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Abstract: Transfer functions are called well-posed if they are bounded and
analytic on some right half-plane. Two concepts of L?-stabilization are an-
alyzed for well-posed transfer functions: the usual one, as in Figure 3, and
a more general one called stabilization with internal loop, see Figure 4. In
both cases we obtain a complete parametrization of all stabilizing controllers
in terms of a doubly coprime factorization of the original transfer function.
Moreover, the connection between the two stabilization concepts is clarified.
We analyze two special subclasses of stabilizing controllers with internal loop,
called canonical and dual canonical controllers. We show that, in a certain
sense, every stabilizing controller with internal loop is equivalent to a canon-
ical controller, and also to a dual canonical controller.

1. An intriguing control problem

We consider the following problem: For an unstable plant with transfer function

s+1
s—1"

P(s) =3

design a controller that performs the following two tasks:
(1) it stabilizes P,



(2) even if an external (unpredictable) disturbance d is added to the input u of
the plant, the controller predicts exactly the output y of the plant one second ahead.
In other words, at some auxiliary output of our controller we can at any moment
of time ¢ read off the value y(t + 1).

This might seem to be impossible at first sight since, as we said, d is not pre-
dictable. The problem is illustrated in Figure 1.

u(?) y(t)

? y(t+1)

Figure 1: A seemingly impossible problem

Let us connect our plant to a system consisting of a delay line and a summation
point, as shown in Figure 2. This interconnection has two inputs and two outputs:
one input is the disturbance d and one output is the output y of the plant. The
other input is denoted by (; and the other output is denoted by (,. Realizing this
interconnection changes hardly anything: the plant still works in open loop, with
the input v = d + (;. The transfer function from ¢; to (, is H(s) =1 —e~* 4+ P(s).

)
w
©)

+

1 —e? ),
_|_

Ci Co

Figure 2: The plant and the controller, before closing the feedback loop

Now let us see what happens if we close a feedback loop from (, to (;, i.e., we
set, (; = (,. Closing this loop is possible, because 1 — H is invertible and moreover,
its inverse is in H>. We invite the reader to verify that now (,(¢) = y(t + 1) and
the overall system is well-posed and stable. By this we mean that we may inject



additional input signals at any point, and the transfer function from any such input
signal to any other signal will be in H*°. Thus, we have solved our original problem.

We emphasize the importance of proceeding in stages: first connecting the device
to the plant, and only afterwards closing the feedback loop. Proceeding in the
wrong order, i.e., trying to connect (; to (, first, will not work: it is an ill-posed
feedback. In closed loop, the transfer function from y to (, is €¢*, but realizing
this transfer function in open loop (i.e., without being connected to the plant) is
clearly impossible. This is an example of a so-called controller with internal loop,
introduced in Weiss and Curtain [17]. We study the structure of such controllers in
the next sections, and we return to this example at the end of Section 4.

2. Stabilization with internal loop

In this paper, we investigate the concept of a stabilizing controller, as well as
the problem of parametrizing all stabilizing controllers for a well-posed (possibly
irrational) transfer function. Our analysis is entirely in the frequency domain.

Throughout this paper, U and Y are Hilbert spaces, called the input space and
the output space, respectively. An L(U,Y)-valued transfer function is called well-
posed if it is bounded and analytic on some right half-plane (where Re s > «). This
class of functions is a natural generalization of the proper rational transfer functions
and moreover, it coincides with the transfer functions of well-posed linear systems,
a class for which there exists a well developed state space theory (see Salamon
[7, 8], Staffans [10, 11, 12], Weiss [15, 16] and Weiss and Rebarber [18]). We do
not distinguish between two transfer functions defined on two different right half-
planes if one function is a restriction of the other (thus, by a transfer function we
mean, in fact, an equivalence class of analytic functions). We mention that matrix-
valued transfer functions with entries in the factor space of H*, used for example
in Georgiou and Smith [6] and in Foias, Ozbay and Tannenbaum [4], are neither
contained in, nor do they contain the matrix-valued well-posed transfer functions.

For any Banach space Z, we denote by H*(Z) the Banach space of Z-valued
bounded analytic functions on the usual right half-plane (where Re s > 0), with the
sup norm. We write H* instead of H*(Z), if the space Z is clear from the context.
An L(U,Y)-valued transfer function P is called stable if P € H>*(L(U,Y)). This
concept of stability is also called L?-stability (or input-output stability), because it
is equivalent to the property that input functions u € L?([0,00),U) are mapped
into output functions y € L?([0,00),Y), via the formula § = Pa, where a hat is
used to indicate the Laplace transformation.

Definition 2.1. Assume that P and C are well-posed transfer functions with
values in L(U,Y) and L(Y,U), respectively. We say that C is an admissible feed-
back transfer function for P if I — CP (or equivalently I — PC) has a well-posed
inverse. In particular, we say that C stabilizes P if
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The intuitive interpretation of the last condition can be given by the block

diagram in Figure 3, where the transfer function from [Up to | 7| is

Ve Ue

Tpc =

)

[1 —CTJ:{([—CP)I CU—PC)T‘

P I P(I—CP)! (I—PC)! (2.1)

A few words about the connection with state space theory: If P and C are the
transfer functions of two well-posed linear systems and their feedback connection is
exponentially stable, then C stabilizes P, as is easy to see. The more surprizing fact
is that the converse is true as well, provided that the two systems satisfy certain
natural assumptions, such as regularity, stabilizability and detectability, see Section
4 of Weiss and Curtain [17]. Recently, these assumptions have been replaced by the
weaker conditions of optimizability and detectability (without assuming regularity),
see Section 6 of Weiss and Rebarber [18]. For the state space theory of coprime
factorizations we refer to Staffans [10] and to our paper [3].
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Figure 3: The feedback connection of P and C

While extending the theory of dynamic stabilization to regular linear systems
(a subclass of the well-posed linear systems) in [17], it became apparent that a
more general concept of stabilizing controller is needed. Indeed, it was shown
in Example 6.5 of [17] that even the standard observer-based controller is not, in
general, a stabilizing controller in the usual sense; that is, it is not a well-posed linear
system and, correspondingly, its transfer function is not well-posed. However, the
observer-based controller may be regarded in a natural way as a stable well-posed
linear system with two inputs and two outputs. First we connect one input and one
output to the plant, obtaining a new well-posed linear system. Next we connect
the remaining input of the controller to its remaining output, so obtaining a stable
closed-loop system. For the details of this procedure see [17].

