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Chapter 1

Introduction

Modulation codes, the topic of this thesis, are one of the elements employed in a
digital communication system. We are all familiar with these highly efficient and
reliable means to transport information in time or in place, in the shape of, e.g.,
a CD-player, a computer, or possibly a modem or a fax. In this chapter, we are
interested in the principles that makes them work.

In Section 1.1 we position modulation and modulation codes within a digital
communication scheme. We first present the usual sender-channel-receiver model
for such systems and indicate the function of the other elements composing it:
analogue-to-digital conversion, data compression and error-protection.Here, we
will see that modulation codes function nearest to the channel and are designed
to ensure that the data-stream attains certain properties that are beneficial during
subsequent transmission or storage.

In separate subsections, we present a mathematician’s view on the other ele-
ments of the system while keeping a firm eye on the practical significance of the
discussion. In Section 1.2 we provide the necessary background on modulation
codes, as detailed as needed to understand and appreciate the other parts of this
thesis. This chapter ends with Section 1.3, where we present an overview of the
thesis.

We have tried to keep the presentation in this introductory chapter as simple
as possible. The only strict prerequisites are a working knowledge of elementary
calculus. At a few places, some familiarity with vectors and matrices is also
required. The material in Subsection 1.2.4, by far the most difficult part of this
introduction, is important but need only be skimmed to understand most of what
comes after it.

The subsequent six chapters consist of work that has previously appeared (or
will appear, in the case of Chapter 7) in international journals. We have used
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Figure 1: Schematical form of a digital communication system.

the occasion to correct some minor mistakes in these papers, and we have also
added Appendix C to Chapter 4 and Appendix B to Chapter 5 in order to clarify
certain issues. We thank the IEEE organization for its permission to reproduce this
material here. For a detailed overview of these chapters we refer to Section 1.3.

At the end of the thesis we provide an index for Chapter 1; this may be useful,
e.g., to obtain information about concepts that the reader is assumed to be familiar
with in other chapters.

1.1 Digital communication

Present-day digital transmission or storage systems can be represented schemati-
cally as in Figure 1. Such a digital communication system is usually considered as
consisting of three parts, the sender, the receiver, and the channel, the communi-
cation pathway along which data can be transported, in some physical form, from
the sender to the receiver. Here, the sender may be separated from the receiver
either in place (transmission) or in time (storage). Due to the physical nature of
the channel, the transmitted signal that carries the information will be corrupted
by physical “noise” when it reaches the receiver. (Think of the effects of light-
ning during transmission, or damaged areas of a disk.) The task of the system is
to enable reliable communication even when this takes place over such a noisy
channel.

At the sender’s side, the analogue, physical input data (for example, the elec-
trical current obtained when sound is captured by a microphone) is first passed
through an A/D converter where it is translated into digital form. Here within
each time-slot, an interval of time of some fixed duration, the continuously vary-
ing physical data is approximated with the aid of a finite number of bits, quantums
of information each capable of holding either a “zero” or a “one”. Then this dig-
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ital source data, the stream of bits emitted by the A/D converter, is compressed,
an operation where we try to represent the same (or almost the same) information
with fewer bits. The resulting bit-stream is then protected against errors by means
of an error-correcting code or ECC. Here, some redundancy is introduced, that
is, (redundant) bits are added to the bit-stream; as a result the original data can
still be recovered even if some errors occur, i.e., if some bit-values are changed.
Finally, the bit-stream is modulated, prepared for “transmission over the channel”
in some physical form. In the case of transmission, the transmitted signal may
consist, e.g., of a sequence of constant-amplitude pulses of either A or —A units
in amplitude and 7 seconds in duration, modulated by some carrier wave; in the
case of storage, the sequence of bits may be represented, e.g., by a sequence of pits
and lands (CD-system for optical recording) or by successive regions of positive
or negative magnetization (magnetic recording).

For various technical and physical reasons, some signals have a much lower
probability than others to pass relatively unharmed through the channel. There-
fore, it can be beneficial to avoid transmission of bit-streams that result in such
signals. This can be achieved by employing a modulation code to transform the
bit-stream into a channel-bit-stream that is more suitable for transmission over the
channel. As was the case for error-correcting codes, this adaptation to the channel
necessarily leads to an increase of the number of bits in the bit-stream.

At the receiver’s side, the whole chain of events is reversed. First, the trans-
mitted channel bits are recovered as well as possible from their physical form, a
process called demodulation. At this stage, some of the channel bits will have
an incorrect value, that is, they may contain errors. Some systems also asso-
ciate reliability information with each recovered bit. Such information can be
beneficially employed in the subsequent data processing. Next, the resulting
channel-bit-stream is transformed back through the modulation code. Then the
error-correcting code is used to correct errors as much as possible, the data is de-
compressed, and restored to something (hopefully) resembling its original physi-
cal form by the D/A-converter.

We will now take some time to discuss these various parts of the system in
some detail. All of them are (at least in part) based on some mathematical ideas;
in our presentation we will concentrate on the mathematics that make them work.

1.1.1 A/D conversion

We will model the physical data at the sender’s input as a real-valued function F ()
of the time . For example, music can be described in physical terms as variations
in air-pressure. When captured by a microphone, these variations are translated
into variations in electrical current. This function F, the signal, can be thought
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of as a superposition of vibrations, each with a fixed frequency and time-varying
amplitude. (The composition of a signal can be investigated with a mathemati-
cal technique called Fourier analysis.) These signals are, or can be considered to
be, band-limited, that is, composed of vibrations within a finite range of frequen-
cies. (For example, our ears are insensitive to frequencies outside the range of
20Hz-20.000Hz.)

The digitization of such a band-limited signal starts with an operation called
sampling: at uniformly spaced time-instances nT;, n = 0, 1. ..., the signal value
is probed and only the values F(nT;), n = 0, 1, ..., are retained. Surprisingly,
if T, is chosen small enough, then no information is lost in this process. Indeed,
if fiax is the maximum frequency that occurs in the signal F, then I can be
reconstructed exactly from the samples F(nT;) provided that 7§ is not larger than
1/(2 fmax). This statement is called the Nyquist-Shannon sampling theorem [44],
[49].

To complete the digitization, the sample values are quantized, rounded off and
represented by a fixed number of bits. Here we lose some information about the
signal; the signal as reconstructed from the quantized samples will differ from the
actual signal. The difference, called the quantization noise, of course depends on
the number of bits available to represent each sample: the more bits, the smaller
this noise will be. As an example, in the (stereo) CD-system, each of the two
signals is sampled at a rate of 1/7; = 44100 times per second, and each of the
two samples is then quantized to 16 bits.

1.1.2 Data-compression

This part of the system (which is not present in all digital systems) tries to reduce
the amount of bits in the bit-stream by a process called source coding. If a source
(in our case the A/D-convertor) emits a data stream that contains redundancy, then
the data stream can be compressed by removing this redundancy. The concept of
redundancy is best illustrated by an example. Evidently, an English sentence can
be un ersto d eve if so e let ers are mi si g, which signifies that such sentences
contain redundancy. To start with, some letters occur more often than others.
The well-known Morse alphabet, which represent one of the first examples of the
practical use of source coding, profits from this fact by assigning a short code
(e.g., e— -) to frequently occurring letters and longer codes (e.g., q— — —-—) to
less frequent letters. Next, also some pairs of letters occur more often than others.
So, it might even be more profitable to encode pairs of letters.

The amount of information generated by a source is called its entropy; it is
measured in bits (binary digits) per source symbol. These notions were introduced
by Shannon in his classical paper [48]. As an example he investigated the entropy
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of (a source emitting sentences in) the English language and found an estimate
of about 1.3 bits per symbol. where the symbols are the 26 letters in the alphabet
together with the “space”. That is, an English text can be represented with an
average of about 1.3 bits per symbol; in other words, the average symbol in an
English sentence contains about 1.3 bits of information.

A particular way of representing sequences of source symbols emitted by a
source (such as the Morse alphabet mentioned above) is called a source code. The
entropy of a source tells us the maximum possible compression rate, the maximum
number of source symbols that can be represented by an average encoded bit of a
source code for that source.

As a simple example, consider a source that emits four possible symbols “a”,
“b”, “¢”, and “d”, where at each instant the probability that a particular one of
these symbols is emitted next is 1/2, 1/4, 1/8, and 1/8, respectively. We could
of course represent the four symbols by two bits each, as “00”, 017, “10”, and

TP

“117, respectively. Since each emitted symbol is either an “a” or not, with both
events equally probable, it seems reasonable to suppose that the symbol “a” rep-
resents one bit of information. Similarly, each event out of four possibilities can
be represented with two bits. If each of these events occurs with equal probability,
it seems that each of them represents two bits of information. So we should think
of the symbol “b” as representing two bits of information. A similar reasoning
leads to the conclusion that each of the letters “c” and “d” represent three bits of
information. By a simple calculation we now find that the entropy, the average
amount of information per symbol, equals 1.75 bits per symbol. According to
this calculation, it should be possible to represent a stream of letters emitted by
this source by an average of only 1.75 bits per symbol, instead of with two bits as
proposed earlier. This is indeed possible: encode the letters as

a — 0, b — 10, ¢ — 110, d — 111.

Now each symbol is represented with the “correct” number of bits. Moreover, it 18
not difficult to see that a stream of bits resulting from the encoding of a sequence
of letters can always be broken up into a sequence of encodings of symbols in one
and only one way (essentially, this is because the four “codewords” 0, 10, 110,
and 111 have the property that no one is the beginning of another one, that is, they
form a prefix code). Therefore, the original sequence can be exactly recovered
from the encoded sequence. As a consequence, distinct sequences have distinct
encodings, which is of course a requirement for any alternative representation of
source sequences.

So far, we have considered lossless source coding, that is, we required that the
original source output can be recovered exactly from its encoding. For some ap-
plications, this requirement is too strict. For example, consider the case where the
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source emits video data (digitized pictures). Here, a slight degradation in picture-
quality may well be acceptable. In such a case, it is sufficient that a sufficiently
close approximation of the original can be recovered. If the encoding has this
property, then we speak of lossy source coding. The mathematical framework
for this case is called rate-distortion theory. This theory tells us, under certain
assumptions about the source and the distortion measure, what is the highest pos-
sible rate at which such a source may be encoded, given any maximum on the
acceptable distortion. Unfortunately, practical sources tend not to satisfy these as-
sumptions, but nevertheless a result as this can still give strong indications about
what rates should be possible for such sources.

1.1.3 Protection against errors; error-correcting codes

When information in the form of a sequence of bits of a given length is sent over a
noisy channel, then upon reception certain of the bits will have attained the wrong
value; the sequence will contain errors. This raises the problem of how to enable
reliable transmission over such a channel.

The problem can be understood as follows. If two transmitted sequences are
almost equal, then the channel can easily transform one into the other; in other
words, the receiver cannot very well distinguish between corrupted versions of
such sequences. Therefore, we need to ensure that different transmitted sequences
are very different, or, as we say, we need to to create a sufficient amount of dis-
tance between transmitted sequences. A common method to do so is by the inser-
tion into the bit-stream of parity-check-bits, bits that hold the parity of the number
of “ones” among bits in certain given positions. An error-correcting code consists
of a collection of rules how to generate these parity-check-bits and where to insert
them, the encoding rules, together with the procedure to be used at the receiver’s
side to handle the received sequence, i.e., how to detect and/or correct the errors,
the decoding rules.

The fraction R of original bits or information bits in the resulting sequence is
called the rate of the code; the quantity 1 — R is termed its redundancy. So the
fewer bits are added, the higher the rate. The redundancy of a code reflects the
price that has to be paid for its error-protecting capabilities.

We can think of the decoding of a given received sequence as looking among
all possibly transmitted sequences for the one that has the highest probability of
having been sent (maximum-likelihood decoding). These probabilities of course
depend on how the channel acts on the transmitted sequences.

In digital communication, an often-used channel-model is that of a binary
symmetric memoryless channel (BSMC): here we assume that each separate bit
has a fixed probability p < 1/2 of being in error. In this model, the probability
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that a certain sequence was sent, given the received sequence, only depends on the
Hamming distance of this sequence to the received sequence, where the distance is
measured by the number of bit-positions in which these sequences differ. (Having
a few errors is more probable than having a great many of them.)

The number C = C(p) = —plog, p—(1—p)log,(1 — p) is called the capac-
ity of the channel. (Unless specified otherwise, all logarithms will be to the base
2.) One of the highlights of information theory, the mathematical theory of digi-
tal communication, is a theorem obtained by Shannon in his landmark paper [48]
which states that reliable communication over a BSMC is possible at any coding
rate R < C. (A more precise statement is that for any given rate R < C and any
arbitrarily small number € > 0, there exist codes of rate R with the property that
the word-error-probability after decoding is at most equal to €.) Remark that the
way to achieve this is not simply to repeat each information bit a number of times!

The above theoretical result only holds “on the long run”, that is when the
number of transmitted bits gets larger and larger. (Obviously not much can be
achieved if we only wish to transmit, e.g., a single bit.) Fortunately the result
still approximately holds when the number of bits is very large but fixed. A more
serious problem is that no one knows how to construct such codes! (Facts such
as this, together with the almost religious admiration for Shannon amongst many
theoreticians, may explain why some of the more practice-oriented people do not
have a high regard of information theory as a practical science.) Indeed, although
in fact Shannon showed that “almost every” code at the right rate has the desired
property, surprisingly all known constructed codes are much worse than what ac-
cording to theory should be achievable. (Recently, some progress in this direction
has occurred with the invention of a class of codes called turbo codes [6]; for an
recent overview, see [5].) Although no codes fulfilling the promises of Shannon’s
theorem are known, many families of codes have been constructed that enable
reliable communication at a reasonable rate. Among the codes that have found
practical use, we may distinguish two types: convolutional codes and block-codes.

Block-codes operate on sequences of a fixed length k, and transform each
such sequence into a codeword of a fixed length n by adding n — k parity-check-
bits. (So the rate of the code equals k/n.) When such codes are used to transmit
long sequences, the sequence is first grouped into words of length & and is then
transformed by the code into a sequence of n-bit codewords.

An important parameter of a block-code is its minimum distance, the mini-
mum Hamming distance between any two different code sequences. A code with
minimum distance d is capable of correcting e = |(d —1)/2] errors per codeword.
That is, assuming that a received word contains ar most e errors, it is possible to
recover the original codeword. To see this, we first note that any received word
that contains fewer than d/2 errors has Hamming distance less than d/2 to the
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originally transmitted codeword, but all other codewords, being at Hamming dis-
tance at least d to this codeword, have Hamming distance at least d/2 to this
word. (Think of such received words as being contained in a “sphere” with radius
e < d/2 centered around the originally transmitted codeword. As the centers of
all such spheres are at Hamming distance at least d, these spheres are all disjoint
and any word can be contained in at most one of them.) Hence the decoding rule
“decode a received word into the (unique) codeword at Hamming distance at most
e if such a codeword exists, and give up otherwise” does what is required. This
decoding procedure is called bounded-distance decoding. A code that can correct
e errors when using bounded-distance decoding is called an e-error-correcting
code.

Bounded-distance decoding can only be practical if a received word can be
decoded without needing to inspect all codewords to see which of them is closest
to the received word. For example, a code with rate 3/4 and codeword length n =
256 (so with k = 192) contains 2'°? ~ 10°® codewords. Obviously, in practical
applications inspection of even a fraction of these codewords is impossible. For-
tunately, many good codes have by design a rich algebraic structure that makes it
possible to implement bounded-distance decoding in a much simpler way; instead
of by inspection of all codewords a received word can be decoded by computation
of the closest codeword by means of algebraic operations.

The correction power of an e-error-correcting code with word-length n can be
measured by the fraction e/n of correctable errors per codeword. Unfortunately,
for a given rate and given value of e¢/n, the decoding complexity of these codes
becomes prohibitively large for large codeword lengths n. A method, often used
in practical applications, to obtain good, long codes that can still be efficiently
decoded from shorter such codes is a construct called product codes. We may
think of a codeword in a product code as an array in which each row is a codeword
from some given code called the row code and each column is a codeword from
another given code called the column code. (Mostly we assume that both the
row- and column code can be efficiently decoded by bounded-distance decoding.)
Product-codes are examples of a class of codes called cooperating codes [52].

A product code can be efficiently decoded by a procedure where first each
of the columns of a codeword is decoded using the decoding procedure for the
column code, and subsequently each row is decoded using the decoding procedure
for the row code. (This is a typical example of an engineering principle called
“divide and conquer”.) Here the row-code may be considered as providing an
additional check on the bits of consecutive column codewords.

Although product codes have a (much) smaller minimum distance than codes
of the same length obtained by other means, such codes when used in combina-
tion with the above efficient decoding procedure perform very well with respect
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to the only criterion that really matters in practical applications, namely the bit-
error-probability after decoding. Indeed, with respect to practical applications,
the importance of the minimum distance of a code is often over-estimated. We
illustrate this point with the following, admittedly somewhat extreme example.
Consider a code obtained from a code with minimum distance d by replacing
one codeword of this code by a word at distance one to some other codeword.
The resulting code has minimum distance one, but if we would use this code in
practice then we would note no appreciable difference in performance in compar-
ison with the original code, simply since the probability of transmitting one of the
two words that are close together is neglectably small. (Also, bounded-distance
decoding does not achieve channel-capacity, see [56] or [12].)

Convolutional codes are codes operating on potentially infinite bit-sequences.
The main difference with block-codes of concern here is in the way that such
codes are decoded. An e-error-correcting block-code typically is decoded by
bounded-distance decoding. As a consequence, if more than e errors are present
the decoder gives up or, much worse, finds a closest codeword different from the
. codeword originally sent; note that such a miscorrection will always lead to the
introduction of (many) additional errors. So in that case decoding does not help,
but instead makes things even worse. In contrast, a convolutional code is suitable
for decoding by a procedure that approximates maximum-likelihood decoding and
(therefore) does not suffer from such bad behaviour. The Viterbi decoder which
implements this decoding procedure will produce an encoded sequence in which
the bit-error-probability will certainly be lower than that of the channel (assuming
a “reasonable” choice for the convolutional code has been made). Therefore, in
practical applications, convolutional codes can be profitably used even for a bad
channel, i.e., when the bit-error-probability p of the channel is relatively large,
while block-codes are more suitable for use when the channel is good, typically
for values of p up to 1073,

The reason for this particular upper bound on p can be understood as follows.
Fix the encoding rate R. When an e-error-correcting block-code with codeword
length n and rate R is used on a BSMC with error-probability p, then a received
codeword will contain on average pn errors. Therefore such a code can be prof-
itably used only when pn is (much) smaller than e, that is, when p is (much)
smaller than e/n. Even when the number e¢/n can be made larger than p, this
may require the use of codes for which both ¢ and the codeword length » are very
large, which in turn requires the use of decoders of a large complexity. When
we now consider the available codes for practical values of the code rate and the
codeword length we are lead to roughly the above bound on p. (The above reason-
ing at least partly explains the interest among engineers in long good block-codes
such as algebraic-geometry codes for which decoding procedures of reasonable
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complexity are now being developed.)

Often, on a bad channel, a combination of a convolutional- and block-code
is used. Here a convolutional code is used closest to the channel to somewhat
improve the bit-error-probability. The combination of the convolutional code and
the channel may then be considered as a new, good channel (sometimes called the
em super-channel) for which a block-code can profitably be be used. Here we see
another example of cooperating codes.

In practice, most channels do not behave like a BSMC. Due to various physical
causes such as lightning during transmission or damaged areas on disk, practical
channels suffer from temporary degradations and therefore errors tend to be clus-
tered together in bursts, where a burst is a sequence of consecutive unreliable bits,
1.e., bits that are in error with high probability. The number of consecutive unreli-
able bits is called the length of the burst. We refer to a channel where a mixture of
“incidental” errors (such as on the BSMC) and bursts occur as a bursty channel.
To combat burst, basically three type of measures are taken, all of which aim to
make the practical, bursty channel look more like a BSMC.

The first type of measure is to use symbol-error-correcting codes. Codewords
of such a code are best considered as being composed not of bits but of symbols,
where each symbol consists of a fixed number of consecutive bits. The number m
of bits in a symbol is called the symbol-size of the code. These codes are designed
for the correction of a certain number ¢ of erroneous symbols or symbol-errors per
codeword; here it makes no difference whether a single bit or every bit within a
symbol is in error.

A symbol-error-correcting code has the disadvantage that a single bit-error
now destroys an entire symbol of the code. However, on a bursty channel this
disadvantage is outweighed by the advantage that now a burst of length b only
affects approximately b/m symbols. A well-known example of symbol-error-
correcting codes are the Reed-Solomon (RS) codes. These codes have found wide-
spread use in digital communication systems. For example, RS codes based on
8-bit symbols are employed in every CD-system,

The second type of measure to combat burst is to apply inferleaving. Here
we aim at “smearing out” the bits in a burst over several codewords. Basically,
instead of placing codewords one after the other, we now interweave groups of
codewords before transmission.

The third type of measure is to use product codes (or product-like codes) in
combination with an arrangement where the columns of a product-codeword ap-
pear as consecutive words in the bit-stream. In such an arrangement a burst will
affect relatively few column-codewords, and will therefore cause only a few errors
in row-codewords checking these columns. In fact, many interleaving methods
may be considered as product codes without row-checks (i.e., with a row code of
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rate 1).

Altogether, the use of interleaving in combination with product codes based on
RS codes have lead to practical, highly performant error-correcting codes which,
for example, enable a CD-player to play high-quality sound from a disk even
when a small sector of the disk is literally cut out. For further literature on error-
correcting codes, we refer to the textbooks [40] and [39].

1.2 Modulation codes

1.2.1 Type of constraints; constrained systems

Modulation codes are employed to transform or encode arbitrary (binary) se-
quences into sequences that possess certain “desirable” properties. Note the dif-
ference with error-correcting codes introduced earlier: an error-correcting code is
used to ensure that pairs of encoded sequences have certain properties (namely
being “very different”), while a modulation code serves to ensure certain proper-
ties of each individual encoded sequence.

Which properties are desirable strongly depends on the particular storage- or
communication system for which the code is designed. For example, in most
digital magnetic or optical recording systems we want only to store sequences
that contain neither very short nor very long “runs” of successive zeroes or ones.
The technical reasons behind this requirement have to do with the way in which
a stored sequence is read back from the storage medium (disk or tape) and can
be explained briefly as follows. (A more detailed explanation can be found, e.g.,
in [42] or in [30].)

Digital recording systems mostly use saturation recording, where the storage
medium is magnetized in one of two opposite directions, one corresponding to
a “zero” and the other to a “one”. Each bit written on tape has a fixed length
(typically in the order of a few tens of xm in magnetic recording), which, due to
the constant speed of the reading head over the tape, translates to a fixed duration
in time.

The task of the reading head is to locate the transitions, the changes of the
direction of magnetization that correspond to a transition (0 — 1 or 1 — 0) in the
bit sequence. Commonly these transitions show up as a (positive or negative) peak
in the output signal of the reading head (“peak-detection”). This output signal, or
read signal as it is mostly called, is sampled at discrete time instants to determine
the presence or absense of a transition. In order to generate the proper sample mo-
ments, the device has to possess an internal “clock”™ that is matched to the length
of the bits. This clock is usually generated by a device called a phase-locked loop
(PLL). The PLL is driven by the read signal, and is adjusted, “corrected”, at each
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occurrence of a transition. By a long absence of a new transition the clock may
become too inaccurate (“clock-drift”), and may thus cause erroneous detection
of the transitions and/or a wrong count of the number of bits between successive
transitions. Therefore, we must avoid sequences containing long runs.

In reality, the output signal is not restricted to a single peak at the correspond-
ing sampling moment, but also shows up in the form of minor peaks at neigh-
bouring time instances. Therefore, if successive transitions are not sufficiently
spaced apart, the corresponding read signals may interfere with each other and
may cause a transition being missed or wrongly located, an effect called intersym-
bol interference (IS]). To avoid this problem, we need to ensure that transitions in
the bit sequence are sufficiently far apart, that is, we must also avoid sequences
containing short runs.

Constraints on the sequence to be written of the type discussed above are
referred to as run-length constraints. Traditionally, the precise constraints are de-
scribed in terms of two parameters d and k. A (d, k)-RLL sequence is a binary
sequence where the number of successive zeroes or ones is constrained to be be-
tween d + 1 and k 4+ 1. We often prefer to think directly in terms of the sequence
of transitions and non-transitions in a (d, k)-RLL sequence. This sequence can
easily be seen to be a (d, k)-constrained sequence, a sequence in which each two
successive symbols “1” are separated by at least d and at most k£ symbols “0”.
(Conversely, the two possible sequences for which a given (d, k)-constrained se-
quence is the sequence of transitions and non-transitions are both (d, k)-RLL se-
quences.)

Some digital magnetic recording systems utilize (d, k)-constrained sequences
in combination with equalization to further counteract intersymbol interference.
Usually, equalization is performed at the read side in order to improve the signal
shape at the detector. The reading head typically does not respond well to low-
and high-frequency signals, and many equalization methods boost up the resulting
high-frequency noise on the read signal. It can therefore be benificial to transfer
some of the offending part of the equalization to the write side, which is the idea
behind a method referred to as wrire equalization [50, 51]. In a typical embody-
ment of this method, the two-valued, constrained signal at the write side is first
passed through a digital recursive filter before being written on tape or disk. Of
course, this is only feasible if the output signal of the filter is again two-valued.
The question which filters have this property in the case that the input signal is
known to obey a (d, k) constraint is answered in [22] (see also [55]).

A run-length constraint forms an example of a constraint that is specified by
the absence in admissible sequences of a finite number of “forbidden patterns”.
(The patterns that are forbidden to occur in admissible sequences are usually re-
ferred to as “forbidden subwords”.) For example, the (d, k)-constraint can be
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specified in terms of the forbidden subwords
11,101, ..., 109711, 0.

(Here 0" is the usual notation for a string of r successive symbols “0”.) Such a
constraint is commonly referred to as a consrraint of finite type. Many constraints
that occur in practice are of this kind.

The constraints mentioned up to now have a natural formulation directly in
terms of the bits that make up the sequence. These are sometimes referred to
as time-domain constraints. Another type of constraints are the frequency do-
main constraints, where restrictions are enforced on the energy content per time
unit of the sequence at certain frequencies, that is, on the power spectral density
function of the sequence (see, e.g., [30]). Encoding for such constraints can be
thought of as spectral shaping. Most of these constraints belong to the family of
spectral null constraints, where the power density function of the sequence must
have a zero of a certain order at certain specific frequencies. Among these, the
constraint that specifies a zero at DC, the zero frequency, has significant practi-
cal applications. For example, this constraint is commonly employed in magnetic
recording since common magnetic recorders do not respond to low-frequency sig-
nals [30]. Sequences that satisfy this constraint are often referred to as DC-free or
DC-balanced sequences.

In our discussion of such spectral constraints, we will follow the literature and
represent the encoded bits by 1 and —1. A sequence xj, X2, ..., where each x;
takes a value £1, is called DC-free if its running digital sum (RDS)

RDSt:x1+"'xt

takes on only finitely many different values. In that case, the power spectral den-
sity function vanishes at the zero frequency (DC).

Of practical relevance is the notch width, the width of the region around the
zero frequency where the spectral density is low. A good measure of this width
[30] is the sum-variance of the sequence, the average value of the squared running
digital sums RDSIZ: the lower the sum-variance, the wider the notch.

One usual way to ensure a low sum-variance is to constrain the code sequences
to be N-balanced: we only allow sequences whose RDS take on values between
—N and N, for some fixed number N. Note that such a constraint cannot be
specified in terms of a finite collection of forbidden subwords, that is, it is not of
finite type.

As we have seen above, for technical reasons we may wish to put various
constraints on the sequences that are to be stored or sent over the channel. Se-
quences that satisfy our requirements are called constrained sequences and the
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collection of all constrained sequences is called the constrained system. A modu-
lation code for a given constrained system consists of an encoder to translate arbi-
trary sequences into constrained sequences, and a decoder to retrieve the original
sequence from the encoded sequence. The bits making up the original sequence
and the encoded sequence are usually referred to as source bits and channel bits,
respectively. The collection of all possible outputs of the encoder, i.e., the collec-
tion of all code sequences, is called the code system of the modulation code.

1.2.2 Coding rate and capacity

To achieve encoding, there is a price that has to be paid. Indeed, since there are,
obviously, more arbitrary sequences of a given length than there are constrained
sequences of the same length, the encoding process will necessarily lead to an
increase of the number of bits in the channel-bit-stream. This increase is measured
by a number called the rafe of the code. If, on the average, p source bits are
translated into g channel bits, then the rate R of the code is R = p/g. The
quantity 1 — R is called the redundancy of the code.

All other things equal, we would of course like our code to have the highest
possible rate (or, equivalently, the lowest possible redundancy). However, it turns
out that for all practical constraints there is a natural barrier for the code rate,
called the capacity of the constraint (or of the corresponding constrained system),
beyond which no encoding is possible. This discovery by Shannon [48] has been
of great theoretical and practical importance. Indeed, once we know the capac-
ity C of a given constrained system, then, on the one hand, we know that the best
encoding rate that could possibly be achieved is bounded from above by C, and,
on the other hand, once we have actually constructed a code with an encoding
rate R, the number R/C, called the efficiency of the code, serves as a benchmark
for our engineering achievement.

We will now try to explain the existence of this natural limit to the achievable
rate. At first, we will do so by means of a relatively simple example. To this end,
we consider the constrained system consisting of all sequences that do not contain
two consecutive symbols “0”, that is, we consider (0, 1)-constrained sequences.
For reasons that will become clear later on, we will refer to this constrained system
as the Fibonacci system.

It turns out that the number N,, of those sequences of length n, and in particular
their growth rate for large n, is of crucial importance. Let us now explain why this
is so. To that end, suppose that we can encode at a rate R. By the definition of the
rate, this means that, in the long run (i.e., for large n), approximately Rn source
bits are translated into # channel bits. There are 2% distinct source sequences of
length Rn, all of which need to be translated into distinct constrained sequences
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of length n, of which there are only N,. Therefore, we necessarily have that
2R" < N, or, equivalently, that R < n~!log N,,.

For small lengths n, the number N, is easily found by listing all admissible
sequences of these lengths. For example, we have that Ny = 2 (both “0” and
“1” are admissible), Ny = 3 (“017, “10”, and “117), and N3 = 5 (“010”, “0117,
_ 1017, 1107, and “111”). Furthermore, we have that

Nn =Nn—1 +Nn—2, (1)

for all n > 3. This can be understood as follows. Let N,,(0) and N, (1) denote the
number of admissible sequences of length r beginning with a “0” or a “1”, respec-
tively. Obviously, N, = N,(0) 4+ N, (1). If an admissible sequence begins with a
“17, then it consists of a “1” followed by some admissible sequence of lengthn—1.
Since, conversely, any sequence of length n obtained from an admissible sequence
of length n — 1 by putting a “1” in front of it is admissible, we conclude that in
fact N, (1) = N,_,. Similarly, if an admissible sequence begins with a “0”, then
the first two symbols must be “01” (since “00” is forbidden), hence it consists
of the word “01” followed by an admissible sequence of length n — 2. Again,
any sequence thus obtained is admissible, and we conclude that N,(0) = N,_».
Summarizing, we find that N, = N,,(1) + N,,(0) = N, + N,—3.

The recurrence relation (1) for the numbers N,, which identify them as the
Fibonacci numbers, allows us to compute as many of them as we like, and, more-
over, enables us to determine their growth rate. Indeed, the mathematical theory
of such recurrence relations states that the solution exhibits exponential growth.
In our particular case, this means that N, can be approximated as A", for some
real number A. If true, then (1) suggests that A" = A"~! + A"~2 holds for all n,
which is the case if and only if

A =Aa+1 @
This quadratic equation for A has the two solutions ¢ and 8, where
d=(1+~5/2,  6=(—-+5)2. 3)

Observe that since ¢ and 6 both satisfy the equation (2), any sequence of num-
bers N, with
N, = a¢™ + bo",

for some fixed numbers a and b, indeed satisfies the recurrence relation (1). Then
a proper choice for the numbers a and b can ensure that both N; and N> have the
required value. In the case at hand, it can be shown that

Nn — ¢n~l _'_en—l.
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Since ¢ > |0, we have that N,, &~ ¢"~!, and hence that

log N,

&

lim
n—>00 n

= log¢. 4)

(Here the function “log” refers to the logarithm with base 2.)
This last expression enables us to establish an upper bound for the coding rate
of our constraint. Indeed, from (4), it follows that

R =C,
where
C =log¢ =0.6942 - ..

is the capacity of our constraint.

1.2.3 The capacity of constraints of finite type

Consider a constrained system £. As in the example above, we let N,, denote the
number of constrained sequences of length n. We now define the capacity C(L)
of the constrained system £ as
log N,
C(L) = lim —227 )

n—o0 n

provided that this limit exists. Intuitively, this quantity represents the average
amount of information (in bits) carried by a bit of a constrained sequence. Now a
similar reasoning as in the above example shows that encoding at arate R can only
be possible it R < C(L) and, moreover, it suggests the possibility of encoding at
rates arbitrarily close to C(£).

What is less clear 1s whether this limit exists and how it could be computed.
Obviously. if the constrained system consists of some arbitrary collection of se-
quences, nothing much can be said, so let us restrict our attention to the more
structured type of constrained systems as encountered in practical applications.
To keep things simple and to help our intuition as much as possible, we will at
first only consider constrained systems of finite type. Recall that such a system
is described in terms of a finite collection of “forbidden subwords”. (For exam-
ple, the Fibonacci system discussed earlier is specified by the forbidden subword
“00”.) So let us assume that our constrained system £ is spectfied by the finite
collection F of forbidden subwords, and suppose that all words (patterns) in F
consist of at most m + 1 bits, that is, have length at most m + 1, for some in-
teger m. (For the Fibonacci system, we have m = 1.) By the way, note that
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o
1

Figure 2: A presentation of the Fibonacci system.

we might as well assume that all words in F have length m + 1. Indeed, for-
bidding, e.g., the word 000 is (almost) equivalent to forbidding the four words
00000, 00001, 00010, and 00011. (This makes a difference only at the end of a
sequence, but does not change the behaviour of nt log N,, forn — o0.)

We are interested in how a given constrained sequence can be extended to
a longer constrained sequence. Since all forbidden subwords have a length at
most m + 1, to answer this question we need only to know the last m bits of our
sequence. These last m bits carry all the necessary information and are referred
to as the (terminal) state of the sequence. If we know the state of our sequence,
we know both how it can be extended and the state of the extended sequence
that is obtained. Indeed, we could imagine the generation of a long constrained
sequence as a process where we move from state to state and generate a new bit
by each transition from a state to the next state. This is a crucial image which the
reader should keep in mind for what follows.

In fact we have now rediscovered an alternative description of a constrain-
ed system of finite type in terms of a (labeled directed) graph. Here, a graph
G = (V, A) consists of a collection V of vertices or states, and a collection A
of labeled arcs or transitions between states. We will write beg(«) and end(«) to
denote the initial state and the rerminal state of the transition ¢. Some authors
refer to a “labeled directed graph™ as defined above as a finite-state transition
diagram or FSTD. The constrained system L£(G) presented by G consists of all
sequences that can be obtained by reading off the labels of a path in the graph,
or, as we will say, the sequences that are generated by paths in G. (Instead of the
word “path”, some authors use the word walk.)

For example, the graph presenting the Fibonacci system is depicted in Fig-
ure 2. It has two states, 0 and 1, and three transitions. a transition from state 1 to
state 1 with label 1, a transition from state 1 to state 0 with label 0, and a tran-
sition from state O to state 1 with label 1. (There is no transition from state 0 to
state 0, since that would allow the generation of a sequence containing the for-
bidden word 00.) More general, a (d, k)-constrained system can be presented by
the graph in Figure 3. Here, we follow common practice in that the state label
indicates the number of trailing zeroes of the corresponding terminal state.
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Figure 3: Presentation of a (d, k)-constrained system.

Let us now see how such a presentation allows us to determine the number
of constrained sequences of a given length. We can consider such a sequence to
consist of the first m bits, referred to as the initial state of the sequence, followed
by the bits generated by the path that has as its states the consecutive m-bit sub-
words of the sequence. Note also that different paths in the graph from the same
initial state generate different sequences. Therefore, if for n > m we let N,(s)
denote the number of constrained sequences of length n with initial state s, then
for n > m + 1 these numbers satisfy the recurrence relation

Nu(s) =) Nyp-1(end(@)), ©)

where the sum is over all transitions « with beg(a) = s. For example, for the
Fibonacci system, we obtain that

Nn(o) = Nn—l(l)

and
Nn(l) = Nn—l(o) + Nn—](l)

for n > 2, from which the recurrence relation (1) was obtained.

As in the case of the Fibonacci system, the mathematical theory of the type
of recurrence relations (6) shows that the number N,, = ZS N, (s) of constrained
sequences of length n exhibits exponential growth, but in this case the theory is
much more involved. Since the underlying ideas are crucial not only for capacity
computations, but also for a good understanding of the field of code construction
as a whole, we will nevertheless go somewhat more into details.

It turns out that, at least for the graphs derived from finite-type constraints as
explained above, all information concerning the numbers N, (s) can be obtained
from what is called the adjacency matrix of the graph. Here, the adjacency ma-
trix D of a graph G is a square array of non-negative numbers, with both rows
and columns indexed by the states of G, where the number D(s. t) in the sth
row and tth column counts the number of transitions in G from state s to state .
Readers familiar with matrix theory will have no difficulty verifying that then the
(s, t)-entry of the nth power D" of D in fact equals the number of paths of length n
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in G from state s to state . So the sum of the entries in D" actually counts the
number of paths of length » in the graph.
We can use the adjacency matrix to investigate the recurrence relations (6)
as follows. Let 7" denote the number of paths in G of length n starting in s,
or, equivalently, the number of sequences generated by such paths, and let 7
denote the vector with as its entries the numbers ns(”). As we observed earlier, we
have that
Na(s)y = "™, (7

hence from (6) we obtain that
7™ = Dgb, (8)

for all n > 1. (By the way, it is also easy to see directly that this recurrence
relation holds.) Note that, as a consequence of (7) and an earlier observation,
the number N, actually grows like the sum of the entries of powers D" of the
adjacency matrix D! Using the relation (8) repeatedly, we can express the vectors
7™, n > m, in terms of the vector 7 ™ as

™ = pr=mgm, 9)

At this point, we need a result from the classical Perron-Frobenius theory for
non-negative matrices (note that our adjacency matrix D is of this type). The said
result states that the largest real (“Perron-Frobenius™) eigenvalue A = Ap of D
has the property that the matrices (A~ !D)" tend to a limit if n tends to infinity,
see e.g. [47], [43]. Now divide both sides of the equation (9) by A", let n tend to
infinity, and then use this result. If we do so, we find that for n — oo the vectors
17" ™ tend to some limit vector . Hence there are (non-negative) constants 7y,
s € V, such that

lim N,(s)/A" = 7.
n—00

(In fact, using (8) it can be shown that the vector 7 is a right-eigenvector of the
matrix D, that is, Aw = Dz.) This result is just what is needed, and implies that
the capacity C(£) of the constrained system L£(G) presented by G is given by

C(£) = lim

n—oo

log N =logAp.

n
This expression enables us to actually calculate the capacity of any given con-
strained system of finite type. Indeed, the Perron-Frobenius eigenvalue can be
computed, e.g., as the largest real zero of the characteristic polynomial xp(h) =
det(Al — D) of the matrix.
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For example, in the case of the Fibonacci system discussed earlier, the adja-
cency matrix D of the graph in Figure 2 that presents this system is

and again we find that the capacityjequals log ¢ with ¢ as in (3).

1.2.4 Sofic systems and their capacity

Up to now we have limited the dlscussion of capacity to constrained systems of
finite type. Fortunately, most of !,that has been said can be extended to a much
wider class of constrained systenjs. The key to the capacity result in the previous
section was the presentation of 2}’ constraint of finite type by means of a labeled
directed graph constructed from fhe forbidden words, and the correspondence be-
tween words in the constrained éystem and paths in this graph.

This observation motivates tﬂw introduction of sofic systems, constrained sys-
tems that can be presented by fsome finite labeled directed graph. Indeed, it is
possible to compute the capacity of a general sofic system by a method similar
to the one discussed for systers of finite type, but there are some complications.
Before we explain this method(and the reason for the complications), we discuss
sofic systems in more detail.

Sofic systems are of great theoretical and practical importance. It turns out that
about every constrained system encountered in practical applications is in fact a
sofic system. (This is less rem”arkable than it seems once we realize that about any
digital device that we build isi,' actually a finite-state device, whose possible output
sequences necessarily constitute some sofic system.)’

In the previous section, v'{ie have shown that each constrained system of finite
type is in fact a sofic systemf' and we have seen how to obtain such a presentation
given the collection of its forbidden subwords. However, as we will see later on,
many (In fact “almost all”){sofic systems are not of this special type. the even
system, which consists of all sequences where two successive symbols “1” are
separated by an even numbfer of symbols “0”, is sofic but not of finite type. (The

"The theoretical importance of sofic systems, and the original reason that motivated Weiss [54]
to investigate them, is the fact that the class of sofic systems is the smallest class that contains the
systems of finite type and is cloged under factor maps, maps that can be realized as a sliding-block
decoder. Sliding-block decoders are discussed in Subsection 1.2.6.
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Figure 4: Two presentations of the full system.

forbidden subwords are precisely the words of the form 10%"*'1 with n > 0.)
We leave it to the reader to find a presentation of this sofic system. (Hint: there
are two “ending-conditions” of a constrained sequence, namely ending in an even
(possibly null) or in an odd number of zeroes.)

It is important to realize that a given sofic system has many different presen-
tations. (Indeed, several code construction methods actually amount to finding a
“suitable” presentation.) For example, the full system consisting of all binary se-
quences can be presented by both graphs in Figure 4 (and by infinitely other ones).
Fortunately, it can be shown constructively that each sofic system has a unique
minimal deterministic presentation, called the Fisher cover or the Shannon cover
of the system. That is, among all deterministic presentations, presentations where
in each state the outgoing transitions from that state carry distinct labels, there is
a unique one with the minimal number of states.

The Fisher cover of a sofic system is important: it can be constructed from
any presentation of the sofic system; moreover, many properties of a sofic system
can be read off directly from its Fisher cover. (We will mention one such property
later in this section.)

To explain how the Fisher cover can be obtained, we first have to discuss
an important means to reduce the number of states in a presentation, an operation
called state merging. This works as follows. Suppose that the outgoing transitions
in two given states can be paired off in such a way that the two transitions in each
of the pairs carry the same label and end in the same state. Then these states
have the same follower set, where the follower set of a state is the collection of
sequences that can be generated by paths leaving this state. So from the point-of-
view of sequence generation, these two states accomplish the same, hence they can
as well be combined, or merged as it is usually called, into a single state. (Note
that if the original presentation is deterministic, then the resulting presentation
will again be deterministic.)
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To construct the Fisher cover from a given presentation, we proceed as fol-
fows. First, we transform the presentation into one that is deterministic. This
can be achieved, e.g., by using a variant of the well-known subset construction
for finite automata (see for example|[28], [29]), or by state-splitting (see Sub-
section 1.2.8). Then we reduce the fqumber of states in the presentation by state
merging. This process of merging states is repeated until no further merging is
possible. It can be shown that the resulting presentation, the Fisher cover, does
not depend on the order in which thejmerging was carried out, and that, moreover,
no deterministic presentation of the system can have fewer states; moreover, such
a presentation must be equal to the Fisher cover if it has the same number of states.
(For further details on this construction, we refer to [38].)

Readers familiar with automata jheory will recognize the parallel with regular
languages, the class of languages generated by finite automata. Here also, a given
regular language can be generated 'bt many different finite automata among which
there is a unique minimal deterministic one. In fact, the resemblance is more than
superficial; a sofic system is in fa(gt a regular language, and the construction of
the Fisher cover for a sofic system parallels the construction of its minimal finite
deterministic automaton. 2

Which sofic systems are constrained systems of finite type? (We simply refer
to such systems as “of finite type”lor “finite-type”.) To answer this natural ques-
tion, we first need to introduce a new notion. Let G be a presentation of a sofic
system L. This presentation is sdid to be of finite type if there are numbers m,
the memory, and a, the anzicipazibn, such that any two paths in G that generate
a given sequence in £ are equal, ith the possible exception of at most m initial
and a terminal transitions. That 14, given a (long) sequence in £, we can actually
reconstruct the path in G used to generate the sequence, up to a few transitions at
the beginning and the end of the jiath.?’

For example, the presentation of the Fibonacci system in Figure 2 is of finite
type, with memory m = 1 and anticipation a = 0. Indeed, a 0" is generated by
a unique transition, a “1” precede¢d by a “1” is necessarily generated by the loop,
and a *“1” preceded by a “0” is ne(cessan'ly generated by the transition from state 0
to state 1. For another example, in Figure 4, the upper presentation of the full
system is of finite type, with memory 0 and anticipation 0. The lower presentation

ZFor more information on the Cannei tions between autornata theory and symbolic dynamics, the
field to which sofic systems belong, wej refer to [3].

3The labeling map from bi-infinite|paths to bi-infinite sequences induced by the labeling of a
given presentation is said to be of finitg type if the presentation itself is of finite type. In that case,
the induced map is easily seen to be ong-to-one, and its inverse is a factor map, i.e., the induced map
can be inverted by means of a slidingyblock decoder. This observation plays an important role in
various code construction methods that involve transformations of a given finite-type presentation.

|

|
|
|
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is not of finite type: the two loops (both labeled “17) give rise to arbitrarily long,
distinct paths that generate all-one sequences.

As shown by the last example, a given sofic system may have presentations
of finite type and other presentations that are not of finite type. Nevertheless, the
notion of a presentation of finite type is important. Indeed, we will now show that
a sofic system is of finite type if and only if it possesses some presentation that is
of finite type. This can be accomplished as follows.

1) We have already seen that a sofic system of finite type has a presentation
of finite type; indeed, in the presentation that we constructed, the states in the
path that generates a sequence are determined by the subwords of length m of the
sequence. So this presentation has memory m and anticipation a = 0 (i.e., it 18
deterministic).

2) Conversely, each presentation of finite type actually presents a system of
finite type. In fact, if the presentation has memory m and anticipation a, then the
corresponding sofic system can be described in terms of forbidden subwords of
length at most m + a + 2; the forbidden words are precisely the words of that
+ length that cannot be generated by a path in the graph. (Indeed, for any word
X = X_pm--X,n L, leta = alx_, - x,] denote the common transition ¢ in
all paths a_,, - - - «, that generate x. The crucial observation is that for any word
Xem - Xq+) In L, generated by «_,, - - - g1, say, the terminal state of oy =
ofx_,, - - - x4) and the initial state of &) = a{x_ 41 - - - x4+1] are equal. Hence, if
all subwords of size m +a + 2 of some bi-infinite sequence {x, },z are contained
in £, then this sequence is generated by the bi-infinite path {alx, . - Xpugllnez.
So whether or not a sequence is contained in £ is determined by its subwords of
length at most m + a + 2, that is, £ is of finite type.)

So we see that indeed a sofic system is of finite type precisely when some
presentation of the constraint is of finite type. At first, this characterization seems
not of much use for showing that a given sofic system is not of finite type. More-
over, even if the constraint has a presentation of finite type, it could well be next
to impossible to find one. Fortunately, this is not the case: it can be shown that
a sofic system is of finite type precisely when its Fisher cover is a presentation
of finite type (that is, has finite memory; since the Fisher cover is deterministic
by definition it has anticipation 0). Indeed, a given presentation of a constraint
can easily be transformed into a deterministic presentation for the same constraint
by state-splitting (this operation is explained in Subsection 1.2.8); this latter pre-
sentation is of finite type if and only if the original presentation is of finite type.
Moreover, it is not difficult to see that state-merging, and hence the construction
of the Fisher cover from a given deterministic presentation, preserves the property
of being of finite type. Then our claim immediately follows from the above result.

Now let us return to the problem of computing the capacity of a general sofic
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system, i.e., the evaluation of the limit in (5).* Let us recall how this was done
for systems of finite type. We first derived a (deterministic) presentation for the
system, and this gave us a recurrence relation for the numbers N, (s) of sequences
in the system with initial state s. Then we used the adjacency matrix D of the
graph to establish that the sum N, of these numbers grows like the number of paths
of length n n the graph, that is, as the sum of the entries of D". Since according
to Perron-Frobenius theory this sum grows exponentially in Ap, the largest real
eigenvalue of D, the same holds for N,,, which, according to the definition of the
capacity, establishes that the capacity equals log A p.

We can do the same thing for a general sofic system, using the adjacency
matrix of some presentation of the system, but there is a problem. As observed
earlier, the entry D" (s, 1) of the nth power D" of the matrix D actually counts the
number of paths of length n from state s to state  in the graph that presents the
system, and like before the sum of these entries, that is, the total number of paths
of length » in the graph, grows exponentially in A p.

However, it may well happen that many of these paths generate the same se-
quence, and if so it may well happen that the number of sequences of length n
is significantly smaller than the number of paths of that length, thus turning our
computations into “nonsense”. (For a most dramatic example, imagine that all
labels in the graph are equal to “0”. Then the sofic system presented by the graph
consists of the sequences ", n > 0, only, so the capacity is zero, but the Perron-
Frobenius eigenvalue of the corresponding adjacency matrix could be anything!)

By the way, note that this problem cannot occur if the presentation is of finite
type, but we have seen before that the only sofic systems possessing such a pre-
sentation are those of finite type! Fortunately, to avoid this problem it is sufficient
that the presentation is deterministic. (Note that the presentation for a constraint
of finite type as derived earlier is deterministic!) Indeed, in that case all paths of
length n that begin in a given state generate different sequences, and this is suf-
ficient to conclude that the exponential growth rate of the number of constrained
sequences of length # and the number of paths in the graph of length » are equal.

Summarizing the above, we conclude that the capacity of a sofic system pre-
sented by a given graph can be computed as follows. First, we construct a de-
terministic presentation for the system. This can be done by splitting states until

4The fact that this limit exists immediately follows from Feteke’s Lemma ([ 111, see also [46]): if
the non-negative numbers a, are such that a,,,, < a,,+a,.foralln, m > 0, thena* = lim, . a,/n
exists and a* < a,/n for all n. Indeed, if N, is the number of sequences of length n contained in a
subword-closed constrained system £, then obviously N,,,,, < N, N, hence an application of this
Lemma with a, = log N, shows that such constrained systems have a well-defined capacity. Note
that sofic systems are subword-closed; in fact, the sofic systems are precisely the subword-closed
regular languages.
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the resulting presentation is deterministic. We will discuss state-splitting later.
(We might even choose to construct the Fisher cover, an attractive choice since
it has the minimum possible number of states.) Then we establish the adjacency
matrix D of the deterministic graph thus obtained, compute its Perron-Frobenius
eigenvalue A p, and obtain the capacity C of the system as C = log Ap.

Sofic systems and their bi-infinite counterparts sofic shifts belong to the sub-
ject of symbolic dynamics. For more information on this subject and its relation
to coding theory we refer to [38] and [7]. The first of these is devoted to symbolic
dynamics and modulation codes, and the second one provides some background
on error-correcting codes and also contains a few chapters linking symbolic dy-
namics to coding theory, automata theory and system theory.

1.2.5 Encoding and encoders

An encoder for a given constrained system L is a device that transforms arbitrary
binary sequences of source bits into sequences contained in £. Commonly, the
- encoder is realized as a synchronous finite-state device. Such a device takes source
symbols, groups of p consecutive source bits, as its input, and translates these into
g-bit words called codewords, where the actual output depends on the input and
possibly on the internal state, the content of an internal memory, of the device.
(Note that since an actual hardware-realization of such a device can only contain
a finite amount of memory, the number of internal states is necessarily finite.)
The rate of such an encoder is then R = p/q. (To stress the individual values
of p and ¢ we sometimes speak of a “rate p — ¢” encoder.) Obviously, each
codeword must itself satisfy the given constraint. Moreover, the encoder needs
to ensure that the bit-stream made up of successive codewords produced by the
encoder also satisfies the constraint.

