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A survey of optimization algorithms 
for job shop scheduling 

Joep Aerts 

Abstract 

In this survey optimization methods for the job shop problem are dis
cussed. Most of the algorithms developed so far are branch and bound algo
rithms. Different ways of branching and computing lower bounds are main 
issues in this overview. The computational efforts done in each node are also 
discussed. In branch and bound algorithms finding a good balance between 
the computational efforts in each node and the number of nodes investigated 
is crucial for the efficiency of the algorithm. Results of several algorithms are 
compared. 

1 Introduction 

In the job shop problem we have to schedule a set of jobs on a set of machines 
subject to the following constraints. Each job consists of a number of operations, 
which have to be processed in a given order, each on a specified machine. Each 
machine can only handle one operation at a time. For all operations a processing 
time is given. It is not allowed to interrupt the processing of an operation. Subject 
to these constraints, we want to find a schedule for which the completion time of 
the last operation is minimal. To state an instance of the decision variant of the 
problem, we also introduce an integer T. In the job shop feasibility problem, we 
are trying to determine if there exists a schedule which is finished at time T. 

Although easily stated, the job shop problem turns out to be one of the hardest 
problems in the area of combinatorial optimization. This is illustrated by the fact 
that a classical benchmark problem of 10 jobs and 10 machines remained unsolved 
for more than twenty years. It was posed in 1963 by Fisher and Thompson [12] and 
solved by Carlier and Pinson in 1986 [8]. The job shop problem was proven NP-hard 
in the strong sense by Garey, Johnson, and Sethi (14]. Some very special cases of 
the problem can be solved in polynomial time, but their immediate generalizations 
are NP-hard. These results are summarized in Table 1 [21], where m is the number 
of machines, n the number of jobs, l(j) the number of operations of job j and p(i) 
the processing time of operation i. 

The paper is structured as follows. In Section 2 several models for the job shop 
problem are introduced. Section 3 describes the lower bounds, improvements on 
the lower bounds, methods to reduce the number of nodes in the search tree, and 
several branching schemes. Based on the information of Section 3, the branch and 
bound algorithms proposed in literature are discussed in Section 4. Section 4 also 
compares the results of the algorithms and Section 5 gives our conclusions and 
remarks. 
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solvable in polynomial time NP-hard (*in the strong sense) 
(la) m = 2, all l(j) :::; 2 (lb) m = 2, all l(j):::; 3 

m = 3, all l(j) :::; 2 
(2a) m = 2, all p(i) = 1 (2b)*m = 2, all p(i) :::; 2 

*m = 3, all p( i) = 1 
(3a) n = 2 (3b) n=3 
( 4a) length::; 3 ( 4b )*length::; 4 

Table 1: The complexity of job shop scheduling 

2 Definitions and Notation 

In this section we introduce several formal descriptions for the job shop problem. We 
present a disjunctive programming model and a disjunctive graph representation, 
which have been the basis for a large group of algorithms. Also the mixed-integer 
programming formulation used by Applegate and Cook [2] is introduced. Other 
possibilities we give for modeling the job shop problem are a packing formulation [17, 
18] and the use of time windows [5, 17, 18]. 

An instance of the job shop problem consists of a set 0 of operations, a set 
M of m machines and a set :J of n jobs. For the feasibility problem we also need 
to introduce a time T. Each operation j E 0 has a processing time p(j) E JN+, 
a machine M(j) E M on which the operation has to be processed, and a job 
J(j) E :J to which it belongs. On the set of operations a set A of precedence 
relations is defined in the following way: (i,j) E A if and only if J(i) = J(j) and 
operation i is the immediate predecessor of j. In a job each operation has exactly 
one predecessor and one successor, except for the first and the last operation of the 
job. 

We can now define a feasible schedule by a function s : 0 --7 JN which assigns a 
starting time s(j) to each operation j E 0 satisfying the following constraints: 

VjEO 

Vi,jEO, (i,j)EA 

'rfi,jEO, i-:/-j, M(i)=M(j) 

s(j) ~ O; 

s(i) + p(i) :::; s(j); 
s(i) + p(i) :=:; s(j) V s(j) + p(j) :=:; s(i). 

(1) 

(2) 

(3) 

The constraints (3) make sure that a machine cannot process two operations at the 
same time. Due to the form of these constraints we call this problem a disjunctive 
programming problem. Furthermore we define S as the set of feasible solutions. 
Among the feasible solutions we want to find the schedule with minimal makespan. 
Using the starting times we can define the objective function: 

min ( iµax s(j) + p(j)) . 
sES iEO 

(4) 

A related way to model the job shop problem is by means of a disjunctive graph. 
This model is due to Roy and Sussmann. We define a vertex for each operation. 
The set A of precedence relations now corresponds to a set of arcs, which make 
sure that the operations of each job are processed in the correct order. Between 
all the operations which have to be processed on the same machine, a clique of 
disjunctive edges is formed. A disjunctive edge between i and j indicates that 
the two operations cannot be processed at the same time, but that no precedence 
relation between these operations has been set so far. Finally we give all vertices 
a weight equal to their processing times. An example is given in Figure 1 where 
operation 2,3 represents the operation of job 2 to be processed on machine 3. The 
italic numbers at the bottom of the vertices represent the weights. 
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Figure 1: A disjunctive graph representation of a problem with 3 jobs and 3 ma
chines. The dotted lines represent the disjunctive edges. 

A feasible schedule corresponds to an ordering of the operations on each ma
chine in such a way that no cycles occur. In the graph this is equivalent to an 
acyclic orientation of the disjunctive edges. A directed edge (arc) corresponds to 
a precedence relation between the two operations. So we distinguish two kinds of 
precedence relations in the graph, the elements of A and the directed disjunctive 
edges. A solution is feasible if all the disjunctive edges are directed and the resulting 
directed graph contains no cycle. The length of a longest path in the graph is the 
value of the schedule. The work of Carlier and Pinson [8, 9, 10], a part of the work 
of Applegate and Cook [2) , and the algorithms of Brucker et al. [5, 6) are based on 
this disjunctive graph model. These algorithms use one or more disjunctive edges 
to branch on by directing them one way or the other. Each node in the branching 
tree of these branch and bound methods can be represented by a graph. In this 
graph the elements of A and the directed edges are the arcs. The edges which are 
not directed are still represented by disjunctive edges. 

The disjunctive programming formulation given above can be turned into a 
mixed integer problem. We need one binary variable Y;3 for every pair of operations 
{ i, j} with M ( i) = M (j) and define Yi3 to be 1 if operation i is scheduled before 
operation j and 0 otherwise. Instead of the disjunctive constraints (3) we can now 
use the following constraints to make sure that there is only one job at a time on 
each machine: 

vi,jEO, i#j, M(i)=M(j) s(i) ~ s(j) + p(j) - K . Y,;3 
s(j) ~ s(i) + p(i) - K · (1- Y,;j), 

(5) 

where K is a large integer. Applegate and Cook [2] use both the disjunctive and 
the mixed integer formulation for their cutting plane procedures. 

Martin and Shmoys [17, 18] introduce a lower bound based on a packing model. 
The packing formulation is a model for the job shop feasibility problem. To state it 
we define a job schedule to be an assignment of starting times to the operations of 
one job such that no operation starts before the ending of the immediate predecessor 
and such that the total job is finished by time T. With the definition of job schedules 
we can state the feasibility problem in the following way: does there exist a set of 
job schedules, one for each job, such that no two schedules require the same machine 
at the same time? 

Let Fi be the set of all job schedules for a job j E .J and let 'Y(a, i, t) E {O, 1} 
indicate whether job schedule a requires machine i at time t. Let Xjcr be a 0-1 
decision variable that indicates if job j is scheduled according to job schedule a 
and let ,\ be the maximum number of jobs concurrently on any machine. Then the 
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objective is to minimize ,\ subject to: 

L Xju = 1; (6) 
uE:F; 

'efiEM, t=l, ... ,T L L 'Y(a, i, t)Xju ~ ,\; (7) 
jE.:T uE:F; 

Xju E {0, 1 }. (8) 

We have a positive answer to the job shop feasibility problem with value T if and 
only if the optimal value for ,\ is l. 

The last model for the job shop problem we discuss is based on a time ori
ented approach, and uses time windows. Brucker, Jurisch, and Kramer [5] use the 
time windows to derive conditions for directing disjunctive edges and Martin and 
Shmoys (17, 18] develop complete algorithms based on these ideas. A time interval 
is constructed for each operation in which the operation has to be processed or has 
to start, depending on the definitions of the bounds. These bounds are determined 
by using the information of an upper bound, predecessors, and successors. Two 
possible descriptions of the time windows are given in Section 3.2. 

