations . . 102

3.4 Properties of proeesses 106

3.5 Channel order independenee 114

4 Programs

4.0 Introduetion

4.1 Commands

4.2 A program notation .

5 Derivation and correctness of programs

5.0 Introduetion

5.1 Reeognition of palindromes .

5.2 Reeognition of squares . . .

5.3 Polynomial multiplieation .

5.4 Acceptors for regular expressions

5.5 Final remarks

6 Conclusions

References

Index

Samenvatting

Curriculum vitae

119

119

119

130

136

136

137

146

151

156

169

171

174

177

181

184

0 Introduetion

0.0 Communication of values and parallel computations

In this thesis we discuss the description of the communication of values between mech
anisms, and parallel computations. This is clone using trace theory, a formalism for
concurrent processes developed by Martin Rem ([Re85]) , Jan L.A. van de Snepscheut
([Sn]), and Anne Kaldewaij ([Ka]) .

In trace theory mechanisms are described by processes. Interaction of a mechanism
with its environment is described by the occurrence of events . In order to describe
communication of val u es we introduceevents that are pairs consisting of a channel name
and a message (value). This is clone also by C.A.R. Hoare in Communicating Sequentia!
Processes ([Ho]). Occurrence of pair (c, m} is interpreted as the passing of message m
via channel c. By introducing these pairs one can fully describe communication of
values within trace theory.

An important aspect is the extent to which the values that are communicated deter
mine the communication behaviours of the processes. A process is said to be data
independent if its communication behaviour is independent of the values that it sends
and receives.
Consider the following program

com adder(in a, b : int, out c: int) :

var x, y : int rav

(a?x, b?y; c!(x + y))*
moe

where a?x denotes the receiving of a value via input channel a and the assignment of
that value to local variabie x, and c!(x + y) denotes thesending via output channel c
of the sum of the values of the variables x and y (the program notation used here is
introduced in chapters 1 and 4). Program adder defines a data independent process
that describes a mechanism that repeatedly computes the sum of pairs of integer values.
lts communication behaviour is described by program

com addercomm(a, b, c) : (a, b ; c)* moe

1

0 Introduetion

Let a(i) denote the i-th value that is communicated via channel a (i > 0). Let b(i)
and c(i) be defined analogously. Wethen have for i, i~ 0,

c(i) =a(i)+ b(i)

This relation is called the inputfoutput relation. Observe that the communication
behaviour and the input/output relation are independent.
I\ext, consider a mechanism that filters negative valnes from an incoming st.ream of
integer numbers, and that is described by the following program

com filter(in a: int, out b: int) :

var x : int rav

(a?x; ifx ~ 0--+ b!xl]x < 0--+ di)*
n1oc

The process defined by the above program is not data independent. lts communication
behaviour cannot be described independently of the values that it sends and receives.
After the occm-rence of (a, m) for some m < 0 no communication via channel b can
follow directly.

Data independenee of processes allows us to express phenomena like deadlock and di
vergence ([I<a],[Ho]) in termsof the communication behaviours the of processcs instead
of in tcrms of the processes themselves.

Parallel computations are networks of processors or cells that can be described by
processes. We are mainly interested in networks that can be characterizcd as follows

- tbe network is a regular arrangement of cells (for instance, a rectangular grid
or a tree)

communication between cells in the network and between cells ancl the cnvi
ronment of the network takes place via unidirectional channels

- cells are simple and communicate via a fixed number of channels with neigh
bour cells and/or the environment of the network (fixed means independent of
the tot al number of cells)

- the communication behaviours of the cells are independent of the values that
they send and receive, i.e. their processes are data independent

cells synchronize by message passing only

Networks that satisfy the first four conditions are often referred to as systolic arrays
([I<u]). Systolic arrays usually have a global doek to synchronize the cells ancl, there
fore, do not satisfy the fifth condition.

0.1 Overview 3

In this thesis we discuss a programming metbod with which one can derive programs
from specifications that describe data independent processes ([Re87]). Data indepen
denee plays an important role in this metbod sirree it allows us to treat communication
behaviours and inputfoutput relations in isolation. The programs that are derived
define networks of processes that satisfy the above conditions. The derived programs
are formally proved to satisfy the given specifications and to have no divergence or
deadlock.

0.1 Overview

In chapter 1 we give an overview of trace theory. Some new concepts are introducecl,
among them the notion of systems. A system describes a network of processes. Pro
grams as defined in [Sn] and [Ka] denote a special class of systems. A recursive program
clefines a system consisting of an infinite number of processes. The process of a pro
gram is defined to be the process of the system specified by the program. As a result
of this definition the process of a recursive program is equal to the least fixpoint of a
recursive equation defined by the program, which was the definition in [Sn] and [Iü] .

In chapter 2 we first discuss nondeterminism and divergence. The concepts of non
disabling and transparent sets of events (alphabets) are introduced (non-disabling eer
responels to J1 in [Ka]). Absence of divergence is characterized in several ways. A
number of results is presented on non-disabling, non-divergent or transparent alpba
hets after composition and projection.
Secondly, we discuss terminatien and deadlock ([Ka]). If one wants to investigate the
absence or preserree of deadlock one may project on transparent alphabets that contain
the common symbols.
Finally, we introduce the class of conservative processes and the class of cubic processes
([Ve86]). The latter is a subclass of the former. A processis conservative if its future
behaviour depends only on the numbers of past events and not on their order. Cu
bic processes are the processes that can be described by partial orders on occurrences
of events ([Ve86]). These classes are closed under composition and projection. Each
subset of the alphabet of a conservative process is non-disabling. For cubic processes
so-called sequence functions are introduced. A sequence function for a cubic process
defines a subprocess that is cubic and that may be interpreteel as a restricted (doekeel)
behaviour of the original process. Existence of a sequence function for a. system of
cubic processes implies the absence of deadlock. The notion of constant response time
is defined in terms of sequence functions.

In chapter 3 we show how to model communication of values in terms of trace theory.
Data independenee is defined and is shown to be expressible in terms of transpa.rence.
Data independenee is preserveel by projection on alpbahets that are non-disabling with

4 0 Introduetion

respect to the communication behaviour. Conditions are given such that composition
of data independent processes yields a data independent process. Split specifications
are .introducee!. The class of processes described by split specifications equals the class
of data independent processes. In case of data independenee phenomena like divergence
:·md cleadlock can be expressed in terms of communication behaviOtn·s only. Fimdly,
we introduce channel order independence, expressing that the future behaviour of a
l)rocess does not depend on the order in which the channels were used by the process .
lts clefinition closely resembles that of conservative processes.

In chapter 4 we extend the program notation introducee! in chapter 1 in order to exprcss
communication of values within programs. The notations have partly been adoptecl
from CSP ([Ho]). In this chapter we make a distinction between input ancl output.

ln chapter 5 we introduce, by means of cxamples, the programming methocl that was
mentioned in the previous section .

0.2 Notation

We conclude with some remarks concerning notations that are used in th is thesis.

f niversal quantification is denoted by

(Al : R : E)

where A is the quantifier, lis a list of bound variables, Ris a predicate, and E is thc
quantified expression. Both Rand E, in genera!, contain variables from I. Predicate
R ddineates the range of the bound variables and expression E is defined for va lues
in that range. Likewise, we denote existential quantification, summation, union , and
intersectien using quantifiers E , S , U, and n, respectively.

Por expressions E and C, an exprcssion of the form E :::} G willoften be proved in
a number of steps by introduetion of intermediate expressions. Por instance, if we can
prove that E :::} G by proving E = F and F :::} C, we record this proof as follows

E

{hintwhyE F}

F

:::} {hint why F:::} G}

G

In this way we avoiel writing down intermcdiate expressions like F twice. These not.é\
tions have been adopted from [Dij].

With JV ancl Z we denote the set of natura! numbers and the set of integer numbers,
respectively.

1 Trace theory

1.0 Introduetion

In this chapter we present an overview of trace theory. Most of the suhjects that are
also treated elsewhere ([Ka],[Sn]) will bedescribed only briefly. The material presenled
in this chapter forms the basis for the rest of this thesis.

The basic notion of trace theory is that of processes. A process is a mathematica!
model of a mechanism. For instance, a variabie that has no initia! value interacts with
its environment through two kinds of events, namely

a : a value is assigned to the variabie

b : the variabie returns its value

Sequences of a's and b's descrihing possible behaviours of the variabie are a ba b,
a b ba a, a a b etc .. The sequence b is not a behaviour of the varia bie.

Fini te sequences of events are called traces. A process descrihing a mechanism consists
of the set of relevant events and the set of all possible traces. These sets are called the
alphabet and trace set of the process, respectively. The process descrihing the variabie
has {a, b} as its alphahet and the set of all sequences of a's and b's not starting with
a b as its trace set .

It is clear that for every trace all initia! parts thereof should also be allowed . Fur
thermore, the empty trace - meaning that the mechanism has not yet engaged in any
event- should always be in the trace set. These two properties characterize processes.

The alphabet of a process contains the events that we are interested in. Depending on
the aspects that are considered a mechanism may be described by different processes.
If we are interested in the values that are assigned to the variabie we might have chosen
{a, b} x Z (Z denotes thesetof integer numbers) for the alphabet - assuming that the
variabie can store only integer values - where for n E Z

(a, n} : the value n is assigned to the variabie

(b, n} : the variabie returns the value n

5

6 1 Trace theory

Typical traces are (a,4) (b,4) (b,4) (a, -1) (b, -1), and (a,O) (a, 1) (b, 1} (a ,O) (b,O) .

In trace theory neither time nor speed plays a role. Events do not occur at a eer
taio speed. Events are assumed to be atomie : they have no duration , they happen
instantaneously, and they do not overlap.

Composition of mechanisms is represented by composition of conesponding processes.
Interaction between mechanisms is assumed to be instantaneous. A common event
takes place only if all processes having the event in their alphabets are able to engage
in the event.

1.1 Trace calculus

With every kind of event a name (a symbol) is associated. We assume the existence
of a set n of names. An element of n is called a symbol. A subset of n is called an
alphabet.

Thesetof all finite-length sequences of symbols is denoted by n•. The empty sequence
e is an element of n·. An element of n· is called a i race. A subset of n· is called a
trace set. For an alphabet A, set A* is defined similarly. Notice that 0" = {e}.

In our notation we employ the following conventions.

Small and capita! letters near the beginning of the Latin alphabet denote
symbols and alphabets respectively.

Small and capita! letters near the end of the Latin alphabet denote traces ancl
trace sets respectively.

The lengthof trace t, denoted by l(t) , is defined by

l(e) 0
l(sa) l(s) + 1

The concatenation of traces s and t is denoted by st. In order to save parentheses,
concatenation is given the highest priority of all operators.

Trace s is called a prefix of trace t, denoted by s ::::; t, if

(Eu:uEn" :su =t)

The prefix ciosure of a trace set X, denoted by PREF(X), is the trace set consisting
of all prefix es of elements of X.

PREF(X) = { s 1 s E n· A (Et : t E x : s ::::; t)}

1.1 Trace calculus 7

Trace set X is called prefix-closed if X= PREF(X).

The projection of trace t on alphabet A, denoted by t ~A, is obtained by removing from
t all symbols that are not in A. It is defined as fellows

a\l'A
a E A

We write ti a as an abbreviation of t f {a}. The projection of trace set X on alphabet
A, denoted by X~A, is the trace set {tI tEn* 1\ (Eu: u EX: dA = t)}.

A trace structure T is a pair (A, X) where A is an alphabet and X is a trace set such
that X Ç A*. We call A the alphabet of the trace structure and X the trace set of the
trace structure.

The alphabet of a trace structure T is denoted by aT and its trace set by tT . Notice
that for a trace structure T we have T = (aT, tT) .

We wil! denote trace structures using capita! letters near the end of the Latin alphabet.

The projection of trace structure T on alphabet A, denoted by T t A, is defined by

T~ A= (aT nA, tT ! A)

The prefix dosure of trace structure T, denoted by PREF(T), is defined by

PREF(T) = (aT, PREF(tT))

Trace structure T is called prefix-closed if tT is prefix-closed. Trace structure T is
called nonempty if tT -=f=. 0.

A process is a nonempty prefix-closed trace structure. A process T is thought of as
an abstraction of a mechanism. The alphabet of T is the set of relevant events the
mechanism may engage in. It is assumed that events have rio duration and that they do
notoverlap (events are said to be atomie). The state of the mechanism is described by
the so called current trace being the sequence of events the mechanism has participated
in. The behaviour of the mechanism in operation is described as follows. Init ially, the
current trace is empty. On occurrence of an event the current trace is extended with the
symbol associated with that event. Clearly, the current trace should, at any moment,
beleng to the trace set of T. Moreover, if s is the current trace and sa E tT then
the event associa.ted with a may happen. Notice that we do not make a distinction
between events initiated by the mechanism and events initiated by the environment of
the mechanism.

Example 1.1.0

A variabie that has no initia! value may be specified by a process T in the following
way. The relevant events are

8

a : a value is assigned to the variabie

b : the variabie returns its value

Therefore, we choose aT = {a, b}.

1 Trace theory

Any trace in {a,b}* that doesnotstart with a bis a trace of Tor, equivalently, any
trace in {a, b} • that is either empty or starts with an a is a trace of T. The variabie
can be specified by

T = ({a, b}, { t I t E {a, b} • 1\ (t = e V a :::; t)})

Notice that T is a process, i.e. a nonempty prefix-closed trace structure.

(End of Example)

Property 1.1.1

If T is a process and A is an alp ha bet then T Î A is a process.

(End of Property)

We now define some special processes that play an important role. For alphabct A
processes STOP(A) and RUN(A) are defined by

STOP(A) = (A, {t:}}
RUN(A) = (A, A*}

Process STOP(0) (= RUN(0)) is also denoted by STOP .

Let A and B be alphabets and letpand q be natura! numbers. Process SYNCp,q(A , H)
is defined by

SYNCp,q(A, B)
=(AUB, {titE(AUB)*I\ (As:s::=;t:-q::=;f(sÎA)-f(sÎB):::;p)})

Let k be a natura! number. Process SEMk(A, B) is defined by

SEMk(A, B) = SYNCk,o(A, B)

We wil! often write SEMk(a,b) insteadof SEMk({a}, {b})
and SYN Cp,q(a, b) instead of SYNCp,q({a}, { b}).

Intersection, union, and inclusion are defined fortrace structures hav ing cqual a.lpha·
bets. Let (A, X} and (A, Y} be trace structures.

1.1 Trace calculus 9

(A, X) Ç (A, Y) =: X Ç Y

Let X be a nonempty set of trace structures all having alphabet A. We define

(UT : T E X : T) = (A, (UT : T E X : tT))

and

(n T : T E X : T) = {A, (n T : T E X : tT))

Thesetof all processes with alphabet A is denoted by T(A) . We have that {T(A), Ç)
is a complete lattice ([Bi]) with least element STOP(A) and greatest element RUN(A).

Theorem 1.1.2

lf X is a nonempty set of processes from T(A),
then (UT: TE X : T) and (n T: TE X : T) are processes in T(A) .

(End of Theorem)

Let T be a process and let t E tT. Process after(t, T) is defined by

after(t, T) = {aT, {u I u E aT* I\ tu E tT})

The successor set of trace t, denoted by suc(t, T), is the set of all symbols that may
follow t in tT, i.e.

suc(t,T) ={a I a E aT I\ ta E tT}

Property 1.1.3

Let T and U be processes with equal alphabets. Let t E tT and A Ç aT.

0 a E suc(t,T) = a E tafter(t,T)

suc(t, T) = suc(t:, after(t, T))

2 suc(t, T) nA Ç suc(tîA, TîA)
suc(tÎA,TîA) = (Us : sE tT I\ s îA = tîA: suc(s,T) nA)

3 after(t,T)ÎA Ç after(tÎA,TfA)
after(tÎA,TîA) = (Us: sE tT I\ sÎA = tÎA: after(s,T)ÎA)

4 T Ç U =} suc(t, T) Ç suc(t, U) I\ after(t, T) Ç after(t, U)

10

Let X be a nonempty set of processes with equal alphabets.
Let u E t(U T: TE X: T) and v E t(n T: TE X: T).

5 suc(u,(UT:TEX:T))=(UT:TEX 1\ uEtT:suc(u,T))
suc(v,(nT: TE X: T)) = (nT: TE X: suc(v,T))
after(u, (UT: TE X: T)) =(UT: TE X 1\ u E tT: after(u,T))
after(v,(nT: TE X: T)) = (nT: TE X: after(v,T))

(End of Property)

1 Trace theory

If s and t are traces of process T such that ajter(s, T) = after(t, T) we say that s and
t belong to the same state of T. More formally the states of T are defined to be the

T equivalence classes of the equivalence relation "' defined on tT by

s ! t = aft er(s, T) = after(t, T)

With [t]T we denote the class to which t belongs. Thesetof all classes (states) of T is
denoted by [T].

Property 1.1.4

Let T be a process. Let s, t E tT.

T 0 s "' t => suc(s, T) = suc(t, T)
T

1 s "' t = (A u: u E aT* 1\ su E tT 1\ tu E tT: suc(su, T) = suc(tu, T))

(End of Property)

The definitions of after and suc may be extended to the states of T:

aft er([t]T, T) = aft er(t, T)

suc([t]T, T) = suc(t, T)

Wethen have

aft er(a, T) = after(/3, T) = a = f3

fortE tT

fort E tT

for a, f3 E [T]

If T has a finite number of states, then T is called regular.

Theorem 1.1.5

Let T be a process and A be an alphabet. If T is regular then T~A is regular.

(End of Theorem)

1.1 Trace calculus 11

Parallel composition of mechanisms is described in terms of the composition of the
associated processes. Assume mechanism P is specified by process T and mechanism
Q by process U. We specify the mechanism that is obtained by composing P and Q
by a process V defined in terms of Tand U. The alphabet of V is aT U aU. Let t
be the current trace of the composite. Then t laT is the current trace of P and t îaU
the current trace of Q. Trace t can be extended with a symbol from aT n aU if both
P and Q can engage in the event associated with the symbol, i.e. both the current
trace of P and the current trace of Q may be extended with the symbol. Trace t can
be extended with a symbol from aT+ aU if the mechanism having that symbol in its
alphabet can engage in the associated event. From the above we infer that t is a trace
of V if and only if t îaT is a trace of T and t laU is a trace of U. This leads to the
following definition .

The weave of processes T and U, denoted by T w U, is defined by

Tw u = (aT u aU, { t I tE (aT u au)• 1\ tlaT E tT 1\ tîaU E tU})

It is easily shown that T w U is a process. Weaving is interleaving with synchronization
on common symbols. Therefore, weaving of processes with disjoint alphabets amounts
to just interleaving.

Example 1.1.6

RUN(A) w RUN(B) = RUN(A u B)

SEM1(a,b)wRUN({c}) = SEM1({a,c}, {b,c})

SYNCp,9(A, B) w RUN(C) = SYNCp,9(A U C \ B , B U C \A)
SEM1 (a,b)wSEM 1(b,a) = STOP({a,b})

RUN(A) w STOP(B) = RUN(A \ B) w STOP(B)
= (A U B, (A\ B)•)

(End of Example)

The following property shows that WP.aving is symmetrie, idempotent, associative, and
monotonie. Its unit element is STOP and its zero element is STOP(D).

Property 1.1.7

Let T, U, and V be processes. Let A be an alphabet .

0 TwU = UwT
1 TwT=T

12 1 Trace theory

2 (TwU)wV=Tw(UwV)

3 TwSTOP = T
aT Ç A ==> Tw STOP(A)= STOP(A)
T w STOP(O) = STOP(O)

4 TwTIA=T
TwUiaT Ç T
TÇU ==> TwU=T

5 T w RUN(A)= Tw RUN(A\ aT)
6 TÇU=>TwVÇUwV

(End of Property)

In view of the above property we can generalize the definition of wea.ving to arbit.ra.ry
sets of processes. Let X be a set of processes. The weave of the processes in X, denoted
by (W T: TE X : T) , is defined to be process

((UT: TE X: aT)
, { t I t E (U T : T E X : aT) • 1\ (A T : T E X : t I aT E tT)})

lnstead of (W T : TE X : T) we also write W(X). The next propcrty shows W to be
a generalization of w .

Property 1.1.8

Let X and Y be sets of processes. Let U be a process. Let A be an aJphabet.

0 W(0) = STOP

W({U}) =U
2 W(X U Y) = W(X) w W(Y)

3 X Ç Y 1\ A Ç aW(X) ==> W (X) IA ~ W(Y) i A

(End of Property)

The following results show the relation between weaving and projection. Observe the
important role played by the intersection of the alphabets. In the seguel T and U are
proccsses and A a nd B are alphabets.

Property 1.1.9

0 (T wU)I(AU aT) ç TwUIA

1.1 Trace calculus

(TwU)iA ç TiAwUiA

(End of Property)

Theorem 1.1.10

0 aTnaUÇA => (TwU)i(AuaT)=TwUIA
1 aTnaUÇA => (TwU)IA = T iAwUIA

(End of Theorem)

Theorem 1.1.11

Let A Ç aT, B Ç aU, and aT n aU= A n B . Then

(Tw U) i(A u B) = TiAw UIB

Pro of

We derive

aTn(AUB)

{A Ç aT}

AU(aTnB)

{ aT n B ç aT n aU = A n B }

A

Likewise, one can derive aU n (A U B) = B.

(TwU)I(AuB)

{aT n aU= A n B, theorem 1.1.10.1}

Tî(A U B) w UI(A u B)

{ TîaT = T, U laU = U, property projection, above derivation}

TfAwUIB

(End of Proof)

Corollary 1.1.12

(Tw U)l(aT n aU) = Tl(aT n aU) wUI(aT n aU)

(End of Corollary)

13

14 1 Trace theory

The continuation of process Tw U after trace t, process after(t, Tw U), equals the
weave of aft er(t faT, T) and aft er(t fa U, U) as the following theorem expresses.

Theorem 1.1.13

Let T and U be processes. For every t E t(T w U) we have

after(t, Tw U) = after(tfaT, T) w after(tfaU, U)

Pro of

LettE t(Tw U). Fortrace u wc have

u E tafter(t,TwU)

{ definition after }

u E a(TwU)* 1\ tu E t(Tw U)

{ definition weave, prope1-ty projection }

u E (aT U aU)* 1\ (tfaT)(ufaT) E tT 1\ (tfaU)(ufaU) E tU

{ definition after·, tfaT E tT, tfaU E tU}

u E (aT U aU)* 1\ u faT E tafter(tlaT, T) 1\ ufaU E tajter(tfaU, U)

= { definition weave }

u E t(after(tfaT, T) w after(tfaU, U))

(End of Proof)

A direct consequence of the above theorem is

Theorem 1.1.14

Let T and U be processes. Let s and t be traces of Tw U. Then

sfaT I., t faT 1\ sfaU!!., tfaU => s r-::y t

(End of Theorem)

from theorem 1.1.14 we infer

Theorem 1.1.15

Let T and U be processes. The number of states of T w U is at most t lw product of
t he number of states of T and the number of states of U.

(End of Theorem)

1.1 Trace calculus

Corollary 1.1.16

If T and U are regular processes, then T w U is a regular process.

(End of Corollary)

Successor sets of T w U can be expressed in terms of successor sets of T and U.

Theorem 1.1.1 7

Let T and U be processes. For all t E t(T w U) we have

suc(t, Tw U)= (suc(daT, T) n suc(tlaU, U))
U suc(t laT, T) \aU U suc(t laU, U)\ aT

Pro of

LettE t(Tw U). We have

suc(t, Tw U)

= { definition successor set and weaving}

{a I a E aT U aU 1\ (ta)îaT E tT 1\ (ta)îaU E tU}
{ definition projection, tE t(Tw U), set calculus}

{a I a E aT n aU 1\ (tîaT)a E tT 1\ (tîaU)a E tU}
U {a I a E aT\ aU 1\ (tîaT)a E tT} U {a I a EaU\ aT 1\ (tlaU)a E tU}

{ definition successor set, set calculus}

(suc(tîaT, T) n suc(tÎaU, U)) U suc(tîaT, T) \aU U suc(tîaU, U)\ aT

(End of Proof)

Theorem 1.1.18

15

Let T and U be processes. Let A be an alphabet. If aT n aU C A then for all
tE t(T w U) we have

suc(t,TwU) Ç A

Pro of

suc(t laT, T) U suc(t laU, U) Ç A

Assume aT n aU Ç A. Let t E t(T w U). We have

suc(t,TwU) Ç A

{ theorem 1.1.17}

lG 1 Trace theory

(suc(tlaT, T) n suc(tlaU, U)) U suc(tlaT, T) \aU U suc(tlaU, U)\ aT Ç A

= {aT n aU Ç A}

suc(tlaT, T) \aU U suc(t laU, U)\ aT Ç A

{suc(tlaT,T) Ç aT, suc(tlaU,U) Ç aU, set calculus}

(suc(t laT, T) U suc(t laU, U))\ (aT n aU) Ç A

{ aT n aU Ç A, set calculus}

suc(daT, T) U suc(tlaU, U) Ç A

(End of Proof)

Corollary 1.1.19

Let T and U be processes. Let A be an alphabet. For all t E t(T w U) we have

suc(t,TwU) Ç A=? suc(tlaT,T) U suc(tlaU,U) Ç AU(aTnaU)

(End of Corollary)

1.2 Description of processes

In this sectien we present two ways in which processes may be described, by specifica
tions and by a generalized form of regular expressions.

A specification of a processis a pair (A, P} where A is an alphabet and Pis a predicate
on A* such that P(t:) holds. The process specified by specificatien (A, P} is

(A,{titEA* 1\ (As:s .S:: t:P(s))}}

It is easily shown that this trace structure is indeed a process. A specificatien will
usually be written as (A, t : P(t) }.

Example 1.2.0

0 Process SEM1 (a,b) is specified by

({a, b}, t: 0 :::; fi(tla) - fi(tlb):::; 1}

The process descrihing the variabie in section 1.0 is specified by

({a, b} , t : t = c V a .S:: t}

(End of Example)

[f (A, P} specifies process T, then tT is determined by

1. 2 Description of processes 17

(0) e- E tT

(1) tE tT 1\ a E A 1\ P(ta) => ta E tT
(2) tT contains no other traces than those that belong to it on account of (0) and

(1)

The following theorem, called the Conjunction-Weave Rule (CW-Rule), shows the
relation between the specifications of two processes and the specification of the weave
of the two processes.

Theorem 1.2.1 Conjunction-Weave Rule

Let (A, P) and (B, Q) specify processes T and U respectively. Th en

(A u B, t: P(t~A) 1\ Q(dB))

specifies T w U.

(End of Theorem)

Commands form an extension of the notion of regular expressions. With each command
S a trace structure TR(S) is associated . Commands and associated trace structures
are defined inductively by the following rules.

- ê is a command and TR(ê) =STOP

- a is a command and TR(a) =({a} , {a}) for all symbols a

- if S is a command then s• is a command and
TR(S*) = (aTR(S), (tTR(S))*)

- if S and T are commands then S I T is a command and
TR(S I T) = (aTR(S) U aTR(T), tTR(S) U tTR(T))

- if S and T are commands then S; T is a command and
TR(S; T) = (aTR(S) U aTR(T), {uv I u E tTR(S) 1\ v E tTR(T)})

- if S and T are commands such that aTR(S) n aTR(T) = 0 then S, T is a
command and
TR(S, T) = { aTR(S) U aTR(T)

, { t I t E (aTR(S) U aTR(T))*
1\ tlaTR(S) E tTR(S) 1\ tlaTR(T) E tTR(T)})

- if Sis a command then S 0 is a command and TR(S 0) = STOP(aTR(S))

Observe that definition of TR(S, T) resembles the definition of the weave of tiYo pro
cesses. Moreover, it differs from the definition in [Sn] and [Ka) where the condition

18 1 Trace theory

aTR(S) n aTR(T) = 0 is not imposed. Listed in order of decreasing priority the opera
tors are the star, the zero, the comma, the semicolon, and the bar. Commands are said
to be equivalent (5 = T) if and only if their trace structures coincide (TR(S) = TR(T)) .

Observe that for all commands S trace structure TR(S) is nonempty. Therefore
PREF(TR(S)) is a process. The process PR(S) associated with command S is de
fined by

PR(S) = PREF(TR(S))

Theorem 1.2.2

0 If Sis a command, then PR(S) is a regular process.

If T is a regular process, then there exists a command S such that T = PR(S)

(End of Theorem)

As a useful abbreviation we introduce for all commands S and all n, n > 0, the
command Sn being the concatenation of n times the command S. More formally

sn+l S;Sn

Example 1.2.3

SEM2(a, b)
SEM2(a, b)

STOP({a})
SYNC1 ,1 (a,b)

(End of Example)

1.3 Systems

n>O

PR(a; (a, b)*)
PR((a; (a; b)*; b)")
PR(a0)

PR((a, b)*)

The composite of mechanisms can be described by the weave of the processes eerre
sponding tothese mechanisms. Sometimes, however, we want to retain the information
on the partition into submechanisms. This can be clone by descrihing the composi te
by aso-called system being a pair consisting of an alphabet and a set of processes. The
set of processes consists of the processes conesponding to the (sub)mechanisms. The
alphabet consists of the symbols that represent the external events of the composite.

1.3 Systems 19

This reflects that the other events of the composite are not observable from the outside.
These events are called internal events.

More formally, a system S is a pair (A, X) where A is an alphabet and X is a set of
processes such that A Ç aW(X). Alphabet A is called the (external) alphabet of the
system and set X is called the set of processes, or process set, of the system.

Let S be a system. The external alphabet of S is denoted by eS and its process set is
denoted by pS . The condition imposed on the alphabets now reads eS Ç aW(pS).
The (external) processof S, denoted by PR(S), is defined by PR(S) = W(pS) feS.

The external process of certain systems is given in the following theorem.

Theorem 1.3.0 ([Ka])

Let p, q, m, and n be natura! numbers such that p + q;:::: 1 and m + n;:::: 1. Let A, B,
and C be nonempty alphabets such that A n B = 0 and B n C = 0 . Then

PR((A 7 C, {SYNCp,q(A, B), SYNCm,n(B, C)}))

= SYNCp+m,q+n(A \ C, C \A)

(End of Theorem)

Corollary 1.3.1 ([Ka])

Let pand q be natura! numbers such that p + q ;:::: 1. Let A, B, and C be nonempty
alphabets that are mutually disjoint. Then

PR((A u C, {SEMp(A, B), SEMq(B, C)})) = SEMp+q(A, C)

(End of Corollary)

Thesetof all systems having external alphabet A is denoted by I;(A).

External symbols of a system can be hidden by projection of the system on an alphabet .
They then become internal symbols. Projection has no effect on the process set of the
system. The projection of system S on alphabet A, denoted by St A, is defined by

StA= {eS nA, pS)

Notice that p(SîA) = pS and, hence, aW(pS) = aW(p(S îA)).

Let S and T be systems. Then S and T describe networks of processes with external
alphabets eS and eT, respectively. Composition of systems S and T should reflect
the composition of these networks of processes. Obviously, the only synchronization
be tween both networks should be clone on common external symbols. This implies

20 1 Trace theory

that common symbols should be external symbols of both networks. More formally,
aW(pS) n aW(pT) = eS neT. The external alphabet of the composite consistsof
the cxternal symbols of both S and T. Furthermore, the network of the compositc
consists of both the processes of S and the processes of T, i.e. the process set. of
the composite of S and T is pS U pT. Therefore, for systems S and T satisfying
aW(pS) n aW(pT) =eS neT the composite of S and T, denoted by S 11 T (read "S'
parallel T"), is defined by

S 11 T =(eS u eT, pS U pT)

Example 1.3.2

0 (0, 0) is a system

p(0,0} = 0
e(0, 0} = 0
PR((0,0)) = W(0)Î0 =STOP

LetS= ({a,b},{SEM1 (a,b)}) and T = ({b,c}, {SEr-.1 1(b,c)}).
We have

S 11 T = ({a,b,c}, {SEM1(a,b),SEM1 (b, c)}),

(S 11 T) r{a,c} = ({a,c},{SEM1 (a,b) ,SEM1(b,c)}),

and, by corollary 1.3.1,

PR((S 11 T)l{a,c}) = SEM2(a,c)

(End of Example)

Below we list a number of properties of systems and their processes.

Property 1.3.3

Let R,S, and T be systems such that aW(pR) n aW(pS) =eR neS,
aW(pR) n aW(pT) = eR neT, and aW(pS) n aW(pT) = eS neT.
Let A be an alphabet.

0 (0, 0} 11 R = R

R 11 S = S 11 R

2 (R 11 S) 11 T = R 11 (S' 11 T)

:3 PR(S'f0) = STOP

4 eS = eT 1\ pS Ç pT ~ PR(S) :2 PR(T)

1.3 Systems

5 PR(SIA) = PR(S)fA

6 PR(S 11 T) = PR(S) w PR(T)

7 eS neT Ç A =? (S 11 T)îA = (SfA) 11 (Tl A)

Pro of

4 See property 1.1.8.3

5

6

PR(S ÎA)

= { definition PR}

W(p(SÎ A)) Îe(SÎA)

= { defmition projection}

W(pS) î(eSnA)

= { property projection, definition PR}

PR(S)îA

PR(S 11 T)

{ definition PR}

W(p(S 11 T))Îe(S 11 T)
= { definition composition}

W(pS u pT)î(eS u eT)

= { property 1.1.8.2}

(W(pS) w W(pT)) Î(eS U eT)

= { aW(pS) n aW(pT) = eS neT, theorem 1.1.11}

W(pS) îeSw W(pT) leT

{ definition PR}

PR(S) w PR(T)

7 Assume eS n eT Ç A. We derive

aW(p(SÎA)) n aW(p(TÎA)) = e(SîA) n e(TIA)

{ definition projection}

aW(pS) n aW(pT) =eS nA n eT nA

= { assumption }

eS n eT = eS n eT n A

= {set calculus}

eS neT Ç A

21

22 1 Trace theory

Hence, systems S~A and TfA have only external symbols in common and caJ1 bc
composed. The equality between (S 11 T)f A and (S ~A) 11 (T~A) follows immediately.

(End of Proof)

'vVe conclude with two definitions . If T is a process then the system corresponding to
T , denoted by sys(T), is defined by sys(T) = (aT, {T}). Notice that PR(s ys(T)) = T .
If Sis a command then the system conesponding toS, denoted by sys(S), is c\efined
by sys(S) = (aPR(S), {PR(S)}}. Notice that PR(sys(S)) = PR(S) .

1.4 A program notation

In this section we introduce a program notation similar to the one in [Ka]. Here,
however, a program - also called a component - defines a system. The process of a
component will be defined to be the processof the conesponding system. This result.s
in a process equal to the one obtained by applying the definition from [I<a].
Before introducing the program notation we have to say somewhat more on the nature
of the set of symbols D. We assume the cxistence of a set n.. An element of n. is
called a simple symbol. For n > 0 the set n~ is defined to be the set of all n-tuplcs of
symbols in D,. 'vVe assume that

D = (U n : n > 0 : D~)

An element of n \ n. is called a compound symbol. Element (ao, al, . .. , an-I) of n is
clenoted by a0 ·a1 · ... ·an-l· If a and bare symbols then a·b is a symbol as wel!. Let p
be a symbol. With p we can associate a function in n -+ n that maps each symbol a

onto symbol p·a. This function is denoted by p·. Notice that function p· is injective.
For n ~ 0 function (p·)n is defined inductively by

(p·) 0a =a
(p·)i+la = p·(p·);a

Furthermore, we define

p·A = {p·a I a E A}
p·é = é

p·(ta) = (p ·t)p·a

p·X = {p·t I tE X}
p·T = (p·aT,p·tT}
p·S = (p·eS , {p·T I T E pS}}

fora E D

fora E D, i~ 0

for A Ç n

fortED•,aED

for x ç n·
for T a trace structure

for S a system

1.4 A program notation 23

The program

com c(A) : S moe

denotes a component without subcomponents, where c is the name of the component,
A is a finite atphabet, the external alphabet of the component, and S is a command.

The onty restrictions imposed on such a program text are A= aPR(S) and A consists
of simpte symbots onty. The system of component c, denoted by sys(c), is defined by

sys(c) = sys(S)tA

Notice that sys(c) =(A, {PR(S)}) = sys(S). The processof component c, denoted by
PR(c), is defined by PR(c) = PR(sys(c)). Notice that PR(c) = PR(S).

