

A software architecture for generating hypermedia
applications for ad-hoc database output
Citation for published version (APA):
Houben, G. J. P. M., & Lemmens, W. J. M. (1999). A software architecture for generating hypermedia
applications for ad-hoc database output. (Computing science reports; Vol. 9916). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/d90b3545-d759-4215-a789-53e03ecc0d78

Eindhoven University of Technology
Department of Mathematics and Computing Science

A Software Architecture for Generating Hypermedia
Applications for Ad-Hoc Database Output

by

Geert-Ian Houben and Pim Lemmens

ISSN 0926-4515

All rights reserved
editors: prof.dr. I.C.M. Baeten

prof.dr. P.A.I. Hilbers

Reports are available at:
http://www.win.tue.nllwinlcs

Computing Science Reports 99116
Eindhoven, November 1999

99/16

A Software Architecture for Generating Hypermedia
Applications for Ad-Hoc Database Output

Geert-Jan Houben*, ** and Pim Lemmens*

* Eindhoven University of Technology
Department of Computing Science

PO Box 513, NL 5600 MB Eindhoven, the Netherlands

** University of Antwerp (UIA)
Department of Mathematics and Computer Science

Universiteitsplein I, B 2610 Wilrijk, Belgium

E-mail: {g.j.houben.w.j.m.lemmens}@tue.nl

Abstract: This report describes the development of software for the generation
of hypermedia (Web) applications for the results of ad-hoc queries to multimedia
databases. In [Houben & De Bra 1997] we have proposed a heuristic algorithm for
generating navigation structures for multimedia database output, based on ideas
from RMM [see Isakowitz et aJ. 1995]. We have shown that only part of the RMM
design methodology can be automated deterministically, and we have provided
relevant heuristics and an extension to the query language to allow users to
explicitly override the heuristics. In [Houben & De Bra 1999] we have further
developed this approach by describing the design of a system for automatic
generation of presentations for multimedia database output. In that system
hypermedia applications (including both navigation and presentation aspects) are
automatical\y generated combining heuristics from [Houben & De Bra 1997] and
explicit directives from the user. This approach is similar to the one used in the
DHymE project from [Bieber 1998]. In this report we focus on the architecture of
our sotiware, called HERA, that generates hypermedia (Web) applications for
legacy data from relational databases.

1

1. Introduction
In [Houben & De Bra 1997] and [Houben & De Bra 1999] we have addressed an approach to

generating World Wide Web applications for volatile information resulting from ad-hoc database
queries. The motivation for this approach is that the use of a hypermedia platform such as World Wide
Web can help to represent the less structured and not purely textual information one typically finds in
applications such as employee databases, museum databases, geographic information systems, and
mail-order catalogs and services.

Since the design and construction of a hypermedia application involves the representation of
relationships between information objects, the approach for generating the navigation structure is
based on the ideas of RMM, specially RMDM [see Isakowitz et al. 1995]. RMM combines elements
from: the Entity-Relationship model [see Elmasri & Navate 1990] and HDM [see Garzotto et al. 1991]
to effectively manage relationships between objects. We are using part of these ideas in software that
semi-automatically generates hypermedia presentations, specifically relationships, for data resulting
from ad-hoc queries posed to a traditional relational database. To emphasize the volatile character of
the data for which relationships need to be generated, we talk about volatile data. Generating a
hypermedia presentation for volatile data includes the presentation of the records from the query result
and the presentation of a record's relationships with other records. RMM itself and its supporting tool
RMCase [see Diaz et al. 1995] do not help in the case of results of arbitrary (ad-hoc) queries. The
main problem is that the dynamically generated structure of a query result cannot be (trivially)
translated into a hypermedia presentation.

The volatility has led us to a heuristics based routine for the automatic generation of the
relationships. In this routine we include information from the data definition part of the database
(representing the legacy data structures underlying the volatile data) and from the exact query
specification (representing the user's explicit directives). In [Houben & De Bra 1997] and [Houben &
De Bra 1999] we have shown how we can deduce the navigation structure for the hypermedia
application from the data definition and query specification. In [Houben & De Bra 1998] we have also
addressed the presentation aspects that are relevant during the generation process.

While we concentrate in this research on the transformation from relational data to hypermedia
presentations, the DHymE project from [Bieber 1998] shows how the (automatic) generation of
relationships (e.g. hypermedia links) can be used to add hypermedia functionality to legacy databases.
From that point of view our approach can be generalized to add hypermedia functionality to legacy
database applications.

