

Developing a design framework for communication systems

Citation for published version (APA):
Huis in 't Veld, R. J. (1994). Developing a design framework for communication systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR426301

DOI:
10.6100/IR426301

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR426301
https://doi.org/10.6100/IR426301
https://research.tue.nl/en/publications/0939f310-969a-4ac2-9dbc-11117dc26f2f

Developing a Design Framework
for

Communication Systems

]:~) L5=(S5.[):;) L8=(S6,(]6)

Robert Huis in 't Veld

Developing a Design Framework
for

Communication Systems

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE

TECHNISCHE UNIVERSITEIT EINDHOVEN, OP GEZAG VAN

DE RECTOR MAGNIFICUS, PROF.DR. J.H. VAN LINT,

VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE

VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

DINSDAG 6 DECEMBER 1994 OM 16.00 UUR

DOOR

Robert Johan Huis in 't Veld

geboren te Sliedrecht

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. C.J. Koomen
prof.dr. J.C.M. Baeten

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Huis in 't Veld, Robert Johan

Developing a design framework for communication systems I
Robert Johan Huis in 't Veld. - Eindhoven : Eindhoven
University of Technology. - Fig., tab.
Thesis Eindhoven. - With index, ref. - With summary in
Dutch.
ISBN 90-386-0030-5
NUGI 832
Subject headings: communication systems design I formal

specification languages

Copyright @1994 by Robert Huis in 't Veld, Almelo, The Netherlands.

Acknowledgements

Although I decided to start with PhD research, it was impossible to carry out this research
and complete the thesis without the help and support of others.

First of all, I wish to thank Cees Jan Koomen and Mario Stevens for providing me with
the opportunity to carry out PhD research at the Digital Information Systems Group of
the Eindhoven University of Technology. By combining electrical engineers and computer
scientists into a single group, they created an electrifying and inspiring atmosphere for
research. Many thanks also go to Ferry Johann, Fons Geurts, Peter de Graaff, Lech
Józwiak, Sherif El-Kassas, Anton van Putten, Willem Rovers, Henk van de Weij, Rinus van
Weert, and Thijs Winter for the discussions and the comments on my papers. FU.rthermore
I like to thank Rian van Gaaien for helping me out with the organisational problems that
were caused by my move to the University of Twente.

I am grateful to my second promotor Jos Baeten and to Martin Rem for their comments.
They greatly improved this thesis.

I also thank the Tele-lnformatics and Open Systems group at the University of Twente,
and Eddie Miebiels in particular, for allowing me to complete this thesis. Many thanks go
to Joost-Pieter Katoen, Harro Kremer, and Ing Widya fortheir discussions and pointing
out articles. Indirectly, you influenced the contents of this thesis. I am also grateful to
Albert Nijmeijer for proofreading this thesis.

Chapter 7 of this thesis is based upon the work that I have carried out in the RACE project
CASSIOPEIA. I like to thank those memhers of WP4 who commented on it.

Finally, I would like to thank my parents and my brother for supporting me in all these
years. You three made it really happen.

iii

lV

Preface

In the last fifty years, adva.nces in hardware and software have resulted in small and
powerful computers satisfying the information processing needs of companies and private
individuals. These advances have also allowed for the development of worldwide networks
via which information between geographically distributed sites can be exchanged. In the
near future, these two fields will be integrated into networks of interconnected information
processing units. Services will then become available such as remote processing, distributed
databases, multimedia conference, and virtual private networks.

The complexity of these new services make it impossible for developers to create in an ad
hoc way systems providing these services. Developers need methods that assist them in
requirements capturing, design, realisation, maintenance, and testing of systems. These
methods have to provide a clear insight in the relations between the customers of services,
the developers of systems, the type of services and systems, and the languages used to
specify services and systems.

Objectives

One of the activities of developing systems is the design activity. In this activity, a spec­
ification of a system under design is detailed into a specification that can be realised in
hardware or software. To support this process, a framework of methods, languages, and
tools is needed. This design framework shows the order in which these methods, languages
and tools have to be applied.

In this thesis, attention is only focussed on the language characteristics of design frame­
works and on the choices made while developing a framework of languages that supports
the design of communication systems. Communication systems are all those systems in
which the information exchange between geographically distributed system partsis a ma­
jor development feature. Little or no attention is paid to the role of methods and tools in
design frameworks.

Approach

The approach that we use is to capture in a formal model the constraints on using spec­
ification languages in a design framework. Also, the semantica! features of languages are

V

vi Preface

classified. Together, they form the problem-domain independent aspects that have to be
taken into acconnt while developing a design framework. These aspects are merged with
the specific characteristics of communication systems and a predefined design metbod into
a design framework for communication systems.

The development of this design framework boils down to the development of a specification
language and a consistency relation between specifications. This may give the impression
that this language and this relation are the goals of this thesis. They are not. Only the
motivation bebind the chokes made during their development is of importance.

Outline

This thesis is organised in seven chapters and three appendices. The seven chapters are
the following:

Chapter 1: On Developing Systems.
A development process consisting of five phases is presented. Special attention is
paid to the design activities that are carried out in the architecture phase. Generic
properties of methods supporting these activities are discussed.

Chapter 2: The Role of Languages in the Design Process.
While designing a system, this system is specified at various levels of abstraction.
For these specifications, languages are needed. The role that these languages play in
the design process is outlined.

Chapter 3: Designing Communication Systems.
A special class of systems is introduced: commnnication systems. For this class,
a design metbod is defined. This design metbod serves as a rationale for selecting
features of a specification language used at consecutive levels of abstraction.

Chapter 4: A Specification Language.
To specify the fnnctional properties of communication systems at consecutive levels
of abstraction, a formal specification language is developed.

Chapter 5: Evaluating the Language.
The suitabilîty of the specification language in chapter 4 is evaluated by applying it to
some example specifications, and by discussing the notions of fairness and deadlock.

Chapter 6: Time Enhancement
The specification language is enhanced so that it can also be used to specify real-time
properties of communication systems.

Chapter 7: Synchronising Multimedia Information.
A communication system providing a multimedia information-exchange service is
specified at two levels of abstraction.

Preface vii

Appendix A provides the proofs of properties and theorems found in chapter 4. Some
equational rules for the algebrak language of chapter 4 are presentedinappendix B. In
chapter 5, the notions fair choice and unfair choice are introduced. Appendix C discusses
these notions in more detail.

The interrelations between the chapters of this thesis are shown in figure I. Chapter 1
and 2 together provide a set of problem-domain independent constraints on frameworks
for designing systems. In chapter 3, these constraints are specialised for the design of com­
munication systems and translated into features of a specification language. In chapter 4,
a specification language with the desired features is derived. This language is evaluated
in chapter 5, and it is extended in chapter 6 to express real-time requirements as well.
Chapter 7 uses the time enhanced specification language to design a system providing a
lip synchronisation service.

• communication systems
(chapter 3)

• development of
systems (chapter 1)

• evaluation
(chapter 5)

• specification language
for communication
systems (chapter 4}

• time enhancement
(chapter 6)

~
• lip synchronisation

case study (chapter 7}

Figure I: The relation between the chapters 1 to 7 of this thesis.

N otational conventions

Finite-length sequences of symbols are common in this thesis. Therefore, a well-established
set of concepts and techniques is adopted to reason about them and to write them down.

Fora set of symbols A, thesetof all finite-length sequences of elementsof A is denoted by
A*. An element of A* is called a tmce. The trace withno symbols is denoted by g, The

viii Preface

catenation of traces tandsis the trace obtained by placing trace s to the right of trace t.
This new trace is denoted by ts.

The lengthof a. trace t, denoted by l(t), is the number of symbols out of which trace t is
composed. It is recursively defined by:

l(ê) = 0
l(sa) = l(s) + 1 , s a trace and a a symbol

Throughout this thesis, predicate calculus is used in definitions, lemma.s, properties, theo­
rems, and proofs. In all these cases, the nota.tion of [DF88] is adopted.

Univeraal quantification is denoted by

('Vl: R: E),

where l is a list of bound variables, R is a predicate specifying the range of these variables,
and E is the quantified expression. The predicate evaluates to "true" if and only if for
each contiguration of values of l that satisfies R expression E holds.

Existential quantification is similarly denoted by replacing in ('Vl : R : C) the universal
quantor 'V by the existential quantor 3.

In proofs, it is often necessa.ry to show in a number of steps that two predicates are
equivalent or that the correctness of one predicate can he derived from the correctness of
another. In this thesis, a structured way of writing down these proofs is used [DF88]. To
exemplify this, a.ssume that the correctness of E ~ G follows from E => F and F = G.
Then, this derivation is presented as follows:

E
=? {hint why E =? F}

F
{hint why F = G}

G

Finally, in this thesis dom(!) and rng(!) denote the domain and the range of a mapping
f, respectively.

Glossary of symbols

A glossa.ry is presented of the most important symbols that are used in this thesis. The
symbols are classified into two groups. Namely, those dealing with the model of the design
fra.mework, and those dealing with the specification language that ha.s been developed.
The latter group is subdivided into symbols denoting sets, symbols used in the language's
syntax, and symbols denoting congruence relations.

Preface ix

Design framework model:

Section Notation Meaning

2.3 Si set of specifications at level of abstraction Li.
2.3 [}i or [)Li semantica} brackets, denoting a disjoint partition-

ing of specifications at level of abstraction Li.
2.3 (Si, []i) or (Si, []u) level of abstraction Li.
2.3 L set of levels of abstraction.
2.3 c less abstract than relation on L.
2.3 satL;,u satisfiability relation between the two levels of ab-

straction Li and Lj.
2.3 SAT set of satisfiability relations.
2.3 (L,SAT) model of design framework.
2.3 c+ transitive dosure of the c-relation within a model

of a design framework.
2.3 SAT+ transitive dosure of the BAT-relation within a

model of a design framework.

The specification language:

Sets:

Section Notation Meaning

4.2.1 Act universe of action symbols.
4.2.1 A universe of global action symbols.
4.2.1 Ä universe of local action symbols.
4.2.1 ld set of behaviour names.
4.2.1 Exp universe of expressions without blackbox operator.
4.2.3 e subset of Exp that satisfies the constraints of ta-

ble 4.1 and 4.2.
4.2.5 Eg set of guarded expressions in e.

4.4.1 Act". universe of action symbolss including T.

4.4.1 Ä". universe of local action narnes including T.

4.4.1 Expabs universe of expressions with blackbox operator.
4.4.1 Eabs subset of Expabs that satisfies the constraints of

table 4.1, and 4.2, as well as, the additional con-
straints dealing with the blackbox operator.

4.4.1 eg,abs set of guarded expressions in eo;bs.

6.3.1 Eg,abs,time set of expressions in Eg,abs that is extended with
time.

Syntax:

Section Notation Meaning

4.2.1 x global action symbol.

x Preface

4.2.1 x local action symbol.
4.2.1 w;E a behaviour that first performs interaction w, and

then continu es as specified by expression E.
4.2.1 E+F choice between the behaviour specified by E and

the behaviour specified by F.
4.2.1 EIIF behaviour specified by E and behaviour specified

by F in parallel, where synchronization has to take
place on the global actions that the alpbahets of
E and F have in common.

4.2.1 E;F behaviour specified by E is foliowed by the he-
haviour specified by F if, and only if, E is success-
fully terminated.

4.2.1 EfB localizing all global action symbols in E that occur
inB.

4.2.1 exit successfully terminated behaviour.
4.2.1 x behaviour name.
4.2.2 E substitution function of expression E.
4.2.3 g,_.E alphabet of expression E.
4.2.4 Exit.E boolean function to determine whether an expres-

sion denotes successfully terminated behaviour.
4.2.6 E~F binary relation between expressions denoting op-

erational intuition.
4.4.1 T' r-action; alocal action that cannot he observed by

an external observer.
4.4.1 E•B abstracting from the action narnes of all local ac-

ti ons in E that do not occur in B.
4.4.2 E~F binary relation between expressions denoting op-

erational intuition in which tau actions cannot he
observed.

5.2.2 After.E the set of rest expressions of E.

6.4.1 w[t1, t2] action w with which time interval [t1, t2] is associ-
ated.

6.4.2 to(w[tl, t2), E) timeout operation.
6.5 E iiiAF interteaving of the behaviours E and F, where syn-

chronization has to take place on the actions in A.
7.3.1 w.x?y! action w that when performed results into a value

assignment to variabie x and a broadcasting of the
value associated with y.

C.1 E ffit F fair choice between the behaviour specified by E
and the behaviour specified by F.

C.2 E ffiu F unfair choice between the behaviour specified by
E and the behaviour specified by F.

Preface

Congruence relations:

Section Notation

4.3 ;:::::Jt

4.3 ~,

4.3,
"'r

4.3 ~k

4.3 ~c

4.4.3 E;;!c

6.3.3 ,._c
"'time

Meaning

trace congruence.
failure congruence.
ready congruence.
k congruence.
observation congruence.
structural observation congruence.
time observation congruence.

xi

xii Preface

Contents

Preface

1 On Developing Systems
1.1 System
1.2 Service
1.3 lnformation processing systems
1.4 The development life-cycle
1.5 Design methods

1.5.1 The analysis phase . .
1.5.2 The architecture phase

1.6 Discussion

2 The Role of Languages in the Design Process
2.1 Design methods vs. languages
2.2 Description languages
2.3 Specification languages
2.4 Techniques for defining a design framework .

2.4.1 Satisfiability relations
2.4.2 Levels and layers of abstraction

2.5 Discussion

3 Designing Communication Systems
3.1 Communication systems
3.2 A design metbod
3.3 Features of specification languages
3.4 Discussion

4 A Specifi.cation Language
4.1 Notation
4.2 Syntax and operational interpretation .

4.2.1 Finite-length expressions
4.2.2 Substitution function .
4.2.3 Alphabet

xiii

V

1
1
2
3
5
7
7

12
14

17
17
18
21
28
28
31
33

35
35
36
39
41

43
43
50
50
51
52

xiv

4.2.4 Exit-predicate
4.2.5 Guarded expression
4.2.6 Operational interpretation

4.3 Semantics
4.3.1 Defining semantics . .
4.3.2 Choosing a congruence

4.4 Abstraction
4.4.1 Interaction
4.4.2 Semantics
4.4.3 Structural semantics

4.5 Design framework .
4.6 Discussion

5 Evaluation and Adjustment
5.1 Information exchange ...
5.2 Fairness

5.2.1 Problem statement
5.2.2 Algorithm
5.2.3 Fairness predicate .

5.3 Structure
5.4 Alternating bit protocol
5.5 Deadlock.
5.6 Discussion

6 Time Enhancement
6.1 Time
6.2 Classification of time enhancements
6.3 May-timing

6.3.1 Sequentia! expressions
6.3.2 Parallel expressions
6.3.3 Semantics .

6.4 Time extensions . .
6.4.1 Time choice
6.4.2 Time out .

6.5 Discussion
6.5.1 Related work
6.5.2 Integration of functional and probabilistic models

7 Synchronising Multimedia Information
7.1 Multimedia

7.1.1 Problem domain
7.1.2 Nomendature

7.2 Multimedia information exchange service

Contents

52
53
54
55
55
56
62
63
64
66
69
73

75
75
79
79
81
90
93
96

104
110

113
113
116
120
121
123
128
132
132
134
138
139
141

143
143
143
144
145

Contents

7.2.1 Introduetion to MIES .
7.2.2 Synchronisation . . .

7.3 Casestudy
7.3.1 Lip synchronisation .
7.3.2 MIES
7.3.3 End_to_end transport service .
7.3.4 MIEP .

7.4 Evaluation .

A Proofs
A.l Proofs of chapter 4
A.2 Proofs of chapter 6

B Equational Rules

C (Un)Fairness Operators
C.1 Fair choice . . .
C.2 Unfair choice
C.3 Miscellaneous

References

Index

Summary

Samenvatting

XV

........ 146
146
148
148
149
151
152
154

157
157
162

167

171
171
174
175

177

185

187

191

xvi Contents

Chapter 1

On Developing Systems

With the advances in technology and the growing awareness of the possibilities that new
technologies are offering, there is an increased demand for systems providing complex
services. Developers of these systems will have to solve new probieros in the areas of
requirements capturing, design, realisation, testing, and maintenance. Ad hoc solutions
are inadequate, and well-founded methods are needed which show ways to handle these
problems.

The purpose of this chapter is twofold. First, to give a concise overview of the process of
developing information processing systems. Second, to discuss in more detail the role of
methods in the architecture phase of that development process.

The outline of this chapter is as follows. In the first two sections, two basic concepts,
system and service, of system development are defined. The third section highlights some
characteristics of information processing systems. In the fourth section, a universally ac­
cepted system development process is introduced that consists of five phases. One of these
phases is the architecture phase. The fifth section discusses the role of methods in that
phase. Finally, the chapter is concluded with a section in which the contents of the chapter
is discussed and some conclusions are drawn.

1.1 System

From everyday experience, the subway, generators, cars, computers, data communication
equipment etc. are considered to he systems. They all have in common that they provide
services to the environment in which they are embedded. Cars and the subway provide
transportation; generators provide electricity; computers provide information processing
facilities; and data communication equipment provides communication facilities between
geographically distributed sites.

These examples demonstrate that systems do not have to he monolithic entities. A system
can he composed of parts that are systems too. Each of these subsystems provides services
to its fellow subsystems and to the system's environment.

1

2 On Developing Systems

It only makes sense to have a subsystem providing services to its fellow subsystems if these
subsystems can make use of those services. Therefore, a system does not only provide ser­
vices to its environment, but it can also make use of services provided by that environment.
If, for the moment, we may appeal to the reader's intuitive notion of service, the above
observations suggest the following de:finition of system:

A system is a not necessarily monolithic entity that provides services to and
can make use of services provided by the environment in which it is embedded.

The scope of this de:finition is not only restricted to existing systems such as cars and
computers. Abstract roodels of a system arealso considered systems. So, the specifications
generated during the development of a system are systems too. Not consiclering these
specifications as systems would unnecessarily complicate the discussions of developers.

From the above definition, the reader may get the impression that the distinction between
system and environment is always clear. However, these two concepts are only used by
developers to distinguish between what they have to develop (system) and what they do
nothave to develop (environment). If an environment also provides servicestoa system,
developers of that environment will interchange the two notions. For them, the environment
is the system and the system is the environment.

The concept of system is vague in a sense, because it is based upon the intuitive concept
of service. Therefore, the following section discusses the concept of service in more detail.
Since a system's environment can also he a system, this discussion may also apply to the
system's environment.

1.2 Service

The examples in the previous section suggest a system's service to he a capability that
the system provides to its environment. If the environment wishes to make use of that
service, it has to request for. An environment requests forsome service if that service can
affect that environment in some useful way. For instance, a car driver will regularly use
the car's brake service because it is the only way to decelerate the car safely. In general,
not every service provided by a system is at all times of interest to the environment. Take
for instanee the brake service, it is always provided to the driver but the driver does not
continuously use it. These observations suggest the following definition of service:

A service is a capability of a system to affect its environment upon a request
by that environment.

According to this de:finition, a service may consist of other services. This is convenient
when applying the strategy of functional decomposition. Then, services of a system can
be distributed over a number of cooperating subsystems. It also allows you to consider all

1.3 Information processing systems 3

theservices that a system may provide during its lifetime as a single service. This service
is called the overall service.

Services are often interrelated. In datacommunciation, for instance, the transfer of infor­
mation between geographically distributed sites has to make use of a call conneet service,
a data transfer service, and a call disconneet service consecutively. Due to these interrela­
tions, a system may not always be able to provide the same service at any time. Carrying
out one service may temporarily or permanently disable other services.

For a system to provide services to the environment as well as to make use of services
provided by the environment, system and environment have to interact. There are three
reasous for this interaction:

1. to agree with the environment on the kind of service the system has to provide and
on the moment at which that service has to be provided,

2. to affect the environment while providing the service, and

3. to make clear to the environment which kind of service the environment has to provide
and the moment at which that service has to be provided.

When looking at existing systems, different forms of interaction can be distinguished. The
interaction between a driver and its car consists of the driver reading out the various
indicators and operating the controls, and the car operating the indicators and monitoring
the status of the controls. In the case of an electricity generator, the interaction consistsof
the generator providing a voltage difference that is used by the environment. For software
(computer programs), the system and its environment interact by message passing. For
digital hardware, interaction between system and environment takes place by changing
voltage levels on wires.

In this thesis, only models of systems are considered. In these models, the purpose of the
interactions between a system and its environment is important. lt lies outside the scope
of interest how these interactions are carried out. For instance, in an abstract model of
the car, the actual process of a driver using the brakes can be modelled by an interaction
"hit-brakes" . Any realisation of this interaction is a proper one, as long as its effect remains
the same; i.e. to decelerate the car.

1.3 Information processing systems

This thesis focuses on a special class of systems called information processing systems and
on its subclass of communication systems in particular. Information processing systems
set themselves apart from other systems in that they process information received from the
environment and return the results to the environment. A software program running on a
computer is such a system. Communication equipment also belongs to this class. One of

4 On Developing Systems

their information processing capabilities is to transport information between geographically
distributed sites.

Depending on the characteristics emphasised, several types of information processing sys­
tems can be distinguished. In this section, some of these characteristics are presented.

Reactive vs. transformational:
In [Pnu85, Pnu86, MP89], systems are classified by the way they interact with their envi­
ronment. A distinction is made between transformational systems and reactive systems.
A transformational system is a system that has an initialand a final state. The service of
such a system is first to determine the initia! state by interacting with the environment.
Next, the system transforma in a finite number of steps the initial state into a final state.
Then, information on the final state is exchanged with the environment via interaction.
The total number of interactions between a transformational system and its environment
is finite. The Pascal program "aquarel" (figure 1.1) is an example of a transformational
system. It only computes the square of an integer once, after which the result is displayed
on a computer screen. A reactive system is a system that provides services during which
unbounded interactions with the environment may occur. An example of such a system is
program "square2" (figure 1.1). It computes the square of integers and displays the result
continuously.

program aquarel;
var p, q :integer;
begin

writeln('Give integer');
readln(p);
q :=P*Pi
writeln('The computed square is:' ,q)

end.

program square2;
var p, q :integer;

str :string of char;
begin

str := 1yes1
;

wbile (str = 1yes1
) do

begin
writeln('Give integer');
readln(p);
q :=P*Pi
writeln('The computed square is:',q);
writeln('Compute square? (Yes/No)');
readln (str)

end
end.

Figure 1.1: The Pascal programssquareland square2

Real-time:
In the case that the timing aspects of the interactions of transformational or reactive
systems are taken into account, these systems are called real time systems.

Distribution transparency:
Systems are not monolithic entities. Often, they are composed of autonomously operating

1.4 The development life-cycle 5

suhsystems that interact with one another. This distrihuted nature of a system may or
may not he visihle in the services that the system provides. If it is not visihle, the system
is said to provide distribution transparent services.

Embedded systems:
Embedded systems [Kue87] are distrihuted, reactive systems. They are mainly used to
control industrial and physical processes. Their environment consists of sensors and actors.
Sensors continuously gather information ahout the process under controL This information
is offered to the emhedded system. Actors operate the mechanisms that can adjust the
process under controL Via a numher of primitive commands, the emhedded system can
instruct actors on how to operate the mechanisms. As a service, the emhedded system
repeatedly processes the information received from the sensors, and, if necessary, it invokes
primitive commands to infl.uence the process under controL An example of an emhedded
system is a controller of a nuclear reactor.

1.4 The development life-cycle

The development of a system is a complex process. To reduce this complexity, knowledge
ahout the system development process is a prerequisite. In this and suhsequent sections,
various aspects of the system development process are discussed.

In hroad terms, a system under development passes through six phases:

1. feasihility phase

2. analysis phase

3. architecture phase

4. realisation phase

5. testing phase

6. maintenance phase

In the feasibility phase, research is carried out whether there is a demand for the system
or not. Among others, the result of this research is hased on the advantages that the
system has to offer, its price, and the estimated development costs. In the second phase,
the analysis phase, the intuitive notion of what the system should do (its service) and the
type of environment in which the system is to he emhedded are captured in a specification.
This specification is detailed in the architecture phase. When it is suffi.ciently detailed, the
system is realised in the realisation phase. Since errors can he introduced while realising the
system, the realised system is checked against the most detailed specification in the testing
phase. Finally, in the maintenance phase, errors not detected hy testing are removed,
system repairs are performed, and system upgrades are carried out.

6 On Developing Systems

With the exception of the feasibility phase, each of the other phases uses specific terms
to refer to the developers in those phases and the activities that they are carrying out.
Developers are called requirements engineers in the analysis phase, designers in the archi­
tecture phase, realisers in the realisation phase, maintenance engineers in the maintenance
phase, and testers in the testing phase. Their overall activity in each of these phases is
denoted by requirements engineering in the analysis phase, designing in the architecture
phase, realising in the realisation phase, testing in the testing phase, and maintaining in
the maintenance phase. This thesis primarily focuses on the architecture phase. There­
fore, the notions of designer, designing, and the adjective design (in, for instance, design
methods) are often used.

The way these phases are passed through during system development is known as the
development life-cycle. Depending upon the amount of detail that one takes into account,
several development life-cycles can be distinguished. Two of them are presented here.

Considered from a very abstract point of view, developers start with the feasibility phase.
Then, attention gradually shifts from this phase towards each of the other phases in the
following order: analysis, architecture, realisation, testing, and maintenance. This gradual
shift of attention has given this development life-cycle its name: waterfall model [Boe81]
(figure 1.2.a).

a) f fe.~~~~J!iJ.Y.
v
iArJgJy~~.

v
:arcbitedure ..

V
:.l't'.alizatio.n.

V
~_t~;rti..llg ...

V
i .maintenance.

· · · · · · · · .. · · · >- the development lifecycle

Figure 1.2: The waterfall model (a), the spiral model (b).

A more detailed look at system development reveals that the waterfall model is a very
simple approach. During the architecture phase for instance, developers often discover
that their intuitive notion of what the system should do is insufficiently captured. So, they
have to revisit the analysis phase. Another aspect that the waterfall model does not take
into account is that a system is usually built out of subsystems. Each of these subsystems
has to undergo a development process consisting of all these phases too. Hence, a more
accurate model of the development life-cycle should not only show how the emphasis on
the phases shifts in time. lt should also show that developers may iterate between the
phases. This model is known as the spiral model [Boe88] (figure 1.2.b).

7

In the next section, the analysis and architecture phase are discussed in more detail. The
role of methods takes a central place in this discussion.

1.5 Design methods

Design methods play an important role in the development process. They assist designers
in solving the problems encountered in the architecture phase. As methods of the analysis
phase can he reused in the architecture phase, their role in the analysis phase is discussed
in the first subsection. In the second subsection, the discussion is extendedtotheir role in
the architecture phase.

1.5.1 The analysis phase

Two parties are usually involved in the development of a system. N amely, the customers
who wish to obtain a system satisfying certain conditions, and the developers whohave to
design, realise, test, and maintain that system. Before developers start their work, they
have to agree with the customers on the system that has to he developed and on the
environment in which that system has to he embedded. In the analysis phase, customers
and developers work together to reach agreement on this.

In the analysis phase, two sets of requirements are derived. A set specifying the conditions
that a system has to satisfy (the system requirements), and a set specifying the condi­
tions that the environment has to satisfy (the environment requirements). As shown in
[Koo79, Rom85], the requirements in each of these sets can he classified into functional
requirements and nonfunctional requirements. Functional requirements specify what the
system and its environment should do without stating how they should do it. Nonfunc­
tional requirements specify the restrictions on how the system and the environment should
do it. They state which realisations satisfying the functional requirements are acceptable
and which realisations are not.

To clarify the distinction between system requirements and environment requirements, as
well as the distinction between functional requirements and nonfunctional requirements,
an example is presented. Assume a developer has to write a Pascal program that checks if
an integer value occurs in a finite-length, ascending sequence of integers. The environment
provides the integer value and the finite-length, ascending sequence of integers. Further­
more, the program's complexity has to he proportional to log N where N is the length of
the sequence of integers.

The functional requirement of the system is that it has to check for an integer value in a
finite-length, ascending sequence of integers. The nonfunctional requirements of the system
are that the realised system has to he a software program written in the programming
language Pascal, and that the program's complexity has to he proportional to log N. Hence,
all Pascal programs akin to binary search are proper realisations. The environment's

8 On Developing Systems

functional :requirements are tha.t it has to provide to a system a.n integer value a.nd a finite­
length, ascending sequence of integers. The environment's nonfunctional requirements are
that the environment has to provide the integer value a.nd the integer sequence to a Pascal
program.

Various nonfunctional requirements can be distinguished. Some of them are presented
below. Although this overview does not cover the whole spectrum of nonfunctional re­
quirements, they imprave the intuitive understanding of these requirements:

• Performance constraints: They specify how efficiently the system a.nd its environ­
ment have to operate. Examples are response time, timeout, minimal throughput,
bounded memory utilisation, and a minimal fault-tolerance level.

• Interface constraints: They specify restrictions on the interaction pattem between
the system and its environment. For instance, the interaction pattem has to conform
to the OSI [IS084] standard.

• Physical constraints: They specify restrictions on size, weight, power dissipation
etc. of the system.

• Environmental constraints: They specify restrictions on the system's reaiatanee
against the elements of nature such as heat, temperature, or radiation.

• Technical constraints: They specify restrictions on the techniques used in a reali­
sation. For instance, whether the system should be realised in software or hardware.
If a software system has to be realised, an additional teehuical constraint may be that
Pascal has to be used as programming language. In the case that a hardware system
has to be realised, an additional teehuical constraint may be that CMOS technology
has to be used.

• Life-cycle constraints: They specify restrictions based on the life-cycle of a system.
For insta.nce, the realised system should facilitate testing.

In the a.nalysis phase customers and developers findit difficult to understand each another.
This is caused by the fact that:

1. customers and developers perceive a system under development differently. Cus­
tomers look upon the system as a working piece of equipment that has to provide a
certain service. Developers, on the other hand, aim at obtaining a specification of the
system that does not unnecessarily restriet them in the architecture and reaHaation
phase. Consequently, the concepts that one party is using are aften different from
the concepts tha.t the other party is using;

2. customers are unfamiliar with the languages used by developers to specify concepts.
Usually, this is because these languages are dedica.ted toa single application area and
they are not used for other purposes. Another reasou may be that these languages

1.5 Design methods 9

are formal. A formal language has a mathematically defined syntax and semantics.
So, there are strict rules for using the language and interpreting specifications written
in that language. Sometimes, customers findit difficult to understand these rules;

3. the specification may contain requirements of which the customer is unaware that
he wants them. Usually, these additional requirements are implicitly contained in
the customer's requirements. For instance, the requirement that a system has to
control an industrial process may result in extra environmental and performance
requirements.

To close the gap between the worlds of customers and developers, requirements engineering
methods are proposed. Each of these methods consists of:

• concepts addressing requirements engineering aspects relevant to customers and cus­
tomers;

• guidelines that outline how these concepts should be used in requirements engineer­
ing;

• mappings from concepts and guidelines onto languages. The mappings show amongst
others how languages have to be used for specifying characteristics of concepts and
carrying out guidelines.

To give an impression of existing requirements engineering methods, three methods for cap­
turing functional requirements of systems are presented next. This presentation is informal
and incomplete. The methods are Structured Analysis [WM85, HP87], ERAE [DHL +s6,
DH87], and Object-Oriented Analysis [CY90, RBP+91].

Structured Analysis:
The purpose of Structured Analysis is to assist developers in capturing a system's func­
tional requirements. Among others, the concepts used are data flow, process, terminator,
context flow diagram, and flow diagram. The guidelines of Structured Analysis suggest
that developers first determine the boundary between system and environment. This re­
sults in a context flow diagram such as shown in figure 1.3.a. In this diagram, the circle
(called a process) denotes the system under development. The reetangles (called termina­
tors) denote the objectsin the system's environment with which the system interacts. The
arcs (called data flows) denote the information exchanged during these interactions. An
are points to the object that receives information.

Functionality is associated with a process; i.e. the relations between incoming and outgo­
ing flows is defined. For real systems, the functionality is often too complex to be written
down in a few lines. To rednee the complexity, the guidelines allow developers to apply the
decomposition strategy advocated by Parnas [Par72]. A flow diagram can be associated
with each process. In this way, developers can express a process with a complex func­
tionality in termsof interacting processes with a less complex functionality (figure 1.3.b).

10 On Developing Systems

(a)

Figure 1.3: A context flow diagram (a) and a flow diagram detailing process A (b).

A repeated use of this strategy yields a hierarchy of flow diagrams with the context flow
diagram on top. The functionality of processes to which no flow diagram is attached (also
called primitive processes) is written down in English.

Without elaborating on this further, structured analysis has concepts to activate and de­
activate processes (control flow diagrams consisting of control flows and a control speci­
fication), to reeall information exchanged in the past (stores), and to write down control
flows and data flows characteristics (requirements dictionary). Guidelines also exist for
these concepts.

The concepts and guidelines of Structured Analysis are not mapped onto a formallanguage;
i.e. a language with a mathematically defined semantics. Instead, it is shown how an ill­
defined graphical notation and plain English have to be used to specify the system and
its environment. Consequently, disagreement on the exact meaning of specifications of the
requirements can arise and rapid prototyping of specifications is impossible.

Two further drawbackscan be distinguished. First, the method only provides the concept
of flow to address the interaction between system and environment. To address this in­
teraction more abstractly, other concepts are needed. The second drawback is that the
method only focuses on the current problem. That is, its main goal is to decompose a
system into parts of which the functionality can easily be specified. There are no concepts
and guidelines available that force developers to find decomposition trajectories that can
be reused for simHar systems.

In spite of these drawbacks, industrial experience shows that Structured Analysis provides
substantial support for the analysis phase. One of its important aasets is the way in which
it forces developers to use a fixed set of concepts in a certain way. Not only does this
improve the readability of the specification, but it also reduces the number of mistakes in
the specification.

ERAE:
ERAE (Entity, Relation, Attribute, Event) assists developers in capturing the system's

1.5 Design methods 11

functional requirements more abstractly than structured analysis. ERAE starts by mod­
elling the system and its environment as a single data structure. After having specified the
data structure, a separation is made between those parts of the data structure that belong
to the system and those parts that belong to the environment.

The concepts in ERAE are a superset of those introduced by Michael Jackson [Jac86].
They consist of:

• entity: an entity is used to model concepts that are of interest for a certain period
of time;

• event: an event is an instantaneous happening of interest;

• value: a value is anything, concrete or abstract, perceived individually, which is only
of interest when associated to an entity, event, or relation;

• relation: arelation is a temporary or permanent association between entities, and/or
events;

• attribute: an attribute is a temporary or permanent association between entity,
event, or relation and a value.

An entity and its attributes can he looked upon as a dynamic record in Pascal. The
associations defined by relations and attributes can he divided into two groups: dynamic
associations and static associations. Dynamic associations specify how entities, relations,
and attributes have to change on the occurrence of events. They do not state the way in
which these changes are carried out. All static associations are non-dynamic associations.
The entities, values, events, relations and attributes that are not part of the environment
form the functionality of the system under development.

Compared to structured analysis, the ERAE method provides developers with the concept
of association to address interactions more abstractly. This is also reflected in the choice of
languages on which concepts and guidelines are mapped (e.g. Temporal Logic [MP89] or
Higher-Order Logic [Gor83]). According to object-oriented adherents, ERAE has the ad­
vantage of being built around data structure concepts. They claim this to he a prerequisite
for obtaining reusable specifications.

ERAE has two main drawbacks. First, no concepts and guidelines are available that direct
developers in composing hierarchical specifications. A developer always produces a specifi­
cation that has to he stuclied as a whole to gain knowledge about partienlar parts. Second,
although concepts and guidelines are mapped onto formal languages, these languages are
difficult to execute on machines. So, rapid prototyping of a specification is impossible.

Object-Oriented Analysis:
To assist developers in capturing a system's functional requirements, Object Oriented
Analysis combines aspects of Structured Analysis and ERAE. The hierarchical aspect and

12 On Developing Systems

the interaction of Structured Analysis are combined with the entities, values, and static
associations of ERAE. The key concept is object. An object has the same properties as
an entity. It can be related to other objects and values by static associations. In addition,
it interacts with other objects, it performs computations, it can be decomposed into sub­
objects, and it creates objects dynamically. Object oriented analysis also has the concepts
of class and inheritance. These concepts allow for the reuse of existing specifications while
specifying new objects.

Several executable languages exist onto which the concepts and guidelines of Object­
Oriented Analysis' can be mapped (e.g. Object Pascal, c++, Smalltalk, POOL). However,
only mappings onto pseudo notation techniques are often found in the literature.

In comparison to ERAE, Object-Oriented Analysis has a significant drawback. The dy­
namic association concept in ERAE is replaced by algorithms in objects and interactions
between objects. So, in an Object-Oriented Analysis specification, dynamic associations
are specified by showinga way to realise them. Therefore, Object-Oriented Analysis spec­
ifications are much more biased towards realisation than ERAE specifications.

In conclusion, none of the methods discussed above can solve the problems of requirements
engineering by itself. Each of them has weaknesses and strengths. Only by using them in a
complementary way can the analysis phase be handled. The Structured Analysis method
is especially suited for quickly getting an insight into the functionality of the system under
development. The ERAE method can best be used to capture the requirements in a formal
specification that is not biased towards realisation. The Object-Oriented Analysis approach
is best suited for rapid prototyping.

1.5.2 The architecture phase

The analysis phase results in a specification of the functional and nonfunctional require­
ments of a system and its environment. This specification determines what developers
have to do without restricting them in accomplishing their task. The developers of the
architecture phase, or designers as they are called, transform the specification into one that
can be realised.

Due to the intricacy of systems, the transformation cannot be made in a single step. Design
methods are needed that support the well-known beuristics of step-wise refinement [Koo84];
i.e. concepts, guidelines, and mappings to languages are needed that assist designers in
making step-by-step a more detailed specification of the system. An example of such a
detailing step is the functional decomposition of a system into two or more subsystems.
Methods supporting this step are Structured Analysis, ERAE, and Object-Oriented anal­
ysis. Another type of detailing step in the architecture phase is the step in which func­
tionalities are distributed over an infrastructure (e.g. functionalities assigned to hardware
components that have to be realised on a chip; or functionalities assigned to geographically
distributed system components that are interconnected via a communication network).

1.5 Design methods 13

In spite of available design methods for the architecture phase, designers always face two
problems in this phase. First, there is the problem of finding among all possible detailing
steps the most suitable ones. In general, there are several ways in which details can be
added to a specification. Which of these detailing steps should then be taken? Partly,
the choice is infl.uenced by the specification, the goal to be achieved, and the designer's
experience (figure 1.4).

specifica ti on

goal

design-step experience

more detailed specifcation

Figure 1.4: A detailing step.

A property of a suitable detailing step is that it transforma a specification into a more
detailed specification in such a way that the more detailed specification does not contradiet
the original specification. Methods supportinga suitable specification are called correct by
construction if afterwards designers do not have to verify that the new specification is in
accordance with the original specification.

Assume designers have found the most suitable detailing steps. Then, a second problem
emerges. Namely, how do they choose between detailing steps that seem to be equally
suitable. Usually, this choice is made randomly. If designers discover later that a wrong
alternative was selected, they need to retrace the detailing steps made and try out alter­
native detailing steps. Figure 1.5 depiets the road from an initial specification speet to the
realisable specification spec6. First, speel is detailed into spec2, spec3 and spec4 consecu­
tively. Since spec4 is not realisable, the detailing steps are retraced. Then, speel is detailed
into spec5 and spec6 consecutively.

In the architecture phase, the road from a specification to a more detailed specification is
called a design trajectory. Design trajectories are composed of potentially suitable design
steps. A design trajectory can be modelled by the sequence of specifications that designers
encounter on their way towards a realisable specification. The trajectory taken in the
example is denoted by speel spec2 spec3 spec4 spec3 spec2 speel spec5 spec6. Due to
retracing, designers encountered speel, spec2 and spec3 more than once. This accounts for
their repeated occurrence in the sequence.

From the above, two types of design trajectories can be distinguished [Koo91]: the actual
design trajectory and the ideal design trajectory. The actual design trajectory is the error­
prone trajectory designers take in reallife, while the ideal design trajectory is the actual
design trajectory from which all the mistakes are removed. In our example, speel spec2

14

spec6

On Developing Systems

~l

:analysis

1
phase

I '-l

I
I
I
I
I
I
1 architecture
1 phase
I
I
I
I
I
I

•)o reguir~ments engineering
~ reïrac1ng
~ detailing step
_____..... realizing \.".u~uon

I realization
I phase
I
I

Figure 1.5: Design trajectories.

spec3 spec4 spee4 spec3 spec2 speel spec5 spec6 is the actual design trajectory and speel
spec5 spec6 is the ideal design trajectory.

1.6 Discussion

In this chapter, several aspects related to the development of information processing sys­
tems were presented. Insection 1.4, a development life-cycle was introduced that consists
of six phases. It was argued that during development, developers will gradually shift their
attention to each of these phases in the following order: feasibility, analysis, architecture,
realisation, testing, and maintenance. However, developers can return to earlier phases.

An important observation made was that it is fust necessary to determine the service that

1.6 Discussion 15

a system has to provide. Then, it should be determined how the system provides that
service. For the development process, this resulted in the distinction between the analysis
phase and the architecture phase. However, as it was pointed outinsection 1.5.2, systems
can be built out of subsystems that also have services. So, for each of these subsystems, the
distinction has to be made between what this subsystem should do and how this subsystem
should do it.

The complexity of the analysis and architecture phase has resulted in methods assisting
designers in specifying systems at various levels of abstraction. According to section 1.5.1
and section 1.5.2, a method consists of a set of concepts addressing relevant aspects of a
system, guidelines showing how these concepts should be applied to the problem at hand,
and a mapping onto languages. This mapping shows how languages should be used to
capture the requirements of that system into a specification.

As shown by the three methods presented in the discussion of the analysis phase, there is
no unique way of assisting designers in the development process of systems. However, to
support the requirements capturing of a system into a specification and the detailing of
that specification, a design method has to:

• provide concepts perfectly tailored to the type of problems designers have to address;

• provide guidelines relating the use of concepts that are used at one level of abstraction
to concept~ that are used at a higher level of abstraction. Also, the guidelines should
show ways to structure concepts so that specifications and design trajectodes become
reusable;

• contain a mapping onto a formal language to prevent discussions on ambiguities
from taking place and to allow for verification and rapid prototyping. Moreover, the
language should he understandahle hy customers.

The purpose of this thesis is to gain insight into the problems of developing a design
framework. Such a framework shows the order in which methods, languages, and tools
have to be applied in the architecture phase. Since systems can he decomposed into
suhsystems, the framework also covers the analysis phase. In this thesis, attention is only
focussed on the language characteristics of design frameworks and on the choices made
while developing a framework of languages supporting the design of a special class of
systems: communication systems.

As a first step to achieve this goal, the relations between design methods and languages
are outlined in chapter 2. This results in several prohlem-domain independent constraints
on the development of a design framework. Chapter 3 continnes this approach hy also
considering constraints derived from the problem domain of communication systems.

16 On Developing Systems

Chapter 2

The Role of Languages in the Design
Process

Design frameworks guide designers through the architecture phase by showing the order in
which design methods, languages, and tools have to be applied. The process of developing
a design frameworkis complex. In this chapter, generic constraints on developing a design
framework are derived. These constraints are expressed in terms of languages.

The outline of this chapter is as follows. In the first section, the relation between design
methods and languages is explained. The second section discusses the principles under­
lying existing formal description languages. These principles have to be considered when
selecting the most appropriate languages for a design framework. In the third section, a
design framework is defined in terms of languages. The fourth section presents several
techniques supporting the development of design frameworks. Finally, in the last section,
this chapter is discussed and some conclusions are drawn.

2.1 Design methods vs. languages

According to its definition in chapter 1, a metbod consists of concepts, guidelines, and
mappings onto languages. In this thesis, a language consists of well-formed formulas,
called expressions, and their mathematically defined meaning (semantics). The set of all
expressions of a language is called the syntax.

The purpose of the mappings of a metbod depends on the kind of assistance that a metbod
has to offer to designers. Two purposes are distinguished:

Definition:
Designers facing a problem domain often need assistance in obtaining a good onderstanding
of that problem domain. They require concepts and guidelines to address the key aspects
of the problem domain. However, designerscan only use these concepts and guidelines if
they onderstand them. So, languages are necessary to explain each concept and guideline.

17

18 The Role of Languages in the Design Process

In section 1.1 and 1.2, for instance, the concepts system and service were explained in
English.

Hence, a mapping of a method can he used to define the concepts and guidelines. Languages
used in this fashion are called definition languages.

Speci:fication:
Designers need assistari.ce in specifying the services and systems at various levels of detail.
With the concepts and guidelines of a method, they can model to some extent services
and systems. However, these models are not specific enough. They need languages to
specify the characteristics of concepts (e.g. behaviour) and to carry out the guidelines (e.g.
verification).

Most of the existing languages are so general that they can he used to specify many concepts
and carry out different types of guidelines. A good example of this is English, used all over
the world to discuss polities, science, the weather etc. Although a large expressiveness is
not a drawback, designers want to know how to apply a language to a certain problem
domain. Mappings of a method can accomplish this by showing how languages have to he
used to specify characteristics of concepts and to carry out guidelines.

In this thesis, languages suitable for specifying characteristics of concepts and carrying out
guidelines are called description languages. Expressions of this type of language are called
descriptions. If these languages are attached to methods via mappings, they are called
specification languages and their expressions are called specifications.

2.2 Description languages

Design methods are based on description languages. They refine description languages
into specification languages by putting constraints on their usage. Developers of a design
method have to choose description languages. The mere existence of a description language
is not suflident reason to use it. They have to select the description languages that best
satisfy the features that designers want. Therefore, they have to look at the features of
languages as they are experienced by designers. These features are usually the result of
assigning a meaning (semantics) to expressions.

In the ideal case, description languages with features best suited to the problem domain
have to he selected. If such languages do not exist, they have to he developed. In practice,
a more pragmatic approach is often followed. From the available description languages,
the languages with features that correspond best to the desired ones are chosen.

Whether the ideal or pragmatic approach is taken, developers of a design framework need
todetermine the desired features of description languages. As a constraint on this activity,
they have to evaluate at least the following language features for their suitability:

State-oriented or action-oriented:
There are two ways in which a language can descri he the dynamic characteristics of systems:
state-oriented and action-oriented.

2.2 Description languages 19

In the state-oriented approach, the system's characteristics at some point in time are
captured by using the notion of state. A state is a set of variables to which values are
assigned. The set of all allowed value assignments to variables is known as the state space.
With a system in operation, a path through that system's statespace is associated. A set
of such paths describes the characteristics of a system.

In the action-oriented approach, the notion of action is used to capture a systems's dynamic
characteristics. An action is associated with each activity a system can carry out. A system
in operation can then he described by a trace of actions. All orderinga of actions describe
the dynamic characteristics of a system.

Both approaches have drawbacks. The state-oriented approach does not describe the ac­
tivities that cause a system to change its state. For instance, when it is used to model a
Pascal program, only the potential orderi:ngs of states is described and not the statements
that cause the states to change. The actîon-oriented approach is unsuitable to describe the
order in which a system can carry out activities if that order is conditional on information
exchanged in the past. It cannot reeall this information.

