

A survey of optimization algorithms for job shop scheduling

Citation for published version (APA):
Aerts, J. J. D. (1997). A survey of optimization algorithms for job shop scheduling. (Memorandum COSOR; Vol.
9719). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d34378ed-cbd8-45a4-9e93-11925cf503d8

t(iJ
Eindhoven University
of Technology

Department of Mathematics
and Computing Sciences

Memorandum COSOR 97-19

A survey of optimization algorithms
for job shop scheduling

by

J. Aerts

Eindhoven, October 1997
The Netherlands

A survey of optimization algorithms
for job shop scheduling

Joep Aerts

Abstract

In this survey optimization methods for the job shop problem are dis
cussed. Most of the algorithms developed so far are branch and bound algo
rithms. Different ways of branching and computing lower bounds are main
issues in this overview. The computational efforts done in each node are also
discussed. In branch and bound algorithms finding a good balance between
the computational efforts in each node and the number of nodes investigated
is crucial for the efficiency of the algorithm. Results of several algorithms are
compared.

1 Introduction

In the job shop problem we have to schedule a set of jobs on a set of machines
subject to the following constraints. Each job consists of a number of operations,
which have to be processed in a given order, each on a specified machine. Each
machine can only handle one operation at a time. For all operations a processing
time is given. It is not allowed to interrupt the processing of an operation. Subject
to these constraints, we want to find a schedule for which the completion time of
the last operation is minimal. To state an instance of the decision variant of the
problem, we also introduce an integer T. In the job shop feasibility problem, we
are trying to determine if there exists a schedule which is finished at time T.

Although easily stated, the job shop problem turns out to be one of the hardest
problems in the area of combinatorial optimization. This is illustrated by the fact
that a classical benchmark problem of 10 jobs and 10 machines remained unsolved
for more than twenty years. It was posed in 1963 by Fisher and Thompson [12] and
solved by Carlier and Pinson in 1986 [8]. The job shop problem was proven NP-hard
in the strong sense by Garey, Johnson, and Sethi (14]. Some very special cases of
the problem can be solved in polynomial time, but their immediate generalizations
are NP-hard. These results are summarized in Table 1 [21], where m is the number
of machines, n the number of jobs, l(j) the number of operations of job j and p(i)
the processing time of operation i.

The paper is structured as follows. In Section 2 several models for the job shop
problem are introduced. Section 3 describes the lower bounds, improvements on
the lower bounds, methods to reduce the number of nodes in the search tree, and
several branching schemes. Based on the information of Section 3, the branch and
bound algorithms proposed in literature are discussed in Section 4. Section 4 also
compares the results of the algorithms and Section 5 gives our conclusions and
remarks.

1

solvable in polynomial time NP-hard (*in the strong sense)
(la) m = 2, all l(j) :::; 2 (lb) m = 2, all l(j):::; 3

m = 3, all l(j) :::; 2
(2a) m = 2, all p(i) = 1 (2b)*m = 2, all p(i) :::; 2

*m = 3, all p(i) = 1
(3a) n = 2 (3b) n=3
(4a) length::; 3 (4b)*length::; 4

Table 1: The complexity of job shop scheduling

2 Definitions and Notation

In this section we introduce several formal descriptions for the job shop problem. We
present a disjunctive programming model and a disjunctive graph representation,
which have been the basis for a large group of algorithms. Also the mixed-integer
programming formulation used by Applegate and Cook [2] is introduced. Other
possibilities we give for modeling the job shop problem are a packing formulation [17,
18] and the use of time windows [5, 17, 18].

An instance of the job shop problem consists of a set 0 of operations, a set
M of m machines and a set :J of n jobs. For the feasibility problem we also need
to introduce a time T. Each operation j E 0 has a processing time p(j) E JN+,
a machine M(j) E M on which the operation has to be processed, and a job
J(j) E :J to which it belongs. On the set of operations a set A of precedence
relations is defined in the following way: (i,j) E A if and only if J(i) = J(j) and
operation i is the immediate predecessor of j. In a job each operation has exactly
one predecessor and one successor, except for the first and the last operation of the
job.

We can now define a feasible schedule by a function s : 0 --7 JN which assigns a
starting time s(j) to each operation j E 0 satisfying the following constraints:

VjEO

Vi,jEO, (i,j)EA

'rfi,jEO, i-:/-j, M(i)=M(j)

s(j) ~ O;

s(i) + p(i) :::; s(j);
s(i) + p(i) :=:; s(j) V s(j) + p(j) :=:; s(i).

(1)

(2)

(3)

The constraints (3) make sure that a machine cannot process two operations at the
same time. Due to the form of these constraints we call this problem a disjunctive
programming problem. Furthermore we define S as the set of feasible solutions.
Among the feasible solutions we want to find the schedule with minimal makespan.
Using the starting times we can define the objective function:

min (iµax s(j) + p(j)) .
sES iEO

(4)

A related way to model the job shop problem is by means of a disjunctive graph.
This model is due to Roy and Sussmann. We define a vertex for each operation.
The set A of precedence relations now corresponds to a set of arcs, which make
sure that the operations of each job are processed in the correct order. Between
all the operations which have to be processed on the same machine, a clique of
disjunctive edges is formed. A disjunctive edge between i and j indicates that
the two operations cannot be processed at the same time, but that no precedence
relation between these operations has been set so far. Finally we give all vertices
a weight equal to their processing times. An example is given in Figure 1 where
operation 2,3 represents the operation of job 2 to be processed on machine 3. The
italic numbers at the bottom of the vertices represent the weights.

2

1,1 1------3~ 1,2 1------3~ 1,3
2 3 3

' ' '

;
; ,

; ; I

,,,.-,,,,......,,,_ - -I~

I
I

I

I
I

' ' ' ' ' ' I
I

2,2 I--___,..,...._'_;~ 2,3 1-'-----3...i 2,1
2 /, I I I

I \ ' '

I

I 11 ', ' ,. "'_, ,'

I I \ '"' I
I I "' I
I I ,

~----;------;;:;;.~'©,/

Figure 1: A disjunctive graph representation of a problem with 3 jobs and 3 ma
chines. The dotted lines represent the disjunctive edges.

A feasible schedule corresponds to an ordering of the operations on each ma
chine in such a way that no cycles occur. In the graph this is equivalent to an
acyclic orientation of the disjunctive edges. A directed edge (arc) corresponds to
a precedence relation between the two operations. So we distinguish two kinds of
precedence relations in the graph, the elements of A and the directed disjunctive
edges. A solution is feasible if all the disjunctive edges are directed and the resulting
directed graph contains no cycle. The length of a longest path in the graph is the
value of the schedule. The work of Carlier and Pinson [8, 9, 10], a part of the work
of Applegate and Cook [2) , and the algorithms of Brucker et al. [5, 6) are based on
this disjunctive graph model. These algorithms use one or more disjunctive edges
to branch on by directing them one way or the other. Each node in the branching
tree of these branch and bound methods can be represented by a graph. In this
graph the elements of A and the directed edges are the arcs. The edges which are
not directed are still represented by disjunctive edges.

The disjunctive programming formulation given above can be turned into a
mixed integer problem. We need one binary variable Y;3 for every pair of operations
{ i, j} with M (i) = M (j) and define Yi3 to be 1 if operation i is scheduled before
operation j and 0 otherwise. Instead of the disjunctive constraints (3) we can now
use the following constraints to make sure that there is only one job at a time on
each machine:

vi,jEO, i#j, M(i)=M(j) s(i) ~ s(j) + p(j) - K . Y,;3
s(j) ~ s(i) + p(i) - K · (1- Y,;j),

(5)

where K is a large integer. Applegate and Cook [2] use both the disjunctive and
the mixed integer formulation for their cutting plane procedures.

Martin and Shmoys [17, 18] introduce a lower bound based on a packing model.
The packing formulation is a model for the job shop feasibility problem. To state it
we define a job schedule to be an assignment of starting times to the operations of
one job such that no operation starts before the ending of the immediate predecessor
and such that the total job is finished by time T. With the definition of job schedules
we can state the feasibility problem in the following way: does there exist a set of
job schedules, one for each job, such that no two schedules require the same machine
at the same time?

Let Fi be the set of all job schedules for a job j E .J and let 'Y(a, i, t) E {O, 1}
indicate whether job schedule a requires machine i at time t. Let Xjcr be a 0-1
decision variable that indicates if job j is scheduled according to job schedule a
and let ,\ be the maximum number of jobs concurrently on any machine. Then the

3

objective is to minimize ,\ subject to:

L Xju = 1; (6)
uE:F;

'efiEM, t=l, ... ,T L L 'Y(a, i, t)Xju ~ ,\; (7)
jE.:T uE:F;

Xju E {0, 1 }. (8)

We have a positive answer to the job shop feasibility problem with value T if and
only if the optimal value for ,\ is l.

