

Viper : a visualisation tool for parallel program construction

Citation for published version (APA):
Schiefer, R. (1999). Viper : a visualisation tool for parallel program construction. [Phd Thesis 2 (Research NOT
TU/e / Graduation TU/e), CERN]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR526980

DOI:
10.6100/IR526980

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR526980
https://doi.org/10.6100/IR526980
https://research.tue.nl/en/publications/58daa096-8e8b-4515-ae25-fcb2d51c11a0

Viper, a Visualisation Tool for Parallel
Program Construction

PROEFONTWERP

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op 14 december 1999 om 16.00 uur

door

Rene Schiefer

geboren te Rotterdam

Dit proefschrift is goedgekeurd door de promotoren:

prof.ctr. P.A.J. Hilbers
en
prof.ctr. R. W. Dobinson

Copromotor:
dr. P.D.V. van der Stok

Stan Ackermans Instituut, Centrum voor Technologisch Ontwerpen.

The work in this thesis has been carried out under the
auspices of CERN, the European research laboratory
for high energy physics.

Print: Universiteitsdrukkerij Technische Universiteit Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Schiefer, Rene

Viper : a visualisation tool for parallel program construction I
by Rene Schiefer. - Eindhoven: Eindhoven University of Technology,
1999.
Proefontwerp. - ISBN 90-386-0711-3
NUGI 859
Subject headings: parallel computer systems I high energy physics I
software systems
CR Subject Classification (1998) : D. 1 .3, C.1.2, D.2.6, D.2.5, J.2

Viper. a Visualis.a1ion Tool for Para\ kl Program Cnnstruction

Table of Contents

Preface 3

Chapter l
Outline of the thesis 5

Chapter 2
Project background , 9
2.1 Some aspects of parallel computing 9

2.2 Computing requirements in High Energy Physics I 3

2.3 The Mona Lisa parallel programming paradigm 16

2.4 Visualisation tools 20
2.4. I Developing a correct parallel program 21
2.4.2 Developing a high performance parallel program 23
2.4.3 Differences between visualisation tools 23
2.4.4 Description of ParaGraph 24

Chapter 3
Design approach and first specification 29
3.1 Design approach... 29

3.2 Viper's first prototype: the specification 30
3.2.1 Viper 's output 32
3.2.2 Viper 's input 35
3.2.3 Operational specification 43

Chapter 4
Building the first Viper prototype 45
4.1 The essential model................................ 45

4.1. 1 Functional view of the essential model 45
4.1.2 Dynamic view of the essential model 49

4.2 Using the existing trace message strucrure .. .51

4.3 Choosing a graphical user interface development tool 52

4.4

4.5

4.6

Chapter 5

The on-line interface between Mona Lisa and Viper 54

Viper's software architecture 54
4.5.1 About objects and classes 55
4.5.2 Viper's object model. 56

Evaluation of the first prototype 59

Viper's subsequent prototypes 61
5.1 Moving away from logical clocks. 61

5.1.1 The construction of sequence and module lists 64
5.1.2 The algorithm of primitive list construction 67

5.2 Wall clock time of the observer process versus 'global system time' 70

5.3 Implications for Viper's design...... 72

5.4 Viper's third prototype............................... 75
5.4. l Adoption of the PJCL trace message format.. 75
5.4.2 Implementation of the on-line connection... 76
5.4.3 Implementation of Viper's trace file expon facility 77

Viper. a Visualisation Tool for Parallel Program Construc1ion

Chapter 6
Application of Viper to high energy physics image reconstruction software79
6.1 The CPREAD case study background .. ,. 79

6.2 The CPLEAR experiment... 80

6.3 Structure of the CPREAD program 81

6.4 Investigation of potential parallelism ... 83
6.4.1 Applicability of algorithmic and data parallelism 84
6.4.2 Projected performance improvements of CPREAD 85

6.5 Investigation of implementation ... 87
6.5. l Development approach 88
6.5.2 Porting CPREAD 89
6.5.3 Code decomposition 89
6.5.4 Data organisation 90

6.6 Parallel track fitting 91
6.6. l Running the parallel track fitting program 92

6.7 Discussion on high energy physics aspects 96

6.8 Discussion on Viper and Mona Lisa aspects 98

Chapter 7
Application of Viper in a study of large switching networks 101
7. I The Macrame project background .. I 0 I

7 .2 The concept of customisation I 03

7.3 The Macrarne network .. 105

7.4 The Viper specification for Macrame I 07
7.4.1 Viper's output .. 108
7.4.2 Specification of trace message types ... 112
7.4.3 Performance improvement 113

7.5 Design implications for Viper .. 114
7.5.1 Vipercustomisation 114
7.5.2 Adaptation of the animation view 115
7.5.3 Animation view setup files 115

7.6 Results 116

Chapter 8
Discussion and conclusion .. 117
8.1 Viper 117

8.2 CPREAD case study 119

8.3 Evaluation of Mona Lisa 119

8.4 Evaluation of the design process 119

8.5 Conclusion 120

Appendix A
A Mona Lisa program example .. 121

Appendix B
Module setup file syntax ... 123

Summary 125

Samenvatting 126

Acknowledgements ... 127

Curriculum Vitae ... 128

References .. 129

Index .. 132

Viper. a Visualisation Tool for Parallel Prngr<.im ConslrLil'tion

Preface

In 1993, the Institute for Continuing Education of the Eindhoven University of Tech­
nology (now called the Stan Ackermans Institute, SAI) started a stimulation program
for designers theses ("promotie op proefontwerp"). Through this program, a number of
final projects from the two-year post-masters programmes in technological design were
funded to enable a two-year extension. It was then considered that the resulting time
scale of two years and 9 months was in principle sufficient to produce results that
would merit a PhD.

The project described in this thesis is one of these projects and started off as the first
OOTI 1 graduation project abroad. CERN, the European research laboratory for high
energy physics, situated between Geneva and the Franco-Swiss border, acted as
employer in this project. The work has been performed at the laboratory over the
period March '93 - January '96 and has been jointly funded by the SAi and CERN.

Although the role of the thesis in a designers PhD is still a topic of discussion, a
number of requirements have been identified as described in [Bco94]. The main pur­
pose of the thesis in this context is to provide a description of the project result ("prod­
uct"), and of the design process that has led to this result, i.e. which design alternatives
and choices have played a role in the development process. This is in contrast with the
"traditional" thesis, where more emphasis is put on fundamental issues.

In this project a variety of topics have influenced the design process. On the one hand
we have the complexities and dynamics of visualisation of parallel processing - an
ongoing area of research to which this project contributes. On the other hand we have
the inherent complexities that computing in high energy physics is faced with.
Although we will touch upon many of these aspects, a thorough discussion of all of
them is not possible within the scope of this thesis.

Furthermore, we have tried to find a balance between completeness and relevance in
the description of the design process. This means that we address bottlenecks - i.e.
important issues, but not every small detail. To allow for the above whilst not jeopard­
izing the homogeneity and readability of the thesis, we sometimes had to adopt a rather
"loose" style of writing. Nevertheless, the following chapters provide a concise
description of the Viper project, both in terms of project result and development proc­
ess.

1. Ontwerpers Opleiding Technische Informatica, loosely translatable as Designers Programme for Soft­
ware Technology.

Viper, a Visualisation Tlx1l for Parallel Program Construl.'.tion

Vi~r. a Visua!i saiion Tool (or Paralk:I Prngram Cons1ruc1ion

Chapter 1

Outline of the thesis

The potential benefits of para I lel computing in high energy physics (HEP) is a topic of
ongoing research. Visualisation tools assist the software developer in managing and
reducing the complexity of (parallel) program development. The subject of this thesis
is the design of a visualisation tool for parallel program construction. One of its appli­
cations is the parallelisation of existing image reconstruction software in high energy
physics.

Over the last decades, parallel computing has been a vigorous area of research, both
generally and specifically aiming at high performance computing. As a result, a variety
of machine architectures, programming languages, operating systems, tools and appli­
cations that support parallel computing are currently commercially available. However,
a general recipe for the design of a parallel program based on a given specification
does not (yet) exist. The Viper tool supports an improvement of the design process of
parallel programs.

The fact that para] lei computing is not a consolidated area is witnessed by a severe lack
of standardisation in both hardware and software. Examples are the proprietary proces­
sor interconnections and the lack of standard software development tools. Standards
such as MPI and HPF do exist, but are only just emerging. Ongoing research activities
as in the ESPRIT 1 programme address, amongst other issues, the ease of exploitation
of parallel computers.

In the high energy physics community, the potential power of parallel machines has
generated great interest [Pea93]. The performance requirements on the software sup­
porting HEP experiments is continuously increasing. For future CERN2 experiments,
e.g. to be carried out at the Large Hadron Collider (LHC), computing needs will
increase by up to three orders of magnitude [Map93) . Parallel computing will be used
to meet these demands. Amongst other developments and collaborations with indus­
trial partners, research into parallel computing is carried out via ESPRIT projects. This
includes the GP-MIMD P5404 project, the context in which this work has been per­
formed.

The main goal of the GP-MIMD project has been to build a parallel machine on which
to run parallelised applications [Gpm94]. One of the underlying aims is to investigate
and demonstrate the potential benefits of parallel computing for existing HEP applica­
tions. The applications developed at CERN deal with data-acquisition, real-time deci­
sion making, simulation and image reconstruction. The enormous amount of HEP

I. European Strategic Programme for Information Technology

2. CERN is one of the major HEP research centres in the world

6 Viper. a Visuali sation Toni for Parnlkl Pmgrnrn Consirut'lion

software that has been developed sofar represents an investment of hundreds of man­
years. On the whole, these applications are written in Fortran77. This is a relatively old
language and does not have the expressive power and structure to allow for a simple
transition to parallel machines.

High Performance Fortran (HPF) [Koe94] is a successor of Fortran77 which does pro­
vide constructs to express parallelism, but the evolution of the language constructs has
been at the cost of compatibility between Fortran77 and HPF. Therefore, the transfor­
mation of existing Fortran77 software to HPF for execution on a parallel machine does
not present a viable option, given the amount of re-engineering required .

The term parallel programming paradigm is generally used to refer to a framework for
designing parallel programs. Within GP-MIMD a programming paradigm called Mona
Lisa [Schn93] has been developed, specifically designed to provide the functionality
needed for constructing parallel HEP applications. This paradigm allows a large part of
the Fortran77 software to be maintained in its present form while migrating sequential
applications to parallel machines.

Developers of parallel software are faced with a complexity of program behaviour that
goes beyond that of sequential programming. A parallel computation can be considered
as a collection of co-operating (sequential) sub-computations that proceed in parallel
and interact to produce the desired result. The higher the performance requirements,
the higher the degree of parallelism that has to be introduced in the computation, and
the more complex the interaction patterns become 1• The interaction pattern need not be
deterministic, i.e. subsequent executions of the same program may follow a different
interaction pattern.

The interaction pattern is of interest to us for two reasons. Firstly, it is a potential
source of programming errors, as the interaction pattern is often explicitly designed by
the programmer2. Especially in the case of non-deterministic interaction, the program­
mer must take care that the interaction pattern eventually chosen during program exe­
cution does not produce undesirable program behaviour, such as producing the wrong
result or no results at all. Secondly, the interaction pattern can reveal the limitations of
the amount of parallelism that actually occurs in the execution. Sequential sub-compu­
tations interact because of data dependencies and a sequential sub-computation can be
stalled temporarily when the requested data is not yet available. The more sub-compu­
tations are stalled, the less parallelism is effectively present, and the longer tbe overall
computation takes to complete. Optimising the interaction pattern therefore plays an
important role in the performance tuning of a parallel application.

Hence, the visualisation of interaction patterns is an important support tool in the con­
struction of parallel programs. The tools that emerge as a result of research in this area
help programmers to debug parallel programs and tune their performance. At the basis
of these activities lies a program's event history: data recorded during the program's
execution for debugging and/or performance evaluation purposes. The tool's task is to
present this often large amount of data in graphical form to allow the user to deal with
its complexity. To support the development of Mona Lisa programs, the Viper visuali­
sation tool has been designed.

1. This is only true for non-regular interaction patterns. In the case of grid structures, the complexity of
the interaction pattern remains constant as we increase the degree of parallelism.

2. There are also cases as described in Section 2.1, where the interaction pattern is generated by a tool.

Vi per. a Visuali sation Tool for Parallel Program Construction

Parallel computing has been introduced successfully in HEP, the most notable example
being the so-called event farming technique (see Section 2.2). However, there is still a
large amount of potential parallelism at a finer level (i .e. within the event analysis) that
is currently not being exploited. This is because of the significant controversy that
exists regarding the benefits and exploitability of this parallelism: many people believe
the benefits do not weigh up against the programming effort. In an attempt to quantify
some aspects of this qualitative discussion (how much benefit can we get for how
much effort) we investigated a representative HEP application called CPREAD.
CPREAD is the event image reconstruction package of the CPLEAR experiment at
CERN.

CPREAD's potential for parallelisation in unexplored areas has been evaluated using
Viper and Mona Lisa. We concluded that a strategy of minimal code change limits the
amount of parallelism that can be introduced and gives only a small gain in reconstruc­
tion time. Higher gains would have to come progressively from significant code rewrit­
ing. The overall conclusion is therefore that future HEP applications provide a more
profitable area for parallel computing where the parallel perspective can be taken into
account at an early design stage.

The use of Mona Lisa in designing a parallel CPREAD version has been successful.
The communication performance of the paradigm's current implementation however,
proved to be disappointing when the parallel execution was analysed with Viper. As a
result, Mona Lisa communications have been replaced by message passing operations
that better exploit the machine architecture. This demonstrates an important issue: vis­
ualisation tools are severely restricted in usage if only a single paradigm is supported .

Various visualisation tools have already emerged over the years [TU94]. However,
most of these tools have a restricted application domain. They either address a specific
programming paradigm, are machine oriented as opposed to paradigm oriented, or
operate correctly only under specific conditions. The Viper visualisation tool has been
developed addressing the following issues: the consistent observation of a parallel
computation; support of programming paradigms with a high level of abstraction; and
paradigm independent design . The latter is illustrated by the tool's use in a completely
different context from Mona Lisa: the investigation of traffic patterns in very large
switching networks (>1000 nodes) within the Macrame ESPRIT project [OMI95].

The following chapters will go deeper into the design issues of Viper, its effectiveness
in meeting its design goals, and other aspects of the work carried out. The thesis struc­
ture reflects Viper 's evolution in the design process. Chapter two describes the envi­
ronment in which the project has been carried out. Following a discussion on the
contribution of visualisation tools to parallel program development, we conclude with
the rationale for developing Viper. Viper 's design is extensively described in chapters
three, four and five. Chapter six is a validation chapter. First, we discuss the scope for
parallelisation of existing image reconstruction applications in high energy physics,
examining CPREAD. Then, we analyse the extent to which Viper and Mona Lisa have
contributed in this and have met their design goals. Chapter seven is devoted to Viper's
detachment from Mona Lisa, and its application in the Macrame project. Finally, chap­
ter eight provides the conclusion of this thesis.

Viper. H Visualisation Tool for Parallel Program Construction

2.1 Som~ aspects of parallel computing

Chapter 2

Project background

This chapter gives some background information to describe the context in which the
work has taken place. Firstly, some aspects of parallel computing are introduced which
are relevant to this thesis. Secondly, an introduction to the computing requirements
within high energy physics is given, showing where parallel computing is of interest.
Thirdly, we introduce the Mona Lisa programming paradigm that was designed to sup­
port the introduction of such parallel computations. Finally, we describe how visualisa­
tion tools such as Viper support the development of parallel programs, and particularly
Mona Lisa programs. The chapter concludes with the rationale for developing Viper,
initial aims and external constraints as identified at the beginning of the project.

2.1 Some aspects of parallel computing

The essence of a parallel computer is the presence of multiple processors that can work
together on one computation . The programmer strives for an efficient execution of this
computation to achieve the shortest overall execution time. This includes the desire
that each processor can proceed with its part of the computation without interruption as
much as possible. In particular, the computations on the different processors should be
as independent as possible, to reduce the amount of data exchange between processors
to a minimum.

Data exchange between processors can be point-to-point (one source, one destination)
or broadcast (one source, many destinations) based. Point-to-point data exchange can
be initiated by either processor at any time, but can only be completed when this data is
actually available (calculated). If data is requested at a time when the other computa­
tion cannot yet deliver, the computation that initiated the request is stalled. Further­
more, even if computations are fully synchronised and data is always available,
communication delays can still cause a processor to stall.