The main subject of this report is a description of the architecture for the software implementing
our approach. We describe how we handle the communication between a client browser and the
underlying database containing the relational data. We also describe how we have set up a software
system, called HERA, such that we can generate a hypermedia presentation for the data retrieved from
the database. The concrete contents of this report are as follows. First, we start with a background:
section 2 discusses general issues involved in the automatic design of hypermedia presentations, in
section 3 we address relevant navigation aspects, while section 4 concentrates on the generation
process and the heuristics. Then, section 5 contains the main elements of the HERA software
architecture.

2. Automatic Hypermedia Presentation Design
There are multiple reasons to produce a mapping from data stored in a relational database to data

that can be presented in a hypermedia structure. On the One hand, one can have a legacy (relational)

2

database full of data for which one wants to produce a presentation that can be accessed through a
hypennedia browser (or a Web browser). In that case one wants to produce an alternative presentation
for relational data that uses relationships (possibly implemented by hypermedia links) to construct an
inner structure for the data that improves the user-friendliness of the presentation. On the other hand it
is possible that one has developed a hypennedia application that one wants to populate with data that
is available from a legacy database. Either way, one transforms the relational data into data with a
hypennedia structure.

Normally, one would want to carefully design a hypermedia presentation by hand. However, when
you generate data automatically, then it is not feasible to come up with a presentation designed by
hand. This is certainly the case in our applications where we look at results to ad-hoc database queries.
Since we cannot foresee exactly which queries are going to be relevant, we cannot come up with a
specific hypermedia presentation for each one of them.

We have chosen an approach in which we want to (semi-)automatically derive a hypermedia
presentation for these ad-hoc queries. In this approach we use the (heuristic) principle that we want to
reuse as much as possible from the result of a manual design process that has generated hypennedia
presentations for standard queries on this database. This implies, for example, that we assume that a
manual designer has carefully designed a hypermedia presentation to present the contents of each of
the base tables. Whenever we then need to construct a hypermedia presentation for an ad-hoc query on
a certain base table and it appears that presenting this query result is only a minor variation of
presenting that base table, then the generation process would be based on the available presentation for
that base table. This is illustrated in figure I.

ad-hoc query

• Cnterpre~}---------jL-_h_eu_r_is_ti_CS_...J

specific query details

presentation for ad-hoc query

related standard query

get
standard desig

presentation for standard query

Figure 1,' Re-using standard presentations

3

standard
presentations

To facilitate this approach, we use heuristics that represent the "best practice" in generating
hypermedia presentations. This means that in the generation process we try to use some "rules" that
incorporate knowledge about the way in which query results relate to already available presentations.
In this way the heuristics help us to reuse pans of available presentations by mapping ad-hoc queries
to standard queries and then subsequently modifying the available presentation for the associated
standard query.

3. Navigation
Navigation structures build the most characteristic aspect of a hypermedia application. Compare

the approach from DHymE (see [Bieber 1998]) to see the role that navigation structures can play in
adding value to a (legacy) application. In the associated method RNA, Relationship-Navigation
Analysis, the importance of relationships leads to the use of a rich taxonomy of relationship types in
order to assure that the analysis process results in an appropriate set of relationships. From this rich set
of relationships RNA produces a set of navigation structures to "implement" the relationships. When a
hypermedia platform is used, the navigation structures are realized through hypermedia links.

In our application area we consider data from relational databases. In the generation of a
hypermedia application for the legacy database application we add hypermedia links to these data. The
nodes in this hypermedia application basically represent the data elements from the database
application. The hypermedia links between the nodes represent the structural relationships between
those data elements. The motivation for using such a hypermedia representation is the goal to increase
the ease with which users can access the information (that was originally stored in the relational
database): in addition to the straightforward record presentation other structural relationships between
data elements can be made accessible.

For this specific reason we borrow aspects of RMM's data model RMDM [see Isakowitz et al.
1995] in order to express the (structural) relationships between the data elements. RMDM is developed
to specify the different mechanisms available for connecting the data elements and thus offering users
access to the data elements. The navigation structures that we typically encounter are a combination of
hypermedia access routines that relate records to each other, the inter-record navigation, and access
routines that relate pans of a single record to each other, the intra-record navigation.