The last model for the job shop problem we discuss is based on a time ori
ented approach, and uses time windows. Brucker, Jurisch, and Kramer [5] use the
time windows to derive conditions for directing disjunctive edges and Martin and
Shmoys (17, 18] develop complete algorithms based on these ideas. A time interval
is constructed for each operation in which the operation has to be processed or has
to start, depending on the definitions of the bounds. These bounds are determined
by using the information of an upper bound, predecessors, and successors. Two
possible descriptions of the time windows are given in Section 3.2.

3 Lower bounds and branching schemes

In this section we describe the lower bounds, the computational efforts in each node
of the search tree, and the branching rules of the algorithms for solving the job shop
problem to optimality. We give different approaches to calculate lower bounds in
Section 3.1. Section 3.2 discusses iterative improvements of lower bounds and the
computational efforts in the nodes. Section 3.3 compares the results of the lower
bounds and Section 3.4 deals with the branching rules used by the algorithms.
The branch and bound algorithms also use upper bounds. We will not discuss
heuristics to get the upper bounds but refer to Vaessens, Aarts, and Lenstra [21]. In
Section 4, the algorithms proposed in literature will be explained using the contents
of Section 3.

3.1 Lower Bounds

3.1.1 Direct lower bounds

The most straightforward lower bounds are the machine lower bound and the job
lower bound. The first one is derived by computing the sum of all the operations
which have to be processed on one machine and then taking the maximum of these
sums over all machines:

max (L p(i)).
mEM

iEO;M(i)=m

(9)

The second one is just the maximum total processing time of the jobs:

~a;: (I: p(i)) .
J iEO;J(i)=j

(10)

As expected these lower bounds perform badly in most situations.

4

3.1.2 One-machine relaxation

The lower bound earlier and Pinson (8] used in their algorithm, which solved the
legendary Fisher and Thompson 10 x 10 problem, is based on Jackson's preemp
tive schedule for the one-machine head-body-tail problem. Relaxing the capacity
constraint of all but one machine gives a problem equivalent to the one-machine
problem with release dates (heads) and delivery times (tails). In the graph repre
sentation we can see this relaxation as dropping all the disjunctive edges between
the operations of the other machines. This means that we take only the arcs of A,
the directed edges, and the disjunctive edges of the machine we are considering into
account.

For a machine m define Om = {i E CJ I M(i) = m}. Furthermore we define the
following quantities for each j E Om:

• r(j): the head of operation j, defined as the time needed for the processing of
the operations preceding j, taking the arcs of A and the directed edges into
account;

• q(j): the tail of operation j, defined as the time needed for the processing of
the operations succeeding j, taking the arcs of A and the directed edges into
account.

Furthermore we define for S ~ Orn, R(S) =mini ES r(j), Q(S) = minjES q(j),
and P(S) = I::JES p(j). We will discuss different ways to compute heads and tails
in Section 3.2.

Unfortunately the one-machine head-body-tail problem is also NP-hard. An
extra relaxation is made by dropping the non-preemption constraint. Now we can
use Jackson's algorithm to construct a schedule. The preemptive earliest due date
(EDD) schedule is constructed in the following way:

• If there is an operation available schedule one with longest tail.

• Take release dates and completion times as decision points.

The value of the minimal preemptive schedule equals

max R(S) + P(S) + Q(S).
S~Om

(11)

Consider this relaxation for each machine. The maximum of the makespans of
the one-machine problems is a lower bound. We will call this bound the preemptive
EDD-bound (prEDD). In literature it is sometimes refered to as Jackson's preemp
tive schedule lower bound. We know that the right hand side of (12) is a lower
bound for the job shop problem and we can prove that the prEDD equals this lower
bound. So:

prEDD = max (max R(S) + P(S) + Q(s)) .
mEM S~Om

(12)

earlier [7] proves that this lower bound can be computed in O(mnlogn) time.
Instead of computing the preemptive schedule it is also possible to determine the
non-preemptive schedule. For small instances we can solve this NP-hard problem
in an acceptable amount of time. Unfortunately the results of this exact one
machine relaxation are not much better than the prEDD and more computation
time is needed because an instance of an NP-hard problem has to be solved for
each machine.

Although the prEDD is not very tight, it is widely used in the algorithms. The
most acceptable reason for this is the lack of a stronger lower bound, computable
in the same amount of time. There have been numerous efforts in trying to find

5

these 'better' lower bounds using other points of view. In the following sections we
will discuss the use of geometric methods by Brucker and Jurisch [4], the cutting
plane approach of Applegate and Cook [2], and the packing approach of Martin and
Shmoys [17, 18]. In this article we only mention the surrogate duality relaxation
investigated by Fisher, Lageweg, Lenstra and Rinnooy Kan [13] .

3.1.3 Two-job relaxation

The two-job bound of Brucker and Jurisch [4] is a method for calculating lower
bounds based on two-job relaxations. First we state the problem they solve to get a
lower bound. Consider operations ii, ... , ip and J1, ... ,jq with J(i1) = ... = J(ip)
and J(Ji) = ... = J(jq)- Between operations of different jobs precedence relations
may exist when two operations have to be processed on the same machine. These
precedence relations correspond to directed edges. A release date and a delivery
time can be computed for each operation in the same way as for the prEDD. Now
we want to find a schedule for these two jobs, satisfying the precedence constraints
and release dates which minimizes

. ~ax . { s(k) + p(k) + q(k)}.
k=i1, ... ,ini1311•·•1Jnj

(13)

Brucker and Jurisch determine their lower bound by solving this problem for every
pair of jobs. Their algorithm for every two-job relaxation is based on the graphical
method for solving job shop problems with two jobs. The method consists of finding
a shortest path in a two-dimensional space with obstacles. Each job corresponds to
an axis and an obstacle of size p(ik) x p(ji) is constructed if M(ik) = M(ji). The
left-bottom corner of this obstacle is placed on (r(ik),r(ji)).

Brucker and Jurisch extend this idea to a three-dimensional space. They are
able to take the precedence constraints and the heads and tails into account. For
an exact description of the model and their algorithm we refer to their article. In
some cases this bound can be useful. If the ratio of the number of jobs to the number
of machines is small, this lower bound procedure can produce a better result than
the prEDD. However, in most instances the bound produces worse values than the
prEDD. Some results are given in Section 3.3 and for additional results we refer
again to [4].

3.1.4 Cutting plane lower bound

In a cutting plane approach a relaxation of the original problem is solved to get
the first solution. Then adding inequalities which are valid for all feasible solutions
but not for the optimal solution of the relaxation makes the formulation stronger.
Applegate and Cook use both the disjunctive and the mixed integer formulation
as a basis for a cutting plane approach. In the first one they drop the disjunctive
constraints (3) and in the mixed integer formulation they use the LP-relaxation on
the Yii variables. We give here some examples of the cuts they use. For a complete
enumeration we refer to their article [2].

• Basic cuts
The basic cuts are based on a one-machine relaxation. Take a machine m and
a set S ~ Orn. Then it is straightforward to check that the following equation
is valid for all feasible schedules:

L p(j)s(j) ;:::: R(S)P(S) + L p(i)p(j), (14)
jES i,jES;i>j

where i > j means that every pair of operations is only used once. We can add
this inequality for each subset of Orn for each machine m. It is also possible to

6

add the reverse inequalities, by introducing completion times and considering
the schedules backwards.

• Two-job cuts
Let i,j E 0 with M(i) = M(j). In case r(j) < r(i)+p(i) and r(i) < r(j)+p(j)
the basic cut (S = { i, j}) can be sharpened:

(p(i) + r(i) - r(j)) · s(i) + (p(j) + r(j) - r(i)) · s(j) 2'.
p(i)p(j) + r(i)p(j) + r(j)p(i). (15)

We can show that this inequality is valid by substituting the earliest possible
starting times for i and j in (15) because the coefficients of the starting times
are positive by assumption. The earliest possible starting times, when we
assume without loss of generality that i precedes j, are r(i) for i and r(i) +p(i)
for j . For these values the inequality is valid, so the inequality is valid for all
feasible starting times. The reverse inequality can also be used. Applegate
and Cook give an extension of this rule for all subsets S ~Orn (clique cuts)
and an extension to more machines (two-job, two-machine cuts).

The above cuts do not use the mixed-integer formulation. Nevertheless they can
be used to strengthen the feasible region of the relaxation of the mixed-integer
formulation. The following cuts make use of the Yirvariables of the mixed integer
formulation, so they can only be used in the mixed-integer approach.

• Triangle cuts
For any three operations i, j, k that have to be processed on the same machine,
we can add the triangle inequality:

(16)

Since only one of the two possible variables Yi1 and YJi is defined, it may
be necessary to substitute 1 - Yi1 for YJi· This inequality is based on the
transitivity of the precedence relations: if i is scheduled before j and j is
scheduled before k, i has to be scheduled before k to get a feasible schedule.

• Half cuts
Let S ~Orn. For each operation j E S the inequality

s(j) 2'. R(S) + L Yi1P(i)
iES\{j}

(17)

is valid for all schedules, since operation j cannot start processing before all
the preceding jobs on machine M(j) have been completed.

