
 

Universal sequences

Citation for published version (APA):
Hollmann, H. D. L., & van Lint, J. H. (1997). Universal sequences. Applicable Algebra in Engineering,
Communication and Computing, 8(5), 347-352. https://doi.org/10.1007/s002000050071

DOI:
10.1007/s002000050071

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1007/s002000050071
https://doi.org/10.1007/s002000050071
https://research.tue.nl/en/publications/af2e5a59-d694-412d-8f7a-5e663de34e15


AAECC 8, 347—352 (1997)

Universal Sequences

Henk D. L. Hollmann1, J. H. van Lint1,2

1Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands
(e-mail: hollmann@natlab.research.philips.com)
2Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: wsdwjhvl@urc.tue.nl)
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Abstract. An (n, k)-universal sequence is a binary sequence with the property that
each window of size k and span at most n is covered by the sequence, i.e., each
sequence of length k occurs as the content of a shift of the window. We derive
upper and lower bounds on the minimum length of universal sequences, both for
the linear case and the circular case.

Keywords: Universal sequence, De Bruijn sequence, Paley sequence.

1 Introduction

In this paper we consider (0, 1)-sequences X"x
0
,x

1
, . . . , x

L~1
. We call ¸ the

length of the sequence. An increasing sequence of indices i
1
, i
2
, . . . , i

k
with

i
k
"i

1
#m!1 is called a window of span m and size k. We also use the name

(m, k)-window. The index i
1

is called the initial position of the window. The
subsequence x

iÇ
, x

iÈ
, . . . , x

i
k

of X is called the contents of the window.
We call the sequence X an (n, k)-universal sequence if for every m with

k6m6n and for every window 0"w
1
,w

2
, . . . , w

k
"m!1, each vector

a3M0, 1Nk occurs somewhere as the contents of the shifted window w
1
#j,

w
2
#j , . . . , w

k
#j. (Here j6¸!1!w

k
.) This terminology (with a slightly dif-

ferent meaning) was introduced by A. Lempel and M. Cohn in [2]. Such sequences
have applications in the testing of very large scale integration (VLSI) chips.

Universal sequences are in some sense a generalization of the well known
De Bruijn sequences. Recall that a De Bruijn sequence of length ¸"2k is an
arrangement of a (0,1)-sequence x

0
,x

1
, . . . , x

L~1
on a circle such that the 2k

windows i, i#1, . . . , i#k!1 (where we use the convention x
i
"x

i`L
) contain

all possible vectors in M0, 1Nk. An example is X"0, 0, 0, 1, 1, 1, 0, 1. From this we see
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that 0, 0, 0, 1, 1, 1, 0, 1, 0, 0 is a (3,3)-universal sequence of length 10. This is optimal
since we obviously have ¸7n#2k!1 for an (n, k)-universal sequence of length
¸ because we need at least 2k initial positions for every (m, k)-window.

We are interested in the minimal length of an (n, k)-universal sequence. We
denote this length by ¸ (n, k) and we define f

k
(n) by ¸ (n, k)"n#f

k
(n). As observed

above

f
k
(n)72k!1. (1)

From the existence of De Bruijn sequences we find that for n"k equality holds in (1).
We shall also study the circular generalization. Again, the sequence x

0
, x

1
,

. . . , x
L~1

is placed on a circle and indices (in subsequences and in windows) are
considered mod¸. We define ¸*(n, k) to be the minimal length of a circular
universal (n, k)-sequence. So we have ¸*(k, k)"2k.

The following restriction is also of interest. We define M(n, k) to be the minimal
length of a (0, 1) sequence that has the universality property for all (m, k)-windows
with m"n.

In our analysis of (n, k)-universal sequences of length ¸, we shall often use the
following array:

s :"A
x
0

x
1

2 x
n~1

x
1

x
2

2 x
n

F F F

x
L~n

x
L~n`1

2 x
L~1

B . (2)

We call this the array s of X. The columns of s are called x0 to xn~1. The
universality property implies that if we take k columns x0"xiÇ , xiÈ , . . . , xi

k

"xn~1, then the submatrix of s consisting of these columns contains all possible
vectors in M0, 1Nk as rows. In fact, this is true for the restricted case with windows of
span n only (i.e., when we consider M(n, k)).