A component with subcomponents is denoted by the program

com c(A):

lllOC

sub Po: Co,PI: C1, ••• ,Pn-1 : Cn-1 bus
[xo = Yo, X1 = Yl> · · ·, Xm-1 = Ym-d
s

where c is the name of the component, A is a finite atphabet, the external atphabet
of the component, S is a command, and c0 , c1 , ... , and Cn-l are previously defined
components, called the subcomponents of c and having narnes p0, PI> ... , and Pn-l
respectivety. We require that A contains simpte symbols only and that p0 , p1 , . . . , Pn-l
are n distinct, simp ie symbols. With subcomponent p; system Pïsys(c;) is associated.
The set

B =(U i : 0 ::::; i< n: epïsys(c;))

is called thesetof internat symbols of component c (notice that B consists of the ex
ternal symbols of all subcomponents). The equalities represent (internal) connections.
An internal conneetion links two subcomponents or a subcomponent and the ex ternal
alphabet. Since we do not want external symbols of the same subcomponent to be
connected either directly or indirectly we impose some restrictions. First, we define

C ={A} U { epïsys(c;) I 0::::; i< n}

and observe that C is collection of n + 1 mutually disjoint atphabets. The restrictions
are as follows

(Aj : O~j<m:x1 EB)
(Aj: 0 ~ j < m: Yi EB U A)
I { J'i I o ~ i < m} I = m
{ .1:; I 0 ~ i < m} n { Y1 I 0 ~ j < m} = 0

1 Tra.ce theory

for all j, 0 ~ j < m, symbols x j and y1 belong to two different alphabets in C
- for all i and j, 0 ~ i < j < m, such that y; = y1 symbols x; and x j belong to

two different alphabets in C

Furthermore, we require that every external symbol appears in the cornmand S or is
connected to an internal symbol

A Ç aPR(S) U { Y1 I 0 ~ j < m}

The alphabet of command S should consist of external symbols and internal symbols
not in { x 1 I 0 ~ j < m}, i.e.

aPR(S) Ç A U B \ { Xj I 0 ~ j < m}

We now define the system of component c, denoted by sys(c), by

sys (c) = ((\\ i: 0 ~i < n: (pïsys(c;))xo,x, , ... ,xm - t) 1\ sys(S)) : A
!lo,Yt ... ·,Ym -1

Notice that due the above restrictions sys(c) is well defined. Wi th (7Jï81'S(c;))",·0 ·",· ' • . ,oe," _ ,
;_] !10 •!1 1 ,. · oYm - l

we denote system Pïsys(c;) in which every occurrcnce of symbol :r j l1as bcc·n whs l i-
tuted by symbol Yi for all j, 0 ~ j < m. In th is way wc wiJl , in general, clenotc
substitution (renaming). The processof component c, denoted by PR(c), is clefinccl by
PR(c) = PR(sys(c)). Notice that esys(c) =A and aPR(c) =A. Wc clcrive

PR(c)

{ defin ition }

PR(((11 i : 0 ~i< n: (pïsys(c;))~;~,': ·.·:::::::i) 11 sys(S)) fA)

{ property 1.3.3}

((W i : 0 ~ i < n : PR((p;-sys(c;))~g :~i:::·,;:;:.=-,')) w PR(S)) fA
{ note 1.4.0}

((W i: 0 ~ i< n: (Pï PR(c;))~;~,','.'.'.','::;:::i) w PR(S)) fA

Note 1.4.0

ltt til is note wP s how that wea.ving and su bstitution commu te ancl that p ro jcction ancl

substitution cornmute due to t bc restrictions imposed on the component. LPt 0 ~ i < n.

l.ct ia, ih . .. , ik - I be the subsequence of 0, 1, .. . , rn- 1 such that

1.4 A program notation

{x;, I 0:::; s < k} = { Xj I 0:::; j < m 1\ Xj E e(p,sys(c;))}

Notice that

(*) (As,t: 0:::; s < t < k: y;, :/:- y;,) 1\ (As: 0:::; s < k: y;, ~e(pïsys(c;)))

We derive

PR((pïsys(c;))xo,x,, ... ,xm-1)
!JO,yl, ... ,Ym-1

{ definition process of a system, definition of ia, i 1, •.• , ik-I }

(W T: TE p(pïsys(c;)):;~::,',','.·.·.·:~·;~,' : T) Î e(pïsys(c;)):;~::,',','.·.·::~·;~,'
{ property substitution, property dot}

(w T () ()Xio ,x;, , ... ,x •• _,) Î (())Xio ,x;, , ... ,x;k-1 :TE psys c; : PïT y;0 ,y; 1 , •. . ,y;._1 Pïesys c; y;0 ,y;1 , .. . ,y;• -•

{ (*), restrictions on component }

((w T ()))Xio ,x;, , ... ,x;k-1 Î (())Xio ,x;, , ... ,x;k-1 p;· : T E psys c; : T y;0 ,y; 1 , .•. ,y;._1 p;·esys c; y;0 ,y; 1 , •.. ,y'•-•

{ (*), restrietion on component }

(pï((WT: TE psys(c;): T)Îesys(c;)))~;~::,•::.·.-_-::·:~,1

{ definition processof a system, definition ia, i1, ... , ik-l}

(p ï PR(c;))xo,xJ , ... ,Xm-1
Yo ,yl" .. ,Ym-1

(End of Note)

Example 1.4.1

Component sem1 is defined by

com sem1 (a, b): (a; b)* moe

Wethen have

sys(sem1) = ({a,b},{SEM1 (a,b)})

and

PR(sem1) = SEM1(a, b)

Component sem3 is defined by

:26

com sem3(a, b):

moe

sub p, q : sem1 bus
[p·a = a, q·b = b]
(p ·b; q·a)*

We then have

sys(sem3) = ({a, b}, {SEM1(a,p·b),SEM 1(p·b, q·a), SEM 1(q·a, b)})

From corollary 1.3.1 we infer

PR(sem3) = SEM3(a, b)

(End of Example)

1 Trace thcory

vVe now drop the requirement that the subcomponents of a component are previously
defined components. vVe say that component d occurs in component c if dis a subcom
ponent of c or if d occurs in a subcomponent of c. A component is called rec1trsivc if it
occurs in itself. Here, we will restriet ourselves to the most simple form of recursion.
Let component c be defined by

com c(A):

moe

sub p: c bus
s

where A is a finite alphabet of simple symbols, pis a simple symbol, and
aPR(S) =A U p·A. Applying the previous clefinition of a component yielcls
sys(c) = (p·sys(c) 11 sys(S)) fA, in other worels sys(c) is a salution of

RE E(A) : R = (p·R 11 sys(S))!A

or, using A Ç aPR(S),

RE E(A): pR = p(p·R) U {PR(S)}

1-'I·om lattice theory ([Bi]) it is known that this equation has a least fix point, namely

(A, { (p·)iPR(S) I i~ 0})

Thercfore, we define

1. 4 A program notation 27

sys(c) =(A, {(p·)iPR(S) I i~ 0})

The processof component c, denoted by PR(c), is defined by PR(c) = PR(sys(c)). In
[Ka] the processof componentcis defined to betheleast fixpoint of f : T(A) --+ T(A)
where J(T) = (p·TwPR(S))tA for all TE T(A). This least fixpoint equals

(ui: i~ 0: Ji(STOP(A)))

We wil! prove that PR(c) equals this fixpoint, thereby showing that the choice in [Ka]
is the right one.

Theorem 1.4.2

PR(c) = (u i : i~ 0: P(STOP(A)))

Pro of

We have

PR(c) = (Wi: i~ 0: (p·);PR(S))IA

It is easily seen that PR(c) is indeed a fixpoint of f. Define for j ~ 0

Ti = (W i: 0::::; i < j: (p·);PR(S)) w (W i: i~ j: (p·);STOP(A))

We observe tha.t

(0) To =STOP((U i : i ~ 0: (p·) ;A))

(1) (Aj: j ~ 0: p·Ti wPR(S) = Ti+1)

(2) (Aj : j ~ O : TiÇ Ti+1)

(3) (Uj: j ~ 0 : Ti)= (Wi: i~ 0: (p·);PR(S))

By induction we show that for j ~ 0

base

Tol A

= { STOP(B)IC = STOP(B n C), (0)}

STOP(A)

= { definition f 0 }

jO(STOP(A))

28

step

Let k 2: 0. Suppose Tk I A= Jk(STOP(A)). We derive

Jk+1(STOP(A))

{ definition Jk+1 }

J(Jk(STOP(A)))

{ induction hypothesis, definition f}
(p·(Td A) w PR(S)) IA

{calculus}

((p·Tk) l(p·A) w PR(S)) IA

= { a(p·Tk) n aPR(S) = p·A Ç A U p·A}

(p·Tk w PR(S))I(A u p·A)IA

{ property projection, (1)}

Tk+1IA

Therefore, we have

PR(c)

{ definitions}

(Wi: i?: 0: (p·);PR(S))IA

{ (3)}

(U j : j ?: 0 : Tj) I A

{ property projection, (2) }

(u j : j 2: 0 : T) A)

{ (4)}

(U j: j ?: 0: Ji(STOP(A)))

(End of Proof)

1 Trace theory

2 Properties of processes and systems

2.0 Introduetion

In this chapter we discuss the phenomena nondeterminism, divergence, and deadlock
in relation to processes and systems. Properties of processes and systems are defined
expressing the absence of one or two of the above phenomena. Furthermore, we in
troduce two special classes of processes: conservative processes and cubic processes,
the latter forming a subclass of the former . The relation between cubic processes and
processes defined by partial orders on sets of occurrences is shown. Finally, for cubic
processes sequence functions are introduced descrihing restricted (clocked) behaviours
of the processes.

2.1 Nondeterminism and divergence

In this sectien we study conditions under which the (external) processof a system forms
an adequate description of the external behaviour of the mechanism conesponding to
the system.

LetS be the system sys(c; a I d; b)l{a,b}. We have PR(S) = PR(a I b). However,
process PR(S) does not adequately describe the external behaviour of system S: after
occurrence of internal event c external event b is not possible any more. \Ne say that
b is disabled by an internal event. The same holcis for internal event d and external
event a. On the other hand, though , one may infer from PR(S) that both a and bare
possible. We say that system S has (internal) nondeterminism.

Let S be the system sys((b I a)*)l{a}. We have PR(S) = PR(a*). Again process
PR(S') does not adequately describe t he external behaviour of system S . Bcforc t.he
first externalevent a and between any two consecutive externalevents aan unbounded
number of internat events, b's, may occur. This phenomenon is called divergen ce.

We first investigate the relation between the mechanism conesponding to a process]'
a.ncl the mechanism corresponding to TI A, where A is a subset of aT. In the sequel T
is a process and A an alphabet such that A Ç aT.

29

:30 2 Propertics of processes and systems

:\I ph ct bet A is called non-disabling wi th respect to T if

(At: tE tT: after(t,T)ÎA = after(t rA,TfA))

This notion is called] 1 in [Ka]. Jt may be interpreled as fellows: after t he occurrencc
of trace t of T one may expect every external (i.e. in A) continuation as given by

process T :A after trace t ~A. We say that A is disabling with respect to T if A is not
non-disabling with respect toT. Notice that both 0 and aT are non-disabling with

respect toT. Notice that {a,b} is disabling with respect to PR(c; a I d ; b) .

A system Sis called non-disabling if eS is non-disabling with respect to \V(pS).

Theorem 2.1.0

Thc following assertions are equivalent:

(0) A is non-disabling with respect to T

(l) (As, t: sE tT 1\ tE tT 1\ s fA =ti A: ajle1·(s , T) fA= after(t, T) ' ; l)

(2) (As,l: sE tT 1\ tE tT 1\ s ÎA::; tÎA: (Eu: su E tT: su ~A = tltl))

Pro of

(0) = (1)

\Ve derive

A is non-disabling with respecttoT

{ definition non-disabling}

(At: tE tT : after(t,T)fA = aftcr(lÎA,T fA))

{ property 1. L)}

(At: t E tT: aflcr(t,T)fA = (Us: s E tT 1\ s /11 = t fA: afle7·(s,T)IA))

{ sPt calculus}

(Al : l E tT: (As: sE tT 1\ siA = tÎA: aft cr(s,T)f;t Ç aftcr(t ,T)ÎA))

{ icl crnpotence conjunction, rcna.rning dummics}

(As,t: sE tT 1\ tE tT 1\ s ÎA = tiA: after(s ,T)fA Ç afler(I ,T) fA)
1\ (As , t : s E tT 1\ t E tT 1\ s/;1 = t /A : after(t,T)rA Ç ufler(s,T)IA)

{ ca.lcul us }

(A.s , t: " E tT 1\ L E t'J' 1\ s lA= tfA: aftcr(s ,T) ;A = ajlcr(t,T) fA)

(I) ==;. (2)

:\ ,.;,.; unw (l) . Let. .s E t'l' and l E t'f sucl1 lh<lt s 'A ::; t ~A. Choose t0 ill id / 1 snelt th a t
I = / 1111 and s ~A = t 0 f.4. \Ve now have

2.1 Nondeterminism and divergence

t 0t 1 E tT

=> { definition after, property projection}

t1rA E tafter(to,THA

{srA=tarA,(l)}

ttrA E tafter(s,T)IA

= { definition projection, definition after}

(Eu : su E tT : u rA= t1 rA)

{ s rA = tot A, t = tatt}

(Eu: su E tT: (su)ÎA = ÛA)

(2) =} (1)

Assume (2). LetsEtTandt E tT be such that slA= ûA. We derive

rE tafter(s, T)IA

{ definition projection, definition after}

(Eu : SU E tT : u rA = r)

= {siA=tîA,(2)}

(Eu:suEtT:uÎA=r 1\ (Ev:tvEtT:tvÎA=suÎA))

= {sÎA=tÎA,calculus}

(Eu, v : su E tT 1\ tv E tT : u Î A = r 1\ vIA = r)

31

Observe that the last predicate in the derivation is symmetrie in s and t. Hence, it is

equivalent to r E tafter(t, T) Î A as well.

(End of Proof)

The next two theorems give conditions under which an alphabet is non-disabling with
respect to the weave of two processes.

Theorem 2.1.1

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and
aT n aU= A n B. If A is non-disabling with respecttoT and Bis non-disabling with
respect to U then A U B is non-disabling with respect to T w U.

Pro of

Assume A is non-disabling with respect to T and B is non-disabling with respect to
U. Let t E t(T w U). We have

32

after(t\(A U B), (Tw U)Î(A U B))

{ theorem 1.1.11 }

after(t î(A U B), TîAw UÎB)

= { theorem 1.1.13}

after(ttA,TîA) w after(tîB,UiB)

2 Properties of processes and systems

{A is non-disabling w.r.t. T, Bis non-disabling w.r.t. U}

after(t laT, T)r A w after(tlaU, U) îB
{ theorem 1.1.11 }

(after(t laT, T) w after(t laU, U)) I (A U B)

= { theorem 1.1.13}

after(t, Tw U) î(A U B)

(End of Proof)

Corollary 2.1.2

If Rand S are non-disabling systems and aW(pR) n aW(pS) =eR neS,
then R 11 S is a non-disabling system.

(End of Corollary)

Theorem 2.1.3

Let T and U be processes. Let A be an alphabet such that A Ç aU \ aT.
If U Î(aT n aU) Ç T Î(aT n aU), aT n aU is non-disabling with respect to T and A is
non -disabling wi th respect to U, then A is non-disabling with respect to T w U.

Pro of

Assume U I(aT n aU) Ç Tl(aT n aU). We derive

(TwU)IaU

{aT n aU Ç aU, theorem 1.1.10}

Tî(aTn aU) w U

{ theorem 1.1. 7 }

Tî(aTnaU) w UÎ(aTnaU) w U

= {U l(aT n aU) Ç Tl(aT n aU), theorem 1.1.7}

UI(aT n aU) w U

{ theorem 1.1. 7 }

u

2.1 Nondeterminism and divergence 33

Assume aTnaU is non-disabling with respecttoT and A is non-disabling with respect
to U. Let t E t(Tw U). We derive

after(t, Tw U) ~A

{ theorem 1.1.13}

(after(tlaT, T) w after(tlaU, U)) ~A

= {A Ç aU, aT n aU Ç aU, theorem 1.1.10}

(after(tlaT, T)t(aT n aU) w after(tlaU, U)) I A

{aT n aU is non-disabling with respect to T, theorem 1.1.13}

after(t ~aU, Tl(aT n aU) w u) IA

{TI(aT n aU) w U = U, A is non-disabling with respect to U}

aft er(tÎ A, Ut A)
{ (TwU)taU =U, A Ç aU}

after(t IA, (Tw U) I A)

(End of Proof)

Corollary 2.1.4

LetRand S be systems such that aW(pR) naW(pS) =eR neSandeR Ç eS. If R
and SI(eS\ eR) are non-disabling systems and PR(S) teR Ç PR(R) then
(R 11 S) I(eS \ eR) is a non-disabling system.

(End of Corollary)

The next theorem gives a condition under which an alphabet is non-disabling with
respect to the projection of a process on some alphabet.

Theorem 2.1.5

Let T be a process. Let A and B be alphabets such that B C A C aT. If A is
non-disabling with respect toT then

B is non-disabling with respect to T

Pro of

B is non-disabling with respect to TI A

Assume A is non-disabling with respect to T. We derive

B is non-disabling with respect toT

{ definition non-disabling}

34 2 Properties of processes and systems

(At: tE tT: after(t, T)tB = after(tiB, TIE))

{ B Ç A, property projection}

(At: t E tT: after(t, T)tA\B = after(dA\B, T tAI B))
{ A is non-disabling with respect to T}

(At: tE tT: after(tiA, TIA)IB = after(tiA tB, TIAIB))

{calculus}

(Au: u E tTIA: after(u,T IA)IB = after(uiB,(TIA)IB))

{ definition non-disabling}

B is non-disabling with respect to TI A

(End of Proof)

Corollary 2.1.6

If S is a non-disabling system and A Ç eS then

SI A is a non-disabling system = A is non-disabling with respect to PR(S)

(End of Corollary)

In the sequellet T be a process and Aan alphabet such that A Ç aT. Alphabet aT\ A
will be denoted by A. Alphabet A is called divergent with respect to T if

(Et: tE tT: (An: n;:::: 0: (Eu: u E (A)* A tu E tT: f(u) > n)))

For instance, {a} is divergent with respect to both PR((b I a)") and PR(b* I a).
Alphabet A is called non-divergent with respect to T if A is not divergent with respect
toT, i.e.

(At : t E tT: (En : n ;:::: 0 : (A u : u E (A)* A tu E tT : f(u) ::::; n)))

Notice that aT is non-divergent with respect toT.

A system S is called divergent if eS is divergent with respect to W(pS). A system is
called non-divergent if it is not divergent.

The next theorem gives two alternative characterizations of non-divergence in case the
alphabet of process T is finite.

Theorem 2.1. 7

Let

P0 A is non-divergent with respect to T

2.1 Nondeterminism and divergence

P1 = (At :tE tT: tafter(t, T) n (A)* is finite)

P2 _ (As : sEtTÎA:{tltEtT/\tiA=s}isfinite)

Then P2 :::} P1 and P1 :::} Po.
If aT is finite, then P0 , P1, and P2 are equivalent.

Pro of

i) We prove that P1 implies P0 . We derive

(At: t E tT: tafter(t, T) n (A)* is fini te)

:::} {calculus}

(At: tE tT: (En: n ~ 0: (Au: u E tafter(t,T) n(A)*: f(u) Sn)))

{ definition after }

(At: tE tT: (En: n ~ 0: (Au: tu E tT 1\ u E (A)*: f(u) Sn)))

ii) We prove that P2 implies P1 . Assume P2 . LettE tT. We have

{ tu I u E tafter(t, T) n (A)*}

{ definition aft er, property projection}

{tuI tu E tT 1\ u E (A)* 1\ (tu)ÎA = dA}
Ç {set calculus}

{ r I r E tT 1\ r Î A = t Î A }

The last set being finite due to P2 , we have that tafter(t, T) n (A)* is finite.

35

iii) Assume aT is finite. We prove that •P2 implies •P0 . Assume •P2. LetsE tTîA
be such that { t I t E tT 1\ t Î A = s} is infinite. Define

u= PREF({ t I tE tT 1\ t ÎA = s})

Obviously U is infinite and U Ç aT*. Since aT is finite König's lenuna [Kö] is appli
cable. Let a(i: i ~ 0) be a sequence of symbols in aT such that

(An: n;::: 0: a(i: 0 Si< n) EU)

From the definition of U we infer that

(Au: u EU: f(uÎA) S f(s))

Hence, let n 0 ~ 0 be such that

(An: n ~ n0 : a(n) E A)

36 2 Properties of processes and systems

Wethen have

(A n : n 2:: na: a(i: 0 :=:;i< na)a(i: na:=:; i< n) E tT

1\ a(i: na:=:; i< n) E (A)*)

From this we infer that A is divergent with respect to T.

(End of Proof)

Theorems 2.1.8 and 2.1.11 give conditions under which an alphabet is non-divergent
with respect to the weave of two processes.

Theorem 2.1.8

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and
A n aU = B n aT. If A is non-divergent with respect to T and B be non-divergent
with respect to U then A U Bis non-divergent with respect to Tw U.

Pro of

Assume A is non-divergent with respect to T and B is non-divergent with respect to
U. Let A= aT\ A and B =aU\ B. Notice that (aT u aU)\ (A u B) =A u Band
A n aU = B naT. Let t E t(T w U).
Let m 2:: 0 be such that (Au : u E (A)* 1\ (daT)u E tT: e(u) :=:; m), and let n 2::0 be
such that (Av: v E (B)* 1\ (daU)v E tU: l(v) :=:; n). We now have

w E (A U B)* 1\ tw E t(Tw U)

{ definition weave, w i(A U B) = w}

wE (A U B)" 1\ (tlaT)(wi((Au B) naT)) E tT

1\ (tlaU)(wi((A U B) n aU)) E tU

{A ç aT, B ç aU, A n aU = B n aT }

wE (AU B)* 1\ (tlaT)(w tA) E tT 1\ (tlaU)(wiB) E W

=> { definition of m and n}

wE (A U B)* 1\ l(wiA):::; m 1\ l(wÎB):::; n

=> {calculus}

l(w):=;m +n

(End of Proof)

2.1 Nondeterminism and divergence 37

Corollary 2.1.9

Let Rand S be systems such that aW(pR) n aW(pS) =eR neS. If Rand S are
non-divergent systems, then R 11 S is a non-divergent system.

(End of Corollary)

Lemma 2.1.10

Let Tand U be processes. Let A be an alphabet such that A Ç aU\ aT. If

(0) (As: sE tT~(aTnaU): {tI tE tT A. tî(aTnaU) = s} is finite)

and

(1) (A v : v E tUf A: {u I u E tU A. u fA = v} is fini te)

then

(Az: zE t(TwU)ÎA: { w I wE t(TwU) A. w~A = z} is finite)

Pro of

Assume (0) and (1) hold.
Define X(s) = { t I t E tT A. tî(aT n aU) = s} for s E tTî(aT n aU), and Y(v)
= {u I u E tU A. u~A = v} for v E tUl A. Notice that X(s) is finite for all s E
tTI(aT n aU), and Y(v) is finite for all v E tU~A.
Let z E t(T w U) Î A. Notice that z E tU ~A. We now have

{ w I wE t(Tw U) A. wÎA = z }
{ definition weave }

{w I wE (aT U aU)* A. wlaT E tT A. w~aU E tU A. wÎA= z}

= { w~A = w~aUIA, calculus}

(u u: u E Y(z) A. uî(aT n aU) E tTî(aT n aU)
: { w I wE (aT U aU)* A. wfaT E tT A. wîaU =u})
{calculus}

(u u: u E Y(z) A. uf(aT n aU) E tTî(aT n aU)
:(Ut: tE X(uÎ(aTnaU))

: { w I wE (aT U aU)* A. w ~aT= t A. w ~aU= u}))

The set { w I wE (aT U aU)* A. wîaT = t A. wfaU =u} being finite for all t E tT
and u E tU we have that { w I wE t(Tw U) A. wîA = z } is finite.

(End of Proof)

38 2 Properties of processes and systems

Combining theorem 2.1.7 and lemma 2.1.10 yields

Theorem 2.1.11

Let T and U be processes such that aT and aU are finite. Let A be an alphabet such
that A Ç aU\ aT. If aTnaU is non-divergent with respect toT, and A is non-divergent
with respect to U then A is non-divergent with respect to Tw U.

(End of Theorem)

Corollary 2.1.12

LetRand S be systems such that aW(pR) and aW(pS) are finite,
aW(pR)naW(pS) = eRneS, andeR Ç eS. If Rand Sl(eS\eR) are non-divergent
systems then (R 11 S) I(eS\ eR) is a non-divergent system.

(End of Corollary)

The following example shows that the above theorem need not hold in case the alpha
bets are infinite.

Example 2.1.13

T = PREF(({x; I i 2: 0} U {y }, { x;yix; I i 2: 0}))

U = PREF(({x; I i 2: 0} U {a}, { ax;x;a I i 2: 0}))
{x; I i 2: 0 } is non-divergent with respect to T

{a} is non-divergent with respect to U
{a} is divergent with respect to Tw U

(End of Example)

Next we investigate non-divergence with respect to the projection of a process onsome
alphabet.

Lemma 2.1.14

Let T be a process. Let A and B be alphabets such that B Ç A Ç aT.

0 (As: sE tTIB: {tI tE tT 1\ tiB = s} is finite)
:::} (A s : s E tT I B : { r I r E tT I A 1\ rIB = s } is fini te)

1 If (Ar : r E tT I A : { t I t E tT 1\ tI A = r} is fini te) then

2.1 Nondeterminism and divergence 39

(,A s : s E tT I B : { t I t E tT 1\ tl B = s } is fini te) = (A s : s E tT I B : { r I r E tT I A Ä rIB = s } is fini te)

Pro of

0 Assume (As: sE tTIB: {t \tE tT Ä tiE= s} is finite). LetsE tTIB. We
have that { t I t E tT 1\ tI B = s} is fini te. Hence, the set

{ r Ir E tTIA 1\ dB= s} = {tI tE tT 1\ tiE= s }IA

is finite.

1 Let (Ar : r E tT rA : { t I t E tT " d A = r } is fini te). A ss urne

(As : s E tT I B : { r I r E tT I A 1\ dB = s } is fini te)

LetsE tTIB. We now have that {u I u E tTIA 1\ uiB = s} is finite, and that for all
rE tTIA {tI tE tT 1\ tiA = r} is finite. Therefore, the set

{ t I t E tT " tiE= s}
= (u r : r E { u I u E tT rA " u I B = s } : { t I t E tT " t I A = r })

is finite.

(End of Proof)

Combining theorem 2.1.7 and lenuna 2.1.14 yields

Theorem 2.1.15

Let T be a process such that aT is finite. Let A and B be alphabets such that
B Ç A Ç aT.

0 B is non-divergent with respect to T
=> B is non-divergent with respect to TI A

1 If A is non-divergent with respect to T then

B is non-divergent with respect to T

= B is non-divergent with respect to TI A.

(End of Theorem)

T he following example shows the above theorem not to hold in case aT is infinite.

40 2 Properties of processes and systems

Example 2.1.16

T =PREF(({a, b} U {x; I i ~ 0}, { x;ba1b I i ~ 0}})
{a, b} is non-divergent with respect to T
{b} is non-divergent with respecttoT

{ b} is divergent with respect to TI {a, b}

(End of Example)

Corollary 2.1.17

LetS be a system such that aW(pS) is finite. Let B Ç eS.
If S is non-divergent then

SI B is a non-divergent system _ B is non-divergent with respect to PR(S)

(End of Corollary)

Theorem 2.1.18

Let command S in

com c(A):

moe

satisfy

sub p: c bus

s

(At : tE tPR(S) 1\ t f. t:: f(tlp·A) < f(tiA))

Then sys(c) is non-divergent.

Pro of

We have

PR(c) = (Wi: i~ 0: (p·)'PR(S))IA

FortE tPR(c) wedefine

V(t) = {sIs E t(Wi: i~ 0 : (p·)iPR(S)) 1\ slA= t}

Let t E tPR(c) and s E V(t). Then sI A = t and

2.1 Nondeterminism a.nd divergence

It follows that

and, hence,

(0) (Ai: 0 :s; i< f(t): f(sÎ(p·);A) :s; f(t)- i)
(1) (Ai: i~ f(t): f(sÎ(p·)iA) = 0)

We derive

f(s)

{calculus}

(Si: i~ 0: f(sÎ(p·);A))

{ (1) }
(Si: 0 :s; i< f(t): f(sÎ(p·);A))

< { (0)}

(Si: 0 :s; i< f(t): f(t)- i)

= {calculus}

t. f(t). (f(t) + 1)

Observe that

V(t) = V(t) n (Ui: 0 :s; i< f(t): {p·);A)*

41

We conclude that V(t) is finite. Therefore, by theorem 2.1.7, A is non-divergent with
respect to (W i: i~ 0: (p·)iPR(S)).

(End of Proof)

The condition on the command in the above theorem is also found in [Ud] and [Ka]
where it is shown to imply the existence of a unique fixpoint for the recursive equation
defined by a recursive component.

As we already illustrated in the introduetion to this section, nondeterminism and di
vergence are properties to be avoided. Therefore, we now introduce a third not ion that
is a combination of non-disabling and non-divergent. This notion was first introduced .
by Anne Kaldewaij in [Ka].
Let T be a process a.nd let A be an alphabet such that A Ç aT. Alphabet A is called

42 2 Properties of processes and systems

transparent with respect to T if A is both non-disabling and non-divergent with re
spect to T. 1f A is transparent with respect to T, then after the occurrence of trace t
in process T perforrning internal events (i.e. events in A) is guaranteed to terminate
in a state after which no events in A are possible. The events that are possible are
exactly the successors of dA in Tl A. Notice that aT is transparent with respect toT.

System Sis called transparent if eS is transparent with respect to W(pS).

Property 2.1.19

0 A is transparent with respect to T

::::} (At: tE tT: (Eu: u E (A)* 1\ tu E tT: suc(tu,T) = suc(tiA,TÎA)))

1 A is transparent with respect to T

::::} (As: sE tTÎA: (Et : tE tT 1\ tÎA = s: suc(t,T) = suc(s,T ÎA)))

(End of Property)

Transparenee may be characterized differently ([Ka]):

Theorem 2.1.20

A is transparent with respect to T

=: (At : tE tT 1\suc(t,T) Ç A: suc(t,T) = suc(tÎA,TIA))

1\ (A is non-divergent with respect to T)

(End of Theorem)

Combining 2.1.1 and 2.1.8 yields

Theorem 2.1.21

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and
aT n aU = A n B. If A is transparent with respect to T, and B is transparent with
respect to U then A U B is transparent with respect to T w U.

(End of Theorem)

Corollary 2.1.22

If Rand S are transparent systems and aW(pR) n aW(pS) =eR neS, then R 11 S
is transparent.

(End of Corollary)

2.1 Nondeterminism and divergence 43

Combining 2.1.3 and 2.1.11 yields

Theorem 2.1.23

Let T and U he processes such that aT and aU are finite. Let A be an alphahet such
that A Ç aU\ aT. If aT n aU is transparent with respect to T, A is transparent with
respect to U, and U î(aT n aU) Ç Tî(aT n aU), then A is transparent with respect to
TwU.

(End of Theorem)

Corollary 2.1.24

LetRand S he systems such that aW(pR) and aW(pS) are finite,
aW(pR) n aW(pS) =eR neS, andeR Ç eS. If Rand SI(eS\ eR) are transparent
systems, and PR(S) IeR Ç PR(R) then (R 11 SH(eS\ eR) is a transparent system.

(End of Corollary)

Example 2.1.13 shows that the above theorem does not holdincase the alphabets are
infinite. Combining 2.1.5 and 2.1.15 yields

Theorem 2.1.25

Let T he a process such aT is finite. Let A and B be alphabets such that B Ç A Ç aT.
If A is transparent with respect to T then

B is transparent with respect to T = B transparent with respect to T Î A

(End of Theorern)

The following theorem shows how the results in theorem 2.1.25 change if the condition
aT is finite is dropped.

Theorem 2.1.26

Let T be a process. Let A and B be alphabets such that B Ç A Ç aT. If A is
transparent with respect to T then

B is transparent with respect to T => B is transparent with respect to T Î A

44 2 Properties of processes and systems

Pro of

Due to theorem 2.1.5 it remains to show that non-divergence of B with respect to T
implies non-divergence of B with respect to T t A.

Assume Bis divergent with respect to TtA. Choose rE tTI A such that

(An: n:::: 0: (Ev: v E (A \B)* 1\ rv E tTIA: f(v):::: n))

Choose tE tT such that tiA = r. Let n:::: 0. Let v E (A \B)* be such that rv E tT IA
and f(v) :::: n. Let u E (B)* be such that tu E tT and (tu)IA = rv (such traces
exist since A is transparent with respecttoT and B Ç A). Since f(u):::: f(utA) and
ut A = v, we have f(u) :::: n. Hence B is divergent with respect to T.

(End of Proof)

The reverse implication in the above theorem does not hold as the following example
shows.

Example 2.1.27

T = PREF({ {a, y} U {x; I i :::: 0}, { ax;yix;a I i :::: 0}})

{a} U { Xi I i:::: 0} is transparent with respectto T

{a} is not transparent with respect to T (divergence)

{a} is transparent with respect to Tl({a} U {x; I i:::: 0})

(End of Example)

Corollary 2.1.28

Let S be a system. Let A Ç eS. If S is transparent then

0 St A is a transparent system => A is transparent with respect to PR(S)

1 if aW(pS) is finite then

St A is a transparent system A is transparent with respect to PR(S)

(End of Corollary)

2.2 Deadlock

2.2 Deadlock

Consicier the system

where

Ua = PR((ao, ba; ca, do)*)

Ut= PR((at, bt; Ct, dt)*)
Ra= PR((ao; ca I a1; Ct)*)
Rt = PR((bo; do I b1; dt)*)

45

Processes Ra and R 1 describe resources that may be accessed by processes Ua and Ut
under mutual exclusion. Both process U0 and process U1 fi.rst need to gain access to
both resources, before they can continue. We observe that trace a0 b1 of W(pS) has no
successors in W(pS). However, the projection of a0 b1 on the alphabet of each of the
processes in the process set of S does have a successor in that process. The system has
terrninated whereas none of the composing processes has terminated. This situation is
referred to as deadlock.

Let T be a process. Let t E tT. We say that T has terminated after t if after(t, T) =
STOP(aT) or, equivalently, suc(t, T) = 0 . Process T is called non-terminating if after
each trace t of tT process T has not terminated, i.e.

(At: tE tT: suc(t,T) =/:- 0)

Notice that a process that is not non-terminating may terminate.

Theorem 2.2.0

Let T be a non-terrninating process. Then there exists a non-terrninating process S
such that S Ç T and (As, t : s E tS 1\ t E tS : s S t V t S s), i.e. tS is totally
ordered.

(End of Theorem)

In the sequel X is a set of processes.

Property 2.2.1

(At: tE tW(X): (AT: TE X: suc(tfaT,T) = 0) '* suc(t, W(X)) = 0)

(End of Property)

46 2 Properties of processes and systems

Set X is called lockfree if the reverse implication holds, i.e.

lockfree(X) =
(At : t E tW(X) : suc(t, W(X)) = 0 ::::} (AT: TE X : suc(tlaT, T) = 0))

Notice that due to property 2.2.1 the implication sign in the definition of lockfree may
be replaced by an equivalence sign. If X is not lockfree, we say that X has danger of
loek.

System S is called lockfree if lockfree(pS) holds.

Property 2.2.2

0 lockfree(0)

1 lockfree({T}) for any process T

(End of Property)

Theorem 2.2.3

0 lockfree(X) = (AT:TEX:lockfree({T,W(X\{T})}))

1 lockfree(X) = (A Y : Y Ç X : lockfree({W(Y), W(X \ Y)}))

(End of Theorem)

Theorem 2.2.4

Let X and Y be sets of processes. If lockfree(X) and lockfree(Y) then

lockfree(X U Y) = lockfree({W(X), W(Y)})

Pro of

Assume lockfree(X) and lockfree(Y).

lockfree(X U Y)

= { definition lockfree}

(At: tE tW(X UY)
: suc(t, W(X U Y)) = 0

{ lockfree(X), lockfree(Y) }

(At: tE t(W(X) w W(Y))
: suc(t,W(X)wW(Y)) = 0

(AT: TE X U Y: suc(daT, T) = 0))

= suc(tîaW(X), W(X)) = 0 1\ suc(tîaW(Y), W (Y)) = 0)

2.2 Deadlock

{ definition lockfree }

lockfree({W(X), W(Y)})

(End of Proof)

47

The next theorem shows that processes may be projected on transparent alphabets
when one investigates the absence of loek.

Theorem 2.2.5

LetTand U be processes. Let A and B be alphabets such that A Ç aT, B Ç aU, and
A n B = aT n aU. If A is transparent with respect to T, and B is transparent with
respect to U then

lockfree({T, U})

Pro of

lockfree({T \A, U\ B})

Assurne A is transparent with respect to T and B is transparent with respect to U.
Frorn theorern 2.1.21 we infer that A U B is transparent with respect to Tw U. Due
to theorern 1.1.11 we have (Tw U)\(A U B) = T\Aw mB.

i) Assurne lockfree({T,U}). Let u E t(TIAwU\B) be such that
suc(u, TI A w U IE) = 0. Choose t E t(Tw U) such that

t\(AUB) =u 1\ suc(t,TwU) = suc(u,T[AwU\B)

(theorem 2.1.19.1).
Si nee suc(t, T w U) = 0 and lockfree({ T, U}) we now have suc(tl aT, T) = 0 Ç A and
suc(t \aU, U) = 0 Ç B.
By theorern 2.1.20 it follows that suc(tiA,T\A) = 0 and suc(t\B,U\B) = 0.