To counter both drawbacks, description languages have been developed in which the state­
oriented approach and the action-oriented approach are merged. These hybrid languages
solve the drawback of the state-oriented approach. They also solve the drawback of the
action-oriented approach by allowing the information from the past to he modelled as part
of the state.

Branching time or linear time:
A description language provides means to order states or actions. The orderinga defined
by its descriptions can he classified as branching time or linear time.

Description languages are called branching time if they distinguish between orderinga of
actions and/or states and the moments at which choices for future actions andjor states
are made. Description languages are called linear time if they only distinguish between
orders of actions and/ or states.

To exemplify the difference between branching time and linear time, consider the two
orderinga of actions in figure 2.1. Each ordering says that action a is foliowed by either
action b or c. The orderinga differ in the moment at which the choice for action b or c is
made. For the left-hand ordering, the choice is made after a and before b or c. For the
right-hand ordering, the choice is made before action a is performed. A branching time
language distinguishes between the two orderinga whereas a linear time language does not.

Synchronous or asynchronous concurrency:
Usually systems are composed of concurrently running subsystems. Description languages
have to model the behaviour of these subsystems indivîdually as well as the fact that
they run concurrently. There are two ways in which subsystems can run concurrently:
asynchronously or synchronously.

20 The Role of Languages in the Design Process

(b) y~
• •
~b ~c
• •

Figure 2.1: Branching time vs. linear time.

Concurrent suhsystems are said to run asynchronously if each subsystem performs a.ctions
or changes states at its own speed. The counterpart of asynchronously running suhsystems
is synchronously running subsystems; i.e. all suhsystems perform actions or change states
at the same time.

Depending on the type of concurrency that needs to modelled, a description language
should he selected that supports it. For instance, CCS [Mil80, Mil89] and LOTOS [Bri88,
IS088] support asynchronous concurrency. SCCS [Mil83], CIRCAL [Mil85a], and the
language in [Hui91] support synchronous concurrency. lt is possihle to have hoth types of
concurrency in a single language.

Total-order or partial-order semantica:
In a language, there are two ways of assigning meaning (semantica) to concurrency [Bae93]:
total*order semantica and partial*order semantics.

Languages with a total-order semantics define concurrent hehaviour hy a total ordering of
actions or states. They can he used to model hehaviour in which it is possihle to descrihe
for each pair of actions or states that they occur simultaneously or one after another.

Languages with a partial*order semantics define concurrent hehaviour hy a partial ordering
of actions or states. They are more e:x:pressive than languages with a total-order semantics,
as they also allow for the modelling of concurrent hehaviour without making assumptions
ahout the ordering in which two actions can be performed or two states can he changed.

Synchronous or asynchronous interactiori:
Often, systems are composed of concurrently running subsystems that interact with each
other and with their common environment. Two types of interaction can he distinguished:
asynchronous and synchronous.

An asynchronous interaction is an interaction between two or more suhsystems and/or
their common environment, where each of them may start the interaction without having
to he concerned ahout the readiness of the others. For this type of interaction, a description
language needs to define what happens to information arriving at a recipient that cannot
handle it momentarily. Possihle scenarios are: Throw the information away or temporarily
store it. In SOL [SDL92], a mixture of these two scenariosis used.

A synchronous interaction is an interaction between two or more suhsystems and/or their
common environment in which they all have to participate at the same moment (cf.
CCS [Mil80, Mil89], LOTOS [IS088]). It should be noted that description languages

2.3 Specification languages 21

based on synchronous interaction can be used to model other forms of interaction, such as
asynchronous interactions.

Implicit or explicit:
This feature deals with the level of detail with which a description language describes the
behaviour of a system. On one side of the spectrum there exist problem domains for which
implicit descriptions are suitable. These descriptions model what the system should do
without actually telling how it should be done. On the other side of the spectrum there
exist problem domains for which explicit descriptions are suitable. These descriptions
describe what the system should do by showing a possible way of doing it.

2.3 Specification languages

For the design of a class of systems, the design methods and the order in which they
are applied together form a framework. This design framework has certain characteristics
independent of any problem domain. In this section, these characteristics are captured
into a formal model.

The model is based upon the observation that a design framework always consists of levels
of abstraction and consistency relations between these levels. It formalises the notions
"level of abstraction" and "consistency relation" in terms of specification languages. A
side effect of the model is that it imposes constraints on choosing specification languages
for a design framework. These constraints are independent of any problem domain.

Levels of abstraction:
Design methods distinguish levels of abstractions, and they associate specification lan­
guages with those levels. Therefore, the most straightforward approach to modellevels of
abstraction is by specification languages. However, in general there does not exist a one to
one correspondence between levels of abstraction and the specification languages used at
those levels. Most of the existing specification languages can be used at successive levels
of abstraction. For instance, in hardware design, VHDL [LSU90] and ELLA [Pra86] are
used at gate level and at register transfer level.

Due to this characteristic of specifica ti on languages, the model distinguishes between levels
of abstraction and within each level of abstraction between one or more layers of abstrac­
tion. Each level of abstraction is modelled by a unique specification language. Layers of
abstraction are modelled implictly by defining a relation between specifications at the same
level of abstraction.

To guarantee that the model is independent of any problem domain, no assumptions are
made about specification languages except that they are languages. Adopting the notion
of language used in automata theory [ASU86], a specification language consists of a set
of objects over which a semantica is defined. The objects denote the specifications. The
semantica makes precise those objects that have the same meaning and those objects

22 The Role of Languages in the Design Process

that have a different meaning. Irrespective of how semantica is attached to a language
(operation.al;denotational, or axiomatic), it always boils down. toa partitioning of the set
of specifications into non-empty disjoint subsets (cf. [Hui88]). Two specifications in the
same subset have the same meaning, and two specifications in different subsets have a
different meaning.

Formally, the mo.delrepresents a level of abstraction Li by a pair (Si, [)i)· Si denotes the
set of specifications used at Li. Uli is a set of sets that partitions Si into disjoint subsets.
It denotes the semantica associated with the specifications at Li. The set in []i containin.g
specification s is denoted by [s]i· The subscript is omitted if it is obvious from the context.

Interrelations:
The framework makes precise which levels of abstraction should he passed and in what
order. For each two successive levels (layers) of abstraction, it makes precise which speci­
fications at the lower level (layer) of abstraction are more detailed than the specifications
at the higher level (layer) of abstraction.

To capture these two interrelations in the model, a relation sat LJ,Li is defined between
levels of abstraction Li and Lj. The ~;,Lrrelation is a subset of Sj x Si. It models
which specifications at abstraction level Lj are more detailed than which specifications
at abstraction level Li. If (s, s') E ~J,Li• specification s is called an implementation of
specification s'. The relation ~j,Li is empty if and only if abstraction levels Li and Lj are
not passed in succession. Notice that the satLi,Li relations make precise which specifications
at Li are implementations of which other specifications at Li.

In the model, a "less abstract than" -relation between levels of abstraction can now be
defined that explicitly specifies the order in which levels of abstraction can he passed.
Informally, for two levels of abstraction Ll and L2, L2 c Ll denotes that L2 is an imme­
diately successive level of abstraction of Ll if and only if there exists a specification at Ll
that can be detailed into a specification at L2 without making use of intermediate levels
(layers) of abstraction. Formally, the definition of the "less abstract than"-relation is in
terms of sat LJ,Li relations:

Definition 2.3.1 (less abstract than relation)

(L2 c Ll) = (satL2,L1 # 0 ALl# L2)

(End of Definition)

Notice that the interrelations between layers of abstraction are not captured by the "leas
abstract than" -relation.

Combining the constituents of the model introduced thus far, the problem-domain inde­
pendent characteristics of a design framework are best captured by a pair (L, SAT), where
L is a set of pairs (Si, []i), and SAT is the set of satisfiability relationa between elements
of L. Such a pair aatiafies three axioma. These axioma are explained with the help of
figure 2.2.

2.3 Specification languages 23

L6=(S6,[] 6)

Figure 2.2: A representation of a pair (L, SAT).

In the axioms, definitions, properties, and theorems in the remainder of this section, a
model (L, SAT) is implicitly used. In those cases, Ll, L2, L3, and Li range over L.

Figure 2.2 depiets a pair (L, SAT). Each of the circles denotes a level of abstraction. Each
dot within a circle denotes a specification, and the lines within a circle group dots that
denote semantically indistinguishable specifications. For each two specifications in the
satisfiability relation, an arrow is drawn between their dots. This arrow points towards the
implementation. Notice that L4 consists of layers of abstraction.

The first axiom ensures a proper relation between the transitive dosure of the c-relation
on one side and the existence of a design trajectory on the other. Consider the abstraction
levels Ll, L2, and L3 in figure 2.2. According to the definition of the c-relation, L2 c Ll
and L3 c L2. Hence, L3 Ll holds, where the c+ -relation denotes the transitive ciosure
of the c-relation. However, a designer cannot detail a specification at Ll into a specification
at L3.

If two levels of abstraction are related by the c+ -relation then a designer should be able
to detail in a number of steps one specification at the higher level abstraction into a
specification at the lower level of abstraction. Phrased differently, there should at least

24 The Role of Languages in the Design Process

be one design trajectory possible from the higher level of abstraction to the lower level of
abstraction. This is refl.ected in the model by the fact that a pair (L, BAT) of a design
framework has to satisfy axiom 2.3.3.

Before introducing this axiom, the transitive ciosure of the BAT-relation is defined. This
new relation is denoted by the BAT+ -relation:

Definition 2.3.2 (BAT+)
BAT+ is the set of relations satti,Li. such that

(si, sj) E satt,li
=

there exists afinite-lengthsequence of pairs (s1,Li) = (sl,L1) ••• (sn, Ln) = (sj,Lj)
such that (s k+l, s k) E satLk+l,Lii (1 ~ k < n).

(End of Definition)

Notice that satLi,LJ Ç satti,LJ· Moreover, the definition of BAT+ allows for finite-length
sequences of pairs in which two consecutive pairs have the same level of abstraction (but
the specifications are at a different layer of abstraction).

To guarantee that a design trajectory exists between each two levels of abstraction that
are related by the c+ -relation, pairs (L, BAT) satisfy:

Axiom 2.3.3

(L2 c+ L1) => (sattz,Ll =/0)

(End of Axiom)

The second axiom limits the reoccurrence of levels and layers of abstraction in a design
trajectory. With each detailing step in a design trajectory, a specification is transformed
from one level (layer) of abstraction to the next more detailed level (layer) of abstraction.
It would be strange if a level or layer of abstraètion is revisited after applying one or more
detailing steps (without backtracking). This would allow fora sequence of detailing steps
that yields no progress. As it is not possible to prove that -,(Li Li) and (s, s) fj. sat!,,Li
holds for any level Li of abstraction in a model (L, BAT), these two properties have to
become axioms that pairs (L, BAT) have to satisfy:

Axiom 2.3.4

(1) ...,(L1 c+ L1)

(2) (s, s) fj. sati1,L1

(End of Axiom)

2.3 Specification languages 25

Intuitively, a design trajectory exists between two different levels of abstraction if and only
if these two levels are related by the c+ -relation. With the help of definition 2.3.1 and
2.3.2, it is easily shown that axiom 2.3.3 and 2.3.4.(1} induce this property.

Property 2.3.5

(L2 Ll} = (satt2,L1 #- 0/\ L1 #- L2}

(End of Property)

Since is irrefl.exive, it is also asymmetrie (property 2.3.6.(1)}. It also implies that c is
irreflexive (property 2.3.6.(2)) and asymmetrie (property 2.3.6.(3)).

Property 2.3.6

{1) (L1 L2) => ...,(L2 c+ L1)

(2) ...,(L1 c L1)

(3) (L1 c L2} => -,(L2 c L1)

Proof
Case (1): Assume that is symmetrie. From L1 c+ L2, L2 Ll, and the transitive

nature of c+, it follows that Ll c+ Ll. Since this contradiets axiom 2.3.4, c+
has to be asymmetrie.

Case {2): If L1 c L1 then L1 c+ Ll. Since this is in contradiction with axiom 2.3.4, c
has to be irreflexive.

Case (3): The proof is analogous to the one given for case (1).

(End of Proof and Property)

Similarly, the irreflexivity of sati1,L1 causes sati1,L1 to be asymmetrie (property 2.3.7.(1)).
Moreover, it ensures that ~l,Ll is irrefl.exive (property 2.3.7.(2)) and asymmetrie (prop­
erty 2.3.7.(3)).

Property 2.3. 7

(1) (s,s') E sati1,L1 => (s',s) f/. sat11,L1

(2) (s,s) f/. satLl,Ll

(3) (s,s') E satLl,Ll => (s',s) f/. satLl,Ll

(End of Property)

26 The Role of Languages in the Design Process

The third and last axiom outlines the relation between the SAT and the semantics of the
specification languages used at the levels of abstraction.

Consider level Ll in figure 2.2. The specifications associated with the dots in a particular
group at that level are each related to a different implementation at level L2. As they
have different implementations, a distinction can he made between them. This is however
in contradiction with the fact that both dots belong to the same group at Ll, and thus
repreaent indistinguishable specifications. Similarly, at L5 two semantically indistinguish­
able specifications can he distinguished by the fact that one is an implementation of a
specification at L4 and the other is not.

Clearly, this contradiction cannot exist in a design framework. Therefore, pairs (L, SAT)
have to satisfy the following axiom:

Axiom 2.3.8

[s2~L2 = [s2']L2 À [sl~Ll [sl']L1 À (s2, sl) E satL2,Ll
::::}

(s2', sl') E satL2,L1

(End of Axiom)

Notice that by allowing Ll and L2 to he the same, this axiom also addresses layers of
abstraction.

Axiom 2.3.8 ensures that SAT respects the semantics at different levels (layers) of abstrac­
tion. A proper side effect of this is that SAT+ also respects the semantics of the levels of
abstraction. ·

Property 2.3.9

[sl]Ll = [sl']Ll À [s2]L2 = [s21]L2 À (s2, sl) E sati2,L1
::::}

(s21
, sl1

) E sati2,L1

Proof
Let sl, sl', s2, and s2' he specifications such that [sl]Ll = [sl']L11 [s2)L2 = [s2']L2, and
(s2, sl) E sathLl· According to the definition of sat+, there exists a sequence (sl, L2)
(sl,Ll) ... (sn,Ln) (s2,L2) such that (si+l,si) E satLI+l,Li (1:::; i< n). Accordingto
axiom 2.3.8, specifications s1 and sn can he replaced in the sequence by sl' and s2' without
falsifying that sequence (s1,L1) ... (sn,P) satisfies (si+l,si) E satLi+l,Li (1:::; i< n).
Hence, it is shown that (s2', sl') E sati2 Ll holds.
(End of Proof and Property) '

As stated earlier, a detailing step transforms a specification into a more detailed implemen­
tation. If a detailing step is made between two layers of abstraction, the implementation
and the specification have to be semantically distinguishable. If they are not, no progress

2.3 Specifi.cation languages 27

is made in the design process. Fortunately, property 2.3.7.(2) and axiom 2.3.8 exclude this
type of detailing steps. They ensure that satisfiability relations only relate specifications
that are semantically indistinguishable.

Property 2.8.10

[s]Ll [s1]LI * (s, S1
) (/. satLl,Ll

Pro of
Let Ll be a layer of abstraction, and s and s1 semantically indistinguishable specifications
at that layer.

H (s, s') E satLl,Ll• axiom 2.3.8, and [s~Ll = [s'~Ll imply (s1
, s') E satLl,Ll· However, this

is in contradiction with property 2.3.7.(2). So, (s, s') (/. ~l,Ll has to hold.
(End of Proof and Property)

A rephrasing of axiom 2.3.8 would be that each two semantically equivalent specifications at
some level (Iayer) of abstraction have the same implementations at each of the immediately
successive lower levels (layers) of abstraction and that they are implementations of the same
specifications at each of the immediately preceding higher levels (Iayers) of abstraction.
This observation is captured in the next property.

Property 2.3.11
Axiom 2.3.8 is equivalent to the following implication

[si]Li = [si1]1Li
:::}

(VLh: Lh EL: specLi,Lh(si) = specLi,Lh(sn)
1\(VLj : Lj E L: implLJ,Li(si) = specL;,Li(si'))

with
specLi,Lh(si) = {sh I sh E Sh 1\ (si, sh) E satLi,Lh}
implL;,Li(si) = { sj I sj E Sj 1\ (sj, si} E satL;,Lï}

(End of Property)

In conclusion, the problem-domain independent characteristics of a design framework are
modelled by a pair (L, SAT) that satisfies axioms 2.3.3, 2.3.4, and 2.3.8. Figure 2.3 shows
a model of a design framework.

According to this figure, no c+ -relation exists between levels L3, L5, and L6. This implies
that the modelled design framework allows the design process of systems to end at different
levels of abstraction. It also shows that two semantically distinguishable specifications at
Ll can be detailed into the semantically indistinguishable specifications at L5. Finally,
notice that a specification at L2 has an implementation at L3, but it is itself not an
implementation of any other specification.

28 The Role of Languages in the Design Process

L4=(S4.[]]4)

L5=(S5,[]]5)
L6=(S6,[]6)

Figure 2.3: A model of a design framework.

2.4 Techniques for defining a design framework

When developing a design framework, the problem domain needs to be examined carefully.
This examination determines which specification languages have to be selected or developed
and which satisfiability relations have to be deflned such that axioms 2.3.3, 2.3.4, and 2.3.8
hold.

To support the development of a design framework, this section addresses two topics. In
the first subsection, techniques are introduced for specifying satisfiability relations. The
second subsection presents boundary conditions under which levels (layers) of abstraction
can be created, deleted, or altered without falsifying the three axioma.

2.4.1 Satisfiability relations

One approach to defining satisfiability relations is by enumerating the specifications re­
lated at consecutive levels (layers) of abstraction. This approach is only feasible if the
number of specifications at each level (layer) is small. A better approach is to capture the
characteristics of a satisfiability relation in a logical formula. Then, two specifications are

2.4 Techniques for defining a design framework 29

in the relation if and only if the formula evaluates to "true" for them.

For two levels of abstraction whose specification languages have a mathematica! basis in
common, a logical formula can be expressed in terms of this mathematica! basis. If such
a mathematica! basis is missing, the specifications at each of the two levels need to be
mapped onto one before a formula can be defined. A mathematica! basis is always a set.
Examples are a set of sets of expressions of a language or a set of sets of finite length
sequences of actions.

The technique of using a logical formula to define a satisfiability relation between two
levels of abstraction Ll and L2 has the following structure (figure 2.4). Two mappings
fl and /2 are defined from respectively the specifications at Ll to a set B and from the
specifications at L2 to a set B. B denotes the common mathematica! basis. When the
specification languages have a mathematica! basis in common, these mappings are usually
simple. On B a binary relation -< is defined by a logical formula. Then, a specification s2
at L2 is an implementation of a specification slat Ll if and only if (f(s2), f(sl)) E-<.

Figure 2.4: Defining a satisfiability relation.

This technique of defining a satisfiability relation is not new. For instance, in [Zwi88],
Zwiers chooses for Ll a first order predicate calculus, for L2 a CSP-like language [Hoa78],
and for B a set of sets of traces. As -<-relation the inclusion on sets of traces is used.
Olderog [Old91] takes a similar approach as Zwiers, but the -<-relation that he uses is
more complex. In [MP89], Manna and Pnueli take temporallogic for Ll, fair transition
systems for L2, and the set of sets of fini te length sequences of states for B . As -<-relation,
the inclusion on sets of finite length sequences of states is used.

If a pair (L, SAT) is defined satisfying all three axioms, a satisfiability relation between
specifications at the same level of abstraction has to be irrefl.exive and asymmetrie. A
satisfiability relation between two different levels of abstraction needs to be asymmetrie.
Moreover, axiom 2.3.8 has to hold for both types of satisfiability relations.

With the help of the technique just outlined for capturing satisfiability relations by logical
formulae, it is suflident to take an irrefl.exive (asymmetrie) -<-relation to define a satisfia­
bility relation that is irrefl.exive (asymmetrie). The following two theorems provide support
for using the technique to define satisfiability relations such that axiom 2.3.8 is satisfied.

30 The Role of Languages in the Design Process

Theorem 2.4.1
Let Ll and L2 be (possibly the same) levels of abstraction between which a satisfiability
relation satL2,L1 is defined using the technique outlined above. The common mathematica!
basis is a set. If the applied technique satisfies conditions (Cl) and (C2), then !mha,Ll
satisfies axiom 2.3.8.

(Cl) ([sl]Ll = [sl'~Ll) :::} (/l(sl) = /l(sl'))

(C2) ([s2]L2 = [s2']L2) :::} (/2(s2) = f2(s2'))

Proof
Let sl, sl', s2, and s2' be spedfications such that [sl]LI = [sl']Lb [s2]L2 (sl']IL2, and
(s2, si) E satL2,Ll· In order to prove (s2', si') E satL2,L1 , it is suflident to show that
(!2(s2'),fl(s11

)) E--<.

From (s2, sl) E satL2,L1, f2(s2), fl(sl) E-< follows. Applying conditions (Cl) and (C2)
then yields (/2(s2'), fl{sl')) E--<.
(End of Proof and Theorem)

The conditions in theorem 2.4.1 need to be strengthened if the common mathematica! basis
B is a language; i.e. B is not just a set of objects, but it also has a semantics:

Theorem 2.4.2
Let Ll and L2 be levels of abstraction between which a satisfiability relation satL2,L1

is defined using the technique outlined above. The common mathematica! basis B is a
language. If the applied technique satisfies conditions (Cl), (C2), and (C3), then satL2,L1
satisfies axiom 2.3.8.

(Cl) ([sl]L1 = [sl']LI) :::} ([fl(sl)]B = [fl(sl')]B)

(C2) ([s2]La = [s2']La):::} ([f2(s2)]B = [f2(s2')]B),

and for any pair of descriptions (d2, dl) E B x B:

{C3) (d2, dl) E--<=> (V dl', d2': dl' E [dl]B A d2' E [d2]B : (d2', dl') E--<)

Proof
The proof resembles the proof of the previous theorem. lt is therefore omitted.
(End of Proof and Theorem)

Property 2.4.3
Any transitive relation R that is weaker than the semantics of B satisfies condition (C3)
in theorem 2.4.2:

Proof
Let dl, dl', d2, and d2' be elementsof B such that [dl]8 = [dl']B and [d2]B = [d2']8 . To
prove that condition (C3) holds, it is suflident to show that (d2, dl) E R => (d2', dl') E R.

2.4 Techniques for defining a design framework

(d2,dl) ER
{[dl]B = [dl']B, [d2'~B = [d2]B, [JIB :::} R}

(d2', d2) ER 1\ (d2, dl) E R 1\ (dl, dl') E R
:::} {Ris transitive}

{d2', dl') ER

(End of Proof and Property)

31

In [Mil89], property 2.4.3 is implicitly used. Here, Ll is a first-order predicate logic, L2 is
the COS language, and Bis a set of graphs with bisimulation equivalence as semantics. R
is a relation known as simulation such that (d2, dl) E R means that d2 can simulate dl.
For readers not familiar with the notions simulation and bisimulation, it is suflident to
know that simulation is a transitive relation that is weaker than bisimulation. The concept
of bisimulation is discussed in chapter 4.

2.4.2 Levels and layers of abstraction

The development of a design framework is partly a search for appropriate levels (layers)
of abstractions and the accompanying specification languages. The outcome is problem­
domain dependent. If little is known about the design of some type of systems, the starting
point in thls search can he a framework consisting of a single level of abstraction such that
any two specifications at that level are different. Moreover, for each design trajectory
carried out, the involved specifications are related by the satisfiability relation at that level
such that the three axioms hold.

The structure of thls design framework may have to he altered when more knowledge is
gainedabout the design process. At that time, levels (layers) of abstraction may he created,
deleted, or altered without falsifying the three axioms. Several transformation techniques
exist to support this. Some of them are presented below:

horizontal level splitting:
Consider a level of abstraction that consists of two groups of specifications. If it is im­
possible to say that one group corresponds to a more abstract level than the other group,
the design framework can he transformed into one in whlch this level is replaced by two
unrelated levels of abstraction.

Formally, consider a framework with a level of abstraction Li. This level can he split into
two unrelated levels Li1 and Li2 without falsifying the three axioms if the following holds:

• Si1 u Si2 = Si

• satu1 ,L;1 = {(s,s') I (s,s') E Si1 x Si1/\ (s,s') E satL;,u}

• satL12,u2 = {(s,s') I (s,s') E Si2 x Si21\ (s,s') E satLï,Lïl

• satu1.u2 = {(s,s') I (s,s') E Si1 x Si21\ (s,s') E satLi,Li} = 0

32 The Role of Languages in the Design Process

• ~i,,Lit = {(s, s') I (s, s') E Si2 x Si1 1\ (s, s') E §ll.t.Li,LJ = 0

• and for each level Lh in L \ {Li}:

- satLh,Li1 = {(s, s') I (s, s') E Sh x Si1 1\ (s, s') E satLh,Li}

satL;1 ,Lh = {(s, s') I (s, s') E Si1 x Sh 1\ (s, s') E satLi,Lh}

- satLh,Li2 = {(s, s') I (s, s') E Sh x Si21\ (s, s') E satLh,Li}

- satLi2 ,Lh = {(s, s') I (s, s') E Si2 x Sh 1\ (s, s') E satLi,Lh}

verticallevel splltting:
Consider a level of abstraction that consists of two groups of specifications. If the specifi­
cations in one of these groups are more abstract than the specifications in the other group,
the design framework can he transformed into one in which this level of abstraction is
replaced by two consecutive levels of abstraction.

Formally, consider a framework with a level of abstraction Li. Without falsifying the three
axioms, this level can he split into two levels Li1 and Li2 such that Lit is more abstract
than Li2 if the following holds:

• Si1 u Si2 = Si

• satLh,Li1 = {(s, s') I (s, s') E Si1 x Si11\ (s, s') E satLi,Li}

• satLi2 ,L;2 {(s, s') I (s, s') E Si2 x Si2 1\ (s, s') E satL;,Li}

• ~;1 ,Li2 = {(d,d') I (d,d') E Si1 x Si21\ (s,s') E satL;,Là = 0

• satL;2,L;1 = {(s, s') I (s, s') E Si2 x Si11\ (s, s') E satL,,Li} f. 0

• and for each level Lh in L \ { Li}:

- satLh,Li1 = {(s, s') I (s, s') E Sh x Si11\ (s, s') E satLh,u}

satu1,Lh = {(s,s') I (s,s') E Si1 x Shl\ (s,s') E satu,Lh}

~h,Li2 = {(s,s') I (s,s') E Sh x Si21\ (s,s') E satLh,Li} 0
satL;2,Lh = {(s, s') I (s, s') E Si2 x Sh 1\ (s, s') E satLi,Lh}

semantical unification:
Consider a level of abstraction at which two specifications exist that belong to different
semantica! classes. If the outcome of the design process is the same no matter which of the
two specifications is taken as starting point, then these semantical classes can he unified
into one semantical class.

Formally, consider a level of abstraction Li in a design framework and two semantical classes
[s)u f. [s')L;. Li can he replaced in the design framework by a new level of abstraction Li'
that unifles these two classes if and only if for all levels Lj in L the following conditions
hold:

2.5 Discussion 33

• implLj,Li(8) = implLj,Li(8')

• implLi,Li(8) = implLi,Li(8')

Each of these three transformation techniques has an inverse. For horizontal splitting,
this means that two unrelated levels of abstraction are combined into a single level of
abstraction. For vertical splitting, this means that two consecutive levels of abstraction
are combined into a single level of abstraction. For semantica! unification, this means that
a semantica! class is split into two classes.

Constraints exist on applying these inverse transformation techniques. These constraints
are to eosure that the new framework still satisfies the three axioms, and are similar to
the ones just presented.

2.5 Discussion

Languages play an important role in the design process of systems. According to the way
they are used, they can he categorised into definition languages, description languages,
and specification languages (section 2.1). This categorisation is not strict. For instance, a
language like English is used for definition, description and specification purposes.

Formal description languages have a generic nature. Design methods are needed to tailor­
make them into specification languages that are dedicated to specifying systems at various
levels of abstraction.

Design methods, languages, tools, and the order in which they can he applied together
form a framework. For such a design framework, the problem-domain independent charac­
teristics can he modelled in terros of specification languages and the satisfiability relations
that relate them (section 2.3). The advantages of such a model are that it unambiguously
defines the notion of design framework and that it provides a basis for developing a design
framework for some class of systems.

The model presented here was based upon the work in [Hui90]. Other approaches exist
to formalise the design framework of a class of systems. In [Fei90], for instance, a single
language is used to specify systems at various levels of abstraction. The satisfiability
relation between the specifications of that language has to he refl.exive, and transitive.
Moreover, in this approach, it is taken into account that specifications are often composed
of other specifications. Therefore, it is required that the operators in the language are
monotonic with respect to the satisfiability relation; i.e. if 82 is an implementation of 81
then the specification 8 with 82 as component has to he an implementation of specification
8 in which 82 is replaced by 81. Constraints that the semantica of the language induces on
the satisfiability relation are not considered.

Specification languages have description languages as a basis. In a design framework, it is
possible to have multiple specification languages with the same description language as a
basis. As a specification language is used in the model to denote a level of abstraction, this

34 The Role of Languages in the Design Process

implies that this description language can be tailor-made to multiple levels of abstraction.
H these levels are consecutive, the technique for defining the satisfiability relations between
them can use this description language as a common mathematica! basis (see section 2.4.2).

To gain insight indeveloping a design framework, chapter 3 applies the constraints derived
in this chapter to determine the desired features of a specification language for designing
communication systems. For that purpose, a design metbod for communication systems is
defined. The language has to be used at consecutive layers of abstraction.

Chapter 3

Designing Communication Systems

To support the design of a eertaio class of systems, appropriate concepts, guidelines, and
features of description languages have to be integrated into a design framework. In this
chapter, the fust steps are taken to develop such a design framework for communication
systems.

The outline of this chapter is as follows. In the first section, the notion of communicating
systems is explained. The second section outlinea a design metbod for communication
systems. In the third section, the concepts and guidelines in this design metbod are used
to provide a rationale for determining the desired features of a specification language. In
the last section, this chapter is discussed and some conclusions are drawn.

3.1 Communication systems

Trends in commercial markets show an increasing demand fora special class of systems
called communication systems. Communication systems provide information exchange fa­
cilities to an environment that is geographically distributed. An example of such a system
is a multimedia conference system. This system provides a conference service to people
that are apart. It enables them to exchange audio and visual information between places
that are geographically distributed.

Communication systems can also be part of systems that provide services to an environment
that is not distributed. Consider, for instance, the following information retrieval system.
It retrieves information that is stored at various sites and it provides this information
to a single site. Here, the underlying communication system takes care of passing the
request for information to the appropriate storage facilities and of transporting the required
information back.

In figure 3.1, the notion of communication system is depicted. The environment (hatched
rectangle) consists of two entities El and E2 that are geographically distributed. These
entities exchange information with each other by interacting with a communication system
(unhatched rectangle). The dotted line denotes the boundary between the system and the

35

36 Designing Communication Systems

environment at which they interact. The interactions between El and the communication
system and the interactions between E2 and the communication system are depicted by
bidirectional arrows.

common
r-"------------"___,·- .. bö.üiid"är:Y ·

Figure 3.1: A communication system, its environment and their interactions.

3.2 A design metbod
This section presents a global outline of a design metbod for communication systems. The
purpose is to obtain concepts and guidelines that can he used to provide a rationale for
determining suitable features of description and specification languages.

The design method consists of four design steps. These steps specify the goals that should
he reached. However, they do ·not provide the techniques to achieve these goals. Ideally,
the steps are carried out consecutively. The steps are:

First step:
To design a communication system, the service that system provides to the environment has
to he determined. The design method suggests specifying first the interactions occurring at
the common boundary between system and environment. The specification that captures
this is called the integrated specification. In this specification, no assumptions are made
about entities in the environment. Only the interactions and the order in which they occur
at the common boundary are considered. The iiidividual roles that system and environment
play to cause this behaviour arenotpart of the specification either.

common
r------L------_--_------__,-·---~)ö.üüêi"äi:Y-

Figure 3.2: The integrated specification.

Using the graphical notation introduced in the previous section, the goal of this design
step is a specification of the interactions denoted by the bidirectional arrowin figure 3.2.

3.2 A design method 37

Second step:
In the second step, the integrated specification is detailed by spedfying the individual roles
that system and environment play in causing the interactions at their common boundary.
The resulting specification is called the system environment protocoL It consists of a part
spedfying the services that the system wishes to provide to the environment, and a part
spedfying the services that the environment wishes to provide to the system.

common
~ ••••••• ----.- ••••••••••••• ~ ~ ~ •••••• --- •••• - •••••••••••••••••• w •••••••• -.

boundary

Figure 3.3: The system-environment protocol.

Figure 3.3 depiets the goal of this step with respect to figure 3.2. The spedfication of the
interactions assodated with the single bidirectional arrow of figure 3.2 has to be replaced
by the spedfications of the interactions assodated with the two bidirectional arrows. The
bidirectional arrow env denotes the interactions in which the environment wishes to partake
and the bidirectional arrow com denotes the interactions in which the communication
system wishes to partake.

In the specification that results from this step, the system part and the environment part
define the constraints that system and environment impose on the behaviour at their
common boundary. The actual behaviour at this boundary is specified by the conjunction
of these constraints. This behaviour has to satisfy the integrated specifi.cation.

Third step:
In the third step, the distribution of the environment is considered. This is clone by re­
structuring the environment part and the system part in the specification of the previous
step. For each entity, this results in a specification of the role that entity and the commu­
nication system play to cause the interactions at their common boundary. Furthermore,
causal dependendes between interactions at different common boundaries are captured
into two other specifications. One spedfication containing all the dependendes that the
environment has to realise, and one specification containing all the dependendes that the
system has to realise.

Figure 3.4 depiets the goal of this step with respect to figure 3.3. The spedfication asso­
dated with each of the bidirectional arrows of figure 3.3 is now replaced by three spedfi­
cations. One specification for each of the solid bidirectional arrows, and one for each of
the open bidirectional arrow denoting the causa! dependencies. Together, the three spec­
ifications have to define the same role as the spedfication from the second step that they
replace.

38

Fourth step:

Designing Communication Systems

common common
· höüi:ïdäry,.... .. J. · ·l· ·~===~~-· ·t_· -___,-· · · ·böüridary

Comm unica ti on
System

Figure 3.4: Distribution of the environment.

In the previous three steps, the communication system is seen as a monolithic entity that
provides a distributed service. In the fourth step, the communication system is decomposed
into protocol entities and a communication subsystem with less complex functionality. For
each of these protocol entities, the interactions in which it wants to participate with the
environment and the communication subsystem are specilied. For the communication
subsystem, the interactions in which it wants to participate with the protocol entities are
specilied.

Communication
Subsystem

Figure 3.5: Decomposition.

Figure 3.5 depiets the goal of this step with respect to ligure 3.4. The communication
system of ligure 3.4 is decomposed into two protocol entities, Pl and P2, and one com­
munication subsystem. Specifications of the interactions in which these three components
are willing to participate have to be derived. These specifications together have to define
the same role as the specifications from the third step that they replace.

3.3 Features of specification languages 39

The communication subsystem can he further detailed by applying the third and fourth
step several times. The effect of this is that a stack of protocol entities appears between
an environment entity and the not decomposed communication subsystem. This stack is
called the protocol stack.

The approach of decomposing a communication system into entities and a communication
subsystem is not new. It has been used by the International Organisation for Standardisa­
tion (ISO) to develop the well-known "Reference Model for Open System Interconnection"
(OSI/RM) [18084]. This model outlines the characteristics of computing equipment that
facilitate the information exchange between equipment of different brands. The approach
is also applied to develop the models for ISDN and B-ISDN [PPvL93].

3.3 Features of specification languages

The purpose of this section is to derive features of a specification language that support
the design of communication systems at consecutive layers of abstraction. The problem
domain of communication systems and the design method of the previous section are used
to provide a rationale for deriving the proper features of this language. As a first step,
the features outlined in section 2.2 are evaluated. In each of headings of the following
paragraphs, the chosen features are in bold print.

State-oriented and action-oriented:
An important characteristic of the design method is that the specification language has to
he able to specify the order in which interactions can take place. Therefore, the specification
language has to he action-oriented. A notion of state is only necessary in those cases where
the ordering of interactions is conditional on the interactions that have taken place in the
past. By parameterising expressions with information about the past, an action-oriented
language can always he extended with the notion of state.

Branching time or linear time:
Operators for ordering actions are needed to specify the behaviour as it may evolve from
some moment on. For communication systems, a necessary operator is the choice operator.
This operator allows you to model that the system is willing to interact in two or more
mutually exclusive ways with the environment. The moment a choice is made for one
of these ways, the other ways hecome excluded. When specifying the participation of a
communication system in the interaction with the environment, these moments form an
essential part of that specification. They determine whether the hehaviour of system and
environment at their common houndary has danger of deadlock (see also the discussion on
trace congruence insection 4.3).

Synchronous or asynchronous concurrency:
Communication systems consist of suhsystems that are geographically distributed. These
subsystems run asynchronously. Usually, there is no atomie clock that defines the moments

40 Designing Commnnication Systems

at which subsystems may interact. Therefore, the specification language has to support
asynchronous concurrency.

Total-order or partial-order semantica:
The subsystems of a communication system usually run independently from each other.
This makes partial-order semantics the most suitable semantics for the specification lan­
guage. However, as we had already carried out substantial workusinga total-order seman­
tica, it was decided to take a specification language with total-order semantics.

Synchronous or asynchronous interaction:
During the design of communication systems, the fact that interactions take place is im­
portant at the higher layers of abstraction. At the lower layers of abstraction, it is more
important how an interaction takes place. Here, answers are given to questions about
which party takes the initiative in an interaction. Synchronous interaction can be used in
all layers, whereas asynchronous interaction would be too detailed for the higher layers.
Therefore, the specification language has to support synchronous interaction.

lmplicit and explicit:
The specification language has to be used at consecutive layers of abstraction. It should
not only provide designers with the expressiveness of implicitly specifying "what" is to be
designed. At the next layer of abstraction, it should also support an explicit specification
of "how" this "what" has to be accomplished. So, the specification language has to provide
designers with the expressiveness to specify behaviour implicitly and explicitly.

Apart from the features just discussed, the specification language has to satisfy several
boundary conditions. These conditions are derived from the model of the design framework
(section 2.3) and from the correctness criteria mentioned in the design method.

Satisfiability relation and semantics:
As there is just a single specification language involved, the model of the design framework
states that the following two properties have tó hold for the satisfiability relation and the
semantics:

1. (s, s) ~ sat+

2. [s2JI = [s2') A [si] = [sl'~ A (s2, sl) E

(s2', s11
) E sat

As attention is only focussed on a level of abstraction that consists of a number of layers
of abstraction, the subscripts have been removed from the formulae. This will be done in
the remaioder of this thesis as long as it does not cause ambiguities.

The discussion of the design method indicates that a specification often consists of sev­
eral separate subspecifications joined by operators. Clearly, a specification should not be

3.4 Discussion 41

semantically altered if one of its subspecifications is replaced by a semantically indistin­
guishable one. The semantics of a language that guarantees this is called a congruence (see
also section 2.5). Hence, the specification language should have a congruence as semantica.

Correctness criteria:
The design method consists of four steps that need to be carried out in a certain order.
The outcome of each step should not contradiet the outcome of the previous step. This is
expressed in terms of a number of correctness criteria.

The specification of the roles of system and environment at the end of the second step is
more detailed than the integrated specification of the first step. Therefore, the two specifi­
cations should be semantically distinguishable. However, it should be possible to abstract
from the roles of system and environment in the more detailed specification and obtain a
specification that is semantically indistinguishable from the integrated specification.

The third step can be looked upon as a mere rewriting of the specificatien of the system's
role obtained at the second step. Therefore, this new specification and the original one
should be semantically indistinguishable.

The outcome of the fourth step is a specification of two protocol entities and a communi­
cation system with less complex functionality. Clearly, this specification is more detailed
then the specificatien obtained by the third step. Therefore, the two specifications should
be semantically distinguishable. However, it should also be possible to abstract in the
specification from the entities and less complex communication system. The specification
after abstraction should be semantically indistinguishable from the specification at the end
of the third step.

3.4 Discussion

In this chapter, the problem domain of designing communication systems is outlined and
a design method for these systems is presented. This design method is a means to provide
a rationale for determining the desired features of a specification language.

The design metbod is coarsely grained. Depending on the specific characteristics of a
communication system under design, these steps have to be further refined. Consider, for
instance, the design of a communication system that needs to be embedded in an existing
environment. Assume that the integrated specificatien and the role that the entities of the
environment play in it are known. Then, a useful design step is one in which the role of the
communication system in the integrated specification is derived. In [Koo85, Par89, Shi89]
it is shown how this step can be carried out using formal notations.

In [CGL85], a logkal structure in the interaction of a communication system with its
environment is used to structure the specification of the role of that system. For instance,
first, the role of the system in the integrated specificatien with respect to conneetion
establishment is determined, foliowed by its role with respect to data transfer, and finally
its role with respect to breaking down the connection.

42 Designing Communication Systems

In chapters 4, 5, and 6, a design framework for communication systems is developed. This
is done by defining a specification language and a satisfiability relation that satisfies the
features outlined in section 3.3. In spite of these desired features, it will become apparent
that during the definition of the language, choices have to be made that are based on
intuition and experience.

Chapter 4

A Specification Language

In this chapter, the features of specification languages discussed insection 3.3 are used to
define a design framework for communication systems. For that purpose, a specification
language is derived that can be used at consecutive layers of abstractions and a satisfiability
relation is defined between specifications of that language. The language is algebraic, and
it is mainly composed of the most suitable operators found in ACP [BW90], CCS [Mil89],
CSP [Hoa85], and LOTOS [IS088].

In the first section, a notation is introduced to specify the behaviour of systems and their
environment at various layers of abstraction. This notation is turned into a formal specifi­
cation language in a number of steps. As a first step, the operational interpretation behind
the notation without the abstraction operator is defined in the second section. The third
section refines the operational interpretation by deriving an appropriate semantica for the
notation. It turns the notation into a language. To relate specifications at consecutive lay­
ers of abstraction, an abstraction operator is needed. Therefore, the fourth section extends
the language defined thus far with such an operator. The design frameworkis defined in
the fifth section. In the sixth section, this chapter is discussed and some conclusions are
drawn.

4.1 N otation

Insection 3.3, criteria are defined that a language for specifying communication systems has
to satisfy. This language is used for each specification of the design method. In this section,
a suitable algebraic language is informally introduced by means of a running example. This
language consists of the most suitable operators found in CSP, ACP, CCS, and LOTOS. It
also contains operators addressing aspects not covered by these other languages. To stress
that the language in this section has no semantica yet, it is called a notation.

First, the example used throughout this section is explained. Consider two geographically
distrihuted entities El and E2. For El to agree on something with E2, it has to make
a request for agreement. If E2 has received that request and agrees to it, E2 has to

43

44 A Specification Language

confirm this. Agreement between the two entities is reached when El has received this
confumation.

A communication system has to he embedded in this environment of two entities. This
system transfers the request from El to E2 and the confirmation from E2 to El. To give an
integrated specification of the interactions at the common boundary of the communication
system and the environment, the following abbreviations are introduced:

'w': interaction to initiatea request for agreement.

'x': interaction to deliver a request for agreement.

'y': interaction to confirm a request for agreement.

'z': interaction todeliver a confirmation of agreement.

Figure 4.1 uses the graphical notation of section 3.2 and 3.3 to depiet the environment
(without its entities), the communieation system, and the interactions at their common
boundary. Each type of interaction is represented by a bidirectional arrow labelled with
the corresponding abbreviation. The order in which interactions take place is not refiected
in the figure.

camman
.----''---L-___.. _ _L__·_· ·___,· · · · ·söü.nd.ärr

Figure 4.1: The integrated specification.

In the remainder of this section, the problem just explained is used as a running example
to introduce the notation. This introduetion is informal and incomplete.

Action symbols:
A behaviour consists of activities (such as interactions) that are carried out in a certain
order. To specify such a behaviour in the notation, symbols are needed to denote the
activities.

In the notation presented in this section, small letters at the end of the Latin alphabet
denote indivisible activities. These symbols are called action symbols. Examples of action
symbols are w, x, y, and z. They were defined in the introduetion of the problem domain.

To ease the readability of the thesis, an explicit distinction is not always made between
action symbols and the activities that they represent. Similarly, an explicit distinction is
not always made between expressions of the notation and the behaviour that they specify.

4.1 Notation 45

Action prefix and sequentia! composition:
According to the informal description of the problem domain, interaction w has to occur
before interactions x, y, and z. Interaction x has to occur before interactions y and z, and
interaction y has to occur before z. To specify this behaviour, CSP, CCS, and LOTOS
have an action prefix operator. The left-hand side of this operator is an action symbol
denoting an interaction. The behaviour after this interaction is specified by the expression
on the right-hand side of the operator.

ACP has an operator that is more generic than the prefix operator. Besides action symbols,
this operator allows an expression as left-hand side of the prefix operator. The operator is
called the sequentia[composition operator. It specifies that two behaviours occur one after
the other. In CSP, CCS, and LOTOS, the sequentia! composition operator is denoted by
a separate operator.

The advantage of a sequentia! composition operator is that it can improve the readability of
the specification by giving it a logical structure. For instance, many data communication
protocols consist of three phases that are passed consecutively: the conneet phase, the
data transfer phase, and the disconneet phase. This structure can now be refl.ected in a
specification of the protocol. The behaviour of each of the three phases is specified by
a separate expression. The overall behaviour is specified by catenating these expressions
using sequentia! composition.

In the notation introduced in this section, the semicolon of LOTOS is used to denote the
sequentia} composition operator. The case where the left-hand side of a sequentia! com­
position operator is an action symbol corresponds totheuse of the action prefix operator.
Applying the sequentia} composition operator to specify the ordering of interactions at the
common boundary of the communication system and the environment results in:

w;x;y;z

Successful termination:
The integrated specification defined above is incomplete. The behaviour after interaction
z is not specified. It may continue or it may terminate immediately.

For now, assume no interactions take place after z. To specify this successful termination
of behaviour, a new symbol is added to the notation. This symbol also allows designers to
distinguish specifications of behaviours that can successfully terminate from specifications
of behaviours that can terminate prematurely (deadlock). As designers will never spec­
ify wrong behaviour consciously, the notation does not have a special symbol to express
premature termination.

ACP, CSP, and LOTOS have a special symbol for successful termination and they have a
special symbol for premature termination. ces specifies both types of termination by a
single symbol.

As in LOTOS, successful termination is specified in the notation by the symbol exit.
The notation does not have a symbol to specify premature termination. The integrated

46 A Specification Language

specification of the example becomes:

w; x; y; z; exit (I)

Choice{.
According to the $pecification, E2 can only react to a request of El by a confirmation. A
refinement of this behaviour is to give E2 the option to confirm or reject the request.