On parallel machines where the communication has to be dealt with explicitly by the
processor itself (as opposed to special purpose hardware), there is an additional disad­
vantage associated with inter-processor communication: any time a processor spends
on communication is not spent on computation.

We will now look at a parallel machine's hardware architecture and how the issue of
communication is addressed here . For a comprehensive overview of parallel computer
architectures we refer to [Cul99]. In this thesis we focus on the main class of parallel
computer architectures, the Multiple Instructions Multiple Data (MIMD) architecture .
With this type of architecture each processor has its own set of instructions to carry out
on its own data. The computer memory (that contains the instructions and data for each
processor) can either be shared by all processors, or distributed, such that each proces-

10 2.1 Some aspects of parallel computing

sor has its own local memory. In the latter case, processors can only get access to non­
local memory via an additional interconnection structure.

processors D memory

shared memory distributed memory

FIGURE I. 1\vo types of parallel computer architectures

The shared memory architecture allows each processor to access any part of the mem­
ory directly. As processors can use the memory to exchange data, the cost (delay) asso­
ciated with inter-processor communication is comparable with that of memory access.
This is not the case for the distributed memory, where non-local memory access has to
make use of a separate interconnection structure. Here, the cost of inter-processor com­
munication (non-local memory access) can significantly exceed that of local memory
access. The performance penalty depends on latency and throughput characteristics of
the interconnection structure, and whether this structure allows direct access to the
non-local memory, or only indirectly via the owning processor.

The primary disadvantage of a shared memory architecture is its limitation to a small
number of processors. The main scalability bottleneck with this type of architecture is
the interconnection between memory and processor (for example a shared bus), a
resource shared by all processors. As the number of processors in the system increases,
contention between processors because of simultaneous memory access can lead to
excessive stalling and hence performance degradation .

Large scale shared memory architectures also pose an interesting engineering problem.
The physical size of a large number of processors prohibits a short communication path
between processor and memory. Given the speed of an electrical signal (30 cm per 10
ns ., a typical clock cycle time corresponding to a lOOMhz clock), this means that mem­
ory access times increase drastically, destroying the processing speed of the individual
processors and thus killing the overall computing performance of the machine 1. The
distributed memory architecture does not have the above mentioned scalability prob­
lems. Current parallel machines of this type, such as the Intel Paragon system, have
been built comprising up to 6,768 processors.

Distributed memory machines can be looked upon as more difficult to program
because of the separate address space per processor, but current technological develop­
ments have already provided distributed memory machines that appear to the program­
mer as a (virtual) single address space, supported through dedicated hardware that
implements a non-local memory access as a Direct Memory Access (DMA) data trans-

I. Although this argument may grossly overlook techniques such as caching and pipelining, it does illus­
trate the engineering problem.

2.1 Some asp«ts of parallel computing II

fer. These machines are said to have a Non-Uniform Memory Access (NUMA) archi­
tecture because access times range from fast for a OMA transfer to very fast for a local
cache access .

As far as programming parallel computers is concerned, two fundamental types of
computational models can he identified : algorithmic parallelism places the different
tasks within the parallel program on different processors; data parallelism involves the
partitioning of data rather than code. An intuitive example of data parallelism in every­
day life is the supermarket, where multiple cash registers are used lo handle one dataset
(the supermarket's clientele) so that the average queuing time of a customer remains
acceptable . In car manufacturing, algorithmic parallelism is applied at the production
line: multiple workers assemble cars in parallel lo increase production throughput 1•

With data parallelism, the algorithm that is normally used to process the data sequen­
tially, can sometimes simply be replicated over multiple processors, such that each
instance works on a local data partition. One speaks of farming if there are no computa­
tional dependencies between instances, otherwise the term geometric parallelism is
used [Hey89].

The fanning model will re-appear in the next chapters, so we will explain this model in
more detail. With farming, a master-slave configuration can he used for workload dis­
tribution and result collection, as illustrated in Figure 2. Farming is a popular model
because of its simplicity and the mechanisms it provides for achieving good perform­
ance. Firstly, extra parallelism can be introduced by adding extra slaves, as long as the
number of jobs is large enough. Secondly, as slaves can work completely independ­
ently from each other, the main issue in minimising the overall execution time is mak­
ing sure all slaves get the same amount of work so that they finish around the same
time (called load balancing). One load balancing technique is distributing jobs on
request a slave that gets large jobs will ask for a new job less frequently than a slave
that gels small jobs .

dataflow _.

FIGURE 2. The farming computational model

Restructuring tools (compilers) can analyse a sequential program, detect potential par­
allelism and apply the appropriate transformations to obtain a parallel execution. Not
only does this alleviate the programming effort for new applications, it also allows par­
allelisation of existing sequential applications, without any need for modification.

I. These useful analogies and others that turn parallelism from an abstract concept into an everyday life
reality can be found in [Hil95].

12 2.1 Some aspects of parallel computing

Significant progress has been made in building parallelising compilers [ZC9J]. How­
ever, fully exploiting parallelism using this approach remains difficult. Due to the
amount of analysis involved, compilers often have to use approximating heuristics in
their dependency analysis. Also, the way sequential code is written can introduce
(unintentional) dependencies. Finally, the compiler sometimes lacks the information
required to decide on optimal parallelisation (for instance because parameters are only
known at run-time). This limits the speed-up obtainable via automatic parallelisation.

If a programmer is not satisfied with the performance increase of automatic parallelisa­
tion, he can decide to explicitly introduce parallelism in the program design. The pro­
gramming language then has to provide constructs that express parallelism, and
support the interaction (data exchange) between the sequential components, preferably
in the form of high-level primitives. Traditional languages such as Fortran77 do not
provide these.

The advent of parallel computers has introduced new languages, specifically designed
for parallel machines. One example is Occam [Inm93], a programming language based
on Hoare's CSP [Hoa86] and designed for the Transputer. Although a new parallel lan­
guage may provide a coherent approach to programming parallel machines, there are
some clear disadvantages if the new language does not conform well to existing lan­
guages. A more natural approach is to extend sequential programming languages with
new constructs that express parallelism. We will discuss three examples.

High Performance Fortran (HPF) is an extension of Fortran 90 [Koe94]. Whilst design­
ing a single sequential program, the programmer indicates with hints (incorporated in
the program text) how the compiler can exploit parallelism. These hints define abstract
processors and data distributions of data structures (for instance matrices) over these
processors. This provides the programmer with an elegant means of defining computa­
tional models of the data parallelism type. It is up to the compiler to decide how
abstract processors are mapped to physical processors, depending on the number of
processors available. In the ultimate case all abstract processors could be mapped to
one physical processor, resulting in a sequential application.

Parallel Virtual Machine (PVM) [Gei93/J] provides a set of message passing primi­
tives for sequential languages such as C and Fortran. Using this approach, the program­
mer writes multiple sequential programs, that together make up the parallel program.
The interaction between sequential programs occurs through the use of the send and
receive primitives. This approach is evidently inspired by the distributed memory
architecture where processors have to communicate with each other in order to gain
access to non-local memory. An important limitation within PVM is the 'single process
per processor' model. This means that the paradigm does not allow a mapping of mul­
tiple sequential programs onto the same physical computing node. PVM is only one
instance of a whole class of message passing paradigms, and recent standardisation
work has culminated in the Message Passing Interface standard (MPI).

The concept of Linda [CG90] is more closely related to the shared memory architec­
ture. The Linda paradigm uses a common data pool called the tuple space. Sequential
programs cannot interact directly but have to use the tuple space. The source places the
data to be communicated in the tuple space using the out primitive. Once the data is in
the tuple space, any correlation with the source is lost. The destination can extract the
data from the tuple space by specifying a format or matching content in an in primitive.
Linda's communication mechanism decouples the source and destination completely

2.2 Comruting requirements in High Energy Phy si..;s

and provides a high level of abstraction . However, the decoupling of source and desti­
nation is not always convenient: sometimes it is useful to know where the data is com­
ing from . This has to be done by tagging the data explicitly with a source identifier.

In this section we have discussed a number of languages (and language extensions)
with constructs to express parallelism. These constructs detennine how the modules of
a parallel program are defined and how they interact from the programmer's point of
view. The model that a programmer uses within a given programming language to
express parallelism is commonly referred to as a parallel programming paradigm. A
useful classification of parallel programming paradigms is given in [Schn93].

To summarize this section, a programmer uses a parallel programming paradigm to
apply a parallel computational model to the computation task at hand , so that high per­
formance parallel machines can be used to obtain a solution in a reasonable timespan.
One of the areas where high performance computing is frequently used, is high energy
physics. The next section will provide a global introduction into the computing activi­
ties at CERN, and the current and future use of parallel computing at this institute in
particular.

2.2 Computing requirements in High Energy Physics

High energy physics (HEP) studies the behaviour of elementary particles, the constitu­
ents of matter. This is done empirically using accelerators, in which particles are accel­
erated to increase their energy and subsequently collide with other particles. The
collision produces a set of new particles that are scattered into various directions, pos­
sibly decaying into other particles. The trajectory of a particle is called a track. The set
of particles and their tracks that result from one collision is called an event. In any
experiment, the events generated that are of interest need to be recorded on a mass stor­
age medium (e.g. tape) for analysis purposes.

Events are observed and registered with detectors. As a particle passes through detec­
tor material , it leaves traces that, with the help of electronics, can be translated into so­
called raw event infonnation: particle positions (hit patterns) that indicate a possible
track, and indicators for the presence of a particle of a certain type (particle signature).
However, a complete description of involved particles and their trajectories (the event
image) is only obtained after considerable data treatment, a process called event
(image) reconstruction.

Between raw event data production and physics analysis of events, a complicated proc­
ess of data reduction takes place. Not all raw data represents interesting events, and the
data quality may sometimes be too low to allow full event reconstruction . Such events
are rejected (filtered out) as soon as possible, preferably before writing data to tape to
reduce storage cost and unnecessary data management. It is important to realize though
that the physicist wants to keep as much of the data as is reasonably possible.

Event data reduction is based on the application of rejection/acceptance criteria
(referred to as a trigger), for example the presence of a particular particle. These crite­
ria can often only be applied after some event reconstruction has taken place; e.g ., to
recognise a particle we need to know its mass , which is derived from speed and
momentum, etc . Therefore , data reduction and event reconstruction go hand in hand .

14 2.2 Computing requirements in High Energy Physics.

To illustrate the computing requirements for future experiments at CERN, we will dis­
cuss the ATLAS 1 experiment in more detail [Atl94]. Within the ATLAS detector, one
bunch crossing occurs every 25 ns. A bunch can be described as a cloud of accelerated
particles, and when two bunches moving in opposite directions are crossed, particle
interactions occur. Each bunch crossing produces 20 to 30 overlapping events, result­
ing in an event rate of I GHz, or 109 events per second! This high event rate is required
for two main reasons. If the experiment's goal is to produce a rare event, a high interac­
tion rate is required to find the event within a reasonable timespan. Furthermore, to
obtain statistically meaningful results on measuring small effects one needs large data
samples, hence again a large number of events.

The raw event data size will be in the order of I MB. The ATLAS experiment is to be
equipped with an VO infrastructure that allows a data storage rate up to I 00 MB/s, thus
enabling the experiment to keep the 100 "best" events each second. Despite the huge
data recording rate of I 00 Mbyte per second, there is still a data reduction factor of I 07

to be achieved, as 109 events are generated each second. The full event reconstruction
that implements this data reduction, is estimated to take in the order of 1 s processing
time for a single event, orders of magnitude more than the bunch crossing interval time
of 25 ns. Both the amount of computing power and data transfer bandwidth required
imply parallel and distributed processing of the event data in the process of real-time
event filtering.

The ATLAS trigger system implements a so-called multi-level trigger. The current
design is composed of three subsequent stages. Trigger level I is an integral part of the
detector, implemented in dedicated hardware, and taking in data from over 10,000
channels. The implementation in dedicated hardware is necessary because of the tim­
ing demands: a decision on whether or not an "interesting" event has taken place has to
be made within nanoseconds. The main task of the level I trigger can be summarised as
twofold: I) retain detector read-out data for further analysis (the detector itself is a
memory-less device!) and 2) discard uninteresting events so that the remaining event
rate is low enough to be input to trigger level 2, a distributed network of micro-proces­
sors.

The micro-processors of trigger level 2 run reprogrammable algorithms to perform
additional event rate reduction. Whereas the design emphasis for level I is on speed,
the design for level 2 is concerned with flexibility (reprogrammable components) and
cheaper commodity components (as opposed to custom built hardware). The full input
data rate of 100 GB/s for level 2 (corresponding to a JOO KHz event rate) would put too
much strain on the data network that collects data from the output buffers of level I and
distributes it to the level 2 processors. For this reason, the level 2 trigger reads in and
examines only the data associated with so-called regions of interest (i.e. those parts of
the detector that have been identified by level 1 as containing interesting information).
The analysed data amounts to -5% of the total data. Level 2 further reduces the event
rate by a factor I 00.

If the level 2 trigger decides not to reject an event, all event data (-1 MB) is transferred
to trigger level 3: a processor farm of commodity micro-processors, performing full
event reconstruction at a rate of I KHz. This farm selects the best events (100 per sec­
ond) and writes them to tape.

I. ATLAS is one of the experiments of the future Large Hadron Collider accelerator ring at CERN.

2.2 Compu1ing rcquiremcnis in High Energy Physics I~

Apart from experimental analysis, a substantial amount of simulation work is carried
out within HEP. Monte Carlo event simulation is used to verify the physics models of
particles and cross check their predictions with the particle behaviour as observed in
experiments . This type of simulation is also used lo optimise detector design, and in
combination with cross checking experimental results, allows detector performance
monitoring .

Monte Carlo event simulation is essentially the inverse process of event reconstruction.
The simulation input is based on a description of the event type. Using models of parti­
cle behaviour and the detector materials, as well as the detector's geometry description,
the simulation produces a potential detector read out (raw event data). Although detec­
tor geometries differ from experiment to experiment, the models for particle and detec­
tor material behaviour are common lo all experiments. This has stimulated the
development of a standard core simulation package cal led GEANT [Gea95]. Using the
GEANT program library, a simulation program for a particular experiment can be pro­
duced with reduced development effort.

Apart from the above mentioned event-oriented computing activities, there are also
other activities that rely on high performance computing. We mention here accelerator
simulation and theoretical HEP computing such as quantum chromodynamics (QCD).
However, event data analysis and Monte Carlo simulation can be considered lo be the
main high performance computing activities. An illustration of this is the millions of
Jines of reconstruction code that have been written, representing an investment of hun­
dreds of man years . In the area of event-oriented computing there is interest in parallel
computing to reduce the time to solution for two distinct reasons:

• increase event throughput.

Both Monte Carlo event simulation and event reconstruction involve huge amounts
of events. By processing individual, independent events in parallel , event through­
put is increased and total time to solution reduced .

Much of CERN's parallelisation efforts so far have gone into the class of event
reconstruction software, in order to improve the event throughput of these packages.
Event farming has proven to be an effective technique to boost the performance of
event reconstruction applications [Mic92) . It scales well in terms of throughput, on
distributed memory machines as well as workstation networks, as the ratio between
communication and computation is low; the reconstruction of one event takes in the
order of seconds, whereas the communication overhead for one event is in the order
of ms or even µs.

Also parallelisation of GEANT has been investigated, both on the event level and
track level [MS95] .

• reduce single event analysis time (event latency).

LHC experiments will all use parallelism in the area of on-line data reduction. For
the level 2 trigger in the ATLAS experiment, the parallel analysis of detector regions
of interest will be essential in obtaining the required data reduction within the time
frame available: around I GB of data has to be analysed within a maximum of - I 0
ms) [Moo95].

Parallel event reconstruction implementations with reduced execution time and
memory requirements could also allow the introduction of (cur:rently off-line) event
analysis techniques into the real-time domain, e.g. closed loop feedback detector
control systems based on reconstructed event data (such as a beam alignment sys­
tem). Both average and maximum event latency are of concern here.

I~ 2.1 The Mona Lisa parallel programming paradigm

Finally, reduced single event analysis time is beneficial in the area of interactive
analysis (where event simulation and reconstruction are used in combination).

When discussing the potential benefits of parallelism, several characteristics of high
energy physics analysis need to be taken into account:

• Detectors produce data that is output via 1/0 channels that are geographically dis­
tributed. The traditional grouping of data on a per event basis (event building) can
be complex if not impossible due to bandwidth and latency requirements. Doing dis­
trihuted event analysis first (hence allowing distributed input) so that the data rates
are drastically reduced might prove to be a more natural and cost effective approach.
The level 2 trigger design for the ATLAS experiment is an example of this .

