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BEM Simulation for the Pressing of Glass
K� Wang� R�M�M� Mattheij � H�G� ter Morsche

EMail� wang�win�tue�nl

Abstract

The main objective of this research is to develop reliable numerical methods to simulate

the pressing of glass� The glass can be modelled as a Stokes �ow with three types of

boundaries� free� �xed and �moving� boundaries� Because of axi	symmetry we actually

have a 
�D problem� This problem is solved by rewriting it as a boundary integral

equation� A boundary element method is then employed to solve the integral equation

of the Stokes �ow and time integration is carried out by a kind of predictor�corrector

scheme�

� Introduction

In Mattheij at el� ���� a model was given to describe the �ow of glass in a mould
with partially free and partially prescribed boundaries� Here we shall consider
a numerical approach to simulate the actual solution by a boundary element
method�

If we let v � 	vi
 be the velocity vector� p the pressure and � � 	�ij
 stress
tensor� then the �ow of the glass can be seen to be described by the continuity
equation

r � v � �� 	�


and the momentum equation


v �rp � �� 	�


Whereas boundary conditions are given by

�n � �p�n on the free boundary� 	�


�
v � n � �
�n � t � ��mv � t

on the mould boundary� 	�


and �
v � n � vp � n
�n � t � ��p	v � vp
 � t

on the plunger boundary� 	�


Here n � 	ni
 is the outward unit normal� t � 	ti
 is the unit tangential direc�
tion� vp is the velocity of the plunger� �m and �p are parameters indicating the
roughness of the mould and the plunger respectively�

The movement of a material �uid particle is described by

�



free boundary

plunger boundary

mould boundary

Figure �� The boundaries

dx

dt
� v	x	t

� 	�


Now our objective is to solve problem 	�
 � 	�
� In section � we solve the
Stokes problem in an axi�symmetric domain by a Boundary Element Method and
In section � we further deal with equation 	�
� by developing a predictor�corrector
scheme� Finally we will assess the method by considering some actual simulations
in section ��

� BEM for an Axisymmetric Stokes Flow

There are two approaches for deriving the governing integral formulation for axi�
symmetric problems based on hydrodynamic potentials of single� and double�
layers� Both methods are leading to the same equation� The �rst one is to
obtain the integral equation by using the axi�symmetric fundamental solution
based on ring forces	cf� Becker���
� The second approach is to apply the fun�
damental solution derived from a point force to obtain the a Cartesian version
of the three�dimensional integral equation� Subsequently cylindrical coordinates
are then substituted in this formulation� Here we use the latter method�

��� The Boundary Integral Equations

Let us denote the �uid region by � and its surface by S� The fundamental
solution to problem 	�
 and 	�
 is given by

�



��
� uki	x�y
 � �

��

h
�ik

jx�yj �
�xi�yi��xk�yk�

jx�yj�
i
�

qk	x�y
 � xk�yk
��jx�yj� �

	�


i�e� 	uk� qk
 satisfy �
r � uk � ��

uk �rqk � ��	x�y
ek �

where ek is the k�th unit vector of an Cartesian coordinate system�

By using the divergence theorem� we can obtain the Green�s formula for the
Stokes problem� i�e�� if v and v� are divergence free� p and p� are smooth scalar
then R

��	
vi �
�p
�xi


v�i � 	
v�i �
�p�

�xi

vi�d�

�
R
���ij	v� p
njv

�
i � �ij	v

�� q�
njvi�d��

where �ij	v� p
 � �p�ij � vi�j � vj�i and �ij	v
�� p�
 � �p��ij � v�i�j � v�j�i�

By replacing v�i and p� by the fundamental solutions uki and qk� identifying
vi and p with the solution to Eqns� 	�
 and 	�
� and letting the source point
approach the boundary� we obtain the following boundary integral equation	cf�
Ladyzhenskaya���� Pozrikidis���� and Brebbia et al� ���


cij	x
vj	x
 �

Z
S
qij	x�y
vjdSy �

Z
S
uij	x�y
bjdSy� 	�


where the kernels qij is equal to �

qij	x�y
 �
�	xi � yi
	xj � yj
	xk � yk
nk

��jx� yj	
� 	�


The coe�cients cij depend on the position of the point x� but in the BEM� we will
show that it is not necessary to know the analytical expressions of cij although
they are available 	cf� Brebbia at el� ���
�

To obtain the integral equation for the axi�symmetric case� we reformulate
the representation above by employing cylindrical coordinates 	r� �� z
� i�e�

y � 	y�� y
� y�

T � 	r cos �� r sin �� z
T �

Because of the rotational symmetry� we only have to determine vr and vz at
the intersection of the surface S and 	say
 the half�space � � �� This intersection
curve is denoted by �	see Figure �
� therefore dS � rd�d�� Let x � 	R� �� Z
T �
�� After successive substitution of cylindrical coordinates and integration along
the ��direction of Eqn� 	�
 we obtain

ccij	x
c
vcj	x

c
 �

Z
�
rqcij	x

c�yc
vcj	y
c
d� �

Z
�
rucij	x

c�yc
bcj	y
c
d�� 	��


�
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Figure �� �	the solid lines
 and S

where the superscript c stands for cylindrical and i� j are now either � or �� source
point xc � 	R�Z
T � �eld point yc � 	r� z
T � velocity vc � 	vci 
 � 	vr� vz


T � stress
vector bc � 	bci 
 � 	br� bz


T � the kernel ucij can be written as

ucij � �

�

p
a�b

h
E�k�
a�b

�
A�
ij �

a
b
A�
ij �


a��b�
b�

A

ij

�
� K�k�

b

�
A�
ij �


a
b
A

ij

�i
�

	��


where

a � r
 �R
 � c
� b � �rR� c � Z � z� k �

s
�b

a� b
�

K	k
 and E	k
 are the complete elliptic integrals of the �rst and second kind
respectively� i�e�

K	k
 ��

Z �

�

�

d	q
�� k
 sin
 	

� E	k
 ��

Z �

�

�

q
�� k
 sin
 	d	� 	��


The coe�cient matrices An are de�ned by

A� �

�
��


b cR
�cr a� c


�
�A� �

�
�a� c
 �cr
cR �b

�
�A
 �

�
��


b �
� �

�
�

While the kernel qcij can be represented by

qcij �
�

��a��b��pa�b

h
K	k


�
�B�

ij �
a
b
B�
ij �


a���b�
b�

B

ij �

a��a��
b��
b�

B�
ij

�
�E�k�

a�b
�
�aB�

ij �
a���b�

b
B�
ij �


a��b��a��
b�

B

ij �

�a���	a�b���b�
b�

B�
ij

�i
�

Here coe�cient matrices Bn are de�ned by

B� �

�
��


db Rdc
�rdc dc


�
� B� �

�
de� �


bRnr 	R
nr � rd
c
	d� rnr
Rc Rc
nr

�
�

B
 �

�
	enr � rd
R ��


bcnr
R
cnr �

�
� B� �

�
��


bRnr �
� �

�
�

�



where d � �rnr � cnz� e � R
 � r
 and n � 	nr� nz
 is the unit outward normal
of boundary ��

We remark that if the point x is lying at the z�axis� i�e� R � �� the above
formulae are not applicable because of b � �� However� direct computation leads
to

ucij �
�

�a
�

�

h
�	A�

ij �A

ij

i
�

and

qcij �
�

�a
�

�

h
�	B�

ij �B

ij

i
�

Note that if the domain includes z�axis then � is an open curve�

��� The Boundary Element Method

Although physically ��D� the BEM implementation of Eqn� 	��
 is similar to a
��D problem� To obtain a BEM formulation� we rewrite the boundary integral
Eqn� 	��
 	we remove the superscript c for simplicity


c	x
v	x
 �

Z
�
q	x� y
v	y
d� �

Z
�
u	x� y
b	y
d�� 	��


The boundary is divided into segments �k� i�e�

� �
X
k

�k� 	��


and the velocity and stress vector are represented by shape functions

v �
X
j

vj	j � b �
X
j

bj	j � 	��


By substituting Eqns� 	��
 and 	��
 into Eqn� 	��
 we have

c	x
v	x
 �
P

j

P
k

R
�k
q	x� y
	j	y
d�v

j

�
P

j

P
k

R
�k
u	x� y
	j	y
d�b

j

For a particular point xi� denoting c	xi
� v	xi
 by c
i and vi respectively� we thus

have
civi �

P
j

P
k

R
�k
q	xi�y
	j	y
d�v

j

�
P

j

P
k

R
�k
u	xi�y
	j	y
d�b

j �
	��


Now de�ne the matrix H by

Hij ��
X
k

Z
�k

q	xi�y
	j	y
d� � ci�ij� 	��


�



and the matrix G by

Gij ��
X
k

Z
�k

u	xi�y
	j	y
d�� 	��


This results in the following square full rank system of linear algebraic equations�
denoted by

