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Energy Spectra for Decaying 2D Turbulence in a Bounded Domain
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New results are presented for the energy spectra of decaying 2D turbulence in a square container with
no-slip walls for integral-scale Reynolds numbers up to 20 000. The one-dimensional energy spectra
measured close to the walls reveal a k25�3 inertial range, instead of a k23 direct enstrophy cascade, due
to the production of small-scale vorticity near no-slip boundaries. During the intermediate decay stage a
k23 spectrum starts to emerge and the change in location of the injection scale of small-scale vorticity
is explained in terms of an average boundary-layer thickness.

PACS numbers: 47.27.Eq, 47.27.Ak
Thirty years ago the first phenomenological theory of
two-dimensional (2D) turbulence was presented by Kraich-
nan [1] and by Batchelor [2]. Following this theory, the en-
ergy spectrum shows an inverse energy cascade (the k25�3

spectrum) for k , ki , with ki the wave number associated
with the injection scale of the forcing, and a direct enstro-
phy cascade (the k23 spectrum) for k . ki . Since these
pioneering theoretical studies many numerical investiga-
tions have been carried out in order to find supporting
evidence for the presence of an inverse energy cascade
and a direct enstrophy cascade, and the associated inertial
range spectra, in 2D turbulence [3–8]. For the same
reasons several experimental investigations have been
carried out [9–12].

Numerical studies of forced 2D turbulence with pe-
riodic boundary conditions more or less support the
Kraichnan-Batchelor picture [3,7,8], although Legras
et al. [7] observed steeper spectra for large wave numbers
(small scales). Numerical simulations of decaying 2D
turbulence with periodic boundary conditions show a
more intricate behavior of the energy spectra: the inverse
energy cascade is usually not very clearly observed and
the direct enstrophy cascade is often established only as a
transient state before the viscous range starts to dominate
[4,5]. Additionally, the appearance of coherent vortices
complicates a comparison of the spectra of decaying
2D turbulence with the Kraichnan-Batchelor theory. It
is assumed that due to the presence of a hierarchy of
coherent vortices the energy spectrum becomes more steep
[4]. Experiments [9–12] to confirm the presence of the
inverse energy cascade, the direct enstrophy cascade, or
both cascades simultaneously are even more complicated.
This is due to the restriction to flows with intermediate or
low integral-scale Reynolds number (Re # 2000) in 2D
turbulence experiments in thin, magnetically forced, fluid
layers [9,10], or due to the lack of 2D incompressibility in
soap film experiments which is a consequence of thickness
fluctuations [11,12] (note that in the latter experiments
higher integral-scale Reynolds numbers can be achieved).
Despite the complications associated with soap film ex-
periments, Kellay et al. [11] were able to show evidence
for the presence of a direct enstrophy cascade in decaying
0031-9007�00�85(2)�306(4)$15.00
2D turbulence by means of homodyne photon correlation
spectroscopy and by optical fiber velocimetry. Recently,
Rutgers [12] measured the simultaneous presence of the
k25�3 and the k23 spectrum in forced 2D turbulence using
laser Doppler velocimetry. All experimental setups men-
tioned above disregard the role of (no-slip) boundaries.
Moreover, the arrangement of the experiments to measure
the spectrum is often not suitable to obtain 1D spectra
close to boundaries.

In this Letter we report new results of energy spectra for
decaying 2D turbulent flows in a square container with no-
slip walls. The numerical simulations of the 2D Navier-
Stokes equations on a bounded domain were performed
with a 2D dealiased Chebyshev pseudospectral method,
with a maximum of 513 Chebyshev modes in each direc-
tion for Re � 20 000 (361 modes for Re � 10 000 and
257 modes for Re � 5000). The numerical computations
of decaying 2D Navier-Stokes turbulence with periodic
boundary conditions were carried out with a standard 2D
Fourier pseudospectral method with a maximum of 341 ac-
tive Fourier modes in each direction. In both cases neither
hyperviscosity nor any other artificial dissipation has been
used. The integral-scale Reynolds number of the flow is
defined as Re � UW�n with U the rms velocity of the
initial flow field, W the half-width of the container, and n

the kinematic viscosity of the fluid. Time has been made
dimensionless by W�U and vorticity by U�W . The ini-
tial microscale Reynolds number is defined as Remicr �
2 Re�v0, with v0 the (dimensionless) initial rms vortic-
ity. In our numerical experiments v0 � 38.0 6 0.5, thus
corresponding with Remicr � 263, 526, and 1052, respec-
tively. The time t is defined as t �

v0t
N , with t the di-

mensionless time and N2 the number of vortices present
in the initial flow field, and t � 1 corresponds approxi-
mately with the (initial) eddy turnover time.

The initial condition for the velocity field consists of 100
nearly equal-sized Gaussian vortices (thus N � 10). The
vortices have a dimensionless radius of 0.05 and a dimen-
sionless absolute vortex amplitude jvmaxj � 100. Half of
the vortices have positive circulation, and the other vor-
tices have negative circulation. The vortices are placed on
a regular lattice, initially well away from the boundaries,
© 2000 The American Physical Society
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with a random displacement of the vortex centers equal to
approximately 6% of the dimensionless lattice parameter
l, with l � 0.17. A smoothing function, similar to the
one employed in Ref. [13], has been used in order to en-
sure the no-slip condition exactly. The initial conditions
for the simulations with periodic boundary conditions are
the same.