3 Lower bounds and branching schemes 

In this section we describe the lower bounds, the computational efforts in each node 
of the search tree, and the branching rules of the algorithms for solving the job shop 
problem to optimality. We give different approaches to calculate lower bounds in 
Section 3.1. Section 3.2 discusses iterative improvements of lower bounds and the 
computational efforts in the nodes. Section 3.3 compares the results of the lower 
bounds and Section 3.4 deals with the branching rules used by the algorithms. 
The branch and bound algorithms also use upper bounds. We will not discuss 
heuristics to get the upper bounds but refer to Vaessens, Aarts, and Lenstra [21]. In 
Section 4, the algorithms proposed in literature will be explained using the contents 
of Section 3. 

3.1 Lower Bounds 

3.1.1 Direct lower bounds 

The most straightforward lower bounds are the machine lower bound and the job 
lower bound. The first one is derived by computing the sum of all the operations 
which have to be processed on one machine and then taking the maximum of these 
sums over all machines: 

max ( L p(i)). 
mEM 

iEO;M(i)=m 

(9) 

The second one is just the maximum total processing time of the jobs: 

~a;: ( I: p(i)) . 
J iEO;J(i)=j 

(10) 

As expected these lower bounds perform badly in most situations. 
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3.1.2 One-machine relaxation 

The lower bound earlier and Pinson (8] used in their algorithm, which solved the 
legendary Fisher and Thompson 10 x 10 problem, is based on Jackson's preemp
tive schedule for the one-machine head-body-tail problem. Relaxing the capacity 
constraint of all but one machine gives a problem equivalent to the one-machine 
problem with release dates (heads) and delivery times (tails). In the graph repre
sentation we can see this relaxation as dropping all the disjunctive edges between 
the operations of the other machines. This means that we take only the arcs of A, 
the directed edges, and the disjunctive edges of the machine we are considering into 
account. 

For a machine m define Om = {i E CJ I M(i) = m}. Furthermore we define the 
following quantities for each j E Om: 

• r(j): the head of operation j, defined as the time needed for the processing of 
the operations preceding j, taking the arcs of A and the directed edges into 
account; 

• q(j): the tail of operation j, defined as the time needed for the processing of 
the operations succeeding j, taking the arcs of A and the directed edges into 
account. 

Furthermore we define for S ~ Orn, R(S) =mini ES r(j), Q(S) = minjES q(j), 
and P(S) = I::JES p(j). We will discuss different ways to compute heads and tails 
in Section 3.2. 

Unfortunately the one-machine head-body-tail problem is also NP-hard. An 
extra relaxation is made by dropping the non-preemption constraint. Now we can 
use Jackson's algorithm to construct a schedule. The preemptive earliest due date 
(EDD) schedule is constructed in the following way: 

• If there is an operation available schedule one with longest tail. 

• Take release dates and completion times as decision points. 

The value of the minimal preemptive schedule equals 

max R(S) + P(S) + Q(S). 
S~Om 

(11) 

Consider this relaxation for each machine. The maximum of the makespans of 
the one-machine problems is a lower bound. We will call this bound the preemptive 
EDD-bound (prEDD). In literature it is sometimes refered to as Jackson's preemp
tive schedule lower bound. We know that the right hand side of (12) is a lower 
bound for the job shop problem and we can prove that the prEDD equals this lower 
bound. So: 

prEDD = max ( max R(S) + P(S) + Q(s)) . 
mEM S~Om 

(12) 

earlier [7] proves that this lower bound can be computed in O(mnlogn) time. 
Instead of computing the preemptive schedule it is also possible to determine the 
non-preemptive schedule. For small instances we can solve this NP-hard problem 
in an acceptable amount of time. Unfortunately the results of this exact one
machine relaxation are not much better than the prEDD and more computation 
time is needed because an instance of an NP-hard problem has to be solved for 
each machine. 

Although the prEDD is not very tight, it is widely used in the algorithms. The 
most acceptable reason for this is the lack of a stronger lower bound, computable 
in the same amount of time. There have been numerous efforts in trying to find 
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these 'better' lower bounds using other points of view. In the following sections we 
will discuss the use of geometric methods by Brucker and Jurisch [4], the cutting 
plane approach of Applegate and Cook [2], and the packing approach of Martin and 
Shmoys [17, 18]. In this article we only mention the surrogate duality relaxation 
investigated by Fisher, Lageweg, Lenstra and Rinnooy Kan [13] . 

3.1.3 Two-job relaxation 

The two-job bound of Brucker and Jurisch [4] is a method for calculating lower 
bounds based on two-job relaxations. First we state the problem they solve to get a 
lower bound. Consider operations ii, ... , ip and J1, ... ,jq with J(i1) = ... = J(ip) 
and J(Ji) = ... = J(jq)- Between operations of different jobs precedence relations 
may exist when two operations have to be processed on the same machine. These 
precedence relations correspond to directed edges. A release date and a delivery 
time can be computed for each operation in the same way as for the prEDD. Now 
we want to find a schedule for these two jobs, satisfying the precedence constraints 
and release dates which minimizes 

. ~ax . { s(k) + p(k) + q(k)}. 
k=i1, ... ,ini1311•·•1Jnj 

(13) 

Brucker and Jurisch determine their lower bound by solving this problem for every 
pair of jobs. Their algorithm for every two-job relaxation is based on the graphical 
method for solving job shop problems with two jobs. The method consists of finding 
a shortest path in a two-dimensional space with obstacles. Each job corresponds to 
an axis and an obstacle of size p(ik) x p(ji) is constructed if M(ik) = M(ji). The 
left-bottom corner of this obstacle is placed on (r(ik),r(ji)). 

Brucker and Jurisch extend this idea to a three-dimensional space. They are 
able to take the precedence constraints and the heads and tails into account. For 
an exact description of the model and their algorithm we refer to their article. In 
some cases this bound can be useful. If the ratio of the number of jobs to the number 
of machines is small, this lower bound procedure can produce a better result than 
the prEDD. However, in most instances the bound produces worse values than the 
prEDD. Some results are given in Section 3.3 and for additional results we refer 
again to [4]. 

3.1.4 Cutting plane lower bound 

In a cutting plane approach a relaxation of the original problem is solved to get 
the first solution. Then adding inequalities which are valid for all feasible solutions 
but not for the optimal solution of the relaxation makes the formulation stronger. 
Applegate and Cook use both the disjunctive and the mixed integer formulation 
as a basis for a cutting plane approach. In the first one they drop the disjunctive 
constraints (3) and in the mixed integer formulation they use the LP-relaxation on 
the Yii variables. We give here some examples of the cuts they use. For a complete 
enumeration we refer to their article [2]. 

• Basic cuts 
The basic cuts are based on a one-machine relaxation. Take a machine m and 
a set S ~ Orn. Then it is straightforward to check that the following equation 
is valid for all feasible schedules: 

L p(j)s(j) ;:::: R(S)P(S) + L p(i)p(j), (14) 
jES i,jES;i>j 

where i > j means that every pair of operations is only used once. We can add 
this inequality for each subset of Orn for each machine m. It is also possible to 
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add the reverse inequalities, by introducing completion times and considering 
the schedules backwards. 

• Two-job cuts 
Let i,j E 0 with M(i) = M(j). In case r(j) < r(i)+p(i) and r(i) < r(j)+p(j) 
the basic cut (S = { i, j}) can be sharpened: 

(p(i) + r(i) - r(j)) · s(i) + (p(j) + r(j) - r(i)) · s(j) 2'. 
p(i)p(j) + r(i)p(j) + r(j)p(i). (15) 

We can show that this inequality is valid by substituting the earliest possible 
starting times for i and j in (15) because the coefficients of the starting times 
are positive by assumption. The earliest possible starting times, when we 
assume without loss of generality that i precedes j, are r( i) for i and r( i) +p( i) 
for j . For these values the inequality is valid, so the inequality is valid for all 
feasible starting times. The reverse inequality can also be used. Applegate 
and Cook give an extension of this rule for all subsets S ~Orn (clique cuts) 
and an extension to more machines (two-job, two-machine cuts). 

The above cuts do not use the mixed-integer formulation. Nevertheless they can 
be used to strengthen the feasible region of the relaxation of the mixed-integer 
formulation. The following cuts make use of the Yirvariables of the mixed integer 
formulation, so they can only be used in the mixed-integer approach. 