HV � GB� 	��


Here V� B are vectors consisting of the velocity and stress vector respectively�
Note that every element of H and G is a �� � submatrix� and every element of
V and B is a �N � � subvector� If there are N collocation points� and probably
include M corners� then H and G are actually �N � �N and �N � �	N �M

matrices respectively� whereas V and B are �N � � and �	N �M
� � vectors�

In order to build H and G the elliptic integrals 	��
 that occur in the co�
e�cients are approximated by using a series representation	cf� Becker��� and
Cody���
� i�e�

K	k
 � log	�
 �
Pn

i�� ai

i � log	 �

�

��
 �

Pn
i�� bi


i�

E	k
 � � �
Pn

i�� ci

i � log	 �

�


Pn

i�� di

i�

	��


where 
 � �� k
�
When the element integrals become singular� we use Telles� transformation

	cf� Partridge at al� ���� and Telles����
 to remove the singularity� More precisely
we consider the following integral

I �

Z �

��
f	

d
�

in which f	

 is singular at a point �
� One can choose a transformation


 � a�� � b�
 � c� � d�

such that �				�
				�


	��
 � ��

	�
 � �
d�
d�
j�� � �

d��
d��

j�� � ��

by which the coe�cients a� b� c� d can be determined� Then I becomes

I �

Z �

��
f	



d


d�
d��

If f	

 has only a logarithmic singularity at �
� then as a function of �� f	

 d�
d�

is
a regular function� and standard Gaussian integration can be employed�

�



As for the diagonal submatrix of H� we �rst use a rigid�body motion in the
z�direction to obtain the elements that apply in this particular direction� i�e��

Hrz

Hzz

�
ii

� �
NX

j � �
i �� j

�
Hrz

Hzz

�
ij

� for i � �� �� � � � � N� 	��


To determine the other two coe�cients Hrr and Hzr� we employ a particular
Stokes �ow from which the velocity and tension can be computed for any arbi�
trarily shaped region� For example� we use the following axi�symmetric Stokes
�ow

�vc � 	r����z��
T �
�bc � 	nr� �


T �

Substituting this solution into Eqn� 	��
 we obtain�
Hrr

Hzr

�
ii

�

��
Hrz

Hzz

�
ii



z
�

�
i

�
PN

j � �
i �� j

�
Hrr Hrz

Hzr Hzz

�
ij

�
r
�
� z

�

�
j

�
PM

j��

�
Grr Grz

Gzr Gzz

�
ij

�
nr
�

�
j

�
A��

r

�
i
�

for i � �� �� � � � � N�

	��


Note� however� that if the point xi is on the z�axis� r becomes zero and
so it is impossible to calculate these diagonal terms from the above equation�
Fortunately� there is no need to calculate these diagonal terms when the load
point is on the z�axis� because the radial velocity and stress at the z�axis must
be zero for all axi�symmetric problems� That means that if the load point is on
the z�axis then its diagonal terms in the radial direction have no in�uence on
the overall system of linear algebraic equations� and so we can give any non�zero
values to them�

The �nal thing we need to consider is the application of the boundary con�
ditions� If the stress vector is given at a boundary point then nothing has to
be done� if the velocity vector is prescribed at boundary point xi then we have
to interchange the i�th column of H and the i�th column of G after reversing
its sign� The mixed boundary condition� by which we mean a combination of
the velocity and the stress vector is prescribed at a boundary point� can also be
handled in a similar way� After this kind of rearrangement we have

H�Zunknown � G�Zknown 	��


where Zunknown and Zknown stand for unknown boundary data and known bound�
ary data� This is solved by Gaussian elimination�

�



��� Mesh Redistribution

In this problem� the shape of the mould and the plunger is given by a set of
discrete coordinates in the 	r� z
 plane� Furthermore� after one time step� the free
boundary is only known at a set of boundary nodes� An algorithm is needed to
remesh the boundary of the glass domain�

We assume that the boundary � of the �uid region can be parameterized
with respect to the arc length s� i�e�

x	s
 � �� � � s � L�

A grid can be described by

fx	s�
� � � � �x	sN��
g�

or equivalently by
fs�� � � � � sN��g�

The quantity hi � si � si�� is called the step�length�
Let xi�� � x	si��
 and xi � x	si
 be two given successive nodal points� The

next node xi�� has to lie at a distance hi�� from xi� Firstly the quasi�uniform
condition	cf� Trevelyan����
 is required� i�e� � for some A 
 ��

hi
A
� hi�� � Ahi� for i � �� � � � � N � �� 	��


Secondly we need a re�ned mesh on the free boundary� especially near the
plunger� Note that the upper part of the mould has larger curvatures� To ap�
proximate this part of the mould boundary we divide the mould boundary into
two parts� the upper part and the lower part� On the upper part smaller val�
ues for h are needed than on the lower part of the mould boundary� Of course
at interfaces�between the mould and the free boundaries� between the plunger
and the free boundaries� between the upper and the lower part of the mould
boundaries�the condition 	��
 should be satis�ed� A schematic grid is shown in
Figure ��

� Time Integration

In this section� we discuss how the geometry of the glass is updated� Suppose
we are at time t�� From the Stokes problem we can determine the velocity �eld
v� at time t�� which is used to determine the geometry of the glass in cylindrical
coordinates at time t� �� t��
t by discretising the ordinary di erential equation
	�
� We rewrite this initial value problem as follows�

dx
dt
� v	x	t

�

x	t�
 � x��
	��


�



Figure �� A schematic grid

We denote the area between the mould and the plunger at time t by At� Of
course the glass body at time t should be in At for all t� If the initial geometry
of the glass� represented by its boundary points x� satis�es

x�i � At� � for each i�

the new geometry of the glass x� at time t� �� t��
t has to satisfy the constraint

x�i � At� � for each i� 	��


Suppose we employ� say the Euler forward scheme� to discretize the problem 	��


y� � x� �
tv��

In general� constraint 	��
 will not be satis�ed� That means we need a strategy
to reposition those points which are not in At� � if y�i � At� then no further
action is needed� otherwise they are rede�ned to be at the intersection of the
boundary of At� and the line which is from x�i to y

�
i 	see Figure �
� We refer to

this repositioning step as the clipping algorithm� Applying the clipping algorithm
to y� we obtain the new geometry of the glass at time t��

We prefer the mid�point rule as it is symplectic	cf� Stuart ����
� For the
initial value problem 	��
 the midpoint rule reads

x� � x� �
tv	x	t �
�



� 	��


where t �
�

�� t� �
�t

 � But the information v	x	t �

�



 is unknown� To approximate

v	x	t �
�



� we �rst use the Euler forward scheme with time step �t

 to compute

�



x

y
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1
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x
free boundary
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i

Figure �� The clipping algorithm

x	t �
�


� i�e�

x	t �
�


 � x� �

t

�
v�� 	��


then v	x	t �
�



 is achieved by solving a Stokes �ow with a boundary represented

by x	t �
�


� In summary we have the following stages at each time step

	 Solve a Stokes problem on the domain represented by x� to get the velocity
v� at time t��

	 Use the Euler forward scheme to predict the geometry of the glass x
�

� at
time t �

�

�

	 Solve a Stokes problem on the domain represented by x
�

� to predict the
velocity v

�

� at time t �
�

�

	 Use the midpoint rule to determine the new geometry of the glass x� at
time t��

Note that if necessary the clipping algorithm should be used before solving
the Stokes problem�

� Numerical Results

To show the e�ciency and the accuracy of the method above� we give some
examples here�

Some initial shape of the glass drop has to be chosen when the plunger starts
moving� The moment the plunger starts moving is taken to be t � �� The plunger

��



t=0 (a) t=1.8 (b) t=3.6 (c)

t=4.6 (d) t=4.8 (e) t=5.1 (f)

Figure �� Evolution of the glass domain

is assumed to have a given velocity� the initial position of the plunger is a little
bit in the glass drop	see Figure �a
�

The volume of the glass drop is determined by the volume of the parison
since the glass is considered incompressible� The evolution of the glass domain is
shown in Figure ��

During the �nal stage of the pressing phase� one can see several free bound�
aries which are separated by the mould boundary� see also ampli�ed version of
Figure �e� displayed in Figure ��

The mass should be conserved� The mass as a function of time t is plotted
in Figure �� In this example only ����! of the mass is lost due to the clipping
algorithm�

Intuitively� the velocity �eld near the plunger has larger gradients if the no�
slip boundary condition is used� Figure � gives an example showing what happens

��



free boundaries

Figure �� The free boundaries

mould
plunger

Figure �� The velocity �eld on the free boundary

on the free boundary near the plunger� If a FEM is used then a very re�ned grid is
needed� The BEM has the same problem on the free boundary near the plunger�
but less serious� That means the BEM is cheaper although the FEM results in a
sparse system� The BEM is more e�cient in this situation�
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