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Several kind of new numericalmethods for stationaryNavier�Stokes equations based on the
virtue of Inertial Manifold and Approximate Inertial Manifold� which we call them inertial algorithms
in this paper� together with their error estimations are presented� All these algorithms are constructed
under an uniform frame� that is to construct some kind of new projections for the Sobolev space in
which the true solution is sought� It is shown that the proposed inertial algorithms can greatly improve
the convergence rate of the standard Galerkin approximate solution� And we also give some numerical
examples to verify our results�

�� Introduction

Even though the computing power improved rapidly in last decade� constructing higher accurate
and more e�ective algorithms for numerically solving partial di�erential equations� especially for
numerically solving the Navier�Stokes equations� still o�er many challenges� Many authors derived
new techniques and algorithms in the past several years� for example� Q� Lin���� B� Garc	ia�Achilla�
J� Novo and E� Titi�
�� W� Layton and W� Lenferink���� J� Xu��
������ used superconvergent �nite
element methods� two�level �nite element methods and nonlinear Galerkin methods� etc�

In this paper� we are interested in applying the original ideal of the inertial manifold �
� and
approximate inertial manifold ��� to construct some kind of higher order �nite spectral algorithms
for the stationary Navier�Stokes equations� which we will call them inertial algorithms in the
remainder of this paper� Although these algorithms derived here are designed for the stationary
Navier�Stokes equations� they can be also applied to the nonstationary Navier�Stokes equations
with or without modi�cation which we will investigate elsewhere�

Assume H is a suitable Sobolev space� Hm a �nite dimensional subspace of H and u and um the
true solution and the standard spectral Galerkin approximation of the stationary Navier�Stokes
equations in H and Hm respectively� Our main goal is to construct some kind of new projection
Qm which maps any function of H onto Hm� Then for any vector w in H� we have the following
decomposition

w � Qmw � �w� �w � H�

where �w � �H and �H is the orthogonal complement of Hm with respect to some scalar product�
We shall identify Qmw and �w as the lower frequency and higher frequency components of w�
Especially�

u � Qmu � �u�

The crucial point in the construction ofQm is to ensure Qmu to be closer to um than u� For further
discussion� we denote by Pm the standard L�� orthogonal projection from H onto Hm further
on� Based upon the idea of inertial manifold and approximate inertial manifold� there should
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exist interactive or at least some approximate interactive relations between the lower and higher
frequency components of the true solution� Then we want to construct some �nite dimensional
mapping � � Hm � �H� which in fact is a re�ection of this kind of relations� such that ��um� can
generate a suitable approximation of �u with approximate order at least equal to that of Qmu�um�
If it succeeds� um � ��um� will be a higher order approximation of u than um with

ku� �um � ��um��k � kQmu� umk� k�u���um�k�

The paper is arranged as follows� In section �� we consider the stationary Navier�Stokes equa�
tions and its spectral Galerkin approximation� In section �� three kind of projections from H onto
Hm are constructed and studied� In section 
� we derive the estimations of Qmu�um respectively
for various projections and then give the construction of corresponding �nite dimensional mapping
�� In section 
� three kinds of inertial algorithms based on the projections and the associated �nite
dimensional mappings are presented together with their convergence properties � Finally� some nu�
merical examples are presented for the various algorithms and it is shown that such schemes can
greatly improve the convergence rate of standard Galerkin method�

�� Preliminaries

In this paper� we will consider the following stationary Navier�Stokes equations de�ned on a
bounded domain � � Rd� d � �� ����

��
���u� �u � r�u�rp � F in ��

divu � � in ��

u � � on ���

where u � � � Rd denotes the velocity �eld� p � � � R the pressure� F the external force which
drives the �ow� � � � the kinematic viscosity� For simplicity� we consider �� to be class C��

We also de�ne the following Hilbert space as usual

H �� fv � L����d � v �nj�� � �� divv � � in weak senseg�

Here n denotes the unit outer normal vector of ��� By P we denote the orthogonal L�� projection
from L����d onto H� Now projecting the above Navier�Stokes equations in velocity�pressure form
onto H� we get the abstract Navier�Stokes equations in H

����� �Au� B�u�u� � f �

where A � �P�� B�u�u� � P ��u � r�u� and f � PF � Since A � H � H is a densely de�ned�
unbounded� self�adjoint and positive operator with compact inverse� there exist eigenvalues

� � �� � �� � � � � � �n � � � � � ���

and associated eigenfunctions f������ � � � ��n� � � � g which form a complete orthogonal basis of H�
In addition� for any s � R� we can de�ne the power operator As� whose domain is the following
linear space

D�As� �� fv � H � v ��
�X
i��

vi�i�

�X
i��

��si jvij
� ��� vi � Rg

with natural inner product and related norm de�ned as

�v��v��s �� �Asv�� A
sv��� jAsvj� � �v�v�s�

Here ��� �� and j � j stand for the standard L�� inner product and norm respectively� At least� under

the assumption of the smoothness of �� and for s �





� jAs � j is an equivalent norm of k � k�s� In
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the following� for convenience� we will not distinguish between jAs � j and k � k�s for s �





� In the

remainder of this paper� we often use the space

V �� fv � H�
� ���d � divv � �g�

It is well known that V � D�A
�

� ��
The variational formulation of ����� is given by

�����

�
�nd u � V such that

a�u�v� � b�u�u�v� � �f �v�� �v � V�

where a��� �� is symmetric� positive de�nite and continuous in V 	 V de�ned as

a�u�v� �� ��A
�

�u� A
�

�v�� �u�v � V�

and the trilinear form is de�ned as

b�u�v�w� � ��u � r�v�w�� �u�v�w � H����d�

As well known� b��� �� �� has the following properties����

�����

�
b�u�v�w� � �b�u�w�v�� �u � V�v�w � H����d�

b�u�v�w� � cbkuks�kvks���kwks�� �u � Hs����d�v � Hs������d�w � Hs����d�

where s�� s�� s� 
 �� s� � s� � s� 

d

�
and �s�� s�� s�� �� ��� ��

d

�
�� ���

d

�
� ��� �

d

�
� �� ��� Moreover� we

will use the following Sobolev interpolation inequalities and Brezis�Gallouet inequality��� later�

���
�

�������
������

kvk �

�

� c�kvk
�

� jvj
�

� � �v � D�A
�

� ��

jvjL� � c�kvk
�

� kvk
�

�

� � d � �� �v � D�A��

jvjL� � c�kvk�� �

s
ln�� �

kvk�
kvk

��� d � �� �v � D�A��

For any given m � N � let

Hm � f������ � � � ��mg � PmH�

Then the standard spectral Galerkin approximation of ����� reads

���
�

�
�nd um � Hm such that

�Aum � PmB�um �um� � Pmf �

And its variational problem is

�����

�
�nd um � Hm such that

a�um�v� � b�um�um�v� � �f �v�� �v � Hm�

We will write Vm � PmV for short�
For the sake of convenience� we will use the symbol � to denote the distance between u and

um� As um � Hm� the error estimates of � can not be better than the norms of u�Pmu� Indeed�

����� jA�
�

��j � c��
� �

�

m��� j�j � c��
��
m��� k�k � c��

� �

�

m���

where c� � � is a constant independent of m� The proof of the above results is classical�
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�� Projections

In this section� we will construct three kinds of projections from H onto Hm� First of all� let us
introduce the Navier�Stokes operator F from V to V �� for any w � V � F�w� � V � such that

� F�w��v �� a�w�v� � b�w�w�v�� �f �v�� �v � V�

where V � is the dual space of V and � �� � � is the dual product� Thus� ����� is equivalent to

F�u� � ��

We denote by DF�u� the Frechet derivative of F at u� for any w�v � V

����� � DF�u�w�v ��� a�w�v� � b�u�w�v� � b�w�u�v��

And we set

L��w�v� ��� DF�u�w�v � �

If u is a nonsingular solution of ������ DF�u� is an isomorphism from V onto V � �see ��������� and
we can assert that there must be some constant 	� � � such that

����� inf
w�V

sup
v�V

L��w�v�

kwk kvk
� inf
v�V

sup
w�V

L��w�v�

kwk kvk

 	��

Thus� by the Lax�Milgram theorem� the variational problem

�
Find w � V such that

L��w�v� �� g�v �� �v � V

has an unique soluton for any g � V ��
From ���
� and ������ we can similarly de�ne an operator Fm from Hm to V �m� Then ���
� is

equivalent to

Fm�um� � ��

From ������ we can get a new bilinear form Lm����� ���

�����
Lm���w�v� ��a�w�v� � b�um�w�v� � b�w�um�v�

�L��w�v� � b�um � u�w�v� � b�w�um � u�v�� �w�v � V�

Obviously� if we restrict w�v to Hm� ����� can be seen as the de�nition of � DFm�um�w�v ��
Under the assumption that u is a nonsingular point of F � the following lemma and its corollary

will tell us um is a nonsingular point of Fm if um is very close to u�see �����

Lemma ���� Assume �V � V is a �nite dimensional subspace and �F is a smooth mapping from
�V to �V �� Let u be a nonsingular point of F and denote


�u� � kDF�u���kL�V ��V 	� ���u� � kDF�u� �D �F��u�kL� 
V �
V �	�

If �u is closed to u such that


�u����u� � ��

D �F��u� is an isomorphism from �V onto �V �� Hence� �u is a nonsingular point of �F�

The following corollary of the above lemma will tell us how to guarantee that um is also a
nonsingular point of Fm if u is a nonsingular point of F �
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Corollary ���� Assume u is a nonsingular solution of the Navier�Stokes equations ����	� If m is
large enough such that

���
� �m�� 

��c�bc

�
�

	��
�

um is a nonsingular solution of its standard Galerkin approximate equations� And we have

���
� inf
w�Hm

sup
v�Hm

Lm���w�v�

kwk kvk
� inf
v�Hm

sup
w�Hm

Lm���w�v�

kwk kvk


	�

�
�

Furthermore�

����� inf
w�V

sup
v�V

Lm���w�v�

kwk kvk
� inf
v�V

sup
w�V

Lm���w�v�

kwk kvk


	�

�
�

Proof� Thanks to ������ we have


�u� � kDF�u���kL�V ��V 	 � 	��� �

On the other hand�

� �DF�u� �DFm�um��w�v �� b�u� um�w�v� � b�w�u� um�v�� �w�v � Hm�

Therefore� by using �����

��um� �kDF�u� �DFm�um�k � sup
w�v�Vm

� �DF�u� �DFm�um��w�v �

kwk kvk

��cbku� umk � �cbc��
� �

�

m���

From lemma ���� we can conclude ���
�����
�� And ����� is obvious if we notice ������ �

Now� it is time for us to construct our �rst projection�

Projection �� Q�
m
 H � Hm

�����

�
for any w � H� �nd Q�

mw � Hm such that

Lm���w �Q�
mw�v� � �� �v � Hm�

Thanks to ���
�� the following problem

Lm���Q
�
mw�v� � Lm���w�v�� �v � Hm

has an unique solution� Now for any vector w � H� we have

w � Q�
mw � �w�� with �w� � w �Q�

mw�

����� implies that �w� is orthogonal to Hm in Lm����� ��� We identify Q�
mw and �w� as lower and

higher frequency components of w with respect to projection Q�
m respectively� Furthermore� we

de�ne an adjoint bilinear form L�m����� �� by

L�m���w�v� �� L��v�w� � b�um � u�v�w� � b�v�um � u�w�� �w�v � V�

Of course
Lm���w�v� � L�m���v�w�� �w�v � V�

Set �H� � �I � Q�
m�H� �V � � �I �Q�

m�V � Then

����� Lm��� �w��v� � L�m���v� �w�� � �� �v � Hm� �w� � �H��

Similarly� we de�ne
L���w�v� � L��v�w�� �w�v � V�

The next lemma shows that the norm of higher frequency components in �V � is very small�
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Lemma ���� Under the assumptions of corollary ��� and the adjoint linearized Navier�Stokes
equations
 for g � H� �nd � � V such that

����� L�����v� � �g�v�� �v � V

is H��regular� Then the projection Q�
m de�ned by ����	 satis�es

kw �Q�
mwk � c�kwk� �w � V�������

jw� Q�
mwj � c��

� �

�

m��kw �Q�
mwk� �w � V�������

where c�� c� are positive constants independent of w and m�

Proof� Using ���
� and ������ we have

kQ�
mwk �

�

	�
sup
v�Hm

Lm���Q�
mw�v�

kvk
�

�

	�
sup
v�Hm

Lm���w�v�

kvk

�
���kwk� �cbkumk kwk�

	�
� �c� � ��kwk�

This proves ������ by the triangular inequality and shows that Q�
m is a bounded projection�

As a result of the H�� regularity assumption of ������ there must be some positive constant c�

such that

k�k� � c�jgj�

Now we set g � v � �w� in ������ From ������ we have

L�m����� �w�� � j �w�j� � b�um � u� �w���� � b� �w��um � u����

Taking �m � Pm� � Hm and using ����� and the classical property of L�� orthogonal projection
Pm� we have

jL�m����� �w��j �jL�m����� �m� �w��j � �� � �cbkumk�k�� �mk k �w�k

��
� �

�

m���� � �cbkumk�k�k�k �w�k � c��
� �

�

m���� � �cbkumk�j �w�j k �w�k�

Here we used the well known property

j�I � Pm��j � �
� �

�

m��k�k� �� � V�

On the other hand�

jb�um � u� �w����j � jb�um � u��� �w��j � cbjum � uj k�k�k �w�k � cbc�c
����m��j �w�j k �w�k�

jb� �w��um � u���j � jb� �w����um � u�j � cbk�k�k �w�k jum � uj � cbc�c
����m��j �w�j k �w�k�

Finally� we can get ������ for c� � c��� � �cbkumk� �cbc��� �

Note that the construction of the above projection Q�
m is based on the assumption that u is a

nonsingular solution of ������ Of course� the usable range of this projection is restricted by this
condition� To overcome this disadvantage� we will construct other two kinds of projection from
H onto Hm which can always make sense whether u is a singular solution of ����� or not� The
only di�erence between these three projections is that the associated inertial algorithms may have
di�erent accuracy�
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Projection �� Q�
m
 H � Hm

������

�
for any w � H� �nd Q�

mw � Hm such that

Lm���w �Q�
mw� v� � �� �v � Hm�

where
Lm���w�v� � a�w�v� � b�um�w�v��

For further discussion� we de�ne

������ L��w�v� � a�w�v� � b�u�w�v��

where u is the solution of ������ Of course� we see

Lm���w�v� � L��w�v� � b�um � u�w�v��

At this moment� the bilinear forms L���� �� and Lm����� �� are all positive� In fact

L��w�w� � a�w�w� � �kwk�� Lm���w�w� � a�w�w� � �kwk��

So� ������ can de�ne a projection fromH onto Hm whenever u is a singular or nonsingular solution�

Projection �� Q�
m
 H � Hm

����
�

�
for any w � H� �nd Q�

mw � Hm such that

Lm���w �Q�
mw� v� � �� �v � Hm�

where
Lm���w�v� � a�w�v��

Also� we de�ne
L��w�v� � Lm���w�v��

They are obvious symmetric and positive� so ����
� makes sense whenever u is a singular or
nonsingular solution� too�

It is very easy to prove that the projections Q�
m and Q�

m have similar properties as Q�
m� To

illustrate this� we de�ne the following adjoint bilinear forms corresponding to Li��� �� and Lm�i��� ���
i � �� �� as�

L���w�v� � L��v�w�� L�m���w�v� � Lm���v�w� � L��v�w� � b�um � u�v�w��

L���w�v� � L��v�w�� L�m���w�v� � Lm���v�w��

It is easy to know that L����� �� 
 L���� ��� So does L�m����� ���
For L����� ��� the variational problem

L�����v� � �g�v�� �v � V

is H�� regular under the assumption of �� being class C�� And we can easily prove

L�����v� � �g�v�� �v � V

is H�� regular� too� Also� orthogonality properties like ����� hold� e�g�

Lm�i� �wi�v� � L�m�i�v� �wi� � �� �v � Hm� �wi � �Hi�

Having the above knowledge of these two kinds of bilinear forms� we can easily prove that Qi
m�

i � �� �� de�ned by ������ and ����
� have similar properties as Q�
m� which we only state without

proof in the following lemma�
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Lemma ���� The projections Q�
m and Q�

m de�ned by �����	 and ����
	 satisfy

kw �Qi
mwk � c�kwk� �w � V�

jw� Qi
mwj � c��

� �

�

m��kw �Qi
mwk� �w � V�

where i � �� � and c�� c� are positive constants independent of w and m�

To avoid having too many symbols� we still use c� and c� in the results of this lemma although we
used them in lemma ��� because they have very similar forms and would not change our discussion
signi�cantly�

Remark� Besides a general assumption on the smoothness of ��� Q�
m can only be used when u is

a nonsingular solution of ������ So its usable range is limited� That is the reason why we like to
introduce Q�

m and Q�
m� which always make sense whenever u is a singular or nonsingular solution

of ������ In this sense� they should be regarded as some generalization of Q�
m� Of course� this kind

of generalization has its own cost� That is the inertial algorithms based on them which will be
given later will lose some accuracy compared with the algorithm based on Q�

m�

�� Lower Frequency Analysis and Finite Dimensional Mappings

As we said in the introduction� our projections constructed in the previous section should satisfy

�
��� kQi
mu� umk � o�k�k�� i � �� �� ��

Only when these conditions are satis�ed� it is possible for us to construct some �nite dimensional
mappings�i corresponding to di�erent projections which can generate higher order approximations
of the higher frequency components of the true solution with respect to the di�erent projections

�
��� k�i�um� � �uik � o�k�k�� i � �� �� ��

such that

�
��� ku� �um ��i�um��k � kQi
mu � umk� k�ui ��i�um�k � o�k�k�� i � �� �� ��

So� the �rst thing we should do is to make sure that �
��� is valid for our projections� In the
following� we will show that �
��� is satis�ed by our projections one by one� We recall the following
decomposition

�
�
� w � Qi
mw � �wi� Qi

mw � Hm� �wi � �V i� �w � V� i � �� �� ��

We will call Qi
mw the lower frequency components of w of the ith projection� simply� the lower

frequency components of w� And we will call �wi the higher frequency components of w in the
sense of the ith projection� simply� the higher frequency components of w�

Before verifying �
��� for our projections� we give a novel property of the trilinear form b��� �� ���

Lemma ���� For any � � D�A�
�

� �� w � D�A
�

� � and v � Hm� we have

jb���v�w�j � cbL
d
mjA

��

��j kvk�kwk�

where

Ldm ��

��
� �c��� �

q
ln�� � �

�

�

m��� d � ��

�c��
�

�

m��� d � ��

Proof� Suppose

� �

�
��

��

�
� v �

�
v�

v�

�
� w �

�
w�

w�

�
�
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Then

�� � r�v �w �

	�
��

��

�
�

�
�x

�y

�
�
v�

v�

�
�

�
w�

w�

�
���w��xv� � ��w��yv� � ��w��xv� � ��w��yv� � �w � rv� ���

where w � rv means w�rv� � w�rv�� Now we de�ne a new bilinear operator �B

�B�w�v� � P �w � rv��

and its associated trilinear form �b

�b�w�v��� � � �B�w�v���� � b���v�w��

In fact �b and b are the same thing with di�erent format� so all the estimations for b are also valid
for �b�

Let 
 be any derivative operator on R�� i�e�


�w � rv� � �
w � rv� � �w � r
v��

Because of w � D�A
�

� � and v � Hm� we have

jA
�

� �B�w�v�j �k �B�w�v�k � j
 �B�w�v�j � j�
w � rv�j� j�w � r
v�j

�
j�b�
w�v���j� j�b�w� 
v���j

j�j
� cbjA

�

�wj jA
�

� vjL� �
j�b�w� 
v���j

j�j
�

We decompose w as
w � Pmw� �I � Pm�w �� wm � �w�

Then

j�b�w� 
v���j � j�b�wm� 
v���j� j�b� �w� 
v���j � cbjwmjL� jAvj j�j� j�b� �w� 
v���j�

Therefore

�
�
� jA
�

� �B�w�v�j � cbjA
�

�wj jA
�

�vjL� � cbjwmjL�jAvj�
j�b� �w� 
v���j

j�j
�

Now let us estimate terms on the right hand side of �
�
� for d � � and d � � respectively� From
���
� and the classical property of Pm� we know for any v � Hm�

jvjL� �

��
� c��� �

q
ln�� � �

�

�

m��kvk� d � ��

c�kvk
�

� kvk
�

�

� � c��
�

�

mkvk� d � ��

If we denote

Ldm ��

��
� �c��� �

q
ln�� � �

�

�

m��� d � ��

�c��
�

�

m� d � ��

we have

jA
�

�vjL� �
Ldm
�
kvk�� jwmjL� �

Ldm
�
kwk�

Then �
�
� becomes

�
��� jA
�

� �B�w�v�j �
�cbLdm

�
kwk kvk� �

j�b� �w� 
v���j

j�j
�
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As for the last term on the right hand side of �
���� we have

j�b� �w� 
v���j

j�j
�

�
cbk �wk �

�

jAvj �
�

� cbkwk kvk�� d � ��

cbk �wk jAvj �
�

� cb�
�

�

mkwk kvk�� d � ��

Combining this estimation with �
��� and noting

jb���v�w�j� j�b�w�v���j � jA�
�

��j jA
�

� �B�w�v�j�

we can get the result� �

Now� let us consider the projection Q�
m� We can rewrite the Navier�Stokes equations ����� as

Lm���u�v� � b�u�u�v�� b�u�um�v�� b�um�u�v� � �f �v�� �v � V�

Using �
�
� and ������ we have

�
��� Lm���Q
�
mu�v� � Lm����u��v� � b�����v�� b�um�um�v� � �f �v�� �v � V�

Meanwhile� the standard spectral Galerkin approximate equations ����� can also be rewritten as

�
��� Lm���um�v�� b�um�um�v� � �f �v�� �v � Hm�

Restricting �
��� to Hm then subtracting �
��� from �
��� and using ������ we have

�
��� L�e
��v� � b�����v� � �� �v � Hm�

where e� � Q�
mu � um� For the sake of convenience� we sometimes use ei to denote Qi

mu � um
for i � �� �� � in the rest� Now by corollary ���� we know

ke�k �
�

	�
sup
v�Hm

Lm���e��v�

kvk
�

�

	�
sup
v�Hm

jb�����v�j

kvk
�

For d � �� we have
jb�����v�j� jb���v���j � cbj�j k�k kvk�

and for d � ��

jb�����v�j � cbk�k �

�

k�k kvk � c�cbj�j
�

� k�k
�

� kvk�

Then we have

�
���� ke�k �
�c�
	�
j�j���k�k����

where

� ��

��
�

�� for d � ��

�

�
� for d � ��

c� � maxfcb� c�cbg�

For the second projection Q�
m� the Navier�Stokes equations ����� and its standard spectral

Galerkin approximate equations ����� can be rewritten as

�
���� Lm���u�v� � b�����v� � b���um�v� � �f �v�� �v � V�

�
���� Lm���um�v� � �f �v�� �v � Hm�
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Then by using �
�
� and ������� we have

Lm���e
��v� � b�����v�� b���um�v� � �� �v � Hm�

Taking v � e� yields

�ke�k� � jb����� e��j� jb���um� e
��j � c�j�j

���k�k���ke�k� jb���um� e
��j�

For the second term on the right hand side of the last inequality� we have from lemma 
��

jb���um� e
��j � cbL

d
mkumk�jA

� �

��j ke�k�

Then�

�
���� ke�k �
c�

�
j�j���k�k��� �

cbL
d
mkumk�
�

jA�
�

��j�

The last projection Q�
m is indeed the standard L�� orthogonal projection Pm� Now� ����� and

����� can be rewritten as

�
��
� Lm���u�v� � b�����v�� b�um���v� � b���um�v� � b�um�um�v� � �f �v�� �v � V�

�
��
� Lm���um�v� � b�um�um�v� � �f �v�� �v � Hm�

Thus
Lm���e

��v� � b�����v� � b�um���v� � b���um�v� � �� �v � Hm�

Taking v � e� in the above equality yields

�ke�k� � jb����� e��j� jb�um��� e
��j� jb���um� e

��j � c�j�j
���k�k���ke�k� �cbkumkL� j�j ke

�k�

Therefore�

�
���� ke�k �
c�

�
j�j���k�k��� �

�cbkumkL�

�
j�j�

Now� we can summarize �
����� �
���� and �
���� into following

Theorem ���� Suppose f � H� �� be of class C�� Then

kQ�
mu � umk �

c�

�
j�j���k�k��� �

cbL
d
mkumk�
�

jA�
�

��j�

kQ�
mu � umk �

c�

�
j�j���k�k��� �

�cbkumkL�

�
j�j�

Furthermore� if the assumptions in lemma ��� holds� we have

kQ�
mu� umk �

�c�
	�
j�j���k�k����

From ������ we easily see that �
��� is satis�ed for all our projections� In addition� it is worth
paying attention to Q�

m� As we said� Q�
m 
 Pm� Then this result shows that

kPmu� umk � o�ku� umk��

That is
kPmu� umk � o�k�I � Pm�uk��
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This result tells us that the error of the standard Galerkin method is dominated by the trunca�
tion error and also indicates the standard spectral Galerkin method has some superconvergence
property�

The previous theorem 
�� shows that keik has a higher order than k�k� So� it is the higher
frequency components of the particular projection Qi

m that restricts the approximate order� that

is �ui� Also as we said before� if we could �nd some �nite dimensional mapping �i from Hm to �V i

such that �
��� are satis�ed� we can get a more accuracy approximation of u based on um� that is
�
����

Now we give the de�nitions of our �nite dimensional mappings and some basic properties of
them� For any w � Hm� �nd �i�w� � �V i� i � �� �� �� such that

�
���� Lm����
��w��v� � b�w�w�v�� Lm���w�v� � �f �v�� �v � �V ��

�
���� Lm����
��w��v� � �Lm���w�v� � �f �v�� �v � �V ��

�
���� Lm����
��w��v� � �b�w�w�v�� Lm���w�v� � �f �v�� �v � �V ��

Theorem ���� i	 Under the assumptions of lemma ��� and the following restriction on m

�
���� �m�� 


c�bc

�
�kumk

�

��
�

�
���	 can de�ne a single valued mapping

�� � Hm � �V ��

ii	 �
���	 and �
���	 can de�ne the following single valued mappings respectively�

�� � Hm � �V �� �� � Hm � �V ��

iii	 If we denote
Mi � Graph��i�� i � �� �� ��

Mi is a Lipschitz manifold with

k�i�w����i�w��k � likw� �w�k� �w��w� � Hm �B��

where B� � fv � V� kvk � �g and li is a Lipschitz constant depending on �� kumk� � and 	��

Proof� i� From lemma ��� and �
����� for any � � �V ��

Lm������� � �k�k� � b���um��� 
 �k�k�� cbc��
� �

�

m��kumk k�k
� 


�

�
k�k��

Then by Lax�Milgram theorem� we can immediately get the result�
ii� It is obvious that for any � � �V i� i � �� �

Lm������� � �k�k�� Lm������� � �k�k��

Again� by Lax�Milgram theorem� we can get the result�
iii� Let us introduce some symbols�

�w��w� � Hm �B�� denote �i� � �i�w��� �
i
� � �i�w��� i � �� �� ��
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First� we consider ��� It is easily to see that

Lm����
�
� � ��

��v� �b�w��w��v�� b�w��w��v�� Lm���w� �w��v�

�b�w� �w��w��v� � b�w��w��w��v�� Lm���w� �w��v�� �v � �V ��

From corollary ���� ����� and the above expression� we obtain

k��
� � ��

�k �
�

	�
sup
v�V

Lm�����
� ��

�
��v�

kvk
�

�

	�
sup
v��V �

Lm�����
� � ��

��v�

kvk

�
�

	�
��cb� � � � �cbkumk�kw� �w�k � l�kw� �w�k�

This proves the result for ���
For ��� we have

Lm����
�
� ��

�
��v� � �Lm���w� �w��v��

Taking v � ��
� � ��

��

�k��
�� ��

�k
� � �kw� �w�k k�

�
� � ��

�k� cbkumk kw��w�k k�
�
� ��

�
�k�

Thus� we have

k��
� � ��

�k � �� �
cbkumk

�
�kw� �w�k � l�kw� �w�k�

At last� for ���

Lm����
�
� � ��

��v� � �b�w� �w��w��v�� b�w��w� �w��v�� Lm���w� �w��v��

We can easily get

k��
� � �

�
�k � �� �

�cb�

�
�kw� �w�k � l�kw� �w�k�

�

From the proof of this theorem� we see that �� and �� are local Lipschitz continuous and ��

is global Lipschitz continuous�

�� Inertial Algorithms

After we get the �nite dimensional mappings �i� i � �� �� �� we can construct the following three
inertial algorithms easily with respect to each projection to get a more accuracy approximation of
u based on um�

Inertial Algorithms ��

Solve ����	 to get the standard spectral Galerkin approximation um � Hm�

�Step ��

�
�nd �u� � ���um� � �V � such that

Lm����u��v� � b�um�um�v��Lm���um�v� � �f �v�� �v � �V ��

�Step ��

Get the new approximation
 u� � um � �u��

�Step ��



�� YANREN HOU AND R�M�M� MATTHEIJ

Theorem 	��� Suppose the assumptions in lemma ��� are ful�lled� Then the inertial algorithm �
admits

ku� u�k � c
j�j
���k�k����

where c
 is a positive constant�

Proof� Let v � �V � in �
��� and subtract the equations of �Step �� from it� we have

Lm����u� � �u��v� � �b�����v�� Lm���e
��v�� �v � �V ��

By ������ ����� and noticing theorem 
��� we �nd

k�u� � �u�k �
�

	�
sup
v�V

Lm����u� � �u��v�

kvk
�

�

	�
sup
v� �V �

Lm����u� � �u��v�

kvk

�
�

	�
sup
v��V �

�b�����v��Lm���e��v�

kvk
�

�c�
	�
j�j���k�k��� �

��� � �cbkumk�

	�
ke�k

�
�c�
	��

�	� � �� � 
cbkumk�j�j
���k�k����

If we denote c
 ��
�c�
	��

��	� � �� � 
cbkumk�� we can get the result� �

Inertial Algorithms ��

Solve ����	 to get the standard spectral Galerkin approximation um � Hm�

�Step ��

�
�nd �u� � ���um� � �V � such that

Lm����u��v� � �Lm���um�v� � �f �v�� �v � �V ��

�Step ��

Get the new approximation
 u� � um � �u��

�Step ��

Theorem 	��� The solution of inertial algorithm � admits

ku� u�k � c�L
d
mjA

��

� �j� c�j�j
���k�k����

where c�� c� are positive constants�

Proof� We can rewrite the Navier�Stokes equations �
���� as

�
��� Lm���Q
�
mu�v� � Lm����u��v� � b�����v� � b���um�v� � �f �v�� �v � V�

Restricting �
��� to �V � and subtracting the equations of �Step �� in inertial algorithm �� we have

