

Neural networks : analog VLSI implementation and learning
algorithms
Citation for published version (APA):
Withagen, H. C. A. M. (1997). Neural networks : analog VLSI implementation and learning algorithms. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR494433

DOI:
10.6100/IR494433

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR494433
https://doi.org/10.6100/IR494433
https://research.tue.nl/en/publications/60884842-0b96-4eb4-b4c8-7c96b11638e7

Neural Networks:

Analog VLSI Implementation

and Lear11ing Algorithms

Cover design by Jan van Boesschoten

Printed by: Haveka b.v., Alblasserdam, The Netherlands

Neural Networks:

Analog VLSI Implementation

and Learning Algorithms

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische U niversiteit Eindhoven, op gezag van

de Rector Magnificus, prof. dr. M. Rem,
voor een commissie aangewezen door het College

van Dekanen in het openbaar te verdedigen op
dinsdag 17 juni 1997 om 16.00 uur

door

Hendrik Carolus Arthur Maria Withagen

geboren te Bergen op Zoom

Dit proefschrift is goedgekeurd door de promotoren:

prof. dr. ir. W.M.G. van Bokhoven
en
prof. dr . ir . R.H.J.M. Otten

Copromotor:
dr. ir. J.A. Hegt

@Copyright 1997 H.C.A.M. Withagen
All rights reserved . No part of this publication may be reproduced, stored in
a retrieval system , or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission from the copyright owner.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Withagen, Hendrik C.A.M.

Neural networks: analog VLSI implementation and learning algorithms I by
Hendrik C.A.M. Withagen. -Eindhoven: Technische Universiteit
Eindhoven, 1997.
Proefschrift. - ISBN 90-386-0350-9
NUGI 852
Trefw.: analoge geintegreerde schakelingen I neurale netwerken I
lerende machines I kunstmatige intelligentie ; algoritmen.
Subject headings: analogue processing circuits I neural chips I
learning (artificial intelligence).

Summary

Neural networks are capable of solving complex tasks (e.g. speech and hand
writing recognition) based on the presentation of a large number of examples.
During learning, parameters in the network are adjusted according to a learn
ing rule.

In this thesis, a number of aspects related to the electronic realization of
neural networks will be discussed. In analogy with the human brain , an ana
log implementation of neural networks will be pursued using simple, small,
possibly non-ideal building blocks; neurons and synapses.

In order to be able to build large networks, neurons and synapses are
implemented on separate chips. Several chips can be combined to realize
arbitrary feed-forward network topologies. Flexibility in network topology
introduces the need for scaling of quantities in a network. An optimal scaling
will be determined through a statistical analysis of the influence of errors in
a network. In most cases, these errors are caused by quantization of synapse
weight values.

Two implementation approaches will be considered. A time-sampled,
pulse stream implementation where analog values are encoded using binary
signals and an analog time-continuous implementation. In the latter case, a
complete test system consisting of 2 synapse and 2 neuron chips organized
in a 2-layer feed-forward network has been realized . The propagation delay
per layer is in the order of lJ.Ls independent of the number of synapses and
neurons per layer. A general comparison between the two approaches shows
that both computation schemes have comparable performance for low power
consumption values. Furthermore, general high-level models for both syn
apses and neurons will be introduced.

Several learning algorithms to be used in conjunction with the realized

1

2

chips will be considered. From a point of view of flexibility, a global, digital
implementation of a learning algorithm has preference. This approach can
best be combined with digital storage of synapse weight values and a periodic
refresh to the analog feed-forward neural network implementation.

Samenvatting

Neurale netwerken zijn in staat oplossingen te bieden voor complexe proble
men (bijv. spraak- en handschrift-herkenning) op basis van grate aantallen
aangeboden correcte voorbeelden. Tijdens het leerproces worden parameters
in het netwerk bijgesteld volgens een leerregel.

In dit proefschrift worden verschillende aspecten beschreven die be
trekking hebben op de elektronische implementatie van neurale netwerken.
Analoog aan de menselijke hersenen is gekozen voor een analoge elektroni
sche implementatie waarbij gebruik wordt gemaakt van eenvoudige, kleine
en mogelijk niet-ideale elementen; neuronen en synapsen.

Grote netwerken worden gerealiseerd door chips te combineren waarop
neuronen en synapsen apart zijn ge"implementeerd. Iedere gewenste feed
forward netwerk architectuur kan op deze manier worden gerealiseerd.
Deze ftexibiliteit in architectuur introduceert de noodzaak van schaling van
grootheden in een netwerk. Een optimale vorm van schaling wordt bepaald
aan de hand van een statistische analyse van de invloed van fouten in een
netwerk. Deze fouten worden meestal veroorzaakt door kwantisatie van
gewichtswaarden in synapsen.

Twee implementatie methoden zullen worden bekeken. Een tijd-discrete,
puis methode waarbij analoge waarden worden gerepresenteerd door mid
del van repeterende binaire signalen en een analoge, tijd-continue methode.
Een vergelijking tussen de twee methoden toont aan dat beide vergelijkbare
prestaties leveren. In het geval van de analoge, tijd-continue implementatie
is een compleet systeem gerealiseerd. Dit systeem bestaat uit 2 synapse en
2 neuron chips die gezamenlijk een 2-laags feed-forward netwerk realiseren.
Onafhankelijk van het aantal synapsen of neuronen in een laag, is de vertra
ging per laag in het gerealiseerde netwerk ongeveer lfLS. Van de gerealiseerde
synapsen en neuronen zijn algemene modellen opgesteld die gebruikt kunnen

3

4

worden tijdens simulaties van te realiseren netwerken.

Een aantal leer-algoritmen die in combinatie met de gerealiseerde chips
kunnen worden gebruikt, zijn bestudeerd. Uit het oogpunt van flexibiliteit
kan het best gekozen worden voor een globale, digitale implementatie van
een leerregel. Gecombineerd met de digitale opslag van gewichtswaarden en
periodieke verversing naar het analoge feed-forward netwerk, Ievert dit het
beste resultaat.

Contents

1 Introduction
1.1 Definitions .

1.1.1 Neuron ..
1.1.2 Networks

1.2 Learning
1.2.1 Gradient Descent
1.2.2 Learning Rate . .
1.2.3 Global or Local Minima
1.2.4 Back-Propagation ..
1.2.5 Weight Perturbation
1.2.6 Stochastic Learning .
1.2.7 Update Strategies . .

2 Systems
2.1 Flexibility
2.2 Scaling

2.2 .1 Network Model
2.2.2 Solution

2.2.3 Hardware Implementation Considerations
2.2.4 Conclusion

2.3 Signals
2.4 Chip Floor-plan ...

2.4.1 Synapse Chip
2.4.2 Neuron Chip

2.5 Weight Storage ...
2.5.1 Digital Storage
2.5.2 Non-volatile Storage
2.5.3 Capacitive Storage

5

9
10
10
12

13
15
15
16
17
18
19
22

25

25
27
28
31
33
34

34
35
36
38
39
39
40
41

6 CONTENTS

3 Implementation 43

4

5

3.1 Pulse Stream Approach 43
3.1.1 Overview of Pulse Stream Modulations . . . 44
3.1.2 Coherent Pulse Width Modulation (CPWM) 46
3.1.3 Pulse Stream Arithmetic 48
3.1.4 Performance Analysis of CPWM Systems. . 50
3.1.5 Performance Comparison of CPWM and Analog Mul-

ti pliers 55
3.1.6 Building Blocks . . . 59

3.2 Analog Implementation . . . 70
3.2.1 Existing realizations 71
3.2.2 Synapse 72
3.2.3 Neuron 80
3.2.4 Complete System 85

3.3 Modeling 87
3.3.1 Synapse Model 88
3.3.2 Neuron Model . 90

Learning 93
93
94
95
95
97
98
99

4.1 Back-Propagation .
4.1.1 Implementation . .
4.1.2 Offset in forward path
4.1.3 Offset in backward path
4.1.4 Offset cancellation
4.1.5 Conclusion

4.2 Semi-parallel perturbation
4.3 Fully parallel perturbation
4.4 Alopex . ..
4.5 Probabilistic Optimization
4.6 Learning Experiments

4.6.1 Epochs.
4.6.2 Parity-4
4.6.3 Parity-5 ..
4.6.4 Function Approximation
4.6.5 Conclusion

4.7 Weight Leakage .
4.8 Conclusion . . .

Concluding Remarks

101
102
104
105
106
107
108
108
110
111
112

115

CONTENTS 7

Bibliography 119

A System Details 131

B ANANAS 135

c Learning Experiments Details 139

D Circuit Details 143

Acknowledgements 145

Curriculum Vitae 147

8 CONTENTS

Chapter 1

Introduction

Although the current generation of computers provides large computational
power in the field of problems which can be described algorithmically, cog

nitive tasks are still hard to solve. Examples of such tasks are face, speech,
and handwriting recognition. Besides the fact that describing such problems
and the way to solve them are very difficult, if not impossible, solving the
task for a number of known situations is not sufficient. A certain level of
generalization should be achieved to be able to provide adequate responses
to inputs which have never been seen by a system.

The human brain is an unsurpassed system capable of learning a task
based on the presentation of examples. It consists of a large number of
small and simple computational units (neurons) which have a high degree of
interconnectivity (synapses). The whole system has a relatively low degree of
activity. Neurons communicate using pulse-shaped signals with frequencies
in the order of 100 Hz. The learning mechanism used by the human brain is
currently unknown as is the way information is stored. Cognitive tasks seem
to be natural to the human brain while algorithmical problems are much
harder.

In an effort to mimic the capabilities of the human brain, a lot of research
has been put into distributed parallel systems and the way such systems can
be trained to perform certain tasks. In recent years, completely parallel
hardware implementations have been emerging. Two main approaches can
be distinguished: 1) a digital approach in which units and communication
between units are realized with an (almost) unlimited accuracy at a medium
fast rate using digital signals and elements and, 2) an analog approach where
a less accurate implementation is used (in analogy with the human brain) at
a high speed.

9

10 CHAPTER 1. INTRODUCTION

Here, analog implementations of neural networks will be pursued us
ing simple, small, possibly non-ideal (with respect to the mathematical way
neural networks are described) building blocks. In contrast with most im
plementations reported in the literature, where a lot of effort is put into
realizing 'perfect' building blocks1 , here a learning algorithm should be able
to deal with non-idealities. As such, the whole of network and learning al
gorithm forms the complete system. The learning algorithm itself could also
be implemented in hardware (analog or digital), thereby realizing a complete
stand alone system capable of learning complex, non-algorithmic, cognitive
like tasks based on presentation of examples.

In the remainder of the current chapter, neural networks in general are
described, introducing the used notation and several well-known learning
algorithms. For a more detailed description of neural networks the reader is
referred to the literature, e.g. [HKP91].

In chapter 2, issues which become apparent when neural networks are
implemented in hardware will be discussed, as well as the general outlines
for a flexible analog multi-chip implementation.

Two analog implementation approaches will be presented in chapter 3: a
time-sampled, pulse stream approach where analog values are encoded using
binary signals and an analog, time-continuous implementation. In the latter
case, a complete test system has been rea lized. In the case of chapter 3, it is
assumed that the reader has a basic knowledge of analog VLSI [IF94, AH87].

Chapter 4 reports on the use and implementation of learning algorithms
in conjunction with a complete analog neural network implementation. In
a complete setup consisting of several analog chips and a host computer,
several learning experiments are performed .

1.1 Definitions

In this section, basic concepts and definitions for all terms used in describing
neural networks and learning algorithms are provided.

1.1.1 Neuron

A neuron has one or more inputs x 1 ,x2 ,x3 , •. • .. ,XN and one output y. An
input to a neuron is either an input of the network the neuron is part of,
the output of another neuron , or its own output. The inputs are usually

1 For example, a linear multiplicative relationship in a synapse (in an overall non-linear
system).

1.1. DEFINITIONS 11

weighted, i.e. an input Xi is multiplied by a weight Wi· The weighted inputs
81 , 8 2, 83 , , 8N are added to form a sum 8. In most cases, a threshold
() is also added to the weighted sum. This sum forms the argument of a
non-linear function f. The output of the non-linear function is the output
of the neuron. Figure 1.1 shows a block diagram of a neuron. Equation 1.1

y

Figure 1.1: A neuron

describes the operation of the neuron.

Y = j(8) = f (~ WiXi + ()(-1)) {1.1)

In most cases, the threshold contribution is treated as an extra input x 0 to
the neuron. By choosing xo = -1 and wo = (), equation 1.1 simplifies to:

{1.2)

The extra input is also called the bias input of the neuron.
The non-linear function f usually is a sigmoid-shaped, bounded, mono

tonic rising function which saturates for both large negative and positive
values. Several functions fall in this category. Two frequently used choices
are:

1
!(8) = 1 + e-f3s

j(8) = tanh(/38)

{1.3)

{1.4)

where f3 controls the steepness. For the extreme case of f3 -+ oo both 1.3
and 1.4 result in a binary threshold unit first proposed by [MP43).

12 CHAPTER 1. INTRODUCTION

1.1.2 Networks

Here, we will be studying the implementation of layered feed-forward net
works. Layered feed-forward networks were earlier called perceptrons
[HKP91] and this name is still frequently used in the abbreviation MLP:
Multi-Layer Perceptrons. Here, the generic term network will be used when
referring to layered feed-forward networks.

A network consists of an arbitrary number of layers and each layer con
tains an arbitrary number of neurons. Feed-forward implies that there are no
connections from any of the neurons to the inputs of previous layers nor to
other neurons in the same layer, nor to neurons more than one layer ahead.
Every neuron only acts as input to the immediate next layer. The neurons
in intermediate layers are often called hidden neurons because they have no
direct output connection to the outside world.

The topology of a network is defined by the number of layers, the num
ber of neurons per layer and the interconnection pattern between the layers.
The interconnection pattern is called fully connected when all neurons in one
layer are connected to all neurons in the next layer. Conversely, the pat
tern is called sparsely connected when only certain connections are present.
Here, the interconnection pattern is always assumed fully connected unless
otherwise noted.

Figure 1.2 shows an arbitrary layer l in a network. Weight wL connects

neuron i in layer l- 1 to neuron j in layer l . Output y~ is the input x~

layer 1-1 layer I

Figure 1.2: A layer

for the next layer. Input x? is an input to the whole network and output
yf is an output of the whole network with L layers. When no internal layer
information is used in a certain context, the inputs of the network will simply

1.2. LEARNING 13

be denoted by Xi and similarly the outputs of the network are denoted by Yj.
The inputs and outputs are usually grouped into vectors~ and ;y_ respectively.
The inputs to a network are not counted as a layer. Consequently a network
with one hidden layer is called a two-layer network. Note that an L-layer
network has L layers of connections and L - 1 hidden layers. Figure 1.3
shows a two-layer network with 3 inputs, 4 neurons in the hidden layer, and
1 output. Bias inputs of the neurons are usually not drawn. The standard
notation for a network with this topology is: a 3-4-1 network.

Figure 1.3: A 3-4-1 network

1.2 Learning

The functionality of a neural network is determined by the combination of
the topology and the values of the weights in the network . The topology
is usually chosen fixed 2 and the weights are determined by a learning al
gorithm.

The objective of a learning algorithm is to find an optimum set of weights
which results in the solution of the problem. A large variety of learning
algorithms has been invented which can be divided into two main groups:

Unsupervised Learning

With unsupervised learning there is no feedback from the environment to
indicate if the outputs of the network are correct. The network must discover
features, regularities, correlations, or categories in the input data autonom
ously.

2 Recently several constructive learning algorithms have been proposed which modify
the topology of the network as well [FL90, GW93).

14 CHAPTER 1. INTRODUCTION

Supervised Learning

• Learning with a teacher. For each input pattern , the net
work's outputs are compared with the desired outputs (also
called target values) . The difference between the real outputs
and the desired outputs is used by the algorithm to adapt the
weights in the network [HKP91].

• Reinforcement learning. In this case, there is less detailed
information available about the target values for each input pat
tern. There is some feedback from the environment but it is only
evaluative, not instructive. Reinforcement learning is sometimes
called learning with a critic as opposed to learning with a teacher
[HKP91].

In the case of supervised learning with a teacher, the algorithm compares
the actual output Yk,p of a network with the desired output tk,p for a certain
input pattern p. Optimal values of the weights are found when:

V p,k Yk ,p = tk,p 1 ::; k ::; J(, 1 ::; p ::; P (1.5)

where P is the number of training patterns and K the number of output
neurons. If condition 1.5 is fulfilled, it is said that the network has learned
the problem perfectly.

With reinforcement learning, less information is available to the learning
algorithm about how well the network is performing for each training pattern
separately. Usually, an indication of how well the network is doing on the
whole training set, is available. Here, algorithms based on supervised learn
ing will be studied further. In the next sections several algorithms will be
introduced while in chapter 4, both learning-with-a-teacher as well as rein
forcement based algorithms will be discussed in relation to analog hardware
implementations.

Various supervised learning algorithms have been developed. The most
important group of algorithms are the gradient descent algorithms [HKP91].
These algorithms try to minimize an error criterion E, indicating how well
condition 1.5 is met, by adapting the weights in a direction opposite to the
gradient of the error criterion. A common error criterion is the Total Mean
Square Error (T M S E) over all input patterns

1 1 p K 2

TMSE = 2 J(p 2:2: (tk,p- Yk,p)
p=lk=l

(1.6)

1.2. LEARNING 15

In some cases, the error for a certain pattern p is desirable. The Pattern
Mean Square Error (PM S E) is defined as:

1 1 /{ 2
PMSEp = 2 J(L (tk,p- Yk,p)

k=l

(1.7)

In most real-world applications, it is not possible to meet condition 1.5
(equivalent to TMSE = 0). The available data to train the network is
usually split up in 2 or 3 parts; a training set which is used to actually
update the weights in a network, a test set to verify if the network is not
focusing on peculiarities in the training set (also called over-fitting) and thus
degrading its generalization performance, and possibly a cross validation set
to examine the final performance of the network. Learning is stopped when
the error on the test set starts to increase (after initially decreasing) while
the error on the training set still decreases.

1.2.1 Gradient Descent

A gradient descent algorithm updates a weight w~j opposite to the direction
of the gradient of the error function E along that weight dimension. This is
done for each weight in the network. After a sufficient number of updates,
this results in a minimum of the error function at a point in weight space
where all error derivatives are equal to zero.

Before the algorithm starts, a set of initial weights has to be chosen. A
common choice is to set the weights to small random values3 . The gradient
descent algorithm uses these initial weights as a starting point. The weights
are updated with steps 6wL(t)

(1.8)

where each step is made proportional to the gradient:

1 oE(t)
6wij(t) = - ry owl .

t)

(1.9)

The magnitude of the update is scaled by a learning rate ry (ry > 0).

1.2.2 Learning Rate

The updates 6w~j depend on the learning rate ry which determines the speed
of the algorithm. A small value of ry results in a small weight update and

3 Different and/or more complex initialization schemes are also used [NW90].

16 CHAPTER 1. INTRODUCTION

consequently in a slow convergence speed. A larger learning rate will speed
up the algorithm. However, there is an upper-limit 'T/max which depends on
the shape of the error function E and is thus different for each problem.
If the learning rate "' is chosen too large, the algorithm becomes unstable
[tK93] and will not converge to a minimum error.

1.2.3 Global or Local Minima

If a suitable choice for "' has been made, the error criterion E will gradually
decrease until a minimum is reached. In this minimum the gradient of the
error function with respect to each weight is equal to zero. However, this
could be either a local or a global minimum.

The error function E depends on many weights wL and is therefore a
multi-dimensional function. This can be considered as an error landscape.
Because there are many dimensions, the landscape could be very complex de
pending on the number of weights and the non-linear functions f. Figure 1.4

E

'-.global minimum

w

Figure 1.4: Example error landscape

shows an (fictional) error landscape along one weight axis. Currently, very
little is known about the shape of these landscapes for different problems.
Even for small problems, e.g. teaching a 2-2-1 network the XOR-function ,
the error function has a high dimension (9-dimensional) and contains unpre
dictable valleys and peaks. Depending on the initial weight choice a gradient
descent algorithm could converge into a local minimum. It has, for example,
been experimentally determined that the back-propagation algorithm (see
next section) is extremely sensitive to initial conditions [KP90] . The conver
gence to a global minimum has an almost chaotic dependence on the initial
weight values.

Other learning algorithms, like stochastic search (see section 1.2.6), up
date the weights in a different fashion which offers the possibility to escape

1.2. LEARNING 17

out of local minima.

1.2.4 Back-Propagation

The back-propagation algorithm [Wer74, RHW86]1ies at the basis of much
of the current work on learning in neural networks. The weight update for
a certain input pattern pis given by equation 1.10

(1.10)

where
(1.11)

for the output layer and

(1.12)

for all hidden layers with Kt+l the number of neurons in layer l + 1. The
weight updates for different patterns can either be applied directly to the
weights (also called on-line back-propagation) or accumulated over the total
training-set (known as batch updating). Back-propagation is a learning-with
a-teacher algorithm; the difference between the actual output and desired
output of each neuron is directly used to update the weight values.

The main advantages of back-propagation are that all the weights are
updated in parallel and that only local information is necessary to compute
the weight updates. The basic algorithm presented above is slow to converge
in multi-layer networks and many variations have been suggested to make it
faster. Here, a few will be mentioned [HKP91]:

Momentum Each weight is given some "inertia" or "momentum" so that
it tends to change in the direction of the average downhill 'force':

(1.13)

The momentum parameter a must be between 0 and 1; a value of 0.9
is often chosen.

Adaptive Learning Rate Choosing an appropriate value for the learning
rate 'TJ is difficult and is usually done on a triaJ-and-error basis. Schemes

18 CHAPTER 1. INTRODUCTION

have been proposed [Jac88] to adjust the parameter automatically at
the cost of increased computational complexity. A further extension is
to introduce a separate learning rate for each weight or for each layer.

Adding noise Adding noise to weights and/or input training patterns has
been shown to have a positive effect on both the learning speed and
the generalization ability of a network trained with back-propagation
[MT94].

1.2.5 Weight Perturbation

The back-propagation algorithm is a complex algorithm to implement. It
needs a feed-forward path as well as a backward path. With Weight Per
turbation (WP) [JF92] the gradient with respect to a weight is evaluated
in such a way that only feed-forward operations through the network are
necessary. Equation 1.14 shows the Forward Difference Method (FDM) to
approximate the derivative of the error function E with respect to a certain
weight.

f)E E(wij + 8w;j)- E(w;j)
---~ --~~~~~--~~

OWij - 8w;j
(1.14)

When the perturbation 8w;j is chosen small enough, the real gradient is ap
proximated arbitrarily close. In the original WP-algorithm, weight updates
are computed sequentially, i.e. only one weight is perturbed at once. The
order of the error of the forward difference method can be improved by using
the Central Difference Method (COM) :

(1.15)

Compared with the back-propagation algorithm, where the entire training
set only needs to be presented one time to update all the weights once, the
WP algorithm4 needs to present all the training patterns twice to calculate
the error derivative along a weight dimension. In the case of FDM (equation
1.14), the number of presentations to the network can be reduced to P x
(W + 1) by first sequentially perturbing all weights and determining the
corresponding error values and then update all the weights at once5 . The
perturbation-free error only has to be computed once. Here, W stands for the
number of weights in the network while P indicates the number of training

4 Note that the WP algorithm is a reinforcement learning algorithm.
5 At the cost of increased storage capacity.

1.2. LEARNING 19

patterns. With COM, 2 x P x W presentations are necessary and weight
updates can be applied immediately.

Several variations to WP have been proposed which (semi) parallelize the
originally sequential algorithm [Cau93, AMY+93, FJ93, JCF96]. In chapter
4 several of these variations will be discussed and studied further.

1.2.6 Stochastic Learning

Learning algorithms based on gradient descent suffer from a major draw
back; they can converge into a local minimum. Stochastic learning al
gorithms make random changes to the weight values and observe the outputs
of the network. In its basic form [Mat65], the changes are accepted if the
error criterion is decreased. If the error increases, the changes are rejected.
Because of the stochastic nature of these algorithms, they offer the possibility
to escape from local minima.

As most of the stochastic algorithms operate on the total set of weights in
parallel, for ease of writing, all weights in a network are grouped together in
a vector w. E(w(t)) denotes the error on the training set for the weight val
ues on timet. The original Random Optimization Method (ROM) [Mat65]
algorithm is given by the following steps:

1. Select an initial random weight vector w(t = 0), where tis the iteration
number. Choose a value for the variance (var) of the Gaussian random
vector which will be generated.

2. Generate a Gaussian random vector {(t). If E(w(t) +{(t)) < E(w(t))
then let w(t + 1) = w(t) + {(t). Otherwise, let w(t + 1) = w(t).

3. If E(w(t)) < c (c being the convergence limit on E), stop. Otherwise,
go to step 2.

In recent years, several modifications to the original ROM algorithm have
been proposed:

MROM Modified Random Optimization Method [SW81, Bab89]. MROM
improves the convergence speed of the ROM by allowing the search
to proceed in {(t) and -{(t) directions. Furthermore, it allows for an
adaptive setting of the mean!! of the random vector {(t):

1. Select an initial random weight vector w(t = 0). Set !!(t = 0) =
0. Choose var.

2. Generate a Gaussian random vector {(t):

20 CHAPTER 1. INTRODUCTION

(a) If E(w(t) +~(t)) < E(w(t)), then let w(t+ 1) = w(t) +~(t)
and Q.(t + 1) = 0.4~(t) + 0.2Q.(t) .