As a first example of the use of this matrix we prove a lower bound for the
length of universal sequences.

Theorem 1 For k74 we have f
k
(n)7log

2
n!1.

Proof. By the argument above, the four columns x0, x i , xj and xn~1 (where
0(i(j(n!1) must be different. It follows that n!262L~n`1!2 and this
proves the assertion. K

Remark. Note that we have in fact shown that

M (n, k)7n#log
2
n!1.

Remark. This method does not work for k"3. In fact, we can show by a direct
construction that M (n, 3)6n#15 for n728 (we omit this here). It is unlikely that
such result holds for ¸ (n, 3) but we have not been able to show that f

3
(n) is not

bounded. The difficulty for the case k"3 is demonstrated by the following
argument. Suppose ‘that ¸ (n, 3)6n#c for some constant c and suppose that
there is a sequence x

0
,x

1
, . . . such that for each n, the initial part

x
0
, x

1
, . . . , x

n~1`c
is universal. Consider the corresponding array s. There are

only 2c possible columns for s. Then for every integer M there are indices i and j in
the interval [M,M#2c] such that the columns xi and x j are equal. This implies
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that the first c shifts of the window (0, i, j ) do not cover all possible triples. But then
the initial part x

0
, x

1
, . . . , x

j~1`c
is not universal, a contradiction.

2 (n, 2)-universal sequences

The case k"2 is almost trivial. We already know that f
2
(2)"3. If a (3, 2)-

universal sequence of length 6 exists, we see from its array that it must have two 0’s
and two 1’s in the first four positions and also in the last four positions. Further-
more, it must contain two consecutive 0’s and two consecutive 1’s. Only six (0, 1)
sequences satisfy these conditions and none of them is universal. So, ¸(3, 2)77.

Theorem 2 ¼e have ¸(n, 2)"n#3 for n74.

Proof. Consider the sequence X starting with 0, 0, 1 and continuing with 1 and
0 alternating. Its array s has x0"(0, 0, 1, 1)Á and all columns xj with j73 have
0 and 1 alternating. Hence the four pairs (x

i
, x

i`j
), 06i63 are different. This

handles all (m, 2)-windows of span '3. By inspection all (m, 2)-windows of span
m"2 and m"3 also contain every possible vector of length 2. So we are done and
we have also shown that ¸ (3, 2)"7. K

Corollary ¸*(n, 2)"n for n77.

Proof. We use the same sequence as above (now with length n77). The array s is
the same as before with the exception of the last three columns (because the
sequence is circular). So now all (m, 2)-windows with m6n!3 have the required
property. However, by reversing the order of the two elements in a window, this
implies that all windows with m75 also have the required property. K

Remark. From the De Bruijn sequence 0, 0, 1, 1 we have ¸*(2, 2)"4. For a circu-
lar universal (3, 2)-sequence we must have two adjacent 0’s and two nonadjacent
0’s and similarly for 1’s. So the length must be at least 6. Then the sequence
0, 0, 1, 1, 0, 1 shows that ¸*(n, 2)"6 for 36n66.

3 An upper bound

We shall now show that there is a constant c
k

such that f
k
(n)6c

k
log n. Let

g
k
(n) :"2k~1k3 log (2n). We shall show that f

k
(n)6g

k
(n). The idea is to show that

for each window it is possible to find sufficiently many shifted versions that are
pairwise disjoint. Subsequently, we consider all possible (0, 1) sequences of the
required length and delete those that do not cover all (0, 1) vectors in the shifted
windows. By showing that not all the sequences are deleted in this way, we
establish the existence of a universal sequence.

