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Memorandum COSOR 96-13, 1996, Eindhoven University of Technology

Note on the approximation of distributions on ZZ+
by mixtures of negative binomial distributions

F.W. Steutel and M.J.A. van Eenige

Abstract

It is shown that the distributions on ZZ+ that can be approximated by mix-
tures of negative binomial distributions, are precisely the so-called Poisson
mixtures, i.e., mixtures of Poisson distributions.

1 Introduction

It is well known that every distribution on IR+ is the weak limit of a sequence of
distributions with rational Laplace-Stieltjes transforms (LSt’s), in fact, of mixtures
(with positive weights) of Gamma distributions. More precisely, if F̂ is the LSt of a
distributionfunction (df) on IR+, then there are pk,n > 0, λk,n ∈ (0,∞) and rk,n ∈ IN

such that

F̂(s) = lim
n→∞

n∑
k=1

pk,n

( λk,n

λk,n + s

)rk,n
(1)

(see e.g. p. 32 in Schassberger (1973) and pp. 78-79 in Neuts (1981)). An easy
proof of (1) consists of the following two facts.

(i) Every df on IR+ can be approximated by step functions, i.e., by mixtures of
degenerate df’s.

(ii) A degenerate df concentrated at c can be approximated by a Gamma distri-
bution: the law of large numbers implies that

c
n
(X1 + · · · + Xn )

w−→c,

where X1, · · · , Xn are i.i.d. and exponentially distributed with mean 1.

A natural question to ask is, ’What distributions on ZZ+ can be approximated
by mixtures of negative binomial distributions, the analogues of Gamma distribu-
tions?’. This question will be answered in the next section.
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2 Distributions on ZZ+

The analogue of (1) for the generating function P of a distribution on ZZ+ would be

P(z) = lim
n→∞

n∑
k=1

pk,n

( 1 − qk,n

1 − qk,nz

)rk,n
, (2)

with pk,n > 0, qk,n ∈ (0,1) and rk,n ∈ IN. The question is whether (2) holds for all
probability generating functions (pgf’s).

Looking for analogues of (i) and (ii) in Section 1, we see that (i) is automati-
cally taken care of, but that (ii) does not apply: where for a distributionconcentrated
at c ∈ IR+ we have

e−cs = lim
n→∞

( 1
1 + c

n s

)n
, (3)

the pgf zk of a distribution concentrated at k ∈ IN+ cannot be approximated by the
right-hand side of (2) for the following reason. Since the function

( 1 − q
1 − qz

)k =
( 1

1 − λ(1 − z)

)k
, (4)

with λ = q/(1 − q), is completely monotone (has alternating derivatives) in w :=
1 − z for w ∈ IR+, and complete monotonicity is preserved under the taking of point-
wise limits, the right-hand side of (2) is completely monotone. This means that
complete monotonicity in 1 − z is necessary for P to satisfy (2). Since, clearly, the
function zk = (1 − w)k is not completely monotone in w on IR+, it cannot be ob-
tained as (2).

We now turn to the sufficiency of the complete monotonicity in 1 − z. By Bern-
stein’s theorem (Feller (1971)) a function h is completely monotone in s if and only
if it can be represented as

h(s) =
∫

[0,∞)

e−sxdH(x),

where H is nondecreasing. It follows that a pgf P satisfying (2) must be of the form

P(z) =
∫

[0,∞)

e−x(1−z)dF(x), (5)

where F is a df, i.e., P must be of the form P(z) = F̂(1 − z). But then (2) follows
from (1), and we find that complete monotonicity of P as a function of 1 − z is not
only necessary to have (2), but also sufficient. Summarizing we have the following
result.
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Theorem 1 A distribution (pk )∞0 on ZZ+ can be approximated by mixtures of neg-
ative binomial distributions if and only if (p k ) is a Poisson mixture, i.e., if and only
if the pgf P of (pk ) satisfies (5).

3 Remarks and an example

A distribution on ZZ+ satisfying equation (5) is called a Poisson mixture; the corre-
sponding random variable, N say, is of the form

N
d= N(X),

where N(·) is a unit Poisson process and X is an IR+-valued random variable inde-
pendent of N(·). A detailed discussion of Poisson mixtures can be found in Puri and
Goldie (1979). Between the moments of N and X we have the following relations.

EN = EX, EN(N − 1) = EX2,

and hence
var(N) = EN + var(X).

This means that N is not a Poisson mixture, and hence cannot be approximated by
mixtures of negative binomial distributions if EN > var(N). The example in Sec-
tion 2 demonstrates this; when P(N = k) = 1, then EN = k > 0 = var(N).

That mixtures of degenerate distributions on IR+ have mixtures of Poisson dis-
tributions as their analogues on ZZ+ results from the fact that, in many respects, the
Poisson distributions themselves are the analogues on ZZ+ of the degenerate distri-
butions on IR+. The analogue of (3) is obtained by putting k = n, λ = c

n in (4) and
letting n tend to ∞; this yields the Poisson pgf exp(c(z − 1)) as a limit. Similarly,
the Gamma mixtures are taken into negative binomial mixtures by the following
simple transformation.

( 1
1 + c(1 − z)

)k = 1
k!

∫ ∞

0
e−c(1−z)xke−xdx.

For another analogy between Poisson distributions and degenerate distributions we
refer to Steutel and van Harn (1979).
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