�
��� Lm����u� � �u��v� � �b�����v�� b���um�v��Lm���e
��v�� �v � �V ��

Taking v � �u� � �u� � �V �� �
��� yields

�k�u� � �u�k� �c�j�j
���k�k���k�u� � �u�k� cbL

d
mkumk�jA

� �

��j k�u� � �u�k

� �ke�k k�u� � �u�k� cbkumk ke
�k k�u� � �u�k�

By theorem 
��� we have

k�u� � �u�k �
c�

�
j�j���k�k��� �

cbL
d
mkumk�
�

jA�
�

��j� �� �
cbkumk

�
�ke�k

�
c�

�
j�j���k�k��� �

cbL
d
mkumk�
�

jA�
�

��j� �� �
cbkumk

�
�
c�

�
j�j���k�k���

� �� �
cbkumk

�
�
cbL

d
mkumk�
�

jA�
�

��j�

Now we denote c� ��
��c� � cbc�kumk

��
and c� ��

��cbkumk� � c�bkumk kumk�
��

� then we can get

the result by triangle inequality� �
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Inertial Algorithm ��

Solve ����	 to get the standard spectral Galerkin approximation um � Hm�

�Step ��

�
�nd �u� � ��um� � �V � such that

Lm����u��v� � �b�um�um�v�� Lm���um�v� � �f �v�� �v � �V ��

�Step ��

Get the new approximation
 u� � um � �u��

�Step ��

Theorem 	��� The solution of inertial algorithm � admits

ku� u�k � c�j�j
���k�k��� � c�j�j�

where c�� c� are positive constants�

Proof� The proof of this theorem is very similar to that of theorem 
��� First� we can get a new
form of the Navier�Stokes equations just like �
��� and then restrict it in �V � and subtract the
equations of �Step �� of this algorithm from it� Then we get

�
��� Lm����u� � �u��v� � �b�����v�� b���um�v�� b�um���v��Lm���e
��v�� �v � �V ��

Taking v � �u� � �u�� �
��� admits

k�u� � �u�k �
c�

�
j�j���k�k��� �

�cbkumkL�

�
j�j� ke�k �

�c�
�
j�j���k�k��� �


cbkumkL�

�
j�j�

Let us introduce c� ��
�c�
�

and c� ��
�cbkumkL�

�
� then we can get the result� �

Remark� From the above three convergence theorems� we obtain

ku� uik � o�k�k�� i � �� �� ��

That is the inertial algorithms can really be more accurate for u� Comparing the above three algo�
rithms� inertial algorithm � has the highest order of accuracy but its applicable range is restricted
by the nonsingularity condition and that m also must be great than some lower bound� The iner�
tial algorithm � has the simplest form and also is the easiest one to be implemented numerically�
In fact� we can directly get �u�� Another advantage compared with algorithm � is that it is valid
whether u is a nonsingular solution of the Navier�Stokes equations or not� But its disadvantage is
also obvious� Its accuracy is of course the worst one� All kinds of properties of inertial algorithm �
are just between the inertial algorithm � and the inertial algorithm �� Meanwhile� its applicability
is just as for algorithm � and its convergence rate is very close to algorithm �� In fact� for a three
dimensional case� it has the same approximation order as that of inertial algorithm ��

There is another problem we need to cope with the numerical implementation of these three
algorithms� As we said� algorithm � is the simplest one because of

�V � 
 �I � Pm�V�

For algorithm � and �� the situation is quite di�erent� If we consider the standard L�� orthogonal
projection Pm� the elements of �V � and �V � may contain the usual higher frequency components
as well as the usual lower frequency components� Indeed� their orthogonal basis functions with
respect to projections Q�

m and Q�
m are not at hand and deriving the basis functions is not easier

than solving any Navier�Stokes equations� So they will be rather theoretical algorithms till we can
�nd a good way to get �V � and �V �� In the following� we will modify inertial algorithm � and �
above such that their numerical implementation becomes possible without loss of accuracy they
have�
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Inertial Algorithm �
�

Solve ����	 to get the standard spectral Galerkin approximation um � Hm�

�Step ��

�
�nd �u� � V such that

Lm����u��v� � ��I � Pm�f �v�� �v � V�

�Step ��

Get the new approximation
 u� � um � �u��

�Step ��

Inertial Algorithm �
�

Solve ����	 to get the standard spectral Galerkin approximation um � Hm�

�Step ��

�
�nd �u
 � V such that

Lm����u
�v� � ��I � Pm�f �v�� �v � V�

�Step ��

Get the new approximation
 u
 � um � �u
�

�Step ��

In fact� we only enlarged the test function space from �V � and �V � to V in each �Step ��� At
this time� the right hand side terms of the equations in �Step �� can be simpli�ed by using the
standard Galerkin approximation equations ������ Of course� we cannot restrict �u� and �u
 in the
original higher frequency spaces now� But a simple analysis will show that this kind of modi�cation
will not in�uence the convergence rates of the original inertial algorithm � and �� On the other
hand� because �u� and �u
 are now sought in the whole space V � whose dimension is a little larger
than that of �V � and �V �� In addition� the right hand side of the equations of �Step �� in inertial
algorithm � can also be rewritten as