Based on RMDM the mechanisms and tools available for inter-record navigation are: index, guided
tour, and indexed guided tour. An index is used to access records by referring to some key identifier.
By choosing an identifier from the index the user asks the system to navigate to the corresponding
record. Typically the index is composed of words or icons that naturally identify the associated record.
A guided tour is used to access records in a given order. The records are connected in a chain-like
manner, and the user can follow that chain and thus access the different records. An indexed guided
tour is a combination of an index and a guided tour. Essentially, in an indexed guided tour the user has
both options to choose from: navigating using the identifiers in the index, or following the predefined
path of the guided tour.

4

~

I record 1

~I of
record 2

~I
of

record 3

of

I record 4

1

Figure 2: Inter-record navigation

In comparison to RMDM our approach does not include other inter-record navigation mechanisms.
This is mainly motivated by the fact that the volatile data collections that result from asking queries
are not really special with respect to the inter-record connections: the data collections are always sets
of records. The only special detail that seems appropriate is that the user will be able to specify how
records are displayed on "pages" in the hypermedia environment. In a hypermedia application we can
display one record on one (hyper)page and offer (hyper)links to navigate between such pages. In
practice it is often convenient to display a number of records on one page, if the size of the
representation of the records allows this. We could use this functionality to offer an additional record­
connecting structure: however, we do not address this functionality in this report.

Turning to the intra-record navigation, we use RMDM's "slices" as a way to divide the presentation
of a record in multiple parts such that each part can be presented in a natural and easily
comprehensible manner. Since the presentation of all properties (attributes) of one record on one
hypermedia node (page) often appears not to be feasible because of size restrictions, the designer can
divide the record presentation in separate parts. These slices offer a view on a part of a record. In order
to move the view towards other parts of the record, there is a link structure available that connects the
different slices of a record. These slice links build the intra-record link structure, which is orthogonal
to the inter-record connections used to collect sets of records. The definition of this slice link structure
is determined at the level of relations: all records of a relation share the same intra-record navigation
structure.

hcutl (entry) slice

,",:I j
1r-=-'I-i~C-' -p,-" -, --,

~
I sli<:c: pan 2

Figure 3: Intra-record navigation

Besides specifying the slices of a record and the links between those slices, we have to detennine

5

how these two kinds of navigation, inter-record navigation and intra-record navigation, are connected.
RMDM defines that the slice structure has a head slice, which means that one slice is specified that
becomes visible at the time the user "enters" the presentation of the record: the navigation inside the
record starts from that head slice.

For more details on our exploitation of RMDM's navigation principles, we refer to [Houben & De
Bra 1997].

4. Generation and heuristics
In order to automatically generate a navigation structure for some data we need a fixed routine that

the system follows in order to automatically construct this structure. One general heuristic principle
underlying our approach implies that the navigation structure to be constructed for the query result
depends'on (a) the structure embodied in the data from the query result (using some heuristics) and (b)
on directives that the user explicitly includes in the query specification itself.

So, the generation process considers first the internal structure contained in the data: the implicit
structural relationships within the data serve as a basis for the construction of the navigation structures.
This transformation from implicit structural relationships to navigation structures is based on a set of
heuristics, that at this moment are fixed in the software. In another part of this research we try to
experiment with other sets of heuristics. The current set of heuristics includes rules that for example
promote re-use. Acknowledging the fact that human designers have constructed navigational designs
for some standard queries, as much as possible of this human effort is re-used when for an ad-hoc
query a presentation is generated starting from a standard presentation for a closely associated
standard query.

The current heuristics are described in [Houben & De Bra 1999] in detail: that reference includes a
number of examples. Basically, the heuristics distinguish between three types of queries:

• Single slice queries are queries in which the user asks for information from a single slice of
each of the selected records. There, the heuristics propose to generate a presentation where the
inter-record access structure is borrowed from the underlying base table, and where the intra­
record access structure is accessed from the single slice that is addressed in the query. The
motivation is that the query apparently asks for data from a specific slice.

• Multiple slice queries are queries in which the user asks for information from several slices of
each of the selected records. There, the heuristics propose to generate a presentation where
again the inter-record access structure is borrowed from the underlying base table, while the
intra-record access structure is accessed from the original head slice from that table. Here, the
motivation is that apparently the query asks for information from all over the record, therefore
the (carefully designed) original intra-record access structure seems most appropriate.