In the simplest case, the encoder translates each source symbol into a unique
corresponding codeword, according to some code table. Of course this will only
produce an admissible sequence if the concatenation of any number of these code-
words, in any order, also satisfies the given constraint. (Here, the concatenation of
two words a and b is the word ab consisting of the bits of the first word followed
by the bits of the second word.)

For an example, let us consider again the Fibonacci system, the collection
of (0, 1)-constrained sequences where the subword “00” is not allowed to occur
in the sequence. A possible encoder has p = 1 and g = 2 (so the rate of this code
will be R = 1/2), and translates the source symbol “0” into the codeword “10”
and the source symbol “1” into “11”. It is now easily seen that any succession of
the codewords “10” and “11” will indeed never contain the forbidden pattern “00”.
This simple code is called the Frequency Modulation (FM) or bi-phase code.
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Note that the original source sequence can easily be obtained from the en-
coded sequence, namely by dropping every other bit from the encoded sequence.
So decoding is possible. However, note also that, in practice, correct decoding re-
quires some sort of synchronization between encoder and decoder. Indeed, practi-
cal decoders dispose, at each time instant, of only a small part of the entire stream
of channel bits. Consequently, there are essentially two ways to group the avail-
able bits into codewords and the decoder needs to know which way to choose. We
will discuss synchronization later on.

Earlier we computed the capacity C of this constraint and we found that C =
0.6942 .. .. So the efficiency R/C of this code is approximately 0.72. So although
this code is very simple, its rate is far from optimal. It would be much better to
have a code rate of, say, 2/3, for an efficiency of about 0.96.

So let us try to devise, in a similar way, a code with p = 2 and ¢ = 3. The
available codewords of length three are

010, 011, 101, 110, 111,

since all other words of length three contain the forbidden pattern “00”. There
are four source symbols (namely 00, 01, 10, and 11), so we need to pick four
code words for our translation table. Unfortunately, whatever four codewords we
choose, among them there will always be one ending in a “0" and one beginning
with a “0”, and then these two cannot be concatenated without violating our con-
straint. We could use the same idea, but then with larger values of p and g for
which p/q = 2/3. In fact, a moment of reflection reveals that in order to succeed
we need a collection of 27 code words of length g, all of which begin with a “1”
(or, equivalently, all of which end with a “1””). The number N, (1) = N,_; of such
codewords can be computed from (1), and if we do so we find that the smallest p
and g that work are p = 12, ¢ = 18. But then our encoder would need a enor-
mous encoding table to memorize all translations, and would therefore require too
much hardware.

The previous code construction method can be considered as a simple example
of the principal-state method of Franaszek. Here, we search for a collection of
states, referred to as principal states, in a presentation of the constraint, with
the property that for each of these principal states there are “sufficiently many”
encoding paths beginning at this state and ending in another principal state. In
our case, the set of principal states consists of the single state “1”.

As this example shows, we need a more subtle approach to the design of effi-
cient codes which possess simple encoders. Nevertheless, the idea in this example
can be used to show that, for a given sofic system with capacity C, any encoding
rate R = p/q < C can be achieved, provided that we allow arbitrarily large val-
ues of p and g. However, to obtain simple, easy-to-build encoders. we need to
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keep p and g small. (Very recently, some progress has been made [34, 35] which
shows that, even if p and ¢ are large, systematic encoding may still be possible
by using a smart variant of enumerative encoding [8]. Nevertheless, this new ap-
proach has its own problems and the above statement that p and g should better
be small is a reasonable approximation of the truth.)

To do better, we need the encoder to base its encoding decision on more than
a single source symbol input alone. For example, consider again the design of a
rate-2/3 encoder for the Fibonacci system with p = 2 and g = 3. We will denote
the source symbols 00, 01, 10, and 11 by 0, 1, 2, and 3, respectively. Suppose that
the encoder tries to use the following simple encoding rule:

0— 011, 1 — 101, 2 — 110, 3— 111. (10)

This works fine except when the encoder input is a *“2” followed by a “0”, which
produces the word 110.011 in the encoder output. However, this problem can
be eliminated provided that we allow the encoder a “second stage” to modify its
initial outputs, by replacing, from left to right, each occurrence in the output of
the words 110.011 and 110.110 by the words 010.101 and 010.111, respectively.
(Here, the second substitution is required to avoid problems when the input se-
quence contains “2207.)

Note that decoding of this code is possible: the decoder decodes the codeword
010 into the source symbol “2”, and uses the rules (10) to decode the other code-
words, except when the previous codeword was 010, in which case 101 and 111
are decoded as “0” and “2”, respectively. This encoder can be realized as a finite-
state device that encodes with an encoding delay of one source symbol. (This
delay is needed to “look ahead” to the next source symbol.) The “state” of the
encoder memorizes the previous source symbol and whether or not a substitution
is in progress.

The above encoding method is sometimes called the substitution method. A
similar, but more complicated example of the substitution method is the rate-2/3
(1,7)-code in [36]. This method can be interpreted as a principal-state method
where we allow the encoding paths to have different lengths. In Subsection 1.2.8
we will discuss various other code construction methods. Some of these methods
are best understood as constructing look-ahead encoders for the constraint, an
alternative encoder description that will be discussed at that time.

1.2.6 Decoding and decoders

The use of the word “code” implies that it should be possible to recover or decode
the original sequence of p-bit source symbols from the corresponding sequence
of g-bit codewords. However, in practice a stronger requirement is needed. As can
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Figure 5: A sliding-block decoder.

be seen from Figure 1, the encoded sequence 1s directly transmitted over the chan-
nel, and due to the occurrence of noise on the ?hanne] the received sequence may
contain errors. Surely, we do not wish that ofle (or a few) errors in the received
sequence could cause the decoder to produce an unlimited number of errors in the
decoded sequence! Therefore, we commonly rLequire that the modulation code can
be decoded by a sliding-block decoder. A slidfng—block decoder for arate p — ¢
encoder takes (a sequence of) g-bit words y, as its input, and produces a sequence
of p-bit symbols x,, as its output, where each %output symbol x,, only depends on
a corresponding sequence Yy_m, . .., Ynta Of w = m + 1 + a consecutive inputs,
for some fixed numbers m and a, m < a. Wé will refer to the number w as the
window size of the decoder. (The numbers m and a are referred to as the memory
and anticipation of the decoder.) The name “s}liding-block decoder” refers to the
image of the decoder sliding a “window” of \Af/idth w over the sequence to be de-
coded. (Refer to Figure 5.) Note that an error in the encoded sequence will cause
at most w symbol errors in the original sequ nce. So the error propagation, the
amount of erroneous bits in the decoder output caused by a single input error, is
limited to at most wp bits. ;

The window-size of the decoder is an 1mportam parameter of a code: it pro-
vides an upper bound on the error propagation of the code, and also gives a good
indication of the size of the decoder, the amount of hardware necessary to imple-
ment the decoder. (That is, it provides an upper bound on the complexity of the
decoding operation.) Indeed, often the size of the decoder is more important than
the size of the encoder; think for example of dévices such as a compact disc player
which only need to handle previously stored or transmitted data and therefore do
not need to have an encoder on board!
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Codes with a window-size of one codeword are called block-decodable. For
such codes, decoding a given codeword or block can be achieved without any
knowledge of preceding or succeeding codewords. In many present-day appli-
cations, modulation codes are used in combination with symbol-error-correcting
codes based on Reed-Solomon codes over some finite field GF(27). In that situ-
ation, the use of a rate p — ¢ block-decodable modulation code becomes espe-
cially attractive, since then a channel-bit error affects at most one p-bit symbol of
a Reed-Solomon codeword. Note that this cannot be guaranteed if a non-block-
decodable code is used, even if the window-size of the code is smaller than 4 bits.

We have already met some block-decodable codes: the rather trivial rate 1 —
2 FM code and a possible rate 12 —> 18 code for the Fibonacci system of (0, 1}-
constrained sequences in subsection 1.2.5. (Note that the arguments given there
actually show that any rate-2/3 block-decodable code for this system must have
codewords of length ¢ > 18.) Another well-known example of a block-decodable
code is the Modified Frequency Modulation (MFM) or Miller code. This is a
rate | — 2 (1, 3)-code which, like the FM code, encodes by inserting a merging
bit between each two consecutive source bits. Here, the merging bit is set to “0”
except when both surrounding bits are “0”, in which case it is set to “1”. (For the
FM code, the merging bit is always set to “1”.) The MFM code is indeed block-
decodable: decoding amounts to dropping each second bit, which can be realized
as an operation on 2-bit codewords.

The use of merging bits is a well-established technique for constructing block-
decodable {d, k)-codes. They are often employed in combination with (dklr)-
sequences, that is, (d, k)-constrained sequences in which the number of leading
and trailing zeroes is restricted to be at most / and r respectively [4]. Here, p-bit
source symbols are uniquely translated into (dklr)-sequences of a fixed length ¢/,
and a fixed number of ¢ — ¢’ merging bits, chosen according to a set of merging
rules, 1s employed to ensure that the resulting bit stream is a valid (d, k)-sequence.

- For some recent information on these methods, we refer to [53]. A similar idea is
used in [33] to construct almost-block-decodable (d, k) codes.

As exemplified by the rate-2/3 Fibonacci code, block-decodable (d, k)-codes
with a prescribed rate may require a large codeword size. In these cases, it is often
possible to do much better for the corresponding (d. k) RLL constraint, provided
that we allow the encoder to employ (one symbol) look-ahead. This recent, rather
surprising insight is explained in detail in [32].

1.2.7 Synchronization

For correct functioning, the decoder needs to properly group the bits in the en-
coded sequence into its composing g-bit codewords. Therefore some form of syn-
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chronization between encoder and decoder has to be established. We will briefly
discuss some means to do so.

Usually, at the encoder side the p-bit source symbols are grouped into frames,
each consisting of a fixed number of source symbols. (Usually, a frame is in fact
made up from a fixed number of error-correcting codewords.) The beginning of
each frame will be signalled by the occurrence of a special pattern called the frame
header. Commonly, the frame header is required to be unique, that is, it should
not occur at any other locations in the sequence. The use of frames and unique
frame headers will enable the decoder to recognize the beginning of each frame
and thus to establish the desired synchronization.

Often, we require that the header itself, and possibly even the entire bit-stream,
also satisfies the imposed constraint. To achieve this, one commonly employs inci-
dental constraints. As the name suggests, these are certain patterns that do satisfy
the constraint but do not occur as a subword in the output of the encoder during
normal operation. If we think of the encoding process of following certain en-
coding paths in a presentation of the constraint, then the incidental constraints are
associated with paths that are never used for encoding purposes.

As an example, consider again the rate 2 — 3 code for the Fibonacci sys-
tem constructed in Subsection 1.2.5. It is not difficult to verify that the encoder
output never contains the pattern 0.110. We can profit from this fact to design a
unique frame header: for example, we could choose as a header the codeword se-
quence 110.110.101, which possesses the added advantage that it can be inserted
anywhere in the codeword stream without violating our constraint, to signal the
beginning of each frame.

The presence of noise on the channel may cause bit-errors in a frame header,
which may cause the decoder to occasionally miss a header. This problem is
usually dealth with by using a PLL-like device similar to the one employed by the
receiver to avoid clock-drift of its internal bit-clock.

1.2.8 Code-construction methods

What we would like is a systematic method to design a sliding-block decodable
code for a given constrained system L, presented by some deterministic graph
G = (V, A), say, at a given rate p — ¢g. Over the years, a great many of such
construction methods have been devised. We will review a large number of them
here; along the way, we will meet some techniques that we already encountered
earlier. Almost all of these methods employ approximate eigenvectors to guide
the construction. We will first explain what these are and, especially, why this
is so. To this end, consider a code meeting our requirements. We will assume
that an encoder for our code takes p-bit symbols as its input, and produces g-bit
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symbols or codewords as its output. Since we are now interested in admissible
sequences of codewords, it is more convenient to consider the gth power graph
G9 of G. This graph has the same states as G, and transitions that consist of paths
of length g in G, with as label the g-bit codeword generated by the path. It is now
fairly obvious that G7 essentially generates the same sequences as G, but, like our
encoder, does so with ¢ bits or one codeword at a time. Note that the adjacency
matrix of G? is D9, where D is the adjacency matrix of D. We will refer to the
system presented by G7 as the gth power of the original constraint.

Our encoder translates each sequence of source symbols into a sequence of
codewords which, in turn, corresponds to a path in the power graph G7. We will
refer to the collection C of all such codeword sequences as the code system of the
code, and to the collection P of all finite paths in G contained in such encoding
paths as the encoding paths of the code.

Recall now our investigation in Subsection 1.2.3 of the numbers ns(") of paths
of length n in G that start in state s. We will do something similar here for the
numbers d)s(") of encoding paths of length n in G? that start in state s. Intuitively,
it is obvious that these numbers grow exponentially in 27, the number of source
symbols. (“Encoding paths for different source sequences tend to be different”.)
Indeed, given our assumptions on £, on G, and on the code, it can be shown that
for each state s the limit

b0 = lm "2 an

exists (see [27]). We will write ¢ for the vector with as entries the numbers ¢;.

The second observation is that an encoding path of length » starting in s con-
sists of a transition in G? from s to some state ¢, say, followed by an encoding
path of length n — 1 starting in . Therefore the vector ¢ with as entries the
numbers ¢ satisfies

¢ < DI D (12)

(Note that we have an inequality here since not each path of length n obtained
in this way needs to be an encoding path.) If we now combine Equations (11)
and (12), we conclude that

2P$ < DI (13)

A non-negative integer vector ¢ that satisfies the inequality (13) is usually called
a [ D9, 2P )-approximate eigenvector, or a [G4, 2P ]-approximate eigenvector if we
wish to stress the connection with the presentation. We think of the numbers ¢;
as weights associated with the states. In terms of these weights, the inequalities
state that the sum of the weights of the successors of a state is at least 27 times
the weight of this state. The above discussion makes precise the idea that in code
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construction, these weights are indicators for the relative encoding power from
the states. This idea will be further illustrated by some of our later examples.

Approximate eigenvectors were first introduced by Franaszek. In a series of
pioneering papers [13], [14], [15], [16], [17], he systematically employed approx-
imate eigenvectors to develop a number of code construction methods. For ex-
ample, the principal-state method already mentioned is based on the observation
that the existence of a binary (0, 1-valued) [ D4, 27]-approximate eigenvector is
equivalent to the existence of a collection of states, the principal states, with the
property that from each principal state there can be found at least 27 distinct tran-
sitions in G, that is, paths of length ¢ in G, that end in another principal state. (To
see this, let the principal states correspond to the states with approximate eigen-
vector-weight one, and now recall that the (s, r)-entry of DY counts the number
of paths of length ¢ from s to ¢.)

The collection of paths between the principal states immediately allows the
construction of a rate p — ¢ encoder. In each principal state, the 27 possible
source symbols are assigned to g-bit codeword labels of the paths leaving this
state. Then the encoder uses, e.g., an encoding table in each principal state to do
the translation. (So the encoder does not need to employ look-ahead.) Usually,
the encoding tables are implemented by using enumerative methods (see [8], [30].

Here, the encoding moves from one principal state to another, and indeed
avoids the states with weight zero in G9. We propose to call such codes fixed-
length principal-state codes.

If the constraint is of finite type, then any assignment of source symbols to
codewords will lead to a sliding-block decodable code: in that case, the sequence
of principal states traversed by the encoder can be reconstructed from the sequence
of codewords. However, it would of course be preferable to assign a fixed source
symbol to each codeword, thus making the code block-decodable, and if the con-
straint is not of finite type, this is almost a requirement. In general, finding such
a source-to-codeword assignment is difficult (in fact, deciding whether such an
assignment exists is an NP-complete problem), but in most cases that arise in
practice this can be done. The possible remaining freedom in choosing the as-
signments can be used to optimize other aspects of the code (see, e.g., the design
of an 8b10b channel code in [30]).

The method of using merging bits as discussed in Subsection 1.2.6 presents an
alternative approach to this labeling problem. Here, we consider only codewords
that consist of some merging bits followed by a (fixed-length) (dk/r)-sequence,
and we assign source symbols to the (dkir)-sequences. This replaces the labeling
problem by the problem of assuring that in each principal state sufficiently many
transitions with codeword labels of this special form are present. The optimal
selection of principal states for (d, k) block-codes has been determined in [19].
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Figure 6: A presentation of the (2, 0c0)-constraint.

We will mention two further examples of simple code construction methods
that can also be interpreted as principal-state methods. Both of these are designed
for the construction of DC-balanced codes. In this context, we usually think of
the state of a sequence as the current value of its running digital sum (RDS).
Recall that a collection of {—1, 1}-valued sequences is balanced if the RDS of the
sequences only take on a limited number of values.

The disparity d(x) of a g-bit codeword x = xi, - - -, x,, where x; € {—1,1},
is defined as d(x) = Zl‘.]:, x;. An obvious way to obtain a DC-balanced code is
to use only codewords x with disparity d(x) = 0. the zero-disparity words. Here
the RDS will be zero at the beginning of each new codeword, so this zero-state
acts as the single principal state. An obvious extension of the above idea is to
use also low-disparity codewords. Here we associate with each source symbol ei-
ther a zero-disparity codeword, or two codewords with opposite disparities; while
encoding we use this freedom-of-choice to keep the RDS close to zero. A par-
ticularly simple example of such codes are the polarity-bit codes. These are rate
(¢ — 1) — g codes where each source word x = xi, ..., x, | has two alternative
encodings as Xy, ....X4-1,1 or —x, ..., —x4—1, —1, of opposite disparity. De-
coding of a codeword can be achieved by inverting all its bits if the last bit, the
polarity bit, equals —1, followed by deleting this last bit. Here the principal states
correspond to the values of the RDS for which |[RDS| < g/2.

The principal-state method is completed by a simple algorithm to find a binary
approximate eigenvector or, more generally, an approximate eigenvector with all
components less than or equal to any given number M, provided that such a vector
exists. Briefly stated, to find such an approximate eigenvector, we initially set
¢s = M for all states s, and then repeatedly perform the operation

¢ < min {¢, 27" D¢ ]}

(where both the rounding-operation | | and taking the minimum are done com-
ponent wise), until either ¢ = 0 (in which case no such approximate eigenvector
exists) or no further change in the vector ¢ occurs (in which case ¢ is an approxi-
mate eigenvector with the desired property).

The principal-state method may lead to prohibitively large values of p and g.
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Figure 8: A look-ahead encoder.

For example, the minimum codeword length of a fixed-length principal-state rate-
2/3 (1, 7)-code and a rate-1/2 (2, 7)-code are 33 and 34, respectively. Sometimes
this problem can be avoided if we allow the coding paths between principal states
to have varying lengths. As an example, we consider the design of a rate-1/2
(2, 00)-code. (The forbidden subwords are given by “11” and “101”.) The min-
imum codeword length of a fixed-length rate-1/2 code for this constraint is 14
(see, e.g., [30]). The constraint can be presented by a three-state graph G with
states named 0, 1, and 2, see Figure 6. Here, sequences ending in state O or 1 have
precisely O or 1 trailing zeroes, respectively, and a sequence ending in state 2 has
at least 2 trailing zeroes. The 2nd power graph G2 of G needed in the construction
of arate 1 — 2 code is depicted in Figure 7. The vector ¢ which has ¢p = ¢1 =1
and ¢, = 2 can be seen to be a [G?, 2]-approximate eigenvector.

Let the set of principal states consist of the single state 2. Now consider the
possible encoding paths, that is, paths in G starting and ending in state 2. By
inspection of G2, we obtain the three paths

2 %2 28 0%, 2512

from which a code can now be designed. The encoding rules are specified as

0 — 00
10 — 01.00
11 — 10.00
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Table 1: A two-state encoder for a (2, 00)-code.

State | Input | Output | Next state ‘
o 0 00 o
o 1 00 T
T 0 01 o
T 1 10 o

A look-ahead encoder that implements these encoding rules is described in Fig-
ure 8. In this figure, two labelings are assigned to each transition. One of these
labels is the original codeword label; the other is the source symbol labeling and
determines the encoding path. For example, the label “0/00” of the transition
0 — 2 signifies that when in state O the source symbol “0” is translated into
“00” while the encoder moves from state 0 to state 2. More interestingly, the la-
bel “1(0)/01” on the transition 2 — 0 indicates that when in state 2 the source
symbol 1 is translated into “01” while the encoder moves from state 2 to state O,
provided that the upcoming source symbol is a “0”. (So here we see the encoder
“looking ahead” for the next source symbol before deciding on its action.)

Note that the encoder will possibly move to state 0, but will only do so when
the next source symbol to encode is a “0”. Therefore all source sequences starting
with a “0” (and only these) have to be encodable form state 0. This is indicated
by the prefix list [0] associated with state 0. For a similar reason, the list [1] is
associated with state 1. The empty list [—] associated with state 2 indicates that no
such condition is imposed in state 2, the principal state. (The list [—] could also be
represented as [0, 1].) These prefix lists are not needed for the specification of the
encoder; they are merely added to make it easy to verify that the encoding process
will never get stuck. The following remark is important in connection with this
type of construction method: it is no coincidence that the sizes of the lists [0], [1],
and [—] = [0, 1] associated with the states 0, 1, and 2 correspond to the weights
$o =1, ¢ =1, and ¢ = 2 of the [G?, 2]-approximate eigenvector ¢.

A look-ahead encoder can always be transformed in a systematic way into a
conventional finite-state encoder. (The idea is to replace each state s by a collec-
tion of states (s, w) where w is one of the words in the prefix list associated with
this state; the operation is completed by combining, merging, equivalent states.)
For example, the same encoding rules can be implemented by the two-state en-
coder as described in Table 1. (Cf. [30], pp. 124, where a three-state encoder is
suggested.) A more pictorial representation of this encoder is given in Figure 9.
Note that this code can be encoded with a look-ahead of one symbol (Figure 8) or,
equivalently, with an encoding delay of one codeword (Figure 9). The code can be
decoded with a sliding-block decoder that has a window-size of two codewords.
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Figure 9: An alternative description of the encoder.

In general, for this method to succeed we need a (finite) collection P of paths
7 in G7 between principal states such that in each principal state s, we have that

Zz*‘”' > 1, (14)

where the sum is over all paths 7 starting in s (end ending in another principal
state) and where || denotes the lengrh (number of transitions in G¢) of 7. This
condition, the Kraft-McMillan inequality for prefix codes (see, e.g., [9]), is nec-
essary and sufficient for the existence of a prefix code (such as the source words
0, 10, and 11 in the above example) with word lengths equal to the path lengths.
A similar, but more complicated example of the above method is the rate-1/2
(2, 7)-code in [10].

Codes for constraints of finite type found by this method are always sliding-
block decodable. We propose to call such codes variable-length principal-state
codes. The substitution method encountered in Subsection 1.2.5 can be seen as a
special case of this method.

The principal states in the above methods form a sort of “resting places” for
the encoder; here, starting from a principal state any source sequence can be en-
coded (so these may serve as initial states of the encoder) and we are assured that
a next such resting place is reached within a finite number of steps. However,
codes of this type at a given rate p — ¢ do not always exist or, if they do, they do
not always provide the “simplest” possible code. The bounded-delay encodable
codes introduced by Franaszek (see also [37]) do not suffer from this drawback;
indeed, in its full generality the bounded-delay method to construct such codes is
universal. That is, each sliding-block decodable code for a constraint of finite type
with a suitable (finite-state, finite-type codeword labeling, bounded encoding de-
lay) encoder can, in principle, be obtained by this method.> However, Franaszek
never succeeded in turning his method into an algorithm and he showed only much
later [18] that this construction method is as powerful as the ACH method. This

5In fact, more is true: in principle, any sliding-block decoder, and any encoder that is not a-
priory impossible to construct by this method, can indeed be constructed. For further details, see
[4] and Chapter 5, in particular Appendix B.
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mehod, which we discuss in a moment, was only recently shown to be universal
([2], [25, 26]. see also Chapters 4 and 5).

The encoding of a bounded-delay encodable code may depend on the present
state, on a bounded number of upcoming source symbols (so look-ahead may
be employed), and on a bounded number of previous states (the history) in the
encoding path. The construction method as described by Franaszek employs an
approximate eigenvector in an essential way. The idea is to construct in each
state a suitable collection of encoding trees. also called independent path sets or
IP’s, each consisting of a set of encoding paths for this state, by exhaustive search
among all such trees of a fixed maximal depth. The details of the method are not
easy to explain, and, as mentioned before, the method cannot be guaranteed to
succeed in an intrinsic way.

In [32], a technique called stare-combination is developed to construct block-
decodable codes that can be encoded by employing one-symbol look-ahead, a spe-
cial case of bounded-delay encodable codes. (This method, especially suited to
the construction of (d, k) RLL codes, was earlier referred to in Subsection 1.2.6.)
Here, we first search for an approximate eigenvector with all components equal to
zero, one, or two (working with the gth power graph). Then we repeatedly look
for pairs of states, each having weight one, that can be combined into one new
state, which is then given weight two, such that the new weights again constitute
an approximate eigenvector, now for the new graph. (Here, a given state gets a
transition to such a pair of combined states only if the original graph contained
a transition from this state to each of the two combined states, with the same la-
bel.) We do so until no further combinations can be made. When our luck is in,
there will be sufficiently many transitions from each weight-two state (the “prin-
cipal states” in the resulting graph) leading to other such states. Finally, to ob-
tain a block-decodable code, we have to solve a source-to-codeword assignment
problem as referred to earlier. The method is well-suited for computer imple-
mentations. Although it will be clear from the above description that success of
the method is not guaranteed, it has been successfully applied to construct many
codes that improve upon existing ones. The method has been further developed
and extended in [25]. (See also [23].)

A breakthrough in code construction was achieved by the invention of the
state-splitting method or ACH algorithin [1]: this method employs an approxi-
mate eigenvector to construct a sliding-block decodable code with a synchronous
finite-state encoder, for any given constraint of finite type, at any given rate p — ¢
for which p/q < C, the capacity of the constraint. It does so in a number of steps
bounded by the sum of the components of the approximate eigenvector.

The method acts on a pair (G, ¢) of a graph G presenting the gth power of
our constraint (that is, transitions of G are labeled with g-bit codewords) and
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a [G, 27 ]-approximate eigenvector ¢, and transforms this pair into another such
pair by an operation which we will call weighted state-splitting. (This operation
is called ae-consistent state-splitting in [42], to which we refer for an excellent
overview of the method.) This transformation, which is guaranteed to succeed,
moreover lowers at least one of the components of the approximate eigenvector,
the weights, except when all non-zero weights are equal.® So with each transfor-
mation the approximate eigenvector gets “smaller”, until finally a pair (G, ¢) is
reached where all nonzero components of ¢ are equal. If that is the case, then the
approximate eigenvector-inequalities for ¢ are easily seen to imply that in each
state with a nonzero weight there are at least 27 transitions leading to other such
states, that is, we have obtained an encoder for our constraint.

State-splitting, on which the transformation is based, is easy to understand.
Think of a state as a collection of future opportunities (the transitions leaving this
state) from which we are free to choose one. Now divide or splif the state, this
collection of opportunities, in two parts called sub-states (each having a part of the
original transitions). Before this splitting operation, we could move from another
state to this state without worrying about which opportunity (which transition) to
utilise later, but now we have to choose first, before moving, from which of the
two parts we wish to pick our next opportunity. We do not lose opportunities, but
we have to choose earlier.

In terms of the graph, this translates as follows. If s is a state, and Ay is the
collection of transitions from this state, then to split this state, we do the following.
First, partition the set A into two non-empty parts A, and Ag,. Then, in G we
replace the state s by two states s; and s (the sub-states of s), we replace each
transition « in part Ay, i = 1, 2, by a transition from s; with the same label and
ending in the same state as «. and we replace ecach transition 8 ending in s by two
transitions B and f,, with the same label and beginning in the same state as 3,
with §; ending ins;, i = 1, 2.

It should be evident from the preceding discussion that the new graph thus
obtained presents the same sequences as the original graph. Moreover, it is not
difficult to see that if the original graph is of finite type, then the new graph is
again of finite type; the memory remains the same and the anticipation increases
by at most one. Note that if the final graph has memory m and anticipation a,
then the encoder obtained from this graph by deleting all states with zero weight
and assigning suitable source labels to the remaining transitions has a decoding
window of size at most m -+ 1 + «.

Weighted state-splitting amounts to the same, except that now we also dis-
tribute the weight of the state that is split over the sub-states (where each of

®This gives the general picture, but is not quite true. More details will be given later.
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the sub-states should receive something): moreover, we require that the result-
ing weights constitute an approximate eigenvector for the new graph. Note that
this is a local requirement which only needs to be checked for the two new states.

It is not obvious that we can always find a state for which weighted state-
splitting is possible; certainly this need not be possible in each state. However,
in [1] it is shown that such a state can always be found among the states with max-
imum weight, provided that not all non-zero weights are equal, and an algorithm
is given to find such a state.”

The ACH algorithm is again universal ([2], [26, 25], see also Chapters 4
and 5). However, this method is not without drawbacks. The main problem is
the potentially large amount of freedom-of-choice afforded by the algorithm, first
in the choice of the approximate eigenvector, then both in the choice of the states
to be split and in the actual splits themselves. Different choices (almost always)
lead to different codes and, by the same universality that we so much appreciated
earlier, may result in any of the (infinitely many) available codes.

As a rule-of-thumb, we usually choose the smallest possible approximate ei-
genvector; a logical choice since this minimizes the a-priory upper bound on the
number of state-splitting steps. This works very well in practice, although cases
are known where this choice does not produce the best possible code [25].

Still this solves only part of the problem. Some heuristics to guide the state-
splitting process have been developed (see, e.g., [42]) in order to obtain codes with
a simple encoder (simple in terms of the number of encoder states), and again this
seems to work reasonably well in practice. (Methods to estimate the minimum
possible number of encoder states have been developed in [41].)

However. in practical applications we are often interested in codes with a
small decoding window, and the ACH algorithm provides no clues how to find
such codes. A variant of this algorithm [25] combines ideas from the bounded-
delay method of Franaszek with state-splitting to address this problem.

We will end this overview with a discussion of a very recent enumerative
method, originally developed to design high-rate codes such as (0, k)-codes with
large k [34, 35]. But in fact, as we will see, this method is sufficiently general to
describe many variable-length codes as well. We will first describe the method
as a means to design simple-to-implement fixed-length block-decodable codes
with a (large) codeword size ¢, say. Our starting point is a deterministic graph
G = (V, A) presenting our constraint. We will denote the bit-label of a transition
o by L(a).

"In fact, this is only true when, after each splitting step, states with zero weight are deleted
and the graph is restricted to an irreducible sink component. Note that after such an operation, the
weights still constitute an approximate eigenvector for the remaining part of the graph.
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The encoding- and decoding rules of our code will be described in terms of
non-negative integers N,(v), n = 0,1,...,q, and Ny(«),n = 1,...,q, asso-
ciated with the states v and transitions « of our presentation G. Here, all num-
bers Ng(v) will be either zero or one, i.e.,

No(v) € {0, 1}, (15)

for all states v. (These numbers will need to satisfy various other constraints that
will be discussed later.)

Our encoder will in fact encode numbers N with 0 < N < 27; the binary
representation of these numbers will then correspond to the p-bit source symbols.
Our encoding process will be described recursively in terms of encoding rules
for numbers in each state. Here, the number N, (v) will specify the interval of
numbers that can be encoded from state v by (the n-bit label sequence of) an
encoding path of length #; the first transition ¢« of this path will lower the number
to be encoded by the amount of N,(«). This leads to the following recursive
encoding rule: the n-bit encoding E,S”) (N) of anumber N,0 < N < N, (v), from
state v is given as

EX(N) = L@E§qu) (N — Na(@))

end(w)

(“the label of «, followed by an (n — 1)-bit encoding”), where « is a transition
starting in state v chosen such that

0< N —N,(x) < N,_1(end()).

Recall that the numbers Ng(v) are each either zero or one. Therefore, if the
encoding of a number N succeeds, then the encoding process will necessarily ter-
minate with the number zero, in one of the terminal states t for which No(¢) = 1.
We will use T to denote the set of these terminal states. As a consequence, if the

encoder has followed the path o, . . ., &, then the number N can be recovered as
the sum
n
N =Y Ni@) (16)
i=1

of numbers subtracted at the successive transitions. So decoding is possible pro-
vided that the encoding path can be retrieved from the label sequence, which is
possible if the constraint is of finite type. (If this is not the case, then in addition
we should require that paths generating identical sequences also produce identical
decodings. A detailed discussion of that case is outside the scope of this review.)

As we observed, the encoding always terminates in a state from 7'. Therefore,
the next encoding of a p-bit number starts in such a state; these states serve as the
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principal states in this method. So in each of these states, we must ensure that at
least 27 numbers can be encoded, that is, we require that

Ng(t) = 27,

for all states ¢ from T'.

Now we will address the question which further conditions the numbers N, (v)
and N, (o) have to satisfy. We first note that at the end of each transition « from
state v, at most N,_(end(«)) numbers are guaranteed to be encodable into an
(n — 1)-bit code sequence. Since we require encoding into n-bit code sequences
of N, (v) numbers in state v, we necessarily have for all states v and all n, n =
1,...,q,that

Na(®) < N, (end(e)), (17)
where the sum is over all transitions « leaving v.

On the other hand, once we have a collection of numbers N, (v) satisfying
(17). we can easily determine suitable numbers N, (&) as follows. In each state v,
we choose a linear order “<” of the set A, of transitions leaving v, and then we
" define

Na@)= )~ Nyi(end(p)).
peA,. f<a
Note that the for the first transition y in each set A, we have N,(y) = 0 for
all n. In particular, if we assume (which in fact we always did, but do not re-
ally need here) that the graph is deterministic and has binary labels, then in each
state v either one transition « leaves this state and we take N, («) = 0 for all »,
or two transitions, @ and f§, say, leave this state and we could take N,(o) = 0
and N, (8) = N,_(end(w)), for all n.

If all the conditions mentioned up to now are satisfied, then we obtain a
rate p — g fixed-length block-decodable code as desired. We propose the name
enumerative codes for codes that employ encoding and decoding of this type.

As an example, consider the (0, k) constraint. This constraint can be presented
by a graph with k + 1 states 0, 1, . . ., k, transitions v 2 v+lLv=0,..., k-1,
and transitions v —1> 0,v=0,..., k.

It is not difficult to see that the inequalities (17) imply that the numbers N, =
N, (0) must satisfy

Ny <Ny 1+ Ny, (18)
n>k-+1,and
Np < No(n) + Np—1 + -+ - + No, (19)

I < n < k. On the other hand, if we choose, ¢.g.,

No(0) =--- = No(r) = 1, No(r + 1) = --- = No(k) =0,
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then given numbers N, that satisfy (18) and (19), we let
Nu(0) = Ny,
foralln > 1, and, for statesv =1, ..., k, we let
Ny(v) = Nyor + -+ Npk—140s
forn > k41— v, and
Nyp(v) = No(v +n) + Ny—1 + -+ + No,

for 1 <n <k — v. Then the numbers N, (i) satisfy (17).

Next, let N,(a) = 0 if « has label “1” and let N,(¢) = N, if « has la-
bel “0”. Then all requirements are satisfied and if N,(v) > 2°,v=0,...,r, we
obtain a code with rate p — ¢. Itis also easy to see directly that the encoded
sequence satisfies the k-constraint. Indeed, at any stage » we encode numbers N
with 0 < N < N,; since encoding into a “0” at stagesn — 1, n — 2, ... subtracts
Ny_y, Ny_2, ..., the inequality (18) implies that we will do this at most & times.
(More details concerning (0, k)-codes of this type can be found in [34] and [45].

An encoder and decoder for a code of this type need not necessarily be very
simple. To achieve that, we need one further idea. We have seen that any col-
lection of numbers N, (v) that satisfy both (15) and (17) can be used to devise
an enumerative code. We now try to satisfy these conditions with numbers of a
simple form. 1n particular, we will choose these numbers in such a way that, for
each fixed n, all numbers N,,(v) can be written as

N,(v) = uf}”)2€" (20)

with
0 < V( ) < 2’”
— Y .

Here m will be a fixed number determined by the desired implementation com-
plexity. Note that now both the encoding- and decoding operations can be imple-
mented as addition or subtraction on numbers represented by m+max, (e, —e,—1)
bits, provided that we implement the decoding rule (16) in reversed order, that is,
starting with N (e) and ending with N, (c,). (During read-back, the encoding
path will be recovered in the order o, . .., 1.)

We will now describe how to find the largest numbers N, (v) of the form (20)
and meeting our requirements. The construction is best described in terms of
a vector-rounding operation. Given a number m and a vector v, we define the
rounded vector

Lvlm
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and the width e(v) of v as follows. If the largest entry of v has an e-bit represen-
tation, then we set

e(v) = max(0, e — m),

and the vth entry of [v],, will consist of the number represented by the m most
significant bits in the e-bit representation of v,, the corresponding entry of v.
We now recursively define the vectors v with entries the numbers vf,"), and

the numbers e, in (20) by letting ¢g = 0, vl(,o) = Ny(v),
e, = ey | +e(Dv D)y,

and
v = | Dy

Once the construction is understood, it is fairly easy to see that it indeed produces
the largest numbers of the form (20) that satisfy our requirements.

It is important to observe that both the sequence of vectors v and the se-
quence of numbers ¢,, — e, _1 ultimately become periodic. Indeed, since all entries
of these vectors consist of m-bit numbers, there are only finitely many different
vectors in the sequence. So there are numbers s and ¢ such that v(¢+>) = 1) But
then we obviously have that v+ = v®™ and e, 11 — €nss = €ny1 — €, forall
n > c. From the second of these relations we can derive that e, = r + e, for
alln > ¢, where r = e.4; — ., As a consequence, for large g the rate of the code
thus obtained tends to R,, = r/s, a limit to the achievable rate that depends only
onm.

It is instructive to apply this construction to the Fibonacci system again. With
m = 1, the numbers N, = N, (0) thus obtained are given by

Nop = Ny =27,

for all n > 0. A moment of reflexion reveals that the rate 2p — p enumerative
code thus obtained is essentially the FM code from Subsection 1.2.5! Similarly,
for m = 3 we obtain that Ny = Ny = 1 and

Nap oy =271 N3 =322 N3y =5-2272

for n > 1, which gives us a rate (2n — 1) — (3n — 1) enumerative code for all
n>1.

We are now ready to explain how this type of encoding can be implemented
as operating on a bit-stream instead of on p-bit blocks. To this end, we think of
an input sequence

X1, X-2,X_3,...
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(note the use of negative numbers as indices here) as representing the fractional
number
N=0x_1x_px_3---.

(Note that 0 < N < 1.) Again, we represent the numbers N, (v),n = —1, -2, ...
in the form (20), but now we choose for the numbers v and e, the “periodic”
solution of the recursive relations.

To illustrate the above we consider again the (2, co)-constraint for which we
constructed a variable-length code earlier. The graph G presenting this constraint
was described in Figure 6. Now, forn = 0, —1, —2, ..., define

Ny, (0) =271, Noy_1(0) = 2772,
Np, (1) = Ny (1) =271,
Ny, (2) =2, Nyyo1(2) =271 42772
Nn(o —> 1) = Nn(l —> 2) = Nl'l(2 _) 2) = 07

and
Nop(2 —> 0) =271 4 272, Nop_1 (2 — 0) = 2" 1.

These numbers satisfy all our requirements, and, since Np(2) = 1, we can encode
all fractional numbers N, 0 < N < 1, starting from state 2. The rate of the
resulting code is R = R, = 1/2. In fact, it is not difficult to see that this code
essentially is the same as the code that we constructed earlier!

As remarked earlier, a simple hardware implementation can be found to de-
code such codes, provided that decoding takes place in bit-reversed order, starting
with the last received bit and working our way back to the first received bit. This
is acceptable for a block-code variant of such a code, but not at all for the periodic
variant discussed above. Nevertheless, in certain cases simple decoding in normal
bit order is still possible. For example, the (2, 0co0) code constructed above has this
property since previously we showed that this code is sliding-block decodable.

The additional requirement that the code must be decodable in normal bit
order, or, equivalently, that the code must be sliding-block decodable, further re-
stricts the choice of the numbers N, (v) that define the code. A procedure similar
to the one discussed earlier can be used to find “periodic” solutions that meet these
additional requirements, but some experiments for the case of (d, k)-codes have
shown that in most cases the efficiency of such “automatically generated” codes
is very low. Further developments have to be awaited to see if these periodic
enumerative codes are of more than theoretical interest only. .

Fixed-length enumerative codes suffer from catastrophic error-propagation
within each block. (Here we assume that their periodic counterpart is not sliding-
block decodable.) If the codeword size is very large, such codes are therefore used
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in combination with special error-correcting schemes designed to avoid excessive
error-propagation [34, 35]. Such schemes are typified by the fact that, essentially,
the modulation and ECC encoding in Figure 1 have been interchanged.

Up to now, we have discussed various methods to construct modulation codes.
In a given situation, which method should we choose; which method is the best?
This seemingly innocent question has caused some controversies, as each method
has its own adherends. The answer, of course, is “the method that best suits the
case at hand”, and this depends mainly on the number of g-bit codewords per
state, that is, on the maximum number of transitions leaving a state in the power
graph GY. (Here we assume that the constraint is presented by a graph G and that
we search for a code at arate p — g.)

If this number is relatively small, then use an ACH-type method. (In my
opinion, to date the best method of this kind is the one described in [25].) On the
other hand, if this number is relatively large, then such methods are less suitable.
(The main reason lies in the increasing number of choices for the state-splitting
steps as referred to earlier.) In that case, use a method based on merging-bits, or
a method for (almost) block-decodable codes such as [32] or [26], or enumerative
encoding, or any other more heuristic method that does the job.

1.3 Overview of the contents of this thesis

This thesis concerns performance evaluations and construction methods for mod-
ulation codes. In Chapter 1 of this thesis (the present chapter), we first discuss
the schematic form of a modern digital transmission- or storage system in which
modulation codes are employed.

After a brief review of the role other parts of such a system, we present a
broad overview of the subject of modulation codes. Here we discuss some of
the practical considerations behind the use of constrained sequences in data trans-
mission and storage, and numerous aspects of the modulation codes designed to
intermediate between arbitrary and constrained sequences: type of constraints to
code for, coding rate and capacity, encoders, decoders, synchronization, and code-
construction methods.

In the next two chapters, which are co-authored by K.A.S. Immink, we are
interested in performance evaluations of certain type of codes. In Chapter 2, we
compare two DC-balanced codes, namely the polarity-bit code already encoun-
tered in Subsection 1.2.8 and the Knuth code, a special type of zero-disparity
code (see again Subsection [.2.8).

As mentioned in Subsection 1.2.1, the sum-variance of a DC-balanced code
at a given rate is a good performance criterium for such a code. The sum-variance
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of a polarity-bit code is known to be a simple function of the codeword size,
and hence of the rate, of the code. Things are not so simple for a Knuth code.
My main contribution is an exact evaluation by combinatorial means of a good
approximation to the sum-variance of a Knuth code. The result shows that the
sum-variance of a Knuth code at a given rate is significantly larger than that of a
polarity-bit code at the same rate, thus suggesting that polarity-bit codes have a
greater spectral effectiveness than Knuth codes.

Magnetic recording systems commonly employ (d, k)-constrained sequences
to increase the efficiency of the recording channel. If such a constraint is used in
combination with a synchronization method based on frames and unique headers
as discussed in Subsection 1.2.7, then the requirement that the pattern used as
header is not allowed to occur in the bit-stream except at the beginning of a frame
imposes an additional constraint on the sequences. In Chapter 3, we investigate
the loss of capacity entailed by imposing such an additional constraint. My main
contribution is a method based on generating functions to compute the capacity,
the maximum possible coding rate, of this combined constraint, for any given
header.

In the following three chapters, we introduce and investigate the class of
bounded-delay codes or BD codes, the class of sliding-block decodable codes
for constraints of finite type that can be encoded with a bounded encoding delay
or, equivalently, by employing a bounded amount of look-ahead.

The ACH algorithm is one of the most important code construction methods
for sliding-block decodable codes. As explained in Subsection 1.2.8, a drawback
of this method lies in the great freedom of choosing the state-splitting steps, es-
pecially since the algorithm offers few clues how to strive for a code with a small
decoding window.

The work in Chapter 4 addresses this problem. In this chapter, we first present
a precise definition and a thorough discussion of look-ahead encoders. Then we
develop an algorithm especially designed to construct codes with a small decoding
window. Our algorithm employs an approximate eigenvector and combines the
weighted state-splitting from the ACH algorithm with ideas from the bounded-
delay method of Franaszek. It is based on a new “local” construction method for
BD codes where in each state of the weighted graph a certain partition problem
has to be solved. This partition problem can be interpreted as the problem of
designing a generic “local” look-ahead encoder in the state; this problem is easy
to solve as long as the number of transitions leaving the state is not too large.

Once all these partition problems are successfully solved, it is easy to con-
struct the desired BD code; here we can use the remaining freedom in the con-
struction to optimize the decoding window of the resulting code. This part of the
method is fully automatic and can be easily implemented in a computer program
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if desired.

It may happen, however, that one or more of the “local” problems have no
solution. Such instances can always be removed by employing weighted state-
splitting to the successors of states where such difficulties occur. Moreover, these
very difficulties now offer additional clues to guide the state-splitting process. Our
approach makes it easy to obtain both various well-known and new codes with a
small decoding window, as is illustrated by a number of examples.

In Chapter 5, we investigate block-decodable BD codes or BDB codes. We
present a universal construction method for such codes; each such code can be
described and constructed in a specific way from the Fisher cover (see Subsec-
tion 1.2.4) for the constraint. We use this result to show that the code construction
method in the previous chapter as well as the ACH algorithm are essentially uni-
versal (most of these results were first obtained by other means in [2]) and to solve
some basic decision problems concerning block-decodable codes.

Our construction method for BDB codes is particularly well-suited for the
construction of one-symbol look-ahead BDB codes. This is illustrated by the
work in Chapter 6, where we employ the method to construct a block-decodable
rate 8§ — 12 (1, 8) RLL code. Such a code is attractive for use in combination with
symbol-error-correcting codes such as Reed-Solomon codes based on an eight-bit
alphabet.

We have seen that many of the known code-constructions method make essen-
tial use of an approximate eigenvector, where different choices of this vector in
general lead to different codes. In Chapter 7, we try to clarify this intimate relation
of codes and approximate eigenvectors. First we offer a construction which, given
a (code system of a) modulation code for a constraint of finite type and a presen-
tation of finite type for this constraint, produces an approximate eigenvector for
that presentation. Then we show that the approximate eigenvectors from which
the ACH algorithm can construct our code each involve weights that are at least
as large as the corresponding weights in this special approximate eigenvector. We
offer arguments which justify calling this vector “the approximate eigenvector”
of the code.

Chapters 2, 3, 4, 5, and 6 have appeared earlier as [21], [31], [25], [26], and
[24], respectively (up to some minor changes). Chapter 7 is based on [27], which
is accepted for publication.
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Chapter 2

Performance of Efficient
Balanced Codes

Abstract — Recently, Knuth presented coding schemes in which each codeword
contains equally many “zeros” and “ones”. The construction has the virtue that the
codes can be efficiently encoded and decoded. In this correspondence, we address
the problem of appraising the spectral performance of codes based on Knuth’s algo-
rithm.

Index Terms — dc-balanced codes, Knuth codes, sum variance.

2.1 Introduction

Binary sequences with spectral nulls at zero frequency have found widespread ap-
plication in optical and magnetic recording systems. These dc-balanced codes,
as they are often called, have a long history and their application is certainly
not confined to recording practice. Since the early days of digital communica-
tion over cable, dc-balanced codes have been empioyed to counter the effects of
low-frequency cut-off due to coupling components, isolating transformers, etc.
In optical recording, as explained in [3], dc-balanced codes are employed to cir-
cumvent or reduce interaction between the data written on the disc and the servo
systems that follow the track. A present-day application of dc-free codes [4] is the
digital audio tape recorder which uses an 8b10b code to circumvent the effects of
crosstalk from adjacent tracks, and to minimize over-write noise.

© 1991, IEEE. Reprinted, with permission, from IEEE Transactions on Information Theory
vol. 37, no. 3, pp. 913-918, May 1991.
Co-authored by K.A. Schouhamer Immink.
This work was presented in part at the [EEE International Workshop on Information Theory,
Veldhoven, The Netherlands, 1990.
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Practical coding schemes devised to achieve suppression of low-frequency
components are mostly constituted by block codes. The (bipolar) source digits
are grouped in source words of m digits; the source words are translated using
a conversion table known as a codebook into blocks of n digits. The essential
principle of operation of a channel encoder that translates arbitrary source data
into a dc-free channel sequence is remarkably simple. The approaches which
have actually been used for de-balanced code design are basically three in number:
zero-disparity code, low-disparity code, and polarity bit code.

The disparity of a codeword [6] is defined as the sum of its digits; thus the
codewords —1, —1,-~1,1,1,—1 and 1, —1, —1,1,1,1 have disparity —2 and
+2, respectively. Of special interest are zero-disparity codewords. The obvious
method for the construction of dc-balanced codes is to only employ zero-disparity
codewords.

A logical step, then, is to extend this mechanism to the low-disparity code,
where the translations are not one-to-one. The source words operate with two al-
ternative translations (or modes) which are of equal or opposite disparity; each of
the two modes is interpreted by the decoder in the same way. The zero-disparity
words are uniquely allocated to the source words. Other codewords are allocated
in pairs of opposite disparity. During transmission, the choice of a specific trans-
lation is made in such a way that the accumulated disparity, or the running digital
sum, of the encoded sequence, after transmission of the new codeword, is as close
to zero as possible. The running digital sum (RDS) is defined as the accumulated
sum of the transmitted digits, counted from the start of the transmission. Both
of the basic approaches to dc-balanced coding are due to Cattermole [5], [6] and
Griffiths [7].

A third coding method (in fact a special case of low-disparity codes), known
as the polarity bit code, was devised by Bowers [8] and Carter [9]. They proposed
a slightly different construction of dc-balanced codes as being attractive because
no look-up tables are required for encoding and decoding. In their method. each
group of (n — 1) source symbols are supplemented by the symbol “1”. The en-
coder has the option to transmit the resulting n-bit words without modification or
to invert all symbols. Like in the low-disparity code, the choice of a specific trans-
lation is made in such a way that the accumulated disparity is as close to zero as
possible. The last symbol of the codeword, called the polarity bit, is used by the
decoder to identify whether the transmitted codeword has been inverted or not.

Quite recently [2], a new algorithm for generating zero-disparity codewords
was presented by Knuth. The method is based on a simple correspondence be-
tween the set of all m-bit source words and the set of all (m + p)-bit balanced
codewords. The translation is in fact achieved by selecting a bit position within
the m-bit word which defines two segments, each having one half of the total
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block disparity. A zero-disparity block is now generated by the inversion of all
the bits within one segment. The remaining p bits of the codeword contain a bal-
anced encoding of the bit position that defines the two segments. For a precise
description of this method, we refer to Section 2.2.