Since ti(AU B) =u this implies that suc(u\A,T\A) = 0 and suc(ufB,U \B) = 0.

ii) Assurne lockfree({T\A,U\B}). LettE t(TwU) he such that suc(t,TwU) = 0.
By theorem 1.1.17 we have suc(t\aT,T) Ç aTnaU Ç A and
suc(tlaU, U) Ç aT n aU Ç B. We derive

suc(t, Tw U)= 0

= { suc(t, Tw U) Ç A U B, theorern 2.1.20}

suc(ti(A U B), (Tw U)\(A u B)) = 0

= {calculus}

suc(ti(AUB),T\AwU\B) = 0

48

{ loek/ree({T ~A, U~ B}) }

suc(dA,T ~A) = 0 1\ suc(dB,U~B) = 0

2 Properties of processes and systems

{ suc(tfaT, T) Ç A, suc(tfaU, U) Ç B, theorem 2.1.20}

suc(daT, T) = 0 1\ suc(d aU, U) = 0

(End of Proof)

Corollary 2.2.6

Let T and U be processes such that aT n aU is transparent with respect to both T
and U. Then

lockfree({T, U}) ::: lockfree({T~(aT n aU), U ~(aT n aU)})

If, moreover, T~(aTnaU) = U~(aTnaU), then lockfree({T,U}).

(End of Corollary)

Combining theorems 2.2.4 and 2.2.5 yields the following two corollaries.

Corollary 2.2.7

Let X and Y besets of processes. Let A and B be alphabets such that A Ç aW(X),
B Ç aW(Y), and aW(X) n aW(Y) = A n B . If A is transparent with respect to
W(X), B is transparent with respect to W(Y), and both lockfree(X) and lockfree(Y)
hold then

lockfree(X U Y) = lockfree({W(X) ~A, W(Y) ~B})

(End of Corollary)

Corollary 2.2.8

Let Rand S be systems such that aW(pR) n aW(pS) = eR neS. If Rand S are
lockfree and transparent, then

R 11 Sis a lockfree system = lockfree({PR(R), PR(S)})

(End of Corollary)

2.3 Conservative processes

2.3 Conservative processes

Consicier process T = PR((a, b; c)*). The statesofT are

[ê]T = {tI tE tT 1\ f(tla) = f(tlb) = f(tk)}

[a]T = {tI tE tT 1\ f(tla) -1 = f(tlb) = f(tk)}
[b]T = {tI tE tT 1\ f(tlb)- 1 = f(tla) = f(ttc)}

[ab]T = { t I tE tT 1\ f(tla)- 1 = f(tfb)- 1 = R(dc)}

49

The states of T only depend on the number of occurrences of events. Furthermore,
it is easily shown that all subsets of aT are non-disabling with respect to T. In this
section we will introduce a class of processes having these properties. Process T will
he an element of that class. Due to the first property they will he called conservative
processes ([Ve86]).

Process T is called persistent if

(At, a, b : ta E tT 1\ tb E tT 1\ a -:f:. b: tab E tT 1\ tba E tT)

Process T is called commutative if

(At, a, b: tab E tT 1\ tba E tT : [tab] = [tba])

Process T is called conservative if T is both persistent and commutative, i.e.

(At, a, b : ta E tT 1\ tb E tT 1\ a -:f:. b: tab E tT 1\ tba E tT 1\ [tab] = [tba])

In order to give a different characterization of conservativity we first define a new
operatien on traces. Let t be atrace and B be a bag (multiset) of symbols. Trace t
minus bag B, denoted by t \ B, (see [Ve85]) is obtained by removing from t from left
to right f(tl a) min (N b : b E B : b = a) occurrences of a for each symbol a in B. It is
defined by

t:\B
as\ B
as\ B

ê

a(s \ B)
s\(B:_{a})

a(j.B
a EB

Projection on an alphabet can be expressed in terrns of the minus operator. Let A be
an alphabet. If B is the bag consisting of the elements of S1 \A, each infinitely often ,
then

tiA=t\B

50 2 Properties of processes and systems

For trace t the bag of symbols of t, denoted by #t, is defined by

#E. = 0

#as = {a}+ #s

Notice that symbol a occurs f(tla) times in #t.

In the following s, t, and u are traces, A is an alphabet, and B and C are bags.

Property 2.3.0 (bag of symbols of a trace)

0 #st= #s + #t
1 #(s \ B) = #s- B

2 s :::; t :::} #s Ç #t
#s Ç #t :::} f(s):::; R(t)

(End of Property)

Property 2.3.1 (minus)

0 s\B=s\(Bn#s)

1 s \ B = s = B n #s = 0

2 s \ B = E. ::::: #s Ç B

3 R(s\B)=l(s)-IBn#sl
R(s) -IEl:::; f(s \ B):::; f(s)

4 st\B=(s\B)(t\(B-#s))

5 s:::;t:::} s\B:::;t\B

(s \ 0 = s) s \ #E. = s)
(s\#s=E.)

6 (s\B)\C=s\(B+C)=(s\C)\B
(s \ #t) \#u= s \ #(tu) = s \#(ut)= (s \#u)\ #t

7 (s\#t)ÎA=(sÎA)\#(tÎA)

8 (st)\#(su)=t\#u

(End of Property)

Example 2.3.2

Let s = a ba cd ba. We have

s Î {a, c} = a a ca
#s = {a, a , a, b, b, c, d}
s \ {a, c} = bad ba s \ {a,a,b,b} =c d a

(End of Example)

2.3 Conservative processes

Lemma 2.3.3

If T is a conservative process then

(At, u, a: ta E tT À tu E tT: ta(u \#a) E tT)

Pro of

51

Let T he a conservative process. The proof is given by induction on the length of trace
u. Let tu E tT.

base e(u) = 0

We have u= ê. Let ta E tT. Then ta(u \#a)= ta E tT.

step e(u) > 0

Assume

(At,w,a: ta E tT À tw E tT À e(w) < e(u): ta(w\ #a) E tT)

Let ta E tT and u= bv. We distinguish two cases.

i) a= b

ta((bv) \#a)

{a = b, property 2.3.1}

tav

E { a = b, tu E tT}
tT

ii) af:. b We derive

ta E tT À tbv E tT À a f:. b

=> { T is a conservative process}

tab E tT À tba E tT À [tab] = [tba] À tbv E tT À af:. b

=> { induction hypothesis}

tab E tT À tba(v \#a) E tT À [tab]= [tba] À af:. b

=> {calculus}

tab(v \ #a) E tT À a f:. b

=> { property 2.3.1 }

ta(bv \#a) E tT

(End of Proof)

52 2 Properties of processes and systems

Theorem 2.3.4

T is conservative (As, t : s E tT 1\ t E tT : s(t \ #s) E tT)

Pro of

i) Let T be conservative. We prove the right hand side by induction on the lengthof
trace s. Let s E tT.

base e(s) = 0

Let t E tT. We derive

s(t\#s)

= { s = e, property 2.3.1}

E { assumption }

tT

step e(s) > 0

Assume (Ar,t : rE tT 1\ tE tT 1\ e(r) < e(s): r(t \ #r) E tT) .
Let s = ua and t E tT. We derive

ua E tT 1\ t E tT

=> { T is a process, induction hypothesis}

u(t \#u) E tT 1\ ua E tT

=> { lemma 2.3.3 }

ua((t \#u)\ #a) E tT

{ property 2.3.1 }

ua(t \ #(ua)) E tT

ii) Let (As ,t: sE tT 1\ tE tT: s(t \ #s) E tT) . Let ta E tT, tb E tT, and a =f b.
We derive

ta E tT 1\ tb E tT

=> { assumption }

ta((tb) \ #(ta)) E tT

= { property 2.3.1, a =f b}
tab E tT

For reasons of symmetry we infer that tab E tT and tba E t T . Furthermore, we derive

2.3 Conservative processes

tabu E tT

:::} { tba E tT, assumption }

tba((tabu) \ #(tba)) E tT
{ property 2.3.1 }

tbau E tT

Likewise, we have tbau E tT :::} tabu E tT.
Hence, [tab] = [tba].

(End of Proof)

From theorem 2.3.4 and property 2.3.1 the next theorems follow.

Theorem 2.3.5

Let T be a process. Let A be an alphabet. If T is conservative then

0 (As, t : s E tT /1. t E tT /1. #s = #t : [s] = [t))

1 TI A is conservative

(End of Theorem)

Theorem 2.3.6

If X is a set of conservative processes then W(X) is a conservative process.

(End of Theorem)

53

If S is a system such that (AT : T E pS : T is conservative), then due to theorems
2.3.5 and 2.3.6 process W(pS) and, hence, process PR(S) are conservative.

Theorem 2.3. 7

If (Tn)n~o is a sequence of conservative processes such that (A n : n ;::: 0 : Tn Ç Tn+d
then (U n : n ;::: 0 : Tn) is conservative.

(End of Theorem)

The next theorem shows that all subsets of the alphabet of a conservat ive process are
non-disabling with respect to that process.

54 2 Properties of processes and systems

Theorem 2.3.8

Let T be a process. Let A be an alphabet such that A Ç aT. If T is conservative then
A is non-disabling with respect toT.

Pro of

Assume T is conservative.
LettE tT. Property 1.1 .3 yields after(t,T)IA Ç after(tiA,TIA).
We wil! show that after(tÎA,TÎA) Ç after(t,T)ÎA. Let u E tafter(t\A,T iA) . Choose
rand s such that rs E tT, dA = dA, and sÎA =u. By theorem 2.3.4 we have that
t((rs) \ #t) E tT. Furthermore,

(rs\#t)ÎA

= { property 2.3.1}

(rÎA){siA) \ #(tÎA)

= { dA =tI A, property 2.3.1}

slA

Since slA= u, we conclude u E tafter(t,T)ÎA.

(End of Proof)

Corollary 2.3.9

If S is a system such that (AT : T E pS : T is conservative)
then system S is non-disabling.

(End of Corollary)

The next theorems show some results concerning (non-)termination and absence of
deadlock. First, we show that for conservative T the negation of "T is non-terminating"
is "T terrrilnates".

Theorem 2.3.10

Let T be a conservative process. We have

0 (At :tE tT: suc(t, T) = 0 =: (As :sE tT: #s Ç #t))

(As,t: sE tT 1\ tE tT 1\ suc(s ,T) = 0 1\ suc(t,T) = 0: # s = #t)

1 -,(T is non-terrrilnating) =: (Et : tE tT: (As : sE tT: e(s) ~ e(t)))

2 The following three assertions are equivalent

2.3 Conservative processes

a. T is non-terminating

b. (ES : S Ç T : S is non-terminating)

c. (ES : S Ç T 1\ (As, t : s E tS 1\ t E tS: s :St V t :S s)
: S is non-terminating)

Pro of

0 LettE tT.

i) Assume suc(t, T) = 0. We derive

sE tT

=} { T is conservative}

t(s \ #t) E tT

= { suc(t, T) == 0}

s \ #t = ê

{ property 2.3.1}

#s Ç #t

ii) Assume (As: sE tT: #s Ç #t). We derive

a E suc(t, T)

{ definition successor set }

ta E tT

=} { assumption }

#(ta) Ç #t
{ definition bag}

fa! se

The second assertion is a direct consequence of the first one.

1 We derive

•(T is non-terminating)

{ definition }

(Et: tE tT : suc(t,T) = 0)

= {0}

(Et : t E tT : (As : s E tT : #s Ç #t))

=} { property 2.3.0 }

(Et: tE tT: (As: sE tT: f(s) :S f(t)))

55

56 2 Properties of processes and systems

2

::} {(Aa:taEtT:f(ta)>f(t))}

(Et: tE tT: suc(t,T) = 0)

a ::} b Take S = T.

b ::} c Theorem 2.2.0

c ::} b Trivia!

b::} a Let S Ç T be such that S is non-terminating. Let t E tT. Choose
sEtS such that f(s) > f(t). SinceS Ç TandT is conservative, we
have t(s\#t) E tT. Furthermore, we have f(s\#t) ;::=: f(s)-f(t) > 0
which implies s \ #t =f. e. Hence, suc(t, T) =f. 0.

(End of Proof)

The next theorem provides a methad to prove the absence of deadlock.

Theorem 2.3.11

Let X be a set of conservative processes. If

(At,T:TEX 1\ tEtT:(Es:sEtW(X):f(s taT)=f(t)))

then lockfree(X) holds.

Pro of

Assume

(At,T: TE X 1\ tE tT: (Es: sE tW(X): f(s taT) = f(t)))

Let t E tW(X). Let T E X and a E aT he such that a E suc(t taT, T). Choose
sE tW(X) such that f(s) = f((ttaT)a) = f(daT) + 1. By theorem 2.3.6 we have that
W(X) is conservative. Hence, t(s \ #t) E tW(X). Furthermore,

f(s \ #t)

> {calculus}

f((s \ #t)taT)

{ property 2.3.1 }

f((staT) \#(daT))

2.4 Cu bic processes

> { property 2.3.1 }

l(staT)- i(daT)

~ { choice of s }

1

Therefore, s \ #t-:/: t: and, hence, suc(t, W(X))-:/: 0.

(End of Proof)

2.4 Cubic processes

57

In this section we introduce the cubic processes forming a subclass of the conservative
processes. A process T is said to be cubic if T is conservative and satisfies

(At, a, b, c: tac E tT 1\ tbc E tT 1\ a -:/: b :teE tT)

Example 2.4.0

Process PR(a; b; c I a; c; bIb; a; eI b; c; a) is conservative but not cubic.
Process PR(a, b, c) is cubic.

(End of Example)

Theorem 2.4.1

T is cubic = (T is conservative)

1\ (At, u, v, c: tuc E tT 1\ tvc E tT 1\ #u n #v = 0 :teE tT)

Pro of

Obviously, the right hand side implies the left hand side.

Assume T is cubic. LettE tT. Let u, v, and c be such that tuc E tT, tvc E tT, and
#u n #v = 0. The proof is clone by induction on i(u)· l(v).

base i(u)· i(v) = 0

Then u= ê V v = ê. From this and tue E tT 1\ tvc E tT we infer teE tT.

step i(u)· l(v) > 0
Assume

(Ar,s,d: trd E tT 1\ tsd E tT

1\ l(r) · l(s) <i(u)· l(v) 1\ #r n #s = 0: td E tT) .

58 2 Properties of processes and systems

We have R(u) > 0 and R(v) > 0. Let u= ax and v = by. We distinguish two cases.

1. a=cVb=c
Since ta E tT A tb E tT we now have teE tT.

11. a =f. c A b =f. c

We derive

taxe E tT A tbyc E tT

= { T is conservative, theorem 2.3.4}

taxe E tT A ta(tbyc \ #(ta)) E tT A tbyc E tT A tb(taxe\ #(tb)) E tT

{ property 2.3.1, #(ax) n #(by) = 0, a =I c, b =I c}

taxe E tT A tabyc E tT A tbyc E tT A tbaxc E tT

=} { f(x)·f(by) < f(u)·f(v), R(ax)·f(y) < f(u)·f(v), #(u) n #(v) = 0}

tac E tT A tbc E tT

=} { T is cubic, a =I b}

teE tT

(End of Proof)

Theorem 2.4.2

Let X be a set of processes. If

(*) (AT : T E X : (At, a, b, c: tac E tT A tbc E tT A a =/:- b : te E tT))

then process W(X) satisfies

(At,a,b,c:tacEtW(X) A tbcEtW(X) A a=f:-b:tcEtW(X))

Pro of

Assume (*) holds. Let tac E tW(X), tbc E tW(X), and a =f. b. LetTE X. We clerive

tac E tW(X) A tbc E tW(X) A a =f. b
=} { definition W}

(tfaT)(aîaT)(daT) E tT A (daT)(bîaT)(cÎaT) E tT A a=/:- b

=} {(a rf. aT V b rf. aT: a laT= é V MaT= é), (a E aT A bEaT:(*))}

(tÎaT)(daT) E tT

Therefore, (AT: T E X : (te) îaT E tT). Hence, we havete E tW(X).

(End of Proof)

2.4 Cubic processes

Combining theorems 2.3.6 and 2.4.2 yields

Corollary 2.4.3

If X is a set of cubic processes, then W(X) is a cubic process.

(End of Corollary)

59

In order to prove that projection of a cubic process on an alphabet yields a cubic process
weneed another characterization of cubic processes. First, we introduce projection on
bags of symbols. The projection of trace ton bag B, denoted by t l B, is defined by

t: l B = t:

as l B = s l B
aslB = a(sl(B-{a}))

Notice that aala = aa whereas aal {a}= a.

In the following s, t, and u are traces, A is an alphabet, and B and C are bags.

Property 2.4.4

#(s l B) = #s n B

(End of Property)

Property 2.4.5

s l B = s l (B n #s)

s l B = s = #s ç B

s l B = t: = #s n B = 0

f(s l B) ~ f(s)

st l B = (s l B)(t l (B- #s))
s~t => slB~tlB

(si #s = s)

(sl0=t:)

0

1

2

3

4

5

6 (si B) i C = s l (B n C) = (s l C) l B

7

8

(si #t) i #u= si #(tj #u) = s l #(u l #t) = (s l #u) i #t
(s l B)IA =(slA) i B
(si #t)IA =(slA) l #(tiA)

(st) i #(su) = s(t i #u)

60 2 Properties of processes and systems

9 (si B) \ C = (s \ C) i (B- C)
(s \ B) i C =(si (B + C)) \ B

(End of Property)

Theorem 2.4.6

T is cubic = (T is conservative) 1\ (As,t: sE tT 1\ tE tT : si #tE tT)

Pro of

0 Assume T is conservative and

(As, t : s E tT 1\ tE tT: si #tE tT)

Let tac E tT, tbc E tT, and a =Ib. We derive

(tac) i #(tbc)

= { property 2.4.5 }

t(ac i #(bc))

{ a =I b, definition i }

te

Since (tac) i #(tbc) E tT, we haveteE tT.

1 Assume T is cubic. We prove that

(As: s E tT: (At: tE tT: si #tE tT))

by induction on the length of trace s. Let s E tT.

base R(s) = 0
We have s = e and for all t E tT e i #t = e E tT.

step R(s) > 0
Assume

(Ar: rE tT 1\ R(r) < R(s): (At: tE tT: r i #tE tT))

Let s = ua. Let t E tT. We distinguish two cases.
1. R(tla) ::_:; R(uîa).
We derive

2.4 Cubic processes

(ua) î #t

= { property 2.4.5}

(u î #t)(a i (#t- #u))

= {f(da):::; f(ula)}

u i #t
E { induction hypothesis}

tT

ii. f(tla) > f(ula)
Let t \#u= vaw such that f(vîa) = t:.

ua E tT 1\ t E tT

= { induction hypothesis}

u j #t E tT 1\ ua E tT 1\ t E tT

:::} { T is conservative, theorem 2.3.4 }

(u i #t)(ua \#(u î #t)) E tT 1\ (u î #t)(t\ #(u i #t)) E tT
{ property 2.4.4, property 2.4.5, property 2.3.1, f(da) > f(ula)}

(u i #t)(u \ #t)a E tT 1\ (u i #t)(t \#u) E tT
:::} { t \ #u = vaw }

(u î #t)(u \ #t)a E tT 1\ (u i #t)va E tT

=> { theorem 2.4.1, #(u\ #t) n #v = 0}

(u i #t)a E tT

= { definition j, property 2.4.5, f(tla) > f(ula)}

ua i #tE tT

(End of Proof)

Theorem 2.4. 7

If T is cu bic then TI A is cu bic.

Pro of

61

Let T be a cubic process. By theorem 2.3.5 we have that TI A is conservative. Let
u E tTIA and v E tTIA. LetsEtTandt E tT such that slA= u and ti A= v. We
derive

s E tT 1\ tE tT

:::} { T is cubic, theorem 2.4.6 }

62

si #tE tT

=} { projection}

(si #t)rA E tTîA

{ property 2.4.5}

(sÎA) i #(tÎA) E tTÎA

{ s Î A = u, t Î A = V }

u i #v E tTîA

(End of Proof)

2 Properties of processes and systems

We introduce restricted commands, forming an important subclass of the commands,
and show that their processes are cubic. Restricted commands are defined inductively
by the following rules.

é is a restricted oommand

a is restricted oommand for all symbols a

if S is a restricted cammand not containing any star then S* and S 0 are
restricted commands

- if S and T are restricted oommands and S contains no star then S; T is a
restricted cammand

- if S and T are restricted oommancis such that aTR(S) n aTR(T) = 0 then
S, T is a restricted cammand

Property 2.4.8

Let S be a restricted command. If S oontains no stars then for every alphabet A

(A s, t : s E tTR(S) 1\ t E tTR(S) : i(s î A) = i(tî A))

(End of Property)

The projection of restricted cammand S on alphabet A, denoted by S Î A, is defined
inductively as follows.

dA=c

aîA =a

a ÎA = c

a E A

a~A

2.4 Cubic processes

S*ÎA = (SîA)*

(S; T) ÎA = (SÎA); (TÎA)

(S, T)ÎA =(StA), (TîA)

S 0 ÎA = (SÎA)0

Property 2.4.9

63

aTR(S) n aTR(T) = 0

Let S be a restricted command and A an alphabet. Then S Î A is a restricted cornmand
and TR(SIA) = TR(S)IA.

(End of Property)

By induction on the structure of restricted commands one can prove

Theorem 2.4.10

If Sis a restricted command, then PR(S) is cubic.

(End of Theorem)

Corollary 2.4.11

0 Let component c be defined by

com c(A): S moe

where Sis a restricted command. Then PR(c) is cubic.
1 Let component c be defined by

com c(A) :

moe

sub Po: ca, PI: Ct, ... ,Pn-1: Cn-1 bus
[xo = Yo, X1 = YI, . . ·, Xm-1 = Ym-1]
s

where Sis a restricted command and for i, 0 ~ i < n, PR(ci) is a
cubic process. Then PR(c) is cubic.

64 2 Properties of processes and systems

2 Let component c be defined by

com c(A):
subp:cbus
s

moe

where Sis a restricted command. Then PR(c) is cubic.

(End of Corollary)

2.5 Partial orders and sequence functions

In this section we address the subject of ordering (sequencing) theevents of a process.
For process T the set of occurrences of T, denoted by occ(T), is defined by

occ(T) = { (a,f(tla)) I ta E tT}

Notice that

(a, i) E occ(T) := (Et: ta E tT: f(tÎa) =i)

In the sequel we show that the ordering of events of process T can be expressed as a
partial order on occ(T).

For process T and occurrence (a, i) E occ(T) the set pre(a, i, T) of all occurrences that
have to preeede (a, i) in T is defined by

pre(a, i, T) =

{ (b,j) I bEaT 1\ j 2: 0 1\ (At: ta E tT 1\ f(tîa) =i : f(tîb) > j)}

ûbserve that pre(a, i, T) Ç occ(T).

Property 2.5.0

Let (a, i) E occ(T) and (b,j) E occ(T).

0 pre(a,i,T)isfinite

(a, i) rt pre(a, i, T)
(Ak: 0::::; k < i: (a,k) E pre(a,i,T))
lpre(a,i,T)I2: i

2 (b,j) E pre(a,i,T) => pre(b,j,T) Ç pre(a,i,T)

2.5 Partial orders and sequence functions

3 ,_,((a, i) E pre(b,j,T) 1\ (b,j) E pre(a,i,T))

(End of Property)

65

A process defines a partial order on its set of occurrences. The binary relation <T on
occ(T) is defined by

(a, i) <r (b,j) = (a, i) E pre(b,j, T) (a, i), (b, j) E occ(T)

From property 2.5.0 it follows that relation <T is both anti-re:flexive and transitive,
and, hence,

Theorem 2.5.1

(occ(T), <r) is a partially ordered set.

(End of Theorem)

Theorem 2.5.2

Let T and U be processes with equal alphabets. Let X be a set of processes.
Let A be an alphabet. Then

0 occ(T~A) = {(a, i) I (a, i) E occ(T) 1\ a E A}

1 occ(W(X)) Ç (US: SE X : occ(S))

2 T Ç U =? occ(T) Ç occ(U)

3 (Aa,b,i,j: (a, i) E occ(T~A) 1\ (b,j) E occ(TIA)
: (a, i) <TrA (b,j) = (a, i) <T (b,j))

4 (AS: SE X : (A a, b, i,j : (a, i) E occ(W(X)) n occ(S)
1\ (b,j) E occ(W(X)) n occ(S)

: (a, i) <s (b,j) =? (a, i) <w(x) (b, j)))
5 T Ç U =? (A a, b, i,j : (a, i) E occ(T) 1\ (b,j) E occ(T)

:(a, i) <u (b,j) =? (a, i) <T (b,j))

(End of Theorem)

Partial order < o on occ(T) is said to respect partial order < 1 on occ(T) if

(Aa,b,i,j: (a,i) E occ(T) 1\ (b,j) E occ(T) 1\ (a,i) < 1 (b,j): (a,i) <o (b,j))

66 2 Properties of processes and systems

We are interested in partial orders on occ(T) that respect partial order <r.

For partial order < on occ(T) process PR(T, <) is defined to be the least process U
satisfying

0 aU= aT

1 t: E tU

2 (At,a: tE tU 1\ (a,l(da)) E occ(T)
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) < (a,R(da)): f(tÎb) > j): ta E tU)

We have

Theerem 2.5.3

0 T Ç PR(T, <r)

If partial order <o on occ(T) respects partial order < 1 on occ(T)
then PR(T, <o) Ç PR(T, < 1)

Pro of

0 We prove that tT Ç tPR(T, <r) by induction on the lengthof traces from tT.

base R(t) = 0 t = t: E tPR(T, <r)

step l(t) > 0

Assume (As: sE tT 1\ f(s) < l(t): sE tPR(T, <r)). Let t = ua. We derive

ua E tT

{ T is a process, l(u) < f(t), definition occ}

u E tPR(T, <r) 1\ (a,f(uîa)) E occ(T) 1\ ua E tT

=} { definition <r and pre}

u E tPR(T, <r) 1\ (a,f(uîa)) E occ(T)
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) <r (a,l(uîa)): l(uîb) > j)

{ definition PR(T, <r)}

ua E tPR(T, <r)

1 Let partial order <o on occ(T) respect partial order< 1 on occ(T). We prove that
tPR(T, < 0) Ç tPR(T, < 1) by induction on the lengthof traces from tPR(T, < 0).

base l(t) = 0 t = t: E tPR(T, <1)

step l(t) > 0

Assume (As: sE tPR(T, < o) 1\ l(s) < l(t): sE tPR(T, < 1)). Let t = ua. We derive

2.5 Partial orders and sequence functions

ua E tPR(T, <o)

= { definition PR(T, <o) }

u E tPR(T,<o) 1\ (a,i(uîa)) E occ(T)
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) <o (a,l(uîa)): l(ulb) > j)

::} {i(u)< l(t), <o respects < 1 }

u E tPR(T,< 1) 1\ (a,l(uÎa)) E occ(T)
1\ (A b,j: (b,j) E occ(T) 1\ (b,j) < 1 (a,l(u îa)): l(uÎb) > j)

= { definition PR(T, < 1)}

ua E tPR(T, <t)

(End of Proof)

Theorem 2.5.4

Let T be a process. If < is a partial order on occ(T) then PR(T, <) is cubic.

Pro of

Let < be a partial order on occ(T).

1. Let ta E tPR(T, <),tb E tPR(T, <), and a :j:. b. We derive

ta E tPR(T, <)
::} { definition PR(T, <)}

(a,l(tîa)) E occ(T)
1\ (Ac,k: (c,k) E occ(T) 1\ (c,k) < (a,l(tîa)): l(tîc) > k)

=> {a:j:.b}
(a,l(tbîa)) E occ(T)

1\ (Ac, k: (c, k) E occ(T) 1\ (c, k) < (a,l(tMa)): l(tbîc) > k)

=> {tb E tPR(T, <), definition PR(T, <)}

tba E tPR(T, <)

Analogously, one can derive tab E tPR(T, <).

67

ii. Let tab E tPR(T, <) and tba E tPR(T, <). We prove by induction on the length
of trace u

(A u :u E aT" :tabu E tPR(T, <) :: tbau E tPR(T, <))

base l(u) = 0
We have u= ê and tabeE tPR(T, <) = tbae E tPR(T, <).

step l(u) > 0
Let u= vc. We derive

68 2 Properties of processes and systems

tabvc E tPR(T, <)
= { definition PR(T, <)}

tabv E tPR(T, <) 1\ (c,f(tabvlc)) E occ(T)
1\ (Ad,k: (d,k) E occ(T) 1\ (d,k) < (c,i(tabvlc)) :i(tabv~d) > k)

= {f(v) < i(u), property i}
tbav E tPR(T, <) 1\ (c,f(tbavk)) E occ(T)

1\ (Ad, k : (d, k) E occ(T) 1\ (d, k) < (c,i(tbav ~c)): i(tbav~d) > k)

{ definition PR(T, <)}

tbavc E tPR(T, <)

111. Let tac E tPR(T, <), tbc E tPR(T, <), and a -:/:- b. We derive

tac E tPR(T, <) 1\ tbc E tPR(T, <)
=> { definition PR(T, <)}

(c,f(tak)) E occ(T) 1\ (c,i(tblc)) E occ(T)
1\ (Ad,k: (d,k) E occ(T) 1\ (d,k) < (c,i(tatc)): f(ta~d) > k)
1\ (Ad, k: (d, k) E occ(T) 1\ (d, k) < (c,f(tbk)): f(tb~d) > k)

=> {a -:/:- b, property 2.5.0, < is a partial order}

(c,f(tîc)) E occ(T)
1\ (Ad, k: (d, k) E occ(T) 1\ (d, k) < (c,f(tîc)): i(ta~d) > k 1\ f(tbld) > k)

=> {a-:/:- b, t E tPR(T, <), definition PR(T, <)}

teE tPR(T, <)

(End of Proof)

Example 2.5.5

Let T = PR(a; b; c I b; c ; a) . Then partial order <r is characterized by

(b,O) <r (c,O)

and PR(T, <r) = PR(a; b; c I b; a; c I b; c; a). Define partial order < on occ(T) by

(b,O) < (a,O)
(a,O) < (c,O)

Then < respects <r, and we have PR(T, <) = PR(b; a; c). Notice that neither
PR(T, <) Ç T nor T Ç PR(T, <) holds.

(End of Example)

2.5 Partial orders and sequence functions 69

The above example shows that if partial order < respects <r we need not have that
PR(T, <) Ç T. From theorem 2.5.3 it follows that in case T = PR(T, <r) we have
that PR(T, <) Ç T for all partial orders < respecting <r. Therefore, we concentrate
on the class of processes T satisfying T = PR(T, <r). Tom Verhoeff ([Ve86]) showed

Theorem 2.5.6

Let T be a process. We have

T = PR(T, <r) = T is cubic

Pro of

If T = PR(T, <r) then by theorem 2.5.4 T is cubic.

Assume T is cubic. By theorem 2.5.3 we have that T Ç PR(T, <r). By theorem 2.5.4
we have that PR(T, <r) is cubic. We prove by in duetion on the length of trace t that

(At: tE tPR(T,<r): tE tT)

base i(t) = 0 t = é. E tT

step i(t) > 0
A ss urne

(Au: u E tPR(T, <r) A. i(u)< i(t): u E tT)

Let t = ua. Since t E tPR(T, <r) we have

u E tT A. (a,i(u~a)) E occ(T)
A. (A b,j : (b,j) E occ(T) A. (b,j) <r (a,i(da)): i(ulb) > j)

Since (a,i(u~a)) E occ(T) choose s such that

sa E tT A. i(s~a) = i(u~a)
A. (Ar: ra E tT A. l(rÎa) = i(u~a): i(r) ~ i(s))

We prove that

(Av, b: vb::; s: (b,l(vÎb)) <r (a,i(uÎa)))

Let vb::; s. Assume --.((b,i(v~b)) <r (a,i(ufa))) or, equivalently,
(b,i(vfb)) ft pre(a,i(ufa), T). Choose w such that

wa E tT A. i(wfa) = i(uÎa) A. i(wfb)::; i(vÎb)

70 2 Properties of processes and systems

We derive

sa E tT I\ wa E tT
=> { T is cubic, theorem 2.4.6}

sa i #(wa) E tT

= { property 2.4.5, C(w la) = C(u ta) = C(s la)}

(si #w)a E tT

Furthermore, we have

R((s i #w)la) = C(sia) = R(u ia)

and

R(wib):::; C(vib) < R(vblb):::; C(sib)

The above implies that R(s i #w) < C(s) which contradiets the assumption made a bout
s. Therefore, we have (b,R(vib)) <r (a,C(uia)) and

(Av,b: vb:::; s: C(uib) > C(vib))

This implies that #s Ç #u and, since C(sla) = C(uta),

ua =u(sa\ #u) E tT

(End of Proof)

We now focus on the orderings of events of cubic processes that can be expressed by
so-called sequence functions. Let T be a cubic process. Let 0' E occ(T) --> N. Define
binary relation <u on occ(T) by

(a, i)<" (b,j) = O'(a, i)< O'(b,j) (a, i) E occ(T), (b, j) E occ(T)

Then (occ(T), <"} is a partially ordered set.
Function 0' is called a sequence function for process T if

(Aa,b,i,j: (a, i) E occ(T) I\ (b,j) E occ(T) I\ (a, i) <r (b,j): (a, i) <u (b,j))

J.e. partial order <u respects partial order <r ([Ee]). For occurrence (a, i) E occ(T)
0'(a, i) may be interpreted as the moment in time at which (a, i) takes place. Th en
function 0' describes a possible synchronous (clocked) behaviour of the mechanism
conesponding to process T .

2.5 Partial orders and sequence functions

Theorern 2.5. 7

Let T be a cubic process. Let u E occ(T) --t N be defined by

u(a, i) = I pre(a, i, T) I (a, i) E occ(T)

Th en u is a sequence function for T.

(End of Theorem)

Exarnple 2.5.8

Let T = PR(a, b; c). Then u0 defined by

u0(a, 0) = 0
uo(b,O) 0
u0 (c,O) 2

and u 1 defined by

u1(a, 0) = 0
u 1(b, 0) = 1
u 1(c, O) 2

are sequence fundions for T. Notice that

u0 (d, i) = I pre(d, i, T) I
(End of Example)

(d, i) E occ(T)

71

From the following theorem it follows that if u is a sequence function for T and f E

N --t N is an increasing function then f o u is a sequence function for T as well.

Theorern 2.5.9

Let T be a cubic process. Let u be a sequence nmction for T. If p E occ(T) --t N
satisfies

(Aa,b, i ,j: (a, i) E occ(T) 1\ (b,j) E occ(T) 1\ (a , i) <r (b,j)
: u(b,j)- u(a,i) ~ p(b,j)- p(a,i))

then p is a sequence fundion for T.

(End of Theorem)

72 2 Properties of processes and systems

In order to give a different characterization of sequence functions we need two lemmas.

Lemma 2.5.10

Let T be a cubic process. Let a be a sequence function forT. Then

(At,a,b: tab E t T I\ a(a,l(tîa)) ~ a(b,l(tîb)): tba E tT)

Pro of

Let tab E tT and a(a,l(tÎa)) ~ a(b,l(tîb)). The case a= b being trivia! we assume
a "f. b. We derive

a(a, l(tfa)) ~ a(b,l(tîb))

{calculus}

•(a(a,l(tîa)) < a(b,l(tîb)))

:::} { a is a sequence function for T}

•((a,l(tîa)) <r (b,l(tfb)))

{ definition <r}
(a,l(tîa)) rf. pre(b,l(tîb), T)

{ definition pre }

(Es : sb E tT I\ l(s lb) = l(tîb) : l(s Îa) :S l(tîa))

Choose trace s such that sb E tT, l(sîb) = l(tîb) , and l(sîa) ::=:; l(tîa) . Then #(ab) n
(# s - #t) = 0 . We derive

sb(tab\ #(sb))

= { property 2.3.1}

sb((tab\ #s) \ #b)
{ property 2.3.1}

sb((t \ # s)(ab \ (#s- #t)) \ #b)

{ #(ab) n (#s- #t) = 0, property 2.3.1}

sb((t \ #s)ab \ #b)

= { #b n (#t- #s) = 0, property 2.3.1, a i- b}
sb(t \ #s)a

Since T is conservative we conclude that sb(t \ #s)a E tT. Furthermore,

2.5 Partial orders and sequence functions 73

t(sb(t \ #.s)a \ #t)

= { property 2.3.1}

t(.sb \ #t)((t \ #s)a \ (#t- #(sb)))

= {property2.3.1,f(slb)=f(tlb)}

t(s \ #t)b((t \ #s)a \ #(t \ #s))
= { property 2.3.1 }

t(s \ #t)ba

Since T is conservative we conclude that t(s \ #t)ba E tT. Since l(sla) :::; l(tla) we
have #(.s \ #t) n #a= 0. From this, t(.s \ #t)b E tT, and tab E tT we infer, since T
is cubic, that tb E tT. From ta E tT, tb E tT, and a =j:. bit now follows that tba E tT.