(b) If E(w(t) + ~(t)) ~ E(w(t)) and E(w(t)- ~(t)) < E(w(t)),
then let w(t-+ 1) = w(t) - ~(t) and Q.(t + l) = -0.4~(t) +
0.2Q.(t).

(c) Otherwise, let w(t + 1) = w(t) and Q.(t + 1) = 0.5Q.(t).

3. If E(w(t)) < c:, stop. Otherwise, go to step 2.

HROM Heuristic Random Optimization Method [SGH90). In HROM not
the mean of the randomly generated vector but the variance is adapted.
The idea is to start with a relatively large variance which is decreased
exponentially due to a persisting unchanged E. The variance is also
allowed to decrease (but more slowly) every time E is decreased by an
amount larger than a small positive C:t · The variance was allowed to
increase slowly at every step where E decreased by an amount smaller
than ct:

1. Select an initial random weight vector w(t = 0). Choose var .

2. Generate a Gaussian random vector ~(t):

(a) If E(w(t) + ~(t)) < E(w(t)), then let w(t + 1) = w(t) + ~(t)

and set Et+l = E(w(t) + ~(t)), go to 3.

(b) If E(w(t) + ~(t)) ~ E(w(t)) and E(w(t)- ~(t)) < E(w(t)),
then let w(t+ 1) = w(t) -~(t) and set Et+l = E(w(t) -~(t)),
go to 3.

(c) Otherwise, let w(t + 1) = w(t) and vart+l = 0.85vart, go to
4.

3. If Et- Et+l < C:t, then let vart+l = l.lvart, else vart+l = vart.

4. If E(w(t)) < c:, stop. Otherwise, go to step 2.

SA Simulated Annealing [vLA87) uses an artificial temperature parameter
T which is slowly lowered according to a 'cooling schedule'. Weight
changes are accepted with a certain probability depending on T. SA,
in general terms, can be described as:

1. Select initial random weight values Wij

2. Perturb each weight with a value ~ij chosen from a Gaussian
distribution. Acceptance of the new weight values depends on
the change in error b..E which is observed. The new values are

1.2. LEARNING

accepted with a probability, e.g.

or

1
Paccept = E /T 1 + eb.

Paccept = {
1

1
l+eLlE/T

if !:J.E < 0
if !:J.E ~ 0

21

(1.16)

(1.17)

The temperature Tis lowered according to some arbitrary scheme,
e.g. Tt = KTt-1 with 0 < ,., < 1.

3. If E < c, stop. Otherwise, go to step 2.

Alopex [UV92) In its original form, the Alopex algorithm can be described
as follows. A weight Wij is updated according to:

(1.18)

where 8ij(t) is a small positive or negative step of size 6 with the
following probabilities:

Oij(t) -6 with probability Pij (t)

+6 with probability (1- Pij(t))

The probability P;j(t) is given by:

R ·(t)-
1

tJ - 1 + e-b.;j(t)/T (1.19)

where !:J.ij(t) is given by the correlation:

(1.20)

!:J.wij(t) and !:J.E(t) are the changes in weight Wij and the errorE over
the previous two iterations, respectively:

Wij(t- 1)- Wij(t- 2)

E(t- 1)- E(t- 2)

In the expression for Pij(t) (equation 1.19), Tis the positive temperat
ure which determines the effective randomness in the system. Learning
is started with a large value for the temperature T. Subsequently, the
temperature is set to the average value of the correlation !:J.;j over all
weights. In chapter 4 an adapted version of the Alopex algorithm
will be presented resulting in an overall less computationally intensive
algorithm .

22 CHAPTER 1. INTRODUCTION

1.2.7 Update Strategies

A distinction can be made between the learning algorithm and the weight
update strategy. A learning algorithm refers to the way weight updates are
computed, while an update strategy indicates in which way the computed
weight updates are applied to the weights. In the case of a learning-with-a
teacher algorithm, two often-used update strategies are:

• Online weight update; weight updates are computed for each
weight and for a given pattern and are then applied:

for all patterns
{

}

feed_forward();
compute_updates();
apply_updates();

In the case of back-propagation, the computation of the updates
involves the backward propagation of the errors measured at each
of the output neurons. The TMSE is usually also computed to
examine the progress of training.

• Batch weight update; weight updates are computed for each
weight and accumulated over all the training patterns and are
then applied:

for all patterns
{

feed_forward();
compute_updates();
accumulate_updates();

}

apply_updates();

Unfortunately, very little is currently known about the learning dynam
ics of neural networks. Experimental observations provide some guidelines
for increased convergence speed and convergence rates but most network
parameters (number of layers, number of neurons per layer, interconnection

1.2. LEARNING 23

pattern) and learning parameters (learning rate, initial weight values, mo
mentum, etc.) are still determined on a trial-and-error basis. Recently, the
oretical work has been reported [HW96] on the influence of update strategies
on learning behaviour. The online update strategy with a random present
ation order of patterns performs better than the batch update strategy.
However, the obtained results are only valid in the vicinity of a (possibly
local) minimum.

The type of reinforcement learning algorithms introduced before (section
1.2.5 and 1.2.6) are all perturbation based, i.e. weights are perturbed and
the resulting change in the error criterion is in some way (gradient descent,
stochastic) used to updated the weights. The updates applied to the weights
can be either based on the evaluation of a single training pattern (PMSE) or
on the evaluation of the complete training set (TMSE). The resulting update
strategies are:

• Pattern-based; one or more weights are perturbed. The change
in error for a single training pattern is computed and used to
update the weight(s). This is repeated with the same pattern
until all weights have been updated. For a complete epoch, the
above is repeated for all patterns:

for all patterns
for all weights
{

}

feed_forward();
determine_PMSE();
compute_updates();
apply_updates();

• Set-based; weight updates for one or more weights are determ
ined by perturbing the weight(s) and measuring the influence on
the total training set (TMSE). A complete epoch involves the
perturbing and updating of all weights in the network:

for all weights
{

feed_forward(all patterns);
determine_TMSE();

24

}

CHAPTER 1. INTRODUCTION

compute_updates();
apply_updates();

Chapter 2

Systems

On a system level several important decisions about the high-level structure of
an analog neural network implementation have to be made. These decisions
have important consequences for the further design. Flexibility in the type of
network topology introduces the need for scaling of quantities in a network.
An optimal scaling solution can be determined through a statistical analysis
of the influence of errors in a network. Furthermore, high-level chip contents
will be presented including choices for communication signals and weight
storage methods.

2.1 Flexibility

The functionality of a neural network is partly determined by the topology of
the network. The right choices for the number of layers and the size of each
layer depend on the problem to be solved. However, a theoretical foundation
for the correct choices has not been found yet. Therefore, flexibility in the
topology of a network is highly desirable. The implementation of a neural
network using analog electronics can result in several configurations:

1. A network with a fixed topology, i.e. a fixed number of layers with a
fixed number of neurons per layer and fixed interconnects. This refers
mainly to small scale application-specific single-chip implementations,
for example [LG92].

2. A network with an arbitrary number of layers but a fixed number of
neurons per layer. In this case, the network is split into layers and each
layer is implemented on a separate chip. By cascading several of these

25

26 CHAPTER 2. SYSTEMS

chips different configurations (with respect to the above mentioned
constraint) can be constructed [RCZ94].

3. A network with a completely arbitrary topology; an arbitrary number
of inputs, neurons, layers, and interconnects. Each layer is split into a
synapse part and a neuron part and both are implemented on separate
chips. E.g. [Leh94, EDT89).

Here, an implementation will be presented for the third case: a network
with a completely arbitrary topology. By cascading synapse and neuron
chips, any topology can be constructed. For example, synapse chips with
2x2 connections and neuron chips with 2 neurons can be combined to expand
the number of inputs (see figure 2.1) and/or to expand the number of neurons
in a layer of the network (see figure 2.2).

inputs

1

2

3
4

inputs

1
2

'----

outputs
.---- ------,

Synapse c----....---11

chip
Neuron

chip
1

2

inputs outputs

~~1
3 2
4

Figure 2.1: Expanding number of inputs

-
-

Synapse f-- Neuron

chip f-- chip

Synapse f-- Neuron
chip r--- chip

outputs

-

-

-
-

1

2

3
4

inputs

1
2

Figure 2.2: Expanding number of neurons

outputs

1

2

3

4

Cascadability of chips has some important electronic implications. When
for example 16 (2x2)-synapse chips are connected in parallel (as in figure
2.1), a neuron has 32 inputs. Suppose one synapse produces an output cur
rent between -2J.LA and +2J.LA, then 32 synapses can (maximally) generate

2.2. SCALING 27

a current between -64pA and +64pA. The input range of the sigmoid will
then be too small and the output of the neuron will contain large flat areas
as illustrated in figures 2.3 and 2.4. This will have a negative influence

-2 J.l +2J.l

Figure 2.3: One synapse connected to a neuron

-64";1·-- ·2J.l

Figure 2.4: 32 synapses connected to a neuron

on the learning behaviour of the network. For example, the choice of ini
tial weight values will be much more complicated . The initial weight values
should preferably be chosen in such a way that the neuron does not satur
ate immediately. The more weights are connected to the same neuron, the
smaller the initial values should be. However, because of the way weights
are usually stored in analog neural network implementations (see section
2.5), non-idealities will have a larger relative influence when the number of
weights connected to the same neuron increases. Furthermore, the large flat
areas will slow down or stop gradient descent based learning algorithms as
the error derivatives of many weights will be very small or zero [RF91].

Because cascadability is desired, scaling of synapse outputs and/or the
neuron input is therefore necessary.

2.2 Scaling

Through a statistical analysis of the behaviour of feed-forward neural net
work with respect to errors in weights (in most cases caused by quantization
of the weight values, see section 2.5), it will be shown that an optimal scaling
factor exists for a given number of inputs to a neuron.

28 CHAPTER 2. SYSTEMS

In [XJ92], a statistical analysis is done on the effects of quantization
in multi-layer neural networks. However, the assumptions made there are
only valid for small networks. As can be seen further in the text, when no
precautions are taken, the effects of quantization become more apparent as
networks get larger. Therefore, a different approach will be taken here.

Other approaches to investigate the influence of errors in neural networks
have been reported [HH93, APS95, DR95]. However, as several restrictive
assumptions are made there (e.g. linearizing the behaviour of the sigmoidal
function, small networks) no general approaches are presented.

2.2.1 Network Model

The effects of weight inaccuracies in a neural network could be investigated
by comparing the output of an ideal neural network with one containing er
rors (for the same input) as shown in figure 2.5. In this way, it is possible

,.-...,. Ideal network

Input----.

Network with
errors

Output
error

Figure 2.5: Structure for investigating the effects of weight errors

to express the relationship between weight and output errors of this specific
network. More general, the effects of weight errors in an ensemble of net
works with differing weights over a set of inputs vectors, may be investigated
using statistical analysis [Pic92]. This more general approach is taken, as
the to-be-designed hardware will be used to implement many different neural
networks, each with a different topology and different weights.

Definition of the Stochastic Model

A model for the output of node j in layer l of an ideal neural network is
given by

(2.1)

2.2. SCALING 29

and similarly, a model for the output error in node j of layer l is given by

where wL, x~- 1 , b.wL, and b..x~- 1 are stochastic models for the weights,
inputs, weight errors, and input errors respectively. f is the output non
linearity of a node. With regard to the inputs and the weights, the following
assumptions are made:

• Over the ensemble, the weights of layer l all have the same variance,
cr2

1 , the mean value of each weight is zero, and weights in the net-
w

works are statistically independent. The weights and weight errors are
uncorrelated with the input and input errors.

• The weight errors of layer l have the same variance, criw' and the
expected value is zero. They are statistically independent. The cov
ariance between a weight and its associated error is zero.

• The inputs all have the same variance, cr2
1 and the mean value is zero.

X

• The input errors of layer l have the same variance, crix' and the ex
pected value is zero. The input errors are statistically independent.
There is no correlation between the inputs and the input errors.

The output noise-to-signal ratio (NSR) of a network will be used as a
measure for the influence of the weight errors on the output. The NSR of
layer l is defined as the ratio of the variance of the output error of layer l to
the variance of the output of layer l,

2
(T t.y'

NSRt = - 2 (2.3) cry,

Sigmoidal Neuron Noise-to-Signal Ratio

Given the assumptions made above, the output variance of a neuron with N
inputs and a sigmoidal non-linearity may be expressed as [Pic92]:

cr; = joo (tanh(VNcrxcrws)) ~e-~ds
-oo v2rr

(2.4)

and the output error variance may described by:

2 ~ (crix criw) CTt.y = p(v Ncrxcrw) - 2 + - 2-crx crw (2.5)

30 CHAPTER 2. SYSTEMS

where
,2

r;:; 2 2 joo 4e- 2
p(v JVO"xO"w) = NO"xO"w J2;: VN ds

- oo 27r(l+cosh(2 NO"xO"ws)) 2
(2.6)

The output NSR may now be expressed as

(2.7)

where

(r,;;N)-p(VNaxaw) gV IVaxaw-
2 ay

(2.8)

Formula 2.7 for the NSR holds if inequalities 2.9 and 2.10 are satisfied,
assuming the weight and input errors are small.

(2.9)

(2.10)

Assuming VFiaxaw is large(> 2), the NSR gain g may be approximated
by:

4
g(VNaxaw):::::: f(CVNaxaw + 0.5.

3v2rr
(2.11)

Equations 2.7 and 2.11 will be used for future computations.
The output NSR of a network with sigmoidal neurons1 can now easily

be calculated by using the output NSR of the first layer as the input NSR
for the second layer, etc. The output NSR of a neuron in the first layer is

(2.12)

The output NSR of a neuron in the second layer is now

(2.13)

In this way, the output NSR of a neuron in layer l can be computed recurs
ively.

1 Expressions for the NSR of neurons with different non-linearities (e.g. threshold) can
also be derived using a similar approach [Pic92].

2.2. SCALING 31

2.2.2 Solution

From equation 2.4, it can be seen that when the number of inputs N of
a neuron increases and the input and output variance do not change, the
weight variance will decrease. More precisely, if the number of inputs is
doubled (N ----* 2N), the weight variance will be halved (a~ ----* a~/2). In the
case of quantization of weights (aiw constant) , this means that the relative
error of the weights will increase. This will have a negative influence on the
NSR of a neuron.

The input variance may be assumed constant as for most problems the
inputs will be scaled in such a way that the maximum input range will
be used and all input values have an equal chance of occurring. Network
outputs are usually binary (classification problems) and it is good practice
to use an output representation in which all outputs have an equal chance of
being 'on' and 'off' 2

, in which case the output variance is constant as well.

FN

N

FN

Figure 2.6: Scaling

By means of a numerical example, the formulas from the previous section
will be visualized and a practical scaling solution will be proposed. In the

2 For example, the use of a 1-out-of-N output encoding (in wl:llch outputs do not have
an equal chance of being 'on' and 'off') for a large number of outputs usually results in a
slow learning behaviour as a solution with all outputs 'off' already results in a low value
for the error criterion.

32 CHAPTER 2. SYSTEMS

example, a single neuron with the following properties will be used 3 :

• input variance a;= 1,

• input error variance a~x = 10-6
, corresponding to a quantization of

input values with a resolution of 10 bit. Quantization is modeled as
noise with a uniform probability distribution,

• weight variance a;= 1,

• weight error variance a~w = 10- 6
; quantization with a 10-bit resolu

tion,

• number of inputs N = 25.

The number of inputs N to the neuron will now be increased by a factor
F. Two cases are distinguished, see figure 2.6. In the first case, the NSR
of the neuron with the above introduced decreasing of the weights will be
computed. In the second case, the NSR will be computed with weights scaled
by a factor)p i.e. every weight will be multiplied by JF·

1. If the number of inputs to the neuron increases by a factor F, the weight
variance will decrease by a factor -j;. . Substituting this in equation 2.7,
the following expression is obtained:

NSR = g (.JiiiF a !!_::;_) . (aix + aiw)
x 'F a2 ~ vr x F

g(5) . (lo-6 + 10-6 F)

2. Now, every weight to the neuron is scaled with JF· In that way,

the weight variance will stay constant and the influence of the weight
errors will be reduced when F increases. A scaled weight Ws is defined
in the following way:

w
Ws = VF (2.14)

Using equation 2.14 the variance of a scaled weight and the variance
of the error of a scaled weight can be easily computed:

2
2 aw aw. = F (2.15)

3The numerical values used here are chosen arbitrarily and may not represent target
values realizable with analog hardware.

2.2. SCALING 33

2
2 (Jt:>.w

(Jt:>.w, = F (2.16)

With equation 2.7, 2.15, and 2.16:

NSR =

In figure 2.7, the NSR for both cases is plotted for different F . It can be
seen that by scaling the weights with jp, the influence of weight errors

is drastically reduced. Even better, the increase in network size does not
influence the noise-to-signal ratio at the output any longer. In the example

·35

"' -40 ,
.s
a:
(fl

z -45

-50

easel
Case 2

1 10 20 30 40 50 60 70 80 90 100

F

Figure 2.7: Influence of scaling

above, a single neuron was used for reasons of simplicity. However, a similar
example can be set up using an !-layer network.

2.2.3 Hardware Implementation Considerations

The scaling technique introduced in the previous section was set up with
the implementation of neural networks using analog hardware in mind. The
influence of weight quantization in digital implementations can also be re
duced using other techniques, like the use of floating point representations
for the weights.

34 CHAPTER 2. SYSTEMS

In the case of an analog implementation, scaling of the weights could be
implemented in two ways:

• By controlling the slope of the activation function of the neuron.
This has the advantage that the hardware for scaling only has to be
implemented once per neuron. However, as the number of weights
grows, the input to the neuron could reach an unacceptable value e.g.
if the weights deliver a current, the total current flowing into the neuron
might reach an excessive value.

• By adding a scaling module to each weight. Although more hard
ware is required, the size of the network is not limited by physical
limitations. In a simple case, the scaling module would consist of a
simple multiplier which multiplies the output of a synapse XiWi by a
scaling factor. Ideally, the scaling factor would adjust automatically
(as proposed by [CV93] for linear scaling) when the network size in
creases. However, a square root automatic scaling factor is difficult to
implement.

2.2.4 Conclusion

Through a statistical analysis it has been shown that when the number of
inputs to a neuron increases by a factor F, all weights to that neuron should
be multiplied by a factor JF· In that way, the output error remains constant
for an increasing number of inputs and therefore large numbers of weights
can be used per neuron.

Special attention has to be paid to the bias weight of a neuron in combin
ation with scaling. When scaling would be applied to the bias weight in the
same way as it is applied to 'regular' weights, shifting of the sigmoid over
its complete input range might no longer be possible as the contribution of
the bias weight would become too small.

2.3 Signals

Multi-chip analog implementations in general demand a sound choice of the
representation of signals used for inter-chip communication. In the case
of neural network implementations, two main functionalities can be distin
guished:

Distribution Inputs to the network and outputs of neurons have to be
distributed to synapses. This one-to-many distribution can best be

2.4. CHIP FLOOR-PLAN 35

realized by representing the output of a neuron by a voltage. To sim
plify the design of the neuron, the inputs of the synapses should ideally
have a high impedance.

Aggregation A representation of the synapse output by a current facilitates
the design of the necessary summation of all synapse outputs connected
to the same neuron. Synapse outputs can simply be connected together
to a low-impedance node and currents will be summed up according
to Kirchhoff's current law .

Inter-chip communication influences the speed of communication. Input
and output pins of chips introduce relatively large parasitic capacitances
on the communication lines. However, this influence can be minimized by
appropriate choices for the in put and output blocks of the synapse and neuron
chips:

• Synapse input: high impedance, low capacitance, voltage input.

• Synapse output: high impedance current output.

• Neuron input: low impedance (virtual ground) current input.

• Neuron output: low impedance voltage output capable of driving
a large capacitance load.

Current levels used for communication between synapse and neuron chips
will be in the microamp range. Special attention has to be paid to avoid high
impedance nodes outside the chips as these are very susceptible to external
noise sources.

Recently, a novel communication scheme for analog VLSI perceptive sys
tems (MVV95] has been proposed in which pulse-frequency modulated sig
nals are used to communicate between analog chips through a non-arbitered,
asynchronous parallel common bus. Digital pulses are used for communic
ation between the chips while actual computations are done in the analog
domain alleviating some of the problems existing at realizing multi-chip ana
log systems. In contrast, the pulse stream systems which will be presented
in chapter 3, use pulses for both communication and computation.

2.4 Chip Floor-plan

Both synapse and neuron chips will now be filled in. Circuit details will
not yet be shown here. Only details common to the two implementation
approaches pursued in chapter 3 will be mentioned.

36 CHAPTER 2. SYSTEMS

2.4.1 Synapse Chip

Synapses are grouped together in an array structure. N inputs (x 1 • • ·xN)
are distributed to M columns of synapses. Outputs of synapses in the same
column are tied together realizing aN xM connection matrix. As the outputs
of synapses are represented by currents, the resulting output current Sj of
a column represents the weighted sum of inputs (see section 1.1.1). Figure
2.8 shows the internal organization of the synapse chip including a refresh
signal necessary for the storage of weight values in a synapse (see section
2.5).

refresh

Figure 2.8: Internal organization of the synapse chip

(V)
wiiv

refresh 0 f--(-V) .,Xl--(1)~- sii

'
Synapse i,j

'------- - - --- -------------- --- ---

Figure 2.9: Forward path of a synapse

Each synapse in the array consists of a multiplier together with a unit

2.4. CHIP FLOOR-PLAN 37

to store the weight value. Figure 2.9 shows these elements. The characters
'V' and 'I' refer to whether signals are voltages or currents respectively. As
synapses are the main building blocks in a neural network4

, any savings in
implementation area and power consumption of this block greatly influence
the overall properties of the implementation.

WE------~------------------~

ao -------h------

ao-------1+-----
a, -------l+r----
131 -------t++-----
a2 -------l+t-1---
li2-------l+++----

Figure 2.10: Synapse addressing

To be able to address each synapse in the array individually (e.g. for
refreshing purposes), a straight-forward row-column addressing scheme is
used. Figure 2.10 shows the digital blocks necessary to realize an addressing
scheme for an 8 x 8 synapse array. It consists of a 4-input NAND-gate per
row and column respectively and a 2-input NOR-gate per synapse, where
a0 · · · a5 are the address lines and WE the Write-Enable signal. The WE
signal in figure 2.10 is equivalent to the refresh signal in figure 2.8.

An alternative serial addressing scheme avoiding the need for global ad
dress wiring and row- and column-decoders is presented in [LBSSRVH93].
It requires one D-ftip-ftop and the distribution of two (global) clock-lines to
each synapse. The D-ftip-ftops of all synapses are connected sequentially
and only one D-ftip-ftop at a time has an active output (shift-register func
tionality).

4 For example, a 25-32-10 network contains 1162 synapses and only 42 neurons.

38 CHAPTER 2. SYSTEMS

2.4.2 Neuron Chip

Neurons are arranged in a column structure transforming M inputs Sj toM
outputs y1. Figure 2.11 shows the contents of the chip. While implementation
area and power consumption should be kept as low as possible, the necessity
to realize a minimum-sized, extremely low-power chip is less stringent as in
the case of the synapse chip.

S1 S2 SM

:··--------------+--- ------- --------- ---- ----- ---- -- -- ---- --- -------:

: !-1 Neuron 1 I : Y,

....._ ____ ___..,: Neuron 2 If-----+---""'- Y
2

: :

: j' ~ :

: ------------ -··--- ---- ----- - ------------------~-~--~~-~~~~- ~-_h- YM

refresh

Figure 2.11: Internal organization of the neuron chip

As noted in section 2.2.4, while for ease-of-writing the bias weight of
neuron is usually included in the weighted sum of inputs (see section 1.1.1),
in the case of a scalable hardware implementation special attention has to be
paid to this weight. Here, the bias weight will be implemented separately
with each neuron (in contrast with implementations where a synapse from the
synapse array is selected and connected to a constant input source [Leh94,
JCF96]). Figure 2.12 shows the elements of each neuron; a bias weight, a
sigmoid block, and a summator to add the contribution of the bias weight
to the input Sj-

A lower limit for the number of pins on each of the chips is given by:

in/ out addr ess+ WE supply ------- ,....,..__
PIN synapse = M + N + l og2 (M · N) + 1 + 2

infout address+WE supply
~~,....,..__

PINneuron = 2 · M +log2(M) + 1 + 2

(2.17)

(2.18)

In equations 2.17 and 2.18 the major part of the pins is used for the inputs
and outputs. Furthermore, a number of pins is used to address the· weights

2.5. WEIGHT STORAGE 39

refresh 1--------;.,. X • "-1"
(V) (V)

Neuronj
'----- -- - --- ------- ---- -------- - -------- -----------------_I

Figure 2.12: Forward path of a neuron

and 2 pins are reserved for the power supply. The actual number of pins on
each of the chips is usually larger than the numbers given by 2.17 and 2.18
as several other inputs are necessary, e.g. control voltages, bias currents,
etc.

If the number of synapses and neurons per chip are chosen very large,
the number of pins on each chip could be the limiting factor. In that case,
multiplexing techniques could be used to effectively increase the number of
inputs/outputs (usually at the cost of reduced speed). Some implementation
techniques are more suitable for this than others (see chapter 3).

2.5 Weight Storage

A lot of research is being done into the way in which weight values can be
stored in analog neural network implementations. Currently no true, efficient
analog electronic memory exists. Therefore, different approaches to storing
weights in synapses are used.

