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Abstract

We consider abstract versions,

n n

H = - E AicijAj +E(CiAi +AcD + Co ,
i,j=1 i=1

of second-order partial differential operators defined by sectorial forms
on a Hilbert space H. The Ai are closed skew-symmetric operators with
a common dense domain HI and the Cij, Ci etc. are bounded operators
on H with the real part of the matrix C = (Cij) strictly positive
definite.

We assume that D(L) ~ ni,j=1 D(AA j ) where L = - L£=I A~ is
defined as a form on HI x HI- 'vVe further assume the Cij are bounded
operators on one of the Sobolev spaces h.y = D((I +LP/2), 'Y E (0,1),
equipped with the graph norm. Then we prove that

(1)

for all large A E R.

As a corollary we deduce that in any unitary representation of a Lie
group all second-order subelliptic operators in divergence form with
Holder continuous principal coefficients satisfy (1).
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Let ]{ be a closed maximal accretive, regular accretive, sectorial operator on the Hilbert
space 1f with associated regular sesquilinear form k and Re]{ the closed maximal accre
tive operator associated with the real part of k. Kato [Kat1], Theorem 3.1, proved that
D(]{8) = D(IC 8) = D( (Re ]{)8) for all h E [0, 1/2) but Lions [Lio] subsequently gave an
example of a closed maximal accretive operator for which D(]{1/2) =f. D(I<"<1/2). Then
Kato [Kat2]' Theorems 1 and 2, proved that D(]{1/2) = D(]{* 1/2) if, and only if, both
D(I(1/2) ~ D(k) and D(I(*1/2) ~ D(k). More generally D(I(1/2) ~ D(k) if and only if
D(k) ~ D(IC 1/2) with a similar equivalence if ]{ and ]{* are interchanged. Therefore the
identity of any two of the sets D(I(1/2), D(I(*1/2), D(k) implies the identity of all three.
Establishing that a particular operator ]{ satisfies these last identities has become known
as Kato's square root problem, or the Kato problem.

Kato's initial interest in these questions was motivated by problems of evolution equa
tions and much subsequent attention has been devoted to the Kato problem for strongly
elliptic second-order operators with complex measurable coefficients in divergence form on
L2(Rd; dx) or on a subspace corresponding to a subdomain neRd. The problem has
proved remarkably intractable but it has been solved under some special additional as
sumptions. For example the one-dimensional case was solved by Coifman, McIntosh and
Meyer [CMM] in 1982 and in 1985 McIntosh [McI2] showed that the problem can be solved
if the coefficients are Holder continuous. A survey of the situation up to 1990 is given by
McIntosh in [Men] and a more recent update in [AuT]. This latter paper establishes the
equivalence of the Kato problem with several other classical problems of harmonic analysis
and illustrates the difficulties of its solution.

Our purpose in this note is to solve the Kato problem for an abstract class of second
order operators under a mild regularity condition on the principal coefficients. In par
ticular we extend the results of McIntosh [McI2] by quite different arguments which rely
on interpolation theory. Indeed we draw analogous conclusions to McIntosh for operators
associated with an arbitrary unitary representation of a Lie group.

Let AI, . .. ,An be closed skew-symmetric operators on the Hilbert space 1f such that
1f1 = n~1 D(Ai ) is norm-dense. Define the corresponding Laplacian L as the positive
self-adjoint operator associated with the form [ with domain 1f1 given by

n

[('1') = L IIA'P11 2

i=1

Then
nnD(Ai ) = 1f1 = D((>..I +L)I/2)

i=1

(2)

for all >.. 2: 0 by [Kat3], Theorem VI.2.23. In particular 1f1 is a Banach space with respect
to the norm

Next introduce the corresponding Sobolev spaces 1f,,!' I E R, as 1f,,! = D((I + LP/2), if
I > 0, with the graph norm

(3)

and as the completion of (I +LP/21f with respect to the norm (3) if I ~ O. Then 1f_,,! is the
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dual of rt-y. Since L is self-adjoint the Sobolev spaces form a scale of complex interpolation
spaces.

The class of operators we analyze are defined by sectorial forms h on rtl x rtl with
values

n n

h(t/;,<p) = E (Ait/;,CijAj<p) +E ((t/;,CiAi<P) - (Ait/;,C~<P)) + (t/;,C{}<P) (4)
i,j=1 i=1

where Cij, Ci, ci and C{} are bounded operators on rt with the real part of the matrix C = (Cij)
of principal coefficients strictly positive-definite, i.e.,

n n

E Re(<pi,Cij<Pj) ~ J1 E lI<pi11 2

i,j=1 i=1

for some J1 > 0 and all <PI, . .. ,<pn E rt. Forms of this type will be called subelliptic.
The positive-definiteness condition, i.e., the subellipticity, ensures that h is sectorial and
closed on rtl x rti. Hence if H is the sectorial operator associated with h then >'1 +H is
a closed maximal accretive, regularly accretive operator for all sufficiently large>. E R. It
follows that >'1 +H has a bounded Hoo-functiona.l calculus and bounded imaginary powers:
II (>'1 +H)is II ~ ell"l s l/2 for all s E R and all sufficiently large >.. A proof of these facts can be
found, for example, in [ADM]. One of the consequences of the bounded imaginary powers
is the fractional powers are well-defined and form a scale of complex interpolation spaces.
For example,

