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Modelling Glass Parisons
R�M�M� Mattheij� K� Wang � H�G� ter Morsche

EMail� mattheij�win�tue�nl

Abstract

In order to design better glass products� numerical modelling is essential� In this paper
we focus� more speci�cally� on pressing forms� so called parison� appearing in the produc�
tion of packing glass� We model the �ow of the molten glass during this process as well
as the cooling of the parison during and after pressing� Both problems lead to boundary
value formulations � Due to the fact that we are mainly interested in what happens on
the �free� boundary these problems are best solved by Boundary Element Techniques�

� Description of the problem

Glass is an interesting material� having a multiple applications on one hand and
being available in unlimited quantities on the other hand� Indeed� it is trans�
parent� making it indispensable for applications like pane �windows�� but at the
same time� its constitutive properties are such that it appears to be �exible when
used as �bre� making it a favorite material for data transport by light� The raw
material is mainly silicium	dioxide� i�e� ordinary sand�

Production of glass goes more or less along the following lines
 First grains
and additives� like soda� are being heated in a tank� This can be a device several
tens of metres long and a few metres high and wide �width being larger than
height�� Here gas burners or electric heaters provide for the heat necessary to
warm up the material till some ��

�C� At one end the liquid glass comes out
and is e�g� led to a pressing or blowing machine� or it ends up on a bed of liquid
tin� where it spreads out to become �oat glass �for pane� wind shields etc��� In
the latter case the major problems are to have a smooth �ow from the oven on
the bed and to control the spreading and �attening� An essential part then is
the cooling of the product� Hence the production involves a high energy cost
factor� inducing a continuous search for more e�cient techniques� For one part
these are to be found in a better control of the combustion �or more general�
heating process and the design of the oven� For another they can be formed by a
better control of the end product� Indeed� by e�g� better monitoring the cooling
one may reduce residual stresses in the material to allow for thinner glass �thus
reducing the actual material costs�� another example is the actual morphology
phase� where a piece of hot glass is formed into the desired shape� in fact� this
may be even more important for obtaining thinner glass products�

Although glass technology has long been based on expertise and experimen�
tal knowledge� it turns out that this is no longer su�cient to improve the de�
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Figure �
 The pressing phase

signs� The need for such improvement does not only come from governmental
requirements but also from �erce competition by materials like polymers� Hence
mathematical modelling and numerical simulation are needed�

Here we shall consider a typical example of a morphology problem� the pro�
duction of a parison� This is a preform that occurs in the production of packing
glass� like bottles and jars �where the above mentioned problems� like thickness
and strength make sense� obviously��

The complete process now follows
 First a piece of hot glass� the gob� coming
directly from the oven� drops in a mould� This mould consist of a �xed part and
a so called plunger� which moves up quickly �say 
�� seconds� after the mould
has closed �see Figure ��� In the �nal stage� a bell	like shape is formed� the
parison� which is then taken out of the mould by laying hold of the lower part of
the parison� the latter part is su�ciently cooled such that it behaves like a solid�
After a small stay� the so called reheating phase� the parison is put in a second
mould and blown into a �nal shape �see Figure ���

This seemingly simple problem is actually quite sophisticated from a mod�
elling point of view� We shall consider two speci�c questions arising here� First
we investigate the morphology of the parison process in section �� Then we model
the temperature� both at the pressing and during the reheating process in section
��
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Figure �
 The blowing phase

� Mathematical modelling of glass �ows

We �rst study the �ow of the glass in the mould during the pressing�
If we let � be the density of the �uid� g � �gi� the body forces �here only

gravitational force is considered�� � � ��ij� stress tensor� v � �vi� the velocity
vector and p the pressure� Then �ow of the glass in the pressing phase can be
seen to be governed by the following two equations� The �rst one deals with the
conservation of mass� i�e� the continuity equation

��

�t
�r � ��v� � 
� ���

The second one deals with the conservation of momentum and leads to the equa�
tion of motion

��
�v

�t
� �v � r�v� � r � � � �g� ���

We may assume the glass to be an incompressible Newtonian �uid� This
yields the following constitutive equation for stress tensor � and the rate of de�
formation tensor E � �Eij�

� � �pI� ��E� ���

where I is the unit matrix� � is the dynamic viscosity and

E �
�

�
�rv � �rv�T ��
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By using the incompressibility in the continuity equation and substituting the
constitutive equation and the continuity equation into the equation of motion�
we have the so�called Navier�Stokes equations