2.5.1 Digital Storage

Unless very high resolution weight storage is needed, digital memories con
sume more area than simple analog solutions. However, design and imple
mentation of digital memories are straightforward and problems with weight
leakage (see further) can be avoided.

In general, embedding digital circuitry in analog systems introduces the

40 CHAPTER 2. SYSTEMS

need for converters from digital to analog. Using digital weight storage
requires a digital-to-analog converter (DAC) in each synapse; the area of
such converters typically scale as O(Q2) [Leh94], where Q is the resolution
of the converter. In some cases, the converter and multiplier in a synapse are
combined [LJ95, JCF96, dSPB+92, DET+92, MHW94, HP90, vdBFP+9o]
saving some area but still the total implementation area is large.

For analog systems that include hardware learning, an analog-to-digital
converter (ADC) is also required to be able to adjust the (digitally stored)
weight values. In the case of parallel weight updating schemes [HPD91] such
a system is area inefficient because of the necessary high weight resolution
during learning [HF9l]. In [LBD94] , an elegant solution has been proposed
by adding an analog adjustment to a digital memory. Weight changes de
termined by the on-chip learning algorithm are accumulated on the analog
memory. When the equivalent of 1 LSB has been accumulated , the digital
word is decreased or increased and the analog adjustment is reset .

2.5.2 Non-volatile Storage

The most popular of this kind of storage is the floating gate storage where
a charge is trapped on the completely insulated (floating) gate of a MOS
transistor [VOM+91, HN92]. There are various ways of trapping the charge
on the floating gate [Ver94a]; some compatible with standard CMOS pro
cesses [LRIB96], other requiring special process steps as those in EEPROM
processes [vHHW+93], for example.

There are several reasons why it is not preferable to use these kinds of
memories in analog neural network implementations [Leh94]:

• Writing on these analog memories usually wears the devices. A typ
ical floating gate devices can endure in the order of 10,000 full scale
changes. This is sufficient for programmable recall-mode systems but
for adaptive systems it is not.

• Digital electronics (RAM, microprocessors, etc.) are the driving force
behind developing new VLSI technologies. State-of-the-art VLSI pro
cesses will be tuned to digital requirements and analog designers will
only be able to use such processes if they are willing to use the pos
sibilities offered by such processes.

• Even non-volatile analog memories compatible with standard CMOS
processes should be used with caution: they rely on undocumented
features of the process which (i) must be characterized experimentally,

2.5. WEIGHT STORAGE 41

(ii) probably are subjects to large process variations, and (iii) could
possibly be changed without notice by the vendor.

2.5.3 Capacitive Storage

A very simple method for storing an analog signal is to put a charge on a
capacitor and reading this using the high impedance gate input of a MOS
transistor [TS87). A capacitor in MOS technology can be designed as a
monolithic device using any structure in which a voltage-induced separation
of charge occurs (passive structure) or using the gate oxide capacitance when
aMOS transistor is operated in the non-saturated region (active structure)
[Ver94a). The main drawback of the capacitive storage is that the leak
age current (primarily) through the sampling switch eventually exhausts the
weight. Several approaches to reducing the leakage are possible. However,
most of these approaches e.g. [VOM+91] require a large implementation
area.

Here, a simple differential scheme as shown in figure 2.13 will be used
which cancels the influence of the source-bulk reverse biased junction cur
rents (assuming both currents are equal) . Furthermore, this scheme also
cancels, in first order, the offset errors due to charge injection through the
sampling transistors. In a trade-off between retention time and area, capa-

Output

Figure 2.13: Differential capacitive weight storage

citors of 0.1pF are implemented and both sampling transistors are minimum
sized. The capacitors are realized as a poly-poly structure. Weight values
are stored by refreshing Vw2 with a constant voltage while the actual weight
information is presented through Vw 1 • Both sampling transistors are oper
ated simultaneously.

Weight decay cannot be totally eliminated with this kind of storage and

42 CHAPTER 2. SYSTEMS

some kind of refreshing scheme is necessary. Here an external digital RAM
will store the weight values and the capacitors are periodically refreshed
via an external D/ A converter [EDT89] in a serial fashion. More complex
refreshing schemes are also known, see [Ver94a, HN92] for an overview.
Although a capacitor is a true analog storage device capable of storing any
value within a limited range["' 0; Vdd] (albeit for a short time due to leakage
of the charge), here only a distinct number of values will be stored onto
the capacitor. This is caused by the limited resolution of the digital RAM
(typically 12-16 bit) and D/ A converter.

Chapter 3

lm plementation

The circuitry necessary to jill in the high-level schematics of both synapse
and neuron chips in the previous chapter, will be presented here. T wo im
plementation approaches will be considered. A time-sampled, pulse stream
implementation where analog values are encoded using binary signals and
an analog, time-continuous implementation1 • In the latter case, a complete
test system has been realized. Furthermore, a general comparison between
the two approaches will be presented and high-level models for both synapses
and neurons will be introduced.

3.1 Pulse Stream Approach

Because of the advantages they provide, pulse stream (PS) modulations
[MCT91) are gaining support in the field of neural network hardware im
plementations. PS's are a class of modulation techniques widely used in
other fields of electronics as well (e.g. telecommunications). They are based
on "quasi-periodic" binary waveforms, where information is contained in the
timing instead of the amplitude. Therefore, PS's are mainly used to encode
analog values using binary signals.

Although pulse stream implementations were initially derived from stud
ies on the behaviour of biological neurons and on the nature of elect rical
spikes in axons, the reasons for a growing interest in such circuits is mainly
due to their interesting characteristics and good computational performance.

1 ln principle, both the pulse stream and time-continuous approach presented in this
chapter are analog implementations. However, here we will only refer to the time
continuous approach as the analog implementation.

43

44 CHAPTER 3. IMPLEMENTATION

Here, first an overview of several well-known PS modulations and real
izations of arithmetical functions using PS modulations will be presented in
section 3.1.1 and 3.1.3, respectively. From the large number of modulation
techniques, Coherent Pulse Width Modulation (CPWM) will be studied fur
ther. A theoretical analysis of CPWM and a general comparison between
CPWM and analog multipliers are presented in section 3.1.2 and 3.1.4, re
spectively. In section 3.1.6 several CPWM building blocks including meas
urements on realized circuits are presented.

3.1.1 Overview of Pulse Stream Modulations

In neural network implementations, PS's are primarily used to encode input
and output signals ai. In some cases, weight values are also coded as pulse
streams. Here, several well-known PS techniques will be discussed [Rey95].
Figure 3.1 shows examples of timing for the PS techniques described below:

1. Pulse rate modulation (PRM) (also called pulse frequency modu
lation (PFM)[MT94]) pulses usually have constant width Ton while the
average frequency of the PRM signal is proportional to the activation
value:

(3.1)

where ai E [0 ... 1]. Typical values of !max used in the literature range
from 500kHz to 5 MHz [Rey95]. With this technique, only the average
frequency should be considered.

2. Pulse width modulation (PWM) pulses may have a constant fre
quency fo = A, while the widths of the individual pulses are propor
tional to the activation value:

(3.2)

where ai E [0 ... 1] and T max ~ To. Typical values of fo range between
100 kHz and 500 kHz. Pulse frequency does not need to be constant
since the only relevant information is contained in the width .

3. Pulse code modulation (PCM) is a sequence of bits that the rep
resent the binary encoding (i.e. in serial form with bit-rate fa) of the
activation value. Bits are grouped together to represent a value with
certain accuracy.

3.1. PULSE STREAM APPROACH

Ton
---1------1---

PRM _IlL__ __ nL__ __ n'--------

PWM

PCM

SPM 1 1

Td

PDM ___f1 n n n__
1/fs
1---l

PBM

PAM _____n __ ___,n

Figure 3.1: Overview of PS modulations

45

4. The bits in a Stochastic pulse modulation (SPM) stream have an
average bit rate /q = i: . The probability Pi (1) of having a "1" in the

q

sequence is proportional to an activation value:

(3.3)

where G'i E [0 ... 1].

5. With pulse delay modulation (PDM), the time Td between two
pulses on either a pair of lines (called pulse phase modulation (PPM)),
or on the same line is a function of the activation value.

6. With burst modulation (PBM), the number of pulses contained in
a relatively short burst represents the activation value:

(3.4)

46 CHAPTER 3. IMPLEMENTATION

where I< N is a proportionality factor which gives the maximum number
of pulses in each burst and ai E [0 ... 1] . Within bursts, fB is the peak
bit rate.

7. Although Pulse amplitude modulation (PAM) is not a binary
modulation technique, it is mentioned here since it is often used for
neural computation in conjunction with other PS modulations. The
pulse amplitude can be made proportional to the activation value.

A more elaborate overview of PS modulations including a performance ana
lysis of the different techniques can be found in [Rey95).

3.1.2 Coherent Pulse Width Modulation (CPWM)

Coherent Pulse Width Modulation (CPWM) is a variation of PWM, where
all incoming streams have a known phase relationship with each other. As
shown in figure 3.2, there is an additional reference clock (CCK) common
to the whole system. CPWM activation signals (X1 .. . XN) have a constant

To Tmax ~idle
' '

active
' ' '

CCK~
IT11 w u u L

' . '

x1

XN

Figure 3.2: Timing diagram of CPWM modulation

frequency fo = A, while their width is proportional to the activation value:

1 + ai
Ti = T maxai or Ti = T max -

2
- (3.5)

for unilateral or bilateral CPWM, respectively. Activation values ai are
normalized so that ai E [0 ... 1] or ai E [-1. .. + 1], respectively, while
Tmax < To. Note that in the case of bilateral CPWM, the pulse width for
an activation value ai = 0 is ~-

The reference clock defines two phases: CPWM signals are allowed to
be "1" only during the active phase (Ti ~ T max) and they must always be

3.1. PULSE STREAM APPROACH 47

"0" during the idle phase. It is often convenient to avoid having Ti = 0 and
Ti = Tmax, since (in certain circuits) this condition can increase the influence
of charge injection effects, decreasing the overall accuracy of the system.
Pulses are usually centered within the active phase2 . In both measurements
and simulations reported here, fo = 1 MHz, T max = 800 ns.

Since a CPWM system is a time-sampled system, it may suffer from
aliasing problems when dealing with time-continuous input signals which
have to be processed by the system. Therefore a CPWM Nyquist frequency
is defined as:

(3.6)

which is a parameter comparable to the cut-off frequency of analog systems.
It will therefore be used to compare the performance of CPWM systems with
the performance of analog ones (see section 3.1.5).

In spite of what was earlier believed [HMB+92], the phase relationship of
CPWM streams does not imply synchronism among leading or trailing edges
of the waveforms, which would cause high current spikes on the power supply.
Assuming all activation values have an equal probability of occurrence and
pulses are centered, waveform edges are uniformly distributed within the
active phase of the reference clock [CV93, RCCG93].

Implementation Connections Response Power
System Size per second Time Dissipation

(1.5pm CMOS) (per chip, 50mm2
) (per synapse)

(x103 pm2
) (x106 s- 1

) (ps) (pW)
CPWM 5- 20 100 - 500 5- 10 10 - 100
PWM 5- 50 5- 50 50- 200 10 - 1,000
PRM 10 - 100 2- 20 ~ 100 100- 1,000
SPM 10- 30 25 - 100 20- 100 100- 200

Table 3.1: Performance comparison of several PS techniques

In [Rey95], both theoretical and real performance figures have been com
pared for different types of PS, showing that CPWM offers better perform
ance than many others. Table 3.1 from [Rey95] shows a performance com par
ison for several important characteristics of different types of PS techniques.
For each technique, a wide range of values is given since performance very
much depends on the topology of the implemented neural network and on
the specific circuit implementation of the different building blocks.

2 Left or right alignment within the active phase is also possible . However, the coincid
ence of either leading or trailing edges of the waveforms results in high transient CW'rents,
which are undesirable.

48 CHAPTER 3. IMPLEMENTATION

3.1.3 Pulse Stream Arithmetic

Here, the implementation of several arithmetical functions using PS tech
niques will be mentioned. The list is not meant to be exhaustive but illus
trative.

Addition

For PRM, addition could be simply realized by a logical OR function of two
PS signals. If two pulse streams are uncorrelated, the logical OR of those
signals will represent the addition of the two inputs. Errors are, however,
introduced as the pulses in the two streams could overlap. If the two inputs
streams are statistically independent, the overlap is a stochastic occurrence.
In [MT94], an in-depth analysis is done on the occurrence of these errors
related to size of a network. The technique of ORing signals together does
not scale very well and is therefore not usable for large networks.

Multiplication

PS multiplication in neural networks is performed by combining two PS
techniques. Multiplication is based on the property of pulse power P which
is the triple product of pulse amplitude by pulse width by pulse frequency. To
perform PS multiplication, two of these three parameters are associated with
input activities x and synaptic weights w, while the third is held constant
(K). There is a wide choice of combinations of PS modulations. Here a few
combinations will be mentioned. A more complete overview can be found in
[Rey95].

• PWM+PAM The output of the multiplier is a pulse with the
same width as the PWM input pulse while its amplitude depends
on the PAM input. In practice, PWM is used to encode the input
x of a synapse and the weight w is stored as a voltage. The output
is a pulsed current with an average value of:

(3.7)

Multiplication can span either one, two, or four quadrants. As
pulse widths cannot become negative, for two- and/or four
quadrant multiplication, a reference pulse is introduced to denote
a zero-value pulse width (see section 3.1.2).

• PRM+PWM The output of the multiplier has the same fre
quency as the PRM input pulse but the width of the output

3.1. PULSE STREAM APPROACH

pulse is modulated by the other input. The width of the output
pulse is stretched or compressed in time to realize a multiplicat
ive relationship.

• SPM+SPM Multiplication of two SPM streams can be
achieved by a logical AND of the two inputs signals. Provided
that the two streams are uncorrelated, the output is also a SPM
sequence with probability Poutput(l) = x1x2 , where P1(l) = x1
and P2 (1) = x 2 are the probabilities for each input.

Hamming Distance

49

The absolute difference between two CPWM signals with leading edges co
incident or centered (see section 3.1.2) can easily be computed using an
Exclusive OR gate. In figure 3.3 an example is given. Signals X 1 and X 2

are the input signals of the Exclusive OR gate and X 3 = X 1 EB X 2 is the
output. Although the position of the resulting output pulse X 3 does not

x,~

X2 Jl__

X3 =X1 ~X2 _Sl_
Figure 3.3: Difference between CPWM signals

correspond with the position of input signals X 1 and X 2 , this should not
pose a problem as the information contained in the output pulse can still
be used in further computations. For example, by translating the output
voltage pulse into a current pulse and integrating it on a capacitor. Pos
sibly together with the current pulses of other such circuits in which case
the charge on the capacitor would represent the sum of absolute differences
between input signals, also known as the Hamming distance.

Winner-Take-All

A Winner-Take-All network can easily be realized when output values of
neurons are represented by CPWM pulses with leading edges coincident or
centered (see section 3.1.2). The output with the largest value will have the

50 CHAPTER 3. IMPLEMENTATION

longest pulse and finding this signal in a collection of pulse width signals can
easily be done using simple digital logic circuits. In figure 3.4 an example

X1 _fl__

X2 ___jL

x3 _11_
Figure 3.4: Winner-Take-All

is given with three signals X 1, X 2 , and X 3 • It is easy to see that signal X 2

is the winner. For the Winner-Take-All network to function properly, the
rising edges of the input pulses should coincide.

3.1.4 Performance Analysis of CPWM Systems

This section presents a theoretical performance analysis of CPWM neural
systems [RWHC94]. The results are later (see section 3.1.5) used to compare
the performance of CPWM and analog systems. A multiplier is considered
as the case study, although similar analyses can be applied to other parts
of the system. To be able to compare both implementation schemes in a
sensible way, the Gilbert cell [Mea89] shown in figure 3.5 will be used for
both multiplication schemes3

. The differential output current of the Gilbert
multiplier is converted into a single-ended current through a two-transistor
current mirror and an output voltage is obtained by integrating the current
during the active phase of the reference clock. Necessary simulations have
been done using ES2 l.Of.Lm, double metal, single poly CMOS technology
process parameters for typical parametric mismatches due both to variations
b.f3 of the technological parameter f3 = fLoC ox~ and variations b. Vr of
the threshold voltage Vr of MOS devices[AH87]. For both tail currents,
mismatches in the aspect ratio ~ (b.W = ±0.25f.Lm, b.L = ±0.25f.Lm) and
threshold voltages Vr (b. Vr = ±20m V) were introduced in a worst case
combination.

The input-output characteristic of a multiplier is approximately4 given

3 Note that the Gilbert multiplier is quite similar to the CPWM multiplier proposed in
[RCCG93].

4 Non-linearity in the multiplication is not included in this simple model and is studied
separately.

3.1. PULSE STREAM APPROACH 51

Figure 3.5: Gilbert/CPWM multiplier

by:

(3.8)

where g is the multiplier gain, X 1 and X 2 are the two inputs, both normalized
in the range [-1 ... + 1], and 81 and 82 are the input offset terms for each
input, respectively. The term 8M is the undesired output offset.

In the case of a CPWM system, one of the inputs is a CPWM signal,
while the other one usually is a voltage. Here, X 1 is the CPWM input,
with vl+ the pulse stream input and vl- the inverse pulse input. x2 is a
differential continuous voltage; V2 = V/ - V2-. Vo is the output voltage of
the multiplier, stored on a capacitor and sampled at the end of the active
phase. Vo is normalized so that, for an ideal multiplier (.6.Vr = 1}.(3 = 0),
g=l.

Multiplication errors

Errors are given by the sum of two major components, namely analog errors
due to those transistors (called analog) operated in an analog fashion (i.e.
linear or saturated region, e.g. M3, M4 , M5 , and M6 in figure 3.5) and
digital errors due to those transistors (called digita~ which are operated as
ON/OFF switches (e.g. M1 and M2 in figure 3.5).

In the case of the Gilbert multiplier, analog transistors are connected as
a differential pair. Non-ideal devices and parametric spreads (1}.(3 and /}. Vr)
cause that the weight-voltage to current characteristic differs from the de
sired one and therefore they introduce errors in the multiplier characteristic.
Digital errors are given by timing errors (e.g. limited rise and fall times of

52 CHAPTER 3. IMPLEMENTATION

digital signals), by charge redistribution, and charge injection effects during
switching of MOS-transistors.

Errors can be of three types, namely gain and offset errors and non
linearities:

• Gain errors are due mainly to analog transistors. Gain is a func
tion of both the Nyquist frequency fN (and consequently fa) and the
mismatches among transistors. The gain is usually constant at low fre
quencies, while it reduces at higher frequencies. In the example shown
in figure 3.5, there are two capacitively-charged nodes which produce
two poles at about the same frequency (see figure 3.8):

9o(b.{3, b. VT)
g-:::::, 1+(~)2 (3.9)

where fp and g0 are, respectively, the multiplier cut-off frequency and
the low-frequency gain, which is a function of the mismatches !J.f3 and
!J.VT (heuristic model). Table 3.2 gives the values of g0 and fp, as
obtained from simulation of the case study.

• Input offset errors 8 1 and 82 can be handled independently. Vari
ations in either f3 or VT have very little influence on input X 1 as only
digital pulses are applied to this input. Analog input X 2 is influenced
by both !J.f3 or !J.VT. However, this concerns the weight value input of
the multiplier and any offset in this input can easily be compensated
by a learning algorithm .

• Output offset errors eM have two components, which are due to
analog (8A) and digital (8n) transistors, respectively. Since the two
components are independent, they sum up together:

(3.10)

As for gain errors, the analog offset 8 A depends on transistor mis
matches !J.f3 and b. VT but it is roughly independent of the clock fre
quency. On the other hand, digital offset 8 D is caused by charge
injection due to switching of digital input signals. It is likely that a
fixed quantity of charge is injected at every transition. Even though
the charge due to rising and falling edges partially compensate, there is
a net charge Ke injected at every input pulse, which causes an offset
at the output. Therefore the digital offset is a function of the Nyquist
frequency:

(3.11)

3.1. PULSE STREAM APPROACH 53

Simulations confirm this behaviour, as can be seen in figure 3.9. Table
3.2 presents the values of 8A and Ke, as obtained from simulations.
It can be seen that the value of 8 A depends only on b..f3 and b.. Vr,
while I<e is roughly independent of transistor mismatches.

Similar to offset in the weight input X2, offset in the output of the
multiplier can easily be compensated for by the learning algorithm
in conjunction with the bias weight of the neuron this multiplier will
be connected to. However, as a large number of multipliers might be
connected to the same neuron, care must be taken that the output
offset of each multiplier is minimized to prevent the bias weight from
becoming saturated.

• Non-linearity L: although a multiplier is by definition a non-linear
system, it should behave partially linearly, in the sense that both the
Vo vs. XI for a given value of x2 and the Vo vs. x2 for a given value
of X 1 should be linear relationships.

A non-linearity factor L can be defined as:

f (Vo(Xt) - V0(Xt)) 2 dX1

f (V0(Xt)) 2 dX1
(3.12)

where V0(Xt) is the linear relationship which best fits Vo(X1). It is
difficult to develop a theoretical model of the non-linearity but it is
clear from simulations (see fig 3.10) that it depends on the Nyquist
frequency in a rather irregular way.

In the case of a CPWM multiplier the analog-input to output rela
tionship (e.g. Vo vs. X2 in the case study) is often non-linear, since
it relies on non-linear devices (e.g. a differential stage in the Gilbert
multiplier). Furthermore it should be comparable to that of an analog
multiplier based on similar circuits (see figure 3.7) .

On the other hand the digital-input to output relationship (e.g. Vo vs.
X 1 in the case study) is more linear, since it relies on an integration in
the time domain, which is intrinsically a linear operator. In practice,
VLSI capacitors are slightly non linear devices, therefore they reduce
overall linearity.

Note that any non-linearities in the weight-to-output (in this case Vo
vs. X 2) relationship of a synapse can be compensated by a non-linear
weight updating scheme in the learning algorithm. Therefore, most

54 CHAPTER 3. IMPLEMENTATION

attention should be paid to non-linearities in the input-output transfer
of a synapse.

Response time

The response time Ts is defined as the time needed to accurately compute one
synaptic multiplication. For plain CPWM (i.e. without multiplexing), this
coincides with the clock period To of the system. Instead, if multiplexing is
used, the response time is increased by the multiplexing factor MR [Rey95].

It is clear from the analyses presented above that computation errors are
a function of the clock (and therefore the Nyquist) frequency. A trade-off
between speed (i.e. response time) and accuracy can therefore be estab
lished, according to overall requirements.

Power dissipation

Each synapse dissipates an average power Pr which is the sum of dynamic
and static power dissipation. The former is due to the switching of digital
signals (charge and discharge of parasitic capacitors) and it is proportional to
the Nyquist frequency, while the latter is the average of the power dissipated
during the idle (PI) and the active (PA) phases of the clock. PA is the
average of the power dissipated when the input signal is "1" (Pt) and "0"
(Po). For bilateral CPWM [RWHC94]:

0 E J (To- Tmax)PI + ~((1 + Cii)Pl + (1- Cii)Po)
rr = 4 0 N + To , (3.13)

where Eo is the energy dissipated at every signal edge. An average value for
Pr can be evaluated in case of a uniform distribution of ai E [-1 ... + 1],
which gives:

(T. T)p T (P,+Po)
Pr = 4EofN + 0 - max I+ max 2

To
(3.14)

Since the power in the idle phase is wasted, it is a good practice to reduce
it to zero. For the other two components, it can be observed that most two
quadrant multipliers can be redesigned to have Po = 0, while good four
quadrant multipliers have P1 = Po. In the case of the Gilbert cell PI = 0,
while pl = Po = vddlo, therefore Pr = 4EofN + TT~x vddlo. Zero power
consumption during the idle phase (PI = 0) is realized by switching the tail
current by the reference clock CCK.

3.1. PULSE STREAM APPROACH 55

3.1.5 Performance Comparison of CPWM and Analog Mul
tipliers

The Gilbert cell of figure 3.5 will be used in simulations to be able to compare
both static and dynamic behaviour for both computation schemes.

Simulations have been done for mismatches in the aspect ratio {3 (~ W =
±0.25~tm, ~L = ±0.25~tm) and threshold voltages Vr (~ Vr = ±20m V)
introduced in a worst case combination. Like in the case of CPWM, analog
inputs are normalized such that the linear range of the analog multiplier
corresponds to a range [-1 ... + 1].

The differential output current of the Gilbert multiplier is converted into
a single-ended current through a two-transistor current mirrorfor both cases.
For CPWM, this current is integrated using an ideal integrator and the
resulting output voltage Vout is sampled at the end of the active phase, while
for the analog system an ideal current-to-voltage converter is simulated and
its output voltage represents the output of the multiplication.

Static comparison

First the static characteristics of the two multiplication schemes are com
pared. In the CPWM case, the relationship between the pulse input V1 and

0.8

0.6

0.4

0.2

o r-----------~~------------4

-0.2

-0.4

-0.6

·0.8

Figure 3.6: Static characteristic of CPWM multiplier
for the pulse input for different values of v2,

for Io = 1ftA, ~{3 = ~ Vr = 0.

the output voltage Vo is in principle linear because it relies on the integration
of a current on a capacitor. Figure 3.6 shows the Vo - V1 characteristic of a

56 CHAPTER 3. IMPLEMENTATION

CPWM multiplier for different values of V2• The relationship between both
inputs and the output for the analog case has a similar shape. A sample plot
is shown in 3.7 on the left side for the ideal case, i.e. without any mismatches.
Furthermore, the Vo vs. V2 characteristic for CPWM also has this shape as
it relies on the 'analog' behaviour of the Gilbert cell. Mismatches among

- 1 -~,L.s -~-.o~ .• --o~----:':o.,,-----~--::' .. ,
Nonn.bltd i"4l'Ut volta;• ol V1

t::J./3 = t:J.Vr = 0

&
9

l

i
j

...