• Triggers often use multiple rejection criteria for data reduction. The order in which
criteria are applied can have a crucial effect on a trigger's performance. The optimal
order is a function of event data characteristics, which may vary throughout an
experiment's lifetime. A parallel analysis that uses competing algorithms (each
algorithm implementing a different rejection criterion) may give a more robust trig­
ger.

• Finally, the output side of the event analysis can also benefit from parallelism. The
physicist's desire to write to tape as many events as possible, can sometimes only be
satisfied by parallel 1/0.

2.3 The Mona Lisa parallel programming paradigm

One of the tasks in the GP-MIMD project was the investigation to what extent the
event latency and throughput characteristics of existing (off-line) event reconstruction
software packages can be improved using parallel computing. To put it simply, how
could existing applications benefit from parallelism? HEP applications are generally
characterised as:

• data intensive (low ratio of computation to size of manipulated data)

• mostly written in Fortran77.

• using a memory management package for dynamic data structuring as Fortran77's
standard data structures are limited (only fixed size, static arrays). For example, the
Zebra package [Zeb95] provides variable sized array structures called banks, that
can be organised in tree-like structures. The dynamic data structuring is important
due to the varying event data size and characteristics.

• executing repetitive tasks, such as fitting each track to extract the physics parame­
ters (e.g. momentum of the particle) . Some of these tasks are implemented by more
than one algorithm, as there is not always a "best" one (e.g. pattern recognition).

Looking at the structure of the manipulated data (many events , many tracks per event)
and the repetitive nature of the data treatment, the potential for data parallelism appears
to be high. But before investigating this any further, another question needed to be
answered: what programming paradigm would be suitable for the task at hand? The
following criteria were identified:

• The paradigm must be suitable for developing new HEP applications and paralleli­
sation of existing sequential HEP applications. HPF for example does not score on
this criterion, because it requires much code rewriting to adapt old Fortran code to
the HPF standard.

2J The Mona Lisa parallel programming paradigm 17

• The paradigm must be machine independent, to reduce rewriting effort when
migrating software to other machines. This is especially relevant if we take into con­
sideration that the average HEP software lifetime is between 10 and 20 years! Para­
digms that rely on the uniform memory access times of a shared memory
architecture do not score on this criterion: the migration to (increasingly popular)
distributed memory machines can have a negative impact on performance due to the
larger overheads involved in non-local memory access.

• The paradigm must support parallel program structures that are likely to be useful
for parallel HEP applications (data parallelism, farming in particular).

• The paradigm should have expressive language constructs, allowing the implemen­
tation of the relevant computational models (data parallelism!) with few constructs.
As a result, the paradigm should be easy to use.

In principle, message passing is a very flexible paradigm that suffices most of the crite­
ria. However, it was felt to be too close to the machine architecture of distributed mem­
ory. On a shared memory architecture, sencl/receive primitives can be an awkward way
of looking at shared data access. Also, there exist computational models that are awk­
ward to implement with message passing.

Another possible candidate is the Linda paradigm (see Section 2.1). However, when
using Linda for distributed memory architectures the implementation of the paradigm
tends to be relatively inefficient. This is due to the conflicting goals of efficient use of
memory (resulting in a distribution of the tuple space over local memories), and effi­
cient search algorithms for retrieving a requested tuple from the tuple space (as it can
be in any local memory).

It was therefore decided to develop a new paradigm called Mona Lisa [Schn93] that
would combine the best of both message passing and Linda 1• Mona Lisa allows us to
take a Fortran77 program, split it up in several sequential Fortran programmes (mod­
ules), add a communication structure and then run the collection of modules as a paral­
lel program. The module replication concept makes it easy to implement farming
strategies. A Mona Lisa module is declared as a replicated module by providing it with
a replication variable and a replication range. A set of instances of the replicated mod­
ule exists at run-time, with each instance uniquely identified by a replicator ID.

The program manager module is an integral part of the Mona Lisa run-time environ­
ment. To execute a Mona Lisa program, the program manager is downloaded to an
appropriate computing node and started up. The program manager then downloads the
other modules to their respective computing nodes and launches the parallel execution.
As the modules execute the application code, they are monitored by the program man­
ager. In the event of a deadlock situation, the program manager terminates the program
cleanly. In chapter 3 we will go into more detail on this functionality. In particular, we
will define which computational states are regarded by the program manager as dead­
lock states (see page 32). Appendix A illustrates the Mona Lisa concept with an exam­
ple program.

In Linda, all modules share the same tuple space. In Mona Lisa, we create one space
per module, called the global variable space. The variables in a module are split into

I. The development of Mona Lisa has been the PhD subject of Andre Schneider, GP-MIMD project
member.

18 2.:l The Mona Lisa parallel programming paradigm

two categories: the global variables and the local variables. The global variables reside
in the global variable space. A global variable is visible throughout the whole Mona
Lisa program: modules, other than the declaring module, can access this V(!riable.
Local variables cannot be referenced by other modules.

In Linda, two modules synchronise on the exchange of data by using the tuple space as
a data carrier: if the requesting module cannot find a tuple in the tuple space, it has to
wait for the other module to insert a tuple in the tuple space. To implement this syn­
chronisation in Mona Lisa, the concept of global variable state was introduced. A glo­
bal variable can be in two states, exposed and hidden. If a global variable is hidden, its
value cannot be read or changed by an external module. An outstanding write or read
operation on a global variable by an external module is only completed when the varia­
ble becomes exposed. Global variables can be moved explicitly between the two states
by the declaring module only. Furthermore, when a module wants to reference a global
variable from another module, it has to explicitly reference that module.

So, the global variable space and the tuple space are used in different ways: the tuple
space stores variable values which are always accessible. The tuple space can store
multiple values that come from the same variable. The global variable space stores var­
iables, which are sometimes accessible. Also, global accesses are always directed at a
particular module (as opposed to Linda). One should note that these differences
between Linda and Mona Lisa may have resulted in a paradigm that does not have the
same power of expression as Linda, but a further investigation of this is not in the con­
text of this thesis. The rationale for the Mona Lisa approach is that it addresses some of
the problems that are associated with the efficient implementation of Linda on a dis­
tributed memory platform:

• All global variables have a fixed size which is known at compile time. Linda pro­
grammes on the other hand can cause excessive tuple generation on one processor,
resulting in an "overflow" of the tuple space on that processor's local memory. The
resulting data management issues that need to be addressed at run-time have a per­
formance impact.

• The explicit reference of a module and global variable in every data access uniquely
defines the location where the data are stored, as opposed to Linda where the tuple
space has to be searched at run-time. These search algorithms have a worst case
behaviour that involves more communication then required for Mona Lisa access
primitives.

Similar to the in and rd primitives in Linda, Mona Lisa provides the rdglb and inglb
primitives to read global variables: rdglb is appropriate for data broadcasting (replica­
tion), whereas inglb is appropriate in the case of data distribution (e.g. jobs in a proces­
sor farm). The inrglb primitive is provided to deal with replicated modules: the inrglb
reads a global variable from one non-deterministically chosen instance. This is useful
in a farming situation where the master has to collect data, produced by a set of slaves.
As the master does not know which slave has finished first, it wants to read from any
slave. Also in the situation of competing algorithms, where two modules each calculate
the same result but using different techniques, the inrglb can be used to select the result
from whichever module is fastest. Finally, the wrglb primitive is provided for cases
where writing to a global variable is more appropriate than reading it.

Table I shows the Mona Lisa primitives and their operational semantics. The glob
parameter represents the global variable which is being manipulated. The mod parame-

2.> The Mona Lisa parallel programming paradigm 19

ter stands for the name of the module owning the global variable. The toe parameter
represents the local variable in the module executing the primitive. The execution of a
Mona Lisa primitive by a module is referred to as a primitive call.

TABLE I. Overview of the Mona Lisa primitives

primitive

exposeglb(,11/ob)

hideglb(g/ob)

mod.rdglb(;:lob,/oc)

mod.inglb(glob.loc)

mod.inrglb(.'l lob,loc)

mod.wrglb('ilob,/oc)

description

Set state of hidden variable Klob to exposed.

Set state of Klob to hidden.

Read value of exposed variable x lob from module mod into foe.

Read value of exposed variable ii /ob from module mod into foe.
changing Kiob's state to hidden (mod is a non-replicated module).

Read value of exposed variable xlob and change its state to hidden,
mod is a replicated module. The instance which supplies the value is
chosen non-deterministically.

Write the value of foe to exposed variable xlob (a variable from
module mod), changing glob's state to hidden.

In comparison with point-to-point message passing, the program modules are less cou­
pled in Mona Lisa: the concept of first sending and then receiving data does not exist,
as data are just made available without an explicit destination. This is especially useful
in the case of conditional data tlows: with message passing, data has to be sent to all
modules that possibly need the data. Mona Lisa allows data transfer to occur only when
a module explicitly requires it to continue its computation. This can allow a more trans­
parent program structure and module re-usability.

On the other hand, Mona Lisa is by definition a heavier programming model on distrib­
uted memory platforms than message passing, as each (external) global variable read
access requires at least two communications: one to request the data, and one to receive
it. This compares to a single communication with message passing. This becomes par­
ticularly relevant in situations where inter-processor communications are expensive in
terms of imposed latency and processing overhead.

The suitability, limitations and implementation aspects of the Mona Lisa paradigm will
be further addressed in later chapters, in particular in relation to the Chorus distributed
operating system on which the current implementation has been built. Suffice to say
that, in summary, Mona Lisa can be regarded as a compromise between message pass­
ing and Linda in two respects, namely the hardware abstraction level and the associated
cost in execution efficiency that needs to be paid to obtain this abstraction within the
context of distributed memory platforms.

During this project only one type of hardware is supported. This parallel machine is
based on the Transputer, a single-chip computer which has its own local memory. Four
bi-directional communication links allow it to communicate with a neighbouring
Transputer or other devices such as storage devices. The architecture of the (distributed
memory) parallel machine consists of a network of interconnected Transputers, with
one Transputer connected to a SUN workstation. This workstation is used to control
the network, and also functions as main input/output facility via keyboard and screen.

The Mona Lisa development environment provides the tools that are necessary for
compiling and running a Mona Lisa program on a parallel machine. The Mona Lisa
pre-processor transforms Mona Lisa source code into a set of sequential Fortran pro-

211 2.4 Visualisation tnols

grams, one for each module . It also performs type checking on the Mona Lisa variable
declarations and primitive calls to signal programming errors of this nature.

In the generated sequential Fortran programs, the primitive calls have been replaced by
library calls, such that they can be compiled with a conventional (sequential) compiler,
linking in the Mona Lisa run-time libraries. The resulting binaries, together with the
standard binary for the program manager module, constitute the parallel program
binary.

During the parallel program execution, interaction with the user (if incorporated in the
application's functionality) takes place via the SUN screen and keyboard. The system
does not provide monitoring information on the application status. There is no feed­
back directly related to the interaction between the program modules, nor any related to
the status of the processors (idle, busy). This makes it extremely difficult, if not impos­
sible, to analyse why a program does not execute as fast as expected, or not at all! The
Viper visualisation tool has been developed to address these issues. Visualisation tools
help a programmer in performing:

• behavioural analysis (gain insight into parallel program behaviour). What interac­
tion pattern occurs when the program executes?

• performance analysis (how much parallelism is present in the program execution,
and how efficiently are the processors used) .

• program debugging (finding and correcting programming errors).

In the next section we discuss in more detail these roles of visualisation tools in the
process of parallel software development.

2.4 Visualisation tools

In this overview we present a summary of parallel program visualisation - details are
more extensively discussed in [BH92][Com95][TU94]. We start with a definition of
the terms for which a concise description is relevant in this section. For terms with
more than one possible interpretation, we will adopt the most common definition.

A program is a computation specification, written down in a textual format. A compu­
tation is the execution of a program. A program makes use of algorithms. An algorithm
can be seen as a recipe for the structure of the computation in order to achieve a prede­
fined functionality. For instance, if the desired functionality is sorting of array ele­
ments, the programmer can choose from various sorting algorithms such as bubble
sort, quick sort etc. to write the program.

A parallel program explicitly expresses concurrency, allowing its execution on a paral­
lel computer to be performed as a parallel computation. A parallel computation is com­
posed of multiple sequential computations (components) that proceed in parallel and
interact to obtain a desired result. The operational characteristics of a parallel computa­
tion, such as the interaction between the sequential computations, are in this thesis
referred to as parallel program behaviour.

The textual format in which computer programs are written does not lend itself to inter­
pretation of the operational aspects of the algorithm that the program implements.

2.4 Visualisa1ion 1ools 21

Research in this area has produced tools that use graphical animation to better express
the program's behaviour. The use of sound has also been explored.

Although originally intended for sequential programs, graphical animation is even
more useful for parallel program behaviour analysis. In particular the interaction
between the sequential computations lends itself to visualisation . In the next section we
will discuss how visualisation also contributes to the following issues:

• developing a correct parallel program

• developing a high performance parallel program (achieving high throughput and
low latency, in a scalable way)

2.4.1 Developing a correct parallel program

Through formal specification, automatic code generation and other related methods
and techniques, software engineers try to develop software that behaves correctly, i.e.
according to specification. However, these methods have so far been successful in a
restricted application domain. In addition, we still have to live with bugs in compilers,
operating systems, hardware and the persisting possibility of human error in the seldom
fully automated path from specification to running application.

Therefore, one of the almost unavoidable activities of software development involves
tracking down programming errors and correcting them, described by the term soft­
ware debugging. The classical approach in debugging a sequential program is by step­
ping through the program's execution and examining the program state at various
points along the way. This repetitive process, which is assisted by a debugging tool, is
commonly referred to as cyclic debugging.

The intuitive approach for debugging parallel programs would be to extend this to a
process where we have one classical debugger per sequential computation. Some addi­
tional hierarchy of control needs to be added, such as the possibility to simultaneously
start or stop all computations at once at a specific break point. An example of such a
parallel debugger is TotalView, from BBN Systems and Technologies [Bbn95].

However, debugging of parallel programs differs from sequential debugging in a
number of ways:

• In a parallel program execution, each sequential computation has to be considered in
the context of the other computations. The program state changes that are observed
when stepping through one sequential computation are a function of the interaction
with the other sequential computations.

• A parallel program can exhibit non-deterministic behaviour. For example, if two
sequential computations share a variable for communication purposes, then the
communication result may depend dramatically on the order in which writes and
reads take place.

Tracking down the erroneous interaction pattern that results in undesirable program
states (for example, one that results in a deadlock) is not the focus of debuggers
such as TotalView; the focus there is still on the program state changes inside one
sequential computation. In addition, the approach of cyclic debugging is not appro­
priate because non-deterministic bugs often tend to be non-reproducible.

22 2.4 Visualisaiinn 1onls

It should be noted that non-deterministic behaviour is sometimes introduced on pur­
pose. Consider for instance optimisation algorithms based on simulated annealing.
The interaction pattern of a parallel implementation of such an algorithm can be so
closely linked to the randomisation process, that it is intentionally non-determinis­
tic.

Also, a farming application may exhibit non-deterministic behaviour in the sense
that the job distribution over the workers can be such that it depends on the (before­
hand unknown) job sizes, which in turn depend on the program input parameters.

• Any attempt to observe the behaviour of a distributed system may change the
behaviour of that system. In particular, it is not uncommon for bugs that result from
non-determinism to disappear when debugging instrumentation is added to the pro­
gram.

This phenomena is commonly referred to by the term probe effect. The probe effect
shares characteristics with the Heisenberg uncertainty principle in physics, which
explains the term Heisenbugs that is jokingly used by programmers for bugs that
seem to appear or disappear at will.

To address the above issues, techniques additional to cyclic debugging have been
developed:

• Static analysis tools can detect certain types of problems such as potential deadlock
by inspection of the parallel program text. So, instead of analysing an erroneous
execution of the program, static analysis techniques aim to prevent erroneous execu­
tion.

• The recording of relevant data of a parallel program execution for detailed analysis
at a later stage partially decouples the debugging activity from the parallel program
execution. This can be used to minimise the probe effect (disturbance of program
execution). The data recorded are events, that are of interest to the tool user, usually
because they establish the relationships between the sequential computations, such
as the sending of a message, a memory access etc.