The spectra discussed in this Letter are computed from
an ensemble average of 12 runs for Re � 5000, an en-
semble average of 8 runs for Re � 10 000, and from an
average of 2 runs for the simulations with Re � 20 000.

Figure 1 shows some snapshots of the vorticity distribu-
tion of decaying turbulence for Re � 20 000 in a container
with no-slip boundaries (Figs. 1a and 1b) and for the case
with periodic boundary conditions (Figs. 1c and 1d). It can
be concluded that already at early times in the flow evo-
lution strong vortex-wall interactions can be observed and
that huge amounts of small-scale vorticity are produced
near the no-slip walls.

A geometry with walls is no longer well approximated
as isotropic and homogeneous in nature and so the dimen-
sional arguments leading to the k25�3 and k23 slope lose
their validity and such spectra are not expected a priori.
One of the tools to understand the role of the boundaries
on the evolution of turbulence is by comparing the energy
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FIG. 1. Vorticity contour plots of the simulations with no-slip
(a),(b) and with periodic (c),(d) boundary conditions. The con-
tour level increment in units of v0 is (a) and (c) 0.5, (b) and
(d) 0.125.
spectra of the no-slip and the periodic cases. Essential for
this comparison is the use of an alternative approach to
measure the energy spectra. A straightforward procedure
is the computation of one-dimensional spectra. A 1D spec-
trum is obtained by considering the kinetic energy of the
flow

E�x, y, t� �
NX

n�0

NX
m�0

Ênm�t�Tn�x�Tm� y� , (1)

along the line x � xi or along the line y � yi . The Tn�x�,
with 0 # n # N , are the Chebyshev polynomials of order
n, the Tm� y� are defined analogously, and the Ênm�t� rep-
resent the Chebyshev spectral coefficients of the kinetic
energy. The 1D spectrum Ŝn�t� is defined as an aver-
age of the symmetrically equivalent contributions along the
lines x � a, x � 2a, y � a, and y � 2a. The 1D spec-
trum of the contribution along the line x � a, denoted by
Ŝx�a,n�t�, is expressed as

Ŝx�a,n�t� �

É
NX

m�0

Êmn�t�Tm�a�

É
Dt

, (2)

where the subscript Dt states that the 1D spectrum is
averaged over the time interval �t 2 Dt, t� (for present
results we always used Dt � 2). The 1D spectrum
has thus the following form: Ŝn�t� �

1
4 �Ŝx�a,n�t� 1

Ŝx�2a,n�t� 1 Ŝy�a,n�t� 1 Ŝy�2a,n�t��. The 1D spectra
for the simulations with periodic boundary conditions are
computed in a similar way.

In Fig. 2a we have plotted the ensemble average of
Ŝn�t� for Re � 10 000 at t � 2. Both the runs with no-
slip and the runs with periodic boundary conditions show
a k23 spectrum. Note that a k2n Fourier spectrum results
in the same power law Chebyshev spectrum; a direct com-
parison of Fourier spectra with Chebyshev spectra is thus
allowed. From the spectra shown in Fig. 2a it is clear
that in a few eddy turnover times, small enough so that
the presence of boundaries is negligible yet, the exponen-
tial tail of the spectrum, associated with the initial flow
field consisting of many Gaussian vortices, is modified
into a k23 spectrum. Similar spectra are observed for
Re � 5000 and 20 000. In Figs. 2b–2d several averaged
spectra for the runs with Re � 20 000 are shown for differ-
ent locations a and times t: a � 0.00 and t � 4 (Fig. 2b),
a � 0.95 and t � 4 (Fig. 2c), and finally a � 0.95 and
t � 8 (Fig. 2d). Each separate plot shows the averaged
1D spectrum for the runs with no-slip (drawn line) and the
runs with periodic boundary (dashed line) conditions. A
clear k25�3 spectrum can be observed over the complete in-
ertial (see Figs. 2c and 2d) range which strongly deviates
from the “classical” spectrum as usually observed for 2D
decaying turbulence: the k23 slope, characteristic for the
direct enstrophy cascade, is absent. When moving from
the boundary to the center of the container we observe a
gradual steepening of the spectrum, but it is still consider-
ably less steep than the spectra of the associated runs with
periodic boundary conditions.
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FIG. 2. The 1D energy spectra for runs with no-slip walls and
with periodic boundary conditions (the steeper spectrum in the
inertial range). The best power law fits for the Chebyshev and
the Fourier spectra are represented by the drawn and dashed
lines, respectively.