�
r � v � 
�

���v
�t
� �v � r�v� � �rp� ��v � �g�

���

Now we derive a dimensionless form for these Navier�Stokes equations� For
this we need some characteristic quantities� We �rst replace g by g�g with
g 
� kgk � �
m�s� the acceleration of gravity� At this stage� the viscosity �
is assumed to be constant� a typical value is �� � �
�kg�ms which is de�ned
as the characteristic viscosity� A typical average velocity of the plunger� say
V� � �
��m�s� can be used as a characteristic velocity� A characteristic length
is taken as the average thickness of the parison� say L� � �
��m� Consequently
the characteristic pressure and the characteristic time can be de�ned by

P� � ��V��L��

and

T� � L��V��

respectively�

Substituting the following dimensionless quantities

�x �
x

L�

�

�t �
t

T�
�

�v �
v

V�
�

�p �
p

P�

�

into the Navier�Stokes equations yields

�
r � �v � 
�

Re���v
��t
� ��v � r��v� � �r�p���v � Re

Fr
�g�

���

Here two dimensionless numbers� the Reynolds number Re and the Froude number
Fr� are de�ned by

Re 
�
�V�L�

��
and Fr 
�

V �
�

gL�

�

respectively� The Reynolds number indicates the ratio between inertia forces
and viscous forces� whereas the quotient of the Reynolds number and the Froude

�



number indicates the ratio between volume forces and viscous forces� Using the
values above� the two numbers are approximately equal to

Re � �
�� and Fr � �
���

From this we conclude that the viscous forces dominate the Navier	Stokes equa�
tions� Thus the �ow can be described by the continuity equation

r � v � 
� ���

the momentum equation
�v �rp � 
� ���

These equations are the dimensionless Stokes equations� Moreover the constitu�
tive equation reads

� � �pI� �rv � �rv�T �� ���

Here we have omitted the tilde for ease of writing�
In order to �nd a unique velocity v and a pressure p� at time t� a set of

boundary conditions has to be imposed �see Figure ��� Note that� in Figure � we
have turned over the geometry by ��
� for convenience�

free boundary

plunger boundary

mould boundary

Figure �
 The boundaries

We �rst consider the free boundary� Surface tension is a force acting on the
free boundaries of the glass drop� It is usually denoted by 	 and one can �nd
that for glass 	 approximately equals 
��N�m� The surface tension� as well as the
plunger motion� plays its role in the system only in terms of boundary conditions�
A typical velocity for a �ow driven by surface tension is given by 	���� Thus� to
investigate whether surface tension is of any signi�cance� we have to compare this
typical velocity with the one induced by the plunger motion� e�g� V�� It is clear

�



that the plunger velocity is much larger than 	��� during most of the pressing
phase� From this observation one can derive that the surface tension will not be
signi�cant� Free boundaries are in contact with the surrounding� thus we assume
the atmospheric pressure� say p�� to prevail everywhere� For the description of
the atmospheric pressure in terms of boundary condition the stress vector �n has
to be prescribed on the free boundaries� To be precise� the boundary condition
on the free boundary is given by

�n � �p�n� ���

where n � �ni� is the outward unit normal�
Now we consider boundary conditions on the mould and the plunger� They

depend on the roughness of the mould and the plunger� We may impose a no�
slip condition� i�e� the velocity of the �ow equals the velocity of the boundary�
The opposite of a no�slip condition is a no�friction condition� i�e� the normal
component of the velocity of the �ow equals the normal component of the velocity
of the boundary and vanishing shear stresses� But it is also possible to impose
a boundary condition describing a certain amount of friction� For example� one
can impose the following boundary condition�

v � n � vb � n�
�n � t � �
b�v � vb� � t�

where t is the unit tangential direction� vb is the velocity of the boundary and 
b
is the slip�parameter indicating the amount of friction� This boundary condition
means that the normal component of the velocity of the �ow equals the normal
component of the velocity of the boundary and the shear stress is proportional
to the tangential velocity di�erence�

Applying the above boundary conditions to the mould and the plunger yields�
v � n � 

�n � t � �
mv � t

on the mould� ��
�

and �
v � n � vp � n

�n � t � �
p�v � vp� � t
on the plunger� ����

where vp is the velocity of the plunger�
Since at least some part of the boundary is moving� we use a quasi�static

approach to describe the movement of a material �uid particle� i�e�

dx

dt
� v�x�t��� ����

The whole problem ���	���� is extremely well suited for a boundary element
approach� Indeed� we are only interested in the movement of the free boundary�
The modelling problem is then to predict speed and thus position�

�



Problems like these have been solved before� albeit with di�erent boundary
conditions �cf� Kuiken at el� ��� and Mattheij at el� ����� A nontrivial part of the
problem is the actual solution of Eqn� ����� which needs to be done such that
mass is being conserved� We shall work this out in a subsequent paper �cf� Wang
at el� ������

� Modelling the temperature

As was said in section � the temperature plays an important role in the forming
process� since only su�ciently hot glass can be deformed� The most important
quantity therefore is the viscosity �� The temperature T and the viscosity � are
related through the Vogel	Fulcher	Tamman relation�cf� Rawson ����

� � Kexp�E���T � T���� ����

where E� is the viscosity activation energy� T� a �xed temperature and K a
scaling constant�

The temperature follows from the energy equation� which reads� for an in�
compressible �uid in dimensionless form�

�T

�t
� v � rT �

�

Pe
r�T �

Ec

Pe
�� ����

Here � is the dissipation function� representing the heat equivalent of the rate at
which mechanical energy is expanded in the deformation process due to viscosity�
Ec is the Eckhard number� de�ned as

Ec 
�
V �
�

cp�T
� ����

where cp is the speci�c heat and �T the temperature drop in the relevant area�
Moreover Pe is the Peclet number� de�ned as

Pe 
�
�V�L�k

��cp
� ����

with k the thermal conductivity� During pressing we have a temperature di�erence
of about �

�C� hence we obtain

�

Pe
� ���� �
���

Ec

Pe
� ���� �
���

This means that we may neglect the right hand side in Eqn� �����

Let us now investigate the e�ect of wall cooling
 Let �p��g��m denote the
plunger �p�� glass �g� and mould �m� domains respectively �see Figure �� and de�
note by ki�i � p� g�m� the thermal conductivity� One can estimate the numerical

�
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Figure �
 The domains

values of these to �nd

kg � ��� � �
���m��s�� thermal di�usivity�
kp � km � ���� �
���m��s�� thermal di�usivity�

We observe that kp � km � kg� and this implies that when the heat process of
the glass starts� the heat processes of the plunger and the mould are already in
the steady state� This means that the temperature Tp � Tp�
� and Tm � Tm�
��
Hence the three heat processes are not coupled�

We conclude that we may consider the heat �ow to be quasi stationary� i�e�
�T
�t
� 
 and so Eqn� ���� becomes

v � rT � 
� ����

If we have e�g� cylindrical coordinates r and z� this means for the velocity
�u� v�T

u
�T

�z
� v

�T

�r
� 
�

having the solution

dz

dt
� u�

dr

dt
� v�

dT

dt
� 
� ����

This implies that the temperature remains constant along streamlines� so a uni�
form temperature �eld will remain uniform�

After the plunger has come to a standstill� the parison remains in the mould
for some time� thus leading to the problem

�



�

kg

�T

�t
� �T in�g� ����

The boundary conditions are given by

�����
����

�Tg
�n

� 
 on  gp �  ga�

kg
�Tg
�n

� hgp�Tg � T�p� on  gp�

kg
�Tg
�n

� hgm�Tg � T�m� on  gm�

��
�

where hgp is the contact conductance between the glass and the plunger and hgm
is the contact conductance between the glass and the mould� The contact conduc�
tance depends on the surface roughness� the interface pressure and temperature�
the thermal conductivities of the contacting materials and the type of �uids or
gas in the gap� and is about hgp � hgm � �� �
��W�m��c��

On the two boundaries �gp and �gm we have a temperature drop� depending
on the contact conductances� and a boundary layer� depending on the thermal
di�usivity of the glass� One can prove that the asymptotic behaviour of the
boundary layer is the errorfunction erfc�r�

p
�kgt��

We would like to remark that the conductivity of the glass is actual a sum
of conductivity of di�usive and radiative heat e�ects� If one uses the Rossland
approximation to model the latter �cf� Modest ����� also during reheating� i�e�
after the mould has been removed� and before the blowing phase starts� the heat
exchange can be modelled like Eqn� ���� with Neumann boundary conditions
�and a given room temperature��

Both the latter and Eqns� ����� ��
� lend themselves for a BEM approach�
based on dual reciprocity method�cf� Partridge at el� ��� and Simons������ as
is known the dual reciprocity method uses radial basis functions to deal with
the inhomogeneity� in ter Morsche at el� ��� some more results are reported� in
particular with respect to the choice of the internal points�
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