The lower bounds of the cutting plane approaches are better than the values of the
prEDD [2]. However, the computation times are disappointing, only the results of
the relaxation of the disjunctive model with the basic cuts added seems promising.
The results are for some instances substantially better and the time gap is not that
big. Some computational results are given in Section 3.3. Applegate and Cook end
their discussion of the cutting plane approach with the remark that it remains a
research challenge to find classes of valid inequalities that will close the large gap
between the lower bound values and the optimal values of the scheduling problems
within a reasonable amount of time.

7

3.1.5 Fractional packing lower bound

Recently Martin and Shmoys (17, 18] proposed a lower bound based on a packing
formulation for the job shop feasibility problem: minimize >. subject to (6), (7),
and (8). The packing lower bound is based on the following statement: 'If we can
prove that the optimal value for >. is greater than 1 for a fixed T we can conclude
that T + 1 is a lower bound for the problem'. If we consider the LP-relaxation by
substituting Xju 2'.: 0 for (8) we can still use this result and determine the fractional
packing lower bound. We can show that the optimal value of the LP-relaxation is
greater than 1 by finding a feasible dual solution of value greater than 1. Martin
and Shmoys use the packing algorithm of Plotkin, Shmoys and Tardos [20] to find
such a solution. Fortunately this algorithm is insensitive to the number of variables
so the exponential number of decision variables is no problem.

To find the best lower bound, a bisection over T is needed, because the packing
model is a model for the job shop feasibility problem. The algorithm of Martin finds
the highest value of T for which a dual solution higher than 1 is found. The results
of the bound are very good, but one subroutine of the algorithm takes exponential
time. This subroutine is called several times for each T so the bound is not yet
of practical use because it is too computationally demanding. In Section 3.3 some
computational results are presented.

3.2 Improvement procedures for lower bounds

We can conclude that, in spite of all the efforts, the available lower bounds are not
very tight or not of practical use due to their computation times. This section deals
with procedures to improve lower bounds. These procedures can cause a reduction
of the size of the branching tree as well. We will discuss the adjustment of heads and
tails and methods to direct disjunctive edges in a one-machine relaxation (local).
Some related methods for the entire problem are explained (global methods) and
also shaving procedures for the time-window approach are mentioned.

3.2.1 Updating heads and tails

Examining the definition of heads and tails given when we introduced the prEDD,
one way to see the head of an operation is as being the longest path length to
the corresponding vertex in the disjunctive graph with the elements of A and the
directed edges as arcs. The tail corresponds to the longest path length from the
vertex. So the heads and tails can be computed by applying a longest path algorithm
to a directed graph.

Another approach to compute the heads and tails is described by Brucker, Ju
risch, and Sievers [6]. We first note that an operation cannot start before the ending
of the preceding operation in the same job. So if (i,j) EA, r(j) 2'.: r(i) + p(i). For
the second observation we consider an operation j and a set C of predecessors of j
with a disjunction between each two operations of C. So operation j cannot start
before all operations of C are finished. Combining these observations we get:

r(j) > max {r(i) + p(i), max (min r(k) + '°" p(k))},
- C 1 CC kEC' L..,

- . kEC'

(18)

where operation i is the predecessor of j in job J(j) . This relation can be used to
get a recursive formulation of all heads and a similar equation can be made for the
tails. Later we will describe an algorithm of Carlier and Pinson [9] which finds the
maximum value of (18).

When no disjunctive edges are directed, both procedures the head is defined as
the sum of the processing times of the preceding operations of the same job and the

8

t-----~1,3
3

' ' '
' , ,

.......... ,, ,' ,,. ;-c. ...

,'

' , ,
2,2 ,_ _ ___,' .,....._' ~;...{ 2,3 ,_-----3..i 2,1

' ' '
' ' \

\
I

2 > J I ,' ', ,,.,,. ,
' ' I , ' ' .I \ ,,,. I , ' , ' , ,

~--------..::;~·-©/

Figure 2a: Graph with no disjunctive edges directed

' '
3,2 1-----~ 3,1 1-----~ 3,3
4 2 3

Figure 2b: Resulting graph after directing an edge

' ' ' '

, , ,

' \
\

' '

Figure 2: A graph representation of the adjustment of heads and tails. The italic
numbers represent the processing times. The head of operation 2 of job 1 (operation
(1,2)) is 2 before the directing of any disjunctive edge. After directing the edge
between operations (3,2) and (1,2) we can update the head of operation (1,2) to 4
because the processing of operation (1,2) cannot start before the ending of operation
(3,2). We can update the head of operation (1,3) and the tail of operation (3,2) in
the same way.

tail as the sum of the processing times of the succeeding operations. If during the
process precedence relations between the operations of the same machine are fixed,
the values of the heads and tails can increase. This is shown in Figure 2 for the
disjunctive graph.

We know that an update of the head of operation i can be followed by an update
of the heads of the successors of i, and similarly an update of a tail by an update of
the tails of the predecessors. Applying these statements makes the first part of the
maximum in (18) negligible and apparently all branch and bound algorithms use
these results. When the heads and tails are updated, we can determine a new lower
bound, which will be at least as strong as the previous. The updates are especially
useful for lower bounds based on the heads and tails like the prEDD.

One way to direct disjunctive edges is by branching. The algorithms based on
the disjunctive graph branch by directing one or more disjunctive edges. Carlier
and Pinson [8] introduced conditions to direct disjunctive edges without branching:
select (j, i), where (j, i) represents the arc from operation j to i, by proving that
scheduling i before j leads to a schedule with a makespan larger than or equal to

9

the upper bound. We saw that a new directed edge can improve the lower bound.
It also reduces the size of the branching tree and can improve the upper bound
because more precedence relations have to be respected. These reasons show the
importance of the methods to increase the number of directed disjunctive edges.

In the conditions to direct edges without branching the heads and tails are used,
where higher values of heads and tails lead to more directed edges. So directing
disjunctive edges and updating heads and tails are strongly connected and often
considered iteratively until no changes occur. We will give an outline of the condi
tions and algorithms. The basic ideas are by earlier and Pinson [8]. They improve
their work in [9] and [10]. Brucker, Jurisch, and Kramer [5] and Brucker, Jurisch
and Sievers [6] extend the work of earlier and Pinson, and several other algorithms
also use the ideas and procedures.

Define a clique C to be a subset of Om with at least two elements in which every
two elements of C are in disjunction, so between the elements of C no precedence
relations are set. We call e E Can input of C if e is scheduled before all operations
of C \ { e }, and equivalently s E C an output ifs is scheduled after all operations
of C \ { s }. Further we define E ~ C as the set of all possible inputs of C, where
i E C is a possible input if there exists a schedule, with makespan smaller than the
current upper bound, in which i is scheduled before all elements of C. In the same
way we define S as the set of all possible outputs. Let E and S be subsets of Om
that contain E and S. These subsets E and S are introduced because it is often
very difficult to find the sets E and S. Initially, E and S are equal to C and the
following implications can be applied to remove elements from E and S. Let k E C
and UB be the value of the current upper bound (earlier and Pinson use a strict
greater-than sign. When only interested in improving schedules an equality is also
sufficient):

r(k) + LP(j) + min q(j) :2: UB => k ~ E;
jEC jES\{k}

(19)

min .r(j) + LP(j) + q(k) :2: UB => k ~ S.
jEE\{k} jEC

(20)

To see that (19) is valid assume that operation k is scheduled before the elements
of C. Under this assumption r(k) + L,jECp(j) +minjES\{k} q(j) is a lower bound.
So if this value already exceeds the the current upper bound, we know that there
does not exist an improving schedule with k scheduled before all elements of C and
k can be removed from E. In the same way we can show that (20) holds. We can
also state a stronger result to find inputs or outputs of C. If we find a clique C and
a k E C for which

min r(j) + LPi + min q(j) :2: UB
jEC\{k} . C jEC\{k}

JE

(21)

is valid, we can conclude that k is an input or an output of C. To see this, as
sume that k is not scheduled as the first or the last job of C. Now we know that
minjEC\{k} r(j) + L,iECPi + minjEC\{k} q(j) is a lower bound for the makespan.
So the only possibility to improve the current upper bound is to schedule k as the
first or the last operation of C.