• Triangle cuts 
For any three operations i, j, k that have to be processed on the same machine, 
we can add the triangle inequality: 

(16) 

Since only one of the two possible variables Yi1 and YJi is defined, it may 
be necessary to substitute 1 - Yi1 for YJi· This inequality is based on the 
transitivity of the precedence relations: if i is scheduled before j and j is 
scheduled before k, i has to be scheduled before k to get a feasible schedule. 

• Half cuts 
Let S ~Orn. For each operation j E S the inequality 

s(j) 2'. R(S) + L Yi1P(i) 
iES\{j} 

(17) 

is valid for all schedules, since operation j cannot start processing before all 
the preceding jobs on machine M(j) have been completed. 

The lower bounds of the cutting plane approaches are better than the values of the 
prEDD [2]. However, the computation times are disappointing, only the results of 
the relaxation of the disjunctive model with the basic cuts added seems promising. 
The results are for some instances substantially better and the time gap is not that 
big. Some computational results are given in Section 3.3. Applegate and Cook end 
their discussion of the cutting plane approach with the remark that it remains a 
research challenge to find classes of valid inequalities that will close the large gap 
between the lower bound values and the optimal values of the scheduling problems 
within a reasonable amount of time. 
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3.1.5 Fractional packing lower bound 

Recently Martin and Shmoys (17, 18] proposed a lower bound based on a packing 
formulation for the job shop feasibility problem: minimize >. subject to (6), (7), 
and (8). The packing lower bound is based on the following statement: 'If we can 
prove that the optimal value for >. is greater than 1 for a fixed T we can conclude 
that T + 1 is a lower bound for the problem'. If we consider the LP-relaxation by 
substituting Xju 2'.: 0 for (8) we can still use this result and determine the fractional 
packing lower bound. We can show that the optimal value of the LP-relaxation is 
greater than 1 by finding a feasible dual solution of value greater than 1. Martin 
and Shmoys use the packing algorithm of Plotkin, Shmoys and Tardos [20] to find 
such a solution. Fortunately this algorithm is insensitive to the number of variables 
so the exponential number of decision variables is no problem. 

To find the best lower bound, a bisection over T is needed, because the packing 
model is a model for the job shop feasibility problem. The algorithm of Martin finds 
the highest value of T for which a dual solution higher than 1 is found. The results 
of the bound are very good, but one subroutine of the algorithm takes exponential 
time. This subroutine is called several times for each T so the bound is not yet 
of practical use because it is too computationally demanding. In Section 3.3 some 
computational results are presented. 

3.2 Improvement procedures for lower bounds 

We can conclude that, in spite of all the efforts, the available lower bounds are not 
very tight or not of practical use due to their computation times. This section deals 
with procedures to improve lower bounds. These procedures can cause a reduction 
of the size of the branching tree as well. We will discuss the adjustment of heads and 
tails and methods to direct disjunctive edges in a one-machine relaxation (local). 
Some related methods for the entire problem are explained (global methods) and 
also shaving procedures for the time-window approach are mentioned. 

3.2.1 Updating heads and tails 

Examining the definition of heads and tails given when we introduced the prEDD, 
one way to see the head of an operation is as being the longest path length to 
the corresponding vertex in the disjunctive graph with the elements of A and the 
directed edges as arcs. The tail corresponds to the longest path length from the 
vertex. So the heads and tails can be computed by applying a longest path algorithm 
to a directed graph. 

Another approach to compute the heads and tails is described by Brucker, Ju
risch, and Sievers [6]. We first note that an operation cannot start before the ending 
of the preceding operation in the same job. So if (i,j) EA, r(j) 2'.: r(i) + p(i). For 
the second observation we consider an operation j and a set C of predecessors of j 
with a disjunction between each two operations of C. So operation j cannot start 
before all operations of C are finished. Combining these observations we get: 

r(j) > max {r(i) + p(i), max (min r(k) + '°" p(k))}, 
- C 1 CC kEC' L.., 

- . kEC' 

(18) 

where operation i is the predecessor of j in job J(j) . This relation can be used to 
get a recursive formulation of all heads and a similar equation can be made for the 
tails. Later we will describe an algorithm of Carlier and Pinson [9] which finds the 
maximum value of (18). 

When no disjunctive edges are directed, both procedures the head is defined as 
the sum of the processing times of the preceding operations of the same job and the 
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Figure 2: A graph representation of the adjustment of heads and tails. The italic 
numbers represent the processing times. The head of operation 2 of job 1 (operation 
(1,2)) is 2 before the directing of any disjunctive edge. After directing the edge 
between operations (3,2) and (1,2) we can update the head of operation (1,2) to 4 
because the processing of operation (1,2) cannot start before the ending of operation 
(3,2). We can update the head of operation (1,3) and the tail of operation (3,2) in 
the same way. 

tail as the sum of the processing times of the succeeding operations. If during the 
process precedence relations between the operations of the same machine are fixed, 
the values of the heads and tails can increase. This is shown in Figure 2 for the 
disjunctive graph. 

We know that an update of the head of operation i can be followed by an update 
of the heads of the successors of i, and similarly an update of a tail by an update of 
the tails of the predecessors. Applying these statements makes the first part of the 
maximum in (18) negligible and apparently all branch and bound algorithms use 
these results. When the heads and tails are updated, we can determine a new lower 
bound, which will be at least as strong as the previous. The updates are especially 
useful for lower bounds based on the heads and tails like the prEDD. 

One way to direct disjunctive edges is by branching. The algorithms based on 
the disjunctive graph branch by directing one or more disjunctive edges. Carlier 
and Pinson [8] introduced conditions to direct disjunctive edges without branching: 
select (j, i), where (j, i) represents the arc from operation j to i, by proving that 
scheduling i before j leads to a schedule with a makespan larger than or equal to 
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the upper bound. We saw that a new directed edge can improve the lower bound. 
It also reduces the size of the branching tree and can improve the upper bound 
because more precedence relations have to be respected. These reasons show the 
importance of the methods to increase the number of directed disjunctive edges. 

In the conditions to direct edges without branching the heads and tails are used, 
where higher values of heads and tails lead to more directed edges. So directing 
disjunctive edges and updating heads and tails are strongly connected and often 
considered iteratively until no changes occur. We will give an outline of the condi
tions and algorithms. The basic ideas are by earlier and Pinson [8]. They improve 
their work in [9] and [10]. Brucker, Jurisch, and Kramer [5] and Brucker, Jurisch 
and Sievers [6] extend the work of earlier and Pinson, and several other algorithms 
also use the ideas and procedures. 

Define a clique C to be a subset of Om with at least two elements in which every 
two elements of C are in disjunction, so between the elements of C no precedence 
relations are set. We call e E Can input of C if e is scheduled before all operations 
of C \ { e }, and equivalently s E C an output ifs is scheduled after all operations 
of C \ { s }. Further we define E ~ C as the set of all possible inputs of C, where 
i E C is a possible input if there exists a schedule, with makespan smaller than the 
current upper bound, in which i is scheduled before all elements of C. In the same 
way we define S as the set of all possible outputs. Let E and S be subsets of Om 
that contain E and S. These subsets E and S are introduced because it is often 
very difficult to find the sets E and S. Initially, E and S are equal to C and the 
following implications can be applied to remove elements from E and S. Let k E C 
and UB be the value of the current upper bound (earlier and Pinson use a strict 
greater-than sign. When only interested in improving schedules an equality is also 
sufficient): 

r(k) + LP(j) + min q(j) :2: UB => k ~ E; 
jEC jES\{k} 

(19) 

min .r(j) + LP(j) + q(k) :2: UB => k ~ S. 
jEE\{k} jEC 

(20) 

To see that (19) is valid assume that operation k is scheduled before the elements 
of C. Under this assumption r(k) + L,jECp(j) +minjES\{k} q(j) is a lower bound. 
So if this value already exceeds the the current upper bound, we know that there 
does not exist an improving schedule with k scheduled before all elements of C and 
k can be removed from E. In the same way we can show that (20) holds. We can 
also state a stronger result to find inputs or outputs of C. If we find a clique C and 
a k E C for which 

min r(j) + LPi + min q(j) :2: UB 
jEC\{k} . C jEC\{k} 

JE 

(21) 

is valid, we can conclude that k is an input or an output of C. To see this, as
sume that k is not scheduled as the first or the last job of C. Now we know that 
minjEC\{k} r(j) + L,iECPi + minjEC\{k} q(j) is a lower bound for the makespan. 
So the only possibility to improve the current upper bound is to schedule k as the 
first or the last operation of C. 