The integrated specification has to show a choice between two behaviours after w; x;. If
confirmation is denoted by y_cnf and rejection is denoted by y_rjt, this choice is between
y_cnf; z; exit and y_rjt; z; exit. Interaction z now denotes the delivery of a confirmation
or a rejection. The notation developed thus far does not a.llow for the specification of a
choice between behaviours. A new operator is needed for this: the choice operator.

There are many ways in which a choice between behaviours can be made. To be able to
specify most of them, it is necessary to specify mechanisms that make the choices between
alternative behaviours. The choice operator found in ACP, CCS, and LOTOS combined
with the notion of an interna.l action (see later) a.llows for this. Therefore, we adopt it in
this notation.

The mechanisms used to specify choice behaviour do not a.lways have to constrain the
system under design. It is possible that a designer bas the freedom to decide later on in
the design process to choose another mechanism to implement some choice behaviour. To
make this design freedom explicit in specifications, an operator is added to the language.
This operator is called the abstraction operator, and it is discussed later on in this section.

Following ACP and CCS, the '+'-symbol is used in the notation to denote the general
choice. The integrated specification with confirmation and rejection then becomes:

w; x; (y...cnf; z; exit+ y_rjt; z; exit)

Recursion:
Often entities in the environment want to reach agreement on more than one issue. For this,
they need to interact indefinitely with the communication system. This non-terminating
behaviour cannot be specified in the notation developed so far.

Finite-length expressions of action symbols and exit that are glued tagether by prefix,
sequentia.! composition, and choice operatorscan only specify terminatillg behaviour. The
notation bas to be extended with a recursion mechanism to handle non-termillating be­
haviour.

In ACP, CCS, and LOTOS, place bolders are allowed in an expression for which finite­
length expressions can be substituted. The expression and the allowed substitutions are
separately specified. By repeatedly substituting expressions for place bolders, the expres­
sion gets lengthened and non-termillating behaviour is specified. CSP follows a more
complex substitution approach. They integrate expressions, place bolders, and allowed
substitutions in the syntax. As a result, behaviours are cumhersome to specify and speci­
fications are difficult to read.

4.1 Notation 47

In the notation, the first approach is followed. If the behaviour in specification (I) can be
repeated indefinitely, then this is specified by the following expression and equation:

w;x;y;z;T with T = w;x;y;z;T (11)

The place holder T in expression w; x; y; z; T is called a behaviour name. It can be replaced
by the right-hand side of the unique equation that has T as left-hand side. Since there is
no upper bound to the number of replacements, non-terminating behaviour is specified.

To ensure that continuons replacement of behaviour narnes by expressions results in the
specification of non-terminating behaviour, the notation only consists of expressions in
which all behaviour narnes occur to the right of a sequentia! composition operator after
a finite number of replacements. This is known as guardedness [Mi189]. Behaviour narnes
are always represented by capitalletters of the Latin alphabet.

Local and global action symbols, and alphabet:
The goals outlined in step 2, 3, and 4 of the design method show that a specification consists
of a number of component specifications. Each component specification constrains the
order of several interactions. Interactions that component specifications have in common
can only occur in an ordering that satisfies the constraints of each of these component
specifications.

In the notation, the infl.uence that component specifications have on each other is made
explicit. As a first step, two types of action symbols are distinguished: global action symbols
and local action symbols. The ordering of global action symbols as defined by an expression
can be infl.uenced by constraints of other expressions. The order of local action symbols is
not infl.uenced by the other expressions. Local action symbols can be distinguished from
global action symbols in that they have a tilde symbol on top. Notice that global action
symbols have their own identity and can therefore be distinguished from each other.

As a second step, the set of all global action symbols that are ordered by an expression
E is separately specified. This set is called the alphabet of E, and it is denoted by q.E.
The set q. E has to consist of at least all the global action symbols that occur in E and in
left-hand side of the equations associated with that expression. If this set contains action
symbols that are not occurring in these expressions, then the behaviour specified prohibits
the interactions associated with these action symbols from ever occurring.

Alphabets occur in ACP, CCS, and CSP. ACP and CCS allow that the expression that
remains after an interaction has a different alphabet than the expression before that in­
teraction. In this notation, this fl.exibility is not allowed. The CSP approach is followed,
which means that the two alphabets have to be same.

A consequence of the extensions is that the integrated specification of system and environ­
ment can now be specified more naturally. No expression can infl.uence this behaviour, and
the behaviour cannot infl.uence the behaviour specified by other expressions. Therefore, it
should be specified by an expression with local action symbols and an empty alphabet.

s with s = w; x; fj; z; s (III)

48

~.8=0

Scope:

A Speci:fication Language

To limit the iniiuence (or scope) that an expression has on the ordering of interactions
specified by other .. expressions, an operator is needed that transfarms global action sym­
bols into local action symbols. Therefore, the notation is extended with the localisation
operator: 'f'. The left-hand si de of this operator is an expression of the notation, and the
right-hand side is a set of global action symbols. Each global action symbol in the expres­
sion that occurs in this set is transformed into a local action symbol and it is removed from
the alphabet.

Applying this operator to (II) yields:

(w;x;y; z;T)f{w,x,y,x} with T = w;x; y; z; T
~. ((w;x; y; z;T)I{w, x, y,x}) = 0

This specification is equivalent to (III).

Parallelism:

(IV)

Applying step 2 to the integrated specification (III) results in a speci:fication of a system­
environment protocol. This specification is composed of two expressions: an expression E
that specifies the role of the environment and an expression S that specifies the role of the
communication system. The intersection of their alpbahets refl.ects the interactions that
they have in common:

E with E w;E+x;E+y;E+z;E
~.E = {w,x,y,x}
S with S w; x; y; z; S
~.S = {w,x,y,x}

Specification E shows that the environment imposes no constraints on the order of the
interactions w, x, y, and z. Specification S shows that the communication system bas to
ensure the order of these interactions. .

Tagether, E and S define the same behaviour as (III). However, this cannot be specified
directly in the notation. A suitable operator is missing that glues the two expressions to­
gether. This operator is called the parallel operator and it is denoted by: '11 '. It corresponds
to the CSP parallel operator.

Adding this operator to the notation results in the following alternative specification of
(II):

(E 11 SH{w,x,y,z}
with E = w; E + x; E + y; E + z; E

~.E = {w,x,y,z}
S = w;x;y;z;S
~.S = {w,x,y,z}

(V)

4.1 Notation 49

The union of the alpbahets of E and Sis the alphabet of E 11 S. The localisation operator
ensures that the alphabet of (E 11 S)l{w,x,y,z} is empty.

Abstraction:
Specification (V) resulted at the end of step 2. It specifies the same behaviour as (III). As
(111) is the specification that resulted at the end of step 1, this suggests that no progress
is made in the design. To distinguish between the two expressions an operator is needed
that allows you to mark the boundary in an expression between the design decisions made
and the design decisions to he made. Such an operator is now added to the notation.

This new operator abstracts from certain aspects in a specification. Therefore, it is called
an abstraction operator. The operator is denoted by: '•'. It has an expression on the
left-hand side and a set of action symbols on the right-hand side.

E•B denotes the behaviour of expression E with respect to the action symbols in B. The
other action symbols are just a means to obtain this behaviour. They are not part of
that what has to he designed. Only their effect on the ordering of action symbols in B is
important. Furthermore, this expression abstracts from structural constraints on systems
that provide the behaviour. It does not specify a number of subsystems that interact with
each other to provide this behaviour. At this stage of the design, the specified system is a
black box (hence the symbol used to denote the abstraction operator) with behaviour.

Assume that E•B is detailed into El•Bl 11 E2•B2. This expression specifies that the
system has to consist of two subsystems in parallel. The behaviour of one subsystem
is specified by El•Bl and the behaviour of the other is specified by E2•B2. These
subsystems have to he detailed in future detailing steps.

In ACP, CSP, and LOTOS this type of abstraction operator does not occur. As these
languages only focus on behaviour, their abstraction operator only abstracts from action
symbols. CCS has a parallel operator that abstracts from the identity of interactions. As
far as we know, the abstraction operator used in this thesis is first presented in [Hui91].

Applying this operator to (IV) yields the following integrated specification:

((w; x; y; z; T)•{w,x, y, x})l{w,x, y,x} with T w; x; y; z;T
~· (((w;x;y; z; T)•{w,x,y,x})f{w,x,y,x}) = 0

Applying this operator to (V) yields the following specification:

(E 11 (S•{w,x,y,z})H{w,x,y,z}
with E = w; E + x; E + y; E + z; E

f!. E = {w,x,y, z}
S = w;x;y;z;S
~.S= {w,x,y,x,z}

(VI)

(VII)

In the following three sections, the notation presented here is formally defined. In the
first of these sections, the notation without the abstraction operator is considered. This

50 A Specification Language

notation is turned into a language by giving it a semantica in the second section. In the
third section, the language is extended with the abstraction operator.

4.2 Syntax and operational interpretation

Although not explicitly stated in the previous section, a specification in our notation is a
triple (E,cp,g}, where Eis a finite-length expression, cp is a set of equations, and gis a
set of globai action symbols. We call such a triple a prÖéess.

Not all processes specify behaviour properly. Here, we formalise the three arguments of a
process and we provide the conditions that these arguments have to satisfy. Finally, the
operational interpretation of processes is defined.

4.2.1 Finite-length expressions

To formalise the syntax of the finite-length expressions, four infinite sets are defined. They
are: the set Act of actions symbols, the set A of global action symbols, the set Ä of local
action symbols, and the set Id of behaviour names.

The sets A, Ä, and Id are mutually disjoint. The relation between action symbols, global
action symbols, and local action symbols is made explicit by defining that Act is the union
of A and Ä:

Act =AUÄ.

Usually, in this thesis the convention is foliowed that in expressions the letters x, y, and z
denote global action symbols and the letters x, y, and z denote local action symbols. The
capitalletters near the end of the Latin alphabet denote behaviour names.

The set Exp of finite-length expressionsis now defined in BacJrus...Naur Form:

E··-.. - w;E EfA
E+E x
EIIE exit
E;E

where w ranges over Act, A ranges over A, and X ranges over Id. The symbol exit is a
special symbol that is neither an element of Act nor an element of Id.

In this thesis, we are only interested in processes. As we are used to talking about ex­
pressions of languages, the distinction between finite-length expressions and processes is
somewhat cumbersome. Therefore, we overload the notion of finite-length expression. As
well as using it in the way just defined, it is also used to denote a process. More precisely,
the process (E, p_, g) is frequently represented by its first argument E. The second and
third argument are then denoted by p_. E and g. E.

4.2 Syntax and operational interpretation 51

In principle we always assume that E denotes a process. When this is not the case, the
context will make it clear that the other interpretation is intended.

4.2.2 Substitution function

The operational interpretation of the operators and the fact that the expressions in Exp
have a finite lengthensure that they cannot specify non-terminating behaviour. To specify
behaviours that never terminate, a process contains a set of equations. This set speellies
which behaviour namesin an expression can be replaced by which finite-length expressions.
In this way expressionscan be lengthened and non-terminating behaviour can be specified.

The set of equations is a partial function from behaviour narnes to processes. As it is
used to define allowed substitutions, it is called a substitution function. Following now the
abbreviations introduced at the end of the previous subsection, a specification E has as
substitution function cp. E. The expression in the equation with as left-hand side behaviour
name X is denoted by-cp. E(X). In this thesis, only expressions E are considered for which
each behaviour name that occurs in E or in an expression in the range of cp. E is also in
the domain of ':!!.: E. -

Expressions are composed of other expressions. The substitution function should not hinder
this. Consider expressions El and E2. If a behaviour name X occurs in the domain of
P.: El and P.: E2 such that P.: El(X) -I P.: E2(X), a clash of behaviour names· can occur
when these expressions are combîned into a larger expression. To avoid this problem, only
expressionsEin Exp that satisfy the constraints in table 4.1 are considered in this thesis.

i) P.: (w; E) = P.: E with wE Act
ii) cp. (El+ E2) = cp. El and cp. (El+ E2) = cp. E2

iii) ~·(El 11 E2) =i_. El and i_. (El 11 E2) =i E2
iv) cp. (El; E2) = cp. El and cp. (El; E2) = cp. E2
v) ~.(ErA) cp.E - -

vi) (VX: XE dom(!e· E) : !e· X !e· (:E· X(X)))

Table 4.1: Substitution function constraints.

This restricted class of expressions does not rednee the number of behaviours that can be
specified by the notation. Two simple rewriting techniques exist by which possible name
clashes can be solved.

The first rewriting technique is based on the observation that behaviour names serve as
place holders. Consistently replacing one in an expression and that expresaion's substitu­
tion function by a fresh one doesnotchange the specified behaviour. The second rewriting
technique is based on the observation that if a behaviour name Y is not used in the ex­
pression and its substitution function, equation Y = ... can be added to that substitution
function without changing the specified behaviour.

52 A Specification Language

Consider two expressions El and E2 that have to he comhined hy a choice, parallel, or
sequential composition operator. The first technique can he used to rewrite Eland E2 into
equivalent expressions El1 and E21 such that dom(ip. El') and dom(lP· E21

) are disjoint.
According to the second technique, lP· El1Uip. E21 can-be used as a suhstitution function for
El1 and E21

• It would not alter the specified hehaviours. These new expressions satisfy the
conditions in tahle 4.1. Therefore, they can he comhined hy a choice, parallelor sequentia!
composition operator.

When in the remaioder of this thesis expressions are comhined into larger expressions, it
is implicitly assumed that the strategy just outlined is applied to avoid name clashes from
occurring.

4.2.3 Alphabet

The third argument of a process, the alphabet, serves to specify which glohal actions are
ordered. Following the ahhreviations at the end of the fust suhsection, an expression E
has alphahet g_. E.

Assume that the hehaviour specified hy E is partly performed and assume that the remain­
ing hehaviour is specified hy E'. For E and E 1 to order the same glohal action symhols,
their alpbahets have to he the same. Therefore, the notation in this thesis is restricted to
those expressions E with alpbahets that satisfy:

i) g_.E cA
ii) g_. (w; E) = g_. E with w E Act
iii) if wE A then wEg_. (w; E)
iv) g_. (El+ E2) = g_. El and g_. (El+ E2) = g_. E2
v) g_. (El 11 E2) = q. El U g_. E2

vi) g_. (El; E2) = g_. (El) and g_. (El; E2) = q. E2
vii) g_. (Ef A) g_. E \A

viii) ('r/: XE dom(.<e· E): g_. X= g_. (_<e. X(X)))

Tahle 4.2: Alphahet constraints.

Henceforth, e denotes thesetof processes that satisfy the constraints of tahle 4.1 and 4.2.
Moreover, the elementsof & are called expressions.

4.2.4 Exit~predicate

A predicate Exit. E is defined on expressions E of e. This predicate is needed to define
the operational interpretation of the sequential composition operator. Informally, El; E2
denotes a hehaviour specified hy El. But at certain moments El can stop specifying the

4.2 Syntax and operational interpretation 53

behaviour and then E2 takes over. The Exit-predicate on expressionsis used to characterise
these moments.

Informally, the Exit-predicate applied to an expression E evaluates to true if and only if E
consists of a number of expressions exit glued tagether by vàrious operators. In table 4.3,
this predicate is defined on the structure of expressions:

i) Exit. (w; E) = false with w E Act
ii) Exit. X= Exit. (_<e.X(X))

iii) Exit. exit= true
iv) Exit. (El+ E2) =Exit. El/\ E2
v) Exit. {El 11 E2) = Exit. El/\ Exit. E2

vi) Exit. {El; E2) =Exit. El/\ E2
vii) Exit. (Er A)= Exit. E

Table 4.3: Exit predicate.

4.2.5 Guarded expression

Not all substitution functions are useful to specify non-terminating behaviour. Consider
expression X with X = X+ X. Although expression X can be lengthened by substitution,
it is unclear what behaviour is specified by this. To exclude this type of expression from
the notation, the notion of guarded expressions is introduced.

Informally, a guarded expression is an expression that can be transformed by a number of
substitutions into an expression in which each behaviour name is part of the right-hand
side of a prefix operator. The operational interpretation guarantees forthese expressions
that they specify behaviours that can carry out interactions.

To define the concept of guarded expression, a Guard-function on expressionsint is defined
first:

i) Guard. (w; E) = w; E with w E Act
ii) Guard. X= Guard. (_<e. X(X))

iii) Guard. exit = exit
iv) Guard. (El+ E2) =(~.El)+(~. E2)
v) Guard. (El 11 E2) = (Guard. El) 11 (Guard. E2)

. _ { (Guard.El);E2
vi) Guard. (El, E 2) - (Guard. El); (Guard. E2)

vii) Guard. (Er A)= (Guard. E) rA

Table 4.4: Guard function.

, if -.Exit. El
, if Exit. El

An expression E is called guarded if the Guard-function is decided for E and for each
expression in the range of cp. E. If the outcome for one or more of these expressionsis not
int (= undecided), Eis cäiled unguarded.

54 A Specification Language

In the remainder of this thesis only the guarded expressions in E are considered. This set
of guarded expressions is denoted by Eg·

4.2.6 Operational interpretation

The operational interpretation of the expressions of Eg is defined by mapping these expres­
sions onto labelled transition systems [Plo83]; i.e. by defining between expressions arrows
labelled with action symbols. If an arrow labelled by w exists from E to E', then E spee­
ities a behaviour that can carry out interaction w and behaves afterwards as specified by
E'.

Definition 4.2.1 (operational interpretation)
For each action symbol w, ~ denotes the smallest binary relation on Eg satisfying:

1) w;E~E
2) if (E ~ E') then (E + F E' and F + E E 1

)

3a) if (E ~ E1 and wE A) then (ErA~ E'rA)
3b) if (E ~ E' and w ~A) then (ErA E'rA)

4) if (E E' and <p. X(X) = E) then (X ~ g)
5a) if (E ~ E' and (w ft. g_. E or (w E g_. E and w ft. g_. F)))

then (E 11 F E' 11 F and F 11 E F 11 E')
5b) if (E ~ E' and F ~ F' and w E g_. E n g_. F)

then (E 11 F ~ E' 11 F') and F 11 E ~ F' 11 E')
6a) if (F ~ F' and Exit.E) then (E;F ~ F')
6b) if (E E') then (E; F ~ E'; F)

(End of Definition)

As each expression is mapped onto a labelled transition system, the parallel operator has
obtained a total-order semantica. This corresponds to one of the features outlined in
section 3.3.

To exemplify the definition of the operational interpretation, consider the behaviour spec­
ified by:

W g_. W {w,x,y,z}
with W w;X

X= y;Y +z;Z
Y=x;W
Z =exit

The restrictions imposed on alphabets and substitution functions of expressions ensure
that X with g_. X g_. Wand <p. X= <p. W, Y with g_. Y = _q. Wand <p. Y = <p. W, and Z
with g_. Z _q. W and P: Z i_. W are proper expressions. - -

4.3 Semantica 55

By repeatedly applying the rules 1), 2), and 4) of definition 4.2.1 to the expression, the
operational interpretation induces binary relations between these expressions. This can he
depicted graphically by using fat dots (•) to represent expressions and by taking labelled
arcs between dots to represent relations between expressions. A special dot (0) is used
to represent the expression denoting the behaviour. Graphical representations of this type
are called state graphs. In figure 4.2, the stategraphof expression Wis drawn.

w

Figure 4.2: The stategraphof W.

The operational interpretation provides means to reason about the first interaction that
a behaviour specified by an expression can carry out. However, it gives little assistance
in reasoning about sequences of consecutive interactions. To remedy this deficiency, this
section is concluded by showing how the ~. w E Act, on E9 can he extended from
interactions to traces of interactions.

For a trace t of action symbols and E and F expressions in E9 , E F expresses that
there exist l(t) + 1 expressions Gi such that E = GO ~ G1· .. a~a G(l(t) - 2) a~2

G(l(t)- 1) a~1
G(l(t)) = F and t = a0a1 • • ·az{t)-l· In this context, F is called a

rest expression of E. In addition, it is assumed that ~ always relates two syntactically
identical expressionsj e.g. E E. So, each expression is always its own rest expression.

4.3 Semantics

In this section, the notation is transformed into a language by giving it semantica. These­
mantics is defined in terms of the syntax and operational interpretation that were presented
in the previous section.

The following topics are addressed. First, it is shown how arelation on expressionscan he
used to define the semantics of the notation. Second, an appropriate relation is derived in
a number of steps.

4.3.1 Deftning semantics

As stated in section 2.3, the semantics of the notation makes precise which expressions
are indistinguishable and which are not. It always boils down to partitioning the set of

56 A Specification Language

expressions into disjoint subsets. Two expressions are then called indistinguishable if and
only if they belong to the same subset.

A partitioning of expressions is usually defined by a relation over these expressions. Two
expressions are then indistinguishable if and only if they are in that relation. Not every
relation R induces a suitable partitioning. R has to satisfy certain properties that are
motivated by the intuitive understanding of indistinguishability.

1. Each expression is indistinguishable from itself (refl.exivity).

2. If an expression is indistinguishable from another expression then the reverse should
also hold (symmetry).

3. If an expression is indistinguishable from a second expression which in turn is indis­
tinguishable from a third expression, then the first and third expression should also
be indistinguishable (transitivity).

4. Let El and E2 be two indistinguishable expressions. Embedding them in the same
environment C[] should make no difference. C[El] and C[E2] have to be indis­
tinguishable. If this is not the case, a distinction can be made between El and
E2.

If relation R satisfies the first three properties, it is called an equivalence relation. An
equivalence relation defined on a set partitions this set into disjoint parts. If the fourth
property also holds, R is called a congruence.

According to the model of the design framework, it is suftkient to define an equivalence
relation for the notation. However, a congruence is necessary to obtain specifications in
which parts can be replaced by indistinguishable parts without changing the semantics.
Therefore, we focus on deriving a proper congruence in the next subsection.

4.3.2 Choosing a congruence

A number of congruences exist that may serve as semantics for the notation. However,
not all of them are suitable. In this subsection several congruences are evaluated for
their suitability. This evaluation has already been presented in [Hui88]. A more extensive
evaluation can be found in [Gla90, Gla93].

One purpose of the notion is to specify behaviour. Therefore, the congruence has to
relate expressions that specify similar behaviour. This suggests that the notion of similar
behaviour has to be defined. For that purpose, Milner [Mil80] introduced the notion of
an external observer. Two behaviours are similar if an external observer cannot tell them
apart by observation. This approach is also foliowed in this thesis. In the remainder of
this subsection, a suitable semantics for the notation is defined by gradually refining the
observations that an external observer can make.

4.3 Semantics 57

Trace congruence:
Since expressions of the notation are mapped onto labelled transition systems, the specified
behaviour can carry out at most one action at a time. So, a suitable characteristic of
observation is that at most one interaction at a time can be observed.

Behaviours can be distinguished by the order in which they can carry out interactions.
So, besides the interactions themselves, the order in which they are carried out has to be
observable.

A behaviour can affect fellow behaviours in parallel context. The infl.uence of a behaviour
is determined by the alphabet of the expression that specifies this behaviour. Therefore,
the alphabet should be part of the observation.

A behaviour can be placed in a sequentia! context with another behaviour such that the
latter behaviour takes over the moment the former behaviour is successfully terminated.
To distinguish between behaviours that differ in the way they successfully terminate, the
result of evaluating the Exit-predicate of an expression has to be observable.

Clearly, a congruence relation on expressions has to satisfy the four characteristics of
observation that were just mentioned. If the practical assumption is made that an observer
can only observe a finite number of interactions, the following congruence seems to be a
suitable candidate:

Definition 4.3.1 (Trace congruence)
Expressions El and E2 are called trace congruent, denoted by El ~t E2, if and only if

!!· El = Ql. E2
and for every tE Act*:

If El

If E2

El' then there exists an E2' such that E2 ~ E2' and Exit. El' =

E2' then there exists an El' such that El ~ El' and Exit. El'

(End of Definition)

Trace congruence is based on a notion of observation that consists of the alphabet of the
expression, the order of interactions, and the outcome of applying the Exit-predicate on
rest expressions that are reached after performing these interactions. The order in which
interactions are observed is modelled by a trace of action symbols. Each newly observed
interaction is juxtapositioned to the right of the previously observed interaction. Semantica
basedon traces was first introduced in [Hoa78].

According to the features in section 3.3, the language has to have a branching-time se­
mantica. However, trace congruence gives it a linear-time semantica. For instance, trace
congruence makes no distinction between w; (x; exit+ y; exit) and w; x; exit+ w; y; exit.
A branching-time semantica distinguishes between these expressions because the moment
of choice between x and y is different. The first expression specifies that the choice is

58 A Specification Language

made after interaction w is performed, whilst the secoud expression states that the choice
is made when w is performed.

Trace congruence has another drawback. Trace congruence turns the notation into a lan­
guage that is not deadlock preserving. For a thorough discussion of deadlock, the reader
is referred to section 5.5. For now, this point is illustrated by a simple example.

Expressions El and E2 in figure 4.3 are trace congruent. If the right-hand branch labelled
by interaction w is taken in El 11 E3, the composite behaviour terminates. However,
the behaviours specified by El and E3 still want to perform interactions x and y. This
situation is called a deadlock. If the composite behaviour E2 11 E3 stops, the behaviours
associated with E2 and E3 are successfully terminated. No danger for deadlock exists in
this composite behaviour.

E1 E2 E3 EliiE3 E2IIE3
® ® ® ® ®

7 ~ r r 7 ~ r
• • • • • ·i •

~ f ~~ f ~ f
• • • • • • •
a.E1=~w,y,x~ Ell\ltE2

a.E2=Iw.y,xf
a.E3=~w,y,x~

Figure 4.3: Trace congruence is not deadlock preserving.

So, although El and E2 are trace congruent, the behaviour specified by El 11 E3 has
danger of deadlock and the behaviour specified by E2 11 E3 does not. As danger of deadlock
may result in a premature ending of a behaviour, it is usually an unwanted property. lts
presence or absence should be preserved by the semantics of the language.

In conclusion, a stronger congruence than trace congruence is needed. This congruence
has to give the notation a branching-time semantics that preserves deadlock.

Failure congruence:
The behaviour specified by Elll E3 (figure 4.3) has danger of deadlock and the behaviour
specified by E2 11 E3 does not. The reason for this is that El and E2 influence fellow
expressions that are placed in parallel differently.

An expression E prohibits behaviour specified by fellow expressions from performing in­
teractions of a set A, if A is a subset of ~. E and E does not allow interactions A to take
place. The elements of A are called failures and A itself is called a failure set.

4.3 Semantics 59

Assume the left-hand branch of the state graph of El is taken when interaction w is
performed. Then, the interactions w and x become failures. The composite behaviour of
El and expressions with global actions symbols w and x cannot perform these interactions.
Similarly, actions wand y are failures ifthe right-hand branch is taken. On the other hand,
for E2 the performing of action w results in a single failure w. Since E2 is less restrictive
than El with respect to the behaviour specified by expressions placed in parallel, the
behaviour speellied by E2ll E3 has no danger of deadlock and the behaviour specified by
Elll E3 does.

To guarantee a deadlock preserving congruence, behaviours specified by expressions have
to be equally restrictive with respect to their environment. Therefore, the concept of failure
set is added to the notion of observation.

Two expressions are called failure congruent [HBR84, Hoa85] if they are trace congruent
and for each observed sequence t of interactions matching failure sets exist. More precisely:

Definition 4.3.2 (Failure congruence)
Expressions Eland E2 are called failure congruent, denoted by El r:::;f E2, if and only if

~.El =~.E2

and for every t E Act* and A Ç ~.El:

If El El' and AnReady. (El1
) = 0 then there exists an E21 such that E2 E21

,

El1 = E21
, and A n Ready. (E21

) = 0.
If E2 ~ E2' and AnReady. (E21

) = 0 then there exists an El' such that El El',
El1 Exit. E21

, and A n Ready. (El1
) = 0.

where Ready. (E) denotes the set of all actions that an expression E can perform first.
(E) is called the ready set of E. It is defined by: {a I a E Act A E E'}.

(End of Definition)

Ready congruence:
The expressions Fl and F2 (figure 4.4) are failure congruent. Nevertheless, they specify
a behaviour with a different branching structure. Assume interaction x is performed by
taking the right-most branch labelled x in the state graphof Fl. Then, there still is a choice
for the next interaction. F2 specifies a behaviour without a choice between interactions
after interaction x has taken place. To distinguish between these two expressions, the
notion of observation has to be strengthened.

The suggestion is to alter the notion of observation, by allowing the observation of ready
sets insteadof failure sets. Two expressions are called ready congruent [Hoa85] if they are
trace congruent and for each observed sequence t of interactions there exist matching ready
sets. More precisely:

Definition 4.3.3 (Ready congruence}
Expressions El and E2 are called ready congruent, denoted by El r:::;r E2, if and only if

60 A Specification Language

fX.El IX· E2

and for every tE Act*:

If El El' then there exists an E21 such that E2 __:__. E2', Exit. El1 = Exit. E2t,
and Ready. (El1

) =Ready. (E2').

If E2 E2' then there exists an El' such that El El', Exit. El' = Exit. E2',
and Ready. (El'} =Ready. (E2').

(End of Definition)

F1 F2
lil) lil)

Ytx~ y~
• • • • •
} f ~~ ~ f • • • • • •

a .Fl=~x.y,z! Fl f\t F2

a .F2=~x.y,z!

Figure 4.4: Failure congruence does notpreserve branching structure.

Full observation semantics:
Ready set congruence is not discriminating enough. Consider the two ready congruent
expressions with different branching structures (figure 4.5). What is missing in the notion
of observation is how behaviours continue after an observation is made. Two expressions
are equivalent if the observation made of the behaviour specified by one of them can he
observed in the behaviour specified by the other. The behaviour after the observation is
not really taken into account.

Although ready congruence looks ahead one action, this is not sufficient to distinguish
between the expressions in figure 4.5. The behaviour specified by the rest expressions must
also he considered. To accomplish this Milner [Mil80] introduced k- congruence:

Definition 4.3.4 (k-congruence & Observation congruence I)
For k, k ~ 0, El and E2 are called k-congruent, denoted by El r;:;;k E2, if

IX· El = IX· E2,

Exit. El = Exit. E2,
and if k ::=:: 1, then for every tE Act*:

If El__:__. El' then there exists an E2' such that E2 E2', and El' r;:::;k-1 E2'.

If E2 __:__. E2' then there exists an El1 such that El__:__. El', and El1 r;:;;k-l E21
•

4.3 Semantics 61

El and E2 are observation-congruent, denoted by El ~~ E2 if and only if ("iik : k ~ 0 :
El ~k E2).

(End of Definition)

a .Fl=~v.w.x,y,z~
a .F2=~v.w.x,y.z~

Figure 4.5: Ready congruence does not preserve branching structure.

Trace congruence and ~1-congruence are the same. Other relations between the various
congruence relations are presented in the following property:

Property 4.3.5

(1) El ~~ E2 "* El ~1 E2

(2) El~,. E2:::? El~~ E2

{3) El ~2 E2 :::? El ~,. E2

(4) El ~k E2 = ("i! i : 0 :=::; i :=::; k : El ~. E2) For k ~ 0.

(End of Property)

This property and its proofs are presented in [Hui88]. The proofs are repeated in ap­
pendix A. They can also be found in [Gla90]. Notice that the examples preceding the
definitions of failure congruence, ready congruence, and k-congruence ensure that the im­
plication arrows in properties 4.3.5(1)-4.3.5(3) cannot be reversed.

The use of k-congruences in the definition of observation congruence does not make this
definition intuitive. Therefore, Park [Par81] introduced an alternative definition using
bisimulations:

62 A Specification Language

Definition 4.3.6 (strong bisimulation)
A relation R Ç &9 x &9 is called a strong bisimulation if (E, F) E R implies, for all t E Act*,

i) {!. (E) = q. (F)
ii) Exit. (E) =Exit. (F)

iii) if E ~ E' then (3F': F ~ F': (E',F') ER)
iv) if F ~ F' then (3E': E ~ E': (E',F') ER)

(End of Definition)

Definition 4.3. 7 (observation congruence II)
Two expressions E and F are called observation-congruent, denoted byE ~IJ F, if there
exists a st rong bisimulation R such that (E, F) E R.
(End of Definition)

Observa.tion congruence II is a stronger congruence than observation congruence I. Yet, for
the large and interesting class of image-finite expressions, they are the same. An expression
E is called image-fini te if and only if for each trace t the set { E' I E ~ E'} is fini te.

Theorem 4.3.8
For every two image-finite expressions Eland E2,

(El R:;'} E2) = (El R:;h E2)

(End of Theorem)

This theorem and its proof are presented in [Hui88]. The proof is reproduced in ap­
pendix A. The theorem and proof have been derived independently from a result publisbed
in [BBK87]. In this article, it is shown that the two congruences are the same if one of the
two expressions is image-finite.

Throughout the remainder of this thesis, only image-finite expressions are taken into ac­
count. The set of image-finite expressions is denoted by fg,i· Therefore, no further dis­
tinetion is made between ~'} and ~IJ• and we use R:;c to denote observation congruence.
Finally, notice that the definition of observation congruence remain unchanged if action
symbol w is replaced by a trace t of action symbols.

4.4 Abstraction

The language developed thus far is not complete. As outlined insection 4.1, an abstraction
operator has to be added to mark the boundary in an expression between the design
decisions made and the design decisions to be made. Such an operator is now added to
the nota.tion. The operator serves two purposes:

4.4 Abstraction 63

1. To abstract from the local action symbols. Consider expression W with W =
x; (Y; W + z; exit). It is not possible to specify that interaction ii belongs to the
specified behaviour or that it is just an action to get the behaviour specified.

2. To abstract from the structure of systems that interact with each other to provide
some behaviour. Consider the expressions x; exit 11 y; exit· and x; y; exit + y; x; exit.
Although they specify the same behaviour, the syntactical structure of the first one
indicates that the behaviour is caused by two systems in parallel. The second expres­
sion indicates that the behaviour is carried out by a single system. As the language
makes no distinction between the two expressions, no design decision can be specified
that refl.ects a choice between the two alternatives.

This section is divided into three subsections. In the first subsection, the language is
enhanced with a new operator, the abstraction operator. This operator is also given
an operational interpretation. In the second subsection, the semantics of the enhanced
language is defined. In the third subsection, this semantica is strengthened to handle
abstraction of structure.

4.4.1 Interaction

Tomark the boundary between interactions that are part of the specified behaviour and
interactions that are just a means to define that behaviour, an abstraction operator is
introduced. This operator is denoted by the symbol '•'. E•B denotes the behaviour
specified by expression E in which all interactions are made indistinguishable that do not
occur in B. This is done by replacing alllocal action symbols in E that do not occur in
B by the speciallocal action symbol r. This operatorisnot new. It can be found in ACP
and LOTOS.

To formalise the operational interpretation of the abstraction operator, the universe of
expressions Exp is extended to Expabs by allowing E•B (B Ç Act) to be a finite-length
expression. The elements of B are called the observables. By adding the following lines to
the various tables

Table 4.1:
Table 4.2:
Table 4.2:
Table 4.3:
Table 4.4:

vii) ifJ· (E•B) = ifJ. E
ix) g. (E•B) = g. E
x) f!. (E•B) Ç B

viii) Exit. (E•B) Exit. E
vii) Guard. (E•B) =(Guard. E)•B

e is extended to &abs and &g is extended to &g,abs·

As global action symbols affect the behaviours specified by expressionsin parallel, entry x)
in table 4.2 says that global action symbols always beloog to the observables. This allows
for the definition of the semantics by a congruence relation.

The operational interpretation of &g,abs is an extension of the operational interpretation of
&9 • Two new rules and a speciallocal action symbol are introduced.

64 A Specification Language

To abstract from the identity of certain local action symbols, each occurrence of them in
an expression is replaced by a speciallocal action symbol. This speciallocal action symbol
is called tau [Mil8CI), and it is denoted by: 'r'. Tau is not an element of Act and Ä.
Henceforth, Actr and Är denote the sets Act U { r} and Ä U { r}, respectively.

The operational interpretation of the language is now changed into:

Definition 4.4.1 {operational interpretation)
For each action symbol w E Actn ~ denotes the smallest binary relation on &g,abs

satisfying:

1) w;E E
2) if (E E') then (E + F ~ E' and F + E ~ E')

3a) if (E E' and wE A) then (EfA E'fA)
3b) if (E E' and w ~A) then (EfA ~ E'fA)

4) if (E E' and cp. X (X) E) then (X ~ E')
5a) if (E ~ E' and (w ~ Qf. E or (wE Qf. E and w ~ ~.F)))

then (E 11 F ~ E' 11 F and F 11 E ~ F 11 E')
5b) if(E ~ E' and F ~ F' and wE ~.En~.F)

then (E 11 F ~ E' 11 F') and F 11 E F' 11 E')
6a) if (F ~ F' and Exit. E) then (E; F ~ F')
6b) if (E E') then (E;F E'; F)
7a) if (E ~ E' and w E B) then (E•B ~ g•B)
7b) if (E E' and w ~ B)then (E•B E'•B)

(End of Definition)

On a syntacticallevel, the language does not allow designers to use r. This action symbol
can only he obtained indirectly by using the abstraction operator on local action symbols.
Nevertheless, at times we violate this aspect of the language to facilitate discussions. Tau
symbols that · occur in an expression then have to he interpreted as loc al action symbols
in the scope of an abstraction operator. This operator abstracts from these local action
symbols.

4.4.2 Semantics

The semantica of the language should only consider expressions as the same that specify
behaviour that is indistinguishable with respect to the design decisions made. Those parts
of an expression that are still open to debate should not he taken into account; they are
not observable.

In this section, the abstraction operator is only considered as an operator by which it
is possible to abstract from local action symbols. In this context, two expressions are
considered congruent if their behaviours can match one another's non-tau interactions,
interaction for interaction. To formalise this, binary relations between expressions need to

4.4 Abstraction 65

be extended from action symbols to traces of action symbols. As only the effect of tau
interactions can be observed by an external observer, a new type of binary relation has to
be introduced to model the notion of observation.

Let t beatrace consisting of zero or more action symbols (no tau symbols!). A trace u
obtained by inserting zero or more tau symbols in t is called a tau filled trace of t. For
expressions E and F, E F denotes that there exists a tau filled trace u of t such that
E ~ F. Following the approach of [Par81] again, this suggests:

Definition 4.4.2 (tau bisimulation)
A relation R Ç Eg,afnl x Eg,abs is called a tau bisimulation if (E, F) E R implies, for all
tE Act*,

i) _q. (E) _q. (F)
ii) Exit. (E) = Exit. (F)
iii) if E 4? E' then (3F': F 4? F': (E', F') ER)
iv) if F 4? F' then (3E' : E E' : (E', F') ER)

(End of Definition)

Definition 4.4.3 (tau observation equivalence)
Two image-finite expressions E and F are called tau bisimulation-equivalent, denoted by
E ~ F, if there exists a tau bisimulation R such that (E, F) ER.
(End of Definition)

Although tau observation equivalence seems to be a promising semantics for Eg,abs, it
is not a congruence for the choice operator. Consider, for instance, the pair of proper
expressions (x;y;exit)•{Y} and (y;exit)•{y}. There exists a tau bisimulation to which
they belong. However, no tau bisimrilation exists for the pair (x; y; exit)•{y} + z; exit and
(y; exit)•{y} + z; exit. The problem is caused by the initial tau interaction that is present
in one expression and absent in the other. The weakest congruence stronger than tau
bisimulation equivalence compares expressions on initia! tau interactions [Mil85b]. This
congruence is defined as follows:

Definition 4.4.4 (tau observation congruence)
Two image-finite expressions E and F are called tau observation-congruent, denoted by
E ~c F, if for each action symbol u E Act,.

i) _q. E = _q. F
ii) Exit. E =Exit. F
iii) if E ~ E' then (3F' : F
iv) if F F' then (3E': E

(End of Definition)

P: E' ~ F')
E': E' ~ F')

66 A Specification Language

The same symbol is used to denote tau observation congruence as well as observation
congruence. As the class of expressions for which observation congruence was defined did
not have T interactions, no ambiguity is caused by this.

In this thesis, only the subset ëg,abs,i of image-finite expressions in ëg,abs is considered.
Consequently, an alternative definition of tau observation equivalence exists in terms of
k-congruences. This definition is obtained by replacing the ~ relations in the definition

t of k-congruence by :::::::::} .

Henceforth, tau observation congruence is abbreviated to observation congruence. Obser­
vation congruence is indeed a congruence (see for proof appendix A):

Property 4.4.5
~c is a congruence.

(End of Property)

4.4.3 Structural semantics

An expression of the language can he used to specify behaviour as well as the structure
of the system providing this behaviour. To achieve the latter, observation congruence is
strengthened by taking into account the syntactical structure of the parts of an expression
that lie outside the scope of an abstraction operator. Four rewriting rules exist for these
parts that alter specifications syntactically but not semantically. The rules are:

Rule (+): Consider an expression in which a choice between behaviours is specified by
using the choice operator. The structural information in this expression is of a
single system providing the behaviour. This system has to select one of these
behaviours to perform. The selection procedure is independent of the order in
which the subexpressions are written down. Therefore, the choice operator is
commutative and associative outside the scope of an abstraction operator.

Rule (11): The structural information of several expressions in parallel is of several systems
running in parallel. Each system provides a behaviour that interacts with the
behaviour of other systems. The scheduling policy of the interactions between
these behaviours are assumed to he independent of the order in which the
expressions are written down. Therefore, the parallel operator is commutative
and associative outside the scope of an abstraction operator.

Rule (;): The structural informatiori of El; E2; E3 is that the three behaviours specified
by El, E2, and E3 are executed in the order in which they are listed. This
specification is not changed when brackets are placed in the expressions. There­
fore, the sequentia! composition operator is associative outside the scope of an
abstraction operator.

Rule (D: The structural information of Er Al r A2 is that of a behaviour that cannot
interact with its environment on the actions in Al u A2. So, E f Alf A2 and
Ef(Al U A2) have the same structural information.

4.4 Abstraction 67

With the help of these four rules, observation congruence can he extended so that it takes
structural information into account.

Definition 4.4.6 (structurally observation congruence)
Let H and J be expressions in êg,abs,i· H and J are called structurally observation­
congruent, denoted by H ~c J, if there exists a relation R such that (H, J) E R and
for each pair (E, F) E R:

1. f:!. E = g_. F

2. lf Guard. E is of the form:

• El + E2 then Guard. F can be rewritten (by only using the associativity and
commutativity of +) as Fl + F2 such that El R Fl and E2 R F2.

• El IJ E2 then Guard. F can be rewritten (by only using the associativity and
commutativity of JJ) as Fl 11 F2 such that El R Fl and E2 R F2.

• El; E2 then Guard. F can be rewritten (by only using the associativity of;) as
Fl; F2 such that El R Fl and E2 R F2.

• E' fA then Guard. F can he rewritten (by only using Q f AO f Al = Q f (AO U Al))
as F'fA such that E' RF'.

• a; E' then Guard. F has the form a; F' and E' 'R F'.

• exit then Guard. F has the form exit.

• E'•B then Guard. Fis of the form F'•C and E'•B ~c F'•C.

(End of Definition)

This definition does not allow two structurally observation-congruent expressions E and
F to have a different structure outside the scope of the abstraction operators (modulo
the four rewriting rules). They may only differ in having replaced subexpressions of the
form G•B for observation-congruent ones with the same form. This will not he proven.
However, the following example indicates the direction that such a proof takes.

Assume E is of the form El + E2, F is of the form Fl + F2 + F3, and Guard. El and
Guard. E2 cannot be written as a sum of two expressions. According to the definition of
structurally observation congruence, Guard. El or Guard. E2 can he rewritten into a sum
of two expressions. Since the guard of a sum of two expressions is again a sum of two
expressions, a contradiction is obtained.

Structural observation congruence is a stronger relation than observation congruence. How­
ever, in those cases where only the behaviour of expressions are compared, observation
congruence can be used instead of structurally observation congruence.

The proof of the following properties is left to the interested reader.

68

Property 4.4. 7

(End of Property)

Property 4.4.8
S!c is a congruence.

(End of Property)

Property 4.4.9

1. E S!c Guard. E

2. E S!c F = Guard. E S!c Guard. F

(End of Property)

A Specification Language

Due to the definitions of operational interpretation and structurally observation congru­
ence, the abstraction operator can he used to abstract from details of a behaviour in two
ways. If it is used outside the scope of other abstraction operators, it abstracts from the
local action symbols and the structure of the expression in its scope.

An abstraction operator that is used in the scope of another abstraction operator can only
abstract from the local action symbols in its scope. The operational interpretation of a
composite expression is built up from the constituent parts of that expression. Therefore,
the innermost abstraction operators has the fust choice of abstracting from action symbols.
They have a higher priority. So, an abstraction operator can only abstract from those local
action symbols that remain untouched by the abstraction operators in its scope. This is
illustrated by an example.

Example 4.4.10
Consider the following expressions

1. (w; x; fj; exit+ w; x; fj; exit)•{ w, x, y}

2. (w;x;f);exit)•{w,x,fJ}

3. (w;(x;f);exit)•{x})•{w,x,y}

4. (w; x; fj; exit+ w; x; fj; exit)•{ w, x}

Expressions 1 and 2 show how to use the abstraction operator to abstract from structure. In
expression 3, the innermost abstraction operator abstracts from the identity of interaction
fj, while the outermost abstraction operator abstracts from the structure. The abstraction
operator in 4 abstracts from structure and interactions. Notice that expressions 1 and 2 are
structurally observation-congruent, and expressions 3 and 4 are structurally observation­
congruent as well.
(End of Example)

In the next section, the language will be embedded in a design framework. This will be
accompanied by several examples that show in more detail how to use of the abstraction
operator.

4.5 framework 69

4.5 Design framework

In its present form, the specification language is suitable for specifying behaviour as well as
the structure of the system providing this behaviour. To embed this language in a design
framework for communication systems, a satisfiability relation has to he defined between
expressions of the language. This is clone in this section.

The satisfiability relation that is proposed here, is based upon the design method (see
section 3.2) for designing communication systems. The most abstract specification of such
a system has the form E•B. It makes precise the role that the system has to play in its
interaction with the environment. It does not constrain the structure of the system that
has to provide that service. With each detailing step, structure and behaviour related to
the structure are added to the specification. For instance, a detailing step may transform
E•B into (El•Bl) 11 (E2•B2). The structure added is that the system has to consist of at
least two subsystems running in parallel. The behaviour added is the interaction between
these subsystems.

The sat-relation supporting the design method is defined with the help of the abstraction
operator:

Definition 4.5.1 (sat-relation)

E sat F
iff

[E] =f: [F]
A

It is possible to transform E into E1 by inserting in E an abstraction operator outside
the scope of existing abstraction operators such that [E'~ = [F].

(End of Definition)

According to the constraints imposed by the model of the design framework (see sec­
tion 2.3), the sat- relation has to satisfy two constraints. It is left to the interested reader
to verify that they indeed hold:

Property 4.5.2

(1) (s,s) ~ sat+

(2) [s2] = [s21
] A [sl] = [sl1

] A (s2, sl) E sat

:::}

(End of Property)

70 A Speeifieation Language

To exemplify the use of the abstraction operator and the satisfiability relation in a design,
two examples are presented in the remaioder of this section.