If we have a k E C for which (19) and (21) are satisfied, we have found the
output of clique C. In the same way we have found the input if conditions (20)
and (21) are satisfied. If we have found k to be the output of a clique C we know
that all other elements of C have to be scheduled before k, so we can select (j, k)
for all j E C\{k}. Similarly we can select (k,j) for all j E C\{k} when k has

10

been determined to be an input of C. earlier and Pinson [8] derive a special result
applicable to each clique C of two operations i and j:

r(j) + p(j) + p(i) + q(i) 2:: UB::} select (i,j). (22)

Brucker, Jurisch, and Kramer [5] use another approach to direct the disjunctive
edges based on the ideas of Dewess [11]. Their first result can be derived directly
from (22) . We introduce some extra notation. Let d(j) be the due date of operation
j, defined by d(j) := U B - q(j) - 1. Then we can construct for operation j a time
window [r(j), d(j)] in which operation j has to be processed in order to construct a
solution better than the current one. If we combine the definition of d(j) and (22)
we get:

p(j) + p(i) > d(i) - r(j)::} select (i,j). (23)

The interpretation of (23) is that we cannot process i and j in the time interval
[r(j),d(i)]. We say that the arc (i,j) is selected by a 2-set condition where {i,j} is
the 2-element set. If we now assume that all the arcs which may be derived from
2-set conditions are selected, we can derive (i,j) from the 3-element set {i,j,k}
by showing that the sequences j, i, k and j, k, i and k,j, i cannot improve the up
per bound. In terms of time windows this means we must show that the three
jobs cannot be processed entirely in the time windows [r(j),d(k)],[r(j),d(i)], and
[r(k), d(i)]. This leads to the following 3-set condition to select (i,j):

d(k) - r(j) < s /\ d(i) - r(j) < s /\ d(i) - r(k) < s, (24)

where s := p(i) + p(j) + p(k). Brucker, Jurisch, and Kramer give some complemen
tary results for situations with more information about i, j, and k, and they give
an example of an arc (i,j) that can be derived by 3-set conditions and not by the
algorithms of earlier and Pinson. F\trthermore they construct an O(n2) algorithm
for deriving all relations using the 3-set conditions. To do this, they modify the
time windows using the information of the directed edges. If (i, j) has already been
selected, the values of r(j) and d(i) can be updated to max{r(j), r(i) + p(i)} and
min{ d(i), d(j) - p(j)} respectively. This modification can also be done in O(n2)

time and can be seen as being equivalent to the adjustment of heads and tails in
the work of earlier and Pinson.

As mentioned before, it is recommended to update the heads and tails of the
operations after directing disjunctive edges. This can be done by using a longest
path algorithm in the corresponding graph with all the directed disjunctive edges
being arcs. earlier and Pinson [8] use complementary results for the inputs and the
outputs found by conditions (19), (20), and (21). If i is the output of C we can
apply (18) to get:

r(i) := max (min r(j) + ~ p(j)) ,
C'~C\{i} jEC' jft:' (25)

and a similar result holds for inputs.
Carlier and Pinson [9] give an O(n2) algorithm to find the updates for all the

operations of one machine based on the results as stated in (18), (19), (20), and (21).
For the updating of heads they define a set C ~ Om to be an ascendant set of
operation k i. C, k E Om if

r(k) + p(k) + LPU) + I~J,igq(j) 2:: UB
jEC

3
(26)

and

~igr(j) + L Pi+ ~igq(j) + p(k) 2:: UB.
3 jEC 3

(27)

11

By (26) we know that operation k cannot be processed before all elements of C and
by (27) that operation k should be before or after all elements of C. So operation
k is an output of CU {k}. We can apply (25) to update the head of operation k.
For the best possible update by using ascendant sets we have to find a set c• which
satisfies:

• For at least one ascendant set C of k, c• ~ C,

• For all C' ~ C, where C is an ascendant set of k:

m~ r(j) + L p(j) ~ !llh~ r(j) + L p(j) '
iE jEC' iE jEC•

(28)

• r(k) < ~hi! r(j) + L p(j) ,
] jEC•

(29)

where the first condition implies that we can use the ascendant set update, the
second that it is the best update, and the third that we have a real update. When set
C* does not exist, we conclude that we cannot update the head of operation k using
the ascendant sets. Carlier and Pinson describe an O(n2) algorithm based on the
preemptive one-machine relaxation that finds r* (k), the best update by ascendant
sets for the head of operation k, and prove that this value equals miniEC• r(j) +
LjEC·p(j). Later they improve the algorithm to an O(nlogn) algorithm (10].

The difference between the use of inputs and outputs and the ascendant set
approach is the point of view. In the first one a clique of operations is selected
and the goal is to find inputs and outputs; in the second approach an operation is
selected for which the best update is determined by using cliques of operations.

3.2.2 Global improvements

The methods that are used to direct disjunctive edges and to update heads and tails
discussed so far are based on one-machine relaxations, so the problem is examined
from a local point of view. These methods check if it is possible to update heads or
tails in the one-machine subproblems and apply these updates to the complete job
shop problem. In contrast to these local methods, Carlier and Pinson [10] propose
to use the assumption that the tail of operation j can be updated in the entire
problem. In terms of starting times this assumption means that operation j is
required to start between r(j) and UB - q"(j) - 1 - p(j), where q*(j) is the new
value of the tail of operation j. If it is proved that this assumption results in a
schedule with a value higher than or equal to UB, we know that the tail cannot
take this value in any improving schedule, and so the head of operation j can be
updated. To prove that there is no improving schedule, Carlier and Pinson use the
preemptive one-machine relaxations.

Explicitly this means that we assume that q(j) can be updated to q*(j) and
apply this update and the consequences to all one-machine relaxations. We try
to show that at least one preemptive schedule exceeds or equals the current U B.
If this is shown we know that there is no improving schedule in which operation
j finishes after U B - q* (j) - 1 and so the head of operation j must be at least
UB - q*(j) - p(j).

In the same way an algorithm can be described for the assumption that operation
i precedes operation j. If we now show that at least one preemptive one-machine
problem has a makespan at least as large as the U B under this assumption, we
know that the disjunctive edge between i and j can be replaced by the arc (j, i).

Using these global methods we can construct a new lower bound. Initialize
L = U B and apply iteratively both global procedures. Continue until no edges can

12

be directed anymore for this value of L. Use the updated values of the heads and
tails to determine the prEDD. Decrease L and apply the procedure again. Repeat
this until the new pr EDD exceeds or equals the U B. Then we know that L + 1 is a
lower bound for the problem. The idea of doing a binary search between the upper
bound and the lower bound to find a better lower bound was already proposed
by Carlier and Pinson in 1990 [9], but the algorithm with global operations was
described in 1994 [10].

3.2.3 Shaving

The approach of Brucker, Jurisch, and Sievers [6] showed that the ideas of Carlier
and Pinson can be incorporated into a time window approach. The work of Martin
and Shmoys [17, 18] confirms this and contains full branch and bound algorithms
based on time windows. Here we discuss the bounding procedures, and the iter
ative improvements of these bounds . 'In Section 3.4 we will discuss the branching
schemes. The algorithms of Martin and Shmoys have been developed for the job
shop scheduling feasibility problem, so a value T is given. We define a feasible
schedule to be a schedule which is finished at time T.

Martin and Shmoys do not introduce a time window for the processing of an
operation but define an interval in which the operation is required to start. We
can transform the processing time window to a starting time interval by substract
ing the processing time of the corresponding operation from the right endpoint of
the window. So if we state the interval of Martin and Shmoys for operation j as
[u(j), v(j)] we initialize u(j) by the sum of the processing times of the preceding
operations of the same job and v(j) by T minus the sum of the processing times of
the succeeding operations minus the processing time of operation j.

Of course these intervals are closely related to the values of the heads and tails,
and the ideas of updating heads and tails can also be used in a time window ap
proach. Martin and Shmoys call it shaving and define it in the following way: if we
can find a value w(j) for which we can prove that there is no feasible schedule when
operation j is restricted to start in the interval [u(j), w(j)], we can update the time
window to [w(j) + 1, v(j)]. Due to the symmetry of the problem, it is sufficient to
discuss only the shaving of the start of the time window.

The major issue of the shaving procedures is to find the maximal value of w(j)
for which we can prove that there exists no feasible schedule when operation j is
required to start in the interval [u(j), w(j)], because we want to make the windows
as small as posible. In most procedures bisection search is used to find the maxi
mum portion to shave off. The shaving principles were introduced as preprocessing
procedures to strengthen the fractional packing lower bound, but a lower bound
can be derived directly from the shaving procedures as well. If it is shown that no
feasible schedule can be found satisfying the improved time windows for a value of
T, T + 1 is a lower bound for the problem. By doing a bisection search over T we
can construct a lower bound.

It turns out that using the shaving algorithms and a bisection search over T gives
much faster lower bounds comparable to the fractional packing lower bound. Martin
and Shmoys describe several lower bound algorithms based on shaving principles.
They divide these algorithms in two groups:

• shaving algorithms based on one-machine relaxations, comparable to the local
procedures of Carlier and Pinson;

• shaving algorithms based on the total job shop problem (job shop shave),
comparable to the global operations.

Given that the preemptive one-machine problem is solvable in polynomial time,
it is natural to use this relaxation to show that there is no feasible schedule when

13

operation j is restricted to start in the first part of its interval. The assumption
that operation j starts in the interval [u(j), w(j)] is in the notation of heads and
tails equivalent to the assumption that the value of the tail of operation j is T -
w(j)-p(j). So to find wj, i.e. the maximal update for the left endpoint of the time
window, we can focus on finding qj, the minimal value of the tail for which we can
prove there is no feasible preemptive schedule. Martin and Shmoys use the prEDD
to describe a way to find qj without doing a binary search.