Motivated by this fact, a new type of controller was introduced, the so-called
stabilizing controller with internal loop, see Definition 4.10 in [17]. This was later
used in [3], Townley et al [13] and [18]. We now formulate the frequency domain
counterpart of this concept. In fact, we introduce two new concepts, which gener-
alize the two concepts from Definition 2.1.
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Definition 2.2. Let U, Y and R be Hilbert spaces. Let P and K =
Ko Ky

be well-posed transfer functions with values in £(U,Y) and in L(Y x R,U X R),
P 0

Kll K12 ]

respectively, and denote G = . We say that K is an admissible feedback

0 K
transfer function with internal loop for P if I — F G has a well-posed inverse, where
0 I 0
F=|100|, FeLlYxUxRUXYXxXR). (2.2)
0 0 I

In particular, we say that K stabilizes P with internal loop if

(I-FG) ' e H®(L(UXYXR)).

U} Yk + T

~
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Co Gi +T §

Figure 4: The plant P connected to a controller K with internal loop

The intuitive interpretation of Definition 2.2 is the following: P represents the
Uk
¢]
when all the connections are open. The connection from (, to (; is the so-called
internal loop. The admissibility part of the definition means that it is possible to
close all the connections in Figure 4, and obtain well-posed transfer functions from
the three external inputs (v, r and £) to all the other signals. The stabilization
part of the definition means that in fact all these closed-loop transfer functions are
stable. To understand that this is indeed what the definition says, it is helpful to
redraw Figure 4 by clearly indicating the role of F' as a feedback operator for G,
the parallel connection of P and C, as is done in Figure 5.

If —Ky5 has a well-posed inverse, then the two concepts introduced in Definition
2.2 reduce to those introduced in Definition 2.1. Indeed, in this case the internal

plant and K is the transfer function of the controller in Figure 4 from [Zék] to
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Figure 5: The parallel connection of P and K with the feedback operator F'. This
diagram is equivalent to the one in Figure 4.

loop can be closed first (i.e., before connecting the controller to the plant), to obtain
a conventional controller with the following transfer function from y; to u:

C - K11 —|— KIZ([ - K22)71K21. (23)

In many cases, the controller C defined by (2.3) will not be well-posed in the sense
of our definition: for example, it could be improper or even anticausal. However,
the internal loop construction is not merely an artifice for allowing improper or
anticausal controllers. It includes controllers for which the expresssion (2.3) is not
defined at all (this can happen if I — Ky, is nowhere invertible). A finite-dimensional
single input-single output (SISO) and physically meaningful example of a stabilizing
controller with internal loop for which C does not exist was given in Section 1 of
[17]. Another, infinite-dimensional SISO example follows in this section.

The connection of the stabilization concept in Definition 2.2 to the state space
theory of stabilizing controllers with internal loop (see Definition 4.10 in [17]) is
similar to the one we explained for the stabilization concept in Definition 2.1: If
P is the transfer function of a well-posed plant and K is the transfer function of
a stabilizing controller with internal loop for the same plant, then K stabilizes P
with internal loop. The converse holds whenever the two systems satisfy certain
natural assumptions, see Proposition 4.11 in [17] (where the product F'G is denoted
by L). A stronger version of this result from [17] is Theorem 6.4 in [18], where the
assumptions are optimizability and estimatability (but not regularity).



For the remainder of this paper, if P and K are as in Definition 2.2, we shall
call K a stabilizing controller with internal loop for P. This clearly contradicts the
terminology of [17], since K is only the transfer function of a controller, and not
the controller itself. However, since our discussion here is only in terms of transfer
functions, this will (hopefully) not lead to confusions.

Example 2.3. We take U =Y = R=C and

2 0 1
PO = 1o K_l—l 1]'

It is easy to see that the transfer function (2.3) of the controller is undefined since
I — K5, = 0. However, it is not difficult to check that K stabilizes P with internal
loop (this verification can be simplified considerably by using Theorem 4.2). The
plant is unstable: P has infinitely many poles on the imaginary axis. All these facts
can be understood intuitively from the following physical interpretation.

Consider a circuit composed of a unit resistor connected in series with a loss-
less transmission line of unit length, with unit distributed capacitance and unit
distributed inductance. One end of the transmission line is earthed, as shown in
Figure 6. The input of this system is the current through the resistor denoted by
u(t), whereas the observation is chosen to be the input voltage of the circuit y(t).

R=1

u(t) A 1) — — i(t,1)
Q(t) Q(t, 0) G(t, x) v(t,1) =0
B =
| |
0 1 =z

Figure 6: Transmission line with resistor

The local current i(¢, z) through and the local voltage v(¢,z) across the trans-
mission line are related by the equations

0i v ov 0i
- = _ = — = - — 2.4
ot dxz Ot oz’ (2.4)
with the boundary conditions
i(t,0) = ul(t),
v(t,1) = 0 (because of the earthing),
y(t) = u(t)+wv(t,0) (u(t)is added because of the resistor).
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It is readily verified that the transfer function from wu to y, the impedance of the
circuit, is P(s) = H% The infinite number of poles on the imaginary axis can
be explained by the fact that disconnecting the input of the circuit, i.e., u(t) = 0,
creates infinitely many undamped oscillatory modes on the line, due to the lossless
nature of the line. The only dissipative element, the resistor, cannot dissipate the
energy of these oscillations if no current traverses it. A simple interpretation of the
proposed controller is the earthing of the input of the circuit. This causes y(t) = 0,
something that is clearly not achievable by a conventional controller. It is clear
that the system does become stable under the new boundary condition, since by
earthing the input, the resistor will now be able to dissipate the energy from the

circuit. All these intuitive conclusions will be justified rigorously in Section 2.