Example 4.5.3

• The initial specification speel is of the form:

P•{ wl, w2} with: P = wl; w2; P

In this specification, no assumption is made about the structure of the system. The
structure of P is only a means to descri he the behaviour of the system as it is observed
by an external observer. Figure 4.6 depiets speel.

Figure 4.6: Example 4.5.3 -speel.

Notice that the specification remains unchanged if expression P is replaced by an
other expression P1 such that P•{ wl, w2} ~c P1

•{ wl, w2}.

• An implementation of speel is expression impll:

((Q•{wl,s,t}) 11 (R•{w2,s,t}))l{s,t}
with Q = wl;s;t;Q and R s;w2;t;R

The implementation (figure 4.7) specifies that the system has to consist of at least
two subsystems running concurrently. Furthermore, it defines the interaction be­
tween those subsystems and the interaction of those subsystems with their common
environment. Future implementations of this specification may only detail the two
subsystems without altering the behaviour that each of them specifies.

~L____:_Q ~1: -s-"--t ~:IL___R _jF
Figure 4.7: Example 4.5.3 -impll and spec2.

As a first step to show that impll is indeed an implementation of speel, impll has
to he enveloped by an abstraction operator: implb{wl,w2}. Then, it should he
proven that implt.{ wl, w2} and P•{ wl, w2} are structurally observation-congruent.

• As well as being the result of a detailing step of speel, impll is also the specification
(spec2) for the next detailing step. The result of that detailing step is impl2:

((((Ql•{wl,s,u,v}) 11 (Q2•{t,u,v}))l{u,v}) 11 (R•{w2,s,t}))f{s,t}

4.5 Design framework 71

with Ql wl; s; v; u; Ql, Q2 = v; t; u; Q2, and R s; w2; t; R

To verify that impl2 is an implementation of spec2, it is suflident to show that

(((Ql•{wl,s,u,v}) 11 (Q2•{t,u,v}))f{u,v})•{wl,s,t} s:!c Q•{wl,s,t}

holds. Since structurally observation congruence is a congruence, (((Ql•{ wl, s, u, v})
11 (Q2•{t,u,v}))l{u,v})•{wl,s,t} can replace Q•{wl,s,t} in spec2 without chang­
ing the semantics.

Notice that if interaction v is removed from impl2, it is not possible to prove the
above. The composite behaviour of Ql and Q2 is then more liberal than the be­
haviour of Q. However, the environment R restricts the behaviour of Ql and Q2
sufliciently such that the actual behaviour of Ql and Q2 corresponds to Q. A con­
text-sensitive verification (cf. [Lar87]) is then needed to show that impl2 is a proper
implementation:

(((((Ql•{ wl, s, u, V}) 11 (Q2•{t, u, V})) f {u, V})•{ wl, s, t}) 11 (R•{w2, s, t}))f { s, t}

spec2

Figure 4.8: Example 4.5.3 -impl2.

Figure 4.8 depiets the structure of impl2.

(End of Example)

Example 4.5.4

• The initial specification speel is:

X•{t,u,v}

with X t;Xl, Xl =u; X+ u;X2, and X2 = t;v;X2

This specification is depicted in figure 4.9.

72 A Specification Language

Figure 4.9: Example 4.5.4 -speel.

• A possible implementation impll of speel is:

Y•{t, u, v}; Z•{t, u, v}

with Y t; Yl, Yl u; exit+ u; Y, and Z = t; v; Z

The alphabets ofY•{t, u, v} and Z•{t, u, v} have to be the same. Otherwise, Y•{t, u,
v }; Z•{t, u, v} is not a proper expression. By enveloping this expression in an ab­
straction operator, a new expression is obtained that is observation-congruent to
X •{ t, u, v }. Hence, Y •{ t, u, v }; Z•{ t, u, v} is a correct implementation.

Figure 4.10 shows the structure of impll.

Figure 4.10: Example 4.5.4 -impll and -spec2.

• The Subexpression Y •{ t, u, v} in impll can be detailed by splitting Y into two
parallel subexpressions (figure 4.11). This results in the following specifi.cation:

((Ql•{t, r, sl, s2} 11 Q2•{ u, r, sl, s2}) f{r, sl, s2}); Z•{t, u, v}
L

with Ql = t; (s2; r; Ql + sl; exit), Q2 = s2; u; r; Q2 + sl; u; exit
with {t,u,v} Ç Q..L

s2
~

Figure 4.11: Example 4.5.4 -impl2.

This detailing step is verified by proving that L•{ t, u, v} and Y •{ t, u, v} are obser­
vation-congruent.

4.6 Discussion 73

(End of Example)

4.6 Discussion

In this chapter, a specification language for the design of communication systems at consec­
utive sublevels of abstraction is defined. This language is embedded in a design framework.
First, the language is discussed and then the design framework.

Language:
The language satisfies the features outlined in section 3.3. It

• is a mixture of state-oriented and action-oriented,

• supports branching time,

• supports asynchronous concurrency,

• has total-order semantks,

• has synchronous interaction,

• can he used to specify behaviour implicitly and explicitly,

• satisfies the conditions imposed by the model of the design framework.

The features of the language cannot motivate all chokes made during its development.
Some chokes were random, others where inspired by the fact that the language is used
for designing communication systems. For instance, it was an arbitrary choice to fill in
the design framework with an algebraic language. Equally well, it could have been a
logical language such as branching-time temporal logic [Pnu85, MP89] or higher-order
logic [Gor83].

The choice for operators and the definition of their operational interpretation and semantics
has been inspired by what is common in most algebrak languages [BW90, Mil80, Mil89].
However, design considerations induced eertaio deviations.

With respect to operators, a distinction is made between operators that are used for the
specification of behaviour and operators that are used for abstraction. This separation of
concerns is necessary to define the boundary between what is designed and what has to he
design ed.

Algebrak languages encountered in the literature have been primarily developed for speci­
fication purposes only. This is reflected in the choke of operators that specify and abstract
at the same time. A good example of this is the parallel operator in [Mil80, Mil89]. Not
only does it make precise the way expressionsin parallel influence each other, it also rela­
hels all actions on which two or more expressions agree to r. A reader of a specification

74 A Specification Language

that contains such an operator is faced with a single question. "Has the designer not yet
decided on the interactions that are relabelled by T, or has the designer tried to express
the way parallel expressions influence each other using an improper operator?". Without
an explanation from the designer, it is impossible forthereader to find the answer.

Another example of an improper operator is the hiding operator in [IS088]. It is used to
abstract from interactions as well as to make action symbols local. From a specification
point of view, no distinction has to bemadebetween the two uses of the hiding operator.
The second use of the operator can always be realised by the first use. However, from a
design point of view the side-effect is again an ambiguous specification.

To solve these shortcomings, the parallel operator in the language does not hide the identity
of actions. Furthermore, a localisation and abstraction operator have been introduced.

Another deviation was the choice to associate alphabets and substitution functions with
expressions. In [BW90, Mil80, Mil89], this is not done. The idea behind it was to have
every aspect that characterises a behaviour associated with the expression that specifies
that behaviour. In addition, a two layer definition of the operational intuition (see [Hui88])
is prevented.

Design Framework:
Apart from defining the specification language, this chapter also showed how this language
can be embedded in a design framework for communication systems. For designers of
communication systems, the defined framework outlines the type of detailing steps that
can be made. It does not assist designers making these detailing steps. For instance,
there are different ways of deriving a specification of the role that a communication system
plays at the common boundary of that system and environment. One is to make use of an
integrated specification (see step 1 and 2 of the design method in section 3.2). Another
is based on mirroring the behaviour of entities in the environment, and integrate those
behaviours with the help of causal relations [Koo85].

Advantages and drawbacks of the framework in general and the specification language
in particular, will only become apparent by actually designing communication systems.
Therefore, chapter 5 focuses on evaluating the framework and its language by applying
them.

Chapter 5

Evaluation and Adjustment

The purpose of this chapter is to evaluate the specification language and the design frame­
work developed by applying them to the specification and design of communication systems.
Any shortcomings discovered are solved by making appropriate adjustments.

This chapter consists of six sections. In the first section, various roles that communication
systems can play in the system environment protocol are specified in the language. The
second section focuses on the difficulties that a designer encounters when specifying unfair

. behaviour in the language. These difficulties are analysed. In the third section, it is argued
that the current design framework is not suitable to design communication systems that
have initia! requirements on their structure. A solution to this problem is presented. The
fourth section applies the insights gained in the previous three sections to the well-known
example of the alternating bit protocol. In the fifth section, the feasibility of verifying a
satisfiability relation in a real-life design is questioned. A possible alternative is partial
verification; i.e. verification of only certain properties. One of these properties is absence
of deadlock. A compositional technique for its verification is presented. Finally, in the last
section, this chapter is discussed and some conclusions are drawn.

5.1 Information exchange

A communication system provides an information-exchange service to the entities within
its environment. The adequacy of the language to specify systems providing this service
has to be evaluated. One possible way to accomplish this is by determining first the
characteristics of such an information-exchange service. Then, the language should be
applied to specify systems that provide services with these characteristics. This approach
is followed in the remainder of this section.

The main characteristics of an information-exchange service between entities are two-party
exchange, multiparty exchange, duration, and degree of reliability. Each of them is now
discussed in more detail:

75

76 Evaluation and Adjustment

Two-party exchange:
Assume two entities El and E2 want to exchange information with each other by making
use of an information-exchange service. By only consiclering the direction of the information
exchanged between these two entities, three different types of information exchange can be
distinguished:

1. simplex: Information is only transferred from one entity to the other, and not vice
versa.

2. half-duplex: Information is transferred from one entity to the other, and vice versa.
However, information is not exchanged in both directions simultaneously.

3. full-duplex: Information is transferred from one entity to the other, and vice versa.
lnformation can be exchanged in both directions simultaneously.

At the boundary with their environment, communication systems provide information­
exchange services of these three types. A simplex information-exchange service is specified
by expression:

S•{ x in, yout}, with S = xin; yout; S.

The global action symbol xin denotes the interaction by which El can pass information .
to the system. The global action symbol yout denotes the interaction by which that same
information can bedelivered to E2.

To ease future discussion, such information is called a message. So, the system providing
this simplex exchange service can exchange at most one message from El to E2 at a time.
Notice that the messages are not specified explicitly here.

Similarly, systems providing other types of exchange services can be specified. For instance,
the following expression specifies a half-duplex information-exchange service between El
and E2:

H D•{ xin, xout, yin, yout}
with H D = xin; yout; H D + yin; xout; H D

The global action symbols xin and yin denote the interaction by which El and E2 can
pass a message over to the system. The global action symbols yout and xout denote the
interactions by which the system can deliver a message to entity E2 and El, respectively.

As the language has a total-order semantics, the full-duplex information exchange cannot
be specified correctly. A specification can only approximate the simultaneous exchange of
messages:

F D•{ xin, xout, yin, yout}
with FD = Slll S2

Sl = xin; yout; Sl
S2 = yin; xout; 82

5.1 Information exchange 77

Multiparty exchange:
Information exchange is also possible between three or more parties. Two types of this
multiparty exchange can be distinguished:

multicast: Information is transferred from one entity to two or more other entities.

multicollect: Information is transferred from two or more entities to a single entity.

The specification of the two-party, simplex information-exchange service can be reused
to specify multicast information exchange. All that is necessary is to reinterpret action
symbol yout. This action symbol now denotes the simultaneons delivery of the message to
all the receiving entities.

Multicast is more difficult to specify in the language if the receiving entities are allowed to
receive the message non-simultaneously. Then, the delivery of the message to each entity
bas to be denoted by a unique global action symbol. For two receiving entities E2 and E3,
the following specification is the result:

S•{xin, yout2, yout3}, with S = xin; (yout2; exit 11 yout3; exit); S

where yout2 and yout3 denote the delivery of the message to E2 and E3, respectively.

The specification of a communication system providing a multicollect information-exchange
service is similar to the specification of a multicast information-exchange service. Therefore,
it is left to the interested reader.

Duration:
The above specifications are in a sense ideal. For instance, consider the specification of the
full-duplex information-exchange service. Here, it was implicitly assumed that the receipt
or delivery of a message is instantaneous. Normally though, it takes time to receive or
deliver a message. It is even possible that receipt and delivery of a message may overlap
in time.

Without enhancing the language with time, a time period cannot be specified quantita­
tively. However, duration of an interaction can be specified by associating two action
symbols with it: an action symbol denoting the start of the interaction, and an action
symbol denoting the end of that interaction. To exemplify this, consider the following
specification of a full-duplex information-exchange service:

Sl{vl,v2}•{xin+,xin-,xout+,xout-,yin+,yin-,yout+,yout-}
with S T 11 U

T = xin+; vl; xin-; v2; T
U= vl; yout+; v2; your; U

(I)

The interaction by which El can pass a message to the system is specified by xin+ and
xin-. The beginning of that interaction is denoted by xin+ and the end is denoted by

78 Evaluation and Adjustment

xin-. Similarly, the interaction by which a message is delivered to E2 is modelled by yout+
and yout-.

The action symbols vl and v2 in the specification ensure that delivery of a message can
only begin after the receipt of the message has started. The specification abstracts from
these action symbols. Only their effect on ordering the other action symbols is part of the
specification. This ordering is shown in the state graph (figure 5.1) of the specification.

X,Y
® <E---------,

out-

l xin+

I' Xl.Y

• X2,Y1 x;J '\out+
• X3,Y1 • X2,Y2

you~ /xin-
• X3,Y2

l•X.Y3

L
.

xin+ 1 Xi.Y3

yout-

Figure 5.1: The stategraphof expression (I).

Notice that the arrows labelled by T can he removed from the graph without altering the
behaviour. Moreover, if in state X2, Yl (figure 5.1) the right branch is taken, the receipt
and delivery of a message overlap.

Degree of reliability:
Until now information-exchange services have been specified that are incapable of altering,
losing, or duplicating messages. However, the means provided by nature cause these errors
to happen.

As the language has to he used to design systems at successive layers of abstraction, it has
to specify systems providing both reliable and uureliabie exchange services. There are two

5.2 Fairness 79

ways to specify systems providing unreliable information-exchange services. One way is to
specify everything that can inftuence the behaviour. If it is at all possible to generate such
a specification, then this specification will be large, complex, and difficult to handle. A
practical alternative is to specify only the effect that these external infl.uences have on the
behaviour of a system.

Consider the following expression:

S•{ xin, yout}, with S = xin; S + x in; yout; S
g_. S = { xin, yout}

It specifies an unreliable simplex information-exchange service. When a message is deliv­
ered to the system (xin), a random choice is made between losing that message ordelivering
it to the receiving entity in the environment (yout). Notice that this specification does not
indicate what causes the system to lose a message. lt only states that the system may lose
a message. SimHar specifications can be derived for an uureliabie half-duplex or full-duplex
information-exchange service. This is left to the interested reader.

5.2 Fairness

The language can be used to specify services with the characteristics outlined in the pre­
vious section. However, as the language is part of a design framework, a certain amount
of fairnessis implicitly imposed on the choice and parallel operator. This fairness attaches
a meaning to specifications that is not always straightforward. In particular, it makes the
specification of unreliable behaviour cumbersome.

This section is subdivided into three subsections. Their purpose is to clarify the nature
of this impHeit fairness that is imposed on the choice and parallel operator. In the first
subsection, the fairness problem is explained. The second subsection provides a way to
show that fairness exists in a specification. In the third and last subsection, the operational
interpretation of the language is strengtherred by associating a predicate with it. This
predicate ensures that the fairness imposed on specifications is an inherent characteristic
of the language.

5.2.1 Problem statement

Consider the specification S•{ xin, yout} of the unreliable simplex information-exchange
service that was presented in the previous section. lt raises the following question:

Assume this service is provided to an environment that is always willing to
perform interactions xin and yout. Is it then possible to deduce from this
specification that messages get exchanged repeatedly?

A first step to answer this question is by formalising the subsentence: "this service is
provided to an environment that is always willing to perform interactions xin and yout".

80 Evaluation and Adjustment

Focussing only on the behaviour, this can be formalised by:

((S•{xin,yout} 11 X 11 Y)f{xin,yout})•{xin,yout}
X= xin;X, and ~.X= {xin}
Y = yout; Y, and g. Y = {yout}

(I)

Expressions X and Y in parallel specify the entire behaviour of the environment. As
nobody else can synchronise on xin and yout, these action symbols have been made local.
It is easy to verify that expression (I) and (SI { xin, yout})•{ xin, yout} are observation-
congruent.

The next step is to determine how the choice in (SI { xin, yout})•{ xin, yout} is made be­
tween xin; S and xin; y.out; S. According to the operational interpretation, this depends
on the way inference rule 2) of definition 4.4.1 is applied. As no restrictions are imposed
on the choice of inference rule nor on the choice of subexpression to which that rule is
applied, no statement can be made about the fairness of the choice between delivery and
loss of messages. The semantics of the language does not infl.uence this choice either, as
indistinguishable expressions have the same branching structure.

However, the language is part of a design framework. So, if it is possible to find a more
abstract specification that guarantees that interaction yout occurs repeatedly, it is shown
that messages get exchanged repeatedly. Consider the specification T•{yout}:

T•{xin,yout}, with T = r; T + r;yout;T.
~.T 0

This specification and ((SI {x in, yout})•{ xin, yout})•{yout} are structurally observation­
congruent. To prove that yout takes place repeatedly, it is sufficient to find a structurally
observation-congruent expression without infinite r-behaviour. A suitable candidate is
found with the help of Koomen's Fair Abstraction Rule [BBK87] to rewrite T•{xin, yout}
into:

U•{yout}, with U= r; Ul and Ul = yout; Ul.
~.u 0 ·

The state graphs of (SI{xin,yout})•{xin,yout} {a), T•{yout} {b), and U•{yout} (c) are
depicted in figure 5.2.

As the parallel operator can be expressed in terms of choice operators, a similar fairness
issue exists for parallel behaviour. It is left to the interested reader to verify that there
are abstract expressions for (U 11 V)f{u,v}, with U= u;U, ~.U {u}, V= v;V, and
~- V = { v}. They guarantee that interaction u as well as interaction v repeatedly occur.

According to the observations made in this subsection, the operational interpretation and
semantics of the language do not infl.uence the choice between expressions in the parallel or
choice context. However, the operational interpretation of the language changes when the
language is embedded in the design framework. It is then possible to associate specifications

5.2 Fairness 81

x in 't

0 0~ ®

xin Üyout ~ fJyout
• • (:5.

yout
(a) (b) (c)

Figure 5.2: Simplex information exchange at two levels of abstraction.

with more abstract specifications that clearly demonstrate that certain choices are bound
to happen.

5.2.2 Algorithm

In this subsection, an algorithm is presented by which impHeit fairnessin specifications with
a finite number of states can be shown to exist. More precisely, it assists in determining
whether an expression E specifies a behaviour that eventually carries out an interaction of
a set B, ~. E Ç B. The algorithm follows the approach of [Mil86, BK88].

The algorithm consistsof five stages. The five stages are now explained:

stage 1: Abstraction
As interest is focussed on the specified behaviour and the interactions in B, a fust step is
to abstract in E from the interactions not in Band the structure; i.e. consider E•B.

stage 2: Normal form
To facilitate discussions and proofs, the expression E•B that resulted from the previous
stage is rewritten into a fixed format, known as the normal form. The rewriting pro­
cess presented here is inspired by the way Milner represented synchronisation trees in
ces [Mnso].
As the notion of state graph plays a key role in this process, it is recalled here. A state
graph is a graphical representation of the behaviour associated with an expression. The
states,denote expressions. The labelled arcs between the states denote the binary relations
between the expressions. Figure 5.3 presents an expression and its state graph.

Without proving the correctness, it is now shown how to construct an expression that
has some finitely branching graph S as state graph. First, associate with each state of S
a unique behaviour name. Second, associate with each behaviour name the substitution
function that is defined by the set of equations:

Xi = E;w;;Yj

where Xi is a behaviour name associated with a state of S, and where the right-hand side
of the definition contains a summand w;; Yj if and only if there exists an are labelled by

82 Evaluation and

x:x
with X=y:X

Figure 5.3: An expression and its state graph.

interaction w1 from state Xi to state lj. If a state Z of S has no outgoing arcs, this can
he modelled by either equation Z = exit or Z = 8. The symbol 8 is an abbreviation
for an expression that has terminated prematurely. It is called a deadlock expression (see
appendix B). Notice that because S is finitely branching, the right-hand side expressions
also have a finite length. Therefore, these expressions belong to Exp.

Third, associate with each of the behaviour narnes the same alphabet. This alphabet has to
contain all global action symbols that label the arcsof S. The behaviour narnes associated
with the initia! state of S (0), the substitution function, and the alphabet together form
an expression that has S as state graph.

Applying this construction process to the graph in tigure 5.3 results in:

Yl with Yl = x; Y2
Y2 = y;Y2

Q:. Yl {y}

Notice that the state graph of an expression remains unchanged if the alphabet is extended
with global action symbols that do not label the arcs. The state graph of an expression
does not alter if the summands (+exit) and (+8) are added to the right-hand side of the
equations. They can even replace each other in the equations without affecting the state
graph. This provides the freedom to repreaent states without outgoing arcs by expressions
of which the Exit predicates evaluate to "true" or "false".

Assume expression F is obtained by applying this method to the state graph of an expres­
sion E•B. Expression F•B can be made observation-congruent with respect to E•B by
giving it E•B's alphabet and by substituting in the right-hand side of the equations of
'P· (F•B) the summands (+exit) and (+8) such that the Exit predicate evaluates properly
for each of the rest expressions.

The advantage of F•B over E•B is the form of F. F and all its rest expressions are
behaviour names, and the right-hand side of the equations in 'P· F is a summation of
expressions of the type 6, exit, or an action symbol followed by a behaviour name. F•B is
said to be in normal form. In general, an expression is in normal form, if by peeling away
zero or more layers of abstraction and localisation operators, there remains an expression
that has the form of F.

5.2 Fairness 83

stage 3: Partition
Consider expression F•B that resulted from applying stage 2. To determine whether
expression F•B specifies a behaviour that eventually has to perfarm an interaction of B,
the behaviour preceding a first interaction of B has to he evaluated.

To derive a specification of that behaviour from F•B, expression F•B is transformed in
this stage into an observation-congruent expression G•B that is structured into three parts.
One part specifies the behaviour before a first interaction of B has occurred. Another part
specifies the behaviour after a first interaction of B has occurred. And, the third part
specifies the behaviour that links the behaviour specified by each of the other two parts.

The process starts by transforming F into an expression in normal form that consists of
these three parts. The behaviour before a first interaction of B has taken place, is specified
using a copy of F and all its behaviour equations. This copy is made by labelling F and
all behaviour narnes in the range and domaio of 'i?.: F by: 1

• The behaviour after a first
interaction of B has taken place is specified with the help of a copy of the behaviour
equations of F. This copy is made by taking t.p. F, and label all behaviour narnes in
its domaio and range by: 11

• This new set of bëiiaviour equations is denoted by t.p. F".
Finally, to make the specification complete, the two copies need to be linked. Therefore,
all summands in the range of F' that have the form w : Fk' (w E B) are replaced by
w : F k11

• Th en, all equations in p_. F 11 are added to p_. F'.

With the help of the following bisimulation, it is easily verified that F•B and F'•B are
observation-congruent:

{ (Fi•B, Fi'•B) I Fi E dom('P· F) A Fi E After. FA Fi'•B E After. F'•B}
u

{(Fi•B, Fi"•B) I Fi E dom(p_. F) A Fi E After. FA Fi"•B E After. F'•B}

where for an expression E, After. E denotes the set {E' I E' E Eg,abs,i A (3t : t E Act* :
E E')} of all rest expressions of E.

Expression F'•B is the expression G•B that we were looking for. It is in normal form, it
is structured into three parts, and it is observation-congruent with respect to F•B.

To exemplify the partitioning of an expression, consider the expression X and the set of
interactions B, B = {w,x,y}. Expression X is in normal form, and it is defined by:

X with X u;Xl
Xl = v;X2
X2 = u;X3 + v;X4
X3 =x;Xl
X4 y;X2+v;X5
X5 = w;X +v;Xl
_q.X 0

By carrying out the transformation process on X•{u, v, w, x, y}, expression X 1•{u, v, w, x, y}
is obtained with:

84

X' with X' = u; XI'
Xl' =v;X2'
X2' = u;X3' + v;X4'
X3' =x;Xl"
X 4' = y; X2" + v; X5'
X5' = w;X" +v;Xl'

_q.X' = 0

X" = u;Xl"
Xl"= v;X211

Evaluation and Adjustment

X211 = u; X311 + v; X411

X3"=x;Xl"
X4" y;X2" + v;X5"
X5"= w;X" + v;Xl"

In figure 5.4, graph (a) denotes the state graph of X •{ u, v, w, x, y} before partitioning.
State graph (b) shows the result after partitioning. The dotted circles labelled (I) and
(III) mark the behaviour before a fust interaction of B and the behaviour after a first
interaction of B, respectively.

Figure 5.4: X•{u,v,w,x,y} before (a) and after (b) partitioning.

stage 4: Infinite tau behaviour removal
Up to now, the following stages have been presented. In stage 1, we abstracted from local
action symbols in E that do not occur in B. They were all replaced by tau symbols. Stage
2 rewrote E•B into a fixed format, the normal form. The resulting expression F•B was
transformed in the third stage into an observation-congruent expression G•B. G•B is
in normal form and its structure distinguishes between the specification of the behaviour
before and after a fust interaction of B.

5.2 Fairness 85

To determine whether an interaction of B is guaranteed to happen, expression G•B is
now transformed into an observation-congruent expression J•B that has no infinite tau
behaviour. In this fourth stage, it is shown how this transformation processcan be carried
out in a number of steps. The process presented hereis not new. It can be found in for
instanee [Mil85b, Mil86, BK88].

step 1:
As a fi.rst step, it is shown how a certain redundancy can be removed from an expression
G•B. In general, it is possible that two or more rest expressions of G•B are observation­
equivalent. Expression G•B can now be transformed into an observation-congruent ex­
pression H•B, such that each pair of distinct rest expressionsof H•B are not observation­
equivalent.

The advantage of removing this redundancy is the following. Assume the rest expres­
sions G•B modulo observation equivalence is finite. Then, infinite tau behaviour can
only be caused by r-relations between a finite number of distinguishable rest expressions.
These relations form a loop. However, all rest expressions that lie along such a loop are
observation-equivalent. Using the transformation that is outlined in this step, it is now
possible to combinethem into a single expression that is in a r-relation to itself.

The construction of expression H•B out of expression G•B, is shown in the proof of the
following theorem.

Theorem 5.2.1
For each expression G•B there exists an observation-congruent expression H •B such that

(After. (H•B))f~ {{H'•B} I H'•B E After. (H•B)}

Pro of
For each action symbol w, wE Act;, a binary relation
by:

on (After. (G•B))/ ~is defined

[Gl•B]After.(G•B) ~ [G2•B]After.(G•B) if Gl•B ~ G2•B

(After. (G•B))/ ~ and these binary relations can be graphically represented in the same
way as the state graphs of expressions. The elementsof (After. (G•B))/ ~ are fat dots,
and the binary relations are labelled arcs. If the fat dot repreaenting [G•B]cAfter.(G•B))~
is taken as the initia! state, the graphical representation is a state graph.

Following the strategy outlined in stage 2, an expression H •B in normal form can be
constructed with this graph as state graph. If during this construction three additional
guidelines are taken into consideration, H•B is observation-congruent to G•B. These
guidelines are:

1. use exit as right-hand si de of the equations of those statea that have no outgoing arcs
and with which a class of expressions is associated whose Exit-predicate evaluates to
"true".

86 Evaluation and Adjustment

2. use a deadlock expression 6 as right-hand side of the equations of those states that
have no outgoing arcs and with which a class of expressions is associated whose
Exit-predicate evaluates to "false".

3. take as H •B's alphabet the alphabet of G•B.

It is easily verified that G•B and H •B are observation-congruent. A suitable bisimulation
is:

{(G'•B,H'•B) I G'•B E After.G•B 1\H'•B E After.H•B
1\ H'•B denotes the class [G'•BlcAfter.(G•B))fi::;}

Finally, it has to be proven that (After. (H•B))/ ';::j and {{H'•B} I H'•B E After. H•B}
are the same. Assume After. (H•B) contains two syntactically different expressions that
are observation-equivalent. Then, there are two classes in (After. (G•B))/ ';::j that are
observation-equivalent. Since each two different classes in (After. (G•B))/ ';::j are not
observation-equivalent, a contradiction is found. After. (H•B) cannot contain two or
more observation-equivalent expressions. So, (H•B))/ ';::j and {{H'•B} I H'•B E
After. (H•B)} are the same.
(End of Proof and Theorem)

Figure 5.5 shows two observation-congruent expressions G and H. G contains two rest
expressions that are observation-equivalent. A dotted line interconnects their states in
the graph. By applying the construction technique outlined in the previous proof to G,
expression H is obtained without this redundancy.

step 2:

G.a.G with G
Gl
G2
a.G

x;Gl
y;G2
x;Gl
ix.y~

lil

x(~y
~.I

H.a.H with H · =
Hl
a.H=

Figure 5.5: A state minimisation example.

x;Hl
y;H
~x.y~

The effect of step 1 on an expression G•B with a finite number of rest expressions is that
it transforma G•B into an expression H•B. In H•B, infinite tau behaviour is only caused
by rest expressions that are in a r-relatîon to themselves.

5.2 Fairness 87

If expression H•B is in a r-relation to itself, observation congruence is not maintained
when all r-relations of rest expressions to themselves are removed.

Therefore, this second step shows how H •B can be transformed into an observation­
congruent expression l•B, such that l•B is not in tau-relation with itself. This trans­
formation process is called root unwinding and it is presented in for instanee [BK85]. Root
unwinding boils down to applying Milner's technique of unfolding [Mil80] to the initia!
state of a state graph.

Expression l•B is derived from H•B by the following definition:

l•B, with <p. I= <p. (H•B) U {I= <p. (H•B)(H)}
(!.I q.H -

where I is a fresh behaviour name in the domain of <p. (H•B). Furthermore, exit is added
to the right-hand side of the equation I=··· if and-only if Exit. (H•B) holds.

Since I does not occur in the right-hand side of an equation of <p. I, the initial state of the
state graph of I •B cannot have incoming arcs. -

The bisimulation

{(H'•B, H'•B) I H'•B E After. (H•B)} U {(l•B, H•B)}

shows that H •B and I •B are observation-congruent.

In figure 5.6, root unwinding is exemplified. The state graphs before and after root un­
winding depiet the transformation process clearly.

step 3:

H.a.H with H x;Hl +u;H2
Hl y;Hl
H2 = v;H2+w;H
a.H = lu,v,w,x,y~

(a)

®

/.~
Yç.~.~·~v
~

I.a.I with I = x;H 1 +u;H2
H = x;Hl +u;H2
Hl = y;H1
H2 y;H2+w;H
a.I = ~u,v,w,x,yl

(b)

Figure 5.6: Expression H before (a) and after (b) root unwinding.

To conclude the fourth stage, two theorema are presented. Their proofs outline how the

88 Evaluation and Adjustment

optimisation of step 1 and the root unwinding of step 2 have to be applied to transfarm ex­
pression G•B (specifying infinite tau behaviour) into an observation-congruent expression
J•B (specifying no infinite tau behaviour).

Assume an expression G•B that is in normal form and whose structure distinguishes
between the specification of the behaviour before and after a first interaction of B. By
applying root unwinding to G•B, expression I •B is obtained. The first theorem ensures
that the subexpressions in l•B that cause r-relations of rest expressions to themselves can
be removed without semantically altering the expression. The resulting expression is J•B.
J•B and l•B are observation-congruent.

Theorem 5.2.2
For each expression E•B there exists an observation-congruent expression J•B, such that
each rest expression of J•B is not in a r-relation with itself.

Proof
Let expression K •B be derived from expression E•B by first transforming it into normal
form, and then by applying root unwinding to it. Expression J•B is now derived from
expression K•B by removing in all the equations Ki = ... , Ki ranging over'!!.: (K•B), the
summands r: Ki from the right-hand side. In case this procedure removes all summands,
a ó expression is tilled in as right-hand side.

The removal of all these summands makes it impossible that some rest expression J'•B
of J•B exists such that J'•B J'•B. The fact that l•B and J•B are observation­
congruent follows directly from the bisimulation:

{(X•B,X•B) I (X•B,X•B) E Mter. (I•B) x After. (J•B) 1\ XE dom.<p. (I•B)}

(End of Proof and Theorem)

The second theorem is partly discussed in step 2. It makes precise the conditions under
which an expression with infinite tau behaviour can be transformed into an expression
without infinite tau behaviour.

Theorem 5.2.3
For each expression G•B with (Mter. (G•B)/';::;j finite, there exists an observation-congru­
ent expression J•B that does not specify infinite r-behaviour.
Pro of

This proof starts by outlining the process of transforming G•B into J•B. First G•B is put
into normal form and partitioned. Then, theorem 5.2.1 is applied to remave all redundant
observation-equivalent rest expressions. Finally, the construction outlined in the proof of
theorem 5.2.2 is carried out.

Together with theorem 5.2.1 and 5.2.2, it is very easy to prove that G•B and J•B are
observation-congruent.

5.2 Fairness 89

This leaves open the issue of whether J•B specifies infinite tau behaviour. Assume that
infinite 7-behaviour is possible. Since (After. (G•B))/ ';::j is finite, (J•B))/ ';::j is also
finite. Due to the root unwinding and the absence of auto 7-loops, this implies that there
exists a rest expression Jl•B and n equations n > 1

Jl = 7;J2 + .. .
J2 = 7;J3+ .. .

Jn = 7;Jl + ...

that can cause this infinite 7-behaviour. However, all rest expressions Ji•B are observation­
equivalent. This is in contradiction with the construction of J.B. So, infinite 7-behaviour
is impossible.

(End of Proof and Theorem)

stage 5: Evaluation
The question can now be answered whether an expression E specifies a system that even­
tually has to perform an interaction of B (B Ç g:. E).

By applying stage 1 and the construction technique outlined in the proof of theorem 5.2.3,
an expression J•B is obtained. J•B and E•B are observation-congruent. Under the
condition of theorem 5.2.3, J•B does not specify infinite tau behaviour either. Moreover,
the partitioning transformation makes it possible to distinguish all equations in '1!: (J•B)
that specify the behaviour before an interaction of B has taken place. If one of them only
has as right-hand side a 6 or exit summand, it is not guaranteed that an interaction of B
will happen. Otherwise, an interaction of B will eventually take place.

Applying the transformations of the proof of theorem 5.2.3 to the example of stage 2,
results in the expression J•B:

J = 7j Jl
Jl x; Jl' + y; J2' + w; J'
J' = r;Jl'
Jl' = r;J2'
J2' r; J3' + r; J4'
J3' = x;Jl'
J4' Yi J2' + 7j J5'
J5' = w; J' + r; Jl'
g:. J 0

J •B shows that an interaction of B (B = { w, x, y}) eventually takes place.

We conclude this subsection with a remark. Theorem 5.2.3 gives a boundary condition
under which it is guaranteed that an expression does not specify infinite tau behaviour.

90 Evaluation and

As this condition deals with the entire specified behaviour, it is a little too strong. It
is sufHeient to guarantee that no infinite tau behaviour can take place prior to the first
interaction of B. Therefore, only the part of the expression that specifies the behaviour
prior to the first interaction of B should satisfy this condition.

5.2.3 Fairness predicate

A speeification language should be an autonomous means of sharing information between
people and machines that are involved in the design of systems. However, this is not the
case for the language developed in this thesis. lts semantics changes when it is embedded
in the design framework. This shortcoming is remedied in this subsection by defining a
predicate on the labelled transition systems associated with expressions. This predicate
specifies which paths through a labelled transition system are allowed and which are not.
In this way, it ensures that impHeit fairness becomes a characteristic of the language.

In the literature, various types of fairness notions are associated with expressions. An
overview can be found in [Fra86]. In this subsection, actionset fairnessis associated with
an expression. Consider an expression in a non-restrictive environment. Actionset fairness
allows only infinite behaviours in which an interaction of some set B happens if there is
always an interaction of B that can participate in this behaviour. The predicate restricts
the choice of inference rule and the choice of subexpression to which that rule has to be
applied.

To formalise actionset fairness, the notion participate and always partieipate have to he
defined:

Definition 5.2.4 (participate)
An expression E can participate in a set of interactions B, denoted by participate(B, E),
if

(3b, t, El, E2: b E B 1\ t E (Act\ B)*
: E A El 1\ El E2

(End of Definition)

Definition 5.2.5 (always_participate)
The participation of a set B of interactions in an expression E is called always..participate,
denoted by always_participate(B, E), if

(Vt, E' :tE (Act\ B)* 1\ E :::4;. E' : participate(B, E'))

(End of Definition)

The concepts participate and always_participate characterise the behaviour specified by
expressions. From a semantica! point of view, they should not distinguish between abser­
vation-congruent expressions.

5.2 Fairness 91

Property 5.2.6
Let E and F be expressions such that E ~c F, and let B be a set of interactions. Then,

(1) participate(B, E) participate(B, F)

(2) always_participate(B, E) = always_participate(B, F)

Pro of
For each of the two proofs, it is shown that the left-hand side predicate implies the right­
hand side predicate. The proof of the reverse impHeation is similar. It is left to the
interested reader.

(1) Assume participate(B, E). If •participate(B, F), E can perfarm a fini te number of
interactions followed by an interaction in B whilst F can never perfarm interactions
in B. According to the definition of observation congruence, this implies that •(E ~c
F). This is a contradiction.

(2) Assume always_participate(B, E). If -.always_participate(B, F), F bas a rest expres­
sion F' that can be reached from F without performing interactions in B and for
which •participate(B, F') holds. On the other hand, each rest expression g that can
be reached from E without performing interactions in B satisfies participate(B, E').
According to the definition of observation congruence and property 5.2.6.1, this im­
plies that •(E ~c F). This is a contradiction.

(End of Proof and Property)

The following property indicates a relation between implicit fairness induced on the lan­
guage by the design framework and the fairness obtained by associating actionset fairness
with the language. It shows that always_participate is not affected by abstraction.

Property 5.2. 7
Consider an expression E and a set of actions B, such that g. E Ç B. Then,

always_participate(B, E) always_participate(B, E•B)

Proof
It is only shown that always_participate(B, E) implies always_participate(B, E•B).

Assume always_participate(B, E) holds. If •always_participate(B, E•B), E•B can reach
a rest expression E'•B by performing a finite number of T-actions. For this rest expression,
•participate(B, E'•B) holds. The relation between E•B and E then ensures that E' is
reachable from E by actions not in B and that •participate(B, E') holds.

This contradiets the assumption always_participate(B, E). So, always_participate(B, E•B)
has to hold.

(End of Proof and Property)

92 Evaluation and

For a restricted set of expressions of the language, the induced fairness and the actionset
fairness are the same. This is hased upon the ohservation that checking for equations with
as right-hand side only a {j or a exit summand, can he expressed in termsof a predicate
on J•B: (l:fJ'•B: J•B J'•B: Ready. J'•B =/= 0).

Theorem 5.2.8
Assume an expression E and a set of actions B such that g_. E Ç B. Moreover, let
expression J•B he derived hy applying the strategy of the previous suhsection toE and
B.
Consider now the set of rest expressions in J•B that specify the hehaviour hefore a first
action of B has taken place. If this set modulo ohservation equivalence is finite, then the
following holds:

always_participate(B, E)

(l:fJ'•B: J•B

Proof

always_participate(B, E)
{property 5.2. 7}

always_participate(B, E•B)
{property 5.2.6.2, E•B :::,;c J•B }

always_participate(B, J•B)
{ definition always_participate, construction of J•B}

(l:fJ'•B: J•B ~ J'•B: Ready. J'•B =/= 0)

(End of Proof and Theorem)

In conclusion, adding actionset fairness to the langua.ge changes the hehaviour specified hy
the expressions. For a class of expressions, theorem 5.2.8 shows that the fairness induced hy
the design framework and actionset fairness are the same. However, for expressions outside
this class, actionset fairness constrains the language more than the induced fairness. For
instance, consider expression E below. The induced fairness does not guarantee that action
x or y will he performed eventually. Actionset fairness, on the other hand, guarantees this.

The expression E:

Xt(1) with 'P.: E = {X;(i) x ; NIL + r; Xj(i- 1) I i> 1/\ j 2: 1}
u {Xj(1) =x ;NIL + T ;Yj(j) Ij 2: 1}
u {Yj(i) y ;NIL + T ;Yj(i -1) I i> 1 /\j 2: 1}
U {Yj(1) = y ;NIL+r ;Xj+l(j + 1) Ij 2: 1}

q.E = {x,y}

5.3 Structure 93

5.3 Structure

Consicier the design of a system S. According to the requirements analysis, its functional
requirements can be captured by an expression E•A. lts non-functional requirements
dictate that the most detailed specification has to have a structure consisting of two or
more components in parallel. Furthermore, one of these components is fully specified by
expression Q. No constraints are imposed on the behaviour and structure of the other
components.

To express this initial specification of Sin the language, an expression of the form F•B 11 Q
is needed. Not every expression F•B is suitable. For the expression chosen, there has to
exist a set of interactions C such that (F•B 11 Q)•C ~c E•A.

lt takes a lot of effort to derive an appropriate expression F•B. Actually, this derivation
should not be clone during the definition of the initial specification. The initial specification
should aim at capturing requirements without deriving solutions for some of the problems.
Design activities such as the derivation of F•B should be kept to a minimum.

To support this, the language has to undergo a slight change. It has to capture the require­
ments on the behaviour and the structure separately. Therefore, a system is specified by a
specification pair (Lr. spec, Ls. spec). The first argument Lr. spec of this specification pair
is an expression of the originallanguage. It specifies the momentary status of the system
under design. This expression has to be detailed further until it meets the requirements
specified by the second argument. The second argument outlines the structure of the most
detailed expression. This part of the specification remains unchanged during the design.

Although the precise syntax and semantics of Ls. spec have not yet been presented, the
initia! specification S Pl of system S now looks like:

<E•A,
Gl 11 G2 with G2 ~c Q >,

Lr. SPl denotes the specification of the functional requirements of S. Ls. SPl specifies
the goal of a designer. Namely, to transfarm Lr. SPl into a detailed expression E' that
consists of two subexpressions Hl and H2 in parallel such that:

- E' ~c Hl 11 H2

- H2 ~c Q

The second argument of the specification pair, the design goal, is some sort of expression
followed by the keyword "with" and parameterised conditions. The expression is called a
structure expression. It consists of a number of identifiers, called structure names, joined
together by the parallel, choice, and sequentia! composition operator. The conditions are
predicates over the originallanguage and the structure names. The intention is to associate
expressions of E:g,abs,i with the structure narnes such that the structure expression becomes
a proper expression of E:g,abs,i, and the conditions evaluate to "true" or "false".

94 Evaluation and Adjustment

In the remainder of this section, the language of specification pairs is formalised and it is
embedded into a design framework.

The universe of structure expressions 8 is defined by the following syntax in Baclrus-Naur
Form:

E .. _ .. - x
E+E
E!!E
E;E

where X ranges over the universe of structure names.

Expressions of the originallanguage are going to be associated with structure names. By
{X, Y, Z} I {El, E2, E3} we denote that expressions El, E2, and E3 are associated with
X, Y, and Z, respectively. In the case that the number of expressions is large or not
specified, the customary vector nota ti on X I Ë is used.

If Sis a structure expression, S(X I Ë) denotes the expression that results from replacing in
S each occurrence of a structure name by the corresponding expression in the association
X I Ë. Similarly, C(X I Ë) denotes the predicate obtained by replacing in condition C
all structure nam es by the corresponding expressions in the association X I Ë. To avoid
ambiguities while substituting expressions for structure names, an association is assumed
to be a mapping.

Not every association turns a structure expression into an expression of Eg,abs,i or a condi­
tion into a predicate that evaluates to "true" or "false". Therefore, the notion of proper
association is introduced.

Definition 5.3.1 (proper association)
LetS be a structure expression and let Cj (0::.::; j < N, N ~ 0) be a set of conditions that
are parameterised by structure names. An association X I Ë is called a proper association
with respect to S and conditions Cj if and only if

• X/ Ë is a mapping from the structure names in S to expressions in Eg,abs,i'

• S(XIË) E E9 ,abs,i, and

• (Vj:O::.::;j<N:Cj(X/Ë)).

An association is called a proper association with respect to specification spec, if it is a
proper association with respect to the structure expression and conditions in Ls. spec.

(End of Definition)

On the universe of specification pairs a semantica is now defined. Informally, two spec­
ification pairs are indistinguishable if their first arguments are structurally observation­
congruent and their second arguments specify the same design goal.

5.3 Structure 95

Definition 5.3.2 (semantics)

Two specifications speel and spee2 have the same semantics, denoted by speel ~ spee2, if
and only if

• Lr. speel ~c Lr. spee2

• There exists a consistent relabelling of the structure narnes in Ls. speel into the
structure narnes used in Ls. spee2 such that

- each proper association with respect to the relabelled L s. speel is also a proper
association with respect to Ls. spec2, and

- each proper association with respect to Ls. spee2 is also a proper association
with respect to the relabelled L s. speel.

(End of Definition)

The ~-relation induces an equivalence relation on the universe of specification pairs. This
relation is also a congruence because a specification pair cannot he put in the context of
another specification pair.

A specification pair outlines a task for the designer. Namely, to transfarm the first argu­
ment in a number of correctness preserving detailing steps into an expression that meets
the goal specified by the second argument. The notion "meets" is now formally specified.

Definition 5.3.3 (meets)
Expression E meets Ls. spee if and only if there exists a proper association X I F such that

• E sat+ S(XIF) v E ~c S(XIF)

• (V j : 0 ::::; j < N : c j (x I F)).

where sat+ is the transitive dosure of the sat relation defined on êg,abs,i, and S and Cj are
the structure expression and the conditions in Ls. spee, respectively.

(End of Definition)

The following property shows that if an expression E meets the second argument of a
specification pair, each more detailed expression in the sat+ relation meets that argument.

Property 5.3.4
For expressions El and E2 and for specification spee:

El meets Ls. spee 1\ E2 sat+ El

E2 meets Ls. spee

where sat+ is the transitive dosure of the sat relation defined on êg,abs,i·

(End of Property)

96 Evaluation and Adjustment

The original sat-relation on Eg,aba,i checks whether any discrepancies exist between a more
abstract specification and a less abstract specification. The new sat-relation on specification
pairs has to check for this and for the invariance of the second argument.

Definition 5.3.5 (sat-relation)
For specifications speel and spec2, spec2 sat speel if, and only if,

(Lr. spec2) sat (Lr. speel) 1\ Ls. speel == spec2

where the sat-relation in the first conjunct is the one defined in definition 4.5.1.
(End of Definition)

It is easily checked that the language of specification pairs and the sat-relation just defined
together form a proper design framework. Moreover, property 5.3.4 can be extended to
specification pairs. So, if at some layer of abstraction in a design process a specification is
obtained such that the first argument meets the second argument, then this also holds for
every more detailed specification pair.