We concentrate on operation j and machine m = M(j) and note that

5~~ R(S) + P(S) + Q(S) :::; T, (30)

because otherwise there would be no feasible schedule for T. We know that qj
exists, but it is not certain that it yields an useful update. The existence implies
that when we replace q(j) by qj, we can find a set S ~ Om \ {j} such that

r(S u {j}) + P(S) + p(j) + min{ Q(S), qj} > T. (31)

However we know that qj is the minimal value of q(j) for which we can use this
statement to prove that there is no feasible schedule. So if we substitute qj - 1 for
qj in (31) we get:

r(S U {j}) + P(S) + p(j) + min{Q(S),qj -1}:::; T. (32)

Combining these results gives Q(S) ~ qj and r(S U {j}) + P(S) + p(j) + qj = T + 1.
We can now derive the value of qj and the new left endpoint of the interval becomes:

wj + 1 = r(S U {j}) + P(S). (33)

Martin and Shmoys update the start and the end of the windows of the opera
tions on all the machines iteratively until no changes occur. When comparing this
procedure to the ascendant set algorithm of Carlier and Pinson [9] implemented in
a time window approach, it can be shown that the final time windows are exactly
the same in both procedures. The advantage of the algorithm based on the results
of Carli er and Pinson is that it runs faster. A lower bound is determined by running
the shaving algorithm based on the ascendant sets until no updates are found and
is called iterated Carlier-Pinson. Martin and Shmoys also gives their own imple
mentation based on the Carlier and Pinson updates. It has the advantage that it
runs faster when it is rerun on a slightly changed problem instance.

Instead of using the preemptive schedule, Martin and Shmoys also try to use
the exact one-machine schedule. Although known to be NP-hard this exact one
machine relaxation is solvable in an acceptable amount of computation time for most
instances. In spite of the additional computation time invested, the results are not
much better than those obtained using the preemptive one-machine relaxation.

Carlier and Pinson [10] introduced global operations to improve their lower
bounds. The same idea applied to a time window approach was proposed by Mar
tin and Shmoys [17, 18]. This is what they call job shop shave. They assume that
an operation must start in one part of the interval and use the one-machine shaving
algorithms on all the machines to show that this will not lead to a schedule fin
ished at time T. This gives the algorithms GP-shave and exact one-machine shave,
where they use the preemptive one-machine relaxation and the exact one-machine
relaxation in the shaving procedures respectively. Another job shop shave algorithm
uses CP-shave to show that the assumption of a smaller time window leads to an
infeasible schedule. Because this algorithm uses a job shop shaving algorithm on
two levels it is called double shave. This bound is tight in most cases but takes an
extremely long time to compute.

14

MTlO ABZ5 ABZ6
Optimal 930 1234 943
prEDD 808 1029 835
Two-job 655 859 742
Cutsl 823 (5.23} 1074 (5.61} 835 (4.87}
Cuts2 824 (305} 1076 (611} 837 (334}
Cuts3 827 (7552) 1077 (4971} 840 (5257)
Packing 859 (226) 1133 (234) 882 (249)

Table 2: Lower bounds: results of two-job relaxation, cutting planes and fractional
packing bound compared to prEDD.

3.2.4 Multiple machine relaxations

To improve on the one-machine relaxation, a natural step is to use k-machine relax
ations. Martin [17] gives some computational results for these bounds and remarks
that in a multiple machine relaxation, besides heads, tails, and precedence rela
tions, also lags occur between two operations. These lags consist of the sum of
the processing times of the operations to be processed between two operations.
Martin gives some computational results of applying shaving algorithms to 2- and
3-machine bounds but notes that CP-shave gave better results in less time, due to
the large computation times of the algorithm for solving the k-machine relaxation.
Martin does not describe his algorithm in detail. For theory about scheduling with
these delayed precedence constraints we refer to an article of Balas, Lenstra, and
Vazacopoulos [3], which discusses the one-machine problem with delayed precedence
constraints.

3.3 Results on lower bounds

In this section we give some computational results of the lower bounds we discussed.
As noted, most algorithms use the prEDD as a lower bound. This is a very fast
combinatorial lower bound. The gap between the prEDD and the optimal solutions
turns out to be quite large. As alternatives we discussed the two-job relaxation of
Brucker and Jurisch [4], a cutting plane approach of Applegate and Cook [2] and
the fractional packing lower bound of Martin and Shmoys [17, 18]. The problems
in the table are the well known 10 x 10 problem of Fisher and Thompson [12] and
two 10 x 10 instances posed by Adams, Balas, and Zawack [1], Problem 5 and 6
from their Table 1.

In the tables the numbers in italics are computation times in seconds. For the
prEDD the computation times are omitted. Applegate and Cook give a computation
time of 0.1 second for the prEDD. The computation times of the packing lower
bound do not include the bisection search time over T. The cutting plane lower
bounds are computed using an IBM 3081D computer and Martin uses a 90Mz
Pentium PC.

The three cutting plane approaches represent respectively the relaxation of the
disjunctive model with only the basic cuts, the same relaxation with all the cuts
described for this model, and the LP-relaxation of the mixed integer formulation
with all cuts given by Applegate and Cook. The three cutting plane lower bounds
as well as the packing lower bound of Martin turn out to be too slow

Brucker and Jurisch concluded that the two-job bound was only rewarding when
the ratio of the number of jobs to the number of machines is small. The results do
not support this conclusion. We refer to the results in the article of Brucker and
Jurisch [4) for more specific results. We only illustrated here that in the instances

15

Problem MTlO La36 Lal7 La29
Optimal 930 1268 784 1152
prEDD 808 1224 739 1114
global 868 1233 777
iterated CP 855 (0.01} 1233 (0.01} 1119 (0.01}
CP shave 919 (45) 1267 (75) 1119 (89}
double shave 930 (530} 1268 (1533} 1140 (183465)

Table 3: Lower bounds: results of the improvements on the lower bounds: global
operations and shaving.

of Table 2 the three approaches are not of practical use.
In the discussion of the lower bounds we described in detail the improvements

of the lower bounds, consisting of directing edges, adjustment of heads and tails,
and shaving procedures. We also discussed the use of these procedures on a global
level. Most of these improvement procedures can be seen as preprocessing or as
computational efforts in the nodes of the search tree by the fact that they reduce
the tree size. As in all branch and bound algorithms, the balance between the com
putation time in each node and the number of nodes to be investigated constitutes
an important trade-off. We also saw that these procedures can be used to determine
lower bounds by bisection search over T, the time input variable of the job shop
feasibility problem. Here we will give some results of lower bound applications of
these procedures in comparison to the prEDD. In Tabel 3 we report the results on
the 10 x 10 problem of Fisher and Thompson [12] and on a 15 x 15, a 10 x 10 and
a 10 x 20 instance of Lawrence [16].

In the first two instances the algorithm of Carlier and Pinson (10] can be com
pared to the aJgorithms of Martin and Shmoys (17, 18]. A comparison shows that
the -results of CP shave are better than the lower bound based on the global opera
tions implemented by Carlier and Pinson. The fourth problem is included because
it is the only test instance used by Martin for which double shave did not reach the
actual optimum.

In this table we see a trade-off between the time invested to reach the lower
bounds and the values of the lower bounds. Complexity analysis of Martin shows
that CP shave and double shave are both pseudo-polynomial in the sense that they
depend polynomially on the schedule length T. The global algorithm of Carlier and
Pinson and the double shave algorithm of Martin and Shmoys are so expensive that
they do not occur as lower bounding procedures in an algorithm. Both procedures
are only used in the root node of the search tree and can be seen as a way of
preprocessing. After application of these algorithms the heads and tails (or the
corresponding time windows) have such values that the size of the resulting search
tree is much reduced.

3.4 Branching schemes

We distinguish three different approaches when considering the branching schemes
of the algorithms for solving the job shop problem to optimality:

• branching on edges of the disjunctive graph representation;

• branching on the operations of the critical path based on a block theorem;

• time oriented branching based on time windows.

16

3.4.1 Disjunctive graph

When using the disjunctive graph representation of the problem it is straightforward
to branch on the direction of the disjunctive edges. Every node in the branching
tree corresponds to a graph with the elements of A and the directed disjunctive
edges as arcs. As said before a graph represents a feasible schedule if and only if
all the disjunctive edges have been directed and the graph contains no cycle. The
easiest way to use the disjunctive edges for branching is by directing an edge one
way or the other to create two new nodes (children). Carlier and Pinson [8] and
Applegate and Cook [2] use this branching rule. The only problem left is finding a
promising disjunctive edge to branch on.

Carlier and Pinson note that it is beneficial to have sets of possible inputs or
outputs (E and S) of low cardinality. If the cardinality of one of these sets is 1, an
input or an output is found, and it is possible to direct the disjunctive edges from
or to this vertex. A set with cardinality 0 leads to the truncation of the node. So
Carlier and Pinson pick a disjunctive edge out of the set E or S with the smallest
cardinality. It is easy to see that in both new nodes at least one of the sets E or S
contains fewer elements.