Lm����u��v� � ��I � Pm�f �v�� �v � �I � Pm�V

because of Q�
m 
 Pm and �V � 
 �I � Pm�V �

Theorem 	��� i	 Under the assumptions of theorem ���� the inertial algorithm �� yields

ku� u�k � c
j�j
���k�k����

ii	 The inertial algorithm �� admits

ku� u
k � c�L
d
mjA

��

� �j� c�j�j
���k�k����

The proof of this theorem is very similar to that of theorem 
�� and 
��� thus we omit it�

�� Numerical Examples

To illustrate the better convergence rate of the proposed inertial algorithms� we will give some

numerical results for the two�dimensional Kolmogorov �ow on � � ��
�

	
�
�

	
�	 ���� ���

�����

�
�nd u � V such that

a�u�v� � b�u�u�v� � �f �v�� �v � V�

where

V �� fv �
X

k�Z��k ���

vke
i�k��x�k�y	�vk � v�k�

X
k�Z��k ���

jvkj
��k��	

� � k��� � ��� divv � �g�
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f ��
�

Re
�sin y� ��T � Re � � is the Reynolds number de�ned in ����� From the literature of Kol�

mogorov �ows �e�g� ����� ������ the above equation has a trivial solution u � �sin y� ��T for any
Reynolds number� and when we take 	 � ���� bifurcation occurs at Re� � ������� � � �� For 	 � ��
there will be no bifurcation points for any Re � ��

In the following� we will give some numerical results of inertial algorithm � � � and ��

Remark� Note that step � in these algorithms has to be solved in the whole space V � To solve
them numerically� we should project them onto another larger �nite dimensional space HM with
M � m and so we can get new approximations

����� uiM � um � �uiM � i � �� 
� 
�

Generally� if we choose M su!ciently large� then the error of these �nite approximations given
by ����� should be equivalent to the error order in theorem 
�
 and theorem 
�� plus a truncation
error� That is

����� ku� uiMk � o�ku� uik� � o��
� �

�

M���� i � �� 
� 
�

For this concrete problem� the true solution has only two modes� so we only choose M � �m
and m � �� The associated algebraic equations are solved by some LINPACK subroutines�

In Table �� we give some results of these three algorithms for 	 � ��� and Re � Re�� It is
obvious that the inertial algorithm � �inertial algorithm �� will lose its higher convergence rate
near the singular point because 	� may tend to zero when Re tends to Re�� And the other two
algorithms will still be valid� And our numerical results in table � just indicates this kind of
phenomena� And it seems inertial algorithm � and � has a better performance than the inertial
algorithm � when Re tends to the bifurcation point�

We denote by IA� � IA� � IA� and SGM the names of inertial algorithm � � � � � and standard
Galerkin method respectively�

Table �

Re IA� IA� IA� SGM
�ku� u�Mk� �ku � u
Mk� �ku� u�Mk� �ku � umk�

���� ����E � �� ���
E � �� ����E � �� ����E � �

���� ����E � �
 ��
�E � �� 
���E � �� ����E � �

��
� ����E � �
 ����E � �
 ���
E � �� 
�
�E � �

���� ��

E � �
 ��
�E � �
 ����E � �� 
�
�E � �

���� 
���E � �
 ��
�E � �
 ���
E � �� 
�
�E � �

Re� � ��� ��

E � �
 ����E � �� 
��
E � �


Here  �� means that the condition number of the associated matrix is very close to zero and the
Gauss elimination cannot process it�

For 	 � �� we know that there will be no bifurcation in the system� So we can observe the
performance of these three algorithms when Re becomes more and more large� The following table
� gives the numerical results related to this procedure�

Table �

Re IA� IA� IA� SGM
�ku� u�Mk� �ku� u
Mk� �ku� u�Mk� �ku� umk�

���� ����E � �� ����E � �� ����E � �� ����E � �

���� ���
E � �� ����E � �� ����E � �� ���
E � ��
���� ����E � �
 ����E � �
 ��

E � �
 ���
E � ��
���� ����E � �
 ����E � �
 ����E � �� 
�
�E � ��
���� ����E � �
 ����E � �
 ����E � �� ���
E � ��
���� ��
�E � �� ����E � �� ����E � �� ����E � ��
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From Table �� we see that all algorithms lose some accuracy when Re becomes large as expected�
And the numerical tests also tell us that when there is no bifurcation point along the path of Re�
the performance of inertial algorithm � and � seems to be more accurate than that of inertial
algorithm � when Re tends to in�nity� So when we want to perform a numerical simulation at
high Reynolds number� we prefer inertial algorithm � and � � especially the inertial algorithm � 
which can process whenever there will be a bifurcation point or not along the path of Re and has
almost the same accuracy as inertial algorithm � �
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