

Semantics of POOSL : an object-oriented specification
language for the analysis and design of hardware/software
systems
Citation for published version (APA):
Voeten, J. P. M. (1995). Semantics of POOSL : an object-oriented specification language for the analysis and
design of hardware/software systems. (EUT report. E, Fac. of Electrical Engineering; Vol. 95-E-293). Eindhoven
University of Technology.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/52d07103-4939-4cbd-b671-2363a039d7be

Semantics of Poos/:
An Object-Oriented
Specification Language for
the Analysis and Design of
Hardware/Software Systems

by: J.P.M. Voeten

EUT Report 95-E-293
ISBN 90-6144-293-1
October 1995

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

ISSN 0167-9708

Faculty of Electrical Engineering
Eindhoven, The Netherlands

Semantics of POOSL:
An Object-Oriented Specification Language

Coden: TEUEDE

for the Analysis and Design of Hardware/Software Systems

by

J.P.M. Voeten

EUT Report 95-E-293
ISBN 90-6144-293-1

Eindhoven
October 1995

Copyright @ 1995 J.P.M. Voeten
Eindhoven, The Netherlands

Permission is granted to make and distribute verbatim copies of this report provided the
copyright notice and this permission are preserved on all copies.

This report is distributed in the hope that the contents will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

CIP-DATA KONINKLIJKE BlBLIOTHEEK, DEN HAAG

Voeten, J.P.M.

Semantics of POOSL: an object-oriented specification
language for the analysis and design of hardware/software
systems I by J.P.M. Voeten. - Eindhoven: Eindhoven
University of Technology, Faculty of Electrical
Engineering. - Fig. - (EUT report, ISSN 0167-9708 ;
95-E-293)
With ref.
ISBN 90-6144-293-1
NUGI832
Subject headings: object-oriented methods / specification
languages; semantics / formal specification.

Semantics of POOSL:
An Object-Oriented Specification Language

for the Analysis and Design of Hardware/Software Systems
J.P.M. Voeten

Abstract

POOSL, an acronym for Parallel Object-Oriented Specification Language, is a specification
and design language which is developed as a part of an object-oriented methodology for the
specification and design of data processing systems that contain a mixture of software and
hardware components. The language is based on the object-oriented paradigm to support
flexible and reusable design, as well as on the basic concepts of CCS to enable formal
verification, simulation, and transformation of specifications.

In this report we formalize the language and we argue why such a formalization is necessary.
The formal description is a Plotkin-style structural operational semantics. Since POOSL
distinguishes data from processes, the semantics is developed in two parts. The data part
is a computational semantics which is specified in terms of a transition system. We clarify
the formal description through an example in which we compute the semantics of a data
expression. The process part is a computational interleaving semantics defined in terms of
a labeled transition system. On top of this semantics we define observation equivalence,
and we show in an example how to reason about the equivalence of specifications.

Keywords: specification language semantics, object-oriented methods, formal specification.

Voeten, J.P.M.
Semantics of POOSL:
An object-oriented specification language
for the analysis and design of hardware/software systems.
Eindhoven: Faculty of Electrical Engineering, Eindhoven University of Technology, 1995.
EUT Report 95-E-293

Address of the author:
Section of Digital Information Systems
Faculty of Electrical Engineering
Eindhoven University of Technology
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

IV

Table of Contents

Table of Contents

List of Figures

Acknowledgements

1 Introduction
1.1 Background
1.2 Motivation.
1.3 Report Organization

2 Data Objects
2.1 Informal Explanation
2.2 Formal Syntax. . . .
2.3 Context Conditions .
2.4 A Computational Semantics

2.4.1 Informal Explanation .
2.4.2 Definitions.......
2.4.3
2.4.4
2.4.5
2.4.6

The Transition System
The Semantic Function M .
Primitive deepCopy Messages
Example: Complex Numbers.

3 Processes, Clusters and System Specifications
3.1 Informal Explanation
3.2 Formal Syntax.
3.3 Context Conditions
3.4 A Computational Interleaving Semantics

3.4.1 Informal Explanation
3.4.2 Definitions
3.4.3 The Labeled-Transition System .
3.4.4 Some Properties of the Transition System
3.4.5 Observational Equivalence and Semantic Function M"

iv

vi

vii

1
1
2
3

4
4
5
8
8
8
9

12
18
18
23

28
28
30
36
37
37
37
45
53
58

Table of Contents

3.4.6 Example: A Simple Handshake Protocol

4 Reviewing the Development of POOSL
4.1 The Grain of Concurrency
4.2 Layers of Semantics.
4.3 Tail Recursion.

5 Conclusions

References

Semantics of POOSL

v

60

66
66
68
70

72

75

VI

List of Figures

3.1 A Simple Handshake Protocol
3.2 A Transition Graph of the Handshake Protocol .
3.3 A l·place Buffer
3.4 A Transition Graph of the i-place Buffer

4.1 State Diagram of a i-place Buffer

60
62
64
64

70

VII

Acknowledgements

First of all I would like to thank my supervisor Prof. M. Stevens for giving me the oppor
tunity to carry out my research and for his continues support. I further wish to thank all
my colleagues and ex-colleagues for their help, comments and fruitful discussions. Special
thanks are due to A. Verschueren, A. van Rangelrooij, M. Kolsteren and P. van der Putten,
who read and commented on earlier drafts of this report. It is the Ph.D. research of A.
Verschueren that gave rise to my research project in the first place. Through my two-years
cooperation with A. van Rangelrooij I became familiar with the 'real-world' of electrical
engineering. M. Kolsteren gave a number of useful suggestions that led to a considerable
simplification of the semantics. Currently I work closely together with P. van der Putten on
the development of a complete design methodology for hardware/software systems. I would
like to thank him for his continuous support and cooperation, his constructive criticism,
his accuracy and enthusiasm, and for the many inspiring and teachable conversations.

Further I would like to thank A. Moreira, a former Ph.D. student, whom I met at the
ECOOP'94 conference in Bologna. Her research on rigorous object-oriented analysis gave
rise to many new insights in the complex world of objects.

Finally I would like to acknowledge the members and ex-members of the Formal Methods
Group, J. Baeten, F. de Boer, D. Dams, R. Gerth, J. Hooman, C. Huizing, R. Kuiper, S.
Mauw, for answering lots of questions and for giving many useful suggestions. In particular,
I would like to thank F. de Boer and C. Huizing who read earlier drafts of this report and
who helped in developing a formal semantics.

Semantics of POOSL

VIlI

To Inge

1

Chapter 1

Introduction

1.1 Background

Designing data processing systems becomes more and more difficult because of their in
creasing complexity and because of often competitive time and cost constraints. The Digital
Information Systems Group develops methods and tools for the specification, design, and
implementation of complex (real-time) data processing systems that contain a mixture of
software and hardware components. There is a special interest in the application of object
oriented techniques. Currently there exist a number of accepted object-oriented analysis
and design techniques, but unfortunately they all mainly focus on software development.
Therefore our group is developing a methodology which is also suited for the design of
hardware systems.

An important part of the methodology is a formal specification language called POOSL
[Voe94, Voe95j, an acronym for Parallel Object-Oriented Specification Language. The key
feature of POOSL is that it distinguishes statically interconnected process objects from
dynamically moving data objects. Process objects, or for short processes, are concurrent
entities that communicate using one-way synchronous message passing over static channels.
Process objects can be composed to form clusters of collaborating objects. A cluster is
hierarchically built from process objects and other clusters by parallel composition, channel
hiding and channel renaming. Data objects, on the other hand, are sequential entitities
used to model internal data of processes and to model data exchanged between different
processes. Processes do not share any data objects and if data objects are passed form one
process to the other, actual deep copies are made. This contrasts traditional object-oriented
languages where object references are passed instead of the objects themselves. The strict
separation between data and processes creates the possibility to model the static structure
of a system in an elegant and intuitive way, something which is of utter importance for the
specification of software/hardware systems.

We mentioned that POOSL is a formal language, which means that the language should

Semantics of POOSL

2 Motivation

be equipped with a formal syntax as well as with a formal semantics. The formal syntax
of previous versions of POOSL are given in [Voe94, Voe95J. In this report we give a formal
syntax and develop a formal semantics of a stable version of the language.

With respect to the semantics, we have chosen for a Plotkin-style structural operational
semantics. An operational semantics emphasizes how a specification is executed on some
abstract machine. The term structural states that the semantics is defined in terms of the
syntactic structure of specifications.

1.2 Motivation

The reasons to develop a semantics, and especially a structural operational semantics, are
diverse. Designing a good (specification) language is a very complex task. When one
attempts to combine different language concepts, unexpected and counterintuitive inter
actions arise [Ten91J. Since constructing a formal semantics requires a thorough under
standing of every" corner" of the language, these interactions can be detected as early as
possible and different alternatives can be evaluated systematically. Therefore, a language
and its formal semantics should be developed simultaneously, thereby using the semantics
as a tool which guides the language design. More about this subject is described in Chapter
4.

Next to its use for language design, a semantics, and because of its relative simplicity
especially an operational semantics, can be helpful to users of the language. Since ref
erence manuals and language standards are, in general, expressed informally, ambiguities
may arise about the precise meaning of some construct. A formal semantics can then be
consulted to resolve these ambiguities. Further, a rigorous semantic description can be of
assistance in creating manuals or standards in the first place.

Correctness-preserving transformations play in important part in the design methodology
mentioned in Section 1.1. A transformation takes a specification and transforms it into
another one. A correctness-preseruing transformation is a special kind of transformation
whose correctness is known in advance, which means that it establishes a predefined cor
rectness relation between the involved specifications. A formal proof of correctness can
only be made if the semant.ics of specifications and the semantics of correctness relations
are made precise.

The correctness of transformations is often based on equivalent externally observable be
haviour. Since denotational semantics typically emphasize describing systems in terms of
their external behaviour, they are often considered a good basis for the support of trans
formations. However, as languages become more complicated, deciding on an appropriate
denotational semantics becomes more and more difficult, which especially applies to parallel
(object-oriented) language,. On the other hand, operational semantics, and in particular

1 Introduction

Report Organization 3

structural operational semantics, have proven to be very fruitful. By defining correctness
relations directly on top of an operational semantics, much of the need for denotational
semantics has been side-stepped [Hen90j.

To be able to validate formal specifications against informal requirements, to analyze the
(dynamic) behaviour of specifications, or to implement specifications, a simulator tool
or a compiler tool providing (prototype) implementations would be of great use. Since
an operational semantics describes how specifications are executed rather than just what
the results of the execution should be, tool implementers can greatly benefit from such
a semantic description. This is nicely demonstrated in [Eij89j where a set of simulator
functions for Hippo (a LOTOS simulator) is systematically derived from the operational
semantics of LOTOS.

Formal verification is a mathematical proof that a specification meets a certain property.
Currently, a wide variety of tools are available which automate formal verification. In
order to make use of these verification tools, POOSL descriptions have to be translated
into so-called labeled transition systems which serve as the basic input models for a large
amount of verification tools. Since labeled transition systems and operational semantics
are closely related, the latter can be of great help in the construction of translation tools.

1.3 Report Organization

The plan of the report is as follows:

• Chapter 2 deals with data objects. The chapter starts with an informal explanation.
Then the formal syntax together with a number of context conditions are given. Next,
we develop a computational semantics of the data part of POOSL. The realization of
the formal semantics of data objects has greatly been influenced by [PAR85j in which
an operational semantics of the parallel object-oriented language POOL is given. We
conclude Chapter 2 with an example in which the semantics of a complex-number
expression is calculated.

• Chapter 3 concerns the process part of the language. We start with an informal
explanation, a formal syntax, and a number of context conditions. Then we develop
a computational interleaving semantics and we define observational equivalence on
specifications. In the last part of the chapter we give a proof of the equivalence of a
simple hand-shake protocol and a I-place buffer.

• In Chapter 4 a brief review of the development process of POOSL is given. The
chapter describes three encountered problems, possible design alternatives, and the
chosen solutions.

• The report finishes with Chapter 5 in which we derive our conclusions.

Semantics of POOSL

4

Chapter 2

Data Objects

2.1 Informal Explanation

Data objects or traveling objects in POOSL are much alike objects in sequential object
oriented programming languages such as Smalltalk [GR891, C++ [Str921, Eiffel [Mey881,
and SPOOL [AB901. A data object contains some private data and has the ability to act on
this data. Data is stored in instance variables, which contain (references to) other objects
or to the object which owns the variables. The variables of an object cannot be accessed
directly by any other object. They can only be read and changed by the object itself.

Objects can interact by sending messages to each other. A message consists of a message
name, also called a message selector, and zero or more parameters. A message can be
seen as a request to carry out one of the objects' services. An object explicitly states to
which object it wants to send a message. When an object sends a message, its activities
are suspended until the result of the message arrives. An object that receives a message
will execute a corresponding so-called method. A method implements one of the object's
services. It can access all instance variables of its corresponding object. In addition, it
may have local variables of its own. The result of a method execution is returned to the
sender.

Data objects are grouped into data classes. A data class describes a set of objects which
all have the same functionality. The individual objects in a class are called instances. The
instance variables and methods, which are the same for all instances, are specified within
a class definition.

Future versions of POOSL should support some form of inheritance. Because the precise
form has not been decided upon, we will not consider inheritance in this report.

POOSL has four predefined classes of commonly used data types, namely Boolean, Integer,
Real, and Char. Instances of these predefined classes are called primitive (data) objects.

Formal Syntax 5

The set of messages of these objects correspond to the usual operations of the object's data
type.

Next to these primitive objects five other primitive objects exist, named nil, bunk, iunk,
runk, and cunk. nil can be considered to be element of every class. Besides an equality
(==) message, this object does not recognize any message and the execution aborts when
another message is sent to it. bunk, iunk, runk, and cunk represent the unknown objects
of classes Boolean, Integer, Real, and Char. An unknown object recognizes the same
messages as the other objects of its class. The calculated results follow obvious rules
such as bunk or true = true, iunk < 6 = bunk, and 1.567 x runk = runk.
The unknown objects are introduced to allow the specification of non-deterministic, yet
executable, behaviour. Non-determinism is a very powerful tool to achieve abstraction in
specifications.

Every object (primitive as well as non-primitive) recognizes a special message called equality
(==). Through the equality message it is decided whether or not two expressions refer to
the same object.

2.2 Formal Syntax

In this section an (abstract) syntax of the language of data objects is given. The syntax
resembles the syntax of Smalltalk defined in [GR89) and is based on the abstract syntax
of POOL [PAR85). We assume that the following sets of syntactic elements are given:

IVar instance variables x, y,'"
LVar local variables, parameters u,v,w,'"
CName data class names C,···
MName method names m,'"

First, we define the set PDObj of Primitive Data Objects with typical elements"(,·· .. This
set contains boolean objects (IS), integer objects (Z), real objects (R), character objects
(Char), nil, bunk, iunk, runk, and cunk.

PDObj = IS U {bunk} U Z U {iunk} U R U {runk} U Char U {cunk} U {nil}

We define the set Exp of expressions, with typical elements E, ... , as follows:

E .. - x
u
new{C)
self
E m{EJ,···,En)

1
S;E

Semantics of POOSL

6 Formal Syntax

The first two expressions are instance variables, and local variables or parameters. The
value of such a variable expression is (a reference to) the object currently stored in that
variable. The next type of expression is the new expression. This expression indicates
that a new object (of class C) has to be created. The expression yields the newly created
object. Expression self refers to the object which is currently evaluating this expression.

The sixth type of expression is a message-send expression. Here E refers to the object
to which message m has to be sent and ~"'" En are the parameters of the message.
When a message-send expression is evaluated, first the destination expression is evaluated,
then the parameters are evaluated from left to right, and finally the message is sent to
the destination object. This latter object initializes its method parameters to the objects
in the message and initializes its local method variables to nil. Next, the receiving object
starts evaluating its method expression. The result of this evaluation is the result of the
send expression which is returned to the sending object.

Next, we have constant expressions ",(,"', which refer to the above defined primitive ob
jects. :1 stands for the direct naming (textual representation) of primitive object "'(. An
expression can be composed from a statement and another expression. When such a com
posite expression is evaluated, first the statement is executed and then the succeeding
expression is evaluated. The value of this latter expression will be the value of the com
posite expression.

Next, we define the set Stat of statements. We let S, ... range over Stat which is defined
as

S ::= E
x :=E
u:= E
S,; S2
if E then S, else S2 fi
doEthenSod

The first type of statement is an expression. Executing such a statement means that the
expression is evaluated and the result is discarded. The effect of the execution is the
side-effect of the expression evaluation.

Next, we have two assignment statements: the first to an instance variable and the second
to a local variable or parameter. Upon execution of an assignment statement, the expression
is evaluated and the result, a primitive object or a reference to an object of a user-defined
class, is assigned to the variable.

Sequential composition, the if-statement, and the do-statement have their usual meaning. If
the guard E of the if-statement or the do-statement evaluates to bunk, a non-deterministic
choice is taken whether the value should be interpreted as true or as false.

2 Data Objects

Formal Syntax 7

Further, we define the set Systems with typical elements Sys,

Sys ::= (CDI ··· CD.)

A system Sys is a set of non-primitive data classes, comparable with a set of system classes
in Smalltalk. A system is built from a number of data class definitions.

The set Classdef of data class definitions, ranging over CD, ... , is defined as

CD ::= data class C
instance variables Xl··· X.

instance methods MDI ··· MD"

Within a data class definition the functionality of the classes' instances is specified. First,
the name of the class is given. Next, the instance variables Xl ••• X. of the class are in
dicated. The last part of a class definition consists of a number of method definitions
MDI···MDk.

The set of all method definitions is called Methdef and has typical elements MD,···

MD ::= m(ut, ... ,u.)
I III ... Vm I
E
m(ut,···,u.)
primitive

Within a method definition the functionality of a certain message or method is described.
A method definition starts with a method or message name m and zero or more parameters
UI,···, u •. Next, zero or more local variables V:t ••• Vrn are specified. A method definition
ends with an expression E which is the body of the method. This expression is evaluated
when the method is invoked. The result of this evaluation is returned to the message
sender.

However, there exist methods for which the functionality cannot be expressed in terms
of expressions. The functionality of these, often called primitive methods, is specified in
the form of axioms in the semantics of the language. A primitive-method definition only
contains the parameters of the method and a keyword which indicates that the method is
primitive. A typical example of a primitive method is a deep Copy method which is used
to create a complete copy of some object. Another example is the equality (==) message.
Through this message it is determined whether two expressions refer to the same object. In
this report we will assume that there are classes which use deepCopyand equality. These
primitives are also defined for every primitive object. Other primitive methods will not be
considered here.

Semantics of POOSL

8 Context Conditions

2.3 Context Conditions

In the previous section we gave the syntax of the data part of POOSL in BNF notation.
There are, however, a number of (syntactic) requirements, often called context conditions,
which have to be satisfied and which cannot be described in BNF. In this section we will
informally describe the context conditions with respect to a system Sys of classes. The
conditions are the following:

(a.) All class names in SY8 are different.