The outline of this paper is as follows. In order to get some insight into the
efficiency of Knuth’s construction technique we shall evaluate the spectral prop-
erties of its code streams. Of course, the spectrum may be evaluated for any given
code structure by resorting to numerical computation. The theory provided in
[10] furnishes efficient procedures for the computation of the power spectral den-
sity function of block-coded signals produced by an encoder that can be modelled
by a finite-state machine. However, the computational load of this procedure is
enormous if 7 >»> 1. Fortunately, the structure of Knuth codes allows us to derive
a simple expression for (an approximation to) the sum variance of these code.
This quantity plays a key role in the spectral performance characterization of dc-
balanced codes, as explained in Section 2.3. We shall evaluate this expression in
Section 2.4. In Section 2.5, we compare the sum variance of Knuth codes with the
- sum variance of the polarity bit codes, for fixed redundancy.

2.2 Balancing of Codewords

Most schemes for generating dc-balanced sequences use look-up tables, and are
therefore restricted to codewords of medium size. An alternative and easily im-
plementable encoding technique for zero-disparity codewords which is capable of
handling (very) large blocks was described by Knuth [2]. The method is based
on the idea that there is a simple correspondence between the set of all m-bit
binary source words and the set of all (m + p)-bit codewords. For the sake of
convenience, we will assume in the sequel that both m and p are even. (Similar
constructions as described here are possible if one or both of p, m are odd.) Then
the translation can in fact be achieved by selecting a bit position within the m-bit
word that defines two segments, each having one half of the total block disparity.
A zero-disparity block is now generated by the inversion of all the bits within one
segment. The position information which defines the two segments is encoded in
the p bits by a balanced word.

Let zx(x) be the running digital sum of the first k, k < m, bits of the binary
source word x = (x1,...,x,), x; € {—1,1},0r

k
a) =) x, (1)
i=1

and let x™*! be the word x with its last m — k bits inverted. (Note that the quantity
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Zm(x) is the disparity of x.) For example, if
x=(-1,1,1,1,-1,1,=1, 1,1, =1),
then the disparity of x equals 2 and
M= (-1.1,1, 1,1, 1,1, -1, -1, ).

If we let oy (x) stand for the disparity z,, (x¥) of x'¥], then the quantity oy (x) is

k m
op(x) = in— Z X
i=1

i=k+1
k
= @ +2) X @
i=l
As an immediate consequence, op(x) = —z,(x), (all symbols inverted) and

0, (x) = z,,(x) (no symbols inverted). If x is of even length m, then we may con-
clude that every word x can be associated with at least one & for which o;.(x) = 0,
or x¥ i balanced. The value of the first such k is encoded in a balanced word
of length p, p even. (It m and p are both odd, a similar construction is possible.)
The maximum codeword length m + p is governed by

< (p’/’z). 3)

Some other modifications of the basic scheme are discussed in [2] and [11].

2.3 Spectrum and sum variance of sequences

Let {x;}i>0 denote a cyclo-stationary channel sequence. The power spectral den-
sity function of the sequence is given by [16]

o
H(w) = R(0) + 22 R(i)cosim. T <w<m, @)

i=1
where R(i) = E{x;x;4}, i = 0,+£1, 42, ..., is the auto-correlation function of
the sequence. In the sequel it is assumed that {x;};>¢ 1s composed of cascaded
codewords x of length n. Let x®*) = (xfk), o xd, x,.('k) € {—1, 1}, be the kth

element of a set S of codewords. The Fourier transform X ) (w) of the codeword
x® is defined by [15]

n
X () = in(k)e_j"“’, —T <w<m, (5)
i=1
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where j = 4/—1.Foralli.1 <i < n, let the number of codewords x*) € § with
xl.(k) = 1 be equal to the number of codewords with xi(k) = —1 (i.e., the sum of
all codewords in S is the all-zero vector). If, in addition, codewords are randomly
chosen from § to form an infinite sequence, then it is rather straightforward to
show, following [16] and [17], that the power spectral density function H(w) of
the concatenated sequence is

1 )
Hw) =—= Y XD (6)

n|S] x®es

Note that, due to our assumptions, |S| has to be even. We will assume that the
codewords are equiprobable.

From now on, we assume that the set of codewords S forms a dc-balanced
code, in other words, the disparity of all the members of S is zero. The width
of the spectral notch is a relevant quantity since it specifies the frequency region
of suppressed components around the spectral null. Let H (w) denote the power
spectral density function of the sequences formed by cascading the codewords.
Then the width of the spectral notch is defined by a quantity called the cut-off
frequency. The cut-off frequency. denoted by wy. is defined by [13], [14]

1
H(wo) = 5. (7

Another quantity used in the performance evaluation of codes with a null at the
zero frequency is the running digital sum [12]. The running digital sum Z; is

defined by
J
Zj=Y x. (8)
i=0

Specifically, the variance of the running digital sum, in short sum variance, plays
a key role in the spectral performance characterization of dc-balanced codes. The
sum variance of the encoded sequence is defined as

s* = E(Z}}. ©)

where E{.} denotes the expectation operator. It was found by Justesen [13] that
for dc-free sequences the product of cut-off frequency wg and the sum variance of
the sequence is approximately 1/2, or

2wps? ~ 1. (10)

It has been found that this relationship between the sum variance and the actual
cut-off frequency is accurate within a few percent [12]. On the other hand, the
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sum variance is relevant in its own right as it gives the variance of the intersymbol
interference when the channel is ac-coupled.

As in the case of H(w), it can be shown that, under similar conditions, the
sum variance s2 of the concatenated sequence is [12]

|S| > Z[z,(x”‘))]2 (11)

x®es j=

where z;(x) = ‘l.’:, x; and |S| denotes the cardinality of §. (Observe that
|S| — 21)1.)

In principle, the above equations can be invoked to compute the spectrum and
sum variance of sequences generated by Knuth’s method. In that case, S con-
sists of the collection of (m + p)-bit codewords obtained from the set of all m-bit
source words as described in Section 2.2. Naturally, the above operation of enu-
merating all codewords is, for large codeword sets, a considerable computational
load. (Recall that | S| = 2™.) The computational load can be alleviated by making
some approximations. Ignoring the contribution from the p-bit vector (note that
Knuth’s algorithm is especially designed for large codewords, i.e., p < m), the
sum variance can be approximated as

Z Z[z, 7T (12)

yeS Jj=
This approximation is justified mathematically by the facts that

1) z,(y)=0,fory € S, and
2y (1/n) Z;’:l[zj(uj)]? = O(p’/m) = o(m), m — oo, for a balanced p-bit
word u.

In the next section we shall evaluate the right-hand side in (12) exactly.

2.4 A counting problem

In this section we shall provide an exact evaluation of the right-hand side of the
approximation for s2 in (12). We first introduce some useful notation. Throughout
this section, /1 denotes an even, positive integer. The collection of all binary words
X = (X|,....%n), x; € {—1, 1}, will be denoted by R,,. For x € R,,, we define
z(x) = (zo(x), ..., Zm(x)) by

k
(x) =Y _xi, (13)
i=l
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k = 0,...,m. (Note that zg(x) = 0 by convention. Note also that zx(x) =
k mod 2.) Put

S = 1{z(x) | x € Ry}

For each integer k, —m < k < m, we leti
Ry (k) = {X €R, | m(x) = k}

and
Sm(k) = {z€Snlzm= k}

Letx € R,,. The quantity zx (x)—(1/2)z,, (x) starts at —(1/2)z,,(x) fork = 0,
ends at (1/2)z,,(x) for k = m, and increases by %1 if k increases by 1. Since m is
even, we conclude that there exists a smallest integer / = [(x),0 </[(x) <m —1,
for which z;(x) = (1/2)z,,(x). Define x by

f:: (xlv'--7xla_xl+11"'9—xm)a (14)

with [ = [(x) as defined above. Observe that in Knuth’s method a word x is
encoded as a word with initial part . Observe also that X € R, (0), in other
words, X is balanced.

Next, let z € S, with z = z(x), say. (Note that x is uniquely determined by
z.) By abuse of notation, we set /(z) := [(x), and we let Z be defined by 7 := z(X).
In other words,
~ { Zks if0 <k <i(z);

= 15
* =N g — il <k <m. (15)

Note that 7 € S, (0) by definition. Moreover, observe that Z can be obtained from
z by a reflexion of the part (z;, .. ., z,,) of z with respect to the line y = (1/2)z,,.
(See Figure 1.)

With the above definitions, the approximation (12) can now be expressed as

1
2
~ —A(m), 16
$* A —h(m) (16)

where the quantity A(m) is defined as
m
amy = 3372 (17)
ze8y, j=1

Our aim is to prove the following result.
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im

1
3Zm

(NG 1(2) ‘ &

Figure 1: The relation between z and 7.

Theorem 1: A(m) = m(3m + 2)2" 4.

The proof of the above theorem will depend on a number of lemmas and uses
induction on m. (It is easily verified that Theorem (1) indeed holds for small
values of m.) In the course of our computations, we will frequently make use of
the following two results. Let ;; and p;;, 1 <17, j < m, be defined by

—1
—m m
Nij = 2 Z XiXj, Pij = (m/Z) Z XiXj. (18)

XERy x€Ry, (0)

Lemma 2: We have

I, ifi=j:
J— bl 9 1
ij { 0, otherwise. (19)

Proof: Evident. O

Lemma 3: We have

1 ifi = j,
R B ’ 20
Pij { —1/(m —1), otherwise. (20)

Proof: By symmetry, p;; only depends on whether or not i = j holds. More-
over, from the definition of R,,(0) we find that Z'J’;l pij = 0. Since it is immedi-

ate that p;; = 1, the result now follows. O

Lemmas 2 and 3 indicate that it is easy to compute a sum over S, or S, (0) of
polynomial functions of the z; only (i.e., not involving the Z;), simply by writing
out the sum in terms of the x;.

Our next result simplifies the expression (17) for A(m).
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Lemma 4: We have

m
)&(m) = Z Zm Z?J
j=1

2E€8m

Proof: Tt will be sufficient to show that

Y (T —wi)=0 @1

€ Sm

holds, for all j, 1 < j < m. To show this, we first observe that

~ 2 I 2
(Z‘j - —Z.m) = (:] - ;:m) s (22)
(see also Figure 1), and thus
27— miy = 2 — Zmz;- (23)

So we are finished if we can show that

> (25 —zmzj)=0. (24)

Z€8m

But that is easy, either by using Lemma 2, or by observing that the total contribu-
tion to the sum in (24) of z{(x) and z(x") is 0, where
X=X, X, =Xl e, — X)) a

At this point, there are several ways to proceed. In view of Lemma 2, it would
be sufficient to derive a closed-form expression for the quantity

m

iy =) (25)
Jj=1

72€8y,

(This approach is, in a sense, the most logical way to proceed.) It is indeed pos-
sible to evaluate this quantity (using Andre’s reflexion principle, see for example
[18]) in terms of a complicated double summation involving the product of certain
binomial coefficients. Unfortunately, although we knew what the outcome should
be we were unable to find a direct proof.

Here. we will follow another approach that we now describe. For each integer
k,0 <k <m,welet

1
S,ﬂ‘) ={zeSulu= Ezm},
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and for z € S, we define z® = (Zék), cee ,(rlf)) by
& .| Zjs ifO0<j<k; 26
% '—{Zm_zj, itk < j<m. 20

Observe that z®) € S,,(0) forall z € S, and z® = Zif k = I(z). So we may
write

Alm) = sz i?j
i=1

ze8,
m n m m

= > 3 ) - Yooy @D
k=0 o0 =1 k=0 0<l<k ,egh =1

T 12 (]k) to the first summation
in (27) for each k such that z € S,(,f ), By definition of {(z), the smallest such &
equals /(z) and gives a contribution equal to z,, Y ", Z;, while the contributions
for all £ > [ occur also in the second summation in (27).) We will evaluate the

two parts of (27) for A(m) separately.

(To see this, note that each z € S, contributes z,,

Lemma 5:

m m m 2
Y ayd =2 Y (Yu)
ues,, ()

k=0 g j=1 j=1

. 1 41 m
= gm (m ) /2

Proof: For fixed k, the map z — z® defines a one-to-one correspondence
between S and Sm(0). Indeed, note that the inverse of this map is the map

=

U > (ul, ey U, 2uk — Ut lseens 2uk — Umpm—1, 2Ltk).
Since z,, = 2z; = 2z o forall z € S(k) by definition of S,gf ), the first equation
follows. To evaluate the second sum, write

2 m j
> (i"j) = > ( Zx) (28)
ueS,0) Nj=1 xeR,(0) Nj=1 i=l

and use Lemma 3, together with the two well-known series
ka:ok = (1/2)m(m + 1) and ZZ;O k> = (1/6)ym(m + 1)(2m + 1).
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We leave all further details to the reader. 0

Lemma 6:

Z 2. ) ZmZz(")

=00<l<k S(k>
l(z) l
m—2

= Z (n’;Z) {A(m —n)+ %n(m - n)2’”_"}.

n=2
n=0 mod 2

Proof Fixkandl, withO <[ < k,andputn :=k —[. Let z € S, with
1(z) = 1. (Observe that this is possible only if n is even.) With each such z, we
associate a pair of sequences a(z) and b(z), defined as follows.

ifo=<j=<1l
a4 = { Zpon il <j=m—n,

1
bj(2) :=zj41 = Sm, 0<j=<n (30)

(29)

Observe that b(z) represents the part of z between indices / and k, and since
Zk = z1 = (1/2)z,, by our assumptions on z, it follows that b(z) € S,(0}. Observe
also that a(z) can be obtained by removing from z the part of 7 between indices
[+ 1and k, and thus a(z) € S,_,, [(a(z)) = 1(z) = and a,,_,(2) = Zm. (See
again Figure 1.) From these observations, and from the definition of z*, we find

that
Zm Z (]\) = Um— n(Z){ Za](Z) + Z b (Z) + am "( )]} (31)

Conversely, each pair @ and b for which a € S,,—,, [(a) = [ and b € S5,(0)
determines, through (29) and (30), a unique z € 5,51) with /(z) = I such that
a(z) = a and b(z) = b. By this observation, we find from (31) that

m m-—-n i
Sadd = ¥ ¥ {Z"—kZb%—%}

ZGSy(f) acSy—n beS,(0)

I(z)=1 la)=l

FPIRTEIIATIEN
= QA —n Z a; + ~na,_,t, (32)
(n/2 acS, , ]:1 2
l(a)=l
where the last equation follows from the trivial observation that
> bi=0, (33)
bhe $,(0)
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1 <i < n. (Indeed, b € §,(0) if and only if —b € §,(0), and b and —b together
contribute O to the sum in (33).)
Finally, observe that

m-—n
E Ay E a; = x(m —n)
a€Spy—pn J=1

by definition of A(sn — n), and
Z a,%z_n =(m—-n)2""".
acSm—n

(The last statement can easily be proved using Lemma 2). Then, since z,, = 0
whenever z € S,(,,m), the contribution from k = m to the sum in the lemma is
0, so the lemma now follows from (32) by summation over / and n. (Substitute
k=n—1.) O

If we now combine Lemmas 5 and 6 with the expression for A () in (27), and
if we write m = 2M and n = 2k, we find the following result.

Corollary 7:

M-1
Z (2kk) {A(ZM — 2k) + 2k(M — k)4M-’<} = %MZ(ZM + 1)(37).

k=0

By the induction hypothesis of Theorem 1, we may assume that

A2M = 2k) = 2M — 2k)(6M — 6k + 2)aM -2, (34)
fork =1,..., M — 1. Therefore, in order to prove Theorem 1, it remains only to
be shown that substitution of the relation (34), for all values k = 0, ..., M — 1,

into the expression in Corollary 7 results in an identity. This can be shown to be
true by use of the identity

M—1
2k M 2M
Z(k)e< )4/‘4—/“1 - _(ﬁ( ) (35)
= k 2Qe+ 1D\ M
e=0,1,2,...,where k), :=k(k—1)...(k—e+ 1) fore > 1and (k)g :== 1,
which easily follows from the well-known expansion

<20\ (x\
Fx):=(1—-x)""?= Z (k > (Z) (36)

A=0

by calculating (1 — x)"!F® (x). (The instances e = 0, 1,2 of (35), which we
need here, can also be derived for example from [I, vol. 1, page 613, number
19].) Further details are left to the reader.
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2.5 Performance Appraisal

We are now in a position to compare the performance of Knuth codes with that
of other schemes. Specifically, we will compare the performance of Knuth codes
with that of the polarity bit scheme. Both schemes, Knuth codes and polarity bit
codes, have the property that they can be encoded and decoded without look-up
tables. (To be precise, in the case of Knuth codes the encoding of the value of /
into a p-bit balanced word can be effectuated either by using a small look-up table
or algorithmically by enumerative encoding [19].)
The rate of Knuth codes as a function of p is at most
m

R= —, 37
m+p ©7)

where m = (p’;z). Let n,, denote the length of a codeword in the polarity bit code.
The rate of the polarity bit code is

1
R=1-—-—. (38)
np

The sum variance of a bit stream generated by the polarity bit format is [12]
53 =2 —. (39

It seems fair to compare the performance of both methods at the same rate. There-
fore we choose

1
- —=—, (40)
n, m-+p
or
", = [m_ﬂﬂ @
P

where [x] denotes the smallest integer & > x. Application of the outcomes of
our analysis provides the results shown in Table 1. We may observe that the
sum variance of Knuth codes is significantly larger than the sum variance of the
polarity bit codes, for approximately the same redundancy.

2.6 Conclusions

We have compared two methods for the generation of dc-balanced sequences. The
two methods, Knuth’s code and polarity bit code, have the virtue that they can be
used without look-up tables. The spectral performance of the two methods has
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Table 1: Rate and sum variance of Knuth codes and polarity bit codes versus
codeword lengthn = m + p.

p m 1—R s%( np s12,
6 20 0.2308 3.875 5 3

8 70 0.1026 13.250 10 6.33
10 252 0.0382 47.375 27 17.67
12 924 0.0128  173.375 78 51.67
14 3432 0.0041 643.625 247 16433
16 12870 0.0012 2413.250 806 537
18 48620 0.0004 9116.375 2703 1801.67

been evaluated with a parameter called the sum variance. Under the premise that
the sum variance can serve as a quantity to judge the width of the spectral notch,
we conclude that codes based on Knuth’s algorithm ofter less spectral suppression
than polarity bit codes with the same redundancy.
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Chapter 3

Prefix-synchronized
Runlength-limited Sequences

Abstract — Runlength-limited sequences, or (d, k) sequences, are used in record-
ing systems to increase the efficiency of the channel. Applications are found in dig-
ital recording devices such as sophisticated computer disk files and numerous do-
mestic electronics such as stationary- and rotary-head digital audio tape recorders,
the Compact Disc and floppy disk drives. In digital recorders, the coded informa-
tion is commonly grouped in large blocks, called frames. Each frame starts with
a synchronization pattern, or marker, used by the receiver to identify the frame
boundaries and to synchronize the decoder. In most applications, the sync pat-
tern follows the prescribed (d, k) constraints, and it is unique, that is, in the en-
coded sequence, no block of information will agree with the sync pattern except
specifically transmitted at the beginnings of the frames. Usually, the above ar-
rangement is termed a prefix-synchronized format. The prefix-synchronized for-
mat imposes an extra constraint on the encoded sequences, and will therefore re-
sult in a loss of capacity. There is an obvious loss in capacity resulting from the
fact that the sender is periodically transmitting sync patterns, and there is a fur-
ther loss in capacity since the sender is not permitted to transmit patterns equal
to the sync pattern during normal transmission. The relative reduction in chan-
nel capacity associated with the imposition of this additional channel constraint is
calculated. Examples of (d, k) codes that permit the prefix-synchronization format,
based for the purpose of illustration on the sliding-block coding algorithm, are pre-
sented.

(© 1994, IEEE. Reprinted, with permission, from IEEE Jounal on Selected Areas in Commu-
nications, vol. 10, no. 1, pp. 214-222, Januari 1994.
Co-authored by K.A. Schouhamer Immink.
This work was presented in part at the 12th Information Theory Symposium in the Benelux, Veld-
hoven, The Netherlands, May 1991, and the IEEE 1991 International Symposium on Information
Theory, Budapest, Hungary, June 24-28, 1991.
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3.1 Introduction

Since the early 1970s, coding methods based on (d, k)-constrained sequences
have been widely used in such high-capacity storage systems as magnetic and op-
tical disks or tapes. Properties and applications of (d, k)-constrained sequences,
or runlength-limited sequences as they are often called, are surveyed in [1] . A
binary sequence is said to be (d, k) constrained if the number of “zeros” between
pairs of consecutive “ones” lies between d and k, k > d. An encoder has the
task of translating arbitrary user information into a constrained channel sequence.
Commonly, the user data is partitioned into words of length m and under the cod-
ing rules, these m-tuples are translated into n-tuples, called codewords. A certain
number of codewords constitute a frame. All frames are marked with a unique
sequence of symbols, referred to as a marker or synchronization pattern, in short,
sync pattern. The frames are chosen so as to assure the non-occurrence of this
marker except when specifically transmitted at the beginnings of each frame. A
receiver restores the channel bit clock—usually a phase-locked loop is used for
this purpose—and subsequently the synchronization pattern is used to identify the
frame and codeword boundaries. The sync pattern and the related synchroniza-
tion circuitry must be designed with great care, as the effect of sync slippage is
devastating since entire blocks of information might be lost, which is just as bad
as a massive dropout.

Prefix-synchronization codes can be designed by judiciously discarding a
number of potential codewords in such a way that the given marker does not oc-
cur in a codeword and also does not occur anywhere in the coded sequence as
juxtapositions of codewords. Alternatively, potential sync patterns can be found
by making use of “by-products” of code implementation. Since the capacity of
(d, k)-constrained sequences is irrational (see Ashley and Siegel [2]), it is clear
that code implementations which, by necessity, operate at rates of the form m/n,
where m and r are integers, can never attain 100% of the capacity. It was noted by
Howell [3] that implemented codes differ from maxentropic, “ideal”, sequences
by the addition of certain constraints, which he called incidental constraints. He
found that certain bit patterns, which could readily be used as a basis for con-
structing sync patterns, are absent in sequences generated by the popular (1,7)
and (2, 7) codes.

The main objections one may have to this simple approach are, first, that the
sync pattern is found in a rather heuristic and incidental fashion and, second, we
have (generally speaking) no idea how far we are away from a sound engineering
compromise between redundancy and efficiency and, specifically, how the choice
of a certain sync pattern may affect the complexity of the encoder and decoder.
Given that both the choice of the (d, k) parameters and the choice of the sync
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pattern involve a careful evaluation, it is clearly appropriate to explore approaches
and strategies of a more general, rather than specific, applicability in which the
issues of sync pattern selection and code design are beneficially combined.

In 1960, frame synchronization of unconstrained binary sequences in a gen-
eral setting was addressed by Gilbert [4] (see also Stiffler [5], where a detailed
description is given of the synchronization issue). Gilbert showed, among other
things, that to each given frame length, there corresponds some optimum length
of the sync pattern. Gilbert’s work was extended, in 1978, by Guibas and Odlyzko
[6], who provided elegant combinatorial arguments to establish closed-form ex-
pressions for generating functions. In this paper, we will concentrate on the frame
synchronization problem of (d, k) sequences. We commence, in Section 3.2, with
a brief description of (d, k)—constrained sequences, and proceed with the exam-
ination of the channel capacity. It will be shown that for certain sync patterns,
called repetitive-free sync patterns, the capacity can be formulated in a simple
manner as it is solely a function of the (d. k) parameters and the length of the
sync pattern. For each forbidden pattern and (d. k) constraints, methods for enu-
- merating constrained sequences are given. In the final sections, we deal with de-
sign considerations of schemes for encoding and decoding. Examples of prefix-
synchronized (d, k) codes, based for the purpose of illustration on the sliding-
block coding algorithm, are presented.

3.2 Preliminaries

Sequences (with a leading “one™) that meet prescribed (d, k) constraints may be
thought to be composed of phrases of length (duration) j + 1,d < j < k, de-
noted by T . of the form 10/, where 0/ stands for a sequence of j consecutive

“zeros”. The sync pattern is composed of p phrases, Ty, Ty, , . .., T;,, and since it
is assumed that the sync pattern obeys the prescribed (d, k) constraints, we have
s; € dk, where dk = {d+1, ..., k+1}. The p-tuple s = (s1,...,5,) isusedasa

shorthand notation to describe the sync pattern. For example, s = (2, 1, 3) refers
to the sync pattern “101100”. To keep notation to a minimum, s will represent
both the p-tuple (sy,...,s,) and the string 10— ... 10%~! whichever one is
referred to should be clear from the context. The length of the sync pattern, L(s),

is defined by
P

L(s) =Zsl~. )

i=1
It should be appreciated that, as a result of the (d, k) constraints in force, the sync
pattern is preceded by at least d “zeros”, and followed by a “one” and at least d
“zeroes”. (Of course, unless s, = k + 1, the “one” starting the phrase following
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the sync pattern must be a part of the binary pattern used by the synchronization
circuitry at the receiver.) It is, therefore, a matter of debate to say that the sync
pattern length is L(s) or L(s) + 2d + 1. The adopted definition (1) is slightly
more convenient, as we will see shortly.

Each frame of coded information consists of the prescribed sync pattern s and
a string of [ cascaded phrases T;,, ..., T;,. The frame is organized according to
the format

(TS17TS27~~~5TS'1757} T}za"'a’[‘l’[)' (2)

The total number of binary digits contained in a frame is prescribed and is denoted

by Lirame; that is.
14 l
Lframe=zsj+zij' (3)
Jj=1

1

j=1
The valid choices of T; , ..., T;, are those for which no p consecutive phrases
taken from
(Ts‘27 TS‘g» rrty Tspa 7}19 7}29 e 7}[’ T&‘lﬁ T527 A TtS‘p,]) (4)

agree with the sync pattern. Dictionaries satistying this constraint are called
prefix-synchronized runlength-limited codes. It is relevant to enumerate the num-
ber of distinct Lgme-tuples given the above conditions. Following this enumer-
ation problem, we will deal with a related problem, namely the computation of
the number of constrained sequences when the frame length Lyyme is allowed to
become very large.

3.3 Enumeration of Sequences

In this section, we will address the problem of counting the number of constrained
sequences. Our methods can be viewed as an extension of those of Guibas and
Odlyzko [6] but can, in fact, be traced back to the work of Schuetzenberger on
semaphore codes [7, remark 3], see also Berstel and Perrin, [8, sect. 1I-7 and
notes following sec. VI1]. Schuetzenberger attributes these results to Von Mises
and Feller [9]. Related work can be found in [10].
First we develop some notation. Let F be the collection of all sequences T of
the form
Tr=(,....T), i; €dk, j=1,...,n, 5)

composed of n > p phrases of length

L(T)=Yij, (6)
=1
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with the properties that

Fl): (ilw--,ip):(in—p+ls---,in)=(Sls~--,sp)- (7)
F2): Ujyevonljyp—1) F (515 u8p)s j=2,...,n—p. (8)
With the collection F, we associate the generating function f(z) defined by
fo=) . ©)
TeF

We denote by fy the coefficient of =" in f(z). Our aim will be to enumerate the
number of distinct binary N-tuples in F, i.e., to determine the numbers fy. Ob-
serve that the number f7. (s is nothing but the number of admissible frames.
Following [6], we introduce two additional collections of sequences G and H, de-
fined as follows. The collection G consists of all sequences T as in (5) composed
of n > p phrases such that

Gl): (i1seiip) = (51,0, 8p), (10)
G2): (ijyoeosijpp—1) (S, ..., 8p), j=2....n—p+1011
and H consist of all sequences T as in (5) composed of r > 0 phrases such that
HD: G,y ijep—1) # (51,00, 5p), j=1...,n—p+1 (12)

Note that by definition the empty sequence A is contained in H, s € G, and the
three collections F', G, and H are mutually disjoint. With these collections G and
H, we associate generating functions g(z) and h(z) defined as

g =Y 7t hy =)D (13)

TeG TeH

We now proceed to determine f (), g(z), and /(z). The idea is to derive relations
between these generating functions from certain combinatorial relations between
the collections F, G, and H. To start with, we observe the following. Let T =
(T;,,....T;,) beasequence in G. Then the sequence T «(T;) = (T;,, ..., T;,, T;),
i € dk, is contained in F orin G \ {s}, but not in both since ¥ and G are disjoint.
On the other hand. if T = (T;,,...,T;,), n > p + 1, is contained in F or in
G \ {s}, then the sequence (7;,, ..., T;, ,) is contained in G. We conclude that
there is a one-to-one correspondence between sequences

T «(T)), T € G, i €dk,

and sequences in
FUG\{s}.

From this observation, the following lemma is immediate.



74 3. Prefix-synchronized Runlength-limited Sequences

Lemma 1:
8@ Pu(2) = f(2) +g(z) — 771,

Pu(z) =Y 7 H =3 "7 (14)

iedk iedk

where

Proof: We have

8D Pu(z) = Z LM Z ;LT

TeG iedk

= SO T

TeGiedk

- Z LD

TeFUG,T#s
= f(@)+gk -1,

Similarly, we may derive a one-to-one correspondence between sequences
(1) =T, T e H, i €dk,

and sequences in
HUG\{A},

(recall that G and H are disjoint), which leads to the next lemma.

Lemma 2:
Pai(2)h(z) = h(z) + g(z) — 1.

Proof: Similar to the proof of Lemma 1. (Note that z7-») = 9 = 1). |

Before we can write down the last relationship we require some definitions.
Define the (p — i)-tuples h) = (s1,...,5,_;) and t© = (s;41,...,5,), 80

h® and t' consist of the p —i,i = 0,..., p — 1, first and last phrases of the

marker s, respectively. Let L(h®)) be the length of the first p — i phrases of s, or

p—i
LKD)y =>"s;. (15)

j=1

The autocorrelation function of s, denoted by 7, is a binary vector of length p
which is defined by r; = 0if B £t and r; = 1if ) = t¥. Obviously, ry =
1. An example may serve to explain why » is termed auto-correlation function.
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—_ NI =
[ N R W)

W =
—_ N = D =
—_ o = O

Figure 1: Process of forming the auto-correlation function r.

Let s =(1, 2, 1, 2, 1), then Figure 1 exemplifies the process of forming the auto-
correlation function. If a marker tail coincides with a marker head, we have r; =
1;elser; = 0.

Itr, =0,1 <i < p— 1, thatis, if no proper tail equals a proper head of the
marker, we say that the marker is repetitive free.

We are now in the position to prepare Lemma 3. To that end, leti, 0 < i <

p—1,besuchthatr; = 1,andlet T = (T;,, ..., T;) € G. By definition of G,
ij=sjforj=1,..., p. Since r; = 1, we have
(Ty,, ... . T)=xT
= (Ty,.... Ty, Ty,.... T5,, 11\, - - T3y
= (Is,.... Ty, Ty s 15, Ty oo T Ty o220 1y
= sxT
Wherez\ =T, ;ys--» L, Tipyys - - -5 Tn). Moreover, T is a proper suffix of 7',
hence T € H.
Conversely, let T = (Ti,,..., T;,) € H. Consider the word U = s % T =
(Ui, ...,U,-Hp).ALet J be the largest number such that (U,-J.,...,U,-m,_l) = s.

Note that, since T € H, 1 < j < p holds. From the way in which j was defined,
it follows that T := Wi, ..., Ui,.,) € G and moreover that i := j — 1 satisfies

in+p
ri = 1.

From the above we conclude that there exists a one-to-one correspondence
between sequences

(Ty,....T)*T, O0<i<p—1, r=1, TeG

and sequences
s*T, T € H.

From this observation, the following lemma easily follows.
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Lemma 3:
(1+ F(2)g(z) = 2 H®@h(2),

where the polynomial F, (z) is defined as

p—1 )
Fo(z) = ZriZL(h(z))~L(s). (16)
i=1
Proof: Ifr; = 1, then R =t = (5;;,...,s,), whence
LBy — L(8) = —L(sy, ..., ;). (17)
Note also that (
roZL(h“’)~L(s) =1. (18)

Therefore,

(1+ Fr(2))g(2)

( Z Z—L(s[ ...... \‘,-)) ZZ—L(T)

O<i<p—1 TeG

— Z Z L= L((s1si)%T)

U=i=p-1 TeG

ri=l1
— Z ,l,fL(s*f)
TeH
— Z_L(s)h(Z)-
Od

From the relations between f(z), g(z), and h(z) as described in Lemmas 1-3,
we may derive the following result.

Theorem 4:
Fr(2)(Py(z) — 1) — z7E
Pu(z) — 1 — 771 — (1 — Py(2)Fr(z)

Proof: From Lemmas 2 and 3, an expression for g(z) not involving 4(z) may
be derived. If this expression for g(z) is combined with Lemma 1, the theorem
follows easily. d

L f) = (19)

Corollary 5:  The number of admissible frames of length N = Lframe 18 the
coefficient of z~% in the power series expression of the RHS of (19) .

It is immediate from Theorem 4 that the number of constrained sequences
is solely a function of the marker length L(s) if the marker is repetitive free. Al-
though Theorem 4 is useful for enumerating the number of constrained sequences,



3.3. Enumeration of Sequences 71

it shows its greatest utility in investigating the asymptotic behaviour of the num-
ber of constrained sequences when the sequence length is allowed to become very
large.

This asymptotic behaviour is directly related to the (noiseless) capacity to be
discussed in the ensuing section.

3.3.1 Capacity

The number of distinct (d, k) sequences of length n, denoted by Ngi(n), grows,
for sufficiently large n, exponentially:

Nap(n) ~ a,2¢@0r, (20)

where a; is a constant independent of 5, and the rate of growth C(d, k) is termed
the (noiseless) capaciry of the (d, k)-constrained channel. The capacity C(d, k)
1s the base-2 logarithm of the largest real root of the characteristic equation [11]

Pa()=Y z ' =1 1)

iedk
For the d-constrained case, k = 0o, we have the characteristic equation
) —d

20
z ‘
Py oo(z) = E 7= [~ L. (22)
i=d 11 <7

Using the above characteristic equations, it is not difficult to compute the capacity
of (d, k)-constrained channels. The results of the computations have been tabu-
lated in [1] .

The capacity C(d, k, s) of (d, k) sequences where the marker s is forbidden
can be found from the next theorem.

Theorem 6: C(d, k, s) = log, A, where A is the largest real root of
Pu(z) =z M — (1 = Py () Fr(z) = 1. (23)

Proof: Follows from Theorem 4. Note that numerator and denominator of the
RHS of (19) have no common factors. a

An upper and lower bound to the capacity C(d, k, s) are given in the next
corollary.

Corollary 7:  For given sync pattern length L(s),

log, & < C(d. k, 8) <log, Ay,
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where ) is the largest real root of
Pu(z) =749 =1
and A, is the largest real root of
=l
Py@) —z MO — (1= Py(2) Y 2V =1.
i=1

The lower bound is attained if s is repetitive free and the upper bound is attained
ifsisoftheform(d +1....,d + 1).

Proof: Let
q2) = Py(@) = 1 =250 — (1 = Py() F-(2),
a(z) ;= Pyu(z)—1— Z—L(S),
and
P
b(z) i= Pp(2) — 1 — 2719 — (1 = Py(2)) szt(dﬂ)‘
i=1
We start with the lower bound. Since a(i;) = 0, we have
qGu) = —(1 = PacGp)YFrOu) = A " F, () = 0.

Since ¢(z) = —1 for z — o¢, and since A is the largest real zero of ¢(z), this
implies &; < A. Equality holds if » = (1, 0, ..., 0), that is, if the sync pattern s is
repetitive free.

The upper bound follows from a similar argument. Since 1 < A; < A, we have
171 < 1. Moreover, L(s1, ..., s;) > i(d + 1), hence

From g (1) = 0, it follows that
(L= PaxG)(1 + Fr (1) = =27 <0,
whence | — Py (A) < 0. Therefore,
p—1

b() = (1 = Pp))(Fr (1) = Y 27140y > 0.
i=1
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Table 1: Capacity of the (1, 3)-constrained channel.

s C(1,3,s8) Xv; max{v;}

1000 40569 - -

1010 46496 - -

10100 45316 - -

100010 48673 - -

100100 50630 18 4

101010 51737 30 6

1000100 50902 11 3

1001010 .50902 20 4

1010010 51606 33 6

10001000 52934 11 3

10001010 52352 12 3

10010010 .52352 18 4

10010100 52785 26 4

10100010 .52669 32 6

10101010 .53691 30 6
Since b(z) = —1 for z — o0, and since A, is the largest real zero of b(z), this
implies A < A,,. 3

Tables 1-3 present C(d, k, s) for selected (d, k) parameters. (The right-hand
columns are related to the code design to be discussed in a later section.) From
Table 1 we observe, for example, that s = (3, 3) is the shortest sync pattern that
admits of a code with rate 1 : 2, while the shortest repetitive-free sync patterns
that admit of the same code rate are s = (4, 3) and (3, 2, 2) (and, of course, their
reversed counterparts, which are not in the table). In the Appendix, an analysis
is given to approximate C(d, k, 8). In the next section, we will discuss what the
consequences are in terms of encoder and decoder complexity.

3.4 Code Design

In this section, we use the preceding theory to provide some examples of code
design based on the sliding-block code algorithm [12] . The starting point of the
sliding-block code algorithm is a description of the channel constraints by a la-
beled directed graph. An N;-state (labeled) graph is characterized by an Ny x N;
adjacency matrix D with non-negative integer entries and a labeling output func-
tion ¢ that maps the transitions (edges) into the channel alphabet. In the next
section, we will describe the graph that represents the (d, k) and synchronization
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Table 2: Capacity of the (1, 7)-constrained channel.

s C(1,7,s) Xv; max{v;}
1000000 66262 - -
1000010 66262 - -
1000100 66262 - -
1001010 66262 - -
1010010 .66422 - -

10000000 .66903 99 19
10000010 66903 129 19
10000100 .66903 147 19
10001000 67047 164 19
10001010 .66903 160 19
10010010 .66903 275 30
10010100 66998 252 27
10100010 .66965 279 27
10101010 .67302 142 15
100000010  .67296 65 11
100000100 67296 76 11
100001000 67296 38 11
100001010  .67296 86 11
100010010  .67296 102 11
100010100  .67296 102 11
100100010  .67296 156 16
100100100  .67448 153 16
100101010  .67296 152 16
101000010  .67320 198 19
101001010  .67320 202 19

constraints. Thereafter, as a straightforward application, we present some exam-
ples of code design.

34.1 Graph description

We will now proceed to show that the constraints can be represented by an (L +
k 4+ 1 — sp)-state graph. Admissible sequences emitted by the graph exclude the
sync pattern as well as those sequences which violate the (d, k) constraints. Let
the (L + k + 1 — s1) states be denoted by o7, ..., 07,61, ..., Oky1—s,. The graph
occupies state o;, | < i < L, if it is possible to form a marker by extending
the generated sequence with L — i + 1 symbols, or stated alternatively, if the i
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Table 3: Capacity of the (2, 7)-constrained channel.

s C(2,7,s) XZv; max{v;}
1000000 48913 - -
1000100 48913 - -
10000000 49791 - -
10000100 49791 - -
10001000 50202 160 20

100000100 50395 67 10
100001000 50395 108 14
100100100 50841 124 14
1000000100 S0811 61 10
1000001000 S0811 70 10
1000010000 50952 80 10
1000100100 50811 85 10
1001000100 50887 134 14

10000000100 51097 23 4
10000001000 51097 39 6
10000010000 51097 62 8

10000100100  .51097 79 10
10001000100 .51097 96 10
10001001000 51148 86 10
10010000100 51134 138 14

most recently emitted symbols equal the i first symbols of the marker (and if i is
maximal with this property). The graph is in the state 6;, | <i <k + 1 — sy, if,
to form a marker, the generated sequence must be extended with L + 1 symbols
and if the most recently emitted “zero” runlength is s; — 1 + i. The structure of
the graph can be described as follows. Let m = (m, ..., m,) denote the p-tuple
formed by the p most recent phrases generated by the graph. Evidently, m; € dk,
i < p-—1,andm, € {l,...,k + 1}. Let![ be the largest integer for which
1 <1< pGst,....8-1) = (mMp_yq1,...,mp_1) and m, < s; hold. (The first
condition is considered to be vacuously true if / = 1). If no such integer can be
found, then set/ = 0. Then, if / > 0, the graph is in the state

else it is in the state 6;, j = m, — s;. The various transitions between the states
and the output labeling function are implied by the definition of the states and
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Figure 2: Eleven-state source that describes the (2,7) constraints and does not
generate the pattern “10000100(1)”. Note that the last “one”, written in paren-
theses, indicates the start of a new phrase.

the constraints in force. Figure 2, for example, depicts an 11-state graph that
represents the (2, 7) constraints and does not generate the marker s = (5, 3).

3.4.2 Results

The graph described in the previous section serves as the input to the sliding-
block algorithm. The sliding-block code design is guided by the approximate
eigenvector inequality. Let the code rate be m/n < C(d, k). where m and n,
m < n, are positive integers. An approximate eigenvector v is a non-negative
integer vector satisfying

D'v > 2"y, (24)

If A is the largest positive eigenvalue of the adjacency matrix D, then by the
Perron-Frobenius theory, (see e.g., Varga [13]) there exists a vector v whose en-
tries v; are non-negative integers satisfying (24), where n/m < log, A. The fol-
lowing algorithm, taken from Franaszek [14], (see also Adler er al. [12]) is an
approach to finding such a vector.

Choose an initial vector »@ whose entries are v
ative integer. Define inductively

N
vl.(”H) = min(vi(”), entier(Z_m Z[D”]ijv;"))), (25)

j=1

©

i

) = B, where B is a nonneg-

where entier(x) denotes the largest integer less or equal x. Let

v = ,U(u)7

where u is the first integer such that v®*+D = ™. There are two situations:
(a) v > 0 and (b) v = 0. Case a) means that we have found an approximate
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Figure 3: Seven-state source that describes the (1,3) constraints and does not
generate a pattern “1000100(1)”.

eigenvector, and in case b) there is no solution, so we increase f and start from
the top again. There may be multiple solutions for the vector v. The choice of
the vector may affect some significant parameters of the code so constructed. The
largest component of v is related to the error propagation in the decoding process,
and the parameter X v; 1s a factor that has an influence on the encoder complexity.
After finding an approximate eigenvector using (25), it is sometimes possible to
find a better eigenvector by a systematic trial and error method. Adler et al. [12]
suggested reducing one of the components of v and applying (25) again.

At least in principle, it is now possible to run a computer program in order
to evaluate the suitability of a certain sync pattern and to assess the concomi-
tant complexity of the encoder and decoder hardware. When the sync pattern is
long, however, the evaluation of each valid sync pattern quite easily becomes an
engineering impossibility. We opted for a slightly different approach. A rough
estimate of the encoder and decoder complexity can be based on two simple in-
dicators: a) Xv; and b) max{v;}. It has been shown by Adler et al. [12] that the
size of the encoder is upper bounded by Yv; and the error propagation proper-
ties are related to the number of rounds in the splitting process which is, in turn,
connected to max{v;}. Results of computations are collected in Tables 1-3 for
rate-1/2, (1, 3), rate-2/3. (1, 7), and rate-1/2, (2, 7) codes, respectively. In gen-
eral terms, the figures reflect our intuition that as the capacity of the constrained
channel increases, it becomes easier to implement the code. Some outcomes, how-
ever, are intriguing as they contradict this general rule. Specifically, we observe
that both parameters X v; and max{v;} suggest that the rate 1/2, (1, 3) code with
sync pattern (3, 3) is easier to implement than the same code with the sync pattern
(2, 3, 2), while one might expect otherwise as the capacity of the latter is signifi-
cantly greater. It is not at all obvious whether this is an artifact of the indicators or
whether other parameters play a role. Further study, for example using the tools
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Table 4: Code book of rate 1/2, (1, 3) code.
o; 80i,0) h(0i,0) gloi, 1) h(oi, 1)

1 1 10 4 10
2 1 00 5 00
3 2 01 3 01
4 1 00 3 10
5 3 01 3 10

presented by Marcus and Roth [15], is needed to answer these questions. In the
next section, we will describe a worked example of the design of a rate 1/2, (1, 3)
code.

3.4.3 Worked example

We consider the design of a rate 1/2, (1, 3) code which does not generate the
marker s = (4,3) or “1000100(1)”. The capacity of the channel is (see Ta-
ble 1) C(1,3,s = (4,3)) = 0.50902, so that this code achieves an efficiency of
0.5/0.50902 = 98.2%. Figure 3 shows the graphical representation of a seven-
state source whose output sequences obey the given constraints.

The adjacency matrix D associated with this source is

01 000O0O

1 01 00 00

1 001000
D=}10000100 (26)

000O0O0OT10

1 000001

00010O00O0

Invoking (25), we find the approximate eigenvector v' = (2,3,2,1,1,2,0).
After the previous spadework, it is now a simple matter to assemble, using the
sliding-block coding algorithm, a rate 1/2, (1, 3) sliding-block encoder. The en-
coder is defined by two characterizing functions: the next-state function g(o;, 5,,)
and the output function h(c;, B,), where B,, u = 1,...,2™", are the 2™ source
words, and 0,7 = 1, ..., N,, are the N, encoder states. The output and next-state
function are shown in Table 4.

The implementation of the rate 1/2, (1, 3) encoder is elementary; the encoder
comprises a three-stage register to store the actual state (three bits are sufficient to
represent the five encoder states), and a (143) — (24 3) logic array for looking
up the 2-b codeword and the 3-b next-state. Decoding can be accomplished by a
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Table 5;: Coding rules MM code.

Source Output
0 x0
1 01

sliding-window decoder with a window length of eight channel bits, thus limiting
error propagation to at most four decoded user bits. No attempt has been made to
improve this parameter.

344 » Incidental constraints

Runlength-limited codes operate at rates of the form m/n, where m and n are
integers. It was shown by Ashley and Siegel [2] that, save a trivial exception,
the capacity of (d, k)-constrained sequences is irrational. It is, therefore, clear
that code implementations can never attain 100% of the capacity. It was noted by
Howell [3] that implemented codes differ from maxentropic, “ideal”, sequences
by the addition of a few constraints, which he called incidental constraints. Howell
[3] described in detail the incidental constraints of three popular (d, k) codes,
namely the rate 2/3, (1, 7) code [16], the rate 1/2, (2, 7) code [17], and the rate
1/2, (1. 3) code. He found that certain bit patterns do not occur in sequences
generated by these codes. The codes above exhibit other incidental constraints.
They are, however, not relevant for synchronization purposes and are therefore not
discussed here. An important beneficial consequence of the presence of incidental
constraints is that prefix-synchronization can often be established by exploiting
the incidental constraints so that information capacity is not wastefully dissipated.
Itis an instructive exercise to compare the three above codes, where we could base
the sync pattern on the incidental constraints, with codes found with the more
direct approach outlined in the theory developed.

1) Rate 1/2, (1,3) Code: Modified Frequency Modulation (MFM), a rate
1/2, (1, 3) code, has proved very popular from the viewpoint of simplicity and
ease of implementation, and has become a de facto industry standard in flexible
and “Winchester”-technology disk drives. MFM is essentially a state-dependent
block code with codewords of length n = 2. The encoding rules underlying the
MFM code are shown in Table 5. The symbol indicated with “x” is set to “zero”
if the preceding symbol is “one”; else it is set to “one”. It can be verified that
MFM sequences have a minimum and maximum runlength of d = 1 and & = 3,
respectively.

These rules are easily translated into a two-state encoder. Decoding of the
MFM code is simply accomplished by discarding the redundant first bit in each
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received 2-b block. It is not difficult to check that under MEM rules, the output
sequence 10 00” is not valid, but “01 00 017, however, is valid, so that “1000”
cannot serve as a sync pattern. The shortest sequence that does not occur in an
MFEM sequence is the 12-b sequence “100010010001”. Perusal of Table 1 reveals
that the shortest markers giving room for the design of a rate 1/2 code are of
length six. The rate 1/2, (1, 3) code described in Section 3.4.3 has the advantage
that its sync word is 8-b long instead of twelve bits required in the MFM code.
On the other hand, the MFM code has a simpler implementation and the decoder
window length is shorter, namely two bits, and is thus more favorable in terms of
error propagation.

2) Rate 1/2, (2,7) Code: A great many kinds of rate-1/2 codes are known
for the parameters d = 2 and &k = 7. We will concentrate on the variable-length
variant invented by Franaszek [17] and modified by Eggenberger and Hodges [18].
The code can be encoded with a six-state encoder (Howell [3] showed how to
devise a five-state encoder) and decoded with a sliding-block decoder of length
eight. Howell [3] found that this (2, 7) code does not produce 12-b sequences of
the form 1071021, so that the sequence s = (8, 3) can be used as a marker in this
scheme. In Table 3, we observe that there are nine candidate sync patterns s of
length L(s) < 11 which permit the construction of a rate 1/2 code; the shortest
marker has length eight. Rate-1/2 codes which embed each of these candidate
markers were generated using the sliding-block coding algorithm. Approximately
10 rounds of splitting steps are required for the codes with the markers of length 8
and 9: the corresponding encoders utilize approximately 30 states. The codes for
the markers of length 10 require 8 splitting rounds. The simplest code found uses
the marker s = (7, 3); the code requires 23 encoder states and can be decoded
with a decoder window of 23 bits.

3) Rate 2/3, (1,7) Code: The rate 2/3, (1,7) code described by Jacoby
and Kost [16] is a lookahead code. It can be encoded by a five-state encoder and
decoded by a decoder with a window of seven bits. Howell [3] has observed that
the set of sequences generated by this code is invariant under time reversal. The
16-b pattern 1061071 and its reverse 10710°1 do not occur in sequences generated
by the (1, 7) code. We have evaluated a number of shorter sync patterns, but could
not find a code that rivaled the Jacoby/Kost code in complexity.

3.5 Conclusions
We have investigated the prefix-synchronization of runlength-limited sequences.

In particular, we have analyzed the capacity of (d, k)-constrained channels giving
room for the prefix-synchronization format. It has been shown that for certain
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sync patterns, termed repetitive-free sync patterns, the capacity can be formulated
in a simple manner, as it is solely a function of the (d, k) parameters and the length
of the sync pattern. For presentation purposes, the complexity consequences of
short sync patterns have been investigated for the rate-1/2 codes with parameters
(1,3) and (2,7), and for the rate 2/3, (1, 7) code. We have not found a code
that rivaled the (1,7) and (2, 7) codes whose sync patterns are based on their
respective incidental constraints. A worked example of a rate 1/2, (1, 3) code
giving room for the inclusion of a unique sync pattern of length seven has been
presented.

Appendix: Approximations to the capacity bounds

In this Appendix, we derive approximations to the lower and upper bound to
the capacity C(d, k, s). Corollary 7 asserts that for given marker length L(s),
log, A,y < C(d, k, s) <log, Ay, where A, is the largest real root of

Py(x) —z7H® =1
and A, is the largest real root of

p—1
Par(@) =z H = (1= Pue() ) a7 = 1.

i=]

We commence with the lower bound. To that end, let « be the largest real root of
the characteristic equation

Par(z) = Zz_i =1

icedk
and let A; = w + AJ; be the largest real root of
Pu(z) —z H® =1.

Then
Pa(p + Akp) — (o + Ad) ™ =1

Differentiating and working out yields

Ady > — %M—L(S), L(s)> 1,

where the average runlength T is
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Thus,
C(d, k,s) > log,(u+ AXrp)
= C(d,k)+log, (14 Ax/1)

1
~ C(d k) — ———=p .
@.5) ln(2)TM

In a similar fashion, we find for the upper bound &, = u + Ax,, :

—L(8)
Ay~ - H .
r A i (d+1
1+ ZM—I( +1)
i=l
We have
p—1 ) 1
1 + Zu—l(d-i-l) ~ W’ L(S) > 1,

i=1

and from (22) we infer that, for k > 1,

P~y et
so that
L s
A)LMZ—?M , Ls)y>» 1. k> 1
Thus, for the relative capacity loss we find the following approximations:
1 1
—pFO oW k- Cd, k, 8) <« —— pu T, L(s) > 1.
In(2)T n(2)T
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Chapter 4

On the construction of
bounded-delay encodable codes
for constrained systems

Abstract — We present a new technique to construct sliding-block modulation
codes with a small decoding window. Our method, which involves bhoth state splitting
and look-ahead encoding, crucially depends on a new, “local” construction method
for bounded-delay codes. We apply our method to construct several new codes, all
with a smaller decoding window than previously known codes for the same con-
straints at the same rate.