(End of Proof)

Lemma 2.5.11

Let T be a cubic process. Let a E occ(T) ---t .N be such that

(i) (A a, i: (a, i) E occ(T): (Aj: 0:::; j <i: a(a,j) < a(a,i)))

and

(ii) (A t,a, b: tab E tT Á tba f/. tT: a(a,l(tla)) < a(b,l(tlb)))

Then for all t, t E tT, we have

(Es : s E tT : #t = #s /\
(A u, v,c, d: ucvd:::; s: a(c, f(ulc)):::; a(d,f(ucvld))))

Proof

Let t E tT. We construct a trace s E tT such that #t = #s and

(Au, v,c, d: ucvd:::; s : a(c,l(ulc)):::; a(d,l(ucvld)))

or, equivalently,

(A u, c, d: ucd:::; s: a(c, f(u Ie)):::; a(d, l(udd)))

74 2 Properties of processes and systems

Consicier the following algorithm.

s, k:= t, (Nu, v, c, d: ucvd s; t : a(c, f!(tÎc)) > a(d, I!(ucv rd)))

{ invariant: s E tT A. #s = #t
A. k = (Nu,v,c,d: ucvd s; s: a(c,f!(uk)) > a(d,f!(ucv rd)))

, variant function: k }

; do k f. 0--+ {k > 0}

od

let s = ucdv such that a(c,f!(uk)) > a(d,f!(ud d))

{ (i) implies c f. d, (ii) implies udc E tT,

T is conservative and therefore udcv E tT}

; .s, k:= udcv, k - 1

{ k = 0, hence (A u, c, d: ucd s; s: a(c,f!(uk)) s; a(d,f!(udd)))}

(End of Proof)

Theorem 2.5.12 ([Ee])

Let T be a cubic process. Let a E occ(T) --+ N. Function a is a sequence function for
T if and only if

(i) (A a, i: (a, i) E occ(T): (Aj: 0 s; j <i: a(a,j) < a(a,i)))

and

(ii) (At, a, b: tab E tT A. tba (j_ tT : a(a,C(da)) < a(b,f!(tÎb)))

Pro of

0 Assume a is a sequence function forT. Let (a, i) E occ(T) and 0 s; j <i.
Then (a,j) E pre(a, i, T) and

(a,j) E pre(a,i,T)

{ definition <r}

(a,j) <r (a, i)

=> { a is a sequence function for T }

a(a,j) < a(a,i)

From lemma 2.5.10 it follows that (ii) holds.

1 Assume a satisfies (i) and (ii) . Let (b,j) E occ(T) and (a, i) E pre(b,j, T). If

2.5 Pa.rtia.l orders a.nd sequence functions 75

a= b, then i< j and, by (i), a-(a, i) < a-(b,j). Hence, we assume a-:/:- b. Choose trace
t such that tb E tT and i(t/b) = j. We now have l(tla) >i. Using lemma 2.5.11 we
choose s E tT such that #s = #tb and

(A u,v, c, d: ucvd ~ s: o-(c,l(ulc)) ~ o-(d,l(ucvld)))

Let ub ~ s a.nd l(utb) = j. We now have l(ula) > i. Let u = vaw be such that
l(vla) =i. Then a-(a,l(vla)) ~ o-(b,l(vawlb)).

Assume that equality holds. Consicier the following algorithm.

y:=w
{invariant: vayb E tT 1\ vay ~ s 1\ a-(a,l(vla)) = o-(b,l(vaylb)),

variant function : l(y) }

; do y -:/:- ê -+ let y = ze

{ o-(c,l(vaztc)) = o-(b,l(vaylb)),

(i) implies c -:/:- b, (ii) implies vazb E tT }

j y:= z

od

{ vab E tT 1\ o-(a,l(vla)) = o-(b,l(valb)), (ii) implies vba E tT}

Thus vba E tT. This implies that i(vla)> i which contradiets l(vla) =i.
Hence o-(a,i) = a-(a,l(vla)) < o-(b,l(vawlb)) = a-(b,j).

(End of Proof)

Theorem 2.5.13

Let X be a set of cubic processes. Let for all T E X O"T be a sequence function for T.
If

(0) (AT, U : TE X 1\ U E X
: (A a, i: (a, i) E occ(T) n occ(U) n occ(W(X)) :a-T(a, i)= a-u(a, i)))

then a- E occ(W(X))-+ N defined by

(1) a-(a, i) = a-T(a, i)

is a sequence function for W(X).

Pro of

TE X, (a, i) E occ(W(X)) n occ(T)

Assume (0) holds. Let a- be defined by (1). Function a- is well defined due to condition
(0). Clearly, function a- satisfies condition (i) of theorem 2.5.12. We will show that

76 2 Properties of processes and systems

condition (ii) is also satisfied.
Let tab E tW(X) and tba (/_ tW(X). Observe that a-:/:- b. We have

tab E tW(X) 1\ tba (/_ tW(X)
(AT: TE X 1\ a E aT 1\ b (/_aT: (t laT)a E tT)
1\ (AT : T EX 1\ a E aT 1\ b E aT: (t faT)ab E tT)
1\ (AT: T E X 1\ a(/_ aT 1\ b E aT : (tlaT)b E tT)
1\ (ET : TE X 1\ a E aT 1\ b E aT: (daT) ba (/_ tT)

Choose T E X such that a E aT, b E aT, (tfaT)ab E tT, and (tfaT)ba (/_ tT. We
derive

(tîaT)ab E tT 1\ (tlaT)ba (/_ tT

=> {aT is a sequence function forT, theorem 2.5.12, a-:/:- b}

aT(a,i(tfaTia)) < aT(b,i(tfaTib))

{a E aT, bEaT, property projection}

aT(a,i(tfa)) < aT(b,i(tlb))

= { definition a, (a,i(tla)), (b,i(tlb)) E occ(W(X)) n occ(T) }

a(a, i (tla)) < a(b,f(tîb))

(End of Proof)

Theorem 2.5.14

Let X be a set of cubic processes. Let for all T , T E X, aT be a sequence fundion for
T. If

(0) (AT, U: TE X 1\ U E X : occ(TiaU) = occ(U laT))

and

(1) (AT,U:TEX 1\ UE X
:(A a, i : (a, i) E occ(T) n occ(U): aT(a, i)= au(a, i)))

then lockfree(X).

Pro of

Assume (0) and (1). LettE tW(X) be such that (EU : U EX : suc(tfaU, U) -:/:- 0) .
Choose T E X and a E suc(t laT, T) such that

aT(a, f(ti a)) = (MIN U, b : U E X 1\ b E suc(t Î aU, U) : au(b, f(t lb)))

2.5 Partial orders and sequence functions 77

We show that ta E tW(X). Defi.ne Y = {U I U EX I\ a EaU}. LetSE Y. Since
(a,f(tfa)) E occ(S) and Sis cubic, there exists a trace x such that

(tfaS)xa EtS I\ x la= ê

f(x) =(MIN y: (tfaS)ya EtS I\ yla = ê: l(y))

On basis of the algorithm given in the proof of lemma 2.5.11 we assume

(Au, v, b, c: ubvc ~ xa: O"s(b,f((daS)ulb)) ~ O"s(c,f((tlaS)ubvlc)))

Assume x = dz. From the algorithm given in the proof of theorem 2.5.12 and the
definition of x it follows that

O"s(d,l(tld)) = O"s(d,l((tlaS) ld)) < O"s(a,l((daS)dzla)) = O"s(a,l(da))

This, however, contradiets

O"s(a,f(tla)) = O'T(a,f(tla)) ~ O"s(d,l(tld))

We conclude that x = ê and, hence, a E suc(t laS, S). We now have

(A U: U EX I\ a EaU: a E suc(t laU, U))

and, therefore, ta E tW(X).

(End of Proof)

Theorem 2.5.15

LetTand U be cubic processes such that U Ç T. Let 0' E occ(U) -t N be a sequence
function for U. Define T E occ(T) -t N as follows

T(a,i) = O'(a,i) for (a, i) E occ(U)

T(a,i) = (MAXc,k: (c,k) E occ(U) I\ (c,k) <T (a, i): O'(c,k) + 1)maxO

+ lpre(a, i, T) n occ(T) \ occ(U)I

Then T is a sequence function for T .

Pro of

for (a, i) E occ(T) \ occ(U)

Let (a, i) E occ(T), (b,j) E occ(T), and (a, i) <T (b,j). Assume (a, i) E occ(T) \
occ(U) and (b,j) E occ(U). Let ub E tUbe such that f(ulb) = j. Since U Ç Tand
(a, i) <T (b,j), we now have f(uta) >i and, hence, (a, i) E occ(U) which contradiets
(a, i) E occ(T) \ occ(U). Therefore, we only have to distinguish the following cases

1. (a, i) E occ(U) I\ (b,j) E occ(U)
We derive

78

(a, i) <T (b,j)

=> {U Ç T, theorem 2.5.2}

(a, i) <u (b,j)
=> { a is a sequence function for U }

a(a,i) < a(b,j)

{ definition T}

T(a,i) < T(b,j)

2 Properties of processes and systems

11. (a, i) E occ(T) \ occ(U) 1\ (b, j) E occ(T) \ occ(U)
We derive

(a, i) <T (b,j)

=> { definition <T, property 2.5.0}

pre(a,i,T) U {(a, i)} Ç pre(b,j,T)

=> {set calculus, (a, i) E occ(T) \ occ(U)}

pre(a,i,T)nocc(U) Ç pre(b,j,T)nocc(U) .
1\ (pre(a,i,T)nocc(T)\occ(U))U{(a,i)} Ç pre(b,j,T)nocc(T)\occ(U)

=> { definition <T, defini t ion T}
T(a, i)< T(b,j)

111. (a,i) E occ(U) 1\ (b,j) E occ(T) \occ(U)
We derive

T(a, i)
{ definition T }

a(a, i)

< {calculus}

a(a, i)+ 1

< { definition T, (a, i) <T (b,j) , (a, i) E occ(U) }

T(b,j)

(End of Proof)

Theorem 2.5.16

Let T be a cubic process and let A be an alphabet. Let a E occ(T) --+ N be sequence
function for T . Define T E occ(TIA) --+ N by

T(a, i)= a(a, i) (a, i) E occ(TIA)

2.5 Pa.rtial orders a.nd sequence functions

Then ris a sequence function for TîA.

Pro of

Let (a, i) E occ(T IA) and (b,j) E occ(TIA). We derive

(a,i) <rrA (b,j)
{ theorem 2.5.2}

(a, i) <r (b,j)

=> { 0' is a sequence function for T}

q(a, i) < q(b,j)

= { definition r }

r(a, i) < r(b,j)

(End of Proof)

Theorem 2.5.17

79

Let T be a cubic process. Let A be an alphabet . Let 0' E occ(T) ~ N be a sequence
function forT. Let p E occ(TÎA) ~ N. If

(0) (Aa,b,i,j: (a, i) E occ(TIA) /\ (b,j) E occ(TÎA)
/\(a, i) <rtA (b,j): O'(b,j)- q(a,i) ~ p(b,j)- p(a,i))

and

(1) (A a: (a,O) E occ(TIA): q(a,O) ~ p(a,O))

then there exists a function r E occ(T) ~ .N that is a sequence function for T and
satisfies

(A a, i: (a, i) E occ(TIA): r(a,i) = p(a,i))

Pro of

Let p satisfy (0) and (1). From theorems 2.5.9 and 2.5.16 it follows that pis a sequence
function for TI A. Furthermore, we have that

(Aa,i: (a,i) E occ(TîA): q(a,i) ~ p(a,i))

Define for (a, i) E occ(T)

M(a, i)
= (MAXc, k: (c, k) E occ(T ÎA) /\ (c, k) <r (a, i) : p(c, k)- q(c, k)) max 0

80 2 Properties of processes and systems

Define r E occ(T) ~ N by

r(a, i) = p(a, i) (a, i) E occ(TIA)

r(a,i) = a(a,i) + M(a,i) (a, i) E occ(T) \ occ(Ti A)

Let (a, i) E occ(T), (b,j) E occ(T), and (a, i) <T (b,j). We distinguish four cases.

1. (a, i) E occ(TIA) 1\ (b,j) E occ(TIA)
We now have

r(a,i) = p(a,i) < p(b,j) = r(b,j)

11 . (a, i) E occ(T) \ occ(TIA) 1\ (b,j) E occ(T) \ occ(TIA)
We derive

r(a, i)

{ definition r }

a(a,i) + M(a,i)

< {(a, i) <T (b,j), a is a sequence function forT, property 2.5.0}

a(b,j) + M(b,j)
{ definition r}

r(b,j)

111. (a, i) E occ(TIA) 1\ (b,j) E occ(T) \ occ(T IA)
We derive

r(b,j)

{ definition r }

a(b,j) + M(b,j)

> {(a, i) <T (b,j), (a, i) E occ(TIA), a(a, i)~ p(a, i)}

a(b,j) + p(a,i)- a(a,i)

> {(a, i) <T (b,j), a is a sequence function forT}

p(a, i)

{ definition r }

r(a, i)

IV. (a, i) E occ(T) \ occ(TIA) 1\ (b,j) E occ(TIA)
We derive

2.5 Pa.rtia.l orders a.nd sequence functions

r(a, i)

= { definition "T }

u(a, i)+ M(a, i)

< {(a, i) <T (b,j), (b,j) E occ(TIA), (0)}

u(a, i)+
(MAX c, k: (c, k) E occ(Tt A) 1\ (c, k) <T (a, i) : p(b,j)- u(b,j)) max 0

< {p(b,j)- u(b,j) 2 0}

u(a, i)+ p(b,j)- u(b,j)
< {(a, i) <y (b,j), u is a sequence function forT}

p(b, j)

{ definition "T }

r(b,j)

(End of Proof)

81

Let X be a set of cu bic processes. Let u be a sequence function for W (X). Let T E X.
Define PT E occ(W(X) laT) --+ N by

PT(a, i) = u(a, i) (a, i) E occ(W(X) laT)

On account of theorem 2.5.16 PT is a sequence function for W(X) laT.
Since W(XHaT Ç T, there exists, on account of theorem 2.5.15, a sequence function
uy for T such that

uy(a, i) = py(a, i) = u(a, i) (a, i) E occ(W(XHaT)

On the other hand, let for all T, T E X, uy be a sequence function for T and let

(AT, U: TE X 1\ U EX
:(A a, i :(a, i) E occ(T) n occ(U) n occ(W(X)) : uy(a, i)= uu(a, i)))

Then, by theorem 2.5.13 the function u E occ(W(X))--+ N defined by

u(a, i) = uy(a, i) TE X, (a, i) E occ(W(X)) n occ(T)

is a sequence function for W(X).

82 2 Properties of processes and systems

Let S be a system such that (AT: TE pS: T is cubic).
A function e> E occ(PR(S)) --+ Nis called a sequence function for system S if there
exists a sequence function T for W(p(S)) such that

(A a, i: (a, i) E occ(PR(S)): T(a,i) = e>(a,i))

Observe that e> is a sequence function for PR(S).

Corollary 2.5.18

Let S be a system such that (AT: T E pS : T is cubic). Let e> E occ(PR(S)) --+ N
be a sequence function for S. Let p E occ(PR(S)) --+ N. If

(Aa,b,i,j: (a,i) E occ(PR(S)) 1\ (b,j) E occ(PR(S))
1\ (a, i) <PR(S) (b,j): e>(b,j)- e>(a, i):::; p(b,j)- p(a, i))

and

(A a :(a, 0) E occ(PR(S)) : e>(a, 0) :::; p(a, 0))

then p is a sequence function for S.

(End of Corollary)

In the following we consider components whose corresponding systems contain cubic
processes only. This is, for instance, the case when all occurring commands are re
stricted commands. Let c be a component satisfying the above condition. A function
e> E occ(PR(c))--+ Nis called a sequence function for c if e> is a sequence fundion for
sys(c).

The following theorem will be applied in the proof of a theorem concerning sequence
fundions for simple recursive components.

Theorem 2.5.19

Let T be a cubic process and Aan alphabet such that aT= A U p·A,

(0) (A a, i :a E A: (a, i) E occ(T) = (p·a, i) E occ(T))

and

(1) (A a, i: a E A 1\ (a, i) E occ(T): (a,i) <r (p·a,i))

Let e> E occ(T) --+ N be a sequence fundion for T satisfying

2.5 Partial orders and sequence functions

(*) (Aa,b,i,j: a E A I\ b E A I\ (a, i) E occ(T)
I\ (b,j) E occ(T) I\ (a, i) <r (b,j)

: a(b, j) - a(a, i) ~ a(p·b, j) - a(p·a, i))

Define for (p·a, i) E occ(T)

M(p·a,i)=(MAXc,k:cEA I\ (c,k)Eocc(T)
I\ (c, k) <r (p·a, i): a(p·c, k)- a(c, k))

Then rE occ(T) -4 N defined by

r(a, i) = a(p·a, i)

r(p·a, i) = a(p·a, i)+ M(p·a, i)

a E A, (a, i) E occ(T)

a E A, (p·a, i) E occ(T)

is a sequence fundion forT. If, moreover, T satisfies

(Aa,b,i,j: a,b E A I\ (a,i),(b,j) E occ(T)
:(a, i) <r (b,j) => (p·a,i) <r (p·b,j))

then r satisfies (*).
Pro of

83

Observe that T is indeed a function mapping occ(T) into N. We wiJl show that T

satisfies the condition in theorem 2.5.9. Let a E A and b E A. We distinguish four
cases.

1. (a, i) E occ(T) I\ (b,j) E occ(T) I\ (a, i) <r (b,j)
We derive

r(b,j)- r(a, i)

{ definition T }

a(p·b, j) - a(p·a, i)

> {(a, i) <r (b,j), (*)}

a(b, j) - a(a, i)

11. (p·a,i) E occ(T) I\ (p·b,j) E occ(T) I\ (p·a,i) <r (p·b,j)
We derive

r(p·b,j)- r(p·a, i)

{ definition r}

a(p·b,j)- a(p·a, i)+ M(p·b,j)- M(p·a, i)

> { (p·a, i) <r (p·b,j), definition M, (1)}

a(p·b, j) - a(p·a, i)

84 2 Properties of processes and systems

m. (p·a,i) E occ(T) /\ (b,j) E occ(T) /\ (p·a,i) <r (b,j)

We derive

r(b,j)- r(p·a,i)

{ definition T }

O"(p·b,j)- O"(p·a, i)- M(p·a, i)

> { (p·a, i) <r (b,j), (*), definition M}

O"(p·b,j)- O"(p·a, i)- O"(p·b,j) + O"(b,j)

{calculus}

D"(b,j)- D"(p·a,i)

1v. (a, i) E occ(T) /\ (p·b,j) E occ(T) /\ (a, i) <r (p·b,j)
We derive

r(p·b,j) - r(a, i)

{ definition T }

D"(p·b,j)- O"(p·a,i) + M(p·b, j)

> {(a, i) <r (p·b,j)}

O"(p·b, j) - D"(p·a, i) + O"(p·a, i) - O"(a, i)
{calculus}

D"(p·b, j) - O"(a, i)

From the above we infer that T is a sequence function for T.
Assume T satisfies

(A a, b, i,j: a, b E A /\ (a, i), (b,j) E occ(T)
:(a, i) <r (b,j) =? (p·a, i) <r (p·b,j))

Let a E A, b E A, (a, i) E occ(T), (b, j) E occ(T), and (a,i) <r (b,j) . We derive

r(p·b, j) - r(p·a, i)
> { ii., (p·a, i) <T(p·b,j)}

D"(p·b,j)- D"(p·a, i)

= { definition T }

r(b,j) - r(a,i)

(End of Proof)

2.5 Partial orders and sequence functions

Theorem 2.5.20

Let component c be recursive component

com c(A):

moe

sub p: c bus
s

85

where aPR(S) = A U p·A and PR(S) is a cubic process satisfying the conditions in
theorem 2.5.19. If u E occ(PR(S)) ~ ./1! is a sequence function for PR(S) satisfying
condition (*)in theorem 2.5.19. then TE occ(PR(c)) ~ ./1! defined by

r(a, i)= u(a, i) (a, i) E occ(PR(c))

is a sequence {u netion for c and sys(c) is a lockfree system.

Pro of

Let u E occ(PR(S)) ~ ./1! be a sequence function for PR(S) satisfying condition (*) in
theerem 2.5.19. We have

sys(c) = (A, { (p·)1PR(S) ll ~ 0}}

Wedefine functions Ut, l ~ 0 1\ u 1 E occ((p·)1PR(S))--+ ./1!, inductively by

O'o =u

u1+1 ((p·)1+1a, i)= ut((p·)1+1a, i) for l ~ 0, a E A, (a, i) E occ(PR(S))

O't+I((p·) 1+2a, i)= O't((p·)1+1a, i)
+ (MAXc,k: c E A 1\ (c,k) E occ(PR(S))

1\ (c, k) <PR(S) (p·a, i): O't((p·)1+1c, k)- ut((p·)1c, k))

for l ~ 0, a E A, (p·a, i) E occ(PR(S))

Then u 1 is a sequence function {or (p·)1PR(S) for all l ~ 0 and

(Ak,l, c,m: 0:::; k < l 1\ (c,m) E occ((pfPR(S)) n occ((p·)1PR(S))

: uk(c, m) = O't(c, m)))

Then p E occ(W(psys(c)))--+ ./1! defined by

p(a, i) = uk(a, i) k ~ 0, (a, i) E occ(W(psys(c))) n occ((p-)"PR(S))

86 2 Properties of processes and systems

is a sequence function for W(psys(c)) such that

T(a, i)= p(a, i)

(End of Proof)

(a, i) E occ(PR(c))

Application of the above theorem is illustrated in examples 2.5.21 and 2.5.22.

Let T be a cubic process and a be a sequence function for T. We already mentioned
that for (a, i) E occ(T) a(a, i) may be interpreted as the moment at which (a, i) is
to take place. Likewise, one may interpret for (a,i) E occ(T), (b,j) E occ(T), and
(a, i) <r (b, j) a(b, j) - a(a, i) as the time elapsed between the i-th occurrence of
a and the j-th occurrence of b. Based on this interpretation we give the following
definition of constant response time.

Let S be a system such that (AT : T E pS : T is cubic) . System S is said to have
constant response time if there exists a sequence function a for S such that

(En : n ;:::: 1 : (At, a, b : tab E tPR(S) 1\ (a, f(ti a)) <PR(S) (b, f(ta Îb))
: a(b, i (taîb))- O"(a,i(tla)) Sn))

i.e. there exists a restricted (clocked) behaviour of the system such that there exists a
global upperbound for the time elapsed between any two consecutive external events.
A component cis said to have constant response time if sys(c) has constant response
time. Observe that the constant in the above condition may be interpreted as a measure
for the response time of the system.

Example 2.5.21

Consicier the following recursive component

comc(a,b):

moe

sub p: c bus
(a; p·a; b; p·b)*

We have PR(c) = SEM1 (a,b). Let U= PR((a; p·a; b; p·b)*). Define for i, i;:=:: 0,

a(a, i) = 4i

a(p·a, i)= 4i + 1

a(b, i) = 4i + 2

a(p·b, i) = 4i + 3

2.5 Partial orders a.nd sequence functions 87

We now have that u is a sequence function for U satisfying condition (*) from theorem
2.5.19. By theerem 2.5.20 we have that u restricted to occ(PR(c)) is a sequence function
for component c. Furthermore, we have

(At,c,d: tcd E tPR(c) 1\ (c,l(dc)) <PR(c) (d,l(tdd))
: u(d,l(tdd))- u(c,l(ttc)) ::=; 2)

Therefore, component c has constant response time.

(End of Example)

Example 2.5.22

Consicier the following recursive component

com c(a,b):
sub p: c bus
a· b· (p·a· a· b· p·b)*

' t ' , '

moe

We have PR(c) = SEM1 (a, b). Let U= PR(a; b; (p·a; a; b; p·b)*). Define for i, i 2: 0,

u(a,i) =(i+1)2 -1

u(b,i) =(i+ 1)2

u(p·a, i)= (i+ 2)2 - 2

u(p·b,i) =(i +2)2 + 1

Then u is a sequence function for U satisfying condition (*) from theerem 2.5.19 and,
therefore, theorem 2.5.20 is applicable. Component c does not have constant response
time.

(End of Example)

3 Communication of values and data independenee

3.0 Introduetion

In this and the following chapters we restriet ourselves to processes descrihing mech
anisms that can interact with their environment by sending and receiving values or
messages via channels. The transmission of a value or message via a channel is repre
sented by a pair consisting of the channel name foliowed by the message. Such pairs
are considered to be symbols.

In section 1.0 we presented an example of such a mechanism, viz. the variabie capable
of storing integer values. The process descrihing such a variabie is given by

VAR= PREF(({a,b} x Z, (Un: n EZ: { (a,n)t I tE {(b,n)}*})*))

Abstraction from the actual messages that are sent, i.e. abstraction from the values
that the varia.ble can store, results in process VARcom = PR((a; b*)*). Process VARcom
describes the so-called communication behaviour of the variable. As process VAR is
identified with the variable, process VARcom will he identified with the communication
behaviour of the variable. Let t be the current trace of the variabie (t E tVAR).
Let trace u descri he the communication pattern corresponding to t (u E t VARcom).
Observe that ua E tVARcom implies the existence of mE Z such that t(a, m) E tV AR
(according to process VAR communication of an actual message via channel a rnay
occur). The same observation can be made about channel b. In other words, the
cornrnunication pattern does not depend on the messages (data) that are sent and
received. Process VAR is called data independent.

An example of a process that is not data independent is FILTER, defined by

FILTER =PREF(({a, b} x Z
,({Un: n ~ 0: {(a,n)(b,n)}) U (Un: n < 0: {(a,n)}))*))

Process FILTER describes a mechanism that filters the negative numbers received via
channel a: it only transmits via channel b the nonnegative numbers received.

In this chapter we give a forma! definition of data independence. It is shown that data
independenee can be expressed in terros of transparence. Furthermore, a nurnber of
properties of data independent processes are given.

88

3.1 Com.munication of values 89

3.1 Communication of values

Transmission of va.lue or message m via cha.nnel c is modelled by the pair (c, m). We
a.ssume the existence of a set r of narnes and a set M (capita.l J.l) of values or messa ges.

Elements of r are called channels. Subsets of r are called channel sets.

Some cha.nnels are used to transmit only one kind of message, a so-qilled signal. These
channel.s are used for synchronization only. In order to model signal transmission we
introduce the so-called empty message .../ (read "tick"). We assume that .../ (/. M. We
define M,; = M U { .../}. From bere on wetaken = r x M,;.

We observe that every process T from the previous chapters can he identified with a
process that is obta.ined from T by substituting every symbol inT by a pair consisting of
that symbol foliowed by V· Due to this identification we often denote pairs containing
v by their cha.nnel narnes only.

Abstraction from the messages being sent is represented by the function ï E n -+ r
defined by

ï((c,m))=c

Function Î is extended to traces by defining

ï(ê) ê
ï(t(c,m)) = ï(t)c

Likewise, function ï is extended to trace sets, trace structures, a.nd processes. Function
ï may he interpreted as the projection on the cha.nnel names.

Let s a.nd t he traces, X a.nd Y trace sets, and T a.nd U trace structures such that
aT= aU.

Property 3.1.0

0 ï(s) E f*

1 ï(st) = ï(s)ï(t)

2 i(ï(s)) = l(s)

3 s :5 t => ï(3) :5 ï(t)
X Ç Y => ï(X) Ç ï(Y)
T Ç U => ï(T) Ç ï(U)

4 PREF(ï(X)) = ï(PREF(X))
5 Let T he a process. LettE tT. Then

ï(T) is a process

ï(suc(t,T)) Ç suc(ï(t),ï(T))

90 3 Communication of values and data independenee

suc(-y(t),-y(T)) = (Us: sE tT A -y(s) = -y(t): -y(suc(s,T)))
-y(after(t, T)) Ç after(-y(t), -y(T))
after(-y(t), -y(T)) =(U s: sE tT A -y(s) = -y(t): -y(after(s, T)))

(End of Property)

Notice that in the above property process -y(T) is identified with a process whose
alphabet is -y(aT) x h/}, since formally speaking -y(aT) is nota, subset of r x M,; = n.
Process -y(T) describes the communication behaviour of process T.

Due to our interpretation of the pairs in n projection is almost always clone on alphabets
of the form C x M,; where C is a channel set (C ç f). Therefore, we introduce the
following abbreviation. Projection of trace t on channel set C, denoted by tÎC, is
defined by

ttC = tt(C x M,;)

Accordingly, projection of trace sets, trace structures, and processes on channel sets
is defined. Projection on channel sets has properties similar to properties of ordinary
projection. We only mention one extra property.

Property 3.1.1

-y(stC) = -y(s)tC
-y(T te) = -y(T) te

(End of Property)

Let T be a process. The channel set of T, denoted by cT, is defined by

cT= -y(aT)

The elementsof cT are called the channels of process T . Let c he a channel of T. The
type of channel c inT, denoted by type(c,T), is defined by

type(c,T) = {mImE M,; A (c,m} E aT}

Notice that type(c, T) equals the set of all messages that T may transmit via channel
c a.ccording to its alphabet. The empty message .../was introduced explicitly to model
signa! transmission. Obviously, we must require that

(Ac : c E cT : .../ E type(c, T) = { .../} = type(c, T))

3.1 Communication of values 91

In the following we tacitly assume all processes to satisfy this condition. Observe that
for process T satisfying this condition and channel set C process T~C satisfies this
condition as well.

Property 3.1.2

Let T be a process and C be a channel set.

0 aT = (U c : c E cT : { c} x type(c, T))

1 c(T~C)=cTnC

2 type(c, T~C) = type(c, T) c E cT n C

(End of Property)

Next, we investigate the composition of processes. The following two examples show
that weaving of two processes may yield a result that is not in accordance with our
appreciation of processes and their composition.

Example 3.1.3

Process T = ({(a, 0) }, {(a, 0) }*) describes a mechanism that can repeatedly send
zeroes via channel a. Process U = ({a} x Z, ({a} x Z)") describes a mechanism
that can repeatedly receive arbitrary integer values via channel a. On basis of our
appreciation we would expect the composite of T and U to be described by ({a} x
Z, {(a, 0) }*). However, by just applying the definition of weaving we obtain

TwU = ({a} x Z,({a} x Z)*)

(End of Example)

Example 3.1.4

(=U)

Let T = RUN({(a,false)}) and U= RUN({(a,true)}).
We now have TwU = RUN({(a, false),(a,true)}). On basis of our appreciation we
would expect the composite of T and U to be ({ (a, false), (a, true)}, { e}) .

(End of Example)

Observe that in both examples the type of channel a in process T differs from the type
of a in process U. If in example 3.1.3 type(a, T) and type(a, U) were both Z, and in
example 3.1.4 type(a, T) and type(a, U) were both {false, true}, the weave of T and U

92 3 Communication of values and data independenee

would yield the expected result.
Hence, we define the following notion. Processes T and U are said to be compatible if

(Ac : c E cT n cU : type(c, T) = type(c, U))

It is easily seen that if two processes are compatible their weave will be the process we
expect on basis of our appreciation. Moreover, if processes T and U are compatible,
process T w U satisfies the tacit assumption

(Ac: c E c(TwU): v E type(c,TwU) = {v} = type(c,TwU))

provided that Tand U satisfy it . In the following we consider composition of compatible
processes only. Therefore, we tacitly assume processes that are to be composed to be
compatible.

Property 3.1.5

Let T and U be processes. Then

0 t(Tw U)= { t I tE (aT U aU)* A tieT E tT A tlcU E tU}

1 c(T w U) = cT u cU

2 "t(TwU) ç "t(T)w"t(U)

Pro of

We prove only 2. We derive

r(TwU)

= { definition 1 }

(l(a(Tw U)), { r(s) Is E t(Tw U)})

{ definition channel set, 0 }

(c(TwU), { r(s) Is E (aT U aU)* 1\ sleT E tT A slcU E tU})

C { 1, property 3.1.1, definition channel set}

(cT u cU, { r(s) lr(s) E (cT u cU)* A r(sHcT E t'Y(T) A r(s) lcU E tr(U)})
{ definition weave, definition channel set}

"t(T) w1(U)

(End of Proof)

The inclusion in property 3.1.5.2 may be a true inclusion as the following example
shows.

3.1 Communication of values

Example 3.1.6

T = ({a} x Z, {é, (a,O)})
U= ({a} x Z,{é,(a,l)})
Tw U= STOP({a} x Z)

1(T) = 1(U) = PR(a)
1(Tw U)= STOP(a) c PR(a) = 1(T) w1(U)

(End of Example)

93

We modify the definition of systems. We require that the processes of a system are
compatible with one another, and replace the external alphabet of a system by a
channel set consisting of the external channels of the system. More formally, a system
is a pair (C, X} where C is a channel set and X is a set of processes such that every
process T E X and every process U E X are compatible, and C Ç cW(X). Let S
be a system. Instead of derroting the external alphabet, eS now denotes the external
channel set of system S. The (external) process of system S, denoted by PR(S), is
defined by PR(S) = W(pS) ~eS. The type of external channel c of system S, denoted
by type(c, S), is defined by

type(c, S) = type(c, W(pS))

The projection of system S on channel set C, denoted by S~C, is defined by

src = (eS n C,pS)

For every system S the system 1(S) is defined by

1(S) = (eS, !(PS))

Let S and T be systems. In order to compose S and T we require that
cW(pS) n cW(pT) =eS neT and

(A c : c E eS n eT : type(c, S) = type(c, T))

If S and T satisfy this last condition they are said to be compatible. For compatible
systems S and T satisfying cW(pS) n cW(pT) =eS neT the composite of S and T,
denoted by S 11 T, is defined by

S 11 T = (eS U eT, pS U pT}

94 3 Communication of values and data independenee

Notice that due to the imposed restrictions S 11 T is indeed a system. In the following
we tacitly assume that systems that are to be composed are compatible.

Theorem 3.1.7

Let S and T be systems. Let C be a channel set. Then

r(StC)
r(S 11 T)

= ,(s) re
r(S) 11 r(T)

(End of Theorem)

3.2 Data independenee

A process is said to be data independent if the communication behaviour after the
current trace depends on the communication pattem associated with the current trace,
and not on the messages that have been sent and received. Formally, process T is called
data independent if

(At: tE tT: r(after(t,T)) = after(r(t),r(T)))

Example 3.2.0

Process

ADDER= PREF(({a,b,c} x Z

,({(a,m)(b,n)(c,m+n) lm,nEZ}
u{ (b,n)(a,m)(c,m + n) I m,n EZ})*))

is data independent.

(End of Example)

The next theorem gives three alternative characterizations of data independence.

3.2 Data independenee

Theorem 3.2.1

Let T be a process. The following four assertions are equivalent.

0 (At: tE tT: 1(after(t, T)) = after(1(t), 1(T)))

1 (As,t: sE tT 1\ tE tT 1\ 1(s) = 1(t): 1(after(s,T)) = 1(after(t,T)))

2 (At: tE tT: 1(suc(t, T)) = suc(1(t), 1(T)))

3 (As, t: sE tT 1\ tE tT 1\ 1(s) = 1(t): 1(suc(s,T)) = 1(suc(t,T)))

Pro of

95

Using property 3.1.0 one easily establishes the equivalence of 0 and 1, and of 2 and 3.
Furthermore, it is easily seen that 1 implies 3. It remains to prove that 3 implies 1.

Assume that 3 holds. Let s, t E tT be such that 1(s) = 1(t). By induction on the
length of trace u we prove

(Au: u E n•: u E t1(ajter(s,T)) :=u E t1(ajter(t,T)))

base f(u) = 0

e E t1(aft er(s, T))

= {se E tT}

true

= {teE tT}

é E t1(aft er(t, T))

step f(u) > 0
Assume

(Aw: wE !l* 1\ f(w) < f(u): wE t1(ajter(s,T)) :=wE t1(ajter(t,T)))

Let u = va. We derive

u E t1(aft er(s, T))

{u= va}

v E t1(after(s, T)) 1\ va E t1(after(s, T))

= { induction hypo thesis, f(v) < f(u)}

v E t1(aft er(t, T)) 1\ va E t1(aft er(s, T))

= { definition after, successor set, and 1}

(Ey,z: y,z E aT*: v = 1(Y) 1\ ty E tT
1\ v = 1(z) 1\ sz E tT 1\ a E 1(suc(sz, T)))

96 3 Communication of values and data independenee

Analogously, one can derive

uEt')'(after(t,T)) =:

(Ey, z: y,z E aT*: v = 'Y(Y) 1\ ty E tT
1\ v = 'Y(z) 1\ sz E tT 1\ a E 'Y(suc(ty,T)))

From 'Y(s) = 'Y(t) and 3 it now follows that

u E t')'(after(s, T)) == u E t')'(aft er(t, T))

(End of Proof)

Gomparing the definition of data independenee with the definition of non-disabling
we see a close resemblance. Data independenee can indeed be expressed in terros of
transparence. To do this we first introduce the function B E (f x M,;)* --+ (f U M,;)*
defined by

B(t:)
B(t(c, m})

t:
B(t) cm

Function B is defined for trace sets in the obvious manner. For every process T the
process B(T) is defined by

B(T) =PREF((cT U (U c: c E cT: type(c, T)), B(tT)})

Furthermore, we assume that r n M,; = 0.

Lemma 3.2.2

Let T be a process and let t E tT.