In order to determine the order on the machine with the highest initial one
machine relaxation first (this value equals prEDD), Carlier and Pinson consider
two operations of this machine. The operations are both elements of E or of S
depending on which set has smallest cardinality. When the order of the operations
on this machine has been defined, they take among all the other machines the set
E or S with smallest cardinality. When it is decided which set to use, the next step
is to find the elements to branch on. If E is the set to use for branching and LB is
the value of the makespan of the corresponding preemptive one-machine problem,
compute for every two elements i, j E E:

dij := max{O, r(i) + p(i) + p(j) + q(j) - LB};

dji := max{O, r(j) + p(j) + p(i) + q(i) - LB};

V{ij} := ldij - djil;

a{ij} := min{dij, dj;}.

(34)

(35)

(36)

We use the operations with maximal v{ii} and in case of ties the elements with
maximal a{ii}· The similarity between (22) and (34) explains why we want v{ii}
to be large. A large value of v{ij} means a large difference between r(i) + q(j)
and r(j) + q(i) and this implies that one of the directions of the disjunctive edge
is unlikely to lead to an improvement. So a fast truncation of one of the two new
nodes might be possible. For the same reason we take the operations with the
maximum value of a{ ij} in case of ties, because a large a{ij} makes sure that we
take the largest d;j among the ties. When the operations i and j are found, we
create the children by scheduling i before j to get the first new node and j before i
to get the second.

Applegate and Cook [2] use the ideas of Carlier and Pinson in their algorithm.
They also tested a greedy rule: try all possible choices of branching and take the
edge for which the minimum of the lower bounds (prEDD) in the children achieves
the maximum value. The implementation of the greedy rule gave promising re
sults, so Applegate and Cook concluded that branching on a disjunctive edge was
a good procedure and they implemented the scheme of Carlier and Pinson in their
algorithm.

Later Carlier and Pinson propose a new branching scheme [9]. In this new .
branching scheme more disjunctive edges are directed simultaneously to create a
new node. An advantage is that this leads to better improvements of the heads and
tails. A disadvantage is the faster growth of the search tree because branching may

17

node N J - C\(l/ 2 - C\{2}

Figure 3: Branching on a set of possible inputs gives I E I new nodes by using each
element of E as an input of K.

mean the creation of more than two nodes. Again they use a set E or S with smallest
cardinality for branching. When branching is the next step in the algorithm, they
determine the prEDD and find the operation for which C(j) +q(j) = prEDD, where
C(j) is the completion time of operation j in the corresponding preemptive one
machine schedule. They derive the set C ~ OM(j) with j E C, as being the clique
with maximal local lower bound and prove that this value equals C(j) + q(j), so:

C(j) + q(j) = ni.g r(i) + LPi + nig q(i).
iEG

(37)

This set C can be seen as a critical set in that it contains the elements which
determine the lower bound. Branching on this set probably allows us to use the
conditions for directing disjunctive edges efficiently and to truncate new nodes soon.
For this set C , determine E and S, and if I E I < I S I use the elements of E to
branch as shown in Figure 3. If I S I < I E I use each element of S as the output of
C to create the new nodes.

A third branching scheme of Carlier and Pinson [10] is based on the ideas of
ascendant sets. If we can find a set and an operation which satisfy one of the two
conditions of ascendant sets (i.e. (26),(27)), the extra information can be used by
branching on this pair. If we know that operation k cannot be an input of a set C,
we can create two new nodes, one in which k is scheduled after all elements of C and
the other with k scheduled after at least one operation of C. In this way the validity
of one of the conditions for ascendant sets can be used. If there are more pairs of
candidates, we take the pair (C,k) for which the value of the second condition of
ascendant sets (the one not satisfied) is closest to U B. If no pair satisfies one of
the conditions, the scheme takes a disjunctive edge to branch on as in Carlier and
Pinson [8].

3.4.2 Block approach

We already saw that a feasible solution of a job shop instance can be represented
by a directed graph. The value of the corresponding schedule can be found by
determining a longest path in the graph. This so-called critical path can be seen
as a sequence of blocks, where a block represents a sequence of operations. A
sequence of operations on the critical path is called a block if it contains at least
two operations and all the operations have to be processed on the same machine.
This block approach was introduced by Grabowski, Nowicki, and Zdrzalka [15] for
single-machine scheduling with release dates and due dates. An example of a critical
path divided into blocks is given in Figure 4.

Brucker, Jurisch, and Sievers [6] use the block approach for their branching
scheme. When they decide to branch, they use a heuristic to get a solution given
the set of already directed disjunctive edges, then determine a critical path and use

18

Figure 4: A critical path which contains three blocks. The horizontal arcs are
directed disjunctive edges and the diagonal arcs represent elements of A.

the blocks to branch. The branching principles are based on the following theorem
(for a proof see [6]):

Theorem 3.1 Let S be a schedule for a job shop instance with value v(S). Every
schedule S' with v(S') < v(S) has at least one operation of any block processed
before the first or after the last operation of the corresponding block.

After finding a solution with a heuristic we know that an improvement is only
possible by scheduling one of the internal operations of a block before the block or
after the block. Because the arcs between the blocks are elements of A and hence
given by the problem instance, any schedule with only permutations of the internal
operations of the blocks will contain the same blocks in the critical path. Permuting
the operations in the blocks without changing the first and the last one does not
change the value of the critical path, because the weights are in the vertices and
not in the arcs.

The branching procedure of Brucker, Jurisch, and Sievers exploits Theorem 3.1.
When the blocks of the critical path are determined (say, B1, ... , Bk), we can define
for each block the set of 'before' candidates as the set of operations of the block
minus the first operation and the set of 'after' candidates as the operations of the
block minus the last operation. Furthermore, we need a permutation on these sets
to know which set to use first. When the objective is to direct as many edges as
possible, placing the sets in order of non-increasing cardinality will lead to a good
permutation. Brucker, Jurisch and Sievers use this permutation with the extra rule
that a set of before candidates of a block is always the direct predecessor of the set
of after candidates of that block.

The elements in a block are sorted according to non-decreasing heads for be
fore candidates and according to non-decreasing tails for after candidates. When
decided which element to use for. branching, we can direct the edges between that
element and the other elements of the block in the new node. The information of the
preceding blocks in the permutation can lead to extra precedence relations. When
using block Bi for branching we can fix the first and last operations of the blocks
B 1 , ... , Bi-1 as being the original first and last operation, because the other pos
sibilities for the first and the last place of each preceding block has been inspected
in earlier nodes (a depth-first search is used). After creating a new node with these
precedence relations, a cycle check is needed to prevent creating infeasible schedules.

3.4.3 Time windows

The last group of branching rules does not use the disjunctive graph or the disjunc
tive edges in any way. These rules are time-oriented and developed by Martin and
Shmoys [17, 18] to be used in their time-oriented algorithms. Both branching rules

19

of Martin and Shmoys are based on starting time windows, so a window [u(j), v(j)]
is defined for each operation as in Section 3.2.3.

The first rule takes the operation with smallest left endpoint of its window and
decides to schedule or to delay it. So branching gives two new nodes, one where
the next available operation is scheduled and one where it is delayed. A delayed
operation is marked and can only be scheduled again after scheduling another op
eration the same machine, otherwise it would be possible to schedule an operation
after unnecessary idle time.

Another problem in this way of branching is the possiblity that the amount of
idle time scheduled after the release date of operation j exceeds the processing time
of this delayed operation. This means that in any schedule constructed afterwards
operation j can be moved forward without disturbing any other operation. To
deal with this Martin and Shmoys introduce tentativily fixed operations. Such
an operation is considered to be not fixed during the branching process. When
the tentativily fixed operation can be scheduled without disturbing the rest of the
schedule it is fixed. This can happen if delaying an operation leads to more idle
time than the processing time of one of the formerly delayed operations.

A second time oriented way of branching Martin and Shmoys uses so called
a-tight sets. A set U ~ Orn is an a-tight set for a value T if

R(U) + P(U) + Q(U) 2:: T- a. (38)

An a-tight set is useful because if a schedule solves the feasibility problem the
maximum amount of idle time between the operations of U equals a. This means
that one operation of U starts within the interval [R(U), R(U) +a]. Branching
is done by deciding which operation of U should start in this interval. For this
operation k we can replace the time window by [R(U), R(U) +a] and we can update
the time windows of the other operations because they cannot start before operation
k is completed. A nice result is that the set U\ { k} is an a-tight set in the node where
k is scheduled first. Martin [17] proves that the branches are mutually exclusive if
a is smaller than the sum of the processing times of the two shortest operations of
u.