Another motivation for introducing controllers with internal loop is to obtain
a clean and elegant Youla parametrization. In the Youla parametrization of con-
ventional controllers, if the plant is not strictly proper, it is difficult to see a priori
how to choose the parameter in such a way that the resulting controller will be
well-posed. Even if we choose to ignore well-posedness, as some researchers do, we
still have to ensure that the denominator in the Youla parametrization is invert-
ible. Thus, the parametrization is not clean; there is always an extra condition
on the parameter. This in turn makes it awkward to use this parametrization to
solve, for example, the H*-control problem for well-posed linear systems. By con-
trast, we do obtain a clean parametrization for all stabilizing canonical or dual
canonical controllers. A stabilizing controller with internal loop K is called canon-
teal if Ki1 = 0, Kio = I and Ky, Ky € H*®. It is called dual canonical if
K1 =0, Ky; =1 and Ky5, K9 € H*®. We shall prove that, in a certain sense, it
is sufficient to consider canonical or dual canonical controllers (Theorem 5.2).

The organization of the paper is as follows. In Section 3, we recall the usual
Youla parameterization of all stabilizing controllers in terms of a doubly coprime
factorization (cf. Francis [5], Vidyasagar [14] and Baras [1]). However, since we
consider the input and output spaces to be Hilbert spaces, certain technical diffi-
culties arise and we actually need to redo the proofs for this situation. We also give
two examples to illustrate the invertibility problems with this parametrization.

In Section 4 we introduce canonical and dual canonical controllers. We show
that a plant P is stabilizable with internal loop by a canonical (dual canonical)
controller if and only if P has a right-coprime (left-coprime) factorization. We
give a complete parameterization of all (dual) canonical stabilizing controllers with
internal loop. Moreover, the relationship between (conventional) stabilization and
stabilization with internal loop by a (dual) canonical controller is clarified.

In Section 5 we introduce the concept of equivalence for stabilizing controllers
with internal loop. We show that if the plant P has a doubly coprime factorization,
then any stabilizing controller with internal loop for P is equivalent to a canonical
one as well as to a dual canonical one.



3. Coprime factorization

This section contains more or less well-known material on doubly coprime fac-
torizations, only the statements are slightly different, and the proofs are a little
more involved, because we consider operator-valued functions. Thus, we must be
careful to distinguish between right and left invertibility, to assume the existence of
coprime factorizations, etc. The reader who is not interested in such technicalities
may skip to the examples at the end of the section.

Definition 3.1. Let P be a well-posed transfer function. A right-coprime factor-
wzation of P over H* is an ordered set of four operator- Valued functions M, N, R,
S in H* such that M has a well-posed inverse, P = NM~' and SM — RN = I.

A left-coprime factorization of P over H* is an ordered set of four operator-
valued functions M, N, R, S in H*® such that M has a well-posed inverse, P =
MN,and MS— NR=1.

A doubly coprime factorization of P over H is an ordered set of eight operator-
valued functions M, N, R, S, M, N, R, S in H*® such that, on some right half-
plane, M and M have well-posed inverses, P has the factorizations

P =NM"'= M'N, (3.1)

H{g]l:l_% ;\ﬂ (3.2)

If a left- and a right-coprime factorization of P are given, as in (3.1), then it is
easy to construct R, S, R, S € H® such that we have a doubly coprime factoriza-
tion, as in (3.2), see Theorem 60 in Vidyasagar [14] or Lemma 4.3 in Staffans [10].
For a matrix-valued function, (3.2) is often written in the form

5 -]
-N M N S 0 I | '
Indeed, for matrix-valued functions, (3.3) is equivalent to (3.2), but in general it
is weaker than (3.2). Most arguments about doubly coprime factorizations rely
n (3.3), but occasionally we need the factors from (3.3) in reversed order, see for
example the proof of Theorem 3.4.

Notice that Definition 3.1 extends easily to transfer functions that are not nec-
essarily well-posed, but are matrix-valued with components in the quotient field of
H*>, denoted by H*/H>. Smith [9] showed that a transfer function in this class is
stabilizable if and only if it has left- and right-coprime factorizations. For operator-
valued transfer functions, no similar result seems to be known. If a matrix-valued
well-posed transfer function has a left- or a right-coprime factorization, or if it is
stabilizable, then obviously its entries are in H>/H>.

Explicit formulas for coprime factorizations in terms of state space realizations
are known for a wide class of infinite-dimensional systems called regular linear

and



systems, see our paper [3]. More general but (unavoidably) somewhat less explicit
formulas for well-posed linear systems were given by Staffans [10]. A modest, but
useful formula in terms of transfer functions is the following.

Proposition 3.2. Let P and C be well-posed transfer functions with values in
L(U,Y) and L(Y,U) respectively. If

CeH® and PUI-CP)'e H>®, (3.4)

then denoting

L = [(;]P(I—CP)‘I[I —CJ,

the following is a doubly coprime factorization of P:

l%gl:IJrL, [jv }f]:I—L. (3.5)

Proof. Tt is easy to see that L? = 0, so that (/+L)(/—L) = (I-L)(/+L) = I,
which is (3.2). To check (3.1), we note that M = (I — CP)™' and N = P(I —
CP) !, whence P = NM!. The identity P = M !N is verified similarly. [ |

Lemma 3.3. Let P and C be well-posed transfer functions with values in L(U,Y)
and L(Y,U) respectively and suppose that P has a left coprime factorization P =
M='N and C has a right-coprime factorization C = WV~='. Then C stabilizes P
if and only if A = MV — NW is invertible over H*.