This concludes the discussion of the language of specification pairs. From a mathematica!
point of view, this language is just a solution to handle design processes that start with a
specification containing functional requirements and constraints on the structure. In the
remainder of this thesis, the suitability of Eg,abs,i for the design of communication systems
is further examined and where needed adjusted or extended. Implicitly, these adjustments
and extensions also apply to the language of specification pairs.

5.4 Alternating bit protocol

One of the tasks of a designer of communication systems is to design a system that provides
a reliable information-exchange service. This system has to he built on top of a subsystem
that provides an unreliable information-exchange service. Using the enhancements made in
the previous two sections, it will now he shown that the language and the design framework
support designs of this type.

First, an informal presentation of the problem statement is presented. This problem state­
ment is then formalised in terms of the language. Next, a solution to the problem is pre­
sented and the correctness of that solution is discussed. Finally, the section is concluded
by evaluating some of the activities that were carried out in the design process.

Problem statement:
The goal is to design a system P that provides a reliable information-exchange service. P
transfers messages from entities at a site X to entities at a site Y, and back. This system
is to he built on top of an existing system M.

M provides three simple exchange services. Two of them, called "One" and "Two", ex­
change messages from entities at X to entities at Y. The other, called "Ack", exchanges
messages from entities at Y to entities at X. Each of these three simplex exchange services

5.4 Alternating bit protocol 97

can lose messages that are in transit from X to Y. However, the service cannot always
lose messages in transit.

A correctly transported message from site X to site Y can still get lost at Y. M may
decide on its own to discard the message when its environment at Y takes too much time
to retrieve it. Furthermore, M only allows that at most one of the three exchange services
be used at a time. Moreover, each of them can only exchange at most one message at a
time. To prevent individual starvation, these three subservices are fairly scheduled amongst
their users.

Formalisation:
To formalise the problem statement, a specification pair is needed. The first argument
specifies the behaviour associated with P, and the second argument specifies that P has
to be built on top of medium M. The design taak is now to find behaviours Xl and Yl
that satisfy

P = U•{x,y}, with U= x;y;U,
Q.U={x,y}

Ls. P = Xl 11 Ml 11 Yl, with Ml ~c C
, with C dl; Cl+ dl;C

+ d2;C2 + d2;C
+a;Ca+a;C

Cl= Dl; c + diseard; c
C2 = D2; c + diseard; c
Ca= A;C
Q.C = {dl,Dl,d2,D2,a,A}

Q.Xl nQ.Ml = {x,dl,d2,A}
Q. Yl n Q. Ml {y, Dl, D2, a}

where structure name Ml denotes the medium M.

Figure 5.7 depiets the structure of the specification in terms of Xl, Ml, Yl, and the
interactions in which these three expressions can partake. Interaction x and y denote
the receipt of a message by P at site X and the delivery of a message by P at site Y,
respectively. Similarly, for the services "One" and "Two" of M, the arrival of a message at
site X is denoted by interactions dl and d2, respectively. The removal of a message at site
Y is denoted by interactions Dl and D2, respectively. Forservice "Ack" of M, the arrival
of a message at site Y and the removal of a message at site X is denoted by respectively
a and A.

Four things are of interest in this specification. First, the fact that Ml is not encapsulated
by an abstraction operator. This is done to make the taak of designers explicit; i.e. to build
a reliable simplex service by making use of an already available system. Encapsulating Ml
would give the designer the freedom to refine M, which would contradiet the problem
statement.

98

I
I lx
I

A
d2-

I
I
I

I
I
I '--------'- _at ~-+----+--"--l ___ _

Evaluation and Adjustment

-----------:~

site Y1
tY I

-~1 : - I
I

Figure 5.7: A graphical presentation of the problem statement

Second, the fairness properties of the behaviour of M are not explicitly specified. It is
done with the help of actionset fairness that is induced by the semantica of the language
and the design framework in which the language is embedded. The participation of the
exchange services "One", "Two", and "Ack" in the behaviour of M is characterised by
the performance of Dl, D2, and A, respectively. Since in a non-restrictive environment
M performa these interactions repeatedly, the fair scheduling of these services and the
eventually correct exchange of a message by each of them is guaranteed.

Third, a side-effect of these interactions in the specification is that discarding all the
messages transported by "One" and "Two" is not allowed in a non-restrictive environment.
This property was not mentioned in the informal problem statement. So, Mis overspecified
in a sense.

Fourth, in a non-restrictive environment, the interaction discard will often occur. So,
messages will get discarded frequently. However, it is not possible to determine whether
this is caused by "One", or "Two", or by both of them. Only by making the discard
interaction for "One" and the discard for "Two" distinct (e.g. by la helling the action
symbols) is it possible to specify that both services discard messages frequently.

Solution:
It is the task of the designer to find two behaviours for Xl and Yl that together with be­
haviour C satisfies the functional requirements U•{x, y}. For Xl the behaviour St.{ x, dl,
d2, A} is proposed, and for Yl the behaviour Rl•{Y, Dl, D2, a} is proposed:

SI = x; Sla Rl = Dl; Rla + D2; R2b
Sla = dl; Slb Ria y;Rlb
Slb = A; S2 +dl; Slb Rlb = a;R2
S2 = x;S2a R2 = Dl; Rlb + D2; R2a
S2a = d2; S2b R2a y;R2b
S2b = A; SI + d2; S2b R2b = a;Rl

This solution is not new. lt is an adaptation of the Alternating Bit Protocol, as it was first
presented in [BSW68]. In naturallanguage, the solution comes down to the following:

After receiving a message (interaction x) from some entity at site X, the behaviour as­
sociated with Xl (henceforth called the sender) uses service "One" (interaction dl) to

5.4 Alternating bit protocol 99

exchange the message. As long as no acknowledgement is received (interaction A) via
service "Ack" from the behaviour associated with Yl (henceforth called the receiver) that
the message is received, the sender repeats using "One" to exchange this message. If an
acknowledgement is received, the sender retrieves a new message from the entity at site X
and repeats the same procedure with service "Two".

If the receiver gets a message from "One" (interaction Dl), that message is passed over
to some entity at site Y (interaction y) and an acknowledgement is exchanged via "Ack"
(interaction a). The receiver now knows that each next message exchanged via "One"
is just a copy of the first one. Therefore, they are only acknowledged. If a message is
exchanged via "Two" (interaction D2), the receiver knows that the sender bas received
the acknowledgement and is now trying to exchange a new message. The fust message
received by "Two" is passed over to the entity and then acknowledged. Now the receiver
starts waiting for a new message to arrive via channel "One" while acknowledging each
exchange of the old message via "Two".

Verification:
To prove that the result of the detailing step

(Sl•{x,d1,d2,A} 11 C 11 Rt.{y,Dl,D2,a})f{dl,d2,Dl,D2,a,A} (I)

is proper, it is suflident to show that

(Sl•{x,d1,d2,A} 11 C 11 Rl•{y,Dl,D2,a}H{dl,d2,Dl,D2,a,A}•{x,y}

U•{x, y}

In figure 5.8 the state graph of (I) is presented. It is easily seen that if all interactions not
in {x, y} are relabelled to r, the expression can be reduced under structural observation
congruence to U•{x,y}. Clearly, (I) realises the non-functional requirements ~.P. So,
designers may stop designing after this detailing step. If they wish to continue though,
they can only detail the behaviours Sl•{x,dl,d2,A} and Rl•{y,Dl,D2,a}.

Evaluation:
In the design step just made, two aspects attract attention. First, the consistency between
the formal and informal problem statement is not verified. Second, the inadequate way in
which the discarding of messages by M is specified. Both aspects will now be discussed in
more detail.

In the informal problem statement, M has a clear structure of three separate exchange
services that cannot be used at the same time. Since its behaviour Cis specified in normal
form, this structure is not apparent in the formal problem statement. This raises the
question whether or not the formal specificatien is in contradiction with the informal one.
A more intuitive specification would have been one that consists of three expressions in
parallel. Each expression specifying one of the services:

C Co 11 Ct 11 Ca

100

A

Evaluation and Adjustment

Sl,C,Rl
®

~~ di ~la,C,Rl
Slb,C,Rl ~~dI/_.

Q'~,t
<tf _1,\. i5ib,C!,Rl

Slb,Cl,Rla dl ~Slb,C,Rla

YI~Iy
S!b,Cl,Rlb -d~ fi1

disêárd ta ,..., a ct/
Slb,Ca.R2 tdiscard >i dl >•S1b,Cl,R2

IA Slb,C,R2 ~
~c discard
eS2,C.R2

~"' ~ 0:~ d2 'ts2a.C.R2
S2b,C,R2 rt· .1

1 ~~d2
~'P ~·~ b,C2,R2

,..., 0:
S2b.C2,R2a d2 ~S2b,C,R2a

y·l~ly
~"' S2b.C2,R2b -~~

discard lfi a ct~
S2b.Ca.Rl tdisêárd >i <Ï2 •S2b,C2.Rl

D2

Slb,C.R2~
disëard

Figure 5.8: The state graphof expression (I).

5.4 Alternating bit protocol 101

One Co dl; Col+ dl; Co
Col Dl; Co+ disèard; Co

Two Ct d2; Ctl + d2; Ct
Ctl Dl; Ct+ disèard; Ct

Ack Ca a;Caa+a;Ca
Caa= A;Ca

Since the three expressions are independent, they allow for two or more services to be in use
at the same time. This contradiets the informal problem statement, as only at most one
service can he used at the same time. The only way to capture this additional constraint
is by adding action symbols to the three expressions on which they have to synchronise:

C Co 11 Ct !! Ca
One Co so;(dl;Col+dl;Co)+st;Co+sa;Co

Col Dl; Co+ disèard; Co
Two Ct st; (d2; Ctl + d2; Ct)+ so; Ct+ sa; Ct

Ctl Dl; Ct+ disèard; Ct
Ack Ca = sa; (a; Caa +a; Ca)+ so; Ca+ st; Ca

A;Ca

The drawback of this specification is that it does not specify directly the behaviour of M.
Auxiliary action symbols were neerled to make precise that at most one of these services
can he in use at the same time. The only way to remedy this is by making these symbols
local and by abstracting from them:

Cl{so, st, sa}•{dl, d2, Dl, D2, a, A}

However, this expression allows the designer to design M too. A better alternative is to take
an expressionwithout blackbox operators that specifies the behaviour of c r { so, st, sa }•{ dl,
d2, Dl, D2, a, A}. The specification that was originally presented satisfies this criterion.
Hence, the formal specification satisfies the constraints imposed by the informal specifica­
tion of M.

The second aspect that is discussed in this evaluation is the inadequacy of the specification
of M with respect to discarding messages. Due to the implicit fairness of the language, M
has an additional functionality that is not part of the informal specification.

Assume that M is placed in an environment that is always in time to retrieve messages.
Nevertheless, its specification ensures that the retrieval as wellas the discarding of messages
will happen. This is caused by the fact that in the specification it is not explicitly modelled
that the discarding of a message is related to the environment not retrieving that message
in time.

The best salution is to enhance the language with time and to model this relation directly.
Another salution is to "program" this relation into the specification by letting medium

102 Evaluation and Adjustment

and recipient synchronise on the interaction discard. For this last solution, the interaction
discard has to become a global action symbol and the behaviour of Yl has to he changed
into:

Rl = Dl; Rla + D2; Rib+ discard; RI
Rla = y; Rib+ discard; RI
Rib = a; R2 + discard; RI
R2 = Dl; Rlb + D2; R2b + discard; R2
R2a = y; R2b + discard; R2
R2b = a; Rl + discard; R2

In genera!, when using the language and the design framework more problems like these
will surface. The implicit fairness makes it very easy to specify behaviour with unexpected
side-effects. Especially, the proper specification of unfair behaviour can be tedious. For
instance, consider the following alternative behaviour of M:

c dl; Cl+ dl; C +dl; ON
+d2;C2 + d2;C +d2;CM
+a;Ca+a;C

Cl Dl; c + discard; c
02 = D2; C + disêard; C
Ca = A;C

CN = dl;CN
+ d2; CN2 + d2; CN + d2; CN M
+a;CNa+a;CN

CN1 Dl; ON+ disëard; ON
CN2 D2; c N + discard; c N
CNa = A; ON

CM dl;CMI +dl; CM +dl;CMN
+d2;CM
+a;CMa+a;CM

CMl = Dl; CM +disêard;CM
CM2 = D2; cM+ discard; cM
CM a = A; CM

CNM dl;CNM
+d2;CNM
+a;CNMa+a;CNM

CNMl = Dl; CNM + disêard; CNM
CNM2= D2;CNM +disêard;CNM
CNMa= A;CNM

CMN = dl;CMN

5.4 Alternating bit protocol

+d2;CMN
+a; CM Na+ a; CMN

CMN!= Dl;CMN +dis~ard;CMN
CM N2 = D2; CM N + dis~ard; CM N
CMNa A;CMN

103

When embedded in a non-restrictive environment, the difference between this behaviour
of M and the original one is that services "One" and "Two" can always lose messages.
To specify this, the choice between expressions dl; Cl and dl; C, and the choice between
d2; C2 and d2; C had to disappear the moment the corresponding service starts only losing
messages.

This is accomplished in the specification above. Here, subexpression dl; CN denotes the
choice that "One" starts to lose messages permanently. Expression C N is expression C
in which it is impossible that "one" exchanges messages. Similarly, subexpression d2; CM
in C denotes the choice that "Two" starts to lose messages permanently. Furthermore,
expression d2; C N M in C N denotes the choice of service "Two" to start ~o lose messages
permanently while "One" is already doing this. Similarly, expression dl; CM N in C N
denotes the choice of service "One" to start to lose messages permanently while "Two" is
already doing this.

Notice, that behaviour CNM and CMN are the same. Removing this redundancy and
the "unreachable equations" , yields the following specification:

c dl; Cl +dl;C +dl;CN
+ d2; C2 + d2; C + d2; CM
+a;Ca+a;C

Cl Dl; c + diseard; c
C2 D2; c + diseard; c
Ca A;C

CN dl;CN
+ d2; C N2 + d2; C N + d2; CP
+a;CNa+a;CN

CN2 = D2; C N + dis~ard; C N
CNa A;CN

CM = dl; CM!+ dl; CM+ dl; CP
+d2;CM
+a;CMa+a;CM

CMl = Dl; CM+ disëard;CM
CM a = A; CM

CP dl; CP
+d2;CP

104

CP a
+a;CPa+a;CP

A; CP

Evaluation and Adjustment

The specification problems above can be solved better if the language has operators with
which designers can regulate the amount of fairness in a design at a higher level of abstrac­
tion. In appendix C, a fair choice operator ({f)!), a fair parallel operator, and an unfair
choice operator ($u) are presented. Informally, the first two operators ensure that if a
choice between their two operands is made repeatedly, this choice is made fairly. The last
operator ensures that if a choice between its operands is made repeatedly, this choice is
made unfairly. The semantics of these operators is defined by a mapping of expressions
containing these operators onto expressions that do not contain them.

The specification above in terms of these operators becomes:

C (dl; Cl+ dl; C) {f)u dl; C
+ (d2; C2 + d2; C) $u d2; C
+a;Ca+a;C

Cl = Dl; C + disoord; C
C2 = D2; C + disoord; C
Ca= A;C

Notice the summand (dl; Cl +dl; C)$udl; C in the first behaviour equation. Subexpression
dl; C occurs in the right-hand side as well as in the left-hand side of the unfair choice
operator. This is to specify that the channel "One" can either always lose messages or
correctly exchange messages repeatedly. Ifit is replaced by dl; Cl$udl; C, "One" becomes
a service that may never lose messages.

5.5 Deadlock

In section 4.5, a sat-relation is defined that makes precise what is and what is not a correct
detailing step. Apart from formalising a correctness criterion, the practical use of this
relation is limited. For the design of actual systems, the amount of time and resources
that has to be spent on the verification of such a relation is usually too high. Therefore,
partial verification of the relation is often carried out instead. This can be done by testing
or checking whether certain properties of the sat-relation hold.

In this section, attention is focussed on the partial verification of the relation by checking
whether a certain property holds: absence of danger of deadlock. First the notion "danger
of deadlock" is defined. Then, a compositional proof technique is presented that shows
how larger specifications that have no danger of deadlock can be built out of smaller ones.
The results presented here are an adaptation ofresults derived in [Hui88].

Defining danger of deadlock:
The notion of danger of deadlock is first introduced in [BSW68]. There, it is used to denote

5.5 Deadlock 105

a possible allocation of resources to components of a system such that each component is
waiting for the other components to release resources in order to continue. For interacting
systems, danger of deadlock can best he described by:

The system as a whole stops interacting while at least one its parallel subsys­
tems is not yet terminated.

Figure 5.9 shows two expressions Xl{x}•{x,y,z} and Yf{w}•{w,y,z}. When they run
in parallel, their composite behaviour has danger of deadlock. If each of them reaches the
state that is marked by the dotted bidirectional arrow, they need to synchronise in order
to make progress. Since they cannot synchronise on the same interactions, no progress is
made from that moment on .

• •
Figure 5.9: Xf{x}•{x, y, z} 1/ Yf{w }•{w, y,z} has danger of deadlock.

To formalise that danger of deadlock exists in a specification, predicates in terms of the
language need to he defined. The following two predicates seem to satisfy:

danger_of_deadlock. E (3E' : E' E After. E : ..,Exit. E' 1\ E1 -/-->)

deadlockfree. E = -,danger_of_deadlock. E

where the conjunct E' -/--> is an abbreviation for ..,(3E11
, w : E" E After. E' 1\ w E ActT :

E' E").

The first predicate makes precise that if an expression E has danger of deadlock, there
exists a rest expression E' that is not successfully terminated. The negation of this first
predicate defines when an expression has no danger of deadlock.

Although there is a correspondence between the informal definition of danger of deadlock
and its formalisation that appeals to the intuition, it is still not properly evaluated why
the predicates above are proper formalisations. Boundary conditions that still have to he
checked are whether the predicates respect the langnage's semantica, the sat-relation of the

106 Evaluation and Adjustment

design framework, and the intuitive properties that are associated with danger of deadlock.
Each of these three topics is now addressed in more detail.

Frjw!•lz!

•
0
't

with X = w;Xl
Xl= w;Xl

a.xnw~-iz~=~zl

with Y = w;Yl
Yl = (Y2IIY3)
Y2= x;exit
Y3= y;exit
a.Y2=aY3=)x,y~

a.Yr)w,x,y~.~z! =!z!

with Z=z;exit
a.Z~z!=iz!

Figure 5.10: Danger of deadlock doesnotrespect semantics.

Semantics:
Clearly, the predicate should not distinguish between structurally observation-congruent
expressions. Consider the two structurally observation-congruent expressions X f { w }•z,
Y f { w, x, y, x }•{ z}, and expression Z •{ z} in figure 5.10. According to the definition,
(XI{w}• {z}) 11 (Z•{z}) has no danger of deadlock whilst (YI{w,x,y}•{z}) 11 (Z•{c})
does.

This discrepancy is caused by the fact that non-terminating r behaviour is semantically
equivalent to terminating r behaviour. This problem can be solved in two ways. Either
strengthen the semantics so that a distinction is made between unbounded and finite r­
behaviour or weaken the predicate. A consequence of taking the first approach is that it
reduces the means for verification. Therefore, the secoud approach is adopted:

danger_oLdeadlock. E
=
(3E': E' E After. E

: (Vw : w E Act : E' ~) 1\ E1
)

deadlockfree. E = •danger.oLdeadlock. E

with E 1 ~ denoting that there does not exist a rest expression E" such that E' ~ E 11
•

Notice that a consequence of this salution is that this formalisation of danger of deadlock
does not distinguish between systems that can only perfarm internal action symbols and
systems that have stopped. To exemplify this, consider the expressions w; X with X =

5.5 Deadlock 107

r; X + r; exit. Intuitively, it has no danger of deadlock. A more abstract expression exists
that clearly indicates that rest expression exit will eventually be reached.

However, applying the new definition of danger of deadlock to w; X shows that deadlock
occurs if X is reached after a r-interaction. The problem is solved by weakening the
conjunct --.Exit. E' a little:

danger_oLdeadlock. E

(3E': E' E After. E
: (Vw: wE Act: E' p) A (VE": E" E After.E': --.Exit.E"))

deadlockfree. E -,danger_oLdeadlock.E

This last notion of danger of deadlock does not contradiet the semantics of the language.
The following lemma supports this:

Lemma 5.5.1
For an expression E with E p (w E Act) and an expression F such that E F, the
following holds:
Fp

and
(VE' : E' E After. E : E') (1)

=}

(VF': P E After. F: -,Exit. F') (2)

Pro of
F p follows directly from E and E a:!c F.

For the proof of the implication assume (1) holds and (2) does not. Then there exists a
F' E F such that F'. Since E a:!c F, there has to exist an E' E After. E such
that E' a:!c F'. According to the definition of structural observation congruence E1 =

F'. Since F' evaluates to "true", (1) has to be invalid and a contradiction is
re ach ed.
(End of Proof and Lemma)

Theorem 5.5.2
Let E a:!c F, then

danger_of_deadlock. E = danger_oLdeadlock. F

Proof

danger _of_deadlock. E
= {definition danger_oLdeadlock.}

(3E': E 1 E After. E

108 Evalustion and Adjustment

: (Vw: wE Act: E' p) 1\ (VE": E" E After. E': E"))
= {lemma 5.5.1}

(3F': F' E After. F
: (Vw: wE Act: F' p) A (VF": F" E After.F':,Exit.F"))

= {definition danger_oLdeadlock.}
danger_oLdeadlock. F

(End of Proof and Theorem)

Sat-relation:
The notion danger of deadlock should respect the satisfiability relation. That is, if a
specification has no danger of deadlock then each of its implementations should not have
danger of deadlock either. Formally,

Theorem 5.5.3
Let E and F be expressions, such that E sat F. Then,

deadlockfree. E = deadlockfree. F

Proof
Assume deadlockfree. E. Th en, there exists a more abstract expression E' such that E' R;;c

F. Moreover, a deadlock-free expression remains free of deadlock after it is encapsulated
by one or more blackbox operators. So, also deadlockfree. E' has to hold. Theorem 5.5.2,
now guarantees that also deadlockfree. F hold.

Assume deadlockfree. F. Then there exists an observation-congruent expression F' such
that F' is more abstract than E and deadlockfree. F'. Removal of blackbox operators of
F' yield E. Moreover, it doesnotchange the outcome of the danger of deadlock predicate.
So, also deadlockfree. E has to hold.
(End of Proof and Theorem)

Compositionality:
The notion danger of deadlock satisfies also a number of properties that support the compo­
sition (using the langnage's operators) of larger deadlock-free specifications out of smaller
ones. For the action prefix, choice, localisation, sequentia! composition, and abstraction
operator, it is easily shown that:

Theorem 5.5.4

1) deadlockfree. E•B

2) deadlockfree. E::} deadlockfree. Ef A 1\ ~~~~· E•B A deadlockfree. w; E

3) deadlockfree. E 1\ deadlockfree. F::} deadlockfree. E; F 1\ deadlockfree. E + F

(End of Theorem)

5.5 Deadlock 109

Primarily, danger of deadlock is caused by concurrent systems infl.uencing each other. A
property stating how a larger deadlock-free specification can obtained out of a number of
concurrently running smaller ones, has to impose restrictions on the way that these smaller
ones infiuence each other:

Theorem 5.5.5
Let E and F be expressions such that deadlockfree. E. Then,

deadlockfree. (El(~. F \ ~· E)•(~. En~· F)) 11 F
=>
deadlockfree. E 11 F

Pro of
In this proof, the one to one correspondence between the rest expressions of (EI(~. F \
~. E))•(~. En~. F) and E 11 Fis implicitly used; i.e. for every rest expression ((Eli(~. F\
~. E))•(~. En~· F)) 11 Fl of ((El(~. F \ ~· E))•(~. En~· F)) 11 F, there exists a rest
expression El 11 Fl of E 11 F and vice versa.

Assume that •deadlockfree. E 11 F. Then, there exists a (E' 11 F') E After. (E 11 F) such
that

(1) For all w E Act, E' 11 F' ~

(2) (E" 11 F") E After. (E' 11 F') => •Exit. (E" 11 F")

Since ((El(~. F \ ~· E))•(~. En~· E)) 11 F only abstracts from interactions on which E
and F do not synchronise, it is now easy to deduce from condition (1) that ((E'I(~.F\
~· E))•(~. E n ~. F)) 11 F' ~ and all its rest expressions cannot perform an interaction
of Act anymore.

So, it has to be shown that for one of the rest expressionsof ((E'I(~. F \ ~· E))•(~. En
~· F)) 11 F', the Exit-predicate of all its rest expressions evaluates to false. Two cases can
now be distinguished:

Casel:
For all expressions (E" 11 F") E After. (E' 11 F'), predicate Exit. F" evaluates to false.
Then, the definition of Exit guarantees that the Exit-predicate of all rest expressions of
((E"I(~. F \ ~· E))•(~. En~· F)) 11 F" evaluates to false too.

Case2:
In all other cases there exists a rest expression E" 11 F" of E' 11 F' such that for all
rest expressions (E 111

11 F 111
) E After. (E" 11 F"), •Exit. E111 and Exit. F111 hold. Since

deadlockfree. E, all these expressions E 111 have to satisfy E 111 ~ and w E ~·En~· F.
Consequently, ((E"I(~. F \ ~· E))•(~. En~. F)) 11 F" is a rest expression of ((El(~. F \
~· E))•(~. En~· F)) 11 F from which danger of deadlock can be deduced. It specifies no
visible interactions, and all the Exit-predicates of its rest expressions evaluate to "false".
(End of Theorem)

110 Evaluation and

Normally, the labelled transition system of E 11 F bas to be evaluated todetermine whether
tbe expression bas danger of deadlock. However, if deadlockfree. E and F
hold, the latter theorem states that it is su:ffi.cient to evaluate the labelled transition system
associated witb ((Ef(q. F\g. E))•(g. Enq. F)) 11 Ff(q. E\q. F)•(g. Eng. F). Moreover,
tbeorem 5.5.2 even allows Ef(g. F\ g. E)•(g. Eng. F) and Ff(g. E\g.F)•(q. Enq. F)
to be replaced by structurally observation-congruent ones tbat have a smaller number of
rest expressions and relations between these rest expressions.

We do not claim that tbe complexity of determining danger of deadlock is always reduced
by this alternative approach. However, in genera!, it is preferabie to know which details are
relevant to tbe presence of a property and which are not. In tbe case of two deadlock-free
systems E and F, one can abstract from all interactions on wbicb tbey do not synchronise.

Notice tbat not all deadlock-free systems are built out of deadlock-free components. A
system built out of two subcomponents may have danger of deadlock. By adding a third
subcomponent that restricts tbe behaviour of the other two, this danger can be removed.

5.6 Discussion

In this chapter, the language that was introduced in chapter 4 was evaluated. Discovered
shortcomings where solved in an appropriate way.

The first section indicates that the language can be used to specify two-party exchange,
multiparty exchange, duration of actions in a non-quantitative way, and unreliable be­
haviour. This does not mean that tbe language is optimally suitedinall these areas. In the
area of multiparty information exchange, for instance, different forms of multicast [Pra91]
and multicollect exist. It remains to be seen whether they can all be easily modelled in
terms of the language. If tbey cannot be modelled or the modelling does not naturally
correspond to the problem at hand, additional operators may be needed.

The second section showed that if the language is embedded in a design framework, its
semantics changes. This problem was solved bere by associating a predicate witb the
language. An alternative solution would be to change the operational interpretation of
the language so that by applying it, additional information is gained on tbe choice of
inference rules and/or the subexpressions on which they are applied. This information can
then be used in predicates over the labelled transition system to constrain the specified
behaviour [CS85, Fra86]. Or, the information can perhaps be used directly to strengthen
the definition of observation congruence.

In [LT88] a different approach is taken. Here, tbe temporallogic operators always (o) and
eventually (~) are imported into the syntax and operational interpretation of an algebraic
language. They provide the users of the language with the possibility to state that it is
necessary for some action w to happen (w0 : E) or that action w may eventually happen
(w0 : E). Whether this extra flexibility is actually needed, remains for further research.

5.6 Discussion 111

The third section showed a straightforward extension of the language that allows for the
specification of structural requirements. It is used in the fourth section to specify a reliable
and unreliable information-exchange service as well as the alternating bit protocol that,
together with the unreliable exchange service, provides the reliable exchange service. It
was interesting to notice the mismatch between the structure in which the problem was
formulated and the syntactical structure of its formal specification. It is for further research
whether their structures should match.

Finally, in the fifth section a partial verification of the satisfiability relation was worked out
in further detail. The notion absence of danger of deadlock was formally defined in terms
of the predicate deadlockfree over expressions of the language. This predicate respects the
semantica and the satisfiability relation. Finally, a compositional technique to build larger
deadlock-free systems out of smaller deadlock-free ones was shown.

One thing that is missing in this section is value passing. As shown in chapter 7, value
passing is necessary to specify and design interesting systems. Formally, such an extension
is not introduced. However, it is possible to enhance the actions with valnes and variables
(see page 150), and to introduce a conditional choice. Value passing makes the seman­
tica more complex, and as a result it makes the verification whether two expression are
indistinguishable more difficult.

This condurles this chapter on evaluation and adjustment of the language of chapter 4. In
the next chapter, attention is focussed on enhancing a subset of this language so that it
can be used to express timing properties quantitatively.

112 Evaluation and Adjustment

Chapter 6

Time Enhancement

The language presented in chapter 5 is suitable for specifying an ordering of interactions.
However, it does not support the specification of time-related properties of interactions.
Properties such as the points in time at which interactions occur or the time span in
between two interactions cannot be expressed.

In the specification and design of communication systems, it is often necessary to address
time quantitatively. For instance, to specify a time-out mechanism properly, the maximum
period of time that a site waits for a response needs to be expressed. Furthermore, during
design, time-based performance characteristics often infl.uence the design choices that have
to be made.

This chapter focuses on enhancing the expressiveness of the language so that it can be used
to specify time characteristics. It consists of five sections. In the first section, the notion
of time is defined. The second section classifies several existing approaches to enhance
the language with time. In the third section, the may-timing enhancement is worked out
in detail. The fourth section discusses two ways of extending the expressiveness of the
language. One of them is used in the multimedia casestudy of chapter 7. Finally, the last
section discusses this chapter, and it outlines directions of further research to enhance the
language with probabilities.

6.1 Time

The operational interpretation of an expression of an algebrak language can be described
by an unfolded state graph. Enhancing such a language to express time properties boils
down to defining a mapping from the interactions in the unfolded state graph to a time
domain. The time points that are associated in this way with the interactions denote the
moments at which these interactions can take place.

In this section, a part of this mapping is considered. Namely, the mapping of a set of
unique interactions onto a time domain is discussed. We start this discussion with the
definition of the concept of time.

113

114 Time Enhancement

Time is an artificial concept invented by man to associate a quantitative measure with the
moment at which an interaction occurs or the period in between interactions.

Assume a universe of unique interactions. To associate a quantitative measure with these
interactions, it is sufficient to define a mapping from interactions to a set T which is ordered
by arelation :::;. Such a mapping is called a time mapping, and the pair (T, :5) is called a
time domain. The elements of T are called time points. The ordering relation :5 reflects
the idea that one time point lies ahead of or is equal to another time point.

To exemplify this, consider a time mapping :F and two interactions wl and w2. :F(wl)
and :F(w2) denote the moments that interaction wl and w2 take place, respectively. If
wl occurs before or at the sametime as w2, this is reflected in the mapping by: :F(wl) :5
:F(w2).

Not every time mapping :F on a time domain (T, :5) results in a consistent ordering of
interactions. The time mapping and the time domain have to satisfy the following proper­
ties:

1. If interactions happen simultaneously, they are mapped onto the same time point.
According to the informal definition of the :5-relation, the :5-relation should therefore
he reflexive; i.e. t :5 t.

2. Assume two interactions that are mapped onto tl and t2, respectively. If tl :5 t2
and t2 :5 tl, the two interactions happen simultaneously. To make this conform to
property 1, the :5-relation has to he asymmetrie; i.e. t1 :5 t2 !\ t2 :5 t1 ::::} t1 = t2.

3. Assume three interactions that are mapped onto tl, t2, and t3, respectively. If
the first interaction happens before or at the same time as the second interaction
(tl :5 t2), which in turn, happens before or at the sametime as the third interaction
(t2 :5 t3), then the fust interaction should happen before or at the same time as the
third interaction (t2 :5 t3). To guarantee the latter, the :5-relation is made transitive;
i.e. t1 :5 t2 !\ t2 :::; t3 ::::} tl :5 t3.

4. Each interaction should happen before, after, or at the same time as another inter­
action. This is guaranteed by requiring that the :5-relation is a total ordering; i.e.
for every two time points t1 and t2, tl :5 t2 or t2 :5 tl.

5. Quantifying the point in time at which an interaction occurs is always relative to
some initia! point in time. For the specification of a behaviour via a time mapping,
it seems natural to take the moment at which a system starts operating as the initial
point in time.

This moment is best modelled by a time point that does not have other time points
ahead of it. To guarantee that such a time point exists, a time domain has to have
a lower bound 0; i.e. 0 is a time point of T, such that for alltin T: 0 :5 t.

For reasons of convenience, it is also assumed that each time domain has an upper
bound oo; i.e. oo is a time point of T, such that for alltin T: t :5 oo.

6.1 Time 115

Properties 1 to 5 ensure that a time domain is a totally ordered poset. However, a universe
of unique interactions, a time domain, and a time mapping together cannot express the
duration of an interaction or the period of time in between two interactions. For this
purpose, a binary operator is defined on 'T. This operator is called the subtract operator,
and it is denoted by '-'.

To exemplify the use of this operator, consider again the interactions wl and w2. The
period of time in between the interactions wl and w2 canthen be modelled by F(w2)
F(wl). If the start and stop of wl is modelled by respectively wl + and wl-, the duration
of that interaction can be modelled by F(wl-)- F(wl+).

To ensure that a time mapping F on a time domain ('T, :::;, -) results in a consistent
ordering of interactions, the properties defined above are insufficient. The following 6
properties also have to hold:

6. A period of time is represented by an element of T. Therefore, the outcome of
applying a subtract operator to two time points results in another time point; i.e.
the subtract operator is closed under 'T: t2 tl E T.

7. The notion of duration is a period of time obtained by applying the subtract operator.
Duration between two interactions is denoted by a single time point. To accomplish
this, the order in which the operator is applied to its operands does not matter:
t1 - t2 = t2 - tl.

8. The time point associated with an interaction denotes the period of time in be­
tween the moment at which the system starts operating and the moment at which
it perfarms the interaction. This implies that the subtract operator has to satisfy:
t- 0 = 0- t t.

9. To specify a period of no duration, the time point 0 is used. So, if an interaction
starts and stops at the same time t, subtracting this time point from itself should
result in 0: t t 0.

10. For no specific reason, it is assumed that the end of time cannot be reached. There­
fore, the period of time between each time point t in T \ { oo} and the end of time
oo always equals oo: t - oo = oo - t = oo.

11. Let tl < t2 be an abbreviation for t1 :::; t2 A t1 =f. t2.

Assume that interactions wl, w2, and w3 take place at time tl, t2, and t3, respec­
tively. U t1 < t2 < t3, then the period of time between wl and w2 has to besmaller
than the period between wl and w3. Therefore, for each three time points tl, t2,
and t3 of a time domain such that t1 < t2 < t3, condition t2 - tl < t3 t1 has to
hold.

116 Time Enhancement

Consider the time domains (ll+ U {0, oo}, ~.-), (NU{ooh -), and (Q+ U {O,oo}, ~'-).
The subtract operator denotes the absolute value of the subtract operator that is usually
defined on the set that each of these domains has as a first argument (real, rational, and
natura! numbers). These three example time domains set themselves apart from each
other in two ways. First, there is the distinction between dense and discrete time domains.
Second, within the universe of dense time domains a distinction can be made between
complete and incomplete time domains.

dense vs. discrete:
A time domain is called dense, if for every two distinct points tl and t2 (tl < t2) in time
there exists a third point t in time such that t1 < t < t2.

A time domain is called discrete, if for every two distin ct points t1 and t2 (t1 < t2 and
t2 ::I oo) there exists a fini te, possibly zero, number of time points in between.

Clearly, (ll+ U {O,oo},~,-) and (Q+ U {O,oo},~,-) are dense time domains, and (NU
{ oo}, -) is a discrete time domain. It should bfl noted though that there exist time
domains with a mixture of dense and discrete characteristics.

complete vs. incomplete:
A dense time domain is called complete, if every monotonously bounded sequence of time
points in that time domain converges toa time point of that time domain1• (ll+ U{O, oo }, ~

is an example of a such a time domain.

A dense time domain is called incomplete, if it is not complete. (Q+ U {0, oo }, ~.-) is an
example of such a time domain, as there exists a monotonously bounded sequence of time
points that converges to v'2 and v'2 ~ Q+ U { 0, oo}.

In this section, we saw how a set of unique interactions can be mapped onto a time
domain. The next section presents several ways to enhance an algebraic language with
time. Actually, it is shown how the ordering of interactions defined by an unfolded state
graph can be integrated with the ordering defined by a mapping of the interactions in that
graph onto a time domain.

6.2 Classification of time enhancements

There are two main approaches in which time enhancement can be carried out. First,
the algebrak language can be linked toanother language that can specify time properties
of interactions. For instance, in [BBBC94], LOTOS is enhanced with time by relating
it to the logkal language QTL. In the second approach, the expressiveness to specify
time properties is integrated into the algebrak language. That is done by adapting and
extending the syntax, operational interpretation, and semantica of the language.

When evaluating these two approaches, it appears that they both have their merits. The
first approach gives better support to the development of a specification language than the

1This is the mathematica! definition of reals.

6.2 Classification of time enhancements 117

second one. As insights may change during the development of a specification language,
such a language undergoes a number of modifications. As these modifications often deal
with either the specification of functional properties or the specification of time properties,
the separation of concerns made in the first approach eases the modification process. On the
other hand, the integration carried out in the second approach usually causes modifications
to affect the way functional properties as well as time properties are specified. In general,
they take more effort.

The merit of the second approach is that it produces languages in which only consistent
specifications can he written. Due to the integration, it is impossible to specify functional
and time properties that contradiet each other. Whereas, for time-enbaneed languages of
the first approach, theseparate functional and time part of each specification always have
to undergo a consistency check.

In this thesis, we elaborate the second approach. As a start, the remainder of this section
discusses three ways of integrating time into an algebrak language. In the next section,
one of them is then applied to enhance the language of chapter 4.

If the language is not extended with new operators, there are three ways of integrating
time into an algebrak language: absolute-timing, relative-timing using time points, and
relative-timing using time interactions. These three forms are now discussed.

Absolute-timing:
The most straightforward way to enhance an algebrak language with time is by associating
with each interaction in an expression a time point of some time domain. An interaction
may only take place at its time point. This approach is known as absolute-timing [BB91].
To exemplify it, consider expression w(4); x(7); exit. It specifies a behaviour that may
perform interaction wat time point 4 and interaction x at time point 7.

There are now two orderinga of interactions in the language. The ordering induced by the
usual interpretation of the operators and the ordering induced by the time points with
which the interactions are extended. These two orderingamay contradiet each other, as
is shown by: y(3); z(2); exit. According to the first ordering, interaction y bas to take
place before interaction z. However, the time points associated with y and z state that
interaction z happens before interaction y.

To solve this contradiction, we make one ordering subservient to the other; i.e. one ordering
refines the other without introducing contradictions. To still have use of the operators in
the language and to ensure upward compatibility, the time ordering is made subservient to
the ordering induced by the operators. Expressions that do not satisfy this constraint are
excluded from the language. In [BB91], this contradiction is solved by having axioms that
rewrite this expression into y(3); ó (interaction y at time point 3 followed by deadlock).

Absolute-timing has the advantage that it allows designers to express directly that some
interaction bas to happen at a fixed point in time. Absolute-timing has two drawbacks:

118 Time Enhancement

specifications cannot easily accommodate to changes in time properties and expressions
with recursion are cumhersome to write down. They are now discussed in more detail.

Consider expression w(4); x(7); exit. Assume changes in the requirements demand that
every interaction in this expression has to take place two time points later. Then, all the
time points associated with the interactions need to be increased: w(6); x(9); exit. An
alternative integrated time enhancement is desired that allows for an easier change of time
properties.

Recursion is common in most specifications. Consider the task of specifying a behaviour
that performa interaction w every 11 time points (starting at time point 4) and that
performa interaction x every 11 time points (starting at time point 11). To specify this,
the language bas to be extended with a mechanism by which information about time points
of future interactions are passed to rest expressions. Parameteriaation of behaviour names
is an example of such a mechanism. Applying it to the informally described specification
results in: X(4), with X(n) = w(n); Y(n+7) and Y(m) = x(m); X(m+4). As reenrsion is
a common characteristic of specifications, a less cumhersome way to address it is necessary.

Relative·timing using time points:
As in absolute-timing, relative-timing using time points also associates time points with
interactions. lt differs from absolute-timing in the way that these time points are inter­
preted. In absolute-timing, a time point denotes the time period that lies in between the
moment that a system starts carrying out the behaviour (0) and the moment that the
interaction bas to be performed. In relative-timing using time points, a time point denotes
the time period relative to any other interaction that bas immediately preceded it. Only if
such an interaction does not exist, is this period relative to time point 0 at which a system
starts carrying out the behaviour.

Relative-timing using time points is adopted in [BLT90, BB91, Che92, QAdF93, BL94,
LL94, NHT94, QMdFL94]. To exemplify it, consider the expression w[4]; x[7]; exit. lt
denotes a behaviour that carries out interaction w at time point 4, and 7 time points later
it carries out interaction x.

An advantage of this approach is that the functional ordering and the time ordering are
properly integrated. By definition, the time ordering is now subservient to the functional
ordering. Also, this approach allows for an easy transformation of w[4]; x[7]; exit into an
expression where all interactions happen two time points later. It is sufficient to adjust
the time point associated with w: w[6]; x[7]; exit. Finally, notice that in this approach,
recursive behaviour can be specified without introducing additional mechanisms. The
infinite behaviour introduced in absolute-timing becomes: X with X w[4]; x(7]; X.

All these advantages do not come without some drawbacks. In genera!, it is more difficult
to specify that an interaction may only happen after a period of time relative to some
other moment than the occurrence of an immediately preceding interaction. For instance,
try to adjust w[4]; x(7]; exit such that an interaction y takes place 13 time points after

6.2 Classification of time enhancements 119

start up. The syntactical position of interaction y and its time point need to be deter­
mined. A way to do this is by first specifying the desired behaviour in absolute-timing:
w(4); x(ll); y(13); exit. From this specification, it is easy to derive that interaction y takes
place two time points after interaction x. Translating this to relative-timing results in the
following equivalent specification: w[4]; x[7]; y[2]; exit. There also exists an alternative
solution. Namely, (w[4];x[7];exit) 11 (y[13];exit) where no synchronisation takes place
between the two expressions in parallel.

Relative-timing using time interactions:
A different approach of enhancing an algebrak language with time is by the introduetion
of a special interaction t, the time interaction. When this time interaction is performed, it
corresponds to the passing of a period of time. The length of this period is either implicitly
[Gro90] or it is a parameter of the time interaction [HR91, Wan90, Bol92, MT92, DS94,
Sch94].

To exemplify this, consider the expression t; t; t; t; w; t; t; t; t; t; t; t; x; exit. It specifies a
behaviour in which interaction w takes place "4 periods t of time" after start up and it
is foliowed "7 periods t of time" later by interaction x. No statement is made about the
actuallength of the time period, except that it is finite and fixed for each time interaction.
Parameterising the time interactions with their duration results in the following more or
less equivalent expression: t[4]; w; t[7]; x; exit.

As for relative-timing using time points, this relative-timing using time i.nteractions bas
simHar advantages and disadvantages with respect to absolute-timing. The fust variant
differs from relative-timing using time points in that interactions always have to lie a
multitude of some period t apart. So, it can only be used for specifying the behaviour of
systems that deal with time in a discrete way. The second variant can also handle time in
a dense way.

Relative-timing using time interactions bas an advantage above the other form of relative­
timing. Consider (u; t; exit+v; t; t; exit); y; exit. It specifies that interaction y may happen
one time period after interaction u or two time periods after interaction v. This cannot
be expressed directly in a language using relative-timing with time points, as in this time
enhancement a time point associated with an interaction is relative to the moment of
occurrence of any of the immediately preceding interactions. The only way to specify
it is by u[O];y[d];exit + v;y[2d];exit, where d denotes the time period associated with
interaction t. However, this expression bas a different syntactical structure.

Each approach has its benefits and its drawbacks. We choose for relative-timing using time
points. If this choice causes problems with respect to specifying absolute-timing aspects
of behaviour, they can always be solved by the introduetion of some special operator.
Possible shortcomings with respect to the other form of relative-timing can be solved by
the introduetion of a time interaction that is parameterised with a time point. In the next
section, it is shown how a subset of the language of chapter 4 is enhanced with relative
time using time points.

120 Time Enhancement

6.3 May-timing

Before starting to enhance the language, a decision has to be taken about the type of par­
allel operator that this language is going to have. Consider the following three expressions
in parallel:

El: u[O]; exit
E2: v[2]; u[O]; exit
E3: w[3];exit

where synchronisation only takes place on interaction u. El cannot participate in the
composite behaviour, as it is only willing to synchronise with E2 at start up time. E2,
on the other hand, only wishes to synchronise with El 2 time points later. There are
now two ways to associate a behaviour withEl 11 E2 11 E3: must-timing parallelism and
may-timing parallelism.

In the must-timing [BLT90, BB91] interpretation of the parallel operator, no interactions
take place. According to the philosophy of must-timing, interaction v cannot take place
because there exists an expression (El) in parallel that is not yet terminated and that only
wants to participate in interactions at an earlier time. So, in must-timing, the composite
behaviour is terminated if a local deadlock occurs.

In the may-timing interpretation of the parallel operator, expressions that can no longer
contribute to the composite behaviour do not restriet the occurrence of interactions that are
notintheir alphabet. The effect that this has on the example is that El 11 E2 11 E3 specifies
a behaviour in which interaction v takes place at time point 2 foliowed by interaction w at
time point 3.

To enhance the language with time, a choice has to be made between must-timing or
may-timing parallelism. A frequently heard argument in favour of must-timing is that
local deadlocks are unwanted properties of systems. Therefore, it is considered harmless
to use specification languages in which a local deadlock induces an overall deadlock. This
argument may be valid for specifications of the complete behaviour of systems. However,
it does not necessarily hold true for partial specifications. In [18092], for instance, the
LOTOS specifications of the OSI transport service specify a behaviour in which new parallel
subbehaviours are created on-the-fly and their deletion is not taken into account. This
cannot be modelled in must-timing parallelism. Another argument in favour of may-timing
is that a local deadlock in an actual system seldom causes an overall deadlock. So, the
specification can also be used in error analysis.

Having evaluated this, we believe that algebrak languages with may-timing parallelism
are better equipped to specify, design, and maintain systems. Therefore, the rema.inder of
this section is dedicated to the time enhancement of the language of chapter 4 using time
points and may-timing parallelism.