• Multiple relation queries are queries in which the user asks for information from multiple
relations within one record, as usually is the case with "joining". The heuristics propose to
generate a presentation where the inter-record access structure is borrowed from the first of the
underlying base tables, while the intra-record access structure between the different base
records is built with an indexed guided tour, and each of these base records is accessed from its
head slice. Here, the motivation is that apparently the query retrieves information from different
hase records: the access structure uses the structures from these original base records to build a
"joined" access structure.

By adding explicit directives, the so-called end-user commands, to the specification of the query the
user can guide the system in overriding the proposal based on the heuristics. In general, we assume
that deviations from the heuristics occur when the user is an advanced user with enough insight into

6

the application and its underlying database to be able to adjust the representation of the query result.
For example, a user can specify that a set of records is accessed through an index and not through the
access structure proposed by the heuristics. While eventually the specification of a query will take
place in a friendly user interface, for the moment we use an extended version of SQL as the language
in which the advanced user is able to specify queries. The extension to SQL facilitates the explicit
design directives added by the user to the original query. It does not mean that in the final setting end­
users must specify their queries and design commands in this extended SQL. Given the characteristics
of the target user group the system will offer the possibility to use a user-friendly Query-By-Example­
like user interface that enables the users to specify the necessary details in a convenient manner.

s. Software Architecture
In this section we start the description of the architecture of the software. The software

environment, bearing the code name HERA, has two main functions.
I. First, it needs to interpret a user query to find the required data in the database. Next, it needs

to present these relational data using hypermedia functionality.
2. In this second step the heuristics and the user's explicit design directives mentioned in the

previous sections are exploited to generate a hypermedia presentation: as stated earlier, in this
report we concentrate on the navigation aspects in this generation process.

In order to facilitate the design and verification aspects of these two steps, we have thus technically
conceived our system as two relatively independent parts, a data manager and a presentation manager.

5.1. Presentation Manager

query

session

presentation
generation

.•
;/

\
\, /

\. /1

.',.,~ .. -.... //
presentation manager

/ \
\

query
management

~etriev(/l

dala
. management /

\'" ---~~ . !

./
/

data manager

Figure 4: Software architecture

The main task of the presentation manager is to take care of the display of data, hence its name. It
presents data to the user, more specifically to the user's browser (in standard HTML pages and forms).
In order to do so, it has to generate a hypermedia presentation for the data to be presented. This means
that the presentation manager receives data to be displayed from the data manager, it generates a
hypermedia presentation for those data on the basis of the heuristics and the explicit design directives,

7

and it sends this presentation to the user's browser.

Secondly, since the presentation manager communicates with the user's browser, it is also made
responsible for the translation of the user input (in the form of HTTP requests) into formal requests for
the data manager. The idea here is that the presentation manager handles all the communication
between the user and the underlying system, while the user is browsing through the hypermedia
presentation that is generated for one query result. This implies that the presentation manager is not
only responsible for the processing of the initially asked question, but that during the browsing process
it is also responsible for the processing of user actions (e.g. mouse clicks) that lead the user to the
presentation of other parts of the same query result. To translate this user input into requests to the data
manager the presentation manager should know the state of the user session, what the original query
has been and what part of the data the user is viewing.

The generation process involves a number of aspects. The heuristics for the navigation structures
have already been discussed, just as the user directives to explicitly override default design
suggestions. The actual layout and styling of the presentations is also part of the presentation
manager's task.

5.2. Data Manager

On the other hand, the data manager translates the formal requests it receives from the presentation
manager into queries to the underlying database. So, the data manager communicates with the DBMS
of the underlying database and asks this DBMS to retrieve data from its database. This communication
involves standard database queries and responses, using JDBC. Subsequently, the data manager
delivers the output from the database to the presentation manager.

The output delivered to the presentation manger represents sets of records retrieved from the
database. In correspondence with our choice to use RMDM's concept of slice as the basic unit of data,
the output is organized in terms of slices. This implies that the output delivered to the presentation
manager contains slice data (for the actual data), lists of slice names (for the links to other slices) and
index data (for the inter-record navigation). So, as the communication between data manager and
presentation manager is realized at the level of slices, actual data values are transferred in terms of
slices. The data manager maintains a cache of retrieved data from which it serves the slices the users
can ask for.

5.3. Presentation

The data displayed by the presentation manager is arranged in frames and subframes. A frame will
typically contain subframes for the actual slice contents, the inter-record navigation and the intra­
record navigation.