The occurrence of an event is registered by a trace message, and trace messages are
collected in a trace file. Trace messages contain a time stamp that relates to the local
clock of the processor. In establishing a global time frame where we can compare
the time stamps of trace messages from different processors, the alignment of the
local clocks plays an important role.

Trace message generation is usually implemented by adding extra statements to the
parallel program (called program instrumentation) or it is built into the libraries that
are used by the program (for example a message passing library).

To minimise the probe effect, considerable effort has been spent on developing tech­
niques that minimise the overhead, involved in generating the trace data. This
includes the amount, size, generation and storage of trace messages.

An event history often involves large amounts of data. This, and the complexity of the
data, prohibit a textual representation as an efficient means for analysis. Visualisation
tools provide a graphical animation of the parallel execution that is based on an inter­
pretation of the event history. The spatial and the temporal view of the interaction pat­
tern are examples of well-known representations, provided in one form or another by
many of these tools.

2.4 Visualisarion rools 23

2.4.2 Developing a high performance parallel program

Making a correct implementation that satisfies a problem specification is essential in
both sequential and parallel software development. Another important characteristic of
a parallel program is a satisfactory execution time. Sometimes, the petformance
requirements are such an explicit part of the problem specification, that not achieving a
certain performance represents a failure of the program. An illustrative example is
weather forecasting, where parallel computing is used to obtain a forecast of reasona­
ble precision within a reasonable time frame. Performance is an integral part of the
specification: a weather forecasting system that takes one week to compute the
expected temperatures for the next day is completely useless! Two major categories of
tools for performance analysis and performance tuning currently exist:

• modelling tools such as P3T [Com95] have predictive capabilities on program per­
formance, based on a static analysis of the parallel program and a database that char­
acterises performance factors as a set of parameters and constraints.

A major advantage of these tools is the possibility of analysing what-if scenarios
(trying out a different machine architecture or run-time environment). However, the
model's accuracy and applicability define an upper limit on the quality of the results
these tools give. This may reduce their application domain considerably.

• monitoring tools such as ParaGraph [HE91] interpret the detailed event history of a
parallel program execution, and present this data to the user in a form that allows an
investigation of performance aspects. Performance indicators relate to load balanc­
ing, data distribution, network traffic, message queues etc.

Of course, the probe effect plays an important role here. A correct balance has to be
found between the number of observations needed for sufficient detail/statistics and
the level of disturbance of the program's execution.

In both cases, the information is presented preferably in a graphical form.

2.4.3 Differences between visualisation tools

Existing visualisation tools distinguish themselves on the following issues:

• The parallel platforms they support.

• The programming languages or programming paradigms they support.

• The way the instrumentation of the parallel program is carried out. Some tools rely
on a third party (such as the user) to carry out the instrumentation, other tools can do
this automatically.

• The support of multiple abstraction levels. Examples are a processor view on the
machine architecture level, a task or process view on the programming level, etc.

• Requirements of the tool on the trace data if externally supplied.

• Support of real-time visualisation and/or post-mortem visualisation.

We will now look at one of the more prominent tools in detail, notably ParaGraph.

24 2.4 Visualisation tools

2.4.4 Description of ParaGraph

ParaGraph [HE91] has been developed at Oak Ridge National Laboratory and was first
publicly available in 1990. The tool has undergone continued development effons
since, and here we will discuss the status of the tool as it was in March 1993 at the start
of this project.

ParaGraph provides some 25 different graphical views, each showing a different inter­
pretation of the event history that is recorded in the trace file. The easiest way to obtain
this trace file is by making use of the Portable Instrumented Communication Library
(PICL) [Wor92]. This library provides message passing operations on a variety of dis­
tributed memory platforms, and has the instrumentation necessary for trace message
generation already built in. ParaGraph does not depend on PICL; any trace file that
conforms to the same format can be analysed. ParaGraph requires the trace messages in
the file to be soned on a strictly increasing time stamp. This means the time stamping
mechanism requires a clock resolution that is high enough, and in the event of a miss­
ing global system clock (as is often the case), a correct local clock alignment. Para­
Graph has (conveniently) delegated the time stamping task to PICL.

ParaGraph preprocesses the trace file to determine some parameters like time scale and
number of processors, before the graphical animation begins. After selecting the graph­
ical views that need to be displayed, the user can start the animation. ParaGraph inter­
prets the trace messages one by one, using the trace file as a script to be played out.
Pause/resume/restart buttons in a control window give the user control over the way in
which ParaGraph scans the trace file.

-.~~~~~~~~~~~~~~~~~.~~~~~~~~~~~~:,

·_ _j

7

6

5

4

3

2

0

407

D -BUSY OVERHEAD IDLE

FIGURE 3. Example of a processor utilization view in ParaGraph

Most of the views fall into one of three categories: processor utilization, communica­
tion ancl task information. ParaGraph provides task views to relate performance indica­
tors to parallel program behaviour. The user defines tasks within a program by using
special PICL subroutine calls to mark begin and end of each task and assign it a task

2.4 Visualisation tools 25

number. Tbe task activity over time can be displayed for example in gantt chart form,
showing which tasks are executed by which processors at what time.

Figure 3 shows an example of a processor utilization view, characterising each proces­
sor as busy, communicating or idle over time. Other views present utilization informa­
tion in an accumulated form, such as percentage of processors idle as a function of
time. Utilization views allow an analysis of work load distribution over the processors.

Communication views focus on various performance indicators related to the interac­
tion between processors: message queues, communication patterns etc . Figure 4 shows
the hypercube view. The processor topology is depicted as a graph whose nodes repre­
sent processors and arcs represent communication lines . A node's status (busy, idle,
sending and receiving) is indicated by its colour. To help the user determine if tbe net­
work 's physical connectivity is well exploited by the program's communication, mes­
sage arcs corresponding to physical links are coloured differently from message arcs
along virtual links 1• Besides the hypercube topology, other layouts are supported as
well, such as ring, mesh etc.

1'.~-----_------~---_-.-. ----- ,

!di" • Busy • Send • Recv Q

CUBE CUBE NOtt- CIJBc:

FIGURE 4. Example of a communication view in ParaGraph

A number of observations were made when we analysed ParaGraph in detail. Firstly,
the tool is well-suited for a detailed performance analysis given the multitude of views.
However, the views are relatively inflexible:

• They focus on providing feedback at the hardware level. For example, in the hyper­
cube view it is clear when processor 0 communicates with processor 5, but depend­
ing on the complexity of the interaction pattern, it can require considerable effort

I. In ParaGraph terminology, a virtual link is shown in a ParaGraph view as a direct connection between
two processors. despite the fact that this direct communication path physically does not exist: mes­
sages between the two processors always have to travel via other processors. For example, vinual
links can appear in the hypercube view when the processors are in fact interconnected as a grid.

26 2.4 Visualisa1ion rools

from the user to relate this information to the program's source code (which state­
ment in the program text causes this communication). This makes the tool some­
what unsuitable for debugging purposes.

• They have a rigid spatial ordering of information. For instance, the ordering of proc­
essor numbers along an axis is either natural, fixed, or sometimes by Gray
code[Scha96]. Another example is the hypercube view, where only fixed topologies

are supported 1 and the representation of a processor is fixed, that is, non-scalable in
size. One of the consequences is that the hypercube view quickly becomes unsuita­
ble for topologies of more than 16 processors, a serious limitation!

• The views do not retain their information when the window is manipulated (moved,
overlaid by another window etc.). This is a serious inconvenience. Performance
analysis sometimes requires multiple views to be available simultaneously in order
to be effective. Due to the physical limitations of the screen and the requirement of
non-overlapping, the desire to have multiple views on screen is at the cost of detail
in the graphs.

ParaGraph provides views at the processor level; explicit modelling of multitasking
(multiple processes or threads etc.) is not supported. This is a serious limitation, con­
sidering the fact that it is not unusual to execute multiple sequential computations con­
currently (in a time sliced fashion) on a single processor. In the same way, one could
choose to run two Mona Lisa modules on the same processor. A Mona Lisa module is
in fact itself implemented as a set of two processes running on the same processor (the
reason for the existence of a second process will be explained in chapter 4).

ParaGraph gives the user feedback that is neither paradigm nor program text related.
Instead, the information tends to be more about the use of processors and their inter­
connecting links on a distributed memory machine. This characteristic appears to be
the result of a focus on performance analysis and the desire to general applicability.
However, in the context of debugging, providing information that relates too much to
the lower machine level defeats the purpose of an abstract programming paradigm. A
comparison can be made with sequential programming: debuggers do not force a pro­
grammer to investigate memory dumps, but allow the inspection of variable values.
Also with parallel programming it should be possible for the programmer to perform
code writing and debugging activities at the same level of abstraction. As with pro­
gramming languages, a programmer chooses a paradigm depending on the application
domain. There is a need therefore for visualisation tools that are customisable at the
paradigm level.

Also, ParaGraph's trace processing capabilities are rather restricted: only post-mortem
analysis is supported (due to the required preprocessing of the trace file), and the tool
imposes high requirements on trace message ordering and time stamps. As we will see
in the next chapter, these requirements prohibit a direct interface between ParaGraph
and the current Mona Lisa implementation.

Overall, we conclude that ParaGraph 's qualities lie in the area of performance analysis
at the hardware level, but the tool lacks the functionality and flexibility for program
behaviour analysis at the paradigm level and debugging. We have designed the Viper
visualisation tool to complement ParaGraph, as summarised in Table 2. The ratings on

1. Later versions of ParaGraph suppon user-definable topologies.

2.4 Visualisa1i0n wuls 27

the desired functionality aspects vary between++ (very positive), + (positive), 0 (neu­
tral) and - (negative) .

TABLE 2. Viper versus ParaGraph

Functionality aspect

Support for real-time visualisation

Ability to provide views at paradigm level

Ability to provide views at machine level

Dealing wilh unreliable lime stamps I trace message order

Adaptability of views

Multitude of views

ParaGraph

+

0

++

Viper

++

++

+

+

We envisage a situation where we have two tools with complementary strengths: Viper
provides information on the paradigm level (if desirable on a real-time basis), and has
the functionality to construct a trace file (based on the trace data it receives) for Para­
Graph that can be used off-line to do detailed performance analysis at the machine
level. The development of a parallel program can then be a 3-stage iteration process
where we write code, test it, improve its performance, and go back to coding. Stream­
lined support for such a process would rely on Viper generating the ParaGraph trace
file, rather than having the parallel program generate two different trace files, one for
Viper and one for ParaGraph.

In summary, the design of the Viper tool had to combine the good qualities of existing
tools and address the needs mentioned earlier:

• The feedback must support the abstraction level of the paradigm (read: Mona Lisa),
that is, directly relate to the modules and the primitive calls they use to interact. The
programmer's code writing and debugging activities can then use the same level of
abstraction.

• Visualisation of program execution is based on an event history that has to be gener­
ated by instrumentation of the Mona Lisa run-time library. The trace message gener­
ation should pursue a small trace message size etc. to keep the probe effect small.

• Viper must be adaptable to changes, including changes in the paradigm and its
implementation. Both Viper and Mona Lisa are being developed in an area of
research where no stable market nor product can be identified. The paradigm
dependent part of Viper should be self-contained and as flexible as possible to allow
Viper to be used for other paradigms as well.

• In relation to the previous point, maintainability is a priority. This has been trans­
lated into documentation requirements : not only a user manual, but also a technical
maintenance manual needs to be provided to support future work on Viper (e.g.
modifications and extensions).

• Viper must support both real-time visualisation (for monitoring purposes) and post­
mortem visualisation (for detailed analysis) .

• Viper must be able to construct consistent views with very few requirements on the
order in which trace messages are produced and collected. In establishing this, we
allow ourselves to assume error-free delivery of trace messages. This is to avoid an
unnecessary complication of our task in terms of Viper's robustness .

28 2.4 Visualisation tools

• Viper has to provide an interface to ParaGraph, in the form of a ParaGraph trace file
generation facility. Using a single Viper trace feed from the parallel program, this
will enable exploitation of the strenghts of both tools in a co-operative way. It also
allows us to benefit from the continuous improvements to ParaGraph as much as
possible.

The list of Viper user requirements concludes chapter 2. In this chapter we have dis­
cussed the role of visualisation tools in the parallel program development process and
how they support a programmer in writing correct and high performance parallel pro­
grams by increasing insight in program behaviour. We discussed the problem domain
of Viper: parallel computing requirements in HEP, and the programming paradigm
Mona Lisa. In the next chapter we will discuss the design strategy adopted for Viper,
and we will draw up the first Viper specification.

3.J Design approach 29

Chapter 3

Design approach and first specification

In this chapter we start by describing how we designed Viper. Once the design
approach is laid out, we continue with the construction of a first specification of Viper.
The aim we have when we write the specification, is to adhere to the set of user
requirements stated at the end of the previous chapter. This means for instance support
for Mona Lisa program development, without a strong Mona Lisa dependency of the
tool itself.

3.1 Design approach

Viper's overall design process can be described as an iterative one. Iterative, because
we have not developed Viper in one go. Given the relative instability of Viper's work­
ing environment on which some of Viper's requirements are based (e.g. Mona Lisa and
its underlying Chorus operating system, both research products under development),
and the inexperience we have in building fit-for-purpose visualisation tools, the risk
exists that any initial set of requirements may not be complete, accurate enough or sta­
ble over time.

In an iterative design process, the first product implementation does not necessarily
have to meet all requirements. It is used as a first step in the right direction, and as a
vehicle to get remaining requirements clearer. Through a process of extension and
refinement, the ultimate project result after several design cycles has then converged to
a product that meets the complete set of user requirements, without there being a neces­
sity to have all these requirements in place at the start of the project.

Recognising uncertainty and taking future design adjustments into account from the
very beginning allows an overall reduction in design effort, Jess rework and increased
product quality when dealing with complex and dynamic environments. Recognition of
this has led to the development of risk driven software development models, such as
Boehm's spiral model [Boe88]. Viper has been developed in three cycles that map rea­
sonably well to Boehm's 'spiral rounds' . In each cycle, Viper was significantly
enhanced, though each time with a different design focus:

• the first cycle focused on developing a working tool with a satisfactory graphical
user interface (GUI). The development of this GUI was deemed to be a major risk in
terms of effort required .

• the second cycle focused on improving Viper's trace processing capabilities, e.g.
consistent run reconstruction, trace message format and real-time processing.

• the third cycle focused on enhancing Viper's paradigm independence and demon­
strating this by applying it in a different environment.

30 3.2 Viper's first prnto1ype: the sperifica1ion

For the development of the GUI we used a fast prototyping approach. This meant we
went through a small series of improved user interface versions, using members of the
GP-MIMD project team as 'user evaluators' for each successive version. The decou­
pling of user interface and the rest of the application allowed us to iterate on improving
the user interface whilst keeping overall development effort low. Fast prototyping is
particularly supported by 4th generation programming languages (4GL's). Unfortu­
nately we did not find a suitable 4GL based graphics package and had to use a 3GL
instead, so we had a little more coding effort, but the overall GUI prototyping effort
was still restricted to about one to two man months development time.

Apart from the GUI, each iteration in Viper's overall development has concerned the
translation of a relatively well-defined specification into a working product implemen­
tation. The management of this process has been done according to what is called "the
waterfall model" in the software industry. The waterfall model owes its name to its lin­
ear structure: the project phases of specification, design, development (coding, testing)
and installation follow each other in strict order. The phasing of the waterfall model is
therefore relatively straightforward, and often the preferred option when the end result
is well defined . In such situations, the waterfall model allows project management to
focus on an efficient software development process rather than managing product risk.
However, in a situation such as we were in, in March 1993, where the ultimate project
result was not well definable within the given timespan, the different approach of pro­
totyping and evolutionary development was preferable to reduce the risk of rework,
budget overruns and missed deadlines.

To finalise this introductory section, we mention some general design principles that
can be applied in almost any software engineering task:

• generalisation through abstraction : more robust design solutions appear from look­
ing not only at the specific problem instance at hand, but also beyond.

• separation of concerns: keeping clear what issues need to be dealt with at what stage
in the design process improves manageability.

• reduction of complexity by a "divide and conquer" strategy: for example, imposing
a modular structure on the design such that each module provides a part of the over­
all functionality whilst aiming for little dependency between the modules.

Practical examples of these design rules shall be demonstrated when we discuss
Viper's design in detail in the next sections.