(b.) All instance variables in a class definition are different.

(c.) All method names of a class are different.

(d.) All parameters and local variables in a method definition are different.

(e.) Every variable used in a method body is either an instance variable of the corre
sponding class, a method parameter, or a local method variable.

(f.) The class in any new expression is contained in Sys.

2.4 A Computational Semantics

2.4.1 Informal Explanation

A computational semantics is a special kind of operational semantics and is specified by a
transition system. Transition systems where first used by Hennessey and Plotkin [HP79,
Plo81, Plo83] and they were also used by Apt in [Apt81, Apt83]. A transition system is an
ensemble (Con!, -;) where Con! is a set of configurations and where -; denotes a transition
relation. In general, a conJiguration is of the form (S, I) representing a system S together
with some amount of information I. S is the syntactic part of the configuration and often
denotes a statement. The information part I often refers to a state. A configuration
represents that system S is to be executed in the context of information I. Transition
relation (-;) describes how this execution takes place. The intuitive meaning of transitions
(S, I) -; (S', I') is that system S with information I can lead to system S' with information
I' in a single computation (or execution) step.

The transition relation is defined by a syntax directed deductive system consisting of rules
and axioms. A rule is of the general form

2

(Sl, 11) -; (S;, I{),.··, (S., In) -; (S~,I~) if condition
(S, I) --t (S' ,I')

Data Objects

A Computational Semantics 9

A rule has zero or more premises and one conclusion. A rule tells us how we can deduce
a new transition (the conclusion) from the old ones (the premises). A rule may have a
condition which has to be fulfilled whenever the rule is to be applied.

Rules without premises are called axioms. An axiom tells us what is considered to be a
basic transition. Usually, the solid line is omitted when a rule is an axiom. So, an axiom
has the general form

(8, I) -+ (8', I') if condition

The transition relation -+ describes the individual steps of an execution. If we apply the
relation repeatedly, starting with configuration (81) I,), we obtain sequences of configura
tions, called derivation sequences,

such that for all i ~ 1 (8i, Ii) -+ (8i+I' Ii+I). Some of these sequences will be infinite and
others will be finite. The finite sequences are of the form

where configuration (8., I.) is either a terminal or a stuck configuration, i.e., there exists
no configuration (8, I) such that (8., h) -+ (8, I). A terminal configuration represents the
calculated information obtained by successful termination. A stuck configuration represents
an unsuccessful termination.

We can now give a meaning to a configuration (8" I,) by defining its semantics as the set
of all terminal configurations of all possible derivation sequences.

In the following two subsections we will give an operational semantics of the data part of
POOSL. Section 2.4.2 will start with a number of definitions. In Section 2.4.3 the transition
system is being developed. Section 2.4.4 defines the semantics of configurations in terms
of a semantic function M. In Section 2.4.5 the transition system is extended to deal with
the primitive deep Copy messages. Section 2.4.6 we give an example of the calculation of
the semantics of a data expression in POOSL.

2.4.2 Definitions

Before we can define our operational semantics we have to give some definitions.

We start defining the set NDObj of Non-Primitive Data Objects and let it range over Q,

.... Non-primitive data objects are represented by 'capped' integer values. In fact, these
'capped' integer values are really object identifiers and not the objects themselves. Most
of the time, however, we will blur this distinction and call them objects instead.

Semantics of POOSL

10 A Computational Semantics

NDObj = {n I n E N}

Together with the primitive data objects PDObj, this constitutes the set DObj of Data
Objects, with typical elements (3, ... ,

DObj = NDObj u PDObj

We define a set of global states E ranging over u, ... as follows:

E = {u E (NDObj U {proc}) '-+ (IVar '-+ DObj) I Dom(u) is finite}

Here, we use '-+ to indicate that a global state is a partial function. Dom(u) denotes the
domain of function u. We will denote elements of NDObj U {proc} by ti,· " and elements
of [Var '-+ DObj by q" • . '.

Later in Chapter 3 we will see that every data expression or statement is executed within
the context of a single process object. Such a process has instance variables, which refer
to data objects known to the process. A global state u E E stores the values of all these
instance variables as well a,!; of those of all non-primitive data objects (indirectly) known to
the process. Domain element proc identifies the process itself. The other domain elements
refer to the non-primitive data objects.

We define a function Maxld which retrieves the greatest object identifier contained in a
global state. Maxld is needed to describe the creation of data objects. If a state does not
contain any object identifiers, the function returns O. Let u E E. Then

M Id _ { 0 if Dom(u r NDObj) = 0
ax (u) - Max{n I n E Dom(u)} if Dom(u r NDObj) f 0

Here u r NDObj denotes function u restricted to set NDObj.

Next, we define a set Stad of (local) stacks, with typical elements s,' .. ,

Stack = ({proc} x (LVar '-+ DObj))*(NDObj x (LVar '-+ DObj))*

A stack is a (possibly empty) list of stack elements. An element of a stack denotes a local
variable environment. Such an element consists of two components. The first component
denotes the owner of the environment, which is either the involved process object or some
non-primitive data object. The second component stores the values of local (method)
variables of the owner. The first component of the top of a stack denotes the object which
is currently executing one of its methods. Note that the bottom elements of each stack are
owned by the involved process object, whereas the top elements are owned by non-primitive
data-objects. We let the set of stack elements (NDObj U {proc}) x (LVar '-+ DObj) range
over e, . ". We further lei Lvar '-+ DObj range over x,' . '.

2 Data Objects

A Computational Semantics

We shall need the following operations upon stacks: For stack elements

el,···, en, e E ((NDObj U {proc}) x (LVar '-+ DObj))

and stack

(el,···, e.) E Stack

we define

(el,···, en, e)
pop((et,·.·, e.))
push(e,(el,···,e.)) =

top((el'···' e.))
l(el,···,e.)1

- e.
= n

if (eI,···, e., e) E Stack
if n > 1

I s I denotes the depth (the amount of elements) of stack s.

11

We denote the first and second component of a stack element e by e(l) respectively e(2).
So if e = (.5,X) then e(l) =.5 and e(2) = X.

To store for each non-primitive data object its class name, we define the set Type of type
functions ranging over T, .••

Type = NDObj '-+ CName

Armed with these definitions we are able to define our set Con! of configurations.

Con! = Stat' x E x Stack x Type x Systems

A configuration consists of a syntactic part and an information part. The syntactic part
is composed of a statement and a system of classes. The information part (the I part
described in Section 2.4.1) is composed of a state, a stack, and a type.

The set Stat', with typical elements S',··· , is an extension of the set Stat. This extension
is on its turn based on an extended set of expressions Exp', with typical elements E',· ...
The extended sets are defined as follows:

E' x
u
new(C)
self

E' m(El',··· ,E:)

fi
S'; E

S' E'
x:= E'
u:= E'
SI'; S2
if E' then SI else Sz fi
doEthenSod
! E'

Here, (3 denotes the direct naming of object (3. This construction is incorporated to facili
tate the semantic description. ! E' indicates that a message is outstanding and that the
result of the message, which is the value of expression E', is to be inserted at the place of
the !.

Semantics of POOSL

12 A Computational Semantics

2.4.3 The Transition System

In this section we will defin'~ the transition system of the data part of POOSL. The tran
sition relation

-+ C Conf x Conf

will be defined by the following axioms and rules:

Axioms

1. Object creation

(new(C), (7, s, r, Sys) -+ (.ft, (7', s, r', Sys)

if

Sys =' (CD,··· CD;··· CD,)
CD; = data class C instance variables x, ... xp instance methods MD, ... MD,

and where

(7' =(7{</>!n}
Dom(</» = {x,,",, xp}
</>(Xi) = nil
n = Maxld(u) + 1
r' =r{C/n}

Here we have used the variant notation for functions. If f is a (partial) function from X
to Y, X,p E X and y E Y, then f{y / x} is defined by

{

f(p)
f{y / x}(p) = y

undef

if P"l x and p E Dom(f)
if p == x
if P"l x and p f/. Dom(f)

We writef{y/x}(p) = undefto mean that p f/. Dom(f{y/x}).

2

2. Assignment to instance variables

(x := /!., (7, s, r, Sys) -+ (/!., (7', s, r, Sys)

if

I s I > 0

and where

(7' = r7{ u(6){j3 / x} / 6}
6 = (top(s))(J.)

lWe use =- to denote syntactic identity.

Data Objects

A Computational Semantics

3. Assignment to local variables

(u:= fi,U,S,T,SyS) --t (fi,U,S',T,SyS)

if

1 s 1 > 0

and where

s' = push(e',pop(s))
e' = (e(l), e(2){;1 / u})
e = top(s)

4. Instance variables

(X,U,S,T,SyS) --t (fi,U,S,T,SyS)

if

1 s I> 0
u(top(s)(1))(x) f. undef

and where

;1 = u(top(s)(l))(x)

5. Local variables

(U,U,S,T,SyS) --t (I!.,U,S,T,SyS)

if

1 s I> 0
(top(s)(2))(u) f. undef

and where

6. Self

if

;1 = (top(s))(2)(u)

(self, u, S, T, Sys) --t (Q., u, s, T, Sys)

1 s I> 0
top(s)(l) f. proc

and where

a = top(s)(1)

Semantics of POOSL

13

14 A Computational Semantics

2

7. Discarding a value

(fi; S,O',S,T,SyS) -> (S,O',S,T,SyS)

8. Method call

(g m(f3b,,·,fh),O',S,T,SyS) -> (! E,O',S',T,SyS)

if

Sys == (CD,,,· CD; .. · CDI)
CD; == data daBS C instance variables ... MDl ··· MD ... MDI
C == T(O)
MD==m(ut,"',uk) Ivt·"v.1 E

and where

s' =push(e,s)
e = (o,X)
X(Ui) = f3i
X(v;) = nil

9. Returning the result

(! fi, 0', S, T, Sys) -> (fi, 0', s', T, Sys)

if

I s I > 0

and where

s' = pop(s)

10. Conditional

(if fi then Sl else S. fi, 0', S, T, Sys) ->

11. Do-statement

(do E then Sod, 0', s, T, Sys) ->

f (Sl,O',S,T,SyS)

1 (S" 0', S, T, Sys)

(if E then(S; do E then Sod) elsemLfi, 0', s, T, Sys)

if f3 = true
or f3 = bunk
if f3 = false
or f3 = bunk

Data Objects

A Computational Semantics 15

12. Primitive-class Integer (and iunk), operators

(2 OP(-Y1),17,S,T,SyS) -t (12,17,S,T,SyS) if 1,11 E Zu {iunk}

where

12 = OP(-Y,11)
op = +, -, *, div, mod,···

and

(2 opO, 17, S, T, Sys) -t (-yt, 17, S, T, Sys) if 1 E Z U {iunk}

where

11 = op(-y)
op = sqr, sqrt, asGhar,···

13. Primitive-class Integer (and iunk), relators

where

12 = rel(-Y,11)
rei = <,:5, >,~, ...

14. Primitive-class Boolean (and bunk), operators

(2 op(1i), 17, S, T, Sys) -t (12,17, S, T, Sys) if 1,11 E Ja U {bunk}

where

12 = OP(-Y,12)
op = and, or, nand, xor,'"

and

(2 OpO,17,S,T,SyS) -t (11,17,S,T,SyS) if 1 E JaU {bunk}

where

11 = op(-y)
op = not,···

Semantics of POOSL

16 A Computational Semantics

2

15. Primitive-class Real (a.nd runk), operators

(1 op('l'1),I1,S,T, Sys) -+ ("I2,I1,S,T,SyS) if "1,"11 E lRu {runk}

where

"12 = OP("(,"II)
op = +, -, *, /, ...

and

h OpO,I1,S,T,SyS} -+ ("(,,I1,S,T,SyS) if "I E lRu {runk}

where

"II = op("()
op = round, abs,' ..

16. Primitive-class Real (and runk), relators

h rel(,,(,),I1,S,T,SyS) -+ ("I2,I1,S,T,SyS) if "1,"11 E lRu {runk}

where

"12 = re/("(, "11)
rei = <,::;, >,:::::" ..

17. Primitive-class Chamcter (and cunk), operators

(1 OpO,I1,S,T,SyS) -+ h"I1,S,T,SyS) if "I E CharU {cunk}

where

"II = op("()
op = ascii Value, as Uppercase, isLetter, isDigit, ...

18. Primitive-class Character (and cunk), relators

(1 rel(,,(,),I1,S,T,SyS) -+ h2,I1,S,T,SyS) if "1,"11 E CharU {cunk}

where

"12 = rel("(,"II)
rel=«»··· ,-, ,._,

Data Objects

A Computational Semantics

19. Primitive method Equality, primitive objects

((f3\ S) { (true, u, s, T, Sys)
I == D,U,S,T, ys -+ III S) - v~,U,S,T, ys

20. Primitive method Equality, non-primitive objects

(g == (~), u, S, T, Sys) -+ h, u, S, T, Sys)

if

Sys == (CDI ... CDj ... CDt)

if f3 = I
if f3 # I

CDj == data class C instance variables ... MD1··· MD ... MDt
C == T(a)
MD == ==(u) primitive

and where

{
true

I = false

Rules

if a = f3
if a # f3

a. Method call 1

(E ' ~ s T Sys) -+ (E" ~, s' T' SY'-) ,v, , , ,v, , , .:>

(E' m(E1',···,E:),u,S,T,SyS) -+

(E" m(El,···,E~),u',s',T',Sys)

h. Method call 2

(Ee, (7, 5, T, Sys) -+ (Eel, (TI, 8', T', SyS)

(f3 m(f3I,···,f3i_l,E',··.,E:),u,s,T,SyS)
(~ m({3t,··· ,f3i-t,E",··· ,E!),u',S',T',SyS)

c. Assignment to instance variables

(Ee, U, 5, T, Sys) -+ (Eel, (7', 8', ,', Sys)

(x:= Et,U,S,T,SyS) -+ (x:= Et',u',S',T',SyS)

d. Assignment to local variables

(E' ,u, S, T, Sys) (E",eI, s', T', Sys)

(u:= E',u,s,T,Sys) -+ (u:= E",u',s',T',Sys)

Semantics of POOSL

17

18

e. Method execution

(Ee,u,s,r,Slls) -4 (Ee',u',s',r',Sys)

(! E' - s T Sys) -+ (! E", -', s', T', Sys) ,v, , , v

f. Sequential composition

(S',U,S,T,SyS) -+ (S",U',S',T',SyS)

(S ' S S) (S'" S ' , , S) ; I,U,S,T, ys -+ , I,U,S,T, ys

g. Conditional

(E',u,s,T,Sys) -+ (E",u',s',T',Sys)

(if E' then SI else S2 fi, U, S, T, Sys) -+

(if E" then Sl else S2 fi, u', s', T', Sys)

2.4.4 The Semantic Function M

A Computational Semantics

Now that we have defined the transition relation -+, we will specify what we consider to
be the meaning of a configuration. We define the semantics of a configuration as the set
of all terminal configurations of all its possible derivation sequences. A configuration is
terminal if it is of the form (/i, u, s, T, Sys). Formally, we define a semantic function M as
follows:

M : Conf -+ JP(Con!)

where

M((S',U,S,T,SyS)) = {(/i,U',S',T',SyS) I (S',U,S,T,SyS) -+* (/i,U',S',T',SyS)}

Here, JP(Con!) denotes the powerset of Conf, i.e., the set of all subsets of Conf. -+ * is
the reflexive-transitive closure of relation -+ and denotes that a configuration can lead to
another configuration in zero or more execution steps.

2.4.5 Primitive deepCopy Messages

The transition system defined in Subsection 2.4.3 does not incorporate the definition of
so-called deepCopy messages. A deepCopy of a non-primitive object creates a new object
of the same class. The objects referred to by the instance variables of this newly created
object are again deepCopies of the objects referred to by the instance variables of the
original object. DeepCopies of primitive objects are the objects themselves.

To define the semantics of deep Copy messages we need to introduce a function copy and

2 Data Objects

A Computational Semantics 19

a collection of functions relabel+m. Function copy takes a triple (f3, u, r) of an object
(identifier) f3, a state u and a type r and delivers a copy of object f3. This copy is
again represented by a triple of an object (identifier), a state and a type and is of the
form (f3,u r 1),r r 1). 1) is the set of identifiers of all objects that are (indirectly)
known to object f3. If f3 denotes a non-primitive object, it is also contained in 1). Since
primitive objects do not know any other objects, 1) is empty if f3 is primitive. The collection
of functions relabe4m is used to relabel all object identifiers of some triple (f3, u, r) by
increasing them by m.

To calculate a proper object-copy, we let the input triple (f3, u, r) of function copy be a
so-called Sys-structure.

Definition 2.1
Let Sys E Systems. A triple (f3, u, r) E DObj x E x Type is a Sys-structure if and only if

1. All data object identifiers in u are also known in r and vice versa. So Dom(u r
NDObj) = Dom(r).

2. Every class name, which is referred to in r, is defined in Sys, and the instance vari
ables of all data objects in u conform to their respective class definition. Expressed
formally:
'v' a E Dom(r): Sys == (CDI ··• CDn) and
3 i E {1,··· , n} : CD; == data class r(a) instance variables Xl ••• xp ..• such that
Dom(u(a» = {xt.oo.,xp }.

3. u is closed. This means that every data object, referred to by objects (or proc) in u,
is also in u:

'v' 5 E Dom(u) : 'v' X E Dom(u(5» : u(5)(x) E NDObj -+ u(5)(x) E Dom(u)

4. If object f3 is non-primitive, then it is part of u. So f3 E NDObj implies f3 E Dom(u).

We let Strucs •• denote the set of all Sys-structures. o

To compute identifier set 1) we introduce a collection of functions :F",(J'

Definition 2.2
Let (f3,u,r) E Strucs •• and let V ~ Dom(u). Then :F",(J : lP(Dom(u» -+ lP(Dom(u» is
defined by

{

0 if f3 E PDObj
:F",{J(V) = {f3} U V U

{a E NDObj 135 E V: 3x E [Var: a = u(5)(x)} iff3 E NDObj

o

Semantics of POOSL

20 A Computational Semantics

For n E N we will write F:,/3(V) to denote the n-fold application of Fa,p to V, so

We will now show how functions Fa,p and F;'p can be applied to calculate the required
object identifier set 1). Let {(3, (1, T) be a Sys-structure and assume that (3 E NDObj. Then

U{F;'p(0) I 0 :::; n :::; O}
U{F:,p(0) 10:::; n :::; I} -
U{F;'p(0) 0:::; n :::; 2} =

U{F;'p(0) 10:::; n:::; 3} =

=

o
{(3}
{(3} U {each object directly known to object (3}
{(3} U {each object directly known to object (3} U

{each object directly known to some
object that is directly known by (3}

= {(3} U {each object (indirectly) known to object (3}

In case (3 E PDObj, U{F:,p(0) 10:::; n} = 0

So clearly we have that U{F:,p(0) 10:::; n} is precisely the set of all object (identifiers)
that are (indirectly) known to (3, that is 1) = U{F:,1l(0) 10:::; n}.