• The first subframe is the "data" frame. It displays actual data, representing the attribute values
from the current slice of the current record. This frame is used for the inspection of the actual
data by the user.

• The second subframe is the "inter-record navigation" frame. It presents navigation
mechanisms, for example an index showing a list (set) of records, to allow the user to navigate
to specific records. These records are the result of the user's query, and together they contain
the information the user has asked for. This subframe is meant to facilitate the user in accessing
records from that result set. This inter-record navigation subframe can also contain "next" and
"previous" buttons to realize a guided tour, if that is the chosen inter-record access structure.
As an option (depending on the definitions in the heuristics) an index can be made conditional
in the sense that it will not be shown when it contains not enough items.

8

• The third subframe, the "intra-record navigation" subframe, shows a list (menu) of alternative
slices (of the current record). It allows the user to navigate to those slices, thus accessing other
parts of the same record. The use of the navigational links in this subframe is basically
orthogonal to the use of links in the inter-record navigation frame: this means that the user can
navigate through the slices of a record independently from the navigation through the set of
records. .

• The standard construction of three subframes applies to the queries that ask for records from
one single table. In case of a "join" query, where multiple tables are involved, more subframes
are made to display all the data slices and navigation slices. Basically, the "joined" record is
presented by showing the base records from which the joined record is composed: one base
record from each table participating in the join. Therefore, one data slice (subframe) is used per
base record to display the data from that record, while for every base record there is one intra­
record navigation subframe (to get to its other slices). For the navigation between the
participating base records ("within the joined record"), there are subframes that lead to the
associated base records. Since the default heuristics propose that an indexed guided tour be
used for the association of the records within a join, these subframes will show the links from
an indexed guided tour. Besides that, there will be a subframe for the inter-record navigation
that offers access to the complete set of joined records: according to the heuristics it does so by
offering access to the set of records from the "first" base table, while the other records are
accessible through an indexed guided tour.

Within each of these frames there will be a number of fields, each representing some piece of data,
that need to be arranged into a meaningful layout and presented in an adequate style. As stated earlier
the presentation manager receives the relevant data from the data manager and then uses its own
"intelligence" to produce a presentation format. It decides on the actual format for the presentations by
considering for example the size of the data items and the number of slices to be presented. The
presentation manager can apply certain presentation heuristics to derive a presentation format. In this
report we will not elaborate on the presentation heuristics.

5.4. Sessions

The fact that the presentation manager delivers only part of the query result directly to the browser
implies that in the technical architecture the presentation manager at first only receives part of the
query result (the "first" slice), and that it can subsequently, on the basis of user interaction, ask the
data manager for other parts of the query result (other slices). This so-called session management is
also part of the responsibility of the presentation manager, since we use the presentation manager for
the direct communication with the users. Together with the browsers with which it communicates, the
presentation manager will maintain a context for each client. It will however only be concerned with
the actual contents of slices and indexes, which is primarily left to the data manager, in so far as it
influences their size and style of presentation. Note that since the system is required to concurrently
serve an arbitrary number of users, it should keep user records as limited as possible. If it is necessary
to store user dependent state information, it will do so in a centrally coordinated manner.

The dialogue mentioned above applies whenever a user is browsing though the presentation
generated for a query result. Now, we concentrate on the entire dialogue from the start in more detail.

• When a user starts a session by specifying a question or query, the client will send it as an
HTTP Post request to the presentation manager, which wraps it in an XML object that
represents the session, and passes it to the data manager.

• The data manager retrieves the query, executes it, puts its response in the session object and

9

returns it to the presentation manager.

• The presentation manager will pass this session object back to the data manager with each
request.

• When a request involves a choice through an index for an other record, the state of the
session object is changed to indicate that the chosen record becomes the "current" record
and the data manager returns the record's contents, or rather the contents from the current
slice of this record, contained in the updated session object.

• If the user chooses a different slice of a record, this choice will change the "current slice
type" in the session state: this current slice type represents the slice that is considered the
current one (for all records), The current record will be unchanged: the "focus" shifts to a
different slice, but from the same record.

So, the elements sent from the presentation manager to the data manager are either (initial) queries, or
requests for the same slice but from a different record (instance), or requests for a different slice from
the same record. In some situations the presentation managers deliver the session object to the data
manager to supply the necessary information. In any case, the data manager will in each case respond
by returning the (updated) session object.