3.2 Viper's first prototype: the specification

In the first phase in the development of the first prototype we have to distil a well­
defined specification from the informal user requirements as they were set out at the
end of the previous chapter. Some of these requirements can be classified as user
requirements, others have been imposed by ourselves as design objectives. One of the
main points mentioned was that Viper is to support the development of Mona Lisa pro­
grams through visualisation. The way we set out to do this follows below, although the
reader should bear in mind that a number of aspects of the discussion are not Mona
Lisa specific; they apply equally to other paradigms such as PYM or Linda.

Viper visualises the execution of a Mona Lisa program as a sequence of state changes,
very much like a cyclic sequential debugger stepping through the states of a sequential

3.2 Viper's first proto1ypc: 1hc srx--cifica1ion 31

program. The state of a parallel program is a function of the states of the individual
modules. For a Mona Lisa module we can distinguish the following mutually exclusive
states:

• executing: the module is executing the application code.

• interacting: the module is executing a Mona Lisa primitive and is not blocked.

• blocked: the module is (temporarily) held up in the execution of a Mona Lisa primi­
tive and there is also no progress in the communication subsystem:

A module is blocked in an exposure when it wants to expose a variable hut it cannot
because that variable is already exposed; it has to wait for another module to access
the variable, implicitly causing the variable's state to change to hidden.

A module is blocked in an inglb or rdglb when the partner module has received the
request for the global variable's value, but it is not yet in a position to send this
value because the variable is not (yet) exposed.

A module is blocked in an inrglh when all modules involved have received the
request for the global variable's value, hut none of them are yet in a position to send
this value because the variable is not (yet) exposed.

A module is blocked in a wrglh when the partner module has received the new value
for its global variable, but it is not yet in a position to update the variable because it
is not (yet) exposed.

A module is never blocked in a hide.

• inactive: the module has not started yet, or has finished executing.

In the process of fine tuning of a Mona Lisa program the programmer may wish to
minimise a module's time spent in some interacting and blocked periods, to achieve a
reduction of the overall program execution time. In the interacting state, a module is
delayed by the communication overhead that is caused by the paradigm. The blocked
state represents idle time of a module that is not inflicted by communication delays but
by a mere lack of synchronisation of the computation - e.g. one module wants some­
thing that the other one cannot deliver yet. The difference between these two situations
is significant enough to model them as separate states.

The state information about a Mona Lisa module is further refined by including the
states of its global variables, and the primitive it is executing (the latter is only applica­
ble in the interacting and blocked states).

Until now we have focused on the state of a Mona Lisa module, and little has been said
about the states of the processor on which a module runs. We will assume that each
module runs on its own processor, or, in the case of multiple modules on one processor,
at least the presence of some fair scheduling mechanism that avoids us having to deal
with the danger of individual module starvation. In the current Mona Lisa implementa­
tion, modules can indeed share a processor, on a time slicing basis. A processor can be
in one of three states:

• communicating: the processor is sending or receiving data.

• executing: the processor is executing the application code, or the processor is exe­
cuting the code of the Mona Lisa run-time system. If the processor hardware has the
capability of doing some communication in parallel with code execution, the proc­
essor is also considered to be executing at that stage.

32 3.2 Viper"s firsl prototype: lhe specification

• idle: the processor is neither communicating nor executing (this implies that the
module(s) running on that processor is/are blocked) .

The relationship between the module states and the processor states will be explored
further in Section 3.2.2.

In addition to the above, the overall parallel program state can be characterised as:

• inactive when no module has started yet.

• terminated when all modules have finished executing.

• in deadlock when there is a cycle in the transitive closure of the blocking relation­
ship between modules, where this relation is defined for Mona Lisa as: module A is
blocked on module B if and only if module A is executing a Mona Lisa primitive
that wants to access a hidden variable of module B. In a deadlock situation, the
modules that belong to the cycle can make no further progress.

• abnormally terminated when a module is blocked on a Mona Lisa primitive that
relates to another module that has finished executing, or when the only modules that
have not finished executing are blocked on an expose primitive call.

• running in all other cases.

Now that we have done the pre-work, we can start to specify the first Viper prototype
in terms of desired input and output. In the description of the desired output we will
cheat a little, by showing actual pictures of the final tool to support the text. In reality
these pictures were not to hand in this phase as Viper was still to be developed, and we
drew up artificial pictures instead, to support the textual specifications.

3.2.1 Viper's output

A view is a graphical representation of (part of) the Mona Lisa program state informa­
tion, and highlights a particular aspect of the parallel program state . Viper has to pro­
vide a number of such views. We will describe the views using an example Mona Lisa
program called Farm. This program consists of five modules: one master and one slave
module that has been replicated four times. The program execution can be described as
a repetitive task that is performed by the master for a number of times, after which the
program finishes. For each task, the master distributes four jobs over the four slaves by
assigning a job to global variable JOB and exposing it. The slaves continuously try to
get a job from the master with an inglb primitive. A slave that has completed its job
makes the result available in its global variable RESULT and asks for a new job. After
all four results are read by the master using the inrglb primitive, it finishes the task and
starts the next one.

Animation view. This view gives a snapshot description of the parallel program state.
Modules are represented by coloured circles. The colour of each circle is determined
by the module's state. We choose to make use of intuitive traffic light colours: green
for executing, yellow for interacting and red for blocked. The inactive state is repre­
sented by grey.

In the states interacting and blocked, a module can be in the process of reading or writ­
ing external global variables. In that case, an arrow is used to indicate the direction of
data flow. Arrow colours indicate data request (red) or data transfer (black). The expo­
sure of a global variable is indicated with an additional circle.

3.2 Viper's firs1 prot01ype: 1he spcr:ificalion .l .l

In the example shown in Figure 5 we are in the middle of the job distribution by the
master. A job, stored in global variable JOB, is being communicated to Slave(3). This
module is therefore interacting. Slave(l) and Slave(4) are h/ocked in their inglb primi­
tive call. that is, waiting for a job to become available. Slave(2) was the first slave to
receive a job and is now executing it. The master has started the exposure of the next
job, but is now blocked because JOB is already exposed. Upon the completion of the
inglb call of module Slave(3), the state of JOB will change to hidden, and the
exposeglb call of the master can be completed.

-~-- ---.~-~ft-•J,.......,..-- ---- .

- . -.. ---- -~ - - - - - -

JNllCJUB)

• llG..J<JDI>

~

FIGURE 5. Example of a Mona Lisa animation ' 'iew

Space Time view. In the space time view the state transitions of the individual mod­
ules are shown over time. Figure 6 shows a part of the execution of our master-slave
program over time. Between T=SOO and T=700 each slave reads a job from the master.
The results are read by the master between T=IOOO and T=2500. In the diagram we see
that a primitive call can have both a blocked part and/or an interacting part, and may
not terminate directly after the data has been received (see result collection by the mas­
ter in the figure). In Section 3.2.2 we will discuss these issues in more detail.

l

t \

I t l L \. . .

FIGURE 6. Example of a Mona Lisa space time view

34 3.2 Viper's firsl prototype: the specification

Variable views. A variable view shows relevant information for Mona Lisa variables:
name, type and state. There is one separate view for every module. Together with the
animation view it allows the user to analyse, for example, deadlock situations .

• ---r -- --.r--.r~-~- :
- - ··- - ---

- - - -----

FIGURE 7. Example of a Mona Lisa variable view

In our example, if the animation view would show that all slave modules have started
executing an inRlh primitive on JOB (requesting a new job), and that the master mod­
ule is executing an inrglb primitive on RESULT (requesting a result), and the variable
views show that the requested global variables JOB and RESULT are hidden, then we
are faced with a deadlock situation; no further progress in the computation is possible.

Parallel program state view. This view shows the overall parallel program state as
introduced at the beginning of this section. Particularly the two states in deadlock and
abnormally terminated are relevant because they are generally not intended to occur.
The Mona Lisa paradigm has the bui.lt-in functionality to detect these states and report
them via trace messages. The trace messages are generated by each module separately,
and collected by a central entity in the Mona Lisa program, the program manager, that
runs as a separate process. The program manager analyses the trace messages it
receives to detect deadlock situations or abnormal program termination.

::=:::;,--- - ~ .;, -;- - - - - -~ - -:- ~ - -. .
-- . - - --- ~

FIGURE 8. Example of the program state view.

These states are represented in Viper by giving the square in the view an appropriate
colour (e.g. yellow or red), accompanied by a textual description . The user can subse­
quently use the animation view and the variable views to analyse the program state in
more detail , and possibly use the space-time view to explore the scenario that led to
this state. Figure 8 shows the Farm program running, i.e. no abnormal program state
has been detected (yet). In that case, the square is green.

From the description of the views it is clear that one of the dominant components of a
visualisation tool such as Viper is the graphical user interface. The choice of an appro­
priate development tool for the graphical user interface is therefore an important design
decision.

3.2 Vipers fir.;1 pro101ype: 1he specifica1ion 35

3.2.2 Viper's input

Viper's visualisation process is based on the interpretation of trace messages: whenever
a state change occurs within the parallel program, it generates a trace message to regis­
ter this state change; the trace message subsequently drives Viper 's replay of the state
change. To put it differently, a trace message corresponds to the occurrence of an event
during the execution of the parallel program that is of interest to the tool user, usually
because it relates to the parallelism being studied. Which events are of interest in the
case of Mona Lisa? To answer that question, we will look at an example. Let us imag­
ine we run our Mona Lisa program Farm, consisting of one Master and four Slave
modules, on the Transputer machine, a distributed memory machine. We analyse the
execution of the primitive call Master.inglb(Job,MyJob) by a module Slave(2), assum­
ing both modules run on a separate processor.

Naively, the communication protocol would be a simple request-reply sequence of two
messages: Slave(2) sends a request for the value of variable Job to the Master module
and waits for an answer. When variable Job is exposed, the Master immediately sends
back the value of Job; if not, it has to wait to send until variable Job becomes exposed.
After sending the value, the Master module hides variable Job. When Slave(2) receives
the message from module Master, it updates the value of its variable My Job with the
value of Job, and then continues execution.

In the protocol description above the Master module has to do two tasks simultane­
ously: execute the application code, and serve the request from the Slave module. For
this reason each Mona Lisa module is in effect implemented as a set of two processes.
The application process is executing the code of the parallel program, whereas the
other process, called the supervisor (SPY), serves read/write requests of other modules.
The supervisor and the application process share access to the global variable space.

The supervisor process guarantees the atomic execution of Mona Lisa primitives: read­
ing a global variable and the transition to the hidden state of this variable (as happens
with an inglb primitive) is carried out as one (atomic) operation.

It is important to realize that we consider the two processes per module to constitute an
implementation issue from which we consciously want to shield the Viper user. This is
why we have not raised this topic until now. However, the impact on the trace message
structure is such that we cannot ignore it.

3.2.2.1 Module states versus process interaction

With the presence of supervisors, we will start with an analysis of the mapping between
the module states as defined in Section 3.2 and the communication protocol between
supervisor and application process. The mapping for the inglb primitive call from our
example is depicted in Figure 9.

The left part of Figure 9 shows the communication protocol. Slave(2)'s application
process sends its request for the value of variable Job to the Master's supervisor, and
puts itself in a wait state. Upon the exposure of variable Job, the Master's supervisor
sends its value to Slave(2)'s supervisor. This supervisor updates variable My Job with
the value of Job, and wakes up the application process.

31>

Slave(2)'s Slave(2)'s Master's
applic. process SPV SPV

time

I
wake up

r---:- -u-pdate

1 MyJob

send .Job

3.2 Viper's first protolypc: lht! specifica1ion

state of Slave(2)

executing
interacting

blocked

interacting

executing

FIGURE 9. Analysis of the primitive call Master.inglb(Job,My.Job) by module Sla,·e(2).

Module Slave(2) is defined to be interacting while messages are underway, or while its
supervisor does internal housekeeping. In between the two periods of interaction there
is a period where both the Master's supervisor and module Slave(2) are waiting for var­
iable Job to become exposed. In this blocking state module Slave(2) is blocked and
cannot make any progress, purely because the data it needs is not yet available. The
reader can verify that this state assignment corresponds to our module state definition
in Section 3.2.

The assignment of states as in Figure 9 allows us to attribute execution delays (per­
formance loss) to distinct causes. Measuring the duration of interacting periods corre­
sponds to measuring the overhead that is incurred by Mona Lisa and the underlying
communication system. The blocking periods are more related to the way the computa­
tional workload is distributed, or the way a sequential algorithm is partitioned into
modules.

The reader may notice that not all information is captured with this state definition. In
particular:

• The delay I slowdown of the Master module's application process in our example is
not captured in the state information of the Master module.

• The communication overhead at processor level is not captured explicitly, since all
communications have been modelled as instant events whereas in reality they have a
specific start and end.

Indeed, the state definition that has been adopted in this project may not be all-embrac­
ing, but is intended to focus on the identification of overall communication delays
(marked by long interaction state durations) and algorithmic mismatch in data availa­
bility (marked by inappropriately long blocked state durations).

3.2.2.2 Events

The above analysis illustrates that, in the case of the inglb call, the interesting events
(i.e. that mark a state change) are the start of a primitive call, the termination of a prim­
itive call, and the sending or reception of a message in the Mona Lisa communication
subsystem. The latter are called respectively send events and receive events. The events
that do not use the communication subsystem are called internal. Note that, because

3.2 Viper's first protntypc: the specification 17

supervisor and application processes are assumed to be on the same processor and
communicating via shared memory and semaphores rather than messaging, we model
the wake up of the application process as a single, internal event. Send events and
receive events explicitly refer to inter-module communication.

If we were to analyse the mapping between module states and communication protocol
for all primitive types , and we attempted to partition events according to their state
changing behaviour, we would find that there are 33 different categories of events in a
Mona Lisa program execution (see table below). This includes event categories relat­
ing to module start/end, and program start/end. The other event categories each relate
to a specific step of the communication protocol within a primitive type. Hence the
event category implicitly indicates the state change involved. Each category is identi­
fied by a unique (event_type, sub_type) combination. The adopted nomenclature, in
which event_type roughly corresponds to the Mona Lisa primitive involved and a fur­
ther sub_type specification completes the event classification, is historically based and
although intuitive somewhat arbitrary.

type of state change involved event_ type sub_type
module start-up S_RUNNING INSTANT
module termination S_DORMANT INSTANT
exposeglb execution (with blocking period), stan M_EXPOSE

i
START

exposeglb execution. termination M_EXPOSE
'

END
exposeglb execution (no blocking period), instant M_EXPOSE INSTANT
hideglb execution (with blocking period), stan M_HIDE START
hideglb execution, tennination M_HlDE END
hideglb execution (no blocking period). instant M_HIDE INSTANT
inglb execution, start S_,fNRQ START
inglb execution, data request received S_INRQ RECEIVED
inglb execution, data reply sent S_INRP SEND
inglb execution, data reply received S_INRP RECEIVED
inglb execution, termination S_INRQ END
rdglb execution S_RDRQ START

S_RDRQ RECEIVED
S_RDRP SEND
S_RDRP RECEIVED
S_RDRQ END

inrglb execution S_INRRQ START
.... S_INRRQ RECEIVED

S_INRRP SEND
S_INRRP RECEIVED
S_ACK SEND
S_INRRQ END

wrglb execution S_WRRQ START
.... S_WRRQ RECEIVED

S_WRRP SEND
S_WRRP RECEIVED
S_WRRQ END

deadlock detected by program manager S_DLOCK ABORT
abnonnal program termination S_ABORT ABORT
nonnal program termination S_EXIT ABORT

TABLE 3. Overview of Mona Lisa events

Each event that entails a state change has to be registered by means of a trace message.
The time the event happened is recorded by time stamping the trace message. The time

3.2 Viper's fi rs1 prmo1ypc: 1he spccifica1ion

stamp is obtained by reading the processor clock. The trace messages are generated by
each module separately, and collected by the program manager. In addition, the pro­
gram manager can generate trace messages related to the detection of deadlock situa­
tions or abnormal program termination (as discussed in Section 2.3) .

3.2.2.3 Visualisation through event observation

The quality of Viper 's visualisation depends on the quality of the trace message gener­
ation . Two issues are particularly important here:

• the accuracy of the time stamps. Incorrect time stamps have a direct effect on issues
related to the space-time view. For example, if we want to investigate the load bal­
ancing in our example program Farm, we rely on the time stamps to correctly indi­
cate the duration of slave jobs.

• the order in which trace messages are generated, which does not necessarily match
the order in which they are fed into Viper. The animation view should preferably
replay all state changes in the correct chronological order!