Consider a fixed window ¼ :"M0"w
0
,w

1
, . . . , w

k~1
"m!1N of span

m and size k. The shifted windows a
i
#¼, where 0"a

0
(a

1
(. . .(a

r~1
are disjoint if for all i and j (iOj ) the difference a

i
!a

j
is not equal to some differ-

ence wk!wl with wk and wl in ¼. Now wk!wl takes on at most 1
2
k(k!1)

positive values. So, if a
0
,a

1
, . . . , a

i~1
satisfy the constraints, there are at most

i (1#1
2

k (k!1)) excluded values for a
i
. Therefore, a sequence a

0
, a

1
, . . . , a

r~1
such that the shifted windows are disjoint can be found, with

a
r~1

6(r!1) (1#1
2
k (k!1)) . (3)

We shall use the following trivial lemma.

Universal Sequences 349



Lemma 1 If A is an alphabet of size a, then among all sequences (m
1
, m

2
, . . . , m

r
)

LAr there are at most a (a!1)r sequences in which some element of A does not
occur.

Consider the set L of all sequences x
0
,x

1
, . . . , x

L~1
in M0, 1NL where

¸:"n#g
k
(n). The r shifts ¼#a

0
,¼#a

1
, . . . , ¼#a

r~1
of the window ¼ are

pairwise disjoint k-tuples. Here by (3) the index r satisfies

r7
2g

k
(n)

k2
. (4)

By Lemma 1 there are at most

2L~kr · 2k (2k!1)r (5)

sequences x
0
,x

1
, . . . , x

L~1
such that some vector c3M0, 1Nk is missing among the

contents of the r shifted windows.
We delete these (0, 1) sequences from L and in fact to this for every window

¼ of span 6n and size k. The number of such windows is (n~1
k~1

)(nk . We see from
(5) that after all the deletions there remains a universal sequence if

2L'nk · 2L~kr · 2k(2k!1)r,

i.e. if

1'(2n)k A1!
1

2kB
r
. (6)

By (6) we are done if r'2k · k log (2n) and by (4) this is true. This completes the
proof of the following theorem.

Theorem 3 For every k73 there is a constant c
k
such that

¸ (n, k)6n#c
k
log n.

Remark. After completion of this work, we became aware of [4]. Here, the authors
investigate (n, k)-universal test sets, N]n matrices ¹ with the property that on any
k-tuple of coordinates each of the 2k possible vectors occurs at least once. The
number of rows N is called the size of the test set. Moreover, they call a sequence
X"x

0
, . . . , x

L~1
(n, k)-universal if the array s of X is an (n, k)-universal test set.

(So their definition is slightly stronger than ours.) In that paper Theorem 3 is also
obtained, with a similar proof.

4 The circular case

We first consider some small cases of ¸*(n, 3). Clearly ¸* (3, 3)"8 and in fact the
sequence is unique, namely 0, 0, 0, 1, 1, 1, 0, 1. This sequence does not contain
a window (i, i#1, i#3) with contents 0, 0, 0. Therefore ¸* (4, 3)79. A universal
sequence must contain three adjacent 0’s and three adjacent 1’s. Assume that
¸* (4, 3)"9. We distinguish two cases:

(i) There are four adjacent 0’s. This is possible in only one way, namely
0, 0, 0, 0, 1, 1, 1, 0, 1 and this sequence does not contain a window (i, i#2, i#3)
with contents 0, 1, 0.
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(ii) No four adjacent 0’s or 1’s. Without loss of generality we now can assume
that the sequence is 0, 0, 0, 1, 1, 1, 0, 1, 1. Now we do not have 0, 1, 0 as a consecut-
ive subsequence.

This argument shows that ¸*(4, 3)710. Then the sequence

1, 0, 1, 1, 1, 0, 1, 0 ,0 ,0

shows that ¸*(4, 3)"¸* (5, 3)"10.
Arguments like this become increasingly difficult. We calculated some values

of ¸*(n, 3) for small n by computer. We found ¸*(6, 3)"12, ¸* (7, 3)"14,
¸* (8, 3)"16, ¸* (9, 3)"17, ¸*(n, 3)"18 for 106n612, and ¸* (n, 3)"19 for
136n619. Note that on a circular sequence of length 19 each window of size
3 can be viewed as one with length at most 13 (by changing the initial position).