For readers with a more mathematical background it may be interesting to observe that that
(lP'(Dom(<1)),~) is a complete lattice with least element 0, and that each Fa,p is a continuo
ous function on (lP'(Dom(<1)), ~). By elementary fixed point theory it then follows that V =
FIX(Fa,Il), where FlX(Fa,p) denotes the least fixed point of Fa,p.

We are now able to formulate a definition of function copy.

Definition 2.3
Let «(3, <1, T) E Strucs •• be a Sys-structure. Then

copy(«(3, <1, T)) = «(3, <7 r 1), T r 1))

where

1) = U{F:,1l(0) 10::;. n}

o

The elements of the range of function copy are characterized by a number of interesting
properties:

Proposition 2.1
Let «(3, (1, T) E Strucs •• and let copy(«(3, <1, T)) = «(3, (1', T'). Then

2 Data Objects

A Computational Semantics

(a) «(3, <I, r') E Strucs ••.

(b) copy«(3,a',r')) = «(3, a', r').

(c) proc I/. Dom(a').

21

o

According to (a) of Proposition 2.1, a copy of a Sys-structure is again a Sys-structure.
This means that it contains at least all information about objects that are (indirectly)
known by (3. Item (b) states that this Sys-structure is minimal in the sense that it does
not contain any information about objects that are not (indirectly) known by (3. By item
(c) we know that it does not contain any information about the involved process object
also. In conclusion, (a), (b) and (c) state that «(3,a',r') contains precisely the information
needed to characterize object (3.

Proof of Proposition 2.1

(a) For (a) of Proposition 2.1 we have to prove that «(3,a',r') satisfies requirements
(1) .. , (4) of Definition 2.1. Now requirements (1) and (2) easily follow from the
definition of copy. For (3) let 6 E Dom(a'), let x E Dom(a'(6)) and assume that a
= a'(6)(x) E NDObj. We have to show that a E Dom(a'). Since a' = a r 'D we
have that 6 E 'D. This means that there exists an n E N such that 6 E .r;;,~(0).
But then by Definition 2.2 a E F;-;'(0) and thus a E 'D. For (4) we observe that
that (3 E NDObj implies that (3 E F;'T(0) and thus that (3 E 'D. Further, since
(3 E Dom(a), we also have (3 E Dom(a r'D) and thus (3 E Dom(a').

(b) For (b) we have to prove that copy«(3,a',r') = «(3, a', r'). We know that copy
«(3, a', r')) = «(3,17' r 'D',r' r 'D') where'D' = U{F;',p(0) los n}. If we can show
that 'D' = 'D we are ready. For then «(3, a' r 'D', r' r 'D') = «(3, a' r 'D, r' r 'D) =
«(3,u r'D r 'D,r r'D r'D) = «(3,u r 'D,r r'D) = «(3,u',r'). To prove that'D = 'D' it
suffices to show that F;',p(0) = F:'p(0) for each n E N. This can be proved by an
easy induction on n.

(c) By induction it is easy to show that for all n E N proc ¢ F;,p(0). Therefore proc ¢
'D, and thus proc I/. Dom(u r'D) = Dom(u').

This concludes the proof of Proposition 2.1 o

As explained above, each Sys-structure «(3,<I,r') satisfying property (b) of Proposition
2.1 2 , contains precisely the information needed to characterize object (3. Sys-structures of
this kind are called minimal. They will later be used extensively to describe data object
passing between the various processes. The set of all minimal Sys-structures is denoted
StrucS'III,min'

'Note that if (P, tT', 1") is a Sys-structure satisfying property (b), it also satisfies properties (a) and (c).

Semantics of POOSL

22 A Computational Semantics

Definition 2.4
Let ((3, a, r) E Strucsy,. Then

((3, a, r) E StrucSy.,m;n. if and only if copy(((3, a, r)) = ((3, a, r)

o

Next, we define a collection of functions relabe4m. These functions are used to relabel all
object identifiers of a minimal Sys-structure by increasing them by m.

Definition 2.5
Let ((3, a, r) be a minimal Sys-structure, and let mEN be a natural number. We define
a collection of relabelling functions relabel+m : StrucS •• ,m;n -> Strucsy.,m;n as follows:

relabel+m (((3, a, r)) = ((3', a', r')

where

1. Dom(a') = Dom(r') = {k"+ m IkE Dom(a)}

2. a'(k"+ m)(x) = { p -!" m if a(~)(x) = p E NDObj
a(k)(x) ifa(k)(x) E PDObj

for all k E Dom(a) and x E Dom(a(k))

3. r'(k"+ m) = r(k) for all k E Dom(a)

o

This definition states that relabellin!l a minimal Sys-structu~ consists of replacing all
non-primitive data object identifiers k by objects identifiers k + m. All primitive objects
remain unchanged. The relabelling of a minimal Sys-structure yields another minimal
Sys-structure. The proof of this fact is of a similar complexity as the proof of Proposition
2.1.

Finally, we are able to give the semantics of deepCopy messages. We will extend the
transition system defined in Section 2.4.3 with two axioms. The first axiom (21) deals
with deep Copies of primitive objects and the other (22) with deep Copies of non-primitive
objects.

21. Primitive method deep Copy, primitive objects

(1 deepCopyO,a,s,r,Sys) -> h,a,s,r,Sys)

2 Data Objects

A Computational Semantics

22. Primitive method deep Copy, non-primitive objects

(g deepCopyO, a, s, r, Sys) -+ (0:"', a"', s, r"', Sys)

if (0:, a, r) is a Sys-structure and if

Sys == (CDt ••· CDj ••. CD,)
CDj == data class C instance variables ... MDt··· MD ... MD,
C == r(o:)
MD == deepCopyO primitive

where

copy((0:, a, r» = (0:', a', r')
relabel+Mazu(u} ((0:', a', r'» = (o:",a",r")
0111 = a"
(jill = (j U q"

rfIJ = T U Til

23

Axiom 22 states that a deep Copy of object 0: is being made in three steps. In the first step
a copy is made. This copy is being relabelled by adding the number Maxld(a) to all its
object identifiers. Maxld(a) is the largest object identifier which is contained in the original
state a, so the newly created identifiers are all "fresh". As a final step, the relabelled object
is added to the original state, and the (new) object identifier 0:'" associated with 0: is the
evaluated result of the deep Copy operation.

The theory of this subsection is not just developed to describe deepCopy messages. Later,
we will need the same theory to describe data object passing between process objects.

2.4.6 Example: Complex Numbers

In this subsection we give an example of the calculation of the semantics of a configuration
representing the addition of two complex numbers. A definition of a system Sys which
contains a class Complex of complex numbers is as follows:

Sys == (

data class

instance variables

instance method8

Semantics of POOSL

Complex
re
sm
init(r, i)

re:= rj
im:= i;
self

add(comp)

lirresl
r +- self real + (comp real) j
i +- self imag + (comp imag);

24 A Computational Semantics

real
re

imag:
1m

res +- new(Complex) init(r, i)j
res

Calculating the sum of complex numbers, say (3+4i) and (S+9i), can be performed by
evaluating

(new(Complex) init(3,4)) add(new(Complex) init(S,9))

Syntactic entities 3, 4, S, and 9 denote the direct naming of natural numbers 3, 4, Sand 9.

The evaluation of this expression is reflected by a derivation sequence, starting with con
figuration

((new(Complex) init(3,4)) add(new(Complex) init(8, 9)),0, (), 0, Sys)

In this configuration we have put brackets around expression new(Complex) init(3, 4),
although they are not part of the abstract syntax defined in Section 2.2. Such brackets are
used in ambiguous situations to explain the intended structure of expressions or statements.

To ease readability we represent functions in a way explained by the following example:

Assume

F : A '-+ (B '-+ C)

is defined by

then we represent F as

For the first step of the derivation we have to find a configuration, say con!, such that

((new(Complex) init(3,4)) add(new(Complex) init(S,9)),0,(),0,Sys) ~ con!

Since (new(Complex) init(3,4)) add(new(Complex) init(8,9)) is of the form
E' m(Ei,···, E:) (choose E' == new(Complex) init(3,4), m == add, n = 1, and
Ei == new(Complex) init(8,9)), we can apply [Rule a] and deduce

3Note'that in stead of self n~al and self imag we could have written re respectively im.

2 Data Objects

A Computational Semantics 25

conf = (E" add(new(Complex) init(8,9)),17',s',r',Sys)

if

(new(Complex) init(3,4), 0, (),0,Sys) -> (E",17',s',r',Sys)

So, to calculate conf, we first have to calculate the latter transition. By applying [rule a]
again we see that

(E" 17 s' r' Sys) = (E'" init(3 4) 17" s" r" Sys) , , , , , , , , ,

if

(new(Complex), 0, (), 0, Sys) -> (E''', 17", s", r", Sys)

We can now apply [axiom 1] to deduce

(E''', 17", s", r", Sys) = (1, {1.re -> nil, 1.im -> nil}, (), {i -> Complex}, Sys)

This implies that

(E", 17, s', r', Sys) = (i init(3, 4), {1. re -> nil, 1. im -> nil}, (), {i -> Complex}, Sys)

and thus

conf = ((i init(3,4)) add(new(Complex) init(8,9)),
{i.re -> nil, Lim -> nil}, (), {i -> Complex}, Sys)

The other transition steps of the derivation sequence are deduced in a similar way. The
result of a partial derivation is as follows:

((new(Complex) init(3,4)) add(new(Complex) init(8,9)),
0, (), 0, Sys)

-> {l. by [rules a,a] and [axiom 1] }

((i init(3,4)) add(new(Complex) init(8,9)),
{Lre -> nil, Lim -> nil}, (), {i -> Complex}, Sys)

-> {2. by [rule a] and [axiom 8] }

(l (re := r; im := i; self) add(new(Complex) init(8,9)),
{Lre -> nil, Lim -> nil},
((i,{r -> 3,i -> 4})),{i -> Complex},Sys)

-> {3. by [rules a,e,f,c] and [axiom 5] }

(l (re:= 3; im:= i; self) add(new(Complex) init(8,9)),
{Lre -> nil, Lim -> nil},
((i, {r -> 3, i -> 4}}}, {i -> Complex}, Sys)

Semantics of POOSL

26 A Computational Semantics

--+ {40 by [rules a,e,f] and [axiom 2] }

(t (Q.j im := ij self) add(new(Complex) init(8,9)),
{Lre --+ 3,Lim --+ nil},
«i,{r --+ 3,i --+ 4})),(i --+ Complex},Sys)

--+ {50 by [rules a,e] and [axiom 7] }

(t (im:= ij self) add(new(Complex) init(8,9)),
{1. re --+ 3,1. im --+ nil},
«i,{r --+ 3,i --+ 4})),{i --+ Complex},Sys)

--+ {60 by [rules a,e,f,c] and [axiom 5] }

(t (im:= 4j self) add(new(Complex) init(8,9)),
{i.re --+ 3, Lim --+ nil},
«i,{r --+ 3,i --+ 4})),{i --+ Complex},Sys)

--+ {70 by [rules a,e,f] and [axiom 2] }

(t (4j self) add(new(Complex) init(8,9)),
{Lre --+ 3, Lim --+ 4},
«1, {r --+ 3, i --+ 4})), {i --+ Complex},Sys)

--+ {80 by [rules a,e] and [axiom 7] }

(t (self) add(new(Complex) init(8,9)),
{Lre --+ 3, Lim --+ 4},
((i, {r --+ 3, i --+ 4})), {i --+ Complex}, Sys)

--+ {90 by [rules a,e] and [axiom 6] }

(t (1) add(new(Complex) init(8,9)),
A " •)

{l.re --+ 3, 1.lm --+ 41>
«i, {r --+ 3, i --+ 4})), {i --+ Complex}, Sys)

--+ {100 by [rule a] and [axiom 9] }

(1 add(new(Complex) init(8,9)),
{Lre --+ 3, Lim --+ 4}, (), {i --+ Complex}, Sys)

--+* {11. and by many other rules and axioms}

2

(a,
{1.re --+ 3, Lim --+ 4, 2.re --+ 8, 20im --+ 9, 30re --+ 11, 30im --+ I3}, (),
{i --+ Complex, I}, --+ Complex,:>' --+ Complex}, Sys)

Data Objects

A Computational Semantics

We therefore have

M(((new(Complex) init(3,4)) add(new(Complex) init(8,9)),0,(),0,Sys)) =
{((a, {L re -> 3, Lim -> 4, 2.re -> 8, :2.im -> 9, 3.re --> 11, 3.im -> 13}, (),
{i -> Complex,:2 -> Complex, 3 -> Complex}, Sys))}

27

So, the result of sum of complex number (3+4i) and (8+9i) is an object denoted as 3. This
object is of class Complex and represents value (11 + 13i) (instance variable re refers to
11 and im refers to 13), precisely as we would expect.

In this case the set of terminal configurations is singleton. Note that in general this in not
necessarily true. If the execution of a statement loops or blocks, for example, the set of
terminal configurations may be empty. Further, if the execution involves non-deterministic
bunk objects, the set may contain more than one element.

Semantics of POOSL

28

Chapter 3

Processes, Clusters and System
Specifications

3.1 Informal Explanation

This chapter describes the process-oriented part of POOSL. This part is based upon the
language of data objects described in the previous chapter. A specification in POOSL
consists of a fixed set of process objects and process-object clusters, which are composed by
parallel composition, channel hiding and channel renaming. For convenience we will often
use the terms processes and clusters to denote process objects respectively process-object
clusters. Processes and clusters are statically interconnected in a topology of channels,
through which they can communicate by exchanging messages. Message exchange is based
upon the synchronous (rendez-vous) pair-wise message-passing mechanism of ees [MiI80,
MiI89].

The grain of concurrency in POOSL is the process. Processes communicate by sending
each other messages. When a process wants to send a message it explicitly states to
which channel this message has to be sent. It also explicitly states when and from which
channel it wants to receive a message. Immediately after a message has been received,
the sending process resumes its activities (it does not have to wait for a result). If a
process receives a message, it does not execute a method as in traditional object-oriented
languages. Also, a possible expected result is not automatically returned to the sender.
If a result of the message is expected, it has to be transmitted by means of another
rendez-vous. Processes send and receive messages by execution message-send respectively
message-receive statements. These statements are combined by sequential composition,
choice operators, guarded commands, conditional statements and do-statements to describe
the temporal communication behaviour of processes.

A process object can call one of its methods. Methods are comparable with procedures of
imperative programming languages such as e or Pascal. However, procedures of imperative

Informal Explanation 29

programming languages are in general expected to terminate and can therefore only express
finite behaviour. Methods in POOSL, on the other hand, can be used to express infinite
(non-terminating) behaviour. Such infinite behaviour is specified by defining methods in
a (mutual) tail-recursive manner (see also Section 4.3). The concept of tail recursion has
proven to be very useful for the specification of hardware/software systems with complex
dynamic (communication) behaviour.

In almost any complex hardware/software system messages can be identified that disrupt
the normal course of behaviour. In general, such a message requires an immediate response.
Therefore, a system should be able to accept such a message at any time, no matter what
other activities are going on. To specify such behaviour, POOSL has a special disrupt
operator. This operator is similar to the disabling operator of LOTOS [EVDS9].

Processes contain internal data in the form of data objects (also called traveling objects)
which are stored in instance variables. Data objects are private to the owning process,
i.e., process objects have no shared variables or shared data. A process can interact with
its data objects by sending messages to them. When a process sends a message to one of
its data objects, its activities are suspended until the result of the message arrives. Data
objects themselves cannot send messages (except for replies) to a process object.

When two processes communicate, a message and a (possibly empty) set of parameters
is passed from one process to another. The parameters refer to objects which are private
to the sending process. Because processes do not have any data in common, it does not
suffice just to pass a set of references to the data objects, as in traditional object-oriented
languages. Instead, the objects themselves have to be passed (whence the term traveling
object). This means that a new set of objects has to be created within the environment of
the receiving process. These objects are (deep) copies of the data objects involved in the
rendez-vous. The concept of traveling object was first introduced in [Ver92].

Next to processes, POOSL supports clusters. A cluster is hierarchically built from pro
cesses and other clusters and acts as an abstraction of these. The constituents of a cluster
are composed by parallel composition, channel hiding and channels renaming. These com
binators are based upon similar combinators originally used in ees [MilSO, MiIS9].

Processes and clusters are grouped in classes, just as data objects. Members of classes are
called instances. A process is an instance of a process class, and a cluster is an instance of a
cluster class. Each class is parameterized by expression parameters. Expression parameters
refer to data objects and are used to initialize an instance of a class. Future versions of
POOSL should support some form of inheritance among process classes or cluster classes.
The precise form, however, has not been decided on.

Semantics of POOSL

30 Formal Syntax

3.2 Formal Syntax

This section describes the formal abstract syntax of POOSL. It is based on the language
of data objects of the previous chapter. We assume that the following sets of syntactic
elements are given:

CName P process class names C' ... ,
CName' cluster class names C' ... ,
Chan communication channels ch ... ,
EPar expression parameters p, ...

We define

CName" CName' U CName' Cpe ... ,
Var [VarU LVar p, ...

Next we define the set Stat' of process statements. These statements are used to specify
the behaviour of process objects.

S' ::= S
ch!m(Et,···, En)
Ch?m(Pl,,,,,Pm I E)
m(Et,· .. , E~)(Pl, .. . , Pm)
Sf; S!
Sf orS!
[EW
if E then Sf else S! fi
do E then S· od
Sf» s!

The first type of statement is a statement defined in the language of data objects of the
previous chapter. These statements are used to model internal data computations of a
process.

The next two statements are the message-send and message-receive statements. A message
send statement ch!m(Et,···, En) indicates that a process is willing to send message m to
gether with parameters El ,' .. , En, which refer to data objects, on channel ch. A message
receive statement ch?m(Pl,··· , pn I E) indicates that a process is willing to receive message
m with parameters Pt," . , pm under condition E. E is a boolean expression which may
depend on the input parameters Pt,' .. , Pm. It may, however, also depend on other local
variables or on instance variables.

For a message to be transferred, exactly two process objects are needed. One of the objects
should be executing a message-send statement, and the other a message-receive statement.

3 Processes, Clusters and System Specifications

Formal Syntax 31

These statements must refer to the same channel and the same message. Further, the
number of parameters has to be equal. Finally, the reception condition of the receiving
object should allow message reception.

A rendez-vous procedure is performed in the following way: First, the message parameters
E-., ... , En of the message-send statement are evaluated from left to right. Then deep copies
of these parameters are bound to the input parameters PI,· .. , Pm of the message-receive
statement. After that, conditional expression E is evaluated at the receiving process. If
the expression evaluates to true or bunk, the rendez-vous is successfully terminated. In all
other cases, the states of both processes are restored to the states just before the rendez
vous procedure started and no message is passed. This basically implies that the check
whether a message may be passed is performed transparently for both processes.