0 .5

.0.5

-o.5 0 0.5
NOfmaliudinputvoh• V1

Worst case mismatches

Figure 3.7: Static characteristic of analog multiplier
for input vl for different values of v2

transistors caused by variations in the aspect ratio (3 and variations in the
threshold voltages Vr, mostly result in a shift of the static characteristic of
the multiplier for both multiplication schemes. A sample plot, where both
mismatches are present in a worst case combination is shown in figure 3.7
on the right side.

Clearly, CPWM has an advantage with respect to the linearity between
the output and the pulse input while the relationship between the continuous
input and the output has a shape similar to the characteristics of the analog
case.

Dynamic comparison

For the dynamic properties, gain, offset, and linearity as a function of fre
quency have been compared. Simulations have been done with different
mismatches introduced.

• The gain versus frequency relationship of both the CPWM and the
analog multiplier with 10 = lpA are shown in figure 3.8 for the ideal
case, i.e. without mismatches. In the plot, the gain is normalized so
that the gain at low frequencies is equal to 1. Both multipliers have
a comparable bandwidth. Note that for the CPWM case, the Nyquist
frequency is used in the plot.

3.1. PULSE STREAM APPROACH

0

-10

iii" ·20 :E!.
c:

"iii
C> -30 .,
.~
Oi -40
E
0 z

-50

-60

-70
0.001 0.01 0.1 1 10 100

Frequency (MHz)

Figure 3.8: Gain vs. frequency relationship of analog and
CPWM multipliers, for Io = lJ1A, 6.(3 = 6. Vr = 0.

I .,
-~
Oi
E
0 z

0.1

0.01

0.001

0.01

c~:J~~:~~,N~ := _.--
CPWM simulated • ,././/_..~

/_Y/f

____ ---·~·

0.1 1
Frequency (MHz)

.... --· ,<

10 100

Figure 3.9: Offset vs. frequency relationship of analog and
CPWM multipliers, for 10 = lJ1A, 6.(3 = 6. Vr = 0.

57

• Figure 3.9 shows the offset as a function of the frequency for both
CPWM and analog multipliers in the ideal case. In the analog case,
for frequencies higher than lMHz, the offset increases due to capa
citive coupling, while for even higher frequencies both the signal and
offset are heavily attenuated5 . For CPWM, offset for low frequencies is
higher than in the analog case and increases for high frequencies. This

5 The values for e A collected in table 3.3 are valid for the low-frequency range where
the offset is constant.

58 CHAPTER 3. IMPLEMENTATION

is mainly due to capacitive coupling between the pulse input (with high
frequency components due to the pulse shape) and the output. Both
theoretical and simulation points are shown for the CPWM multiplier.
Note that the behaviour above the cut-off frequency is not so important
for the functioning of the multiplier.

-~

i
i:.
0
z

0.1

O.DI / ..• /;

------ ·---------· ·-------./

0.1 1
Frequency (MHz)

Analog simulated --
CPWM simulated ·•···

10 100

Figure 3.10: Non-linearity vs. frequency relationship of analog
and CPWM multipliers, for fa = 1J.LA, /::if]= l::i Vr = ; 0.

• The dynamic non-linearity of both multiplication schemes has been
compared in the following way. An AC source was connected to input
V1 while a DC sweep (over the complete input range) was made with
the voltage connected to V2. For each frequency of the AC source, a
best linear fit was made for the output voltage and the non-linearity
factor was computed, as defined in formula 3.12. The results of the
simulations are shown in figure 3.10, where it can be seen that for
low frequencies CPWM linearity is much better. The linearity of the
analog multiplier is better around 10 MHz but as this is higher than
the cut-off frequency, it is not so interesting.

Data on gain, cut-off frequency and offset are collected m tables 3.2
and 3.3, for both multiplication schemes.

Conclusion

From the simulations and analyses presented above, it may be concluded
that both computation schemes have a comparable performance for low
power consumption values. Bandwidth is slightly in favor of analog systems,

3.1. PULSE STREAM APPROACH

lo Mismatch 9o /p E) A I<e
pA MHz MHz- 1

1 - 1.00 2.1 0 .006 0.059
1 6.{3 0.76 2.1 0.158 0.042
1 IJ.VT 0.84 2.1 0.105 0.049
1 6.{3 + D. VT 0.55 2.3 0.278 0.031

Table 3.2: Typical parameters for a CPWM multiplier
Data extracted from simulations [RWHC94].

lo MISMATCHES 9o fp E) A

pA MHz
1 - 1.00 3.5 0.002
1 6.{3 0.79 3.5 0.126
1 IJ.VT 1.08 3.7 0.068
1 6.{3 + D. VT 1.41 3.6 0.263

Table 3.3: Typical parameters for an analog multiplier.
Data extracted from simulations [RWHC94] .

59

while non-linearity is slightly in favor of CPWM systems. For higher values
of power consumption , analog systems have a more distinct advantage in
bandwidth [RWHC94]. Nevertheless, CPWM systems have some additional
advantages:

• Design of CPWM systems is less complicated, since several devices are
operated as ON/OFF switches reducing their sensitivity with respect
to process variations (e.g . .6. VT).

• Multiplexing and handling (e.g. routing) of CPWM signals is easier as
it can be performed by digital circuits (e.g. multiplexers) [Rey95].

• The noise sensitivity of CPWM systems is much lower than that of
analog systems [RWHC94].

Note that most multipliers reported in the literature [GSBJ91] have been de
signed with a much higher power consumption than their CPWM equivalents
(see [Rey95] for detailed analysis).

3.1.6 Building Blocks

Here, the building blocks necessary to fill in the high level schematics of both
synapse (section 2.4.1) and neuron (section 2.4.2) will be introduced for the

60 CHAPTER 3. IMPLEMENTATION

pulse stream implementation. Most blocks have been implemented on a chip
containing several test structures6 .

One-quadrant Multiplier

A simple one-quadrant CPWM multiplier can be realized with only two
transistors, as shown in figure 3.11. A continuous voltage Yin; is applied to
transistor M1, while the pulse stream signal Xi is connected to transistor
M2 which operates as a switch. As long as transistor M1 is operating in
the linear region, the output current Iout; has a linear relationship with the
input voltage Yin;. Keeping M1 in the linear region can be accomplished
by leading the output current through a current conveyor in which case the
voltage over the multiplier can be kept constant. To obtain a multiplicative

Figure 3.11: One-quadrant CPWM multiplier

relationship between the two inputs, the output current I out is used to charge
a capacitor Cint, according to:

1 1Tmax J<
Vout; = c----:- Iout;(t)dt = -C· (Yin;- VT)Ti

tnt 0 2 tnt
(3.15)

where Ti is the pulse width of the CPWM signal present at input Xi, while
the capacitor voltage Vout represents the multiplier output. I< is a factor
which includes the transconductance and the (constant) drain-source voltage
of Ml. During the idle phase the capacitor is discharged.

Two-quadrant Multiplier

Figure 3.12 shows a two-quadrant multiplier consisting of a Voltage-to
Current Converter (VCC), realized with transistors M1 through M5, of

6 Currently, work is going on to implement a complete synapse array using the MIETEC
0.5pm double poly, triple metal process.

3.1. PULSE STREAM APPROACH 61

which the power supply is switched through M6. One input of the mul
tiplier is a differential continuous voltage Vw; = Yin; - Vref which is used to
represent the weight in a synapse. The input Xi is a ePWM signal, usually

Figure 3.12: Two-quadrant ePWM multiplier

the input signal to the synapse. The continuous input is bilateral , while the
pulse input is unilateral. Hence, the output current l out is a pulsed current
which can either have a positive or negative sign resulting in a two-quadrant
multiplication.

As for the one-quadrant multiplier, the output current lout is integrated
on a capacitor7

:

(3.16)

with Ti = Tmaxl:Xi, <:Xi E [0; 1] (unilateral), Vw; = VwmaxWi, Wi E [-1; 1]
(bilateral), and K the transconductance of the vee, respectively.

7 lt assumed here that the vee is ideal in the sense that the output current has a linear
relationship with the input voltage.

62 CHAPTER 3. IMPLEMENTATION

Figure 3.13 shows the measured characteristics of the two-quadrant mul
tiplier realized in the MIETEC 2.4 J-Lm double-poly, double-metal process
(additional circuit details can be found in appendix D). As the output of the
multiplier is a pulsed current (which is difficult to measure), the complete
transfer of both multiplier and integrator (see below) has been measured8 .

The output vs. weight characteristic is measured for different pulse widths
covering the whole pulse input range and similarly, for the output vs. pulse
plot weight voltages from -1V to +1V were used. As mentioned in section
3.1.2, Ti = 0 and Ti = Tmax are avoided to minimize the influence of charge
injection.

2.5

f
J 15

0.5

-0.5 0 0.5
Weigh1vol1ag1 M

Output vs. Weight

2.5

f
i 15
0

0.5

0 oL-~100~~=~~~~~=~~~~~~~~,oo~~
Pul•• widlh in n•

Output vs. Pulse

Figure 3.13: CPWM characteristics (measurement)

Taking into account the simplicity of the synapse circuit, the plots show
excellent linearity both for the pulse-to-output as well as the weight-to
output transfer characteristic. A more non-linear behaviour of the latter
might not have been a problem as this can be compensated by the (non
linear) weight updating scheme in the learning algorithm.

The photograph in figure 3.14 shows the realized two-quadrant CPWM
multiplier including capacitors for weight storage and access transistors for
refreshing. The area occupied by the multiplier (excluding the capacitors and
access transistors) amounts to 3700J-Lm2. An estimate for a complete synapse
(including capacitors, access transistors, address decoding, and communic
ation lines) in the same 2.4J-Lm technology amounts to 14,000J-Lm2•

It should be noted that the power consumption of the multiplier is low.
The bias current is as low as 10 J-LA and this current is only flowing when
transistor M6 is conducting. Hence, the synapses will not consume any power

8 Each dot in the plots represents the output voltage of the integrator at the end of the
active phase.

3.1. PULSE STREAM APPROACH 63

Figure 3.14: Photograph of realized ePWM-multiplier

during the idle phase of the clock period and power consumption during
the active phase is depending on the pulse signal input. Assuming that on
average the ePWM input Xi of the multiplier during the active phase is" 1"
in 50% of the cases, the average power dissipation P2q = T!f\;* ·0.5·hias· Vdd =
0.8 · 0.5 · lO~tA · 5V = 20~tW.

Special care should be taken during layout of ePWM building blocks
as both analog and digital signals are used in almost all blocks. Especially,
digital signal lines should be shielded to minimize the influence (e.g. via the
substrate and capacitive coupling between signal lines) of high-frequency
components in the ePWM signals on analog voltage levels and microamp
current levels. Furthermore, standard layout techniques [Ver95b, Ver95a)
used in mixed analog-digital circuit design should be applied. At the cost of
some increased implementation area, significant improvements in accuracy
of the total system can be achieved.

Four-quadrant Multiplier

The two-quadrant multiplier of figure 3.12 can easily be expanded to a four
quadrant multiplier. As can been seen in figure 3.15 only 4 switches (M7-
M10) are added to the original circuit. In this case, the power supply of the
vee is switched by the inverse of the reference clock (eeK) and the weight
voltage Vw;(= Vin;- VreJ) is switched between the inputs (M1 and M2) of
the vee by the ePWM input signal Xi. Both the continuous input and
pulse input are bilateral hence realizing a four-quadrant multiplication.

64 CHAPTER 3. IMPLEMENTATION

Figure 3.15: Four-quadrant CPWM multiplier

Tmax
-2-

Figure 3.16: Four-quadrant CPWM multiplier timing

Both the "1"- and "0"-part of the pulse input are now used in the mul
tiplier, a pulse width of ~ representing a zero input value. Figure 3.16
shows the timing as used in the formulas below to derive the multiplicative
relationship between the two inputs:

Vout; C1
{Tma:r lout; (t)dt

mt Jo

[

Tma:r-Tj Tma:r+Tj T l
1 Ia 2 h 2 h ma:r -C -I<Vw;dt + T -T· KVw;dt + T T -KVw;dt
· t 0 ma:r , max+ ,
•n 2 2

3.1. PULSE STREAM APPROACH 65

1 [1T; jTmax l -C· KVw;dt + -KVw;dt
tnt o T;

(3.17)

where ai E [-1; 1] and Wi E [-1; 1).
The four-quadrant CPWM multiplier has been simulated using the

MIETEC 2.4J.Lm process characteristics. To obtain a realistic simulation
of such a dynamic circuit in silicon, a complete system, i.e. a multiplier
and an integrator, has been simulated. Figure 3.17 shows the output versus

...

...

• .• L..---.~ •.• --~.---,.~ .• --...._j

Weightvolta~M

Output vs. Weight

too 200 300 400 500 eoo 100 aoo
Pulu widtl in na

Output vs. Pulse

Figure 3.17: CPWM characteristics (simulation)

weight characteristic for different pulse widths and the output versus pulse
width relationship for different weight values, respectively. As the circuit is
basically the same as the two-quadrant multiplier plus some switches, the
observed linearity is again very good.

In contrast with the two-quadrant multiplier, power consumption of the
four-quadrant version is not dependent on the CPWM input signal but con
stant, P4q = Tl¥;x . hias. vdd = 0.8. 10J.LA. 5V = 40J.LW.

Integrator + Sample & Hold

The summing input of a neuron is realized by connecting the outputs of one
or more multipliers, each generating a pulsed output current, together to

66 CHAPTER 3. IMPLEMENTATION

a low-impedance node. The resulting current is integrated on a capacitor
and the voltage over the capacitor at the end of the active phase represents
the sum of weighted inputs (see section 1.1.1). By realizing the integrator
as a floating capacitor over an operational amplifier, a virtual ground input
node is created. By connecting the outputs of several multipliers to this input

Figure 3.18: Integrator

node (common to all multipliers) of the integrator, summing is automatically
realized and the characteristics of the multipliers are not influenced due to
a constant voltage at the output of each multiplier. The inset in figure 3.18
shows the general schematics of the total circuit. The output voltage of the
integrator at the end of the active phase is stored through a simple Sample &
Hold circuit (M8 and C2). The stored voltage is used by subsequent circuits
during the clock period following the current one. The circuit shown in figure
3.18 has been realized together with the two-quadrant CPWM-multiplier
presented before. During measurements of the multiplier this circuit was
used to transform the pulsed output current of the multiplier to an output
voltage at the end ofthe active phase.

The switch operated by Vconnect is necessary to make sure that the integ
ration capacitor C3 is completely cleared during the idle phase and no charge
from any of the connected multipliers is accumulated before the active phase
starts. The complete timing diagram of the different switches in figure 3.18
in relation to the CPWM reference clock is shown in figure 3.19. In practice,
the reference clock CCK is directly connected to Vconnect.

3.1. PULSE STREAM APPROACH 67

active idle

CCK

vconnect

Vsample Jil ~
' '

vdump Jl IL
Figure 3.19: Integrator timing

Scaling

Scaling, as earlier introduced in section 2.2, should ideally be realized in a
distributed way, i.e. the output current of each synapse should be automat
ically scaled when the network size increases. Examples of implementations
of automatic linear scaling can be found in [CV93, STG92]. However, square
root scaling (as derived in section 2.2) is difficult to realize in an area effi
cient way in a synapse. Therefore, a variable integration capacitor will be
introduced at the integrator (C3 in figure 3.18). By realizing the integration
capacitor as several separate capacitors in parallel with values in a rela
tion 1:2:4:8 including some switches, a maximum scaling factor of 15 can be
realized and from 1 to 225 synapses can be connected to the same neuron.

Sigmoid

The output of each neuron should again be a voltage pulse stream compliant
with the CPWM timing, which can be distributed to several synapses. The
integrator presented in the previous section realizes the summing input node
of a neuron (see section 2.4.2). An additional block is necessary to implement
the non-linearity and generate an output pulse stream which can be fed to
a number of synapses. Two approaches will be considered:

• In the case of a static sigmoid implementation, the voltage stored on
capacitor C2 in figure 3.18 is applied to a circuit which implements

68 CHAPTER 3. IMPLEMENTATION

r v+
~nt --------1 _} f--------1

Figure 3.20: Static sigmoid

a voltage-to-voltage sigmoidal functionality. An implementation with
such functionality can be realized with a small number of transistors,
e.g. a differential pair with an active load [Oos94] . A slightly more
complex circuit could also include the possibility to vary the steep
ness of the sigmoid which, in combination with the variable capacitor
introduced in the previous section, realizes a scaling possibility.

Figure 3.20 shows the sigmoid block and a comparator. The output
voltage of the sigmoid block V+ is connected to one input of the com
parator while a triangular signal Vext is applied to the other input. The

ccKlJ u u L
vext - - : -------- - -- . - ------- - - - - : ---------- - . - -- v+max

---·---- - .-----·-·---- .-. - - --~--- v . : : +min

u U L
vout2 _n._____.n._____jl_

Figure 3.21: Sigmoid timing

amplitude of the triangular signal should be chosen in such a way that
the lower saturation value of the sigmoid block (V+min) realizes a min
imum pulse width while the maximum saturation value (V+max) results
in a maximum pulse width. A correct phase relationship between the
reference clock CCK and the triangular signal ensures the centered
alignment of pulses within the active phase. In figure 3.21 the various
signals are shown including a maximum pulse width (Voutl) case and

3.1. PULSE STREAM APPROACH 69

a minimum pulse width (Vout2) realization.

• Dynamic waveform comparison is another way to realize the sig
moidal functionality. This approach combines the realization of the
non-linearity and the generation of pulses. In this case, the output of
the integrator Vint is directly connected to the input of the comparator
while to the Vext input, a signal which represents the inverse of the sig-

CCKU u u L
vext

. -- --- -- - -- - ---- --- - ---------- -- - --- -- -- - v+min

----------- - -- - - ------ -- --- -- ----- - - -- v+max

Figure 3.22: Dynamic waveform comparison

moidal function is applied, see figure 3.22. In this way, the resulting
output pulse has a width which is dependent on the integrator output
in a non-linear way. The shape, e.g. steepness, of the sigmoid can
be easily adjusted as the signal is generated externally. Note that Vext
only has to be generated once for the whole network in case all neurons
in a network have the same sigmoid shape.

In this way, the neuron unit requires less implementation area and
it consumes less power. Besides this, process parameters variations
will have no influence on the sigmoid shape. One of the major prob
lems with this approach is the high-speed generation of the Vext signal.
Assuming Vext is generated through a D/ A converter from a digital
memory, To = lMHz, and the number of samples per sigmoid seg
ment is 64, the D/ A converter needs to run on a clock frequency of
128MHz! Another way to generate the inverse sigmoidal signal is de
picted in figure 3.23. A triangular signal is applied to an operational
amplifier across which a circuit is placed which realizes a sigmoidal
characteristic between the output of the amplifier (Vext) and one of the
inputs (V_) (e.g. a differential pair with an active load [Oos94]). The
resulting output signal has the desired shape.

In both of the presented approaches, care should be taken that the com
parator does not introduce an excessive delay. For small pulse widths this
does not introduce any problems as pulses are just not completely centered
any longer. However, in the case of a pulse width close to Tmax, the result
ing output pulse could be distorted as part of the pulse 'shifts' into the idle

70 CHAPTER 3. IMPLEMENTATION

>-----'---V. .. ext ~

Figure 3.23:

phase of the reference clock. Careful design of the comparator should avoid
input offsets and large delays in the case of a small differential input voltage
(V+-V-).

3.2 Analog Implementation

Historically, digital implementations of neural networks, both dedicated fully
parallel implementations [MDGS92] and software simulations on a digital
computer (in principle a serial implementation in the case of a single pro
cessor machine), had the advantage of a high accuracy. Neural network
paradigms could be studied in a well-controlled . environment. However, if
rieural networks are to be implemented in a fully parallel architectu re, ana
log VLSI is required. In future , large parallel implementations should yield
sufficient computational power to realize systems capable of human-like cog
nitive tasks (e.g. face recognition, speech recognition). Such large systems
can only be implemented if building blocks are sufficiently small to imple
ment tens of thousands on a single chip. Simple analog multipliers and other
neural blocks can be implemented with only a few transistors at the cost
of reduced accuracy. However, it is believed that a combination of the way
information is stored in a neural network (distributed) and the learning al
gorithm used to obtain a certain functionality should ensure that the reduced
accuracy does not pose a problem. In chapter 4, several learning algorithms
in combination with analog hardware will be studied.

Here, first a short overview of earlier reported analog realizations will
be given. In section 3.2.2 and 3.2.3 circuits to realize synapse and neuron
functionality will be introduced, respectively. A complete test system will
be presented in section 3.2.4.

3.2. ANALOG IMPLEMENTATION 71

3.2.1 Existing realizations

In recent years, a large variety of analog implementations of neural network
has been reported. Here, several will be mentioned including some remarks.
A more complete overview of both analog and digital neural network imple
mentations can be found in [DEDT96].

With reference to the methods of weight storage (see section 2.5), several
implementations combine digital storage with a multiplying digital-to-analog
converter (DAC) [LJ95, JCF96, dSPB+92, vdBFP+go, DET+92, MHW94,
HP90]. While delivering very good linearity, the implementation area is
relatively large. In [LJ95] a complete low-power implementation of this kind
is reported with bias-currents as small as 6.3nA.

In most cases, a lot of effort is put in realizing very linear multipliers at
the cost of a large implementation area [STG92, CBS93, GLJ94, FSTCC92,
FA88, HTCB89, THB+92]. As multipliers are the most used building blocks
in neural networks, reducing their implementation size, influences the total
implementation size of a network greatly. [LG92, LL93, Leh94] use multipli
ers consisting of only several transistors, at cost of reduced linearity.

The building-block approach [EDT89] where several chips can be inter
connected to realize different network structures has proved popular. One of
the implications of this approach (as mentioned in section 2.1), is that several
parts of the implementation have to be able to handle a variety of conditions
(e.g. a neuron with only 2 synapses connected and the same neuron with
64 synapses connected). Most implementations have some kind of scaling
possibility built-in in the sigmoidal function of the neuron. However, in
[MA94, LL95, CBS93, DET+92, EDT89, HP90] varying the steepness of
the sigmoid also results in different saturation levels of the sigmoid , thereby
reducing the effective input range of the multipliers in the next layer. In
[MHW94, LL93] more robust implementations of the sigmoid can be found
which do not exhibit this behaviour. In the case of [LL93], however, CMOS
and bipolar techniques are mixed.

A very elegant solution to the problem of scaling can be found in [STG92]
where neurons are implemented in a distributed way. With this implement
ation the main building block is a combined neuron-synapse circuit.

In [MHW94, MHW93], very high speed implementations are reported
for specialized applications in high-energy physics.

In most of the above mentioned realizations, the majority of circuits are
voltage-mode. Work on current-mode implementations of neural networks is
reported in [CM93, NAS92, Nij95].

72 CHAPTER 3. IMPLEMENTATION

3.2.2 Synapse

The main building block of any neural network implementation is the mul
tiplier in a synapse. The multiplier is the most repeated block and any
reductions in area and power consumption will benefit the total implement
ation greatly.

As noted in section 2.3, the choice for voltage inputs and current outputs
of synapses is advantageous to the high-level distribution of signals. This
limits the number of possible circuits for the multiplier in a synapse to designs
having voltage inputs and current outputs~ Here, a short overview will be
given of different multipliers which exhibit these features and have all been
designed for simplicity rather than for accuracy. In figure 3.24, 5 different

2 3

Figure 3.24: Overview of multipliers

circuits are shown; a two-transistor transconductance multiplier[DM81](1),
a four-transistor one (2), a differential pair (3) , a double differential pair (4),
and the Gilbert multiplier[Mea89](5), respectively. In [Bru96], a thorough
analysis of these circuits is reported. For conciseness, here only the results
of that analysis will be shown. In table 3.4, the main characteristics of the
multipliers shown in figure 3.24 are described . The different columns report
on the number of transistors, the number of quadrants that can be used, the
impedanceof both inputs ('-': low, '+ ': high) , the output impedance ('- - ' :
very low, '-': low, '+': high), and the type of inputs ('s ' : single ended, 'd':
differential), respectively.

3.2. ANALOG IMPLEMENTATION 73

Circuit #T #quad Zin Zout m

1 2 4 -,+ - - s,d
2 4 4 -,+ - d,d
3 3 2 +,+ + s,d
4 6 4 +,+ + d,d
5 6 4 +,+ + d,d

Table 3.4: Overview of multiplier characteristics

The two-transistor and differential pair multiplier only need a few tran
sistors and are therefore attractive for their small implementation area. Fur
thermore, both have one single-ended and one differential input. In a neural
network implementation, a single-ended input of a synapse has the advant
age of less communication lines between neuron and synapse chips and the
differential storage of weight values reduces the complexity of the storage
circuitry. However, while the differential pair multiplier has both high im
pedance in- and outputs, it can only be used as a two-quadrant multiplier.
The other three multipliers all have two differential inputs. In two cases, this
is combined with high in- and output impedances at the cost of additional
transistors.