0 'Y(t) = B(t)fcT

'Y(T) = B(T) I cT

2 'Y(suc(t, T)) = suc(B(t), B(T)) Ç cT
'Y(after(t,T)) = after(B(t),B(T))IcT

3 (Au:uEtB(T):suc(u,B(T))ÇcT =: (Es : sEtT:B(s)=u))

4 cT is non-divergent with respect to B(T)

(End of Lemma)

3.2 Data independenee

Theorem 3.2.3

Let T be a process. Then

T is data independent

Pro of

T is data independent

{ theorem 3.2.1 }

cT is transparent with respect to 8(T)

(At: t E tT: 1(suc(t, T)) = suc('Y(t), 1(T)))

{lemma 3.2.2}

(A u : u E t8(T) 1\ suc(u, 8(T)) Ç cT : suc(u, 8(T)) = suc(u leT, 8(T) kT))

= {cT is non-divergent with respect to 8(T), theorem 2.1.20}

cT is transparent with respect to 8(T)

(End of Proof)

97

Next, we investigate when the projection of a data independent process on a channel
set is data independent. We have the following result.

Theorem 3.2.4

Let T be a data independent process. Let C be a channel set such that C Ç cT. If C
is non-disabling with respect to 1(T) then TIC is data independent . .

Pro of

Assume C is non-disabling with respect to 1(T). Let t E tT. We derive

1(after(tiC, TIC))

C { property 3.1.0}

after('Y(tiC), 1(T IC))

= { property 3.1.1}

after('Y(t) IC, 1(T) IC)

= { C is non-disabling with respect to 1(T)}

after('Y(t), 1(T)) IC

{ T is data independent }

1(after(t, T))rC

= { property 3.1.1}

98 3 Communication of values and data independenee

1(after(t, T) ~C)

C { property projection}

1(after(dC, TIC))

{End of Proof)

The following example shows that if TIC is data independent C does not necessarily
have to be non-disabling with respect to 1(T).

Example 3.2.5

T =PREF(({a,b,c,d,e} x Z, {(a,O)(c,O}(d,O), (b,O)(c,O}(e,O)}))
C = {c,d,e}
T is data independent

TIG= PREF(({c,d,e} x Z, {(c,O)(d,O), (c,O)(e,O)}))
TIC is data independent

1(T) = PR(a; c; dI b; c; e)
C is not ~on-disabling with respect to 1(T)

U=PREF(({a,b,c,d,e} xZ, {(a,O)(c, O)(d,O), (b,O)(c,l)(e, l)}))
U is data independent

UIC =PREF(({c,d,e} x Z, {(c,O}(d,O}, (c, l}(e, 1}}})
U IC is not data independent

1(U) = 1(T)

(End of Example)

We now investigate the data independenee of the weave of two data independent pro
cesses. First, we have the following lemma.

Lemma 3.2.6

Let T and U be data independent processes. Then

(At: tE t(TwU)

Pro of

: 1(suc(tlcT, T) n suc(ttcU, U))= 1(suc(dcT, T)) n l(suc(tîcU, U))
_ 1(suc(t,TwU)) = suc(r(t),!(T)wi(U)))

Let t E t(Tw U). We derive

3.2 Data independenee

"Y(suc(t, Tw U))

= { theorem 1.1.17, calculus}

and

"Y(suc(tlcT, T) n suc(tîcU, U))
U -y(suc(tlcT,T)\aU) U -y(suc(tîcU,U)\aT)

{ T and U are compatible, T and U are data independent }

"Y(suc(tlcT, T) n suc(tîcU, U))
U suc("Y(t)kT,")'(T))\cU U suc("Y(t)kU,-y(U))\cT

suc(1(t), 1(T) w -y(U))
{ theorem 1.1.17}

(suc("Y(t) ÎcT, 1(T)) n suc("Y(t) Ie U, "Y(U)))
U suc("Y(t)~cT,"Y(T))\cU U suc("Y(t)kU,"Y(U))\cT

{ T and U are data independent }

("Y(suc(tîcT, T)) n -y(suc(tîcU, U)))
U suc("Y(t)kT,")'(T))\cU U suc("Y(t)îcU,"Y(U))\cT

99

Observe that in the above derivations only unions of disjoint sets occur. Hence, we
infer

"Y(suc(t, Tw U)) = suc("Y(t), -y(T) w 'i'(U))
= -y(suc(tlcT, T) n suc(t ÎcU, U))= -y(suc(tlcT, T)) n l(suc(tlcU, U))

(End of Proof)

Theorem 3.2.7

Let T and U be data independent processes. Then

(At : tE t(TwU): l(suc(tîcT,T) n suc(tîcU, U))
= 1(suc(t îcT, T)) n "Y(suc(tlcU, U)))

_ (Tw U is data independent) 1\ 1(Tw U) = -y(T) w 1(U)

Pro of

(At : t E t(Tw U) : 1(suc(t îcT, T) n suc(tlcU, U))
= -y(suc(t îcT, T)) n 1(suc(t ÎcU, U)))

= {lemma 3.2.6}

(At : t E t(Tw U) : 1(suc(t, T w U)) = suc("Y(t), 1(T) w 'i'(U)))

100 3 Communication of values and data independenee

= { see note}

(At: tE t(Tw U): 1(suc(t,Tw U))= suc(!(t),!(Tw U)))
1\ (At : t E t(Tw U) : suc(!(t), 1(Tw U)) = suc(!(t), 1(T) w 1(U)))

= { theorem 3.2.1, calculus}

(T w U is data independent) 1\ 1(Tw U) = 1 (T) w 1(U)

note

Assuming tE t(TwU) 1\ 1(suc(t,TwU)) = suc(!(t),!(T)w!(U)) we derive

1(suc(t, Tw U))

C { property 3.1.0}

suc(!(t), 1(Tw U))

C { property 3.1.5}

suc(!(t), 1(T) w 1(U))

= { assumption }

1(suc(t, Tw U))

(End of Proof)

The following theorem provides conditions implying data independenee of the weave
that are stronger than the left hand side of the equivalence in 3.2.7.

Theorem 3.2.8

Let T and U be data independent processes. Let C and D be channel sets such that
C Ç cT, D Ç cU, and cT n cU Ç C U D. If Tand C satisfy

(At,c: tE tT 1\ c E 1(suc(t,T)) n C: {c} x type(c,T) Ç suc(t , T))

and U and D satisfy

(A u, d: u E tU 1\ dE 1(suc(u, U)) n D: {d} x type(d, U) Ç suc(u, U))

then Tw U is data independent, 1(Tw U) = 1(T) w 1(U), and
Tw U and E = (C n D) U C \ cU U D \cT satisfy

(At,c: tE t(TwU) 1\ c E !(suc(t,TwU))nE :
{c} x type(c, Tw U) Ç suc(t, Tw U))

(End of Theorem)

3.2 Data independenee 101

Being rather straightforward the proof of the above theorem is omitted.

Notice that the conditions in theorem 3.2.8 are both in terms of one process only.
These conditions are met if we, for instance, distinguish between input and output
channels in both processes thereby requiring that a process puts no restrictions on the
values it is willing to receive via its input channels, and that each channel connecting
the processes is an input channel in one process and an output channel in the other
process.

Theorem 3.2.9

Let X be a set of data independent processes. Let for every process T E X Cr be a
channel set such that Cr Ç cT. If

0 (At: tE tT 1\ c E î(suc(t, T)) n Cr: {c} x type(c, T) Ç suc(t, T))

1 (AT, U: TE X 1\ U EX: cT n cU Ç Cr U Cu)

then W(X) is data independent, 'Y(W(X)) = W(î(X)), and

(At : t E tW(X) 1\ c E 1(suc(t, W(X))) n C :
{c} x type(c, W(X)) Ç suc(t, W(X)))

where

C = { c I c E cW(X) 1\ (AT : T E X 1\ c E cT : c E CT)}

U (UT : T E X : CT\ (U U : U E X\ {T} : cU))

If S is a system such that pS = X and 1(S) is non-disabling, then PR(S) is data
independent.

(End of Theorem)

Theorem 3.2.10

Let (Tn)n~o be a sequence of data independent processes such that
(A n: n ;:=: 0 : Tn Ç Tn+t) · Then (U n : n ;:=: 0: Tn) is data independent.

Pro of

Let t E t(U n : n ;:=: 0 : Tn)· We derive

!(after(t, (Un : n ;:=: 0: Tn)))

{ property 1.1.3 }

1((U n : n ;:=: 0 1\ t E tTn : after(t, Tn)))

102 3 Communication of values and data independenee

{calculus}

(U n: n ~ 0 1\ tE tTn: -y(after(t, Tn)))

= {(A n: n ~ 0: Tn is data independent) }

(U n : n ~ 0 1\ t E tTn : after('Y(t), -y(Tn)))

{(A n : n ~ 0 : Tn Ç Tn+l), property 1.1.3}

(Un: n ~ 0 1\ -y(t) E t-y(Tn): after('Y(t),-y(Tn)))

= { property 1.1.3}

after(-y(t), (U n: n ~ 0 : -y(Tn)))

{calculus}

after('Y(t),-y((Un: n ~ 0: Tn)))

(End of Proof)

3.3 Split specifications

In section 1.2 we introduced specifications as a way to describe processes. A data
independent process, however, may bedescribed in a somewhat different manner. It is
completely determined by its communication behaviour, the types of its channels, and
the relation between the messages it sends and receives, i.e. its input/output relation.
This is formalized as follows.

A split specification is a triple (T, j, P) where T is a process with aT Ç r,
f E aT --+ (P(M) \ { 0}) U { { ,j}} is a function, and P is a predicate on
A= (U c: c E aT: {c} x f(c))* such that

P(t:)

(Ac,t: c E aT 1\ tE A": -y(t)cE tT 1\ (As: s:::; t: P(s))

:::::} (Em: mE f(c): P(t(c,m))))

Process T describes the comrnunication behaviour and fundion f the types of the
channels. The last condition mentioned above states that predicate P may put no
further restrictions on the communication behaviour described by T. The process
specified by split specification (T, J, P) is

((U c: c E aT: {c} x f(c))
, { t I t E (U c : c E aT : { c} x f (c))" 1\ 'Y (t) E tT 1\ (A s : s :::; t : P (s)) })

The process specified by a split specification is data independent as the following the
orem shows.

3.3 Split specifications

Theorem 3.3.0

Let (T, J, P) be a split specification specifying process U.
Then U is data independentand 1(U) = T.

Pro of

Obviously !(U) Ç T. By a simple inductive argument one can prove

(A k : k ~ 0 : { t I t E tT 1\ f(t) ::; k} ç t,(U))

which implies T Ç 1(U).

103

LettE tU. We will show that suc(!(t),!(U)) = 1(suc(t,U)). Since tE tU we have
1(t) E tT and (As: s :St: P(s)). We derive

c E suc(!(t),!(U))

= {!(U)= T,(As: s :St: P(s))}

1(t)c E tT 1\ (As : s :St: P(s))

{ (T, J, P) is a split specification}

(Em: mE f(c): 1(t)c E tT 1\ (As: s :S t(c,m): P(s)))

{ 1(t(c, m)) = 1(t)c, definition U}

(Em: mE f(c): t(c,m) E tU)

{ definition 1 en suc}

c E 1(suc(t, U))

(End of Proof)

The following theorem shows that every data independent process can be specified by
a split specification.

Theorem 3.3.1

Let U be a data independent process. Define f E cU --+ (P(M) \ { 0}) U { { J}} by
f(c) = type(c,U) for all c EcU. Then (!(U),J, t: tE tU) is a split specification
specifying U.

Pro of

Notice that e E tU. LettE aU* and c EcU. We derive

1(t)c E t1(U) 1\ (A s : s :S t : s E tU)

{ definition suc, U is a process }

104 3 Communication of values and data independenee

c E suc(l(t), 1(U)) 1\ t E tU

{ U is data independent }

c E 1(suc(t, U)) 1\ tE tU
{ definition 1 and suc}

(Em: mE type(c,U): t{c,m) E tU)

Therefore, (!(U), J, t : t E tU) is a split specification. Furthermore, we derive

{(Uc:cEcU:{c}xf(c))
, {tI tE (U c: c EcU: {c} x f(c))* 1\ 1(t) E t1(U)

1\ (As : s ~ t : s E tU)})

{ definition J, property 3.1.2, U is a process}

(aU, { t I t E aU* 1\ t E tU })
{ definition process }

u

(End of Proof)

The above two theorems show that the class of data independent processes and the
class of processes generated by split specifications are identical.

Before presenting an example we introduce some notation. Function fl E !1* --+ M:J is
defined by

fl(ê) = ê
fl(t(c, m}) = fl(t)m

Let t be a trace. Notice that fl(t) is a trace whose symbols are elements of M,;. The
i-th element of trace fl(t) is denoted by fl(t)[i] (0 ~i< l(t)) . Let c be a channel name.
Wedefine c(i,t) = fl(tlc)[i] for all i, 0 ~i< l(tk). Message c(i,t) is the i-th message
transm.itted via channel c intracet (0 ~i< l(tfc)). Whenever t is obvious from the
context, we write c(i) insteadof c(i,t).

Example 3.3.2

The process ADDER in example 3.2.0 may be specified by split specification

(PR((a, b; c)*), {(a,Z),(b,Z),(c,Z)}
, t: (A i: 0 ~ i < l(tla) minl(tfb) minl(tlc): c(i) =a(i)+ b(i)))

(End of Example)

3.3 Split specifications 105

Theorem 3.3.3

Let (T, J, P} be a split specification specifying process V. Let S be a process such
that S Ç T. Then (S, J, P} is a split specification. If U is the process specified by
(S, J, P} we have U Ç V.

(End of Theorem)

Theorem 3.3.4

Let (S,J, P} and (T, g, Q} be split specifications specifying processes U and V, re
spectively. Then

UÇV
- SÇTI\f=g

1\ (At: tE aU* 1\ Î(t) EtS: (As: s::; t: P(s))::::} (As: s::; t: Q(s)))

and

U=V
= S=TI\f=g

1\ (At : t E aU* 1\ Î(t) E tS : (As : s ::; t : P(s)) - (As : s ::; t : Q(s)))

(End of Theorem)

The next two theorems give conditions under which the Conjunction-Weave Rule holds
(cf. theorems 3.2.7 and 3.2.8).

Theorem 3.3.5

Let (S, f, P} and (T, g, Q} be split specifications specifying processes U and V, re
spectively. Let f(c) = g(c) for all c E aS naT. Then

(Ac,t:cEaSnaT 1\ tE(aUUaV)* 1\ Î(t)cEt(SwT)
1\ (As : s::;daS : P(s)) 1\ (As:s::;daT:Q(s))

: (E m : mE f(c) n g(c) : P(t(c, m}) 1\ Q(t(c, m}))

- (S w T, f U g, t: P(t laS) 1\ Q(t laT)} is a split specification for Uw V

(End of Theorem)

Theorem 3.3.6

Let (S,J,P} and (T,g,Q} be split specifications specifying processes U and V, re
spectively. Let f(c) = g(c) for all c E aS naT. Let C Ç aS and D Ç aT such that

106 3 Communication of values and data independenee

aS n aT Ç C u D . If

and

(Ac,t : cEC A tE aU• A 7(t)cEtS A (As : s$t : P(s))
: (Am : mE J(c) : P(t{c,m)))

(Ad, t : dE D A tE a V• A ")'(t)d E tT A (As : s $ t : Q(s))
: (Am : mE g(d) : Q(t{d,m}))

then { SwT, f U g , t : P(tfaS) A Q(tfaT)) is a split specification specifying Uw V .

(End of Theorem)

Example 3 .3 . 7

Let ADDER be the processin example 3.3.2. Let process COPY be specified by split
specification

{PR((d; a, b)*), {(d,Z), (a, Z), (b,Z)}, t : J.L(tfa) $ J.L(tfd) A J.L(tfb):::; !-L(tfd))

The process DOUBLE= (COPY wADDER)t{d,c} is then specified by

{PR(d ; c, d)"), {(c,Z),(d,Z)}
, t : (A i : 0 $ i < e(tf d) mine(t fc) : c(i) = 2 · d(i)))

(End of Example)

In sections 5.1 and 5.2 examples are given of how, under certain conditions, one easily
derives a split specification for the projection. Such a derivation can also be given in
the above example.

3.4 Properties of processes

In chapter 2 we introduced properties of processes expressing the absence of divergence
or nondeterminism (or both), and the absence of deadlock. In this section we investigate
the relationship between properties of a process T and properties of "Y(T), especially
in the case that T is data independent .

In the sequel T is a process and C is a channel set such that C Ç cT. We define AC
to be

AC= (uc : c E C : {c} x type(c,T))

3.4 Properties of processes 107

Observe that AC Ç aT, -y(AC) = C, and -y(Aë) = C.

Theorem 3.4.0

C is non-divergent with respect to -y(T)

=> AC is non-divergent with respect to T

Pro of

Assume C is non-divergent with respect to -y(T). Let t E tT. Let n 2: 0, be such that

(A u: u E (C)• I\ -y(t)u E t-y(T) : i(u) :::; n)

Let s E (AC)•. Then

ts E tT

=> {calculus}

-y(t)"Y(s) E t-y(T)
=> {-y(s)E(C)*}

l("Y(s)) ::::; n

= { property 3.1.0}

l(s)::::; n

(End of Proof)

The following example shows that the reverse implication does not hold in generaL

Example 3.4.1

T =PREF({ {a, b, c} x Z, { {a, n){b, O)n(c, 0) I n 2: 0}))

{a, c} x Z is non-divergent with respect to T

{a, c} is divergent with respect to -y(T)
T is not data independent

(End of Example)

Provided T is data independent the reverse impHeation in theorem 3.4.0 does hold as
the following theorem shows.

Theorem 3.4.2

Let T be data independent. Then

108 3 Communica.tion of values and data independenee

C is non-divergent with respect to 1(T)

_ AC is non-divergent with respect to T

Pro of

Assume that AC is non-divergent with respect toT. Let u E t1(T). Choose t E tT
such that 1(t) =u. Let n 2: 0 be such that

(As: sE (AC)" 1\ ts E tT: l(s):::; n)

Let v E (C)•. We derive

uv E t1(T)

= {u= 1(t), definition after}

v E tafter(!(t),!(T))

{ T is data independent }

v E t1(ajter(t,T))

{calculus}

(Es: sE tafter(t,T): 1(s) = v)

= {vE(C)•}
(Es: sE tafter(t, T): 1(s) = v 1\ l(s):::; n)

=} { property 3.1.0}

l(v)::; n

(End ofProof)

Corollary 3.4.3

Let S be a system such (AT : T E pS : T is data independent). If W(pS) is data
independentand 1(W(pS)) = W(!(pS)) then

S is non-divergent = 1(S) is non-divergent

(End of Corollary)

The following two examples show that we do not have theorems on non-disabling
analogous to theorems 3.4.0 anà 3.4.2.

Example 3.4.4

Let ADDER be the process defined in examples 3.2.0 and 3.3.2. We have that {a, c}
is non-disabling with respect to !(ADDER)= PR((a, b; c)"). Sirree

3.4 Properties of processes

(c, 1} \t tajter((a, O}(b, 0}, ADDER)

and

(c,1} E tafter((a,O}, ADDERÎ{a,c})

we have that {a,c} x Z is disabling with respect to ADDER.

(End of Example)

Example 3.4.5

Let T be the process specified by split specification

(PR((b; b)*; (a; d I b; a; c)), { (a, Z)} U ({ b, c, d} x {hl}})
, t: (As: sa 5 -y(t): a(l(sîa),t) = l(sîb)mod2)}

109

Let C = {a,c,d} and AC= ({a} x Z) U ({c,d} x h/}). We have that AC is non
disabling with respect toT. Since tajter(a,-y(T)) = {d} and tajter(a,-y(T)îC)
{ c, d}, we have that C is disabling with respect to -y(T).

(End of Example)

Transparenee of AC with respect to T implies transparenee of C with respect to -y(T)
in case T is data independent as is shown by the following lemma and theorem.

Lemma 3.4.6

Let T be data independent. Let cT be finite. If AC is transparent with respect to T
then

(As,t: sE tT 1\ tE tT 1\ -y(s)ÎC = -y(t)ÎC
: (Eu, V : u E tT 1\ V E tT

: -y(u) = -y(v) 1\ uîC =siC 1\ vtC =tiC
1\ suc('y(u),-y(T)) Ç C 1\ suc('Y(v),-y(T)) Ç C))

Pro of

Assume AC is transparent with respect to T. Since AC is non-divergent with respect
to T we have that C is non-divergent with respect to -y(T). Let s E tT and t E tT be
such that -y(s)ÎC = -y(t)îC.
By theorem 2.1.7 we have that {w I w E t-y(T) 1\ wfC 5 -y(t) fC} is fini te. Observe
that this set is nonempty. An algorithm to construct traces u and v is described by
the following program.

110 3 Communication of values and data independenee

u,v,x,y,h:= e,e,sfC,tfC,e

{ invariant : u E tT 1\ v E tT 1\ ï(u) = ï(v) = h
1\ (ufC)x =s iC 1\ (vfC)y =tiC,

variant fundion :

f(h) bounded by (MAXw: wE tï(T) 1\ wiG S ï(t)fC: f(w))}

; do (x :f:. e 1\ y :f:. e) V --.(suc(h,ï(T)) Ç C)

- if --.(suc(h, ï(T)) Ç C)

od

- choose d: dE suc(h,ï(T)) \ C
{ d (j. C 1\ dE ï(suc(u,T)) 1\ dE ï(suc(v,T))}
; choose m, n: m, n E type(d, T) 1\ u(d, m) E tT 1\ v(d, n) E tT

; u, v, h := u(d, m), v(d, n), hd

Osuc(h,ï(T)) Ç C

fi

- { suc(u,T) Ç AC 1\ suc(v,T) Ç AC 1\ x :f:. e 1\ y :f:. e}

{ suc(u,T) = suc(ufC,TfC) 1\ suc(v,T) = suc(vfC,T fC)
1\x:f:.e/\y:f:.e}

choose c, m, n, x0 , y0 : c E C 1\ m, n E type(c, T)
1\ x = (c, m}x0 1\ y = (c, n}y0

{ (c, m) E suc(u, T) 1\ (c, n) E suc(v, T) }

; u,v,x,y,h:= u(c,m),v(c,n),xo,Yo,hc

{u E tT 1\ v E tT 1\ ï(u) = '"Y(v) 1\ suc('"Y(u),ï(T)) Ç C
1\ suc('"Y(v),ï(T)) Ç C 1\ ufG = sfC 1\ viC = tfC}

(End of Proof)

Theorem 3.4. 7

Let T be data independent. Let cT be finite. Then

AC is transparent with respect to T

::::} C is transparent with respect to ï(T)

Pro of

Assume that AC is transparent with respect to T. Then by theorem 2.1.20

(At: tE tT 1\ suc(t, T) Ç AC: suc(t, T) = suc(tiC, TIC))

3.4 Properties of processes lll

and AC is non-divergent with respect to T. The latter is equivalent with channel set
C is non-divergent with respect to 'Y(T). We will show that

(Aw: wE t'Y(T) 1\ suc(w,'Y(T)) Ç C: suc(w,'Y(T)) = suc(wiC,'Y(T) IC))

Let wE t'Y(T) be such that suc(w,'Y(T)) Ç C. LettE tT and 'Y(t) = w. By property
1.1.3 we have

suc(wiC,'Y(T)IC) = (Us: sE tT 1\ 'Y(s)IC = wW : suc('Y(s),'Y(T)) n C)

Let s E tT be such that 'Y(s)tG = w te. Using lemma 3.4.6 choose u E tT and v E tT
such that 'Y(u) = 'Y(v), suc('Y(u),'Y{T)) Ç C, suc('Y(v),'Y(T)) Ç C, u iC =siC, and
vW =tiC. We derive

suc('Y(s), 'Y(T)) n C

= { T is data independent, calculus }

'Y(suc(s, T) n AC)

C { property 1.1.3}

'Y(suc(s te, T W))
= {siC= u IC, suc(u, T) Ç AC, theorem 2.1.20}

'Y(suc(u, T))

{ T is data independent, 'Y(u) = 'Y(v) }

'Y(suc(v, T))

{tiC= vW, suc(v,T) Ç AC, theorem 2.1.20}

'Y(suc(ttC, TIC))

= { suc(t,T) Ç AC, theorem 2.1.20}

'Y(suc(t, T))

{ T is data independent, 'Y(t) = w}

suc(w,'Y(T))

(End of Proof)

Example 3.4.4 shows that the reverse implication does not hold in generaL

We now focus on (non-)termination and absence of deadlock.

112 3 Communication of values and data independenee

Lemma 3.4.8

Let T be a data independent process. Then

(At: tE tT: suc(t,T) = 0 = suc('y(t),-y(T)) = 0)

Pro of

Let t E tT. We derive

suc(t, T) = 0

{ definition 1' }

-y(suc(t,T)) = 0

{ T is data independent }

suc('Y(t),-y(T)) = 0

(End of Proof)

Theorem 3.4.9

Let T be a data independent process.

0 (At: tE tT: T has terminated after t = -y(T) has terminated after -y(t))

1 T is non-terminating = -y(T) is non-terminating

(End of Theorem)

Theorem 3.4.10

Let X be a set of data independent processes. If -y(W(X)) = W('Y(X)) then

lockfree(X) => lockfree('Y(X))

Pro of

Assume -y(W(X)) = W('y(X)) and lockfree(X). LettE tW(-y(X)).
Since -y(W(X)) = W('y(X)) we choose sE tW(X) such that -y(s) = t. We derive

suc(t, W('Y(X))) = 0

= { -y(s) = t, -y(W(X)) = W('y(X))}

suc('Y(s),-y(W(X))) = 0

=> { property 3.1.0}

suc(s, W(X)) = 0

3.4 Properties of processes

{ lockfree(X)}

(AT: TE X: suc(stcT,T) = 0)

{(AT: TE X: T is data independent), ï(s) = t, lemma 3.4.8}

(AT: TE X: suc(tlcT,ï(T)) = 0)

(End of Proof)

113

The following example shows that the reverse implication in the above theorem does
not hold in generaL

Example 3.4.11

T=PREF(({a,b} xZ, {(a,O}(b,O},(a,l}(b,l}}})
U=PREF(({b} xZ, {(b,l}}))
T and U are data independent

ï(TwU) = PR(a; b) = ï(T)wï(U)
•lockfree({T,U})
lockfree({ ï(T), ï(U)})
T w U is not data independent

(End of Example)

Theorem 3.4.12

Let X be a set of data independent processes. If W(X) is data independent and
ï(W(X)) = W(ï(X)) then

lockfree(X) = lockfree(ï(X))

Pro of

By theorem 3.4.10 we have lockfree(X) => lockfree(ï(X)). Assume lockfree(ï(X)).
Let t E tW(X). We derive

suc(t, W(X)) = 0

{ W(X) is data independent, lemma 3.4.8}

suc(ï(t),ï(W(X))) = 0

= { ï(W(X)) = W(ï(X))}
suc(ï(t), W(ï(X))) = 0

= { lockfree(ï(X))}

114 3 Communication of values and data independenee

(AT: TE X: suc("y(t)fcT,"Y(T)) = 0)

= {(AT: TE X: T is data independent), lemma 3.4.8}

(AT : TE X: suc(tÎCT,T) = 0)

(End of Proof)

Corollary 3.4.13

Let S be a system such that (AT : T E pS : T is data independent). If W(pS) is
data independent, and "Y(W(pS)) = W("y(pS)) then

S is lockfree = "Y(S) is lockfree

(End of Corollary)

3.5 Channel order independenee

Insection 3.2 we introduced the notion of data independenee expressing that the com
munication behaviour of a process does not depend on the messages that are being
transmitted. In this sectien we introduce the notion of channel order independenee
that expresses that at any moment the future behaviour of a process does not depend
on the order in which the channels were used by the process. Formally, process T is
said to be channe/ order independent if

(At,a,b: ta E tT 1\ tb E tT 1\ "Y(a) ::j:. "Y(b)
:tab E tT 1\ tba E tT 1\ [tab] = (tba])

Observe the close resemblance to the definition of a conservative process. Conservativ
ity expresses that at any moment the future behaviour of a process does notdepend on
the order in which theevents have taken place. The following examples are to il\ustrate
that channel order independenee is a useful notion for the processes introduced in this
chapter whereas conservativity is a notion more apt for the communication behaviours
of these processes.

Example 3 .5.0

Consicier the process ADDER from example 3.2.0. This processis both data indepen
dent and channel order independent. Observe that the communications via channel a

and b may take place simultaneously. If ADDER were to be conservative, it should
contain traces like (a,O)(a,l) . . . (a,n) (n ~ 0). Clearly, this is not the case. Process
"Y(T), on the ether hand, is conservative.

(End of Example)

3.5 Channel order independenee 115

Example 3.5.1

Consicier data independent process VAR as defined in section 3.0. Since (a, 0} (a, 1} E
tV AR and (a, O}(b, 0} E tV AR, but (a, O}(a, 1}(b, 0} f/. tV AR, process VAR is not
channel order independent. Obviously, communications via channels a and b can not
take place simultaneously. Observe that !(VAR) is conservative.

(End of Example)

Process ADDER from example 3.5.0 can be specified by

(PR((a, b; c)"),

t: (A i: 0 :5 i< l(tla) minl(tlb) minl(tlc): c(i) =a(i)+ b(i)))

Predicate c(i) = a(i) + b(i) does not depend on the order of events in trace t. Th is is
due tothefact that process ADDER is channel order independent. Process VAR from
example 3.5.1 is not channel order independent and can be specified by

(PR(a; (a I b)"),
t: (Ai: 0:5 i< l(tîb) A f(i,t) 2:0: b(i) = a(f(i,t))))

where fortE {a, b}* and 0:5 i< l(tîb)

f(i, t) = (MIN s : s :5 t A l(s Îb) = i + 1 : l(s Î a) - 1)

Notice that predicate b(i) =a(!(i, t)) depends on the order of a's and b'sintrace t.

In genera!, specifications of data independent processes that are channel order inde
pendent as well resembie the above specification of process ADDER. In section 5.1
we introduce a new notation for specifications of data independent processes that are
channel order independent. It is, to a large extent, based on the observations made
above.

The following theorem shows that data independenee and channel order independenee
of a process imply that the process descrihing its communication behaviour is conser
vative.

Theorem 3.5.2

If T is a data independent and channel order independent process, then 1(T) is con
servative.

Pro of

Assume T is data independent and channel order independent. Let t E tT, c E cT,
and dE cT such that 1(t)c E t1(T), 1(t)d E t1(T), and c =/: d. We derive

116 3 Communication of values and data independenee

-y(t)c E t-y(T) 1\ -y(t)d E t-y(T)

{ definition successor set, T is data independent }

c E -y(suc(t, T)) 1\ dE -y(suc(t, T))

{ definition Î, defini tion successor set }

(Em,n: mE type(c,T) 1\ n E type(d,T): t(c,m) E tT 1\ t(d,n) E tT)

::::} { c i d, T is channel order independent}

(Em,n : mE type(c,T) 1\ n E type(d,T)
: t(c,m)(d,n) E tT 1\ t(d,n)(c,m) E tT

1\ after(t(c,m)(d,n),T) = after(t(d,n)(c,m),T))

::::} { definition -y, T is data independent }

-y(t)cd E t-y(T) 1\ -y(t)dc E t-y(T) 1\ after(î(t)cd, T) = after(î(t)dc, T))

(End of Proof)

The reverse does not hold as is shown in the following example.

Example 3.5.3

T =PREF(({a,b} x Z,{(a,O)(b,1), (b,O)(a,l)}))
T is data independent

-y(T) is conservative

T is not channel order independent

U = PREF(({a, b, c}, x Z, {(a, 0) (a, 1)(b, 0) (c, 0} , (a, 1) (a, 0) (c, 1) (b, 1)}))

U is not data independent

U is channel order independent

-y(U) is conservative

(End of Example)

Theorem 3.5.4

Let T and U be channel order independent processes. Then Tw U is channel order
independent.

Pro of

ta E t(Tw U) 1\ tb E t(Tw U) 1\ 1(a) i "f(b)

{ definition weave}

3.5 Channel order independenee

tab E (aT U aU)• 1\ talaT E tT 1\ tbtaT E tT
1\ tataU E tU 1\ tMaU E tU 1\ 'Y(a) -::j:. 'Y(b)

=> { T and U are channel order independent }

tab E (aT U aU)"
1\ tablaT E tT 1\ tba laTE tT 1\ after(tablaT, T) = after(tba laT, T)
1\ tablaU E tU 1\ tbalaU E tU 1\ after(tabtaU,U) = after(tbalaU,U)

=> { definition weave, theorem 1.1.13}

tab E t(TwU) 1\ tba E t(TwU) 1\ after(tab,TwU) = after(tba,TwU)

(End of Proof)

Theorem 3.5.5

Let T be a channel order independent process.
Let C Ç cT and AC= (U c: c E C: {c} x type(c, T)).
If AC is transparent with respect to T then TIC is channel order independent.

Pro of

117

Assume AC is transparent with respect toT. LettE tT IC. Choose sE tT such that
stG =tand suc(s,T) = suc(t,TIC) (AC is transparent with respect toT, property
2.1.19). We derive

ta E tTIC 1\ tb E tTIC 1\ 'Y(a) -::j:. 'Y(b)

= { suc(s, T) = suc(t, TIC)}

sa E tT 1\ sb E tT 1\ 'Y(a) -::j:. 'Y(b) 1\ 'Y(a) E C 1\ 'Y(b) E C
=> { T is channel order independent }

sab E tT 1\ sba E tT 1\ aft er(sab, T) = aft er(sba, T) 1\ 'Y(a) E C 1\ 'Y(b) E C
=> {calculus}

sabiC E tTW 1\ sbaiC E tTW
1\ after(sab,T)IC = after(sba,T)IC 1\ 'Y(a) E C 1\ 'Y(b) E C

{ AC is non-disabling with respect to T, sIC = t }

tab E tTIC 1\ tba E tTIC 1\ after(tab, TIC)= after(tba, TIC)

(End of Proof)

The following example shows that the condition "AC is transparent with respect to T"
in the above theorem may not be replaced by "C is transparent with respect to 'Y(T)"
even if T is data independent.

118 3 Communication of values and data independenee

Example 3.5.6

T =PREF({{a, b,c} x Z

, {{a,l){b,l){c,O), {a,l){c,O){b,l)
,{a,O){b,O){c,l), {a,O){c,l){b,O)}))

T is channel order independent

T is data independent

{ b, c} is transparent with respect to 1(T)
{ b, c} x Z is not transparent with respect to T
TI { b, c} is not channel order independent

(End of Example)

Theorem 3.5. 7

Let (Tn)n~o be a sequence of channel order independent processes such that
(A n: n ;:::: 0 : Tn Ç Tn+l). Then (U n : n ;:::: 0 : Tn) is channel order independent.

(End of Theorem)

4 Programs

4.0 Introduetion

Consicier process ADDER in example 3.2:0. This process describes a mechanism that
repeatedly receives two integer values via its input channels and sends the sum of these
values via its output channel. In the program notation to be presented in this chapter
this process can be specified by the following component or program

com adder(in a, b: int, out c: int) :
var x, y, z: int rav
(a? x, b?y; z:= x+ y; c!z)*

moe

Here, x,y, and z are internal variables of the component, a? x denotes the receiving of a
value via channel a and the assignment of that value to variabie x, and c!z denotes the
sending of the value of variabie z via channel c. These notations have been adopted
from CSP (see (Ho)). Variabie z can be eliminated from the above program: one may
replace "z:= x+ y; c!z" by "c!(x + y)". Notice that all channels and variables have a
type (in this case they are all of type integer).

In this chapter we introduce a program notation generallzing the one presented in
section 1.4. The above is an example of a program text. We will, however, not
explicitly mention types in program texts when defining the program notation, but
we wiJl assume all channels and variables to be of the same type, namely M, the set
of messages. This is clone for simplicity's sake. Generalization to the case where the
types of channels and variables may differ is rather straightforward.

4.1 Commands

In this section we extend the definition of a oommand from section 1.2. First we
introduce some notions that shall be used in the definition of commands.

We assume the existence of a set of (names of) variables, denoted by VAR. The set of
expressions EXP is defined to be the smallest set satisfying

119

120 4 Programs

- mE EXP mEM

- x E EXP x E VAR

- '1/;(eo, e1, ... , et-dE EXP I ;::: 0, '1/; E M1 ---t M, e0 , e1, ... , e1-1 E EXP

The function var : EXP ---t P(VAR) is defined recursively by

var(m)=0 mEM

var(x) ={x} x E VAR

var('!f;(e0 , eh ... , et-1)) =(U i: 0 Si< I: var(e;))

N otice that for all expressions e such that var(e) = 0 we have that for all expressions
e, appearing in e var(e,) = 0 holds.
The function val : { e I e E EXP 1\ var(e) = 0} ---t M is defined recursively by

val(m) = m

val('1/;(e0 , e1, ... , et-1)) = '1/;(val(e0), val(e1), ... , val(et-1))

var(e1) = var(e1) =···=var(ei-!)= 0

Let <P E VAR ---t EXP. We wiJl represent function <P with the set
{(x, <P(x)) I x E VAR 1\ x=/:- <P(x) }. With function <P we associate substitution function
S<l> E EXP ---t EXP defined recursively by

S<!>(m) = m
S<!>(x) = <P(x)
S</>('1/;(eo, el> ... , e1-1)) = '1/;(S<!>(e0), S<!>(ei), .. . , S</>(ei-1))

Let <P,x E VAR ---t EXP. Function <P8x E VAR ---t EXP, the cornposit ion of <Pand x,
is defined by

(<P 8 x)(x)= S"'(x(x))

Si nee v (j. M we also have v (j. EXP.