In Figure 3 we have plotted the ensemble averaged
1D spectra, computed near the no-slip boundary (a �
0.95), for Re � 5000, 10 000, and 20 000. The inertial
range spectra all behave like k2n with n � 2.4 6 0.1,
1.9 6 0.1, and 1.7 6 0.1, respectively. It shows the grad-
ual disappearance of the direct enstrophy cascade when
the Reynolds number is increased. From this observation
one can conclude that the absence of the direct enstro-
phy cascade is not a low Reynolds number artifact. On
the contrary, the higher the Reynolds number, the more
the energy spectrum shows a k25�3 spectrum, underlin-
ing the role of the boundaries as a source of small-scale
vorticity. The corresponding inertial range spectra for the
runs with periodic boundary conditions behave like k2n
308
with n � 3.1 6 0.2, 3.0 6 0.2, and 2.8 6 0.2, respec-
tively, which differs considerably from the confined con-
tainer case. It should be mentioned that the spectra for the
runs with periodic boundary conditions do not behave like
pure power laws. The computed power law exponent n is
a best estimate; as a consequence slight variations around
the value n � 3 might be expected. The disappearance of
the direct enstrophy cascade near no-slip boundaries has
also consequences for the spectra measured at a � 0, al-
though not so striking. Estimates of the power law expo-
nents of the ensemble averaged 1D spectra are summarized
in Table I. It is clear that the spectra measured in the cen-
ter of the container with no-slip walls show inertial range
spectra with 2.1 # n # 2.5, and that a clear direct enstro-
phy cascade is absent.

The inverse cascade, for t , 10 observed up to the
smallest resolved scales, is actually a consequence of the
production of small-scale vorticity at the no-slip bound-
aries. The injection scale ki of small-scale vorticity ap-
pears to be associated with an average boundary-layer
thickness d�t� which is defined as the ratio between the
vorticity and the normal gradient of the vorticity at the
boundary. It is expected that d�t� grows in the course
of time. This is supported by the time evolution of the
spectra shown for t � 8, 20, 32, and 120 (from upper to
lower curve) in Fig. 4a which shows that for t $ 20 the
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FIG. 3. The 1D energy spectra as function of the wave number
for runs with no-slip boundaries. The steepest inertial range
spectrum corresponds to the run with Re � 5000 (n � 2.4).
The inertial range spectrum with n � 5�3 corresponds with the
Re � 20 000 run. The spectra are measured for t � 4 and at
position a � 0.95.
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TABLE I. Power law exponents n for runs with no-slip and
with periodic boundary conditions for different integral-scale
Reynolds numbers. The power law exponents are computed at
positions a � 0.00 and a � 0.95 for t � 4 and t � 8.

Re t a nno-slip nperiodic

20 000 4 0.95 1.7 2.8
0.00 2.1 2.7

8 0.95 1.8 2.9
0.00 2.2 3.0

10 000 4 0.95 1.9 3.0
0.00 2.4 3.0

8 0.95 1.9 3.0
0.00 2.5 3.0

5000 4 0.95 2.4 3.1
0.00 2.5 2.9

8 0.95 2.5 2.8
0.00 2.5 3.0

high wave number part of the k25�3 spectrum slowly trans-
forms into a k23 spectrum, i.e., the injection scale ki moves
to smaller wave numbers (or, equivalently, li ~ k21

i be-
comes larger) when the average boundary-layer thickness
increases. Note that all spectra shown in Fig. 4a reveal
a clear k25�3 slope for k , ki . The strong correlation
between the wavelength li corresponding to the location
of the kink in the spectrum and the average boundary-
layer thickness is obvious from the data shown in Fig. 4b.
Actually, the following relation is found: li�t� � 2d�t�
(for clearness we did not plot the data on top of each
other). The data displayed in Fig. 4b for Re � 20 000
is much more spiky than for Re � 10 000 and 5000 be-
cause only two runs were available for averaging. Note
that for t , 20 it is very difficult to observe a kink in the
spectrum: for t , 10 no kink is observed at all and for
t $ 10 the k25�3 slope tends to become slightly steeper
for large wave numbers. From t � 20 the position of the
kink can be determined with reasonable accuracy.

In conclusion, we have shown the absence of the
direct enstrophy cascade in 1D spectra computed near no-
slip walls during the initial decay stage (t , 20) of 2D
turbulence in a bounded domain for Re # 20 000. It is
conjectured that the direct enstrophy cascade also disap-
pears during the initial decay stage for simulations with
higher initial integral-scale Reynolds numbers. However,
numerical confirmation is not possible yet due to the large
amount of necessary CPU time on a Cray Y-MP C916 for
these high Reynolds number runs in domains with no-slip
walls. After approximately 20 initial eddy turnover times
the spectrum slowly evolves towards the form known from
forced 2D turbulence: a k25�3 slope for k , ki and a k23

slope for k . ki with ki the wave number associated
with the average boundary-layer thickness. At this wave
number small-scale vorticity is injected into the flow.
This observation for the late-time spectrum evolution
is nevertheless rather surprising because homogeneity
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FIG. 4. Time evolution of 1D spectra for runs with no-slip
walls (Re � 20 000) (a) and the growth of 2d�t� (drawn
lines) compared to the growth of li�t� (2 2 1 2 2 for
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and isotropy, necessary assumptions for the Kraichnan-
Batchelor theory of 2D turbulence, are absent for turbulent
flows in bounded domains.
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