There is an obvious dual statement in which right is replaced by left.
Proof. Let R, S, R., S. be such that

MS—NR=1I1 and SW-RV =1. (3.6)

Notice that A = MV — NW = M(I — PC)V.
Suppose first that C stabilizes P. Then clearly A~! exists and

At=vVi1I-PC) ML
It is readily verified that, with the notation from (2.1),

Tpc l I+C(I-PC)"'P  C(I-PC)™! ]

(I -PC)~'P (I-PC)™!
[ I+WAIN  WA'M
B VATIN  VAT'M

and since Tp c € H*, all components are in H®.

10



Now post-multiply the second identity in (3.6) by A~'M to obtain
SWA M —RVA M = A M,

which shows that A~'AM € H*. Similarly, post-multiplying the second identity in
(3.6) by AN shows that AN € H*. Next, pre-multiplying the first identity
in (3.6) by A™! gives
AT'MS — AT'NR = A™!
and hence A~! € H>,
Conversely, if A=' € H>, then we see from A = M (I —PC)V that (I — PC)~!
exists, and (3.7) shows that C stabilizes P. |

The following theorem is the well known Youla-Bongiorno parameterization.

Theorem 3.4. Suppose that the well-posed transfer function P has a doubly co-
prime factorization over H*, as in (3.1) and (3.2).

(1) Assume that C is a well-posed transfer function that stabilizes P. Then
C has a right-coprime factorization over H*> if and only if C has a left-coprime
factorization over H*®. In this case, there exists a unique () € H* such that S+NQ
and S + QN have well-posed inverses and

C=(R+MQ)(S+NQ)™ = (S5+QN)"HR+QM) (3.8)

are right- and left-coprime factorizations of C.

(2) Conversely, if Q € H® is such that one of S+ NQ or S+ QN has a well-
posed inverse, then the other also has a well-posed inverse and the equality in (3.8)
holds. In this case, the transfer function C defined in (3.8) stabilizes P.

Proof. We prove part (1). Suppose that C stabilizes P and C = WV ™! is
a right-coprime factorization. We show that C can be represented as in the first
factorization from (3.8). By Lemma 3.3, A = MV — NW is invertible over H*, so

Q= M''WA'-R) (3.9)
is well defined and, moreover,
R+MQ = WA™. (3.10)
We calculate
S+NQR = S+ ]YM’}(WA’I — R) (from (?39))~
= 5+ MN_IN(I/[/A_1 — R) ) (since M~'N = NM~")
= MY (MS+ NWA~' - NR)
= M '(I+NWA™ (from (3.2))
MY MV — NW + NW)A~! (by the definition of A).
Thus
S+NQ = VA (3.11)

11



and S + N(@ has a well-posed inverse, since V' has one and A € H™.
Furthermore, from (3.10) and (3.11) we obtain

C = wWvl=wAAy!
= (R+MQ)(S+NQ)™

We have to prove that () € H*. This follows from

Q = (SM-RN)Q (from (3.2))
= S(WA - R)— R(VA™!'—5) (from (3.10) and (3.11))
(SW — RV)A™! (from (3.2)).

Next, we show that S+ QN has a well-posed inverse and the two factorizations

in (3.8) are equal. From (3.3), pre-multiplying by l [ _% ] and post-multiplying

0
I Q .
by l 0 I ], we obtain
I 0
= . (3.12)
0 I

By reversing the order of the factors in (3.3) and using a similar device we can
obtain a version of (3.12) with the factors in the reverse order. This proves that
S+QN —-R-QM

S+QN —R-QM M R+ MQ

-N M

N S+NQ

X =
~-N M
follow from (3.12) alone, since we work on infinite-dimensional spaces.)

Using (3.3), (3.7), the definition of A and the expression @ = (SW — RV)A~!

it is readily verified that
S+ QN Ql

] has a well-posed inverse. (Note that this does not

(3.13)

Crpe - [$505 0

Since X and Tp ¢ have well-posed inverses, S + QN must have one. The (1,2)
block of (3.12) shows that the two factorizations in (3.8) are equal. Now we have to
prove the coprimeness of the factorizations in (3.8). The following identity which
follows from (3.2) shows that R + M@ and S + N@Q are right-coprime:

M(S + NQ) — N(R+ MQ) = 1I. (3.14)

The fact that the other factorization is left-coprime is proved similarly.

Finally, to prove the uniqueness of @, first notice that @ from (3.9) is inde-
pendent of the choice of the factors in the right-coprime factorization C = WV 1.
Assume that there is a Q; € H*® such that C = (R+ MQ,)(S + NQ1) . Denote
Wi =R+ MQ; and V; = S+ NQ; to obtain A; = MV; — NW; = I. Substituting
this into (3.9) shows that () = @;. Thus we have proved part (1), assuming the

12



existence of a right-coprime factorization for C. A similar argument proves (1) if
we start from the assumption that C has a left-coprime factorization.

To prove part (2), we assume that () € H* is such that S+ N has a well-posed
inverse, and we define C = (R + MQ)(S + NQ)~'. The identity (3.14) obtained
from (3.2) shows that this factorization of C is right-coprime. We apply Lemma 3.3
with V =S+ NQ, W = R+ M@ and A = I to conclude that C stabilizes P. The
remaining statements in part (2) follow from part (1). If we start from a Q € H*
such that S+ QN has a well-posed inverse, the proof of part (2) is similar. |

Let us apply this theorem to the transfer function P from Example 2.3.

Example 3.5. A doubly coprime factorization of P(s ) = 1+e—2s is given by

N(s) = N(s) =2, M(s) = M(s) = 14+e7, S(s) = S(s) = 1, R(s) = R(s) = Le7>.
The Youla parametrization (3.8) yields the controller

Cls) = (%e% (4 eZS)Q(s)> (14 2Q(s)) !

for any () € H*, and introducing Q = 1+2Q we obtain the more transparent form

1 -

—Q (3.15)

C(s) = =(1+e %)~ 5

The above formula yields well-posed controllers provided that Q has a well-posed
inverse. On the other hand, the controller suggested in Example 2.3 from physical
considerations is not accounted for by (3.15) (see also Example 4.7).