The functions var, val, and S,p are generalized to functions ha ving their domain in
(r x (EXP u {V}))*. The function var: (r x (EXP u { v}))* ---t P(VAR) is defined
by

var(t:) = 0

var(t(c, e)) = var(t) U var(e)

var(t(c,v)) = var(t)

The function val : { t I (r x (EXP u {V}))* 1\ var(t) = 0} ---t n· (= (r x M,;)*) is
defined by

4.1 Commands

val(t:) = t:
val(t(c, e)) = val(t)(c, val(e)}
val(t(c, ..j)) = val(t)(c, ..j}

121

Let 4; E VAR--+ EXP. The function S4> E (r x (EXPU { ..j}))* --+ (r x (EXPU { ..j}))*
is defined by

S4>(t:) = t:
S4>(t(c,e)) = S4>(t)(c,S4>(e))
S4>(t(c, ..j)) = S4>(t)(c, ..j)

A cammand structure is a quadrupJe (C, D, E, X} where C, D, and E are channel sets
andX Ç ((Cx{..j})U((DUE)xEXP))*x(VAR--+ EXP). WecallCthesetofsignals
of the command structure, D its set of input channels, E its set of output channels,
and X its extended trace set. Elements of X are called extended traces. Notice that
extended traces are pairs consisting of a trace and a substitution function.

Let T be a command structure. The set of signals of T is denoted by sT, the set of
input channels of T by iT, the set of output channels of T by oT, and the extended
trace set of T by etT. Furthermore wedefine

var(T) = (Ut,f/;: (t,f/;) E etT: var(t))

We now introduce commands. With each command S we associate a command struc
ture CO(S) and a set of variables bind(S). Commands, associated command structures,
and associated sets of variables are defined inductively by the following rules (remember
our convention in representing functions in VAR--+ EXP) .

- t: is a command

CO(t:) = (0, 0, 0, {(t:, 0)})
bind(t:) = 0

- c is a command for all c E f

CO(c) = ({c},0,0,{((c,..j),0)})
bind(c) = 0

- c?x is a command for all c E rand x E VAR

CO (c? x) = (0, { c}, 0, { ((c, m), { (x, m)}) I m E M })
bind(c?x) ={x}

- c! e is a command for all c E r and e E EXP

CO(c!e) = (0,0,{c},{((c,e),0)})
bind(c!e) = 0

122 4 Programs

- xo,x 1 , ••• ,xm_1:= e0 , e 1, ..• ,em-l is a command
for all m > 0, x0 , x 11 ... , Xm-l E VAR, eo, e1, ... , em-1 E EXP

CO(xo, X), ... ' Xm-1:= eo, el, ... ' em-1)

= (0,0, 0,{(é,{ (x;,e;) I 0::::; i< m 1\ x; =j:. e;})})
bind(xo, XI, ... , Xm-1:= eo, et, ... , em-1)

= {x; I 0 ::=;i < m} \(U i : 0 ::::; i < m : var(e;))

- S I T is a command for all commands S and T such that
sCO(S) u sCO(T), iCO(S) u iCO(T), and oCO(S) U oCO(T) are disjoint sets

CO(S I T) = (sCO(S) u sCO(T), iCO(S) u iCO(T)
, oCO(S) u oCO(T), etCO(S) u etCO(T)}

bind(S I T) = bind(S) U bind(T)

- S ; T is a command for all commands S and T such that
sCO(S) U sCO(T), iCO(S) u iCO(T), and oCO(S) u oCO(T) are disjoint sets

CO(S; T) = (sCO(S) u sCO(T), iCO(S) u iCO(T), oCO(S) u oCO(T),
{(sSq,(t),r/>8x) I (s,r/>) E etCO(S) 1\ (t,x) E etCO(T)})

bind(S; T) = bind(S) U bind(T)

- S , T is a command for all commands S and T such that
sCO(S), sCO(T), iCO(S), iCO(T), oCO(S), and oCO(T) are disjoint sets,
bind(S) n (bind(T) U var(CO(T))) = 0,

and bind(T) n (bind(S) U var(CO(S))) = 0

CO(S, T) = (sCO(S) U sCO(T), iCO(S) u iCO(T), oCO(S) U oCO(T),
{ (t, 4> u x) I tE (As u ATt 1\ (t i As, 4>) E etCO(S)

1\ (tÎAT,X) E etCO(T)}}
where Ax = (sCO(X) x h/}) u ((i CO(X) U oCO(X)) x EXP)
for X = S and X = T

bind(S, T) = bind(S) u bind(T)

- S 0 is a command for all commands S

CO(S 0) = (sCO(S), iCO(S),oCO(S), {(é, 0)})
bind(S 0) = 0

- s• is a command for all commands S

CO(S• = (sCO(S),iCO(S),oCO(S),(un: n 2 0: etCO(S")))

where S"+1 = S"; S (n 2 0)
bind(S•) = bind(S)

Command c?x may be interpreted as the reception of a value via channel c and the
assignment of that value to variabie x. Command c!e may be interpreted asthesending

4.1 Commands 123

of the value of expression e via channel c. Observe that the commands as defined in
section 1.2 form a subclass of the commands defined above.

With each command S we associate a trace structure whose alphabet is a subset of
r x (EXP u{."/}). For command S trace structure TRE(S) is defined by

TRE(S) = (sCO(S) x { y'} U (iCO(S) U oCO(S)) x EXP
,{tI (E<P: <P E VAR~ EXP: (t,<P) E etCO(S))})

Observe that for all commands S extended trace set etCO(S) is nonempty. Therefore,
PRE(S) defined by

PRE(S) = PREF(TRE(S))

is a process.

A command Sis called closed if var(CO(S)) = 0 . Notice that the commands defined
in section 1.2 are closed commands. With each closed comrnand S we associate a trace
structure TR(S) defined by

TR(S) = (sCO(S) x {y'} u (iCO(S) u oCO(S)) x M
, { val(t) I (E <P: <P E VAR~ EXP : (t, <P) E etCO(S))})

Notice that tTR(S) = { val(t) I tE tTRE(S) }. For closed command S process PR(S)
is defined by PR(S) = PREF(TR(S)) and system sys(S) is defined by sys(S) =
(cPR(S), {PR(S)}).

Example 4.1.0

LetS= (a?x, b?y; z:= x+ y; c! z)*. Then var(S) = bind(S) = {x,y ,z} and

CO(S) =
(0,{a,b},{c}
,({((a,m)(b,n)(c,m+n),{(x,m),(y,n),(z,m+n)}) lm,n EZ}

U { ((b, n) (a, m)(c, m + n), {(x, m), (y , n), (z , m + n)}) I m, n E Z})*)

This leads to

TRE(S) = ({a, b,c} x EXP

,({ (a, m)(b,n)(c,m+n) I m,n EZ}
U { (b, n)(a, m)(c, m + n) I m, n E Z})*)

and PR(S) = ADDER where ADDER is the process defined in example 3.2.0.

(End of Example)

124 4 Programs

Observe that for a command S as defined in section 1.2 the definitions of TR(S) ,
PR(S), and sys(S) given here are equivalent to the definitions in section 1.2.

For command S command 1(S) is defined inductively by

/(é) = é
1(c) = c
1(c?x) = c

1(c!e) = c

I(Xo, X}) ...) Xm-l:= eo, el, ...) em-I) = é

I(S I T) = i(S) I I(T)

1(S; T) = 1(S); 1(T)

1(S, T) = 1(S), 1(T)

1(S 0) = 1(S)0

i(S*) = i(S)*

Command 1(S) refl.ects the communication pattem conesponding to command S .

Let T be a command structure. Command structure 1(T) is defined by

1(T) = (sTuiT U oT, 0, 0,
{ (l(t),0) I (E<P: <P E VAR-+ EXP: (t,<P) E etT)})

Property 4.1.1

Let S be a command.

0 1(S) is a closed command.

1(CO(S)) = CO(I(S))
i(TRE(S)) = TR(I(S))

i(PRE(S)) = PR(I(S))

2 If S is a closed command, then

1(TR(S)) = TR(I(S))
1(PR(S)) = PR(I(S))

(End of Property)

Analogously to the extension of the notion of commands we extend the notion of
restrict ed commands. Restricted commands form a subset of the set of the commands
introduced above and are defined inductively by the following rules (the conditions
imposed by the operators given in the definition of commands remain valid but are
omitted for clarity).

4.1 Commands

- E. is a restricted cammand

- c is a restricted cammand for all c E f

- c?x is a restricted cammand for all c Er and x E VAR

- c!e is a restricted cammand for all c E r and e E EXP

- x 0 , x 1, ..• , Xm_1:= e0 , e1, ..• , em-l is a restricted cammand
for all m > 0, xo, x 1 , ... , Xm-1 E VAR, eo, el> ... , em-1 E EXP

- if S and T are restricted commands and S contains no stars then S ; T is a
restricted cammand

- if S and T are restricted commands then S, T is a restricted command

- if S is restricted command not containing any stars then S 0 and S* are re-
stricted commands

Property 4.1.2

If S is a restricted cammand then 1(S) is a restricted command.

(End of Property)

125

Notice that the restricted commands as defined in section 1.2 form a subclass of the
restricted commands defined above.

Property 4.1.3

Let S be a restricted command. If S contains no stars then for every channel set C

(As,t,r/>,x : (s,r/>) E etCO(S) 1\ (t,x) E etCO(S): f(siC) = R(tiC))

(End of Property)

We abserve that theorem 2.4.10 does not hold for (closed) restricted commands as
defined above (see example 3.5.0). In the sequel we will show that if S is a closed
restricted command, then PR(S) is data independent and channel order independent.
First, we have the following results.

Theorem 4.1.4

If Sis a closed restricted cammand and PRE(S) is data independent ,
then PR(S) is data independent.

(End of Theorem)

126

The reverse does not hold as the following example shows.

Example 4.1.5

In this example we assume M = Z. LetS be the command

b?x; (y:= x+ x; a!y I y:= 2 *x; a!y; c!x)

Then S is closed,

PRE(S) =PREF(({a,b,c} x EXP
,{(b,m)(a,m+m) lmEZ}

U { (b,m)(a,2 * m)(c,m) I mE Z}))

4 Programs

is not data independent (m + m and 2 * m are different expressions for all m E Z), and

PR(S) =PREF(({a,b,c} x Z, { (b,m)(a,2 · m}(c,m) I mE Z}))

is data independent.

(End of Example)

In theorem 4.1.4 we may not replace "data independent" by "channel order indepen
dent" as the following example shows.

Example 4.1.6

Let M = Z. Let S be the command

x, y:= 0,1; (a!(x+ y); b!x, c!y I a!(y +x); b!y, c!x)

Then S is closed,

PRE(S) =PREF(({a,b,c} x EXP
, {(a, 0 + l}(b, O}(c, 1}, (a, 0 + l}(c, l}(b, 0}

, (a, 1 + O}(b, l}(c, 0}, (a, 1 + O}(c, O}(b, 1}}})

is both data independent and channel order independent, but

PR(S) =PREF(({a,b,c} x Z
,{ (a,l}(b,O}(c,l), (a,l}(c,l}(b,O)

, (a, 1}(b, l}(c, 0}, (a, l}(c, O}(b, 1}}})

4.1 Commands

is not channel order independent.

(End of Example)

Theorem 4.1.7
0 If cormnand Sis equal tot:, c, c?x, c?e, or xo,XI,···•Xm-1:= eo,ei, ... ,em-1

then PRE(S) is both data independentand channel order independent.

1 If S and T are commands such that S, T is a command, and PRE(S) and
PRE(T) are data independent (channel order independent) then PRE(S) is
data independent (channel order independent).

2 If S and T are commands such that S; T is a command, PRE(S) and PRE(T)
are data independent (channel order independent), and
(En: n ;:=:: 0 :(At: tE tTRE(S): l(t) = n)) then S; T is data independent
(channel order independent).

3 If S is a cammand such that for n, n ;:=:: 0, PRE(Sn) is data independent
(channel order independent), then PRE(S*) is data independent (channel order
independent).

4 If S is a command, then PRE(S0) is data independent and channel order
independent.

(End of Theorem)

Corollary 4.1.8

127

If S is a restricted command, then PRE(S) is data independent and channel order
independent.

(End of Corollary)

Combining theorem 4.1.4 and corollary 4.1.8 we have

Theorem 4.1.9

If S is a closed restricted command, then PR(S) is data independent.

(End of Theorem)

Lemma 4.1.10

Let S be a closed restricted command. Let tu E tPR(S) and tv E tPR(S). Then

(Ew, x, y: wx E tPRE(S) 1\ wy E tPRE(S): val(wx) = tu 1\ val(wy) =tv)

(End of Lemma)

128 4 Programs

Using lemma 4.1.10 and corollary 4.1.8 one can prove

Theorem 4.1.11

If Sis a closed restricted command, then PR(S) is channel order independent.

(End of Theorem)

From theorem 2.4.10 or theorem 3.5.2 it follows that

Theorem 4.1.12

If Sis a closed restricted command, then 1(PR(S)) is cubic.

(End of Theorem)

Combining theorems 4.1.9, 4.1.12, 3.2.4, and 2.3.8 results in

Corollary 4.1.13

If S is a closed restricted command and C is a channel set such that C Ç cPR(S),
then PR(S) te is data independent.

(End of Corollary)

This does not hold for channel order independenee as the following example shows (cf.
example 3.5.6) .

Example 4.1.14

Let M = Z . Let S be the closed restricted command

a?x ; y:= 1- x ; (b! x , c!y)

We have that

PR(S) =PREF(({a,b,c} x Z
, {(a, m}(b, m}(c, 1 - m} I mE Z}
U {(a, m}(c, 1- m}(b, m} I mE Z}})

is channel order independent, but

4.1 Commands

PR(SH{b,c} =PREF(({b,c} x Z
,{(b,m)(c,1-m) lmEZ}
U { (c, 1- m)(b, m) I mE Z}))

is not channel order independent ((b, 1) (c, 1) !t' tPR(S) t { b, c}).

(End of Example)

129

Finally, we make some observations concerning possible extensions of the set of com
mands. Descrihing the filter mechanism in section 0.0 we already gave an example of
a cammand containing an alternative statement:

(a?x; ifx 2:0-+ b!xOx < 0-+ di)*

The general form of such a cammand is

where Bo, Bh ... , and BN_1 are boolean expressions and S0 , Sb . . . , and SN-1

are commands. They can be incorporated in the theory presented above by making
extended traces triples consisting of a trace, a substitution function, and a boolean
expression that is a conjunction of all guards that have to be satisfied to obtain the
given trace. Likewise, one can introduce commands that contain a repetitive statement:

where B0 , B1 , ..• , and BN_1 are boolean expressions and S0 , S1 , ... , and SN_ 1 are
commands. Both suggested extensions are generalizations since we have

if true -+ S 0 true -+ T fi = S I T

and

do true -+ s od = s·

We will not elaborate on these extensions any further since, in general, commands con
taining alternative or repetitive statements do not define data independent processes.

130 4 Programs

4.2 A program notation

In this section we generalize the program notation introduced in section 1.4. As before,
a program or component defines a system. The process of a program is defined to be
the process of the conesponding system.

We assume that with each channel set occurring in a processor a system a tripartition of
that set is associated. The tripartition represents the distinction that is made between
signals, input channels, and output channels. If C is a channel set, then sC denotes its
set of signals , iC its set of input channels, and oC its set of output channels. Notice
that this partition depends on the process or system in which C occurs. For a process
T we abbreviate s(cT) to sT, i(cT) to iT, and o(cT) to oT.

Let S he a system. Wedefine sS= s(eS), iS= i(eS), and oS= o(eS). Apart from
the restrictions imposed on systems in the previous chapters we, furthermore, require
that

(Ac: c E cW(pS): (NT: TE pS: c E oT) :S 1)

(AT,U,c:TEpS 1\ UEpS 1\ cEcTncU:cEsT

sS= (UT: TE pS: sT) neS

iS = (uT : T E pS : iT) n eS

oS = (uT : T E pS : oT) neS

c E sU)

Let S be a command. We define sPRE(S) = sCO(S), iPRE(S) = iCO(S), and
oPRE(S) = oCO(S). If Sis closed, analogous definitions are given for PR(S).

We make the same assumptions about the nature of the set f as we did about the nature
of the set of symbols in section 1.4. Let f • be the set of simple channel names. We
assume that f = (U n : n > 0 : f~). An element of f \ f • is called a compound channel
name. For all channel narnes c and d c·d is a channel name as wel!. Furthermore, we
define

p·(c, m) = (p·c, m)

for all p, c E f and m E M,;. Symbol (c, m) E !1 = f x M,; is called simple if channel
name c is simple, otherwise it is called compound.

For every command S we define the set of variables v(S) inductively by

v(€) = 0

v(c) = 0

v(c?x) = {x}

v(c!e) = var(e)

4.2 A program notation

v(xo, XJ, ... , Xm-1:= eo, el> ... , em-I) =
{x; I 0 :Si < m} U (U i : 0 :S i < m : var(e;))

v(S I T) = v(S) U v(T)
v(S; T) = v(S) U v(T)

v(S, T) = v(S) u v(T)

v(S 0) = v(S)

v(S*) = v(S)

The set v(S) consistsof all variabie narnes that occur in rommand S.

The program

com c(sig C,in D,out E):
var v0 , v1 , ... , Vt_1 rav
s

moe

131

denotes a component without subcomponents where cis the name of the component, C,
D, and E are fini te channel sets consisting of simple channel nam es only (the extern al

· channels of the component), v0 , v1 , ..• , Vt-1 are l distinct variabie narnes (the internal
variables of the component), and Sis a closed command. We require that

- v(S)={vo,vt, ... ,Vt-d

- sPR(S) = C iPR(S) = D oPR(S) = E

The system of component c, denoted by sys(c), is defined by

sys(c) = sys(S)

Notice that sys(c) = (CU D U E, {PR(S)}). The processof component c, denoted by
PR(c), is defined to be PR(c) = PR(sys(c)). Notice that PR(c) = PR(S).

The program

com c(sig C, in D, out E) :

moe

sub Po: co,Pt: Ct, ... ,Pn-1: Cn-1 bus

[xo = Yo, X1 = Y1, · · ·, Xm-1 = Ym-1]
var v0 , v1 , • .• , Vt-I rav
s

132 4 Programs

denotes a component with subcomponents where c, C, D, E, v0 , vl> ... , v/-t, and S
play the same role as above, c0 , C1, ... , and Cn-t are previously defined components,
called the subcornponents of c and having narnes po, p1 , •.• , and Pn-t, respectively.
We require that C, D, and E contain sirnple channel narnes only and that po, p1, ... ,

and Pn-t are n distinct, sirnple names. With subcomponent Pi system p,sys(c;) is
associated. The set

B =(Ui: 0 ::=;i< n: ep,sys(c;))

is called the set of internal channels. We define

C = {CU D U E} U { ep,sys(c;) I 0 ::=; i < n}

Notice that C is a colledion of n + 1 mutually disjoint channel sets. The equalities
represent (internal) connections. We irnpose the sarne restrictions as in section 1.4 and
add two restrictions dealing with input and output.

(Aj: 0::::; j < m: Xj EB)

(A j : 0:::; j < m: Yi EB U CU D U E)

I {x; I 0 ::=; i < m} I = m

{x; I 0 :::; i < m} n { Yi I 0 :::; j < m} = 0

for all j, 0 ::::; j < m, channels Xj and Yi belong to two different channel sets
in C
for all i and j, 0 ::=; i < j < m such that y; = Yi channels x; and Xj belong to
two different channels sets in C
(Aj: 0::::; j < m

:(A Co, cl: Co E c A cl E c A Xj E Co A Yi E Ct

: (xi E sCo =: Yi E sCt)
A (xi E iCo :: Yi E oCt)
A (xi E oCo:: Yi E iCt)))

(A j : 0 :::; j < m A (E Co : Co E C : Yi E iCo) : (Ni : 0 :::; i < m : y; = Yi) = l)

Furthermore, we require that every external channel appears in the command S or is
connected to an internal channel

CU D U E Ç cPR(S) U { Yi I 0 :::; j < m}

The channel set of command S consists of external channels and internal channels not
in{ xjiO :=;j< m}

cPR(S) Ç CU D U EU B \ { Xj I 0 ::=; j < m}

4.2 A program notation 133

The system of component c, denoted by sys(c), is defined by

sys(c) = ((11 i: 0 $i< n: (pïsys(Ci))~;:, .. ·:::::::~,') 11 sys(S))Î(C U D U E)

The process of component c, denoted by PR(c), is defined by PR(c) = PR(sys(c)).
Notice that esys(c) =CU D U E and cPR(c) =CU D U E. We have

PR(c) = ((W i: 0 Si< n: (pïPR(c;))~~:::::::::~,') w PR(S)) î(C U D U E)

Finally, we introduce recursive components. As in section 1.4 we restriet ourselves to
the most simple form of recursion. Let component c be given by the program

com c(sig C, in D, out E) :
sub p : c bus

var v0 , v1 , ... , VJ-l rav
s

moe

where C, D, and E are finite channel sets consisting of simple channel narnes only, p
is a simple name, and S is a closed command. We require that

- v(S) = {vo,Vt, .. . ,v1-d

- sPR(S) =Cu p·C iPR(S) = D U p·E oPR(S) =Eu p·D

As in section 1.4 we define the system of component c, denoted by sys(c), to be the
unique fixpoint of sys(c) = (p·sys(c) 11 sys(S))Î(C U D U E), i.e.

sys(c) = (CU D U E, { (p·)iPR(S) I i~ 0}}

The processof component c, denoted by PR(c), is defined by PR(c) = PR(sys(c)). We
now have

PR(c) = (W i: i~ 0: (p·)iPR(S)) î(C u D u E)

Finally, we present some results concerning components that have a restricted com
mand. By theorems 4.1.9, 4.1.11, and 4.1.12 we have

134 4 Programs

Theorem 4.2.0

Let component c be given by program

com c(sig C, in D, out E) :
var v0 , v 1, ... , v1-1 rav

s
moe

If Sis a restricted command then PR(c) is both data independent and channel order
independent, and 1(PR(c)) is cubic.

(End of Theerem)

Theorem 4.2.1

Let component c be given by program

com c(sig C, in D, out E):
sub Po: co,P1: Ct, . . . ,Pn-1: Cn-1 bus

[xo = Yo, X1 = Y1, · · ·, Xm-1 = Ym-1]

var v0 , v1 , ••• , v1_ 1 rav
s

moe

If S is a restricted command, PR(c;) is data independent for all i , 0 :::; i < n, and
i(PR(c;)) is cubic for all i, 0:::; i< n then PR(c) is data independentand 1(PR(c)) is
cubic.

Pro of

Due to the restrictiens imposed we can apply theerem 3.2.9. We new have that

W = (W i : 0 :Si < n: (pïPR(c;))"'0 ·"'1 ·····"'m-t) w PR(S) Yo ,Yt , ... ,Ym-1

is data independent and

By corollary 2.4.3 and theerem 4.1.12 we new have that 1(W) is cubic and by theerem
2.4. 7 that 1(PR(c)) = 1(W)t(CU D U E) is cubic. Using theorem 2.3.8 we infer that
CU D U E is non-disabling with respect te 1(W). Using theorem 3.2.4 it follows that
PR(c) = Wt(C U D U E) is data independent.

(End of Proof)

4.2 A program notation 135

By applying the same reasoning as in the proof of the above theorem one can prove
the following theorem.

Theorem 4.2.2

Let component c be given by the program

com c(sig C, in D, out E) :
sub p: c bus ·
var v0 , vil .. . , v,_1 rav

s
moe

If Sis a restricted command then PR(c) is data independentand -y(PR(c)) is cubic.

(End of Theorem)

5 Derivation and correctness of programs

5.0 Introduetion

In this chapter we show how one may derive programs from specifications and prove
them to be correct. The way in which programs are derived is also presented in
[Re87]. The specifications considered are split specifications descrihing the external
behaviour of a program or component. Again, we point out that in that case the
communication behaviour is specified independently of the inputfoutput relation, i.e.
the interdependence between values received and values sent. In our derivations we
see to it that this independenee is maintained.Furthermore, the systems of the derived
programs describe networks of processes that are characterized by the conditions for
networks given in section O.O.

After deriving a program we formally prove that it satisfies the specification using
results from the previous chapters. Moreover, it is shown that the derived program
defines a non-divergent and lockfree system that has constant response time.

In this chapter split specifications for data independent processes that are channel order
independent as well are given in a form that differs somewhat from the form introduced
in section 3.3. Moreover, a split specification also specifies the input channels, the
output channels, and the signals. This new form is introduced in section 5.1.

In each of the following four sections a programming problem is presented for which a
solution is derived. In section 5.1 a program is derived that recognizes palindromes of
length N in an incoming sequence of integers for some N, N ~ 0. The system defined
by the derived program consists of (N div 2) + 1 different processes. In sec ti on 5.2 a
program is derived that determines whether or not the sequence of integers received
thus far is a square. The derived program is recursive and, therefore, defines a system
that consists of an infinite sequence of processes, all of the same type. In sections
5.1 and 5.2 we show how one formally proves the derived programs to be correct.
In [Ro,Tch] systolic arrays are given as solutions to the programming problem from
section 5.2 and a programming problem similar to the one from section 5.1.

In section 5.3 a program is derived that computes the coefficients of the product of an
arbitrary polynomial with a given polynomial. The number of processes of the system
that is finally derived equals the degree of the given polynomial plus two. Only two

136

5.1 Recognition of palindromes 137

processes are of a type that differs from the type of the rest and of these two only
one depends on the degree of the polynornial that is to be multiplied by the given
polynornial. In [Re87] it is shown that such a component may be used to construct
a component for the encoding of messages using a cyclic code. There it is mentioned
that the program obtained differs totally from solutions found elsewhere.

In section 5.4 a program is derived that is an acceptor for a given regular expression,
i.e. it deterrnines whether the sequence of symbols received thus far is an element of
the language defined by the regular expression. The derived system is a network of
processes whose structure corresponds to the parse tree of the regular expression that
is used in the derivation. The approach taken in the derivation is also found in [Fo,Ku),
[We] and [An,Cl,Fo,Mi]. Different solutions can be found in [Fl,Ul] and [Sa].

Another example that illustrates this way of deriving programscan be found in [Ve88] .

Finally, in section 5.5 we summarize the programming method presented in this chap
ter.

5.1 Recognition of palindromes

A finite sequence is called a palindrome if it is equal to its reverse. For N, N ~ 0,
consider the following specification

PALN = (PR(aN; (b; a)*)

, { (a, Z) , (b, { false, true}) }

, t: (Ak: 0 ~ k < l(tlb)min(l(da)- N + 1)
: b(k, t) =: (A i,j : 0 ~ i,j < N I\ i+ j = N- 1

: a(k +i, t) = a(k + j, t))))

descrihing a process that recognizes palindromes of length N in an incoming sequence
of integers. This informal interpretation shows that a is considered to be an input
channel and b an output channel. In the sequel a specification as above is written as
follows

PALN : signals:

input channels: a : int

output channels: b : bool

communication behaviour: aN; (b; a)*
inputfoutput relation:

b(k) =: (A i,j : 0 ~ i,j < N I\ i+ j = N- 1

:a(k+ i)=a(k+ j)) k ~ O

138 5 Derivation and correctness of programs

The above form of a specification is more apt to our derivations. Notice that apart from
specifying the types of the channels we also specify whether they are input channels,
output channels, or signals. Furthermore, we dropped trace t in the input/output
relation since it does not depend on the order of events within trace t (the specified
process is channel order independent). We also omitted the upperbounds on k, since
these restrictions on k are implied by the communication behaviour. We shall, however,
interpret this differently. From the above input/output relation it can beseen that in
order to compute b(k) , k 2: 0, one needs a(k), .. . , a(k + N "'- 1). The inputjoutput
relation, therefore, requires that a(k + N -1) is received before b(k) is sent. It is easily
seen that this requirement is met by the given communication behaviour; in fact, the
communication behaviour is more restrictive, since it also requires that b(k) is sent
before a(k + N) is received. This means b(k) is sent as soon as it can be computed.
Whenever we derive new input/output relations we wil! adapt or derive communication
behaviours according to the above interpretation.

Assume N 2: 2. We derive for k , k 2: 0,

b(k)

{input/output relation PALN}

(A i,j: 0 :S i,j < N 1\ i+ j = N- 1: a(k +i)= a(k + j))
{ N 2: 2, calculus}

(A i,j: 1 :S i,j < N - 1 1\ i+ j = N- 1: a(k +i)= a(k + j))
1\ (a(k) = a(k + N- 1))

{calculus}

(A i,j: 0 :S i,j < N- 2 1\ i+ j = (N- 2)- 1: a(k + 1 +i)= a(k + 1 + j))
1\ (a(k) = a(k + N- 1))

The first conjunct in the last predicate in the above derivation closely resembles the
right hand side of the input/output relation of PALN_2 . Therefore, assume that there
exists a component pa[N_2 whose process satisfies PALN_2 • We introduce a subcom
ponent pof type palN_2 , and we require

(0) p·a(k) = a(k + 1) k 2: 0

It now follows that for k, k 2: 0,

p·b(k)

{ inputjoutput relation PALN_2 }

(A i, j : 0 :S i,j < N- 2 1\ i+ j = (N - 2)- 1: p·a(k +i)= p·a(k + j))
{ (0)}

(A i,j: 0 :S i,j < N- 2 1\ i+ j = (N- 2)- 1: a(k + i + 1) = a(k + j + 1))

5.1 Recognition of palindromes 139

and, hence,

(1) b(k) :: p·b(k) 1\ (a(k) = a(k + N- 1))

In order to compute b(k) the values a(k + N - 1) and a(k) have to be available. The
communication behaviour implies that a(k + N - 1) is received imrnediately befare
b(k) has to be sent. To have a(k) available one could decide to store the last N val u es
received via channel a. This, however, does not comply with the requirement that
the processes in the system described by the component are simple. We have to solve
this problem in another way. Observe that the values a(k + 1), k ~ 0, are sent to
the subcomponent. Therefore, we could require that the subcomponent returns these
values at a suitable moment via an additional output channel. As a consequence only
value a(O) needs to be stored. Let subcomponent p have an additional output channel
p·c of type integer. We require that

(2) p·c(k) = p·a(k)

which implies, using (0),

(3) p·c(k) = a(k + 1)

Combining (1) and (3) and distinguishing the cases k = 0 and k > 0 yields

(4) b(O) = p·b(O) 1\ (a(O) = a(N- 1))
(5) b(k + 1) = p·b(k + 1) 1\ (p·c(k) = a(k + N)) k>O

Adding output channel p·c to subcomponent p implies introducing an additional output
channel c of the component. The inputjoutput relation in PALN is extended with

(6) c(k) = a(k)

Combining (3) and (6) yields

(7) c(O) = a(O)

(8) c(k + 1) = p·c(k)

Relation (5) shows that p·b(k + 1) and p·c(k) are needed for the same computation.
Therefore, we require that subcomponent p sends these values simultaneously, i.e. its
communication behaviour is

(p·a)N-2 ; p·b; (p·a; p·b, p·c)•

Consequently, the communication behaviour in PALN is changed to

140 5 Derivation and correctness of programs

aN · b · (a· b c)* , ' , '

The remaining problem is to give a command whose process satisfies inputfoutput
relations (0), (4), (5), (7), and (8). lts communication behaviour SN should satisfy

SNÎ{a,b,c} = aN; b; (a; b , c)*

and

SNÎ{p·a,p·b,p·c} = (p·a)N- 2 ; p·b; (p·a; p·b, p·c)*

The restrictions on SN imposed by (0), (4), (5), (7) , and (8) should be taken into
account. Furthermore, we require that there is as little buffering of values as possible.
This can be expressed as fellows

SNÎ{a,p·a}

SNÎ{b,p·b,p·c}

SNÎ{c,p·c}

a;(a;p·a)*

p·b; (b; p·b, p·c)*

(p·c; c)*

A communication behaviour that satisfies all of the above requirements is

SN = a; (a; p·a)N- 2 ; a, p·b ; b, p·a ; (a , p·b, p·c; b, c , p·a)*

Observe the alternation of input and output in the repetition in the above command.

This leads to the following program

com palN(in a: int, out b: bool,c: int):

sub p : palN- 2 bus

moe

var x, y, z: int, w: bool rav

a? x ; (a?y; p·a!y)N-2

; a?y, p·b?w; b!(w 1\ (x= y)), p·a!y
; (a?y, p·b?w, p·c?z; b!(w 1\ (z = y)), c!x , p·a!y ; x:= z)*

Observe that the values received via p·c have to be buffered thereby necessitating an
additional local variable.

Assume N = 0 or N = 1. We now have

b(k) = true k:::::o

This leads to

5.1 Recognition of palindromes

and

eom pa/0 (in a : int, out b : bool, c : int) :

var x : int rav

b!true; (a?x; b!true, c!x)•

moe

eom pa/1 (in a: int, out b: hooi, c: int) :

var x, y :int rav

a?x; b!true; (a?y; b!true, c!x; x:= y)•

moe

141

We will now formally prove that PR(pa/N) is the process specifi.ed by PALN. First we
derive some preliminary results.

Let TN be the command of component pa/N. Then we have SN= !(TN)· Observe that
PR(pal0) and PR(pa/1) are data independent, and that 1(PR(pa/0)) and 1(PR(pal1))

are cubic.

Let N ~ 2. Assume that PR(pa/N_2) is data independent, and I(PR(paiN-2)) is cubic.
Since TN is a closed restricted command and, therefore, SN is a restricted command,
we have by theorems 4.1.9 and 2.4.10 that PR(TN) is data independentand PR(SN) is
cubic. The conditions of theorem 3.2.8 being met we have that p· PR(pa[N_2) w PR(T N)
is data independent and

Theorem 2.4.3 implies that l(p·PR(palN-z)) w PR(SN) is cubic. By theorem 2.3.8
we have that {a,b,c} is non-disabling with respect to l(p·PR(paiN_2))wPR(SN), by
theorem 3.2.4 that

PR(pa/N) = (p· PR(pa/N- 2) w PR(TN)) Î {a, b, c}

is data independent, and by corollary 2.4.7 that I(PR(paiN)) is cubic.

Since {a,b,c} is non-divergent with respect to PR(SN) and {p·a,p·b,p·c} is non-di
vergent with respect to !(p·PR(pa/N_2)) we have by theorem 2.1.11 that {a, b, c} is
non-divergent and, therefore, transparent with respect to l(p·PR(pa/N_2)) w PR(SN).

We now start with the actual proof. It is easily seen that PR(pa/0) and PR(pa/1) are
the processes specifi.ed by PAL0 and PAL1 , respectively.

Let N ~ 2. Assume that PR(pa/N_2) is the process specified by PALN_2 • Process
PR(TN) is the process specified by (PR(SN), QN) (notice that we omit the function
that describes the types of the channels) where

142 5 Derivation and correctness of programs

QN(t) -
(A k: 0 ~ k ~ 0 < P(tib): b(O) =: p·b(O) A (a(O) = a(N- 1)))
A (A k: 0 < k < P(tib)

: b(k) = p·b(k) 1\ (p·c(k- 1) = a(k + N- 1)))
A (A k : 0 ~ k ::; 0 < P(dc) : c(O) = a(O))
1\ (A k: 0 < k < P(tlc): c(k) = p·c(k- 1))

1\ (A k: 0 ~ k < P(tlp·a) : p·a(k) = a(k + 1))

Applying the Conjunction-Weave rule (theorem 3.3.5) yields that
p·PR(pa[N_2) w PR(TN) is the process specified by

(PR(SN),

t: (A k: 0 ~ k < P(tip·b)
: p·b(k) = (A i,j : 0 ~ i,j < N - 2

1\ i+ j = N- 3 : p·a(k +i) = p·a(k + j)))

1\ (A k: 0 ~ k < f(tlp·c): p·c(k) = p·a(k))

1\ QN(t)

The above specification can be transformed into

(PR(SN),

t : (A k : 0 ~ k < f(t lb) : b(k) =: (A i,j : 0 ~ i,j < N
1\ i+ j = N: a(k +i)= a(k + j)))

1\ (Ak: 0 ~ k < f(tlc): c(k) = a(k))
1\ (A k: 0 ~ k < f(t lp·a) : p·a(k) = a(k + 1))

A (Ak: 0 ~ k < f(dp·b)
:p·b(k) =: (Ai,j:O~i,j<N-2

1\ i + j = N - 3 : a(k +i + 1) = a(k + j + 1)))
1\ (A k: 0 ~ k < P(tlp·c) : p·c(k) = a(k + 1))

Let U N he the process specified by PALN. From the above specification we infer that

PR(palN) = (p·PR(palN_ 2)wPR(TN))I{a,b,c} Ç UN

We prove that the reverse inclusion holcis as weJl by induction on the length of traces
from UN. LettE tUN.

base f (t) = 0 t = é E tPR(palN)

5.1 Recognition of palindromes 143

step f(t) > 0

Let t = u(d, m). Since f(u) < f(t) choose s E t(p·PR(palN-2) w PR(TN)) such that
sl{a,b,c} =u. Since

'Y(p·PR(palN-2) w PR(TN)) l{a, b,c} = PR(SNH{a,b, c} = 'Y(UN)

we have that 'Y(u)d E t')'(p·PR(palN-2)wPR(TN))I{a,b,c}. Since {a,b,c} is trans
parent with respect to 'Y(p·PR(palN_2)wPR(TN)) and 'Y(s)l{a,b,c} = 'Y(u), choose v
such that

'Y(s)vd E t')'(p·PR(palN-2)wPR(TN)) 1\ vl{a,b, c} = e.