Although the two-transistor multiplier has some disadvantages (one low
impedance input and a low impedance output), it offers the possibility to
perform four-quadrant multiplication with only two transistors. Here, a syn
apse implementation based on the two-transistor multiplier will be pursued.
First, the multiplier itself will be introduced and analyzed. Furthermore, ad
ditional circuitry, measurements on a realized synapse, and a synapse array
chip will be presented.

Multiplier

Figure 3.25 shows the two-transistor multiplier. When both transistors M1
and M2 are working in their linear range, equations 3.18 and 3.19 apply for
the direction of current shown in figure 3.25, i.e. Vz > Vyl and Vz > Vy2:

h = {31 { [(Vz- Vwi)- IVTII) (Vz- Vyl)- ~(Vz- Vyi) 2}

h = f32 { [(Vz - Vw2)- IVT21) (Vz - Vy2)- ~(Vz- Vy2) 2}

(3.18)

(3.19)

Assuming transistors M1 and M2 are equal (IVr1l = IVr2l = IVrpl and
f3I = f32 = (3) and Vy 1 = Vy2 = Vy, the difference in current can be expressed

74 CHAPTER 3. IMPLEMENTATION

Figure 3.25: Two-transistor multiplier

as:
(3.20)

Equation 3.20 shows a perfect multiplicative relationship between the inputs.
The multiplier could be used in a synapse when Vz- Vy is used as input and
Vw2 - Vwl as weight value. The output of the multiplier is the differential
output current. Equations similar to 3.18 and 3.19for Vz < Vy can be written
out, resulting in the same expression as equation 3.20, thereby realizing four
quadrant multiplication.

The following should be noted when using this circuit in a synapse:

1. The linearity of the circuit is good due to the fact that both transistors
are assumed to be equal and working in their linear range. The voltages
Vy 1 and Vy2 also have to be equal and constant (see equation 3.20). To
keep the transistors working in their linear range, the voltage ranges of
Vwl, Vw2, Vz, and Vy are chosen in the following way: 0::::; Vwl::::; lV,
Vw2 = 0.5V, 2V ::::; Vz ::::; 3V, Vy = 2.5V, respectively. These values
are valid for a realization in the MIETEC 2.4J.Lm double poly, double
metal process which has a Vro = -0.85V for PMOS-transistors.

2. Power dissipation and implementation size of the multiplier can be
exchanged. The currents in each of the branches can be tuned by ad
justing the aspect ratio (W /1) of both transistors . Here, a compromise
has been found by using transistor sizes of W / L = 4.8J.Lm/18J.Lm. In
that case, currents in the 2 branches of the multiplier vary: -2.5J.LA <
11 < 2j.tA, -2J.LA < h < lj.tA and the resulting differential output
current -800nA < It - h < 800nA. Power consumption of the multi
plier depends on the input and weight values and ranges from OW (in
case the multiplier is not used or Vz = Vy) to 2.25J.LW.

Figure 3.26 shows a photograph of the realized two-transistor multi
plier including two capacitors for weight storage (see section 2.5), a

3.2. ANALOG IMPLEMENTATION 75

Figure 3.26: Photograph of realized two-transistor multiplier

NOR-gate for address decoding (see section 2.4.1), and communication
lines for several signals. The complete structure of figure 3.26 occupies
12,880JLm2.

3. The linearity of the multiplier may be disturbed by the channel length
modulation effect, indicated by A. Equation 3.20 changes into:

(3.21)

The quadratic term due to the channel length modulation will be small
if A is small. In this case, as L is large, A is as small as 3.9e-3 and the
effect will be negligible.

4. The threshold voltage Vr of a transistor is influenced by the body effect
[AH87, Ver94b] in the following way:

Vr = Vro + 'Y [VI- 2¢F + VsBI- filM] (3.22)

The parameter 'Y is known as the body effect coefficient. The body
effect can be reduced by choosing VsB >==:::: OV. While for PMOS
transistors VsB may not become positive, VB is chosen MAX (Vs) =
MAX(Vz) = 3V.

76 CHAPTER 3. IMPLEMENTATION

Subtractor

The requirement Vy 1 = Vy2 = Vy for the circuit introduced in the pre
vious section, can be fulfilled by implementing a current conveyor behind
the multiplier [Bru93, Oos94] or a low input impedance summing amplifier
[KMML90]. Both solutions have a large implementation area and high power
consumption. Here, a straightforward subtraction implementation will be in
troduced. Giving up the requirement that the Vy-values should be equal and
constant, it is possible to subtract the currents by using small resistors as
loads which convert the currents to small proportional voltages. This devi-

I
Figure 3.27: Multiplier load

ation from the ideal situation will cause the multiplier to become non-linear.
However, if the voltage swing at the output nodes of the multiplier is kept
small, the influence will be marginal. Furthermore, the loads can be shared
by all synapses connected to the same neuron. This has two advantages:

1. Area reduction, because the subtraction circuit only has to be im
plemented once per column of synapses,

2. If the loads are tunable, a scaling possibility is introduced m the
synapse chip.

Figure 3.27 shows the implementation of the load. It consists of two NMOS
transistors, which when working in their linear range and VDs is small com
pared to (Vas- Vr), each realize a resistance of:

(3.23)

where KN is the transconductance of the NMOS-transistor. PMOS
transistors are added in parallel to linearize the behaviour of the circuit9 •

9 See section 3.2.3 for a derivation of the behaviour of the load which is similar to the
variable gain used in the neuron.

3.2. ANALOG IMPLEMENTATION 77

Vg ain can be used to adj~t the load to the number of synapses connected to
it. The differential outpu~ voltage Vy 1 - Vy2 is converted into a single-ended

Vy1 +---------,-t- ----+----1

Multiplier i 11 l2 i
- - - ---- -------- ------ ------ --- -·--- --- --

Load

r
v,., Subtractor

Figure 3.28: Total Synapse

output current using a standard differential stage with a current mirror load
(OTA).

Figure 3.28 shows the complete circuit consisting of the two-transistor
multiplier (upper left), the tunable loads (lower left) shared between syn
apses, and the OTA (right) . In figure 3.29, measurements for the complete

· I

2.2 2.4 2 .8 -0.4 .() .2 0 02 0 .4
Input voltage Wtllgtllvollage

Output vs. Input Output vs. Weight

Figure 3.29: Synapse characteristics (measurement)

synapse are plotted for both output Uout) versus input (Vz) for different
weight values and output versus weight (Vwl - Vw2) for different input val-

78 CHAPTER 3. IMPLEMENTATION

ues, respectively. Both plots show a slight non-linear relationship and an
output offset. The offset is mainly caused by the OTA and during learning
will be easily compensated by the bias weight in the neuron. Offset varies
from column to column as a result of random process variations in the as
pect ratios and threshold voltages of the (ideally matched) transistor pairs
M7-M8 and M9-Ml0. Note that when more synapses are connected to the
same load/OTA combination, the output offset remains equal.

Column of synapses

Figure 3.30: Column of synapses

In figure 3.30 a column of synapses is depicted where N synapses are connec
ted to one common load. At one time, not all synapses of a column have to be
used. Some synapses can effectively be switched off by connecting the gates

3.2. ANALOG IMPLEMENTATION 79

to the supply voltage (5V). Vgain can be used to adjust the output current
level to the number of synapses used in one column (3.85V:::; Vgain :::; 5V).
In the case of large synapse arrays, Vgain should be adjusted as described in
section 2.2.

The implementation size of a column of 8 synapses (including load, OTA,
and communication lines) realized in a 2.4J-Lm double poly double metal pro
cess measures 124,000J-Lm2

• The average size of 1 synapse then becomes
15,500J-Lm2

. Note, that this figure will decrease as more synapses are con
nected to the same common load in a larger array structure (e.g. 32x32
synapses). The size compares favorably to other reported synapse imple
mentations [Leh94, MA94, dSPB+92, LG92] resulting in a synapse density
of 64.5/mm 2.

Synapse array chip

The complete synapse array chip contains 8 columns of synapses with 8 syn
apses each, in total realizing an 8x8 fully connected synapse layer. By loading
the appropriate weight set to the chip, an arbitrary number of synapses per

Figure 3.31: Photograph of 8x8 synapse chip

column can be used. In figure 3.31 a photograph of the realized synapse chip

80 CHAPTER 3. IMPLEMENTATION

is shown10• The complete size of the chip (7.61mm2) is mainly determined
by the number of input- and output pins. This number will be reduced in
future designs by generating necessary bias voltages and currents on-chip.

3.2.3 Neuron

The main property of a neuron is the non-linear, saturating function which is
applied to the input of the neuron . A complete neuron could be realized as

Figure 3.32: Neuron implementation

depicted in figure 3.32, realizing a low impedance input node and a neuron
output capable of driving a load (both capacitive and resistive) . The char
acteristic of the F-block (from current input to voltage output) should be
a non-linear, resistive, saturating function. Besides the fact that the imple
mentation of the F -block is not straightforward, the main problem with this
implementation is that the capacitances at the input and output node are
not known beforehand. They can become quite large when a number of syn
apse chips are connected to the input of the neuron and the neuron output
is fed to several synapse chips. Together with the resistive feedback over the
opamp this can cause instabilities unless special measures are taken. These
measures complicate the design of both the opamp and the non-linear block
resulting in a large, high power-consuming solution.

Here, an unfolded neuron implementation, i.e. with no direct feedback
connection from output to input, will be presented.

10 In addition to the 8x8 synapse array, the synapse chip also includes a separate synapse
(at the lower left of the array) for testing purposes.

3.2. ANALOG IMPLEMENTATION 81

Variable Gain

In figure 3.33 a two-transistor variable gain input stage is shown. The input
stage should have a low input impedance and produce an output voltage
proportional to the input current. When both transistors Ml and M2 are

~n

Figure 3.33: Variable gain

working in their linear range, equations 3.24 and 3.25 apply for the direction
of current shown in figure 3.33, i.e. Yin > Vref:

(3.24)

(3.25)

When the transistor dimensions of both Ml and M2 are chosen in such a
way that fJ1 = fJ2 = {3, the relation between the input current lin and the
input voltage Yin can be written as:

lin It+ h
fJ(Vin- VreJ) {(VNctrl- Vn)- (VPctrl + IVT21)} (3.26)

realizing a linear resistor which can be controlled by the gate voltages of both
transistors. The following restrictions on the different voltages apply to make
sure that both transistors remain in their linear range: (VNctrl- Yin) 2::: Vn,
(Vref - VPctrt) 2::: IVT21· An equation equivalent to 3.26 can be written out
for Yin< Vref, although different restrictions apply: (VNctrl- VreJ) 2::: Vn,
(Yin - VPctrt) 2::: IVT2I· The following practical values are used: VNctrl 2:::

4.0V, VPctrl :::; l.OV, Vref = 2.5V, and -4J,LA :::; lin :::; 4J,LA. Furthermore,
W/ L1 = 10J,tmj4.8J,tm and W/ L2 = 30J,tmj4.8J,tm.

Figure 3.34 shows the measurements of the variable gain input stage
realized as part of the neuron implementation presented below11 . A linear

11 Input voltage is measured with respect to Vre 1.

82

80

60

40
>
E .. 20 "' J!!
0
>
g_ 0

.5
c e ·20

" .. z
-40

·60

·80
-4

N=4V,P=1V
N=4.25V, P=0.75V ·- ···

N=4.5V, P=0.5V ·<> ···

. o· ····
... a- ···· ··· ··

CHAPTER 3. IMPLEMENTATION

-3 ·2 ·1 0 1 4
Input current uA

Figure 3.34: Neuron input impedance (N=VN ctr/, P=VPctrl)

relationship over the complete input range can be observed while the input
impedance can be varied by applying different voltages to the gates of the two
transistors. The variations in input voltage (and hence in output voltages
of any synapses connected to the specific neuron) are several tens of mV,
thereby minimizing any influence on synapse outputs .

Non-linearity

The complete neuron circuit is shown in 3.35. The output of the above
introduced variable gain input stage is first amplified by a gain stage realized
by transistors M4 through 10. This amplified signal is then applied to a
simple differential pair (M12-M14) , which together with current-mirror M15-
M16 realize the actual sigmoidal shaped non-linearity. The current output
of the differential stage is then converted into an output voltage by feeding
it through a 'resistive ' feedback (M22-M23, formula 3.26 also applies here)
over an opamp.

The measured characteristic of the complete neuron circuit for different
input gains is shown in figure 3.36. Note that the saturation levels of the
sigmoid remain constant for different gain values, in contrast to most imple
mentations reported in literature [MA94, LL95, CBS93, DET+92, EDT89,
HP90]. This ensures that for different gain values, the input range of syn
apses in subsequent layers is completely used.

In figure 3.37, a photograph of a neuron and a bias weight realized in
a 2.4J.Lm process can be seen. The implementation area of the neuron is
approx. 75,000J.Lm2. This area is mainly determined by a large output stage

'Tj
oti'

VPcnl c ...,
(!)

<:...:> VNctrt
<:...:>
CJl

~ l;n
c+ -~
~

I ,,r--L,, I ;:l
(!)

c ...,
0
;:l

v,.t

Variable Gain

vdd

!+

Gain Stage Sigmoid Output Buffer

I 1 o Vout

~
~

~

~
t-<
0
Q

~
!
<
~
g
<

00
c...?

84 CHAPTER 3. IMPLEMENTATION

2.8

.,
C> 2.6 !!
0
>
5
% 2.4
0

2.2

-4 -2 0
Input current uA

Figure 3.36: Neuron characteristic

Figure 3.37: Photograph of neuron

(Ml9, M26, and C in figure 3.35) of the output buffer to ensure that a
neuron can supply the necessary current to a large number of synapses and
the ability to drive a large capacitive load (e.g. several input pins of synapse
chips).

Bias weight

As introduced in section 2.4.2, a neuron includes a separate weight which
can be used to shift the sigmoid . The circuit for the bias weight is equal to
the circuit shown in figure 3.28. However, the sizes of several transistors and
the working ranges of several voltage inputs have been adapted to ensure the
output current of the bias weight is sufficiently large to be able to shift the
sigmoid over its complete input range.

3.2. ANALOG IMPLEMENTATION 85

Neuron chip

The complete neuron chip comprises 8 neurons, 8 bias synapses and the cir
cuitry necessary to address the weight value in each synapse. A photograph

Figure 3.38: Photograph of neuron chip

of the total chip is shown in figure 3.3812. As for the synapse chip, the total
size of the chip (8.09mm2

) is determined by the large number of pins which
have been included for testing purposes.

3.2.4 Complete System

The synapse chip presented in section 3.2.2 and the neuron chip discussed
in section 3.2.3 are used to construct a complete network. By combining
several synapse and neuron chips, an arbitrary network topology can be
formed.

12 The realized chip includes an additional neuron at the top for testing purposes.

86 CHAPTER 3. IMPLEMENTATION

Here, an experimental setup contains 2 synapse chips and 2 neuron chips
with which a two-layer network can be constructed with a maximum of 8
inputs. Each neuron chip contains 8 neurons and consequently the largest
network topology which can be realized is a fully connected 8-8-8 network.

The setup is connected to a Sun SPARCstation 10 through a high-speed
data acquisition board. Besides the 4 neural chips, the board contains mul
tiplexing and de-multiplexing circuitry for (serial) communication with the
data acquisition board, address selection, and several bias voltage and cur
rents generators. Due to the experimental nature of the setup, separation of
analog and digital signals on the board is far from ideal and cross-talk from
the digital lines on the analog signals is present. However, by careful design
of the timing of the board, a practical setup has been realized. Additional
details about the setup can be found in appendix A.

On the host computer, a neural software environment, called ANANAS,
is implemented. Any learning algorithm runs on the host computer while
the feed-forward operations through the network can either be performed by
the analog hardware or simulated in software. A description of ANANAS
can be found in appendix B.

Conclusion

An overview of the characteristics of both synapse and neuron chips are
given in table 3.5. Details about the synapse and neuron implementation are
given separately. The figures describe the characteristics of a single synapse
or neuron unless indicated otherwise in the last column.

Comparing the CPWM synapse implementation of section 3.1.6 and the
time-continuous synapse presented in section 3.2.2, it can be concluded that
both approaches have similar characteristics. A four-quadrant CPWM mul
tiplier will occupy an area which is approximately equal to the two-transistor
analog multiplier (also four-quadrant) while the linearity between input and
output of the CPWM synapse is better (linearity between weight and out
put are similar in both cases) . The analog synapse consumes less power
although an additional block per column of synapses is necessary. Propaga
tion delay per layer of a network is in both cases in the order of lps. These
findings comply with the comparison between CPWM and analog multipliers
presented in section 3.1.5.

3.3. MODELING 87

I Property Value Remarks

Synapse
Size 15,500fLm:l average size in a

column of 8 syn.
Power consumption 2.25fLW
Power consumption
common load + OTA lOOJ.LW
Input range [2V;3V]
Weight range [OV;lV]
Output range [-3J.LA;3J.LA] per column of syn.

independent of the
nr. of active syn.

Input offset ~lOmV

Weight offset ~lOmV

Output offset ~o.SfLA per column of syn.
Weight access time 250ns

Neuron
Size 103,640fLm:l including bias weight
Power consumption 700fLW including bias weight
Min. input range [-0.5J.LA;0.5J.LA]
Max. input range [-5f,lA;5fLA]
Output range [2V;3V]
Input offset O.l5fLA
Bias weight range [OV;l V]
Bias weight output current [-5J.LA;5fLA]

Layer
Propagation delay ~ lfLS C1oad ~ lOpF

Table 3.5: Chip characteristics

3.3 Modeling

Recently, more and more complete neural network solutions are appearing.
In most cases these packages consist of a dedicated NN chip, implementing
some neural network structure at high speed, interface boards, connecting
the chip to a controlling host (PC or workstation), and software.

In many cases, it is important to explore the features of a certain applic-

88 CHAPTER 3. IMPLEMENTATION

ation without having the whole package at once. In that case, the control
software must be able to simulate the whole environment, including the NN
chip. It is then necessary to have an accurate model of the chip inside a
simulator.

Custom chips [OWH94, CR95], are fabricated containing building blocks
(i.e. neurons, synapses) necessary to implement different neural network
structures. In the ideal case, the building blocks behave in exactly the same
way as their theoretical models. However, this is normally not the case;
e.g. synapses do not produce a linear multiplication over the whole range.
A model of each individual building block would be desirable as this could
be used to predict the behaviour of larger networks constructed with these
building blocks. A general model with several measurable parameters for
each of the building blocks has been determined. The models can be used
in neural simulators which have been written in recent years, e.g. ANANAS
(see appendix B) and EL-SIM [CBP+95).

A heuristic model and characterization can be used to replace time con
suming circuit simulations of large circuits with accurate models of circuit
behaviour as a function of process parameters and working conditions (e.g.
SPICE circuit simulator). Polynomial regression has been proposed [LD89)
to approximate arbitrary and non-linear functions. Usually quadratic or
third order models are used and they provide a fast and accurate relationship
between random process parameters, physical parameters (i.e. temperature,
power supply, frequency) and circuit performances.

3.3.1 Synapse Model

Ideally, synapses consist of linear multipliers between inputs Xi and weights
Wij· Measurements on realized YLSI implementations (see figure 3.39(a)),
show a different behaviour where inputs, weights and output are affected by
offset and the multiplication is not linear. All these non-ideal effects also
depend on working conditions such as temperature T, power supply Vdd,

frequency J, etc.

To obtain a computationally simple synapse model (both to determine
its parameters and to use it in the simulators), non-idealities at the output of
synapses are described as non-idealities in the inputs. The multiplication is
then modeled with only offset and gain, while the two inputs are described
with a third order polynomial function as presented in equation 3.27 where
Xi represents the input and Wij the weight value, respectively. With this kind
of model a compromise is found between different factors such as simplicity,

3.3. MODELING 89

computational time, and accuracy of the fit .

where each parameter aj, bj, Cj, dj is:

(3.28)

(3.29)

(3.30)

Figure 3.39(a) shows the comparison between measurements (points) 13 , and

·4L_~~~~~~~~~~

·1 ·0.8 ·0.6 ·0.4 ·0.2 0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 3.39: Different examples of synapse model/measurement comparison.

the model used (lines). The fitting is made using linear regression methods.
The second plot, figure 3.39(b), shows the comparison between the model
and an artificially modified set of measurements in the case highly non-linear
effects are present in the multiplier characteristic.

Each parameter in 3.27 is a function of the most important working
conditions (equations 3.28, 3.29, 3.30). The functions (F;, Gi, etc.) can be
easily determined by changing only the correspondent working condition and
repeating the fit process for the whole model. The values of the parameters at
different working conditions are then used for another polynomial regression
to find the desired functions. In figure 3.40 two example plots are shown.

13 Measurements are taken from the synapse chip presented in section 3.2.2.

90

0.7

0.65 ~,... ..
___.-~

/ . 0.6
;/

N
u. 0.55 .,,~···

.. ·
0.5 / .

0.45 ~-~

0.4
4.4 4.6 4.8 5 5.2 5.4

Power supply (volts)

3.3.2 Neuron Model

5.6

CHAPTER 3. IMPLEMENTATION

2.9

2.85

2.8

2 .75
N
(!)

2.7

2 .65

2.6

2.55
4.4 4.6 4.8 5 5.2 5.4 5.6

Power supply (vohs)

With some neural VLSI implementations, it is possible to perform meas
urements on both synapse and neuron blocks separately [OWH94, Leh94],
while other realizations only offer the possibility to examine the relationship
between inputs and outputs of a complete layer (i.e. the combination of
synapses and neurons) [CR95] .

Using the same technique as before, non-idealities at the out put of a
neuron (and so of the non-linear function, e.g. a sigmoid) are modeled , as
non-idealities in the inputs. The model used here (equation 3.31) is more
complex than the one in the case of a synapse due to the presence of the
neuron transfer function.

(3.31)

In the case of a model for a single neuron, Mj only depends on the input s1
of the neuron :

(3.32)

while in the case of a model for a complete input-output relationship (synapse
+neuron), Mj depends on both synapse input Xi and weight value W ij:

(3 .33)

As with the synapse model, the parameters of the model are dependent
on operating conditions:

(3.34)

3.3. MODELING 91

(3.35)

Here, a genetic algorithm approach [Gol89] is used in order to have a com
pletely general solving method also in the case of a different non-linear func
tion. Figure 3.41 shows two different cases of artificially generated neuron

1.2 .-~~~~~~-... ~"~ ~ ••• -= ••• ~ .• ---:-:1,, ,.
0.8

...
~I

0.6 i
) 0.4

0.2

0

-0.2

ill
./

·0.4 ... /

-0.6
-0.8 u:_:..__~~~~~-~~~...J

·1 ·0.8 -0.6 ·0.4 ·0.2 0 0.2 0.4 0.6 0.8 1

0 .6

0.4

0.2

0

-0.2

-0.4

I ·

;> ,.
_,/.:·

-0.6 ~ ... ·"
-0.8 '--~~~~~~~-~_,____j

-1 ·0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.41: Different examples of 1/0 neuron transfer characteristic.

transfer functions (points) and the result of the model (line). Both char
acteristics contain extreme deviations (offset in both in put and output, a
discontinuity around zero, noise on separate 'measurements') to test the ro
bustness of the model. Even with these deviations present, the model of
equation 3.31 is capable of producing a good fit.

92 CHAPTER 3. IMPLEMENTATION

Chapter 4

Learning

One of the main reasons for using analog electronics to realize neural network
hardware is that several of the operations in neural networks can be realized
by simple analog circuits, e.g. sigmoids, adders, simple multipliers. It is
believed that the fault-tolerant nature of neural networks will compensate for
the lack of accuracy in analog realizations. However, a distinction can be
made between the realization of the feed-forward part of a network and the
implementation of the learning algorithm. Several learning algorithms and
their properties with regard to an analog implementation will be discussed.

4.1 Back-Propagation

Currently, one of the most used training algorithms is the back-propagation
algorithm [RHW86] and in the last few years several hardware implement
ations of this algorithm have appeared , some digital [YMY+93, VM92]
and some analog [FA88, SKK+92, LB93b, LB93a]. Others [HHP90, RF91,
HH93, FH91] have reported on the problems which can occur when back
propagation is implemented and how these problems can be solved . However,
most of these efforts have concentrated on the influence of finite precision
constraints on the weights and other non-idealities which can be modeled as
noise.

Back-propagation can learn to compensate for several non-idealities such
as non-linear multipliers, limited signal dynamic ranges, and variability in
multiplier gains [DC93]. In this section, the back-propagation algorithm will
be studied further in combination with offsets in the multipliers necessary to
implement the algorithm 1 using the CPWM-technique [P93]. Note that the

1 In parallel with this work, others [DC93, LB93a] have reported similar experiences .

93

94 CHAPTER 4. LEARNING

influence of offset cannot be modeled as a noise-source.

4.1.1 Implementation

In figure 4.1, the schematics of the implementation of two synapses connected
to one neuron unit are shown. The forward path consists of multiplier I

r- -1

' '
' ~'---------,

: -:
l----r---+--T---f y

Ill

Figure 4.1: 2 synapses and 1 neuron

and the weight storage in the synapse unit while the adder and the non
linear function are part of the neuron unit. To realize the back-propagation
algorithm, multipliers II, III, and IV have to be added in the synapse unit
while multiplier III' and V and the computation of the derivative of the
sigmoid have to be included with the neuron unit. Multiplier III is not
realized within the synapse unit because the same learning rate is adopted for
all the synapses which are connected to the same neuron. When, in a VLSI
realization, more synapses are connected to one neuron, this architecture
saves hardware. Multiplier III' in the neuron unit is a copy of multiplier
III in the synapse unit and during experiments reported in the next section
both are considered simultaneously.