An example of Mona Lisa's implementation on the Transputer machine makes use of
the Chorus distributed operating system [Cho94]. The current implementation based on
Chorus v I .0 has the following characteristics:

• No preservation of message order is guaranteed between any two modules. As a
result, the program manager collects trace messages in a potentially arbitrary order.

• No global timing exists; only a local clock is provided per processor. Clocks are
synchronized within several ms . The clock frequency of a local clock fluctuates
slightly around its mean value . The exact cause of this is unknown; it is probably
largely due to scheduling by the Chorus kernel , causing unpredictable delays
between the occurrence of an event and the time stamping of the corresponding
trace message.

Given these characteristics, it is highly unlikely that the program manager's ordering of
the trace messages corresponds to the chronological order of events. We cannot recon­
struct the chronological order of events by reordering trace messages: uncorrelated
events that occur in parallel in different modules, cannot be ordered correctly due to the
inaccuracy of the time stamps. An example of uncorrelated events is a program with
two modules, where the fust event in both modules is the start of an exposeglb primi­
tive call. The only way of knowing which exposeglb started first, is by comparing the
time stamps of the corresponding trace messages.

Fortunately, the relative order of uncorrelated events is not so important as there is no
fundamental difference for the computation. However, when a receive event is put
before the corresponding send event we obtain an inconsistent observation of the com­
putation: messages arrive at their destination before they are even generated! There­
fore, correlated events have to be ordered correctly.

The correct ordering of correlated events (or the messages that record their occurrence)
is called consistent run construction. A consistent run is an ordered sequence of Mona
Lisa events, the ordering of which respects the causal dependencies between events.
There is a direct causal dependency ~ between two events in the following two cases:

'.\ .2 Viper's first prowtype: the specification .19

• events el and e2 are generated by the same module and e2 occurs directly after el.
By directly we mean : there is no event e'.l such that e'.l occurs after el and before e2.
We write: ~ 1 ~ e2

• The receive event describing the reception of a Mona Lisa message is causally
dependent on the event describing the sending of that message: 'send m ~ e..,c 01 • We

denote these two events by the term send-receive event pair.

The causal dependency relation is the transitive closure of the direct causal depend­
ency. Note that not every two events need to be causally related, as we described in the
example earlier on. The construction of a consistent run, which is an integral part of
Viper's specification, has to be based on this causal dependency relation.

In literature, a consistent run construction technique is described that makes use of log­
ical clocks [Mul9'.l]. The technique assumes a logical clock in every module 1. A logical
clock "ticks" on each internal event and send event that occurs in the module. In the
case of a receive event, the module inspects the logical clock value (of the sending
module) that was sent with the message. It then increments its own clock with the
number of ticks required to exceed this value. We will illustrate this with an example.

Figure 10 shows a part of the interaction between the Master and Slave(2) modules
from our example program Farm. For the sake of discussion, we model a module as a
single process, even though it is actually implemented as a pair of processes. Also, we
do not include the interaction of the Master with the other Slaves. In the diagram,
Slave(2) starts with the call Master.inglb(Job). This primitive call generates events el
and e2 when sending the request, and e4 and e7 when receiving the data. The execution
of Slave.inrglb(Resull) by the Master generates events e5, e6, e9 and el 0. The remain­
ing internal events e'.l and e8 correspond to the exposeglb calls.

Master

exposeglb(job)

start of e5
inrglb(result)

time

Slave(2)

start of
e1 inglb(job)

e6

e7 end of inglb(job)

es exposeglb(result)
~

FIGURE 10. Sample of the event pattern in the Farm program

l . The logical clock of a module bears no relationship with the processor clock on which a module runs .
For example, two modules, each with their own logical clock, can run on the same physical processor
which has only one clock.

40 3.2 Viper's fi rst prlHntype: Lhe specificmion

As the diagram shows, it is only after the application process of the Master sends off
the inrglb request (e4) that the supervisor process of the Master completes processing
the request sent by Slave(2) and returns the reply e5. These messages are communi­
cated to Slave(2) through separate communication channels and it is not unlikely that
they arrive in reverse order, as demonstrated by the arrows crossing in the diagram.
Note that this can also occur when messages go through the same channel ; we have
made no assumption on FIFO behaviour of communication channels.

logical clock of Master

time

(ez,2)

(e3,3)
(e4,4)

+
0

logical clock of Slave(2)

+
0

(e1,1)

(e6,6)

(e1,7)

(e8,8)
(~.9)

(ex,y): event ex is time stamped with logical clock value y

FIGURE 11. Logical clock time stamping of events for two interacting modules

In Figure 11 we have indicated the evolution of the logical clock values, starting at the
initial value of 0. It also shows the time stamping of the events (e .g. event e6 is time
stamped with logical clock value 6), and the clock values that are sent across. In our
example the events are numbered according to their occurrence in time. So the chrono­
logical order of events is e 1, e2, .. ., e 10. As we can see from the diagram, sorting the
events on their logical clock time stamp results in the same order. Figure I I illustrates
two issues, associated with the use of logical clocks:

• Each communication arrow in the diagram is labelled with a logical clock value.
Indeed, a logical clock value has to be sent with every message communicated
between modules to update the clocks correctly. Hence the technique of logical
clocks implies a structural additional overhead, resulting in a performance penalty.

• An observation of a computation such as Figure 11 is recreated from collected trace
messages. In a situation were the communication pattern is a priori unknown to an
observer that reconstructs this image as trace messages are received , this observer
could not be sure whether indeed all trace messages had been collected. For
instance, in Figure 12 there may be still some events missing between e5 and e I 0,
generated by exposeglb calls . This uncertainty arises as the logical clock values
within a module need not always be consecutive as illustrated in the example.

3.2 Yi~r·s tirst prototype: th~ spccifo.:ation 41

The latter issue can be addressed in various ways, based on the characteristics of the
communication environment. In the situation where there is a realistic upper limit Don
the delay in the sending of a trace message 10 the observing process, the following
approach can be taken:

• The first step involves the implementation of a FIFO structure on all communication
channels involved, if this is not the case already. This can easily be achieved by
inserting a counter in each message at channel entry and re-ordering of messages at
channel exit.

• The observer only accepts trace messages that have a time stamp T with
T <=Now+D, where D is the delay upper limit.

The following algorithm illustrates how the observer would collect trace messages and
construct a consistent observation (communication channels are assumed 10 be FIFO):

Process observer
VAR

!NIT
BEGIN

END

q : Queue; {message queue, soned on time stamp T}
r: Run; {message queue. soned on logical clock value LC}
m : message; p : process:

WHILE True DO

OD

IF Now+D> T(q.head())
r.soned_insen_from_righ1(q.head());
q.remove_head();

IF receive(m,p)
IF Now+D>T(m)

r.soned_insen_from_righ1(m);

ELSE
q.append(m);

FI
FI

Summarising, if the communication delays are bounded 10 a certain maximum, we can
accept incoming trace messages such that the program state observation lags the actual
one with this maximum period (as implemented by the algorithm above). If this
approach is not feasible as there is no guaranteed maximum delay in message delivery,
another solution exists:

• Use the rule to adopt only messages with a logical clock value that is smaller or
equal to the minimum of the observed logical clock values of the individual mod­
ules. This will guarantee a consistent observation, as demonstrated in [Mul93].

However, here one problem is substituted for another, namely progress: the rule
requires all modules 10 steadily generate trace messages if the observed state is to
progress in equal pace. In the case of a Mona Lisa Farm program, this may not always
be the case; see Chapter 4 for an example Farm program where the master is only gen­
erating trace messages at distinct time intervals. Even with only one module temporar­
ily inactive in terms of trace message generation, the run reconstruction process comes
to a grinding halt.

Another approach to solving the problem uses an extension of the single logical clock,
called the vector clock (also described in [Mul93]). This clock works according to the
same principle, but uses N integer values for a program with N modules. This immedi­
ately shows its major drawback: not only do we still have the overhead penalty that is

42 1 .2 Viper's first pm1 u1yrc: the spccilication

associated with logical clocks,_ but the overhead also increases proportionally with the
number of modules in the program.

We conclude that for the first prototype we will adopt the logical clock method assum­
ing an upper limit message delay, although it may not be an optimal solution given the
fact that at this stage we have no hard evidence of the existence of such an upperbound.
The consequences for the Viper specification are twofold. For maximum flexibility and
platform independence, the maximum message delay D will be implemented as a user­
configurable parameter in Viper that can be adjusted at will. On the input side, we have
to add a field to the trace message structure for the logical clock time stamp.

3.2.2.4 Module Setup file

In addition to trace messages, Viper makes use of a Module Setup file . This file con­
tains a description of the Mona Lisa structure of the parallel program (number of mod­
ules, module names, global variable names, mappings of their names to numbers etc.).
Viper uses this file to interpret the encoded contents of the trace messages. The pro­
grammer does not have to create the Module Setup file by hand: the file is generated by
the Mona Lisa pre-processor when the parallel program is compiled.

The use of a Module Setup file follows from two requirements:

• Viper cannot pre-process a trace message file as ParaGraph does to determine the
module identifiers etc ., because that would prohibit real-time visualisation.

• Viper has to provide feedback at the paradigm level, so a certain amount of informa­
tion (module names , variable names etc .), not present in the trace messages, needs
to be supplied by a separate source.

At the start of the project, the Mona Lisa pre-processor did not provide a setup file, so
an additional project task was defined to extend this tool's functionality. The example
below shows the information stored in this file (derived from the Farm program):

MODULES '
5

GROUPS'
1

RANGE FOR GROUPS'
1 4

DEFINITION TABLE'
file name
farm. MASTER
farm. SLAVEl
farm. SLAVE2
farm. SLAVE)
farm . SLAVE4

module I group name
module MASTER
module SLAVE 11 I
module SLAVEl21
module SLAVE (3 I

id
0

module SLAVE (4) 4
all_modules # 5
replication group Slav e 6

#ATTRIBUTES for module MASTER#
attribute name
JOB

id
0

#ATTRIBUTES for module MASTER#
attribute name
RESULT

id
0

type
INTEGER (400)

type
INTEGER (400 I

FIGURE 12. Example of a Module Setup file.

Amongst other things, the file specifies for each module:

3.2 Viper's first pro101ype: the spe-eification

• The file name that contains the module executable. This information is not strictly
necessary for Viper; the presence of this information is a by-product of the close
integration of Viper with the Mona Lisa development environment.

• The name of the module (as declared in the source code).

• The numerical identifier assigned to the module.

• A list of attributes. In the case of Mona Lisa, attributes correspond to global varia­
bles. For each global variable the file lists its name, its numerical identifier and its
type.

The formal definition of the Module Setup file structure can be found in appendix B.
The LL- I grammar rules on which the syntax is based are such that generation of the
corresponding parser code is straightforward.

3.2.3 Operational specification

43

As mentioned before, Viper has to support several modes of trace message processing:

• Off-line, for post-mortem analysis. Trace messages that are generated by the parallel
program are stored in a file, and interpreted by Viper at a later time, after the pro­
gram execution has finished. The user can choose to have Viper process trace mes­
sages either continuously, or on a step-by-step basis allowing him/her to follow the
state changes in detail.

• On-line, for monitoring purposes. During parallel program execution, trace mes­
sages are immediately communicated to Viper and the program state is updated.

When Viper processes trace messages continuously, the user controls the rate at which
the screen is updated by specifying a time interval between successive updates. Speci­
fying a zero length interval results in an update after every trace message. There are
two reasons for wanting to control the screen update rate in the on-line mode:

I. When trace messages arrive at a high rate, a screen update after every trace message
can slow down the tool so much that it cannot keep up with the rate at which trace
messages are generated.

2. When successive screen updates follow each other too quickly, the user cannot fol­
low the changes in a view. The resulting "screen flickering" is very unpleasant.

A status window allows the user to monitor Viper's trace message processing. It pro­
vides two kinds of information:

• progress information. Not every trace message input necessarily causes a view
change. The decoupling of screen updates from the reading of trace messages makes
it important to give the user explicit feedback on trace message input. The status
view shows: when a trace message is read; when a trace message updates the paral­
lel program state; and what the current time on the parallel program execution clock
is. This time is associated with the animation view that represents the program state
at a particular point in time during parallel program execution. In Figure 13 we see
that a trace message generated by module MASTER with time stamp 2674 has been
read, whereas the message with time stamp 2521 is the last one to update the paral­
lel program state.

44 3.2 Viper's firs! pro1ory~: 1h_e specifica1ion

• special conditions: when conditions such as start of trace file, end of trace file, bad
input (error in trace message format) occur, this is mentioned in the status window . ..

·~- ' ~

·...........----~-------

~
!.

- ,

l<~:..::P'-'-- • ~-
-~----- ,.J -

FIGURE 13. Example of the status window.

The operational control of Viper takes place via the control panel, depicted in Figure
14. With the first menu choice, settings, the user sets two parameters related to resource
usage on the workstation: the screen update interval (affecting the amount of graphics
processing required), and for what time interval all state information is saved. At each
state update, existing state information that is time stamped older than the current exe­
cution clock time minus the history time interval, is discarded. This controls the mem­
ory consumption on the workstation. The next two menu choices control the creation
and removal of the windows discussed earlier. The menu choice status invokes or
removes the status window. With the menu choice views the user can select the views
he/she wants to have displayed on the screen.
The rest of the menu is related to trace message processing. Go/stop (de)activates con­
tinuous processing, whereas step invokes one state change at a time. The menu option
hreakpoint allows a "fast forward" of the visualisation, stopping at the clock value that
is specified as breakpoint. Reset brings Viper back to its initial state: the program state
information is set back to default values ("start of program execution"), internal buffers
are cleared, and in the case of off-line processing, the trace file input pointer is reset to
!he start of the file. Finally, the visualisation can be terminated by choosing quit.
Two parameters are specified at start-up: whether visualisation is on-line or off-line,
and the name of the parallel program. Viper uses the latter to determine the name of the
Module Setup file and the trace file to be read.

FIGURE 14. Viper's control panel.

With the operational specification details we conclude this chapter. Chapter 3 started
with a section on the developing approach, explaining the iterative process adopted to
deal with an environment of evolving requirements. Following on, we subsequently
specified Viper's functionality in terms of input, output and operational behaviour. This
resulted in a complete specification for the first Viper prototype. ln the next chapter we
will see how we can come up with an overall design (architecture) for Viper that meets
the specification.

4. I The cssenti:.11 mm.It: I

Chapter 4

Building the first Viper prototype

Viper's architecture and design will be described in a two-phased approach. First, we
develop a system model that captures the essential requirements embedded in the spec­
ification, called the essential model. This rather abstract model describes which activi­
ties must be performed, and what data is needed to perform these activities. Such a
model may be satisfied by multiple, different implementations. As we are taking these
implementation decisions, we map this model to a second system model, which is less
abstract and lends itself to straightforward coding without any further crucial design
decisions .

4.1 The essential model

Numerous methods for systems modelling have been developed over recent decades,
each with their set of concepts and notations. In most methods, multiple views on the
same system are used to separate structural issues (what are the system's components)
from dynamic issues (the system's behaviour) and functional issues (what does the sys­
tem accomplish). StateMate [RA90] and OMT [Rum91] are examples of methods that
use each of these views. This separation of concerns allows the modelling of systems
with a high degree of complexity.

For our abstract model of Viper's architecture we adopt StateMate. The StateMate
method has a significant user base in industry and academia (as demonstrated by case
tool support, available in the market as commercial software). Another important rea­
son for choosing StateMate is its comprehensive set of modelling tools, that allow us to
work at the pure specification level. This means that implementation decisions can be
postponed. For example, StateMate neither prescribes nor excludes an object-oriented
approach to software implementation. However, for the description of design decisions
taken at the implementation stage we will use OMT (see Section 4.5) .

StateMate uses activity charts to describe functional capabilities (i.e. relating to data
processing), state charts to describe dynamic, behavioural aspects (i.e. relating to con­
trol), and module charts to describe the physical structure of a system.

4.1.1 Functional view of the essential model

The activity chart for Viper is shown in Figure 15. The single activity at system level,
which can be described as 'visualising a Mona Lisa parallel program state', has been
decomposed into a number of component activities which are represented by ovals in
the diagram. Where necessary, these activities will be split recursively into component
activities until sufficient detail is captured, as described in [Pre94]. The activities

46 4.1 The essential moUcl

absorb and produce information flows, indicated by solid arrows. Labels indicate what
type of information is involved. Information can be stored in a permanent data struc­
ture called a store, which is represented by a square.

r - - - ...,

1Mona Lisa
program

L. - - - ...J

r - - - .., : tram_pendin
ILJ /G . I . - - - - - -ser u1 . ________________ .,
L. - - - ...J step, go/stop, reset

tram=
trace message
structure

r ..,

Trace
file

L. ...J

ASCII

FIGURE 15. StateMate Activity chart for Viper

Description of activities and external actors:

• Mona Lisa program:
This represents the parallel program under inspection.