[D((>'I + Ht), D((>.I + H),6)]o = D((>.I + H)(1-0) cx+O,6)

for all large >., all (x, f3 ~ 0 with (X i- f3 and all () E (0,1) (see [Tri], Theorem 1.15.2).
Our main result is the following.

Theorem 1 Assume the regularity inclusion

n

D(L) ~ n D(AiAj )
i,j=1

(5)

Let H be the closed sectorial operator associated with the subelliptic form (4) and suppose
the Cij and their adjoints cij are bounded operators on the Sobolev space rt-y = D((I +LP/2)
for some I E (0,1). Then

for all large>. E R.

If the matrix of principa.l coefficients C = (Cij) is self-adjoint, i.e., if Cij = cji for all
i, j E {I, ... , n}, there is no need for the regularity assumptions of the theorem. Then the
principal part Ho = - Li,j=1 ACijAj of H is positive, self-adjoint, and D((>.I +HO)I/2) =
D((>.I + H~)1/2) = rtl for all >. ~ 0 by [Kat3], Theorem VI.2.23. This conclusion can then
be extended to H, at least for large positive values of >., by the interpolation-perturbation
argument used at the end of the following proof. Thus the difficulty in the theorem occurs
when the principal coefficients are not self-adjoint. Then the assumptions, Crt-y ~ rt-y and
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C*1-£'.y ~ 11."1' reflect a form of smoothness of the action of the operators Cij by the following
reasonmg.

First remark that the value of, in the assumption is not of particular significance. If C

is a bounded operator on 11. and in addition bounded on 11."1 for some, E (0,1) then it is
bounded on 11.8, for all 8 E (0, ,), by complex interpolation. Secondly, let C be a bounded
operator on 11. with norm IIcl\?-t and T the 'heat' semigroup generated by L on 11.. Then
for c and c* to be bounded on 11."1 it suffices that one has bounds

(6)

for some 11 > , > 0, some w ~ 0 and all t > O. This follows because

for all A > 0 where Cy = f~ dt t- 1-')'/2(1 - e-t ). Hence

(AI + Lp/2C - c(AI + Lp/2 = c-1 (<X! dt C 1-'Y/2e->..t(cTt - Tt c)')' Jo

and the bounds (6) give

I((AI + L p/2'l/J, cc.p) - ('l/J, c(AI + L p/2c.p) I S; a c~III'l/J II . 11c.p11 1000

dt C1+(v-')')/2 e-(>..-w)t

S; a"I,>" II 'l/J II ·1Ic.p1l

for all c.p, 'Ij; E 11.')' where a')',>.. is finite for all large A whenever 11 > ,. It follows immediately
that c c.p E 11."1 and

Thus C is bounded on 11."1' Since T is self-adjoint the bounds (6) are also valid for c* and
then c* is bounded on 11.')' by the same argument.

Proof of Theorem 1 We first prove the theorem for the principal part Ho of Hand
subsequently extend the result to H by an interpolation-perturbation argument.

First, since

it suffices to establish the result for the operator I + Ho.
Secondly, fix 'l/J E D(H~) ~ 'HI and c.p E 'H1+')' C 'HI. Then (1 + H~t(1-')')/2'l/J E

D(H~) ~ 11.1 and

((1 + H~)(1+')')/2'l/J, c.p) = ((1 + H~)(1 + H;)-(I-'Y)/2'l/J, c.p)

n

= L (Ai(1 + H~t(I-'Y)/2'l/J, cijAjc.p) + ((1 + H~t(I-')')/2'l/J, c.p) . (7)
i,j=1

Now we aim to bound the terms on the right hand side of (7) by use of the Sobolev norms
II . 11-"1 and 1/ . II')'· This estimation is based on the following observation.
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Lemma 2 The Ai, i E {1, ... , n}, are bounded operators from rtI+S to rts for each 8 E
[-1,1].