The output of multiplier IV can be written as:

(4.1)

4.1. BACK-PROPAGATION

with

where

TJ learning rate,
Ej back-propagated error from next layer,

F; () derivative of the sigmoid,
8j error signal for all synapses connected,

to this neuron,
Xi input of the synapse.

95

(4.2)

The weight update given by equation 4.1 is exactly equal to the weight
update as computed by the back-propagation algorithm (see equation 1.10).

4.1.2 Offset in forward path

In the forward path, several sources of offset can be identified i.e. offset at
the output2 of multiplier I, offset in the adder of a neuron, and a horizontal
shift in the position of the sigmoid. However, these errors can easily be
compensated by the learning algorithm. They can be seen as a change in
the bias weight of the sigmoid. Although care should be taken that the
deviation in that parameter stays within reasonable bounds when more and
more synapses are connected to the same neuron. Furthermore, an offset in
the output of a neuron can be present, causing a vertical shift of the non
linearity. The input range of synapses in the next layer should be sufficiently
large to deal with this.

4.1.3 Offset in backward path

Offsets in the multipliers for the backward path cause more problems. In
table 4.1, some simulation results are collected3 . The first five columns indic
ate the amount of offset which is introduced at the output of each multiplier.
It is given as a percentage of the output range e.g. if a multiplier can output
values between -2.5 and 2.5, an offset of 1% will add a constant value of 0.05

2 0ffset at the input could also be considered but will not be explicitly studied here
because in most cases offset at the input of a multiplier can be modeled as offset at the
output of a preceding block.

3 During simulations, the only non-idealities introduced were the offsets in the multipli
ers and restrictions on the range of the weights from -2.5 to 2.5 and the output of multiplier
V from -1.0 to 1.0. Other non-idealities, like quantization of weights, non-linearities, etc.
were not considered here.

96 CHAPTER 4. LEARNING

to the output. In column 6, the number of converged trials (out of 100) of
teaching a 2-2-1 network the XOR-problem is shown.

offset in multiplier converged trials
I J II I III I IV I v out of 100

0 0 0 0 0 67
0 1 0 0 0 67
0 2 0 0 0 18
0 0 1 0 0 85
0 0 2 0 0 48
0 0 0 1 0 70
0 0 0 2 0 67
0 0 0 0 0.5 73
0 0 0 0 1 86
0 1 1 1 0.5 9
0 2 2 2 1 0

Table 4.1: Influence of static offsets

In the case of a small offset (separately introduced) in multipliers III and
V convergence rates increase significantly4 • Both effects can be explained
by the fact that paralysis of the network during learning is avoided when a
neuron output is saturated. A zero-valued output of the sigmoid derivative
would normally 'block' the back-propagation of the error c. By making sure
that at least some value is propagated back through the network, weight
updating continues5 . Offset introduced in multiplier II has a large influence
on the convergence property of the network. A change of sign in the signal
which is being back-propagated (8 in figure 4.1) is severe.

When each offset is introduced separately, convergence of the network
is still possible. However, when all offsets are applied simultaneously, the
effects are catastrophic; even small amounts of offset result in no convergence
at all. During the simulations, all introduced offsets had the same sign
resulting in a worst-case situation. The introduced offset for multiplier V
is kept low because in the proposed implementation [P93] this multiplier is

4 Assuming convergence of the network is based on a binomial distribution , for 100
trials, the maximum standard deviation is 5 (for P convergence = 0.5) .

5 ln [Fah88] a heuristic approach to improve convergence of the back-propagation al
gorithm is proposed which is similar to the effect observed here.

4.1. BACK-PROPAGATION 97

working in a different signal domain. Multipliers I through IV are CPWM
multipliers while multiplier V is a static one and therefore a smaller offset
value for simulation purposes is introduced (see also section 3.1.4).

Furthermore, simulations were done where offsets were introduced which
had a more random character. In table 4.2, the first five columns now indicate
the maximum ranges in which random offset was added to the multiplier
outputs, i.e. if a multiplier has an output range from -2.5 to 2.5 then an
entry in the table of 1% means that a random value between -0.05 and 0.05
was added to the multiplier output6 . In this case, the back-propagation

offset in multiplier converged trials

I I II I III I IV I v out of 100

0 1 1 1 0.5 79
0 2 2 2 1 59
0 3 3 3 1.5 47
0 4 4 4 2 37
0 5 5 5 2.5 32
0 10 10 10 5 23

Table 4.2: Influence of random offsets

algorithm is able to cope with the influence of larger offsets.
From the above experiments, it may be concluded that the back

propagation algorithm is still working for the XOR problem. In some cases,
the presence of offset even improves convergence. However, when the same
experiments are repeated for a different kind of problem, like function ap
proximation, the results are quite different. Trials to teach a 1-5-1 network
the sine-function between -rr and +rr with small offsets introduced (s; 1%),
resulted in no convergence at all.

4.1.4 Offset cancellation

The influence of offsets could be reduced by adding some extra circuitry
behind multiplier III in each synapse and a similar circuit at the output of
multiplier V in a neuron (see figure 4.1). The additional circuit would sample
the result of the back-propagation of a zero-error value through the network.
The output of multiplier III in each synapse and multiplier V in a neuron

6 0ffsets were set at the start of each trial and remained constant during that trial.

98 CHAPTER 4. LEARNING

would indicate the error in the weight updated due to offsets in the back
propagation path. When these values are stored and later subtracted from
the 'normal' weight update, the offset contributions will be eliminated. The
extra circuitry will also introduce some errors but these will be of second
order influence. A similar approach has been reported in [MA94].

The speed of the back-propagation algorithm is influenced. The back
propagation of a zero-error has to be performed before every 'real' back
propagation pass, as the offsets are dependent on the current state of the
network, i.e. the output values of neurons and the weight values. It should
be clear that the state is different for each input vector and after each update
of the weights.

During simulations, the earlier mentioned second order effects of the ex
tra circuitry were neglected. In that case, the network with offsets, extra
circuitry, and the back-propagation of a zero-error before every 'real' back
propagation pass behaves just like an ideal network without offsets. Then,
for the XOR-problem roughly two-third of the trials converged (which cor
responds to the case when no offsets were introduced, see table 4.1) and the
sine-function could now also be learned without any problem.

4.1.5 Conclusion

The analog implementation of back-propagation suffers heavily from the in
fluence of offsets which are present in the multipliers in the back-propagation
path. The offset problem can be reduced by adding extra circuitry which
performs some kind of auto-offset cancelling. However, this is at the expense
of the speed of the back-propagation algorithm.

Furthermore, the amount of hardware necessary to implement the back
propagation algorithm is large (see figure 4.1). When the algorithm is being
implemented as part of a system which should be able to adapt to its envir
onment over time, special attention should be paid to the back-propagation
algorithm itself before implementing it. The major drawback of the al
gorithm in such an environment is that incremental learning is very difficult
with the back-propagation algorithm. Usually, all previous training data has
to be available which results in large storage requirements and long conver
gence times. Enhancements of the algorithm as proposed in section 1.2.4
could be used to speed up learning. However, hardware implementation of
these enhancements would further complicate the design.

In commercial applications, hardware neural network implementations
including learning circuitry to realize the back-propagation algorithm might
not prove to be cost effective. The large extra implementation area for the

4.2. SEMI-PARALLEL PERTURBATION 99

learning, in most cases, will only be used once. After the desired func
tionality has been achieved, weights are frozen7 and, for the life-time of the
product, learning is not continued or repeated. In those cases, a global learn
ing engine, possibly enhanced with a small amount of extra circuitry at a
local level, which trains the desired functionality will be advantageous.

Here, several feed-forward based learning algorithms will be discussed.
Analog hardware implementations of the feed-forward path are used while
learning is performed by a host computer or dedicated digital hardware.

4.2 Semi-parallel perturbation

The original Weight Perturbation algorithm (see section 1.2.5) is sequential.
Each weight is perturbed and, depending on the update strategy, updated
separately. Especially for large networks, this can be a slow process. Several
semi-parallel8 perturbation-based learning schemes have been proposed:

• With the Summed Weight Neuron Perturbation (SWNP) al
gorithm [FJ93], all the weights feeding into one neuron are perturbed
in parallel. Compared to the original WP algorithm, complexity is
reduced by 0(VW") where W is the number of weights in a network.
In [F J93], proof is given that for SWNP the descent steps in the dir
ection of the negative of the gradient are larger in size than the steps
in the wrong direction, and hence SWNP performs error descent. The
SWNP learning rule iterates over all the neurons. The learning rule
for neuron j is:

,6.wiJ = -ry E(W')- E(W)
OWij

(4.3)

where W is the matrix of all weights in a network, W' is the matrix
of weights where the weights feeding into neuron j are perturbed, and
OWij is the perturbation size for weight Wij.

• In contrast with SWNP, in the fan-out technique [JCF96] all the
weights leaving a neuron are perturbed simultaneously using uncorrel
ated random values. Experiments in [JCF96] show that the fan-out
algorithm provides a significant improvement in training performance
compared to WP and SWNP.

7 Depending on the way weight storage is implemented, this might be done in e.g. a
floating-gate memory or a digital memory with periodic refresh .

8 More than one weight but less than the total number of weights in a network are
perturbed simultaneously.

100 CHAPTER 4. LEARNING

• A combination of the above perturbation schemes results in the fan-in
out technique [JCF96]; all the weights feeding and leaving a neuron
are simultaneously perturbed using uncorrelated random values. The
learning rule is equal to 4.3 where in matrix w' only the weights feed
ing and leaving a neuron are perturbed. From the experiments repor
ted in [JCF96) it is concluded that the fan-in-out scheme consistently
produces the best performance.

In the experiments performed here, only the fan-in-out technique will be
used as semi-parallel perturbation technique.

The fan-in-out algorithm as described in [JCF96] cannot be directly used
in combination with the hardware developed here (see section 3.2.4). The
main difference is that the analog neural network implementation presented
in [JCF96) does not include a bias weight in each neuron. When training a
2-layer network in that implementation, only the neurons in the hidden layer
have to be 'visited' by the fan-in-out algorithm. In that way, all weights in
the network are updated. However, here, with that strategy, the bias weight
of the output neuron would not be updated. Therefore, here, the fan-in-out
algorithm will 'visit' all neurons in the network (both hidden and output
neurons) but in addition also the input nodes. Although the input nodes
are no real neurons, the reason for also applying the fan-in-out algorithm is
that in that way all weights in the network9 are updated an equal number
of times, namely 2, per epoch.

As noted in section 1.2.5, the error which is made when estimating the
gradient with respect to a weight, can be reduced by performing two op
posite perturbations per gradient estimation (Central Difference Method,
CDM). In relation to an analog hardware implementation, the CDM method
is advantageous as a larger perturbation size can be used to obtain the same
performance (convergence rate and final error) [tK93]. The learning rule for
the fan-in-out algorithm with double sided perturbation can be expressed
as:

E(W') - E(W")
flWij = -7]

2
_.
UWij

(4.4)

w' denotes the weight matrix where all weights feeding and leaving a neuron
are perturbed simultaneously with their respective perturbation 8Wij, while
w" denotes the weight matrix where the same weights are perturbed with
-8Wij. In the experiments reported later, the size of the perturbation is
fixed while the sign of each perturbation is chosen randomly.

9 With the exception of the bias weights.

4.3. FULLY PARALLEL PERTURBATION 101

Both pattern- and set-based update strategies are used in conjunction
with the fan-in-out algorithm. In section 4.6, both versions are compared to
the other algorithms presented here.

Two different hardware implementations of the fan-in-out algorithm can
be considered:

• A global computation core, e.g. a Digital Signal Processor (DSP),
sequentially visits each neuron, perturbs the weights (one or more
times) and determines the weight updates. In such a case, weights can
best be stored in a digital form as perturbations have to be applied
and removed. Furthermore, a minimum amount of extra hardware per
synapse is necessary. A large degree of flexibility is obtained in this
way.

• A distributed approach in which extra circuitry is added per syn
apse. A small global control unit indicates which synapses should
perturb their weights (one or more times). After an error evaluation
has been performed, each synapse locally computes an update value
and applies it to the current weight value. A drawback of this ap
proach is that for long-term storage of the weights (after learning has
converged), it should be possible to read out weight values. Additional
hardware has to be added for this as well .

4.3 Fully parallel perturbation

Recently, fully parallel perturbation schemes have been reported (Cau94,
Cau93, AMY+93] . The learning rule for these algorithms is equal to the
one presented in the previous section (equation 4.3). However, in this case
all weights in the network are perturbed simultaneously. As for the semi
parallel algorithms, a double sided perturbation (equation 4.4) yields a more
accurate result.

In an analog environment, the minimum perturbation size is determined
by the noise-level in the total system. When the perturbation size is chosen
in the same order of magnitude as the noise in the system, the correlation
between the applied perturbations and the measured difference in error will
be small and learning is slowed down and possibly prevented. In practice,
the fully parallel algorithms are used with a perturbation which is constant in
magnitude but has a randomly generated sign; also called Constant Perturb
ation Random Sign (CPRS). The minimum perturbation size is determined
experimentally.

102 CHAPTER 4. LEARNING

CPRS essentially performs gradient descent in random direct ions in the
weight space. As for exact gradient descent (e.g. the sequential WP al
gorithm) the parallel algorithm converges in close proximity of a (local)
minimum, provided that the perturbation amplitude is sufficiently small10.

The speed of convergence is necessarily slower than gradient descent, since
every computation of the total errorE only reveals scalar information about
the gradient. The accuracy at every learning step can be improved by re
peating the parallel perturbation many times before updating the weights.
In [AMY+93], a critical minimum of repeating each perturbation step 16
times is reported. Especially in larger networks, it might prove necessary to
repeat each perturbation step a large number of times, thereby reducing the
advantage of less perturbation steps over semi-parallel algorithms.

Experiments (see section 4.6) have shown that a pattern-based update
strategy does not work very well with the parallel perturbation technique.
The reason for that is that the weights are updated based on the presentation
of a single pattern. The resulting PMSE does not reveal sufficient informa
tion about the gradient in the total error space (determined by all training
patterns).

Considerations for a hardware implementation of CPRS are similar to the
ones mentioned in the previous section. A distributed analog implementation
of CPRS is presented in [Cau96].

4.4 Alopex

In the original Alopex algorithm, as described in section 1.2.6, both global
and local information is used during training. Globally, the error E (t), the
change in error b.E(t), and the temperature T(t) are determined . For each
weight, hence locally, the change in the weight value b.Wij(t), the correlation
between the change in error and the weight change b.ij(t), and the probability
Pij(t) for choosing the sign of the weight update need to be computed and/or
stored.

When the algorithm needs to be implemented on dedicated digital hard
ware or on a host computer, reducing the number of items which need to
be computed for each synapse separately saves complexity. A global 'flip
probability' PJ(t) is introduced: the probability that the sign of the update
of a weight, with respect to the previous update, needs to be changed . P1(t)

10 A formal derivation of the convergence properties is presented in [Cau93].

4.4. ALOPEX 103

is defined as:
1

P1 (t) = _1_+_e ___ 1J Ll-:-E=(;-;t)"7./T=(""7t) (4.5)

where 7J is the learning rate and the global temperature T(t) is the aver
age over a number of error changes, respectively. In the originaJ algorithm
[UV92] the temperature was determined by storing a number of error changes
and averaging them at each time step. Here, a moving average for the tem
perature will be used, further reducing the storage requirements:

T(t) = 0.1I~E(t) I+ 0.9T(t- 1) (4.6)

The only information which needs to be computed and stored locally is:

() (1) {
-~Wij(t) with prob. PJ(t)

Wi · t = Wi · t - +
J J +~Wij(t) with prob. 1- P1(t)

(4.7)

Effectively, this results in an algorithm which behaves in the same way as
the original Alopex algorithm, but with significantly less local information
to be stored and computed. The complete algorithm can now be described
as:

1. (a) Select initial random weight vector w(t = 0) and a starting tem
perature T(t = 0).

(b) Compute the system error E(t = 0) for the initial weight values.

(c) Generate a random binary update vector .Q(t = 0) with elements
bi. The elements can either be + 1 (increase weight) or -1 (de
crease weight).

(d) Choose a step-size 8 and a learning rate 7J (usually in the order
of 1.0).

2. (a) Update the weights according to: w(t) = w(t- 1) + 8 · .Q(t- 1)
resulting in a new value for the error E(t).

(b) If E(t) < c (c being the convergence limit on E), stop.

3. (a) Compute the change in error: ~E(t) = E(t)- E(t- 1).

(b) Update the temperature as described in equation 4.6.

(c) Determine the new global flip-probability PJ(t) (equation 4.5).

(d) Update the binary update vector .Q(t):

b·(t) = { - bi(t- 1) with prob. PJ(t)
1 +bi(t- 1) with prob. 1- PJ(t)

104 CHAPTER 4. LEARNING

(e) Go to step 2.

Extensive simulations [Vog95) have shown that the influence on the con
vergence behaviour of both the learning rate ry and the way temperature T(t)
is determined are small. The number of converged runs can be significantly
increased by choosing a small step-size fl, however, at the cost of an increased
number of epochs to reach a solution. As for the other feed-forward based
learning algorithms introduced here, the minimum step-size is determined
by the noise-level in the system.

Note that Alopex does not perform gradient descent. Weights are per
turbed and depending on the change in error, the probability that during
the next perturbation step, the direction of perturbation remains equal is
determined. The algorithm has a preference to follow a trajectory opposite
to the gradient but due to the stochastic nature it offers the possibility to
escape from local minima.

A major advantage with regard to the earlier presented feed-forward
based learning algorithms is the fact that perturbations do not have to be
removed. This is especially important in the case of a complete hardware
implementation of the algorithm . Again, a choice could be made between a
global and a distributed implementation. In the former case, no additional
circuitry per synapse is required while in the latter case, a simple single-bit
memory element per synapse could indicate the direction of the last weight
update. At a global level, an error evaluation should be done in both cases.
The flip-probability for each weight could also best be determined globally
as an implementation on synapse level would require a significant amount
of additional circuitry.

As for the parallel perturbation algorithm, a pattern-based update
strategy should not be used in conjunction with Alopex. The information
contained in one feed-forward operation does not reveal sufficient know
ledge about the total error landscape. Then, the stochastic property of the
algorithm is more of a burden than a solution to escape out of local minima.

4.5 Probabilistic Optimization

Currently, very little is known about the shape of error landscapes. Gradient
descent and approximate gradient descent (e.g. the parallel perturbation
algorithm) methods are mostly used to find a solution in the high-dimensional
solution space. However, numerous experiments in the literature have shown
that these algorithms often get stuck in a local minimum. Several heuristic
solutions to escape from these minima have been proposed.

4.6. LEARNING EXPERIMENTS 105

Purely probabilistic methods to train neural networks are also still pop
ular. These methods do not make any assumptions about the shape of the
error landscape and try to find an acceptable solution by searching the solu
tion based on a stochastic process (in most cases combined with several
heuristic modifications).

In section 1.2.6, several stochastic learning algorithms have been intro
duced. Here, an adapted version of MROM will be used to train a network.
The used algorithm consists of the following steps:

1. Select an initial random weight vector w(t = 0) and a range for the
uniform distribution.

2. Generate a random vector ~(t) of which each element is taken from
this uniform distribution:

(a) If E(w(t) + ~(t)) < E(w(t)), then let w(t + 1) = w(t) + ~(t)
(b) If E(w(t) +~(t)) ~ E(w(t)) and E(w(t)- ~(t)) < E(w(t)), then

let w(t + 1) = w(t)- ~(t)

(c) Otherwise, let w(t + 1) = w(t).

3. If E(w(t)) < E, stop. Otherwise, go to step 2.

The major difference compared to the original MROM algorithm is that {
is not taken from a Gaussian but from a uniform distribution. Experiments
in which the above algorithm was used to train the analog neural hardware
revealed that convergence properties (for several different problems) in the
case of a Gaussian distribution were much worse than for a uniform distri
bution. While a Gaussian distribution yields a random vector {in which the
elements could have a large value, thereby offering the possibility to escape
from local minima, the majority of the generated values are small. There
fore, most of the generated values are in the same order of magnitude as
noise in the system and learning is slowed down.

As perturbations are chosen from a range of values and have to be applied
and possibly removed (when no improvement in error is observed), a global
hardware implementation with digital storage of weights would be the most
appropriate with MROM.

4.6 Learning Experiments

The complete system, described section 3.2.4 and appendix A, has been
used to perform several learning experiments. Feed-forward operations are

106 CHAPTER 4. LEARNING

performed by the analog hardware while the learning algorithm runs on the
host computer in the ANANAS software environment.

In software simulations, all learning algorithms used here perform best
when the perturbation size is chosen very small. However, in conjunction
with analog neural hardware, the smallest perturbation is the perturbation
that provides the algorithm with sufficient information to perform error des
cent in the weight space. When perturbations are chosen too small, the
resulting effect (e.g. in the change in error criterion) is lost in the noise in
the system. In the experiments reported here, for each algorithm, the min
imum perturbation size was determined experimentally (see appendix C).
Choices for other parameters are based on several pre-runs per algorithm
and problem, and are chosen in such a way that no oscillations are observed
in the TMSE.

Weights in both synapse and neuron chips were refreshed prior to each
feed-forward operation. One feed-forward operation through the network,
including communication between the host computer and the analog hard
ware, and propagation delay through the (analog) chips, amounts to 40J.Ls
(see appendix A for additional details).

4.6.1 Epochs

An epoch is defined as an update of all the weights in a network using all
the patterns in the training set. Depending on the algorithm the number
of feed-forward operations through the network to perform one epoch dif
fers. Table 4.3 shows the number of feed-forwards for each of the algorithms

Algorithm

fan-in-out
CPRS
Alopex
MROM

Feed-forwards
per epoch
2 X (N +I) X P
2 X P
p

~~xP

Table 4.3: Number of feed-forwards per epoch for each training algorithm
where P is the number of training patterns, N the number of neurons in the
network and I the number of inputs of the network. Note that in a 4-8-3
network, there are 11 neurons (8+3) and 4 inputs.

used here. For both the fan-in-out and the CPRS algorithm, the Central

4.6. LEARNING EXPERIMENTS 107

Difference Method is used to determine weight updates. In the case of the
fan-in-out algorithm, during one epoch all weights (with the exception of the
bias weights) are updated twice. Hopefully, this will result in a reduced num
ber of epochs necessary to reach convergence. The number of feed-forwards
for the probabilistic algorithm, MROM, is approximated as either one or two
feed-forwards are done each algorithm step (see part 2 of the algorithm in
section 4.5).

Three problems have been studied, parity-4, parity-5, and a function
approximation.

4.6.2 Parity-4

For parity-4, the task is to determine the parity of a binary 4-dimensional
input vector. There are 16 training patterns. In all cases, a 4-6-1 network
was used and the learning is considered to have converged when a TMSE
of 0.01 has been reached. A logical '0' in both input and target patterns is
represented by a value of -0.9 and a logical '1' by 0.911 . At a TMSE of 0.01,
on average the output of the network has reached the target value within
a range of 0.1. Although, learning could be said to have converged when
a decision threshold between '0'- and '1 '-levels can be determined, a larger
noise margin is established when learning is continued. Especially in the
presence of leaking weights (see section 4.7), this is advantageous.

Algorithm Epochs # ff's Converged
Average Std. Dev. Average

fan-in-out pattern 1,312 473 461,824 56%*
fan-in-out set 3,228 698 1,136,256 88%
CPRS pattern 5,830 2,418 186,560 40%
CPRS set 7,007 2,175 224,224 55%
Alopex 12,718 6,885 203,488 81%
MROM 4,483 1,440 107,592 63%

Table 4.4: Summary of teaching a 4-6-1 network the parity-4 problem; 100
runs(*: 25 runs).

11 The value is dimensionless as it is the value which is used within the software. The
voltage output of the neuron (between 2V and 3V) is transformed to the dimensionless
range from -1 to +1.

108 CHAPTER 4. LEARNING

Table 4.4 summarizes the training results, showing the average and stand
ard deviation of the number of epochs to converge, the average number of
feed-forwards, and the percentage of runs which converged (out of 100 runs),
respectively. The first three numbers are computed over the runs which
converged. Detailed information about the different parameters in each al
gorithm can be found in appendix C.

While the largest number of runs converges using the fan-in-out al
gorithm with a set-based update strategy, it also needs the largest number of
feed-forwards to achieve this performance. CPRS with a pattern-based up
date clearly performs worse than all others. Alopex combines a low number
of feed-forwards with a high convergence rate. Surprisingly, the algorithm
which makes the least assumptions about the shape of the high-dimensional
error landscape, MROM, needs the lowest number of feed-forward operations
and converges in about 2/3 of the cases.

Software simulations in which only a restricted weight range of [-5.0; 5.0]
and a simplified model of a synapse and neuron 12 were used, confirm the
above behaviour. The simulations resulted in comparable convergence rates
and speed.

4.6.3 Parity-5

In the case of parity-5, a 5-dimensional binary input vector has to be classi
fied depending on even or odd parity. In total, 32 input-output combinations
are used during training of a 5-8-1 network. As for the parity-4 problem,
learning has converged when a TMSE of 0.01 is reached.

Table 4.5 shows the results which are very similar to the case of the parity-
4 problem. The fan-in-out algorithm with a set-based update strategy still
converges in the largest number of runs at the cost of a very large number
of feed-forwards. Again, MROM converged in about 2/3 of the cases in the
least number of feed-forwards.