• get tram:

screen
area

draw
request

A string of ASCII characters (trace message), generated by the Mona Lisa pro­
gram, is read into the system and formatted into a trace message structure (abbre­
viated as tram).

• update run:
This activity performs the consistent run construction in run. The trace messages
that are passed on to update run are buffered until they can be inserted into run
such that consistency of the run is guaranteed, at that stage and in the future . The
trace messages in run are sorted on their (adjusted) time stamp.

• process run:
Of the trace messages stored in run, this activity takes the first one to update the
state representation of the parallel program. Some parts of the Viper views need
redrawing as a result of a state change. These screen areas are passed on to the
activity update screen.

• update screen:
This activity takes all the screen areas it has received so far, and issues redraw
requests for them. Exactly one redraw request is issued for every part of the
screen that needs to be updated, even though the same screen area may have been
received multiple times since the last screen update. In this way, the redrawing
effort can be reduced considerably by setting an appropriate screen update rate.

4.1 The essential model 47

• draw area:
This activity interprets the draw requests and generates appropriate graphics
events (elementary drawing instructions). A request refers to an abstract screen
area, and contains no geometrical screen representation data. For example, a
request may entail something like 'redraw module X in the animation view'. The
purpose of the activity draw area is therefore to provide a link between the other­
wise strictly separated view states and actual screen representations.

• process event:
A pending graphics event is delivered to and processed by the graphics event
handler. Only by execution of this activity does an actual screen update take
place.

• schedule:
The controlling activity. It determines which activity is executed when. This is
further specified by state diagrams in the following section.

Information flow characteristics (activity inputs/outputs) is one of the criteria that
[Pre94] describes how to decompose activities into component activities. Other criteria
include scheduling (which part of an activity is perfonned when) and functional com­
plexity. A general aim is to minimise the complexity of the interfaces resulting from
the decomposition process. These criteria have been applied and documented below.

The store program state on the right hand side of the diagram contains a representation
of the Mona Lisa parallel program state that is constructed from the trace messages
received. The upper part of the diagram involves all activities that contribute to the
update of this state, whereas the lower part of the diagram shows the activities that are
responsible for generating the graphical representation of what is stored in program
state.

The introduction of the store program state into the architecture is a consequence of the
design decision to separate program state representation and the graphical representa­
tion of that state. Alternatively, the application's structure could have been chosen such
that each trace message is translated to a partial state update and immediately applied
to the screen, without any record of the overall programme state. The store program
state has been introduced for two reasons:

• The requirement that the screen update rate is user-controllable and therefore does
not always correspond to the actual program state, is most elegantly met by intro­
ducing a separate program state representation; it allows the trace message process­
ing to continue while the screen is frozen for example.

• The separation follows what is commonly referred to as the object-handler-viewer
paradigm. In this paradigm, the object that needs a graphical representation auto­
matically notifies a handler when it changes, and the handler subsequently triggers
one or more graphical views on this object to redraw themselves. Most graphics
packages support this paradigm nowadays, because it allows the different parts of an
application to stay relatively independent so they can be modified, extended or
replaced separately.

A similar decoupling has been introduced between the part of the application that con­
structs a consistent run of trace messages, and the part that processes these trace mes­
sages one by one to update program state. The activity update run buffers and re­
orders the trace messages it receives so that they are added to the store run in a consist­
ent order. The activity process run independently takes these trace messages out of the

48 4 .1 The essential model

run one at a time to update the value of store program state. In addition, this activity
can output ASCII formatted trace messages to a trace file when the corresponding trace
message is processed . The written trace message need not be identical to the trace mes­
sage being processed (i.e. it may represent a different type of event) . This functionality
allows for example the production of a ParaGraph trace file from a Mona Lisa trace
file.

The activity get tram takes in strings of characters, generated by the external activity
Mona Lisa program (external actors or activities are depicted by rectangles). These
characters are formatted into an internal trace message structure for which we will use
the abbreviation tram . The activity get tram has been modelled separately, to empha­
sise that it has a particular characteristic: the specification states that Viper must be
able to read from a file, as well as directly communicate with the Mona Lisa program.
Consequently, multiple implementations of get tram will be required to accommodate
each of these situations.

The graphical representation of what is stored in program state is carried out by a set of
activities that implement the object-handler-view protocol which we touched upon ear­
lier. In this protocol, three parties are involved:

• the object that is being visualised (in this case the program state)

• the views on that object (for example, the animation part of a particular module)

• the handler that synchronises changes in the object's state with the object's views.

The draw area activity can be regarded as the view component: it is responsible for the
graphics rendering. The update screen activity is essentially the handler's task and does
the following: process run provides update screen with the screen areas that need to be
updated as a result of the program state update. When it is time for a screen update,
update screen merges all the screen areas it has received so far, and issues redraw
requests to draw area. Exactly one redraw request is issued for every screen area that
needs to be updated. Should two subsequent state changes have affected the same draw
area since the last screen update (resulting in the same screen area being passed onto
update screen twice), still only one redraw request is issued. With an appropriate
screen update rate, this accomplishes very efficient graphics processing.

The implementation of draw area may or may not involve high-level primitives (such
as 'draw text label'), but eventually this is translated down to operating system type of
primitives such as 'draw pixel' or 'draw line'. In many graphical operating systems
such as Xwindows, these primitives are modelled as 'graphics events' which are proc­
essed in the background by a separate 0/S process. All other user interface related
actions such as, keyboard input and mouse movements are in fact also modelled as
events. Newly generated events are placed in an event queue. The O/S process respon­
sible for processing them goes through an infinite 'event dispatching loop', taking
events out of the queue one by one.

We have modelled the event processing explicitly in our activity chart, because we
want to model the scheduling aspects involved in processing incoming trace messages
and processing graphics events. Graphics processing is CPU intensive, and given its
implementation as a separate process, potentially unpredictable in terms of CPU
demand as a function of time. We would like to make sure however that processing of
incoming trace messages gets priority, to reduce the probability that the trace message
communication becomes a bottle-neck and starts to affect the parallel program execu-

4.1 The esscmial model 49

tion more than necessary. It is important to realise though that we assume both event
queue and process event to be integral parts of either the graphics package or the oper­
ating system environment.

Two activities remain to be described. Reset, although it updates the stores run and pro­
gram state, has no relationship with other activities. It simply puts Viper back into its
default state that is assumed at system start up time. Finally, the activity schedule con­
trols all activities (what is executed when). The scheduling is based on the control
information provided by the user (via the GUI) and get tram, indicated by the dashed
arrows in the diagram. This is further described in the scheduler's state diagrams.

4.1.2 Dynamic view of the essential model

In the state diagrams, we use the following shorthand : instead of formal StateMate con­
ventions, we link a state with the execution of an activity by simply using the same
name for the state and the activity. For example, the state "updating run" is implicitly
linked to the activity "update run". The link between a state and its definition is also
established using the same name. This avoids unnecessary cluttering of the diagrams.

Figure 16 shows the main states for the scheduler. Initially the system is in the idle state
(indicated with the curved arrow). A transition to the state running takes place when
the go/stop event is generated; this event represents the user pressing the go/stop menu
button, to start the visualisation. A transition from idle to stepping indicates the user
wants to visualise the next state change in the parallel program. This is only possible if
the run is not empty, or if there is a trace message pending. The return to state idle is
either after a successful state update, indicated by the tram_processed event, or after
reading in all pending trace messages without being successful in placing any trace
message in the run due to run consistency constraints. A description of all relevant
events and conditions is given below.

step and [off-line and
tram_pending or
not(run_empty)]

running idle --------1 stepping
tram_processed or
[not(tram_pending) and run_empty]

FIGURE 16. Top Level StateMate state diagram for Viper

Description of events and [conditions]:

• step, go/stop, reset: generated when the user selects the appropriate button in the
menu.

• break: generated when a user specified breakpoint has been reached.

• [off-line], [on-line]: indicates the working mode of Viper.

• display_timeout: generated when Viper's real-time clock value minus time of last
screen update exceeds period length of the screen update rate.

• [run_empty] : indicates that run is empty.

50 4.1 The esscniial model

• [event_pending]: indicates that there is a graphics event available for the event
handler in the event queue.

• tram_pending: indicates that the next trace message is available for Viper.

• tram_processed: indicates that the program state has been successfully updated .

Figures 17, 18 and 19 describe each of the main states in more detail.

idle

[on-line] and
~-~ tram_pending

~-----processing
event

stepping

[run_empty]
and tram_pending

[not(run_ empty)]

FIGURE 17. sub-states of state IDLE

go/stop

[run_empty] and
not tram_pending

FIGURE 18. sub-states of state STEPPING

resetting

abort step

step
completed

4.2 Using the cxis1ing trncc message s1ruc1urc

running
getting r------ updating
tram run

tram_pending

[event_pending]

f4----1processing
run

lnot(run_empty)]

FIGURE 19. sub-states of state RUNNING

4.2 Using the existing trace message structure

At the start of the Viper project there was already a trace message system in place to
allow deadlock detection and program termination. This system used the following
trace message structure:.

field type description

time_stamp integer system clock value at time of trace message generation

event_lype enumerate Mona Lisa event type to which the trace message relates, e.g.
exposure. inglb etc.

sub_type enumerate funher description of the event type, e.g. start (of inglb), end
(of inglb), instant (exposure).

source integer id. of the module, involved in a send event or internal event

destination integer id. of the module involved in corresponding receive event

var integer id. of the global variable involved in the event

offset (optional) string vector specification of variable slice (for instance sub-array)

size (optional) string ..
TABLE 4. Description of trace message structure

~I

Apart from the last two fields, all trace message fields were mandatory. The integer
value - I was used to indicate an undefined value. Figure 20 shows an example of such
a trace message.

52 4.~ Choosing a graphical user inicdace Jcvelopmcnt ton\

12100 M_EXPOSE INSTANT 2 -1 3 (1,1) (5,5)
instant exposure of variable 3, segment [I ,5] by [1,5], in module 2, at time 12100

FIGURE 20. Example of a trace message

The program manager, after collecting and analysing the trace messages, simply dis­
carded them, and (if applicable) wrote a message on the screen indicating the program
deadlock or abnormal termination. For the first Viper prototype, we decided to build on
the existing trace message structure, extending and modifying it where necessary. First,
we streamline the communication:

• The program manager reports deadlock conditions and program termination by gen­
erating its own trace messages (with the same structure, module id =-I) instead of
writing a message to the screen.

• The program manager stores all trace messages in a file or communicates them
directly to Viper. In both cases, trace messages are carriage return separated, ASCII
formatted strings with individual fields separated by a single space.

The next step is to make sure we can capture all Mona Lisa send-, receive- and internal
events with an appropriate trace message. Each event category is directly mapped to its
own trace message type, by incorporating the (event_type, sub_type) combination as
fields in the trace message structure. In practice this means extending the list of trace
message types, as not all of the 33 event categories had been identified originally.

The trace message format thus constructed has enough expressive power to meet our
requirements. However, we have disregarded any efficiency issues. The use of text
strings for the trace message type for example makes the trace message longer than
strictly necessary. This has performance implications in terms of trace file sizes and
trace message processing. We will work on optimisation of the trace message structure
in Section 5.4 .

4.3 Choosing a graphical user interface development tool

A major component of Viper is the GUI. The development of GUI's is supported by
graphics packages. These packages provide plug-and-play building blocks commonly
referred to as widgets (for example drop-down menus) that can be customised and inte­
grated with the rest of the application. Several packages are available, we mention here
GKS, PHIGS, Tkffcl, X 11 and InterViews.

The added value of a graphics package compared to a simple set of drawing routines
lies in the built-in protocol that the application can use for screen updates, commonly
referred to as the object-handler-viewer paradigm. In this paradigm, the object that
needs a graphical representation automatically notifies a handler when it changes, and
the handler subsequently triggers one or more graphical views on this object to redraw
themselves. Most packages support this paradigm at the time of writing, because it
allows the different parts of the application to stay relatively independent so they can
be modified, extended or replaced separately.

4.3 Choosing a graphical user interface dcvclopmcn1 wot 53

We decided lo develop Viper's interface with the InlerViews graphics package [Lin92].
InterViews has been developed by Stanford University and Silicon Graphics. We chose
InterViews for:

• The power of expression of the graphics primitives. Tkffcl for instance supports
high-level constructs that allows a whole menu to be generated with a few com­
mands, but InterViews allows in addition the use of low-level rendering routines for
detailed control over the screen.

• The portability I flexibility of the package. Allhough nol necessarily restricted to
X 11, InterViews is an object-oriented extension of the Xl 1 Toolkit, and can there­
fore profit from the wide availability of X 11 across many hardware platfonns. The
language interface is C++, the de facto standard at time of development.

• The user interface standards it supports. Independent of the graphics primitives
used, the look-and-feel can be chosen al run-time lo be either Motif compliant,
OpenLook alike or a native crossing between the Lwo.

• The complexity of the package. On the criteria mentioned above, the X 11 Toolkit
also seems a favourable choice. However, the level of complexity is much higher
compared to InterViews.

• The performance of the package. The demonstrations that were included with lhe
package gave a positive impression on speed, allhough it is still difficult to compare
the performance of graphics packages, especially if they use different mechanisms/
primitives to implement a similar benchmark.

• The cost. Inter Views is public domain software, and as a result there are no license
requirements.

InterViews, like many other graphics packages, uses a model of the application envi­
ronment, where all user interface actions (elementary drawing actions, keyboard input,
mouse movements) are modelled as events. These events are processed in an evenl dis­
patching loop: at set times, an event handler takes events one by one out of a FIFO
queue and executes/processes the action specified.

The screen update mechanism also makes use of this loop, in the following way: when
a screen area needs to be redrawn, the application notifies Inte rViews that a part of the
drawing canvas is damaged. Interviews registers the damage, bul decides itself when to
trigger Lhe appropriate graphics components to redraw themselves on the canvas. Part
of this decision process is InlerView's atlempt to perform some optimisation on the
drawing process.

When a graphics component is triggered by Inter Views to draw itself on the canvas, it
sends drawing commands such as "draw a line from (xO,yO) to (x I ,y I)" to the event
dispatching loop, where the drawing commands are stored as draw events. Only when
the event handler processes lhe event, will the actual line be drawn.

This screen update procedure may seem rather elaborate. However, a simple applica­
tion needs to interface to InterViews only via the canvas damaging routine and Lhe
appropriate graphics components; the event processing loop stays under Lhe control of
the graphics package 'engine' and is not of interest to the application.

What may seem a modest amount of trace messages, may in fact represent a significant
amount of graphics processing, depending on the complexity of the Mona Lisa events
involved (e.g. draw a new circle with colour change and arrow). Assuming an execu-

54 4.4 The on·linc in1erfat1: between Mona Li S<:t and Viper

lion model for Viper of sequential processing, this means that the processing of trace
messages for state updates is sometimes significantly interrupted by graphics process­
ing. This is an issue for on-line processing in the case of trace buffering constraints: if
the delay in trace message processing causes a buffer overflow, trace messages are
either lost (worst case), or the parallel programme execution has to be delayed to allow
for Viper to 'catch up' . The latter requires appropriate support of the parallel process­
ing environment.

However, we can take full advantage of the flexibility of InterViews ' screen update
mechanism. By unfolding the event processing loop we can give Viper explicit control
over what InterViews does (when it checks the event queue, when the event handler
processes the next event, etc.) . In this way we can use one scheduler to deal with real­
time constraints for both trace message processing (during on-line visualisation) and
graphics processing in a uniform way.

4.4 The on-line interface between Mona Lisa and Viper

The Transputer Machine in the GP-MIMD project is controlled from a SUN worksta­
tion. The communication between the two machines takes place via a proprietary pro­
tocol that is Transputer specific. However, from a portability point of view it is
unattractive to base the on-line interface between Viper and a Mona Lisa program on
this protocol.