The value for n"19 is achieved by a Paley sequence: x
i
"0 if i is a square in

F
19

and x
i
"1 otherwise. This leads to our next theorem. We aim to show that for

a fixed k there is a bound p
k
such that for all primes p7p

k
we have ¸* (p, k)"p.

For k"2 this is easy. Let s be the quadratic character on F
p
. We now use M#1,

!1N as alphabet. We define s@ by s@ (0)"1, s@(a)"s (a) for aO0. We claim that
the sequence x

i
:"s@ (i), 06i(p, is a circular universal sequence for k"2 if p is

sufficiently large. To show this, we use the following well known fact (cf. [3], Ch.
18). For any cO0 in F

p
we have

+
b|F

p

s(b)s(b#c)"!1. (7)

Since s takes on the values #1 and !1 exactly 1
2
(p!1) times it easily follows

from (7) that the pair (s@(b), s@ (b#c) ) takes on each of the four values (#1,#1),
(#1,!1), (!1,#1), and (!1,!1) roughly 1

4
p times. In fact, for each pair the

deviation from 1
4
p is at most 2. This proves the universality (for p711; in fact, for

p"5 and p"7 it is also true).
We shall proceed by induction. We need a lemma to estimate sums similar to

the one in (7) (see e.g. [1, Theorem 5.41]).

Lemma 2 ¸et t be a multiplicative character of F
q
of order m'1 and let f3F

q
[x]

be a monic polynomial of positive degree that is not an m-th power of a polynomial.
¸et d be the number of distinct roots of f in its splitting field over F

q
. ¹hen for every

a3F
q
we have

K +
c|F

q

t (a f (c)) K6(d!1)q".

We shall show that for a long Paley sequence the circular shifts of a window of
size k contain every possible sequence roughly p/2k times. This is formulated as
a lemma.

Lemma 3 For any k there are constants c
k
and d

k
such that for all primes p'k the

following holds. For any (m, k)-window w
1
, w

2
, . . . , w

k
of span6p, the circular

shifts of this window along the sequence s@ (i) have every possible vector in M0, 1Nk
as contents p/2k#e times, where for each of the possible contents the deviation e
satisfies

De D6c
k
Jp#d

k
. (8)
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We have shown that Lemma 3 is true for k"2. We apply Lemma 2 with q"p
and t"s to the function

f (z) :"(z#w
1
) (z#w

2
) · · · (z#w

k
).

Then d"k. Take a"1. We find

K +
c|F

q

s(c#w
1
)s (c#w

2
) · · · s(c#w

k
) K6(k!1)Jp . (9)

If we replace s by s@, the right hand side of (9) increases by at most k. For any
e"(e

1
, e

2
, . . . , e

k
)3M#1,!1Nk let ne denote the number of occurrences of e as

the contents of a shifted window. Then we can read (9) as

K +
e|M`1, ~1N

k

((e
1
e
2

. . . e
k
)ne D6(k!1)Jp#k. (10)

If e and f are two vectors in M#1,!1Nk that differ in only one coordinate, then
the induction hypothesis states that

ne#n
f
"

p

2k~1
#r, (11)

where the remainder term r depends on the pair but has an absolute value at most
c
k~1

Jp#d
k~1

with certain constants c
k~1

and d
k~1

. Each term ne can be written
as a linear combination of the left hand side of (10) and a number of terms of the
type occurring in the left hand side of (11). We omit the details of this elementary
linear algebra which produces the assertion of Lemma 3 by induction.

From Lemma 3 we see that if p is sufficiently large, all vectors indeed occur at
least once as contents of a shifted window.

Theorem 4. For any k there is a p
k

such that for all primes p'p
k

the sequence
X defined by x

i
:"s@(i ) for 06i(p is a circular universal sequence.

This shows that for fixed k the function ¸* (n, k) is asymptotically equal to
n(nPR). Computer results suggest existence of a number n

k
such that ¸*(n, k)

"n for n7n
k
. We have shown that n

1
"2 and n

2
"5. Probably n

3
"19, n

4
"67

and n
5
"331, but we have not proved this.
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