4.6.4 Function Approximation

Historically [MP69], parity problems have been popular to test the ability
of neural networks for solving highly non-linear problems. However, one of
the powerful features of a neural network, its generalization performance,
cannot be tested/measured with such a problem. Generalization can be

12 In the simplified model only the gain of the hardware system was modeled. In that
way, the influence of a restricted weight range is similar in both hardware runs and
software simulations.

4.6. LEARNING EXPERIMENTS 109

Algorithm Epochs # ff's Converged
Average Std. Dev. Average

fan-in-out pattern 1,364 844 1,222,144 56%*
fan-in-out set 5,961 1,503 5,341,056 94%
CPRS pattern 11,494 6,332 735,616 8%*
CPRS set 14,170 4,130 906,880 50%
Alopex 23,966 8,202 766,912 57%
MROM 8,898 3,459 427,104 64%

Table 4.5: Summary of training a 5-8-1 network the parity-5 problem; 100
runs (*: 25 runs).

defined as the ability of a network to produce a meaningful response to
an input which has never been presented to the network before. In most
real-world applications, a response which is similar to an input the network
did see during training produces satisfactory generalization. In the case of
a parity problem, a minimum change in the input (flipping one bit in the
input word), should result in a maximum change in the output of the network
(from a logical '0' to a logical '1 ').

Here, the generalization property of the network is tested by trying to
learn a 1-5-1 network to produce the sine function. The training set consists
of37 equidistant samples taken from y = 0.4·sin(7r·x), where -1 s x s +1.
Learning is considered to have converged when a TMSE of 5e-4 has been
reached 13 .

From the results in table 4.6, it can be seen that both versions of the fan
in-out algorithm perform very well with respect to the number of converged
runs, again at the cost of a large number of feed-forwards. CPRS with
pattern-based update did not converge in a single run while Alopex also had
problems to convergence. The step-size for Alopex had to be reduced to
0.01 (on a total range of 10) which effectively resulted in a random search as
such a small step-size is almost indistinguishable from noise in the system.
MROM combines the least number of feed-forwards with a high convergence
rate.

Figure 4.2 on the left shows both the original sine-function and the output
of the network for 200 input values between -1 and +1. The network output
contains a significant amount of noise (approx. 5m Von a total output range

13 20 times smaller than in case of the parity problems!

110 CHAPTER 4. LEARNING

Algorithm Epochs # ff's Converged
Average Std. Dev. Average

fan-in-out pattern 1,028 403 532,504 91%
fan-in-out set 4,695 1,675 2,432,010 91%
CPRS pattern - - - 0%
CPRS set 20,225 4,705 1,496,650 84%
Alopex 31,635 5,458 1,170,495 47%
MROM 4,048 1,657 224,664 91%

Table 4.6: Summary of training a 1-5-1 network the sine function; 100 runs.

0.4 0.4

/ / " ' 0.3 // 0.3 I
I

0.2
I

0.2 ,i I

I
0.1 I 0.1 I

l I ~
0

.0.1

!J
-0.1

-0.2

-0.3 ;} -0.3

/·
.0.4 -0.4

·I .0.8 -0.6 -0.4 ·0.2 0 0.2 0.4 0.6 0~ I 0 02 0.4 0.6 o.e I
Input l"pul

Single run Average over 5 runs

Figure 4.2: Sine-function approximation

of 1 V) which can largely be accounted to the experimental setup of the whole
system (as described in appendix A). On the right, an average over 5 runs
can be seen, showing that the network is very well capable of producing an
acceptable output to an input it has never seen before.

4.6.5 Conclusion

The feed-forward based learning algorithm which needs the least effort to
train an analog neural hardware implementation several functionalities, is
a probabilistic algorithm (MROM) which makes very little assumptions on
shape of the error landscape corresponding to the problem. The algorithm
which implements a gradient descent algorithm (fan-in-out with a set-based
update strategy) performs very well with respect to the number of runs which
converge, hence it avoids and/or escapes from local minima.

The minimum perturbation size for an algorithm defines an effective

4. 7. WEIGHT LEAKAGE 111

weight accuracy for the totaJ system . For most of the algorithms here, a
fixed perturbation size 8 of 0.05 on a total weight range of 10 works very
well, corresponding to a weight accuracy between 7 and 8 bit. In the case of
CPRS an even smaller perturbation size (8 = 0.025) had to be used (larger
values resulted in unstable behaviour of the algorithm) although this caused
CPRS to converge less frequently.

4. 7 Weight Leakage

Weights in the realized system are stored using a volatile method, by stor
ing an amount of charge on a (small) capacitor (see section 2.5). During
learning, the weights are refreshed from a digital memory before each feed
forward operation. Then, the influence of leakage of the weights is minimal
as each feed-forward operation only takes about 40J1s. However, after learn
ing (in the case of a more practical application than the test-problems in
the previous section), weights should be refreshed regularly to make sure
the network keeps performing well on the learned classification or function
approximation.

0.2

·0.2

-0.4

-0.6

·I OL_.....:::0:10==,.==30-~40==,.~~ ..
Tim• in sec.

Solution 1 Solution 2

Figure 4.3: Influence of weight leakage on parity-3 problem

In figure 4.3, the output of a 3-4-1 network, which learned the parity-3
problem, versus time is shown. After learning converged, the weights were
no longer refreshed and the output of the network for all 8 input patterns was
determined each second. The two plots show the behaviour of the network for
two different solutions (separate trials starting with a different set of initial
weight values) of the network to the parity-3 problem. In the right plot, even
after 60 seconds without any refresh, a distinction between a logical '0' and
'1' can be easily made by applying a binary threshold around zero, while in
the left plot, errors are made much earlier.

112 CHAPTER 4. LEARNING

0.6

o.•

! 0.2

·0.2

Solution 1 Solution 2

Figure 4.4: Influence of weight leakage on sine function approximation

A similar experiment was performed with a 1-5-1 network which learned
to approximate the sine function. Figure 4.4 shows the input-output relation
of the network at different time-steps after refreshing was stopped. Again,
the two different solutions show very different behaviour to weight leakage.
In contrast to the parity-3 problem, here the functionality of the network is
already severely distorted after a few seconds.

Clearly, the influence of weight leakage is both problem and solution
dependent. The refreshing frequency should therefore be chosen conservat
ively, e.g. 25Hz, which is still several orders of magnitude slower than the
speed with which input vectors can be presented to the network, namely at
25,000 Hz. Such a refresh speed should not hamper the functionality of the
network in most applications.

Research on practical applications [vSNS90] has shown that the fault
tolerance of a neural network also depends on the used learning strategy.
The influence of weight leakage could possibly be reduced by choosing the
appropriate learning strategy; e.g. continuing learning for a certain time
even when the error on the training set no longer decreases.

4.8 Conclusion

From a point of view of flexibility, a global, digital implementation of learn
ing algorithms has preference. Furthermore, the lack of accuracy in analog
learning algorithm implementations (e.g. back-propagation) causes learning
to be difficult and slow. In addition, in commercial applications the large
amount of extra hardware necessary to implement a learning algorithm in
an analog, distributed way may not be cost effective.

A global, digital learning approach can best be combined with digital

4.8. CONCLUSION 113

storage of weight values and a periodic refresh to the analog feed-forward
implementation of a neural network. The refresh rate can be much lower
than the rate at which input vectors can be presented to the network.

A probabilistic algorithm (MROM) performs best with respect to the
speed (number of necessary feed-forwards) at which solutions are found while
Alopex is preferable with respect to the implementation complexity.

114 CHAPTER 4. LEARNING

Chapter 5

Concluding Remarks

The study described in this thesis has shown that simple, small, non-ideal,
analog electronic building blocks can be used to construct neural networks.
The complete realized system is one of the first systems reported with which
real-time learning experiments have been performed. The following devel
opment stages have been passed through: 1) the initial idea to use simple
building blocks, 2) the design and realization of a complete system, and
3) the choice of an appropriate learning algorithm and real-time learning
experiments.

System

Maximum flexibility in the selection of network topology can be achieved
by implementing synapses (in an array structure) and neurons (in a column
structure) on separate chips (section 2.1). This flexibility introduces the
need for scaling of electrical quantities in a network. Through a statistical
analysis (under certain conditions), it has been shown that when the number
of inputs to a neuron increases by a factor F, all weights to that neuron
should be multiplied by a factor n (section 2.2).

Implementation

Two implementation approaches have been considered and compared; a
time-sampled, pulse stream implementation where analog values are encoded
using binary signals and an analog, time-continuous implementation.

• In the case of Coherent Pulse Width Modulation (CPWM), a com
pact, low-power two-quadrant multiplier has been realized in a 2.4JLm

115

116 CHAPTER 5. CONCLUDING REMARKS

CMOS process. For pulse-frequencies up to 1 MHz the measured mul
tiplier characteristics show excellent linearity. The two-quadrant mul
tiplier can easily be expanded to a four-quadrant one with similar
characteristics (section 3.1.6).

• A complete, analog, time-continuous neural network implementation
has been realized in a 2.4J.Lm process. The main building block, the
synapse, consists of only 2 transistors and shows a linear behaviour at
a low power consumption. The complete system consists of 2 synapse
and 2 neuron chips capable of realizing an 8-8-8 network (section 3.2).

A comparison between the two computation schemes shows that they
have comparable performance for low power consumption values. Bandwidth
is slightly in favor of analog, time-continuous systems, while linearity is
slightly in favor of CPWM systems (section 3.1.4).

To be able to simulate the behaviour of neural hardware realizations in a
software environment, a general model for both synapse and neuron building
blocks has been derived. In the case of a synapse, a third-order polynomial
function has proven to be capable of fitting to highly non-linear multiplier
characteristics. A model for a neuron consists of an exponential function
combined with a third-order polynomial. The model is independent of the
type of implementation and the model parameters can be determined easily
and fast (section 3.3).

Learning

Analog on-chip implementation of the well-known back-propagation learn
ing algorithm is not recommendable. It suffers heavily from the influence of
offsets present in the multipliers needed to implement the algorithm. Fur
thermore, the large amount of extra hardware necessary to implement the
back-propagation algorithm might not prove to be cost effective (section
4.1).

Several feed-forward based learning algorithms have been considered.
Based on a number of experiments with perturbation-based and probabilistic
algorithms in conjunction with the realized hardware, it can be concluded
that a global, off-chip, digital implementation of a learning algorithm has
preference. A probabilistic algorithm (MROM) performs best with respect
to the speed at which solutions are found, while the Alopex algorithm is
preferable with respect to the implementation complexity.

A global, digital learning approach can best be combined with digital
storage of weight values and a periodic refresh to the analog feed-forward

117

implementation of a neural network. In the network , small capacitors within
each synapse are used to store the weight values. The effective weight ac
curacy of the realized system lies between 7 and 8 bit.

Publications

The research for this thesis resulted in the following publications: [GW93,
RWHC94, OWH94, Wit94b, vKCWH94, Wit95, WH95, Wit94a]

118 CHAPTER 5. CONCLUDING REMARKS

Bibliography

[AH87]

[APS95]

[Bab89]

[Bru93]

[Bru96]

[Cau93]

[Cau94]

P.E. Allen and D.R. Holberg. CMOS Analog Circuit Design.
Holt, Rinehart and Winston, Inc., 1987.

J. Alspector, R. Meir, B. Yuhas, A. Jayakumar, and
D. Lippe. A Parallel Gradient Descent Method fo r Learn
ing in Analog VLSI Neural Networks, volume 5 of Advances
in Neural Information Processing Systems, pages 836- 844.
Morgan Kaufman Publishers, 1993.

C. Alippi , V. Piuri , and M. Sami. Sensitivity to errors in arti
ficial neural networks: A behavioral approach. IEEE Trans
actions on Circuits and Systems-!, 42(6):358- 361 , June 1995.

N. Baba. A new approach for finding the globa l minimum of
error function of neural networks. Neural Networks, 2:367-
373, 1989.

P.P.F.M. Bruin. A weight perturbation neural net chip set.
Master's thes is , Eindhoven University of Technology, August
1993.

P.P.F.M . Bruin. Electronics for cellular neural networks.
Technical report , Stan Ackermans Institute, Eindhoven U ni
versity of Technology, May 1996.

G. Cauwenberghs. A Fast Stochastic Error-Descent Al
gorithm for Supervised Learning and Optimization, volume 5
of Advances in N eural Information Processing Systems,
pages 244-251. Morgan Kaufman P ublishers, 1993.

G. Cauwenberghs. A Learning Analog Neural Network Chip
with Continuous-Time Recurrent Dynamics, volume 6 of

119

120

[Cau96]

[CBS93]

[CM93]

[Cor95]

[CR95]

(CV93]

[DC93]

[DEDT96]

BIBLIOGRAPHY

Advances in Neural Information Processing Systems, pages
858-865. Morgan Kaufman Publishers, 1994.

G. Cauwenberghs. Analog VLSI stochastic perturbative
learning architectures. Journal of Analog Integrated Circuits
and Signal Processing, 1996. submitted.

M. Chiaberge, G. Di Bene, S. Di Pascali, R. Lambert,
B. Lazzerini, A. Maggiore, and L.M. Reyneri. EL-SIM: a
development environment for neuro-fuzzy intelligent control
lers. In Proceedings IWANN95, June 1995.

J. Choi, S.H. Bang, and B.J. Sheu . A programmable analog
VLSI neural network processor for communication receivers.
IEEE Transactions on Neural Networks, 4(3):484-494, May
1993.

Y. Cao and S. Mattisson. Current-mode analog neural net
work circuits for high-speed applications. In H. Dedieu, ed
itor, Proceedings European Conference on Circuit Theory and
Design, pages 263-268. Elsevier Science Publishers, 1993.

Ultraview Corporation. ULTRAD series high performance
SBus data acquisition boards product specification . Technical
report, 34 Canyon View, Orinda, CA 94563, USA, E-mail:
ultrav@netcom.com, August 1995.

M. Chiaberge and L.M. Reyneri. CINTIA: A neuro-fuzzy real
time controller for low power embedded systems. IEEE Micro
special issue on MICRONEUR0'94, June 1995.

T. Claasen-Vujcic. Implementation of a multi-layer per
ceptron using pulse-stream techniques. Master's thesis, Eind
hoven University of Technology, February 1993.

B.K. Dolenko and H.C. Card. The effects of analog hardware
properties on backpropagation networks with on-chip learn
ing. In Proceedings of the International Joint Conference on
Neural Networks, pages 110-115, 1993.

T.A. Duong, S.P. Eberhardt, T. Daud, and A. Thakoor.
Learning in Neural Networks: VLSI Implementation
Strategies, chapter 27. Series on Computer Engineering.

BIBLIOGRAPHY 121

[DM81]

[DR95]

[EDT89]

[FA88]

[Fah88]

[FH91]

[FJ93]

McGraw-Hill, fuzzy logic and neural network handbook edi
tion, 1996.

T. Duong, S.P. Eberhardt, M. Tran, T. Daud, and
A.P. Thakoor. Learning and optimization with cascaded
VLSI neural network building-block chips. In Proceedings
JEEE/INNS International Joint Conference on N eural Net
works, pages 184-189, 1992.

P.B. Denyer and J. Mavor. MOST transconductance multi
pliers for array applications. lEE Proceedings, 128(3), June
1981. Pt. I.

G. Dundar and K. Rose. The effects of quantization on mul
tilayer neural networks. IEEE Transactions on Neural Net
works, 6(6):1446- 1451, November 1995.

J. Van der Spiegel, Mueller P, D. Blackman, P. Chance,
C. Donham, R. Etienne-Cummings, and P. Kinget. An analog
neural computer with modular architecture for real-time dy
namic computations. IEEE Journal of Solid-State Circuits,
27(1):82-92, January 1992.

S. Eberhardt, T. Duong, and A. Thakoor. Design of parallel
hardware neural network systems from custom analog VLSI
building block chips. In Proceedings IEEE/INNS Interna
tional Joint Conference on Neural Networks, pages 183- 190,
June 1989.

B. Furman and A.A. Abidi. An analog CMOS backward
error-propagation LSI. In Proceedings 22nd Asilomo Confer
ence, pages 645-648, 1988.

S.E. Fahlman. An empirical study of learning speed in back
propagation networks. June 1988.

R.C. Frye and J-N Hwang. Back-propagation learning and
non-idealities in analog neural network hardware. IEEE
Transa ctions on Neural Networks, 2(1):110-117, January
1991.

B.F. Flower and M.A. J abri. Summed Weight Neuron P er
tubation: an O(N) improvement over Weight Perturbation,

122

[FL90]

[FSTCC92]

[GLJ94]

[Gol89]

[GSBJ91]

[GW93]

[HF91]

[HH93]

[HHP90]

BIBLIOGRAPHY

volume 5 of Advances in Neural Information Processing Sys
tems, pages 212-219. Morgan Kaufman Publishers, 1993.

S. Fahlman and C. Lebiere. The Cascade- Correlation Learn
ing Architecture. Advances in Neural Information Processing
Systems. Morgan Kaufman Publishers, 1990.

W-C. Fang, B.J. Sheu, 0. T.-C.Chen , and J . Choi. A
VLSI neural processor for image data compression using self
organization networks. IEEE Transactions on N eural Net
works, 3(3):506-518, May 1992.

J. Ghosh , P. Lacour, and S. Jackson. OTA-based neural
network architectures with on-chip tuning of synapses. IEEE
Transactions on Circuits and Systems-If: Analog and Digital
Signal Processing, 41(1):49- 57, January 1994.

D.E. Goldberg. Genetic Algorithms in search, optimization
and machine learning. Addison-Wesley, New York , 1989.

H.P. Graf, E. Sackinger, B. Boser, and L.D. Jackell. Re
cent developments of electronic neural nets in the USA and
Canada. In Proceedings International Conference on Mi
croelectronics for Neural Networks, pages 471-490, October
1991.

P. Gentric and H. Withagen. Constructive methods for a new
classifier based on a Radial-Basis-Function neural network
accelerated by tree. In N ew Trends in Neural Computation;
Proceedings of IWANN'93, pages 125-130, June 1993.

M. Hoehfeld and S.E. Fahlmann. Probabilistic rounding in
neural network learning with limited precision . In Proceed
ings 2 n d International Conference on Microelectronics for
Neural N etworks, pages 1-8, 1991.

J.L. Holt and J-N. Hwang. Finite precision error analysis of
neural network hardware implementations. IEEE Transac
tions on Computers, 42(3):281-290, March 1993.

P.W. Hollis, J.S. Harper, and J .J. Paulos . The effects of
precision constraints in a backpropagation learning network.
Neural Computation, (2):363-373, 1990.

BIBLIOGRAPHY 123

[HKP91]

[HN92]

[HP90]

[HPD91]

[HTCB89]

[HW96]

[IF94]

[Jac88]

[JCF96]

J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the
Theory of Neural Computation. Addison-Wesley Publishing
Company, 1991.

A. Hamilton, A. F. Murray, D.J. Baxter, S. Churcher, H.M.
Reekie, and L. Tarassenko. Integrated pulse stream neural
networks: results, issues and pointers. IEEE Transaction on
Neural Networks, 3:404-413, May 1992.

Y. Haria and S. Nakamura. Analog Memories for VLSI
Neurocomputing, pages 344-363. Artifical Neural Networks:
Paradigms, Applications, and Hardware Implementations.
IEEE Press, New York, 1992.

P.W. Hollis and J.J. Paulos. Artificial neural networks us
ing MOS analog multipliers. IEEE Journal of Solid-State
Circuits, 25(3):849-855, June 1990.

P. W Hollis, J .J. Paulos, and C.J. D 'Costa. An optimized
learning algorithm for VLSI implementation. In Proceedings
2nd International Conference on Microelectronics for Neural
Networks, pages 121-126, 1991.

M. Holler, S. Tam, H. Castro, and R. Benson. An electric
ally trainable artificial neural network with 10,240 'floating
gate' synapses. In Proceedings of the International Annual
Conference on Neural Networks, pages 191-196, 1989.

T. Heskes and W. Wiegerinck. A theoretical comparison of
batch-mode, on-line, cyclic, and almost-cyclic learning. IEEE
Transactions on Neural Networks, 7(4):919-925, July 1996.

M. Ismail and T. Fiez. Analog VLSI Signal and Information
Processing. McGraw-Hill, 1994.

R.A. Jacobs. Increased rates of convergence through learning
rate adaptation. Neural Networks, 1:295-307, 1988.

M.A. Jabri, R.J. Coggins, and B. G. Flower. Adaptive Analog
VLSI Neural Systems. Chapman & Hall, 1996.

124

[JF92]

[KMML90]

[KP90]

[LB93a]

[LB93b]

[LBD94]

BIBLIOGRAPHY

M. Jabri and B. Flower. Weight perturbation: An optimal
architecture and learning technique for analog VLSI feedfor
ward and recurrent multilayer networks. IEEE Transactions
on Neural Networks, 3(1):154-157, January 1992.

F.J. Kub, K.K. Moon, I.A. Mack, and F .M. Long. Pro
grammable analog vector-matrix multipliers. IEEE Journal
of Solid-State Circuits, 25(1):207-214, February 1990.

J.F. Kolen and J.B. Pollack. Backpropagation is sensitive to
initial conditions. Complex Systems, 4:269-280, 1990.

T. Lehmann and E. Bruun. Analogue VLSI implementation
of back-propagation learning in artificial neural networks. In
Proceedings of the European Conference on Circuit Theory
and Design, pages 491- 496, September 1993.

T. Lehmann and E. Bruun. A cascadable chip set for ANNs
with on-chip back-propagation. In Proceedings of the Third
International Conference on Microelectronics for Neural Net
works, pages 149-158, April 1993.

T. Lehmann, E. Bruun, and C. Dietrich. Analogue/digital
hybrid VLSI synapses for recall- and learning mode neural
networks. In Proceedings 12th NORCHIP Seminar, pages
31-38, 1994.

[LBSSRVH93] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodrfguez
Vazquez, and J.L. Huertas. A CMOS analog adaptive BAM
with on-chip learning and weight refreshing, May 1993.

[LD89]

[Leh94]

[LG92]

K.K. Low and S.W Director. An efficient methodology for
building macromodel of ic fabrication process. IEEE Trans
action on Computer Aided Design, 9:1299-1313, December
1989.

T. Lehmann. Hardware Learning in Analogue VLSI Neural
Networks. PhD thesis, Technical University of Denmark,
DK-2800 Lyngby, Denmark , September 1994.

J.B. Lont and W. Guggenbiihl. Analog CMOS implement
ation of a multilayer perceptron with nonlinear synapses.
IEEE Transactions on Neural Networks, 3(3):457-465, May
1992.

BIBLIOGRAPHY 125

(LJ95]

(LL93]

(LL95]

(LRIB96]

(MA94]

(Mat65]

(MCT91]

[MDGS92]

[Mea89]

[MHW93]

P.H.W. Leong and M.A. Jabri. A low-power VLSI ar
rhythmia classifier. IEEE Transactions on Neural Networks,
6(6):1435-1445, November 1995.

J.A. Lansner and T. Lehmann. An analog CMOS chip set
for neural networks with arbitrary topologies. IEEE Trans
actions on Neural Networks, 4(3) :441-444, May 1993.

S.T. Lee and K.T. Lau. Low power building block for artifi
cial neural networks. Electronics Letters, 31(19) :1618- 1619,
September 1995.

T.S. Lande, H. Ranjbar, M. Ismail , and Y. Berg. An ana
log floating-gate memory in a standard digital technology. In
Proceedings of the Fifth International Conference on Micro
electronics for Neural N etworks and Fuzzy Systems, pages
271- 276, February 1996.

T. Morie and Y. Amemiya. An all-analog expandable neural
network LSI with on-chip backpropagation learning. IEEE
Journal of Solid-State Circuits, 29(9):1086- 1093, September
1994.

J. Matyas. Random optimization. Automation and R emote
Control, 26:244-251, 1965.

A.F. Murray, D. Del Corso, and L. Tarassenko. Pulse-stream
VLSI neural networks mixing analog and digital techniques.
IEEE Transactions on Neural Networks, 2:193-204, March
1991.

N. Manduit, M. Duranton, J. Gobert, and J. Sirat. Lneuro
1.0: a piece hardware !ego for building neural network sys
tems. IEEE Transactions on Neural Networks, 3:414-422,
May 1992.

C . Mead. Analog VLSI and Neural Systems. Addison Wesley
Publishing Co., 1989.

P. Masa, K. Hoen, and H. Wallinga. 20 million patters
per second analog CMOS neural network pattern classifier.
In H. Dedieu, editor, Proceedinngs European Conference on
Circuit Theory and Design, pages 497-502. Elsevier Science
Publisher, 1993.

126

[MHW94]

[MP43]

[MP69]

[MT94]

[MVV95]

[NAS92]

[Nij95]

[NW90]

[Oos94]

[OWH94]

BIBLIOGRAPHY

P. Masa, K. Hoen, and H. Wallinga. 20 nanosecond pattern
classifier for high-energy physics. In Proceedings ProRISC,
pages 169-173, 1994.

W.S. McCulloch and W. Pitts. A logical calculus of ideas
immanent in nervous activity. Bulletin of Mathematical Bio
physics, 5:115-133, 1943.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cam
bridge, MA, 1969.

A.F. Murray and L. Tarassenko. Analogue Neural VLSI.
Chapman & Hall, 1994.

A. Mortara, E.A. Vittoz, and P. Vernier. A communication
scheme for analog VLSI perceptive systems. IEEE Journal
of Solid-State Circuits, 30(6):660-669, June 1995.