The fourth statement is a method call. By means of such a method-call statement a process
object can call one of its methods. A method call m(EJ>···, En)(PI,··· ,Pm) is executed
in the following way: First, expressions E-., ... , En are evaluated from left to right. Next,
the values of these expressions are bound to the input parameters of the method m and
the local variables and output parameters are initialized to nil. Then the method body is
executed. If this execution successfully terminates, the output parameters of the method
are bound to variables PI, ... , Pn.

The fifth sort of statement is sequential composition, which is indicated with a semicolon.
Sequential composition has its usual meaning.

Next we have the choice statement Sf or Sf, indicating that a process can choose between
two alternatives. A process always leaves both alternatives open, at least until one of the
alternatives can actually be executed. So, a choice is never made a priori. As soon as one
of the statements has performed an execution step, the other is discarded. In general, the
process environment will permit only one of the alternatives. If both alternatives are open,
the choice is made non-deterministically. The choice statement has the same meaning as
the summation combinator (+) of ees.

[E]S' is a guarded command. E is a boolean expression, called the guard of statement SP.
A guarded command is executed as follows: First, expression E is evaluated. If it evaluates
to true or bunk, an attempt is made to perform an execution step of rest statement S'.
If this attempt succeeds this execution step actually takes place and the execution of S'
is continued. Otherwise, the state of the executing process object is restored to the state
just before the expression was evaluated, and the guarded command blocks, i.e., is not
executed. In general, guarded commands are used in combination with a choice statement.
If a blocking guarded command is used in isolation, the executing process has a danger for
complete blocking.

The if -statement and the do-statement have their usual meaning.

Semantics of POOSL

32 Formal Syntax

Finally we have the disrupt-statement. Sf > > Sf denotes that statement Sf is executed
until it is disrupted by sf. If an execution step of Sf can be performed, this step actu
ally takes place and the execution of Sf continues. Statement Sf is thereby completely
discarded. Upon succesful termination of Sf, the complete disrupt-statement successfully
terminates.

Next, we define a set Systems" of systems of process and cluster classes, with typical
elements Sys" ,

Sys" ::= (CDf··· CDn

Such a system is a set of process and cluster classes. It is built from a number of class
definitions. The set of all class definitions ClassdefP ranges over CD", ... and is defined as

CD" ::= process class
instance variables
communication channels
message interface
initial method call
instance methods
cluster class
communication channels
message interface
behaviour specification

C" (1/1, ... ,Yr)
Xl ..• Xtl

cht •.• ch.
It ... 1:-
m(Et,· .. , E,)o
MDf···MD{
C' (Pt,· .. ,Pr)

chI··· ch.
I: ... 1:-
ESpec"

Within a class definition the functionality of the instances of the class is specified. We
distinguish two kinds of classes, each with its own specification format. The first kind of
class is called process clas8 and the second kind is called cluster class.

A specification of a process class starts with the name of that class together with a number
of instance variables between angle brackets. Then the set of all instance variables of the
class is specified. These variables model the private or internal data of each instance of
the class. Upon initialization of an instance of the class, the instance variables specified
between angle brackets are bound to a set of externally supplied data objects. All the other
instance variables are initialized to nil. Next, all communication channels, through which
the class' instance processes communicate with other processes, are specified. This channel
specification is followed by a description of a message interface. A message interface is a
list of abstract send or receive actions, also called abstract communication actions. Such
an action states that a process can send a certain message to a certain channel, or that a
process can receive a specified message from a certain channel. The set C' of all abstract
actions, has typical elements I', ... and is defined as

I' .. - ch!m[1!.1
ch ?m[.!!l

3 Processes, Clusters and System Specifications

Formal Syntax 33

The first clause states that a process or cluster, at some point in time, can send message m,
together with n data objects, to channel ch. The second, complementary, abstract action
states that message m, with n data objects can be received from channel ch. li denotes
the textual representation of natural number n. The actions are called abstract because
they contain no information about the precise transferred data ob jectsj only the amount
of objects is indicated I. A message interface serves as an abstract description, often called
a signature, of the functionality of the instances of a process class.

The description of a message interface is followed by the specification of an initial method
call of the form m(EJ,"" E.)O. After initializing its instance variables, a process object
always starts its activities by calling its initial method. This method does not contain any
output parameters.

The last part of a process class definition consists of a number of method definitions. A
method definition specifies t.he behaviour of its corresponding method. The set Methdep
of all process method definitions, with typical elements MD',"', is defined as

MD' ::= m(uJ, ... ,urn)(1I},···,v.)
I W:t •.. w. Is'

A method definition contains a header with name m, input parameters UI,"', Urn and
output parameters 11},' •• , v •. The method header is followed by a declaration I W:t ••. w. I
of local variables. Then the message body, which is a statement S', is defined. Method m is
invoked through an m(Ei, ... ,Em)(pl>' . " P.) statement. Such a statement is executed by
first evaluating Ei, ... , E. from left to right and by binding the results to input parameters
UI, ••• , Urn. The output parameters 11},' •• ,v. and local variables W:t,"', w. are initialized
to nil. Then statement S' is executed. If this statement terminates successfully, the
output parameters 11},"', v. are bound to variables PI, ... , p. and the method execution
terminates.

The second kind of classes are called cluster classes. A cluster class is built from other
classes, which are either process classes or cluster classes themselves. A class definition
of a cluster class consists of a cluster class name with a number of expression parameters
between angle brackets, a number of communication channels, and a message interface. The
behaviour of a cluster class is specified by means of a parameterized behaviour specification.
The set BSpecifications' of all parameterized behaviour specifications has typical elements
BSpec' and is defined as follows:

BSpec' C'(PEi,"', PEr)
C'(PEI ,''', PEr)
BSpeci II BSpec~

lIn practice it may be convenient to specify names of message parameters. One then for example
specifies c!m(x) in stead of c!m[l]

Semantics of POOSL

34

BSpec" \ L
BSpec"rfJ

Formal Syntax

Here each P Eo denotes a parameterized expression. The set of all parameterized expressions
is ParExp and ranges over PE,···. ParExp is defined as

PE P
E
PE m(PEt,···, PE.)
PS;PE

where PS is a typical element of the set ParStat of parameterized statements.

PS .. - E
x :=PE
u:= PE
PSl;PSz
if PE then PSI else Pfh fi
do PE then PS od

L <;;; Chan denotes a set of channels and I is a so-called channel renaming lunction. The
collection of all channel renaming functions is denoted ChanRen and ranges over I, .. '.

ChanRen = Chan -> Chan

The first two parameterized behaviour specifications C" (PEl, ... , PEr) and C' (PEt , ... ,
PEr) denote a single parameterized instance of some process class C"(Yl,"', Yr) and some
cluster class C'(Pl ,···, Pr) respectively.

The next kind of specifications BSpecj II BSpe~ expresses the parallel composition of
specifications BSpecj and BSpe~. Assume, for example, that the class definition of a
class, say C'(Pl, Pz), contains behaviour specification CnPl) II CI(Pz). This specification
expresses the behaviour of two (parameterized) instances, one of some process class CI (Yl)
and the other of some process class C"(yz), which execute in parallel and which (perhaps)
communicate through their common channels. The channel set of class C' (PI, Pz) is the
union of the channel sets of classes C"(Yl) and C"(Y2)' An instance of class C'(Pt,P2)
can send and receive any message which can be sent and received by instances of either
CI (Yt) or C; (Yz). The parallel composition combinator is comparable with the composition
combinator of ees.

The fourth kind of behaviour specification is called channel hiding. A channel hiding
BSpec"\L expresses a specification BSpec" from which the channels in L are made unobserv
able. This means that other (external) instances cannot communicate through channels in
L with instances contained in specification BSpec". Assume, for example, that the method

3 Processes, Clusters and System Specifications

Formal Syntax 35

definition of a class C' (Ph P2) contains a behaviour specification (ct (P,) II Cf(P2)) \ {ch}.
This means that, even though classes ct (y,) and Cf (Y2) may contain channel ch, class
C' (P" P2) may not. Channel ch may only be used for the communication between (pa
rameterized) instances ct (P,) and Cf (P2). The channel hiding constructor is similar to
the restriction combinator of CCS.

The last sort of specification expresses a channel renaming. The channel renaming BSpecP

If] denotes a specification BSpecP from which the channels are renamed as dictated by f.
We shall often write chU ch" ... , ch~/ chn for the renaming function f for which f(Chi) = ch:
for i = 1,· .. , nand f (ch) = ch otherwise. Channel renaming can be very useful if several
instances of the same class are used within different environments and have to communicate
through different channels.

We are now ready to define what we consider to be a specification of a system. A sys
tem specification consists of four parts. The first part is a behaviour specification BSpec
which expresses how the actual system is composed from instances of classes defined in
Sysp. A behaviour specification is a parameterized behaviour specification which contains
no expression parameters. We will let BSpecijications denote the set of all behaviour
specifications, and we let it range over BSpec,· ..

BSpec CP(E,,···, Er)
C'(E,,···, Er)
BSpec, II BSpec2

BSpec \ L
BSpeclf]

CP(E" ... , Er) and C'(E,,···, Er) denote an instance of some process class CP(yt,"', Yr)
respectively of some cluster class C'(P,,"', Pr), initialized to expressions E" ... , Er •

These expressions are called initialization expressions, since they initialize the instance.
Upon initialization of instance CP(E,,···, Er), expressions E,,···, Er are evaluated from
left to right and the results are bound to the corresponding instance variables Y" ... , Yr' All
other instance variables are initialized to nil. Then the initial method is called. Upon in
stantiation of the instance of cluster class C' (PI, ... , Pr), expression parameters PI," . , Pr
are syntactically substituted by E,,···, Er • Then all constituents of the behaviour specifi
cation are initialized.

The second part of a system specification is an empty list. The meaning of this part will
become clear in Section 3.4.2. 2

The third part is a system SysP which contains the set of all process classes and cluster
classes, and the last part is a system Sys of non-primitive classes of data objects. For
mally, we define the set of all system specifications SSpecijications, with typical elements

'In practice we often omit the empty list and write (BSpec, SysP, Sys) in stead of (BSpec, (), SysP, Sys).

Semantics of POOSL

36 Context Conditions

SSpec,· .. , as

SSpec ::= (BSpec, (), SysP, Sys)

3.3 Context Conditions

In this section we will describe the syntactic requirements, often called context conditions,
which have to be satisfied by specification (BSpec, (), SysP, Sys) to be valid. The set of
conditions is partitioned into the following three groups:

Conditions concerning Sys

(1.) All context conditions defined in Section 2.3 have to be satisfied.

Conditions concerning SysP

(2.) All class names in SysP are different.

(3.) All instance variables in a class definition are different.

(4.) All method names within a single process class are different.

(5.) All parameters and local variables defined in a method definition are different.

(6.) Every variable used in a method body is either an instance variable of the corre
sponding process class, a method parameter, or a local method-variable.

(7.) No method body has expression self as its constituent.

(8.) An expression contained in an initial method call does not contain any local variables
or self expressions.

(9.) All instance variables specified between angle brackets in a process class definition
are different. Further, each of these variables is member of the set of all instance
variables of the class.

(10.) The set of communication channels as well as the message interface defined in a class
definition conform to the corresponding instance methods or behaviour specification.
(This condition is formally defined in Section 3.4.2.)

(11.) For every method call statement there exists a corresponding method definition.

(12.) For every CP'(PEl, ... , PEr) used as part of the behaviour expression of some cluster
class, there exists a corresponding class definition. Further, CP'(PEt,···, PEr) does
not contain any variables or self expressions.

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics 37

(13.) Every expression parameter used in a parameterized behaviour expression is defined
as expression parameter of the corresponding cluster class.

(14.) Parameterized behaviour specifications of cluster classes are not defined (mutual)
recursively.

Conditions concerning the combination of BSpec, SysP

(15.) For every GP'(EI,'" ,Er) used as part of BSpec, there exists a corresponding class
definition in Sysp. Further no expression Eo contains variables or self.

In the rest of this report it will be assumed that SSpecifications denotes the set of valid
system specifications.

3.4 A Computational Interleaving Semantics

3.4.1 Informal Explanation

The process-oriented part of POOSL will be formalized by means of a computational in
terleaving semantics. The semantics is specified by a labeled-transition system. A labeled
transition system is very similar to a "normal" transition system as described in Section
2.4.1. It is represented by an ensemble (Gonf",Act, {~I a E Act}) where Gonf" is a set
of configurations, Act is a set of (atomic) actions, and {~I a E Act} is a set of labeled
transition relations. If (S, I) and (S', J') are configurations, then the intuitive meaning of
(S', 1') ~ (S', I') is that system S with information I can lead to system S' and information
J' by performing action a.

The execution of a system of collaborating instances is modeled as the interleaving of all
atomic actions, that is, as a sequential execution of these actions.

3.4.2 Definitions

The labeled-transition system will be based upon configurations of the form

(BSpec' , ((<71, psI, T1), ... , (<7., pS., Tn», SysP, SyS)

Together BSpec', SysP, and Sys, form the syntactic part of the configuration. BSpec' is an
extended behaviour specification. The set BSpecifications' denotes the set of all extended
behaviour-specifications and is defined as

BSpec' GP(E1 ,"', Er)
G'(E1,···, Er)
[SP,'] CP(E, , ... ,Er)

[BSpec'] ce(E" ... ,Er)

Semantics of POOSL

38

BSpeci 1\ BSpec2
BSpec' \ L
BSpec'[J]

A Computational Interleaving Semantics

CP (~, ... , Er) and C' (~, ... , Er) denote an instance of some process class CP (YI , ... , Yr)
and some cluster class C'(P1,"', Prj respectively, initialized to~,···, Er. [SP"]cP(E,,. .. ,Er)
denotes that statement sp" still has to be executed by process instance CP(~, ... , Er).

[BSpec']c'(E" ... ,Er) indicate" that behaviour expression BSpec' remains to be executed by
cluster C'(~,···, Er). The other constructs denote parallel composition, channel hiding,
and channel renaming respectively.

«O"I,PSI,TI) , ... , (O".,PS.,T.)), is the information part of the configuration. «O"I,PSbTI)
, ... , (0"., ps., T.)) is a list of process environments, one for each initialized process object
of BSpec'. A process environment (0", ps, T) is composed of a global state 0", a local process
stack ps, and a type To

We let Env denote the set of all process environments and let it range over env,···. Env
is defined as

Env = ~ x PStack x Type

Here, ~ and Type are as defined in Section 2.4.2. PStack denotes the set of process stacks
which is a subset of Stack as defined in Section 2.4.2. PStack ranges over ps,'" and is
defined as

PStack = ({proc} X (LVar '-+ DObj))"

Env" will be used to denote the set of all lists of process environments. It ranges over
envs,' ". Further, we will write enVSI . enVS2 for the concatenation of lists envsI and env~,
and we write () for the empty list.

We will now define the set ConfP of configurations. ConfP <;;; BSpecijications' x Env" x
SystemsP x Systems is inductively defined by means of the following set of axioms and
rules:

3

1. (CP(~,···,Er)'(),SysP,Sys) E ConfP
ifthere exists a process class CP (Yb ... , Yr) in SysP and if no E; contains variables
or self.

The condition is derived from context condition (15.) given in Section 3.3.

2. (C'(~,···,Er),(),SysP,Sys) E ConfP
if there exists a cluster class C'(Pb ···, Prj in SysP and if no E; contains variables
or self.

The condition is again derived from context condition (15.) given in Section 3.3.

Processes, Clusters and System Specifications

A Computational Interleaving Semantics 39

3. ([SP"jcP(E, ,Er),((u,ps,r)),SysP,Sys) E Conp
if CP (Yl, ... , Yr) is a process class in SysP, if no Ei contains variables or self, and if
AASort(SP,') ~ AASort(CP,SysP)

The first part of the condition is derived from context condition (15.). The second
part requires that Sp" does not contain any send or receive statements, that do
not conform to the message interface of the process object. Function AASort, de
fined later in this section, calculates the set of all associated abstract communication
actions.

BS ee', envs, SysP, Sys E Con P

4. (BSpec' C'(E"oo.,Er). envs,Sys' ,Sys E Conp

5.

6.

7.

if C'(P
"

"" Prj is a cluster class in SysP with behaviour expression BSpeeP, if no
Ei contains variables or self, and if Reset(BSpee') =' BSpeeP[E,/ P",,,, Er/ Pr]

Again, the first part of the condition is derived from context condition (15.). The
second part ensures that BSpec' is built from the same instances, in the same way, as
BSpec'[E,/ P", .. , Er/ Pr]. Intuitively this means that the latter behaviour specifica
tion is a "decent" descendant of the former one. BSpeeP [Ed PI, ... , Er / Pr] denotes
the syntactic substitution of each Pi by Ei in BSpecp

• The precise definition is given
later in this section. Function Reset calculates, given an (extended) behaviour speci
fication, the corresponding initial specification. Reset is defined later in this section.

E ConI"

SysP and Sys are assumed to satisfy context conditions (1.) .,. (15.) of Section 3.3.

We can now see why a system specification (BSpee, (), SysP, Sys) contains the empty-list
part. The seemingly superfluous list, allows us to consider a system specification as a
special kind of configuration, thereby simplifying our theory. By induction it is easy to
show that indeed SSpeeijieations ~ Conp.

As explained above, Sp" denotes a statement that still has to be executed by some process
object. SP", an element of set Stat P", is defined as

Semantics of POOSL

40

S
ch!m(E},···, En)
ch?m(Pb"" Pm I E)
m(E},···, E'n)(PI"'" Pm)
Sf"; S!
Sf orS!
[E]SP
if E then Sf' else S! fi
do E then SP od
Sf" » S~
! m(Pl '''',Pm) Sp"

v'

A Computational Interleaving Semantics

Here, ! m(p"''',pm) Sp" indicates that the method body of method m is being executed and
that after successful termination of this execution the process has to resume its execution at
the place of the! m(p"""pml, after the output parameters are bound to variables PI,'" ,pm
and the local method variables have been popped from the stack. This statement is intro
duced to facilitate our semantics. v' denotes successful process termination.

Now that we have defined the set ConfP of configurations, we will show how the set Act
of actions looks like. We will distinguish the following three kinds of actions:

1. The internal action, also known as the silent action, which is denoted as T. This
action reflects an internal computation which cannot be observed by the system
environment.

2. Send actions of the form ch!m[data] indicating that the system can send message m,
together with data data, on channel ch.

3. Receive actions of the form ch?m[data] indicating that the system is willing to receive
message m with data data from channel ch.

When two processes exchange a message, a deep Copy of every message parameter is passed
from the sending process t.o the receiving one. The data part of the above send and receive
actions therefore consists of a list of deep Copies, one for each message parameter. Every
deepCopy will be represented by a minimal Sys-structure (see Section 2.4.5), and every
data by a list of such structures.

For each n E N we will let StrucS."min denote the set of lists of minimal Sys-structures
consisting of n elements. The set of all lists of minimal Sys-structures will be denoted by
StrucS."min and will range over data,· ".

The set Act of actions can now be defined as

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics

Act = £ u {r}

where £, the set of all communication actions, is

£ = {ch?m[datall ch E Chan A mE MName A data E StrucS,8,m;.} u
{ch!m[datall ch E Chan A mE MName A data E Strucs •• ,m;.}

Elements of £ will be denoted as I" . " and elements of Act as a, .. '.