Index Terms — Bounded-delay code, local encoder structure, ACH algorithm,
look-ahead coding, state splitting,

4.1 Introduction

In various applications it is desirable to translate or encode sequences of source
data into sequences that obey certain constraints. For example, storage systems
based on magnetic and optical disks and tapes often employ (d, k)-constrained
sequences, binary sequences in which any two consecutive “ones” are separated
by at least 4 and at most k “zeroes”. (See e.g. [15], [21].) In most cases of
practical interest, the collection of allowable sequences, the constrained system,
can be described by a finite-state transition diagram (FSTD), a labeled digraph
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The material in this paper was presented in part at the IEEE Symposium on Information Theory,
Trondheim, Norway, 1994.



92 4. Construction of bounded-delay encodable codes

consisting of a finite number of states and a finite number of transitions between
states, each labeled with a code word. The constrained system represented or
generated by the FSTD consists of all sequences that result by reading off the
labels from the transitions that make up a directed path or walk in the FSTD.

A (modulation) code for a constrained system consists of an encoder, a one-
to-one map that transforms sequences of source symbols into allowable sequences,
together with a decoder, the inverse of the encoder map. In practical applications
the encoder takes the form of a synchronous finite-state machine. Such a device
accepts arbitrary source symbols from a given source alphabet B as input, and
produces a code word depending on this input and the current state of the encoder.
(Such codes are called synchronous.) Typically, each source symbol is made up
of p user bits, and each code word is composed of ¢ channel bits, for some fixed
numbers p and g. The number p/q is called the (binary) rate of the code.

Since modulation codes are normally used in a noisy environment, it is impor-
tant that the decoder limits the propagation of input errors. All codes considered
in this paper will have a sliding block decoder. Such a decoder retrieves the orig-
inal source symbol at the input of the encoder from the corresponding code word
along with a fixed number m of preceding code words and a fixed number a of
subsequent code words. We refer to these m + 1 + a code words as the decoding
window for this source symbol, and we say that the code has a decoding-window
size of m + 1 + a code words. Note that a single error in the input to a sliding-
block decoder affects at most m + 1 + a source symbols, so the amount of error
propagation (the maximum number of erroneous bits in the output sequence pro-
duced by the decoder caused by a single bit error at the input) remains bounded.
The decoding-window size also has a direct bearing on the amount of hardware
needed to implement the decoder. For these reasons, it is an important parameter
of a code and should be as small as possible.

Throughout the years, various code construction methods have been devised.
The effectivity of these methods depends (amongst others) on the desired rate p/g
of the code. In this paper we concentrate on methods which are most effective
when p and ¢ are relatively small. (For a more general overview, see e.g. [15].) A
classical technique is the Bounded-Delay (BD) method developed by Franaszek
in a sequence of papers [6], [7], [8], [9]. This method constructs codes that em-
ploy look-ahead encoding (or, equivalently, involve an encoding delay) and aims
to minimize the decoding window. A drawback of the BD method is that code
construction may involve large and complex search problems. A breakthrough
occurred with the discovery of the ACH state splitting algorithm [2]. This algo-
rithm, which in its simplest form is polynomial-time and of low complexity, is
guaranteed to produce a code for a constrained system of finite type, at any (ra-
tional) rate not exceeding the Shannon capacity of the constraint. However, the
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method allows a great deal of freedom of choice and it is far from evident how to
use this freedom to obtain a code with a small decoding window.

Both the BD method and the ACH algorithm produce codes for a given con-
strained system by transforming a given FSTD that represents these constraints.
Moreover, in both cases the transformations are guided by an approximate eigen-
vector that assigns certain weights to the states of the given FSTD. The ACH
algorithm does so by a process called (forward) srate splitting. Here, a (forward)
state split essentially subdivides a state by partitioning the set of transitions leav-
ing that state. OQur description of BD codes in Section 3 shows that the BD-method
may be considered as backward state splitting, where states are now subdivided
by partitioning the set of transitions entering a state. We will refer to these trans-
formations by saying that states are subdivided according to their future (as in the
ACH algorithm) or to their history (as in the BD-method).

In this paper, we propose a code construction technique that combines aspects
of these two methods, generalizing the approach in [17]. The method aims specif-
ically at the design of codes with a small decoding window. The construction
involves both state splitting and look-ahead encoding (thus subdivides states ac-
cording to both future and history), and is again guided by an approximate eigen-
vector. Our technique crucially depends on a new construction method for BD
codes from what we call a local encoder structure. This method allows the de-
composition of the difficult global code construction problem into a number of
independent, relatively easy, local problems, one for each state.

The existence of a valid encoder structure in a given state (whose construction
makes up the said local problem for this state) depends only on the weights as-
signed to this state and its successors. In particular, if all weights are “sufficiently
small”, then a local encoder structure can always be found. However, it may hap-
pen that for some states no valid encoder structure exists. In that case, we reduce
the state-weights by state splitting operations, where the state splitting process is
driven by the requirement that a local encoder structure can be formed in each of
the states. As in the ACH algorithm, we strive to keep the number of rounds of
state splitting (see e.g. [19]) as small as possible, since this number has a direct
bearing on the size of the decoding window of the resulting code.

Once we have obtained a complete local encoder structure, it is fairly easy
to construct the required BD code. In fact, this construction still affords some
freedom of choice, which we can employ to minimize the decoding window and
error propagation of the resulting code. Only at this point the specific code word
labeling of the FSTD is taken into account.

In all examples that we consider (and some of these involve fairly complex
constraints), the appropriate choice of state splitting operations is fairly evident.
However, we do not offer a clear-cut algorithm on which to base these choices.
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Nevertheless, since our technique can be considered as an extension of ACH, any
sequence of valid state splittings will eventually produce a code whenever ACH
would. In our view, the method is best implemented interactively; the user chooses
the state splits but the remainder of the work is left to the computer program.

Our method would not be very exciting if the required amount of state splitting
was comparable to that required in straightforward ACH. Fortunately, this does
not seem to be the case. Indeed, the motivation behind this method stems from the
following remarkable observation. An encoder produced from the ACH algorithm
by M rounds of state splitting (i.e. M future transitions are taken into account) has
a decoding window of size M +c, for some constant ¢ depending only on the actual
labeling of the FSTD. But sometimes it may happen that decoding requires only
the K + ¢ last code words from the decoding window, for some K < M. (An
extreme example of this behaviour occurs for bounded-delay encodable, block-
decodable (BDB) codes [12], where K = 1 and M can be arbitrarily large. This
will be explained elsewhere.) In other words, the effective window size may be
much smaller than the ordinary window size. (For this reason the lower bound on
the decoding-window size in [ 18] has to be applied with care.) We will refer to this
property by saying that the code has the reduced window property. At first sight,
coaching ACH into producing a code with the reduced window property seems
difficult: the algorithm allows much freedom and there is no evident criterium on
which to base the choice of the state splitting steps. Is there a way to profit from
this phenomenon in a systematic way? We will show that in the case described
above, our code construction technique would require at most K rounds of state
splitting (and often much less) to produce a shifted version of the ACH code, i.e.,
corresponding code sequences are equal up to a fixed shift.

In practice, our method performs very satisfactorily, as is witnessed by many
examples. In particular, in this paper we derive the following new codes:
— A rate-2/3 (d. k) = (1, 6)-constrained code with decoding-window size of 5
symbols (in fact, only 14 bits), with an error propagation of only 9 bits. (To the
best of our knowledge, the previous record is held by a code described in [1],
which has an error propagation of 11 bits.)
—Arate-2/5 (d, k,s) = (2, 18, 2)-code, with a decoding-window size of 3 sym-
bols. (The previous record was 4 symbols, see [19].)
— A rate-2/3 (d. k) = (1, 9)-constrained code with a decoding-window of size 2
symbols or 6 bits,
All of these codes were constructed by hand in a few hours. Moreover, many
known good codes can also be found by our method, often with surprising ease.

Finally, we observe that our approach allows a uniform description to be given
of various code construction methods such as ACH [2], BD method [8], variabie
length codes, prefix-free list codes, variable-length state splitting [3], [11], and a
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method described by Cohn and Lempel in [17].

The paper is organized as follows. We begin in Section 2 by reviewing the
code construction problem. Here we also recall some definitions and establish
most of our notation. In Section 3, we discuss look-ahead encoders and Bounded
Delay (BD) codes. Local encoder structures are introduced in Section 4. In Ap-
pendix A, we give a proof that a BD code can be constructed from a given local
encoder structure, and we discuss the complexity of local encoder construction.
In Section 5, we describe our code construction method. This construction de-
livers an encoder that employs look-ahead. In Section 6, we explain how such
an encoder can be transformed into a conventional encoder. In Section 4.7, we
illustrate our methods by constructing three new codes, and in Section 8. we offer
some conclusions. Finally, we briefly review the ACH state splitting algorithm in
Appendix B. Here we also establish the connection between ACH and our meth-
ods. Some further details concerning this connection are provided by Appendix C

4.2 Codes for constraints of finite type

In this section, we consider the coding problem for constrained systems in more
detail. Along the way we establish some notation and introduce a number of
concepts that will be used later on. The reader is advised to skim this section on
first reading, and to return here later if necessary.

Suppose that we have to design a (synchronous) code for a constrained sys-
tem L, with a given source alphabet B of size N = |B|, at a given (binary)
rate R = p/q. For convenience, we will assume that each source symbol from B
consists of p user bits. Typically, £ is described with the aid of a finite-state
transition diagram or FSTD. Such an FSTD — which is in fact a labeled directed
graph — is described by a four-tuple M = (V, A, L, F), where V is a finite
collection of vertices or states, A is a finite collection of arcs or transitions, and
L : A+ F isthe labeling map that assigns to each transition a symbol from the
labeling alphabet F'. Each transition a of M has a initial state beg{«) and a ter-
minal state end(«), and is referred to as a rransition from beg(a) to end(«). (Note
that loops and multiple transitions are allowed.) We let A, denote the collection of
transitions leaving state v (the outgoing transitions in v), that is, all transitions «
with beg(«) = v. We say that L is generated (or represented) by M if L consists
of all words L(a) = L(y) -+ L(w,) obtained from sequences o = o) - - - ¢, of
transitions in M for which end(w;) = beg(a;+1),i = 1,...,n — 1. Such a se-
quence « is called a walk in M of length n, and L(ex) is called the word generated
by this walk. The collection of all walks in M will be denoted by X.

Usually, we choose M to be deterministic. Here, a FSTD is called determinis-
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tic if in each state the outgoing transitions carry distinct labels. (Any given FSTD
that presents £ can easily be transformed into a deterministic presentation for £.)

Moreover, it is common practice to choose M to be the Shannon cover, the
(unique) deterministic presentation with the minimum number of states. Any given
deterministic FSTD that presents £ can easily be transformed into the Shannon
cover by a process called state merging. Here, if the outgoing transitions in two
states can be paired off in such a way that the two transitions in each pair carry
the same label and end in the same state, then from the point-of-view of sequence
generation these states accomplish the same, hence they can as well be combined,
or merged as it is usually called, into a single state. (Note that the resulting FSTD
will again be deterministic.) This process of merging states is repeated until no
more merging is possible. It can be shown that the resulting FSTD, the Shannon
cover, does not depend on the order in which the merging was carried out, and
that, moreover, no deterministic FSTD presenting the same constrained system
can have fewer states, and must be equal to the Shannon cover if it has the same
number of states. Nevertheless, in what follows, we do not yet make any special
assumptions about the FSTD M chosen to presents the constrained system L,
except that we require that M contains no sources and no sincs, i.e., we require
that each state of M can both be entered and left.

The said coding problem for £ requires that we translate or encode arbitrary
sequences of p-bit source symbols into sequences of g-bit code words , where the
resulting sequence is required to be in £, that is, can be generated by some walk
in M. Usually the code word size ¢ is a multiple of the size g of the labeling
symbols in F, say ¢ = ngq;. (Typically, FF = {0,1}, g1 = 1, and n = q.)
Therefore it is desirable to have a representation for £ where the labeling symbols
are actually code words. Such a representation is provided by the nth order power
graph M™ of M. This FSTD has the same states as M, but the transitions are
now walks of length n in M; a walk & = « - - - @, is considered as a transition
in M" from state beg(a) = beg(ay) to state end(a) = end(w,,), and is labeled
with the code word L(a) generated by a. So after replacing M by an appropriate
power graph, we may assume that the labels of M are actually g-bit code words,
and now the encoding problem is to transform an arbitrary source sequence into a
sequence of code words that can be generated by some walk in M.

Commonly, an encoder for £ can actually be put into the form of an encoder
for X, the collection of walks in M. That is, we may think of the encoder as
actually producing the walk that generates the sequence of code words, instead of
the sequence itself. (We observe that ¥ is also a constrained system; indeed, M
represents X if L is taken to be the identity map.) Note that an encoder for ¥
produces a transformation from source sequences into sequences of £ through the
labeling map L.
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However, some restriction on L is required to ensure that this transformation
is actually a code, that is, that decoding is possible. The proper requirement is
that L is of finite type: there are numbers m and a, the memory and anticipation,
respectively, such that walks a_,, - - - o - - - &t that generate a given code word
sequence f_, --- fo--- f, all agree in transition «g. If this is the case, then we
can reconstruct the walk «_,, - - - ¢ - - - 14 used to generate a given sequence
Sem - for fure In L, except for the first m and last @ transitions. Indeed, note
that each transition o, 0 < k < n, is uniquely determined by fi—m - - fr - - fita>
the decoding window for o,

In the context of encoder maps, a map of this type is termed sliding-block de-
codable, with decoding-window size m + 1 + a and window (m, a). The use of
the term “finite type” for such a labeling is not standard, but we prefer it because
it avoids the suggestion that source symbols are to be recovered instead of transi-
tions. We also introduce the notion of a map of almost-finite type; the definition is
similar to the one for finite type, except that now we also provide the initial state
of the transition wyg to be recovered.

It is well-known that £ is of finite type (i.e. £ can be generated by an FSTD of
finite type) precisely when £ can be specified in terms of a finite list of forbidden
blocks [2]. It can also be shown that £ is of almost-finite type (see e.g.[19])
precisely when £ can be generated by a deterministic FSTD of almost-finite type
[16]. Since the process of state merging referred to above does not destroy either
of these properties, it follows that £ is of (almost-) finite type if and only if its
Shannon cover is of (almost-) finite type. (Indeed, it is not difficult to show that M
is of almost-finite type if and only if M has both finite local memory and finite
local anticipation. For a definition of these notions, we refer to [19].)

It can be shown that a synchronous code for a constrained system L repre-
sented by an FSTD M of (almost-) finite type, that is, with a labeling of (almost-)
finite type, can always be transformed into one arising from a code for . (This
transformation may cause a fixed amount of encoding delay, or equivalently, may
require a fixed amount of look-ahead, at the encoder.) It is important to note that
if the labeling map L of M is of finite type and the code for X is sliding-block
decodable, then the corresponding code for £ is again a sliding-block code. (In-
deed, note that each successive recovery operation causes only a limited loss of
information at both ends of the recovered sequence.) So for most purposes, we
can simply forget about the particular labeling L of M as long as L is of finite
type, and concentrate on constructing a code for .

Typically, to construct a code for X, the FSTD M is first transformed into
another FSTD M* that is more suitable for encoding purposes, where the trans-
formation is such that M* = (V*, A*, L*, A) generates X, through a map L* of
finite type that assigns to each transition o* in M™* its parent transition in M.
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(The map L* is sometimes called the ancestor map.)

A good example is provided by the ACH algorithm; if M* is obtained from M
by M rounds of state splitting, then the map L* has window (0, M), see Ap-
pendix B. Another transformation, and one that will play an important role in this
paper, involves history graphs of M. In that case, the réle of M* is played by
the Tth order history graph My of M, for a suitable T. Here, M is the FSTD
with as states the walks of length T and as transitions the walks of length T 4+ 1
in M;awalk o = g - --ar of length T 4 1 in M represents a transition in My
from the state beg(a) = ag---ar_; to the state end(ax) = &y ---ar, and has
label L*(ax) = «7. (Observe that the graph underlying My is the 7'th order
edge graph M1 of M; in fact, the only difference between these graphs is that
a transition o as above now carries label L*(a) = «g. Walks in these graphs
generate the same sequences, but shifted by 7 + 1 symbols.) While state splitting
essentially subdivides states according to their future, in history graphs states are
subdivided according to their history, that is, according to how states are entered.
(See also Section 3.)

Following such preparations, the code-construction process is completed by
transforming M* into a (look-ahead) encoder (see Section 3): the transitions
of M™ are labeled with source symbols (represented by a map ¢ : A* — B) and
an encoder map W : B* — X* is defined that maps each source sequence {b,}
onto a walk {c;} in M* for which ¢(a}}) = b,. (For example, if the FSTD M* is
obtained from the ACH algorithm, then the encoder takes the form of a finite-state
machine.)

The entire encoding process can then be presented schematically as

(b} > (02} > (o) > {fu), (1)

where W represents a look-ahead encoder for £*, and L* : ¥* > X is a map
of finite type. As will be shown in future work, this encoding scheme is univer-
sal, in the sense that each sliding-block code with a finite-type encoder (wrt. the
labeling with code words) for a constrained system £ (of finite type) presented
by an FSTD M of finite type can be transformed into a code of this form. (The
universality of this scheme is also proven in [4].) We observed earlier that if the
labeling map L is of finite type, then the concatenation L* o L of L* and L is also
sliding-block decodable. Note furthermore that decoding of a code word f, is
immediate once ), is obtained, since b, = @(«;},). In this paper we refer to the de-
coding window of L* as the path-decoding window, to stress the independence of
the decoding of W o L* from the particular labeling L used to generate £. In what
follows, we will concentrate on the construction of codes for X, the constrained
system of the paths from M, mostly forgetting about the particular labeling L
of M but assuming only that L is of finite type.
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4.3 Look-ahead encoders and BD codes

In this section we investigate encoders that employ look-ahead (see e.g. [8], [17]).
A conventional encoder for a given constrained system L is based on an encoder
graph, that is, an FSTD that generates (a subset of) £, with the additional prop-
erty that precisely N transitions leave each state, where N denotes the size of
the source alphabet for the code. From such an encoder graph a finite-state en-
coder for £ (in fact, many different ones) can then be obtained by labeling the N
outgoing transitions in each state with N different source symbols. Given the
present state of the encoder, the upcoming source symbol to be encoded then de-
termines uniquely the next transition in the encoding path, hence the next code
word together with the next encoder state. (So the encoder takes the form of a
synchronous finite-state machine.) Decoding is possible if the encoding path can
be reconstructed from the resulting sequence of code words.

A look-ahead encoder also involves an FSTD that generates (a subset of) £
together with a labeling of its transitions with source symbols. Again, each source
symbol must be encoded by a transition labeled with this symbol. But in general
we no longer require that each source symbol occurs as a label on the outgoing
transitions from a state (nor that the transitions leaving a state are labeled with dis-
tinct source symbols). As a consequence, the encoder has to avoid entering a state
from which the upcoming source symbol(s) cannot be encoded. To achieve this,
the encoder is allowed to base its choice of the next transition to be included in the
encoding path on the next M + 1 upcoming source symbols, for some fixed num-
ber M termed the look-ahead of the encoder. So a state is entered with knowledge
of the next M upcoming source symbols only (one symbol being encoded by the
entering transition), and encoding from this state must be possible for all source
sequences starting with these M symbols. Consequently, with each state of the
encoder there will be associated a finite list of admissible prefixes (each member
being a source word of length at most M) specifying the prefixes of sequences of
source symbols that can be encoded from this state. Let us consider the following
simple example.

Example 1: InFigure 1 we present a typical look-ahead encoder, with source
alphabet B = {0, 1}. (The actual code words with which the transitions are la-
beled are not relevant for what follows and are not shown in the figure. That is,
we consider the code as a code for X, the collection of walks in M. See also
Section 2.) The encoder has three states, named a, b, and c¢. In state a, no re-
quirements are imposed on upcoming source symbols (indicated in Figure 1 by
the prefix list [—] containing the empty word only.) State b may be entered only
with an upcoming source symbol equal to O (indicated by the prefix list [0]), and



100 4. Construction of bounded-delay encodable codes

Figure 1: A look-ahead encoder.

similarly, the prefix list [1] is associated with itate ¢ . Each transition in Figure |
carries a source symbol, sometimes followed by a parenthesized symbol indicat-
ing a constraint on the upcoming source symbjol‘ For example, to encode source
symbol 1 from state a, the encoder looks ahead to the nexr upcoming source sym-
bol, and chooses the transition from a to b, labeled 1 (0), if this symbol equals 0,
or otherwise the transition from a to ¢, labeled 1(1). (A similar notation is used
e.g. in [17].) The reader will have no difficulty verifying that Figure 1 does in-
deed present an encoder; encoding of a given source sequence, starting in a given
encoder state, is possible if some prefix of the‘sequence is contained in the list of
admissible prefixes associated with that state. This encoder never employs more
than one symbol look-ahead, and is therefore ¢alled a one-symbol look-ahead en-
coder. If the actual labeling of M is of finite t)/;pe and generates a constrained sys-
tem L, then the resulting code for £ will be slibing-block decodable, as explained
in Section 2. Decoding of a code word is immédiate once the corresponding tran-
sition in Figure 1 is known; we express this fact by saying that the code for £ has
a path-decoding window of size one. j O

We now seek to characterize an M-symbollook-ahead encoder in terms of the
lists of admissible prefixes W, associated wityh states v of the encoder. In what
follows, we will assume that each list W, consists entirely of words of length M
over B, where B denotes the source alphab¢t of the code. (Note that we can
replace each W, by the set of words of length M with a prefix in W, without
altering the collection of source sequences with a prefix in W,.) Now suppose
that a given sequence of source symbols b; - - - by is contained in W,. Then for
all choices of further source symbols bysy 1, . ... the sequence {5, },>; has a prefix
contained in W, and should therefore be encodable from state v. By assumption,
the encoder must base its choice of the transition leaving v that will encode b,
on by --- by and by only. Therefore, for each source symbol by from B,
there must be a transition o leaving state v that encodes by (that is, labeled with
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source symbol b}), with the further property that the source sequence {b,},>2 can
be encoded from the terminal state end(w) of « for all choices of bysiabares -,
that is, its prefix by - - - byr4.) must be contained in Whnd(a)-

Conversely, if the lists W, satisty these requirements and if at least one list W,
is non-empty, then M-symbol look-ahead encoding is possible. Indeed, if Wi
is non-empty, then all source sequences can be encoded, starting in this state s,
it we prefix all sequences with a fixed word in W;. It is easily seen that the
encoding process will never get stuck. (At some stage of the encoding process
several choices for the encoding transition may be possible. However, if desired
the encoder can easily be made deterministic. Anyway, we do not mind much
as long as all encoding alternatives are decoded into the same, original, source
sequerice, which will always be the case here.)

At this point, it is convenient to introduce some additional notation. We denote
by W, B the set of all words by ---byyy with by - - by € W, and by € B.
If ¢{) denotes the source label of transition «, then we write @{0)Wend) to
denote the collection of all words @(a)bs - - - bary with by - - byt € Wend(o-
We use this notation in the following formal definition, which, in view of the
preceding discussion, may also be termed a characterization, of an M-symbol
look-ahead encoder.

Definition 1:  An M-symbol look-ahead encoder with source alphabet B for
a constrained system £ consists of a triple [M, ¢, W], where M is an FSTD
representing (a subsetof) £, ¢ : A — B denotes a labeling of the transitions with
symbols from B, and W : V > P(B") is a map which assigns to each state v
of M acollection W, of words of length M over B, termed the list of admissible
prefixes at v, such that
a) at least one W, is non-empty, and
b) for all states v, we have

WoB < | (@) Wende» )

aeA,

where A, denotes the set of transitions leaving v.

The above definition may be interpreted as requiring that a) the encoder has a
starting point, and b) there will always be a transition to encode the next source
symbol. Note that a Jook-ahead encoder actually produces an encoder for X, the
collection of walks in AMM. Note also that decoding of a code word is immedi-
ate once the corresponding transition is known, that is, the encoder has a path-
decoding window of size one. In Section 6 we show how to obtain an ordinary
finite-state encoder from a given look-ahead encoder.
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Note that sometimes we may have a choice for the encoding transition. If, in
addition, the encoding transition is specified in each case, then we speak of a fully
specified look-ahead encoder.

A fundamental notion in the theory of code construction is that of an approx-
imate eigenvector. (See e.g. (6], [17], [2].) We will now show that if we assign
a weight | W, | to each state v of a look-ahead encoder, then these weights consti-
tute an approximate eigenvector, a result first obtained by Franaszek [6]. We first
recall the definition of an approximate eigenvector. Let M = (V, A, L, F) be
a FSTD, and let N denote a positive integer. We say thatamap ¢ : V > Z,,
which associates with each state v of M a non-negative integer weight ¢,, 1S an
[M, Nl-approximate eigenvector if for each state v the sum of the weights of
terminal states of the outgoing transitions is not less than N times the weight of
state v, that is, if

Ney < Y fendte) (3)

€A,
holds for each state v. (Usually, we think of ¢ as a vector, and the above condition
1s stated as
N¢ < Dumo. )

Here Dy denotes the | V| x |V | adjacency matrix of M; Dpq(v, w) equals the
number of transitions from state v to state w. The above inequality is to be inter-
preted component-wise.)

Theorem 1: Let [M, ¢, W] be an M-symbol look-ahead encoder with source
alphabet B. Then the weights ¢, defined by ¢, = |W,|, the size of the list of
admissible prefixes associated with state v, satisfy 0 < ¢, < |B|™ and constitute
an [M, | B|]-approximate eigenvector.

Proof: This follows immediately from (2). Indeed, we have

¢u| B

W, B|
| @) Wendio |

aEA,

> 10@)Wendio|

a€A,

= Z Wend ()|

a€A,

= Z ¢end(o¢) .

a€A,

A

IA
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Figure 2: An FSTD M.

It is not always possible to find a look-ahead encoder of the form [M, ¢, W]
for a given FSTD M, even if log, | B| does not exceed the capacity of M (a num-
ber indicating the maximum possible rate of a code for X, see [20]). To gain more
freedom in code construction, we might allow both the sets J, and the labeling of
the transitions leaving v to depend on the history in v, that is, on the way that the
state v is entered. Such codes were investigated in [8] under the name of Bounded
Delay (BD) codes. These codes can be described conveniently with the aid of the
Tth order history graph My of M as introduced in Section 2. We think of the
state org - - - aer—| of My as representing the state v = end(ar_1) when entered
through the walk o - - - 1. Similarly, we think of a (source word or code word)
label of the transition « - - - o in M7 as the label of the transition «r leaving v,
provided that v is entered through the walk o - - - ar—1. We now state the formal
definition of BD codes.

Definition 2: A bounded delay (BD) code for an FSTD M is a code for the
collection ¥ of walks in M that can be encoded by an M-symbol look-ahead
encoder of the form [My, ¢, W], for some numbers M and 7. We refer to M
and T as the look-ahead and path-memory of the BD code, respectively.

As long as log, | B| does not exceed the capacity of M, we can always find
a BD code for M with look-ahead M and path-memory 7', for some numbers M
and T < M. Indeed, under these assumptions the state splitting method always
works [2], and the results in [10] or in Appendix B show that each code obtained
by the state splitting method can also be obtained as a BD code.

We illustrate the above ideas by another example, taken from [8].

Example 2: Let M be the FSTD in Figure 2, and take B = {0, 1}. It can
be shown that there is no look-ahead encoder with source alphabet B for M. (A
reasonably simple proof of this statement involves ideas such as stable state-sets
which are outside the scope of this paper; the interested reader will find a proof in
future work.)

On the other hand, Figure 3 describes a BD code for M with look-ahead
M = 2 and path-memory T = 1. Here as well as in further examples the encoding
rules are described locally for each state, possibly depending on the way that
a state has been entered. In this example, the encoding rules for state b will
depend on whether b has been entered from state a or from state ¢; encoding
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1 a [11] ]
[1] ab< [11] a————ab 1]
¢ [0,10]

1
0_—a (1] 0 —a [

[0] cb< [0,10] ¢ ‘1] ¢ [0,10]
0 c [0,10] b [0]

Figure 3: A two-symbol look-ahead encoder for M*.

rules for other states will not depend on history. (Hence we have T = 1.) The
notation in Figure 3 is (hopefully) evident; the lists of admissible prefixes W, =
{11}, W, = {00, 01, 10}, W,,, = {10, 11}, and W,;, = {00, 01} are represented in
this Figure by the short-hand notation [11], [0, 10], [1], and [O], respectively.

To obtain this code, we first transform M into a FSTD M™ by splitting state b
“backwards” into a state ab (which can only be entered from state a) and a state cb
(which can only be entered from state ¢). Then we can construct the look-ahead
encoder for AM* as shown in Figure 3. (Code construction for this example is
discussed again in Example 3 in the next section.)

Each transition in M* has a unique “parent” transition in M. Hence an en-
coding path in M* produces a unique encoding path in M. On the other hand, the
present transition in the encoding path in M, together with the previous transition,
uniquely determines the present transition in M*; in other words, the code has a
path-decoding window of size two. Note that a look-ahead encoder for M (as
required by the formal definition of a BD code in Definition 2) can be constructed
immediately from Figure 3. |

Decoding a BD code for M requires the reconstruction of the transitions of the
encoding path in M, each of which is made up of T + 1 consecutive transitions
in M. In other words, the code for X has a path-decoding window of size T + 1;
decoding of a particular transition in M also requires knowledge of the T previous
transitions. For future reference, we state this observation separately as a theorem.

Theorem 2: A BD code for M as in Definition 2 has a path-decoding window
of size T + 1, where T denotes the path-memory of the code.

We stress again the fact that from a BD code for M we can obtain a code
for the constrained system £ generated by M, provided that the labeling map
L of M is of finite type. (Indeed, to encode a given source sequence, read off
the code word labels of the walk produced by the BD code.) A code for £ of
this type will be referred to as a BD code for £. Note that if the labeling L is
of finite type, then the walk in M can be “sliding-block” reconstructed from the
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code word sequence generated by the walk, so that the corresponding BD code
for L is sliding-block decodable.

We see that, essentially, a BD code for M is obtained by subdividing states
of M according to their history, that is. by “backwards state splitting”. In contrast,
the ACH state splitting algorithm subdivides states according to their future. (In
[4] these fundamental operations are termed in-splitting and out-splitting, respec-
tively.) The construction methods that we shall propose later can be considered
as a mixture of these two methods, where states are subdivided according to both
their history and future.

BD codes were introduced by Franaszek in [8], where they were termed “sta-
tionary” BD codes. The more general “periodic” BD codes in that paper are, in
our terminology, BD codes for higher-order power graphs (see Section 2) of M.

4.4 Local encoder structures and BD partitions

A major drawback of BD codes is that their construction, as described in a se-
quence of papers by Franaszek [6]—[9], involves a complicated process of parti-
tioning state-trees and can be difficult. In this section we describe a much simpler
construction method. Its main feature is that it partitions the (difficult) global
code construction problem into a number of independent (relatively easy) local
construction problems, one for each state of the FSTD. The local problem in a
particular state requires the construction of a local encoder structure in that state,
and involves only the weights assigned to that state and its successors. As we will
show, it is fairly easy to construct a BD code once a local encoder structure is
obtained in each state.

Contrary to Franaszek’s method, our method does not always succeed. Indeed,
there may be states for which no local encoder structure exists. This can happen
if the weights of the successors to that state do not “fit together”. Fortunately, this
problem can always be solved by using state splitting to break down the weights
of (some of) the successors into smaller weights, as will be explained in the next
section.

The motivation for our method is the following. Let us consider a BD code
[Mr, W, ¢] for a FSTD M, with source alphabet B and path-memory 7 (see
Definition 2). Recall that a BD code associates with each state v of M various
lists of admissible prefixes, one for each particular history in v (represented by
walks of length T ending in v). Sometimes such a BD code is very regular, in
the sense that, for each state v, these lists can all be obtained from one special list
of words (representing the common “structure” of these lists) by a process that
will be called relabeling. (Then, as we will see, a local encoder structure can be
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a a‘}
a————by} bz< C3 C3)
C3

Figure 4: The BD partition.

[xy] a—2—hblyl

z_—alpql v~ alrs]
[2] b< [v,ow] c%c [F.rs]
z ¢ p, pdl b [w]

Figure 5: The local encoder structure (1).

defined in each state.) In that case, the cardinalities ¢, of these special lists will
constitute an { M, | B|]-approximate eigenvector ¢. Also, in each state v, the set
of transitions leaving v can then be partitioned into groups, in such a way that all
transitions within a group carry the same source label when entered though the
same walk. (These partitions will be referred to as a BD partition for M.)

Our construction method tries to reverse this process: given ¢, we try to re-
construct, in each state v, the special lists associated with v, together with the
partition of the set of transitions leaving v. An additional advantage of this ap-
proach is that if we succeed, then the BD code that we find will automatically
possess some extra regularity.

Our method is best introduced by an example. In this example, the special
lists will be represented with the aid of variables over B, the source alphabet,
and a relabeling will consist of a suitable substitution of source symbols for these
variables.

Example 3: Consider again the FSTD M in Figure 2. We want to construct
a BD code for M with source alphabet B = {0, 1}. We first note that the weights
¢, = 1, ¢p = 2, and ¢, = 3 constitute an [M, 2]-approximate eigenvector.
The discussion preceding this example now suggests taking look-ahead M = 2,
and letting the lists of admissible prefixes associated with the states a, b, and ¢
consist of one, two, and three binary words of length two, respectively. (Note
that these lists may depend on the way that the corresponding state is entered.)
Typically, lists associated with states a, b, and ¢ will have the form [xy], [z] ~
[z0, z1], and [v, vw] ~ [v0, vl, vw], respectively, for suitable choices of the
binary variables x, y, z, v and w. (Here v = 1 — v denotes the complement of v.)
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[00]
[00] [0]< d 1 , [00]
[1,01]
[1 01] ‘ < a [00]
¢ [1,01]

Figure 6: Encoder construction.

Note that we have opted for the simplest possible structure [z] of lists associated
with state b.

The first and most important step in the construction is to find in each state
a partition of the outgoing transitions into groups that will always receive equal
source labels. In Figure 4 we give a local description of the FSTD M, and, in
each of the states, a partition of the outgoing transitions. The indices to the state
names in this figure indicate the weight of the states, a convention that will be
adopted throughout this paper. Note that these partitions correspond to the form
of the “local encoding rules” in Figure 5. (Here, x, v, z, p, ¢, 7 and s represent
binary variables.) In fact, the choice of these partitions is immediate once we have
fixed the structures of the lists of admissible prefixes as we did. Let us explain this
for state c. (A similar argument applies to the other two states.) Suppose that, for
a certain history in state c, the list of admissible prefixes in ¢ is [v, vw]. Then the
lists associated with the terminal states of transitions leaving ¢ and labeled with
source symbol v together must contain each binary word of length two. (There are
no further restrictions on upcoming sequences of source symbols that begin with a
symbol v). Hence the sum of the weights of these terminal states must be at least
four. Similarly, the sum of the weights of terminal states of transitions leaving ¢
and labeled with source symbol v must be at least two. Consequently, the partition
must be the one as indicated in Figure 4. A description of local encoding rules as
in Figure 5 will be termed the local encoder structure.

Observe that all lists in Figure 5 associated with the same state are equal up
to renaming variables. Therefore we might try to build an encoder based on the
local encoding rules in Figure 5, substituting appropriate source symbols for the
variables according to need, that is, depending on how a state is entered. (Remark
that no substitution of symbols for the variables in Figure 5 gives a look-ahead
encoder: in particular, no encoder exists for which the list in state b is independent
of history.) This idea is further illustrated by Figure 6, where we show how the
encoder is gradually developed, starting with list [00] for state a. (Read this figure
from left to right.) Proceeding in this way we again obtain the BD code described
earlier in Example 2. g
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0
0 1
1 0
2 1
2

Figure 7: The parsing tree of U.

0
: 1
i 2
0 1
0

Figure 8: A labeling of the parsing tree of U.

After this example, the reader will surely wonder whether a valid local encoder
structure as in Figure 5 can always be transformed into an encoder with finite path-
memory. The answer turns out to be yes, even with path-memory 7 < M. Before
we show this, we will present a more formal description of our method and the
notions involved.

For the BD code derived in Example 3, the various lists of admissible prefixes
associated with a given state may depend on history, but they all have a simi-
lar structure. The structure of a set of words is described by its parsing tree, a
(directed, rooted) tree obtained by arranging these words into a tree structure.

Example 4: The parsing tree associated with the set of words
U =100, 01, 10, 21, 22}
is the tree at the left in Figure 7. Indeed, if the arcs of this tree are labeled as

shown at the right in Figure 7, then U is the set of words obtained by reading off
the labels of paths from the root to a leaf in this tree. |

Definition 3: Let U and W be two sets of words, all of a fixed length M. We
say that W is a relabeling of U if the arcs of the parsing tree of U can be labeled
in such a way that each word in W is the label sequence of some path from the
root to a leaf in this tree.

Example 5:  Let U be the set of words in Example 4, and let
W = {10, 11, 12, 00}.
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[00] a—2 b [0]
0 alo0] 0~ a[00]
[0] b< [0,10] ¢ ? ¢ [1,01]
o —c o] b [0]

Figure 9: The local encoder structure (2).

Then W is a relabeling of U, as is shown by the labeling of the parsing tree of
U as in Figure 8. (Note that, according to Definition 3, the word 01 need not be
included in W.) O

Now we come to the formal description of a local encoder structure. To estab-
lish the relation with the ideas presented in Example 3, we first offer the following
discussion. We may think of the structure of a set of words as its parsing tree, la-
beled with variables. Then a relabeling consists of substituting source symbols for
these variables. On the other hand, a generic representation of the lists of admis-
sible prefixes and local encoder structure (involving variables) such as in Figure 5
can be replaced by a suitable realization of this structure without loss of informa-
tion. We illustrate this with an example.

Example 6: An alternative description of the local encoder structure in Fig-
ure 5 of Example 3 is given in Figure 9. Indeed, although this description seems
less general, Figure 9 still contains all the necessary information to reconstruct the
local encoder structure in the form of Figure 5.

The three lists W, = [00]. W, = [0], and W, = [0, 10] associated with the
initial states a, b, and c¢ of transitions in Figure 9 have the same structure as their
generic counterparts in Example 3. We may think of the lists appearing at terminal
states of transitions in Figure 9 as lists W, associated with transition «. Note that
each W, is a relabeling of the list Wena). The fact that Figure 9 represents
“locally” valid encoding rules could be expressed in a form similar to (2). O

The above example leads to the following definition. Let M be an FSTD,
let B denote a source alphabet, and let M be a non-negative integer. The map
¢ : A — DB represents a labeling of the transitions of M with source symbols.
Finally, let W : V U A — P(BM) be a map that assigns to each state v and each
transition « of M collections of words W, and W,, respectively, each consisting
of words of length M over B.

Definition 4:  We say that a triple [M, ¢, W] as above constitutes a local
encoder structure with source alphabet B and look-ahead M for M if
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1) at least one set W, is non-empty,
ii) for each transition «, the set W, is a relabeling of Wend(«), and
iii) for each state v, we have

W,Bc | ] p@W.. (5)

€A,

The above definition should be compared with Definition 1 in the previous
section. In particular, we see that if W, is equal to Wend(a) for each transition o,
then the local encoder structure is in fact a look-ahead encoder for M.

We claimed earlier that a local encoder structure for M can be used to con-
struct a BD code for M. Our next theorem, which is one of the main results in
this paper, states this in a precise way and, moreover, provides an upper bound
on the path-memory of the resulting BD code. The proof, which can be found in
Appendix A. is not difficult but involves many details. Therefore, the reader is
advised to skip the proof on first reading. (The technique used in the proof to con-
struct the desired BD code can and will be replaced by more “ad hoc” techniques
in our examples.) In Appendix B, we indicate another way to obtain an encoder.

Theorem 3: Suppose that the triple [M, ¢, W] constitutes a local encoder
structure with look-ahead M for M. Then we can construct an M -symbol look-
ahead BD code for M, with the same source alphabet and with path-memory
at most 7', that is, a BD code for M with a path decoding window of size at
most T 4+ 1. Here T < M denotes the smallest number with the property that
each of the sets W, can be obtained from the parsing tree associated with W, by
relabeling up to depth T only.

In general we can obtain many different BD codes from a given local encoder
structure. But of course we want to find one with smallest possible path-memory
since such a code will have the smallest possible decoding window. Fortunately
this optimizing problem is easy and can be dealt with by hand, or otherwise by
computer. (A good illustration is provided by Example 9 in the next section.)

The construction method suggested by Definition 4 and Theorem 3 will be
too general for our purposes. The problem is that we would like to construct the
local encoder structure for each state separately, but unfortunately a particular
choice for the set W, in one state may affect the construction in other states. Note
however that once the sets W, are chosen, the requirements in Definition 4 can be
verified locally for each state.

Therefore, with the sole exception of Example 3 in Section 8, we will restrict
ourselves to the case where (the structure of) the sets W, in Definition 4 is deter-
mined by the desired look-ahead M and a given approximate eigenvector ¢, in the
following way. For a given weight ¢,, we let W, consist of the ¢, smallest words
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of length M over B, with respect to the lexicographical order. Here, we assume
that the symbols of B have been ordered in some way. Then a word x = x; - - - xp
is smaller than a word y = yy---ypy if x1- - X1 = y1-+- -1 and xx < ¥
helds for some k, 1 < k < M. Intuitively, these sets have the “simplest” structure
among all sets of words of a given size. (This structure does not depend on the
chosen ordering on B.) So, in Example 3 we choose W, = {00, 01} (with struc-
ture [z]) and not {00, 11} (with structure [zx, Zy]), given that ¢, = 2 and M = 2.
For completeness’ sake we note that restricting the structure of the sets W, as here
does not limit the scope of our method if it is combined with state splitting, as we
will do later. For example, if in Example 3 a set W, = {00, 11} were required,
then we would first split state b into two states p0 and !, each of weight one. Then
both Wy = {00} and W, = {11} have the required structure. Concerning the
size of the sets |W,|, in Theorem 4, we will show that the weights |WW,| obtained
from a local encoder structure necessarily constitute an approximate eigenvector.

Now we turn our attention to the remaining local construction problem. So
suppose that we are given a source alphabet B, a number M, and an [M, |B|]-
approximate eigenvector ¢, and suppose furthermore that we have chosen the
sets W, as explained above. By construction, there is a number n, such that
the set W, contains all words of length M that begin with one of the first n,
symbols from B, and possibly some of the words that begin with the (n, 4+ 1)th
symbol, and hence these symbols will appear as a label on the outgoing transitions
in state v. Consequently, to complete the construction, the most important task
that remains is to find a suitable partition of (a subset of) the outgoing transitions
into n,, (or n, + 1) groups of transitions that will receive the same source label. On
the other hand, it is fairly easy to determine whether a given partition can indeed
be completed to a local encoder structure for state v, in the sense that appropriate
labels can be assigned to the groups such that the resulting labeling ¢ and suitable
relabelings W, of the sets Wenq(a) satisfy ii) and iii) in Definition 4.

Definition 5: 1If a given partition of (a subset of) the outgoing transitions in
state v can be completed to a local encoder structure in v in the above sense, then
this partition is called a BD partition for state v, relative to M and ¢.

It is very important to realize that whether a given partition of the outgoing
transitions in a state v is indeed a BD partition for v depends only on the number
M and the weights of v and its successors. Consequently, the above approach re-
duces the (global) code construction problem to a local one in each state, involving
only the amount of look-ahead and the weights of that state and its successors.

Example 7: Consider again Example 3. The partitions given in Figure 4 are
indeed BD partitions relative to M = 2 and weights ¢, = 1, ¢, = 2, and ¢, = 3,
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as witnessed by the local encoder structure given in Figure 9. Note that each
list W, in this figure consists of the ¢, smallest words of length 2 over B as
required. |

We may even remove the dependence on M: without loss of generality we
may take M to be the smallest number for which ¢, < |B|* holds for all states v.
This can be seen as follows. First note that if we have a local encoder structure in
state v with look-ahead M, then we can immediately obtain one with look-ahead
M + 1 by defining new lists W, and W, and a new labeling ¢’ by W, = 0W,,
W, = ¢(a)Wy, and ¢'(a) = 0, for all transitions « leaving v, where 0 denotes
the smallest source symbol in B. Conversely, if ¢, < |B[¥~! holds for all
states v, then, since by assumption each W, consists of the ¢, smallest words
of length M, each W, will be of the form 0)V,, and hence each W, will be of
the form ¢'(«)W,,, for some source symbol ¢'(«). It is then easily checked that
[M, W', ¢'] again constitutes a local encoder structure, but now with look-ahead
M — 1. (Further details are left to the reader.)

Our next theorem states some necessary conditions that a BD partition (or,
more generally, the partition induced by the labeling ¢ of a local encoder struc-
ture) has to satisfy. The first part of this theorem generalizes Theorem 1 and
explains our restriction imposed on the cardinality of the sets W,.

So let [ M, ¢, W] denotes a local encoder structure with look-ahead M and
source alphabet B. We denote by A, = Up¢ BAfj the partition of the set of out-
going transitions A, in state v induced by ¢; here A® consists of the transitions o
in A, for which (@) = b. (Note that some of the parts may be empty.) Let ¢,
denote the number of words |W,| contained in W,.

Theorem 4:  With the above notation, ¢ is an [M, N]-approximate eigen-
vector, where N = | B| denotes the cardinality of B. Moreover, for each state v
of M we have

¢ < Y min(uv1 Y Gentia] NM”). (6)

be B acal

In particular. if W, consists of the ¢, smallest words in BY, then the number ¢>f,’
of words in W, beginning with symbol & satisfies

¢7 < INT' Y endien]- (7

acAb

The proof of this theorem (which is similar to the proof of Theorem 1) together
with a discussion of a nice corollary can be found in Appendix A.
Our methods may be summarized as follows.
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Construction method for BD codes:

Given an FSTD M and an [M, | B|]-approximate eigenvector ¢, let M be the
smallest number such that ¢, < |B|™ holds for each state v of M. Furthermore,
for each state v, let YW, consist of the ¢, smallest words of length M over B.
Then, for each state v separately, try to find a BD partition of the set of transitions
leaving state v, and construct the corresponding local encoder structure in this
state. This last step requires that we find, for each transition « leaving v, a suitable
relabeling of the set of words Wenq() and a suitable source symbol ¢(«), where
the partition induced by ¢ is precisely the BD partition. If a local encoder structure
is found in each state, then Theorem 3 guarantees the existence of a BD code with
look-ahead M and path-memory at most M.

Given an FSTD M and an [ M, | B|]-approximate eigenvector ¢, how difficult
is it to determine whether a BD partition w.r.t. ¢ exists? This problem is discussed
in detail in Appendix A. It turns out that the worst-case complexity of this problem
is (at least) exponential in dp,x, the maximum number of transitions leaving a
state. The reader should not worry too much about this exponential behaviour.
Indeed, note that even the complexity of finding a partition of A, satisfying the
necessary condition (7) in Theorem 4 is already exponential in | A, |. Nevertheless,
the reader will surely agree that as long as |A,| is not too big, this last problem can
easily be handled. (Here we see the reason why the desired rate p/q of the code
should have small g.) For small M, say M < 3, finding a BD partition turns out to
be comparable in difficulty to this last problem, and, according to our experience,
is easy for values of dyux at least up to 10. This conclusion is supported by the
examples in Section 8.

4.5 A general construction method

In this section we supplement the methods in the previous section to obtain a
general construction method for sliding-block decodable codes for a constrained
system of finite type. The many examples that we will give, both in this section
and in Section 4.7, show that the method works very well and enables the design
by hand of “good” codes, that is, codes with small decoding windows and simple
encoders, even for rather complicated constraints. Some of the reasons why this
method works so well are discussed in Appendix B.

To understand our method, the reader should have some working knowledge
of state splitting. If this is not the case, we suggest consulting Appendix B
or [19]. In what follows, we assume that the constraints are represented by a
given FSTD M of finite type. We also assume that we are given an [M, N]-
approximate eigenvector ¢, where N denotes the desired size of the source alpha-
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bet B. (Possible necessary preparations are discussed in Section 2. A simple algo-
rithm to compute such an approximate eigenvector has been given by Franaszek,
and can be found for example in [2].)

In the previous section we showed that a BD code for M can be obtained
once a BD partition is found in each state. However, there may be some states
for which no BD partition exists. For example, let N = 2, and suppose that M
contains a state v with precisely two successor states ¢ and . If M = 2 and
if v, a, and b all have weight 3, then no BD partition in state v exists. (Note
also that increasing the value of the allowed look-ahead M does not solve the
problem.) However, if one of the successors of v could be split into a state of
weight 1 and another one of weight 2, then after this state splitting operation a BD
partition for v would exist. (The reader should verify this! Precisely this situation
will also be discussed in Example 8 below.) This simple example suggests the
use of state splitting operations to transform the weighted FSTD M until our
local construction method applies, and leads to the following three-stage code
construction scheme.

In stage one, we transform the pair M, ¢ into a new FSTD M’ and a new
[M', N]-approximate eigenvector ¢’ by state splitting. Here, we try to minimize
the number K of rounds of state splitting needed to make the second stage suc-
ceed. (Note that each additional round of state splitting will increase the size of
the decoding window by one symbol).

In the second stage, we construct a local encoder structure for M’ from a BD
partition with respect to ¢’ in each state of M’.

In the third and final stage, we use this local encoder structure for M’ to
construct a BD code for M’; in fact, one that provides a code for the constrained
system L generated by M with smallest possible decoding window.

The third stage of the above scheme is easy and could be handled by computer
if desired. (This will be further illustrated by our examples.) The main difficulty
of our approach is to “coordinate” the first two stages. Unfortunately, it is not
easy to formulate strict rules on how to choose between various possible state
splitting steps. However, we will see from our examples that for many practical
applications the above guideline is sufficient. Since this scheme obviously extends
the ACH-algorithm [2], we are guaranteed to find some code.

A nice feature of the above approach is that code-construction methods such as
the ACH-algorithm [2], the BD-method of Franaszek [8], ideas described in [17],
variable-length codes, and variable-length state splitting as in [3], [11] can all be
thought of as special cases of the above scheme. In particular, the ideas from [17]
become clearer when considered in this light. We will illustrate this with an ex-
ample.
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Figure 11: The BD partitions in the remaining states.

Example 8: Let M be the five-state FSTD with local description as in Fig-
ure 10. (This is the same FSTD as the one considered in Example 2 from [17].)
Also shown in this figure are the weights (indicated as a subscript to the state num-
bers) that constitute an [M, 2]-approximate eigenvector, and a BD partition in all
states except state 1, for which no such partition exists. (Here, we take M = 2.)
Therefore, in stage one we must split a successor of state 1, hence we must split
state 2, and the only possibility is to split state 2 into states 2 and 2», of weight 1
and 2, respectively. Let M’ denote the FSTD thus obtained. In Figure 11 we
show the result of the state split, as well as a BD partition for states 1, 2| and 25.
Since we have now found a BD partition in each state of M, we can construct
a BD code for M with source alphabet B = {0, 1} of size two. Stage three is
trivial here, since it is evident that we can even obtain a two-symbol look-ahead
encoder based on M, as shown in Figure 12. The resulting code for M has a
(path-)decoding window of size 1 (actual transition) + 1 (the split) = 2. |

We remark that the other examples in [17] can be handled in a similar way.