6.3 May-timing 121

From a mathematica! point of view, may-timing parallelism is less elegant than must­
timing parallelism. Therefore, we follow the approach of ATP [NRSV90] and present the
time enhancement in two stages. In the first stage, the time enhancement for expressions
is presented without the parallel, localisation, and abstraction operator. In the second
stage, the time enhancement is extended to a subset of the language that contains these
three operators. To conclude this section, the semantica of this subset is defi.ned in the last
subsection.

6.3.1 Sequentia! expressions

In this subsection, the subset of Eg,abs that is suitable for specifying sequentia! behaviour
is enhanced to express time properties quantitatively. This subset consists of those expres­
sions in Eg,abs that do not contain parallel, localisation, and abstraction operators.

As a first step in the time enhancement, each action symbol in the expression is augmented
with a time point in the dense and complete time domain (llll+ U {0, oo }, -, :::;). Thesetof
sequential time expressions obtained in this way is denoted by e seqg,abs,time.

To define the operational interpretation of Eseq9,abs,time, it is necessary to model in some
way the effect that the passing of time has on an expression. Here, we follow the approach
that was first presented in [QF87] and defi.ne a partial function, called the Old function, on
Eseqg,abs,time· This function is not visible in specifications. Old.(t, E) denotes expression
E after no interactions have taken place fora time period t. In table 6.1, the Qld function
is defined:

i) Old.(tl, w[t2]; E) = w[t2- tl]; E
ii) Old.(t,X) = Old.(t,cp.X(X))

iii) Old.(t, exit)= exit-
Qld.(t, El)+ Qld.(t, E2)

iv) Old.(t, El+ E2) = Old.(t, El)

Old.(t, E2)

)
"1 .,~(El·E2)-{ Old.(t,El);E2

V !.!!l.1• t, ' - Old.(t, El); Old.(t, E2)

t2 ~ t1

Qld.(t, El) E Eseq9,abs,time and
Old.(t, E2) E Eseq9,ab8,tïme
Old.(t, El) E Eseqg,abs,time and
Old.(t, E2) {j. Eseq9,abs,time
Old.(t, El) f/. Eseqg,abs,time and
Qld.(t, E2) E Eseqg,abs,time
-.Exit. El
Exit. El

Table 6.1: Old function.

In the definition of the Old function, E denotes an expression and t, tl, and t2 are time
points. Furthermore, notice that the guardedness of expressions ensures that the definition
is correct.

The operational interpretation is defi.ned by a binary relation on Eseqg,abs,time· This binary
relation is either labelled by an action symbol or a time point. The latter expresses a time

122 Time Enhancement

period in which the behaviour does not perfarm any interactions. To facilitate discussions
in this thesis, time points are sametimes referred to as time interactions. Notice that a
time interaction is not represented by a local or global action symbol.

Definition 6.3.1 (operational interpretation)
For each action symbol w and time point t, ~ and ~ denote the smallest binary
relations on e seqg,abs,time satisfying:

1) w[O];E~E
2) if(E ~ E') then (E+F ~ E' and F+E ~ E')
3) if (E ~ E' and cp. X(X) = E) then (X ~ E')

4a) if (F ~ F' and Exit. E) then (E; F ~ F')
4b) if (E ~ E') then (E; F ~ E'; F)

5) if Old.(t, E) E êseq9,abs,time and t =/:- 0 then (E ~ Old.(t, E))

(End of Definition)

To conclude this subsection, a few charaderistics of this operational interpretation are
discussed.

drawing state graphs:
For most of the expressions in the time-enhanced language, it is impossible to depiet the
labelled transition system in the usual way. Consider expression X, with X = x[3]; X.
Depicting the idleness of duration 3 results in a state graph with an infinite number of
states and arcs. The only purpose of state graphs is to depiet the moments at which
interactions take place as well as the choices made that lead up to those moments. This
information is not lost if all states are removed from the graph that have only incoming
and outgoing arcs labelled by time points. Therefore, we adopt this approach throughout
the remainder of this thesis. It is exemplified in figure 6.1.

x
(a) X=x[3];X ®~

(b) X= x[3];exit ®

+y[4];exit

3) • 1)e-.J--Y-~)•

~ •
Figure 6.1: State graphs of sequentia! time expressions.

urgent actions:
Consider expression x[3]; y[O]; exit. According to the Old function and inference rule 1) and
5), it specifies that interaction x happens at precisely time point 3 foliowed by interaction

6.3 May-timing 123

y at that same time point. This characteristic of specifying interactions to take place after
one another and at the same time is known as urgent actions.

time determinacy:
Consider expression x[3]; exit+ y[4]; exit. According to the operational interpretation (see
also figure 6.1.(b)), no choice is made between the two expressions for a time period of
length 3. At time point 3 a choice has to he made between interaction x or another period
of idleness of length 1 followed by interaction y. This interpretation of the choke operator
is called time determinacy and it was fust mentioned in [NRSV90].

unreachability of the end of time:
Consider an action symbol with which the time point oo is associated. As a time domain
has to satisfy properties 9 and 10, it is impossible to rednee oo to 0 by subtrading time
points. So, the interaction denoted by that action symbol can never take place.

6.3.2 Parallel expressions

As a next step in enhancing the language with time, the universe of sequentia! time ex­
pressions is extended to an universe of parallel time expressions &parg,abs,Ume·

To rednee the complexity of defining an operational interpretation for may-timing paral­
lelism, &parg,abs,time is a subset of the language of chapter 4 that is enhanced with time.
In comparison, this time-enbaneed language does not allow parallel, localisation, and ab­
straction operators within a sequentia! context. Formally, the universe of parallel time
expressionsis defined by the following syntax in Backus Naur Form:

PE::= SE
PEIIPE
PEfA
PE•B

where SE is a sequentia! time expression, A is a set of global action symbols, and Bis a
set of action symbols.

A three step approach is foliowed to define the operational interpretation for parallel time
expressions:

step 1: In the fust step, a parallel time expression is transformed into a set of triples.
Each triple corresponds to a sequentia! time expression. It contains information
about the behaviour specified by that expression and about the way it infiuences
its fellow sequentia! time expressions in the parallel context.

step 2: In the second step, the behaviour associated with a parallel time expression is for­
malised. This is done by defining relations between sets of triples. These relations
are labelled by symbols denoting interactions and time points.

124 Time Enhancement

step 3: Finally, the labelled transition system on the universe of triples is used to define
a labelled transition system on the universe of parallel time expressions.

Each of these three steps is now discussed in detail. To exemplify them, this discussion is
accompanied by a running example. This example Hlustrates how the labelled transition
system of (U•{u,w} 11 V•{v,w})l{w}•{u,v} can he derived, where U and V are defined
in figure 6.2.

U u[4];U1
Ul w[2];U2
U2 u[5];Ul
a.U = ju,w~

V
Vl
a.V

w[6];V1
v[:I.];V
jv,w~

Figure 6.2: The expressions U, V and their interrelation.

step 1: Set of triples
The operational interpretation defined here is not compositional. To derive the behaviour
associated with a parallel time expression, each of its sequentia! time expressions has to
he addressed individually. Therefore, a unique identifier is associated with each sequentia!
time expression in a parallel time expression.

Moreover, the behaviour associated with sequentia! time expressions and the way these
expressions are related to each other by the localisation and abstraction operator should
he taken into account. Therefore, a mapping is defined that associates with each parallel
time expression a set of triples. Each triple denotes one of the sequentia! time expressions.
The first argument of the triple denotes the behaviour of the expression. The second
argument denotes its alphabet, and the third argument denotes its unique identifier.

To capture the relations between sequentia! time expressions in the parallel context, all
action symbols in a triple are replaced by action triples. The fust argument of an action
triple denotes a global action symbol. The second argument is the set of identifiers of the
sequentia! time expressions in the parallel context with which it may have to synchronise
for this interaction. The third argument denotes whether abstraction from the action triple
is necessary.

Formally, the mapping M from the universe of parallel time expressions to the powerset
of triples is defined by:

Definition 6.3.2 (M-mapping)

1. For a sequentia! expression SE with identifier i, M(SE) denotes the singleton set
containing triple (SE' slabelled transition system, ~·SE, i) in which the action sym­
bols of the form w and w are replaced by < w, e, visible > and < w, {i}, visible >,

6.3 May-timing 125

respectively. e denotes the universe of identifiers that is used for labelling sequentia!
time expressions.

2. M(PElll PE2) = M(PE1) u M(PE2)

3. M (P EI A) is M (P E) in which all action symbols of the form < w, e, visible >
and wE A are replaced by < w,ldent.PE,visible >. Ident.PE denotes thesetof
identifiers of all sequentia! time expressions in P E.

4. M(P E•B) = M(P E) in which all triples of the form < w, scope, visible > such that
scope Ç ldent.P E and w ~ B are replaced by < w, scope, invisible >

(End of Definition)

Notice that action triples use global action symbols and not local action symbols. The
second argument of the action triples contains information about the scope of synchroni­
sation of a global action symbol. If this scope is a singleton, this action triple denotes a
local interaction.

By applying step 1 to the running example, the unique identifiers 1 and 2 are assigned to
expressions U and V, respectively. Moreover, M ((U •{ u, w} 11 V •{ v, w})I { w }•{ u, v}) is
derived. By using rule 1 of the M-mapping, M(U) and M(V) are obtained. By applying
the remaining rules, their interrelations are encoded in the action triples. This results in
the set Ç of two triples (figure 6.3).

< ® < ®

14 16
• 1 <u.e.visible>

•
5 1z

•
1 <w.{1,2},invisible>

•
l <u.e,visible>, <w,{1,2},invisible> ~,
1>

<v.e,visible>
•
Jw,{1,2},invisibl >

•
11
•
l <w,{1,2},invisible>, <v,e,visible>!,
2>

Figure 6.3: The two triples in M((U•{ u, w} 11 V•{ v, w})I { w }•{ u, v}).

We conclude step 1 with some nomenclature. The universe S of sets of sets of triples is
defined by {M(PE) I PEE eparg,abs,time}· For each tripleT in Ç, Ç E 2, the first, second,

126 Time Enhancement

and third argument are denoted by lts.T, çx. Tand id.T, respectively. The tuple in Ç with
as third argument i is denoted by Ç[il• and thesetof all third argumentsof the tuples in Ç
is denoted by ldent.Ç.

step 2: Labelled transition system on powerset of triples
To define the operational interpretation associated with parallel time ex.pressions, may­
timing parallelism makes it necessary to keep track of all sequentia! time expressions that
have deadlocked or that have successfully terminated. Therefore, a labelled transition
system is defined on the pairs (Ç, S) with Ç E S and S Ç Ident.Ç. S denotes thesetof iden­
tifiers of deadlocked or successfully terminated sequentia! time expressions. A sequentia!
time ex.pression whose identifier is in S is called terminated.

The behaviour associated with a parallel time expression P E is captured by that part of
the labelled transition system that starts with (M(P E), 0).

The operational interpretation is defined by:

Definition 6.3.3 (operational interpretation)
For each action triple w and time point t, ~ and denote the smallest binary relations
on pairs (Ç, S), with Ç E 3 and S Ç Ident.Ç, that satisfy:

1. Let I be a set of two or more identifiers and let w be an action triple, such
that w =< x, I,visible> or w =< x, I,invisible>. Furthermore, I' denotes the
non-empty set of identifiers i in I n Ident.Ç for which w E g_. Ç[i]·

If I' n S = 0 and (Vi: iEP: lts.Ç(i] ~ lts.Ç(iJ)
then (Ç,S) ~ (Ç',S)

where Ç' is Ç in which for each i ranging over I', lts.Ç(iJ is replaced by
lts.Ç[w

2. Let I be a singleton containing identifier i (iE Ident.Ç), and let w be an action
triple, such that w =< x, I,visible> or w =< x, I,invisible>. Furthermore,
lts.Ç(iJ ~ lt.§.Ç[;J holds.

If i f/. S
then (Ç, S) ~ (Ç', S)

where Ç' is Ç in which lts.Ç[i] is replaced by lts.Ç[iJ'

3. If (Vi :i E Ident.Ç \ S: lts.Ç(iJ ~ lts.Çf;1)
then (Ç, S) ~ (Ç', S)

where Ç' is Ç in which for each i ranging over Ident.Ç \ S, lts.Ç[•1 is replaced
by lts.Çfw

4. Assume S' ={i I iE Ident.Ç \ S 1\ (W: tEnt+ : (Ç[iJ• 0) ;!-..)}.
If (Ç, S) ~, with w nota time point, Ident.Ç g S, S' =f. 0,

and (Ç, SuS') (Ç', SuS')
then (Ç, S) ~ (Ç', SUS')

6.3 May-timing

5. If (e, S) ..j!!-... with w nota time point, and Ident.{ Ç S
then (Ç, S) ~ (Ç, S)

(End of Definition)

127

These five inference rules can be split into two groups. The first two rules correspond to
the usual understanding of parallelism, as introduced in chapter 4. Rule 1 and rule 2 state
that a visible or invisible interaction may happen as long as all sequential time expressions
that have to participate in it can participate in it.

The other three rules formalise the notion of may-timing parallelism. Rule 3 expresses that
the composite behaviour may be idle forsome period of timet, if sequentia! time expressions
that are not yet disabled agree on this. If the composite behaviour cannot continue with
a visible or invisible interaction, then rule 4 states that the behaviour continues as if all
those sequential time expressions who cannot perfarm a time interaction are terminated.
Rule 5 is added to ensure that the passing of time is not hindered when all sequential time
expressions are disabled.

Applying definition 6.3.3 to the running example results in the state graphof (Ç, 0) (fig­
ure 6.4).

..-------~$

• l <u,E>,visible>

<v,E>,visible>

12
•

• l <w,{l,Z},invisible>
• -E-----,.-1---.

Figure 6.4: The stategraphof (Ç,0).

Rule 3 and 4 have an overlapping application area. Consider a composite behaviour that
at some moment can only continue by performing a time interaction in which all sequentia!
time expressions that can participate are not yet disabled. Then, rule 3 as well as rule 4
ensure this time transition.

Another interesting aspect is the effect that removal of rule 3 causes. Due to the negative
premises in rule 4 and rule 5, visible and non-visible interactions would then get a higher
priority than time interactions. At any moment, all visible and non-visible interactions

128 Time Enhancement

take place first. Only when none of them are left, a time interaction takes place. This is
stronger than the notion of maximal progress [DS92]. The notion of maximal progress only
gives invisible interactions a higher priority than time interactions.

step 3: Labelled transition system on epar9,abs,time

As a final step, the labelled transition system just derived has to be transformed into a
labelled transition systems on parallel time expressions. For this second labelled transition
system, it also is necessary to keep track of the sequentia! time expressions that have
deadlocked or successfully terminated. Therefore, the labelled transition system is defined
on pairs (PE,S), with PE a parallel time expression and S Ç Ident.PE. Hence, the
behaviour of a parallel time expression P E is denoted by the behaviour associated with
pair (PE,0).

Definition 6.3.4 (operational interpretation)
For each action symbol w and time point t, ~ and ~ denote the smallest binary relations
on the universe of pairs (PE,S), PE a parallel time expression and S Ç Ident.PE, that
satisfy:

1. If (M(PE),S) <w,I~ble> (M(PE'),S'), and I Ç Ident.PE

then (PE,S) ~ (PE',S')

2. If (M(PE), S) <w,r~ble> (M(PE'), 8'), and I= 8
then (PE,S) ~ (PE',S')

3. If (M(PE), S) <w,I,~ible> (M(PE'), S') then (PE, S) ~ (PE', S')

4. If (M(PE), S) ~ (M(PE'), S') then (PE, S) ~ (PE', S')

(End of Dejinition)

The rest expression PE' in the definition above is not some random expression that can
be mapped by M onto the appropriate triple. P E' is the parallel expression PE in which
all sequentia! expressions that participated in the interaction are replaced by their rest
expression.

Applying definition 6.3.4 to the running example results in the labelled transition system
of ((U•{u,w} 11 V•{v,w})l{w}•{u,v},0) (figure 6.5).

6.3.3 Semantics

A proper candidate for thesemantics of the universe of pairs (P E, S), with P E a parallel
time expression and S Ç Ident.PE, seems to be an equivalence relation similar to observa­
tion congruence in which time points are considered as visible interactions. More precisely,
the ~ (t a time point) denotes a finite-length sequence of transitions labelled by invisible
interactions or time points. The sum of the time points equals t.

6.3 May-timing 129

.----~®

V

l2
•

l·
• <E-----...1--·

Figure 6.5: The stategraphof ((U•{u,w} 11 V•{w,v})f{w}•{u,v},0).

((W. ~u.w,x~IIX.~w.x,vDnw.x~.~u,v~ .0)
® w u[4];W1 X· w[6];X1
l4 Wl w[2];W2 Xl v[l];X2
• W2 x[2];W3 X2 x[l];X3

lu W3 u[3];W1 X3 w[5);X1

u, w, and x form the alphabet of W
and v, w, and x form the alphabet of X.

1

Figure 6.6: The stategraphof ((W•{u, w, x} 11 X•{v, w,x})f{w,x }•{u, v }, 0).

130 Time Enhancement

Under this equivalence relation, it can be shown that the behaviour ((U•{u, w} 11 V•{v, w})
r {w }•{u, V}, 0) just specified and the behaviour specified by ((W•{u, w, x} 11 X•{v, w, x})
r{ w,x}•{u,v},0) (figure 6.6) are the same.

However, this equivalence relation is nota congruence. The two behaviours differ from each
other when placed in an environment that does not allow interaction v to take place. Then,
((U•{u, w} 11 V•{v, w}}r{w }•{u, v}, 0) speeffies a behaviour consisting of two interactions
u, whereas ((W•{u, w,x} 11 X•{v, w,x})r{w, x}•{u, v}, 0) specifies a behaviour consisting
of only a single interaction u.

This observation has resulted in adding conditions v) and vi) to the definition of time
bisimulation. They compare expressions that cannot perform any local interactions as
if they are placed in an environment that prohibits the occurrence of any of its global
interactions next.

Defi.nition 6.3.5 (time bisimulation)
Consider the universe of pairs (P E, S), with P E a parallel time expression and S C
Ident.PE. A relation R on this universe is called a time bisimulation if and only if for
all pairs ((E, S), (F, T)) E Rand w ranging over action symbols, time points and e, the
following holds:

i) ,q. (E, S) = q. (F, T)
ii) Exit. (E, S) Exit. (F, T)
iii) if (E,S) ~ (E',S') then (3F',T': (F,T) ~ (F',T'): ((E\S1),(F1,T')) ER)
iv) if (F,T) ~ (F1,T1

) then (3E',S': (E,S) ~ (E\81
): ((E1,S'),(F\T1

)) ER)
v) ('<ft : close.(E, S)t is defined

: (3F1,T1
: (F,T) (F',T1

) l\close.(F1,T1)t is defined
: (close.(E,S)t.close.(F',T1)t) E 'R))

vi) (Vt : close.(F, T)t is defined
: (3E', S': (E, S) (E', 8 1

) A close.(E1
, S')t is defined

: (close.(E,S)t,close.(F1,T1)t) ER))

The time dosure function with as arguments E, S, and t, close.(E, S)t denotes the pair
(E, 8'). Here, S' is the union of S and the identifiers from all remaining sequentia! time
expressions in E that cannot perform a time interaction. Moreover, close.(E, S)t is only
then defined if (E, S) can perform global interactions and/or time interactions, and each
of the expressions in (E, 81

) that can participate in a time interaction can perform time
interaction t.

Furthermore, q. (E, S) and Exit. (E, S) denote ,q. E and Exit. E, respectively.
(End of Definition)

Conditions i), ii), iii), and iv) are straightforward. They compare expressionsas if they are
placed in a non-restrictive environment. Conditions v) and vi), on the other hand, deal
with the rest expressions that cannot perform local interactions next. Their behaviour

6.3 131

is compared as if they are embedded in an environment that prohibits the occurrence of
global interactions.

As a semantica, the following congruence is used:

Defi.nition 6.3.6 (time observation congruence)
Two pairs (E, S) and (F, T) are called time observation congruence, denoted by (E, T) ~time
(F, S) if and only if there exists a time bisimulation 'R such that ((E, T), (F, S)) E 'R.

(End of Definition)

On pairs (E, S) of parallel time expressions, no operations are defined. So, any equivalence
relation on (E, S) is by definition a congruence. Nevertheless, the congruence just defined
is strong enough to have the following desirabie properties:

Property 6.3. 7

1. Assume two time observation-congruent pairs (E, S) and (F, S), with E and F se­
quentia! time expressions. They remain time observation-congruent when embedded
in a sequentia! time context 0: (C[E], S) ~time (C[F], S).

2. Assume two observation-congruent pairs (E, S) and (F, T), with E and F parallel
time expressions. Enveloping E and F with the same localisation and abstraction
operators maintains the congruence.

3. Assume three pairs (E, S), (F, T), and (G, U) such that (E, S) ~~me (F, T). Then,
(E 11 G, SU U) and (F 11 G, TU U) are time observation-congruent.

(End of Property)

The proof of this property is presented in appendix A.

To conclude this section, consider again the two expressions ((U•{u, w} 11 V•{w, v })f{w }•
{u,v},0) and ((W•{u,w,x} 11 X•{v,w,x})f{w,x}•{u,v},0), whose state graphs are de­
picted in figure 6.5 and 6.6, respectively.

It is now shown that they arenottime observation-congruent. Consider for each of them,
the rest expression reached after successively waiting a period of 4 time points, performing
interaction u, waiting for two time points, performing the unobservable interaction, and
waiting for one time point.

lf the two expressions are time observation-congruent, these two rest expressions should
form a pair in a time bisimulation after the time closure. Figure 6. 7 shows the state
graphs of the two rest expressions after applying the time dosure function. Clearly, the
rest expressions cannot be in any time bisimulation.

132 Time Enhancement

Figure 6.7: State graphs of two rest expressions after time closure.

6.4 Time extensions

The time enhancement carried out in the previous section bas resulted in a language capable
of specifying a number of time properties of behaviours. Although this language forms
an adequate basis for specifying reai-time properties, it is often not expressive enough
to capture all the time properties of specHic problem domains. Additonal operators or
extensions are needed to enlarge the expressiveness of the language.

Adding operators or extensions to the language should be done judiciously. Proper argu­
ments should be supplied to explain their need. In this section, two new extensions are
presented: time choice and time out. The need for the time choice arose while carrying
out the casestudy in chapter 7. The time out is necessary in any protocol with a time-out
mechanism; i.e. a protocol in which one site starts behaving in a certain way if some event
does not take place within a fixed period of time.

6.4.1 Time choice

Consider the error prone exchange service that was built on top of the alternating bit
protocol (chapter 5). It is difficult to specify in the time-enbaneed language that "One"
is always willing to accept a message at site X if no message is currently exchanged. As
only a single time point can be associated with an action symbol, the only way to specify
this is by an infinite choice. Infinite choices are not allowed in the language and they are
cumhersome to write down. Therefore, a better approach is to introduce a time choice.

The notion of time choice is not new. In [BB91], the time choice is introduced by adding a
new operator to the language. Here, we follow an earlierapproach introduced by [QF87].
By using the customary interval notation, a set of time points are associated with action
symbols. Such an interval of time points is called a time interval. In principle, no restric­
tions are imposed on the type of intervals. Here, it is only shown how time intervals of the
form [tl, t2] are integrated into the language.

As a start, some nomendature is introduced. Föllowing the usual mathematica! notation
for intervals, [tl, t2] denotes the set of time points t such that t1 st s t2. Time points tl

6.4 Time extensions 133

and t2 are called the lower bound and the upper bound of [tl, t2], respectively.

The approach foliowed to define the operational interpretation consists of two parts. The
first part deals with adjusting the Old function such that time intervals are taken into
account. It shows how the upper and lower bound of an interval are reduced by the
duration of an idle period. More precisely, rule i) of the original Old-function is replaced
by:

i.a) Old.(t1, w[t2, t3]; E) w[t2 tl, t3- tl]; E t2 ;::: t1 and t2 =/:. 0
i.b) Old.(tl, w[t2, t3]; E) = w[t2, t3- tl]; E t3;::: t1 and t2 = 0 and t3 =/:. 0

Together with rule 5) of the operational interpretation of sequentia! time expressions, the
adjusted Old function models behaviour with periods of idleness properly.

The secoud part deals with an adjustment of the operational interpretation of sequentia!
time expressions. An interaction can only take place if the lower bound of its interval equals
0. This is formalised by changing rule 1) of the operational interpretation of sequentia!
time expressions into:

1) w[O, tl]; E ~ E

This section is concluded by brioging time choice into practice. For this, the example of
the alternating bit protocol is revisited. A specification is provided of the time-related
properties of the sender, the receiver, and the underlying system. To facilitate the discus­
sion on the specifications, the lower and upper bound of some of the time intervals in the
specification are parameterised. The substitution functions of sender and receiver become

Sl = x[O, oo]; Sla Rl = D1[0, oo]; Rla + D2[0, oo]; R2b
Sla= dl[l, 1]; Slb Ria y[tR..deh tR..del]; Rlb
Slb= A[O, oo]; S2 + dl[ts_,..,P, oo]; S1b Rib = a[t R--ack, tR--ack]; R2
S2 = x[O, oo]; S2a R2 Dl[O, oo]; Rlb + D2[0, oo]; R2a
S2a= d2[1, 1]; S2b R2a = y[tR...del 1 tR...de,]; R2b
S2b= A[O, oo]; SI+ d2[ts_,.ep, oo]; S2b R2b = a[tR_acAn tR...ack]i RI

The substitution function of the underlying system providing the error-prone exchange
service becomes:

c

Cl
C2 =
Ca =

dl[O, oo]; Cl+ dl[O, oo]; C
+ d2[0, oo]; C2 + d2[0, oo]; C
+ a[O, oo]; Ca+ a[O, oo]; C

D1[8me"8:n.,8]; C + discard[tc...diS! tc...dis]; C
D2[8me8l8:nesli C + discard[tc...di" tc...dis]i C
A[8ack 7 8~ckJ; C

The new specifications of sender, receiver, and the underlying system are more precise with
respect to the interaction with the environment. For instance, consider the behaviour of
the sender. When in SI or S2, thesender is always able to receive the next message that

134 Time Enhancement

is to be exchanged. The actual moment is determined by the environment, though. One
time point after a message is received, the sender wants to pass it over to the underlying
system.

A sender repeats passing the same message to the underlying system until an acknowl­
edgement is received. According to the specification of the behaviour of the sender, there
lies a period of at least ts_rep time points between two consecutive repetitions. To avoid
low throughput and waste of bandwidth, the performance model in [Tan88] shows that
the value of ts_rep is largely determined by the round trip delay time. This is the mini­
mal amount of time that it takes for a message to travel from sender to receiver (bme8),

to get processed by the receiver (tR-<iel + tR...ack), and for the acknowledgement to travel
back to the sender (back)· If the round trip delay time is small, performance generally
improves when the sender starts repeating the exchange of a message after this period; i.e.
ts...rep ~ bmes + tR-<iel + tR...ack + back· If the round trip delay time is large, performance
generally improves when the sender starts repeating the exchange before this period has
ended; i.e. ts_rep :::; bmes + tR-<iel + tR...ack +back·

Finally, another relation may exist between the upper and lower bounds of the time inter­
vals in the specification. To guarantee that the discarding of a message always comes after
the moment that the underlying system no Jonger wish todeliver it, it is suflident for b:"e.
to be smaller than tc...dis.

6.4.2 Time out

In specifications of protocols, a time-out mechanism is often used. A time out can best
be characterised as a certain behaviour that interrupts the "normal behaviour" if some
condition does not hold after some period of time. This interrupting behaviour is called
the exception handling routine.

For instance, in the alternating bit protocol of the previous section, the repeated exchange
of a message can be made conditional on the arrival of an acknowledgement. If the ac­
knowledge is not received within a certain time period, a sender interrupts temporarily its
behaviour and passes again the message to the underlying system.

The time-enbaneed language does not support the specification of behaviour with a time
out very well. Usually, when a time out is started "normal behaviour" continues. Therefore,
computations have to be made to determine the precise position in this "normal behaviour"
at which the exception handling routine has to be inserted. This makes operators such as
the "start delay" and "execution delay" [NRSV90] somewhat cumhersome for designers.

In this section, we therefore add a new type of action symbol to sequentia! time expressions
that is better suited to model time outs. This action symbol can have various characteris­
tics. The eventual choice of characteristics depends on the answers given to the following
five questions:

1. How is the syntactical scope of a time-out operator determined?

6.4 Time extensions 135

2. Which kind of conditions can be specified?

3. How are these conditions specified?

4. Should exception handling routines be carried out one after the other, or can they
be carried out in a nested way?

5. When more than one exception handling routine can be performed, which one is then
chosen?

ad 1:
With the time-out operator that is introduced here, an explicit action that marks the
beginning of its scope is associated. The end of its scope is implicitly defined. Either
it ends because the time-based condition evaluates to false, or it ends the moment the
exception handling routine is fully carried out.

ad 2 and 3:
The condition of the time out has the form of an action symbol with which an interval
is associated. For instance, condition w[4, 6} evaluates to true, if interaction w does not
take place in between 4 up to but not including 6 time points from the moment that the
time-out action symbol is performed.

ad 4:
If the condition evaluates to true, the exception handling routine that is associated with
it is carried out as soon as possible. If for some sequentia! time expression an exception
handling routine is carried out, it is not possible to deviate from that behaviour by yet
another exception handling routine.

ad 5:
Exception handling routines can only be carried out after one another in a random order.

The answers to these questions are now integrated into the language by making appropriate
extensions to the syntax and operational interpretation of sequentia! time expressions.

As a start, the universe of sequentia! time expressions with time-out action symbols is
defined by the following syntax in Backus Naur Form:

SE::= w[tl, t2]; SE
to(w[tl, t2}, B)[t3, t4]; SE
SE+SE
SE; SE
x
exit

with w an action symbol, tl and t2 time points such that tl ::::; t2, and X a behaviour
name.

136 Time Enhancement

The action symbol to(w[tl, t2), B) is considered to be a special kind of local action symbol.
It denotes the initialisation of a time out with condition w[tl, t2) and exception handling
routine B. It is assumed that t1 < t2 and -,Exit. B hold. Moreover, condition w[tl, t2)
evaluates to true if tl = t2. lt evaluates to false otherwise.

To give an operational interpretation of the new variant of sequentia! time expressions, it
is necessary to keep track of currently initialised time outs. This is done by associating a
set Timeout.SE of quadruples with each sequentia! time expression SE. Each quadruple
(I, C, B, S) in this set denotes an initialised time-out mechanism. I is an unique identifier
to differentiate between the time outs in the set. Cis a condition of the form w[tl, t2). B
is the expression specifying the exception handling routine. S is a boolean which is true if
and only if the exception handling routine is carried out at the moment.

The intuitiveideais that when to(Cl, Bl) is carried out anew quadruple (Il,Cl, Bl,False)
is added to the set. A quadruple is removed when the interaction associated with its con­
dition is carried out within the specified time interval, or when the condition is evaluated
to true and the exception handling routine B has been fully carried out.

To present the inference system of the language extended with time outs, a new function
needs to be defined that captures the effect that the passing of time has on the conditions
of a time out. This function resembles the previously introduced Old-function. However,
it only works on conditions of the form w[tl, t2):

{

w[tl- t, t2
Age.(t, w[tl, t2)) = w[O, t2- t)

w[O,O)

t) t :5 t1
t :5 t2

otherwise

In addition two new notions are needed over sets T of quadruples associated with sequentia!
time expressions:

Excepth.T = (3I, C, B :: (I, C, B, True) ET)
Nextto.T = (Min tl, t2, w : w[tl, t2) is condition of tuple in T : t2)

The first notion Excepth.T is a predicate. lt expresses that one of the exception handling
routines in T is currently being carried out. The secoud notion, Nextto.T, denotes the
minimal amount of time that has to pass before one of the time-out conditions evaluates
to true. It equals to 0 if an exception handling routine is currently being carried out.

In the definition of the operational interpretation of sequentia! time expressions with time
out, the operational interpretation of sequentia! time expressions with time intervals is
used implicitly. The to action symbols should be considered as local action symbols. To
distinguish between the binary relations of both inference systems, the arrow t---+ is used
for the operational characterisation of sequentia! time expressions extended with time outs,
and the arrow ~ is used for the operational characterisation of sequentia! time expressions
with time intervals.

1. If SE to!E!fl SE' and -.Excepth.Timeout.SE

6.4 Time extensions

then SE toe> SE'

where Timeout.SE' is Timeout.SE to which a quadruple (I, C, B, False)
is added with an identifier I not yet in Timeout.S E.

2. If SE SE1
, x nota time point or to action symbol,

and -,Excepth.Timeout.SE
then SE~ SE1

with Timeout.sg is Timeout.SE in which each quadruple with a con­
dition of the form x[O, t), t =f:. 0, is removed.

3. If SE SE1
, t::; Nextto.Timeout.SE, and -.Excepth.Timeout.SE

then SE SE'

4. If

where Timeout.SE' is obtained out of Timeout.SE by carrying out the
following:

1. Each condition w[tl, t2) is replaced by Age.(t, w[tl, t2)).

2. If afterwards quadruples exist whose condition evaluates to true,
one is randomly selected and its fourth argument is made "True".

B ~l) B 1
, and (I,True,B,True) E Timeout.SE

then SE to(~l) SE'

where sg equals SE with the exception of Timeout.SE'. Timeout.SE'
is Timeout.SE extended with a new quadruple (11, Cl, Bl, False).
Moreover, (I, True, B, True) is removed from Timeout.SE when Exit. B 1

holds. If in that case new quadruples exist whose condition evalu­
ates to true, one is randomly selected and its fourth argument is made
"True". If Exit. B1 does not hold, (I, True, B, True) is replaced by
(I, True, B', True).

5. If B B', x not a time point or to action,
and (I, True, B, True) E Timeout.SE

then SE~ SE'

where SE' equals SE with the exception of Timeout.SE'. Timeout.SE'
is Timeout.SE in which each quadrupleis removed whose condition has
the form x[O,t), t =f:. 0. Moreover, (I,True,B,True) is removed from
Timeout.SE when Exit. B 1 holds. If in that case new quadruples exist
whose condition evaluates to true, one is randomly selected and its fourth
argument is made "True". If Exit.B1 does not hold, (I,True,B,True}
is replaced by (I,True,B',True).

6. If B ___!..._. B', t a time point, and (I,True,B,True} E Timeout.SE
then SE~SE'

137

138 Time Enhancement

where SE' equals SE with the exception of Timeout.SE'. Timeout.SE'
is Timeout.S E in which each quadruple < 11, w[tl, t2), Bl', False >
is replaced by < ll,Age.(t,w[tl,t2}),Bl1,False >. Moreover,
(I, True, B, True) is removed from Timeout.SE when Exit. B' holds. If
in that case new quadruples exist whose condition evaluates to true, one
is randomly selected and its fourth argument is made "True". If Exit. B'
does not hold, (I,True,B,True) is replaced by (I,True,B',True).

To conclude this section, the specification language is used to specify the behaviour of the
sender in the time-enbaneed alternating bit protocol.

Sl = x[O, oo] : Sla
Sla = dl[l, 1]; to(A[O, t), dl[O, 0] : Slaa) : S1b
S1aa= to(A[O, t), d1[0, 0] : Slaa) : Nil
S1b A[O, oo]; S2
S2 = x[O,oo]: S2a
S2a = d2[1, 1]; to(A[O, t), d1[0, 0] : S2aa) : S2b
S2aa= to(A[O,t),d2[0,0]: S2aa): Nil
S2b = A[O, oo]; S1

Notice that the moment a message is handed over to the underlying system is foliowed
directly by the initialisation of a time out. The exception handling routine is just the
repetition of passing the message to the underlying system. If an acknowledgement (action
A) doesnottake place withint time points, the exception handling routine is carried out as
soon as possible. This is then followed by the initialisation of a new time-out mechanism.

6.5 Discussion

In this chapter, the notion time was introduced. Furthermore, an outline of possible ways
to enhance algebrak languages with time was presented. Together, they formed the basis
used to enhance the language of chapter 4 with may-timing. To accommodate for the need
of more expressiveness, the time-enhanced language was also extended with time choice
and time out.

This section is composed of two subsections. As the material in this chapter was primarily
developed from medio 1990 to the first half of 1992, it is compared in the first subsection
to the most recent work available in the literature. The second subsection outlines a new
avenue of research in the field of developing algebrak languages. It discusses the consistent
integration of functional and structural requirements with probabilistic requirements of a
system.

6.5 Discussion 139

6.5.1 Related work

The time-enhanced language of this chapter is related to other algebraic languages found
in the literature. The approach foliowed is by discussing a number of relevant aspects:

Must-timing vs. May-timing:
Must-timing is adhered to by all time-enhanced algebraic languages that have a total­
order semantics. None of them takes may-timing parallelism into account. Reasons for
this are seldom given. The only argument found [Led91] is that it is not useful to specify
systems that have local deadlocks. As actual systems with danger of local deadlocks do
not necessary have danger of an overall deadlock, it is cumhersome to write down their
behaviour in a language with must-timing parallelism. Based upon the experiences gained
in writing this chapter, a more likely reasou is that the search for a parallel operator with
a clean mathematica! definition has tipped the scales in favor of must-timing parallelism.

The problems encountered were mainly caused by the total-order semantics of the language.
Therefore, a more suitable approach may be to repeat this exercise using a partial-order
semantics. An approach in this direction can be found in [BKLL94].

Applying the time-enhanced language to the example of chapter 7 showed that it is desir­
able to have a parallel operator in the sublanguage of sequentia! time expressions. It allows
you to specify behaviour in a constraint-oriented style [VSvSB91]; i.e. separate aspects of
the behaviour are specified by separate sequentia! time expressions, and the way they affect
each other is expressed by linking them together by parallel operators.

In the time extension presented here, there were difficulties with the introduetion of may­
timing parallelism in the context of sequentia! time expressions. The problem is caused
by having no proper way of addressing parallel behaviours that are dynamically created.
Whether this can be remedied is for further research.

As an alternative solution, it is possible to extend sequentia! time expressions with a must­
timing parallel operator. The definition of the operational intuition of the may-timing
parallel operator is defined in terms of labelled transition systems. So, thls new operator
will only cause a few extra inference rules in definition 6.3.1.

The precise number of inference rul es depends on the choice of parallel operator. In chap­
ter 7, the operator 111 that fully interleaves its two operands was sufficient. No synchro­
nisation on interactions takes place. Such an operator only needs two additional rules in
definition 6.3.1. However, it is prudent to take a somewhat more expressive parallel opera­
tor ofthe form lilA· For this operator, the operands have to synchronise on the interactions
in A. If A is the empty set, the operator denotes full interleaving. The additional inference
rules then become:

140 Time Enhancement

6a) if ((E ~ E') and(F ~ F'))
then (E IIIAF ~ E' IIIAF')

6b) if ((E ~ E') and(w fj_ A))
then ((E IIIAF ~ E' IIIAF) and(F IIIAE ~ F IIIAE'))

6c) if ((E ~ E') and(F ~ F') and(w E A))
then ((E I I lAF~ E' I I lAF') and(F IIIAE ~ F' IIIAE'))

lt is left to the interested reader to verify that it is possible to introduce local and abstrac­
tion operators in sequentia! time expressions. If congruence is to be maintained though,
time observation congruence needs to be adjusted to accommodate for r interactions in
sequentia! time expressions. This is not worked out in further detail.

Time out:
As was stated in the beginning of the section on time operators, adding new time operators
to the language should be done judiciously. At the moment, a lot of effort is being spent on
determining the appropriate time operators. The outcome of this will be problem-domain
dependent. Here, the time extensions of this language are related to extensions found in
the literature.

In [NRSV90], two operators were introduced:

• lPJd(Q) denotes a system whose behaviour is specified by P provided that it starts
before a period d of time has passed. If the system remains idle for that period, it
continues behaving as specified by Q at time point d.

• fPld(Q) denotes a system whose behaviour is specified by P till d time points after
start up. At time point d, it continues to behave like Q.

The first operator, called "start delay" is redundant. With the help of the time choice,
the effect of "start delay" can be easily modelled. Namely, by associating with each initial
interaction of P an interval with a upper bound that is smaller than d, and by associating
with each initial interaction of Q an interval with a lower bound greater or equal to d.

The second operator, called "execution delay" is not so easy to model. The problem hereis
that a behaviour is interrupted by another behaviour without returning to that interrupted
behaviour. So, the time-out symbol in its present interpretation is not able to handle this.
However, by answering the questions that were posed in section 6.4.2 differently, it is
relatively easy to change this.

To express time-out behaviour that does not depend on the occurrence of an initial in­
teraction, the time-out action symbol is much easier to use than the "start delay" and
"execution delay" operator. To give an intuitive feeling about this, consider the following
behaviour:

to(w[3, 6), Q)[O] : x[l.] :(w[l]; exit
+
y[l]; (w[l]; R + z[4]; S))

6.5 Discussion

In terms of "start delay" and "execution delay", this behaviour becomes:

x[l] :(w[l]; LNILj 4(Q; exit)
+
y[l]: (w[l];R+ rz[4];Sl 4 (Q;z[4];S)))

141

The second expression looks much more complex. The "start delay" and "execution delay"
operator had to be distributed. It is interesting to notice that they are always used here
with aleft-hand operand that can never participate in the behaviour. They are a sort of
parameterised time interaction.

In genera!, one can say that the specifi.cation of the behaviours of communication systems in
which timers are explicitly set is more naturally carried out with time-out action symbols.
If this is not the case, operators such as "start delay" and "execution delay" are preferred.
Since the expressiveness of the time choice is suflicient, an enhancement of the language
with a "start delay" operatorisnot necessary. The "execution delay" operator, on the
other hand, has no proper counterpart in the language, and it may have to be added in
future.

Priorities:
In [BLT90, Bol92], it is found useful to specify that an interaction has to happen at some
time point and not that it may happen at that time point. Therefore, they introduce the
ASAP As Soon As Possible) operator. It gives interactions a higher priority than the
passing of time. Such an operator is not present in the language presented here, and may
need to be added in the future. If this is the case, the more general priority operator found
in ACP [BW90] is preferred over the ASAP operator.

6.5.2 Integration of functional and probabilistic models

Telecommunication systems of the near future have to adjust themselves on-line to ensure
that they provide services of a certain quality (see also chapter 7). So, such systems have
to take measurements, carry out performance analysis, and make the necessary changes to
resource allocations.

To specify and design such systems, the time-enbaneed language of this chapter can only
be used for capturing the functional and structural requirements. However, a performance
model of the functioning of the system has to be made.

Currently, the worlds of formallanguages and performance are moving towards each other.
To handle the above type of systems, specifi.cation languages that come out of this col­
laboration have to address functional beha.viour as well as probabilistic beha.viour in a
consistent way. To conclude this chapter, four possible approaches to enhance algebraic
languages are listed:

1. Specify functional behaviour and probabilistic aspects separately, and defi.ne a con­
sistency relation that has to hold between the two.

142 Time Enhancement

2. Assign probabilities to the choice operator in the language [Han91, BKLL94].

3. Associate time points with action symbols that are taken from a time distribu­
tion [GHR93, Hil93].

In the next chapter, the time-enbaneed language is applied toa large example.

Chapter 7

Synchronising Multimedia
Information

In this chapter, the language derived in chapter 6 is used to specify and design an informa­
tion exchange service for distributed multimedia applications. The purpose of this exercise
is to evaluate the support that the language and the design framework offer to problem
domains in which time aspects play an important role.

The outline of this chapter is as follows. In the first section, the problem domain of
multimedia is introduced. The second section discusses the desired functionality of an
information exchange service for distributed multimedia applications. In the third section,
that functionality is partly specified. Also, it is shown how the specified functionality can
be provided by a protocol on top of an end_to_end transport service. Finally, this chapter
is concluded with a section that evaluates the suitability of the language and the design
framework for this problem domain.

7.1 Multimedia

In this section, a short introduetion into the problem domain of multimedia is presented.
This is foliowed by an overview of the nomendature used throughout this chapter.

7.1.1 Problem domain

Recent trends in research and commercial markets show a need for distributed multimedia
applications. The distributed parts of these applications exchange information that consists
of images, sound, and alpha-numerical data.

Figure 7.1 illustrates such an application: Joint Editing. This application provides people
the on-line facility to edit different parts of the same document concurrently and to have
a conference about the ongoing work. To support Joint Editing, an underlying service is
needed that exchanges information of different types. For instance, the conference facility

143

144 Synchronising Multimedia Information

of Joint Editing requires the exchange of voice and video. Moreover, to keep all participants
informed about the status of the document, it is also necessary to exchange updated parts
of the document.

Figure 7.1: A distributed multimedia application: Joint Editing.

In general, exchanging different types of information as a single monolithic flow of informa­
tion units puts too much strain on the underlying communication infrastructure. A better
approach is to decompose the information at the sending sites into possibly interrelated
flows, exchange these flows concurrently, and compose the original information out of the
received fl.ows at the sites of the recipients. The underlying communication infrastructure
can now assign resources based on the specHic needs of the various fl.ows, albeit at the
extra cost of rnanaging separate fl.ows.

This chapter evaluates the language of chapter 6 by specifying a service that exchanges
interrelated fl.ows of information between sites without losing these interrelations. This
service is called the MIES (Multimedia Information Exchange Service). Furthermore, a
protocol called MIEP (Multimedia Information Exchange Protocol) is derived that shows
how this service can he provided on top of an end_to_end transport service that does not
maintain interrelations between fl.ows.

7.1.2 Nomendature

In discussions on the concurrent exchange of interrelated flows of information, concepts like
medium, multimedia, and streams play a central role. This section presents the nomenda­
ture used throughout this chapter.

Following the definitions found in the literature [Ste90, Her91], an information type like
audio, voice, animation, graphics, drawings, pictures, or data is called a medium. Multi­
media is a medium that is composed of two or more media and its user can distinguish

7.2 Multimedia information service 145

between these media. Notice that this definition allows multimedia to consist of two or
more identical media.

Information of a certain medium is denoted by medium information, or in the case of mul­
timedia by multimedia information. Furthermore, the capability of a system to exchange
multimedia information is called the multimedia information-exchange service. Television
provides such a service because it exchanges video and sound, and it offers to its users
various channels simultaneously.

As indicated in the previous subsection, multimedia information is not exchanged as one
monolithic flow over a single end_to_end transport connection. More likely, information
of different media in multimedia information is exchanged concurrently with the help of
multiple end_to_end transport connections. The information associated with each of these
media consists of a sequence of monolithic entities called information units. A sequence of
information units is called a stream.

One way of characterising astreamis by the medium that it carries. This is the reason
why in the literature narnes of media are attached to streams (e.g. video stream, audio
stream etc.).

Looking at the wide spectrum of possible media, three main groups can be distinguished:
sound, image, and alpha-numerical. A medium always belongs to at least one of them. For
instance, audio and voice belong to sound. Animation, graphics, drawings, and pictures
belang to image. And, data belongs to alpha-numerical.