In the above example, it was easy to see which parameters @ should be chosen
to obtain a well-posed controller. However, in general it is not a priori clear which
@ € H* will guarantee that S + N(@ has a well-posed inverse. We illustrate this
point by another example.

Example 3.6. This is the frequency domain version of Example 6.5 in [17]. We
take U = Y = (2, the space of square summable sequences = = (x1,Ts,...). The
transfer function of the plant is P(s) = diag (P,(s)), n=1,2,3,..., where

(0.64n —1)s —n
s(s+mn)

P,(s) =

This has poles of multiplicity one at s = —n, n = 1,2,3,..., a pole of infinite
multiplicity at s = 0 and P is well-posed. An observer-based controller for this
plant has the transfer function C(s) = diag (C,(s)), where

(1—0.64n)s +n
s+ s(2—0.28n) +2n’

Cu(s) =

as computed in [17]. At first glance this seems fine; C),(s) is a strictly proper
function for every n. However, the real parts of the poles of C,,(s) converge to +o0,
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as is easy to see. Consequently, C(s) cannot be uniformly bounded in norm on any
right half-plane and it is therefore not well-posed.
One can use this observer-based controller to obtain a doubly coprime fac-

torization M = M = diag (M,), N = N = diag (N,), R = R = diag (R,),

S =8 = diag (S), with Ny(s) = Nu(s) = siepigimrizn: Mn = My = 1+ N,
S,=8,=1-N,, R, =R, = —N,. According to the Youla parametrization (3.8)

a set of stabilizing controllers for P is given by C(s) = diag (C,(s)), where

and QQ € H™ is such that (S+ NQ) ! is well-posed. As we have seen in the case of
the observer-based controller (@) = 0), this is not always the case. With some care,
we can choose the parameter () € H* such that C is well-posed. For example,
Q(s) = 1 yields C(s) = I,2. However, it is not a priori clear which @ € H* will
lead to a well-posed C.

4. Canonical and dual canonical controllers

In [17], a procedure was developed to design stabilizing controllers with inter-
nal loop (in the state-space framework, assuming regularity, stabilizability and de-
tectability). The transfer functions of the controllers obtained there were of the
form

0 I . .
K = [ Ky, Ko ] , with Ky, Ko € H™. (41)

Since this class plays a special role, we call the controllers of the form (4.1) canonical
controllers. Analogously, controllers of the form

K = [ 0 Ki ] , with Ky, Ky € Hoo) (42)

will be called dual canonical controllers (they can be obtained by a dual design
procedure, as explained in Section 5 of [17]).

We analyze the properties of (dual) canonical controllers in some detail. First
we recall Proposition 4.8 from [17].

Proposition 4.1. Using the notation of Definition 2.2, suppose that Kq1 is an
admissible feedback transfer function for P. Then the following two conditions are
equivalent:

(1) I — F(K,P) has a well-posed inverse, where

f(K,P) = K22 + KQIP([ - K11P)71K12.

(2) K is an admissible feedback transfer function with internal loop for P.

14



In fact, Proposition 4.8 from [17] only states that (1) implies (2), but the converse
is also true, with practically the same proof.

Theorem 4.2. The canonical controller K stabilizes P with internal loop iff
A :I—KZQ—K21P

is invertible on some right half-plane and A=, PA~! € H®,
If P has a right-coprime factorization P = NM~', then K stabilizes P with
internal loop iff D = M — Kooy M — Koy N is tnvertible over H®.

Note that A and A~! might be defined only on some right half-plane of the form
Re s > a with o > 0, but this is not a problem if A~! has an analytic extension to
a function in H* (see our convention at the beginning of Section 2).

Proof. First we prove the first statement. According to Proposition 4.1, I — F'G
has a well-posed inverse iff I — F(K,P) = A has a well-posed inverse. Moreover,

I+ A71K21P AilKgl AL
(I-FG)'=| PI+A'KyP) I+PA 'K, PA'!
A71K21P A71K21 Ail

and so (I — FG)~!' € H* iff the expressions
Al PA™', A'Ky P, P(I + A 'Ky P)

are all in H*>°. We show that if the first two of these expressions are in H*, then
so are the other two. We have

I + A_1K21P - A_I(A + K21P)
= A YT —Kyp)e H®

and
P(I+ A71K21P) - PAil(I - K22) & Hoo

Thus, K stabilizes P iff A= € H*® and PA~! € H*®.
Let us prove the second assertion in the theorem. If P = NM~! and D™' € H*,
then from the formulae

A=l = MD™', PAT' = ND7,

we see that A=, PA~! € H*®. Conversely, assuming that M, N, R and S are as
in Definition 3.1 and A~', PA~! € H®, then

SA™' — RPA' = (SM — RN)(M —KuM —KyN) ' =D L
Since S and R are in H*, we see that D! € H*™. ]

We have the following interesting connection with right-coprime factorizations.
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Corollary 4.3. P has a right-coprime factorization if and only if P is stabilizable
with internal loop by a canonical controller.

Proof. If K stabilizes P, then by Theorem 4.2, A~! and PA™! are in H*. So
M = A"1'and N = PA ! is a right-coprime factorization, since

([ - K22)M - K21N - ]

Conversely, if P = NM™! is a right-coprime factorization such that SM —

RN = I, then K = [ % 7 f 3 ] stabilizes P with internal loop. Indeed, from
A=T—(I-S8)—RNM~' = (SM — RN)M~" = M-, we see that A~" = M and
PA! = N, and we can apply Theorem 4.2. [ |

Proposition 4.4. Suppose that P has a doubly coprime factorization as in (3.1)
and (3.2). Then all canonical controllers that stabilize P with internal loop are
parameterized by

K 0 I
“ | E(R+QM) I—-FE(S+QN) |’

where Q,E € H*® and E is invertible over H™.