41

We now define what we mean by functions Abstract Action Sort (AASort) and Channel
Sort (ChSort). Both functions are defined on a number of constructs. In general the
AASort of a construct is the set of all associated abstract communication actions. ChSort
calculates the set of associated channels. For configurations both functions have a partic
ular meaning. The AASort of a configuration is the set of abstract communication actions
corresponding to the communication actions which can ever be performed in future by that
configuration. The ChSort calculates the set of channels which can possibly ever be used
for communication.

Definition 3.1
The abstract action sort is defined on StatP", on BSpecijications' X SystemsP,
on BSpecijicationsP X SystemsP and on CName P' X SystemsP as follows:

AASort(S)
AASort(ch!m(E,,···,E.)) =
AASort(ch?m(p,,"·,P. I E) =
AASort(m(E" ... ,Em)(p,,··· ,P.» =
AASort(Sj"j Sf) =
AASort(Sj or Sf) =
AASort([E1SP) =
AASort(if E then Sj else Si fi) =
AASort(do E then SP od) =
AASort(Sj" » Sf) =
AASort(l m(Pl,.",p,) SP") =

AASort(v'l =

o
{ch!m[n.]}
{ ch?m[n.]}
o
AASort(Sj") U AASort(Sf)
AASort(Sj) U AASort(Sn
AASort(SP)
AASort(Sj) U AASort(Si)
AASort(SP)
AASort(Sj") U AASort(Si)
AASort(SP,')
o

AASort(CP(E,,··· ,E,), SysP)
AASort(C'(E,,'" ,E,),SysP)
AASort([SP"l CP(E" ... ,E,), SysP)
AASort([BSpec'l C'(E" ... ,Er), SysP)
AASort(BSpecj 1/ BSpeci, SysP)

AASort(CP, SysP)
- AASort(C', Sysp)
= AASort(CP,SysP)
= AASort(C', Sysp)

Semantics of POOSL

= AASort(BSpecj,SysP)U
AASort(BSpec2, SysP)

42 A Computational Interleaving Semantics

AASort(BSpec' \ L, SysP)
AASort (BSpec' lfJ, SysP)

= {I" E AASort(BSpec',SysP) I Chan(I") f/. L}
{f(I") II" E AASort(BSpec', SysP)}

AASort(CP(PE},,,·,PEr),SysP) =
AASort(C'(PE},'" ,PEr),SysP) =
AASort(BSpecl' II BSpec~, Sys') =

AASort(C', SysP)
AASort(C', SysP)
AASort(BSpecj, SysP)U
AASort(BSpec~, SysP)

AASort(BSpecP \ L, SysP)
AASort(BSpecP lfJ, S!lSP)

{I" E AASort(BSpecP,SysP) I Chan(I") f/. L}
= {J(I") II" E AASort(BSpecP,SysP)}

----10{It" , ... , I:,}
AASort(CP', SysP)

Definition 3.2

if SysP == (CDr· .. CDP ... CD:) ,
CDP == ... class CP,(...)
.. . message interface It ... l~
otherwise

o

The channel sort is defined on Stat P", on BSpecijications' X Systems P, on BSpecijications P X

SystemsP and on CName" X SystemsP as follows:

ChSort(SP,') = {Chan(I") II" E AASort(S"')}
ChSort(BSpec', SysP) = {Chan(I") II" E AASort(BSpec', SysP)}
ChSort(BSpec', Sys') = {Chan(I") I" E AASort(BSpecP, Sys')}
ChSort(CP', SysP) = {Chan(I") II" E AASort(CP', SysP)}

Definition 3.3

o

Let confP = (BSpec', envs,. SysP, Sys) be a configuration. The AASort and ChSort of confP
are given by

AASort(con!") = A.4Sort(BSpec', SysP)
ChSort(con!") = ChSort(BSpec', SysP)

o

Chan(I"), used in Definition 3.1, retrieves the channel from abstract communication action
I". Chan is also defined on £

3

Chan(ch!m[data]) =, ch
Chan(ch?m[data]) =, ch
Chan(ch!m[i]) =, ch
Chan(ch?m[iJ) =, ch

Processes, Clusters and System Specifications

A Computational Interleaving Semantics 43

The application of a channel renaming function f to an (abstract) communication action
yields a new action which channel is relabelled as dictated by f. For channel renaming
function f we define

f(chIm[dataJ) =f(ch)lm[data]
f(ch?m[dataJ) = f(ch)?m[data]
f(chImLW = f(ch)Im[!]
f(ch?m[iJ) = f(ch)?m[i]

Another convenient function is Abs. This function takes a communication action from C
and calculates the corresponding abstraction. Abs is defined as

Abs(chIm[dataJ) = chIm[/ data 1]3
Abs(ch?m[dataJ) = ch?mU data IJ

On C and ca, we define the complement operator: which maps a send action to a corre
sponding receive action and vice versa.

chIm[data] = ch?m[data]
ch?m[data] = chIm[data]
chIm[iJ = ch?m[i]
ch?m[i] = chIm[i]

The next definitions concern syntactic substitution of expression parameters in parameter
ized expression, in parameterized statements and in parameterized behaviour specifications.
We define the set SSubst of syntactic substitution functions as

SSubst = EPar --t EPar U Exp

and let it range over g, .. '.

We shall often write Ed PI>"', Er / Pr to denote a function 9 for which g(Pi) = Ei for
i = 1,···, rand g(P) = P if P # Pi for all i = 1,···, r.

Definition 3.4
Syntactic substitution of expression parameters is defined as:

3Here I data I denotes the amount of elements of list data.

Semantics of POOSL

44 A Computational Interleaving Semantics

P[g] - g(P)
E[g] - E
(PE m(PEt,···, PE.»[g] - (PE[g]) m(PEt[g],···, PE.[g])
(PS; PE)[g] - (PS[g]); (PE[g])
(x :== PE)[g] - x :== (PE[g])
('U :== PE)[g] - 'U :== (PE[g])
(PSt; PS2)[g] - (PSt [g]); (P~[g])
(if PE then PSt else P~~ fi)[g] == if PE[g] then PSt[g] elseP~[g] fi
(do PEthen PS od)[g]1 - do PE[g] then PS[g] od
CP'(PEt,··· ,PEr)[g] - CP'(PEt[g],···, PEr [g])
(BSpecj II BSpecmg] - (BSpecf[g]) II (BSpect[g])
(BSpecp

\ L)[g] - (BSpecP[g]) \ L
(BSpec p [j])[g] - (BSpecP [g]) ffl

0

The definition of the set of configuration Con!, uses function Reset. There it was applied
to (extended) behaviour specifications, but we will define it on configurations too. The
Reset of a behaviour speciflcation is the corresponding initial behaviour specification, i.e.,
the behaviour specification describing the (part of the) system in its initial state, i.e.,
before initialization has taken place. The Reset of a configuration is the corresponding
initial specification, i.e., the specification from which it is (probably) derived. We say
probably, because not every configuration has a specification as ancestor. However, later
we will prove that if a configuration has an ancestor specification, then this must be the
configurations' Reset.

Definition 3.5
The Reset of an extended behaviour specification is inductively defined as

Reset(CP(Et,···, E.))
Reset([SP"] CP(E, , ... ,E.)
Reset(C'[Et,···, E.])
Reset([BSpec'] C'(E ,E.)
Reset(BSpect II BSpcc2)
Reset(BSpec' \ L)
Reset(BSpec' [J])

Definition 3.6

== cr(Et,···, E.)
== CP(Et,"" E.)
== C'(Et,··.,E.)
== CC(Et,"" E.)
== Reset(BSpect) II Reset(BSpec2)
== Reset(BSpec') \ L
== Reset(BSpec')[J]

The Reset of a configuration confP == (BSpec', envs, SysP, Sys) is defined as

Reset(con!') == (ReHt(BSpec'), (), SysP, Sys)

o

o

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics 45

We conclude this section by considering context condition (10) of Section 3.3. We defined
this condition as

(10) The set of communication channels as well as the message interface defined in a class
definition conform to the corresponding instance methods or behaviour specification.

Since the precise meaning of this definition is not clear at all, and since the condition is
important for our semantics to be correct, we will formally rephrase it. We will do this in
terms of functions AASort and ChSort defined in this section.

(10) Let CDP be a class definition of Sysp. Then

(i) if CDP == process class C.(···) ... communication channels chl ··· chp message
interface It ... I;:' ... instance methods MDj ... MDl, such that for each i = 1··· k
MDr == ···Sr, then

• U AASort(St) = {It,··" I;:'}
i:::1

• U ChSort(St) = {Chl,···,chp}
i=l

(ii) if CDP == cluster class C'(···) ... communication channels chl ··· ch. message
interface It .. ·1;:. behaviour specification BSpec', then

AASort(BSpecP,SysP) = {1i,···,I::'}
ChSort (BSpecP , SysP) = {chl," . , chp}

3.4.3 The Labeled-Transition System

In this section we will define the set of labeled transitions {~I a E Act}. It is defined by
the following axioms and rules:

Axioms

1'. Internal computation

if

([S]CP(E1 Er), «a,ps,r)),SysP,Sys) ~
([v'] C.(E, .. · .. Er), «a', ps', r')), SysP, Sys)

(/!..,a',ps',r',Sys) E M(S,a,ps,r,Sys))

2'. Message send

([ch!m(EI,' .. , En)]c.(E{ En' «a, ps, r)), SysP, Sys)
([v'] CP(E{ ... ·.En' «a', ps', r')), SysP, Sys)

Semantics of POOSL

ch!m[datal
---+

46

3

if

and

A Computational Interleaving Semantics

(f3t, (11, pSt, T" 8ys) E M«E, ,(1,PS,T,SyS))
(f32,(12,PS2,T2,8ys) E M«E2,(1t,PSl,Tl,SyS))

«(3t, (1', T'), ... , ((3., (1', T') are Sys-structures

and where

data = (copy((/13, , (1', T')), ... , copy («(3., (1', T')))

3'. Message reception

if

([ch ?m(pt, ... , P. 1 E)l CP(E, ,Er), «(1, ps, T)), SysP, Sys)
([J] CP(E, .. ··,Er), «(1', ps', T')), Sys' , Sys)

1 ps I> 0
data = «(3t, (1t, Tl), ... , «(3., (1., T.)) E StruCSy"m;.
'Y E {true, bunk}

ch?m[d4ta]
--+

and where

\

«(3;, (1;, T{) = relabe4Maxld(u) «(3" (1t, Tl))
0'1 = u U O'~ , 71 = T U it
~~, (1~, T~) ~. re~abel~Maxld\",)((,82, (12, T2))
~=~U~,~=nU~ .

{
~~,(1;,<)'= ~ela~el+M~Xld("._,\«(3.,(1.,T.))
(Tn = 0''11_1 U (Tn , Tn = 7'11-1 U Tn

_ _ { 0-._1{o-n_l(P1·OC){(3~jp.}jproc}'X'_1
(1.,X.- - {(3'j }

O'n-I, Xn-l n Pn

if PI E [Var
if PI E LVar
if P2 E [Var
if P2 E LVar

if P. E [Var
if P. E LVar

(r, (1', ps', T', Sys) E M((E, 0-., push((proc, x.), pop(ps)), T., Sys))

Processes, Clusters and System Specifications

A Computational Interleaving Semantics

4'. Method call

if

([m(E" ... , Em)(p" ... 'Pn)lcP(E{ ,E~j, ((a, ps, T», SysP, Sys) .!,
m m(p""',Pn) SP]cP(E{ , ... ,E~), ((17', ps', T'», SysP, Sys)

SysP == (CDj ... CDP ... CDn
CDP == process class C' (- ..) .,. instance methods MDj ... MDP ... MD:
MDP == m(Ut,"', um) (vt,··" vn) I lOt··· w, I s'

(fJ"at,pS"Tt,SyS) E M((E,,17,PS,T,SyS»
(fJ2, 172, PB2, T2, Sys) E M((~, 17" pSt, Tt, Sys»)

and where

q' = U m and 7
1 = 1m

ps' = push((proc, X), PSm)
X(Ui) = fJi
X(Vj) = nil
X(w.) = nil

5'. Conditional, first branch

if

([if E then Sj else S{ fil CP(E, , ... ,Er) , ((17, ps, T», SysP, Sys) .!,
([SflCP(E" ... ,Erj, ((17', ps', T'», SysP, Sys)

(1, 17',PS', T', Sys) E M((E,17,pS,T,SyS») for some 'Y E {true, bunk}

6'. Conditional, alternative branch

if

([if E then Sj else S{ fil CP(E, , ... ,Er), ((a, ps, T», SysP ,Sys) .!,

([Sn CP(E" ... ,Erj, ((17', ps', T'», SysP, Sys)

(1,17', ps', T', Sys) E M((E, 17, ps, T, Sys») for some 'Y E {false, bunk}

Semantics of POOSL

47

48

3

A Computational Interleaving Semantics

7'. l)o-statement

([do Ethen SP OdJcP(E,,. .. ,E,), «(1, ps, T)), SysP, Sys) -:.
([if E then(SP j do E then SP od) else nil fi]cP(Elo''',Er), «(1, ps, T)), SysP, Sys)

8'. Process initialization

if

(CP(El'"'' Er), (), SysP, Sys) -:.
([m(E~, ... , E;)OJ CP(E, ,. .. ,Er), «(1', pST) Tr)), SysP, Sys)

Sys' == (Cl)! ... Cl)' ... Cl)!)
CDP == process ehss CP (Yl, ... , Yr) instance variable names Xl •.. X1'l

... initial method call m(E:,···, E;)O'"

((3t, (1t, PSI, Tt, Sys) E M((El , (1, ps, T, Sys))
«(32,(12,PS2,T2,SyS) E M«E2,(1l,PSl,Tl,SyS))

and where

l)om((1) = {proc}
(1(proc) = 0

ps = ()
T =0
(1' = (1rh)/proc}
l)om(4)) = {Xl,'" ,Xn }

4>(y;) = (3;
4>(Xi) = nil if y; ¢ Xi for all y;

9'. Cluster initialization

(C'(Bt, ... , Er), (), SysP, Sys) -:. ([BSpecP [g]] C'(E, ,. .. ,Er), (), SysP, Sys)

if

SysP == (Cl)j ... Cl)P ... Cl);)
Cl)P == cluster class C'(Pl ,"', Prj ... behaviour specification BSpecP

and where

9 = Ed PI , ... ,Er/ Pr

Processes, Clusters and System Specifications

A Computational Interleaving Semantics

Rules

a'. Sequential composition 1

if

([Sf"] CP(E, "",Er), ((0", ps, r», Sys' , Sys) ~
([S[,"] C'(E,,. .. ,Er), ((0"', ps', r'», Sys', Sys)

([Sf"; S!]CP(E,,. .. ,Er),((O",ps,r»,SysP,Sys) ~
([S["'; S!] CP(E''''',Er), ((0"', ps', r'», Sys', Sys)

b'. Sequential composition 2

([S["] CP(E,,. .. ,Er» ((0", ps, r», SysP, Sys) ~
([J] CP(E" ... ,Er), ((0"', ps', r'», Sys', Sys)

([Sf"; Sf]cP(E" ... ,Er» ((0", ps, r», Sys', Sys) ~
([S!] CP(E" ... ,Er), ((0"', ps', r'», Sys', Sys)

c'. Choice 1

([Sllc'(E,,. .. ,Er), ((O",ps,r»,Sys',Sys) ~
([SP,'] CP(E""',Er» ((0"', ps', r'», SysP, Sys)

([Si orS!]cP(E" ... ,Er), ((O",ps,r»,SysP,Sys) ~
([SP,'] CP(E, , ... ,Er) , ((0"', ps', r')), SysP , Sys)

. d'. Choice 2

([SnCP(E,,. .. ,Er» ((0", ps, r}), Sys', Sys) ~
([S"'] CP(E""',Er), ((0"', ps', r'», Sys', Sys)

([Si or S!] CP(E, ,···,Er» ((0", ps, r», SysP, Sys) ~
([SP"]c'(E" ... ,Er» ((0"', ps', r'», SysP, Sys)

e'. Guarded command

if

([S'] CP(E, , ... ,Er), ((0"', ps', r'», Sys', Sys) ~
([S"'] CP(E, , ... ,Er), ((0"", ps", r")), SysP , Sys)

([[E]SP]CP(E" ... ,Er), ((0", ps, r», Sys', Sys) ~
([S"'] C'(E" ... ,Er), ((0"", ps", r"», SysP, Sys)

h,O"',ps',r',Sys) E M((E,O",ps,r,Sys» with IE {true, bunk}

Semantics of POOSL

49

50

3

A Computational Interleaving Semantics

f' . Method execution

if

([SP,'] CP(E, .. ··,Er) , «0', ps, 1')), SysP, Sys) .!,
([SP"']cP(E, ,Er), «0", ps', 1")), SysP, Sys)

m m(p' .. ··,P.) S"'] CP(E, ,Er) , «0', ps, 1')), SysP, Sys) .!,
([1 m(p, ,·",P.) S ,,"] CP(E, ,Er), ((0", ps', 1")), SysP , Sys)

Sp,e' ;t. V
not (n = 0 and Sp", =1 m'O Sp"" for some m', SP,''')

g'. Tail-recursive method call

([SP,'] CP(E, ,Er» «0', ps, 1')), SysP, Sys) .!,
([1 m'O SP"'] CP(E" ... ,Er» «0", ps', 1")), SysP, Sys)

mmO SP"]CP(E, ,Er),«O',ps,r)),SysP,Sys) .!,

([1 m'O SP,"] CP(E, ,Er), «0", ps", 1")), SysP, Sys)

if

1 ps' I> 1

and where

ps" = push(top (ps'), pop(pop(ps')))

h'. Method termination .1

if

([SP"]CP(E, ,Erl> «0', ps, 1')), SysP, Sys) ~
([v1 CP(E" ... ,Er), «0", ps', 1")), SysP, Sys)

([1 m(p' .. ··,P.) SP,'] CP(E"".,Er), «0', ps, 1')), SysP, Sys) .!,

([Vl CP(E, , ... ,Ee), ((0''', ps", 1''')), SysP , Sys)

1 ps' I> 1
SysP = (CDj· .. CDP ... CD:)
CDP = process dass CP(...) '" instance methods MDt··· MDP ... MD:
MDP = m(Ul,' ", um) (v","', v.) 1 wt··· Wo 1 SP

Processes, Clusters and System Specifications

A Computational Interleaving Semantics

and where -1 0"' {O"'(proc){ top(ps')(2)(111){ pd / proc} , top(pOp(ps'))(2)
0"1, Xl - 0"', top(pOp(ps'))(2){ top(ps')(2)(111)/ pd

_ O"d 0"1 (proc){ top(ps')(2)(I>J)/ P2} / proc}, Xl
0"2 X2 - { / ' 0"1, Xl top(ps')(2)(I>J) P2}