If we have a k E C for which (19) and (21) are satisfied, we have found the 
output of clique C. In the same way we have found the input if conditions (20) 
and (21) are satisfied. If we have found k to be the output of a clique C we know 
that all other elements of C have to be scheduled before k, so we can select (j, k) 
for all j E C\{k}. Similarly we can select (k,j) for all j E C\{k} when k has 
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been determined to be an input of C. earlier and Pinson [8] derive a special result 
applicable to each clique C of two operations i and j: 

r(j) + p(j) + p(i) + q(i) 2:: UB::} select (i,j). (22) 

Brucker, Jurisch, and Kramer [5] use another approach to direct the disjunctive 
edges based on the ideas of Dewess [11]. Their first result can be derived directly 
from (22) . We introduce some extra notation. Let d(j) be the due date of operation 
j, defined by d(j) := U B - q(j) - 1. Then we can construct for operation j a time 
window [r(j), d(j)] in which operation j has to be processed in order to construct a 
solution better than the current one. If we combine the definition of d(j) and (22) 
we get: 

p(j) + p(i) > d(i) - r(j)::} select (i,j). (23) 

The interpretation of (23) is that we cannot process i and j in the time interval 
[r(j),d(i)]. We say that the arc (i,j) is selected by a 2-set condition where {i,j} is 
the 2-element set. If we now assume that all the arcs which may be derived from 
2-set conditions are selected, we can derive (i,j) from the 3-element set {i,j,k} 
by showing that the sequences j, i, k and j, k, i and k,j, i cannot improve the up
per bound. In terms of time windows this means we must show that the three 
jobs cannot be processed entirely in the time windows [r(j),d(k)],[r(j),d(i)], and 
[r(k), d(i)]. This leads to the following 3-set condition to select (i,j): 

d(k) - r(j) < s /\ d(i) - r(j) < s /\ d(i) - r(k) < s, (24) 

where s := p(i) + p(j) + p(k). Brucker, Jurisch, and Kramer give some complemen
tary results for situations with more information about i, j, and k, and they give 
an example of an arc (i,j) that can be derived by 3-set conditions and not by the 
algorithms of earlier and Pinson. F\trthermore they construct an O(n2 ) algorithm 
for deriving all relations using the 3-set conditions. To do this, they modify the 
time windows using the information of the directed edges. If ( i, j) has already been 
selected, the values of r(j) and d(i) can be updated to max{r(j), r(i) + p(i)} and 
min{ d(i), d(j) - p(j)} respectively. This modification can also be done in O(n2 ) 

time and can be seen as being equivalent to the adjustment of heads and tails in 
the work of earlier and Pinson. 

As mentioned before, it is recommended to update the heads and tails of the 
operations after directing disjunctive edges. This can be done by using a longest 
path algorithm in the corresponding graph with all the directed disjunctive edges 
being arcs. earlier and Pinson [8] use complementary results for the inputs and the 
outputs found by conditions (19), (20), and (21). If i is the output of C we can 
apply (18) to get: 

r(i) := max (min r(j) + ~ p(j)) , 
C'~C\{i} jEC' jft:' (25) 

and a similar result holds for inputs. 
Carlier and Pinson [9] give an O(n2 ) algorithm to find the updates for all the 

operations of one machine based on the results as stated in (18), (19), (20), and (21). 
For the updating of heads they define a set C ~ Om to be an ascendant set of 
operation k i. C, k E Om if 

r(k) + p(k) + LPU) + I~J,igq(j) 2:: UB 
jEC 

3 
(26) 

and 

~igr(j) + L Pi+ ~igq(j) + p(k) 2:: UB. 
3 jEC 3 

(27) 
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By (26) we know that operation k cannot be processed before all elements of C and 
by (27) that operation k should be before or after all elements of C. So operation 
k is an output of CU {k}. We can apply (25) to update the head of operation k. 
For the best possible update by using ascendant sets we have to find a set c• which 
satisfies: 

• For at least one ascendant set C of k, c• ~ C, 

• For all C' ~ C, where C is an ascendant set of k: 

m~ r(j) + L p(j) ~ !llh~ r(j) + L p(j) ' 
iE jEC' iE jEC• 

(28) 

• r(k) < ~hi! r(j) + L p(j) , 
] jEC• 

(29) 

where the first condition implies that we can use the ascendant set update, the 
second that it is the best update, and the third that we have a real update. When set 
C* does not exist, we conclude that we cannot update the head of operation k using 
the ascendant sets. Carlier and Pinson describe an O(n2 ) algorithm based on the 
preemptive one-machine relaxation that finds r* (k), the best update by ascendant 
sets for the head of operation k, and prove that this value equals miniEC• r(j) + 
LjEC·p(j). Later they improve the algorithm to an O(nlogn) algorithm (10]. 

The difference between the use of inputs and outputs and the ascendant set 
approach is the point of view. In the first one a clique of operations is selected 
and the goal is to find inputs and outputs; in the second approach an operation is 
selected for which the best update is determined by using cliques of operations. 

3.2.2 Global improvements 

The methods that are used to direct disjunctive edges and to update heads and tails 
discussed so far are based on one-machine relaxations, so the problem is examined 
from a local point of view. These methods check if it is possible to update heads or 
tails in the one-machine subproblems and apply these updates to the complete job 
shop problem. In contrast to these local methods, Carlier and Pinson [10] propose 
to use the assumption that the tail of operation j can be updated in the entire 
problem. In terms of starting times this assumption means that operation j is 
required to start between r(j) and UB - q"(j) - 1 - p(j), where q*(j) is the new 
value of the tail of operation j. If it is proved that this assumption results in a 
schedule with a value higher than or equal to UB, we know that the tail cannot 
take this value in any improving schedule, and so the head of operation j can be 
updated. To prove that there is no improving schedule, Carlier and Pinson use the 
preemptive one-machine relaxations. 

Explicitly this means that we assume that q(j) can be updated to q*(j) and 
apply this update and the consequences to all one-machine relaxations. We try 
to show that at least one preemptive schedule exceeds or equals the current U B. 
If this is shown we know that there is no improving schedule in which operation 
j finishes after U B - q* (j) - 1 and so the head of operation j must be at least 
UB - q*(j) - p(j). 

In the same way an algorithm can be described for the assumption that operation 
i precedes operation j. If we now show that at least one preemptive one-machine 
problem has a makespan at least as large as the U B under this assumption, we 
know that the disjunctive edge between i and j can be replaced by the arc (j, i). 

Using these global methods we can construct a new lower bound. Initialize 
L = U B and apply iteratively both global procedures. Continue until no edges can 

12 



be directed anymore for this value of L. Use the updated values of the heads and 
tails to determine the prEDD. Decrease L and apply the procedure again. Repeat 
this until the new pr EDD exceeds or equals the U B. Then we know that L + 1 is a 
lower bound for the problem. The idea of doing a binary search between the upper 
bound and the lower bound to find a better lower bound was already proposed 
by Carlier and Pinson in 1990 [9], but the algorithm with global operations was 
described in 1994 [10]. 

3.2.3 Shaving 

The approach of Brucker, Jurisch, and Sievers [6] showed that the ideas of Carlier 
and Pinson can be incorporated into a time window approach. The work of Martin 
and Shmoys [17, 18] confirms this and contains full branch and bound algorithms 
based on time windows. Here we discuss the bounding procedures, and the iter
ative improvements of these bounds . 'In Section 3.4 we will discuss the branching 
schemes. The algorithms of Martin and Shmoys have been developed for the job 
shop scheduling feasibility problem, so a value T is given. We define a feasible 
schedule to be a schedule which is finished at time T. 

Martin and Shmoys do not introduce a time window for the processing of an 
operation but define an interval in which the operation is required to start. We 
can transform the processing time window to a starting time interval by substract
ing the processing time of the corresponding operation from the right endpoint of 
the window. So if we state the interval of Martin and Shmoys for operation j as 
[u(j), v(j)] we initialize u(j) by the sum of the processing times of the preceding 
operations of the same job and v(j) by T minus the sum of the processing times of 
the succeeding operations minus the processing time of operation j. 

Of course these intervals are closely related to the values of the heads and tails, 
and the ideas of updating heads and tails can also be used in a time window ap
proach. Martin and Shmoys call it shaving and define it in the following way: if we 
can find a value w(j) for which we can prove that there is no feasible schedule when 
operation j is restricted to start in the interval [u(j), w(j)], we can update the time 
window to [w(j) + 1, v(j)]. Due to the symmetry of the problem, it is sufficient to 
discuss only the shaving of the start of the time window. 