Another classification of media is into continuous media and still media. Information
associated with a continuons medium has the form of a stream in which the information
units are interrelated. Information associated with a still medium has the form of a stream
in which the information units are not related.'

An example of continuons medium information is the video stream of a movie. Here, each
information unit corresponds to a video frame. The relations between video frames consist
of two parts. First, there is a total ordering. This ordering fully specifies the order in
which the video frames have to be projected. Second, a bounded delay in time is defined
between the projection of two consecutive video frames.

7.2 Multimedia information exchange service

In this section, a MIES is presented that is suitable for all types of multimedia applications.
No assumptions about a specific application are made. First, the functionality of the
MIES is outlined. Then, an aspect of this functionality is discussed in more detail: the
synchronisation of streams.

146 Synchronising Multimedia Information

7.2.1 Introduetion to MIES

At the basis of a distributed multimedia application there has to be a MIES. In this thesis,
a MIES is built on top of an OSI-like end_to_end transport service [IS084]. The MIES
enhances this transport service with the following characteristics:

1. The transfer of interrelated streams between sites without losing these relations.

2. Future applications will offer their users the possibility to add, remove, and adjust
available services on-line. To support this, a MIES has to:

• handle dynamically the changes in the quality of service (QoS) of existing
streams. For instance, participants in a joint editing session can request on­
line a different quality of the video and audio streams that they want to receive
during the conference;

• handle dynamically the creation and removal of streams. Streams are created
or removed when participants join or leave a joint editing session. It also can be
caused by participante who decide that they no longer want to receive certain
streams. Or, vice versa, it can be caused by participante who decide that they
want to receive more streams.

3. Information exchange does not only take place between two multimedia application
parts. Apart from this one-to-one transfer, the MIES has to ensure one t. many (e.g.
multimedia broadcast), many to one (e.g. a distributed multimedia retrieval service),
and many to many (e.g. distributed multimedia applications that are accessible by
groups) transfer.

4. MIES is application independent; i.e. no assumptions are made about the type of
applications that it supports.

7 .2.2 Synchronisation

In this thesis, the scope of MIES is restricted to the exchange of interrelated streams
between sites without losing these interrelations. The QoS of the exchanged streams and
the number of exchanged streams are fixed.

The interrelations that the MIES has to maintain can be divided into two categories:

1. interrelations that are specific for a certain class of applications;

2. interrelations that are common to all applications.

For instance, the fust type contains those relations that inform an application at a receiver's
site how to integrate the received information streams before offering them to an end­
user. Since the MIES is unbiased towards any application area, it transfers this type of
interrelation transparently.

7.2 Multimedia information exchange service 147

The second type of relations deals with what is called the synchronisation of streams.
Three types of stream synchronisation are distinguished here:

• play-out synchronisation: An information stream offered at the sender site is "played
out" after a fixed delay in a similar way at a receiver's site. An example of play-out
synchronisation is the video stream of the live coverage of a multimedia conference.
The video frames are offered in a certain order and with a certain frequency. After
a finite delay, these frames have to he provided in the same order and with the same
frequency at the sender's site.

• inter-media synchronisation: The relations between several streams is reconstructed
at a receiver's site. Consider again the conference example with the live coverage of
video and audio. Such coverage is only useful if the audio and video streams are in
continuons lip synchronisation; i.e. video does not run ahead of audio and vice versa.

• spatial synchronisation: At all the sites of the receivers, the same information units
are delivered at the same time. For instance, all participants in a multimedia con­
ference receive video and audio information simultaneously on each of the other
participants.

In figure 7.2, two forms of synchronisation are illustrated. The solid lines with arrows
denote the streams as they are offered to and provided by the MIES. The streams labelled
by V denote the video streams and the streams labelled by A denote the audio streams.
The dashed lines depiet the relations between incoming and outgoing streams. The tilde
symbol ("') denotes inter-media and spatial synchronisation. Play-out synchronisation is
not explicitly modelled here, but it exists for the video and audio stream.

V A V A
A

MIES rovider

V A

Figure 7.2: Synchronisation types supported by the MIES.

Until now, it was implicitly assumed that the environment offers synchronised information
streams to the MIES. This is not always the case. Consider a distributed television news
fragment retrieval service, where picture material (video) and the accompanying commen­
tary (voice) are each storedat a different site. Most likely, at the beginning of the retrieval
of a news fragment the streams coming from the storage sites are not synchronised. Us­
ing additional information supplied by the stores, the MIES must then synchronise the
streams.

148 Synchronising Multimedia Information

then has to bring those streams in synchronisation.

This observation raises the question whether this functionality is part of the MIES or
wether it has to he built on top of the MIES. If it is to he part of the MIES, the application
independent nature of MIES dictates that the additional information to synchronise the
streams has to he in a standardised form. This issue will not he further discussed. In this
thesis, streams are offered in synchronisation to the MIES.

7.3 Case study

In this section, the lip synchronisation service (part of the MIES) is specified. Further­
more, a lip synchronisation protocol (part of MIEP) is presented that with an end_to_end
transport service provides this lip synchronisation service.

This section consists of four subsections. The first subsection introduces the specific details
of the lip synchronisation service and the functionality of the infrastructure on top of which
this service has to he built. In the second subsection, the lip synchronisation service is
specified. The end_to_end transport service, provided by the infrastructure, is specified in
the third subsection. Finally, in the last subsection, a protocol is specified that with the
end_to_end transport service provides the lip synchronisation service.

7.3.1 Lip synchronisation

The lip synchronisation service considered here exchanges a synchronised audio and video
stream from one site X to another site Y without losing this synchronisation.

More precisely, assume that at a site X a video and audio stream are offered in synchroni­
sation. The lip synchronisation service ensures that an information unit that has entered
at site X will emerge at site Y after some delay ó. There is no delay jitter; i.e. the delay
does not vary in time; it is fixed. A consequence of this is that the streams emerging at Y
will he in the same synchronisation as the streams that enter at X.

The lip synchronisation service is to he built on top of an existing end_to_end transport
service. This transport service consists of an error-free audio exchange service and an
error-free video exchange service. The audio exchange service has a delay jitter that lies in
between óa- (lower bound) and óa+(upper bound), and the video exchange service has
a delay jitter that lies in between óv- (lower bound) and óv+ (upper bound).

The transport service has to transfer information units between the two sites within delay
ó. Otherwise, the lip synchronisation service cannot he built on top of it. Therefore,
óv+ < ó and óa+ < ó hold.

The problem domain (see figure 7.3) to which the language and design frameworkis applied,
is composed of three parts. First, the lip synchronisation service is specified (see arrow
labelled with (1)). Second, the end_to_end transport service is specified (see arrow labelled

7.3 Case study

xmv ~xma

Sender Receiver

xtv xta ytv ~yta

End-to-End Transport
provider

: (3)

~-~ ___ (?)

Figure 7.3: Specification and design of a lip synchronisation service.

149

with (2)). Finally, a protocol is specified that uses the end_to_end transport service to
provide the lip synchronisation service (see arrow labelled with (3)).

The lip synchronisation protocol consists of a protocol entity called Sender that handles
the multimedia information exchange at site X, and a protocol entity called Receiver that
handles the multimedia information exchange at site Y.

The interactions appearing in the specifications of the following subsections have the fol­
lowing meaning:

• xmv and xma denote the interactions by which a video and audio information unit
respectively are exchanged with the environment at site X

• ymv and yma denote the interactions by which a video and audio information units
respectively are exchanged with the environment at site Y

• xtv and xta denote the interactions by which a video and audio information units
respectively are exchanged with the provider of the end_to_end transport service at
site X.

• ytv and yta denote the interactions by which a video and audio information units
respectively are exchanged with the provider of the end_to_end transport service at
site Y.

7.3.2 MIES

By showing the relations between the information units that enter at site X and leave at
Y, expression MIES•{xmv, xma, ymv, yma} (figure 7.4) specifies the lip synchronisation
part of the MIES. Applying the principle of separation of concerns, the MIES consists
of two expressions in parallel: Video and Audio. Video specifies the exchange of video

150 Synchronising Multimedia Information

information units, and Audio specifies the exchange of audio information units. Due to
their similarity, only expression Video is explained in more detail.

Video contributes to the specification of the MIES by modelling the exchange of video
information units. The expression orders the interactions xmv and ymv. Action xmv
denotes the receiving of a video information unit at site X, and assigns this information
unit to variabie vinf. Action ymv denotes the delivery of a video information unit vin/
at site Y.

The interval [>..zm1" oo] associated with xmv specifies the time interval in which Video is
prepared to that interaction withits environment. To specify that a new information unit
can be accepted while another one is being transferred, a new Video expression is started
in parallel each time an interaction xmv is carried out. When embedded in a nonrestrictive
environment, Video is ready to participate in performing interaction xmv every Àzm11 time
units. However, to ensure that the video information units are delivered in the proper
order, >...,mv > 0 holds.

After performing interaction xmv, Video wishes to deliver the received video information
unit at the recipient site ti time units later. For each parallel expression in a specification
of the language, time ad vances at the same speed. By using the same delay ti in expression
Video and expression Audio, lip synchronisation is implicitly specified.

MIES•{xmv,xma,ymv,yma}, with MIES Video 11 Audio
Video = xmv.vinf?[>...,mv, oo];

(ymv.vinf![li];exit 111 Video)
~.Video= {xmv, ymv}
Àxmv > 0

Audio = xma.ainf?[>...,ma, oo];
(yma.ainf![o];exit 111 Audio)

~·Audio = { xma, yma}
Àxma > 0

Figure 7.4: Specification of MIES.

In this specification, three new features have been added to the language of section 6.3:

V alue passing:
As they do not influence the behaviour, the information units that are exchanged by MIES
do not have to be specified explicitly. The reason for doing it here is twofold. First, it
increases the readability of the specification. Second, if it was not done here, it would have
been done in the specification of the MIEP. MIEP's behaviour is influenced by the time
moments at which information units are offered for exchange at site X.

7.3 Case study 151

To specify value passing during an interaction, an interaction is extended with zero or more
arguments. Syntactically, the arguments are separated from the action symbol by a dot.
Synchronisation takes place between global action symbols with the same action name.
The argument can either contain a variabie foliowed by a question mark (e.g. a?) or a
value foliowed by an exclamation mark (5!). It is assumed that the number of arguments
associated with an interaction is the same, irrespective of the expression in which it occurs.

It is shown by an example how expressions can exchange values during an interaction.
Consider expression x.a?7!; exit 11 x.5!b?; exit where x is a global action symbol. The
moment that interaction x takes place, value 5 is assigned to variabie a and value 7 is
assigned to value b.

In general, value passing takes place at the occurrence of an interaction if and only if for
each argument of that interaction one of the participating expressions has a value associated
with it and each of the other participating expressions have a variabie associated with it.
Expressions are excluded from the language in which two or more parallel expressions have
a value associated with the same argument of an interaction.

Notice that a value argument can be an expression containing variables to which values
have already been assigned.

Time intervals:
To specify that there exists a lower bound for the interarrival time of video and audio
information units, it is necessary to associate time periods with interactions. For instance,
x[4, 7]; y[2, 3]; exit denotes an expression that is willing to participate in x from 4 up to 7
time points after start-up. Furthermore, it is willing to participate in interaction y from 2
up to 3 time points after interaction x has taken place (see also section 6.4).

Interleaving operator:
In the specification, the transfer of each new audio or video information unit is modelled
by a separate expression in parallel. Expressions dealing with the transfer of video should
not synchronise on interactions xmv and ymv, and expressions dealing with audio should
not synchronise on interactions xma and yma. Clearly, the language's parallel operator
would enforce this synchronisation. Therefore, a new parallel operator (lil) is introduced,
called the interteaving operator. It denotes the full interteaving of the behaviours specified
by its two operands, modulo may-timing constraints (see also section 6.5).

7.3.3 End_to_end transport service

ExpressionTRANS (figure 7.5) specifies the end_to_end transport service, as it is provided
by the infrastructure. For this specification, no new features are added to the language.

This specification is similar to the specification of MIES. Apart from a renaming of inter­
actions and variables, the only differences are that:

152 Synchronising Multimedia Information

TRANS, with TRANS = T_Video 11 T _Audio
T _Video = xtv.vinf?vctrl?[..X..w, oo];

(ytv.vinf!vctrl![8;,8t];exit 111 T_Video)
f!.T_video= {xtv,ytv}
Àaotv > 8:- 6;
T _Audio = xta.ainf?actrl?[Àaot"' oo];

(yta.ain f!actrl! [6;, 8~"]; exit lil T _Audio)

!!· T _Audio = { xta, yta}
Àaota > 6;t- 8;

Figure 7.5: Specification of provided end_to_end transport service.

1. With each information unit, it is now possiblc to exchange extra information (e.g.
protocol control information) from site X to site Y. This is reflected in the second
argument of xtv, ytv, xta, and yta.

2. The period of time for video information units to travel from site X to site Y, the
video delay jitter, varies from 6; to 6t.

3. The period of time for audio information units to travel from site X to site Y, the
audio delay jitter, varies from 8;; to ó;t.

4. To guarantee that the ordering of video information units remains unchanged, the
end_to_end transport service only accepts video information units that lie more than
6t - 6; time units apart. Hence, Àaot11 > 6t - 8;.

5. To guarantee that the ordering of audio information units remains unchanged, the
end_to_end transport service accepts only audio information units that lie more than
ó;t - 8;; time units apart. Hence, À~a > ó;t - 6;.

6. No assumption is made about relations between the video delay jitter and the audio
delay jitter. Loss of lip synchronisation is a distinct possibility.

7. No blackbox operation is used, to emphasise that the end_to__end transport service is
not being designed.

7.3.4 MIEP

The MIEP and the end_to_end transport service together have to provide the lip syn­
chronisation service. As explained in the first subsection, the MIEP is composed of two
protocol entities: Sender and Receiver. Sender handles the information units at site X,
and Receiver handles the information units at site Y. This is reflected in the expression

7.3 Case study 153

MIEP (figure 7.6) that specifies the MIEP. MIEP consists oftwo expressionsin parallel.
Namely, an expression Senden{xmv,xma,xtv,xta} that specifies the protocol entity at
site X, and an expression Receiven{ymv, yma, ytv, yta} that specifies the protocol entity
at site Y.

Sender:
Applying the principle of separation of concerns, the functionality of the Sender consists of
two parts. One part handles the video information units, and the other part handles the
audio information units. This is reflected in Sender•{xmv,xma,xtv,xta} as it consîsts of
an expression Sender _Video and an expression Sender _.Audio in parallel.

For reasoos of symmetry, only Sender _Video is discussed in further detaiL Wh en embedded
in a nonrestrictive environment, Sender _Video is willing to receive a video information unit
every time period Àzmv· If a video information unit arrives, the absolute time (i.e. the
time relative to the start-up of the whole) at which xmv takes place is recorded. Then,
Sender _Video is willing to handle over this information unit and its arrival time to the
end_to_end transport service within the minimum of 8 - 8t and Àzmv time points. This is
to ensure that the receiver has zero or more time points left to pass the information to the
environment. Furthermore, a new Sender _Video process is started in parallel to handle
the arrival of a new video information unit.

To guarantee that Senden{xmv,xma,xtv,xta} can pass information units and time in­
formation to TRANS, the upper bound of the time interval of its interactions xtv and xta
should be greater or equal to the minimal interarrival time with which TRANS can receive
video and audio information units and time information. Expressed in terros of a formula:
min(8- 8;t,Azmv) 2:: À.,t., and min(ê ê;i,Azma) 2: Àzta·

Receiver:
As Benden{ xmv, xma, xtv, xta }, the expression Receiver•{ymv, yma, ytv, yta} consists
of two expressionsin parallel. One of them, Receiver _Video, handles the video information
units, and the other, Receiver _Audio, handles the audio information units. For reasons of
symmetry, only Receiver_ Video is further discussed.

Receiver _Video specifies a behaviour that can receive at any moment a video information
unit and the time point at which that information unit was offered for exchange at X.
When this happens, the latter information is used to compute the time that remains
before the information unit can bedelivered to an entity at site Y. Furthermore, a new
Receiver_ Video process is started in parallel to handle the arrival of new video information
units.

MIEP, with MIEP

Sender
S_Video

= Senden{xmv,xma,xtv,xta} 11 Receiver•{ymv,yma,ytv,yta}

S_Video 11 S_.Audio
= xmv.vinf?[A.,mv 1 oo] ;

vtime := current-time[OJ;
((xtv.vinf!vtime![O, min(ê- 8t, Àzmv));exit)

154

lil
S_Video)

g_.S_Video {xmv,xtv}
min(8- 8;f",Àzmv) ~ À:~:tv

Synchronising Multimedia Information

S.Audio xma.ainf?[Àzma• oo] ;
atime := current-time[O];
((xta.ainf!atimei[O,min(8- 8;f",Àzma));exit)
lil
S.Audio)

a.S.Audio {xma,xta}
min(8 8;i,.Xzma) ~ Àzta
Receiver R_Video 11 R.Audio
R_Video ytv.vinf?vtime?[O, oo];

((ymv.vinf![8- (currenuime vtime)];exit)
111
R_Video)

g_.R_Video = {ymv,ytv}
R.Audio = yta.ainf?[O, oo];

((yma.ainf![ó- (currenUime- atime)];exit)
111
R.Audio)

g_. R.Audio {yma, yta}

Figure 7.6: The specification of the MIEP.

For this specification, the language of section 6.3 needed to he enhanced with two features:

Current time:
In order to address the total time that bas passed since the behaviour started operating,
the function current_time is defined. When executed, the function generatea the time point
denoting the length of this period.

Local assignment:
Variables receive values by an assignment of the form (variable) := {expression). They
are considered as local action symbols.

7.4 Evaluation
In this chapter, the problem domain of the specification and design of a part of the MIES
was addressed. First the problem domain was outlined. Then, the language of chapter 6
was used to specify the MIES, the end_to_end transport service, and the MIEP. In this
section, the suitability of the language for this problem domain is discussed.

7.4 Evaluation 155

Unambiguous:
The language has a properly defined syntax and semantics; it has a forma! basis. So, the
specifications of the MIES, the MIEP, and the end_to_end transport service are precise.

Intelligible:
Intelligibility is a subjective notion. What one person finds easy to understand, may be
very hard for another to comprehend. In genera!, designers want to have means at their
disposal that allows them to specify problems as they perceive them. If the problem of the
specification and design of MIES is considered from an action-oriented point of view, the
specifications that are presented in this chapter are quite easy to understand.

Complete:
To specify MIES, MIEP, and the end_to_end transport service as completely as possible,
new features were added to the language of chapter 6. They were value passing, time
intervals, the interteaving operator, currenLtime and local assignment. Only the en­
hancements with the time intervals and the interleaving operator have been worked out in
detaiL

Level of abstraction:
The specifications that are provided bere are at a high level of abstraction. They make no
assumptions about underlying computer and telecommunication technology. The services
and the protocol are specified in a technology-independent way.

Notice that in the specifications of MIES and the end_to_end transport service, the infor­
mation units that are on route to site Y are implicitly modelled as fifo buffers. This could
also be done explicitly.

Correctness:
For the language without time and value passing, verification is feasible. For instance, in
the alternating bit protocol it can be carried out by hand. However, by adding features
to the language such as time and value passing, the complexity of verification increases.
Consequently, it is much more difficult to prove that MIE P and TRANS together satisfy
the service of MIES•{xmv,xma,ymv,yma}.

Flexibility:
A problem domain is not always stable. It may evolve in time. The question now is whether
the specifications that were presented here can evolve accordingly.

In genera!, the answer to this question is "no". It is impossible to conceive all related,
potentially interesting, developments of the problem domain. Often, the conceivable de­
velopments guide the modelling process, thereby producing models that contain niches
which make them open with respecttothese future trends.

The specifications MIE S•{ xmv, xma, ytv, yta}, MIE P, and TRANS are open with re­
spect to a problem domain in which the relative speed of the video• and audio stream
may vary within a certain margin. Only some time intervals need to be changed in the
specifications to accommodate for this variation.

156 Synchronising Multimedia Information

Appendix A

Proofs

Appendix A contains the proofs of properties and theorems found throughout the thesis.
They are gathered here to facilitate the reading. Some of them have already appeared in
a more general form in [Hui88].

A.l Proofs of chapter 4

Property 4.3.5

(1) El~~ E2:::} El ~1 E2

(2) El ~r E2 *El~~ E2

(3) El ~2 E2:::} El ~r E2

(4) El ~k E2 = (Vi: 0 ~i~ k: El ~i E2) For k ~ 0.

Pro of
The correctness of the first three properties can directly he derived from the definitions of
the congruence relations. The interested reader is invited to check them out.

Here, attention is focussed on proving the fourth property by mathematica! induction on
k:

Base: For k = 0 and k = 1 the proof is trivial.

Step: For k = n + 1 and n ~ 1:

El ~n+1 E2
= { definition k-congruence}

~. El = ~. E2 1\ Exit. El = Exit. E2
/\(VEl', t: tE ~.El* 1\ El~ El': (3E2': E2 ~ E2': El' ~n E2'))
A(VE2', t: tE~. E2" 1\ E2 E2': (3El': El~ El': El' ~n E2'))

157

158

{predicate calculus, induction hypothesis}
El ~n+l E2 A a.. El = a.. E2 A El = Exit. E2
A(YE11

, t: tE a.. El* A El El1
: (3E2': E2 ~ E2' :El' ~n-1 E2'))

A(YE21,t: tE a..E2* A E2 E21
: (3El': El~ E11

: El1 ~n-1 E21
))

= { definition k-congruence}
El ~n+l E2 A El ~n E2

= {induction hypothesis}
El ~n+l E2 A {Vi : 0 $ i $ n : El ~i E2)

= {predicate calculus}
(Yi : 0 ::::; i ::::; n + 1 : El ~i E2)

(End of Proof and Property)

Theorem 4.3.8
For every two image-finite expressions Eland E2,

(El ~~ E2) = (El ~h E2)

Proof
To prove this theorem, two lemmata are used.

Proofs

Lemma A.l.l assists in proving (El~~ E2);;;;;} (El ~ÎI E2). More precise, it shows that
thesetof pairs {(El', E2') I (El', E21

) E After. El x After. E2 A El' ~J E2'} is astrong
bisimulation. From El~~ E2, it canthen be deduced that El ~ÎI E2.

Lemma A.1.2 shows that for each pair (El ',E2') in a strong bisimulation El ~~ E2 bolds.
So, El ~ÎI E2 implies El ~~ E2.
(End of Proof and Theorem)

Lemma A.l.l
For two image-finite expressions El and E2, the set f3 of pairs defined by:

f3 ={(EI', E2') I (El', E2') E After. El x After. E2 A El~~ E2}

is a strong bisimulation
Proof
From the definition of ~~. it follows that each pair of expressions in f3 have the same
alpbahets and tbeir respective Exit-predicates evaluate to tbe same boolean value. This
leaves open the proof of conditions iii) and iv) in definition 4.3.6. For reasons of symmetry,
only the proof of iii) is presented bere.

(El, E2) E f3
= { definitions f3 and ~~}

El E After. El A E2 E After. E2 A ('rik : k ~ 0 : El ~k E2)
;;;;;} {predicate calculus, definitions: ~k, After. El and After. E2}

('rik: k ~ 1
: (YEl', t: tE a.. EI* A El~ El': (3E2': E2 ~ E2': El' ~k-l E21

)))

A.l Proofs of 4

{E2 is image-finite, property 4.3.5.(4), remark}
(VEl', t: tE g. El* A El__:__. El1

: (3E2': E2 __:__. E21
: (Vk: k 2:: 1: El' ~k-1 E21

)))

= { definition ~1 }
(VEl', t: tE g. El* A El __:__.El': (3E21

: E2 __:__. E2': El' ~1 E2'))
::::> { definition /3 }

(VEl', t: tE g. El* A El __:__. El1
: (3E2': E2 __:__. E2': (El', E2') E /3))

159

Remark: In general, the universa! quantification cannot be distributed over the existential
quantification. However, due to property 4.3.5.(4) and the fact that E2 is image-finite, it
is allowed here.

(End of Proof and Lemma)

Lemma A.l.2
For each pair (El, E2) of expressionsin astrong bisimulation /3, El ~Ï E2 holds.
Proof
According to the definition of ~ï. it is suflident to show that (El, E2) E /3 ::::> (Vk : k ?:
0: El ~k E2). This is accomplished by the following proof by mathematica! induction on
k:

Base: For k = 0 the proof is trivial.

Step: For k = n + 1 and n ?: 0:

(El, E2) E /3
{ definition strong bisimulation}

g. El = g. E2 A El = Exit. E2

A(VEl',t: tE g.El* A El_:_. El': {3E2': E2 E21
: (El 1,E21

) E /3))
A(VE21,t: tE g.E2* A E2 __:__. E21

: (3El1
: El__:__. El': (El1,E2') E /3))

::::> {induction hypothesis}
g. El = g. E2 A El = Exit. E2
A(VEl', t: tE g. El* A El__:__. El': (3E21

: E2 __:__. E21
: El' ~n E2'))

A(V E2', t : t E g. E2* A E2 __:__. E2' : (3El' : El __:__. El' : El' ~n E2'))
::::> { definition ~k}

El ~n+l E2

(End of Proof and Lemma)

property 4.4.5
~c is a congruence.

Proof
To prove that ~c is a congruence, it first meeds to be shown that it is an equivalence.
This is done with the help of lemma A.1.3, A.1.4, and A.1.5. They are presented after the
remainder of this proof.

160 Proofs

Second, it is necessary to show that when substituting a part of an expression in the
language by an observation~congruent one, the new expression and the original one are
o bservation~congruent.

Clearly, the alphabet and the Exit~predicate of the expression remain unchanged by this
substitution. So conditions i) and ii) hold.

The validity of the remaining two conditions is shown as follows. Assume two observation­
congruent expressions E and F and their tau~bisimulation n. The appropriate tau~
bisimulation associated with every substitution context is:

context:
w;E~cw;F

E+G~cF+G

E;G~c F;G
E 11 G~c F 11 G
EIA~c FfA
E•B ~c F•B

(End of Proof and Property)

Lemma A.1.3
~ is an equivalence relation.

Proof

tau bisimulation:
nu {(w;E,w;F)}
nu {(G1

, G1
) I G1 E After. G}

nu {(G1,G1
) I a E After.G}

{(E1 11 G', F, 11 a) I (E', F 1
) E 'RAG, E After. G}

{(E1 fA,F'IA) I (E1,F1
) E 'R}

{(E'•B, F'•B) I (E', F') En}

To prove that tau observation equivalence is indeed an equivalence relation, it has to be
shown that for allE, F, and Gin Eg,ab8,i:

1. E~E

2. E~F=>F~ E
3. E ~ F 1\ F ~ G => E ~ G

For each of these three properties, the corresponding tau bisimulation is presented below.
lt is left to the interested reader to check whether they are proper tau bisimulations.

ad 1. {(g,E1
) IE' E A.ft.m.:.E}

ad 2. {(F',E1
) 1 (E',F1

) E nEF}
ad 3. {(E',G1

) 1 (3F, :: (E,,F,) E nEF A (F',a) E nFa)}

where nEF and nFG denote the tau bisimulations associated with E ~ F and F ~ G,
respectively.
(End of Proof and Lemma)

Lemma A.1.4

Pro of
To show that E ~c F => E ~ F, it is suflident to prove that

A.1 Proofs of chapter 4 161

1. {3 = {(E',F') I (E',F') E After.E x After.F 1\ E' ~ F'} is a tau bisimulation.

2. (E, F) U {3 is a tau bisimulation.

Proofof 1:
For each pair (E', F') of {3, E' ~ F' ensures that there exists a subset of Aft er. E' x
After.F'. This subset is a tau bisimulation and it contains (E',F'). Since each pair in a
tau bisimulation is tau bisimulation equivalent, this subset has to he contained in {3.

Proof of 2:

To prove that (E, F)u{J is a tau bisimulation, conditions i) upto iv) have to hold for (E, F).
From E ~c F it follows directly that g,_. E = g,_. F, and Exit. E = Exit. F. Moreover, it
guarantees that if E =b. E' there exists aF' such that F =b. F' and (E', F') E {3 (I), and
, vice versa, if F =b. F' there exists a E' such that E =b. E' and and (E', F') E {3 (II).
For reasons of symmetry, only (I) is proven:

Consider E =b. E'. According to the definition of =b., there exists a trace u such that
E ~ E' and u r Act= t. Now consider two cases: u= e and u=/= e. If u= e then E and
E' are the same, and is F the F' that is looked for. If u =/= e, then there has to exist an
expression El, an interaction w, and trace u' such that wu' = u and E ~ El :d4 E'.
From E ~c F, it can now he deduced that there exists an expression Fl and F' such that

F ~ Fl :d4 F' and E' ~ F'. Hence, (E',F') E {JU (E,F).
(End of Proof and Lemma)

Lemma A.1.5
~c is an equivalence relation
Pro of
Since ~ is an equivalence relation and ~c is defined symmetrically, it is easy to show that
~c is refl.exive and symmetrical. A somewhat more complex proof is needed to show that
~c is transitive.

It is easy to derive from E ~c F and F ~c G, that g,_. E = g,_. F = g,_. G and Exit. E =
Exit. F = Exit. G. This leaves us to demonstrate that conditions iii) and iv) hold. For
reasons of symmetry, only the derivation showing iii) is presented here:

E~E'
::::? {E ~c F}

(:JF' : F ~ F' : E' ~ F')
::::? { ~c=?~, F ~c G}

(:JF' : F ~ F' : E' ~ F' 1\ (:JG' : G ~ G' : F' ~ G'))
{predicate calculus}

(:JF', G' : F ~ F' 1\ G ~ G' : E' ~ F' 1\ F' ~ G')
::::? {predicate calculus, ~ is transitive }

(:JG' : G ~ G' : E' ~ G')

(End of Proof and Lemma)

162 Proofs

A.2 Proofs of chapter 6

Property 6.3. 7

1. Assume two time observation-congruent pairs (E, S) and (F, S), with E and F se­
quentia! time expressions. They remain time observation-congruent when embedded
in a sequentia! time context C: (C[E], S) ~~me (C[F], S).

2. Assume two observation-congruent pairs (E, S) and (F, T), with E and F parallel
time expressions. Enveloping E and F with the same localisation and abstraction
operators maintains the congruence.

3. Assume three pairs (E,S), (F,T), and (G,U) such that (E,S) ~~me (F,T). Then,
(E 11 G, SU U) and (F 11 G, TU U) are time observation-congruent.

Proof
It is not the intention to provide detailed proofs for each of these three properties. Much
correspondence exists with previous proofs. Therefore, attention is focussed on the role
that conditions v) and vi) of time bisimulation play in ensuring that time observation
congruence is a congruence with respect to the parallel operator.

Let (E, S), (F, T), and (G, U) be parallel time expressions such that (E, S) ~time (F, T).
The time bisimulation associated with (E, S) ~~me (F, T) is denoted by 'Rl. To show that
(E 11 G, SU U) ~time (F 11 G, TU U) hold, it is suflident to prove that the set 'R,

R = {((E' 11 G', S' U U'), (F1
11 Ql,T' U U')) l((g,S'), (F',T')) E Rl

1\ (G', U') is a rest expression of (G, U) in some context }

is a proper time bisimulation. Conditions i), and ii) are easily verified. For reasons of
symmetry, only conditions iii) and v) are shown to hold.
Condition iii):
Five cases can he distinguished. Namely, w = e, w is an interaction for which (g, S')
does not have to synchronise with (G', U'), w is an interaction for which (G', U') does not
have to synchronise with (E',S'), wis an interaction on which (E',S') and (G',U1

) have
to synchronise, or w is a time point. The first four cases are more or less similar. Below,
the proof of the first one is outlined. It is foliowed by the more complex proof that w is a
time point t.

Case w = e: (E' 11 G', 8 1 U U') ~ (E11 11 G", S" U U") implies that (E1
, S') ~ (E", S")

and (G1
, U1

) ~ (G", U"). From ((E', S'), (F', T')) E Rl, it now follows that there exists
a (F', T 1

) ~ (F", T") and ((E", S"), (F", T")) E Rl. According to the operational inter­
pretation of parallel time expressions and the definition of R, (F' 11 G', T' U U') ~ (F 11

11

G", T" U U") and ((E" 11 G", S" u U"), (F" 11 G", T 11 u U")) ER hold.

Case w = t: (E' 11 Ql, S' U U') (E" 11 G", S" U U") implies that there exists a sequence
of rest-expressions that starts by:

A.2 Proofs of chapter 6 163

(E' 11 G', 8'UU') ~ (Elll Gl, 81UU1) ~ (E2II G2, 82UU2) ~ ... (E" 11 G", 8"UU")

The sum of the time transitions in this sequence has to equal t. It is now sufficient to show
that the first time transition labelled by t1 can be matched by (F' 11 G', T' U U').

Reusing the derivation given in the case of w = ê, there exists a rest expression (Fl 11

Gl,Tl u Ul) such that (F' 11 G',T' u U')~ (Fl 11 Gl,Tl u Ul) and ((El 11 Gl,81 u
Ul), (Flll Gl, Tl u Ul)) En. From (El 11 Gl, 81 u Ul) ~ (E2II G2, 82 u U2) and the
operational interpretation of parallel time-expressions, it can be derived that one of the
following situations always has to hold:

1. (El, 81) ~;i.e. (El, 81) can autonomously decide to performa time action.

2. If (El, 81) ~; i.e. (El, 81) can only continue by performing global interactions for
which it has to synchronise with (Gl, Ul).

If situation 1 holds, time observation congruence guarantees that there exists a rest­
expression (F2, T2) such that (Fl, Tl) á (F2, T2) and ((E2, 82), (F2, T2)) E Rl. If
(Gl, Ul) satisfies (Gl, Ul) ~ (G2, U2), then the operational interpretation ensures that

(Fl 11 Gl, Ul U Tl) á (F2 11 G2, T2 U U2) and (F2 11 G2, T2 U U2) E R. Otherwise,
(Gl, Ul) can only perform interactions for which it has to synchronise with (El, 81). From
the fact that a time interaction is possible, it follows that (El, 81) cannot synchronise on
interactions it has in common with (Gl, Ul) either. Nor can it perform any other interac­
tions for which it doesnothave to synchronise with (Gl, Ul). (El, 81) ~rime (Fl, Tl) then
ensures that (Fl, Tl) and all its rest-expressions reached by a~ transition cannot syn­
chronise on interactions of (Gl, Ul). (Fl, Tl) á (F2, T2) and ((E2, 82), (F2, T2)) E Rl
together with the operation interpretation now guarantee that (Fl 11 Gl, Tl U Ul) á
(F2 11 G2, T2 u U2), and ((E2II G2, 82 u U2), (F2II G2, T2 u U2)) En.

Ifsituation 2 holds, (Elll Gl,81UU1) ~ (E2II G2,82UU2) yields that close.(E1,8l)n
and close.(Gl, Ul)tt have to hold. Using lemma A.2.1, (El, 81) ~rime (Fl, Tl) then implies
that there exists a (Fl', Tl') such that (Fl, Tl)~ (Fl', Tl'), close.(Fl', Tl')tt is defined,
close.(El, 81)n ~rime close.(Fl', Tl')tt, and (El, 81) ~~ime (Fl', Tl'). Lemma A.2.3 and
the definition of n now allows you to deduce that (Fl' 11 Gl, Tl' U Ul) á (F2 11 G2, T2 U
U2) and ((E2II G2, T2 u U2), (F2II G2, T2 u U2)) En.

Condition v):
Assume close.(E' 11 G', 8' U U')t is defined. Furthermore, assume (F' 11 G', T' U U') exists
with ((E', 8'), (F', T')) E Rl. Then, it needs to be proven that there exists a (F" 11

G", T" u U") such that (F' 11 G', T' U U')~ (F" 11 G", T" U U"), close.(F" 11 G", T" U U")t
is defined, and (close.(E' 11 G', 8' U U')t, close.(F" 11 G", T" U U")t) En.

From close.(E' 11 G', 8' U U')t, it follows that close.(E', 8')t and close.(G', U')t are defined.
Since ((E', 8'), (F', T')) E Rl, lemma A.2.1 ensures that there exists a (F", T") such that

164 Proofs

(F',T') d:} (F11 ,T"), close.(F11,T11)t is defined, (close.(E',8')t.close.(F",T")t) E 'Rl, and
((E', 8'), (F11

, T")) E 'Rl. With the help ofthe opera.tional intuition and lemma A.2.2, it is
now easy to deduce that (F' 11 G',T'UU') (F" 11 G',T"uU'), close.(F"II G',T11 UU')t
is defined, a.nd (close.(E' 11 G', 8' U U')h close.(F" 11 G', T" U U')t) E 'R.
(End of Proof and Property)

Lemma A.2.1
Consider two expressions (El, 81) and (Fl, Tl) such that (El, 81) ~~me (Fl, Tl) and
close.(El, 81)t exists. Then, there exists a (Fl', Tl') such tha.t (Fl, Tl) d:} (Fl', Tl'),
close.(Fl', Tl')t exists, close.(El, 8l)t ~~tme close.(Fl', Tl')t, and (El, 81) ~~ime (Fl', Tl').

Pro of:
Condition v) of time bisimulation gua.rantees that there exists a (Fl', Tl') such that
{Fl, Tl) d:} (F11

, Tl1
) holds, close.(F11

, Tl')t is defined, and close.(El, Sl)t ~~ime close.(F
l',Tl')t· Moreover, close.{El,8l)t exists. This implies that (E1,81) cannot perfarm lo­
cal interactions. Hence, according to condition vi) of time bisimulation, (El, 81) ~iime
(Flt, Tl1

) holds.

(End of Proof and Lemma)

Lemma A.2.2
Consider two expressions (E, S) and (G, U) for which there exists a. time point t such that
close.(E, 8)t and close.(G, U)t are defined. Furthermore, if it is assumed tha.t close.(E, 8)t
and close. (G, U)t are represented by respecti vely (E, 8') and (G, U1

), then the following
holds:

• close.(E 11 G, 8 U U)t is defined.

• close.(E 11 G, 8 U U)t = (E 11 G, 8' U U')

Proof:
Since close. (E, 8)t and close. (G, U)t exist, (E, 8) and (G, U) cannot perfarm local inter­
actions. According to the operational interpretation, (E 11 G, 8 U U) can now also not
perfarm local interactions. The definition of close tells us further that every sequentia!
time expression in (E 11 G, 8 U U) whose identifier is not in 8 u U and that can participate
in a time interaction can participate in time interaction t. Hence, close.(E 11 G, 8 U U)t is
defined.

According to the definition of the identifiers not yet in 8 U U of the sequentia! time
expressionsin (E 11 G) that cannot participate in a time interaction are (81

\ 8) U (U'\ U).
By applying the definition of close and set calculus rewriting rules, the following simple
derivation can be made:

close.(E 11 G, 8 U U)t
= { definition close}

A.2 Proofs of chapter 6

(E 11 G, S u U U (S' \ S) u (U'\ U))
= {set calculus, S Ç S', U Ç U'}

(E 11 G, S' u U1
)

(End of Proof and Lemma)

Lemma A.2.3

165

Let (E, S) and (F, T) be two expressions for which close.(E, S)t and close.(F, T)t are de­
fined. If close.(E, S)t ~iime close.(F, T)t holds, and there exists an expression (G, U) such
that

• close. (G, U)t is defi.ned

• (E 11 G, SU U) can perfonn no global interactions next

• (F 11 G, TU U) can perform no global interactions next

Then, there exist expressions (E',S1
), (F1,T1

), and (G1,U') such that

• (E 11 G,SUU) (E1
11 G1

, S' U U')

• (F 11 G,TUU) =6. (F'II G',T'UU1
)

Proof:
Since close.(E, S)t ~time close.(F, T)t, there exists a time bisimulation 'R.l containing
(close.(E, S)t, close.(F, T)t)· Applying the defi.nitions of time bisimulation, operational
interpretation, and close, then show& that expressions (E', S'), (F', T'), and (G', U') exist
such that

• close.(E,S)t 4;. (E1,S')

• close.(F, T)t 4;. (F', T')

• ((E', S'), (F1
, T')) E 'R.l

• close.(G, U)t

Since (E 11 G, SU U) and (F 11 G, TU U) cannot perform local or global interactions next,
the operational interpretation now guarantees that (E 11 G, SU U) =6. (E' 11 G', S' U U')
and (F 11 G, TU U) (F' 11 G', T' U U1

).

(End of Proof and Lemma)

166 Proofs

Appendix B

Equational Rules

The following equationallaws holdunder observation congruence (see definition 4.4.4). For
this congruence, the abstraction operator only abstracts from local action symbols.

The laws are presented without discussion. Omitted are the law to avoid name clashes and
the law by which behaviour names can he substituted for other behaviour names.

The SUM-laws:

1. E + F = F + E (commutativity of +)
2. E + (F + G) = (E + F) + G (associativity of+)
3. E + E = E (absorption of+)

The CONC-laws:

1. E 11 F = F 11 E (commutativity of 11)

2. E 11 (F 11 G) = (E 11 F) 11 G (associativity of 11)

SUM-1
SUM-2
SUM-3

CONC-l
CONC-2

3. Let E have the form :E;~i Uiî Eli+ E}~~ r; E2J{ +exit} and CONC-3
let F have the form E~~r Wkî Flk + E:~f r; F21{ +exit}. The
addition {+exit} is optional. Then,

E 11 F =Eu,~g_.F Uii (Eli 11 F)

+ Ew~~g_.E Wki (E 11 Flk)
+ Eu,=w,eg:.Eng:.Fui;(Eli 11 Flk)
+Ei r(E2J 11 F)
+ E1 r(E 11 F2,)
{+exit} if Exit. E and Exit. F.

The SEQC-laws:

1. exit;E = E
2. w;E;F w;(E;F)
3. (E + F);G = E;G + F;G (distribution over+)
4. (E; F}; G = E; (F; G) (associativity of;)

The LOCAL-laws:

167

SEQC-1
SEQC-2
SEQC-3
SEQC-4

168

For all the four laws the appropriate changes to alphabets are implicitly assumed.

1. exit rA = exit
2. (a) (w;E)fA = w; (EfA)

(b) If w is a global action symbol and not an element of A
then (w; E)fA = w; (EfA).

(c) If w is a global action symbol and an element of A then
(w; E)f A= w; (Ef A).

3. (E + F)IA = EfA + FfA {distribution over+)
4. (E; F)f A= Ef A; Ff A (distribution over;)
5. If (f!.E n f!.F) nA 0 then (E 11 F)fA = EfA 11 FfA

(distribution over 11)
6. EfAfB = EfAUB
7. If f!. En Al= q. En A2 then EfAl = EfA2.

The DELTA-laws:

LOCAL-l
LOCAL-2

LOCAL-3
LOCAL-4
LOCAL-5

LOCAL-6
LOCAL-7

1. Assume for all action symbols w (wE Act,.) and expressions DELTA-l
El' and E2' that El -/!--+El' and E2-/!--+ E2'. Moreover, let
--.Exit. El, --.Exit. E2, and f!. El = q. E2 then El = E2

Rules

An expression El is called a deadlock expression, if --.Exit. El and for all action symbols
w (wE Actr) and expressions El' that El ..f!!-+ El'. In the remaining equationallaws, a
deadlock expression is abbreviated by ti.

2. 6; E =ti
3. ti 11 E = E if f!. ti ç;; f!. E.
4. ti+ E = E

The ABST-laws:

1. exit.B = exit
2. ti•B = 8
3. (a) Ifw EBthen (w;E)•B = w;(E•B).

{b) If w '1. B then (w; E)•B = r; (E•B).
4. (El + E2)•B = El•B + E2•B
5. (El 11 E2)•B = El•B 11 E2•B
6. (El; E2)•B = El•B; E2•B
7. (E•Bl)•B2 = El•(Bl n B2)
8. (E•Bl) fA= (Ef A)•B2 if B2 = Bl \A U Ä.

DELTA-2
DELTA-3
DELTA-4

ABST-l
ABST-2
ABST-3

ABST-4
ABST-5
ABST-6
ABST-7
ABST-8

Equational Rules

The TAU-laws:

1. u;r;E = u;E
2. E+r;E r;E
3. u; (El+ r;E2) +u; El= u; (El+ r;E2)

TAU-1
TAU-2
TAU-3

With the laws just presented it is possible to prove that the following two rules hold:

The EQUA-rules:

169

1. If in the substitution function the equation X = r; X+ E EQUA-1 (or KFAR)
occurs then it can be replaced by X= r; E.

2. lfin the substitution function the equation X= r; (X +E)+F EQUA-2
occurs then it can be replaced by X = r; X + E + F.

Using all these laws and rules, every expression E, where E and its rest expressions are
not b-expressions, can be transformed into an expression E'. This expression E' and all
expressions in the range of p_. E 1 have the following form:

E~~f' Ut i xi + E;~~ r; Yj{ +exit}

lt should be noted that on a syntacticallevel the language does not allow the use of the tau
symbol (r). This symbol can only be obtained indirectly by using the abstraction operator
on local action symbols. Nevertheless, we often use the tau symbol while writing down
expressions. This causes no problems, as it is always possible to replace tau symbols by
local action symbols in the scope of an abstraction operator.

The question whether the equational laws are a complete axiomatisation of observation
congruence is not considered an issue here. The knowledge that any two observation­
congruent expressions can be transformed into each other is only then useful if finding the
appropriate transformation strategy is less complex than applying the definition of abser­
vation congruence. Fora number of expressions the farmer is indeed the case. However,
the methad in [Mil86] indicates that in the general case it is necessary to find first a tau
bismulation showing that the two expressions are tau bisimulation equivalent. This sug­
gests that finding the order in which transformation rules have to applied is at least as
complex as showing that the two expressions are observation-congruent.

Some useful equational rules can be derived from the laws just defined.

Proparty B.0.4

1. (E1•Bl + E2•B2)•B3 = (El•B1 + E2•B2)•(Bl U B2)•B3

2. (E1•Blll E2•B2)•B3 = (El•Blll E2•B2)•(Bl U B2)•B3

3. (E1•Bl; E2•B2)•B3 = (E1•Bl; E2•B2)•(B1 U B2)•B3

Proof
To give an idea of the symbolic manipulation necessary to prove these properties, we give
the proof of the first one. The proof of the other two is analogous.

170

(El•Bl + E2•B2)•B3
= {Bl = Bl n {Bl u B2), B2 B2 n (Bl u B2)}

(El•(Bl n (Bl u B2)) + E2•(B2 n (Bl u B2)))•B3
= {ABST-7 (2*)}

(El•Bl•{Bl U B2) + E2•B2•(Bl U B2))•B3
= {ABST-4}

(El•Bl + E2•B2)•(Bl U B2)•B3

(End of Proof and Property)

Equational Rules

Appendix C

(U n) Fairness Operators

According to section 5.2, implicit fairness is incorporated into the specification language if
it is enhanced with an abstraction operator and a satisfiability relation between expressions
is defined. Furthermore, section 5.3 showed that this implicit fairness makes it difficult for
designers to specify unfair behaviour. It was also indicated that fair behaviour was not
easy to specify.