5.5. Data Transfer

The architecture has been developed in such a way that the data manager does not send the
complete set of records contained in the query result: it sends only that portion of the query result that
the presentation manager will display, while keeping the rest of the data "in stock". So, the data
manager divides the given query result into navigation information, i.e. lists of record keys for the
indexes, and in subqueries that contain the data for the individual slices and that may be activated
when asked for by the presentation manager. Each time the presentation manager requests a new slice
instance, either the same slice of a new record or a new slice of the same record, the data manager will
adjust the session data (stored in the session object) to reflect the state change.

In addition to the above-described transformation of user requests into pre-defined slices, the data
manager also applies certain heuristics, specially to deal with non-standard user requests. Non­
standard user requests are either converted to standard requests (in accordance with the heuristics) or
non-standard slices are generated for them. The data manager also contains a caching mechanism that
deals with repetitive access to the same data. However, it does not keep track of the state of the
individual sessions in which the system is involved.

5.6. Data Types

All in all, there are four types of data involved in the communication between the presentation
manager and the database manager: three types of requests from the presentation manager and one
type for the session objects that are returned by the data manager and that contain all data relevant to
the presentation manager.

1. Query: The query is passed from the presentation manager to the data manager in a newly created
session object, together with an indication that it concerns a new query. The session object
contains an SQL query string with placeholders for parameters whose value depends on choices
made by the user. The values resulting from these choices are provided alongside the
parameterized query specification.

10

2. Session object: The presentation manager will construct a session object for each separate query.
In addition to the query this session object will contain data representing the current state of the
session. This includes:

• data on the record navigation (a frame containing an index)
• data on the contents (a value frame)
• data on the slice navigation (a slice menu)
• additional data in the case of a join query (optional subframes for data from the joined

records) .
In addition it indicates which record is the currently chosen record (chosen from the index) and
which slice is the currently displayed slice (chosen from the slice menu). For this type of object an
XML DTD has been defined. This allows for an easy storage and retrieval on some background
medium. as well as an exchange over a network.

3. Slice request: An object of this type originates in the presentation manager. It consists of a
number that indicates the level of the request (i.e. the position of the base record in a joined
record) and the name of the slice type that is chosen at that level.

4. Record request: An object of the record request type is passed from the presentation manager to
the data manager. It contains an indication of the position of the base record concerned and a
number indicating which of the alternatives for that record has been chosen.

5.7. Implementation

A session starts with a request from the user. which is translated to a session object by the data
manager. To do this the data manager uses data from the database, which it accesses through IDBC.
After the data manager has returned the session object to the presentation manager, it destroys all
information on that session, and it will only return to this session after the presentation manager has
transferred the session object back for a new request. The presentation manager, upon reception of the
session object, starts to build the presentation. It transfers a rendering of all the relevant subframes in
the form of HTML frames to the browser. The kinds of frames concerned are: an enveloping frame for
each of the base records concerned and within this frame a frame for an index or a set of guided tour
buttons, a frame for the actual data of the base record, a menu frame for choosing alternative slices and
possibly a subframe for a joined base record. These frames have to be passed to the browser one by
one, upon request. Therefore each frame is characterized by a URL which is generated by the
presentation manager. The URLs are constructed in such a way that they allow the presentation
manager to retrieve the relevant session object and to find the required part of it. The layout of the
fields within the frames is implemented using HTML tables or lists. Clickable entities, such as index
elements, guided tour buttons or slice menu entries, each receive a URL in which the details of the
associated requests are encoded.

After the first set of frames has been constructed the user can interact with the system, clicking on
index entries, 'next' or 'previous' buttons, or slice menu entries. The presentation manager receives
this response as an HTTP Get request and translates it into requests to the data manager. Every time
the user chooses a different alternative for some base record, the information for that record and all
successive (joined) base records is updated. A choice for a different slice type at some level results in
updating the record information and the slice menu at that level. A user may start a new session by
going back to the start page of the presentation and make a new choice of parameters for the query
there, whereupon the presentation manager creates a new session object.

For each HTTP request the presentation manager will first decode the URL and then retrieve the
session object associated with the session, or create a new one for a new session. When the request has
originated from a user interaction, the presentation manager will translate it to a data manager request

11

and pass it on. Finally it will build a presentation, adding layout and styles to the data, and return it in
the fonn of HTML pages to the browser.

The data rnanager will, upon receiving a request from the presentation manager, first inspect its
cache in search for the required data. When it doesn't find it, it will insert the query parameters into
the query string and pass this to the database. The returned data will be cached and the part that was
relevant to the request inserted into the session object, which is then returned to the presentation
manager.