_ { 0"._1 {O" .-1 (proc){ top(ps')(2)(V.)/ P.} / proc} , X .-1

O".,X. - 0"._1,x._dtop(ps')(2)(v.)/P.}

0"" == 0". and ps" == push«proc,x.),pop(pop(ps'))) and T" == T'

i' . Method termination 2

if

([SP"] CP(E" ... ,Er) , «0", ps, T)), SysP, Sys) ~
([J] CP(E, , .. ·,Er) , «0"', ps', T')), SysP, Sys)

([!mO SP"]CP(E, ,Er),«O",pS,T)),SySP,SyS) ~
([J] CP(E" ... ,Er) , «0"', (), T')), SysP, SyS)

1 pS' 1= 1
SysP == (CDi'" CDP ... CD:l

51

if PI E IVar
if PI E LVar
if P2 E IVar
if P2 E LVar

if P. E IVar
if P. E LVar

CDP == process class CP (- ,-) ... instance methods MDi ... MD • ... MDI
MDP==m(ul,''',Um) 0 IWJ .. ·wolsp

j'. Disrupt command, normal execution

if

([Si"] CP(E, , .. ·,Er) , «0", ps, T)), SysP, Sys) ~
([Si"'] CP(E, ,Er), «0"', ps', T')), Sys· ,Sys)

([Si"» Sf]cP(E" ... ,Er),«O",PS,T)),SySP,Sys) ~
([Si'" > > Sf]CP(E, , ... ,Er)' «0"', ps', T')), SysP ,Sys)

Si'" ¢. ,;

k'. Disrupt command, successful termination

([Si"] CP(E, ,Er), «0", ps, T)), SysP, Sys) ~
([J] CP(E" ... ,Er) , «0"', ps', T')), SysP ,Sys)

([Si"» Sf]CP(E, ,Er» «O",PS,T)),SySP,Sys) ~
([J] CP(E" ... ,Er l> «0"', ps', T')), SysP ,Sys)

Semantics of POOSL

52 A Computational Interleaving Semantics

1'. Disrupt command, di'lrupt occurrence

if

([Sf] C'(E" .. ·,Erj, ((0', ps", 1')), Sys', Sys) ..';
([Si"'] C.(E, ,Er), ((0", ps', 1")), Sys', Sys)

([S,"" > > Sflc.(E" Er), ((0', ps, 1')), Sys', Sys) ..';
([Sf·"lc.(E, Er), ((0", ps', 1")), Sys', Sys)

I ps I~ n

and where

n equals the amount of l m(.' , ..) symbols contained in S,""
ps" = popn(ps)

m'. Parallel composition 1

(BSpeci, envs" Sys', Sys) ..'; (BSpeci', envs;, Sys', Sys)

(BSpeci 1\ BSpec:j, envs, . envs" Sys', Sys) ..';
(BSpeci' 1\ BSpec;, envs; . envs2, Sys', Sys)

n'. Parallel composition 2

(BSpec;, envS2, Sys', Sys) ..'; (BSpec;', envs~, Sys', Sys)

(BSpecj II BSpeci, envs, . envs" Sys', Sys) ..';
(BSpeci II BSpec.;', envs, . envs~, Sys', Sys)

0'. Parallel composition 3

7
(BSpeci, envs" Sys', Sys) -> (BSpeci', envs;, Sys', Sys)

(BSpeC;, envs" Sys', Sys) ~ (BSpeci', envs~, Sys', Sys)

(BSpeci 1\ BSpeci, envs, . enVS2, Sys', Sys) 2,
(BSpeci' 1\ BSpec2', envs; . envs~, Sys', Sys)

p'. Channel hiding ,

(BSpec', envs, Sys', Sys) ..'; (BSpec", envs', Sys', Sys)

(BSpec' \ L, envs, Sys', Sys) ..'; (BSpec" \ L, envs', Sys', Sys)

if

a = l' or Chan(a) if- L

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics

q'. Channel renaming

(BSpec', envs,SysP,Sys) ~ (BSpec", envs',SysP,Sys)

(BSpec'lf]' envs, SysP, Sys) ~ (BSpec"lf], envs', SysP, Sys)

where

, {T
a = f(a)

if a = T

if a of T

r'. Cluster execution

(BSpec', envs, SysP, Sys) ~ (BSpec", envs', SysP, Sys)

([BSpeC']C'(E" ... ,Erj, envs, SysP, Sys) ~
([BSpec"] C'(E, , ... ,Er), envs', SysP, Sys)

3.4.4 Some Properties of the Transition System

53

In this subsection we will prove some important properties of the labeled transition system
of Subsection 3.4.3.

Proposition 3.1
Let conN E ConfP and assume that conft ~ conN for some action a E Act. Then we
have

(i) conJ.! E ConjP

(ii) Reset(conftl = Reset(conti).

(iii) if a E £. then Abs(a) E AASort(con!/)

(iv) if a E £. then Chan(a) E ChSort(con!{)

(v) AASort(conJ.!) = AASort(confn

(vi) ChSort(con!Il = ChSort(con!tl

o

Item (i) of Proposition 3.1 states that every labeled relation ~ is indeed defined on ConfP.
Note that, since the definition rules of ConfP are conditional, this is by no meanS a trivial
property .. Item (ii) states that the Reset of a configuration is equal to the Reset of any
of its derivates. From (iii) and (iv) it follows that the abstraction (Abs) of any non-silent
action performed by some configuration is part of the AASort of that configuration, and
that the corresponding channel is part of the configurations' channel sort. Finally (v) and

Semantics of POOSL

54 A Computational Interleaving Semantics

(vi) state that the AASort and ChSort of a configuration equal the AASort respectively
ChSort of any derivate conl'iguration.

Proof of Proposition 3.1
Items (iv) and (vi) directly follow from (iii) and (v) respectively. We will prove (i),
(ii), (iii), and (v) simultaneously by transition induction on the shape of the derivation
tree of conN ~ conti. We argue by cases on the applied axioms and rules. Let conN
= (BSpeci,envs,SysP,Sys) and conti = (BSpe0.,envs',SysP,Sys) and assume conN ~
conN·

Case[Axiom 1']
Then BSpeci == [S]cP(E""',Er), BSpeci == [VlCP(E" ... ,Er) and a = T. (i) directly follows
from the definition of ConjP and from conN E ConfP. (ii) is an immediate result of
the definition of Reset. (iii) holds vacuously since T rf..c. Further AASort(confil =
AASort(BSpeq,SysP) = AASort(C',SysP) = AASort(BSpeci,SysP) = AASort(conf,"l,
and thus (v) is also satisfied.

Case[Axiom 2']
Then BSpeci == [ch!m(&,··., En)]CP(E;, ... ,En, BSpeci == [VlCP(E;, ... ,E~» and a = ch!m[data]
with I data I = n. (i), (ii), and (v) are proved as in case [Axiom 1']. For (iii) we notice that
Abs(a) = ch!m[.!!.] E {ch!m[lll} = AASort(ch!m(Et , .. . , En)). Then, using the condition
of rule (3.) of the definition of Conf', we derive Abs(a) E AASort(CP,SysP), and thus
Abs(a) E AASort(BSpeci, SysP) = AASort(confn, so the result follows.

Case[Axiom 3']
Analogous to case [Axiom 2'].

Case[Axiom 4']
Then BSpeci == [m(Et,· .. ,Em)(pt'''·,Pn)]CP(E;, .. ,En, BSpeci == [!m(p"",pn) SP]C'(E;, .. ,E~)
with SP being the body of method m, and a = T. (ii), (iii), and (v) are proved as in case
[Axiom 1 ']. For (i) we have to show that the condition ofrule (3.) of the definition of ConjP
is satisfied. The first part of the definition directly follows from conN E ConjP. For the
second part we use context condition 10 together with the definition of AASort, and deduce
AASort(SP) ~ AASort(C', SysP). From this the result follows since AASort(! m(p" .. ·,P.)
SP) = AASort(SP) c::;; AASort(CP, SysP).

Cases[Axioms 5',6',7']
Are proved analogous to case [Axiom 4'].

Case[Axiom 8']
Then BSpeci == CP(E1, .. ·,Er), BSpeq == [m(E{, .. ·,E;)()]cP(E" ... ,Er), and a = T. (i),
(ii), and (iii) are proved as in case [Axiom 1']. Item (v) holds since AASort(confil =

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics 55

AASort(BSpec2,SysP) = AASort(CP,SysP) = AASort(BSpeci,SysP) = AASort(confiJ.

Case[Axiom 9'J
Then BSpeci == C'(E1o· .. ,ET)' BSpec2 == [BSpecP[EJ.IP"···,ETIPT]]c,(E,, Er) where
BSpecP is the behaviour specification and where P" ... , PT are the expression parameters of
cluster class with name C', a = T, and envs = envs' = (). (ii) is an immediate consequence
of the definition of Reset. (iii) holds vacuously. (v) is satisfied since AASort(ConfiJ =
AASort(BSpec2,SysP) = AASort(C',SysP) = AASort(BSpec1,SysP) = AASort(confiJ·
For (i) we first have to show that (BSpecP [E,f p,,' .. , ETI PT], (), Sys', Sys) E ConI'. Using
context condition (15.) it easily follows that BSpecP[EJ.IP,,"· ,ETIPT] E BSpecijications,
and thus that (BSpecP[E,f P,,"', ETI PT], (), SysP, Sys) E SSpecijications. From this the
result follows because SSpecijication c:;;: ConI". The next thing we have to show for (i)
is that the condition of rule (4.) of the definition of ConI' holds. The first part of
the condition follows from conN E ConfP. For the second part we have to show that
Reset(BSpecP [Ed P, , .,. , ETI PT]) == BSpecP[Ed P,,"', ETI PT]. But this follows from
the fact that BSpecP [Ed P" ... , ET / PT] E BSpecijications by applying Lemma 3.1.

Case [Rule a'J
Then BSpeci == [S{"; SnCP(E, Er)' BSpec2 == [S{,"; SnCP(Eb Er) where S{" ¢ .j,
and ([S{"JCP(E, Er) , env , SysP , Sys) ~ ([S{"'JCP(E, Er) , en v' , SysP , Sys).
Items (ii) and (v) are proved as in case [Axiom 1 'J. By induction we have a E £. =}

Abs(a) E AASort(([Sl"'JcP(E, Er) , env , SysP,Sys», but then clearly a E £. =} Abs(a)
E AASort(conN), so (iii) holds. For (i) we have to show that the condition of rule
(3.) of the definition of Con/" is satisfied. Again, the first part of the condition fol
lows from conN E Con/"o For the second part first notice that since conN E Con/" ,
AASort(Sj"; Sf) c:;;: AASort(CP,SysP). But then AASort(Sj") c:;;: AASort(CP,SysP) and
thus ([Sj"]cP(E, Er), envs, SysP, Sys) E Con/"o By induction we then have
([Sj"'JcP(E, Er),enV"SysP,Sys) E ConI' and thus AASort(Sj"') c:;;: AASort(CP,SysP).
But then AASort(Sj"'; Sf) c:;;: AASort(CP,SysP), and consequently conN E ConI'.

Case[Rul b' c' d' e' f' g' h' i',;" k' I'J es , , , , , " "
Are all proved analogous to case [Rule a 'J.

Case[Rule m'J
Then conN = (BSpeci II BSpec2, envs,· enVS2, SysP, Sys), conN = (BSpect II BSpec2, envs,'
. enVS2, SysP, Sys) , and (BSpeci, envs, , SysP, Sys) ~ (BSpeci', envs,', SysP, Sys). By induc
tion we have a E £. =} Abs(a) E AASort((BSpeci, envs, , SysP, Sys», AASort ((BSpeci ,
envs, ,SysP ,Sys» = AASort((BSpeci',envs,',SysP,Sys», and Reset ((BSpeci, envs,
,SysP , Sys» = Reset ((BSpeci', envs,',SysP,Sys». From this, (ii), (iii), and (v) follows
easily. For (i) observe that for conN to be member of ConfP, (BSpeci, envs" SysP, Sys) and
(BSpec2' envSa, SysP, Sys) both must be member of Conf' (see rule (5.) of the definition of
ConjP). But then by induction (BSpeci', envs,', Sys' , Sys) E ConI', and thus (using rule

Semantics of POOSL

56 A Computational Interleaving Semantics

(5.) again) conN E Conf".

Case [Rules n',o',p',q']
Are proved in a similar way as case [Rule m'].

Case[Rule r']
Then conll = ([BSpec'lc'(El, ... ,Er), envs, Sys" , Sys), conN = ([BSpec"] O'(E

"
... ,E,) , envs'

, Sys" , Sys) , and (BSpec', envs, Sys" , Sys) ~ (BSpec", envs', Sys" , Sys). Since conll
E Con/" we have that Reset(BSpec') == BSpec"[Et/PI,·,E,/P.] where BSpec" denotes
the behaviour specification and where PI,"', p. denote the expression parameters of
the cluster class with name C'. Item (ii) directly follows from the definition of Reset.
By induction, a E £, =?- Abs(a) E AASort((BSpec', envs, Sys" , Sys)). Further we have
AASort((BSpec', envs, Sys" , Sys)) = AASort(BSpec', Sys") = { according to Lemma 3.2
} AASort(Reset(BSpec'), Sys") = AASort(BSpec"[El/ PI,"', E./ p.], Sys") = {according
to Lemma 3.3} AASort (BSpec" ,Sys") = {context condition (10.) } AASort(C',Sys")
= AASort(conll), and thus (iii) follows. (v) is true because AASort(conftl = AASort(C'
, SysP) = AASort(confi). Since conll E Con/", we have using rule (4.) of the def
inition of Con/" that (BSpec' , envs , Sys" , Sys) E Conf". By induction we then
have (BSpec", envs',Sys" , Sys) E Conf" and Reset ((BSpec', envs, Sys", Sys)) = Reset
((BSpec", envs', Sys" , Sys)). Now, (i) follows from rule (4.) of the definition of Con/"o

This concludes the proof of Proposition 3.1.

The proof of Proposition 3.1 is based on the following three lemmas:

Lemma 3.1
Let BSpec be a behaviour specification. Then
Reset(BSpec) == BSpec.

Proof
The proof is an easy induction on the structure of BSpec.

Lemma 3.2
Let BSpec' be an extended behaviour specification. Then AASort(BSpec', Sys") =
AASort(Reset(BSpec'), Sys")

Proof
The proof proceeds by structural induction.

Lemma 3.3
Let BSpec" be a parameterized behaviour specification. Then AASort(BSpec" , Sys") =
AASort(BSpec" [g], Sys")

Proof
Again, the proof is an easy induction on the structure of BSpec.

o

o

o

o

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics 57

In the previous sections we have seen that a system specification describes a system in its
initial state, i.e. before initialization has been taken place. A configuration, on the other
hand, is also able to describe a system during execution or, if you want, during simulation.
A system always starts in a configuration reflected by some system specification, and it
proceeds its execution through a sequence of consecutive configurations. Sometimes it is
convenient to be able to retrieve the initial specification, given some configuration. For
this purpose, we have introduced function Reset in Subsection 3.4.2. One would expect
that starting from the Reset of a configuration, it would be possible to return to that
configuration. However, from the fact that there exist configurations that can never be
reached from any system specification, it is easy to see that this cannot be true. For such
an "unreachable" configuration, the Reset then is not the initial specification, but that
specification built from the same instances, in the same way as the configuration. For
a "reachable" configuration, on the other hand, it is true that it can be reached from
its corresponding Reset. Furthermore the Reset is the only specification from which a
configuration can be reached. These latter two properties, justifying the well-definedness
of function Reset, are captured in Proposition 3.2.

Proposition 3.2
Let con!' be a configuration and let SSpec ...:.' con!' 4 for some system specification SSpec.
Then SSpec = Reset(con!,).

Proof
The proof proceeds by induction on the syntactic structure of con!,.

Case con!' = (C"(E:.,"·,Er),O,Sys",Sys).
Assume SSpec ...:. n con!" for some n ;::: 1. Then there exists a con!,' such that SSpec ...:.'
conf"' ...:. conf". However, there exists no axiom or rule which can produce conf', and
thus we have a contradiction. So n = 0 and SSpec = con!'. But then Reset(con!') =
Reset(SSpec) = { use Lemma 3.1 } SSpec.

Case con!' = (CC(E!, .. ·, Er), (), Sys", Sys).
Is proved in an analogous way.

Case conf" = ([S""]cP(E1,. .. ,Er), (), SysP, Sys).
By inspection of the axioms and rules, it is easy to verify that then SSpec = (C" (E:. , ... , Er)
, () , SysP,Sys). But this implies that Reset(con!,) = SSpec.

Case confP = ([BSpec'jcC(Elo ... ,Erl> envs, Sys", Sys).
Analogous to the previous case.

Case con!' = (BSpec1 1/ BSpec2, envs, . env~, Sys", Sys).

"We write confP -.:.. con/pi to mean that confP ~ con/Pi for some action a.

Semantics of POOSL

58 A Computational Interleaving Semantics

By inspection of the deductive proof system, it is not hard to see that then SSpec =
(BSpecl \I BSpec2,·(), SysP, Sys) for some BSpecl and BSpec2, and that (BSpecl , () , SysP ,

Sys) ~. (BSpeci, enVSl, SysP, Sys) and (BSpec2 , () , SysP , Sys) ~. (BSpeci , en'vB2 , SysP ,
Sys). By induction we then have Reset((BSpeci, envst, SysP, Sys)) = (BSpecl, (), SysP, Sys)
and Reset ((BSpec2, envs2, SysP, Sys)) = (BSpec2, (), SysP, Sys) and thus Reset(BSpec{) =
BSpecl and Reset(BSpecn = BSpec2. So Reset((BSpeci \I BSpeci, enVSl'envs2, SysP, Sys) =
(Reset(BSpeci) \I Reset(BSpecn, (), SysP, Sys) = (BSpecl \I BSpec2, (), SysP, Sys) = SSpec.

Cases con!" = (BSpec' \ L, envs, SysP, Sys) or confP = (BSpec'[fJ, envs, SysP, Sys).
These cases are proved analogous to the previous case.

This concludes the proof of Proposition 3.2.

3.4.5 Observational Equivalence and Semantic Function M""

o

In the introduction we mentioned that correctness-preserving transformations play an im
portant role in our object-oriented methodology for the design of hardware/software sys
tems. A correctness-preserving transformation takes a specification Specl and transforms
it into a specification Spec2. Specification Spec2 should be correct with respect to Specl.
This basically means that the specifications are related by some predefined (binary) cor
rectness relation. In general, it is required that the correctness relation is an equivalence
relation which is also substitutive under some or all language constructors. A pair of re
lated specifications is often called equivalent with respect to the corresponding correctness
relation.

A currently well-known and practically applicable way to define a correctness relation is
in terms of so-called bisimulations. A bisimulation establishes a kind of invariant holding
between a pair of dynamic systems, and the technique is to prove two systems equivalent
by establishing such an invariant. The notion of bisimulation was first introduced by Park
in [Par81] and later developed in the context of CCS in [MiI83].