Proof. For K as above we show that it stabilizes P with internal loop. We
compute, using (3.2),

D - M—KQQM—Kle
= E(S+QN)M - E(R+QM)N
E(SM — RN +Q(NM — MN)) =F.
Since E is invertible over H>®, Theorem 4.2 shows that K stabilizes P.
0 1

Ky K
Theorem 4.2 shows that D = M — Koy M — Ko N is invertible over H*>. Defining

Conversely, suppose that K = ] stabilizes P with internal loop.

Q — (DilKgl - R)Mil

we evaluate

S’ + QN - S’ + D_lelM_lN - RM_IN
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and . o .
R + QM — R + (D_1K21 - R) — D_1K21.
Thus, denoting E = D, we have that Ky = E(R+QM) and Ko, = I — E(S+QN)
as claimed. It remains to prove that @ € H*. From (3.2) and our formulae for
R+ QM and S+ QN, we have
Q = Q(MS-NR)
= (D'Ky —R)S — [DYI —Ky) — SR
= D'KyS— DI —Kxp)R,

and it is clear that both terms are in H°. [ ]

We call the function @) appearing in Proposition 4.4, the Youla parameter of K.
We mention that by using (one half of) Proposition 4.4, it is possible to give an
alternative, shorter proof of Theorem 5.4 (the main result) in [17].

The following corollary contains the dual statements of Theorem 4.2, Corollary
4.3 and Proposition 4.4.

Corollary 4.5. Let P be a well-posed transfer function.

a. The dual canonical controller K stabilizes P with internal loop iff A = I —
Ko — PKy is invertible on some right half-plane and A=, A~'P € H>.

b. If P has a left-coprime factorization P = MN, then K stabilizes P with
internal loop iff D = M — MKy — NKyy is tnvertible over H*.

c. P has a left-coprime factorization if and only if P is stabilizable with internal
loop by a dual canonical controller.

d. If P has a doubly coprime factorization as in (3.1) and (3.2), then all dual
canonical controllers which stabilize P with internal loop are given by

K — 0 (R+MQ)FE
| I I—-(S+NQE |’

where Q, F € H® and E s invertible over H*.

Again, we call ) appearing in Corollary 4.5 the Youla parameter of K. The
formulae for the parameterization of all stabilizing (dual) canonical controllers are
reminiscent of the Youla parameterization (3.8). Consequently, we expect a strong
relationship between stabilization with internal loop and the usual concept of sta-
bilization. This is clarified in the following proposition.

Proposition 4.6. Let P and C be well-posed transfer functions with values in
L(U,Y) and L(Y,U), respectively. Assume that C has a left-coprime factorization
C = (I —Ky) 'Ky. Then P is stabilized by C iff P is stabilized with internal loop

0 I
by th cal controller K = .
y the canonical controller [ Ky Ko ]
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Proof. Suppose that C = (I — Kay) 1Ky stabilizes P. Define
A = [ —-—Kyp—-KyP
(I — K)(I - CP).
Then, according to Definition 2.1 and formula (2.1),
AT'Ky = (I - CP)™'C € H™,

AT —Kyp) = (I -CP)' € H®.
Since Ky and I — Koy are left-coprime, there exist R and S in H* such that
(I —Kg)S — Ky R =1, whence

AT —Kyp)S — AT'Ky R = A7

Since both terms on the left-hand side are in H*®, we see that A™' € H*.
Similarly, PA~! € H® follows from coprimeness and the facts that

PA™'(I —Ky) =PI —CP)™' € H™,
PA™'K, = P(I-CP)"'Cc H®.
According to Theorem 4.2, K stabilizes P with internal loop.
Conversely, suppose that K stabilizes P with internal loop. Then, from
(I -CP) ! = A YT —Ky)
P(I - CP) ' =PA (I - Ky)
(I -CP) 'C=A"'Ky
(I-PC)'=I+P(I-CP)'C=1+PA 'Ky

and from Theorem 4.2 we see that all entries of Tp ¢ from (2.1) are in H*. |

Notice that if a canonical K stabilizes P with internal loop, then Ky and I —Ks,
are left-coprime, since (I — Ky)A™t — Ky PA™! = I. Naturally, Proposition 4.6
has a dual statement for right-coprime factorizations of C.

An interesting feature of the last result is that it remains true without the
requirement that C be well-posed, if we modify Definitions 2.1 and 3.1 accordingly,
replacing everywhere well-posedness by analyticity.

We complete this section by returning to two earlier examples.

Example 4.7. Using the results in Example 3.5 and Proposition 4.4, we obtain

that all canonical controllers that stabilize P(s) = 2 are

0 1
K(s) = ~ o A o~ ,
() [ Li(s) -1+ (1+e2)00)] 11— B(5)A()
where E, E~',Q € H®. (We have used, as in Example 3.5, Q = 1+ 2Q.) If Q'is
well-posed, then we obtain the controllers (3.15) from Example 3.5, and if E(s) = 2
and ) = 0, then we obtain the controller suggested in Example 2.3.
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Example 4.8. The plant in the “intriguing control problem” of Section 1 and its
controller are determined by the following transfer functions:

s+1 0 1
8—1’ K(S)_[l l_es]'

Note that K is canonical (and also dual canonical). To check that K stabilizes P

with internal loop, we use Theorem 4.2. We compute A =e° — 3%}, so that

P(s) =3

Al 1 s—1
3 (1-— e;s)s+(1+e;s

%
First we show that A~! has no poles in the closed right half-plane. Indeed, if such
a pole p were to exist, it would have to satisfy

1+

e” P’
1 3

p:

But for Re p > 0, the right-hand side above is in the open left half-plane, which is
a contradiction. Thus, A~! is analytic on an open set containing the closed right
half-plane. To prove that A=! € H™, it only remains to show that it does not
behave badly at infinity. It is easy to see that |[A~'(s)| < 1 for |s| sufficiently large
(we consider only s with Re s > 0). The fact that PA™" € H* follows similarly.
Computing the transfer function from d to y and from d to (,, we see that the first
is equal to the second delayed by 1 (i.e., multiplied by e~*).