The major issue of the shaving procedures is to find the maximal value of w(j) 
for which we can prove that there exists no feasible schedule when operation j is 
required to start in the interval [u(j), w(j)], because we want to make the windows 
as small as posible. In most procedures bisection search is used to find the maxi
mum portion to shave off. The shaving principles were introduced as preprocessing 
procedures to strengthen the fractional packing lower bound, but a lower bound 
can be derived directly from the shaving procedures as well. If it is shown that no 
feasible schedule can be found satisfying the improved time windows for a value of 
T, T + 1 is a lower bound for the problem. By doing a bisection search over T we 
can construct a lower bound. 

It turns out that using the shaving algorithms and a bisection search over T gives 
much faster lower bounds comparable to the fractional packing lower bound. Martin 
and Shmoys describe several lower bound algorithms based on shaving principles. 
They divide these algorithms in two groups: 

• shaving algorithms based on one-machine relaxations, comparable to the local 
procedures of Carlier and Pinson; 

• shaving algorithms based on the total job shop problem (job shop shave), 
comparable to the global operations. 

Given that the preemptive one-machine problem is solvable in polynomial time, 
it is natural to use this relaxation to show that there is no feasible schedule when 
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operation j is restricted to start in the first part of its interval. The assumption 
that operation j starts in the interval [u(j), w(j)] is in the notation of heads and 
tails equivalent to the assumption that the value of the tail of operation j is T -
w(j)-p(j). So to find wj, i.e. the maximal update for the left endpoint of the time 
window, we can focus on finding qj, the minimal value of the tail for which we can 
prove there is no feasible preemptive schedule. Martin and Shmoys use the prEDD 
to describe a way to find qj without doing a binary search. 

We concentrate on operation j and machine m = M(j) and note that 

5~~ R(S) + P(S) + Q(S) :::; T, (30) 

because otherwise there would be no feasible schedule for T. We know that qj 
exists, but it is not certain that it yields an useful update. The existence implies 
that when we replace q(j) by qj, we can find a set S ~ Om \ {j} such that 

r(S u {j}) + P(S) + p(j) + min{ Q(S), qj} > T. (31) 

However we know that qj is the minimal value of q(j) for which we can use this 
statement to prove that there is no feasible schedule. So if we substitute qj - 1 for 
qj in (31) we get: 

r(S U {j}) + P(S) + p(j) + min{Q(S),qj -1}:::; T. (32) 

Combining these results gives Q(S) ~ qj and r(S U {j}) + P(S) + p(j) + qj = T + 1. 
We can now derive the value of qj and the new left endpoint of the interval becomes: 

wj + 1 = r(S U {j}) + P(S). (33) 

Martin and Shmoys update the start and the end of the windows of the opera
tions on all the machines iteratively until no changes occur. When comparing this 
procedure to the ascendant set algorithm of Carlier and Pinson [9] implemented in 
a time window approach, it can be shown that the final time windows are exactly 
the same in both procedures. The advantage of the algorithm based on the results 
of Carli er and Pinson is that it runs faster. A lower bound is determined by running 
the shaving algorithm based on the ascendant sets until no updates are found and 
is called iterated Carlier-Pinson. Martin and Shmoys also gives their own imple
mentation based on the Carlier and Pinson updates. It has the advantage that it 
runs faster when it is rerun on a slightly changed problem instance. 

Instead of using the preemptive schedule, Martin and Shmoys also try to use 
the exact one-machine schedule. Although known to be NP-hard this exact one
machine relaxation is solvable in an acceptable amount of computation time for most 
instances. In spite of the additional computation time invested, the results are not 
much better than those obtained using the preemptive one-machine relaxation. 

Carlier and Pinson [10] introduced global operations to improve their lower 
bounds. The same idea applied to a time window approach was proposed by Mar
tin and Shmoys [17, 18]. This is what they call job shop shave. They assume that 
an operation must start in one part of the interval and use the one-machine shaving 
algorithms on all the machines to show that this will not lead to a schedule fin
ished at time T. This gives the algorithms GP-shave and exact one-machine shave, 
where they use the preemptive one-machine relaxation and the exact one-machine 
relaxation in the shaving procedures respectively. Another job shop shave algorithm 
uses CP-shave to show that the assumption of a smaller time window leads to an 
infeasible schedule. Because this algorithm uses a job shop shaving algorithm on 
two levels it is called double shave. This bound is tight in most cases but takes an 
extremely long time to compute. 
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MTlO ABZ5 ABZ6 
Optimal 930 1234 943 
prEDD 808 1029 835 
Two-job 655 859 742 
Cutsl 823 (5.23} 1074 (5.61} 835 (4.87} 
Cuts2 824 (305} 1076 (611} 837 (334} 
Cuts3 827 (7552) 1077 (4971} 840 (5257) 
Packing 859 (226) 1133 (234) 882 (249) 

Table 2: Lower bounds: results of two-job relaxation, cutting planes and fractional 
packing bound compared to prEDD. 

3.2.4 Multiple machine relaxations 

To improve on the one-machine relaxation, a natural step is to use k-machine relax
ations. Martin [17] gives some computational results for these bounds and remarks 
that in a multiple machine relaxation, besides heads, tails, and precedence rela
tions, also lags occur between two operations. These lags consist of the sum of 
the processing times of the operations to be processed between two operations. 
Martin gives some computational results of applying shaving algorithms to 2- and 
3-machine bounds but notes that CP-shave gave better results in less time, due to 
the large computation times of the algorithm for solving the k-machine relaxation. 
Martin does not describe his algorithm in detail. For theory about scheduling with 
these delayed precedence constraints we refer to an article of Balas, Lenstra, and 
Vazacopoulos [3], which discusses the one-machine problem with delayed precedence 
constraints. 

3.3 Results on lower bounds 

In this section we give some computational results of the lower bounds we discussed. 
As noted, most algorithms use the prEDD as a lower bound. This is a very fast 
combinatorial lower bound. The gap between the prEDD and the optimal solutions 
turns out to be quite large. As alternatives we discussed the two-job relaxation of 
Brucker and Jurisch [4], a cutting plane approach of Applegate and Cook [2] and 
the fractional packing lower bound of Martin and Shmoys [17, 18]. The problems 
in the table are the well known 10 x 10 problem of Fisher and Thompson [12] and 
two 10 x 10 instances posed by Adams, Balas, and Zawack [1], Problem 5 and 6 
from their Table 1. 

In the tables the numbers in italics are computation times in seconds. For the 
prEDD the computation times are omitted. Applegate and Cook give a computation 
time of 0.1 second for the prEDD. The computation times of the packing lower 
bound do not include the bisection search time over T. The cutting plane lower 
bounds are computed using an IBM 3081D computer and Martin uses a 90Mz 
Pentium PC. 

The three cutting plane approaches represent respectively the relaxation of the 
disjunctive model with only the basic cuts, the same relaxation with all the cuts 
described for this model, and the LP-relaxation of the mixed integer formulation 
with all cuts given by Applegate and Cook. The three cutting plane lower bounds 
as well as the packing lower bound of Martin turn out to be too slow 

Brucker and Jurisch concluded that the two-job bound was only rewarding when 
the ratio of the number of jobs to the number of machines is small. The results do 
not support this conclusion. We refer to the results in the article of Brucker and 
Jurisch [4) for more specific results. We only illustrated here that in the instances 
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Problem MTlO La36 Lal7 La29 
Optimal 930 1268 784 1152 
prEDD 808 1224 739 1114 
global 868 1233 777 
iterated CP 855 (0.01} 1233 (0.01} 1119 (0.01} 
CP shave 919 (45) 1267 (75) 1119 (89} 
double shave 930 (530} 1268 (1533} 1140 (183465) 

Table 3: Lower bounds: results of the improvements on the lower bounds: global 
operations and shaving. 

of Table 2 the three approaches are not of practical use. 
In the discussion of the lower bounds we described in detail the improvements 

of the lower bounds, consisting of directing edges, adjustment of heads and tails, 
and shaving procedures. We also discussed the use of these procedures on a global 
level. Most of these improvement procedures can be seen as preprocessing or as 
computational efforts in the nodes of the search tree by the fact that they reduce 
the tree size. As in all branch and bound algorithms, the balance between the com
putation time in each node and the number of nodes to be investigated constitutes 
an important trade-off. We also saw that these procedures can be used to determine 
lower bounds by bisection search over T, the time input variable of the job shop 
feasibility problem. Here we will give some results of lower bound applications of 
these procedures in comparison to the prEDD. In Tabel 3 we report the results on 
the 10 x 10 problem of Fisher and Thompson [12] and on a 15 x 15, a 10 x 10 and 
a 10 x 20 instance of Lawrence [16]. 

In the first two instances the algorithm of Carlier and Pinson (10] can be com
pared to the aJgorithms of Martin and Shmoys (17, 18]. A comparison shows that 
the -results of CP shave are better than the lower bound based on the global opera
tions implemented by Carlier and Pinson. The fourth problem is included because 
it is the only test instance used by Martin for which double shave did not reach the 
actual optimum. 