The entire system is implemented in JAVA, using the IDBC API for database access, the ISDK
API to create servlets for the communication between the presentation manager and the browsers, and
the SUN Project X XML API for the session object.

6. Conclusion
In this report we have discussed the architecture of a system, called HERA, for the generation of

hypermedia applications for data from a relational database. This generation process uses concepts
from the RMM paradigm. We have sketched the highlights of our approach and we have concentrated
on the software that facilitates this generation process. We have shown that this system's architecture
contains two parts, a data manager and a presentation manager, and we have indicated how the
functionality of the system is distributed over these parts and how they interact. Specifically, we have
shown what data are exchanged and in which order. The result is a flexible and reliable system that
allows us to change parts and protocols very easily without compromising the functionality of the
other parts. The current software will be very useful for the evaluation of different heuristics, for the
generation of both the contents and the presentation of relational data.

7. Acknowledgements

We like to thank Paul de Bra for his contribution to this research and Erik de Kort for his part of the
implementation of the preliminary ideas into the first prototype.

8. References
[Borning et a1. 1997] Borning, A., Marriott, K., Stuckey, P., Xiao, Y. (1997). Solving linear

arithmetic constraints for user interface applications. Proc. ACM Symposium on User Inteiface
Software and Technology.

[Bieber 1998] Bieber, M., Hypertext and Web Engineering, Proc. ACM Hypertext'98, ACM Press,
277-278.

[Diaz et a1. 1995] Diaz, A., Isakowitz, T., Maiorana, V., Gilabert, G. (1995). RMC: A Tool to
Design WWW Applications. Proc. Fourth International World Wide Web Conference, 559-566.

[Elmasri & Navate 1990] Elmasri, R. & Navate, S. (1990). Fundamentals of Database Systems.
The Benjamin/Cummings Publishing Company, second edition.

[Garzotto et a1. 1991] Garzotto, F., Paolini, P., Schwabe, D. (1991). HDM - A Model for the
Design of Hypertext applications. Proc. ACM Hypertext '91 Conference, ACM Press, 313-328.

[Houben & De Bra 1997] Houben, GJ. & De Bra, P. (1997). World Wide Web Presentations for
Volatile Hypennedia Database Output. Proc. WebNet97, the World Conference of the WWW,
Internet, and Intranet, AACE, 229-234.

12

[Houben & De Bra 1999] Houben, 0.1. & De Bra, P. (1999). Retrieval of Volatile Database Output
through Hypermedia Applications. Proc. 32nd Hawaii International Conference on Systems Sciences,
IEEE Computer Society, CD-ROM.

[Isakowitz et al. 1995] Isakowitz, T., Stohr, E., Balasubramanian, P. (1995). RMM: A
Methodology for Structured Hypermedia Design. Communications of the ACM, 38 (8), 34-44.

13

Computing Science Reports

In this series appeared:

96/01

96/02

96103

96/05

96/06

96/07

96/08

96/09

96/10

96/11

96/12

96/13

96/14

96/15

96117

96118

96/19

96120

96/21

96122

96/23

96124

96/25

97/02

97/03

97/04

97/05

97/06

97/07

97/08

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

T. Basten and W.M.P. v.d. Aalst

W.M.P. van dec Aalst and T. Basten

M. Voorhoeve

ATM. Aerts. P.M.E. De Bra,
l.T. de Munk

F. Dignum, H. Weigand, E. Vcrharen

R. Bloo, H. Geuvers

T.Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H,}. Bos and M.A. Reniers

M.A. Reniers and 1.1. Vereijken

E. Boiten and P. Hoogendijk

P.D.V. van def Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.e.A. van de Graaf and G.l. Houben

W.M.P. van dec Aalst

M. Voorhoeve and W. van dec Aalst

M. Vaccari and R.C. Backhouse

J. Hooman and O. v. Roosmalcn

J. Blanco and A. v. Deursen

J.C.M. Baeten and l.A. Bergstra

J.CM. Baeten and J.1. Vereijken

M. Franssen

J.eM. Baeten and l.A. Bergstra

P. Hoogendijk and R.c, Backhouse

Department of Mathematics and Computing Science
Eindhoven University of Technology

Process Algebra with Autonomous Actions, p. 12.