In this report we will only define one kind of correctness relation, namely observational
equivalence. Observational equivalence is defined terms of weak bisimulations. Weak bisim
ulations are binary relations on configurations.

Definition 3.7
A binary relation S over configurations S s;:: ConfP X Conp is a weak bisimulation if
(conN, cong) implies

(i) the Sys parts of conN and cong are syntactically identical

and for all a E Act

(ii) if conN ~ conN' then, for some cong', cong ~ confi' and (conN', conf.!') E S

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics 59

(iii) if confi ~ confi' then, for some conf/" con!! J,. con!!' and (con!!', conJ.!') E S. 0

Here, for each a E Act, J,. is a binary transition relation over configurations (often called
descendant relation) and is defined by

Definition 3.8
Let con!!, conJ.! be configurations and let I be a communication action. Then

con!! i? confi if con!! (:c.)* confi

con!! ~ confi if con!! (:c.)* J.. (:c.)* conJ.!

o

Our notion of weak bisimulation is very similar to that of CCS [MiI89]. The difference
is that CCS does not include (i) in its definition. We, however, need to incorporate (i)
to ensure that every data class name referred to from within any communication action,
unambiguously denotes a single data class.

The following definition uses weak bisimulations to define observational equivalence (~)
upon configurations.

Definition 3.9
con!! and confi are observational equivalent, written con!! ~ conJ.!, if (con!!, conf!) E
S for some weak bisimulation S. So

~ = U{S I S is a weak bisimulation} o

It is not hard to prove that ~ is an equivalence relation. Further, it can be shown that ~
is substitutive under parallel composition, channel hiding, and channel renaming.

We will now use relation ~ to assign a meaning to configurations (and thus to specifica
tions). Since ~ is an equivalence relation, we can consider the meaning of a configuration
(and implicitly of system specifications) to be the class of all observational-equivalent con
figurations, so,

M",(conp) = [confP]",

Evidently, M",(con!!) = M",(conf!) if and only if con!! ~ conJ.!, so, two configurations
are observational equivalent, precisely if they have the same semantics.

Although relation ~ and function M", reflect a very strong notion of equivalence, we
have good hope that they can be used to prove a set of interesting correctness-preserving
transformations. For transformations which are not correct under observational equiva
lence, alternative equivalence relations and semantical functions will have to be developed.
Defining a useful set of transformations, developing suitable equivalence relations, and
proving correctness of transformations will be subject of future research.

Semantics of POOSL

60 A Computational Interleaving Semantics

3.4.6 Example: A Simple Handshake Protocol

In this subsection we will show how to calculate the behaviour of a simple handshake
protocol, using the labeled-transition system defined in Subsection 3.4.3. Further, we will
demonstrate that the protocol behaves as a I-place buffer. The protocol, consisting of a
Sender process and a Receiver process, is visualized in figure 3.1.

X

in t---i Sender Receiver H out

y

Figure 3.1: A Simple Handshake Protocol

The Sender can receive some data from channel in and this data is delivered by the
Receiver at channel out. Externally the protocol behaves as a 1-place buffer. The protocol
is specified as follows:

((Sender II Receiver) \ {x,y}'O,SysP,Sys)

For reasons of simplicity we assume that there are no non-primitive data classes, so Sys =
O. SysP consists of process classes Sender and Receiver. It is defined as SysP = (5

3

process class
instance variables
communkation channels
message interface
initial method call
instance methods

process class
instance variables

Sender

on x y
in?receive(ds) x!transfer(ds} y?ack
start

start I ds I
in?receive(ds }; x!transfer(ds }; y?ack; start

Receiver

communication channels x y out
message interface x?transfer(dRY out!deliver(dRY y!ack

5The specifications and c~nfigurations use some obvious syntactic simplifications.

Processes, Clusters and System Specifications

A Computational Interleaving Semantics

initial method call
instance methods

start
start I dll I
x?transfer(dR }; out!deliver(dR }; y!ack; start)

61

Configuration ((Sender II Receiver) \ {x, y}, (), Sys', Sys) reflects the state of the protocol
where both the sender and the receiver are still uninitialized. The actual computation
starts by initializing either the sender or the receiver. By [axiom 8'] we have

(Sender, (), Sys', Sys) ..:.
([start]Sond,., (({proc -t 0}, (), 0)), Sys', Sys)

Using [rule m'] we then deduce

(Sender II Receiver, (), Sys', Sys) ..:.
([start]S,nd<r II Receiver, (({proc -+ 0}, (), 0)), Sys', Sys)

and thus by [rule p']

((Sender II Receiver) \ {x,y}, (),Sys',Sys) ..:.
([(start]sond" II Receiver) \ {x, y}, (({proc -t 0}, (), 0)), Sys', Sys)

By applying [axiom 4'] and [rules m' ,p'] we get

([(start]S,nder II Receiver) \ {x, y}, (({proc -t 0}, (), 0)), Sys', Sys) ..:.
(([l,'ar' (in?receive(ds); x!transfer(ds); y?ack; start)]Send" II Receiver) \ {x, y},
(({proc-t 0},((proc,{ds -t nil})),0)),Sys',Sys)

The latter configuration reflects the situation where the receiver is able to receive message
receive and data ds from channel in, and where the receiver is still uninitialized. If we
let the receiver perform its message reception we get, by applying [axiom 3'] and [rules
b',m',p'1

(([l,'ar' (in?receive(ds); x!transfer(ds); y?ack; start)]S,nder II Receiver) \ {x, y},
(({proc -t 0}, ((proc, {ds -t nil})), 0)), Sys' ,Sys) in?"'''ive,[d.'.)
«[l,'·r' (x!transfer(ds); y?ack; start}]S,nder II Receiver) \ {x, y},
(({proc -t 0}, ((proc, {ds -t 'Y })), 0)), Sys', Sys)

Here, data = (('Y, 0, 0)) for some primitive data object 'Y E PDObj. This can be seen as
follows: According to [axiom 3'], data should be of the form ((,8"O"},T,)) E Struc1.,.min'
Since Sys = () we have by (2) of Definition 2.1 that Dom(T.} = 0, and therefore by (1)
of the same definition that Dom(O", r NDObj) = 0. By Proposition 2.1(c} we know that
proc rf. Dom(O",) and thus Dom(O",) = 0. Now according to Definition 2.1(4) ,8, E NDObj
implies,8, E Dom(O",). Therefore,8, E PDObj and thus thus data is of the form (('"t, 0, 0)).

If we continue calculating the transitions between the involved configurations we construct
a so-called transition graph, shown in Figure 3.2, representing the behaviour of the protocol.

Semantics of POOSL

62 A Computational Interleaving Semantics

onfP('Y.oTJ'
"

[yly"lJy.l
.!

o?

con\~kl

con~ll)

[yIA)
t t

con',y}
"

con(.(TI

Figure 3.2: A Transition Graph of the Handshake Protocol

The transition graph consists of 18 configurations (represented by the nodes of the graph),
some of which are parameterized. The> mark attached to node conJl denotes that this
is the starting configuration. The substitution b hs,)' hR] indicates that parameters IS
and IR of confl~bs"R) have to be replaced by I and), respectively. Substitution b/).]
has a similar meaning. Further, a? denotes receive action in? receive [«(I, 0, 0»] and a!
denotes send action out!deliver[«(I, 0, 0»].

Note that, although the graph of Figure 3.2 has a finite amount of nodes, it represents an
infinite transition graph. Node confib), for example, represents a collection of nodes, one
for each I E PDObj. The configurations are given by

conJl
conJ.!
conN
confl

conft
conN'

confib)

3

= «Sender II Receiver) \ {x,y},(),SysP,Sys)
= «[start]S,nder II Receiver) \ {x, y}, (envs0), SysP, Sys)
= «Sender II [start]R,,,'vor) \ {x, y}, (envR0),SysP,Sys)
= «[t'l.r< (in?receive(ds)j x!transfer(ds)j y?ackj start)]Send,r II Receiver)

\ {x, y}, (envs(nil), Sys', Sys)
= «[start]sond<r II [start]R"".<r) \ {x, y}, (envs0, envR0), SysP, Sys)
= «Sender II Wl.rl (x?transfer(dR)j out!deliver(dR)j y!ackj start)]R"".<r)

\ {x, y}, (envR(nil), SysP, Sys)
= (([L,'·r< (x!transfer(ds)j y?ackj start)]sond<r II Receiver)

\ {x, y}, (envsb), SysP, Sys)

Processes, Clusters and System Specifications

A Computational Interleaving Semantics 63

con/l = (([.I. ,'art (in?receive(ds); x!transfer(ds); y? ack; start)]Sondor II
[start]R",;m) \ {x, y}, (envs (nil), envR0), Sys', Sys)

con/t = ((Sender II W·art (x?transfer(dR); out!deliver(dR)j y!ack; start)]R,,,;ver)
\ {x, V}, (envs0, envR(nil»), Sys', Sys)

conh.~(t) = (([.I. •• ar. (x!transfer(ds); y?ack; start)]S .. dor II [start]R",;ver)
\ {x, y}, (envs(t), envR0), Sys', Sys)

confl~ = (([.I. ,'art (in?receive(ds); x!transfer(ds); y? ackj start)]Sond<r) II
[.I.,'ar

' (x?transfer(dR); out!deliver(dR); y!ack; start)]R''';.<r)
\ {x, V}, (envs(nil), envR(nil») , Sys', Sys)

conh.~(t) = (([.I. ... rt (x!transfer(ds); y?ack; start)]s .. dor II
w·ar

• (x?transfer(dR)j out!deliver(dR)j y!ack; start)]R.,,;.er)
\{x, V}, (envs(1), envR(nil)) , Sys' ,Sys)

confl~(t) = (([.I., •• rt (y?ack; start)]sond<r II [.I. •• ar• (out!deliver(dR); y!ack;
start)]R.,,;ver) \ {x, y}, (envs (t), envR(t»), Sys', Sys)

conh.~(t) = (([.I.. tart (y?ack; start)]S .. der II W·· rt (y!ack; start)]R,,,;.or)
\ {x, y}, (envs(t), envR('Y»), Sys', Sys)

confl~(t) = (([.I..'art (start)]S .. d<r II W·art (start)]R",; ...)
\ {x, y}, (envs(1), enVR(t)), Sys', Sys)

conh.~(t) = ([.I. •• art (in?receive(ds); x!transfer(ds); y?ack; start)]s .. dor II
W·art (start)]R,,'; ...) \ {x, y}, (envs (nil), envR(t »), Sys', Sys)

confl'.,(1) = (([.I.,'ar
' (start)]S .. dor II w·ar

• (x?transfer(dR); out!deliver(dR); y!ack;
start »)R",;ver) \ {x, y}, (envs (1), envR(nil)), Sys', Sys)

conh.~(ts,'YR) = ([.I..'ar
' (x!transfer(ds); y?ack; start)]S .. der II [.I. ... rt (start)]R",; ...)

\ {x, y}, (envs('Ys), envR(1R)), Sys', Sys)

Here, envs0 and envs (t) denote environments of the Sender process. In enVs0 no local
variables are allocated on the stack (the stack is empty), whereas in envs(1) variable ds
is allocated and bound to primitive object 'Y. Environments envR0 and envR(1) have a
similar meaning for the Receiver process. The environments are defined as

envs0 = ({proc -> £O}, (), £0)
envR0 = ({proc -> £O}, (), £0)
envs('Y) = ({pmc -> £O}, ((pmc, {ds -> 'Y})), £0)
envR('Y) = ({proc-> £O},((proc,{dR ->'Y})),£O)

In the beginning of this subsection we mentioned that the protocol externally behaves as a
I-place buffer (see Figure 3.3). We will show this by giving a explicit specification of such
a buffer, and then show that this specification is observational equivalent to the protocol.

The I-place buffer is specified as

(Buffer, (), Sys", Sys)

where Sys = () and where Sys" = (

Semantics of POOSL

64

in

process class
instance variables
communication channels
message interface
initial method call
instance methods

A Computational Interleaving Semantics

Buffer

Figure 3.3: A I-place Buffer

Buffer

in out
in ?receive(dB) out!deliver(dB)
start

start I dB I

out

in?receive(dB}; out!deliver(dB}; start)

A transition graph of the buffer is given in Figure 3.4. The (parameterized) configurations
are given by

1)-__ 't:""" __ 7\ conf;-

•• .1

Figure 3.4: A Transition Graph of the I-place Buffer

3 Processes, Clusters and System Specifications

A Computational Interleaving Semantics

conft'
cong'
cong'

= (Buffer, 0, SysP', Sys)
= ([start }Bun,,, (envB0), SysP', Sys)
= ([l,tart (in?receive(dB); out!deliver(dB); start)}Bun,,,

(envB(nil)), SysP', Sys)
confl'(-l) = ([1 ,ta,t (out! deliver(dB); start)jBun,,, (envB b)), SysP', Sys)
conft'(1) = ([l,tart (start)}Bun", (envBb)),SysP',Sys)

where

envB0 = ({proc -+ 0}, 0,0)
envB(-Y) = ({proc -+ 0}, ((proc, {ds -+ 1})),0)

It is not hard to verify that relation S defined by

with

S = (A x B) U (C x D)

A = {conf{,· .. , cong, cong, cong, conJ,~}U

{conf{.("(), conf{sb), conf{sh), conf{7h) 11 E PDObj}
B { ,p' ,p' ,p' (P'} = con)1 ,conn ,conJ3 ,canJS

C = {confl~b),confl~b),confl~b) 11 E PDObj} U {conf{.("(,A) 11,A E PDObj}
D = {conf:'}

65

is a weak bisimulation. Since conf{, con!"; E S, we have that ((Sender II Receiver) \
{x, y }O, SysP, Sys) ~ (Buffer, 0, SysP, Sys), and thus the protocol is observational equiv
alent to the l-place buffer.

One would expect that a similar result could be proved if the protocol and the I-place
buffer were able to receive and deliver arbitrary data objects instead of only primitive data
objects. However, it is not hard to find out that observational equivalence is too strong for
this to be true. Developing equivalence relations which do establish the equivalence will
be subject of future research.

Semantics of POOSL

66

Chapter 4

Reviewing the Development of
POOSL

Developing a formal language is a very complicated task. Language constructs which seem
to have a clear meaning at first glance, may appear to be a lot trickier than expected.
During the development of POOSL we found out that difficulties or unclarities often show
up only at the moment one tries to describe the meaning of constructs in very precise
and detailed, that is formal, way. To solve encountered difficulties, alternative semantic
interpretations or possible alternative language constructs have to be evaluated. A formal
language description is then of great help. It provides a deep understanding of encountered
problems and it aids in evaluating design alternatives in a systematic way.

During the development of POOSL, lots of problems were encountered and a large number
of design decisions were taken. In the following sections three of the more interesting
problems are studied.

4.1 The Grain of Concurrency

The grain of concurrency in POOSL is the processes object. All internal activities of pro
cess objects are performed sequentially. The evaluation of data expressions, for example,
is always performed from left to right. Consider message-send expression E m(Et,"', En).
To evaluate this expression, first destination expression E is evaluated. Then the param
eters E1,"" En are evaluated from left to right and finally the message is sent to the
destination object. The order in which the expressions are evaluated is formalized by rules
a and b of the transition system of Subsection 2.4.3:

a. Method call 1

(Ef,a,s,r,Sys) -+ (Ee',a',s',r',Sys)

(E' m(E{"",E:),f7,S,7,SyS),
(Eel m(E1e,"',E:),a',s',r',Sys)

The Grain of Concurrency 67

b. Method call 2

(Ee, (7', S, T, Sys) --+ (Ee', a', S', T', Sys)

((3 m((3I,"',(3;_h E', ... ,E:),(J,s,T,Sys) -->

(~ m(f3I,"', {3i-1, Ee', ... , E:), a', Sf, T', SyS)

Why did we chose to evaluate the expressions in a strict sequential manner, in stead of in
a concurrent one? For it seems that concurrent expression evaluation can easily be dealt
with by replacing rule b by b":

b" . Method call 2

(E ' S) (E" I I 'S) i ,a,S,7, YS --+ i ,U ,8,7, ys

(Ee m(E1t:,' .. ,ELl,E{, ... ,E:),a,s,r,Sys) --+

(Ee m(Elf, ... , E{_u Et,·", E:), a', s', T', Sys)

However, if we take a closer look at this rule, we see that it does not formalize concurrent
expression evaluation at all! The problem is that the rule allows n + 1 different data
objects to be executing one of their methods at the same time. Therefore n + 1 different
local variable environments have to be active at the same time. Unfortunately, there exists
only one active environment and this environment is positioned at the top of stack sand
belongs to the object which is currently executing one of its methods. This problem is not
easily solved in our chosen type of semantics. Each possible solution will most certainly
complicate the semantics in a serious way.

Next to this theoretical difficulty of concurrent expression evaluation, a more practical
problem exists. Consider the following definition of a (very simple and restricted) class
Bit:

data class Bit
instance variables bit
instance methods

error
primitive

set To Zero setToOne invert
bit +-- 0; bit +-- 1; if bit = 0 then bit := bit + 1
self self else bit:= bit - 1 fi;

if bit < 0 or bit> 1 then self error fi;
self

Primitive message error aborts the execution with an error message. Assume that a
variable b refers to a Bit which is setToZero and consider the concurrent evaluation of
expression (b invert) == (b invert). It seems clear that the result of this evaluation must

Semantics of POOSL

68 Layers of Semantics

be true 1. Indeed, true is one of the possible outcomes. Another possibility, however, is
that the evaluation aborts with an error message, leaving b in the unexpected state where
instance variable bit refers to 2!

Problems of this kind are well-known in object-oriented languages, such as Smalltalk-80
[GR89], that support processes as an orthogonal language concept. These processes may
act on the same collection of objects. It is even possible that they are executing the
same method in the same object at the same time [AR89]. This can result in problems of
synchronization and mutual exclusion as in the case of our Bit example.

Of course, these problems of synchronization and mutual exclusion can be solved if concur
rently evaluated expressions are required to be side-effect free. However, the application
of expressions with side-effects in object·oriented languages is not at all unusual. In Eiffel
[Mey88], a restricted use of functions with side-effects is even recommended and exploited!

The above described problems also occur when other forms of concurrency within process
objects are allowed. We have therefore determined the grain of concurrency at the level of
the process object.

4.2 Layers of Semantics

The semantics of POOSL consists of two layers. At the layer of data objects, data ex
pressions and data statements may take lots of small steps to be evaluated respectively
executed. At the layer of process objects, these small steps are abstracted from and com·
bined into single steps. In this section we will explain why we decided to build the semantics
this way. For an alternative would have been to consider only one semantic layer and to
formalize this layer by a single labeled· transition system.