Process p·PR(palN_2)wPR(TN) being data independent choose r(d,n) such that

sr(d,n} E t(p·PR(palN_2)wPR(TN)) 1\ 'Y(sr(d,n}) =')'(s)vd

Notice that rl{a,b,c} = e. and, hence, (sr)l{a,b,c} =u. In case d =a value n may
be chosen arbitrarily, especially n = m. In case d = b or d = c the specifications imply
that n = m. From this we infer that

u(d,m) E t(p·PR(palN-2)wPR(TN))I{a,b,c}

The above implies that PR(palN) indeed is the process specified by PALN.

We now show that sys(palN) is both non-divergent and lockfree. Observe that

sys(palN) = ({a,b,c}, { (p·)iPR(TN-2;) I 0 ~ 2i ~ N})

that W(psys(palN)) is data independent, and that
'Y(W(psys(palN))) = W('Y(psys(palN))) . This can be shown by induction using the
orem 3.2.8. By corollary 3.4.3 and theorem 3.4.12 we have that in order to prove
that sys(palN) is non-divergent and lockfree it suffices to prove that 'Y(sys(palN)) is
non-divergent and lockfree.

We prove that 'Y(sys(palN)) is transparent (and, therefore, non-divergent) by in due
tion on N. Observe that 'Y(sys(pal0)) and 'Y(sys(pal1)) are transparent. Let N 2 2.
Assume that 'Y(sys(pa[N_2)) is transparent. Since sys(SN)I{a,b,c} is transparentand
PR(SN)I{p·a,p·b,p·c} = PR('Y(sys(palN_2))) we have according to corollary 2.1.24
that

is transparent.

We can prove that 'Y(sys(palN)) is non-divergent in another way. Observe that

144 5 Derivation and correctness of programs

(Ak: k 2 2: (At: tE PR(Sk) 1\ t-::/: e: R(d{p·a,p·b,p·c}) < i(d{a,b,c})))

This condition for commands is also found in (Ud] and (Ka] where it is shown to
imply the existence of a unique salution for the recursive equation defined by a simple
recursive component. Let N 2 0. LettE t-y(PR(palN)) such that t-::/: e. Define

V(t) = {sIs E tW(-y(psys(palN))) 1\ s~{a, b,c} = t}

Sirree p-y(sys(palN)) = { (pYPR(SN- 2;) I 0:::; 2i:::; N} it follows that

(Ak: 0 < k:::; Ndiv2 : (As: sE V(t): i(s~(PY{a,b,c}):::; R(t)))

and, hence,

(As: sE V(t): i(s):::; R(t)·(N div2 + 1))

We conclude that V(t) is finite. Choosing t = é we obtain V(e) = {é}. By theorem
2.1.7 we have that -y(sys(palN)) is non-divergent .

We prove that -y(sys(palN)) is lockfree by induction on N . Observe that -y(sys(pal0))

and -y(sys(pa/1)) are lockfree. Let N 2 2. Assume -y(sys(palN_2)) is lockfree. We have
that sys(SN) is lockfree and transparent. We derive

-y(sys(palN)) is lockfree

{ definition palN}

(-y(p·sys(palN-2)) 11 sys(SN))I{a, b, c} is lockfree

{ definition lockfree system }

-y(p·sys(palN_2)) 11 sys(SN) is lockfree

{ corollary 2.2.8}

lockfree({PR(-y(p·sys(palN-2))),PR(SN)})

{ PR(SN) r{p·a,p·b,p·c} = PR(-y(p·sys(palN_2)))}

true

Finally, we show that -y(sys(palN)) has constant response time. Notice that by giving
a sequence function for -y(sys(palN)) we once more show that this system is lockfree.

Let]{ 2 1. Define for k, 0 < k:::; K, a2k E occ(PR(S2k))-+ N
and a2k+l E occ(PR(S2k+1))-+ N by

5.1 R.ecognition of palindromes

0"2k(a,i) =cr2k+1 (a,i) =3(K-k)+2i

0"2k(p·a, i)= 0"2k+l(p·a, i) = 3(K- k) + 2i + 3

cr2k(p·b, i) = cr2k+1(p·b, i)- 2 = 3K + k + 2i- 2

cr2k(b, i) = cr2k+l (b, i) - 2 = 3K + k + 2i - 1

0"2k(p·c, i) = cr2k+1 (p·c, i) - 2 = 3](+ k + 2i

cr2k(c, i) = 0"2k+1 (c, i)- 2 = 3](+ k + 2i + 1

Define cr0 E occ(PR(S0)) --+ N a.nd cr1 E occ(PR(S1)) --+ N by

cr0 (a, i) = cr1 (a, i) = 3K + 2i

cr0 (b, i) = cr1 (b, i)- 2 = 3/(+ 2i- 1

cro(c, i) = cr1 (c, i)- 2 = 3K + 2i + 1

Define for k, 0 :=::; k :=::;I<, r2k E occ((p·)K-kPR(S2k))--+ N
a.nd T2k+l E occ((p·)K-kPR(S2k+l))--+ N by

T2k((p·)K-kd, i) = 0"2k(d, i)

T2k+l((p·)K-kd, i) = 0"2k+l(d, i)

0 bserve that

(d, i) E occ(PR(S2k))
(d, i) E occ(PR(S2k+l))

(A k: 0 :::; k < K : (Ad, i : (d, i) E occ(p·PR(S2k)) n occ(PR(S2k+2))
: T2k((p·)K -k-ld, i) = T2k+2((p·)K -k-ld, i))

1\ (Ad, i : (d, i) E occ(p·PR(S2k+1)) n occ(PR(S2k+3))
: T2k+l((p·)K- k-ld, i)= T2k+3((py<-k-ld, i)))

145

Hence, T2K hK+l) restricted to occb(PR(pal2K))) (occ(f(PR(pal2K+I)))) is a se
quence fundion for 1(sys(pal2K)) (1(sys(pal2K +I))). Furthermore, we have for l = 2!(
or 2K + 1

(At,d,e: tde E t1(PR(pal1)) 1\ (d,f(tîd)) < (e,f(td îe))
: r1(e,f(tdÎe))- r1(d,e(tîd)):::; 2)

Therefore, '"Y(sys(pal2K)) a.nd l(sys(pal2K+l)) have constant response time. Observe
tha.t the given upperbound does notdepend on K.

146 5 Derivation and correctness of programs

5.2 Recognition of squares

A fini te sequence is called a square if it is the concatenation of two identical sequences.
Notice that the empty sequence is a square, and that the lengthof a square is even. We
derive a component that deterrnines whether the sequence of integers received thus far
is a square. Obviously only even length sequences have to be considered. Therefore,
we propose the following specificatien

SQUARE: signals: -

input channels : a : int

output channels : b : bool

communication behaviour : (b; a ; a)"

input/output relation :

b(i) = (Aj:O:::;j<i:a(j)=a(i+j)) i2:0

An approach like the one taken in sectien 5.1 does not yield predicates that closely
resembie the input/output relation in the above specification. Hence, we wil! first
investigate the following generalization of SQUARE

GSQUARE : signals : -

input channels : a, c : int

output channels : b: bool

communication behaviour : (b ; a ; a , c) •

inputjoutput relation :

b(i) = (A j : 0 :::; j < i : c(j) = a(i + j)) i 2: 0

If the sequences of integers received via channels a and c are identical then the sequence
of booleans sent via channel bis as specified by the inputjoutput relation of SQUARE.

0 bserve that

(0) b(O) = true

For i , i 2: 0, we derive

b(i + 1)
{input/output relation GSQUARE}

(Aj: 0:::; j < i+ 1 : c(j) =a(i+ 1 + j))

{i 2: 0}

(A j : 0 :::; j < i : c(j) = a(i + 1 + j)) 1\ (c(i) = a(2i + 1))

5.2 Recognition of squares 147

We introduce a subcomponent p whose process is also specii1ed by GSQUARE ancl

require that for i, i ~ 0,

(1) p·a(i) = a(i + 1)

(2) p·c(i) = c(i)

Notice that the component we are dcriving is recursive due to the above decision tha.t
amounts to introducing an infinite sequence of subprocesses of the same typ<?.

We continue our derivation.

b(i + 1)
{ above derivation }

(Aj: 0 S. j <i: c(j) = a(i + 1 + j)) 1\ (c(i) = a(2i + 1))

{ (1), (2)}

(Aj: 0 S, j <i: p·c(j) = p·a(i + j)) 1\ (c(i) = a(2i + 1))

{ processof p satisfies GSQUARE}

p·b(i) 1\ (c(i) = a(2i + 1))

The problem is reduced to deriving a command whose process satisfies inputfoutput
relations (0), (1), (2), and

(3) b(i + 1) = p·b(i) 1\ (c(i) = a(2i + 1)) i~ 0

lts communication behaviour S should satisfy

Sî{a,b,c} (b ;a; a,c)*
s r {p·a, p·b, p·c} = (p·b; p·a; p·a' p·c)*

Taking into account (0), (1), (2), and (3) and striving for as little buffering as poss ible
leads to

sr { b, p·b}
Sî{a,p·a}
sr { c, p·c}

(b; p·b)"
a;(a;p·a)*
(c ; p·c)•

Communication behaviour

b; a; (a, c, p·b; b, p·a; a; p·a, p·c)•

satisfies all of the above requirements. Again observe the altcrna.tion of input and
output in the repetition.

The above leads to the following program

148 5 Derivation and correctness of programs

com gsquare(in a, c : int, out b : bool) :

sub p : gsquare bus

lllOC

var x, y : int, w : bool rav

b!true; a?x
; (a?x , c?y, p·b?w; b! (w I\ (x= y)), p·a!x

; a?x; p·a!x , p·c!y)"

Let T9 be the command of the above component. Let U be the process that is speci
fied by GSQUARE. As insection 5.1 we can prove that (PR(T9)wp·U) I{a,b,c} also
satisfi.es GSQ"CARE and hence

(PR(T9)wp·U)r{a,b, c} =U

Since T9 satisfi.es

(At: tE tPR(T9) I\ t "/= e: R(d{p·a,p·b, p·c}) < R(tr{a,b, c}))

equation

Y : (PR(T9)wp·Y) i{a,b,c} = Y

has a unique salution ([Ud],[Ka]) being

(W i : i 2'. 0 : (p·)iPR(T9)) f {a , b, c} = PR(gsqum·e)

Consequently PR(gsquare) is the process specifi.ed by GSQUARE.

Tn order to obtain the output sequence specified by SQUARE we have to scnd o(i) \ "Î<l

channel c at the moment we send a(2i + 1) via channel a. Since a(i) has alrcady bcc11
sPnt via channel a, we require that the component generates a(i) just beforP it. has to
be sent via channel c. We introduce an additional output channel d and cons idcr l.he

following generalization of GSQU ARE

GGSQUARE : signals: -

input channels : a, c: int

ou tput channels : b: bool , d: int

communication behaviour : (b; a; d; a, c)*

input/output rclation:

b(i) = (Aj:O s j <i : c(j)=a(i+j)) i2: 0

d(i) = a(i) i 2: 0

5.2 Recognition of squares 149

Assuming a subcomponent p whose process satisfies GGSQUARE, a derivation again
leads to inputjoutput relations (0), (1), (2), and (3) . Furthermore, we have

(4) d(O) = a(O)

For i, i ~ 0, we derive

d(i + 1)

{ inputjoutput relation GGSQUARE}

a(i+ 1)

{ (1), processof p satisfies GGSQUARE}

p·d(i)

We have to find a command whose process satisfies inputjoutput relations (0), (1), (2),
(3), (4), and

(5) d(i + 1) = p·d(i)

and whose communication behaviour S satisfies, apart from the conditions imposed
before,

St{d,p·d} = (d; p·d)"

We choose communication behaviour

b; a; d; (a, c, p·b; b, p·a; a, p·d; d, p·a, p·c)*

where input and output alternate. This leads to the following program

com ggsquare(in a, c: int, out b: bool, d: int) :

sub p: ggsquare bus

ll10C

var x,y,z : int,w: bool rav

b!true; a?x; d!x
; (a? x, c?y, p·b?w; b!(w 1\ (x= y)), p·a!x

; a?x, p·d?z; d!z, p·a!x, p·dy)*

It can be shown that PR(ggsquare) is the process specified by GGSQUARE.

We now define component square to be

150

com square(in a : int, out b: bool) :

sub p: ggsquare bus

[p·a = a, p·b = b J

var x : int rav

(p·d?x; p·c!x)*

·moe

5 Derivation and correctness of programs

It is easily seen that PR(square) indeed is the process specified by SQUARE.

Let T99 be the command of component ggsquare. Command S99 = "f(T99) satisfies

(At: tE tPR(S99) 1\ t =J. t:: f(tl{p·a,p·b,p·c,p·d}) < f(tÎ{a, b, c, d}))

1\ (At: tE tPR(S99): f(tî{a,b,c,d}::; 2·f(tÎ{a,b}))

Analogously to the pro of of theorem 2.1.18 one can show that '"Y(sys(ggsquare)) t {a, b}
is non-divergent. Since sys((d; c)") is non-divergent, we have by corollary 2.1.12 that

"!(sys(square)) = ("f(p·sys(ggsquare))~:~·p·b 11 sys((p·d; p·c)*) H {a , b}

is non-divergent.

Observe that S99 is a restricted command and, therefore, PR(S9 9) is cubic. Dellne
function 0', 0' E occ(PR(S99))-+ .N, by

0'(b, i) 4i

O'(a, i) 2i + 1

0'(d, i) = 4i + 2

(}'(c, i) 4i + 3

O'(p·b, i) 4i + 3

O'(p·a, i) 2i + 4

O'(p·d, i) = 4i + 5

O'(p·c, i) 4i + 6

for i, i 2: 0. Function 0' is a sequence fundion for PR(S99) that satisfies condition (*) of
theorem 2.5.19. By theorem 2.5.20 fundion r, rE occ(PR('"Y(sys(ggsquare)))) -+ .N,
defined by

r(e, i)= O'(e, i) (e, i) E occ(PR('"Y(sys(ggsquare))))

is a sequence fundion for "!(sys(ggsquare)), and system "!(sys(ggsquare)) is lockfree.

5.3 Polynomial multiplication

Since

(At,e,g: teg E tPR(!(sys(ggsquare))) 1\ (e,f(tfe)) < (g,f(tdg))
: r(g,f(telg))- r(e,f(tle)):::; 1)

system 1(sys(ggsquare)) has constant response time.

151

It easily seen that r restricted to occ(PR(I(sys(square)))) is a sequence function for
1(sys(square)). Therefore, 1(sys(square)) is lockfree. Moreover, 1(sys(square)) has
constant response time.

5.3 Polynomial multiplication

Multiplication of polynomials with integer coefficients is defined as follows . The prod
uct of polynomial p,

p(X) = (S k: 0 :S k < M : Pk. xM- 1-k),

a.nd polynomial q,

q(X) = (S k: 0 :::; k < N: qk. xN- 1-k),

is polynomial p * q,

(p * q)(X) = (S k: 0 :S k < M + N- 1: (p * q)k-XM+N-2-k),

where for k, 0:::; k < M + N- 1,

In the sequel we wil! represent polynomials by integer sequences containing their coef
ficients . Polynomial pis represented by sequence (Pk)O$k<M· We wil! identify polyno
mials with the sequences representing them. The length f (p) of sequence p is defi.ned
in the obvious way. Only sequences p with f(p) ~ 1 wil! be considered. Purthermore,
we define for all sequences p such that C(p) ~ 2

Polynomial multiplication corresponds toa mapping of pairs of integer sequences onto
integer sequences. Sequences p and q are mapped onto sequence

P * q = ((p * q)k)o$k<f(p)+l(q)-1

152 5 Derivation and correctness of programs

where for k, 0:::; k < f(p) + f(q)- 1,

If p is an infinite sequence we define p * q to be the infinite sequence ((p * q)k)k~o w here
for k, k ~ 0,

(p * q)k = (S i,j: i~ 0 1\ 0 :S j < f(q) 1\ i+ j = k: Pi* qi)

Let q be a given finite sequence such that f(q) ~ 1. Consicier the following specification

GMULq : signals : -

input channels : a : int

output channels : b: int

communication behaviour : (a; b)*
input/output relation : b =a* q

Let p be a finite sequence. Define infinite sequence p by Pk = Pk for k, 0 :::; k < C(p),
and Pk = 0 for k, k ~ f(p). Then for k, 0:::; k < f(p) + f(q)- 1,

(p * q)k = (p * q)k

and for k, k ~ f(p) +f(q) -1,

Therefore, the process specified by GMULq can be used t o compute the coefficients of

p * q.

First assume R.(q) ~ 2. We derive for k, k ~ 0,

b(k)

{input/output relation GMULq}

(a* q)k

{ definition a * q}

(Si, j : i ~ 0 1\ 0 :::; j < f(q) 1\ i + j = k : a(i) * qi)

= {e(q) ~ 2}

(Si, j : i ~ 0 1\ 0 < j < R.(q) 1\ i + j = k : a(i) * qi) + a(k) * q0

{calculus}

(Si, j: i ~ 0 1\ 0 :::; j < R.(q) -1 1\ i+ j = k -1: a(i) * qj+1) + a(k) * q0

5.3 Polynomial multiplication 153

Assume that there exists a component gmu/1.9 whose process satisfies GMULt·q· Intro
duce a subcomponentpof type gmult .9 , and require

(0) p·a(k) = a(k) k?_O

Then for k, k ?_ 0,

b(k)

{ above derivation, (0), definition t·q, R(q) ?_ 2}

(Si,j :i ?_0 1\0 ':5j <R(t·q) 1\ i+j = k-1 :p·a(i)*(t·q}j)+a(k)*Qo

Hence,

(1) b(O) = a(O) * Qo

and for k, k > 0,

b(k)

= { definition *, k > 0}

((p ·a) * (t·q))k_ 1 + a(k)* Qo

{ process of p satisfies GMULt.9 }

p·b(k- 1) + a(k) * q0

Our taskis reduced to giving a command whose process satisfies input/output relation
(0), (1), and

(2) b(k) = p·b(k - 1) + a(k) * q0 k>O

a.nd whose communication behaviour S satisfies

Sl{a,b} (a; b)"

Sl{p·a,p·b} = (p·a; p·b)*

Sf {a, p·a} = (a; p·a)*

snb,p·b} (b; p·b)*

The last two conditions are imposed partly by (0), (1), and (2), and partly by the
requirement that there is as little buffering as possible. lt llOW follows that

S =a; (b, p·a; a, p·b)*

This leads to component gmu/9 defined by

154

com gmul9(in a: int, out b: int):

sub p : gmul1.9 bus

var x, y : int rav

a?x; b!(x * q0), p·a!x

5 Derivation and correctness of programs

; (a?x, p·b?y; b!(y +x* qo), p·a!x)"
moe

In case f(q) = 1 we derive

b(k) = a(k) * Qo k~O

which leads to

com gmulq(in a : int, out b: int):

var x : int rav

moe

One may prove that PR(gmulq) is the process specified by GMULq in a way similar
to the approach taken in section 5.1. Likewise, it can be shown that "Y(sys(gmulq)) is
transparent (and, therefore, non-divergent) and lockfree.

Define c>, c> E occ(PR((a; b)*)) ~ N, by

c>(a, i)
c>(b, i)

2i

2i + 1

for i, i~ 0. We have that c> is a sequence fundion for "Y(sys(gmulq)) in case €(q) = 1.

Assume €(q) ~ 2 and c> is a sequence function for "Y(sys(gmu/1.9)).

Define p, p E occ(PR(a; (b, p·a; a, p·b)*)) ~ N, by

p(a, i) 2i

p(b, i) 2i + 1

p(p·a, i) 2i + 1

p(p·b, i) 2i + 2

for i, i ~ 0. Th en p is a sequence function for PR(a; (b, p·a; a, p·b)"). By corollary
2.5.18 we have that p restricted to occ(PR((p·a; p·b)")) is a sequence function for
{(p·sys(gmul1.q)). Since p restricted to occ(PR((a; b)*)) equals c> we have that c> is a
sequence function for 1(sys(gmul9)). Observe that

5.3 Polynomial multiplication

(At,c,d : tcd E tPR(1(sys(gmulq))) A (c,f(tk)) < (d,f(tdd))

: a(d,f(tdd))- a(c,f(tk)) $ 1)

Therefore, "t(sys(gmulq)) has constant response time.

Let N 2: 1. Consider the following component.

com mulq,N(in a: int, out b : int) :

sub p : gmulq bus

lUOC

var x, y : int rav
((a?x; p·a!x; p·b?y; b!y)N-I

; a? x; p·a!x; p·b?y
; (b!y, p·a!O; p·b?y)l(q)-l ; b!y)*

155

Let TN be the command of component mulq,N· Process PR(TN) satisfies the following
input/output relations

(3) p·a(k·(N + f(q)- 1) + l) = a(kN + l)
(4) p·a(k·(N + f(q) -1) + l) = 0

(5) b(k) = p·b(k)

Define sequence ak, k 2: 0 A f(ak) = N, by

(6) (ak)i = a(kN +i) 0$ i< N

We derive for k and l, k 2: 0 A 0 $ l < N + f(q) - 1,

b(k·(N + f(q) - 1) + /)
{ (5)}

p·b(k·(N + f(q) -1) + l)
= {input/output relation GMULq}

k 2: 0, 0 $ l < N

k 2:0, N $l < N +f(q) -1

k;::O

(S i, j : i 2: 0 A 0 $ j < e (q) A i + j = k · (N + e (q) - 1) + l : p· a (i) * q i)

{ (3), (4)}

(Sm,n,j: m 2:0 A 0$ n <NA 0 $ j < f(q)

A m · (N + f(q)- 1) + n + j = k · (N + f(q)- 1) + l: a(mN + n) * qj)

= {calculus }

(S n,j: 0 $ n < N A 0 $ j < f(q) A n + j = l: a(kN + n) * qj)
= { (6), definition *}

(ak*q)I

156 5 Derivation and correctness of programs

Therefore, component mulq,N can he repeatedly used to calculate the coefficients of
the product of polynornials of length N and polynomial q. Observe that parameter N
only appears in the cammand of component mulq,N and not in its subcomponent p of
type gmulq.

The above components for polynomial multiplication can he used in the design of
components for polynomial division and for encoding messages, using a cyclic code
(see [Re87]).

5.4 Acceptors for regular expressions

Regu/ar expressions are defined inductively as follows

ê. is a regular expression

a is a regular expression for all symhols a

if Eo is regular expression then E0 is a regular expression

if Eo and E 1 are regular expressions then E0 ; E 1 and E0 I E 1 are regldar
expressions

Notice that as we already mentioned in section 1.2 tbc set of regular expressions forms
a subset of the set of commands. With each regular cxpression E a language I.(E) is
associated that is defined by

.C(E) = tTR(E)

An acceptor for regu/ar expression E is a process that upon receiving an input symbol
computes whether the sequence of symbols received thus far is an element of I-(E).
Formally,

signals :

input channels : c: sym

output channels : r : hooi

communication behaviour : (c; r) •

input/output relation : r(i) = c(k: 0 :::; k :::; i) E .C(E) i~ 0

However, since we strive for a hierarchically structured component whose structurc
reflects the st ructure of the regular expression, the ahove specification is not adequate.
Problems arise with the star operator and the semicolon operator, in wh ich cases not
only prefixes of the input sequence have to be accepted.

Therefore, we generalize the ahove specification as follows

5.4 Acceptors for regular expressions

ACCs : signals : u

input channels : e : bool, c : sym

output channels : v , r : bool

communication behaviour :

inputfoutput relation:

v(O) := ê E .C(E)

u· v· (e c· r)•
' ' l '

r(i) = (Ej: 0 S j Si : e(j) 1\ c(k: j S k Si) E .C(E)) i~ 0

Notice that if

e(O)
e(i)

true
false i> 0

we have r(i) = c(k: 0 S k Si) E .C(E) for i, i~ 0.

157

Since channel v is used only once one could elim.inate channel v by using channel r also
for the message that is to be sent via channel v. We have not clone so for reasens of
clarity. The same applies to signa! u whose role could be played by an additional first
message via channel e, the contents of which is irrelevant.

Let E = E:. We derive

v(O)

= {input/output relation ACC,}

E. E .C(ê)

{.C(ê)={ê}}

true

and for i, i :::=: 0,

r(i)

= {input/output relation ACC,}

(Ej : 0 S j Si: e(j) 1\ c(k: j S k Si) E .C(ê))

{i ~ 0, .C(ê) = {ê}}

fa! se

This yields

con1 acc,(sig u, in e : bool, c: sym, out v, r : bool) :

var x : bool, z : sym rav

u; v!true; (e?x, c?z; r!false)*

IUOC

158 5 Derivation and correctness of programs

Let E = a for some symbol a. We derive

v(O)
{ inputjoutput relation ACCa}

e E .C(a)

{ .C(a) ={a}}

false

and for i, i 2 0,

r(i)

{input/output relation ACCa}

(Ej: 0 S j Si : e(j) 1\ c(k : j S k Si) E .C(a))

{ calculus, i ;::: 0}

(Ej: 0::::: j <i: e(j) 1\ c(k: j::::: k Si) E .C(a))
V (e(i) 1\ c(k: iS k Si) E .C(a))

{ .C(a) ={a}}

e(i) 1\ (c(i) =a)

This yields

com acca(sig u, in e: bool, c: sym, out v, r : bool) :

var x : bool, z : sym rav

u; v!false; (e?x, c?z; r!(x 1\ (z =a)))*
moe

Let E = E0 I E 1. We assume the existence of cornponents accEo ancl accE, whose
processes are specif1ed by ACCEo and ACCE,, respectively. Our goal is to derive <t

component that has a subcomponent p of type a ccE0 and a subcomponent q of type
accE, . We derive

v(O)

{ inputjoutput relation ACCEoiE1 }

é E .C(Eo I E1)

{ .C(Eo I EJ) = .C(Eo) U .C(E,)}

e E .C(Eo) V é E .C(E1)

{ processof p satisfies ACCE0 , processof q satisfies ACC E, }

p·v(O) V q·v(O)

5.4 Acceptors for regular expressions

and for i, i 2: 0,

r(i)

{input/output relation ACCEoiE1 }

(Ej: 0::; j::; i: e(j) 1\ c(k: j::; k::; i) E .C(Eo I Et))

{ .C(Eo I E1) = .C(Eo) U .C(E1)}

(Ej: 0::; j::; i: e(j) 1\ c(k: j::; k::; i) E .C(Eo))
V (Ej: 0::; j::; i: e(j) 1\ c(k: j::; k::; i) E .C(E1))

Therefore, we require for i, i 2: 0,

p·e(i) e(i)

(0)
p·c(i) c(i)
q·e(i) - e(i)
q·c(i) c(i)

We continue for i, i 2: 0,

r(i)

{ above derivation, (0)}

(E j : 0 ::; j ::; i : p·e(j) 1\ p·c(k : j ::; k ::; i) E .C(E0))

V (Ej: 0::; j::; i: q·e(j) 1\ q·c(k: j::; k::; i) E .C(E1))

{input/output relations ACCEo and ACCE, }

p·r(i) V q·r(i)

This yields

com accEaiE, (sig u, in e : bool, c : sym, out v, r: bool) :

sub p: accEo,q: accE, bus

moe

var x,px,qx: bool,z: sym rav

u; p·u, q·u; p·v?px, q·v?qx; v!(px V qx)
; (e?x, c?z; p·e!x, q·e!x, p·c!z , q·c!z

; p·r?px, q·r?qx; r!(px V qx))•

159

Notice that the communication behaviour corresponding to the command of compo
nent accEoiE, satisfies the requirements that are imposed by the derived inputfoutput
relations. Furthermore, observe that all of the above derivations could also have been
given starting from the original specification. The following derivations , however, make
it clear that the specification had to be generalized.

160 5 Derivation and correctness of programs

Let E = E0 ; E 1 • Again we assume the existence of components accEo and accE1 whose
processes are specified by ACCEo and ACCE1 respectively. We strive fora component
that has a subcomponentpof type accEo and a subcomponent of type accE1 • We derive

v(O)

{input/output relation ACCEo ;E1 }

ê E .C(Eo; EI)

= { .C(Eo; E1) = .C(Eo).C(EI)}

E E .C(Eo) 1\ E E .C(E1)

{ process of p satisfies ACC E<l, process of q satisfies ACC E 1 }

p·v(0) 1\ q·v(0)

and for i, i ~ 0,

r(i)

{input/output relation ACCE<l ;E1 }

(E j : 0 :::; j :::; i : e(j) 1\ c(k : j :::; k :::; i) E .C(Eo; E1))

{ .C(Eo; E1) = .C(Eo).C(EJ)}

(Ej: 0 :::; j :::; i: e(j) 1\ c(k: j :::; k :::; i) E .C(E0) 1\ E E .C(E1))
V (Ej: 0 :::; j:::; i: e(j) 1\ E E .C(Eo) 1\ c(k: j :::; k :::; i) E .C(EI))
V (Ej: 0:::; j:::; i: e(j) 1\ (El : j:::; l <i: c(k: j:::; k:::; l) E .C(E0)

1\ c(k: l+ 1:::; k:::; i) E .C(E1)))

We require for i , i ~ 0,

(1)
p·e(i)
p·c(i)

e(i)
c(i)

\Ne continue for i, i ~ 0,

r(i)

{ above derivation, (1), processof p (q) satisfies ACCE<l (ACCE,)}

(p·r(i) 1\ q·v(O))
V (Ej: 0:::; j :::; i: e(j) 1\ p·v(O) 1\ c(k: j:::; k:::; i) E .C(EJ))
V (El: 0:::; l <i: (Ej : 0 :::; j:::; l: e(j) 1\ c(k : j:::; k:::; I) E .C(E0))

1\ c(k: l + 1 :::; k:::; i) E .C(E1))

{ (1), processof p satisfies ACCE0 , renaming dummy}

5.4 Acceptars for regular expressions

(p·r(i) 1\ q·v(O))
V (Ej: 0 ~ j ~i: e(j) 1\ p·v(O) 1\ c(k: j ~ k ~i) E .C(E1))

V (Ej: 0 ~ j <i: p·r(j) 1\ c(k: j + 1 ~ k ~i) E .C(E1))

= {calculus}

(p·r(i) 1\ q·v(O))
V (Ej: 0 ~ j ~i: e(j) 1\ p·v(O) 1\ c(k: j ~ k ~i) E .C(E1))

V (E j : 0 < j ~ i : p·r(j - 1) 1\ c(k : j ~ k ~ i) E .C(E 1))

Therefore, we require

(2) q·e(O) = e(O) 1\ p·v(O)

and for i, i 2 0,

(3)
q·e(i + 1)

q·c(i)
= (e(i + 1) 1\ p·v(O)) V p·r(i)

c(i)

We continue for i, i 2 0,

r(i)

{ above derivation, (2), (3)}

(p·r(i) 1\ q·v(O)) V (Ej: 0 ~ j ~i: q·e(j) 1\ q·c(k: j ~ k ~i) E .C(E1))

{ process of q satisfies ACC E, }

(p·r(i) 1\ q·v(O)) V q·r(i)

This leads to

com accEo ;E1 (sig u, in e : bool, c: sym, out v, r : bool) :

sub p : accEo, q : accE, bus

lUOC

var x,px,.qx,pv,qv: bool,z: sym rav

u; p·u, q·u ; p·v?pv, q·v?qv; v!(pv 1\ qv), px:= false
; (e?x , c?z ; p·e!x, q·e!((x 1\ pv) V px), p·c!z, q·c!z

; p·r?px, q·r?qx ; r!((px 1\ qv) V qx))*

161

Let E = E~. Assume the existence of a component accEo whose processis specified by
ACC Eo. Again we strive for a component that has a subcomponent p of type accEo.

We derive

162 5 Derivation and correctness of programs

v(O)
= {input/output relation ACCE.;}

and

t: E .C(E~)

{ t: E .C(Eó)}

true

r(O)

{input/output relation ACCE0}

e(O) 1\ c(k: 0 S k S 0) E .C(E~)

{a E .C(E~) = a E .C(E0) for all symbols a}

e(O) 1\ c(k: 0 S k S 0) E .C(Eo)

\Ve require

(4)

Th en

p·e(O)
p·c(O)

r(O)

e(O)
= c(O)

{ above derivation, (4) }

p·e(O) 1\ p·c(k: 0:::; k:::; 0) E .C(E0)

{ processof p satisfies ACCEo}

p·r(O)

Furthermore, we derive for i, i ~ 0,

r(i + 1)

{input/output relation ACCE;}

(Ej: 0 S j Si+ 1: e(j) 1\ c(k: j S k S i + 1) E .C(Eó))

{ .C(E~) = .C(E0).C(Eo) U {t: }, i~ 0}

(Ej: 0:::; j Si+ 1 : e(j) 1\ (El: j S l Si+ 1: c(k : j:::; k <I) E I-(E~)

1\ c(k : l :::; k :::; i + 1) E .C (Eo)))

{ t:E .C(E~)}

5. 4 Acceptars for regular expressions

(E j : 0 ::; j ::; i + 1 : e(j) 1\ c(k : j ::; k ::; i + 1) E .C(Eo))
V (Ej : 0 ::; j ::; i+ 1 : e(j) 1\ (El: j < l::; i+ 1 : c(k: j ::; k < l) E .C(E~)

1\ c(k : l ::; k ::; i + 1) E .C (Eo)))

{calculus}

(E j : 0 ::; j ::; i + 1 : e(j) 1\ c(k : j ::; k ::; i + 1) E .C(Eo))
V (El: 0 < l::; i+ 1: (Ej: 0::; j < l: e(j) 1\ c(k: j::; k < l) E .C(E0))

1\ c(k : I ::; k ::; i + 1) E .C (Eo))

{input/output relation ACCE0, renaming dummy}

(E j : 0 ::; j ::; i + 1 : e(j) 1\ c(k : j ::; k ::; i + 1) E .C(E0))

V (Ej: 0 < j::; i+ 1: r(j -1) 1\ c(k: j::; k::; i+ 1) E .C(Eo))

Therefore, we require for i, i 2:: 0,

(5)
p·e(i +l)
p·c(i+1)

e(i + 1) V r(i)
c(i+ 1)

We continue for i, i 2:: 0,

r(i + 1)

{ above derivation, (4), (5) }

(Ej: 0::; j::; i+ 1: p·e(j) 1\ p·c(k: j::; k::; i+ 1) E .C(Eo))

{ processof p satisfies ACCEo}

p·r(i + 1)

This leads to

com accE0 (sig u, in e: bool, c : sym, out v, r : bool) :

sub p : accEo bus

var x, px : bool, z : sym rav

u; p·u; p·v?px; v!true, px:= false

; (e?x, c?z; p·e!(x V p:c), p·c!z ; p·r?px; r!px)*

moe

163

By induction on the structure of regular expressions one can prove that PR(accE) is
indeed the process specified by ACCE· The proof is analogous to the proof in section
5.1.

We prove that 7(sys(accE)) is transparent by induction on the structure of regtdar
expressions, i.e. the structure of components. Let TE be the command of component

5 Derivation and correctness of programs

accE and let Ss = 1(TE)· Obviously 1(sys(acc,)) and 1(sys(acca)), for all symbols
a, <tre transparent . Assume 1(sys(accEo)) and 1(sys(aces,)) to be transparent. By
corollary 2.1.22 we have that 1(p·sys(accs0) 11 q·sys(aces,)) is transparent. Since
SEoiE1 = Ss0 ;s1 , system sys(SEoiE1)f{u,v,e,c,r} is transparent, and

PR(SsoiE1) f {p·u, p·v, p·e,p·c, p·r, q·u, q·v, q·e, q·c, q·r}

{ definition SEoiS,, property projection}

PR(p·u, q·u; p·v, q·v; (p· e , q·e, p·c, q·c ; p·r, q·r)*)

C { calculus }

PR(p·u; p·v; (p·e, p·c; p·r)*)wPR(q·u; q·v; (q·e, q·c ; q·r)*)

{ PR(accs0) satisfies ACCE0 , PR(accE,) satisfies ACCE,}

PR(1(p·sys(accEo))) w PR(1(q·sys(aces,)))

{calculus}

PR(1(p·sys(accEo) 11 q·sys(accEJ))

we have by corollary 2.1.24 that

1(sys(accEoiE,)) =
(1(p·sys(accEo) 11 q·sys(accEJ) 11 sys(SEoiS,)) f{u,v, e,c,r}

and

~t(sys(accEo ;E1)) =
(1(p ·sys(accEo) 11 q·sys(accs,)) 11 sys(Sso ;E,))Uu,v,e,c,r}

are transparent .