3.4.4 Comparison of the branching schemes

The results of the lower bounds can be compared by the computational results.
Comparing the branching schemes is more difficult because the algorithms differ
not only in branching schemes but also in e.g. lower bounds. We also note that
even if the different branching schemes are tested in branch and bound algorithms
which only differ in branching schemes, it is questionable to draw conclusions from
the results, because each branching scheme may be superior in certain situations.

4 Branch and bound algorithms and results

In this section we describe the different branch and bound algorithms proposed in
the literature. The lower bound procedures and the branching schemes have been
discussed in the previous section, so this section consists mostly of references to
the previous section. In Section 4.2 the computational results of the algorithms are
compared. The names of the algorithms introduced in Section 4.1 are used in the
presentation. These names are not introduced in the original articles.

4.1 Algorithms

Since the first appearance of the job shop problem in the literature much effort
has been devoted to create branch and bound algorithms. The breakthrough in

20

this area of combinatorial optimization came in 1989 with the algorithm of Carlier
and Pinson [8], which solved the legendary 10 x 10 instance posed by Fisher and
Thompson [12] .

4.1.1 Carlier and Pinson

earlier and Pinson [8] introduce in 1989 the possibility to direct disjunctive edges
without branching and this makes their algorithm very efficient. Most of the suc
ceeding work is based on these results of earlier and Pinson as discussed in Section
3.2.l. The algorithm (CP1) described in [8], uses the prEDD, the conditions to fix
disjunctive edges, the rules to update the heads and tails of inputs and outputs, and
a longest path algorithm to update the other heads and tails. The upper bound is
a value taken from literature. Branching is done by directing a disjunctive edge one
way or the other, selecting the edge as described in Section 3.4.l.

In 1990 Carlier and Pinson [9] describe an improved algorithm (CP2) which
uses the ascendant sets to update heads and tails. The prEDD is used to give lower
bounds and branching is done on sets of possible inputs and outputs. The upper
bound is taken from the literature and is reported in the table of results in their
article.

An improvement of Carlier and Pinson of their O(n2) algorithm for updating
heads and tails leads to an O(n log n) algorithm described in 1994 [10]. The branch
and bound algorithm (CP3) described in the same article uses this new algorithm
and the branching scheme based on ascendant sets. earlier and Pinson describe also
an algorithm (GP 4) that uses the global procedures. They note that the implemen
tation is quite naive, due to the fact that the global algorithm is performed once
per operation at each level of the search tree in the order of decreasing processing
times.

4.1.2 Applegate and Cook

Although Applegate and Cook [2] gave a nice analysis for a cutting plane lower
bound, they use the prEDD in their algorithm (AC). The upper bound they use
is based on the work of Adams, Balas, and Zawack [1]. Branching is done on a
disjunctive edge in the same way as in CP1. The rest of the algorithm is based
on the conditions to direct disjunctive edges derived by Carlier and Pinson. Before
the branch and bound algorithm starts, a heuristic is used to determine an initial
upper bound. This upper bound is improved by applying the conditions for directing
disjunctive edges to a subset of machines. On the other machines the order of the
operations is considered to be fixed. The improvement algorithm is run two times.
In the first pass the t machines with the highest values of the preemptive one
machine schedules are fixed, in the second pass the t machines with the lowest
values. The number t of fixed machines is an input parameter. With this improved
upper bound the actual branch and bound starts in order to reach the optimal
solution or to prove that the solution found after the preprocessing steps is optimal.
They use the improved upper bound in the procedures to direct disjunctive edges.

4.1.3 Brucker et al.

Brucker, Jurisch, and Sievers [6] use the branching scheme based on the block
approach in their branch and bound algorithm (BJS). Furthermore they describe
an algorithm to update heads and tails and to direct disjunctive edges based on the
one described by earlier and Pinson [9]. The main lower bound is the prEDD, but
some other combinatorial lower bounds are used during the determination of the sets
of before-candidates and after-candidates of a block and during the computation of
heads and tails . The upper bound is based on a priority dispatching rule.

21

MTlO LA16 LA17 ABZ5 ABZ6
CPU nodes CPU nodes CPU nodes CPU nodes CPU nodes

CP2 253 4336 12 197 11 111 - - - -
CP3 135 3122 9 45 10 53 - - - -
CP4 450 37 55 2 100 12 - - - -
BJS 1138 4242 58 252 15 63 508 2146 31 135
BJ Kl 1091 4242 56 252 14 63 475 2146 30 135
BJK2 1038 3631 64 255 14 55 508 1936 31 125
AC 372 16055 - - - - 952 57848 91 1269

Table 4: Algorithms: computation times and number of nodes in the search tree
for the algorithms based on the disjunctive graph.

Brucker, Jurisch, and Kramer [5] improve the algorithm of Carlier and Pinson [9]
to direct disjunctive edges. They describe an O(max{ n log n, f}) algorithm that re
sults in the same directed edges, where f is the number of disjunctive edges directed
in a loop. They also present an O(n2

) algorithm to check the 3-set conditions. Both
algorithms are tested in the branch and bound algorithm of Brucker, Jurisch, and
Sievers [6] by substituting the new algorithms for the algorithm of Carlier and Pin
son. We will use BJK1 and BJK2 to refer to these algorithms, where BJK2 uses
the 3-set conditions.

4.1.4 Martin and Shmoys

Martin and Shmoys [17, 18] introduce different algorithms based on the time window
lower bounds and the time oriented branching rules. The first algorithm (Ma1) uses
double shave to reduce the time windows and applies a branch and bound procedure
with iterated Carlier-Pinson as a lower bound and with branching on the next
available operation. The second algorithm (Ma2) starts immediately with branch
and bound, without the preprocessing of the time window bounds, and uses C-P
shave as a lower bound and the next available operation branching scheme. The
third branch and bound algorithm (Ma3) also uses C-P shave as lower bounding
procedure but branches on a:-tight sets.

4.1.5 Perregaard and Clausen

Perregaard and Clausen [19] describe a parallel implementation of branch and bound
algorithms for the job shop problem. These algorithms are based on the results of
Carlier and Pinson and Brucker et al. Different branching rules and different parallel
settings are tested. They distinguish between computing different nodes in parallel
and distributing the computational efforts of one node. In the last case several
one-machine relaxations are considered in parallel to check for directing disjunctive
edges. We will not discuss the algorithms in detail, but give some results in the next
section to show that a parallel implementation can be used to solve larger instances.

4.2 Computational results

In this section we compare the algorithms. First we discuss the results of the branch
and bound algorithms based on the disjunctive graph formulation. The algorithms
of Carlier and Pinson, Brucker et al., and Applegate and Cook belong to this group.
For these algorithms we also compare the number of nodes in the search-tree. Later
we show that a parallel implementation of the disjunctive graph algorithms gives
promising results and we compare the results of the disjunctive graph algorithms
to the time oriented algorithms of Martin and Shmoys.

22

LA22 LA23 LA30 LA36
CPU nodes CPU nodes CPU nodes CPU nodes

CP2 594 5882 13 70 174 125 7136 4416
CP3 475 4912 12 75 135 102 6201 3910
CP4 4732 73 1081 14 1100 22 3583 23
BJS 6700 10524 3451 6616 239 368 113419 129706
BJKl 6530 10524 3223 6616 229 368 108896 129706
BJK2 6570 8404 3776 6625 174 255 109407 112466

Table 5: Algorithms: computation times and number of nodes in the search tree
for some larger problems.

In Table 4 the algorithms based on the disjunctive graph are compared for some
10 x 10 instances. The problems are respectively the 10 x 10 instance of Fisher
and Thompson [12], Problems 16 and 17 of Lawrence [16], and Problems 5 and 6 of
Table 1 of Adams, Balas, and Zawack [1]. In the table no results are reported for
the first algorithm of Carli er and Pinson (GP 1), because for only one of these test
instances results are presented, the 10 x 10 instance of Fisher and Thompson. The
results for this problem give an indication of the compuational results of the first
algorithm of Carlier and Pinson. The search tree consisted of 22021 nodes and the
total computation time was 17982 seconds on a PRIME 2655.

In Table 5 we give some supplementary results for larger problems, all posed
by Lawrence [16]. The problems are respectively two 10 x 15 instances, a 10 x 20
instance, and a 15 x 15 instance, where 10 x 15 means 10 machines and 15 jobs.

The number of nodes in the search tree reduces when more conditions to direct
disjunctive edges are used. A comparison of the number of nodes of the algorithm
with the global operations (GP 4) to the number of nodes of the same algorithm
without the global operations (GP3) confirms this. Also a comparison of the two
algorithms of Brucker, Jurisch, and Kramer supports this statement. Furthermore
the results show that a reduction of the number of nodes does not automatically
implies less computation time.

Drawing conclusions about the algorithms in a fair way is very hard. It is obvious
that proclaiming one algorithm to be better than the others is unfair, because the
computation times are on different systems and for each test instance the algorithm
with smallest computation time can be different. We see for example that the global
operations do not work well on the easy instances, like LAl 7 but very well on the
harder (e.g. LA36).