Proof The space K = ni,j=1 D(AA j ) equipped with the norm

is a Banach space since all the operators Ai are closed. Then the regularity hypothesis (5)
gives the set inclusion D(I + L) ~ K. But since D(I + L) is a Banach space with respect
to the norm <p f-+ II (I +L )<pll it follows from the closed graph theorem that the inclusion
is continuous, i.e., there exists an a > 0 such that

for all <p E D(L). These bounds, together with the Kato identity (2), imply that one has
bounds IIAi <p11t ~ a' 11<p112 for all <p E rt2 and i E {1, ... , n}. Hence the Ai are bounded
operators from rt2 into rtl. On the other hand D((1 + L)I/2) ~ D(Ai ) and hence the
operators Ai(1 +L )-1/2 are bounded on rt. By duality the operators (I +L )-1/2Ai extend
to bounded operators on rt and therefore the A are bounded from rt into rt-l. Since the
rt'Y form a scale of complex interpolation spaces the statement of the lemma follows by
interpolation. 0

Now we return to the estimation of the right hand side of (7).

Since, E (0,1) it follows that 8 = (1-,)/2 E (0,1/2) and (I +Ho)-s is a continuous
operator from rt into D((I+Ho)S). But by [Kat1], Theorem 3.1, and complex interpolation
one deduces that

since Re(1 + Ho) is self-adjoint. Therefore (1 + HO)-(I-'Y)/2 is a continuous operator from
rt into rtl-'Y' Then by Lemma 2 the A(1 +HO)-(I-'Y)/2 are continuous operators from rt
into rt-T Thus one has bounds

for all 'l/J E rt. Alternatively, by Lemma 2, the Aj are continuous operators from rtI+'Y into
rt'Y and, by assumption, the Cij are continuous on rtT Therefore one has bounds

for all <p E rtI+'Y' Then (7) gives

n

1((1 + H;)(l+'Y)/2'l/J,<p)1 ~ E IIAi(1 +H;)-(I-'Y)/2'l/J11_'Y '1IcijAj<pII'Y
i,j=1

+ II(I +H;t(I-'Y)/2'l/J11 . 11<p11

~ b 11'l/J11 . 11<p11t+'Y
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for some b > 0 and all 'l/J E D(Ho) and c.p E Hl+'Y' Here we have used the foregoing
estimates and the bounds 11(1 + Ho)-(I-'Y)/2'l/J1I ~ 11'l/J11 and 11c.p11 ~ 1Ic.plh+'Y· Since D(Ho)is
a core of (1 + HO)(I+'Y)/2 one concludes that Hl+'Y ~ D((1 + Ho)(l+'Y)/2) and

(8)

for all c.p E Hl+'Y' But then

Now Hois an operator analogous to Ho , with Cij replaced by cji' and the same arguments
apply. Therefore one has two inclusions

But I + Ho is a closed maximal accretive operator associated with a form whose domain
is HI. Therefore, from the result of Kato cited in the introduction, [Kat2], Theorem 1,
one concludes that HI = D((1 +Ho)l/2) = D((1 +HO)I/2). Thus the desired identities are
established for the principal part of H. Next consider the addition of lower order terms.

First let hI denote the form obtained from h by setting c~ = 0 and HI the corresponding
closed sectorial operator. Then

for all 'l/J, c.p E HI where ho is the form associated with the principal part Ho and V is the
operator 2:i;,,1 CiAi + Co with D(V) = HI. But D(HI) consists of those c.p E HI for which
there is an a > 0 such that IhI ('l/J, c.p) I~ a 11'l/J II for all 'l/J E HI' The domain D(Ho) is defined
similarly, relative to ho. It follows immediately that D(Hd = D(Ho). Hence

for sufficiently large A. Therefore, by the foregoing, one has D(()"I + HI)I/2) = HI. But
J< = ),,1 + HI is a closed maximal accretive operator corresponding to a form k with
D(k) = HI. Thus D(J<I/2) = D(k) and again invoking [Kat2]' Theorem 1, one concludes
that D(I<*I/2) = D(k). Therefore D(()..I +Hn I/2) = HI.

Finally
n

h*(c.p,'l/J) = h;(r.p,'l/J) - L(c~r.p,Ai'l/J)
i=I

for all r.p, 'l/J E HI where h* and hi are the forms associated with H* and H;, respectively.
Then repetition of the foregoing argument gives D(()..I +H*)l/2) = D(()"I +H;)I/2) = HI
and another application of Theorem 1 in [Kat2] yields D(()..I + H)I/2) = HI. 0

Theorem 1 has a simple implication for subelliptic operators associated with a unitary
representation of a Lie group because the basic regularity properties are a direct conse
quence of unitarity.