Muhi-User Publishing in the Web: DreSS, A Document Repository Service Station,
p.12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

StructuraJ Petri Net Equivalence, p. 16.

0008 Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nupel and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in ModaJ Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time constraints,
p.71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent
Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time,
p.26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs' an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The LanguageJAction Perspective. p. 147.

97/10

97/11

97/12

97/13

97/14

97/15

97116

97117

97118

98/01

98/02

98/03

98/04

98/05

98/06

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp, E.J. Luil. D.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van der Aalst

W.M.P. van der Aalst

J.F. Groote, F. Monin and
I. Springintveld

M. Franssen

W.M.P. van der Aalst

M. vaccari and KC. Backhouse

Werkgemeenschap lnformatiewetenschap
redactie: P.M.E. De Bra

W. Van der Aa1st

M. V oorhoeve

J.C.M. Baeten and J.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.J. Dielissen

Distributed reaJ-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p. 30.

WOA..AN: A Petri-net-based Workflow Analyzer, p. 30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p.28

AP-: A Pure Type System for First Order Loginc with Automated
Theorem Proving, p.35.

On the verification of Inter-organizational workflows, p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Imerdisciplinaire Conferentie
Infonnatiewetenschap, p. 60.

Fonnalization and Verification of Event-driven Process Chains, p. 26.

State 1 Event Net Equivalence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. IS.

Pair Algebras and Galois Connections, p. 14

Flat Fragments of CTL and CTL *: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Interva1s on a Line Revisited, p. 10.

98/07 Proceedings of the workhop on Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM'98)
June 22, 1998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

98/08 Informa1 proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology ,13-15 July 1998

edited by R.C. Backhouse, p. 180

98/09 K.M. van Hee and H.A. Reijers An analytica1 method for assessing business processes, p. 29.

98/10 T. Basten and J. Hooman Process Algebra in PVS

98/11 J. Zwanenburg The Proof-assistemt Yarrow, p. 15

98112 Ninth ACM Conference on Hypertext and Hypennedia
Hypertext '98

98/13

98/14

99/01

99/02

99/03

99/04

Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypermedia.

J.F. Groote, F. Monin and J. v.d. Pol

T. Verhoeff (artikel voigt)

V. Bos and J.J.T. Kleijn

H.M.W. Verbeek, T. Basten
and W.M.P. van der Aa1st

R.C. Backhouse and P. Hoogendijk

S. Andova

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutoria1 at CONCUR'98, p. 27.

Structured Operationa1 Semantics of X • p. 27

Diagnosing Workflow Processes using Woflan, p. 44

Final Dia1gebras: From Categories to Allegories, p. 26

Process Algebra with Interleaving Probabilistic Para1lel Composition, p. 81

99/05 M. Franssen. R.C. Veltkamp and
W. Wesselink Efficient Evaluation of Triangular B-splines. p. 13

99/06

99/07

99/08

99/09

9971U

99/11

99/12

99/13

99114

99115

T. Basten and W. v.d. Aalst Inheritance of Work flows: An Approach to tackling problems related to change. p. 66

P. Brusilovsky and P. De Bra Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web, p. 119.

D. Bosnacki, S. Mauw, and T. Willemse Proceedings of the first international syposium on Visual Fonnal Methods - VFM'99

J. v.d. Po!, J. Hooman and E. de Jong Requirements Specification and Analysis of Command and Control Systems

T.A.c. Willemse The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed
If CRL. p. 44.

J.C.M. Baeten and c.A. Middelburg Process Algebra with Timing: Real Time and Discrete Time, p. 50.

S. Andova Process Algebra with Probabilistic Choice, p. 38.

K.M. van Hee, R.A. van der Toorn.
J. van der Woude and P.A.c. Verkoulen A Framework for Component Based Software Architectures, p. 19

A. Engels and S. Mauw Why men (and octopuses) cannot juggle a four ball cascade, p. 10

J.F. Groote, W.H. Hesselink, S. Mauw, An algorithm forthe asynchronous Write-All problem based on process collision*,
R. Venneulen p. 11.

	Abstract
	1. Introduction
	2. Automatic Hypermedia Presentation Design
	3. Navigation
	4. Generation and heuristics
	5. Software Architecture
	5.1 Presentation Manager
	5.2 Data Manager
	5.3 Presentation
	5.4 Sessions
	5.5 Data Transfer
	5.6 Data Types
	5.7 Implementation
	6. Conclusion
	Acknowledgements
	References