Perregaard and Clausen [19] note that a way to look for a better chance to
solving larger job shop scheduling problems is to use faster hardware. They modify
some branch and bound algorithms of Carlier and Pinson and of Brucker et al. to
run in a parallel setting. The computational results are given to show that a parallel
implementation is worth the effort, especially for the more difficult problems. In
Table 6 the computational results of the implementation of Perregaard and Clausen
are given for a sequential (one processor) setting and two multiprocessor settings.
The computation time is reported as well as the speed-up of the multiprocessor
settings in comparison to the one processor situation.

Besides the algorithms based on the disjunctive graph formulation we discussed
the time-oriented algorithms of Martin and Shmoys [17, 18]. We present some of
their results and compare these to the other results in Table 7.

If we compare the results of the three algorithms of Martin and Shmoys, we
see that the first algorithm solves more problems than the second, but for the
easyinstances the compuatation times are larger. The large running times of M al
are mainly caused by the preprocessing. The double shave algorithm takes most of
the computation time. The third algorithms seems to be the most efficient ,since it

23

1 processor 8 processors 16 processors
problem time time speed-up time speed-up
MTlO 265.6 72.3 3.7 57.9 4.6
LA16 31.2 5.2 6.0 4.7 6.6
LA17 16.9 3.3 5.1 3.2 5.3
LA22 1221.9 261.5 4.7 181.3 6.7
LA23 507.6 88.2 5.8 38.7 13.1
LA30 1917.3 237.2 8.1 133.0 14.4
LA36 1400.0 235.2 6.0 137.3 10.2

Table 6: Parallel algorithms: computation times and speed-up

problem MAl MA2 MA3
MTlO 483 24 llOO
LA19 252 20 455
LA21 18953 - 3588
LA24 2978 2325 4227
LA25 4756 - 5258
LA36 1533 10323 312
LA37 - - 124
LA38 132564 - -
LA39 587 210 210
LA40 45951 507 1407

Table 7: Results of the algorithms of Martin and Shmoys

solved most of the problems. LA38 was not solved; due to the large gap between
the one-machine bound and the optimal schedule nearly tight sets are hard to find.

If we try to compare all the algorithms, we see that the fastest result on the 'easy'
MTlO problem is given by the second algorithm of Martin and Shmoys. The larger
15 x 15 instance of Lawrence (LA36) was solved with the smallest computation time
by the parallel algorithm of Perregaard and Clausen, with the third algorithm of
Martin and Shmoys as a good second.

5 Conclusions and remarks

In this section we give some conclusions and ideas for further investigation. In the
previous section we mentioned that comparing the algorithms in a fair way is not
easy. An algorithm can work well for some benchmark problems and badly for
others. For this reason some authors try to divide the problems in different groups.

Carlier and Pinson [8] distinguish problems with a null-gap between the prEDD
and the optimal solution and problems with a strictly positive gap. Martin [17]
divides the difficult job shop problems in two classes: problems with a tight one
machine lower bound where the optimality proof is difficult and problems with a
poor one-machine bound. It is straightforward that some algorithms give good
results for one group but perform badly on the problems of the other group. An
example is the a-tight branching rule of Martin. For the first group of problems o:
tight sets can be found easily for the machine with highest one-machine relaxation.
This rule works very well for these problems. On the other hand, extreme problems
of the other group, like problem LA38, are not solvable by this rule.

Carlier and Pinson [8] solved the famous problem of Fisher and Thompson for
the first time. This was a breaktrough in job shop scheduling. In the discussion
of the algorithms we saw that the work of Carlier and Pinson has been a basis for
most of the later work in the area. Even the time oriented algorithms of Martin
and Shmoys [17, 18] rely on their results. We can conclude that the breaktrough of

24

Carlier and Pinson has been (and still is) a great influence on the later work.
Finally we will give some ideas for further investigation. These ideas are mostly

based on conclusions and remarks of the authors the articles discussed in this survey.
Brucker, Jurisch, and Kramer [5] discussed r-set conditions for r = 2 and r =

3. We saw a reduction of the number of nodes in the search tree. Deriving 4-
set conditions and finding an efficient algorithm to use them probably leads to
directing more disjunctive edges. For algorithms based on the disjunctive graph
model new possibilities to direct disjunctive edges can be worth the effort. The
results of the global algorithm of Carlier and Pinson [10] confirm this, however
the algorithm presented is too slow. Ideas for improvement are heuristic rules to
apply the global conditions only under special conditions and an improvement of
the global algorithm.

In the branch and bound algorithms heuristics play an important role. An
example of the use of an heuristic is the determination of an upper bound. We have
not discussed these heuristic algorithms in this survey but better heuristics will lead
to more efficient branch and bound algorithms.

Martin [17) concludes that his time-oriented approach was promising and sug
gests that further research in a combination of the purely combinatorial approaches
and the time oriented approach can be worth the effort.

In the introduction we mentioned the difficulty of the job shop problem. The
10 x 10 instance of Fisher and Thompson stayed unsolved for over twenty years.
Since this problem has been solved the algorithms have been improved and the
computers are much faster but problems of 200 to 250 operations still seem to be
very difficult.

Acknowledgements
I would like to acknowledge Professor Jan Karel Lenstra and Professor Jens
Clausen for supervising this project and Roy Willemen for his usefull com
ments and support. I would like to thank Paul Martin for providing informa
tion about his work.
The work is done in the algorithms group at the Department of Computer
Science of the Copenhagen University. I would like to thank my colleagues
at DIKU for my pleasant stay in Denmark. Special thanks to Jens, David,
Martin, Stefan, Ole, and Torben.

References

[1) J. Adams, E Balas, and D Zawack. The shifting bottleneck procedure for job
shop scheduling. Management Science, 34:391-401, 1988.

[2) D. Applegate and W. Cook. A computational study of the job shop scheduling
problem. ORSA Journal on Computing, 3:149-156, 1991.

[3) E Balas, J .K. Lenstra, and A. Vazacopoulos. The one-machine problem with
delayed precedence constraints and its use in job shop scheduling. Management
Science, 41:94-109, 1995.

[4) P. Brucker and B. Jurisch. A new lower bond for the job-shop scheduling
problem. European Journal of Operational Research, 64:156-167, 1993.

[5) P. Brucker, B. Jurisch, and A. Kramer. The job-shop problem and immediate
selection. Annals of Operations Research, 50:73-114, 1994.

[6) P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the
job-shop scheduling problem. Discrete Applied Mathematics, 49:107-127, 1994.

25

[7] J. Carlier. The one-machine sequencing problem. European Journal of Opera
tional Research, 11:42-47, 1982.

[8] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem.
Management Science, 35(2):164-176, 1989.

[9] J. Carlier and E. Pinson. A practical use of Jackson's preemptive schedule
for solving the job shop problem. Annals of Operations Research, 26:269-287,
1990.

[10] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop
problem. European Journal of Operational Research, 78:238-251, 1994.

[11] G. Dewess. An existence theorem for packing problems with implications for the
computation of optimal machine schedules. Optimization, 25:261-269, 1992.

[12] H. Fisher and G .L. Thompson. Probabilistic learning combinations of local job
shop scheduling rules. In J.F. Muth and G.L. Thompson, editors, Industrial
Scheduling, pages 225-251. Prentice Hall, 1963.

[13] M.L. Fisher, B.J. Lageweg, J.K. Lenstra, and A.H.G. Rinnooy Kan. Surrogate
duality relaxations for job shop scheduling. Discrete Applied Mathematics,
5:65-75, 1983.

[14] M.R. Garey, D.S. Johnson, and R. Sethi. The complexity of flow shop and job
shop scheduling. Mathematics of Operations Research, 1:117-129, 1976.

[15] J. Grabowski, E. Nowicki, and S. Zdrzalka. A block approach for single machine
scheduling with release dates and due dates . European Journal of Operational
Research, 26:278-285, 1986.

[16] S. Lawrence. Resource constrained project scheduling: an experimental inves
tigation of heuristic scheduling techniques (supplement). Technical report,
Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, PA, 1984.

[17] P. Martin. A time-oriented approach to computing optimal schedules for the
job-shop scheduling problem. PhD thesis, Cornell University, Ithaca, N.Y.,
U.S.A., 1996.

(18] P. Martin and D.B. Shmoys. A new approach to computing optimal schedules
for the job shop scheduling problem. In W.H. Curnigham, S.T. McCormick, and
M. Queyranne, editors, Lecture Notes in Computer Science; Integer Program
ming and Combinatorial optimization, 1996. Proceedings fifth international
IPCO conference, Vancouver, Canada, June 1996.

[19] M. Perregaard and J. Clausen. Parallel branch-and-bound methods for the
job-shop scheduling problem. To appear in Annals of Operations Research.

(20] S.A. Plotkin, D.B. Shmoys, and E. Tardos. Fast approximation agorithms for
fractional packing and covering problems. Mathematics of Operations Research,
20:257-301, 1995.

[21] R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by local
search. INFORMS Journal on Computing, 8:302-317, 1996.

26