In this table we see a trade-off between the time invested to reach the lower 
bounds and the values of the lower bounds. Complexity analysis of Martin shows 
that CP shave and double shave are both pseudo-polynomial in the sense that they 
depend polynomially on the schedule length T. The global algorithm of Carlier and 
Pinson and the double shave algorithm of Martin and Shmoys are so expensive that 
they do not occur as lower bounding procedures in an algorithm. Both procedures 
are only used in the root node of the search tree and can be seen as a way of 
preprocessing. After application of these algorithms the heads and tails (or the 
corresponding time windows) have such values that the size of the resulting search 
tree is much reduced. 

3.4 Branching schemes 

We distinguish three different approaches when considering the branching schemes 
of the algorithms for solving the job shop problem to optimality: 

• branching on edges of the disjunctive graph representation; 

• branching on the operations of the critical path based on a block theorem; 

• time oriented branching based on time windows. 
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3.4.1 Disjunctive graph 

When using the disjunctive graph representation of the problem it is straightforward 
to branch on the direction of the disjunctive edges. Every node in the branching 
tree corresponds to a graph with the elements of A and the directed disjunctive 
edges as arcs. As said before a graph represents a feasible schedule if and only if 
all the disjunctive edges have been directed and the graph contains no cycle. The 
easiest way to use the disjunctive edges for branching is by directing an edge one 
way or the other to create two new nodes (children). Carlier and Pinson [8] and 
Applegate and Cook [2] use this branching rule. The only problem left is finding a 
promising disjunctive edge to branch on. 

Carlier and Pinson note that it is beneficial to have sets of possible inputs or 
outputs (E and S) of low cardinality. If the cardinality of one of these sets is 1, an 
input or an output is found, and it is possible to direct the disjunctive edges from 
or to this vertex. A set with cardinality 0 leads to the truncation of the node. So 
Carlier and Pinson pick a disjunctive edge out of the set E or S with the smallest 
cardinality. It is easy to see that in both new nodes at least one of the sets E or S 
contains fewer elements. 

In order to determine the order on the machine with the highest initial one
machine relaxation first (this value equals prEDD), Carlier and Pinson consider 
two operations of this machine. The operations are both elements of E or of S 
depending on which set has smallest cardinality. When the order of the operations 
on this machine has been defined, they take among all the other machines the set 
E or S with smallest cardinality. When it is decided which set to use, the next step 
is to find the elements to branch on. If E is the set to use for branching and LB is 
the value of the makespan of the corresponding preemptive one-machine problem, 
compute for every two elements i, j E E: 

dij := max{O, r(i) + p(i) + p(j) + q(j) - LB}; 

dji := max{O, r(j) + p(j) + p(i) + q(i) - LB}; 

V{ij} := ldij - djil; 

a{ij} := min{dij, dj;}. 

(34) 

(35) 

(36) 

We use the operations with maximal v{ii} and in case of ties the elements with 
maximal a{ii}· The similarity between (22) and (34) explains why we want v{ii} 
to be large. A large value of v{ij} means a large difference between r(i) + q(j) 
and r(j) + q(i) and this implies that one of the directions of the disjunctive edge 
is unlikely to lead to an improvement. So a fast truncation of one of the two new 
nodes might be possible. For the same reason we take the operations with the 
maximum value of a{ ij} in case of ties, because a large a{ij} makes sure that we 
take the largest d;j among the ties. When the operations i and j are found, we 
create the children by scheduling i before j to get the first new node and j before i 
to get the second. 

Applegate and Cook [2] use the ideas of Carlier and Pinson in their algorithm. 
They also tested a greedy rule: try all possible choices of branching and take the 
edge for which the minimum of the lower bounds (prEDD) in the children achieves 
the maximum value. The implementation of the greedy rule gave promising re
sults, so Applegate and Cook concluded that branching on a disjunctive edge was 
a good procedure and they implemented the scheme of Carlier and Pinson in their 
algorithm. 

Later Carlier and Pinson propose a new branching scheme [9]. In this new . 
branching scheme more disjunctive edges are directed simultaneously to create a 
new node. An advantage is that this leads to better improvements of the heads and 
tails. A disadvantage is the faster growth of the search tree because branching may 
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node N J - C\(l/ 2 - C\{2} 

Figure 3: Branching on a set of possible inputs gives I E I new nodes by using each 
element of E as an input of K. 

mean the creation of more than two nodes. Again they use a set E or S with smallest 
cardinality for branching. When branching is the next step in the algorithm, they 
determine the prEDD and find the operation for which C(j) +q(j) = prEDD, where 
C(j) is the completion time of operation j in the corresponding preemptive one
machine schedule. They derive the set C ~ OM(j) with j E C, as being the clique 
with maximal local lower bound and prove that this value equals C(j) + q(j), so: 

C(j) + q(j) = ni.g r(i) + LPi + nig q(i). 
iEG 

(37) 

This set C can be seen as a critical set in that it contains the elements which 
determine the lower bound. Branching on this set probably allows us to use the 
conditions for directing disjunctive edges efficiently and to truncate new nodes soon. 
For this set C , determine E and S, and if I E I < I S I use the elements of E to 
branch as shown in Figure 3. If I S I < I E I use each element of S as the output of 
C to create the new nodes. 

A third branching scheme of Carlier and Pinson [10] is based on the ideas of 
ascendant sets. If we can find a set and an operation which satisfy one of the two 
conditions of ascendant sets (i.e. (26),(27)), the extra information can be used by 
branching on this pair. If we know that operation k cannot be an input of a set C, 
we can create two new nodes, one in which k is scheduled after all elements of C and 
the other with k scheduled after at least one operation of C. In this way the validity 
of one of the conditions for ascendant sets can be used. If there are more pairs of 
candidates, we take the pair (C,k) for which the value of the second condition of 
ascendant sets (the one not satisfied) is closest to U B. If no pair satisfies one of 
the conditions, the scheme takes a disjunctive edge to branch on as in Carlier and 
Pinson [8]. 

3.4.2 Block approach 

We already saw that a feasible solution of a job shop instance can be represented 
by a directed graph. The value of the corresponding schedule can be found by 
determining a longest path in the graph. This so-called critical path can be seen 
as a sequence of blocks, where a block represents a sequence of operations. A 
sequence of operations on the critical path is called a block if it contains at least 
two operations and all the operations have to be processed on the same machine. 
This block approach was introduced by Grabowski, Nowicki, and Zdrzalka [15] for 
single-machine scheduling with release dates and due dates. An example of a critical 
path divided into blocks is given in Figure 4. 

Brucker, Jurisch, and Sievers [6] use the block approach for their branching 
scheme. When they decide to branch, they use a heuristic to get a solution given 
the set of already directed disjunctive edges, then determine a critical path and use 
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Figure 4: A critical path which contains three blocks. The horizontal arcs are 
directed disjunctive edges and the diagonal arcs represent elements of A. 

the blocks to branch. The branching principles are based on the following theorem 
(for a proof see [6]): 

Theorem 3.1 Let S be a schedule for a job shop instance with value v(S). Every 
schedule S' with v(S') < v(S) has at least one operation of any block processed 
before the first or after the last operation of the corresponding block. 

After finding a solution with a heuristic we know that an improvement is only 
possible by scheduling one of the internal operations of a block before the block or 
after the block. Because the arcs between the blocks are elements of A and hence 
given by the problem instance, any schedule with only permutations of the internal 
operations of the blocks will contain the same blocks in the critical path. Permuting 
the operations in the blocks without changing the first and the last one does not 
change the value of the critical path, because the weights are in the vertices and 
not in the arcs. 

The branching procedure of Brucker, Jurisch, and Sievers exploits Theorem 3.1. 
When the blocks of the critical path are determined (say, B1, ... , Bk), we can define 
for each block the set of 'before' candidates as the set of operations of the block 
minus the first operation and the set of 'after' candidates as the operations of the 
block minus the last operation. Furthermore, we need a permutation on these sets 
to know which set to use first. When the objective is to direct as many edges as 
possible, placing the sets in order of non-increasing cardinality will lead to a good 
permutation. Brucker, Jurisch and Sievers use this permutation with the extra rule 
that a set of before candidates of a block is always the direct predecessor of the set 
of after candidates of that block. 