Up to now, we have illustrated the theory with “artificial” examples only. Our
next example changes that situation; we now construct a code which has consid-
erable practical applications.

Example 9: In this example, we will construct a rate 1/2 (2, 7)-code with
a decoding window of size four code words or eight bits. (Recall that a (d, k)-
constrained sequence is a binary sequence in which each run of zeros has a length
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Figure 12: A two-symbol look-ahead encoder based on M.

of at least d and at most k. Here we consider the case where d = 2 and k = 7.)
In [2], a rate 1/2 code for this constraint is constructed to illustrate the ACH state
splitting algorithm. We will do likewise here.

The FSTD commonly used to generate (2, 7)-constrained sequences has eight
states numbered O, 1, ..., 7, where the numbering is such that a sequence gen-
erated by a walk ending in state v ends in precisely v zeros. Since we aim
for a rate 1/2 code for this constraint, we let M be the second power of this
FSTD (so M is labeled with two-bit code words), and we take the source alpha-
bet B = {0, 1}. The local structure of M is given in Figure 13. The smallest
[M, 2]-approximate eigenvector involves weights between 1 and 4, so we choose
M = 2. (The weights of the states are indicated in Figure 13 as subscripts to the
state numbers.)

For all states except states 2 and 3 a BD partition can be found, as indicated
in Figure 13. (For state 6, we may choose either one of the indicated parts.)

Since no BD partition for states 2 and 3 exists, some state splitting is required.
Inspection of Figure 13 shows that we have to split either both states 4 and 5, or
state 1. We choose to split state 1, into a state 1; with weight one and single suc-
cessor state 0, and state 1, with weight two and single successor state 3. (Splitting
state 1 seems appropriate in view of the successor situation at state 7. However,
the other choice also leads to a code with an eight-bit decoding window. This
code, whose derivation we leave to the reader, is only slightly less regular than
the code obtained below. Yet another approach would be to split all of states 1,
4, and 5. This would of course complicate stages two and three since more BD
partitions have to be considered, but even by hand these complications could still
be dealt with easily.)

After splitting state 1, a BD partition can be found in each state. (In fact, in
most states we need to consider several BD partitions. In what follows we will
see how to handle this freedom of choice.) So we can now move to stage three of
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Figure 14: The local encoder structure in states 6 and 7.

our method. We will aim for a decoding window of only four code words. Since
we did only one round of state splitting (that is, we have K = 1), this means
aiming for a “look-back” part of the decoding window of size D = 2 code words
only. Aiming for a certain value of D is of great help in stage three of our method,
as will be seen below. (Moreover, in other cases it may help to eliminate certain
BD partitions and state splits that would have to be considered otherwise.) Note
that by looking back four bits only, we cannot distinguish states v > 1 accord-
ing to their history, and we can only distinguish between state 0 entered from
state 1 (each history results in a label sequence - - - 1001) and state 0 entered from
a state different from 1 (which produces - - - 0001). Moreover, we cannot distin-
guish between states 4, 5, 6 and 7 (all these states are entered with label sequence
-+ -0000), so transitions leaving one of these states that are labeled with the same
(two-bit) code word must recejve the same label from B. (We will sometimes ex-
press this last observation by saying that consistent labeling is required for these
states.) So in states 6 and 7, we necessarily have a local encoder structure as
shown in Figure 14. (In this figure, x; and y, are both binary variables. Later
developments may put further constraints on the values that x; and y; may at-
tain.) Note that, in accordance with the remarks in the preceding paragraph, we
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Figure 15: The possible encoder structures in state 5.
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Figure 16: The encoder structures in the remaining states.

have assigned the same prefix list [y,] to both state 1, entered from state 7 and
state 1, entered from state 6 (each history of state 1> produces 0010, irrespective
of the particular state from which 1, is entered). Also, we have labeled both the
transitions from state 6 to 1» and from state 7 to 1, with the same source symbol
X1, since both these transitions have code word label 10 and states 6 and 7 cannot
be distinguished (both states are invariably entered with 0000). We will implic-
itly use a similar reasoning when we develop the local encoder structures in the
remaining states.

There are three possible BD partitions in state 5, which lead to the three pos-
sible local encoder structures in Figure 15. Here, in all three cases, we require
that {x;. x2} = {y1, 2} = {0, 1}. To each of the three local encoder structures
in state 5, there corresponds a similar local encoder structure in state 4. There is
a unique BD partition in state 3, in which one part consists of the transitions to
states 1, and O, and the other part consists of the transitions to states 5 and 1.

The local encoder structures a) and b) in Figure 15 in state 5 assign sets of
words to states 17 and 5 that cannot be combined. Therefore in state 5 we must
take the local encoder structure ¢) in Figure 15. This choice determines the local
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Figure 17: A two-symbol look-ahead encoder.

encoder structure in the remaining states as indicated in Figure 16. (The local
encoder structure for state 4 is similar to the one for state 3.) Remark that the
local encoder structure in state 3 imposes the constraint that x; = y;. Finally, if we
take for example x; = 0 = z;, then we find the two-symbol look-ahead encoder
in Figure 17, which indeed constitutes a rate 1/2 (2, 7)-code with a decoding
window of size four symbols or eight bits. We will show in Example 11 that this
code has a six-state encoder graph. (The code derived in [2] has the same decoding
window size but requires a seven-state encoder.) Our code is actually equivalent
to one of the codes that can be obtained from the uniquely decipherable prefix list
in Table II of [2], and is among the best codes known for this constraint. Observe
that our method produces this code almost automatically. O

We end this section with some remarks on the problem of how to choose the
state splitting steps in the first stage. One approach (which is consistent with
our examples) would be to choose only state splitting steps that do not destroy
BD partitions (or “partial” BD partitions) constructed earlier. Let us call such
state splits nice. First note that we certainly obtain a ae-consistent state split with
respect to the approximate eigenvector ¢ (see [19] or Appendix B) in a state if we
let the successors of one of the two offsprings consist of the union of one or more
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of the parts of the partial BD partition in that state. Of course, splitting a state in
such a way does not destroy the partial BD partition in that state.

We mention here without proof that an ae-consistent state split with respect to
¢ of the above type in a state v of weight ¢, < N is nice if, moreover, one of
the two offsprings of v has a weight v satisfying 1 < v < N¥ or v = ¢, mod N/,
where N* is the highest power of N dividing ¢, and N'~! < v < N'. (The reason
is that under these conditions the set of the v smallest words of length M over B
has the same structure as the set consisting of the v largest words in W,, the set
of the ¢,, smallest words of length M over B.)

Unfortunately, this approach works often, but not always; it is possible to con-
struct examples where no nice state split exists. Nevertheless, a useful heuristic is
to use nice state splits whenever this is possible.

We believe that the method in its present form is best implemented interac-
tively; the user chooses state splitting steps and BD partitions from alternatives
proposed by the program, but leaves further calculations as well as the optimizing
in stage three to the computer.

In the next section we discuss how to design finite-state encoders for this type
of code. Further applications of our code-construction method will be given in
Section 4.7.

4.6 Finite-state encoders from look-ahead encoders

We now investigate how to obtain an encoder graph, and hence an ordinary finite-
state encoder, from a given look-ahead encoder. Since a BD code is a special
look-ahead encoder, the construction below also applies to BD codes.

So let [M, ¢, W] be an M-symbol look-ahead encoder, with source alpha-
bet B. We will think of an internal state of the encoder as being determined by a
pair (v, b), consisting of a state v of M together with a word b = by - - - by in W,
obtained by looking ahead at upcoming source symbols. Then, to encode by, the
encoder first looks ahead one further symbol to see b = by 1, then picks a tran-
sition « leaving v for which ¢(«) = by and & = by - - - byyb € Wend(«); as a result
the encoder now moves to the internal state determined by (end(«), b'). We may
think of this internal transition as being labeled with source/transition label b/c.

In what follows, we will find it convenient to think of the encoder as moving
from a set of encoding alternatives to another such set. To this end, we associate
with each pair (v, b) the collection X, 3 consisting of all walks o = o - - - arpy for
which p(a) = @(a)) - - - ¢(ap) equals b. So X, , consists of all possible encod-
ing paths starting in v that encode the word b. We will refer to these collection of
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Figure 18: The collections X, p.

walks X, p as state trees. (In [9], they are called independent path-sets or 1P’s.)

We now construct an FSTD G as follows. The states of G are the state trees
¥y.p, with v a state of M and b = b, - - by € W,. Furthermore, for each such
state X, p and for each b € B, let G have a labeled transition

blu
2v,b e 2:end(a),b’s (8)

where « is a transition in M leaving v with ¢(«@) = by for which b’ = by -- - byb
is contained in Wend). Then the earlier discussion shows that the following
holds.

Theorem 5: The FSTD G is an encoder graph for the code with look-ahead
encoder [M, ¢, W].

Note that an encoder graph for the constrained system £ generated by M
can be obtained by replacing each label b/« in (8) by the source/code-word la-
bel b/L(«r). We will refer to the encoder graph thus obtained as Gr.. Note also
that the above construction replaces look-ahead by encoding delay; the encoding
walks produced by the two encoders will be equal up to a shift over M symbols.

We now offer a different interpretation of the above construction. In fact,
what happens in Theorem 5 is that each state v of M is subdivided into states v,
b € W,, according to different futures after state v (represented by the sets X ).
Moreover, since M future transitions are taken into consideration, this subdivi-
sion would require M rounds of state splitting. (Further details can be found in
Appendix B.)

As one of the referees pointed out, Theorem 5 is related to the recoding of
right closing maps to right resolving maps [5].

Example 10:  Let [M, ¢, W] be the one-symbol look-ahead encoder de-
scribed in Example 1, Figure 1. The four collections X, p are depicted in Fig-
ure 18. When we construct the encoder graph G as in Theorem 5, we obtain the
four-state encoder graph in Figure 19. (In this figure, the four states ag, aj, b,
and ¢ correspond to the four state trees X, 9, X1, Zp.0, and . (.)

This encoder can also be constructed as follows. We first subdivide state a into
states ag and a;, where a; is used to encode when the upcoming source symbol
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Figure 19: A finite-state encoder.

equals 1 (so a; will have successors b and ¢), and ag is used otherwise (so ag will
have successors ag and a;). As a result each of the states ag, a1, b, and ¢ now
encodes precisely one source symbol, which appears on all transitions leaving the
state. Next, we shift back all source labels by one transition: the (common) source
labe] on the transitions leaving a state is now assigned to all transitions entering
that state. The result is the encoder graph presented in Figure 19. Note that this
construction is in fact the same as the construction in Theorem 5, and produces
the same encoder graph.

The codes produced by the encoders in Figure | and Figure 19 are indeed
equal up to a shift over one symbol. For example, to encode the source se-
quence 0110010 from state a the encoder in Figure 1 produces the encoding path
aacbaaba, and the encoder in Figure 19, starting in state ap, encodes the source
sequence 110010 (the previous sequence with the first symbol dropped) into the
corresponding path aga|cbapa; b.

To fully appreciate our final remark, the reader should probably be somewhat
familiar with state splitting. Observe that the encoder in Figure 19, being obtained
from the FSTD in Figure 1 by one round of state splitting, has a path-decoding
window of size rwo; beside the present transition in Figure 1, the decoder needs to
know (at least when this transition ends in a) one future transition to determine the
corresponding transition in Figure 1. However, the reader can easily verify that
knowledge of the future transition only is sufficient for decoding! Consequently,
the “effective” path-decoding window size is only one instead of two. (This is
of course evident in view of the equivalence of the two codes.) Part of this paper
may be seen as an effort to profit from such “‘reduced window” phenomena in a
systematic way. t

Both encoder graphs G and G; will have ) _, [W,| states, which can be
large. Fortunately, the number of states of G; can usually be reduced by state
merging (cf., Section 4.2). This operation applies for example when the outgoing
transitions in two states can be paired off in such a way that the two transitions



4.6. Finite-state encoders from look-ahead encoders 123

Table 1: The encoder.

source symbol input
present 0 1
state | output ] next state || output | next state

A 10 E 10 F
B 01 E 01 F
C 00 A 10 B
D 00 C 00 B
E 00 A 00 B
F 00 C 00 D

in each pair have the same source/code-word label and end in the same state. If
this is the case, then each source sequence will be encoded from both states by
the same code word sequence. Consequently, these states can be identified. that
is, merged into one state. This operation is applied repeatedly until no more states
can be identified. (In fact, this approach ensures that all states that can be merged
will be identified eventually; since Gy, is deterministic w.r.t. the source/code-word
labeling, it is reduced in this way to its Shannon cover, see e.g. [2] or [19].)

Example 11: In this example, we consider the construction of an encoder
graph for the (2, 7)-code obtained in Example 9. Only the main points are dis-
cussed here, the details of the construction are left to the reader.

Since there are 21 distinct pairs (v, b) of states v and words b in W,, appli-
cation of Theorem 5 leads to an encoder graph with 21 states. However, due to
the regularity of the code, the number of states can be reduced to six by merging.
Indeed, the reader may verify that
1) States X go, 23.00. 24,00, 25.00, 26.00, and X7.gp merge into one state A,
i1) states 211,01 22,01, 23,01, 24.11. and X5 11 can be merged into one state B,
ii1) states o 10, 23.10, 24.10, and s 19 can be merged into one state C,

iv) states X» 1) and X3 ;7 can be merged into one state D,

v) states X 1o and X1, gp can be merged into one state E, and

vi) states X 1) and 2, o can be merged into one state F.

These merging operations lead to the six-state encoder with input/output relations
as in Table 1. O

In the remainder of this section we discuss a (partial) converse to Theorem 5.
Our results will establish a further link with the work in [9], and will be used in
Appendix B to investigate codes produced by the ACH state splitting algorithm.
Suppose that, in each state v of an FSTD M, the set of walks of length M starting
in v is partitioned into mutually disjoint collections X, ;, i = 1, ..., n,, again
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referred to as state trees. We write
84
2:v,i — z:w,j (9)

if o is a transition in M from v to w such that for each walk o - - - apy in X, ;, the
walk aor - - oy is contained in X, ;. We construct a graph G with as “states”
the state trees X, ;, and with “transitions” of the form (9). Let B be a set of size N
and suppose that each state X, ; of G has at least N successors. Then, in each state,
we can label N transitions leaving that state with the N distinct symbols from B.
So G now has labeled transitions

b
Soi 24 %, (10)

and looks like an encoder graph.

Observe that walks in G generate walks in M, and, because the state trees
are disjoint, distinct right-infinite walks in G generate distinct right-infinite walks
in M. So we conclude that G is the encoder graph of a code for M. Note that we
may obtain such a graph G from a BD code [M, ¢, W] with path memory 0, as
in Theorem 5.

What kind of code is generated by the encoder graph G? We will show that
in fact such a code is a BD code, although not necessarily one with path memory
0. To state the precise result, we need some preparation. We define a (partial)
labeling ¢ of the transitions in the Mth history graph Mjs of M (that is, of

the walks of length M + 1 in M) as follows. Let ¢(g---ap) = b whenever

bjag .
ap-coy—1 € Xy, 01y € Xy g, and X, ; —> Xy ; holds for some i

and j, where v = beg(wg) and w = end(rp). (Since the state trees are disjoint, i
and j are determined uniquely.) Note that then ¢ («of1 - - - By) = b holds for all
walks By -+ - By in Xy, ;. Now, for each walk o« = g - - - a¢py—1 in M (that is, for
each state o of M), let the set W,, consist of all words by - - - bys— for which
there is a walk in G of the form

bo/og by/ay bu—1/am—1
— Zuyi e T

z pINI (11)

v, 10
With these definitions of ¢ and W, we have the following result.

Theorem 6: The triple [M s, ¢, W] constitutes an M-symbol look-ahead
BD code for M with path memory (at most) M. This BD code is equal to the
code generated by G up to a shift over M symbols.

Proof: leta = ag---ay | be a state in My, let by --- by 1 be a word
in Wq, and let b € B. To prove the first part of our theorem, we need to show that
there is a transition in M ;, with source label by, from a to some other state o/,
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Table 2: The admissible words of length 5.

label | word | term. state | parity
init. state
a 00000 (+35) -
b 00001 0 e
v 00010 1 0
d | 00100 2 e
e 01000 3 0
f 01001 0 0
g 10000 4 e
h 10010 1 e
Table 3: The approximate eigenvector.
v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
by 7 9 12 9 12 9 11 8 11 8 11 4 7 4 7 4 0 0 0

say, such that the word b -- - by_b is contained in W,. This can be seen as
follows. By the definition of W,, there is a walk as in (11) in G. Since each state

in G has a leaving transition with source label b, there is a transition in G of the
b . .
form %, ;,, ﬂ) Xy, j. Let @ = ay -+ apy_ja. By definition of Wy, this set

contains the word by - - - by _1b. Since necessarily « € %, ;, and &’ € Xy, ;,, it
follows from the definition of ¢ that the transition aq - - - opr— ¢ in My leaving
state @ has source label ¢(g - - - apr— 1) = by as required.

To prove the second part of our theorem, we reason as follows. Suppose that
G encodes a sequence {b,} of source symbols into a walk {«,} in M. From the
definition of ¢ we then conclude that ¢(«, - - - @, ) = by, that is, in the BD
code the source label b, is assigned to transition o, (provided its history is
O+ Oy M—1)- O

4.7 Further examples

In this section we use our construction method to derive three new codes, all with a
smaller decoding window than the best codes known for the constraints involved.

4.7.1 A new rate-2/5 (2, 18, 2)-constrained code

Our first example concerns the construction of a rate-2/5 (2, 18, 2)-constrained
code with a decoding window size of 3 code words or 15 bits, and error propaga-
tion of 5 bits.
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Figure 20: The local structure of the FSTD.

A binary sequence satisfies the (2, 18, 2) constraint if any two consecutive
ones are separated by an even number of at least 2 and at most 18 zeros. (So
0 < 00 sets up a one-to-one correspondence between (1, 9)-constrained se-
quences and (2, 18, 2)-constrained sequences.)

The FSTD commonly used to represent this constraint has 19 states, which
are numbered 0, 1, ..., 18. Here, the numbering is such that walks ending in
state v generate sequences ending in precisely v zeroes. Since we consider rate-
2/5 codes, we take B = {0, 1, 2, 3} (so N = 4) and we label the transitions with
admissible words of length 5. There are eight such words, shown in Table 2. From
this table we see that the label on a given transition is determined by its terminal
state only (if its state number is 2 or more), or by its terminal state together with
the parity (even or odd) of its initial state (if its state number is O or 1). For
this reason we do not always indicate the code word labels on transitions in what
follows. The local structure of this FSTD is described in Figure 20.

In Table 3 we list a collection of state-weights that constitute an approximate
eigenvector. As suggested by the values of these weights, we work with a look-
ahead M = 2. Since states 16, 17, and 18 have weight 0, they may be dropped.
The resulting FSTD M, shown in Figure 21, generates a subsystem of the original
(2, 18, 2)-constrained system. (The labels in this figure refer to the 5-bit words
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Figure 21: The FSTD M.

in Table 2.) As usual, the weights of the states are represented as indices to the
state-number. We have also indicated a BD partition for those states that have one.
(Unique only for state 0.)

We see that all states except 2, 4 and 1, 3, 5 have a BD partition. Some state
splitting on the successors of these states is needed, but as we will see, one round
will do. So we will choose K = 1. A lot of freedom remains, though, both in
the choice of state splitting operations and in choosing the BD partitions. One
possibility is to split all relevant successors of states 2, 4 and 1, 3, 5 (that is, states
2, 3, 4, states 7, 9, and states 6, 8, 10), and then to use a computer to optimize in
stage three over all possible BD partitions. Although this would be feasible, we
choose a different approach.

Let us be ambitious and aim for D = 1, i.e., for a decoding window of three
code words only, an improvement of one code word compared to the best code
known (see [19]). Once the present transition in M is known, we require one code
word look-ahead to determine the corresponding transition after state splitting
(which is also sufficient since M is deterministic). The present code word, when
not equal to a = 00000, determines both the parity of the initial state of the present
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Figure 22: The resulting code.
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Table 4: Decoding table.

word decoding
(a,c,e, g, hala,e, g) 3
(a,c,e, g, Mab,c,d, f,h)
(b, fla
(d)a(a, e)
(d)alc, f)
(Fd)b, h
(d)b, h
c
(#d)d
(d)d
e
f
(#Fd)g
(d)g

SO N~ WO W O =D

transition and its terminal state. Finally, we dispose of only one previous symbol
to distinguish between the possible initial states of the present transition.

From the above we first conclude that, after state splitting, the labeling of
transitions with source symbols has to be independent on how the initial state is
entered, except possibly for states 0 and 1, where the labeling may depend on
the parity of the previous state. A similar statement then holds for the lists of
admissible prefixes associated with the states. Moreover, states v > 5 cannot be
distinguished by looking back one code word only (all of these states are entered
by a transition labeled with code word a = 00000), hence “consistent labeling” is
required for these states.

We can now conclude the following. Without loss of generality we may merge
states 11,13, and 15 into one state 11/13/15, and similarly, we may merge states 12
and 14 into one state 12/14, states 7 and 9 into one state 7/9, and finally states 6,8,
and 10 into one state 6/8/10. Next, suppose that in states 11/13/15 and 12/14
we choose the BD partitions as indicated in Figure 21. (Other choices will lead
to essentially the same code.) Then states 7/9 and 6/8/10 each split in a natural
way into a part resembling states 11/13/15 and 12/14, respectively, and one other
part (see Figure 22). (Indeed, this state split is indicated by the consistent labeling
requirement, that is, due to our aim for D = 1.) After this splitting operation,
there exists a BD partition for the remaining states, and we can now construct and
optimize our code. One of the possibilities is shown in Figure 22.

The freedom left in assigning source labels is used in two ways. In the first
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Table 5: The admissible words of length 3.

label | word | term. state

a 000 (+3)
b 001 0
c 010 1
d 100 2
e 101 0

Table 6: The approximate eigenvector.

v 0|12 ]3|4|5]6
¢y | 12119 18 | 17 | 15 | 11 | 7

place, it is possible to have consistent labeling for states 1, 3, and 5, so that these
states can also be merged. (This will simplify the encoder.) Secondly, we have
chosen the indicated labeling of the transitions from states 2 and 4 to have one
bit less of error propagation: normally 6 bits, here only 5 bits since the future
code word influences only the second bit of the present source symbol. (In fact,
this code has “almost” error propagation of 4 bits only.) This code indeed has a
decoding window size of three symbols. For convenience, we have presented a
decoding table for this code in Table 4. An encoder can be constructed using the
methods described in Section 6. It turns out that, after state merging, this encoder
has only 22 states, which is also less than the code mentioned in [19].

4.7.2 A new rate-2/3 (1, 6)-constrained code

We now construct a rate-2/3 (1, 6)-constrained code with decoding window size
of 5 code words or 15 bits, and error propagation of 9 bits only.

Certain highly efficient (d, k)-constrained codes are notoriously difficult to
construct. Examples include the rate-2/5 (2, 4) code, the rate-3/5 (1, 4) code,
and the rate-2/3 (1, 6) code discussed here. Good codes of these types are easily
constructed with our method, though. As an example we consider the (1, 6) code.

The construction starts with the FSTD commonly used to represent this con-
straint. This FSTD has seven states, numbered 0, 1, . .. 6, where the numbering is
such that a walk ending in state v generates a word ending in precisely v zeroes.
The possible code word labels are the five admissible words of length 3 in Table 5.
For ease of description, we separate state 0 into two states 001 and 101 according
to how state 0 is entered. To achieve the desired rate, our source alphabet B must
have size N = 4,sowe let B = {0, 1,2, 3}.

A local description of the resulting FSTD M is given in Figure 23. Note
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Figure 23: The local structure of M.

that the code word labe! carried by a transition is determined by its end state.
The smallest [ M, 4]-approximate eigenvector ¢ is listed in Table 6. In Figure 23
these weights are indicated as usual as a subscript to the state number. We choose
a look-ahead M = 2. As a consequence, the states 1, 2, and 3 (having a weight
larger than 16) have to be split into parts of weight at most 16. We choose this
value of M since a lot of state splitting is required anyway.

It is not difficult to verify from Table 6 and Figure 23 that in order to have
a BD partition in each of the states, at least two rounds of state splitting are re-
quired. Therefore, we choose K = 2. So our decoding window will contain two
code words of look-ahead, and since M is deterministic, this amount of look-
ahead is also sufficient to determine the terminal state of a transition after two
rounds of state splitting once the initial state in M is known. For states 5 and 6
we choose the BD partition indicated in Figure 23. Other results (see [13]) now
suggest splitting off from both states 1 and 2 a part of weight 16 (or parts with
total weight 16). Moreover we have seen in our other examples that it is good
strategy to split states in such a way that resulting offsprings can later be merged
with other states. (This same heuristic is used in ordinary ACH to minimize the
number of encoder states.) Observe that this aim is often automatically achieved
when the choice of state splits is guided by a consistent labeling requirement.

The above discussion strongly suggests splitting states 4, 5, and 6 as indicated



132 4. Construction of bounded-delay encodable codes
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Figure 24: First round of state-splitting.
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Figure 25: Second round of state-splitting.

in Figure 24 and then combining the offsprings of weight 3 from these states with
the remaining successor states of states 1, 2, and 3 to form a part of weight 16,
which can then be split off from these states in a second round of state splitting.
(See Figure 25.) After these state splitting operations, we do indeed have a BD
partition in each state, as shown in Figure 26.

The BD partitions shown in Figure 26 are not unique: In the BD partition for
state 47, we may interchange states 23! and 2°2, and for states 1/2/3". we may
also interchange states 1 and 4/5/6". However there is obviously no advantage
in not choosing consistent labeling between states 4" and 1/2/3", so essentially
the only choice left is the above choice in state 4”. It turns out that the best code
is indeed obtained by the choice indicated in Figure 26.

Now we have reached stage 3 of our method, where we optimize the code for
the smallest decoding window. Although our choice of state splitting operations
has been consistent with an aim for D = 1, that is, with an aim for a look-back of
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Figure 26: The resulting FSTD with BD partitions.

only one code word, at this stage it turns out to be impossible to construct a BD
code achieving this aim. (This is easily verified as follows. Assign source symbol
variables to transitions. consistent between states originating from states v > 3.
Then states 1% and 23% necessarily have prefix lists that cannot be combined in
the BD partition for state 1/2/3”, as would be required.) So we need a decoding
window of at least five code words; two code words of look-back, the present
code word, and two code words of look-ahead. A BD code with such a decoding
window is shown in Figure 27. (The reader will have no difficulty to verity that
two previous code words, the present code word, and two future code words are
indeed sufficient to determine the actual transition followed in Figure 27.)

Note that the labeling is consistent between states v > 3 except for the labels
of transitions ending in state 2", which are either 3 (from states 1/2/3" and 4”)
or 1 (from state 5/ 6%), and for the labels of transitions ending in state 101, which
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Figure 27: The resulting code.
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Figure 28: The local structure of M.

are either 1 (from state 1/2/3") or O (from state 4/5/6°. Therefore an error in the
first code word in the decoding window can affect at most one bit of the original
source symbol. So this code has an error propagation of 9 bits only (instead of the
expected 10 bits). Note however that the “span” of an error pattern can be 10 bits,
so according to some definitions the error propagation would still be 10 bits.

Finally we note that, using the methods described in Section 6, we can find a
finite-state encoder for this code having only 21 states.

4.7.3 A new rate-2/3 (1, 9)-constrained code

As our final example, we construct a rate-2/3 (1, 9)-constrained code with decod-
ing window size of 2 code words or 6 bits.

This example—which does not involve state splitting— is included to illus-
trate the usefulness of the more general local encoder structures in Section 4 as
a code-construction tool. Moreover, in this example we initially work without an
approximate eigenvector.

A classic method for constructing (d, k) codes is to forbid certain sequences of
words in a suitable (d, co) code, possibly in combination with certain substitution
rules. Our construction of a (1, 9) code is based on this idea; we will first construct
a (1, o0) BD code, and then eliminate all encoding walks that generate the words
000.000.000 or 000.000.001. (This is of course sufficient to obtain the desired
k-constraint, as the reader may easily verify.)

Our starting point to construct a rate 2/3 (1, 00) code is the FSTD M with
local structure as in Figure 28. The code word labels are the five admissible words
of length 3 given earlier in Table 5. Since we desire a rate of 2/3, we take N = 4,
and we let B = {0, 1, 2, 3}.

Our aim is to find a local encoder structure in each state of M, with an ad-
ditional property. So we will assign prefix lists W, and W, and labels ¢(«) to
states v and transitions o of M, where each W, will be a relabeling of Wend(a)
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Figure 29: The partitions.
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Figure 30: The local encoder structures.

(up to depth 1), In such a way that “local encoding” is possible, that is, such that
(5) in Section 4 holds. (However, contrary to what we have seen in our examples
up to now, we do not require that the prefix lists W, have a particular structure.)
Note that if we succeed in finding such a local encoder structure, then Theorem 3
guarantees that we can obtain a BD code, with (path) decoding window size of
two transitions. The single most important step in such a construction is to find
the partitions of outgoing transitions in the two states induced by the labeling,
and we will concentrate on that step first. To help us choose these partitions, we
note that if two prefix lists W, and Wy, with v = beg(a) = beg(B), assigned
to transitions « and B that belong to the same part of the partition in state v,
have a word in common, then removing this word from one of these prefix lists
serves to eliminate certain encoding paths! We want to do so at state 1, if en-
tered by a transition labeled ¢ = 000, in order to avoid the generation of the
words 000.000 and 000.001. This suggests combining transitions labeled with
code words a = 000 and » = 001! into one part, and if this part is induced by
source label x, say, to eliminate the word xx - - - from the prefix list assigned to
(000)1. This observation also suggests choosing a look-ahead of M = 2 source
symbols. The fact that we combine transitions labeled @ = 000 and b = 001
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Figure 31: The resulting code.

imposes a constraint on the structure of the sets Wy and Wy, which in turn elim-
inates certain partitions. In fact, there is only one way to choose the partitions
now, which is the one shown in Figure 29. These partitions suggest that we take
weights ¢p = 5 and ¢; = 8. A local encoder structure for M with all desired
properties is shown in Figure 30.

From these local encoder structures we can construct the BD encoder in a
straightforward manner. One of the possibilities is shown in Figure 31. Note that
certain words are eliminated from prefix lists at the end of transitions in order to
make the encoder deterministic, and of course the word 00 is eliminated from the
prefix lists associated with state (000)1 in order to meet our k-constraint. Obvi-
ously, our code has a decoding window size of two words: one word look-back to
determine the state in Figure 31, and then the present word to determine the actual
transition followed from that state. The code also satisfies the k = 9 constraint:
if the word @ = 000 is generated, then the encoder is in state (000)1 and thus
the next two upcoming source symbols are not both zero, whence at most four



138 4. Construction of bounded-delay encodable codes

consecutive zero bits are generated next. It turns out that a finite-state encoder for
this code constructed as described in Section 6 has only 8 states.

We have some final remarks concerning this example. Of course, this code
could also have been constructed in a way similar to that used in other examples,
starting from the third power of the FSTD commonly used to represent the (1, 9)-
constraint. However, the code was actually found in the way described above
(with the aim of meeting a k-constraint with smallest possible k), and since we
believe the method to be both interesting and potentially useful in similar situa-
tions, we decided to present this construction method here. We conjecture that the
value k = 9 i3 optimal, in the sense that no rate-2/3 (1, 8)-constrained code can
have a decoding window of only two code words.

4.8 Conclusions

We have presented a new technique to construct sliding-block decodable codes
with a small decoding window for constrained systems of finite type. Our meth-
ods works very well when the maximum number of transitions from a state in
the FSTD-representation of the constraint is small. The power of this method is
demonstrated in several examples; these include the construction (by band!) of a
rate-2/3 (d, k) = (1, 6) code with a decoding window of only five code words
or 15 bits.

The codes obtained by our method can also be constructed by means of the
ACH state splitting algorithm, provided that suitable choices are made for the
state splitting steps and the assignment of source symbols in the resulting en-
coder graph. When constructed by state splitting, these codes will exhibit the
reduced-window property: the effective decoding window will be (sometimes
much) smaller than predicted from the number of rounds of state splitting used
in their construction. Indeed, our method could be incorporated into the ACH
algorithm to try and guide the choice of the state splitting operations.

Our approach is very suitable to construct codes by hand, possibly assisted
by computer. Further research is needed to determine the best implementation
by computer. Other topics for further research include the generalization of this
method to the case where the constraints are of almost-finite type.
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4.9 Appendix A: additions to Section 4.4

In this appendix we collect some material connected to Section 4.

4.9.1 Proof of Theorem 3

The proof essentially formalizes the idea of encoder construction as in Figure 6
of Example 3. In the proof, we will express the fact that a set of words is a rela-
beling of another set of words with the aid of a relabeling map. Here, a relabeling
map is amap v : BM > BM with the property that if, for some number k, two
words x = x;---xp and y = yj - - - yy from U agree in the first k symbols, then
their images 7(x) and 7(y) also agree in the first £ symbols.

It is easily seen that for U, W € BM W is a relabeling of U if and only if W
is the image of U under some relabeling map. (Indeed, if two words x and y in U
are generated by paths in the parsing tree of U that agree in the first k arcs, then
atter relabeling the parsing tree, the same is true for their images 7(x) and t(y).)

In the proof, we construct for each walk 7 in M a label ¢(r) in B, a set W,
of words of length M, and a relabeling map t,; such that the following holds.

1) if two distinct walks 7 and w agree in the last s transitions (or if they both end
in the same state, if s = 0), then the words 7, (x) and 7,(x) agree in the last
M — T + s symbols (or are equal if s > T), for all words x = x| - - - xp.

ii) Wn = Tx (Wend(rr))>

i) We B € Uge o, 970 Wra,

We construct these objects inductively, for walks 7 of length k, for k = 2,3, .. ..
Remark that i)-ii) above hold for k = 1, and iii) for & = 0, according to the
assumptions in the theorem. (By convention, a state is a walk of length 0.)

In what follows, we will need a few simple properties of relabeling maps or,
more briefly, R-maps. If t : BM - BY is an R-map, then we denote by 7
the map defined by T(xg---xy) = t(xg---xp_1)xy. Also,if b,c € B are
such that T maps all words beginning with the symbol b into words beginning
with symbol ¢, then we write 7® (o denote the map defined by T(bx---xpy) =
ct® (xy - - -xpr). The reader will have no difficulty verifying that both 7 and 7®
are again R-maps. Also, we observe that the composition 7o of two R-maps ©
and o is again an R-map. ;

Now suppose that we have constructed objects ¢ (i), Wy, and 7, as above for
all walks of length less than k, and suppose furthermore that i)—iii) hold when-
ever all objects involved in the statement are defined. Now let & be a walk of
length k£ — 1. From the defining properties of a local encoder structure, we have

WeamB S | p@W,,

a€Aendin)
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hence by ii),

Wi B = & WensyB) € fn(wa)vva). (12)

QEAend(n)

For each transition « leaving end (), let us define the symbol ¢ () by

T (p(a)xy -+ xp) = P(ra)T@ D (x) - xpy), (13)

where 7V is the R-map defined from 7,; as explained earlier. Next we note that
We = TaWend())- 50 it we define the R-map 1,4 by Try = ré‘p(a))ta, then with

the aid of (13), we may express (12) as

W.B< | ¢@a)tr (Wﬂw). (14)
G’EAend(n)
Hence if we put
Wra = Tra (Wend(a))a (15)

then (14) shows that ii) and iii) also hold for the new objects. Let us now ver-
ify that 1) also holds. So suppose that the two distinct walks 7 and w, each of
lIength less than k, agree in the last s transitions, and let @ be a transition such
that end(7) = end(w) = beg(a). Let x = x;---xp be a word of length M
over B. By i), the words 7, (x) and 7,(x) agree in the last M — T + 5 symbols.
By definition of t,,, we have that

Tr(p()Te (X)) = (T ) Tra (X)), (16)
and similarly,

T (@) T (X)) = @(00) Tpa (X). (17)
From the above expressions and from the definitions of 7, and 7, it follows
immediately that 7,4 (x) and 7,4 (x) agree in the last M — T + s + 1 symbols, as
required.

Now we shall use the objects constructed above to obtain the required BD
code. By i), the R-maps 7, (and hence also the sets of words Wy ) constructed
above depend only on the last T transitions of 7. Consequently, if # = m; -- - 77
has length T and if 7’ = 75 - - - w7, then by iii) we have that

WrB < U(xeAcnd(ﬂ) p(ra)Wra
= UaeAmd(ﬂ) Pra)Wrig.

Therefore, the map ¢, restricted to walks of length 7 + 1 in M (that is, to tran-
sitions in M), together with the sets of words W, for walks & of length 7" (that
is, for states of M), constitute an M-symbol look-ahead encoder for My, that
is, a BD code for M with path memory 7.
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4.9.2 Proof of Theorem 4
Let us first observe that since W, is a relabeling of Wend(«), we have

|Wal =< |Wend(a)| = ¢end(a)- (18)

The fact that ¢ is an [M, | B|]-approximate eigenvector can now be shown in the
same way as in the proof of Theorem 1. But we can say more: if W denotes the
collection of all words in W, with prefix b, then we have

WIB S b || Wendo- (19)
acAb
So by combining (18) and (19), we obtain that
IW2IIBI < " $endr: (20)
aeA{’,

Moreover, we obviously have

IWE < |BIM 1, 2]
hence we conclude that
Wyl < min(LN“l > Gendien]- N”“). (22)
e
Finally, since
by =Wyl =D WL, (23)
b

the theorem follows.

4.9.3 Some comments on Theorem 4

Although the necessary conditions for BD partitions in Theorem 4 are rather
strong, they are not sufficient in general. However in the case where M = 1, a
given partition is a BD partition if and only if these conditions hold, as the reader
can easily verify. This observation has a nice consequence. A collection of parti-
tions A, = UbA’Z for each state of M induces in a natural way a similar collection
of partitions for the Mth power MM of M. Moreover, it is not hard to see that if
the original partitions for M satisfy the conditions in Theorem 4 for some N and
for look-ahead M, then the induced partitions for MM also satisfy these condi-
tions, but now for alphabet size N™ and look-ahead 1. From these observations
we may conclude that if for a given collection of partitions the conditions stated
in Theorem 4 hold, then there exists a BD code for the Mth power M* of M
with source alphabet B¥  that is, a “periodic” BD code, a result first obtained by
Franaszek [9].
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4.9.4 The complexity problem for BD partitions

Let B = {0, ..., N — 1} be a source alphabet and let M denote the word-length.
For each integer n, 0 < n < N¥, define W(M, n) to be the set of the n smallest
words of length M over B. We investigate the complexity of the BD problem
BD(n, (n; | i € [), M). Here n and n;, i € I, are integers with 0 < n,n; < NM,
i € 1, and the problem is to find a partition of 7 into parts I, b € B, such that

WM, n)B C U b[U W,-:l (24)

be B i€l

holds for suitable relabelings W; of W(M, n;) (or to verify that no such partition
exists). Note that by taking n = ¢,, I = Ay, and ny = ¢Pend() for o € A, we
obtain the problem of finding a BD partition in state v.

Let us say that a subset J of I covers aset of words W € BM if W C U;c; W,
holds. for suitable relabelings W; of W(M, n;). Writen = gNM =1 47, 0 <r <
NM=1_From (24) it is easily seen that we need to find ¢ + 1 mutually disjoint
subsets J of I, g of which cover B M and one which covers W(M — 1, r)B.

How can we verify whether a given J € [ covers W(M — 1, r)B? (To treat
both cases simultaneously, we also allow r = N M=1 here.) Obviously, we should
have

r<|N! Zn,jj. (25)

ieJ

(Cf. Theorem 4.) However, except when M = 1 this easily verified necessary
condition is not in general sufficient. We will show that, for M > 2, the ver-
ification amounts to solving a BD problem, but now with word-length M — 1
instead of M. To see this, write n; = ¢;N¥ 1 4+ 7,0 < r; < N¥~! and note
that the set W(M, n;) is the union of sets P BM-1 b =0, ..., g; — 1, and a fur-
ther set g; W(M — 1, r;). Therefore, after a suitable relabeling the set W, can be
made to cover any ¢; sets of the form bBY~!, together with a set of the form
bW/, with W a relabeling of W(M — 1, ;). Here b; can still be chosen arbitrar-
ily in B. So together, the sets W, i € J, can be made to cover the sets bBY~!
for0 <b < ), ; ¢, and itis easily seen that to verify whether the remaining part
of W(M —1, r) B can also be covered we must solve BD(r — N¥—2 Y ey Gi» (ri |
i € J),M — 1), a BD problem for word-length M — 1. (Note that possibly
r< NM-2 Zie 7 4i» in which case this last verification can be skipped.)

The above suggest the following recursive algorithm to solve the BD problem.

i) Find the minimal subsets of I that cover B¥ or W(M — 1, r)B. (In this
stage we may need to solve BD problems for smaller word-lengths.)
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ii) Find disjoint subsets Jo, ..., J; of I such that Jy covers W(M — 1, r)B
and Jy, ..., J, each cover BM,

Even a partial solution in step ii) of this algorithm can be useful when the BD
problem has no solution, cf. Section 5.

Now what does this mean for the complexity problem for BD partitions? Note
that the worst-case complexity is (at least) exponential in dpax = maxyey |A,|, the
maximum number of transitions leaving a state. Moreover, the recursion depth of
the algorithm is determined by M = max,cy [logy ¢,]. The conclusion is that
our construction method for BD codes should be applied only when dpax and M
are not too big. Practical experience shows that the method can be applied casily
for values of dpax at least up to 10 and M = 2 or 3. (Cf. Example 2 in Section 8.)

4.10 Appendix B: connection with the ACH algorithm

Here we will establish a connection between the ACH state splitting algorithm
and our method, and thereby explain some of the reasons why our method is so
effective. We begin with a review of the ACH algorithm and its properties, as far
as relevant here. For proofs of our claims and for further details we refer to [2] or
the excellent overview [19]. After this introduction to ACH, we will show that the
BD method and the ACH algorithm are related by a time shift over M symbols,
where M is the number of rounds of state splitting (see also [10]). Finally, we
show that our method is related to ACH by a time shift over K symbols, for
some K between 0 and M. Along the way we obtain a lower bound on M in
terms of the smallest possible maximal component of an approximate eigenvector,
which may be of independent interest.

The ACH algorithm is a method to transform a given FSTD into an encoder
graph. It is based on a certain type of transformation referred to as a round of state
splitting. Such a transformation produces from a given FSTD M a new FSTD M’
in the following way. For each state v of M, let the set A, of transitions leaving v
be partitioned into sets Afj, i=1,...,n,. Weconstruct the FSTD M/ as follows.
Each state v of M produces states v, i = 1. ..., n,, in M’, and each transition «
from state v to state w contained in A’ produces transitions

o! vt wl,

Jj=1,...,ny,in M’ all of which inherit their label from «. This construction
makes precise the intuitive idea that each state v can be split into new states v’
according to different futures (represented by their possible successors). We refer
to states v’ and transitions ./ as to children of state v and transition & in M/, and



144 4. Construction of bounded-delay encodable codes

to v and « as their parents in M, respectively. This notion of children and parents
extends to walks in M and M’ in the obvious way.

The single most important property of this transtormation is that all children
o' B’ in M’ of a given walk @ in M agree in transition «’. (Intuitively, we think
of this property as a transition in M with given future determining a unique transi-
tion in M’.) Consequently, the parent/child relation in fact provides a one-to-one
correspondence between bi-infinite walks in M and M’ and, in particular, M
and M’ generate the same constrained sequences. In the terminology of Sec-
tion 2, the labeling map L' that assigns to each transition of M’ its parent in M
(the ancestor map) is block-decodable, with window (0, 1).

We say that an FSTD M* is produced from the FSTD M by M rounds of
state splitting if M* is the result of a sequence of transformations

M=MD s MU s D = M

where each intermediate transformation consists of a round of state splitting. We
may extend the parent/child relation by transitivity to states and transitions in M
and M™. An easy induction argument then suffices to provide proof of the fol-
lowing claims. Each state (transition) in M* has a unique parent state (transition)
in M. Moreover, the parent/child relation provides a one-to-one correspondence
between bi-infinite walks in M and M™* and, in particular, M and M* generate
the same constrained sequences. Indeed, the ancestor map L* is block-decodable,
with window (0, M): all children o . . . &}, in M* of a given walk o . . . arpr in M
agree in transition oj. We denote this transition by ®(ay . .. o) and refer to it as
the transition in M* determined by the transition «g in M with future o ... ay.

The ACH state splitting algorithm in fact transforms a pair (M, ¢), where ¢ is
an [M, N]-approximate eigenvector, and does so by what is called ae-consistent
rounds of state splitting. (Here N is a positive integer representing the desired
code rate.) We say that a round of state splitting that transforms M into M’ as
explained earlier is ae-consistent (with respect to the approximate eigenvector ¢)
if, for each state v of M, the weight ¢, associated with v can be distributed over
its children v in M’, in such a way that the resulting assignments of weights to
the states of M’ now constitutes an [M’, N]-approximate eigenvector. Moreover,
to exclude various degenerate cases we require that at least one state v’ of M’ has
been assigned a non-zero weight smaller than the weight of its parent state in M.
As a consequence of this last requirement there will be more non-zero weights
in M’ than in M. It is not hard to see that a collection of partitions A’, provides a
ae-consistent round of state splitting precisely when

¢v = ZLNil Z d’end(u)J'

acAl
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(Compare this requirement with the necessary condition for the existence of a
local encoder structure in Theorem 4.)

The main result in [2] applies to an irreducible FSTD M and states that if
the non-zero weights in ¢ are not constant, then some ae-consistent split with
respect to ¢ can always be found. Consequently, after a finite number of trans-
formations, the pair M, ¢ gets transformed into a pair M*, ¢* for which ¢* is
an [M*, N]-approximate eigenvector with constant non-zero weights. Eliminat-
ing zero-weight states from M* if necessary, we may assume that ¢* is constant,
and then the definition of an approximate eigenvector reveals that, necessarily, at
least N transitions leave each state in M*. Consequently, by eliminating (if nec-
essary) some states and transitions from M*, we may obtain an FSTD N that is
an encoder graph for M (that is, precisely N transitions leave each state of A).
In what follows, we assume that the transitions of A" are labeled with source sym-
bols from a source alphabet B of size N, in such a way that for each state of A/
the NV transitions leaving this state all have distinct labels.

Let us now consider the decoder for the code produced by the encoder N. The
crucial observation is that the code has a path-decoding window of size M + 1.
Indeed, let the decoding function ¢ be defined as follows. For a walk ag - - - arpy
in M, let (o - - ap) denote the source label of the (unique) transition o* =
®P(ayp ... apy) in M* determined by transition op with future «; - - - oy, provided
that o* is also present in NV (¢ is left undefined otherwise). We will suppose that
the labeling of M is of finite type (see Section 2), with memory m and anticipa-
tion a, say. Consequently, from an encoded sequence f = {f,} we may recover
each transition in the walk a = {«@,} in M generating this sequence by observ-
ing m 4+ 1 4+ a consecutive symbols from f. Finally, we can recover the original
source sequence used to encode f = {f,} from a = {o,} through the decoding
function @, which essentially “reads off” source labels of successive transitions
o = P(ap ... o,4+m) contained in the walk in A that generated f = {f,,}.

We now investigate the connection between the ACH algorithm and our me-
thod. We will first use the encoder graph A to construct a collection of state trees
in M, and then we will apply Theorem 6 to construct a BD code equivalent to the
ACH code up to a time shift over M symbols. For a state v* in A/ with parent
state v in M let X+ be the collection of parents in M of walks of length M in N/
with initial state v*. Observe that each X« is non-empty, all walks in X« have
initial state v, and two sets X,» and X+ are disjoint for distinct states v* and w*
in NV. (Indeed, if o - - - apy is a walk in M with beg(a;) = v, then all children of
o - - - oy start from the terminal state v* of ®(ag . .. ap) in M*, and this state v*
necessarily is a child of v.) Next, we write

Ty 5 Ty (26)
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if there is a transition «* from v* to w* in A/ with parent & and source label b
in B.

Let the graph G have as states the sets 2, and transitions as in (26). For each
walk a of length M in M, let W, consist of all words by - - - by that are a
source labeling of some walk o* in A with parent a.

Theorem 7: The triple [M s, ¢, W], where W is as defined above and where
@ is the decoder function, constitutes an M-symbol look-ahead BD code with path
memory (at most) M. This code is equivalent to the original ACH code by a time
shift over M symbols.

Proof: Since N is an encoder graph, each state ¥« in G has N successors.
Moreover, it is fairly obvious that G and N generate the same code for M. Now
the theorem is a direct consequence of Theorem 6. (It is easily verified that ¢
and W as defined here coincide with those used in Theorem 6.) O

The shifting mechanism referred to in the above theorem functions in the fol-
lowing way. If ¢(ag ...ay) = b, then in the ACH code the label & is assigned to
transition «p with future «; ... oy, while in the BD code the label b is assigned
to transition «y; with history ag . .. op 1.

Corollary 8:  [10] A code constructed by the ACH algorithm (an ACH code)
by M rounds of state splitting is equal to an M-symbol look-ahead BD code, up
to a shift over M symbols.

Conversely, each BD code can be produced by the ACH algorithm, with an
appropriate choice of approximate eigenvector and state splitting steps, and for an
appropriate labeling with source symbols of the resulting encoder graph. More-
over, given a local encoder structure with look-ahead M, an ordinary finite-state
encoder can be constructed directly by only M rounds of state-splitting.

Detailed proof of these statements, involving induction on the amount of look-
ahead M in combination with a relabeling technique, is given in Appendix C.
For completeness’ sake, we sketch a proof of these statements here, using the
notation from Theorem 4. The idea is to split each state v into states v?, for
b € B, according to the partitions Aﬁ. (Theorem 4 shows that this splitting is
ae-consistent with respect to ¢.) Assign to state v? the set of words w» - - - wpy for
which bw, - - - wy € W,, and define the list of words associated with transitions
in a similar way. Also, a transition ending in state w® is assigned label c. In this
way, we obtain a local encoder structure with look-ahead M — 1, by one round of
state splitting. Continue this procedure until the look-ahead equals zero.

From the above correspondence between ACH codes and BD codes we may
draw an interesting conclusion. Let 6, denote the maximum value of [W, | over all
walks a of length M ending in v. It is an easy exercise to show from Theorem 1
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that 0 is an [M, N]-approximate eigenvector. Since obviously all components of
6 have a value of at most N, we obtain the following result. (This result also
follows from Theorem 5 in [18].)

Theorem 9: 1f the ACH algorithm produces an encoder graph for M by M
rounds of state splitting, then N M > I, where L denotes the smallest integer for
which we can find an [M, N]-approximate eigenvector with all its components of
size less than or equal to L.

We now come to the main observation of this section. It turns out that, fre-
quently, the splitting steps in the ACH algorithm and the labeling with source
symbols of the resulting encoder graph A can be chosen in such a way that A/
has what we will call the reduced window property: There is a number T < M
such that the function ¢ (o - - - ap) depends only on ap—7 - - - apy, Or in other
words, only the T + 1 rightmost transitions in the (path-) decoding window are
required for decoding. Consequently, the corresponding BD code has in fact path-
memory T instead of M!

The reason why this can happen so frequently is more difficult to explain. In
fact, elsewhere we will show that, given an FSTD M of finite type, the ACH algo-
rithm is capable (with a suitable choice of approximate eigenvector) to construct,
up to equivalence by a time shift, all sliding-block decodable codes that possess a
finite-state encoder with finite encoding delay and a finite-type code word label-
ing. (The same result has recently be obtained in quite a different way by Ashley
and Marcus [4].) If the required shift referred to above is larger than the “look-
back part” of the decoding window of the given code, then the corresponding
ACH code will have the reduced window property.