5. Reduction to a (dual) canonical controller

In this section, we show that the canonical controllers are not as special as they
seem; any stabilizing controller with internal loop is, in a certain sense, equivalent
to a canonical controller. To do this, let us analyze the connection in Figure 4 in
more detail. We use the auxiliary inputs v and r from Figure 4, so that u, = u; +v
and y, = y, + r, while assuming that § = 0. If K stabilizes P with internal loop,
then we can define the transfer function Tp x € H* by

HES|

We call Tpx the compensation operator of the pair (P, K). This is analogous to
the transfer function Tp ¢ introduced in (2.1). In fact, Tp x is the left upper 2 x 2
corner of the matrix (I — FFG)! from Definition 2.2.

= D

Definition 5.1. Let P be well-posed and suppose that K; and K, are stabi-
lizing controllers with internal loop for P. We call K; and K, equivalent if the
compensation operators of (P, K;) and (P, K,) are equal.
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The main result of this section is the following.

Theorem 5.2. Suppose that P has a doubly coprime factorization. If K is a
stabilizing controller with internal loop for P, then there exists a canonical controller
K such that K stabilizes P with internal loop and K is equivalent to K.

Proof.  We use the notation from (3.1) and (3.2). By Proposition 4.4, for every
@ € H*, the following K stabilizes P with internal loop:

~ 0 I
K:[mQM I—(5‘+QN)]' (5-1)

We shall find a Youla parameter ) € H> such that the compensation operator
of (P,K) coincides with that of (P,K). First, we explain how this @ will be
constructed. We consider the extended transfer function

~ -1 ~1
P:lMRM ]

M1t P
We denote the inputs of P by l 15” ] and its outputs by [ ng ], as in Figure 7.
P p
Wp—— Up
P
up yp
Uk Yk

Co Cz

Figure 7: The extended system P connected to the controller K with internal loop.
The transfer function from w, to v, is the desired Youla parameter.

We shall prove that if K stabilizes P, then the interconnection of P and K
shown in Figure 7 is stable. Then we take ) to be the H*® transfer function from
W, to U, in the interconnection in Figure 7. There are two assertions that have to
be proven in order to complete the proof of the theorem:

Assertion 1: If K stabilizes P, then the system in Figure 7 is stable.
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Assertion 2: If () is chosen to be the transfer function from w, to v, in the
interconnection in Figure 7, and K is given by (5.1), then Tpx = Tr k-

Proof of Assertion 1: Suppose that K stabilizes P with internal loop. Ac-
cording to Definition 2.2, this means that the parallel connection of P and K as in-
dependent channels, denoted by G in the definition, is such that (I —FG)~™' € H*.
Since F'is invertible, this is equivalent to the fact that G is stabilized by the static
output feedback

Yp ]
U .
Co

Up 0710 Yp
Yk = I 00 U
Ci 00 [ Co

We have to prove that the parallel connection of P and K,
~-M~'R Mt 0 0

=F

& = P o]l | M P 0 0
10 K| 0 0 Kp K|’
0 0 Ko Kz
is stabilized by the static output feedback
Wy 0000 Up Up
up | _ |00 I 0 U | _ I3 Uy
Gi 0001 Co Co

Equivalently, we have to prove that the four transfer functions from (2.1), (I —
GF)™, (I = GF)"'G, FI - GF)™ ' and (I — FG)™!, are in H®. Because F is a
constant transfer function, it is enough to prove that the first two are in H*°, and the
other two will follow immediately (for the last one, use the identity (I — FG)~! =

I+ F(I - GF)"'G). Notice that
—z\rlRHM—1 0 0]

G = M
0 G
0
and
0 Ho 0 0]
ja 0
B
0
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Since F stabilizes G, (I — GF) ' is in H*®. Therefore, (I — GF) ' is in H*, if we
show that [ 0 Mt 0 ] (I-GF)~'isin H*®. Let us denote by T}y, the constituent
blocks of (I — GF)™1, i.e.,

(I=GF) | Tn Ty T

Tz Tz 133

O O N
O N O

Tll T12 TlB] |:

~ o O
—

. From the upper row of this equality, we deduce that
Tyw—1I=PTy, Thaw=Plyn, Ti3=Ply.
Recall from (3.2) that SM — RN = I and compute

S’Tzl - R(Tn - I) - gTzl - RNM_ITgl
= (SM — RN)M™'Ty,

= M 'Ty. (5.2)
Similarly,
STyy — RTyy = STy — RNM ™' Ty = M1y, (5.3)
and
STys — RTys = STy — RNM ™" Tyy = M~ Tps. (5.4)

This shows that
[0 M7V 0 |(I=GF) ' =M [Ty Ty Ty |eH™

So we have shown that (I — GF)~!is in H>.
Let us now show that (I — GF)"!G is in H*. We can compute, using the
notation introduced before, that

(I-GF)'G =
~ M 'R+ M Ty M1 ‘ [ M= 0 0 } + M1 [ Ty, Toy Tos ] G
_ M . (5.5)
(I-GF)™| o0 (I-GF)"'G
0

Since F stabilizes G, we have that (I — GF)™'G is in H®. We have to check that
the other three blocks in (5.5) are in H*. For this, we consider the identity

Tnw T Tis I 00
T21 T22 T23 0 I 0 .
Ty Ty Ty 001

(I - GF) =
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.From the second row and the second column of the previous identity, we deduce
Ty =TuP, Ton—-1=154P, T3 =1;P, (5.6)
TpKi + TosKyy =Ty, TpKip +Ths(Kyp — 1) =0. (5.7)

We can now proceed to show that the remaining three blocks in (5.5) are in H®°.
Block (2,1): We have to prove that

M! TyM™!
(I-GF)™"| 0 |=|TuM"'|ecH>
0 T31M71

Recall from (3.2) that MS — NR = I and use the identities (5.6) to compute

THS - TIQR - THS - T11PR
- THM_I(MS - NR) - THM_I,

and similarly
Tgls + (I - T22)R - Tgls - T21PR
= TglMil(MS - NR) = TglMil,
T315 - T32R - T315’ - T31PR - TglM_l.