A. Nosratinia, M. Ahmadi, and M. Shridhar. Implementation
issues in a multi-stage feed-forward analog neural network.
In Proceedings IEEE/INNS International Joint Conference
on Neural Networks, pages 642- 647, 1992.

M. Nijrolder. The design and implementation of a switched
current neural network. Technical report, Stan Ackermans
Institute, Eindhoven University of Technology, September
1995.

D. Nguyen and B. Widrow. Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights. In Proceedings IEEE/INNS International
Joint Conference on Neural Networks, pages 21-26, 1990.

M. Oosse. Analog VLSI implementation of a feed-forward
neural net. Master's thesis, Eindhoven University of Techno
logy, June 1994.

J.M.C. Oosse, H.C.A.M. Withagen, and J.A. Hegt. Analog
VLSI implementation of a feed-forward neural network. In
Proceedings of the First International Conference on Elec
tronics Circuits & Systems, pages 12- 17, December 1994.

BIBLIOGRAPHY 127

[P93]

[Pic92]

[RCCG93]

[RCZ94]

[Rey95]

[RF91]

[RHW86]

[RWHC94]

[SGH90]

Y.A. Petin . Implementation of a multi-layer perceptron in
cluding back propagation training algorithm. Master's thesis,
Eindhoven University of Technology, August 1993.

S. Piche. Selection of Weight Accuracies for Neural Net
works. PhD thesis, Stanford University, May 1992.

L.M. Reyneri, M. Chiaberge, D. Del Corso, and F. Gregor
etti. Using coherent pulse width and edge modulations in
artificial neural systems. International Journal on Neural
Systems, 4(4):407-418, December 1993. Special issue on Mi
croNeuro '93.

L.M. Reyneri, M. Chiaberge, and L. Zocca. CINTIA: A neuro
fuzzy real time controller for low power embedded systems.
In Proceedings Fourth International Conference on Micro
electronics for Neural Networks and Fuzzy Systems, pages
392-403, September 1994.

L.M. Reyneri. A performance analysis of pulse stream neural
and fuzzy computing systems. IEEE Transactions on Cir
cuits and Systems-//, 42(10) :642- 660, October 1995.

L.M. Reyneri and E. Filippi. An analysis of the performance
of silicon implementations of back propagation algorithms for
artificial neural networks. IEEE Transactions on Computers,
40(12):1380- 1389, December 1991.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning
Internal Representations by Error Propagation, volume 1 of
Parallel Distributed Processing: Explorations in the Micro
structure of Cognition, chapter 8. MIT Press, 1986.

L.M. Reyneri, H.C.A.M. Withagen, J .A. Hegt, and
M. Chiaberge. A comparison between analog and pulse
stream VLSI hardware for neural networks and fuzzy sys
tems. In Proceedings of the Fourth International Conference
on Microelectronics for Neural Networks and Fuzzy Systems,
pages 77-86, September 1994.

J. Sun, W.l. Grosky, and M.H. Hassoun. A fast algorithm
for finding global minima of error functions in layered neural

128 BIBLIOGRAPHY

networks. In Proceedings IEEE/INNS International Joint
Conference on Neural Networks, pages 715-720, 1990.

[SKK+92] T. Shima, T. Kimura, Y. Kamatani, T. ltakura, Y. Fujita,
and T . Iida. Neuro chips with on-chip backprop and/or
hebbian learning. In Proceedings IEEE International Solid
State Circuit Conference, pages 138-139, 1992.

[STG92] S. Satyanarayana, Y.P. Tsividis, and H.P. Graf. A recon
figurable VLSI neural network. IEEE Journal of Solid-State
Circuits, 27(1):67-81, January 1992.

[Str91] B. Stroustrup. The C++ programming language. Addison
Wesley, 2nd edition, 1991.

[SW81] F.J. Solis and J .B. Wets. Minimization by random search
techniques. Mathematics of Operations Research, 6:19-30,
1981.

[THB+92] S. Tam, M. Holler, J. Brauch, A. Pine, A. Peterson, S. Ander
son, and S. Deiss. A reconfigurable multi-chip analog neural
network; recognition and back-propagation training. In Pro
ceedings International Joint Conference on Neural Networks,
pages 625-630, 1992.

[tK93] R.E. ten Kate. A study of the weight perturbation algorithm
used in neural networks. Master's thesis, Eindhoven Uni
versity of Technology, August 1993.

[TS87] Y. Tsividis and S. Satyanarayana. Analogue circuits for
variable-synapse electronic neural networks. Electronics Let
ters, 23(24):1313-1314, November 1987.

[UV92] K.P. Unnikrishnan and K.P. Venugopal. Learning in connec
tionist networks using the alopex algorithm. In Proceedings
IEEEjiNNS Joint Conference on Neural Networks, pages
926-931, 1992.

[vdBFP+9Q] D. van den Bout, P. Franzon, J. Paulos, T. Miller, W. Snyder,
T. Nagle, and W. Liu. Scalable VLSI implementations for
neural networks. Journal of VLSI Signal Processing, 1:367-
385, 1990.

BIBLIOGRAPHY 129

[Ver94a] 0. Vermesan. Memory units for analog VLSI implementation
of neural networks. Technical report, University of Bergen,
Department of Physics, Microelectronics Group, Allegaten
55, N-5007 Bergen, Norway, 1994.

[Ver94b] 0 . Vermesan. The MOS transistor as the basic building block
for analog VLSI implementation of neural networks. Tech
nical report, University of Bergen, 1994.

[Ver95a] 0. Vermesan . Applied layout techniques for analog and
mixed analog digital blocks used in ASICs and VLSI neural
network systems. Technical report , University of Bergen,
1995.

[Ver95b] 0 . Vermesan. Layout techniques for analog and mixed analog
digital ASICs and VLSI neural network systems . Technical
report, University of Bergen, 1995.

[vHHW+93] J. van Houdt, L. Haspeslagh, D. Wellekens, L. Deferm, and
G. Groesneken. HIMOS a high efficiency flash E2 PROM cell
for embedded memory applications. IEEE Transactions on
Electron Devices, 40(12):2255-2263, December 1993.

[vKCWH94] E . van Keulen, S. Colak, H.C.A.M. Withagen, and J.A. Hegt.
Neural network hardware performance criteria. In Proceed
ings of the International Conference on Neural Networks,
pages 1885-1888, July 1994.

[vLA87] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Anneal
ing: Theory and Applications. D. Reidel Publishing Com
pany, Dordrecht, Holland, 1987.

[VM92] J .M. Vincent and D.J. Myers. Weight dithering and
wordlength selection for digital backpropagation networks.
BT Technology Journal, 10(3):124-133, July 1992.

[Vog95] M. Vogels. Alopex, stochastich trainingsalgoritme voor
neurale netwerken. Master's thesis, Eindhoven University of
Technology, August 1995. in Dutch.

[VOM+91] E. Vittoz, H. Oguey, M.A . Maher, 0 . Nys, E. Dijkstra,
and M. Chevroulet. Analog Storage of Adjustable Synaptic
Weights, pages 48-63. VLSI Design of Neural Networks.
Kluwer Academic Publishers, 1991.

130

[vSNS90]

[Wer74]

[WH95]

[Wit94a]

[Wit94b]

[Wit95]

[XJ92]

BIBLIOGRAPHY

F.A. van Schaik, J.A.G. Nijhuis, and L. Spaanenburg. Limits
to the fault-tolerance of a feedforward neural network with
learning. In Proceedings IEEE International Symposium on
Fault- Tolerant Computing, 1990.

P.J. Werbos. Beyond Regression: New Tools for Prediction
and Analysis in the Behavorial Sciences. PhD thesis, Har
vard University, 1974.

H.C.A.M. Withagen and J .A. Hegt. Analog VLSI neural
network. In Proceedings ProRISC workshop on Circuits, Sys
tems, and Signal Processing, pages 399-406, 1995.

H.C.A.M. Withagen. Implementing back-propagation with
analog hardware. In Proceedings of the International Con
ference on Neural Networks, pages 2015-2017, July 1994.

H.C.A.M. Withagen. Reducing the effect of quantization by
weight scaling. In Proceedings of the International Confer
ence on Neural Networks, pages 2128-2130, July 1994.

H.C.A.M. Withagen. Quantization effects in neural networks.
In Proceedings ProRISC workshop on Circuits, Systems, and
Signal Processing, pages 393-398, March 1995.

Y. Xie and M.A. Jabri. Analysis of the effects of quantization
in multilayer neural networks using a statistical model. IEEE
Transactions on Neural Networks, 3(2):334-338, March 1992.

M. Yasunaga, N. Masuda, M. Yagyu, M. Asai, K. Shibata,
M. Ooyama, M. Yamada, T. Sakaguchi, and M. Hashimoto.
A self-learning digital neural network using wafer-scale LSI.
IEEE Journal of Solid-State Circuits, 28(2):106-113, Febru
ary 1993.

Appendix A

System Details

The experimental setup contains 2 synapse and 2 neural chips which are
connected in series. The current outputs of synapse chips are connected to
neuron chips and the voltage outputs of a neuron chip are distributed to
the next synapse chip. In that way, the maximum topology which can be
realized is a fully connected 8-8-8 network.

Figure A.1 shows a picture of realized setup. A block diagram of the
setup can be found in figure A.2. The setup is connected to a host com-

Figure A.1: Photograph of the complete system

131

132

"0
c
<0
E
E
8

APPENDIX A. SYSTEM DETAILS

0
~
0 -

MUX

Neuron Chip

Synapse Chip

Neuron Chip

Synapse Chip

~
E e -

Figure A.2: Block diagram of the complete setup

I I

133

puter, a Sun SPARCstation 10, through a high-speed data acquisition board
[Cor95]. This board contains a 12-bit A/D converter, a 12-bit D/ A con
verter, and 8 digital 1/0 lines (4 input and 4 output).

In feed-forward operation, an input vector to the neural network is trans
ported in a serial fashion from the memory of the host computer through
the D/A converter and de-multiplexer to the 8 Sample & Hold circuits (S&
H) placed before the synapse chip of the first layer. After a short relaxation
time (approx. 2jts for a two layer network), the outputs of the final neuron
chip can be transported back to the host computer by sequentially sampling
each of the outputs through the A/D converter. Both the A/D and D/ A
converter run at a frequency of 500kHz. In total a complete feed-forward
operation through the network (independent of the network size which can
be implemented with this configuration) takes 40J.Ls.

4 digital 1/0 lines are used to indicate different modes. One mode is
the feed-forward operation while another one is a refreshing mode where
the weights of synapse and neuron chips are updated. Weight values are
transported in serial way from the memory of the host computer to the
analog weight storage units at each of the synapses. Note that, independent
of the topology of the realized network, all weights have to be refreshed.
Synapses which should not contribute to the network are effectively switched
off by applying 5V to weight inputs (see section 3.2.2).

Due to the experimental nature of the setup, the separation of digital and
analog signals is far from ideal. However, during 'analog' computations (in
both synapse and neuron chips) and during transport of analog values to and
from the host computer, digital activity is reduced to an absolute minimum.
A special feature of the data acquisition board facilitates this design as the
A/D converter takes a sample prior to a rising edge of its clock signal.

134 APPENDIX A. SYSTEM DETAILS

Appendix B

ANANAS

The Analog Neural Simulator (ANANAS) is an object-oriented software
package written in the C++ programming language [Str91). Properties of
neural network topologies and learning algorithms can be investigated by
writing a high-level C++ program using several defined objects and meth
ods.

The Neuron and Weight 1 objects are the basic building blocks of the
simulator. Neural network topologies can be constructed by combining the
objects to realize the desired structure. Each object contains all locally
available neural information, e.g. a weight value in the case of the Weight
object and a neuron state or sigmoid steepness with the Neuron object. As
most neural network topologies consist of layers, a Layer object is available
as well in which Weight and Neuron objects are collected. Normally, a layer
is fully connected and by appending subsequent layers a complete network
can be constructed. On a global level, a Network object is available which
can contain several Layer objects.

Learning algorithms are mainly implemented as methods on a global
level in the Network object. In the case of a distributed learning al
gorithm both properties and methods are added to objects on a lower level,
e.g. in the case of back-propagation additional multipliers are added to
the Neuron and Weight object to realize the desired functionality (see sec
tion4:sec: backprop).

During the development of ANANAS, special attention was paid to the
fact that it should be possible to investigate the influence of hardware non
idealities on the behaviour of a neural network. Hardware realizable units

1 In relation to the way neural networks are described and named in this work, the
Weight object should be viewed as a synapse.

135

136 APPENDIX B. ANANAS

(e.g. multipliers, sigmoids) are contained in a separate part of the package,
and references from the different objects to these units make sure that the
description of a unit can be easily adjusted.

An example program written in ANANAS is shown below:

int main(int argc, char **argv)
{

}

Network network;

network.Add_layer(4, INPUT);
network.Add_layer(8, HIDDEN, TANH, 1.0);
network.Add_layer(3, OUTPUT, TANH, 1.0);
network.Randomize_weights(0.5);

Read_vectors_from_file(TRAIN_DATA_FILE);

while(network.Compute_total_error() < ERROR_CRIT)
for (int count=O; count < Number_of_vectors; count++)

network.Train_with_backprop(count, learning_rate);

Vector output_vector(3);

for (int count=O; count < Number_of_vectors; count++)
{

}

network<< *input_vectors[count];
network >> output_vector;
cout << *input_vectors[count] << output_vector;

In the example, a 4-8-3 network is constructed and the weights in the network
are set to random values between -0.5 and 0.5. In the hidden and output
layers of the constructed network, a tanh-sigmoid is used with steepness of
1.0 (see section 1.1.1). Both input and target vectors to train the network
are read from file and the network is trained using back-propagation until
the Total Mean Square Error falls below a pre-defined limit. After training
is stopped, the output of the network for each of the training input-vectors
is displayed.

Hardware non-idealities can be set using special methods, e.g. introdu
cing an input offset for each neuron in the network:

Neuron *neuron_ptr = network.Get_first_neuron_ptr();
do
{

neuron_ptr->Set_input_offset(0.2);

137

} while ((neuron_ptr = network.Get_next_neuron_ptr()));

Furthermore, the package offers the possibility to perform in-the-loop
training with the analog hardware system described in appendix A. An ad
ditional argument to training-methods indicates if a feed-forward operation
should be simulated (by the host station) or to present the input-vector(s)
to the hardware and read back the output of the hardware realized network.
A special module within the package maps the physical quantities (e.g. in
put voltages, weight voltages) to dimensionless values corresponding to the
network descriptions used within ANANAS.

138 APPENDIX B. ANANAS

Appendix C

Learning Experiments Details

The tables below provide detailed information about the experiments repor
ted in section 4.6 for each of the used learning algorithms and their respective
parameters. All experiments were performed 100 times with the exception of
the ones marked *. In those cases, only 25 runs were done. Each new run was
started with randomly chosen small initial weight values, Wij E [-0.5; 0.5]
on a total (dimensionless) weight range of [-5.0; 5.0].

Choices for different parameters are based on several pre-runs per al
gorithm and problem, and are chosen in such a way that no oscillations are
observed in the TMSE. For the parity-4 problem, a 4-6-1 network was used
and the learning is said to have converged when a TMSE of 0.01 is reached.
Similarly for the parity-5 problem, learning is stopped when the same TMSE
value is reached with a 5-8-1 network. In the case of the sine-problem, the
TMSE should fall below 0.0005 before the 1-5-1 network is said to have
approximated the function with sufficient accuracy.

fan-in-out Epochs Conv. 8 7] max. time
pattern Av. Std. Dev. epochs in sec.
parity-4 1,312 473 56%* 0.05 0.05 2,000 16,246
parity-5 1,364 844 56%* 0.05 0.05 4,000 71,279
sine 1,028 403 91% 0.05 0.05 2,000 62,752

Table C.1: Fan-in-out, pattern-based update strategy

The different columns in each table indicate: the average number of
epochs of converged runs, the standard deviation, the percentage of con-

139

140 APPENDIX C. LEARNING EXPERIMENTS DETAILS

verged runs, the perturbation or step-size 8, the learning rate ry, the max
imum number of epochs, and the total time necessary to perform all runs,
respectively. The average and standard deviation are computed over con
verged runs only.

fan-in-out Epochs Conv. 8

"'
max. time

set Av. Std. Dev. epochs in sec.
parity-4 3,228 698 88% 0.05 1.0 5,000 25,838
parity-5 5,961 1,503 94% 0.05 1.0 10,000 102,725
sine 4,695 1,675 91% 0.05 0.5 10,000 46,036

Table C.2: Fan-in-out, set-based update strategy

CPRS Epochs Conv . 8

"'
max. time

pattern Av. Std. Dev. epochs tn sec.
parity-4 5,830 2,418 40% 0.025 0.025 10,000 36,733
parity-5 11,494 6,332 8%* 0.025 0.01 20,000 46,267
sine - - - - - - -

Table C.3: CPRS, pattern-based update strategy

CPRS Epochs Conv. 8

"'
max. time

set Av. Std. Dev. epochs in sec.
parity-4 7,007 2,175 55% 0.025 0.5 20,000 13,684
parity-5 14,170 4,130 50% 0.025 0.5 30,000 38,223
sine 20,225 4,705 84% 0.025 0.2 30,000 42,501

Table C.4: CPRS, set-based update strategy

141

Alopex Epochs Conv. {J

"'
max. time

Av. Std. Dev. epochs m sec.
parity-4 12,718 6,885 81% 0.05 2.0 30,000 6,072
parity-5 23,966 8,202 57% 0.05 2.0 40,000 18,117
sme 31,635 5,458 47% 0.01 2.0 40,000 21,627

Table C.5: Alopex, set-based update strategy

MROM Epochs Conv. {J max. time
Av. Std. Dev. epochs m sec.

parity-4 4,483 1,440 63% E [-0.1; 0.1] 10,000 6,341
parity-5 8,898 3,459 64% E [-0.1; 0.1] 20,000 21,086
sme 4,048 1,657 91% E [-0.1; 0.1] 10,000 9,162

Table C.6: MROM, set-based update strategy. The step-size is chosen uni
formly in the indicated range (learning rate is omitted here as it is not used
by the algorithm).

142 APPENDIX C. LEARNING EXPERIMENTS DETAILS

Appendix D

Circuit Details

CPWM-circuits

Reference Transistor Sizes Bias Voltages/ Capacitor
W /L (all sizes in pm) Currents Values

Two-quadrant M1 = M2 = 4.8/18 hias = lOJ.JA
CPWM multiplier M3 = M4 = 4.8/24 Vref = 1.1V
Figure 3.12 MS = MSa = 24/4.8 vdd = sv

M6 = 2.4/2.4
Four-quadrant M1 = M2 = 4.8/18 hias = lOpA
CPWM multiplier M3 = M4 = 4.8/24 Vref = 1.1 V
Figure 3.15 MS = MSa = 24/4.8 vdd = sv

M6 = M7 = M8 =
M9 = MlO = 2.4/2.4

Integrator M1 = 10/4.8 Vbias = 3.6V Cl = O.SpF
Figure 3.18 M2 = M3 = 18/4.8 Vref = 2.5V C2 = 0.3pF

M4 = MS = 12/4.8 Vdd = SV C3 = 2.5pF
M6 = M7 = 24/4.8
M8 = M10 = 2.4/2.4
M9 = 12/2.4

143

144 APPENDIX D. CIRCUIT DETAILS

Analog Circuits

Reference Transistor Sizes Bias Voltages/ Capacitor
W /L (all sizes in 1-lm) Currents Values

Synapse Ml = M2 = 4.8/18 Vref = 2.5V
Figure 3.28 M3 = M4 = Vw2 = O.SV

MS = M6 = 4.8/4.8 foias = 20!-lA
M7 = M8 = 48/4.8 vdd = sv
M9 = MlO = 6/10
Mll = Ml2 = 10/10

Neuron Ml = 10/4.8 /oiasl = 10!-lA C = lpF
Figure 3.35 M2 = 30/4.8 /oias2 = 10!-lA

M3 = M4 = 8/12 /oias3 = 3.7/-lA
M5 = M6 = 48/4.8 Vref = 2.5V
M7 = M8 = 24/4.8 vdd = sv
M9 = MlO = 4.8/32
Mll = Ml2 = 8/12
Ml3 = Ml4 = 8/4.8
MIS = Ml6 = 4.8/12
Ml7 = Ml8 = 8/4.8
Ml9 = 75/2.4
M20 = M21 = 12/4.8
M22 = 4.8/8
M23 = 4.8/24
M24 = M25 = 12/4.8
M26 = 150/2.4

Acknowledgements

Constructing acknowledgements is not an easy task and I am bound to for
get to mention some people who contributed, more or less, to the completion
of this work. To all those people: thanks and I hope nobody will feel left
out if his/her name is not mentioned below.

I would like to thank Professor Wim van Bokhoven for giving me the op
portunity to perform research within his group on this fascinating subject.
I hope the work will be continued with new PhD and graduate students. I
am greatly indebted to my copromotor and supervisor Hans Hegt for all the
fruitful discussions and useful directions. Together we ran into numerous
problems and in all cases we were able to solve them in close cooperation.
Without him I wouldn't have been able to finish this work.

Special thanks to Leo Reyneri for an interesting international coopera
tion on several papers and (a lot of) useful comments on an earlier version of
this thesis. Also to Marcello Chiaberge with whom I performed part of the
research for this thesis and visited several conferences in interesting places.

The environment in which someone is able to perform is very important
and therefore I would like to thank my room mates Gerard Egelmeers and
Daniel Schobben and all other members of the Electronic Circuit Design
group for a stimulating and most enjoyable environment to work in.

I would like to mention Rene Mol. I feel like we have been able to give
each other relaxing moments when we both needed it most. Thanks.

Finally, the persons who should actually be on the top of the list but it
seems to be customary to mention the most important ones last. I am very
grateful to my parents who always supported me and gave me the freedom
to do what I most liked. And my girlfriend Anne-Marie, without her none
of this work could have been accomplished.

145

Curriculum Vitae

Heini Withagen was born on April 26, 1969 in Bergen op Zoom, the Neth
erlands. He graduated from Het Moller Lyceum in 1987. He received the
Ir. degree with honours, specialized in Information Technology, from the
Department of Electrical Engineering at the Eindhoven University of Tech
nology in 1992. For his master thesis, he spent 8 months with Laboratoires
d'Electronique Philips, France working on the recognition of handwritten
symbols for use in handheld computers.

From 1992 to 1996, he worked as a Ph.D. student at the Eindhoven
University of Technology in the Electronic Circuit Design Group on the
hardware implementation of neural networks using analog electronics.

At the beginning of 1995, he started his own company active in the field
of consulting and software development for UNIX and Internet applications.
Since autumn 1993, he has been the maintainer of one of the main overviews
of Internet activity in the Netherlands.

Since October 1996, he has been working for Netcast (formerly known as
Riverland Networks), the Netherlands as a project manager and consultant
for large Internet and Intranet applications.

147

STELLING EN

Behorende bij het proefschrift

Neural Networks:
Analog VLSI Implementation and Learning Algorithms

door H.C.A.M. Withagen

1. De aanname van een klein aantal gewichten per neuron in onderstaande
analyse vermindert de waarde van de analyse aangezien de effecten van
kwantisatie meer invloed hebben bij een groat aantal gewichten per
neuron.
(Y. Xie, M.A. Jabri, 'Analysis of the Effects of Quantization in Mul
tilayer Neural Networks using a Statistical Model', IEEE Trans. on
Neural Networks, Vol. 3, No. 2, pp. 334-338, 1992)

2. Gezien de plaats van de verwerkingskracht in beide systemen zal een
beter inzicht in het leerproces van kunstmatige neurale netwerken het
programmeren van parallele computers met hedendaagse CISC/RISC
processoren vereenvoudigen.

3. On-chip analoge implementatie van het 'back-propagation' leeralgo
ritme heeft, onder de huidige technologische randvoorwaarden, zowel
vanuit technisch als commercieel oogpunt geen voorkeur.
(Dit proefschrift, hoofdstuk 4)

4. De simulatie-resultaten in onderstaand artikel zijn, zelfs met de ori
ginele software van de auteurs, niet reproduceerbaar.
(K.P. Unnikrishnan, K.P. Venugopal, 'Learning in Connectionist Net
work using the Alopex Algorithm', Proc. IEEE/INNS Joint Conf. on
Neural Networks, pp. 926-931, 1992)

5. De huidige tendens om steeds grotere rekenkracht in te zetten om door
grate hoeveelheden informatie te zoeken (data-mining), is in· sommige
gevallen onnodig. Een versnelling kan oak verkregen worden door meer
structuur in de informatie aan te brengen.

6. Een Darwinistische kijk op geneeskunde zou onderdeel moeten zijn van
de opleiding van iedereen werkzaam in deze discipline.
(R.M. Nesse, G.C. Williams, 'Why We Get Sick: the new science of
Darwinian Medicine', New York, 1995, ISBN 0-8129-2224-7)

7. Ret samenwerken met minder-validen tijdens de aanleg van publieke
voorzieningen zal zowel de werkloosheid onder deze groep verlagen als
mede de kwaliteit van de voorzieningen verhogen.

8. Autonome zoekrobots op het Internet bezitten op dit moment te weinig
intelligentie om de gemiddelde gebruiker goed van dienst te zijn.

9. Ret aanbrengen van veranderingen op het laatste moment komt het
eindresultaat meestal niet ten goede.

10. De naam 'Dolly' is sinds de experimenten met klonen niet meer bruikbaar
als meisjesnaam.