Although there may exist a sequence of splitting steps such that the resulting
encoder graph N, when suitably labeled with source symbols, has the reduced
window property, it is not at all evident how to recognize suitable splitting steps
so as to work towards this property. (Some information concerning this problem
can be found in [13].) At first it would seem that code construction through the
BD method only replaces this problem by another one of comparable difficulty.
Fortunately, we may (at least partly) overcome these problems by mixing the BD
method and the state splitting approach. Indeed, let us consider what happens
if we stop state splitting after K rounds, for some number K between 0 and 7.
Let M’ denote the resulting FSTD after these K rounds. (Observe that now a
transition in M as well as K future transitions are needed to determine the corre-
sponding transition in M'.)

We can then construct (essentially) the same code as in Theorem 7, but now
as an (M — K)-symbol look-ahead BD code for M’. The decoding function ¢’
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for M p;_ is now defined as follows. If oz6 -y, g isawalkin M, then

ol ay_g) = b,

where b is the source label of the transition o in A determined by this walk
(and undefined otherwise). Consequently, whenever o - - - atpy is a walk in M for
which o, - - -y, isachild of ag - - - ap—g in M, we have

@log - -ay) =@ (a- -y g)-

Using this relation between ¢ and ¢’, it is easily shown that ¢’(oy - - - o), g)
depends in fact only on the last 7 — K + 1 transitions o, 4 - - - o}, . (Indeed,
suppose that the two walks o - - - ), and B - - - B, in M’ agree in the last
T — K + 1 transitions. Now if 0‘;1/1,( 417y is a walk that extends both these
walks, then the parent walks «g - - - apy and By - - - By of these extensions agree in
the last T + 1 transitions, whence

@y ) =@l o) =eBoBu) =¢ By By—x)-

which proves our claim.)

So we may conclude that the original ACH code is identical (up to a time
shift over M — K symbols) to a BD code for M’ with look-ahead M — K and
path-memory T — K. In particular, for K = T we obtain a BD code with path-
memory 0, that is, an (M — T')-symbol look-ahead assignment for M. If we
have some luck, then the structure of the look-ahead assignments W, associated
with the states v” of M’ is such that the methods in Section 4 apply. (Otherwise
more splitting steps would be required.) If we have still more luck, then even
fewer than T rounds of state splitting will do; this occurs if all sets Waly poraly «
that correspond to walks &), ;. ,---a), , ending in the same state have the
same structure. (See Section 4.) Our examples provide ample evidence that this
approach is indeed a profitable one. requiring often only a few rounds of state
splitting to obtain good codes.

4.11 Appendix C: BD codes from ACH

Here, we begin by showing that each M-symbol look-ahead encoder or local en-
coder structure [ M, ¢, W] can in fact be obtained from the pair (M, ¢) by ae-
consistent state-splitting, where ¢, = |W,|, for all states v. (Later we discuss
the case of general BD codes.) We first do this for a look-ahead encoder, then we
indicate how to adapt the proof in the case of a local encoder structure.
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In both cases, we transform the pair (M, @) into a pair (M’, ¢) by ae-
consistent state-splitting and the encoder [M, ¢, W]into an encoder [M/, ¢', W']
for a code, equivalent to the original code up to a shift, in the following way. To
obtain M’, we partition each set A, of transitions leaving state v into sets Af ,
for b € B, where A” consists of all transitions & leaving v for which the source
label p(a) = b. So each state v splits into states v, for all b € B, and each
transition o, from v to w, say, produces transitions a“, for all ¢ € B, where «° is
a transition from v? to w¢, with b = ¢{a), which inherits its label L'(a“) = L(«)
from w.

Also, in both cases we define the sets W;,, as the collection of all words
by - - - by for which the word bb, - - - by is contained in W, and we let ¢; y =
W', . 1t is not difficult to check that ¢’ is an approximate eigenvector for M'.
(Alternatively, we can invoke Theorem 4.)

In the case of a look-ahead encoder, we define ¢’ (a®) = c¢. We now claim
that [M’, ¢’, W] constitutes an (M — 1)-symbol look-ahead encoder. Indeed,
this follows immediately from the definition of a look-ahead encoder, together
with the observation that W, = Upe BW&, holds for each state v. Moreover, it is
an easy matter to check that encodings produced by this encoder are the same as
those produced by the original encoder, up to a shift by one symbol.

In the case of a local encoder structure, we have to adapt the definition of ¢/,
and to define the sets W/, for transitions ' in M’. We proceed as follows. Recall
that we require the existence of a relabeling map (or R-map) 74 : Wendw)
W, for each transition @ of M (see Appendix A. proof of Theorem 3). By the
definition of an R-map, all words in Wenq(y) that begin with a fixed source symbol
¢ € B are mapped to words in W, that all begin with the same source symbol ¢/,
say. We slightly abuse notation and denote this source symbol ¢’ by 74 (c).

Now let W, denote the collection of all words c; - - - ¢y for which the word
To{c)ca - - - oy is the image under 7, of a word in Weng(a) that begins with the
symbol c. Moreover, we let 7,c : W, y4)c F> Wie denote the map on Wy g,
“induced” by 1,. It is easily checked that the maps t,. are again R-maps.

Finally, we define the source symbol labeling ¢’ of transitions in M’ by letting
¢'(@) = 14(c). Now. using the definition of a local look-ahead encoder and
the additional observation that W, = U.epW,. holds for each «. it is a simple
matter to check that [M, ¢’, W'] constitutes an (M — 1)-symbol look-ahead local
encoder structure. As before, there occurs a shift by one symbol.

The proot of our claims now follows by induction on M. Indeed, the above
procedure is repeated until the amount of look-ahead M is reduced to zero, in
which case the resulting look-ahead encoder or local encoder structure in fact
represents an encoder for the original code, up to a shift by M symbols.

Now, we consider the case of an M -symbol look-ahead BD code [M . ¢, W]
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based on the Tth order history graph My of M. As shown above, an encoder for
an equivalent code up to a shift over M symbols can be obtained from (M7, @),
where ¢yy..ar ; = [Wagar,| for all paths o - - - 7—1 in M, by M rounds of
ae-consistent state-splitting. Therefore, in order to show that an equivalent en-
coder can be obtained from M by ae-consistent state-splitting, it is sufficient to
show that the pair (M7, ¢) can be obtained through ae-consistent state-splitting
from a pair (M, ¢©@), for some approximate eigenvector ¢© for M. This can
always be achieved as follows. First, we consider the pair (./\/[[T], ¢), where MIT]
denotes the T'th order edge graph of M, which is the same graph as M, except
that a “transition” «q - - - o7 now carries label L{ag) instead of label L{ar. (A
“state” o - - -y is now best considered as the state v = beg(wg) with “fu-
ture” ag---ar_1.) Note that M7 and M!7) generate the same sequences, but
shifted over T symbolds. It is now fairly evident that the pair (M!7], ¢) can be
obtained from T rounds of ae-consistent state-splitting from the pair (M, ¢@).
The intermediate pairs (M*!, ™)) occuring in the process are composed from
the kth order edge graph M®*! and an approximate eigenvector ¢’ for this edge
graph. Here, ¢(§¢](€))‘"Wk~l = 3" ¢end(r)> where the summation ranges over all paths
T =g Og—1Tg - - - Tyr—] Starting in state v.

We note that under certain conditions ae-consistent state-splitting starting with
(M, ¢) is also possible. This occurs for example when for each path «g - - - a7_1,
the size of the set of words Wy,...«,_, only depends on the terminal state of the
path. In that case, the ae-consistent state-splitting process to obtain an encoder
for [M7. ¢, W] from the pair (Mr, ¢) can be made to correspond to a similar
process starting with (M, ¢). We leave further details concerning this special
case to the reader.

If we combine the above results, we indeed find an ae-consistent state-splitting
procedure to obtain an encoder for our BD code [M 7, ¢, W].
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Chapter 5

Bounded delay encodable,
block-decodable codes for
constrained systems

Abstract — We introduce and investigate the class of bounded delay encodable
block-decodable (BDB) codes. Several characterizations for this class of codes are
given, and some construction methods, especially for one-symbol look-ahead BDB
codes, are described. In another direction, we use our results to show the existence
of a decision procedure for some basic coding problems.

Index Terms — RLL code, BDB code, block-decodable code, principal state-set,
look-ahead coding .

5.1 Introduction

Digital data transmission or storage systems commonly apply modulation codes
to translate or encode sequences of source data into sequences that obey certain
constraints. Typical “binary” examples include the family of (d, k)-constraints,
where the number of zeroes between consecutive ones must be at least d and at
most &k [18], [14], and the related family of (d, k) RLL constraints, where each
run of zeroes or ones must have length at least 4 + 1 and at most k + 1 [12].
Both families of constraints have important applications in storage systems such
as magnetic and optical disks and tapes.

Commonly, to achieve the desired encoding the source data is grouped into
words of length m and a code is used to translate these words into a sequence of

© 1996, IEEE. Reprinted, with permission, from IEEE Transactions on Information Theory
vol. 42, no. 6, November 1996.
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words of length n (called codewords) that obeys the specified constraints. The
quantity R=m/n is called the rate of the code.

Many code construction methods actually deliver sliding block (decodable)
codes, where after encoding, a given block can be retrieved or decoded by exam-
ining only its corresponding codeword, the last a codewords preceding it, and the
next m codewords succeeding it, for some fixed integers a and m. The collection
of these codewords is called the decoding window for the given block, and the
quantity a + | + m is called the window size of the decoder.

An important subclass of sliding-block codes for practical applications are the
block-decodable codes. These codes have window size one, consequently code-
words can be decoded without the knowledge of preceding or succeeding code-
words. Block-decodable codes can be advantageously used in combination with
error correcting codes having a fixed block-size n such as Reed-Solomon codes
over the finite field GF(2"), since error propagation is limited to one codeword.
Several construction methods for such codes have been proposed, but unfortu-
nately, efficient (high-rate) codes obtained by these methods require in general a
fairly large block-length.

Recent work by Immink [12] (see also [11] and Hollmann {10] has changed
this picture. In these papers, two new construction methods for block-decodable
codes, namely state-combination [12] and the principal state-sets method [10],
have been introduced, and several new “record” block-decodable codes (for ex-
ample, a rate m/n = 8/16 (2, 8) RLL code and many others in [12], and a rate
m/n = 8/12 (1, 8) RLL code in [10]) have been obtained.

All block-decodable codes referred to above belong to the class of Bounded
delay (encodable), Block-decodable codes or BDB codes ([10], see also [4]). Here
we investigate these BDB codes in detail. After Section 5.2, where we establish
our notation, we show in Section 5.3 that all BDB codes for constraints of finite
type can be obtained in a well-defined way from the minimal deterministic pre-
sentation (the Shannon cover) of the constraint. These results are used later in
Section 5.7 to obtain decision procedures for some basic coding problems. Some
proofs concerning this material, and a detailed discussion concerning the univer-
sality of the BD method and the ACH algorithm, can be found in Appendix A
and B.

Then, in Sections 5.4 and 5.5, we offer a description of M-symbol look-ahead
BDB codes in terms of principal state-sets (Section 5.4) for M < 1 and state-
trees (Section 5.5) for general M. This method, which generalizes the principal
states method of Franaszek, offers a practical construction method for one-symbol
look-ahead BDB codes, see e.g. [10].

A generalization of the state combination method as introduced in [12] (see
also [11]) is investigated in Section 5.6. We discuss our results in Section 5.8.
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5.2 Preliminaries

We consider the design of a (block-decodable) code for a constrained system L,
with a given source alphabet B, at a given rate R = p/q, where p = log, N
and N = |B| denotes the size of B. (In most practical applications, N = 27
and each source symbol from B consists of p user bits.) Typically, £ is presented
by a finite-state transition-diagram or FSTD. An FSTD, which is essentially a
labeled digraph, can be formally described as a four-tuple M = (V, A, L, F),
consisting of a (finite) collection V of vertices or states, a (finite) collection A of
arcs or transitions, and amap L : A v+ F', the labeling map, that assigns to each
transition a symbol from the labeling alphabet F. Each transition o of M has
a unique initial state beg(a) and a unique rerminal state end(«), and is referred
to as a transition from beg(a) to end(a). We denote by A, the collection of
transitions leaving state v (the outgoing transitions in v), that is, all transitions «
with beg(a) = v.

The constrained system L is generated (or presented) by M if £ consists of
all words L(w) = L(wi)--- L{w,) obtained from sequences = wj - - w, of
transitions in M for which end(w;) = beg(wi4+), i = 1,...,n — 1. Such a
sequence w is called a walk in M, of length n, and L(w) is called the sequence
generated by this walk.

The said coding problem requires that we translate or encode arbitrary se-
quences of source symbols into sequences of g-bit codewords that are contained
in £, that is, generated by some walk in M. Usually the code word size ¢ is
a multiple of the size ¢; of the labeling symbols in F, say g = nq;. (Typi-
cally, FF = {0, 1} and ¢; = 1.) Therefore it is desirable to have a presentation
for £ where the labeling symbols are actually codewords. Such a presentation
can be obtained from the nth order power graph M of M. This FSTD has the
same states as M, but the transitions are now walks of length n in M; a walk
w = w1 - w, is considered as a transition in M” from state beg(w) = beg(wy)
to state end(w) = end(wy), and is labeled with the codeword L(w) generated by
w. So by replacing M by an appropriate power graph, we may assume that the
labels of M are actually g-bit codewords, and now the encoding problem is to
transform an arbitrary source sequence {b,} into a sequence { f,,} of codewords or
blocks that can be generated by some walk in M.

We will be interested in encoders that employ a finite, bounded, amount of
look-ahead to transform source sequences directly into walks in M. (The actual
encoding of the source sequence is then obtained by reading off the codeword
labels from the corresponding walk.) Look-ahead techniques are investigated for
example in [5], [16], [12], and are further developed in [9]. The following discus-
sion of look-ahead encoders closely follows [9], where further details and proofs
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Figure 1: A look-ahead encoder.

can be found.

An M-symbol look-ahead encoder for M involves a map ¢ : A — B that
assigns to each transition « of M a source symbol ¢(«) from B. The task of
the encoder is to translate each sequence by, by, - - - of source symbols into a walk
oy, a2, ... in M such that ¢{w,) = b, holds for all n.

In the simplest case, M = 0 (no look-ahead is required) and the pair [M, @]
constitutes an encoder graph, that is, for each state v and each source symbol b,
there is a transition « leaving v with source label ¢(«) = b. This transition can
then be used to encode b, by the codeword L (), if the encoder is presently in
state v.

Observe that an encoder graph based on M exists if and only if at least N
transitions leave each state of M. Even if this is not the case, encoding may still
be possible by employing look-ahead to avoid entering a state from which the
upcoming source symbol(s) cannot be encoded. The encoder is then allowed to
base its choice of the next transition to be included in the encoding path on the
present source symbol along with the next M upcoming source symbols, for some
fixed number M termed the look-ahead of the encoder. Since a state is entered
with knowledge of the next M upcoming source symbols only (one symbol being
encoded by the entering transition), encoding from this state must be possible for
all source sequences starting with these M symbols. Consequently, with each
state v of the encoder there will be associated a collection of words W,, called the
list of admissible prefixes (each member being a source word of length at most M)
specifying the prefixes of sequences of source symbols that can be encoded from
this state. Consider the following simple example, taken from [9].

Example 1: A typical look-ahead encoder, with source alphabet {0, 1}, is
presented in Figure 1. Note that we have not indicated the codeword labels of the
transitions. Throughout this paper, we will adopt the convention that unlabeled
transitions are assumed to be labeled with their terminal state. (The reason for
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this seemingly strange convention is that often the FSTD M representing the
constraint will be in Moore-machine form, with as states the codewords, and with
the transitions from a state indicating which codewords are possible successors to
the codeword associated with this state.) So here, we have F' = {a, b, c}.

The encoder has three states, marked a, b, and ¢. In state a, no requirements
on upcoming source symbols are imposed (indicated in Figure 1 by the prefix list
W, = [—] containing the empty word only.) State b may be entered only with an
upcoming source symbol equal to 0 (indicated by the prefix list W;, = [0]), and
similarly, state ¢ has prefix list W, = [1]. Each transition in Figure 1 carries a
source symbol, sometimes followed by a parenthesized symbol indicating a con-
straint on the upcoming source symbol. For example, to encode source symbol 1
from state a, the encoder looks ahead at the upcoming source symbol, and chooses
the transition from a to b, labeled 1(0), if this symbol equals O, or the transition
from a to ¢, labeled 1(1), otherwise. (A similar notation is used e.g. in [16].) It
is easily verified that Figure 1 indeed presents an encoder; encoding of a source
sequence from an encoder state is possible if the sequence has a prefix contained
in the list of admissible prefixes associated with that state. This encoder never
employs more than one symbol look-ahead, and is therefore called a one-symbol
look-ahead encoder.

Finally, we observe that the code is block-decodable: the codeword a always
encodes source symbol 0, and both codewords b and ¢ always encode source
symbol 1. |

Which conditions must be satisfied by the lists of admissible prefixes W, in
order that M-symbol look-ahead encoding is indeed possible? To answer that
question, we first observe that we may assume without loss of generality that each
list W, consists entirely of words of length M over B. (Indeed, replacing W, by
the set of words of length M with a prefix in W, does not affect whether or not
a given source sequence has a prefix in ¥,.) Then, the required condition states
that for each state v of M, for each word by - - - by € W, and for each source
symbol b = b1 from B, there must be a transition « leaving state v such that
@(a) = by (thatis, o encodes by), and by - - - by € Wend)- To understand
the second condition, note that since the encoder bases its choice of transition «
onby, -, by, by only, all source sequences with prefix by - - - by must be
encodable from state end(«).

Conversely, if the lists W, satisfy these conditions and if at least one of the
lists is non-empty, then M-symbol look-ahead encoding is indeed possible, as
the reader can easily verify. (Observe that if v is a state for which W, is non-
empty, then each source sequence, when prefixed with a fixed word in W,, can be
encoded starting from this state v.)
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It will be convenient to introduce the following notation. We denote by W, B
the set of all words by ---bpry with by ---byy € W, and by € B. If (@)
denotes the source label of transition «, then we write @(@)Wend(«) 10 denote
the collection of all words @(a)by -+ -bars1 With by - -bpy11 € Wendw). The
collection of all subsets of a set X will be denoted by P(X). We can now state the
following formal definition of a look-ahead encoder (see [9]).

Definition 1: An M-symbol look-ahead encoder with source alphabet B for
a FSTD M consists of a triple [M, ¢. W], where ¢ : A > B denotes a labeling
of the transitions with symbols from B, and W : V P(BM) is a map which
assigns to each state v of M a collection W, of words of length M over B, list of
admissible prefixes at v, such that
(a) at least one W, is non-empty, and
(b) for all states v, we have

WuB < | @ Wenda» (1

aEA,

where A, denotes the set of transitions leaving v.

We will refer to such a map W as an M-symbol look-ahead assignment for M
(with respect to ¢, or with respect to the partition of the labeling alphabet of M
induced by ¢).

In practical applications it is desirable that the decoding decision on a code-
word depends on the local context of that codeword only in order to limit error
propagation. (See e.g. [18].) Codes with that property are termed sliding-block
decodable. We point out that codes that possess a look-ahead encoder [M, ¢, W]
as in Definition 1 are certainly sliding-block decodable if (the labeling map L of)
M is of finite type, that is, if there are numbers m and a, m,a > 0, such that
walks w_,, - - - wg - - - W, that generate a given word f_,, - -- fo--- f; all agree in
transition wg. The numbers m and a are termed the memory and anticipation of L
and M, respectively, We can then reconstruct the walk @w_, - - - wq - - - @Wy+4 used
to generate a given sequence of codewords f_,, -« fo- -+ futq in L, except for
the first m and last a transitions. Indeed, each w;, 0 < k < n, is determined
uniquely by fi—m - fr+ -+ fita, the decoding window for the codeword fi. As
a result, f is decoded as by, where by = @(wy) is the source symbol associated
with transition wy. The number m + 1 + a is termed the decoding-window size of
the code. It is well-known that a constrained system £ is of finite type (that is, £
can be generated by an FSTD of finite type) precisely when £ can be specified in
terms of a finite list of forbidden blocks [1].

We say that a code is block-decodable if the code is sliding-block decodable
with a decoding window of size one codeword, that is, if the decoding decision
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on a codeword is independent of preceding and succeeding codewords. Observe
that the set of codewords F' of a block-decodable code can be partitioned into
codeword classes Fj,, b € B, such that a codeword f € F'is decoded as source
symbol b precisely when f € Fj,.

Many code construction methods employ an approximate eigenvector. (See
e.g. [3]. [16], [1],[9].) Here, a collection of non-negative integer weights ¢,,, not
all zero, associated with the states v of M constitute an [M, N]-approximate
eigenvector if, for each state v, the sum of the weights of terminal states of the
outgoing transitions is not less than N times the weight of state v, that is, if

Ney < Y endw) )

axEA,

holds for each state v. Usually, we think of ¢ = (¢y)yev as a vector, and the
above condition is stated as

N¢ = Dmo, 3)

where the inequality is to be interpreted component-wise. Here Da denotes the
V| x |V| adjacency matrix of M; Da(v, w) equals the number of transitions
from state v to state w. We quote the following theorem from [9].

Theorem 1: Let[M, ¢, W] be an M-symbol look-ahead encoder with source
alphabet B. Then the weights ¢, defined by ¢, = |W,|, the size of the list of
admissible prefixes associated with state v, satisfy 0 < ¢, < |B|M and constitute
an [M, | B|]-approximate eigenvector.

5.3 BDB codes

Informally, a bounded-delay encodable, block-decodable code or BDB code with
source alphabet B for a constrained system L is a collection of disjoint codeword
classes Fy,, b € B, with the property that each source sequence b1b; - - - can be
encoded into a constrained sequence fif>--- in £ with f; € Fj, by a finite-
state machine, with a bounded encoding delay, or, equivalently, using a bounded
amount of look-ahead.

In a sense, the use of the word “code” is somewhat misleading, since it sug-
gest that a BDB code is characterized by its code sequences, while in reality it
is characterized by its decoder map (and the fact that bounded-delay encoding is
possible). This point is further discussed in the appendix.

Evidently, an M-symbol look-ahead encoder for an FSTD M with £L(M) C
L which is block-decodable in fact provides a BDB code for £. We will refer to
such an encoder as a BDB encoder for M. In the appendix, we present a formal
definition of BDB codes, together with a proof of the following theorem.
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01

Figure 2: A FSTD for (1, 00) RLL sequences.

Theorem 2: Each BDB code for a constrained system £ can be encoded by
a BDB encoder for some FSTD M with L(M) C L.

We illustrate the above by a few examples.

Example 2:  (See [12].) Let £ denote the collection of (1, cc) RLL se-
quences, that is, binary sequences not containing the words 101 and 010. (“Runs
have length at least two”.) £ can be represented by the FSTD G in Figure 2. We
wish to find a rate m/n = log,(6)/4, one-symbol look-ahead BDB code for L.
Solet B ={1,...,6}, and let M = G* be the fourth power of G. Recall that the
transitions of M are labeled with symbols from the set F consisting of the words
of length four in £. We define codeword classes Fj, b € B, as follows.

F, = {0000}, Fy={1111},
F, = {0011}, Fs=1{0111, 1001, 1110},
Fy = {1100}, Fy = {1000, 0110, 0001}.

We claim that these constitute a BDB code. Indeed, the reader may verify that
the map W : {00, 01, 10, 11} — P(B) defined by

W = Wi = B, Wor = (3,4, 6}, Wio =11, 2,5},
is a (one-symbol) look-ahead assignment for M (with respect to the F;.) |

Example 3: Consider the FSTD M in Figure 3. According to the conven-
tion introduced in Example 1, the label ling alphabet F' of this FSTD is F' =
{a,b,c.d}. Let Fy = {a}, F) = {b, c,d}, and put B = {0, 1}. The reader can
easily verify that the sets

W, = B?, W, = {00, 01}, W, = {10}, W, = {11},
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Figure 3: The FSTD M for Example 3.

0 1
1
00 (a) (B
0
Figure 4: The FSTD’s G (left) and M (right) for Example 4.

constitute a two-symbol look-ahead assignment for M, hence the F; constitute a
two-symbol look-ahead BDB code. 0

According to Theorem 2, we might as well have defined a BDB code for a
constrained system L as the collection of codeword classes of a block-decodable
look-ahead encoder for some FSTD M that generates a constrained system in-
cluded in £. At first, it would seem that such a definition is highly dependent on
the particular FSTD M. Fortunately, this is not the case if the constrained system
is of finite type. Indeed, we have the following theorem.

Theorem 3: Let L be a constrained system generated by a FSTD M of finite
type. Then, each M-symbol look-ahead BDB code for £ is the collection of
codeword classes of an (M -+ a)-symbol block-decodable look-ahead encoder
for M, where a denotes the anticipation of M.

The proof of this result can also be found in Appendix A. As the next example
shows, this result need not hold if the FSTD is not of finite type. (A more subtle
example that illustrates another limitation of this result is quoted in Appendix B.)

Example 4:  Consider the FSTD’s G and M in Figure 4. Both these FST-
D’s have labeling alphabet F' = {0, 1}, and generate the constrained system £
consisting of unconstrained binary sequences. Let B = {0, 1}, and let ¥y = {0}
and F; = {1}. Obviously, this partition constitute a (trivial) BDB code for £;
if we let W, = A, where A denotes the empry word over B, then W defines a
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0-symbol look-ahead assignment for G. However, the reader may verify that there
does not exist a look-ahead assignment for the FSTD M with respect to this par-
tition of F'. Indeed, an even run of ones followed by a zero can only be encoded
by starting with a transition from state ¢, while an odd run of ones followed by a
zero can only be encoded by starting with a transition from state b. O

It is well-known (see e. g. [1]) that £ is of finite type precisely then when
its (right) Shannon cover (the “smallest” deterministic FSTD that generates £)
has finite memory. (Since it is deterministic, it has anticipation ¢ = 0.) Also,
constrained systems of finite type are precisely those constrained systems L that
can be characterized by a finite list of forbidden words that are not allowed to
occur as sub-words in words of £. The above theorem then has the following
consequence.

Theorem 4: Each M-symbol look-ahead BDB code for a constrained system
of finite type is the collection of codeword classes of a block-decodable M -symbol
look-ahead encoder for its (unique) right Shannon cover.

The above results have some interesting theoretical consequences. Let us
agree to call a code construction method universal for a class of constrained sys-
tems and for codes of a certain type for such systems if each such code for each
such system can in principle be obtained by use of the method. The code sys-
tem of a code is the collection of all possible encoded sequences produced by the
encoder for the code. It is now possible to show the following.

Theorem 5: Both the ACH state-splitting method and the BD-method in [9]
are universal for sliding-block decodable codes of constrained systems of finite
type that have a finite-state encoder with a finite-type code word labeling. More-
over, both methods can construct any given sliding block-decoder of codes for
constraints of finite type. Here, the constructed encoder may have a code system
different from the code system of the given code in the case that this code system
is not of finite type.

Since both the BD method and the ACH algorithm transform graphs of finite
type into graphs that are again of finite type, the above theorem can be interpreted
as stating that both methods are capable to construct everything that is not a-priory
impossible.

In what follows we give a sketch of the proof of this claim. (Details con-
cerning the more subtle points of this theorem are given in Appendix B.) The key
observation is that a sliding-block decodable code with window size T for a con-
strained system £ generated by a FSTD M is equivalent to a block-decodable
code for the Tth higher block system £ generated by the 7'th order edge-graph
MITV of M(see e.g. [1]). Now the claim for the BD method follows from the
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above results together with the observations in [9, Section 2]. The corresponding
claim for the state-splitting method follows from the equivalence of the two meth-
ods as shown in {9, appendices] (see also Chapter 4, Appendix C). Most of the
above claims for the state-splitting method was also proved in [2] by other means.

5.4 Principal state-sets for one-symbol look-ahead BDB
codes

In this section and the next one, we shall describe our first construction method
for BDB codes. The method is universal, in the sense that each BDB code can
thus be constructed. This section covers the case of one-symbol look-ahead BDB
codes, and serves as an introduction to the more general case.

Let M = (V, A, L, F) be a FSTD, generating the constrained system L,
say. Let {F}},cp be a partition of the labeling alphabet ¥ of M. Suppose that
somebody claims that the Fj,, b ¢ B, constitute the codeword classes of a (one-
symbol look-ahead, say) BDB code for £. How could we verify this? Of course,
one method would be to find lists of admissible prefixes for all states of M, but
this may be difficult. We will now describe an alternative method.

Let £ denote a collection of non-empty subsets of the state-set V of M. We
will commonly refer to members of £ as principal state-sets. As will become
clear later on, this notion generalizes the concept of principal states as introduced
by Franaszek [3]. A subset C € F will be called a codeword class with respect
to & if for each principal state-set E € £ we can find a state ¢ in E such that the
collection of C-successors of e in M contains a principal state-set £’ in £. Here,
a state v of M is a C-successor of state ¢ if there is a transition in M from e to v
with label contained in C'. Now we have the following result.

Theorem 6: Let M = (V, A, L, F) be a FSTD that generates a constrained
system L. Let Cy, ..., Cy be mutually disjoint subsets of F', and suppose that
each C; is a codeword class with respect to some given collection £ of non-empty
subsets of the states of M. Then the C; are the codeword classes of a one-symbol
look-ahead BDB code for £ with source alphabet B = {1, ..., N}.

Proof: Think of a (principal state-set) E from £ as representing states end(a)
of a collection of transitions « from some (earlier determined) state v in M for
which L(a) C C; is a feasible coding alternative for a given source symbol i in B.
Let b € B be the upcoming symbol to encode. Since Cj, is a codeword class with
respect to £, there is a state e in E such that the collection of C,-successors of e
contain a set E’ from £. We now encode i as L(f), where 8 is a transition from v
to e with label contained in C;. Now continue the encoding with e and E’. a
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Example 5:  Consider again the collection Fj,, b = 1, ..., 6, from Example 2.
Let & ={E,, E>, E3}, where

E, =1{00}, E; = {11}, E3 = {01, 10}.

It is not difficult to verify that the F} are codeword classes with respect to this
collection € of principal state-sets. Since the F}, are obviously disjoint, they con-
stitute a“one-symbol look-ahead BDB code according to Theorem 6. Moreover, it
is easily verified that the sets

F; = {0111, 1000}, Fg = {0110,0001, 1110, 1001}

are also codeword classes with respect to £. Consequently, Fy, ..., Fy, Fy, Fy
constitute a second BDB code. O

Example 5 (see also Example 7) illustrates a nice property of the description of
a BDB code in terms of principal state-sets: If, from a good hunch, or by any other
means, we “guess” to start with some “good” collection £ of principal state-sets,
then we may mechanically list @ll codeword classes with respect to £, and just
pick out the largest possible (or a very large) collection of mutually disjoint ones.
This latter task, SET PARTITIONING, is computationally difficult (“NP-hard”)
in general, but can nevertheless be solved in many cases, even for rather large
source alphabets. (This last point is exemplified by [10], see also Example 7.)

We will discuss methods to obtain “good” collections of principal state-sets
when we relate this method to the method of stare combination as described by
Immink [12].

Our next result shows that each one-symbol look-ahead BDB code can be
obtained from a suitable collection of principal state-sets. In order to state this
result, we introduce some new notation. Let M = (V, A, L, F') be a FSTD, and
let Wy, v € V, denote a collection of admissible prefix lists for a one-symbol
look-ahead BDB encoder for M with respect to a partition {F}},cp of F. For
each state v of M and for each symbol b from W,, let E(v, b) denote the collec-
tion of all states of the form end(«) with « a transition of M with beg(e) = v
and L{a) € Fp. We denote the collection of all these sets E (v, b) by E(W).

Theorem 7: With the above notation, each Fj,, b € B, is a codeword class
with respect to the collection £(W).

Proof: Lletc € B. We will show that F, is a codeword class with respect
to EW). Solet E(v, by € £(W), thatis, b € YW,. By the properties of W, there
is a transition ¢ from v to a state w = end(a) with L(«) € F, for whichc € W,,.
Hence w € E(v, b) and the set E(w, ¢) € E(W) is defined and is contained in (in
fact, equal to) the collection of F.-successors of w. O
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The construction method suggested by Theorem 6, which we will call the
principal state-set method, may be considered as a generalization of the method
to construct block codes through principal states. In that case, all principal state-
sets consist of a single state only, and the resulting BDB codes are block codes,
that is, encoding requires no look-ahead at all. Further relations with the work of
Franaszek on Bounded Delay codes ([3]-[6]) will be discussed in a later section.

The principal state-set method offers further advantages when one is looking
for (large) one-symbol look-ahead BDB codes for a given constrained system, for
various block-lengths r, that is, for BDB encoders for G” for various values of n,
where G is a FSTD that describes the constraint. We illustrate this for the case of

(1, c0) RLL sequences in our next example. (See [13] for further examples of this
kind.)"

Example 6: Consider again the FSTD G in Figure 2 that describes the (1. 00)
RLL constraint. For n > 4, let M = G" be the nth power of G. (So the transitions
in M are labeled with admissible words of length »n.) Let £ denote the collection
of principal state-sets as in Example 5. In order to decide if a given set C of words
of length n is a codeword class with respect to &, it is sufficient to know the rype
of each word in C, that is, the first two and the last two symbols of each word,
since these four symbols determine the successor relations and terminal states of
transitions labeled with this word.

We say that an admissible word x = x - - - x,, has begin type x1x», end type
Xn—1%, and type x1x3—x,_1x,. Admissible words of length at least four are of
sixteen different possible types. (When dealing with an arbitrary constrained sys-
tem L of finite type, the begin- and end-types of long enough words are states in
the left- and right-Shannon cover for £, respectively.) The class fype of a set of
admissible words C of length #n is the collection of types of words in C, and the
class type of C is a codeword class type with respect to € if C (and hence also any
other collection C” of words of the same class type as C) is a codeword class with
respectto €.

It turns out that there are precisely 47 distinct inclusion-minimal codeword
class types with respect to £. Moreover, it is possible to derive expressions that
enumerate admissible words of length n of a given type. Using these results, it can
be shown that for each value of n with n > 4 there is a one-symbol look-ahead
BDB encoder for M = G” with N (n) codeword classes, where

N(n) = | Fuy3/2] = Fuy1 + LFa/2]. C)

In the above expressions, F;, denotes the nth Fibonacci number, defined by F} =
F>=1and F, = F,_, + F,_, for n > 3. Further details can be found in a future
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paper [13]. In that paper it is also shown that no BDB code for this constraint and
with block length n can have more than N (n) codeword classes.

Observe that the case n = 4, N(n) = 6, is the subject of Examples 2 and 5.
We also observe that, since N(6) = 17, there is a (1., co) RLL BDB code with
rate m/n = 4/6. We will return to this case in the next section. O

Example 7: This example concerns (1, 8) RLL BDB codes. The common
FSTD for this constraint (which is in fact the Shannon cover) has states 01’ and
10,1 <i < 9. As principal state-sets, we choose the following collections.

{10}, 2<i=<4, {10. 01},

In [10] we describe a one-symbol look-ahead rate m/n = §/12 BDB code
for this constraint with as principal state-sets the above collection. In fact, this
paper lists a number of codeword class types, and then some counting shows that
sufficiently many disjoint codeword classes of these class types can be formed.
The same principal state-sets and codeword class types could be used for other
values of the block-length 1 as well, as long as n > 9. (This last condition ensures
that a forbidden word is confined to two consecutive codewords.) The results in
that paper also show that some further simplifications in the search for codeword
class types are possible. O

We now discuss the problem of how to find a "good* collection of principal
state-sets for a given FSTD M. Our main method is based on (approximate)
eigenvectors of the adjacency matrix Dy corresponding to M. Intuitively, this is
appealing since a component of such a vector reflects in some way the amount of
information that can be encoded from the corresponding state.

Unfortunately, these methods can only serve as a guideline, and some creativ-
ity is still required. An interesting and related method is the following. Suppose
we try to find a code with N codeword classes. First, we construct an [M, N]-
approximate eigenvector ¢ with all components equal to zero, one, or two. Then
we run the state combination method as described in [12] with M and ¢ to obtain
“good* state combinations. Finally, we use the state combinations thus obtained
as our collection of principal state-sets. In a later section we relate the state com-
bination method to our work and give some more details on the above method.

5.5 State-trees for M-symbol look-ahead BDB codes

In this section we generalize our previous results for the case where M = 1 to all
values of M. As before, we let M = (V, A, L, F') denote a FSTD representing a
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Figure 5: Three state-trees.

constrained system L, we let { F},}, g denote a partition of the labeling alphabet F'
of M,and W : V i P(BM) denotes an M-symbol look-ahead assignment for
M with respect to this partition. So the F}, are the codeword classes of an M-
symbol look-ahead BDB encoder for M (or for £) with source alphabet B.

In the previous section we defined the sets E(v, b), v € V, b € W,, for the
case where M = 1. We think of such a set as a rooted directed tree (with root
corresponding to the state v) of depth one (all walks from the root to a sink, that
is, a vertex in the tree without successors, have length one), with sinks labeled
with states of M. It is this structure that we intend to generalize.

We define a state-tree for M to be a rooted directed tree in which all walks
from the root to a sink have the same length D, for some number D > 0, with
sinks labeled with states from M. The number D is the depth of the state-tree.
(In the case where D = 0, the state-tree consists of a single vertex, labeled with
a state of M, with no arcs.) A vertex s of a state-tree E has depth K in E if the
(unique) walk in £ from the root to s has length K.

Example 8: Consider again the FSTD M in Figure 3. In Figure 5 we have
three state-trees for M, each of depth two. U

In what follows, we will use collections of state-trees to construct BDB en-
coders for M, just as we did in the previous section with collections of principal
state-sets. As before, the idea is to use the state-trees as “states” of the encoder,
and to move from encoder state to encoder state according to upcoming codeword
classes, in such a way that the resulting encoder state sequence defines a walk
in M with a “correct” labeling. We think of a state-tree as describing in some
way the collection of walks in M that are feasible encoding alternatives at a given
encoding moment.

First we explain how to move from one state-tree to another. The idea is very
simple, but a precise description is a bit complicated. Therefore, we first present
a suggestive example.
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Figure 6: The FSTD M for Example 9.
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Figure 7: Three state-trees for Example 9.

Example 9: Consider the FSTD M in Figure 6. In Figure 7 we have three
state-trees E, E,, and E3 for M. Let C = {b, ¢, d}. We wish to suggest that C
moves E; to £, E> to E3, and E5 to E5. We have sketched the process in Fig-
ure 8. In this figure, we have first extended the E; with leaves which represent
C-successors in M of the labels of the sinks of the E;. Then, in each of these ex-
tended trees, we see some E; reappear as a sub-state-tree. (The appropriate root
is indicated by a circle.) a

We now give the precise definition promised earlier. Let £ and F be state-
trees for M, and let C be a subset of F. Recall that a state w of M is a C-
successor of a state v if there is a transition « in M with L{«) € C, beg(a) = v,

and end(«) = w. We say that C moves E to F, written as E L) F, if either
(i) F has depth 0, so F consists of a single vertex labeled with some state w of M,
and this state w is C-successor of the label of some sink of E, or
(ii) F has depth K > 1, and it is possible to label the vertices of F at depth
K — 1 with states of M such that the following holds. The label on the terminal
vertex of a leaf of F is C-successor to the label on the initial vertex of this leaf.
Moreover, the state-tree obtained by dropping all leaves from this relabelled F is
a sub-state-tree of E.

Now let £ denote a collection of state-trees (not necessarily all of the same
depth) for M. A subset C of the labeling alphabet F' of M is a codeword class
with respect to £ if for each state-tree E in £ there is a state-tree F in £ such that
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Figure 9: Encoding of 222121(22).

E i> F, that is, such that C moves E to F.

Theorem 8: Let M = (V, A, L, F) be a FSTD that generates a constrained
system £. Let Cy, ..., Cy be mutually disjoint subsets of F’, and suppose that
each C; is a codeword class with respect to some given collection £ of state-trees
of M. Then the C; are the codeword classes of an M-symbol look-ahead BDB
code for £, where M is the maximal depth of the state-trees in £.

A proof of the above theorem can be given along similar lines as the proof
of Theorem 6. Instead of giving this proof, we present an example which illus-
trates the encoding process.

Example 10: Consider the FSTD M in Figure 3. In Figure 7 we have three
state-trees £, E, and E3 for M. Put £ = {E|, E», E3}. Let C; = {a} and C> =
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a0 00 11 1"
E;: < E: < . Es: < E;: < 10
a1 10 10 01

Figure 10: Four state-trees for Example 11.

{b, c, d}. It is easily verified that the C; are codeword classes with respect to £.
(In Example 9 this is verified for C,, since the transition from ¢ to d in the FSTD
in Figure 6 is never required.) According to Theorem 8, C and C, constitute a
two-symbol look-ahead BDB code for the constrained system generated by M,
with source alphabet B = {1, 2}. In Figure 9 we show the process of encoding the
source sequence 222121(22), starting from state-tree £{. The heavy line indicates
the walk in M taken by the encoder. Consequently, the sequence 222121(22)
encodes as dchaba. u

We will now show that, as expected, each BDB code arises from a collection
of state-trees. Indeed, given an M-symbol look-ahead assignment W for M, we
may construct for each state v of M and foreach b = b - - - by in W, a state-tree
E(v, b) as follows. The vertices of E(v, b) may be identified with those walks
wi - o in M which generate the word by - - - by, fork =0, ..., M, with an arc
from w) - - - wy to w) - - - wrwp4 if both walks correspond to vertices of E(v, b).
(So the root corresponds to the empry walk in M.) Finally, a vertex at depth M
corresponds to a walk w; - - - wyy in M that generates b - - - by and is labeled with
the state end(wy;) in M. We denote the collection of all state-trees E(v, b) with v
a state of M and b € W, by £(W). We now have the following.

Theorem 9: Let M = (V, A, L, F') be a FSTD, and let WV denote an M-
symbol look-ahead assignment for M with respect to a partition {F}},cp of F'.
Then each Fy,, b € B, is a codeword class with respect to the collection of state-
trees E(W).

The construction method suggested by Theorem 8 will be referred to as the
state-tree method. Everything that was said about the principal state-set method
can be repeated here for the state-tree method.

In the remainder of this section, we will illustrate the state-tree method for the
construction of BDB codes by some examples concerning BDB codes for (d, k)
RLL sequences. As remarked earlier, “optimal” BDB codes for the (1, oo) RLL
constraint require at most one-symbol look-ahead. We wonder if the same is true
for other values of d and k as well. In fact, at first it is not at all evident that there
are BDB codes for these constraints that require more than one-symbol look-ahead
at all. Our next example presents such a BDB code.
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Example 11: 1In this example we show that for (1, oo) RLL constrained se-
quences, there can be found “true” two-symbol look-ahead BDB codes. (Recall
that the forbidden words for this constraint are 010 and 101.) We will use the
notation of Example 6 for the types of codewords and codeword classes.

So let M be the nth power of the FSTD G in Figure 2, where n denotes some
integer with n > 6. (This requirement ensures that all possible codeword types
are realised by some codeword.) Consider the collection £ = {E|, ..., E4} of
state-trees in Figure 10. It is not difficult to verify that

C = {00-00, 11-01},
C> = (1000, 01-01, 0110},
Cs = {10-00, 10-01}

are types of codeword classes with respect to £ (and, by the way, also with
respect to {Ey, E»}). Hence {Cy, Cy, C3} is a two-symbol look-ahead BDB code.

We claim that the above collection is not a one-symbol look-ahead BDB code.
(The following is a typical proof of such a statement.) Indeed, consider the en-
coding of 2(2). We distinguish two cases.

(1) We encode as 01-01. Then the upcoming symbol 2 can only be encoded as
10-00. Consequently, it would not be possible to encode a sequence 223, since
this last type has no successor in Cs.

(i1) We encode either as 10-00 or as 01-10. In both cases, the upcoming symbol 2
can be encoded only as 01-10 or as 01-01. Now, consider the encoding of 22(1).
Again, we distinguish two cases.

(a) We choose 01-10 to encode the second symbol 2. Then we can encode the
upcoming symbol 1 only as 00-00. Consequently, encoding of the sequence 2213
would not be possible, since the type 00-00 has no successor in C3.

(b) We choose 01-10 to encode the second symbol 2. Then we can encode the up-
coming symbol 1 only as 11-01. Consequently, encoding of the sequence 22123
would not be possible, as the reader may easily verify.

As a consequence of the above, if C is a collection of disjoint codeword classes
with respect to &, and if C contains a codeword class of each of the types Cy,
C,, and C3, then C is an M-symbol look-ahead BDB code for M = 2, but not
for M = 1. For example, let the codeword size n = 7. Then the collection

€ ={0000000, 1100001},
C> = {1000000, 0110001, 0111110},
C3 ={1001100, 1000001},

constitutes a two-symbol look-ahead BDB code. (To these codeword classes,
we may add the sets C; obtained from the C; by interchanging 0 and 1.)
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Figure 11: The state-trees for Example 12.

Due to the symmetry 0 <— 1 of the collection £ of state-trees, there are
evidently many other codeword class types. It is therefore possible to obtain rea-
sonably large codes, although of course not larger than the codes in Example 6,
since these are optimal. U

Example 12: Here we consider rate 2/3 (1, k) RLL codes with codeword
size n = 6. The following 17 codeword classes partition the 26 words of length
six that do not contain 010 or 101.

C/ = {000000), Co = {110000},
Cr= (111111}, C1y = {000001, 000110},
C5 = {001100}, Cip = {111001, 111110},
Cs= (110011}, Ci3 = {011100, 100000},
Cs = {111100}, Cia={011111, 100011},
Ce = {000011}, Cys={100111, 011000).
C7=1{000111}, Ci6=1{110001,011110, 100110},
Cs = {111000}, C17=1{001110, 100001, 011001}.

Cy={0011111,

It is not difficult to verify that these 17 codeword classes constitute a one-
symbol look-ahead BDB code, with respect to the collection of principal state-
sets {00}, {11}, and {01, 10}.

Next, we combine C; and C; to form a new codeword class

C’ = {000000, 111111},

and we consider the collection of 16 codeword classes C = {C’. C3, ..., Ci7}.
We claim that € is a one-symbol look-ahead BDB (1, k) RLL code for k = 11,
but not for k = 10. (Additional forbidden words are 0'3 and 1'3.) Indeed, the
reader may verify that each member of C is a codeword class with respect to the
collection of principal state-sets

{10.01}, {101}, 2<i<7, 01}, 2<i<7.

Moreover, we claim that C is a two-symbol look-ahead BDB (1, 10) RLL
code. Indeed, the reader may verify that each member of C is codeword class with
respect to the collection of state-trees in Figure 11.
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Finally, we show that we can do equally well with a one-symbol look-ahead
BDB code. So, let

C} = {000000, 011000}, C; = {111111, 100111},

and let ¢’ = {C{, C}, C3....,Cia, Ci6, Ci7}. The members of C' are mutually

disjoint and are codeword classes with respect to the collection of principal state-
sets

{10, 01}, {10}, 2<i<6, {01}, 2<i<6.

Consequently, C is a one-symbol look-ahead BDB (1, 10) RLL code. a

Based on the above examples and many others, we offer the following conjec-
ture. Let M, (d, k) denote the maximum size of a BDB code with codeword size
n for the (d, k) RLL constraint.

Conjecture 1: For all n, d, and k, M,,(d, k) is realized by a BDB code with
look-ahead at most one.

(In a later section we describe an example showing that there may be larger
block-decodable codes. But encoding that code requires an unbounded amount of
look-ahead.) A similar conjecture may be stated for the case of (d, k)-constrained
sequences, that is, binary sequences in which each run of zeroes has a length
between ¢ and k. For d = 1, this has been proved in [8]. Indeed, we do not know
an example of a BDB code for this constraint with a larger size than the (known)
optimal size of a block code (that is, a zero-symbol look-ahead BDB code). These
two types of constraints are of course strongly related, and the same may be true
for these two conjectures.

5.6 The state combination method

In this section we introduce an extension of the state combination method to con-
struct BDB codes described in [12] (see also [11]). We link this method to our
work, and we show that each BDB code may be constructed by state combination.

Both state combination and its well-known counterpart state splitting ([1]) are
methods to transform a FSTD representing a given constrained system, with as
ultimate goal to obtain a representation suitable for encoding purposes. However,
the two methods differ in one important aspect: while the new FSTD obtained
from state splitting still represents the same constrained system, this is not quite
true for state combination. What is retained is a one-to-one correspondence be-
tween walks in the old and the new FSTD, and thus, also between words generated
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by these FSTD’s. Moreover, this correspondence acts as a kind of “built-in” en-
coding delay, as we will see.

Solet M = (V, A, L, F) denote a FSTD, representing the constrained sys-
tem L = L(M), and let U = {uy,...,u,} be a collection of states of M. A
state combination with U in M transforms M into a new FSTD M’ by adding
one new state, also denoted by U, to M. The transitions involving this new state,
and their corresponding labels, are the following.

(1) Each transition in M from some state in U to some state v not in U produces
a transition in M’ from state U to v carrying the same label.

(ii) Each collection of p transitions in M from a state v to each of the states
u; in U produces a transition in M’ from v to state U with as label the set
{fi,..., fp}, where f; denotes the label of the transition in M from v to u;.
Moreover, if v is contained in U, then M’ has also a transition from U to U with
label { f1, ..., fp}).

We observe that if the set U consists of a single state, then state combination
with U essentially duplicates this state and all transitions involving it.

Now let U'.....U*, U' C V, be sets of states of M. A round of state
combinations with U', ..., U* on M consists of transforming M by successive
state combinations with U', U2, ..., U* (it does not matter in which order these
state combinations are executed, as the reader may easily verify), followed by
elimination of all original states of M. Let M be obtained from M by a round of
state combinations with U', ..., U*. The following proposition summarizes the
main properties of M.

Proposition 10: (i) The FSTD M has a transition from U’ to U/ with label
E if and only if there is a state « in U’ and for each state w in U/ a transition w,,
from u to w such that E = {L(w,) | w € U/).
(ii) Each walk @y - - - 41 of length k+1 in M uniquely determines a correspond-
ing walk w) - - - wy of length k in M with the property that beg(w;) € beg(&;),
end(w;) € end(ay), and L(w;) € L(&),i = 1,...,k, where (&) denotes the
label of the transition &; in M.

Example 13:  Consider again the FSTD M in Figure 3. One round of state
combinations with {a}, {6}, and {c, d} on M transforms M into the FSTD M’
in Figure 12. Then a second round of state combinations, now with {{a}} and
{{p}, {c, d}}. transforms M’ into the FSTD M” in Figure 13. O

The built-in encoding delay referred to earlier is illustrated by part (ii) of the
above proposition. In fact. we can say more. With M as in Proposition 10,
the result of one round of state combinations applied to M, let M* be a FSTD
obtained from M by discarding possibly some of the transitions. A partition
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Figure 12: The FSTD M’ obtained after one round of state combinations.
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Figure 13: The FSTD M" obtained after two rounds of state combinations.

{Fy}pep of the labeling alphabet F' of M is consistent with M* if the label i(&)
of each transition & of M* is contained in some part F},. Such a partition defines a
partition {F}},c g of the labeling alphabet F* of M*, with the part F} consisting
of all labels of M* contained in F},.

Theorem 11: With the above notation, suppose that {Fp},cp 1s a partition
that is consistent with AM* such that the corresponding partition {F;'},c g of F'*
constitutes the codeword classes of an (M — 1)-symbol look-ahead BDB encoder
for M*. Then the F,, b € B, are the codeword classes of an M-symbol look-
ahead encoder for M.