Consider guarded command [E]SP whose execution is given by rule e' of Subsection 3.4.3:

e'. Guarded command

if

([SP] CP(E" ... ,Er), «(71, pSi, r')), SysP , Sys) ~
([SP,'] CP(E" ... ,Er), «(711, pS", r")), SysP, Sys)

([[E]SP] CP(E""',Er) , «(7, ps, r)), SysP, Sys) ~
([SP,'] CP(E" ... ,Er) , «(711, pS", r")), SysP, Sys)

(1, (71, pSi, r', Sys) E M((E, (7, ps, r, Sys)) with 'Y E {true, bunk}

1 Note that the primitive equality message == only determines whether two expressions refer to the
same object or not.

4 Reviewing the Development of POOSL

Layers of Semantics 69

In the alternative approach, the guarded command could have been described by the
following axiom and rule:

Guarded command, axiom

if

([[r]SP]cP(E" ... ,Er), ((0', S, r)), SysP, SyS)
([SP] CP(E, , ... ,Er), ((0', S, r)), SysP, SyS)

7 = true or 7 = bunk

Guarded command, rule

T
--+

([E']cP(E,,. .. ,Er), ((0', S, r)), SysP, SyS) ..2:,
([E"] CP(E, , ... ,Er), ((0", S', r')), SysP , SyS)

([[E']SP] CP(E,,. .. ,Er), ((0', S, r)), SysP, SyS) ..2:,
([[E"]SP]cP(E" ... ,Er), ((0", S', r')), SysP, SyS)

The problem is that this alternative formulation changes the intended meaning of guarded
commands in combination with choice operators. Consider a process object CO that is
executing statement [true]ch?m or [true]ch'?m', If the rules of the layered semantics are
applied, the process always leaves both alternatives open. It never chooses a priori whether
it wants to receive message m from channel ch or message m' from channel ch'. The actual
choice depends on environment processes that are able to communicate with CO. In case of
the alternative semantics the choice is made a priori by process CO itself. If environment
processes are only willing to send message m on channel ch, a deadlock may occur if CO
chooses to receive m' from ch'. This can never happen in case of the layered semantics.

The problem is caused by the fact that guarded commands and choice statements are
orthogonal language constructs. A possible (partial) solution is to replace guarded com
mands and choice statements by so-called select statements. An example of such a select
statement is

sel
[E1]ch!m(£2, E:J) then Sf

or
[E.]ch'?m'(pd then Sf

or
[Es]ch l !m"(E6) then Sf

les

It is executed by first evaluating expressions E1,' .• , Es in the order of appearance. Each
branch which guard evaluates to false is discarded. For a branch which guard evaluates to

Semantics of POOSL

70 Tail Recursion

bunk, a non-deterministic choice is taken whether it is discarded. For each non-discarded
branch, an attempt is made to execute the corresponding communication statement. If the
attempt succeeds, the communication actually takes place and the rest statement (after
the then) is executed. 2

In fact, in imitation of POOL [PAR85], earlier versions of POOSL indeed incorporated
select statements. The semantics of these statements was quite complex though. This
complexity became unmanageable when message-receive statements ch?m(Pl , ... , Pm)
where replaced by selective message-receive statements ch?m(pt,···, Pm I E). The formal
ization of these statements in terms of the one-layered semantics appeared to be extremely
cumbersome. For this reason it was decided to split the semantics in two layers. As a
result, the select statements could be replaced by guarded commands and choice state
ments. Through this decision the semantics was considerably simplified. Furthermore, the
introduction of guarded commands and choice statements increased the expressive power
of POOSL.

4.3 Tail Recursion

Reactive behaviour of complex (real-time) hardware/software systems is often most nat
urally described in terms of finite state machine-like descriptions. Now each finite state
machine is more or less expressible in terms of if and do constructs. However, the required
conversions can be quite complicated and the results are often unreadable. For this reason,
POOSL has incorporated a construct that allows state machine behaviour to be expressed
directly and naturally. Consider the state diagram of a I-place buffer Buf given in Figure
4.1. In process calculi such as CCS [MiI89], this behaviour is naturally specified as

~_'I () () Empty ch? in data . Full data

Full(data) <!g ch!out(data)· Empty

This specification can directly be translated into POOSL by representing states Empty
and Full(data) by methods:

process class
instance variables
communication channels
message interface
initial method call
instance methods

Buf

ch
ch ?in(data) ch!out(data)
Empty

Empty I data I
ch?in(data)j Full(data)

Full(data)
ch!out(data)j Empty

'Remark that, although this execution resembles the execution of statement [E1]ch!m(E" E3) Sf or
[E4]ch'?m'(p.) Sf or [Es]ch"!m"(E6) S{ in the layered semantics, it is not the same. If one of the
expressions has side-effects, different observable behaviour can be obtained.

4 Reviewing the Development of POOSL

Tail Recursion 71

cI1?in(data)

Empty Full(data)

cI1!out(data)

Figure 4.1: State Diagram of a I-place Buffer

To describe infinite, non-terminating behaviour, methods Empty and Full are defined mu
tual recursively. But can methods really be defined this way without causing any prob
lems? Unfortunately, the answer to this question is negative. Each time one method calls
on another one, the depth of the process stack is increased by one. Since no method ever
terminates, the stack will eventually grow beyond any bound. This problem has earlier
been detected in [Bl093] in which context-free grammars are applied to specify the (infinite)
behaviour of data communication protocols.

There exists a solution to this problem though. Suppose the buffer is currently executing
method Empty and is ready to execute method call Full(data). Since this method call
is not followed by any other statement (the call is tail-recursive) and since method Full
as well as method Empty do not have any output parameters, the current local variable
environment is never needed anymore. Upon invocation of method Full it can therefore be
popped off the stack. Similarly, if the buffer calls on method Empty, the top of the stack
can first be removed. In this way, the depth of the stack will never exceed 1.

The general solution to the unbounded stack problem is formalized in terms of rule g' of
the labeled-transition system of Subsection 3.4.3. It states that if a method with no output
parameters is called from another method with no output parameters in a tail-recursive
way, the top of the process stack can first be removed.

Semantics of POOSL

72

Chapter 5

Conclusions

In this report we have developed a Plotkin-style structural operational semantics for the
Parallel Object-Oriented Specification Language POOSL. The language is developed as
a part of an object-oriented methodology for the analysis and design of data processing
systems which contain a mix of software and hardware components.

We have explained that a formal semantics, and in particular a structural operational
semantics, is of great importance during the process of language design and during the de
velopment of software tools such as simulators and compilers. Further, a formal semantics
provides the means to reason about specifications, thereby offering possibilities of formal
verification and correctness-preserving transformation.

The semantics consists of two parts. The data part, which is concerned with data objects or
traveling objects, is a computational semantics. It emphasizes the individual steps needed
to evaluate or execute data expressions respectively data statements. The semantics is
specified by means of a transition system. We have clarified the formal description by an
example in which we calculate the semantics of a complex-number expression.

The process part, concerning process objects, clusters and system specifications, is a compu
tational interleaving semantics based on the communication model of CCS. The execution
of a system of parallel objects is modeled as the interleaving of all atomic actions, i.e.,
as a sequential execution of these actions. The semantics is defined in terms of a labeled
transition system.

On top of the operational semantics we have defined observation equivalence, a well-known
and useful equivalence relation. We have given an example in which we prove that a
simple handshake protocol and a I-place buffer are observational equivalent. This ability to
reason about specification equivalences is of vital importance in the context of correctness
preserving transformations which form an important part of the object-oriented design
methodology.

73

In comparison to semantics found in literature, our semantics may seem rather complex.
In literature, however, semantics are often based on toy languages or on simple and clean
parts of realistic languages. In our case we have given a full semantics of a complex and
realistic language. We think that this justifies the additional complexity.

Semantics of POOSL

74

75

References

[AB90J America, P.H.M. and F.S. de Boer.
A proof theory for a sequential version of POOL.
Faculty of Mathematics and Computer Science, Eindhoven University of Tech
nology, 1990.
Report Series: Computing Science Note, nT. 90/12.

[ABK85J America, P. and J.W. de Bakker, J.N. Kok, J. Rutten.
Operational semantics of a parallel object-oriented language.
Amsterdam: Centre for Mathematics and Computer Science (CWI), 1985.
CWI Report CS-R8515.

[Apt83J Apt, K.R.
Formal justification of a proof system for communicating sequential processes.
Journal of the Association for Computing Machinary, Vol. 30(1983), no. 1, p.
197-216.

[Apt81J Apt, K.R.
Recursive assertions and parallel programs.
Acta Informatica, Vol. 15(1981), p. 219-232.

[AR89J America, P.H.M. and J.J.M.M. Rutten.
A parallel object-oriented language: Design and semantic foundations.
Amsterdam: Centre for Mathematics and Computer Science (CWI), 1989.
CWI Report CS-R8953.

[Bl093J Bloks, R.H.J.
A grammar based approach towards the automatic implementation of data com
munication protocols in hardware.
Ph.D. thesis, Eindhoven University of Technology, 1993.

[Eij89J Eijk, P.H.J. van.
The design of a simulator tool.
In: The formal description technique LOTOS. Ed. by P. van Eijk, C. Vissers and
M. Diaz. Amsterdam: North-Holland, 1989. P. 351-390.

Semantics of POOSL

76 References

[EVD89] Eijk, P.H.J. van and C.A. Vissers, M. Diaz.
The formal description technique LOTOS.
Amsterdam: North-Holland, 1989.

[GR89] Goldberg, A. and D. Robson.
Smalltalk-80: The language.
Reading, Massachusetts: Addison-Wesley, 1989.

[Hen90] Hennessy, M.
The semantics of programming languages: An elementary introduction usmg
structural operational semantics.
Chichester: Wiley, 1990.

[HP79] Hennessy, M. and G.D. Plotkin.
Full abstraction for a simple parallel programming language.
In: Proceedings of the 8th conference on Mathematical Foundations of Computer
Science (MFCS'79), Olomouc, Czechoslovakia, September 3-7, 1979. Ed. by J.
Becvar. Berlin: Springer, 1979 (Lecture Notes in Computer Science, Vol. 74). P.
108-120.

[Mey88] Meyer, B.
Object-oriented software construction.
Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

[MiI80] Milner, R.
A calculus of communicating systems.
Berlin: Springer, 1980.
(Lecture Notes in Computer Science 92, Vol. 92).

[MiI83] Milner, R.
Calculi for synchrony and asynchrony.
Journal of theoretical computer science, Vol. 25(1983), p. 267-310.

[MiI89] Milner, R.
Communication and concurrency.
London: Prentice-Hall, 1989.

[Par81] Park, D.M.R.
Concurrency and automata on infinite sequences.
In: Proceedings of the 5th German Informatics Society Conference, Karlsruhe,
Germany, March 23-25, 1981. Ed. by P. Deussen. Berlin: Springer, 1981 (Lecture
Notes in Computer Science, Vol. 104). P. 167-183.

References

[Plo81] Plotkin, G.D.
A structural approach to operational semantics.
Aarhus: University of Aarhus, Department of Computer Science, 1981.
Technical Report DAIMI FN-19.

[Plo83] Plotkin, G.D.
An operational semantics for CSP.

77

In: Formal description of programming concepts II. Ed. by D. Bjjijrner. Amster
dam : North-Holland, 1983. P. 199-223.

[Str92] Stroustrup, B.
The C++ programming language.
Reading, Massachusetts: Addison-Wesley, 1992.

[Ten91] Tennent, R.D.
Semantics of programming languages.
Worcester, UK : Prentice-Hall, 1991.

[Ver92] Verschueren, A.C.
An object-oriented modelling technique for analysis and design of complex (real
time) systems.
Ph.D. thesis, Eindhoven University of Technology, 1992.

[Voe94] Voeten, J.P.M.
POOSL: A parallel object-oriented specification language.
In: Proceedings of the eight workshop computer systems, Amsterdam, The
Netherlands, March 25, 1994. Ed. by P. Hartel. Amsterdam: University of
Amsterdam, 1994. Technical Report University of Amsterdam, Department of
Computer Science, nr. CS-94-04. P. 25-45.

[Voe95] Voeten, J.P.M.
POOSL: An object-oriented specification language for the analysis and design of
hardware/software systems.
Eindhoven: Eindhoven University of Technology, Faculty of Electrical Engineer
ing, 1995.
EUT Report 95-E-290.

Semantics of POOSL

Eindhoven University of Technologv Research Reports ISBN 0167-9708
Coden: TE1JIDE

Faculty of Electrical Engineering

(268)

(269)

(270)

(271)

(272)

(273)

(274)

(27~)

(276)

(277)

(278)

(279)

(280)

Bool. H. van den and W. Yan Etten. W.H.C. de Krol. P. VAn Banneko •• F. Huiiskens.
L. Niessen. F. de Leijer - -
AN OPTICAL ASK AND FSK PHASE DIVERSITY TRANSMISSION SYSTEM.
BUT Report 92-E-268. 1992. ISBN 90-6144-268-0

Putten. P.H.A. van der
NULTIDISCIPLINAIR SPECIFICEREN EN ONTWERPEN VAN MICROELEKTRONICA IN PRODUKTEN (in Dutch).
EUT Report 93-E-269. 1993. ISBN 90-6144-269-9

Bloks. R.H.J.
PROGRIL: A language for the definition of protocol grammars.
BUT Report 93-E-270. 1993. ISBN 90-6144-270-2

Bloks. R.H.J.
CODE GENERATION FOR THE ATTRIBUTE EVALUATOR OF THE PROTOCOL ENGINE GRAMMAR PROCESSOR UNIT.
EUT Report 93-E-271. 1993. ISBN 90-6144-271-0

Yan. Keping and E.M. van Veldhuizen
FLUE GAS CLEANING BY PULSE CORONA STREAMER.
BUT Report 93-E-272. 1993. ISBN 90-6144-272-9

1.B.
MICROSTRIP ARRAYS WITH THICK SUBSTRATES.

BUT Report 93-E-273. 1993. ISBN 90-6144-273-7

Bollen. M.H.J. and M.A. van Houten
OfmULlR POWER SYSTEMS: Drawing up an inventory of phenoaena and research possibilities.
EUT Report 93-E-274. 1993. ISBN 90-6144-274-~

Deursen. A.P.J. van
ELECTROMAGNETIC COMPATIBILITY: Part ~. installation and mitigation guidelines. section 3.
cabling and wiring.
BUT Report 93-E-27~. 1993. ISBN 90-6144-27~-3

Bollen. M.H.J.
LITERATURE SEARCH FOR RELIABILITY DATA OF COMPONENTS IN ELECTRIC DISTRIBUTION NETWORKS.
BUT Report 93-E-276. 1993. ISBN 90-6144-276-1

Weiland. Siep
A BEHAVIORAL APPROACH TO B1LANCED REPRESENTATIONS OF DYNAMICAL SYSTEMS.
BUT Report 93-E-277. 1993. ISBN 90-6144-277-X

Gorshkov. Yu.A. and V.I.
LINE REVERSAL GAS FLOW
the instruaent.

=MEI~UR.ENENITS: Evaluations of the optical arrangeaents for

BUT Report 93-E-278. 1993. ISBN 90-6144-278-8

Creyghton. Y.L.M. and W.R. Rutgers. E.N. van Veldhuizen
IN-SITU INVESTIGATION OF PULSED CORONA DISCHARGE.
BUT Report 93-E-279. 1993. ISBN 90-6144-279-6

~~p_~~~n~E:~O~TS~:~~ENA OF HIGH-FREQUENCY VACUUM ARCS.
BUT Report 93-£-280. 1993. ISBR 90-6144-280-1

Eindhoven University of Technology Research Reports ISSN 0167-9708
Coden, mJEDE

Faculty of Electrical Eh:!ineerinq

(2811

(282)

(283)

(284)

(285)

(286)

(287)

(288)

(289)

(290)

(291)

(292)

(293)

Di. Cbennian and Jocben A.G. Jess
ON THE DEVELOPMEMT OF A FAST AND ACCURATE BRIDGING FAULT SIMULATOR.
BUT Report 94-E-281. 1994. ISBN 90-6144-281-8

~~~~:iR~A:iEa:~I:F:N~TvD~~~ROL DESIGN TOOLBOI: User llinual. 
BUT Report 94-E-282. 1994. ISBN 90-6144-282-6 

Menq. I.Z. and J.G.J. Sloot 
THERMAL BUCKLING BEHAVIOUR OF FUSE WIRES. 
BUT Report 94-E-283. 1994. ISBN 90-6144-283-4 

A. van and J.P.M. Voeten 
expansion. minimization. and verification tool for finite state 

CCS descriptions. 
EUT Report 94-E-284. 1994. ISBN 90-6144-284-2 

Roer. Th.S. van de 
MODELING OF DOUBLE BARRIER RESONANT TUKNELING DIODES: D.C. and noise IOdel. 
BUT Report 95-E-285. 1995. ISBN 90-6144-285-0 

Doillins. G. 
ELECTROKlGHETIC FIELDS INSIDE 1 LARGE ROOK WITH PERFECTLY CONDUCTIHG VALLS. 
BUT Report 95-E-286. 1995. ISBN 90-6144-286-9 

Liao. Bosbu and P. Massee 
RELIABILITY ANALYSIS OF AUXILIARY ELECTRICAL SYSTEMS AND GENERATING OMITS. 
EUT Report 95-E-287. 1995. ISBN 90-6144-287-7 

Weiland. Siep and Anton A. Stoorvoqel 
OPTlKAL HANKEL NORK IDENTIFICATION OF DYNUICAL SYSTEIIS. 
BUT Report 95-E-288. 1995. ISBN 90-6144-288-5 

Konieczny. Pavel A. and tecb J6zviak 
MINIMAL INPUT SUPPORT PROBLEII AND ALGORITHMS TO SOLVE IT. 
EUT Report 95-E-289. 1995. ISBN 90-6144-289-3 

Voeten. J.P.M. 
~ An object-oriented specification language for tbe analysis and design 
of hardware/software systems. 
BUT Report 95-E-290. 1995. ISBN 90-6144-290-7 

Smeets. B.H.T. and M.H.J. Bollen 
STOCHASTIC MODELLING OF PROTECTION SYSTEMS: Comparison of four aathelatical tecbniques. 
BUT Report 95-£-291. 1995. ISBN 90-6144-291-5 

Voeten. J.P.M. and A. van Ranaelrooii 
ecs AND TIME: A practical and comprebensible approach to a perfoflance evaluation of finite 
state CCS descriptions. 
BUT Report 95-E-292. 1995. ISBN 90-6144-292-3 

Voeten. J.P.M. 
SEIIANTICS OF POOSL: An object-oriented specification language for the analysis and design of 
bardware/softvare systems. 
BUT Report 95-E-293. 1995. ISBN 90-6144-293-1 


	Abstract
	Table of contents
	List of figures
	Acknowledgements
	1. Introduction
	1.1 Background
	1.2 Motivation
	1.3 Report organization
	2. Data objects
	2.1 Informal explanation
	2.2 Formal syntax
	2.3 Context conditions
	2.4 A computational semantics
	3. Processes, clusters and system specifications
	3.1 Informal explanation
	3.2 Formal syntax
	3.3 Context conditions
	3.4 A computational interleaving semantics
	4. Reviewing the development of POOSL
	4.1 The grain of concurrency
	4.2 Layers of semantics
	4.3 Tail recursion
	5. Conclusions
	References