Let (H, G, U) denote a representation of the Lie group G by unitary operators 9 1--+ U(g)
on the Hilbert space H. Further let aI, ... ,an be elements of the Lie algebra 9 of G. Denote
the skew-adjoint generators of the one-parameter unitary groups t 1--+ U(exp( -tai)) by
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AI, . .. ,An, i.e, the Ai are the representatives of the ai in the derived representation of the
Lie algebra. Then the Ct-subspace 1{t corresponding to the Ai is automatically dense in
1{ because it contains the dense subspace of Coo-elements of the representation. Moreover,
if the at, ... ,an form a vector space basis of 9 then the regularity property (5) is a result of
Nelson [Nel] (a simple proof is given in [Rob], Section 1.6, page 53). More generally, if the
at, ... ,an are a Lie algebraic basis of 9 then (5) is established in [EIR], Theorem 7.2.IV.
In light of these observations one has the following conclusion.

Corollary 3 Let (1{, G, U) denote a unitary representation of a Lie group G and At, . .. , An
the skew-adjoint representatives of an algebraic basis at, ... ,an of the Lie algebra of G. Let
H be the closed sectorial operator associated with the subelliptic form (4) and the Ai and
suppose the Cij and cij are bounded operators on the Sobolev space 1{-y = D((I + L )7/2) for
some, E (0,1).

Then D(()"] +H)l/2) = D(()..] + H*)t/2) = 1{t for all large ).. E R.

Again it is worth noting that the assumption that a bounded operator c on 1{ is also
bounded on 1{-y is a type of Holder continuity. It follows, for example, if c satisfies bounds

IIU(g)cU(g)-t - c II ~ a IglII (9)

for some v > I and all g E G with Igi ~ 1 where I . I denotes the subelliptic distance to
the identity element corresponding to the basis at, ... , an (see, for example, [Rob], Section
IVA). These bounds imply the boundedness of c and c* on 1{-y by the following reasoning.

The action of T, the semigroup generated by L on 1{, is given by a kernel I<,

where dg denotes left invariant Haar measure. This kernel is positive and satisfies Gaussian
bounds

o~ I<t(g) ~ a CD/2ewte-blgI2t-l

with D the local subelliptic dimension (see [Rob], Section IVA). Therefore

Tt c - cTt = Ldg I<t(g) (U(g) c - cU(g))

(10)

and the bounds (9), which extend to all 9 E G, together with (10), immediately give
estimates

IITt c - cTtll ~ a t ll
/
2Ldg CD/2ewte-blg!2t-l (lgI2ctt/2

The integral, however, is bounded by a factor a'ew't and hence one concludes that

for some a > 0, w 2:: 0 and all t > O. Then the boundedness of c and c* on 1{-y for each
I E (0, v) follows from the discussion following Theorem 1.

Thus if the Cij are operators which act by multiplication by Holder continuous functions
then the corollary applies. This is a general Lie group version of McIntosh's result [Mcll]
for R n. But if one specializes to Euclidean space one can draw more general conclusions.
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For example, let 'H = L2 (0 ; dx) for some open set 0 ~ R n and set Ai = a i = a / aXi, the
partial differential operators with Dirichlet boundary conditions. Then L is the Dirichlet
Laplacian and the regularity property (5) is valid. Therefore Theorem 1 applies to Dirichlet
operators

n n

H = - L aiCijaj +2:)Ciai + vicD +Co
i,j=1 i=1

with coefficients in the bounded operators on L2 (0; dx). The only restraints are the ellip
ticity condition and the 'Holder continuity' on the principal coefficients Cij. The theorem
also has applications to operators on other manifolds as long as the C2-regularity condition
(5) is satisfied.

There is one natural question which is not resolved by the foregoing arguments.
It follows from [Kat1], Theorem 3.1 that for each subelliptic operator H given by a

subelliptic form (4) one has
D(()..] +HY'i) = 'H2cx

for all large).. and all a E [0,1/2). This conclusion does not need any regularity of the
coefficients Cij or the Laplacian. But Theorem 1 establishes that the regularity condition
(5) together with the boundedness of the Cij and cij on 'H-y ensures the stronger conclusion

In the course of the proof, however, we also deduced in (8) that

(11)

for all a E (1/2, (1 + /)/2] and H a pure second-order subelliptic operator satisfying the
assumptions of Theorem 1. On the other hand, if H is an operator with Ci = afor all i but
the ci are possibly non-zero then the additional terms in (7) can be dealt with as before.
So (11) is valid for all operators with the Ci equal to zero. But then one can add the
terms ciAi by the perturbation-interpolation argument. Thus one arrives at the following
conclusion.

Proposition 4 Assume the regularity inclusion

n

D(L) ~ n D(AiAj )

i,j=1

Let H be the closed sectorial operator associated with the subelliptic form (4) and suppose

the Cij are bounded operators on the Sobolev space 'H-y = D( (I +L )'Y/2) for some / E (0,1).
Then

D(()..] + H)CX) ;2 'H2cx

for all large).. E R and all a E [0, (1 +/) /2]' with equality if a E [0, 1/2].

It is, however, unclear whether the hypotheses of Theorem 1 imply that these the
containments are identities for a > 1/2. Probably some additional regularity is required.
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