The elements in a block are sorted according to non-decreasing heads for be
fore candidates and according to non-decreasing tails for after candidates. When 
decided which element to use for. branching, we can direct the edges between that 
element and the other elements of the block in the new node. The information of the 
preceding blocks in the permutation can lead to extra precedence relations. When 
using block Bi for branching we can fix the first and last operations of the blocks 
B 1 , ... , Bi-1 as being the original first and last operation, because the other pos
sibilities for the first and the last place of each preceding block has been inspected 
in earlier nodes (a depth-first search is used). After creating a new node with these 
precedence relations, a cycle check is needed to prevent creating infeasible schedules. 

3.4.3 Time windows 

The last group of branching rules does not use the disjunctive graph or the disjunc
tive edges in any way. These rules are time-oriented and developed by Martin and 
Shmoys [17, 18] to be used in their time-oriented algorithms. Both branching rules 
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of Martin and Shmoys are based on starting time windows, so a window [u(j), v(j)] 
is defined for each operation as in Section 3.2.3. 

The first rule takes the operation with smallest left endpoint of its window and 
decides to schedule or to delay it. So branching gives two new nodes, one where 
the next available operation is scheduled and one where it is delayed. A delayed 
operation is marked and can only be scheduled again after scheduling another op
eration the same machine, otherwise it would be possible to schedule an operation 
after unnecessary idle time. 

Another problem in this way of branching is the possiblity that the amount of 
idle time scheduled after the release date of operation j exceeds the processing time 
of this delayed operation. This means that in any schedule constructed afterwards 
operation j can be moved forward without disturbing any other operation. To 
deal with this Martin and Shmoys introduce tentativily fixed operations. Such 
an operation is considered to be not fixed during the branching process. When 
the tentativily fixed operation can be scheduled without disturbing the rest of the 
schedule it is fixed. This can happen if delaying an operation leads to more idle 
time than the processing time of one of the formerly delayed operations. 

A second time oriented way of branching Martin and Shmoys uses so called 
a-tight sets. A set U ~ Orn is an a-tight set for a value T if 

R(U) + P(U) + Q(U) 2:: T- a. (38) 

An a-tight set is useful because if a schedule solves the feasibility problem the 
maximum amount of idle time between the operations of U equals a. This means 
that one operation of U starts within the interval [R(U), R(U) +a]. Branching 
is done by deciding which operation of U should start in this interval. For this 
operation k we can replace the time window by [R(U), R(U) +a] and we can update 
the time windows of the other operations because they cannot start before operation 
k is completed. A nice result is that the set U\ { k} is an a-tight set in the node where 
k is scheduled first. Martin [17] proves that the branches are mutually exclusive if 
a is smaller than the sum of the processing times of the two shortest operations of 
u. 

3.4.4 Comparison of the branching schemes 

The results of the lower bounds can be compared by the computational results. 
Comparing the branching schemes is more difficult because the algorithms differ 
not only in branching schemes but also in e.g. lower bounds. We also note that 
even if the different branching schemes are tested in branch and bound algorithms 
which only differ in branching schemes, it is questionable to draw conclusions from 
the results, because each branching scheme may be superior in certain situations. 

4 Branch and bound algorithms and results 

In this section we describe the different branch and bound algorithms proposed in 
the literature. The lower bound procedures and the branching schemes have been 
discussed in the previous section, so this section consists mostly of references to 
the previous section. In Section 4.2 the computational results of the algorithms are 
compared. The names of the algorithms introduced in Section 4.1 are used in the 
presentation. These names are not introduced in the original articles. 

4.1 Algorithms 

Since the first appearance of the job shop problem in the literature much effort 
has been devoted to create branch and bound algorithms. The breakthrough in 
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this area of combinatorial optimization came in 1989 with the algorithm of Carlier 
and Pinson [8], which solved the legendary 10 x 10 instance posed by Fisher and 
Thompson [12] . 

4.1.1 Carlier and Pinson 

earlier and Pinson [8] introduce in 1989 the possibility to direct disjunctive edges 
without branching and this makes their algorithm very efficient. Most of the suc
ceeding work is based on these results of earlier and Pinson as discussed in Section 
3.2.l. The algorithm (CP1) described in [8], uses the prEDD, the conditions to fix 
disjunctive edges, the rules to update the heads and tails of inputs and outputs, and 
a longest path algorithm to update the other heads and tails. The upper bound is 
a value taken from literature. Branching is done by directing a disjunctive edge one 
way or the other, selecting the edge as described in Section 3.4.l. 

In 1990 Carlier and Pinson [9] describe an improved algorithm ( CP2) which 
uses the ascendant sets to update heads and tails. The prEDD is used to give lower 
bounds and branching is done on sets of possible inputs and outputs. The upper 
bound is taken from the literature and is reported in the table of results in their 
article. 

An improvement of Carlier and Pinson of their O(n2 ) algorithm for updating 
heads and tails leads to an O(n log n) algorithm described in 1994 [10]. The branch 
and bound algorithm ( CP3) described in the same article uses this new algorithm 
and the branching scheme based on ascendant sets. earlier and Pinson describe also 
an algorithm (GP 4) that uses the global procedures. They note that the implemen
tation is quite naive, due to the fact that the global algorithm is performed once 
per operation at each level of the search tree in the order of decreasing processing 
times. 

4.1.2 Applegate and Cook 

Although Applegate and Cook [2] gave a nice analysis for a cutting plane lower 
bound, they use the prEDD in their algorithm (AC). The upper bound they use 
is based on the work of Adams, Balas, and Zawack [1]. Branching is done on a 
disjunctive edge in the same way as in CP1. The rest of the algorithm is based 
on the conditions to direct disjunctive edges derived by Carlier and Pinson. Before 
the branch and bound algorithm starts, a heuristic is used to determine an initial 
upper bound. This upper bound is improved by applying the conditions for directing 
disjunctive edges to a subset of machines. On the other machines the order of the 
operations is considered to be fixed. The improvement algorithm is run two times. 
In the first pass the t machines with the highest values of the preemptive one
machine schedules are fixed, in the second pass the t machines with the lowest 
values. The number t of fixed machines is an input parameter. With this improved 
upper bound the actual branch and bound starts in order to reach the optimal 
solution or to prove that the solution found after the preprocessing steps is optimal. 
They use the improved upper bound in the procedures to direct disjunctive edges. 

4.1.3 Brucker et al. 

Brucker, Jurisch, and Sievers [6] use the branching scheme based on the block 
approach in their branch and bound algorithm (BJS). Furthermore they describe 
an algorithm to update heads and tails and to direct disjunctive edges based on the 
one described by earlier and Pinson [9]. The main lower bound is the prEDD, but 
some other combinatorial lower bounds are used during the determination of the sets 
of before-candidates and after-candidates of a block and during the computation of 
heads and tails . The upper bound is based on a priority dispatching rule. 
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MTlO LA16 LA17 ABZ5 ABZ6 
CPU nodes CPU nodes CPU nodes CPU nodes CPU nodes 

CP2 253 4336 12 197 11 111 - - - -
CP3 135 3122 9 45 10 53 - - - -
CP4 450 37 55 2 100 12 - - - -
BJS 1138 4242 58 252 15 63 508 2146 31 135 
BJ Kl 1091 4242 56 252 14 63 475 2146 30 135 
BJK2 1038 3631 64 255 14 55 508 1936 31 125 
AC 372 16055 - - - - 952 57848 91 1269 

Table 4: Algorithms: computation times and number of nodes in the search tree 
for the algorithms based on the disjunctive graph. 

Brucker, Jurisch, and Kramer [5] improve the algorithm of Carlier and Pinson [9] 
to direct disjunctive edges. They describe an O(max{ n log n, f}) algorithm that re
sults in the same directed edges, where f is the number of disjunctive edges directed 
in a loop. They also present an O(n2

) algorithm to check the 3-set conditions. Both 
algorithms are tested in the branch and bound algorithm of Brucker, Jurisch, and 
Sievers [6] by substituting the new algorithms for the algorithm of Carlier and Pin
son. We will use BJK1 and BJK2 to refer to these algorithms, where BJK2 uses 
the 3-set conditions. 

4.1.4 Martin and Shmoys 

Martin and Shmoys [17, 18] introduce different algorithms based on the time window 
lower bounds and the time oriented branching rules. The first algorithm (Ma1) uses 
double shave to reduce the time windows and applies a branch and bound procedure 
with iterated Carlier-Pinson as a lower bound and with branching on the next 
available operation. The second algorithm (Ma2) starts immediately with branch 
and bound, without the preprocessing of the time window bounds, and uses C-P 
shave as a lower bound and the next available operation branching scheme. The 
third branch and bound algorithm (Ma3) also uses C-P shave as lower bounding 
procedure but branches on a:-tight sets. 