Proof: Obvious, since by looking ahead M symbols, we obtain the next two
transitions of the encoding path in M*, hence by part (ii) of Proposition 10 the
next transition of the encoding path in M. O

By a repeated application of the above theorem we see that we may construct
an M-look-ahead BDB encoder for a FSTD M from a block code (that is, a O-
symbol look-ahead BDB encoder) for a FSTD that is obtained after M rounds of
state combination in M.

Example 14: Consider again the FSTD M” in Figure 13, obtained after two
rounds of state combinations in the FSTD M in Figure 3. Since the partition of
the labeling alphabet {a, b. ¢, d} of M into the parts {a} and {b, c, d} is consistent
with M”, this partition constitutes the codeword classes of a two-symbol look-
ahead BDB encoder for M. This is of course the same BDB code that we already
met in Example 10. O
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State combination as proposed in [12] is a special case of the above where M
is of Moore type with all state labels distinct, and where a state of M is used
at most once in a combination, that is, the sets U’ representing the states to be
combined are mutually disjoint; a state that is used in a state combination is elim-
inated immediately afterwards. Moreover, [12] only considers one round of state
combinations. We refer to this paper for further examples.

We will now show that, conversely, each BDB encoder for a FSTD M may
be obtained from rounds of suitable state combinations. So let [M, ¢, W] de-
note an M-symbol look-ahead BDB encoder, with M > 1, for a FSTD M =
(V, A, L, F) with respect to the partition {Fj},cp of the labeling alphabet F'
of M induced by ¢. Let v be a state of M and let b = b; - -- by be a word in
W,. By the defining properties of W, we can find for each b € B a transition
ap from v to a state w, with L(«) € Fp, and by---byb € W,,. Let U(v, b)
denote the collection of all the states wy, thus obtained. We write L/ (W) to denote
the collection of all these sets U (v, b).

Theorem 12: With the above notation, let the FSTD M be obtained from one
round of state combination on M with the sets contained in Z/(}}). Then we can
find an (M — 1)-symbol look-ahead BDB encoder for the FSTD M* obtained by
eliminating certain transitions in M.

Proof: We begin by describing the FSTD M*. A transition in M from X
toY, X,Y € UW), with label E, is retained in M™ if there are states v, w
in M and by, ....byy in B such that by ---by € Wy, br-- by € Wy,
X = U, by---by), Y = Ulw,by---byy1), w € X, and £ = {L(op) |
b € B}, where «;, is a transition from w to a state ¥ € Y with L(x) in F,
and b3 -+ -by1b € Whend,). Observe that the labeling set E of this transition
of M* satisfies E C F},,. As a consequence, the given partition of F' is consistent
with M.

For X a state of M*, we define Wy to consist of all words b; - - - by for which
X =U(v, b1by - -- by) for some state v and some by with b1 by --- by € W,. We
claim that these sets W constitute an (M — 1)-symbol look-ahead BDB encoder
for M*, with respect to the partition of the labeling alphabet of AM™ induced by
the original partition of F'. Indeed, let X € U(W),by---by € Wy, andb € B.
Let v and by be such that by ---byy € Wyand X = U(v,by---by). Let o be
a transition in M with beg(a) = v, L(a) € Fp,,and by---byb € W, where
w = end(a) (such a transition exists by the defining properties of WW). Then, as the
reader may easily verify, M* has a transition from X to Y = U{(w, by - - - byb),
with label contained in F},, and b3 - - - byb € W by definition of Wy. O

We remark that the statement of Theorem 12 also holds with /(W) replaced
by the collection U’ (W) consisting of all sets U'(v,b), v € V, b € B, where



5.7. Stable state-sets 177

U’(v, b) is the set of all states end(«) with beg(«) = v and L(«) € F},. However,
it can be shown that U(W) C U’ (W), and each set in U’ (W) is a union of sets
inU(W).

Example 15: Let M be the FSTD in Figure 3, and let W be as in Example 3.
If we apply the state combination described in Theorem 12 to M, we obtain the
FSTD M’ in Figure 12. (If we use state combination with the collection U' (V)
instead, then we obtain a superfluous state {b, ¢, d}.) A second application of The-
orem 12, using the look-ahead assignment W*, produces the FSTD M” in Fig-
ure 13. The two rounds of state combinations are identical to the ones described
in Example 13. )

Example 16: Let M denote the fourth power of the FSTD in Figure 2. We
leave it to the reader to verify that a round of state combinations with {00}, {11},
and {01, 10} on M, followed by the elimination of some of the transitions, can
produce the one-symbol look-ahead BDB codes in Example 2 and Example 5.

As an alternative, we may also obtain these codes from state combination on
the FSTD with as states the admissible words of length four for the (1, oc) RLL
constraint and with the obvious transitions. This is the way in which these codes
are constructed in [12]. O

Although the result in Theorem 12 is satisfactory from a theoretical point of
view, it is not evident how to apply this result for the purpose of code construc-
tion. The main problem is of course to know which state combinations are useful.
The results from [12] show however that good results can already be obtained
by using only a very restricted set of state combinations, guided by an appropri-
ate approximate eigenvector. {On the other hand, it can be shown that the BDB
code in Example 12 cannot be constructed by the methods of [12], so some exten-
sion of these ideas is needed.) Moreover, we are also hampered by the following
problem: Given a FSTD M and a number N, there is no easy way to determine
whether or not there exists a 0-symbol look-ahead BDB encoder for M of size
N. (This problem has been shown to be NP-complete in [20].) Again, in the
case where M is obtained from state combinations on some other FSTD, the re-
sults from [12] show that as long as the increase of the number of states is small,
the above search problem (referred to as the source-to-state assignment problem
in [12], section 3.2.1) can often be handled.

5.7 Stable state-sets

Let M = (V, A, L, F) be a FSTD, and let {F}},cp denote a fixed partition of
the labeling alphabet ' of M. A natural question is to ask whether this parti-
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tion constitutes the codeword classes of a BDB encoder for M, that is, whether
there exist admissible prefix lists for the states of M with respect to this partition.
Sometimes this problem is easy.

Example 17: In this example, we consider a code for the (1, co) RLL con-
straint with word length n = 3. So let M denote the third power of the FSTD
in Figure 2, and consider the following partition of the labeling alphabet of M.

Fy = {000}, F, =1{011, 100},
B ={111}, Fy = {001, 110}.

It is easily verified that the F; are the codeword classes of a code, encod-
ing of which requires an unbounded amount of look-ahead. Indeed. consider the
encoding of 444 - ..4x, where x is either 1 or 2. Since both 001 and 110 can-
not succeed themselves, a sequence of fours has precisely two encodings, namely
001.110.001.- - - and 110.001.110. - - -, one ending in 001 (so that x = 1 next can-
not be encoded) and the other ending in 110 so that x = 2 cannot be encoded).

|

However the problem becomes complicated if the number of parts gets large.
The question can also be handled if we specify beforehand the maximum amount
of look-ahead that may be used, by a method similar to the one in Example 11.
But for all that we know the required amount of look-ahead may be larger than
this maximum. Fortunately, this problem can be solved. We shall show that for
each BDB code there exists a unique inclusion-maximal collection of srable state-
sets such that encoding can be described as moving from one stable state-set to the
next, employing a variable but bounded amount of look-ahead. (In the case of one-
symbol look-ahead BDB codes, the principal state-sets associated with the code
are all stable state-sets.) Conversely, if we can find a collection of stable state-sets
for our partition, then this partition constitutes a BDB code. As a consequence
of this description, we show the existence of a number M, depending only on the
number of states | V| of M, such that a BDB encoder for M requires a look-ahead
of at most M symbols.

We introduce some additional notation. If @ = w; - - - w, is a walk in M, then
we say that the walk @ generates the word b = by -- - b, over B if L(w;) € F),,
for all ;. We may in fact consider the walk w as a walk in the FSTD M* =
(V, A, £*, B) obtained from M by replacing the label of each transition o by
L*(a) = b(a), where b = b{x) denotes the (unique) symbol in B for which
L(x) € F,. For two subsets X, Y of the state set V of M and for a word b =

. b . .
by ---b, over B, we write X — Y if there is a state x € X and a walk from x
to each state y in Y that generates b. Moreover, we let Xb denote the collection
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of all states in M that can be reached from X by a walk in M that generates b.
Our first result is an easy consequence of the definitions. We leave the proof to
the reader.

Proposition 13:  Let X, Y, and Z be subsets of V, and let b and ¢ be words
over B.IEX -2 Yand Y -5 Z, then X 25 7.

A collection S of (nonempty) subsets of the state set V of M is stable with
respect to the given partition of F if for each X in § and for each sequence b5y - - -

over B there is a set Y in S and an integer n > 1 such that X "8 ¥ holds. Tf
there always is such an n with n < K, then S is called K -stable. We refer to
members of a stable S as stable state-sets. We will speak simply of a stable
collection S if it is clear from the context to which partition we refer. Our next
result also follows immediately from the definitions.

Proposition 14: (1) If Sisstable andif X € Y, X € &, then the collection
S U {Y} is again stable.
(i1) If S) and S; are stable, then the union S; U S, is again stable.

By Proposition 14, there either exists a unigue inclusion-maximal collection
of stable state-sets with respect to a given partition of F', or there does not exist
such a collection at all.

Our next two results illustrate the importance of the above concepts.

Theorem 15: 1If a collection S is stable, then S is K -stable, for some number
K that is bounded from above by a function of |V]|.

Proof: Let X = {x1,...,x;,} be asubsetof V, and let b;b, - - - be a sequence
over B. Let Yi(k) , 1 <i <m, k> 0, denote the collection of all states y that can
be reached from x; by a walk in M that generates the initial part by - - - by of the
sequence. (For k = 0, put Yi(o) = {x;}.) Write y® — (Yl(k), R Y,flk)). There are
only finitely many distinct sets ¥ *); consequently there are integers a and p > 1
such that Y@ = Y@+ Now we distinguish two cases.

(1) Some collection Y = Y® 0 < k < a + p — 1, 1s a stable state-set (i.e.,

Y is contained in &). In that case, we have X by Y, and k is bounded by
the number K of possible distinct collections Y¥). A crude upper bound for this
number is |

Vi- ‘ (5)
(ii) No collection ¥ = Y®, 0 < k < a + p — 1, is contained in S. Define
the (ultimately periodic) sequence ¢ic; - -- over B by letting ¢, = b, 1 < k <
a+ p—1,and cx = cx_p, if kK > a + p. Obviously, there is no k > 1 such that

K < (2)VI)

Cl--C . . .
X ¥y with Y in S, so X is not a stable state-set. |



180 5. Bounded delay encodable, block-decodable codes

Theorem 16: The parts F,, b € B, constitute the codeword classes of a
BDB encoder for M if and only if there exists a stable collection S with respect
to this partition.

Proof: (1) Suppose that S is stable with respect to the given partition. Then,
by Theorem 15, S is K -stable, for some K > 1. We claim that the partition con-
stitutes the codeword classes of an M-symbol look-ahead BDB encoder for M,
with M= 2K — 1. It is possible to define an M-symbol look-ahead assignment
for M, but instead we shall sketch an argument that encoding is possible, never
looking ahead more than M symbols. Our encoder will have encoder states cor-
responding to the stable state-sets in S. If we are in state X € &, and we are to
encode b1 by - - -, then by the defining properties of S we can find a number n < K

such that X bii;” Y. for some Y € &, that is, each state in Y can be reached from
some fixed state x in X by a walk in M that generates b; - - - b,,. Similarly, there s
anumber m < K such that each state in Z can be reached from some fixed state y
in Y by a walk in M that generates by, | - - - b, . Then we encode by - - - b, with
the word over F' generated by the walk from x to y in M that generates by - - - by,.
Consequently, the encoding of b;, | < i < n, requires a look-ahead of at most
n+m — 1 symbols. Sincen + m — 1 < 2K — | = M, our claim is proved.

(ii) Now suppose that the given partition constitutes the codeword classes of a
BDB encoder for M, that is, there exists admissible prefix lists W, C BM,
v € V, for the states of M with respect to this partition, for some integer M.
Define the set U (v, b), for all states v and all words b € W,, as the collection of
all states that can be reached from v by a walk in M that generates the word b. It
is easily verified that the collection W of all these sets U(v, b) is M-stable with
respect to the given partition. O

The above ideas may be used to prove the non-existence claim in Example 3.5
from [9]. Another observation that is useful in such cases is the following. If the
FSTD M admits a look-ahead encoder with source alphabet B, then there exists
a stable collection S and an [M, | B|]-approximate eigenvector ¢ < 1 such that
Zv cy ®v = 1 foreach X € S. We leave further details to the interested reader.

As a result of the above theorems, we have a decision procedure for the fol-
lowing,

BDB: Given a constrained system L of finite type, a codeword length n and
a source alphabet size m, does there exists a BDB code for £ with codeword
length n and source alphabet of size m?

In view of the observations at the end of Section 5.3, this result in turn implies
that we also have a decision problem for the following.

BD: Given a constrained system £ of finite type, a codeword length 7, a source
alphabet size m, and a window size T, does there exists a bounded-delay encod-
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able sliding-block decodable code for £ with codeword length n, source alphabet
of size m, and decoding window of size T'?

Note that the collection of BD codes referred to in BD are precisely the collection
of codes that can be constructed by the state-splitting algorithm.

5.8 Discussion

We have defined and investigated the class of bounded-delay encodable, block-
decodable (BDB) codes. It is shown that M-symbol look-ahead BDB codes can
always be represented with the aid of a collection of principal state-sets if M < 1)
or state-trees (for general M). This result provides a practical code construction
method for one-symbol look-ahead BDB codes (see e.g. [10]). We have also
generalized the state-combination method introduced in [12]. A third description
in terms of stable state-sets establishes the existence of decision procedures for
some basic coding problems.
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Appendix A

In this appendix, we collect some of our more technical results concerning BDB
codes. We begin with the formal definition of BDB codes. The definition is meant
to capture our intuitive idea that a BDB code should have a finite-state encoder that
encodes all sequences of source symbols, possibly with prescribed initial part, and
does so with a bounded encoding delay, or, equivalently, using a bounded amount
of look-ahead.

Let £ be a constrained system over an alphabet F', and let { F},},cp be a parti-
tion of F'. Au M-symbol look-ahead bounded-delay encodable, block-decodable
(BDB) code with source alphabet B and codeword classes Fy,, b € B, is a fi-
nite collection of (encoder) states S together with a map ¥ that associates with
some (but not necessarily all) pairs (s, bo---by), s € S. bg---byy € BMT1 a
new state ¢ in S and a symbol f in F' such that the following holds. There is a
word ¢y - - - cy over B and a starter u in § such that v, starting in u, encodes all



182 5. Bounded delay encodable, block-decodable codes

sequences bpby - - - by p over B with b; = ¢;, i = 0,...,min(n + M, N), by
producing a sequence of states sy = u, 51, ..., ;-1 and a word fy--- f, over F'
with f; € Fj, for which ¥ is defined on all pairs (s;, b; - - - biyar), with image
(Si+1. fi). In other words, we require that encoding as described by i, starting in
state u, of sequences over B with prescribed initial part, never gets stuck.

The above formal definition of BDB codes is rather complicated. Fortunately,
these codes have a much simpler equivalent description in terms of look-ahead
assignments, which is the statement of Theorem 2.

Proof of Theorem 2:
Let us assume that the pair S, ¥, determines an M-symbol look-ahead BDB en-
coder for a constrained system £ over an alphabet F', with codeword classes Fj,
b € B. Let u denote the starter state in S, and suppose that all sequences over B
with initial part equal to the word ¢ = ¢g---cny can be encoded by ¥, starting
in state 1. We define a FSTD M, with § as its collection of states, and sets
Wy, s € S, of words over B of length M, as follows. According to our as-
sumptions, any sequence b = bgb; --- with b; = ¢;, i = 0, ..., N, determines
a sequence s = s(b) = sps1--- of states in § with so = u, and a sequence
f = fb) = fofi--- of symbols in F with f,, € Fp forall n > 0 such that
Y (Sn, by - - - bpyyr) 1s defined and equals (s,+1, f). The FSTD M will have a
transition from state s to state s’ with label f from F' whenever for some se-
quence b as above, with corresponding sequences s and f, and for some n, we
have s = s,,. 5" = s,y+1, and f = f,. Moreover, in this situation we also include
by---byry—1 in W;. By letting b = b,y vary over B, we see that we can al-
ways obtain a transition in M to satisfy part (b) in Definition | for a look-ahead
assignment on M. as required. o

Proof of Theorem 3:
According to Theorem 2, we may assume that the given M-symbol look-ahead
code for the constrained system £ over F', with codeword classes F,, b € B,
say, is described by means of a BDB encoder [G, ¢, U{] for some FSTD G that
generates a subsystem of £. Let M = (V, A, L, F) have memory m, anticipa-
tion a, and let M generate £. Our construction crucially depends on the following
observation. By definition of m and a, each walk & _,, - - - g - - - @y in G, generat-
ingthe word f = f ,, --- f, in L, say, determines a transition @ = @[o_, * - ¢4]
in M such that each walk w_,, - - - @, in M that generates f satisfies wg = .
Moreover, if a,11 is a successor of a, in G, then o' = w[o_mi1- - 0gt1] 18 a
successor of @ in M.

In order to construct an (M + a)-symbol look-ahead BDB encoder [M, ¢, W]
for M, with respect to the Fj,, b € B, we now proceed as follows. For each
state v of M, we let b; - - - by, be contained in W, if and only if there exists a
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walk a_,, - - - o, in G such that

(D) b1+ by € Uendiay)>

(2) a1 - - - o 1s the walk from end(og) in G determined by by - - - by 44 and U, and
(3) the transition @ = w[a_ - - - ¢, ] in M ends in v.

It is not difficult to see that the sets WV, thus obtained define a look-ahead encoder
for M. Indeed, in the above situation, a further symbol » = by 444+ from B
determines a further transition o,y in G, and then by - - -bpyy1 € Uepd(e,) and

the transition o' = wla_,,41 - deq1] in M satisfies beg(w’) = end(w) = v.
So the transition «' is the transition needed to satisfy part (b) of Definition 1 as
required. O
Appendix B

Here, we add a few remarks on the interpretation of the results in Appendix A. In
general, the actual encoding resulting from a given M-symbol look-ahead encoder
need not be completely determined. (At certain stages, there may be more than
one possible encoding transition.) In practice, this does not bother us: we can just
pick one, and each choice will still lead to a sequence that gets decoded properly.

Nevertheless, in any practical application the encoder function need to be fur-
ther specified. Note that such a specification influences the encoder and therefore
also the resulting code system, the collection of sequences that can be produced
by the encoder. Note furthermore that not each possible encoder for a given BDB
code for some constrained system L (i.e., for a given decoder) can be obtained
from a look-ahead encoder based on the minimal deterministic presentation (the
Shannon cover or Fisher cover) M for £ simply by deleting certain transitions.
Indeed, the resulting code system of such an encoder would necessarily be deter-
ministic, but not all sliding-block decodable codes for constraints of finite type
need to have a code system of finite type. However, as shown by Theorems 2
and 3, any such encoder can be “simulated” within a look-ahead encoder for M.
(In fact, Theorem 2 delivers a look-ahead encoder from the given finite-state en-
coder that has the same code system; this is not true for Theorem 3.)

These remarks are well-illustrated by [2, Example 11.4]. In that example, the
encoder in Figure 14 is investigated. Note that this encoder is a 0-symbol look-
ahead encoder for a block-decodable code, with codeword classes {a} and {b, c}.
The authors show that the code system of this code is not of finite type, but is con-
tained in a constraint of finite type with set of forbidden words {bb, cc, bab, cac}.
The Shannon cover of this constrained system is the five-state FSTD in Figure 15.

From the results in [2] combined with our work in [9], we know that, as in
the case of the state-splitting algorithm, one further operation on block-decodable
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1/c

Figure 14: An encoder for a block-decodable code.

Figure 15: The Shannon cover.

look-ahead encoders based on Shannon covers need to be allowed if we want to
be able to obtain all encoders for block-decodable codes. For example, in the case
of [2, Example 11.4], the desired encoder is “hidden” inside the block-decodable
look-ahead encoder obtained by means of Theorems 2 and 3; a further operation
of “state-expansion” (“copying” of states) is needed in order to obtain the desired
encoder. In this example, state @ must be copied.

In general, we can obtain a fully specified look-ahead encoder by replacing
in M each state v by states v, where v ranges over the states of G, and by adapting
the proof of Theorem 3 accordingly. (The superscript v now indicates that state v
is entered while the encoder G entered state v.) Moreover, in the case that the code
word labeling of the encoder G is of finite type, with memory T, say, then (note
that G, being an encoder for a block-decodable code, is deterministic) knowledge
of the T previous transitions of the path in M by which a state v is entered is
sufficient to determine the corresponding encoder state v in §G. As a consequence,
in the finite-type case we can obtain a fully specified look-ahead encoder based on
the Tth history graph My of M (see [9] for the definition of the history graph).
Further details concerning such constructions are left to the reader.

The above reasoning can easily be transformed into a proof for Theorem 5
in the case of block-decodable codes. The general case follows from the results
in [9] (see also Chapter 4, Appendix C).
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Chapter 6

A block-decodable (d, k) = (1, 8)
runlength-limited rate 8/12 code

Abstract — We describe a (d, k) = (1, 8) runlength-limited (RLL) rate 8/12 code
with fixed code word length 12. The code is block-decodable; a code word can be
decoded without knowledge of preceding or succeeding code words. The code be-
longs to the class of Bounded Delay Block-decodable (BDB) codes with one symbeol
(8 bits) look-ahead. Due to its format, this code is particularly attractive for use in
combination with error correcting codes such as Reed-Solomon codes over the finite
field GF(2%).

Index Terms — RLL code, BDB code, block-decodable code, principal state-set,
look-ahead coding.

6.1 Introduction

A (d, k) RLL sequence is a binary sequence in which each run of like symbols
has a length between d 4 1 and k 4 1. RLL sequences as well as (d, k) sequences
(binary sequences describing the transitions in RLL sequences) have found many
applications in various high-capacity storage media. The use of these sequences
is discussed in detail in [4], where also further references can be found.

In this correspondence we describe a (1, 8) RLL block-decodable rate 8/12
code with code word length 12 bits. Here block-decodable, a term introduced
in [4], refers to the fact that each code word, or block, decodes into a unique (8-
bit) source word, irrespective of context. Encoding can be achieved with a finite
state encoder; this encoder will be implicit in our description of the code. Due

© 1994, IEEE. Reprinted, with permission, from [EEE Transactions on Information Theory
vol. 40, no. 4, pp. 12921296, July 1994.
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to its format this code has favorable error propagation properties, especially when
used in combination with error correcting codes such as Reed-Solomon codes
over the finite field GF(2®%) (e.g.. CIRC [5]). The code belongs to the family of
Bounded Delay Block-decodable (BDB) codes with one symbol (here eight bits)
look-ahead during encoding [1].

Bounded delay (BD) codes, a family of codes employing look-ahead encoding
techniques, were introduced by Franaszek [7]. He described a necessary condition
for their existence in terms of an approximate eigenvector. and showed how such
a vector could be of help in code construction. (See also [8].) Franaszek also
mentioned block-decodable BD codes, or “instantaneously decodable” codes as
he named them.

Franaszek’s methods do not constitute a polynomial-time algorithm. A break-
through in that respect was the discovery of the ACH algorithm [6]. This algo-
rithm produces a code by applying rounds of “‘state splitting” on the constraint
graph. As in the BD method, the construction is guided by an approximate eigen-
vector.

Recently, the subject of code construction received new impetus with the work
of Immink [4]. In this paper many new BDB (block-decodable) RLL codes, with
sometimes surprisingly small code word sizes, are constructed via look-ahead
techniques, based on state combination (as opposed to state splitting as in ACH)
and guided by an approximate eigenvector with components equal to one or two.

Motivated by this work, the theoretical properties of BDB codes were inves-
tigated in [1]. In [1] it is shown that one-symbol look-ahead BDB codes can be
advantageously described as well as constructed in terms of principal state-sets.
We will return to this shortly.

An 8-bits look-ahead rate 2/3 BDB (1, 8) RLL code entails a partition of the
collection of 12-bits code words or blocks (12-bit words not violating the pre-
scribed (1, 8) runlength constraint) into 256 mutually disjoint code word classes,
where each code word class corresponds to a unique 8-bit source word (source
symbol) and represents the alternative encodings of this source symbol. Of course,
a description of the code in terms of this partition into code word classes alone is
not very satisfactory without a means to verify that one-symbol look-ahead encod-
ing is indeed possible. It was shown in [1] that for each BDB code an encoding
rule can be described in terms of a collection of so-called principal state-sets. (As
suggested by the terminology, this generalizes the notion of principal state as in-
troduced by Franaszek [7]. In our case, a principal state-set will be a collection of
blocks.) It turns out that correctness of the encoding rules can be established by
verifying corrrectness with respect to the given principal state-sets for each code
word class separately, that is, independent of the possible presence of other code
word classes. We explain this in detail in Section 2.
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Verifying correctness by hand for 256 code word classes would still be a huge
task. Fortunately it is possible to group these classes into 22 distinct (code word
class) types such that correctness depends on type only. This is further explained
in Section 3.

In Section 4 we offer a description of the code in terms of code word class
types together with all the information needed to verify correctness of the en-
coding rule and to count the resulting number of code word classes. The code
found is not unique; indeed, we shall also describe a second code with the same
parameters.

Finally, in Section 5 we discuss the results.

6.2 Principal state-sets for BDB codes

In this section we outline the description of a one-symbol look-ahead BDB code
in terms of principal state-sets, as far as relevant to our case. Further details can
be found in [1].

A (1, 8) RLL sequence is a binary sequence in which none of the forbidden
words 010, 101, 0'° or 1'% appear (*“each run has a length between two and nine”).
Let us call such sequences admissible, and let a code word, or block, be any 12-bit
admissible sequence.

Define a digraph D = (V, A) with states V and transitions A as follows.
The states are the code words (as defined above), with a transition from the code
word v to the code word w if the 24-bit word vw is again admissible. In that case,
we say that the code word w (the code word v) is a successor (a predecessor)
of the code word v (the code word w). Obviously, each walk - - - v,_jv V41 - -
in D (vy41 1s a successor of v, for all n) generates an admissible sequence. (In-
deed, a forbidden word in a sequence of code words is necessarily confined to two
consecutive code words.)

The knowledgeable reader will recognize the digraph D as a Moore machine
for (1, 8) RLL sequences. (Albeit of a special type in which all state-labels are
distinct. To keep things as simple as possible, we will only consider Moore ma-
chines, of this special type, in what follows. For the general case, see [1].) Such a
digraph may serve as starting point of the construction of a BDB code. Essentially,
a BDB code with source alphabet B for a digraph D as above is a collection of
mutually disjoint state-sets V;,, b € B (referred to as code word classes) together
with a finite state finite look-ahead encoder to transform sequences {b,},, b, € B,
into walks {v,}, in D with v, € V,,_ for all n. Observe that decoding of a BDB
code is particularly simple: a state v is decoded as b if v € V), irrespective of
context. Instead of giving an exact definition of BDB codes, we will use a result
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from [1] stating that all one-symbol look-ahead BDB codes possess a special kind
of encoder, involving a collection of principal state-sets. We will now explain
this.

Let D = (V, A) be a digraph, and let £ be a collection of non-empty subsets
of V. Members of £ will be referred to as principal state-sets, and we will think
of these as representing possible encoding alternatives at various times during the
encoding process. Let C € V. (We will think of C as representing all possible
encodings of some fixed source symbol.)

Definition 1: We will say that C is a potential code word class with respect
to & if the following holds:

For each principal state-set E € & there exists a state v € E and another
principal state-set £’ € & such that E’ € C and each state in E’ is a successor
of vinD.

The importance of this definition can be seen from the following observation.
Suppose that we can find a collection V,, b € B, of mutually disjoint potential
code word classes with respect to £. Then this collection constitutes a one-symbol
look-ahead BDB code with source alphabet B. Indeed, this can be seen as follows.
For each pair (£, b) of a principal state-set E € £ and a source symbol b € B,
let the state v = ©(E, b) € E and the principal state-set F’' = E(E,b) € &
be defined such that E C V,, and E’ consists entirely of successors of v in D.
(This is possible according to Definition 1.) Now, to encode a sequence {by,},,>1
of source symbols, we inductively construct a sequence { £}, n>0 Of principal
state-sets and the required walk {v,},,-; in D with v, € V}, by letting v, =
B(E™D p,yand E™ = E(E® D b,). (Here we let E© € € be arbitrarily.)
Observe that for all n > 1, v,_; is a predecessor of v, € E™ C V}, as required.

Alternatively, the above may be viewed as follows: Consider the digraph G
with as states the principal state-sets, and an arc E — E’ with label (b, v)
whenever v = H(E, b) and E' = E(E, b). Then G constitutes an encoder graph
for a one-symbol BDB code with as code word classes the sets V,, b € B. (There
is an encoding delay of one symbol.) In [2] we have shown that, alternatively,
such an encoder graph can be obtained from the ACH algorithm. Surprisingly [9],
the construction may require the use of an approximate eigenvector with relatively
large components [3].

In [1] we have shown that in fact all one-symbol look-ahead BDB codes arise
out of principal state-sets in the way described here.

The following example, taken from [4], illustrates the above.

Example 1: In this example, we construct a one-symbol look-ahead BDB
(1, 00) RLL code with code word size four and rate log,(6), so a code for six
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source symbols. The forbidden words for this constrained system are 010 and 101.
The digraph D = (V, A) has as states all admissible 4-bit words (called code
words throughout this example), with a transition v — w whenever the 8-bit
word vw is again admissible. As principal state-sets, we take

(1) all sets consisting of a single code word ending in 00 or 11, and
(i1) all sets consisting of two code words, one ending in 01, the other ending in 10.

It can easily be verified that the following six sets of code words V; are mutu-
ally disjoint potential code word classes with respect to these principal state-sets:

Vi = {0000} Vs = {1000,0110,0001},
V, = {0011}, Vi = {1111},
Vi = {1100}, Ve = {0111,1001,1110}.

Indeed, if for example C = V5 = {1000, 0110, 0001} and if E = {..00} is a prin-
cipal state-set, then E/ = {0110, 0001} is again a principal state-set and consists
of successors in C of the code word e = ..00. Or, if E = {..01, ..10}, then we may
take for example E' = {1000}, e = ..01. All other combinations can be treated
similarly. The conclusion is that the six code word classes above indeed constitute
a one-symbol look-ahead BDB code.

Note that the listed classes are not the only potential code word classes; others
are, for example, V7 = {0111, 1000} and Vg = {0110, 0001, 1110, 1001}. Con-
sequently, V|, ..., V4. V7, Vg constitute a second BDB code for these principal
state-sets, with the same parameters. O

An obvious advantage of a description of a one-symbol look-ahead BDB code
in terms of both code word classes and principal state-sets is that verification of
even a large code is relatively simple: the code word classes should be disjoint,
and each code word class separately should be a potential code word class with
respect to the given collection of principal state-sets. Also, construction of a code
from a judiciously chosen collection of principal state-sets (which is the way in
which we actually constructed our code) offers an alternative to the construction
method by means of “state combination” as described in [4]. The latter method is
much easier to implement in a computer program, but unfortunately does not find
all one-symbol look-ahead BDB codes (see [1]).

6.3 Begin and end types of code words

In order to simplify the description of our code , we will assign to each code word
a begin type and an end type (where the begin and end type together constitute the
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Table 1: The begin and end types of a code word.

" Begin type | Initial part of code word || End type | Final part of code word |
z1 01 =" 1 10 - o
z5 001. 0001, 0*1,0°1 74 100, 1000, 10*
z8 0°1,071, 081 28 10°, 10°, 107, 103
9 0°1 29 10°
ol 10 ol 01
05 110, 1110, 140, 150 04 011,0111,014
08 190, 170, 180 08 01°,01%,017,01%
09 1°0 09 01°

Table 2: The number of code words of the various tvpes.

1zl 4 8 9 ol o4 08 09 ]
z1]16 225 1 17 20 6 -
5024 27 10 - 23 31 6 1
813 6 - - 3 2 2 -
791 1 - - - - 1 - -
ol |17 20 6 - 16 22 5 1
05123 31 6 1 24 27 10 -
o83 2 2 - 3 6 -
7] - 1 - - 1 - - -

type of a code word), and formulate successor rules, principal state-sets and code
classes in terms of types alone. A code word belongs to one of eight begin types,
according to the number of initial zeroes (or ones) of the code word, as indicated
in Table 1.

Similarly, each code word belongs to one of eight end types, according to the
number of final zeroes (or ones) of the code word. The end types are also indicated
in Table 1.

The type of a code word shall be indicated as si—sj, where si and sj denote
the begin type and end type of the code word, respectively. In Table 2, we have
listed the number of code words with a given begin and end type. This is the only
data in this correspondence which cannot be verified easily by hand. (Verification
by computer is easy).

The code word classes and principal state-sets of our code will be described
in terms of begin and end types only. In particular, we will use only those suc-
cessor relations which are guaranteed by the types of the code words involved.
For example. a code word with begin type z5 is successor to any code word with
end type z4, so we will say “begin type z5 is successor to end type z4”. On the
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Table 3: Successor relations between end and begin types.

end type begin type successors
zl z1 z5 28 - | - - - -
74 z1 z5 - - - 05 08 09
z8 zl - - - - 05 08 09
79 - - - - - 05 08 09
ol - - - - lol o5 o8 -
o4 - z5 z8 9|0l o5 - -
08 - z5 z8 79| ol - - -
09 - 5 8 9| - - - -

other hand, begin type z5 is not successor to end type z8, although some particular
code word of that begin type such as 001 - - - is a successor to a code word such
as - -- 100000 of that end type. In Table 3 we have listed the various successor
relations according to type.

6.4 Description of the code

Our code consists of 256 disjoint code word classes. Each code word class is
of a certain (code word class) type, where the type of a code word class is the
collection of types of its member code words. The principal state-sets of our code
will be described in terms of end states only; a set of code words is a principal
state-set if and only if the collection of end types of the code words constitute one
of the following six sets.

Fy = {z4}, F; = {04}, F5 = {zl, 01},

Fy = {z8, 08}, F5s = {28, 09}, Fy = {29, 08}.

(Compare this to the description of the principal state-sets in Example 1.) In
what follows, when we use the expression “potential code word class™, this will
always be understood to mean “with respect to the above collection of principal
state-sets”. As a consequence of the above definition of the principal state-sets,
the property of being a potential code word class depends only on fype. (Recall
our restriction on allowable successor relations as agreed in Section 3.) Let us
consider a few examples.

Example 2:  The set {z5-z4} (representing a set that contains a single code
word, of type z5—z4) is a potential code word class type. Indeed, first we remark
that {z4} = F is end type set of a principal state-set. Secondly, the begin type z5
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Table 4: The first block-decodable code.

Index Code class type multiplicity
1 {z5-z4} 27
2 {05-04} 27
3 {z5-04) 31
4 {0574} 31
5 {2528, z25-09} 1
6 {o5-08, 05-79} 1
7 {z5-z8, z5-08} 6
8 {05-08, 05-z8} 6
9 {z5-z1, 75-01} 23

10 {o5-01, 0521} 23
11* {z1-z4, 01-04)} 22
12* {z1-04, 01-z4} 20
- 13* | {zl-zl,zl-0l, 01—z1, 01-01} 16
14* | {z1-z8, z1-08, 01-z8, 01-08} 5
15* | {z1-29, z1-08, 0128, 01-09} |
16* {08—z4, z8—04) 2
17* {o8—04, 7874} 6
18* | {08-z1, 08-01, z8—z1, z8-0l} 3
19 {05-08, 08-z8, z5-z8} 2
20 {z5-28, z8-08, 05-08} 1
21 {09—2z4, 01-2z1, 05-01} 1
22 {z9—04, z1-01, z5-z1} 1

is successor to the end types z1, 74, 04, 08, and 09, and each of the sets F;, i =
1,..., 6, contains (at least) one of these end types. O

In the above example, we say that the list < {z5} > forms a cover list for
F1, ..., Fg since each F; contains an end type to which z5 is a successor. The
notion of a cover list is useful when checking potential code word class types. We
explain this notion and its use in the next example.

Example 3: The list < {z5. z8}, {z5, 05} > forms a cover list. To see this,
we first note that z5 and z8 are both successors to the end types z1, 04, 08, and 09
(we say that the pair {z5, z8} “covers” F», ..., Fg since each contains one of the
above end types). Similarly, z5 and 05 are both successor to the end types z4
and 04, and the pair {z5, 05} covers F| and F». So together, the two pairs cover
all F;, thus our list is indeed a cover list.
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Table 5: Covering lists for the code in Table 4.

Index Covering lists

1-10 < {z5} > and < {05} >

11-15 < {z1}, {ol} >

16-18 < {z8}, {08} >

19-20 | < {05, 08}, {05, z5} > and < {z5, z8}, {25, 05} >
21-22 < {09}, {01, 05} > and < {79}, {z1, 25} >

Consequently, for example the set
{z5-z8, z8-09, 75-z1, 05-01}

constitutes a potential code word class type, since each of the two sets of begin
types that make up the cover list are combined with sets of end types F;. here
i =5, 3. A second example is formed by the set

{z5-28, 28-09, 05-08},
where the same cover list is now combined with the sets F5 and Fjy. a

Our description of the code will consist of a list containing the potential code
word class types, together with the number of code word classes of each type (Ta-
ble 4). To ensure that the code word classes are indeed disjoint, the reader must
verify that enough code words of the various types are available, using Table 2.
To help in checking the code word class types, we also list in Table 5 a covering
list for each of the code word class types. Observe that since the collection of
principal state-sets is invariant under 0 <> 1, the successor relations, and hence
the collection of potential code word classes, are invariant under z <> o. In Ta-
ble 4 symmetric types are marked with an asterisk. The code uses all available
code words except for one of each of the three types z9-z1, 09-01, and z8-08.
Therefore, we may, at the cost of one additional code word class type, obtain a
fully symmetric code by adding a code word with type z8-08 to one of the two
code word classes of the type with index 19 in Table 4.

This code is not the only BDB code with these parameters. A second code is
given in Table 6, with covering lists as in Table 7. (The first 10 code class types
are identical to those of the first code, with the same multiplicities.)

6.5 Discussion

We have described two new rate 8/12 (1, 8) RLL block-decodable codes with
block size twelve, well adapted to byte-oriented storage systems since error prop-
agation is limited to one byte. The codes allows a relatively simple description
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Table 6: A second block-decodable code.

Ind.| Code class type [mult.|[Ind. Code class type mult.
I {z5—z4} 27 || 16 {ol-z4, z1-z4} 20
2 {05-04} 27 || 17 {z1-04, 0104} 20
3 {z5—04} 31 18* {o1-04, z1-z4} 1
4 {05—z4} 31 19 {z9-z1, 05-01, 08-z1) 1
5 | {z5-z8, z5-09} 1] 20 {09-01, z5-z1, z8-01} 1
6 | {05-08, 0529} 1 21 {01-z8, 05-08, 08—z8} 2
7 | {z5-z8. z5-08} 6 || 22 {z1-08, 2528, z8-08} 2
8 | {05-08, 0528} 6 || 23 | {z1-29, 05-08. z8-z1, z8-0l} 1
9 | {z5-z1,75-01} | 23 || 24 | {01-09, z5-z8, 08—01, 0821} 1

10 | {o5-01,05-z1} | 23 || 25 | {z1-z1, 08—0l, 2821, z80l} 1

11 | {29-04,z1-z4} | 1 || 26 | {o1-0l, z8-z1, 08-01, 0821} | 1

12 | {09-z4, 01-04} 1 27*| {z1-z8. z1-08, 01-z8, 01-08} 4

13 | {08-z4, z8—z4} 2 || 28% {z1-zl,zl-0l,0l—1,01-01} | 15 |

14 | {z8-04, 08-04} 2

15%| {08-04,2z8-z4} | 4

Table 7: Covering lists for the code in Table 6.

Index Covering lists

1-10 < {z5} > and < {05} >
11-12 < {z1}, {z9} > and < {ol}, {09} >
13-15 < {z8}, {08} >
16-18 < {z1}, {ol} >

1920 | < {29, 05}, {05, 08} > and < {09, 25}, {25, z8} >
21-22 | < {ol, 05}, {05, 08} > and < {z1, 25}, {25, z8} >
23-24 < {z8}, {z1, 05} > and < {08}, {ol, z5} >
25-26 < {z8}, {z1, 08} > and < {08}. {ol. z8} >

27-28

< {z1}, {ol} >

and can be verified to satisfy the claimed requirements by hand. (Appearances
notwithstanding, the first of these codes was in fact constructed by hand.)
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Chapter 7

On an approximate eigenvector
associated with a modulation
code

Abstract — Let S be a constrained system of finite type, described in terms of
a labeled graph M of finite type. Furthermore, let C be an irreducible constrained
system of finite type, consisting of the collection of possible code sequences of some
finite-state encodable, sliding-block decodable modulation code for S. It is known
that this code could then be obtained by state-splitting, using a suitable approximate
eigenvector. In this paper, we show that the collection of all approximate eigenvectors
that could be used in such a construction of C contains a unique minimal element.
Moreover, we show how to construct its linear span from knowledge of M and C
only, thus providing a lower bound on the components of such vectors.

For illustration we discuss an example showing that sometimes arbitrary large
approximate eigenvectors are required to obtain the best code (in terms of decoding-
window size) although a small vector is also available.

Index Terms — Constrained systems, state-splitting, sliding-block decodable, ap-
proximate eigenvector.

7.1 Introduction

Digital data storage systems commonly employ a modulation code to provide the
data as written on the storage medium with certain desirable properties. A well-
known example is the use of (d, k) codes in magnetic storage systems to combat
intersymbol interference and loss of clock. Typically, the collection of allowable

(© 1996. IEEE. To appear in IEEE Transactions on Information Theory. Reprinted with per-
mission.
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sequences (called the constrained system) can be described by means of a labeled
directed graph as the collection of all label sequences of paths in this graph.

In this paper, a modulation code for a constrained system consists of a finite-
state encoder which maps arbitrary sequences of source symbols into allowable
sequences, and a decoder capable of retrieving the original source sequence from
the code sequence. The code system of a modulation code is the collection of all
possible code sequences of the code.

Since modulation codes are often used in a noisy environment, code sequences
get corrupted by noise, so will contain errors. It is therefore necessary to consider
the problem of error propagation. To limit error propagation, most practical codes
are sliding-block decodable. Here, the decoder needs to base its decision on a
source symbol only on the present code symbol together with a at most m previous
code symbols and at most a upcoming code symbols, for some numbers m and a.
Evidently, one error in the code sequence thus propagates into at most m 4 1 +a
errors in the source sequence. The number m + 1 + a is called the decoding
window size of the code. This number is an important parameter of a code, related
to the maximum error propagation and also to the amount of hardware needed to
implement the decoder, and should therefore be as small as possible.

Many code construction methods involve manipulation of the graph that de-
scribes the constraint, under guidance of an approximate eigenvector, a collection
of non-negative integer weights associated with the vertices (states) of the graph
with the property that N times the weight of a state is at most equal to the sum
of the weights of the successors of this state. Here N is a number related to the
desired rate of the code. A typical example of such methods is the state-splitting
algorithm as described in [1].

Recently [2], [3, 4], this method has been shown to be universal, that is, es-
sentially, each sliding-block decodable code for a constraint of finite type with a
code system of finite type can be obtained by this method, with a proper choice
for the approximate eigenvector. (In fact, the results in [2] apply to all constrained
systems, not just those of finite type; in more general situations some additional
operations are required.) The extend of this result is discussed in Chapter V, Ap-
pendix B, where some claims in [4] are further specified.

Generally speaking, distinct approximate eigenvectors lead to different codes.
The usual approach is to choose such a vector with small components, since this
leads to the smallest currently known upper bound on the decoding window size.
However, it is known [4] that such a choice does not always leads to the best code.
We will present a sequence of examples where the smallest available vector has
maximum component equal to two while the vector that leads to the best (block-
decodable) code necessarily has maximum component at least N, for each choice
of N. (The smallest vector leads to a decoding window of two codewords.)



7.2. Notation and background 201

This paper has been written in an effort to clarify the intimate relation between
approximate eigenvectors on the one hand, and code systems of modulation codes
on the other hand. Our approach is consistent with the Willems' approach [9] to
investigate properties of a system based only on knowledge about the sequences
that make up the system.

We will show that each irreduacible finite-type code system of a sliding-block
decodable code that is contained in a given constrained system of finite type and is
obtained by the state-splitting algorithm determines a unique approximate eigen-
vector, with the properties that (i) the code system can be constructed with this
vector, and (ii) each other vector that can be used to construct this code system
is at least as large (component-wise) as this vector. Unfortunately, in general we
know of no method to find this vector. However, we do present some methods to
obtain its linear span, thus providing a lower bound on approximate eigenvectors
that can construct the given code.

7.2 Notation and background

We begin by establishing our notation. For further details, we refer to [3].

A constrained system is typically described in terms of a labeled directed
graph, which in this context is often referred to as a Finite-State Transition Di-
agram or FSTD. Here, a FSTD M consists of a finite collection V of states and
a finite collection A of labeled transitions. Each transition o of M has a label
L(x), an initial state beg() and a terminal state end(w), and is referred to as a
transition from beg(a) to end(«) with label L(«). We denote by A, the collection
of transitions from state v, that is, all transitions « with beg(e) = v.

The constrained system S presented by M is the collection of all label se-
quences L(ay)--- L(a,) of paths oy ---«, in M. (Here and in what follows,
when we say “path” we always refer to a directed path.)

We say that the FSTD M is of finite type if there are numbers m and a such
that, for each path o, - - - «p - - - @0, transition ¢ is uniquely determined by the
label sequence L(e_y,) -+ L(ag) - -+ L{xt,) of the path. A constrained system is
said to be of finite type if it can be presented by a FSTD of finite type. (As is
well-known, this is the case precisely when the system can be described in terms
of a finite collection of “forbidden subwords”, see e.g. [1].) M is said to be
deterministic if in each state the transitions leaving that state carry distinct labels.

A (rate-N) encoder is a FSTD M in which a constant number of N transitions
leave each state, and that is lossless. i.e., any two distinct paths in M with the same
initial state and terminal state generate distinct label sequences. In this paper,
when we speak of a code, we always mean a code that has an encoder of this type.
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Mostly, we even require that the encoder is sliding-block decodable, i.e., that M
is of finite type.

A FSTD M is irreducible if for each pair of states (v, w) there is a path
in M from v to w. Also, a constrained system S is called irreducible if for each
two sequences x and y contained in S and each two indices n and m there ex-
ists a sequence z in S and an integer k > 0 such that z; = x; forall i < n
and z,4k_my; = y; for all i > m. In other words, there exists a word w - - - wr—|
such that the sequence

Cee Xp 1 Xp Wt wk_lymym+] .

is again contained in §. Note that a constrained system S presented by an irre-
ducible FSTD M is irreducible. Conversely, an irreducible constrained system S
presented by an FSTD M is also presented by some irreducible component of M
(I6]). A component of M is called a sink if no transitions leave this component.
Each FSTD M contains at least one irreducible sink.

With a FSTD M we associate its adjacency matrix Dy, a [V| x |V| matrix
for which Dy (v, w) counts the number of transitions from state v to state w. An
[M, Nl-approximate eigenvector ¢ consists of a collection of non-negative inte-
ger weights ¢,, not all zero, associated with the states v of M, with the property
that N times the weight of a state v is at most equal to the sum of the weights of
terminal states of the transitions from state v, that is,

Ny < Gendte (1)

wEA,

holds for each state v. The above condition is usually expressed as
N¢$ < Dumé, 2

where the inequality is to be interpreted component-wise.

Next, we will give a very brief outline of state splitting. Further details can be
found, e.g., in [7] or [3]. A round of state-splitting is a method to transform a given
FSTD M into a new FSTD M’ in the following way. For each state v of M, we
partition the set A, of transitions leaving v into sets Ai), i =1,...,ny. The
FSTD M’ is then constructed as follows. Each state v of M produces states v',
i=1,...,n,1in M’ and each transition «, from state v to state w, and contained
in A’;, say, produces transitions

ol v = w/,

j=1,...,ny,in M’ all of which inherit their codeword label from «.
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So cach state v splits into a number of states v, where state v' represents
the part of v that can be left by transitions & in A{. Moreover, each transition o
splits into transitions «/, where o/ represents the part of « that leads to the j-th
part of the terminal state of «. We will refer to states v’ and transitions o/ as
children of state v and transition « in M’, and to v and « as their parents in M,
respectively. We extend this notion of children and parents to paths in M and M’
in the obvious way.

From the above description it is immediate that all children «’f" in M’ of
a given path af in M agree in transition ’. (“A transition in M with a given
future determines a unique transition in M’.”) Thus, the parent/child relation in
fact provides a one-to-one correspondence between bi-infinite paths in M and M’
and, in particular, M and M’ generate the same constrained sequences.

We say that an FSTD M is transformed into the FSTD M* by k rounds of
state-splitting if M* is the result of a sequence of transformations

M=MP 5 MO s MB = M

where each intermediate transformation consists of a round of state-splitting.

The parent/child relation extends in the obvious way to states, transitions, and
paths in M and M*. Moreover, it is easily seen that each state (transition) in AM*
has a unique parent state (transition) in M, and that all children « - - - & in M*
of a given path o - - - o in M agree in the first transition ;.

Now we come to the notion of ae-consistent state-splitting. This method in
fact transforms a pair (M, ¢) consisting of an FSTD M and an [ M, N }-approx-
imate eigenvector ¢. We say that a round of state-splitting that transforms M
into M’ as explained earlier is ae-consistent (with respect to the approximate ei-
genvector ¢) if, for each state v of M, the weight ¢, associated with v can be dis-
tributed over its children v’ in M’ in such a way that the resulting assignment ¢’
of weights to the states of M’ now constitutes an [M’, N ]-approximate eigenvec-
tor. Similarly, we say that the pair (M, ¢) is transformed into the pair (M*, ¢*)
by k rounds of ae-consistent state-splitting if the pair (M*, ¢*) is the result of k
rounds of ae-consistent state-splitting. In this situation, we say that AM* is ob-
tained from M by ae-consistent state-splitting (with respect to the approximate
eigenvector ¢).

The importance of the notion of ae-consistent state-splitting follows from the
following observation: if the weights of all the states of an irreducible sink of AM*
are equal, then by the definition of an approximate eigenvector the out-degree in
each of these states is at least NV, so that from M* we can obtain an encoder for the
constrained system S presented by M. In [1] the authors describe an algorithm,
the ACH state-splitting algorithm, which demonstrates that for each approximate
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eigenvector there exists a sequence of ae-consistent state-splittings leading in the
above way to an encoder.

It is almost, but not quite true that each finite-state encodable, sliding-block
decodable code for a finite-type constraint can be obtained in this way (one further
operation called “state-expansion”, duplication of states, is required in the case
where the encoder graph is not of finite type, see [2]). It is true, though, that, given
a sliding-block decodabie finite-state encodable code, a code can be obtained by
state-splitting that has the same code system as the given code and that can be
decoded by the same sliding-block decoder. We refer to [2], [3, 4], and Chapter 5
for further details.

7.3 Preliminaries

We begin with a simple but important observation. Suppose that the FSTD N
is obtained from M by state-splitting, followed by the deletion of certain states
and transitions, and suppose furthermore that each state of A" has out-degree at
least N. For each state v of M. let y, denote the number of its children in V.

Proposition 1: The vector y is an [M, N J-approximate eigenvector, and the
state-splitting steps are ae-consistent with respect to .