These identities show that block (2,1) in (5.5) is in H™.
Block (1,1): We have, using identity (5.2) and (3.2), that

—~MT'R+M'TyyM™ = —M 'R+ (S8Ty — RTy, + R)M™*
- STZlMil - RTIlMil.

As we previously proved, To; M =" and T;; M~" are in H*, and so block (1,1) in
(5.5) is in H®°.
Block (1,2): A little computation shows that block (2,1) is equal to
[ M=+ M™'Ty P M~ (TyKyy + TisKay) M~ (ThKip + ThsKa) } .
Using (5.6), we have
M 4 M TP = ML+ M Y(Tyy — I) = M~ Ty,
which is in H* by (5.3). Using (5.7), we obtain
M~ (1K1 4 T3Ka1) = M~ Ty,
which is in H* by (5.2), and

Mﬁl(T22K12 + T3 Kos) = M 1Ty,
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which is in H* by (5.4). This concludes the proof of Assertion 1.

Proof of Assertion 2: We have chosen () to be the transfer function from w,
to v, in Figure 7. By Assertion 1, this is in H*°. We must show that, if we choose

K from (5.1) with this @, then Tpx = Tp k-

K from (5.1) can be realized via the system K¢ with outputs iy, @y, (,, inputs

Uk, Uk, ¢; and connection v, = Quy, as in Figure 8, with

001
Koe=|M 0 —-N
R I I-S
v U Y
+ p p
\/+ P
Uy, Uk r

Q

Figure 8: The system in Figure 4, with K in place of K, after the realization of K

as the feedback interconnection of Kg with @ (and with £ = 0)

To see this, consider

[ g 0 0 I Uk
i = |8 0 =N || & |, &= Qi
L Co R I I-5 Gi

These yield @y = and {, = (R+ QM)ij, + (I — S — QN)G, ie.,

Ca, | o Yk
B!

The realization of K as in Figure 8 is more convenient to show that (P, K) has the

same compensation operator as (P, K), i.e.,

HEN!
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v + ’LLp yp

+
wp gk + r
Ty
K¢
Wy, = = i
Co G
Wp—— Up
P
Uyp Yp
Up, Yk

Co Cz

Figure 9: Expanding () in Figure 8, using that () is obtained in Figure 7 as the
transfer function from w, to v,

Let us expand @ in Figure 8 into its components to obtain Figure 9.

The idea is now to prove that y; = g and uy = t. If this is so, then y, =y, +7
and u, = u; + v, and this implies that the transfer function from [ ;i ] to l zp ] is

k

Tp k. Since y; = Yy, this is enough to prove our claim. So it remains only to prove
that vy, = 9, and up = 1y in Figure 9. }

First we show that the connection between Kg and P in Figure 9 (represented
separately in Figure 10) is well-posed, i.e., the output feedback F' given by

U 0000 077 o
o 0007 0| |y
Gl=|looT 00| |=F|4
W, 071 000]]|7 T
o 00000][] g iy
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0

Figure 10: Connection between K¢ and P in Figure 9

is admissible for the parallel connection of K¢ and P,

. [Ke 0
G_lo f,].

Straightforward computations using the identity (3.2) yield

I —-R M M 0
0 I+NR —NM —NM 0
I-GF)y'=]0 -R M M 0
0 —-SR —I+SM SM 0
0 S —N -N I

So we have well-posedness and, in addition, (I — GF)"! € H®. Moreover,

0 * *x x [

* k% % % %
([—GF)_IG: X ok ok % % |,

X k% %k % %

I x x x 0

in which a star denotes an irrelevant entry. This shows that

=] ]

and hence y, = 7 and u = Uy, as claimed. [ |

Example 5.3. It is interesting to calculate the canonical equivalent to a dual

0 Ky

canonical controller. Suppose that K = l ] stabilizes the plant P with
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internal loop. If P admits a doubly coprime factorization, then the procedure in
the proof of Theorem 5.2 produces the canonical controller

g 0 I
- M71K12A71 I— Mﬁl(f + K12A71P) ’

where A =T — Ky — PKj9, and M comes from the coprime factorization (3.1).

It is clear that the following dual to Theorem 5.2 holds.

Corollary 5.4. Suppose that P has a doubly coprime factorization. If K is a
stabilizing controller with internal loop for P, then there exists a dual canomnical
controller K such that K stabilizes P with internal loop and K is equivalent to K.

Theorem 5.5. Suppose that P has a doubly coprime factorization as in (3.1),
(3.2), and K is a stabilizing controller with internal loop for P. Then there exists
a unique QQ € H*® such that K is equivalent to the canonical controller

K _ 0 I
""" | R+QM I—-(S+QN) |’

and is also equivalent to the dual canonical controller

K_[o R+MQ l
T |1 I-(S4+NQ) |’

The proof is the same as for Theorem 5.2.

6. Conclusions

In this paper, we have examined two concepts of stabilization for the class of
well-posed transfer functions. The motivation for choosing this class was that its
members have realizations as well-posed linear systems (see Salamon [8], Staffans
[12]). We have proposed a new and more general type of controller, controllers
with an internal loop. The need for this extension is demonstrated by several
examples of such controllers, which cannot be reduced to conventional controllers.
We have introduced canonical and dual canonical controllers, which are controllers
with internal loop of a special (simple) structure. We have found that these are
closely related to (doubly) coprime factorizations of the plant transfer function.
For the case that P has a doubly coprime factorization, we have given a complete
parameterization of all stabilizing controllers with internal loop which are (dual)
canonical. We have proven that any stabilizing controller with internal loop is
equivalent to a canonical one and also to a dual canonical one. Finally, we remark
that, although our motivation was to develop a new theory for the well-posed class
of irrational transfer functions, the concept of stabilization with internal loop is new
even for rational transfer functions.
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