Since sys(SE0)f{u,v,e,c,r} is transparentand

PR(S Eö)f {p·u, p·v, p·e, p·c, p·r} = PR(1(p·sys(accEo)))

we have by corollary 2.1.24 that

At(sys(accE0)) = (1(p·sys(accE0)) 11 sys(Ss;))f{u., v,e,c,r}

is transparent. Consequently, 1(sys(accE)) is non-divergent for all regLtlar expressions
1-7.

L' p to this point we did not mention that a regular expression might be parscel in more
that one way. For instance, a ; b; c; d may be parsed in five different ways:

5.4 Acceptars for regular expressions

(((a) ; (b)) ; (c)) ; (d)
((a); ((b); (c))); (d)
((a) ; (b)) ; ((c) ; (d))
(a) ; ((b) ; ((c) ; (d)))
(a) ; (((b) ; (c)) ; (d))

165

Consequently, one may obtain five different components when following the above
method to construct an acceptor for E. The way in which a regular expression is
parsed can be represented by a so-called parse tree. Notice that the parse tree of a
regtdar expression and the structure of the component that is constructed using t.hal
parse tree correspond. In the above example the third way of parsing yields a. pMse
tree of depth 2; the other ways yield a parse tree of depth 3.

As it turns out sequence fundions for l(sys(accs)) depend upon the depth of the
chosen parse tree for E. This dependenee is such that components constructed by
using parse trees of least depth are to be preferred . In the above exarnple the third
way of pa.rsing is to be preferred above the other ways.

We introduce parenthesized regular expressions:

c is a parenthesized regular expression

a is a parenthesized regtdar expression for all symbols a

if E0 and E 1 are parenthesized regular expressions then (E0) I (E1) and
(Eo); (E1) are parenthesized regular expressions

if Eo is a parenthesized regular expression then (E0)* is a parenthesized reg u lar
express10n

Pa.renthesized regular expressions have a unique parse tree . I-Ience, the component
aces that corresponds to parenthesized regular expression E is uniquely defined. In
the sequel we only consider parenthesized regular expressions which we call rcgular
cxpressions.

For every reg u lar expression E the depth of (the parse tree of) E, denoted by d(E), is
defined inductively as follows

d(t:)

d(a)

d((Eo) I (E,))

d((Eo); (Et))

d((Eo)*)

0

0

d(E0) maxd(Et) + 1

d(E0)maxd(E1) + 1

d(Eo) + 1

166 5 Derivation and correctness of prog1·ams

By induction on the structure of regular expressions we prove that

O'E E occ(PR(-y(sys(accE))))-+ N defined by

O'E(u, 0) = 0

O'E(v, 0) 2 · d(E) + 1

O'E(e,i) = 2 · d(E) + 2 + i · (2 · d(E) + 2)

O'E(c, i) 2 · d(E) + 2 +i· (2 · d(E) + 2)

O'E(r, i) = 4 · d(E) + 3 +i · (2 · d(E) + 2)

for i, i~ 0, is a sequence function for i(sys(accE)).

It is obvious that O'E is a sequence function for ! (sys(accE)) in case E = E or E = a

for some symbol a.

Let E = (Eo) I (E1) or E = (Eo); (E1) . We have

SE = u; p·u, q·u; p·v, q·v ; v ; (e, c; p·e, q·e , p·c, q·c; p·r , q·r ; r)*

Define TEE occ(PR(SE))-+ N by

TE(u , O) = 0

TE(p·u,O) = TE(q·u,O) = 1

TE(p·v, 0) = TE(q·v, 0) = 2 · d(E)
TE(v ,O) = 2 · d(E) + 1

TE(e , i) = TE(c,i) = 2 · d(E) + 2 +i · (2 · d(E) + 2)

TE(p·e, i) = TE(q·e, i) = TE(p· c, i) = TE(q·c, i) = 2 · d(E) + 3 + i · (2 · d(E) + 2)

TE(p· r, i) = TE(q·r ,i) = 4 · d(E) + 2 +i· (2 · d(E) + 2)

TE(r , i) = 4 · d(E) + 3 + i · (2 · d(E) + 2)

for i, i~ 0. Then TE is a sequence function for PR(SE)·
Notice tha t TE restricted to occ(PR(-y(sys(accE)))) equals O'E .
. \Text, we define PEo E occ(PR(!(s ys(accE0))))-+ N by

P Eo (a, i) = TE(p.a, i) (a, i) E occ(PR(-y(s ys(accE0))))

and PE, E occ(PR(i(sys(accE,))))-+ N by

PE1 (a, i) = TE(q .a, i) (a, i) E occ(PR(i(s ys(accEo))))

We have

5.4 Acceptars for regular expressions

PEo(v,O)- PEo(u,O)

= { definition PEo }

2 · d(E)- 1

= { definition d(E)}

2 · (d(E0)maxd(E1) + 1) -1

> {calculus}

2 · d(E0)+1

= { definition aEo}

aEo(v,O)- aEo(u,O)

PEo(e,O)- PEo(v,O)

= { definition PEo}

2 · d(E) + 3- 2 · d(E)
> {calculus}

2 · d(Eo) + 2- (2 · d(E0) + 1)

= { definition aEo}

O"E0 (e, O)- aEo(v,O)

for i, i ;::: 0,

PEo(r,i)- PEo(e,i)

= { definition p Eo }

4 · d(E) + 2 +i· (2 · d(E) + 2) - 2 · d(E) - 3 -i · (2 · d(E) + 2)
{ definition d(E)}

2 · (d(Eo) maxd(E1) + 1)- 1

> {calculus}

2·d(Eo)+1

= {calculus}

4 · d(E0) + 3 +i· (2 · d(Eo) + 2) - 2 · d(Eo) - 2- i· (2 · d(E0) + 2)
{ definition aEo}

aEo(r,i)- aEo(e,i)

and for i, i ;::: 0,

PEo(e,i + 1)- PEo(r,i)

= { definition PEo }

16ï

168 5 Derivation and correctness of programs

2 · d(E) + 3 +(i+ 1) · (2 · d(E) + 2)- 4 · d(E)- 2- i· (2 · d(E) + 2)

> {calculus}

2 · d(Eo) + 2 +(i+ 1) · (2 · d(Eo) + 2)- 4 · d(Eo)- 3- i· (2 · d(Eo) + 2)

= { de:finition O"Eo }

O"EtJ(e,i + 1)- O"EtJ(r,i)

From the above it follows that

(Aa,b,i,j: (a,i),(b,j) E occ(PR('y(sys(accEo)))) 1\ (a,i) < (b,j)
: uEo(b,j)- uEo(a,i) ::=; PEtJ(b,j)- PEo(a,i))

Furthermore, we have

uEo(u,O) = 0 < 1 = PEo(u,O)
uEo(v,O) = 2 · d(E0) + 1 < 2 · d(E) = PEo(v,O)
uEo(e, 0) = 2 · d(Eo) + 2 < 2 · d(E) + 3 = PEtJ(e, 0)

uEo(r, 0) = 4 · d(Eo) + 3 < 4 · d(E) + 2 = PEo(r, 0)

By corollary 2.5.18 we now have that PEo is a sequence function for i(sys(acce0)).

Analogously, we can prove that PE, is a sequence function for i(sys(accE,)).

From the above we infer that O"E is a sequence function for i(sys(acce)).
Analogously, we can prove that in case E = (E0)* ue is a sequence function for
i(sys(accE)).

By theorem 2.5.14 we have that 1(sys(accE)) is lockfree. Since

(At,a,b :tab E tPR('y(sys(accE))) 1\ (a,l(da)) < (b,l(tatb))
: uE(b,l(tatb))- O"E(a,l(da)) ::=; 2 · d(E) + 1)

system i(sys(accE)) has constant response time.

One may interpret the constant 2 · d(E) + 1 in the above condition as a measure for
the response time of component accE. Then it is obvious that when constructing a.n
acceptor for regular expression E one should use a parse tree of E of minimal depth.

Defining the lengthof regular expression E, denoted by l(E), by

l(e:) =

l(a) =

l((Eo) I (Et)) =
l((E0); (Et))

l((Eo)*) =

one can show that

1

l(E0) + l(Et) + 1

l(E0) + l(Et) + 1

l(Eo) + 1

5.5 Final remarks 169

log(C(E))::; d(E)::; C(E)

This implies that the least response time that one rnight achieve is 2 · flog(f(E))l + 1.

Consicier regular expression Em = a 0 ; a 1 ; . . . ; am-l for m, m > 0. Regular exprcssion
Em can be parsed to yield parsetrees of depth pog(2m- l)l and 2m- 1 (= f(Em)).
Therefore, acceptors for Em can be constructed having response time 2· flog(2m-l)l + 1
and 4m- 1, respectively.

Every parse tree of regular expression E =a; (b; c; d)* has depth 4 whereas f.(E) :=: 8
and log(R(E)) = 3. This shows that the given lower bound is not always rcachable.

Finally, we observe that sys(accE) describes a networkof processes that has the form of
a. tree. The nocles in the network that correspond tooperators in E pass on the symbols
they receive. The nocles that correspond tot: in E discard the symbols they receive.
Only the nocles that correspond to symbols in E compare the symbols they receive
with their own symbol. Observe that the nocles of the last two kinds are the leaves of
the tree. Therefore, the processes in the network could be simplified by sending thc
symbols directly to the nocles conesponding to symbols in E instead of letting them
be passed by all other nodes. This reduces the processes in nocles conesponding to
operators and ê in E to processes that have to deal with boolean values only.

5.5 Final remarks

In the previous sections we illustrated a way of deriving programs from (split) specifica
tions. Essentially, we employed the fact that the communication behaviour is specified
independently of the inputfoutput relation, i.e. all processes specified are data inde
pendent, and the fact that the inputfoutput relation depends only on the numbers of
events in the trace, i.e. all processes specified are channel order independent. Deriva
tions were clone primarilyin terros of inputfoutput relations. Programming techniques
that were used are

introduetion of one or more subprocesses having a similar specification. Sirn
ilar here means equal (cf. recursive procedures and functions in sequentia!
programrning) or with one or more parameters changed (cf. e.g. invariants ob
tained by replacing one or more constants in the postcondition by variables in
sequentiaJ programrning). In the former case one introduces an infinite nurnber
of subprocesses, all of the same type. In the latter case one usually arrives at
a fini te number of su bprocesses, all of different type.

introduetion of one or more additional channels (cf. the introduetion of auxil ·
iary variables in sequentia! programming)

- generalization of the original specification

170 5 Derivation and conectness of programs

Communication behaviours were modified or derived according to the requirement.s im
posed by the derived input/output relations and by considerations concerning buffering
of values. This was clone in such a way that the resulting systems are non-divergent
and lockfree. The derived programs describe systems that satisfy the conditions for
networks of processes given in section O.O. This is due to the fact that all specifications
in our derivations are split specifications having commurication behaviours that are
cubic, and to the way in which we introduced (sub)processes.

Tbe forma[proofs in sections 5.1 and 5.2 give an impression as to what kind of theorem
may be formulated about deriving a split specification for the projection of a process
from a split specificatien for that process. Among the conditions to be satisficu Me

the requirements that the channel set C on which one projects is transparent with
respect to the communication behaviour (cf. theorem 3.2.4) and that the predieale
in the specificatien can be written as the conjunction of two predicates, one solely in
termsof channels in C and the other descrihing the values sent via channels not in C as
functions of the values sent via channels in C. 'vVe have, however, not farmuiateel such
a theorem since the examples in 5.1 and 5.2 do illustrate the principle morr clciu·ly.

6 Conclusions

In this thesis we show how communication of values and parallel computations, es
pecially those that are characterized by the conditions given in section 0.0, can be
described using trace theory as a formalism. Furthermore, we show how programs may
be derived from specifications. These programs can be proved to be correct, i.e. they
satisfy their specifications, and have neither deadlock nor divergence.

To the above aim we introduced the notion of system. A system is a description for
a networkof processes. Formally, it is a pair consisting of an alphabet (the external
channels of the network) and a set of processes. The external process of a system
is defined to be the composition of all processes in its process set projected on its
external alphabet. Systems can be composed and projected on alphabets . The program
notation of trace theory is viewed as a means to describe a certain class of systems. The
process of a program or component is defined to be the external process of the system
corresponding to the program or component. In case of a recursive component this
definition yields, in a natura! way, the least fixpoint of the recursive equation defined
by the component, thus confirming the choice that is made elsewhere ([Sn],[Ka]).

The phenomena divergence and nondeterminism are captured by the introduetion of
the conceptsof non-divergent, non-disabling, and transparent alphabets (non-disabling
corresponds to 11 in [Ka]). These concepts are introduced for systems as wel!. Absence
of divergence is characterized in several ways. A number of useful theorems dealing
with the above phenomena in case of composition and projection is given. Absence of
deadlock is modelled by defining what lockfree systems are. If one wants to investigate
the absence or presence of deadlock one may project on transparent alphabets that
contain the common symbols.

The classes of conservative and cubic processes ([Ve85], [Ve86]) are introduced, the
latter being a subclass of the former. Both classes are closed under composition and
projection. The behaviour of a conservative process after trace t only depends on
the numbers of events in t, not on their order in t. Furthermore, each subset of the
alphabet of a conservative process is non-disabling with respect to that process. With
each process we associate a set of occurrences of events. A process defines a partial
order on its set of occurrences. Vice versa, a partial order on a set of occurrences defines
a process. If process T equals the process defined by the partial order conesponding
to T then T is cubic. A sequence fundion for a cubic process describes a part ial order

171

172 6 Conclusions

that is in accordance with the partial order defined by the process. It defines a cubic
su bprocess that can be interpreted as a restricted (clocked) behaviour of the original
process. Sequence functions are also defined for systems consisting of cubic processes.
Existence of a sequence function for such a system implies, under certain conditions, the
absence of deadlock. Conditions for the existence of a sequence function for the system
corresponding to a recursive component are given expressed in terms of the command
of the component only. A system of cubic processes is said to have constant response
time if there exists a sequence function for the system satisfying certain conditions.

Corrununication of values is described in terms of trace theory. Essentially, this is clone
by introducing symbols that are pairs consisting of a channel name and a value. Occur
rence of pair (c, m} is interpreted as the passing of value m via channel c. In genera!,
the corrununication behaviour of a process depends on the values that the process sencis
and receives. Processes for which this not the case are called data independent. Data
independenee can be expressed in terms of transparence. Data independent processes
form the class of processes that are specified by split specifications. The Conjunction
Weave rule is formulated for this class. The projection of a data independent process
on a channel set that is non-disabling with respect to the communication behaviour
is data independent. Conditions implying the data independenee of the composition
of processes are formulated. They are easily verified if one introduces channel types ,
and distinguishes between input and output. Data independenee allows one to discuss
phenomena like deadlock and divergence in terms of communication behaviours only.
A process is called channel order independent if its future behaviour does not depend
on the order in which the channels have been used in the past. For processes that
do not describe communication of values, e.g. communication behaviours, this defini
tion equals the definition of conservativity. A new notation for specifications of data
independent processes that are channel order independent as wel! is introduced.

Making a distinction between input and output, the program notation of t race theory
is extended to include communication of values. Conditions are given that imply the
process of a component to be data independent and channel order independent and its
communication behaviour to be cubic.

Finally, a programming metbod is presented informally by means of examples. Among
the examples given is the derivation of programs for accepters of regular expressions.
The programming metbod is based on the data independenee and the channel or
der independenee of processes, and the application of the Conjunction-Weave rule.
Programs derived using this metbod describe systems that satisfy the conditions for
networks given in section O.O. We show that the derived programs can be proved to
be correct. They satisfy the given specification, and their systems are free of deadlock
and divergence. Furthermore, it is shown that the systems of the derived programs
have constant response time. A number of analogies with sequentia! programming is
mentioned.

1Î3

Summarizing, we conclude that the material presented in the previous chapters provides
adequate means to describe parallel computations, in particular the subclass we are
mainly interested in. It also supports the reasoning in the programming method that
is introduced.

References

[An,Cl,Fo,Mi] Anantharaman,T.S., E.M. Clarke, M.J. Foster, B. Mishra
Compiling path expressions into VLSI circuits
Distributed Computing 1 (1986), pp. 150-160

[Bi] Birkhoff, G.
Lattice Theory
American Mathematica! Society, Providence, 1967
(AMS Colloquium Publications : vol. 25)

[Dij] Dijkstra, Edsger W.
Lecture N otes "Predicate transfarmers" (dra ft)
Eindhoven University of Technology, 1982
(EWD 835)

[Ee] Eemers, Henk
A description of communicating mechanisms and their behaviour
Eindhoven University of Technology, 1988
(Master's Thesis)

[Fl,Ul] Floyd, Robert W., Jeffrey D. Ullman

[Fo,Ku]

[Ho]

The Gompi/ation of Regu/ar Expressions into lntegrated Circuits
Joumal of the ACM, 29, 3 (1982), pp.603-622

Foster,M.J., H.T. Kung
Recognize regular languages with programmabie building-blocks
VLSI 81 Very Large Scale Integration
ed. J.P. Gray
Academie Press, 1981, pp.75-84

Hoare, C.A.R.
Communicating Sequentia/ Processes
Prentice Hall, New York, 1985

174

Reierences

[Ka]

[Kö]

[Ku]

[Re85]

[Re87]

[Ro,Tch]

[Sa]

[Sn]

Kaldewaij, Anne
A Formalism for Concurrent Processes
Ph.D.-thesis
Eindhoven University of Technology, 1986

König, D.
Theorie der end/ichen und unendlichen Graphen
Chelsea, New York, 1950

Kung, H.T.
Let 's design algorithms for VLSI systems
Proc. 1st Caltech Conference, ed. C.L. Seitz
California Institute of Technology, Pasadena, 1979, pp. 65-90

Rem, Martin
Concurrent Computations and VLSI Circuits

175

Control Flow and Data Flow: Concepts of Distributed Programming
ed. M. Broy
Springer, Berlin, 1985, pp. 399-437

Rem, Martin
Trace theory and systolic computations
PARLE Parallel Architectures and Languages Europe
Volume I: Parallel Architectmes
ed. J.W. de Bakker, A.J. Nijman, P.C. Treleaven
Springer, Berlin, 1987
(Lecture Notes in Computer Science: 258) pp. 14-33

Robert, Yves, Maurice Tchuente
Réseaux Systoliques pour des Problèrnes de Mots
R.A.I.R.O. Informatique théorique/Theoretical Informaties
19,2,1985, pp.107-123

Salomaa, Arto
Computation and A utomata
Cambridge University Press, 1985
(Encyclopedia of rnathematics and its applications: 25)

Snepscheut, Jan L.A. van de
Trace Theory and VLSI Design
Springer, Berlin, 1985
(Lecture Notes in Computer Science: 200)

'

176

[Vd]

[Ve85]

[Ve86]

[Ve88]

(We]

Udding, Jan Tijmen
On recursively defined set of traces
Eindhoven University of Technology, 1983
(THE Memorandum JTUOa)

Verhoeff, Tom
Notes on Delay-lnsensitivity
Eindhoven University of Technology, 1985
(Master's Thesis)

Verhoeff, Tom
Private communication, 1986

Verhoeff, Tom
A Parallel Program That Generales the Möbius S equence
Eindhoven University of Technology, 1988
(Computing Science Notes: 88/01)

Wetering, Huub van de
Acceptars of regu/ar sets
Eindhoven University of Technology, 1985
(Master's T hesis)

Reierences

Index

n
u
.e
E:

r
I

L
<
M

IL
N
0
n
n.
11

<r

<"
~

T
T ,...,

\
I:(A)
c
S,p
T(A)
()

,j
[T]
[t]r
z

A, 4
a, 7

4, 9
4, 9

6, 151, 168
6, 17, 62, 125
89, 130
89, 93, 124
50
156
6
89

104
4
120
6, 22
22

20, 93
65
70

19, 62, 90, 93
59

10
49

19
9
120, 121

9
96
89

10
10

4

acceptor for a regular expression, 156

177

after , 9, 10
alphabet, 6

non-disabling, 30
non-divergent, 34
projection on an, 7
transparent, 42

bag
of symbols of a trace, 50
projection on a, 59
trace minus a, 49

bind, 121
bus, 23, 131

c, 90
channel , 89, 90
channel name, 130
channel order independent process, 114

closed restricted cammand, 128
channel set, 89

projection ori a, 90
closed command, 123
closed restricted command, 127, 128
co, 121
com, 23, 131
command, 17, 121

closed, 123
restricted, 62, 124
set of variables of a, 130

cammand structure, 121, 124
communication behaviour, 88, 90, 94,

102, 138
commutative process, 49
compatible processes, 92
compatible systems, 93

178

component, 23, 131, 132
recursive, 26, 133
sub-, 23, 26, 131-133

composition
of processes, 11, 91, 92
of systems, 19, 93

compound channel name, 130
compound symbol, 22, 130
concatenation, 6
Conjunction-Weave Rule, 17, 105
conservative process, 49
constant response time, 86
cubic process, 57

sequence function for a, 70
current trace, 7, 11, 94

d, 165
danger of loek, 46
data independent process, 94

split specification, 104
deadlock, 45
depth of a tree, 165
disabling alphabet, 30
divergence, 29, 41
divergent, 34

E, 4
e, 19, 93
empty message, 89
empty trace, 6
equality, 23, 132
et, 121
event, 6, 7, 18, 19, 29
EXP,ll9
extended trace (set), 121
external alphabet, 19, 23
external channel set, 93
external event, 18, 29

i, 121, 130
in, 131
input channel, 101, 121, 130, 138

inputfoutput relation, 136, 138
interleaving, 11
internal event, 19, 29
internal variables, 119, 131

Index

language of a regular expression, 156
length of a regular expression, 168
length of a trace, 6
lockfree, 46

message, 88, 89
minus, 49
moe, 23, 131
multiplication, polynomial, 151

name, 6
of a component, 23, 131

non-disabling, 30, 41
non-divergent, 34, 41
non-terminating process, 45
nondeterminism, 29, 41
nonempty trace structure, 7

o, 121, 130
occurrence, 64
occ, 64
out , 131
output channel, 101, 121, 130, 138

p, 19
palindrome, 137
parenthesized reg u lar express ion, 165
parse tree, 165
partial order, 65, 66
partially ordered set, 65, 70
persistent process, 49
polynomial multiplication, 151
PR, 18, 19, 23, 66, 93, 123, 131, 133
PRE, 123
pre, 64

PREF, 6, 7
prefix closure, 6, 7

Index

prefix of a trace, 6
process, 7

channel order independent, 114
commutative, 49
compatible, 92
composition, 11, 91, 92
conservative, 49
cubic, 57
data independent, 94
defined by a partial order, 66
non-terminating, 45
partial order defined by a, 65
persistent, 49
regular, 10
specificatien of a, 16
state of a, 10
terminated, 45
weave, 11

process set, 19
program, 23, 119, 131
program notation, 22, 130
projection

of a restricted command, 62
on a bag, 59
on a channel set, 90
on an alphabet, 7

rav, 131
recursive component, 26, 133
regular expression, 17, 156

acceptor for a, 156
depth of a, 165
language defined by a, 156
length of a, 168
parenthesized, 165
parse tree of a, 165

regular process, 10
response time, constant, 86
restricted command, 62, 124

projection of a, 62
RUN(A), 8

S,4
s, 121, 130
SEM, 8, 19
sequence function, 70, 74, 82
sig , 131
signa!, 89, 121, 130, 138
simple channel name, 130
simple symbol, 22, 130
specification, 16, 136, 137
split specification, 102, 136, 137
square, 146
state of a process, 10
STOP, 8, 11
STOP(A), 8
sub, 23, 131
subcomponent, 23, 26, 131-133
substitution function, 120
suc, 9, 10
successor set, 9
symbol, 6, 22, 88, 130
SYNC, 8, 19
synchronization, 11
sys, 22-24, 27, 123, 131, 133
system, 19, 93

t, 7

compatible, 93
composition, 19, 93
lockfree, 46
non-disabling, 30
non-divergent, 34
transparent, 42

terminated process, 45
tick, 89
TR, 17, 123
trace, 6

bag of symbols of a , 50
current, 7, 11, 94
empty, 6
extended, 121
length of a, 6

179

180

minus a bag, 49
prefix of a, 6

trace set, 6
extended, 121

trace structure, 7
transparent, 42

TRE, 123
type, 90, 93, 102

v, 130
val, 120
value, 89
var, 131
VAR, 119
var, 120, 121

w, 12
w,ll
weave, 12

Index

Samenvatting

Parallelle berekeningen vormen het onderwerp van dit proefschrift. We behandelen de
beschrijving van parallelle berekeningen met behulp van tracetheorie (een formalisme
voor de beschrijving van parallelle processen ontwikkeld door Martin Rem ([Re85]),
Jan L.A. van de Snepscheut ([Sn)) en Anne Kaldewaij ([Ka])) en een methode om
programma's voor parallelle berekeningen af te leiden vanuit specificaties.

Onder parallelle berekeningen verstaan we netwerken van processoren of cellen die
onderling waarden kunnen communiceren en die beschreven kunnen worden met pro
cessen. We richten ons daarbij voornamelijk op netwerken die als volgt gekarakteriseerd
kunnen worden.

het netwerk bestaat uit cellen die volgens een regelmatig patroon gerangschikt
zijn (bijvoorbeeld een rechthoekig rooster ofeen boom)

communicatie tussen cellen in het netwerk en tussen cellen en de omgeving van
het netwerk vindt plaats via éénrichtingskanalen

cellen zijn eenvoudig en communiceren via een va.st aantal kanalen met buur
cellen en/of de omgeving van het netwerk (vast betekent hier onafhankelijk
van het totale aantal cellen)

het communicatiegedrag van de cellen is onafhankelijk van de waarden die ze
ontvangen en versturen

cellen synchroniseren slechts op onderlinge communicaties (er is geen globale
klok)

Netwerken die voldoen aan de eerste vier voorwaarden worden vaak systolisch genoemd
(systolic arrays) . Systolische netwerken hebben in het algemeen echter een globale klok
voor de synchronisatie van de cellen.

Om parallelle berekeningen te beschrijven dient communicatie van waarden gefor
maliseerd te worden binnen de tracetheorie. Daartoe voeren we symbolen in die paren
zijn bestaande uit een (kanaal)naam en een waarde. Het voorkomen van een paar
(c, m) wordt geïnterpreteerd als het verzenden of ontvangen van waarde m via kanaal
c. Een belangrijk aspect van een proces is de mate waarin de waarden die gecommu
niceerd worden het communicatiegedrag van het proces bepalen. Een proces heet data

181

182 Samenvatting

onafuankelijk als het communicatiegedrag van het proces niet afuangt van de waarden
die het verstuurt en ontvangt. Het communicatiegedrag van een data onafuankelijk
proces kan afzonderlijk beschreven worden. Een aantal eigenschappen zoals bijvoor
beeld divergentie hangt bij data onafhankelijke processen alleen af van het commu
nicatiegedrag. Het communicatiegedrag kan ook invloed hebben op de waarden die
gecommuniceerd worden. Indien de volgorde waarin een proces van zijn kanalen ge
bruik maakt geen invloed heeft op de waarden die gecommuniceerd worden, spreken
we van een kanaalvolgorde onafhankelijk proces.

Bij de behandelde programmeermethode gaan we uit van specificaties van data on
afuankelijke en kanaalvolgorde onafhankelijke processen. Gebruikmakend van de vorm
van de specificaties van dergelijke processen leiden we er p_~ogramma's uit af. De aflei
ding kenmerkt zich door het feit dat het communicatiegedrag en het verband tussen
ontvangen en verstuurde waarden (input/output-relatie) onafuankelijk van elkaar be
handeld kunnen worden. De afgeleide programma's zijn correct, d.w.z. ze voldoen aan
hun specificatie en vertonen geen deadlock of divergentie. De afgeleide programma's
beschrijven netwerken die voldoen aan de eerder vermelde voorwaarden. Bovendien
hebben ze een constante responstijd.

We besluiten met een korte beschrijving van de inhoud van de hoofdstukken 1 t/m 5
in dit proefschrift .

In hoofdstuk 1 geven we een overzicht van tracetheorie. We voeren het begrip systeem
in. Een systeem beschrijft een netwerk van processen en bestaat uit een alfabet (de
externe kanalen van het netwerk) en een verzameling processen. Het externe proces van
een systeem wordt gedefiniëerd als de compositie van de processen in de procesverzamel
ing van het systeem geprojecteerd op het externe alfabet. Systemen kunnen worden
samengesteld en worden geprojecteerd op een alfabet. De programmanotatie uit de
tracetheorie wordt beschouwd als een middel om een bepaalde klasse van systemen te
beschrijven. Het proces van een programma of component wordt gedefiniëerd als het
externe proces van het systeem behorend bij het programma of de component. In het
geval van een recursieve component geeft deze definitie op natuurlijke wijze het kleinste
dekpunt van de recursieve vergelijking die gedefiniëerd wordt door de component. Dit
stemt overeen met de keuze in [Sn] en [Ka].

In hoofdstuk 2 komen eerst nondeterminisme en divergentie aan de orde. We concen
treren ons daarbij op het begrip transparantie uit [Ka]. Een aantal stellingen laat zien
welke uitspraken omtrent transparantie gedaan kunnen worden bij samenstelling van
processen en bij projectie van processen op een alfabet . Vervolgens komen beëindiging
en deadlock aan de orde ([Ka]) en ten slotte voeren we de klasse van de conservatieve
processen en de klasse van de cubische processen in ([Ve86]). De cubische processen
vormen een deelklasse van de conservatieve processen. Een proces is conservatief als
zijn toekomstig gedrag alleen afuangt van de aantallen gebeurtenissen in het verleden

Samenvatting 183

en niet van de volgorde van die gebeurtenissen. De cubische processen zijn de pro
cessen die beschreven kunnen worden met een partiële ordening op voorkomens van
gebeurtenissen ([Ve86]). Voor cubische processen en voor systemen bestaande uit cu
bische processen introduceren we sequence functies. Sequence functies beschrijven een
beperkt (geklokt) gedrag van het proces of systeem. Met behulp van sequence functies
definiëren we het begrip constante responstijd.

In hoofdstuk 3 modelleren we communicatie van waarden binnen tracetheorie. We
voeren het begrip data onafhankelijkheid in en laten zien dat data onafhankelijkheid
uitgedrukt kan worden in termen van transparantie. Data onafhankelijkheid van een
proces blijft behouden bij projectie op een alfabet dat transparant is ten opzichte van
het communicatiegedrag van het proces. Data onafhankelijke processen kunnen worden
beschreven met zogenaamde gesplitste specificaties. Dit zijn specificaties waarbij het
communicatiegedrag apart wordt beschreven. Met behulp van gesplitste specificaties
formuleren we een conjunctie-weefregel voor data onafhankelijke processen. We laten
zien dat bij beschouwingen over bijvoorbeeld divergentie en deadlock men zich bij data
onafhankelijke processen kan beperken tot het communicatiegedrag van de processen.
Een proces heet kanaalvolgorde onafhankelijk als het toekomstige gedrag van het proces
niet afhangt van de volgorde waarin de kanalen zijn gebruikt. Deze definitie lijkt veel
op de definitie van conservatieve processe. Het communicatiegedrag van een data
onafhankelijk en kanaalvolgorde onafhankelijk proces is conservatief.

In hoofdstuk 4 breiden we de programmanotatie van tracetheorie uit zodat we in pro
gramma's communicatie van waarden kunnen beschrijven. Een aantal elementen in
deze programmanotatie is ontleend aan CSP ([Ho]). In dit hoofdstuk maken we een
onderscheid tussen input en output. Er worden voorwaarden gegeven waaronder het
proces van een component data onafhankelijk en kanaalvolgorde onafhankelijk is en
het communicatiegedrag cubisch is.

In hoofdstuk 5 presenteren we aan de hand van voorbeelden een programmeermethode.
De methode is gebaseerd op de data onafhankelijkheid en de kanaalvolgorde onafhanke
lijkheid van de onderhavige processen en op het toepassen van de conjunctie-weefregeL
De afgeleide programma's definiëren systemen die voldoen aan de eerder genoemde
voorwaarden voor netwerken van processen. De afgeleide programma's zijn correct in
de zin dat ze voldoen aan hun specificatie en dat de bijbehorende systemen vrij zijn van
divergentie en deadlock. De wijze van programmeren vertoont een aantal analogieën
met sequentiëel programmaren.

Curriculum vitae

naam : Gerard Zwaan

15 december 1955 : geboren te Breda

20 juni 1974 : diploma Gymnasiurn /3, Stedelijk Gymnasium, Breda

september 1976 aanvang studie wiskunde aan de
Technische Hogeschool Eindhoven

juni 1983- mei 1984 afstuderen onder leiding van dr. F. Eising met als onder
werp algoritmen ter bepaling van grootste rechterdelers
van polynoommatrices

24 mei 1984 doctoraal examen wiskunde, met lof,
Technische Hogeschool Eindhoven

juni 1984 - mei 1988 wetenschappelijk assistent bij de vakgroep Informatica
van de Technische Hogeschool/Universiteit Eindhoven;
onderzoek op het gebied van parallellisme onder leiding
van prof. dr. M. Rem resulterend in dit proefschrift

vanaf juni 1988 universitair docent bij de vakgroep Informatica van de
Technische Universiteit Eindhoven; onderzoek op het ge
bied van systeemprogrammatuur onder leiding van prof.
dr. F.E.J. Kruseman Aretz

huidig adres

e-mail

Faculteit Wiskunde en Informatica
Technische Universiteit Eindhoven
Postbus 513
5600 MB Eindhoven
Nederland

wsinzwaan@heitue5.bitnet
mcvax!eutwsl !wsinswan

184

STELLINGEN

behorend bij het proefschrift

PARALLEL COMPUTATIONS

van

GERARD ZWAAN

Eindhoven
20 januari 1989

0 Als het gedrag van filosofen als volgt kan worden gekenmerkt

do true ~ think

od

; P(x)
; n:= n + 1
;ifnmod2 = 0 ~ V(d)
~ nmod2= 1 ~ V(x); P(d); V(x)
fi

; eat
; P(x)
; n:= n -1
;ifnmod2 = 0 ~ V(d)
~ n mod 2 = 1 ~ V(x); P(d); V(x)
fi

waarin x en d binaire semaforen zijn, en als initieel n = 0 1\ x = 1 1\ d = 0 geldt, dan
is het aantal etende filosofen te allen tijde even.

!it. - E.W. Dijkstra, Hierarchical Ordering of Sequentia[Processes, Acta Informatica 1
(1971), pp. 115-138

- E.W. Dijkstra, A tutorial on the split binary semaphore, 1979 (EWD 703)

1 Rubik's doek is een uitstekend middel om het begrip invariant aanschouwelijk te maken.

2 Een groot aantal graafalgoritmen laat zich eenvoudig afleiden door het gestelde pro
bleem te herleiden tot een stelsel ongelijkheden waarvan de kleinste oplossing berekend
dient te worden.

lit. - Joop van den Eijnde, A derivation for the reachable vertices algorithm, Eindhoven
University of Technology, 1986 (Internal Memorandum JvdE 86/3)

- Gerard Zwaan, Even and odd reachability, Eindhoven University ofTechnology, 1987,
(Internal Memorandum GZ 87 /2)

3 Het aantal traces van SEM4(a,b) ter lengte k, k > 0, is 2(k-I)mod 2 . 3(k-I)div 2 •

4 De in hoofdstuk 5 van dit proefschrift beschreven parallelle programma's zijn op een
voudige wijze als circuits te implementeren.

!it. - Anne KaJdewa.ij, The translation of processes into circuits, PARLE Parallel Architec
tures and Languages Europe, Volume 1: Parallel Arch.itectures, ed. J .W. de Bakker,
A.J. Nijman, P.C. Treleaven, Springer Berlin 1987 (LNCS 258), pp. 195-212

- Jo Ebergen, Translating programs into delay-insensitive circuits, Ph.D.-thesis, Eind
hoven University of Technology, 1987

5 Voor regelmatige berekeningen zijn sequence functies een effectief middel om uitspraken
te doen over de voortgang en het real-time gedrag.

6 Ieder alfabet is non-disabling ten opzichte van een conservatief proces. Derhalve vallen
bij conservatieve processen de begrippen transparantie en non-divergentie samen.

7 Voor processen wordt de "scheiding van data en control" geformaliseerd door de be
grippen data onafhankelijkheid en kanaalvolgorde onafhankelijkheid.

8 De klasse van processen beschreven door restricted commands vormt een echte deel
klasse van de klasse der reguliere, cubische processen.

9 Bij het automatisch genereren van het trefwoordenregister van een boek denke men
aan het spreekwoord "Overdaad schaadt".

!it. - DonaJd E. Knuth, The Tf;Xbook, Addison-Wesley, 1984

10 Bij hoogspringen en polsstokhoogspringen wordt, in tegenstelling tot andere onderdelen
van de atletiek, de werkelijk geleverde prestatie niet gemeten.