Proof: In each intermediate FSTD M| we can take as the weight of a state
its number of children in A/. That this is indeed an approximate eigenvector
for M@ can be shown directly by induction on i = k,k — 1,...,0, but fol-
lows also from Theorem 4 below applied to M instead of M. Further details
are left to the reader. u

In the remainder of this paper, we will make the following assumptions. We
are given a constrained system S, presented by an irreducible FSTD M of finite
type with memory m and anticipation «, and an [M, N]-approximate eigenvec-
tor ¢p. The FSTD M* is obtained from the pair (M, ¢) by k — 1 rounds of ae-
consistent state splitting with respect to ¢. The FSTD A is obtained from M* by
deleting certain vertices and transitions. We assume that \ is irreducible, and that
exactly N transitions leave each state of A’ (so N is an encoder graph). Moreover,
we assume that all vertices of A carry the same non-zero weight in M*. Note that
this includes the case where all vertices carry the same non-zero weigth in M; in
that case, our assumptions comply with the scenario when A is obtained from M
and ¢ by ae-consistent state-splitting. We will refer to the constrained system
C C S generated by A as the code system. Note that the encoder N will again
be of finite type, and hence the code system C generated by N is the code system
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of a sliding-block decodable code. The adjacency matrices of M and N will be
denoted by Du and Dy, respectively.

A state v in M will have n, children v, 1 < i < n,, in M*, of which the
states v', i € I,, are contained in A”. The number |/, | of children of state v in N/
will be denoted by y,. (Note that y, < ¢,.) Similarly, a transition « in M will
have n,, children o/, 1 < j < ny, in M*.

The collection of paths in M of length n starting in state v or starting with
transition &, and having a child in A, will be denoted by £ or £, respectively.
Moreover, for n > k we let f:f;” and ié’j) denote the subsets of £ and =% con-
sisting of those paths whose child (or children) in A start in state v’ or start with
transition a/, respectively. Note that the first k transitions of a path in M uniquely
determine the first transition of any of its children in M¥*, that is, for n > k the
sets igl) 1 < i < n,, partition il(,") and the sets i;",) , 1 € j £ ng, partition
S, This observation will be used repeatedly in what follows.

Our aim will be to find a lower bound on ¢ using only knowledge about M
and C. Note that M and C together determine the number N.

7.4 The number of children in A\ of paths in M

Our aim in this section will be to derive an expression for the number |2~Zf)")| of
paths of length n in M starting in state v that have a child in A/, and to study its
behavior if n — oo. In order to do so, we will need the following result on the
asymptotic behavior of powers of the adjacency matrix Dy of AV,

Proposition 2:  We have that

lim N "Dy, =1-b',

n—00

where 1 denotes the all-one vector and b denotes the (unique) positive left-eigen-
vector of Dy with corresponding eigenvalue N for which b1 = 1.

Proof: Our assumptions on A imply that Dy is irreducible, non-negative,
and has right-eigenvector 1 with eigenvalue N. Now the existence of b and the
asymptotic result in the theorem follow from standard Perron-Frobenius theory,
seee.g. [8]. O

Next, for each state v* of A/ and each integer n > k. we define

pl =1EW, 3)
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the number of paths of length n in M that have a child in AV starting in state v*.
We observed earlier that for n > k, the sets Zf}?) ,1 € I, partition T hence

IEPI=)"p )
iel,

(n)

v o

Let p denote the vector with components p

Proposition 3: The vectors p', n > k. satisfy

p(n+1) — DJ\[[)(”)-
Proof: Forn > k, we have that
+1 & (nt1
puth = B
_ Z |2(n+])|
= Z > end(cx*)'
where the sums are over all a* for which beg(a™) = v*. o

Now, for each state v of M, we define
9(’1) |E(n) |/N", (5)

and we let #7 denote the vector with components the 55") We will use the above
results to derive the following.

Theorem 4: (i) The vectors 8™, n = 1,2, ..., satisfy
NG® < Dy,
(i1) For each state v, the limit

6, = lim 6"

exists, and there is a constant ¢ > 0 such that 6 = ¢y holds, where 9 is the vector
with components 8,.

Proof: (1) To prove (i), it is sufficient to note that

AR

()
= Z |Z ende
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where the sums are over all transitions o of M with beg(«) = v. The inequality

reflects the observation that there could be paths aje - - - o), from v that are not

in " but for which &y - - - a,, has a child in A; the set £ can even be empty.
(i1) From Proposition 3, we may conclude that

p™ = Dk p®),
for n > k. Hence by Proposition 2, we have that

lim N7"p"™ = N*@®" . p*)H1.
n—>oC
Put
c=N*@b". p®).

Note that ¢ > 0. From (4), we now conclude that

lim 6% = 1
icly

= Y.
a

Let 6 be the smallest non-negative non-zero integral vector in the linear span
of the vector 6, or, equivalently, in the linear span of y. Then the above theorem
has the following consequence.

Theorem 5: Both y and 6 are [ M, N]-approximate eigenvectors, and
¢zy=z0.

Proof: Since both y and 6 are integral and contained in the linear span of 0,
the fact that both vectors are approximate eigenvectors follows from Theorem 4.
From the definition of 6, the inequality y > 6 is obvious. Finally, the number
of children y, of a state v of M in A is certainly not greater than the number of
children of v in M*, which in turn is at most equal to ¢, if ¢, > 0; if ¢, = O,
then y, = 0 by our assumption on A\, o

7.5 How M and C determine 6

In this section we will derive an expression for |flf,")| in terms of M and the
codeword sequences C generated by A only. In view of Theorem 5, we thus
obtain a lower bound for ¢ in terms of M and C alone. The result that we need is
given by our next theorem.
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Theorem 6: The following statements are equivalent.
(i) The path apory - - - @, 18 contained in Z,Sn).
(ii) There exists aword x = x_,, -+ - xg - - - X141 in C that is generated in M by

apathw =w_;; - wpyy 1 for whichw; = ;,0 <i <n-—1.
Proof: First, let agat) - --ap_y € 57, with child of o | in N, say.
Since NV is irreducible, this path can be extended to a path «*, -+, | in N,

with parent o, - - cg - - - 1 - - - Upaq—1 in M. Soif x is the word generated by
these paths, then x has the property in (ii).
Now suppose that x is a word in C as in (ii). Since x is in C, there is a path

B* = B*, B, in N that generates x. Let B = B_,; -+~ Byra—1 denote
the parent in M of this path. By our assumption that M has memory m and
anticipation a, the paths 8 and w agree in positions 0, ..., n — 1, that is, 8; =
w;i = o;,0 <i <n—1, hence wpx, - - -a,—; has child ﬁg By in A and is
contained in . O

The above theorem thus shows that fl,()"), and hence é, is determined by M
and C only, and therefore does not depend on the particular encoder N

7.6 Main results

We can now summarize the main results in this paper as follows.

Theorem 7: Let M be an FSTD of finite type, and let ¢ be an [M, N]-
approximate eigenvector. Let C be an irreducible code system generated by some
irreducible rate-N encoder FSTD A obtained from M and ¢ by ae-consistent
state splitting, and let 6 be determined by M and C as in Theorem 6. Let y, be
the number of children in A/ of state v in M. Then the following holds.

(i) The encoder A/ can also be obtained by ae-consistent state-splitting from M
and y.

(ii) The inequality ¢, > v, holds for each state v of M.

(iii) The vectors § and y are linearly dependent.

(iv) If # denotes the smallest non-zero non-negative integral vector in the linear
span of 6 (or, equivalently, in the linear span of y), then ¢, > 6, holds for each
state v of M.

This theorem has an important consequence.

Theorem 8: Let S be a constrained system of finite type, presented by an
FSTD M of finite type, and let C be an irreducible code system of some en-
coder obtained from an [M, N]-approximate eigenvector by ae-consistent state-
splitting. (Here the value of N is determined by M and C.) Then there exists a
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(unique) vector y* = y*(M, C) with the following properties.

(1) The vector y™* is an [ M, Nl-approximate eigenvector, and has the further prop-
erty that C is the code system of a rate-N encoder that can be constructed by ae-
consistent state-splitting from M and y*.

(it) Any other [M, N]-approximate eigenvector ¢ with this property satisfies
¢ > y*, thatis, ¢, > y; holds for each state v of M.

Proof: Since the vector 6 as defined in Theorem 7 only depends on M and C,
but not on the particular encoder A/, it follows from part (iii) of Theorem 7 that
all the vectors y that can be obtained from encoders as described in that theorem
are scalar multiples of the same vector 6. Let y* = y*(M, C) be the smallest of
all such vectors y. (This minimum exists since all ¢ have integer components.)
Our two claims now follow from parts (i) and (ii) of Theorem 7. O

The above justifies to call this vector y* the approximate eigenvector of the
code system C. Unfortunately, the definition of y* is highly non-constructive.
However, we can determine the linear span of y*, for example from an encoder A/
for C together with the state-splitting procedure used to obtain it and inspection
of the corresponding vector y. But the definition of y* gives no further clues
on how y* itself could be found. It would therefore be interesting to obtain a
constructive description of y*, purely in terms of the sequences contained in C.
Perhaps the methods in [2] can be of use to obtain such a result. Note also that the
lower bounds on the number of encoder states derived in [6] deliver also a lower
bound on ), ¥, but in general the number of states in A/ can be reduced by state
merging and therefore such a bound need not be tight.

7.7 Some remarks

1. Provided that the constraint is of finite type. the approximate eigenvector 0
can also be obtained in a different way. Let us define £ to denote the number
of paths of length n in M that start in state v and generate a word in the code
system C, and let

0" = |2 /N".

If ™ is the vector with components the numbers é,f"), then we can show, by the
same method as used in Section 7.4, that the limit

6 = lim "

n—00

exists and that 6 is again a scalar multiple of the vector y. We leave the verification
of these claims to the reader.
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2. Severall possible converses of Theorem 7 are certainly false. Firstly, it
may happen that a code system cannot be obtained by ae-consistent state splitting
from an approximate eigenvector ¢ although ¢ > y = 6 holds (e.g., Exam-
ple 3). Secondly, it is also possible that C cannot be obtained by ae-consistent
state-splitting from ¢ (e.g., Example 2). And thirdly, there are examples of codes
that can be obtained by ae-consistent state splitting from distinct approximate ei-
genvectors (e.g., Example 2). Let us say that an approximate eigenvector ¢ is
tight if none of the vectors ¢’ obtained from ¢ by lowering some component by
one is again approximate eigenvector. Perhaps it is true that independent right
approximate eigenvectors always produce distinct code systems.

7.8 Applications

We will use our previous results to show that certain “good” codes can be ob-
tained by ae-consistent state-splitting only with an approximate eigenvector con-
taining “large” components. The main problem of code construction with the
ae-consistent state-splitting algorithm is the enormous amount of freedom, both
in the choice of state-splitting steps and labelling with source symbols, and in the
choice of an approximate eigenvector. Given an approximate eigenvector, some
heuristics have been developed [7], [3] to guide the choice of the state-splitting
steps in order to obtain “good” codes. Also, both practical and theoretical con-
siderations seem to suggest to choose an approximate eigenvector that is “small”
and, in particular, to choose one with smallest maximal component. The follow-
ing example shows in a rather strong sense that such a choice does not always lead
to the best code available. Indeed, for each N > 3, we will construct a constrained
system of finite type Sy, of capacity at least NV, for which an approximate eigen-
vector can be found with maximal component equal to two. We will show that
each Sy affords a one-symbol encodable, block-decodable code Cy, but that Cy
can only be constructed by ae-consistent state-splitting with an approximate ei-
genvector whose maximal component is at least N. In fact, we will shown that
no BDB code [4] can be found by ae-consistent state-splitting with an approxi-
mate eigenvector whose maximal component is less than N. Here, a BDB code
essentially is a block-decodable code that can be encoded by a finite-state encoder
with a finite, bounded encoding delay. In this context, the labels of M are often
referred to a codewords. The collection of labels that decode to a fixed source
symbol is called a codeword class.

Example 1: Let N be a fixed integer with N > 3, and letn = [N/2]. We
consider the constrained system S with alphabet F' = {1,2,..., N + 1} and for-
bidden words
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Figure 1: The FSTD M.

(i) Nj, n+l<j<N-—-lorj=N+41,

(i) (N + 1)/, l<j=n

This constrained system S can be presented by the three-state FSTD M in Fig-
ure 1. Note that M is deterministic, and even of finite type, with memory 1 and
anticipation 0. In fact, M is the minimal deterministic presentation, the Shannon
cover, of S.

It is not difficult to see that the vector ¢ with components ¢, = 2 and ¢,,, =
¢,, = 1 is the (component-wise) smallest [M, N]-approximate eigenvector. The
vector ¢’ with components ¢, = N, ¢y, = n, and ¢; = N —n is also an
[M, N]-approximate eigenvector.

We first describe a one-symbol look-ahead encodable, block-decodable code
for S with source alphabet B = {1, 2, ..., N}. The codeword classes of this code
are givenby F; = {i}, 1 <i < N —1,and Fy = {N,N + 1}. In fact, it is
not difficult to verify that any block-decodable code for S with source alphabet of
size N > 3 necessarily consists of these codeword classes. This observation will
be used later on.

We now describe an encoding procedure which shows that one-symbol look-
ahead encoding is indeed possible. An encoder for this code starts in state o and
encodes source symbol i, 1 < i < N — 1, by the transition from the actual state
to state o with label i and the source symbol N by the transition from the actuval
state to state ng or n;, depending on whether the next source symbol 1s at most #
or larger than n.

It is easily seen that the collection C of possible code sequences consists of
all sequences from S that do not contain “NN”, and so C is generated by the
FSTD M’ obtained from M by deleting the loop at state N. (Note that M’ has
capacity exactly log N.) From this description of C and from Theorem 6, it is
evident that the collection £ consists precisely of all paths of length » from v
in M’. As a consequence, the vector ¢’, which is (up to a constant) the unique
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[M’, N]-approximate eigenvector, is contained in the linear span of the vector 6
as defined in Section 7.4. This can be shown directly, but also by constructing an
encoder graph N for this code by state-splitting and then using Theorem 4.

To construct such an encoder AV, we first delete the loop at 1o in M, then we split
state o into NV states o/, for 1 < J = N, state ng into n states 176 forl < j <n,

and state n| into N — n states ’7‘11 ,forn + 1 < j < N;here we assign transitions
with label j to split states s/ with index j (or to n{v if j = N + 1). Note that
no children of the loop at ng in M are present in A/ and that all possible children
of other transitions are present in A/, Since each state in A/ has out-degree N, it
follows that A is an encoder graph. Moreover, A is indeed an encoder for the
block-decodable code described earlier (with an encoding delay of one symbol),
and each state v from M has ¢/ children in N, that is, ¢’ = y. The decoder for
this code will have a window-size of two symbols, but decoding only depends on
the second symbol in the window.

It is not difficult to verify that for odd N, the smallest positive integer vector
contained in the linear span of ¢’ is ¢’ itself. So we have shown that for odd N,
both the vector 0 obtained as in Theorem 7 from M and C and the vector y* are
equal to ¢’. As a consequence, Theorem 7 now implies that for odd N, the code
system C can only be obtained by ae-consistent state-splitting with an approximate
eigenvector ¢ for which ¢ > ¢'. In particular, such a approximate eigenvector ¢
will have a maximal component at least equal to N.

However, when N is even, we have that y* = ¢. Indeed, for even N, the
vector ¢ is an [M’, N]-approximate eigenvector, where M’ is as defined earlier,
and M’ has capacity log N. So code construction by state splitting from the pair
(M. @) may start by the deletion of the loop in M at g, and, in that case, will lead
to a code with code system C, which is the system presented by M. Nevertheless,
the code thus obtained will not be block-decodable. In fact, we will show that if a
block-decodable code is obtained by ae-consistent state-splitting with an approx-
imate eigenvector ¢, then necessarily ¢, > N, v =1,..., N — 1. (Those readers
not interested in the details may skip the remainder of this example.)

To see this, let us assume that we obtain a decoder graph A by M > [ rounds
of state-splitting (and possibly the deletion of some transitions and states), and
that the resulting code is equivalent to a block-decodable code, in the sense of
[3]). (That is, the code will be block-decodable up to a fixed “‘delay”, see below.)
The decoder for this code will have a decoding window of size w, say. where
2 < w < M+ 1. (Since fewer than N transitions leave states N and N + 1, w
is at least two.) Moreover, as shown in [3], the fact that the code is equivalent to
a block-decodable code implies that the actual encoding will depend on the /ast
symbol in the window only; here we may asume without loss of generality that
the codeword classes are the F; defined earlier and that a member of F; decodes
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as the source symbol i.

We claim that such a code cannot exist if state ¢ has less than N children
in A. This can be seen as follows. Fix i, ] <i < N — 1. First note that there
must be a child of state o in A\, say state !, and a child of the loop & with label
i at state ¢ in M, say o', such that ¢! is a loop at o!in NV. Indeed, the source
sequence

N O T

is necessarily encoded by a path in N that (with the possible exception of the
first transition) consists of children of transition « only, and therefore the path
eventually consists of the repetition of a single loop in .

Now, consider the encoding of a source sequence of the form

e ik ko kL (6)

where 1 < k < N. After encoding of the last source symbol i, the encoder will
be in state o!. Then the next source symbol k will be encoded by a transition
in A that carries source label k and (codeword) label v, say. Hence the decoding
window of the (w — 2)-but-last source symbol i looks like

By our earlier remark, this window decodes as v (oras N if v = N + 1) and
should decode as i, therefore v = i, so the transition that encodes & is also a child
of a.

Now, if state o has fewer than N children in AV, then the transition « can have
at most N — 1 children in V, hence some source symbol k does not occur as
source label on any of these children, and, by the above reasoning, for this &k the
source sequence (6) cannot be encoded properly. o

7.9 Discussion

There has always existed an intimate relation between code construction methods
on the one hand and approximate eigenvectors on the other hand. In an attempt to
explain some of the reasons for this connection, we have investigated the relation
between a modulation code for a given constrained system and the approximate
eigenvector used in ae-consistent state-splitting to construct the code.

In the case that the constraint is of finite type, our main result is a lower
bound on this approximate eigenvector, determined by the code sequences (the
code system) of the code only. It seems possible to derive a similar result in
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Figure 3: The encoder N for Example 2.

the case where the constraint is of almost-finite type, but we did not pursue this
question here.

We also show that for each irreducible finite-type code system there exists a
unique smallest approximate eigenvector to construct this code system, but the
problem to give a constructive description of this vector remains unresolved.

Appendix

For the sake of completeness we collect some examples illustrating claim 2 in
Section 7.7.

Example 2: Let M be the FSTD in Figure 2. Let S denote the constrained
system presented by M. Again, we take N = 2.

Consider the encoder AV for S in Figure 3. Obviously, we can obtain N using
an approximate eigenvector ¢ = (2,2) = y,or ¢ = (3,2), or ¢ = (2, 3), but
not with ¢ = (1, 1). Also obviously, ' and M generate the same system. The
presentation A/ is not minimal; it can be reduced by merging states o'! and 2.
Note that the pair of states that are merged do not consist of children of the same
state in M. O

Example 3: Let M be the FSTD in Figure 4. Again, we take N = 2. First,
we consider the [ M, 2]-approximate eigenvector 6 = (2, 1, 1). We have to split
state 1, which can be done in only one way, and the result is a state 1° with
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3

Figure 4: The FSTD M for Example 3.

successors 2, 3 and a state 1! with successors 1° and 11, (After this step all states
have weight 1 and at least two successors.) To obtain an encoder, we have to
remove one of the three successors 1°, 1!, or 3, of state 2. Therefore, depending
on which of the three successors will be deleted, the resulting code system C will
have as a forbidden blocks either 211, or 212 and 213, or 23.

Next, we consider the [M, 2]-approximate eigenvector ¢ = (3,2, 1). Here, to
obtain an encoder we have to split states 1 and 2, and then to delete some successor
of state 3 in the graph thus obtained. We leave it to the reader to verify that in all
cases the forbidden blocks referred to above will be present in the resulting code
system C’, so that in all cases C £ C'. O
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Summary

Modulation codes

This thesis concerns digital modulation codes or channel codes as employed
in digital transmission or storage systems (e.g., a compact disc system). The data
processing in such systems can be sketched as follows. At the senders side, the
analogue data stream at the input (e.g., sound captured by a microphone) is first
sampled and digitized. Then the digital data thus obtained is compressed. Next,
the compressed data is protected by means of an error-correcting code. Finally,
the resulting digital data is transformed by means of a modulation code into a data
sequence that possesses certain desirable properties, referred to as an admissible
sequence, which is subsequently transmitted or stored on a medium such as disk
or tape, in analogue form (e.g., written on a compact disk).

At the receiver’s side, the whole process is reversed. First the original digital
form of the transmitted or stored data is recovered as well as possible from the
analogue data that is received or read, and is transtformed back by means of the
modulation code. Then the error-correcting code is used to correct possibly cor-
rupted parts of the data. Finally, the corrected data is decompressed and restored
to its original analogue form.

In the theory of modulation codes the following topics play an important role:
kinds of collections of admissible sequences; construction of encoders that re-
alise the transformation from arbitrary sequences to admissible sequences and the
corresponding decoders to recover the original sequences from their transformed
form; the complexity and other aspects of encoders and decoders; and code effi-
ciency.

As said above, modulation codes are employed to transform arbitrary data
sequences into special, admissible sequences. Which sequences are admissible
depends on various technical constraints imposed by the system for which the
code is designed. Well-known examples that also play a role in this thesis are
the “dc-balanced” sequences, bipolar ({—1, 1}-valued) sequences whose running
digital sum does not surpass certain specified values (as a consequence, such se-
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quences have a spectral zero at the null-frequency, “at dc”); the (d, k)-constrained
sequences, binary sequences in which each two consecutive symbols “1” are sep-
arated by at least d and at most k& symbols “0”; and the related class of (d, k)
RLL sequences, binary sequences in which each group of successive symbols “0”
or “1” in the sequence has size at least d + 1 and at most k 4- 1. (The practical
relevance of such constraints is explained in the first chapter of this thesis.)

In all important applications, the collection of admissible sequences can be
conveniently described as the collection of label sequences generated by the walks
in a certain labeled directed finite graph. (Think of such a graph as of a description
of the crossings and their connecting roads of a town where only one-way traffic
is allowed. The labels are the street-names; the admissible sequences are all those
sequences of street-names that correspond to possible tours in the town.)

The graph describing a given collection of admissible sequences is not unique,
and in fact many code construction methods for modulation codes (i.e., of en-
coders and decoders) essentially depend on finding a suitable graph to describe
the given collection of sequences.

An important type of constraint often encountered in applications is that no
member from a given finite set of patterns is allowed to occur in a transmitted se-
quence. (For example, it is not difficult to see that the (d, k) constraint mentioned
earlier is of this type.) A collection of sequences that satisfy such a “constraint of
finite type™ always admits a description by means of a suitable graph.

Obviously, there are more arbitrary sequences of a certain length than admis-
sible sequences of that length. This simple observation has as important con-
sequence that encoding in general will necessarily result in a longer admissible
sequence: more bits will be required to represent the information. The average
ratio of the length of the original sequence to the length of the corresponding en-
coded sequence is called the “rate” of the code. For example, if encoding doubles
the length, then the rate equals 1/2. (“One bit of information per two encoded
bits”.) The rate of a code 1s always a number between zero and one.

In general we can say, “the higher the rate the better”. However, it turns out
that for each collection of admissible sequences that can be described by means
of a graph, there actually is a limit to the achievable rate. This maximal rate
is called the capacity of the collection of admissible sequences. The capacity
can be computed relatively straightforward from a given graph description. The
efficiency of a code is the ratio of the rate of the code to the capacity.

Generally speaking, the received sequence to be decoded will not be exactly
the same as the originally transmitted sequence, due to, e.g., possible damage to
the storage medium (scratches on the disk) in the case of data storage, or bad
weather conditions (lightning) in the case of data transmission. In other words,
the received sequence may contain errors. The decoder will have to be able to
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deal with these errors: we cannot allow the situation where a single erroneous bit
can cause the decoder to produce an enormous amount of errors in the original
sequence. (The effect that a single error may lead to several errors after decoding
is called error propagation.)

For this reason, most practical decoders employ a decoding window of a fixed
size. Here, to recover a specific original bit, only a part of the received sequence
is involved, namely only the part that falls within the decoding window of this bit.
We can now imagine the decoding process as a sequence of decoding decisions,
where we slide the decoding window over the sequence that is to be decoded.
This explains the pictorial name “sliding-block decoder” in use for this type of
decoder. Note that an error in the received sequence only influences the decoding
decision as long as it is contained in the decoding window, hence indeed affects
only a limited number of the recovered bits.

The size of the decoding window is an important parameter of a code: not only
does this size provide an upper bound to the expected amount of error propagation,
it also gives an indication of the complexity (and hence of the size of a hardware
implementation) of the decoder.

A special case of these sliding-block decodable codes is constituted by the
block-decodable codes. These codes can be decoded by first grouping the received
bits into blocks of a fixed size, followed by separate decoding of each of the
blocks, independent of preceding and succeeding blocks.

In Chapter 1 we first give an overview of the different parts that constitute a
digital communication scheme. Here, we emphasize the mathematical principles
that underly the functioning of these parts and their interaction with various prac-
tical constraints. Then we present an extensive overview of the various aspects of
the theory of modulation codes, as well as an extensive discussion of and moti-
vation for the further material in this thesis. All the topics mentioned above are
reviewed again in more detail, on a somewhat deeper level but as far as possible
in an elementary way. With an exception here and there, this chapter consists of
known material.

In Chapter 2 we compare two modulation codes for the dc-balanced con-
straint, namely the “polarity-bit” code, and a code introduced by Knuth. It had
been shown earlier that the “sum variance” of such codes constitutes a good per-
formance criterium. My contribution here is an exact evaluation of a good ap-
proximation to the sum variance of the Knuth code, which required the solution
of a combinatorial counting problem. The results show that the performance of
this code in general does not justify its greater complexity.

In many applications, the encoded data is grouped into large blocks of a fixed
size called “frames”. Here, the beginning of each frame is marked by a fixed
synchronization pattern that is not allowed to occur anywhere else in the data
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stream. This requirement leads to a certain loss of capacity. In Chapter 3 we
describe a method to compute this loss of capacity for each given pattern when
moreover the encoded data has to obey a (d, k) constraint. My contribution here
mainly concerns the employed enumerative techniques.

The next three chapters are concerned with BD codes, sliding-block decodable
codes for constraints of finite type that can be encoded with a bounded encoding
delay (or, equivalently, by looking ahead at a limited number of bits).

One of the most important code construction methods is the ACH state-split-
ting algorithm. This method acts directly on a graph that presents the constraint;
in a number of rounds of state-splitting, this graph is guaranteed to be transformed
into an encoder for the constraint. This process is guided by an “approximate ei-
genvector”, certain integer weights associated with the vertices (“states”) of the
graph. In general, this algorithm offers much freedom-of-choice, and, unfortu-
nately, it is not obvious how to use this freedom to obtain a code with a small
decoding window.

In Chapter 4, a method is developed that at least partly overcomes this draw-
back. The method is based on a new, simple “local” construction method for BD
codes. Here, in each vertex of the weighted graph, a certain partition problem has
to be solved, a problem that is easily dealt with as long as the number of edges
leaving the relevant vertex is small. If in each vertex this partition problem is suc-
cessfully solved, then a code is readily obtained; moreover, optimization of the
decoding window size of the resulting code is possible.

It may happen that the partition problem in some of the vertices is unsolvable.
However, this difficulty can always be dealt with by means of a number of rounds
of state-splitting, where moreover the very difficulty now offers additional guid-
ance. It turns out that this approach allows the construction of both already known
as well as new, good codes.

In Chapter 5, a construction method is presented for block-decodable BD
codes (BDB codes); in addition we show that each “suitable” BDB code can—
at least in principle— be obtained by this method. Our results here imply that the
construction method from Chapter 4 is universal: in principle, each “‘suitable” BD
code can be obtained by that method. This, in turn, provides an alternative proof
for the fact that the ACH algorithm is also universal. Furthermore, we use our
results to solve some decision problems.

Subsequently, the method is employed in Chapter 6 to construct a block-
decodable (1, 8) RLL code of rate 8 — 12. Such a code is attractive to employ
in combination with symbol-error-correcting codes such as Reed-Solomon codes
over an 8-bit alphabet.

Many known code construction methods employ an approximate eigenvector
in an essential way; different choices for this vector in general lead to different
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codes. The work in Chapter 7 tries to shed some light on this intimate connection
between codes and approximate eigenvectors. First we describe a construction
that produces an approximate eigenvector for a graph, assuming this graph and
a modulation code for the constraint presented by this graph. Then we show
for example that the following holds: whenever it is possible to construct the
given code using the ACH algorithm in combination with another approximate
eigenvector, then this other vector is, components-wise, at least as large as the
constructed vector. Moreover, we present an example showing that the “smallest”
approximate eigenvector does not always allow the construction of the simplest
possible code.

Henk D.L. Hollmann



Samenvatting

Modulatie codes

Dit proefschrift handelt over digitale modulatie codes, ook wel kanaal co-
des genoemd, zoals aangewend in digitale data transmissie- en opslag-systemen
(een compact disc systeem bijvoorbeeld). De data processing in zulke systemen
verloopt ruwweg als volgt. Aan de kant van de zender wordt de aangeboden
analoge data stroom (bijvoorbeeld geluid geregistreerd door een microfoon) eerst
bemonsterd en gedigitaliseerd. Daarna wordt de aldus verkregen digitale data
gecomprimeerd. Vervolgens wordt de gecomprimeerde data beschermd middels
een fouten-corrigerende code. Tenslotte wordt de hierdoor verkregen rij digitale
data door middel van een modulatie code getransformeerd in een data reeks met
zekere gewenste eigenschappen, een zogeheten toegestaan rijtje, en vervolgens
in analoge vorm uitgezonden of geschreven op een medium zoals disk of tape
(bijvoorbeeld opgeslagen op een compact disc).

Aan de kant van de ontvanger wordt het hele proces in omgekeerde volgorde
doorlopen. Eerst wordt de oorspronkelijke digitale vorm van de uitgezonden of
opgeslagen data zo goed mogelijk gereconstrueerd uit de ontvangen of gelezen
analoge data, en terug getransformeerd middels de modulatie code. Vervolgens
wordt de fouten-corrigerende code gebruikt om eventueel verminkte delen van
de data te herstellen. Daarna wordt de gecorrigeerde data gedecomprimeerd en
omgezet in z'n oorspronkelijke analoge vorm.

In de theorie van modulatie codes spelen de volgende zaken een belangrijke
rol: soorten collecties van toegestane rijtjes; constructie van encoders om de trans-
formatie van willekeurige rijtjes naar toegestane rijtjes te realiseren en de bijbeho-
rende decoders nodig voor het terugwinnen van het oorspronkelijke rijtje uit z’n
getransformeerde vorm; de complexiteit en andere eigenschappen van encoders
en decoders; en efficientie van codes.

Zoals gezegd wordt de modulatie code gebruikt om willekeurige data rijtjes
om te zetten in speciale, toegestane rijtjes. Welke rijtjes toegestaan zijn wordt be-
paald door allerlei technische eisen, opgelegd door het systeem waarvoor de code
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wordt ontworpen. Bekende voorbeelden die in dit proefschrift ook een rol spe-
len zijn de ‘DC-balanced’ rijtjes, bipolaire ({—1, 1}-waardige) rijtjes waarvan de
lopende digitale som bepaalde gespecificeerde waarden niet overstijgt (het spec-
trum van zo’n rijtje heeft dan een nulpunt in de nul-frequentie, ‘in DC’); de (d, k)
rijtjes, binaire ({0, 1}-waardige) rijtjes waarin elk tweetal opeenvolgende enen ge-
scheiden wordt door tenminste d en ten hoogste k nullen, en de hiermee verwante
klasse van ‘(d, k) RLL’ rijtjes. binaire rijtjes waarin het aantal achtereenvolgende
nullen of enen tenminste d + 1 en ten hoogste k + 1 bedraagt. (De practische
relevantie van zulke eisen wordt verklaard in het eerste hoofdstuk van dit proet-
schrift.)

In alle belangrijke toepassingen kan de collectie toegestane rijtjes beschreven
worden als de collectie van label rijtjes gegenereerd door de wandelingen in een
zekere gelabelde gerichte eindige graaf. (Denk aan een gerichte eindige graaf
als aan een beschrijving van de kruispunten en bijbehorende verbindingswegen
van een stad met alleen éénrichtingsverkeer. De labels zijn de straatnamen; de
toegestane rijtjes zijn alle rijtjes van straatnamen die horen bij mogelijke routes
door de stad.)

Er zijn vele grafen die een gegeven verzameling toegestane rijtjes beschrijven,
en veel constructie methoden voor modulatie codes (dat wil zeggen. van encoders
en decoders) berusten in essentie op het vinden van een geschikte graaf voor de
gegeven collectie rijtjes.

Een belangrijke en veel in de praktijk voorkomende soort beperking is dat
géén van een gegeven, eindig aantal patronen in de uit te zenden rijtjes mag voor-
komen. (Het is bijvoorbeeld eenvoudig na te gaan dat de eerder genoemde (d, k)
eisen van dit type zijn.) De collectie van rijtjes die voldoen aan zo'n ‘beperking
van eindig type” kan altijd worden beschreven middels een geschikte graaf.

Er zijn meer willekeurige rijtjes van een gegeven lengte dan toegestane rijtjes
van die lengte. Deze simpele observatie heeft als belangrijke consequentie dat
encoderen van een willekeurig rijtje in het algemeen zal moeten resulteren in een
langer toegestaan rijtje: er zullen dus meer bits nodig zijn om de informatie te
representeren. De gemiddelde verhouding van de lengte van het oorspronkelijke
rijtje tot de lengte van het bijbehorende gecodeerde rijtje heet de ‘dichtheid” van de
code. Als bijvoorbeeld encoderen leidt tot twee maal zo lange rijtjes, dan zeggen
we dat de dichtheid van de code gelijk is aan 1/2. (‘Eén informatie bit per twee
gecodeerde bits’.) De dichtheid van een code is een getal dat altijd tussen nul en
één ligt.

In het algemeen geldt: hoe hoger de dichtheid hoe beter. Echter, het blijkt dat
voor iedere verzameling van toegestane rijtjes beschreven door een graaf er een
grens is aan de mogelijke dichtheid van een code voor deze verzameling. Deze
maximaal te realiseren dichtheid heet de capaciteit van de verzameling toegestane
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rijtjes. Deze capaciteit kan relatief eenvoudig worden bepaald uit de beschrijvende
graaf. De efficientie van een code is de verhouding tussen de dichtheid van de code
en de capaciteit.

In het algemeen zal het ontvangen, te decoderen rijtje niet precies hetzelfde
zijn als het oorspronkelijk uitgezonden of opgeslagen rijtje, dit ten gevolge van
bijvoorbeeld optredende beschadigingen van het opslagmedium (krassen op de
cd) in het geval van data opslag, of slechte weersomstandigheden (bliksem) in het
geval van data transmissie. Met andere woorden, het ontvangen rijtje zal fouten
bevatten. De decoder zal tegen dit verschijnsel bestand moeten zijn: het mag niet
zo zijn dat een enkel fout bit na decoderen kan resulteren in het optreden van een
enorm aantal fouten in het oorspronkelijke rijtje. (Het effect dat een enkele fout
kan leiden tot meerdere fouten na decoderen heet fout-propagatie.)

Om deze reden wordt van practische decoders meestal geeist dat zij gebruik
maken van een decodeer-venster van vaste afmeting. Hierbij wordt voor het te-
rugwinnen van elk specifiek bit slechts een beperkt deel van het te decoderen rijtje
gebruikt, namelijk alleen dat deel dat valt binnen het decodeer-venster van dit bit.
Het decodeer proces laat zich nu voorstellen als een reeks van decodeer beslis-
singen, waarbij het decodeer-venster over het te decoderen rijtje heen geschoven
wordt. Dit verklaart de beeldende naam ‘sliding-block decoder’ voor dit type de-
coder. Een fout in het ontvangen rijtje heeft nu slechts invloed op het decodeer
proces zolang deze fout valt binnen het decodeer-venster, en beinvloed dus inder-
daad slechts een gelimiteerd aantal te decoderen bits.

De grootte van het decodeer-venster is een belangrijke parameter van een
code: behalve dat deze grootte een bovengrens geeft aan de te verwachten hoe-
veelheid fout-propagatie, vormt het ook een indicatie voor de complexiteit (en dus
de grootte van een hardware implementatie) van de decoder.

Een speciaal geval van sliding-block decodeerbare codes zijn de blok-deco-
deerbare codes. Zulke codes kunnen worden gedecodeerd door de ontvangen bits
te groeperen in blokken van vaste grootte, en vervolgens elk blok afzonderlijk te
decoderen, onafthankelijk van voorafgaande en volgende blokken.

In Hoofdstuk 1 geven we eerst een overzicht van de verschillende delen van
een digitaal communicatie systeem. De nadruk ligt hier op de wiskundige princi-
pes waarop deze onderdelen zijn gebaseerd en hun interactie met allerlei practi-
sche eisen. Vervolgens geven we een zeer gedetailleerd overzicht van de theorie
van modulatie codes, alsmede een uitgebreide bespreking van en motivatie voor
het verdere werk in dit proefschrift. Alle hierboven genoemde aspecten komen
hier opnicuw en in meer detail aan de orde, wat meer uitgediept maar voorzover
mogelijk op elementaire wijze. Op hier en daar een uitzondering na bestaat dit
hoofdstuk uit bekend materiaal.

In Hoofdstuk 2 worden twee modulatie codes voor de DC-balanced eis, na-
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melijk de ‘polarity-bit’ code en een code bedacht door Knuth, met elkaar verge-
leken. Al eerder was aangetoond dat de ‘sum-variance’ van dergelijke codes een
goede maat is voor hun performantie. Mijn bijdrage hier is een exacte evaluatie
van een goede benadering van deze parameter voor de Knuth-code, waarvoor een
combinatorisch tel-probleem moest worden opgelost. De resultaten tonen aan dat
de grotere complexiteit van deze code in het algemeen niet wordt gerechtvaardigd
door zijn performantie.

In veel toepassingen is de gemoduleerde data gegroepeerd in grote blokken
van vaste grootte, ‘frames’ geheten; hierbij wordt het begin van elk frame gemar-
keerd door een vast synchronisatie patroon dat verder op geen andere plaatsen in
de data stroom mag voorkomen. Deze eis leidt tot een zeker verlies aan capaci-
teit. In Hoofdstuk 3 beschrijven we een methode om voor elk gegeven patroon dit
resulterende capaciteitsverlies te berekenen als tevens de gemoduleerde data aan
een (d, k) eis moet voldoen. Mijn bijdrage hier betreft voornamelijk de gebruikte
enumeratieve technieken.

De volgende drie hoofdstukken handelen over BD codes, sliding-block de-
codeerbare codes voor eisen van eindig type die met begrensde vertraging (of,
equivalent, met in beperkte mate ‘vooruitkijken) kunnen worden geéncodeerd.

Een van de belangrijkste constructie methoden voor sliding-block modulatie
codes is de ACH staat-splits algorithme. Deze methode werkt direct op een be-
schrijvende graaf voor de gegeven eis; in een aantal ronden van staat-splitsing
wordt deze gegarandeerd getransformeerd in een encoder voor een modulatie
code. Dit proces wordt gestuurd door een ‘approximatieve eigen-vector’, zekere
geheeltallige gewichten geassocieerd met de knooppunten (‘staten’) van de graaf.
De algorithme biedt echter meestal zeer veel keuzevrijheid en het is helaas niet
duidelijk hoe deze te gebruiken om te komen tot een code met klein decodeer-
venster.

In Hoofdstuk 4 wordt een methode ontwikkeld om dit nadeel voor een deel te
ondervangen. De methode is gebaseerd op een nieuwe eenvoudige ‘locale’ con-
structie methode voor BD codes. Hierbij moet in elk knooppunt van de gewogen
graaf afzonderlijk een zeker partitie-probleem worden opgelost, een eenvoudig
probleem zolang het aantal uvitgaande kanten in de desbetreffende staat klein is.
Is dit in elk knooppunt gelukt dan kan een code verkregen worden; optimalisatie
naar venstergrootte is hierbij mogelijk. Het is mogelijk dat het partitie-probleem in
sommige knooppunten onoplosbaar is. Deze moeilijkheid kan echter altijd wor-
den opgelost middels een aantal ronden van staat-splitsing, waarbij de eerdere
moeilijkheid nu juist extra sturing verschaft. Met deze aanpak blijkt het mogelijk
om zowel reeds bekende als ook nieuwe goede codes te verkrijgen.

In Hoofdstuk 5 wordt een methode beschreven voor de constructie van blok-
decodeerbare BD codes (BDB codes), en wordt aangetoond dat elke ‘geschikte’
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BDB code—tenminste in principe—middels deze methode verkregen kan wor-
den. Een belangrijke consequentie is dat de constructie methode uit Hoofdstuk 4
universeel is: in principe kan elke ‘geschikte’ BD code worden verkregen mid-
dels die methode. Dit, op z'n beurt, levert een alternatief bewijs van het feit dat
de ACH algorithme ook universeel is. Verder gebruiken we onze resultaten voor
de oplossing van enkele beslissingsproblemen.

Vervolgens wordt in Hoofdstuk 6 de bovengenoemde methode aangewend
voor de constructie van een blok-decodeerbare (1, 8) RLL code van dichtheid
8 — 12. Een dergelijke code kan profijtelijk gebruikt worden in combinatie met
fouten-corrigerende codes zoals Reed-Solomon codes over een 8-bits alphabet.

Vele bekende constructie methoden maken een essentieel gebruik van ap-
proximatieve eigen-vectoren, waarbij verschillende keuzen in het algemeen tot
verschillende codes leiden. In Hoofdstuk 7 wordt getracht het verband tussen
codes en approximatieve eigen-vectoren te verduidelijken. Eerst beschrijven we
een constructie van een approximatieve eigen-vector voor een gegeven graaf uit-
gaande van deze graaf en een modulatie code voor de eis beschreven door die
graaf. Vervolgens tonen we onder andere aan dat het volgende geldt: als de ACH
algorithme toegepast met een andere approximatieve eigen-vector de gegeven mo-
dulatie code kan construeren, dan is deze andere vector components-gewijs min-
stens zo groot als de geconstrueerde vector. Door middel van een voorbeeld wordt
aangetoond dat de ‘kleinste’ approximatieve eigen-vector niet altijd leidt tot de
eenvoudigste code.

Henk D.L. Hollmann
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STELLINGEN

behorende bij het proefschrift

Modulation codes
door Henk D.L. Hollmann

I

The Knuth code is not a very efficient dc-balanced modulation code.

[ This thesis, Chapter IL]

11

State splitting techniques can be profitably applied to construct sliding-block decod-
able modulation codes with small decoding windows for finite-type constraints, at a
specified rate p : g, provided that the maximum number of transitions leaving a state
in the g-th power presentation G4 of the constraint is “small”.

[ This thesis, Chapter IV.]

I

Rational irreducible factors of polynomials X" — ¢, ¢ rational. essentially belong
to one of the following three families: the cyclotomic polynomials ¢, (when g =
a"), polynomials 6, ; for which 6, ;(x)0, ;(=x) = ¢,(x?/s) (when n is even and
g = a's"? with s € S(n)), and polynomials v, ; for which ¥, ;(X)¥, s(—x) =
¢n(x*/(—45%)) (when n = 0 mod 4 and g = —a"(25)"* with s € S(n)); here S(n) is
the set of square-free integers s for which /s is contained in the nth order cyclotomic
field.

[H.D.L. Hollmann, Factorization of x — g over Q, Acta Arithmetica, vol. XLV, pp. 329-335, 1936.]

IV

The subgroup of PGL(3, ¢), ¢ = 2™ > 8, fixing an oval in PG(2, q) is isomorphic
with PSL(g). The action of this group on the exterior lines of the oval affords a
(symmetric) pseudocyclic (g/2 — 1)-class association scheme on g(g — 1)/2 points.
For g = 8, this scheme together with another, related scheme are the only three-
class pseudocyclic association schemes on 28 points. Combining suitable relations in
this scheme for ¢ = 32 produces a three-class pseudocyclic association scheme on
496 points.

[H.D.L. Hollmann, Association schemes, Masters thesis, Dept. of Math., Eindhoven U.T., Feb. 1982;
—, Pseudocyclic 3-class association schemes on 28 points, Disc. Math. 52, pp. 209-224, 1984.]



Vv

Wide-sense non-blocking self-routing switching networks between N senders and
M receivers, constructed from switches that employ fixed-directory techniques, neces-
sarily contain approximately N M switches; minimal networks can always be realized
by employing switches of four special types only.

[H.D.L. Hollmann J.H. v. Lint, Jr., Nonblocking self-routing switching networks, Disc. Appl. Math.,
vol. 37/38, pp. 319-340, 1992.

L. Halpenny and C. Smyth, Minimal nonblocking standard-path networks, Electr. Lett. 28-12,
pp. 1107-1108, 1992.

—, A classification of minimal standard-path 2 x 2 switching nerworks, J. Theor. Comp. Sc., vol. 102,
pp- 329-354, 1992.]

VI

We say that an array B can be obtained from an array A of equal size by a row-shuffle
if each row of B only contains entries from the corresponding row of A; a column-
shuffle is defined similarly. With these definitions, each array B can be obtained trom
a given array A of equal size that contains each entry from B, by a sequence of at
most five row- or column-shuffles starting with a row-shuffle; this is no longer true
when “five” is replaced by “four”, as shown, e.g., by the arrays

1 2 ... 98 1 1 .-« 4 5 8 ... 194
A=1|99 100 --. 196 |, B=|2 2 .- 6 6 9 ... 195
* * e % 34 ... 7 7 10 --- 196

Here an * indicates an empty cell; the first 35 columns of B correspond to the 35 sub-
sets of size three from {1, ..., 7}.

[R.J. Sluijter, H.D.L. Hollmann, C.M. Huizer, and H. Dijkstra, Coupling network for a data processor,
including a series connection of a cross-bar switch and an array of silos, U.S. patent 5 280 620, 1994.]

VII
We consider on-line source coding of a file of length N over an r-symbol alphabet
{1,...,r} (typically, » = 2™), in which letter i occurs p; N times, by means of a

binary uniquely decodable code C = {cy, ..., c,}. Write d; to denote the length of
the encoding ¢; of the letter i. Let L = )\, p;d; denote the average length of an
encoded symbol. let H = Y /_, —p; log p; denote the entropy of the file, and let
3= Zlil d ~logr Pi(di — logr) be the maximum data expansion in bits per symbol. (If
r = 2", then each letter in the file occupies m bits; if now all letters i with d; > m are
in the initial part of the file, then on-line encoding of the file will at first result in an
expansion of the file, where the maximal increase of the length is N 4§ bits, before the
file starts to shrink.) With these definitions, § — L + H < 1 holds. If C is a Huffman
code, then (Huffman codes are optimal) L < H + 1, so the above result implies that
§ < 2, improving the bound § < 4 in [1].

[[11J-F. Cheng et. al., Data expansion with Huffman codes, Proc. ISIT, Whistler, Canada, pp. 325, 1995.]



VIII

A nonsingular k x k matrix A over a finite field GF(g) has order at most g* — 1, with
equality only possible if det(A) is a primitive element in GE(g).

[Henk D.L. Hollmann, Solution to Problem 90-14*, SIAM Review 33-3, pp. 480481, 1991.]

IX

If Hamming-space H(n, 2) is partitioned into k spheres with possibly different radii,
then either k < 2 ork > n + 2; the case k = n + 2 can hold only if one of the spheres
has radius #» — 2 and all other spheres have radius zero.

[H.D.L. Hollmann, J. Korner, and S. Lytsin, preprint.]

X

The modified Levenshtein distance §*(x, y) between words x and y is defined as
§*(x,y) = “x| — |y|| + 8(x. y). Here, |x| and |y| denote the length of the words
x and y and §(x, y) is the (ordinary) Levenshtein distance between x and y, the min-
imum number of insertions and deletions needed to transform x into y. A collection
C of words is a d-deletion i-insertion correcting code if and only if 2(d + i) < §*(C),
where 6*(C) is the minimum modified Levenshtein distance between distinct words
of C.

[ H.D.L. Hollmann, A relation berween Levenshiein-type distances and insertion-and-deletion correcting
capabilities of codes, IEEE Trans. Inform. Theory 39-4, pp. 1424-1427, 1993.]

XI

1) Practical interest in binary error-correcting codes should center around the investi-
gation of decoding maps, (partial) maps ¢ of {0, 1}" into itself with the property that
all vectors “sufficiently close” to a fixed point ¢ of ¢ are mapped to c.

2) One of the reasons for the practical success of product codes is that the product-
code construction in fact delivers a decoding map for a large space from decoding
maps on smaller spaces.

3) The product code C with constituent row code C, € {0, 1}" and column code
C. C {0, 1} consists of all m x n matrices C for which each row is a member of C,
and each column is a member of C,. Invariably, textbooks on coding theory require
that both C, and C, are linear codes, and show that C is also linear, with minimum
distance d(C) = d(C,) x d(C,) and size |C| for which log |C| = log|C,| x log|C.]|.
However, the definition remains valid for arbitrary row and column codes. The ex-
pression for the minimum distance now becomes a lower bound. Moreover, the size
of such “generalized product codes™ can be (much) larger than in the linear case: a
trivial illustration of this fact is the case where both C, and C,. consist of all words
of weight at most one. In view of the two points mentioned above, these generalized
product codes merit further investigation.



XII

Let B = (B; | i € I) be a family of subsets of a finite set V. Write r, to denote the
number of i € I for which v € B;. If max,ep, r, < |B;| — 1foralli € I, then there
exists a subset U of V for which 1 < {U N B;| < |B;| — 1 foralli € I.

XT1IT

We consider ordering in binary sequence spaces, as introduced in [1]. In the nota-
tion of [1] and [2], we have that 7,(0, 2, 1) = (1/3)log(2 + V3) and 7(0,2,2) =
(1/6) log A, where A is the largest real zero of x> — 12x? — 4x — 1 and the logarithm
is to the base of two. i

[[17 R. Ahlswede, J-P. Ye, and Z. Zhang, Creating order in sequence spaces with simple machines, In-
form. and comp. 89, pp. 47-94, 1990.
[21 H.D.L. Hollmann and P. Vanroose, Entropy reduction, ordering in sequence spaces, and semigroups
of non-negative matrices, Preprint “Diskrete Structuren in der Mathematik” 95-092, Universitit Biele-
feld, Germany, 1995.]

XIV

Computation of the inverse of an element in GF(2%") from a given vector representa-
tion can be implemented in hardware with approximately 23 XOR- and AND-gates;
in general such an implementation is to be preferred over one that involves log-tables.

[H.D.L. Hollmann. Data processing method and apparatus for calculating a multiplicatively inverted
element of a finite field, U.S. patent 4 989 171, 1991.]

XV

The length N = 2" split radix FFT algorithm requires the lowest possible number of
multiplications and possesses a regular “butterfly” structure. These and other proper-
ties range this algorithm among the best FFT methods presently available.

{P. Duhamel and H.D.L. Hollmann, Split radix FFT algorithm, Electr. Letters 20-1, pp. 14-16, 1984.]

XVI1

The theory concerning the endgame of the game of “GO” as developed by Berlekamp
is of theoretical value only.

[E.W. Berlekamp and D. Wolfe, Mathematical go endgames: Nightmares for the professional go player,
Ishi Press International, San Jose, CA, 1994.]

XVII

Ook beginnende bridgers dienen te worden onderwezen in het gebruik van transfer
biedingen na een 1SA opening van de partner.
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