A solution to these problems is to add new operators to the language which assist designers
in specifying fair and unfair behaviour. In this appendix, it is shown how the specification
language can he extended withafair choice operator and an unfair choice operator. In the
first section, the semantics of the fair choice is defined by mapping expressions with fair
choice operators onto expressions without fair choice operators. The second section defines
the semantics of the unfair choice operator in a similar way. Finally, in the last section a
number of miscellaneous topics are discussed.

C .1 Fair choice

The fair choice operator is denoted by E9 1. Consider expression E with a rest expression
of the form El E9t E2 that is visited repeatedly. Furthermore, assume the environment
does not constrain the behaviour specified by El and E2. Then, the behaviour specified
byE always makes a fair choice between the behaviour specified byEland the behaviour
specified by E2 when it reaches rest expression El E9t E2.

An alternative way to specify the same behaviour is by substituting El' +E2' for ElE91E2,
where El' and E2' are derived from respectively El and E2 as follows. El' specifies the
behaviour of El that performs the interaction ä after each initia! interaction. Similarly, E2'
specifies the behaviour of E2 that performs the interaction ~ after each initial interaction.
According to impHeit fairness, the interactions ä and ~have to take place repeatedly. Since
performing them corresponds to ha ving made a choice between El' or E21

, this choice is
made fairly.

An algorithm is now discussed that transforma an expression with fair choice operators

171

172 (Un)Fairness Operators

into one that does not contain these operators. The basic idea behind the algorithm is to
eneode the fair choice operators by associating with each of its operands the occurrence
of a speciallocal action symbol. Implicit fairness then ensures that a fair choice is made
between the operands. These special local action symbols are called ghost action symbols.

As multiple layers of fair choice operators has to be encoded into one ghost action, a
product operator · is defined on the universe g of ghost action symbols. This operator
satisfies the following properties:

gl· g2 E Q
(gl . g2) . g3 = gl . (g2. g3)

where gl, g2, and g3 are ghost action symbols. In addition, there exists a ghost action
symbol called g; which is the identity of the " · " operator; i.e. for all ghost action symbols
g, g;. g = g.

The algorithm:
Consider an expression E which contains $1 operators. First, associate with each operand
of an El'J operator in E a unique and fresh ghost action symbol. If ghost action symbols
a and f3 are associated with respectively the left-hand operand and right-hand operand
of some $ 1 operator in E, this is denoted by labelling the El'J operator with these ghost
action symbols as follows: Eflt(ä"6)•

Next, a mapping is defined by which an expression E with labelled fair chokes is trans­
formed into an expression in which the labelled fair choices are replaced by normal choices
and ghost action symbols. As a first step, a function Ghost is defined:

i)
ii)
iii)
iv)
v)

vi)
vii)

viii)

Ghost. (g, w; E) = w; g; E g ::/:- g;
Ghost. (g;, w; E} = w; E
Ghost. (g, X)= Ghost. (g, !f: X(X))
Ghost.(g,exit) exit
Ghost. (g, El+ E2) = Ghost. (g, El)+ Ghost. (g, E2)
Ghost. (g, ElEEif(ä,f;)E2) = Ghost. (g ·&,El)+ Ghost. (g · {J, E2)
Ghost. (g,Elll E2) = Ghost. (g,El) 11 Ghost. (g,E2)

. _ { Ghost. (g, El); E2 , if,Exit. El
Ghost. (g, El, E 2)- ~. (g, E2); Ghost. (g, E2) , if Exit. El

ix) Ghost. (g, Ef A) (g, Ghost. E)l A
x) Ghost. (g, E•B) (g, Ghost. E)•B

where El, and E2 are expressions with fair choice operators, A and B a set of action
symbols, and g, &, and [J ghoi>t action symbols.

Table C.l: Ghost function.

This function can be applied in the following way. Let E be an expression containing
fair choice operators. Compute Ghost. (g;, E) and replace in this new expression each

C.l Fair choice 173

Subexpression of the form w; g; El by w; g; Ghost. (gt, El). In addition, each Subexpression
of the form w; El, withEl not of the form g; El, is replaced by w; Ghost. (gi, El). This
results in an expression E 1

• Then, an equation ~. (gi, E) = E 1
, is added to an initially

empty set of equations:

Ghost. (gi, E) = E'

For each of the e:xpressions El, Ghost. (gt, El) is computed and the corresponding equa­
tions are added to the set of equations. This procedure is repeated until no more new equa­
tions can be added the list. Finally, the partsin the equations of the form Ghost. (gil El)
are replaced by fresh behaviour narnes in a consistent way.

To exemplify this strategy, consider an expression Y with the following behaviour equa­
tions:

Y = w; Yl ffit x; exit
Yl = Y ffi 1 y; Yl

Assigning ghost action symbols to the operauts results in:

Y = w; Ylffil(a:.~) x; exit
Yl = Y$f(S,'Y) y; Yl

By applying the outlined strategy repeatedly, the following expressions with ghost action
symbols are obtained.

Z = w; à:; Zl +x; /3; exit
Zl = w; 6 · ó:; Zl + x; 8 · /3; exit + y; .:Y; Zl

Since the ghost action symbols are visible local action symbols, the sets associated with
the abstraction operators in the set of equations are extended with g. It is now easy to
verify that the behaviour name associated with Ghost. (gi, E) and the set of equations
as substitution function tagether form a proper e:xpression. This expression has ~. E as
alphabet and it does not contain fair choice operators.

As semantics for this language, observation congruence can be used. However, this se­
mantica is a little bit too strong because it compares expressions on the nature of their
ghost action symbols. A more suitable alternative is observation congruence modulo the
consistent relabelling of ghost action symbols.

This sectionis concluded by presenting a consistency property whose correctness is based
upon w; r; E ~c w; E.

Property C.l.l
Consider two expressions E and F, where F is obtained from E by applying the above
algorithm on E. Then expression E in which all $ 1 operators are replaced by + operators
is observation-congruent with expression F in which all ghost action symbols are considered
to be r interactions.

(End of Property)

174 (Un)Fairness Operators

C.2 Unfair choice
The unfair choke operator is denoted by Ea.,. Consider some expression E in which there
exists a rest expression of the form El Eau E2 that is visited repeatedly. Assuming the
behaviours specified by El and E2 can always participate, this expresses that each time
the behaviour reaches this rest expression an unfair choke is made between the behaviours
speellied by El and E2.

Now assume E has a behaviour equation of the form Z = El El1u E2 that is visited repeat­
edly. Expression E can then be transformed into an expression without this unfair choke
operator such that the same behaviour is specified:

1. Derive expression El' from expression El by first relabelling all behaviour narnes in
a consistent way. Second, replace in the equation that corresponds to Z El $., E2
the right-hand side by El'.

2. Derive expression E2' from expression E2 by first relabelling all behaviour narnes in
a consistent way. Second, replace in the equation that corresponds to Z El Eau E2
the right-hand side by E2'.

3. Replace equation Z =El El1u E2 in E by Z = El+ El'+ E2 + E2'.

Each time when in this new expression E the rest expression Z El + El' + E2 +
E21 is reached, a choice is made between El, E2, El', and E2'. To show that this
choice is random, it is suflident to point out that implicit fairness cannot determine which
alternative is eventually chosen. Taking the construction of El1 and E21 into account, it
is easy to deduce that:

• An interaction that identifies uniquely the choice made for El also identifies uniquely
the choice made forEl', and vice versa.

• An interaction that identifies uniquely the choice made for E2 also identifies uniquely
the choice made for E2', and vice versa.

• Each interaction identifying uniquely the choice forEl or El' cannot always partk­
ipate. When E2' is chosen this interaction can never be performed.

• Each interaction identifying uniquely the choice for E2 or E21 cannot always partic­
ipate. When El' is chosen this interaction can never be performed.

Hence, the choice between the alternatives is random.

An algorithm is now presented by which expressions with unfair choice operators can be
transformed into expressions with normal choke operators. The algorithm uses the fact
that implicit fairnesscan be circumvented by duplicating the alternatives and then altering
these duplications such that a choice for that alternative remains fixed from the moment it

C.3 Miscellaneous 175

is taken. To accomplish this, new behaviour narnes need to be introduced. To avoid name
clashes, the existing behaviour narnes are labelled. The set of labels is denoted by C aud
it has the following properties:

• For all i, i;:::: 1, O:t and f3i are elements of C.

• For each two labels ll aud 12, ll ·12 denotes also a label.

• For all i aud j, i ;:::: 1 aud j 2:: 1, O:t < O:t+l, f3t < f3t+1, and O:t < f3J·

• The ordering on labels of the form O:t and labels f3J is extended to a lexicographical
ordering between labels built with the help of the " · " operator.

The algorithm:
Consider an expression E. Add to the substitution function of E the equation X = E,
with X a fresh behaviour name. Next, label all the behaviour narnes in E's equations by
a:1 and assign value 1 to some dummy variabie n. Now repeat the following until no more
unfair choice operators are left:

• Select au equation of the form Z = El ffiu E2 for which there does not exist an­
other equation with au unfair ehoice operator in its right-hand side and whose label
associated with the left-hand side behaviour name is larger.

• lucrement n by 1.

• Replace the equation by Z = El+ El o.,. + E2 + E2.8", where El o." is expression El in
which the labels of all behaviour narnes are now preeerled by a:n. For each behaviour
name reachable from El exeept Z, a copy of the corresponding equation is made and
the labels in this equations arA preeerled by a:n. This new equation is then added
to the substitution function of E. When behaviour name Z is reachable from El,
the behaviour equation za... = El o." is also added to the substitution function of E.
E2.8" is similarly defined.

By mathematica! iudnetion on the number of unfair choice operators, it eau be proven that
this algorithm stops for expressions and their equations that eontain a finite number of
unfair choice operators. It is for this proof that the lexicographical ordering of labels was
introdueed.

C.3 Miscellaneous

The two mappings presented in the previous two sections do not diseuss how expressions
with fair and unfair choice operators eau be trausformed into au expression that does not
contain them. A possible salution would be to apply them one after auother. The effect of
the order in which they are applied or the necessity of a new mapping remains for further

176 (Un)Fairness Operators

study. However, there is a slight bias towards applying the algorithm to remove fair choice
operators first foliowed by the algorithm to remove unfair choice operators. The reason
for this is that if the unfair choice operators are first removed, "duplication" of fair choice
operators may take place which are then labelled differently. Notice, that then an extra rule
needs to he added to table C.l: Ghost. (g, El El1u E2) = Ghost. (g, El) El1u Ghost. (g, E2).

From introducing a fair choice operator, it is a small step to introducing a fair parallel
operator. Clearly, the mapping transforming these expressions into expressions without
fair parallel operators is similar to the mapping defined for fair choice operators. The only
difference is that the same label should he associated with the same operand during its
whole existence. Probably, this difference will make the definition of a fair parallel operator
more diffi.cult than the definition of a fair choice operator. No research effort was put into
this.

References

[ASU86]

[Bae93]

[BB9l]

[BBBC94]

[BBK87]

[BK85]

[BK88]

[BKLL94]

[BL94]

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley series in computer science. Addison-Wesley, Amster­
dam, 1986.

J.C.M. Baeten. The Total Order Assumption. In Purushothaman S. and
Zwarico A., editors, NAPAW 92: proceedings of the first North American
process algebra workshop, pages 231-240. Springer-Verlag, 1993.

J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Pormal Aspects
in Computing, 3(2):142-188, 1991.

H. Bowman, G.S. Blair, L. Blair, and A.G. Chetwynd. Time versus abstraction
in formal description. In R.L. Tenney, P.D. Amer, and M.U. Üyar, editors,
Pormal description techniques VI: PORTE'93, volume 22 of IPIP transactions.
C: communication systems, pages 469-484, Amsterdam, 1994. North-Holland.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency ofKoomen's
Fair Abstraction Rule. Theoretical Computer Science, 51(1/2):129-176, 1987.

J.A. Bergstra and J.W. Klop. Algebra of communicating processes with ab­
straction. Theoretical Computer Science, 37:77-121, 1985.

J.A. Bergstra and J.W. Klop. A complete inference system for regular systems
with silent moves. In F .R. Drake and J .K. Truss, editors, Logic colloquium
'86, volume 124 of Studies in logic and the foundations of mathematica, pages
21-81, Amsterdam, 1988. North-Holland.

E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. Performance Anal­
ysis and True Concurrency Semantics. In T. Rus and C. Rattray, editors,
Theories and Experience for Real-Time System Development; In AMAST Se­
ries in Computing, chapter 12, pages 313-342. World-Scientific, 1994.

T. Bolognesi and F. Lucidi. A Timed Full LOTOS with Time/ Action Tree
Semantics. In T. Rus and C. Rattray, editors, Theories and Experience for
Real- Time System Development; In AMAST Series in Computing, chapter 8,
pages 205-238. World-Scientific, 1994.

177

178 References

[BLT90] T. Bolognesi, F. Lucidi, and S. Trigila. From Timed PetriNets to Timed 10-
TOS. InL. Logrippo, L. Probert, and H. Ural, editors, Protocol Specification,
Testing and Verification X, pages 377-406, Amsterdam, 1990. North-Holland.

[Boe81] B.W. Boehm. Software Engineering Economics. Prentice-Hall advances in
computing science and technology series. Prentice-Hall, Englewood Cliffs,
1981.

[Boe88] B.W. Boehm. A Spiral Model of Software Development and Enhancement.
IEEE computers, pages 61-72, May 1988.

[Bol92] T. Bolognesi. LOTOS-like Process Algebra with Urgent or Timed Interac­
tions. In K. Parker and G. Rose, editors, Formal description techniques IV:
FORTE'91, volume 2 of IFIP transactions. C: communication systems, pages
255-270, Amsterdam, 1992. North-Holland.

[Bri88] H. Brinksma. On the Design of Extended LOTOS; A specification language
for open distributed systems. PhD thesis, Twente University of Technology,
Enschede, 1988.

[BSW68] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A noteon reliable full­
duplex transmission over half-duplex links. CACM, 12 (5), May 1968.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cam­
bridge, 1990.

[CGL85] C-H. Chow, M. Gouda, and S. Lam. A discipline for constructing multi­
phase communication protocols. A CM- Transactions on Computer Systems,
3(4):315-343, 1985.

[Che92] L. Chen. An interleaving model for real time systems. In A. Nerode and
M. Taitslin, editors, Second International Symposium on Logic Foundation of
Computer Science, Tver'92, volume 620 of Lecture Notes in Computer Science,
pages 81-92, Berlin, 1992. Springer-Verlag.

[CS85] G. Costa and C. Stirling. Weak and Strong Fairness in CCS. Technica! Re­
port TR CSR-16-85, Edinburgh University, Department of computer science,
Edinburgh, Januari 1985.

[CY90] P. Coad and E. Yourdan. Object Oriented Analysis. Yourdan press, Prentice­
Hall, Englewood Cliffs, 1990.

[DF88] E. W. Dijkstra and W .H.J. Feijen. A method of programming. Addison-Wesley,
Wokingham, 1988.

References 179

[DH87] E. Dubois and J. Hagelstein. Reasoning on Forma! Requirements: A Lift Con­
trol System. In Software Specification and Design: 4th International Work­
shop, pages 161-168. IEEE Computer Society Press, 1987.

[DHL+86] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, A. Rifaut, and F. Williams.
The ERAE Model: A casestudy. In T.W. Olle, H.G. Sol, and A.A. Verrijn­
Stuart, editors, Information Systems Design Methodologies: Improving the
Practice, pages 87-105, Amsterdam, 1986. North-Holland.

[DS92] J. Davies and S. Schneider. A brief history of timed CSP. Technica! Mono­
graph PRG-96, University of Oxford, Computing Laboratory. Programming
Research Group, Oxford, 1992.

[DS94] J. Davies and S. Schneider. Real Time CSP. InT. Rus and C. Rattray, edi­
tors, Theories and Experience for Real- Time System Development; In AMAST
Series in Computing, chapter 2, pages 31-82. World-Scientific, 1994.

[Fei90] L.G.M. Feijs. A formalization of design methods: a .À-calculus approach to
system design with an application to te:ct editing. PhD thesis, Eindhoven
University of Technology, Eindhoven, 1990.

[Fra86] N. Francez. Fairness. Texts and monographs in computer science. Springer­
Verlag, 1986.

[GHR93] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and Distributed
System Design: The Integration of Functional Specification and Performance
Analysis Using Stochastic Process Algebras. InL. Donatiello and R. Nelson,
editors, Performance Evaluation of Computer and Communication Systems,
volume 729 of Lecture Notes in Computer Science, Berlin, 1993. Springer­
Verlag.

[Gla90] R.J. van Glabbeek. Comparitive concurrency semantics and refinement of
actions. PhD thesis, Free University Amsterdam, Amsterdam, 1990.

[Gla93] R.J. van Glabbeek. The linear time- branching time spectrum II; the seman­
tics of sequentia! systems with silent moves. In E. Best, editor, CONCUR'93:
4th international conference on concurrency theory, volume 715 of Lecture
Notes in Computer Science, pages 66-81, Berlin, 1993. Springer-Verlag.

[Gor83] M.J.C. Gordon. LCF-LSM. Technica! Report 41, University of Cambridge,
Computer Laboratory, Cambridge, 1983.

[Gro90] J.F. Groote. Specification and verification ofreal time systems in ACP. Tech­
nica! Report CS-R9015, CWI, Amsterdam, 1990.

180 References

[Han91] H.A. Hansson. Time and Probability in Pormal Design of Distributed Sys­
tems. PhD thesis, Department of Computer Science, Uppsala University,
Kista, 1991.

[HBR84] C.A.R. Hoare, S. Brookes, and W. Roscoe. A theory of Communicating Se­
quential Processes. Joumal of the ACM, 31:560-599, 1984.

[Her91.] R.G. Herrtwich. Time capsules: An abstraction for access to continuons-media
data. Joumal of Real- Time Systems, 3(3):355-376, 1991.

[Hil93] J. Hillston. PEPA: Performance Enhanced Process Algebra. Teehoical Re­
port CSR-24-93, University of Edinburgh, Department of Computer Science,
Edinburgh, March 1993.

[Hoa78] C.A.R. Hoare. Communicating Sequentia! Processes. Communications of the
ACM, 21(8):666-677, 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall interna­
tional series in computer science. Prentice-Hall, Englewood Cliffs, 1985.

[HP87] D.J. Hatley and I.A. Pirbhai. Strategies for Real-time System Specification.
Dorset House Publishing Co., New York, 1987.

[HR91J M. Hennessy and T. Regan. A Temporal process algebra. In J. Que­
mada, J. Mafias, and E. Vazquez, editors, Forma! description techniques 111:
FORTE'90, Amsterdam, 1991. North-Holland.

[Hui88] R.J. Huis in 't Veld. A Formalism to Describe Concurrent Non-Deterministic
Systems and an Application of it by Analysing Systems for Danger of Dead­
lock. Research Report 88-E-200, Eindhoven University of Technology, Faculty
of Electdeal Engineering, Eindhoven, August 1988.

[Hui90] R.J. Huis in 't Veld. The role oflanguages in the design-trajectory. In D. Fay
and L. Mezzalira, editors, Euromicro 90, Hardware and Software in System
Engineering, pages 177-183, Amsterdam, 1990. North-Holland.

[Hui91] R.J. Huis in 't Veld. Formalizing the design-trajectory of sequential machines.
In A. Nufiez and D. Fay, editors, EUROMICRO 91, Hardware and Software
Design Automation, pages 531-538, Amsterdam, 1991. North-Holland.

[IS084] ISO. Open Systems Interconnection Basic Reference Model. Teehoical Report
ISO/IS7498, ISO/IEC, Geneva, 1984.

[IS088] ISO. Information processing systems- Open systems interconnection- LOTOS
- A fotmal description technique based on the temporal ordering of observa­
tional behaviour. Teehoical Report ISO 8807, ISO/IEC, Geneva, 1988.

Raferences

[IS092]

[Jac86]

[Koo79]

[Koo84]

[Koo85]

[Koo91]

[Kue87]

[Lar87]

[Led91]

[LL94]

[LSU90]

[LT88]

181

ISO. Information Processing Systems - Open Systems Interconnection
Formal Description of ISO 8072 in LOTOS. Technica} Report TR 10023,
ISO /IEC, Geneva, July 1992.

M.A. Jackson. System Development. Prentice-Hall international series in
computer science. Prentice-Hall, Englewood Cliffs, 1986.

C.J. Koomen. Reducing model complexity in system design. In Proceedings
IEEE International Conference on Cybernetics and Society, pages 830-833,
1979.

C.J. Koomen. Thinking of Software Design: A Meta Activity. In Proceedings
IEEE Workshop on the Software Process, 1984.

C.J. Koomen. Algebrak specification and verification of communication pro­
tocols. Science of Computer Progmmming, 5(1):1-36, February 1985.

C.J. Koomen. The design of communicating systems; A system engineering
approach, volume 147 of Kluwer international series in engineering and com­
puter science. Kluwer Academie Publishers, Boston, 1991.

A.T. Kündig. A Noteon the Meaning of Embedded Systems. In A. Kündig,
R.E. Bührer, and J. Dähler, editors, Embedded systems: new approaches to
their formal description and design: an advanced course, volume 284 of Lecture
Notes in Computer Science, pages 1-5, Berlin, 1987. Springer-Verlag.

K.G. Larsen. Context-dependent bisimulation between processes. PhD thesis,
Aalborg University Centrum, Aalborg, 1987.

G. Leduc. An Upward Compatible Timed Extension to LOTOS. In K. Parker
and G. Rose, editors, Formal description techniques IV: FORTE'91, volume 2
of IFIP tmnsactions. C: communication systems, pages 223-238, Amsterdam,
1991. North-Holland.

L. Léonard and G. Leduc. An enhanced version of Timed LOTOS and its
application to a Case Study. In R.L. Tenney, P.D. Amer, and M.U. Üyar,
editors, Formal description techniques VI: FORTE'99, volume 22 of IFIP
transactions. C: communication systems, pages 485-500, Amsterdam, 1994.
North-Holland.

R. Lipsett, C.F. Schaefer, and C. Ussery. VHDL: hardware description and
design. Kluwer Academie Press, 2nd edition, 1990.

K.G. Larsen and B. Thomsen. A Modal Process Logic. In 3rd Annual Sympo­
sium on Logic in Computer Science, pages 203-210, Washington, 1988. IEEE
Computer Society Press.

182 References

[Mil80] R. Milner. A calcalus of communication systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1980.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Joumal of Theoretical
Computer Science, 25:267-310, 1983.

[Mil85a] G.J. Milne. CIRCAL and the representation of communication, concur­
rency, and time. A CM- Transactions on Programming Languages and Systems,
7(2):27Q-298, April 1985.

[Mil85b] R. Milner. Lectures on a calculus for communicating systems. In M. Broy,
editor, Control Flow and Data Flow: Concepts of Distributed Programming.
Proceedings of NATO International Summer School of Marktoberdorf 1984,
volume 14 of NATO AS! series. Ser. F: computer and systems sciences, Berlin,
1985. Springer-Verlag.

[Mil86] R. Milner. A complete axiomatisation for observation congruence of finite­
state behaviours. Research Report ECS-LFCS-86-8, Edinburgh University,
Computer science department, Edinburgh, August 1986.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall international
series in computer science. Prentice-Hall, New York, 1989.

[MP89] Z. Manna and A. Pnueli. The Anchored Version of the Temporal Fra.mework.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time,
Branching Time, and Partial Order in Logies and Models for Concurrency,
volume 354 of Lecture Notes in Computer Science, pages 201-284. Springer­
Verlag, 1989.

[MT92] F. Moller and C. Tofts. Behavioural abstraction in TCCS. In W. Kuich,
editor, 19th ICALP, International Conference on Automata, Languages, and
Programming, volume 623 of Lecture Notes in Computer Science, pages 559-
570. Springer-Verlag, 1992.

[NHT94] A. Nakata, T. Higashino, and K. Taniguchi. LOTOS enhancement to specify
time constraints among non adjacent actions using 1st-order logic. In R.L.
Tenney, P.D. Amer, and M.U. Üyar, editors, Formal description techniques
VI: FORTE'93, volume 22 of IFIP transactions. C: communication systems,
pages 453-468, Amsterdam, 1994. North-Holland.

[NRSV90] X. Nicollin, J-L. Richier, J. Sifakis, and J. Voiron. ATP: an Algebra for Timed
Processes. In M. Broy and C.B. Jones, editors, Programming Concepts and
Methods, pages 415-442, Amsterdam, 1990. North-Holland.

[Old91] E.R. Olderog. Nets, Terms and Formulas: three views of concurrent pro­
cesses and their relationship, volume 23 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, 1991.

References 183

[Par72] D.L. Parnas. On criteria to be used in decomposing systems into modules.
Communications of the ACM, 15{12):1053-1058, 1972.

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Theoretical computer science: 5th Cl-conference, volume 104 of Lecture
Notes in Computer Science, pages 167-183, Berlin, 1981. Springer-Verlag.

[Par89] J. Parrow. Submodule Construction as Equation Solving in CCS. Theoretical
Computer Science, 68:175-202, 1989.

[Plo83] G. Plotkin. An operational semantics for CSP. In D. Bj0rner, editor, Pormal
description of programming concepts - IJ: proceedings of the third !PIP working
conference, Amsterdam, 1983. North-Holland.

[Pnu85] A. Pnueli. Linear and Branching Structures in the Semantics and Logies of
Reactive Systems. In W. Brauer, editor, 12th ICALP, International Con­
ference on Automata, Languages, and Programming, volume 194 of Lecture
Notes in Computer Science, pages 195-220. Springer-Verlag, 1985.

[Pnu86] A. Pnueli. Specification and Development of Reactive Systems. lnformation
Processing, pages 845-858, 1986.

[Pra86] Praxis. The ELLA language reference manual, 1986.

[Pra9l] K.V.S. Prasad. A Calculus of Braadcasting Systems. In S. Abramsky and
T. Maibaum, editors, Proceedings of the International Joint Conference on
Theory and Practice of Software Development, volume 493 of Lecture Notes
in Computer Science, pages 338-358. Springer-Verlag, 1991.

[PPvL93] M. de Prycker, R. Peschi, and T. van Landegem. B-ISDN and the OSI Protocol
Reference Model. IEEE Network, March 1993.

[QAdF93] J. Quemada, A. Azcorra, and A. de Frutos. TIC A Timed Calculus. Pormal
Aspects of Computing, 5:224-252, 1993.

[QF87] J. Quemada and A. Fernandez. Introduetion of quantitative relative timing
into LOTOS. InH. Rudin and C.W. West, editors, Protocol specification, test­
ing, and verification VII, pages 105-121, Amsterdam, 1987. North-Holland.

[QMdFL94] J. Quemada, C. Miguel, D. de Frutos, and L. Llana. A Timed LOTOS Ex­
tension. In T. Rus and C. Rattray, editors, Theories and Experience for
Real- Time System Development; In A MAST Series in Computing, chapter 9,
pages 239-264. World-Scientific, 1994.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object­
Oriented Modelling and Design. Prentice-Hall, Englewood Cliffs, 1991.

184

[Rom85]

[Sch94]

[SDL92]

[Shi89]

[Ste90]

[Tan88]

References

G.-C. Roman. A taxonomy of current issues in requirements .engineering.
IEEE Computer, 18(4):14-24, 1985.

S. Schneider. An operational semantics for Timed CSP. Technica! report,
Oxford University, Computer Laboratories, 1994. To appear in Information
& Computation.

CCITT recommendations z.lOO - CCITT specification and description lan­
guage (sdl) and annex A to the recommendation. Technica! Report blue hook
recommendation z.lOO, CCITT COM X-R 17-E, March 1992.

M.W. Shields. Implicit system specification and the interface equation. The
Computer Joumal, 32(5):399-412, 1989.

R. Steinmetz. Synchronization properties in multimedia systems. Joumal on
Selected Areasin Communications, 8(3):401-4412, April1990.

A.S. Tanenbaum. Computer Networks. Prentice-Hall software series. Prentice­
Hall, Englewood Cliffs, 2nd edition, 1988.

[VSvSB91] C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification
styles in distributed systems design and verification. Theoretical Computer
Science, 89:179-206, 1991.

[Wan90]

[WM85]

[Zwi88]

Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editors, CONCUR 90: theories of concurrency: unification and
extension, volume 458 of Lecture Notes in Computer Science, pages 502-520,
Berlin, 1990. Springer-Verlag.

P.T. Ward and S.J. Mellor. Structured Development for Real-Time Systems.
Yourdon Press computing series. Yourdon Press, London, 1985.

J. Zwiers. Compositionality, Concurrency and Partial Correcteness. PhD
thesis, Eindhoven University of Technology, Eindhoven, 1988.

Index

abstraction operator, 49
action, 19
action prefix operator, 45
action symbols, 44, 50
action-oriented, 19
actionset fairness, 90
actual design trajectory, 13
alphabet, 52
analysis phase, 5
architecture phase, 5
asynchronous concurrency, 20
asynchronous interaction, 20

behaviour name, 47
behaviour names, 50
branching time, 19

choice operator, 46
communication systems, 35
complete time domain, 116
congruence, 41, 56
continuons media, 145
correctness by construction, 13

definition languages, 18
dense time domain, 116
description, 18
description languages, 18
design framework, 15
design goal, 93
design trajectory, 13
development life-cycle, 6
discrete time domain, 116
distribution transparent, 5

embedded systems, 5
equivalence relation, 56

185

ERAE, 10
exception handling routine, 134
explicit description, 21
expression, 17

failure congruence, 59
failures, 58
fair choice operator, 171
fair parallel operator, 176
feasibility phase, 5
functional requirements, 7

ghost action symbols, 172
global action symbols, 47, 50
guarded expression, 53
guardedness, 4 7

ideal design trajectory, 13
image-finite, 62
implementation, 22
implicit description, 21
incomplete time domain, 116
information processing systems, 3
information units, 145
integrated specification, 36
inter-media synchronisation, 147
interteaving operator, 151

language, 17
local action symbols, 47, 50
localisation operator, 48
lower bound, 133

maintenance phase, 5
maximal progress, 128
may-timing, 120
medium, 144

186

medium information, 145
meets, 95
multimedia, 144
multimedia information, 145
multimedia information-exchange service,

145
must-timing, 120

nonfunctional requirements, 7
normal form, 82
notation, 43

object-oriented analysis, 11
observables, 63
overall service, 3

partial-order semantics, 20
participate, 90
play-out synchronisation, 147
process, 50
proper association, 94
protocol entity, 38
protocol stack, 39

reactive system, 4
ready set, 59
real time systems, 4
realisation phase, 5
relative-timing using time interactions, 119
relative-timing using time points, 118
rest expression, 55
root unwinding, 87
round trip delay time, 134

sequentia! composition operator, 45
sequentia! time expression, 121
service, 2
spatial synchronisation, 147
specification, 18
specification language, 18
spiral model, 6
state, 19
state space, 19
state-oriented, 19

step-wise refinement, 12
still media, 145
stream, 145
strong bisimulation, 62
structure expression, 93
Structured Analysis, 9
substitution function, 51
synchronous concurrency, 20
synchronous interaction, 20
syntax, 17
system, 2
system environment protocol, 37

tau bisimulation, 65
tau bisimulation equivalence, 65
tau observation congruence, 65
tau symbol, 64
terminated, 126
testing phase, 5
time, 114
time bisimulation, 130
time choice, 132
time dosure function, 130
time determinacy, 123
time domain, 114
time interval, 132
time mapping, 114

INDEX

time observation congruence, 131
total-order semantica, 20
trace, vii
trace congruence, 57
transformational system, 4

unfair choke operator, 171
upper bound, 133
urgent actions, 123

verification, 13

waterfall model, 6

Summary

In recent years, we have seen advances in hardware and software that make systems provid­
ing complex services technically feasible. Due to the complexity of these services, however,
it is impossible to build these systems in an ad hoc way. Therefore, developers of services
and systems need methods that assist them in requirements capturing, design, realisation,
maintenance, and testing. These methods have to provide a clear insight in the relations
between the customers of services, the developers of systems, the type of services and
systems, and the languages used to specify services and systems.

In this thesis, attention is focussed on problems encountered when developing a design
framework of methods and languages for the design of communication systems. By design
we mean the process of detailing a specification of a system such that it can he realised in
hardware or software. By communication systems we mean all those systems in which the
information exchange between geographically distributed systems is a major development
feature.

As a first step, chapter 1 gives an introduetion into system development. lt defines the
notions of system and service. Moreover, it argues that it is necessary to first determine
the service that a system has to provide. Then, it should he determined how the system
provides that service. As systems can he composed of subsystems, this processis repeated
for each of these subsystems. Furthermore, the support that Structured Analysis, ERAE,
and Object-Oriented Analysis offers to this process is discussed.

Chapter 2 takes a look at the role that languages play in the design process. A distinction
is made between definition languages, description languages, and specification languages.
Definition languages are languages used to explain unambiguously to designers the meaning
and use of methods in the design process. Description languages are general purpose
languages that can he used to describe a wide variety of systems and services at various
levels of abstraction. To make precise how these languages are used in a specific problem
domain, mappings are defined from the concepts and guidelines (of the methods developed
for that problem domain) onto these languages. From a language point of view, these
mappings constrain the way these description languages are used. Description languages
constrained in this way are called specification languages.

The methods, description languages, and the mappings between methods and description
languages together form a framework. Chapter 2 also presents a formal model of the
characteristics of such a design framework that are problem-domain independent. This

187

188 Summary

model is defined in terms of specification languages and relations between expressions of
specification languages. Moreover, it is used to derive some techniques supporting the
development of a design framework.

In Chapter 3, a design method for the special class of communication systems is proposed.
It serves as a vehicle for deriving constraints on the development of a design framework
for these systems. These constraints are used to provide a rationale for determining the
suitable features of description and specification languages.

Chapter 4 defines a specification language that satisfies the constraints and features out­
lined in chapter 2 and 3. The language is algebraic, and it is composed of the most suitable
operators found in ACP, CCS, CSP, and LOTOS. In addition, the language has some spe­
cial features of which three are mentioned here. First, the language is developed from
the point of view of a designer. As designers do not want to specify deadlock behaviour
explicitly, this implies for instanee that the language does not contain a special symbol
to denote deadlock behaviour. Second, the operators in the language are either used for
specification purposes or abstraction purposes. In this way, a designer can make a clear
distinction between what part of a specification is fixed and what part has to be detailed
further. Third, designers can use the language to specify the behaviour as well as the
structure of systems under design. Chapter 4 is concluded with a design framework that
is obtained by defining a satisfiability relation between the expressionsof the language.

Chapter 5 is dedicated to evaluating the language and the framework developed in chap­
ter 4. As it turns out, the language provides support to specify two party exchange,
multiparty exchange, duration of actions, and unreliable behaviour. Whether this support
is sufficient remains for further research.

The chapter also shows that embedding the language in a design framework changes the
semantica of the choice operator and thereby also the semantica of the parallel operator.
Outside the design framework, no assumptions can be made about the fairness of choice
between alternative behaviours. Within the design framework, this choice is made much
more fairly. The semantica of the language should be the same within and outside a design
framework. Here, we solved this problem by strengthening the semantica of the language
using a predicate.

Another aspect of this increased fairness of the choice operator is that unfair and fair
behaviour is diflicult to specify. Appendix C provides a solution for this by defining a fair
and unfair choice operator in termsof the usual choice operator.

Furthermore, a shortcoming in the design framework was noticed in chapter 5. A specifi­
cation can contain too much detail, as it specifies the design at some moment in the design
process as well as the goal of that design process. To remedy this, we redefined a specifica­
tion by a pair. The first argument of this pair is an expression of the language denoting the
current status of the design. The second argument is an expression denoting the structure
that the first argument eventually has to satisfy (the goal). Also, corresponding changes
have been made to the satisfiability relation.

189

Finally, it is noticed in Chapter 5 that the verification of the correctness of a detailing step
is not always feasihle. For actual prohlems, the costs and amount of resources necessary
are usually too high. Partial verification is then a possihle alternative. We exemplified
this hy defining a predicate over the language stating when a specification descrihes a
hehaviour that has danger of deadlock. Furthermore, we give a technique hy which larger
specifications that have no danger of deadlock can he huilt out of smaller ones.

Chapter 6 enhances the language of chapter 4 with time in a quantitative way. It deviates
from the standard approach hy working out a may-timing extension, as opposed to a must­
timing extension in which the composite hehaviour deadlocks if one of the component
hehaviours deadlocks. The extended language is used in chapter 7 to specify a multimedia
interwerking service and protocol.

190 Summary

Samenvatting

In de afgelopen jaren hebben hardware en software een zodanige voortgang gemaakt dat
het nu technisch haalbaar is om systemen te ontwikkelen die complexe diensten leveren.
Door de complexiteit van deze diensten is het echter niet mogelijk om deze systemen ad hoc
te ontwikkelen. Ontwikkelaars van systemen hebben methoden nodig die ondersteuning
bieden bij de probleem analyse, het ontwerp, de realisatie, het onderhoud en het testen.
Deze methoden moeten een duidelijk verband leggen tussen de klanten die de diensten
gebruiken, de ontwikkelaars van systemen, het soort dienst en systeem en de talen voor
het specificeren van diensten en systemen.

Dit proefschrift behandelt de problemen die ontstaan bij het ontwikkelen van een raamwerk
van methoden en technieken voor het ontwerpen van communicatiesystemen. Met com­
municatiesystemen wordt bedoeld al die systemen waarbij de uitwisseling van informatie
tussen geografisch gedistribueerde deelsystemen een belangrijk aspect is.

Allereerst wordt in hoofdstuk 1 een introductie gegeven in het ontwikkelen van systemen.
De concepten dienst en systeem worden gedefinieerd. Daarnaast wordt beargumenteerd
dat eerst de dienst van een systeem moet worden bepaald en dan pas de wijze waarop een
systeem die dienst gaat leveren. Omdat systemen veelal zijn opgebouwd uit deelsystemen,
wordt deze aanpak herhaald voor ieder van de deelsystemen. Verder wordt in dit hoofd­
stuk de ondersteuning van de technieken Structured Analysis, ERAE, en Object-Oriented
Analysis geëvalueerd met betrekking tot deze aanpak.

In hoofdstuk 2 wordt gekeken naar de rol die talen spelen in het ontwerpproces. Drie
talen worden onderscheiden: definitietalen, beschrijvingstalen en specificatietalen. Defi­
nitietalen zijn talen waarmee de betekenis van concepten en richtlijnen in methoden op
eenduidige wijze wordt vastgelegd. Beschrijvingstalen zijn universele talen die gebruikt
worden voor het beschrijven van diensten en systemen op verschillende niveaus van ab­
stractie. Om een beschrijvingstaal geschikt te maken voor een specifiek toepassingsgebied
wordt er een afbeelding gedefinieerd van de concepten en richtlijnen van een methode naar
die beschrijvingstaaL Deze afbeelding legt vast hoe een beschrijvingstaal gebruikt moet
worden in dat toepassingsgebied. Beschrijvingstalen die op deze manier beperkt zijn heten
specificatietalen.

De methoden, de beschrijvingstalen en de afbeeldingen tussen beide vormen een raamwerk
voor het ontwerpen van systemen. In hoofdstuk 2 worden in een formeel model de pro­
bleem onafhankelijke eigenschappen van dat ontwerpraamwerk gepresenteerd. Dit model

191

192 Samenvatting

is gedefinieerd in termen van specificatietalen en satisfiability relaties tussen de expressies
van specificatietalen. Daarnaast worden er in dit hoofdstuk nog technieken afgeleid die het
ontwikkelen van ontwerpraamwerken ondersteunen.

In hoofdstuk 3 wordt een ontwerpmethode voor communicatiesystemen geponeerd. Hier­
mee worden de probleem atb.ankelijke eigenschappen van beschrijvings- en specificatietalen
afgeleid.

In hoofdstuk 4 wordt een specificatietaal gedefinieerd die voldoet aan de voorwaarden en
eigenschappen besproken in hoofdstuk 2 en 3. Het is een algebraïsche taal opgebouwd uit de
meest geschikte operatoren in ACP, CCS, CSP, en LOTOS. Daarnaast heeft de taal nog een
aantal specifieke eigenschappen waarvan we er drie hier zullen noemen. Ten eerste, de taal
is ontwikkeld vanuit de optiek van de ontwerper. Omdat ontwerpers deadlock gedrag niet
expliciet willen specificeren, bevat de taal geen specifiek symbool voor deadlock gedrag.
Ten tweede, elke operator in de taal wordt ofwel gebruikt voor specificatie doeleinden
ofwel voor abstractie doeleinden. Op deze manier kan een ontwerper in een specificatie
onderscheid maken tussen wat ontworpen is en wat nog verder ontworpen moet worden.
Hoofdstuk 4 wordt besloten met een ontwerpraamwerk verkregen door de definitie van een
satisfiability relatie tussen expressies van de taal.

Hoofdstuk 5 evalueert de specificatietaal en het ontwerpraamwerk van het vorige hoofd­
stuk. De taal biedt ondersteuning voor de specificatie van two-party exchange, multiparty
exchange, duur van acties en onbetrouwbaar gedrag. Of deze ondersteuning voldoende is
moet verder onderzocht worden.

Verder blijkt dat het ontwerpraamwerk de semantiek van de choice operator verandert en
daarmee ook de semantiek van de parallel operator. Wanneer de taal geen onderdeel is van
het ontwerpraamwerk kan er geen uitspraak worden gedaan over de fairness van de keuze
tussen gedragingen die gescheiden zijn door de choice operator. Indien de taal onderdeel
is van het ontwerpraamwerk, blijkt dat deze keuze eerlijker is. De semantiek van de taal
moet onatb.ankelijk zijn van het ontwerpraamwerk waarvan het uitmaakt. Daarom hebben
we het fairness probleem opgelost door de semantiek van de taal te versterken met een
predikaat.

Een ander effect van de toegenomen fairness van de taal is dat fair en unfair gedrag lastiger
te specificeren is. Appendix C lost dit probleem op door een fair en unfair choice te
definiëren in termen van de gewone choice operator.

In hoofdstuk 5 is nog een andere tekortkoming van het ontwerpraamwerk besproken. Een
specificatie kan teveel details bevatten doordat het zowel het ontwerp op een bepaald mo­
ment in het ontwerpproces als het doel van dat ontwerpproces specificeert. Dit is opgelost
door een specificatie als een paar te definiëren. Het eerste argument van het paar is een
specificatie van het ontwerp op een bepaald moment in het ontwerpproces. Het tweede ar­
gument legt het doel van het ontwerpproces vast. De satisfiability relatie is overeenkomstig
gewijzigd.

Als laatste wordt in hoofdstuk 5 opgemerkt dat het aantonen van de correctheid van een
detailleringsstap niet altijd haalbaar is. Meestal zijn de kosten te hoog en zijn er teveel

193

resources nodig. Gedeeltelijke verificatie is dan een mogelijk alternatief. We hebben dit aan
de hand van een voorbeeld duidelijk gemaakt. Een predikaat is gedefinieerd over de taal.
Het formaliseert wanneer een gedrag kans op deadlock heeft. Voor de verificatie van de
afwezigheid van deadlock is een techniek ontwikkeld waarmee specificaties van deadlockvrij
gedrag kunnen worden samengesteld uit soortgelijke deelspecificaties.

Hoofdstuk 6 breidt de taal van hoofdstuk 4 uit met tijd. Er wordt hierbij afgeweken van de
standaardaanpak door te kiezen voor een may-timing uitbreiding. Deze taal is vervolgens
gebruikt in hoofdstuk 7 om multimedia interworking diensten en protocollen te specificeren.

194 Samenvatting

Curriculum Vitae

- 26 september 1964. Geboren te Sliedrecht.

- 1976-1982. Ongedeeld VWO, Rijksscholengemeenschap Breda.

- 1982. Aanvang studie informatica aan de Technische Universiteit Eindhoven.

- maart 1987. Afgestudeerd bij prof.dr. M. Rem met als onderwerp het afleiden van
compositionele bewijstechnieken voor Trace Theorie.

- maart 1987 tot september 1991. Toegevoegd onderzoeker bij de vakgroep Digitale In­
formatiesystemen, faculteit der Elektrotechniek, Technische Universiteit Eindhoven.
Het onderzoek dat ik hier deed heeft geresulteerd in dit proefschrift.

- vanaf april1992. Medewerker Onderzoek bij de discipline groep Applicatie Protocol­
len van de Tele-Informatics and Open Systems group (TIOS), faculteit der Informa­
tica, Universiteit Twente. Mijn onderzoek richt zich op het specificeren, ontwerpen,
en prototypen van multimedia interworking systemen. In dit verband

• heb ik van april 1992 tot januari 1993 geparticipeerd in het RACE
2 project CASSIOPE1A. CASSIOPEIA richt zich op het bouwen van
een conceptuele service en systeem architectuur voor Integrated Service
Engineering.

• maak ik deel uit van NNI SC21 WG 7, en draag zo bij aan de interna­
tionale standaardisatie van RM-ODP.

195

STELLINGEN

behorende bij het proefschrift

Developing a Design Framework
for

Communication Systems

van

Robert Johan Huis in 't Veld

Eindhoven, 6 december 1994

1. De interactie tussen een ontwerper en zijn ontwerp wordt het best uitgebeeld door
de elkaar tekenende handen van M.C. Escher.

2. In zijn algemeenheid is het een idee-fixe dat een enkele specificatietaal het hele ont­
wikkeltraject van systemen kan ondersteunen.

3. Bij het ontwikkelen van een specificatietaal moeten het toepassingsgebied en de wen­
sen van ontwerpers zoveel mogelijk centraal staan. Het is dan ook niet zinvol a priori
te stellen dat een specificatietaal altijd een partial order semantiek moet hebben.

4. Het strekt tot aanbeveling om in een specificatietaal een operator te hebben waar­
mee een ontwerper kan aangeven welke onderdelen van een specificatie voldoende
gedetailleerd zijn en welke onderdelen nog verder gedetailleerd moeten worden.

5. Een satisfiability relatie tussen twee niveaus (lagen) van abstractie moet de semantiek
van specificaties op ieder van deze niveaus (lagen) respecteren.[Axioma 2.3.8 van dit
proefschrift]

6. De huidige ontwikkelingen op het gebied van multimedia maken onderdeel uit van
een "technology driven" innovatie.

7. In verschillende disciplines van de wetenschap worden vaak dezelfde termen gebruikt
voor verschillende zaken. Een gemeenschappelijk begrippenkader is dan ook noodza­
kelijk alvorens er sprake kan zijn van zinvolle inter- en intradisciplinaire samenwer­
king. In sommige RACE projecten is deze wijsheid jammer genoeg nog niet doorge­
drongen.

8. Het Referentie Model ODP (RM-ODP) heeft tot doel om een raamwerk van concepten
te definiëren waarmee ontwerpmethoden voor systemen kunnen worden gedefinieerd.
Het veelal gehoorde verwijt dat het model deze ontwerpmethoden niet bevat is dan
ook onterecht.

9. Goede informatici en elektrotechnici programmeren zo efficiënt mogelijk. De recente
tendens op het gebied van desktop publishing software suggereert dat de bedrijven
die deze pakketen op de markt brengen een verkeerd personeelsbeleid voeren.

10. Een infrastructuur die als parkeerzone, doorgaande weg en voetpad gebruikt wordt
leidt tot feature interacties.