4.1.5 Perregaard and Clausen 

Perregaard and Clausen [19] describe a parallel implementation of branch and bound 
algorithms for the job shop problem. These algorithms are based on the results of 
Carlier and Pinson and Brucker et al. Different branching rules and different parallel 
settings are tested. They distinguish between computing different nodes in parallel 
and distributing the computational efforts of one node. In the last case several 
one-machine relaxations are considered in parallel to check for directing disjunctive 
edges. We will not discuss the algorithms in detail, but give some results in the next 
section to show that a parallel implementation can be used to solve larger instances. 

4.2 Computational results 

In this section we compare the algorithms. First we discuss the results of the branch 
and bound algorithms based on the disjunctive graph formulation. The algorithms 
of Carlier and Pinson, Brucker et al., and Applegate and Cook belong to this group. 
For these algorithms we also compare the number of nodes in the search-tree. Later 
we show that a parallel implementation of the disjunctive graph algorithms gives 
promising results and we compare the results of the disjunctive graph algorithms 
to the time oriented algorithms of Martin and Shmoys. 
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LA22 LA23 LA30 LA36 
CPU nodes CPU nodes CPU nodes CPU nodes 

CP2 594 5882 13 70 174 125 7136 4416 
CP3 475 4912 12 75 135 102 6201 3910 
CP4 4732 73 1081 14 1100 22 3583 23 
BJS 6700 10524 3451 6616 239 368 113419 129706 
BJKl 6530 10524 3223 6616 229 368 108896 129706 
BJK2 6570 8404 3776 6625 174 255 109407 112466 

Table 5: Algorithms: computation times and number of nodes in the search tree 
for some larger problems. 

In Table 4 the algorithms based on the disjunctive graph are compared for some 
10 x 10 instances. The problems are respectively the 10 x 10 instance of Fisher 
and Thompson [12], Problems 16 and 17 of Lawrence [16], and Problems 5 and 6 of 
Table 1 of Adams, Balas, and Zawack [1]. In the table no results are reported for 
the first algorithm of Carli er and Pinson (GP 1), because for only one of these test 
instances results are presented, the 10 x 10 instance of Fisher and Thompson. The 
results for this problem give an indication of the compuational results of the first 
algorithm of Carlier and Pinson. The search tree consisted of 22021 nodes and the 
total computation time was 17982 seconds on a PRIME 2655. 

In Table 5 we give some supplementary results for larger problems, all posed 
by Lawrence [16]. The problems are respectively two 10 x 15 instances, a 10 x 20 
instance, and a 15 x 15 instance, where 10 x 15 means 10 machines and 15 jobs. 

The number of nodes in the search tree reduces when more conditions to direct 
disjunctive edges are used. A comparison of the number of nodes of the algorithm 
with the global operations (GP 4) to the number of nodes of the same algorithm 
without the global operations ( GP3) confirms this. Also a comparison of the two 
algorithms of Brucker, Jurisch, and Kramer supports this statement. Furthermore 
the results show that a reduction of the number of nodes does not automatically 
implies less computation time. 

Drawing conclusions about the algorithms in a fair way is very hard. It is obvious 
that proclaiming one algorithm to be better than the others is unfair, because the 
computation times are on different systems and for each test instance the algorithm 
with smallest computation time can be different. We see for example that the global 
operations do not work well on the easy instances, like LAl 7 but very well on the 
harder (e.g. LA36). 

Perregaard and Clausen [19] note that a way to look for a better chance to 
solving larger job shop scheduling problems is to use faster hardware. They modify 
some branch and bound algorithms of Carlier and Pinson and of Brucker et al. to 
run in a parallel setting. The computational results are given to show that a parallel 
implementation is worth the effort, especially for the more difficult problems. In 
Table 6 the computational results of the implementation of Perregaard and Clausen 
are given for a sequential (one processor) setting and two multiprocessor settings. 
The computation time is reported as well as the speed-up of the multiprocessor 
settings in comparison to the one processor situation. 

Besides the algorithms based on the disjunctive graph formulation we discussed 
the time-oriented algorithms of Martin and Shmoys [17, 18]. We present some of 
their results and compare these to the other results in Table 7. 

If we compare the results of the three algorithms of Martin and Shmoys, we 
see that the first algorithm solves more problems than the second, but for the 
easyinstances the compuatation times are larger. The large running times of M al 
are mainly caused by the preprocessing. The double shave algorithm takes most of 
the computation time. The third algorithms seems to be the most efficient ,since it 

23 



1 processor 8 processors 16 processors 
problem time time speed-up time speed-up 
MTlO 265.6 72.3 3.7 57.9 4.6 
LA16 31.2 5.2 6.0 4.7 6.6 
LA17 16.9 3.3 5.1 3.2 5.3 
LA22 1221.9 261.5 4.7 181.3 6.7 
LA23 507.6 88.2 5.8 38.7 13.1 
LA30 1917.3 237.2 8.1 133.0 14.4 
LA36 1400.0 235.2 6.0 137.3 10.2 

Table 6: Parallel algorithms: computation times and speed-up 

problem MAl MA2 MA3 
MTlO 483 24 llOO 
LA19 252 20 455 
LA21 18953 - 3588 
LA24 2978 2325 4227 
LA25 4756 - 5258 
LA36 1533 10323 312 
LA37 - - 124 
LA38 132564 - -
LA39 587 210 210 
LA40 45951 507 1407 

Table 7: Results of the algorithms of Martin and Shmoys 

solved most of the problems. LA38 was not solved; due to the large gap between 
the one-machine bound and the optimal schedule nearly tight sets are hard to find. 

If we try to compare all the algorithms, we see that the fastest result on the 'easy' 
MTlO problem is given by the second algorithm of Martin and Shmoys. The larger 
15 x 15 instance of Lawrence (LA36) was solved with the smallest computation time 
by the parallel algorithm of Perregaard and Clausen, with the third algorithm of 
Martin and Shmoys as a good second. 

5 Conclusions and remarks 

In this section we give some conclusions and ideas for further investigation. In the 
previous section we mentioned that comparing the algorithms in a fair way is not 
easy. An algorithm can work well for some benchmark problems and badly for 
others. For this reason some authors try to divide the problems in different groups. 

Carlier and Pinson [8] distinguish problems with a null-gap between the prEDD 
and the optimal solution and problems with a strictly positive gap. Martin [17] 
divides the difficult job shop problems in two classes: problems with a tight one
machine lower bound where the optimality proof is difficult and problems with a 
poor one-machine bound. It is straightforward that some algorithms give good 
results for one group but perform badly on the problems of the other group. An 
example is the a-tight branching rule of Martin. For the first group of problems o:
tight sets can be found easily for the machine with highest one-machine relaxation. 
This rule works very well for these problems. On the other hand, extreme problems 
of the other group, like problem LA38, are not solvable by this rule. 

Carlier and Pinson [8] solved the famous problem of Fisher and Thompson for 
the first time. This was a breaktrough in job shop scheduling. In the discussion 
of the algorithms we saw that the work of Carlier and Pinson has been a basis for 
most of the later work in the area. Even the time oriented algorithms of Martin 
and Shmoys [17, 18] rely on their results. We can conclude that the breaktrough of 
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Carlier and Pinson has been (and still is) a great influence on the later work. 
Finally we will give some ideas for further investigation. These ideas are mostly 

based on conclusions and remarks of the authors the articles discussed in this survey. 
Brucker, Jurisch, and Kramer [5] discussed r-set conditions for r = 2 and r = 

3. We saw a reduction of the number of nodes in the search tree. Deriving 4-
set conditions and finding an efficient algorithm to use them probably leads to 
directing more disjunctive edges. For algorithms based on the disjunctive graph 
model new possibilities to direct disjunctive edges can be worth the effort. The 
results of the global algorithm of Carlier and Pinson [10] confirm this, however 
the algorithm presented is too slow. Ideas for improvement are heuristic rules to 
apply the global conditions only under special conditions and an improvement of 
the global algorithm. 

In the branch and bound algorithms heuristics play an important role. An 
example of the use of an heuristic is the determination of an upper bound. We have 
not discussed these heuristic algorithms in this survey but better heuristics will lead 
to more efficient branch and bound algorithms. 

Martin [17) concludes that his time-oriented approach was promising and sug
gests that further research in a combination of the purely combinatorial approaches 
and the time oriented approach can be worth the effort. 

In the introduction we mentioned the difficulty of the job shop problem. The 
10 x 10 instance of Fisher and Thompson stayed unsolved for over twenty years. 
Since this problem has been solved the algorithms have been improved and the 
computers are much faster but problems of 200 to 250 operations still seem to be 
very difficult. 
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