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ACCURATE EQUIVALENT-NETWORK MODELING OF GaAslAIAs BASED RESONANT
TUNNELING DIODES WITH SYMMETRICAL THIN BARRIER AND SPACER LAYERS

*JJ.M. Kwaspen, M.1. Lepsa , T.G. van de Roer, W. van der Vleuten,
H.C. Heyker, L.M.F. Kaufmann

COBRA Institute, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

Both the classical Esaki and the Quantum-Inductance equivalent-network models [1,2,3] are used
in this work to describe the bias-voltage and microwave frequency dependency of the small-signal
intrinsic impedance of our MBE grown GaAs/AlAs based Double Barrier Resonant Tunneling Diodes
(DBRlDs). They have 5 nm quantum wells and symmetrical thin barrier and spacer layers, each
nominally 2.5 nm thick (Fig.l). The devices under investigation are planar types (Fig. 2) with
coplanar microwave probe access from the network analyser to the metallized SIG (signal) and GND
(ground) pads on the SI-substrate. The DC I-V curve and the microwave reflection coefficient Sl1
of the extrinsic DBRlD, and SII of the OPEN and SHORT reference structures are measured at the
reference planes (pads) indicated. The SHORT and OPEN structures are used to determine the
bias-voltage independent extrinsic elements of the equivalent circuits, Cex, Rex and Lex (Fig.
4a,b), describing the microwave behaviour of the Au interconnections. Only Rex is frequency
dependent due to skin losses.

A prerequisite for accurate determination of the actual intrinsic elements Rd (dynamic
resistance), Cd (dynamic device capacitance), Lqw (quantum inductance) and Rs (series resistance)
is a stable, non-oscillating DBRTD in the negative differential resistance (NDR) region. A stable
DBRTD has at least no plateaus in the NOR region of its I-V curve, so the conductance Gd (=IIRd)
has only one negative peak there (Fig. 6a,b). By a proper choise of the device area (36 uml\2,
IRd+Rs+Rex/ > 50 Ohms at the largest Sl1, at 50 MHz) and a specially designed bias circuit, the
stability condition was met in our experiments.

An Sl1 data array was collected in the 0 to +2V range of the I-V curve (mesa top = +), where
Sl1 of the extrinsic OBRTD was measured at 75 bias points and from 0.05-40.05 GHz (401 points)
after network analyser calibration with on-wafer standards. Fig. 3 shows some of these Sl1 's in a
compressed Smith chart, amongst them SII of the steepest NOR bias-voltage point (largest negative
Gd, /SII/ - 3.9). The prober-chuck temperature was 20.s°C.

Carefull optimisation of the equivalent-circuit Sl1 to match the measured Sl1 data at each bias
point, leads to the conclusion that the 3-element Esaki model only fits the measured SII data
array in the NDR region sufficient accurate if (in contrast to the usual opinion in a number of
papers) the dynamic conductance Gd and capacitance Cd are taken frequency as well as bias-voltage
dependent (see Gd and Cd versus frequency at the steepest NOR point shown in Fig. 5).

The same measured small-signal Sl1 datasets can be described perfectly by the behaviour of the
4-elements Quantum-Inductance circuit model over the whole bias voltage (0-2 V) and frequency
range (0.05-40.05 GHz) with only bias-voltage dependent elements (Fig. 6b-e). The measurement of
Slion the stable DBRlD throughout the whole NOR region results in the correct determination of
the parameter 't, defined as 't=LqwIRd=Lqw.Gd indicating the carrier lifetime of the quasibound
states in the quantum well. The display of this parameter continuously over the whole undistorted
NDR is a novelty. Fig. 6f shows 't versus the bias voltage. The (small) voltage region immediately
after the peak voltage and preceeding the valley voltage give less reliable values of 't due to
inaccuracies in the (large negative) values of Lqw and Rd. 't is not defined where Gd=O. The peak
value of 't (-22 ps) corresponds with the negative Gd peak (same bias-voltage) and when 't is
compared with the calculated quasi-bound state lifetime given in [4J an AlAs barrier thickness of
8 monolayers (2.264 nm) is found as closest result.
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