Mona Lisa is not implemented directly on Transputers, but makes use of the Chorus
operating system as an intermediate layer. The Chorus/Mix extension of this system
provides UNIX compliant functionality, including sockets. This is a standard mecha­
nism for communication in a UNIX network. The SUN workstation also uses the
UNIX operating system, so it was decided to design Viper in such a way that it reads
trace messages from file or from a socket. To complete the interface with Mona Lisa,
the Mona Lisa program manager needed to be changed to incorporate the possibility of
writing trace messages to a socket instead of a file .

4.5 Viper's software architecture

Numerous methods for software development have been developed over recent dec­
ades. Object oriented software development is now considered to be best practice for
complex mid-sized applications such as Viper. In this thesis we will use the Object
Modelling Technique (OMT) method to describe Viper's software architecture, advo­
cated by J. Rumbaugh et al. OMT is one of the leading methods in modelling object­
oriented systems, together with the Booch method . At the time of writing, a merge of
the two methods had been initiated towards one Unified Method, and a draft of the
notational standard had been published. This was the basis for what is now widely
known as UML (Unified Modelling language). We adhere to these conventions when­
ever possible.

In the Unified method, class/object diagrams are used to describe the static structure of
the objects in an application and their relationships. Object message diagrams are
sometimes useful to show the sequence of messages between objects that implement an
operation. State diagrams document how objects exhibit different interactions with
other objects depending on what state they are in . Other diagrams, not used in our dis-

4.) Viper's sof\warc <m.:hi1ec1ur~

cussions, include use case diagrams, module diagrams and platform diagrams. Finally,
operational specifications using pre- and post conditions are used to specify object
operations in detail.

Before we present the class diagram for Viper's architecture, we give a short introduc­
tion to the components of the class diagrams (objects, classes), their structure, and their
relationships. For a more thorough treatment, the reader is referred to [Boo94].

4.5.1 About objects and classes

The execution of an object-oriented program can be described as an interaction process
between a collection of objects. Objects represent a physical entity or a logical process
in the real world, usually related to the problem domain the program addresses. Objects
carry information in the form of attributes, and provide operations to read and manipu­
late these data. A class defines the exact behaviour of operations and the type of the
object's attributes. From one class, several objects can be instantiated: the class defini­
tion acts as a template.

We will demonstrate the above with a small example. Figure 21 shows the pictorial
description of a class Stack. Objects from this class can be used to represent a stack of
books on a desk. One might envisage two stacks of books: one stack of unread books,
and another of read books. In that case one would create two objects from the same
class Stack (as indicated by the instantiation arrows from the objects to the class). The
fact that one can have multiple stacks of books on a desk, is shown by the named line
interconnecting the two class pictograms. The filled dot signifies "multiple".

In the class pictogram, attributes come directly under the class name, and a horizontal
line separates the attributes from the operations. The only attribute of Stack that is
accessible by other classes is top. This attribute represents the book on top of the stack.
The type of top is Book, which is in itself a class with operations and attributes (neces­
sary for reading the book!). The attribute list is used to implement the class; it is not
accessible by other objects (indicated by the(-)).

Piie

clear()

~

<lies on Stack

I Book: top
Desk (·)list ~

pop()
push() k:-

FIGURE 21. An example of a class description: the class Stack represents a stack of books, and
provides useful operations to manipulate the stack

56 4.~ Viper's sortwarc architcc1ure

Taking a book out of the middle of the huge pile is a hazardous ad venture, so the only
operation that takes a book off the pile is pop, which removes the top book. Similarly,
the only safe way to add books to a pile is to put them on top, so the operation push
takes a book and puts it on top. The implementation of both pop and push (that manip­
ulate the private attribute list) has to be done in such a way that the value of attribute
top is adjusted accordingly, to preserve the integrity of the representation.

A stack is really a special kind of pile (namely, an ordered pile). The class Stack is
therefore modelled as a sub class from Pile (indicated with an arrow), and it is said to
inherit the operations and attributes from Pile. So, although the operation clear() is not
mentioned within the Stack pictogram, it is part of the class, and accessible as such.

We can elaborate on many other object oriented concepts, but instead we will discuss
them as they appear in the object models. In the text and diagrams we will use some
conventions to improve clarity. All class names start with a capital. Al I Inter Views
classes (provided by the graphics package) have "iv" preceding their name. We will not
show their implementation unless vital for the understanding of other classes. The gen­
eral purpose classes List and Table are also supplied by lnterViews. All other classes
are specifically designed for Viper.

4.5.2 Viper's object model.

Scheduler

< passes trams to reads from>
TramSource

start()
boolean

<generates tram_pending()

1 tram get_tram()
reset()

Program Tram
name
state writes to>
(-)run lvSession

update_run(tram) I event_ queue
process_run() Trace Sink boolean boolean run_empty(}

event_pending() reset() write_tram(tram)
process_event()

generates

j
< accepts for

Area - Gui update contains a>
mode
state

update_screen()
request_redraw(area)

FIGURE 22. Viper's architecture as cooperating classes.

The abstract model is a good starting point for identifying classes and mapping activi­
ties (for which we have given informal operational specifications) to operations. Start-

4 . ~ Viper 's soflwan; an.:hiiel'.tun: ~7

ing with the activity get tram, with the associated external actor Mona Lisa program
and the event tram_pending, how to create a suitable class structure that captures this
functionality? An obvious choice is to create a class whose objects represent a Mona
Lisa program. The activity get tram and the event tram_pending can then be imple­
mented as operations of that class. To avoid a Mona Lisa dependent nomenclature, we
prefer to use a more abstract class name, namely TramSource.

The class TramSource embodies the input device from which Viper expects to get its
trace messages. The operation tram_pending returns a boolean value indicating
whether or not the next trace message can be read. The operation get_tram imple­
ments the activity of the same name; it returns the next trace message under the pre­
condition that tram_pending returns "true". Reset has as postcondition that the input
medium (for instance, a trace file) is read from the start again. This operation is part of
the implementation of the activity reset .

The class Program is the mirror image of the Mona Lisa program. Whereas the real
program changes state and produces trace messages, this class does the inverse: Pro­
gram absorbs trace messages and updates its state as a result. Hence, it incorporates
both the run and the program state store from the StateMate activity chart . The opera­
tions update_run and process_run implement the activities of the same name. The run
reconstruction is an implementation detail of the class, so run is modelled here as a pri­
vate attribute. The program state is (for now) represented by the attribute state. The
operation reset() clears run and resets state.

The class Gui represents the graphical user interface, and indirectly the user. The two
attributes shown provide the scheduler with the information it needs according to the
dynamic model; mode indicates whether Viper is in on-line mode or off-line mode,
and state is set according to the events that the user generates (such as "press go/stop
button in control panel"). These attributes are updated by so-called callback routines in
the Gui class (not shown).

The Gui class is also responsible for the graphical representation of the program state,
so it implements the activities update_screen and process_event. A screen update is set
up by providing one or more Area objects to request_redraw(); these objects specify
what part of the screen needs to be redrawn. Invoking update_screen() then generates
graphics events in the event_queue, an attribute of the ivSession class . The opera­
tion event_pending returns "true" if the queue is not empty, whereas the operation
process_event takes an event from the queue and passes it to the InterViews event
handler for processing (causing the actual screen change) .

Finally, Scheduler is shown as a simple class with one operation, start(). This opera­
tion only returns to quit the application. This makes the scheduler class the active
thread of control. The other thread of control is the windowing system. The graphics
event queue is in fact an integral part of this system, and normally its processing is
done in a closed loop. As shown in our modelling , we decided to break this loop so the
scheduler can decide at any particular moment which of the fol lowing three actions has
the highest priority: reading in a tram (a priority in on-line mode to avoid buffering/
blocking on the other side of the socket!) , processing the run queue, or processing the
event queue. This behaviour has already been modelled in the StateMate state dia­
grams, and the object state diagram for the scheduler class is a direct equivalent. We
therefore decided not to draw a new object state diagram, and used the StateMate dia­
grams directly instead.

58 4 . ~ Viper's software an.:hite~:turl:'

This concludes the top-level description of Viper's software architecture. This top­
level can be expanded to refine our software design until we have reached a sufficient
level of detail, beyond which an implementation in a programming language is
straightforward. As starting points for refining we can use both the underlying StateM­
ate activity model and the OMT object model. StateMate supports a hierarchical dia­
gram structure, so the activity model can be expanded simply by describing an activity
in more detail in a new (sub)diagram. Also, implementation of the classes of the object
model provides a good starting point for introducing new classes and state diagrams.

As an example, we will discuss the implementation of the Program class. In Figure 23
we see that a Program object is an aggregate of a Run object and multiple Module
objects representing the modules that together constitute the parallel program (aggrega­
tion is indicated by the diamond). Program also has a state object of class ProgState,
representing state information that is not related to any particular module or that relates
to more than one module (such as "program in deadlock"). The attribute PSclock (Pro­
gram State clock) of class Program contains the time stamp of the Tram object that
last updated a module's state or the program state.

Scheduler passes trams to >
Program

String: name
Run
extract_head() -

::::> process_run()

ProgState
boolean run_empty()

Real: PSclock -

Module ~ State list
bas history >

contains
String: name k>-

>

process_tram(Tram)

I
ModuleState

has a current > {ord}

lnglbStartTram

n" updates state of -
update_state(

Tram ---< Module)

update_state(
Module) abstract

ExposeEndTram

- update_state(
Module)

- ...
FIGURE 23. Object diagram for class Program, with a focus on rwi processing.

4.6 Evaluation o r the first prnirnypc

The class Module has a current module state associated with it, and a state history.
This history is an ordered list of module states. The update of a module's state proceeds
as follows. The Program takes the first Tram object out of the run with
extract_head(), and passes it on to the module that is indicated by the association
"updates state of' between Tram and Module, through the operation process_tram().
The Module then invokes the operation update_state() on the Tram object, passing a
reference to itself as the argument. So it is the Tram object that actually updates the
state of a module.

As each state change can be radically different depending on what Mona Lisa event a
trace message represents, we have a subclass of Tram for every trace message that has
a different event tag. The diagram shows two of them, one being used for trace mes­
sages that indicate the start of an inglb call, and one indicating the end of an exposeglb
call. For each subclass we can implement the operation update_state() differently. In
fact, the operation is explicitly left undefined within the Tram class (indicated by the
word abstract). When update_state() is called on an object of class Tram, the correct
operation implementation of the appropriate subclass is automatically selected . This
concept is called polymorphism in object oriented languages.

The description of Viper 's abstract and software architecture in this section has been
rather high-level , and especially the class diagrams deserve more detail. Nevertheless,
it is not the purpose of this document to provide a detailed technical design of Viper.
Instead, we focus on the major design and implementation issues, for which we have
made a good starting point. The process of translating diagrams such as the ones shown
here into actual, compilable code is a subject that is described in an excellent way in
[Str92] .

4.6 Evaluation of the first prototype

The development of the first prototype was a time restricted project with a strict dead­
line of December 1993. This was due to the nature of the project, it being the final
stage in the two-year postmasters programme of Software Technology. As such, it was
essential to deliver a fully functioning prototype.

On the whole, the results of 9 months work were satisfactory. The primary objective of
providing an effective graphical presentation and dealing with large amounts of data
whilst providing the user with easily interpretable diagrams was achieved succesfully.
This was validated with artificial example programs.

The development of the ftrst prototype involved an intensive learning process in sev­
eral areas :

• Understanding of Mona Lisa from concept to implementation . During the develop­
ment, some unforeseen improvements and additions had to be made to the Mona
Lisa implementation . In addition , the functionality of the Mona Lisa front-end For­
tran parser had to be extended . This was partly the result of being the first serious
user of the paradigm.

• Usage of the Inter Views graphics package . A considerable drawback was the lack of
documentation and direct support, especially since there was no prior experience
with other graphics packages similar to InterViews in the project group. This caused
the learning process to be quite long.

60 4.6 Eval uati on of the first pn11oi ype

• Global timing in distributed systems. The characteristics of Chorus in this area were
such that more time had to be spent on the consistent run construction then initially
foreseen . Even with the logical clock implementation as described in this chapter,
the result was not entirely satisfactory (the assumption of a maximum message
delay being quite restrictive and inflexible).

The design decision to use InterViews had two major impacts:

• Due to the learning curve with InterViews, the full delivery of the Viper gui was
very much skewed towards the end of the project. The time investment that was
required also had an impact on the functional scope of Viper, which was kept to the
essentials.

• On the other hand, the functionality of the package, its object oriented design, and
the C++ compatibility with Viper ultimately benefited the quality of the application
design.

Our design decision to separate run construction and run processing as activities in
their own right (see Figure 15) has proven to be an important one. Given our concerns
about the logical clock implementation as described above, we will most probably have
to overhaul this part of the design in the next prototype. The modularity of the design
al lows us to make changes here without impacting other parts of the design.

This chapter has introduced our vehicle for describing Viper 's first prototype, StateM­
ate and the Unified method . In the next chapter the enhancement of the first prototype
will be addressed. When we describe the second prototype we will expand on the mod­
els that have been presented here.

5. 1 Muvin~ away from logical chx:ks 61

Chapter 5

Viper's subsequent prototypes

The delivery of the first prototype after 9 months concluded the final project from the
two-year post-masters programme in technological design. Although Viper proved usa­
ble on example programs, there were some key points that needed further addressing,
most notably the consistent run construction. In the development of the second proto­
type we therefore focused on an improvement of this part of the design. This will be the
topic of discussion in Section 5.1 through to Section 5.3. In a third prototype we final­
ised the trace file format, the on-line interface to the parallel program and the interface
hooks to ParaGraph, which will be discussed in Section 5.4.

5.1 Moving away from logical clocks

In Figure 11 we already demonstrated the two disadvantages that are associated with
the use of logical clocks:

• Each communication between modules needs to be accompanied by a logical clock
value, an undesirable overhead . The logical clock value also has to be incorporated
into the trace message structure.

• It is difficult to construct a consistent run without any assumption on latest arrival
time of trace messages, because the logical clock values within a module are not
consecutive (i .e . there is no so-called gap detection possibility).
An attempt had been made during implementation of the first prototype to imple­
ment a partial gap detection mechanism using logical clocks in combination with
primitive counters, see [Schi93/l] for details. This still did not solve the problem of
the delay between trace message receiving and processing, and it further increased
the trace message size. Therefore, the search for a better technique continued.

The strong point of the logical I vector clock theory is that it provides a widely applica­
ble solution because there are no assumptions about the interaction patterns between
modules. However, by exploiting the specific characteristics of our programs, we can
take a different approach that does not suffer from the disadvantages mentioned, which
we wil.I demonstrate in the remainder of this section .

The run construction as we have proposed it for Viper is a two-phase process . We start
by partitioning all observed events into sequence lists . A sequence list is a chronologi ­
cally ordered list of all events generated in one particular module. At the same time, we
partition all observed events into primitive lists. A primitive list is a consistent and
complete list of all events generated by one particular primitive call (which may con­
tain events belonging to multiple sequence lists) . These primitive lists are subsequently
concatenated into module lists . A module list is a chronologically ordered list of all
primitive lists that have originated in one particular module. The second phase of the

62 5.1 Moving away from lngic(l] clocks

run construction process consists of merging the sequence lists into a run respecting the
ordering imposed by module lists. Thus, a run is one serial observation that obeys the
ordering of both module lists and sequence lists.

We will show later how we can extend Viper's logic with a model of the Mona Lisa
primitives that will help Viper to place an (initially anonymous) Mona Lisa event into a
primitive list, thus enabling Viper to build module lists by concatenating primitive lists.

Figure 24 demonstrates the concepts of primitive list and module list, using the same
realistic example from Figure JO. Although we have kept all the events in the diagram,
numbering them according to their occurrence in time, the reader will notice that some
events (such as e3) are not relevant for the discussion. For the moment we will assume
that the corresponding trace messages are observed by Viper in the same sequence. Part
A shows the ordering of events in the primitive list for the slave's inglb call. The
sequence of events that make up the primitive list is indicated by a bold I ine that joins
them together (e1, the start of the inglb call;~; e4 and e7 that completes the inglb).

0 ® ©
Master Slave(2) Master Slave(2) Master Slave(2)

e1 e1 e1

e2

e3 e3
e4 e4

es es

e6 e6 e6

e, e, e,

es es es
~ ~ ~

e1 e1 e1

primitive list for module list for sequence list for
master.inglbijob) Slave(2) Slave(2)

Events that are part of a list are joined by bold lines

FIGURE 24. Primitive list, Module list and Sequence list demonstrated in the Farm program

Event e8 forms another primitive list in its own right, generated by the exposeglb prim­
itive call. The bold line in Part B of Figure 24 shows how the two primitive lists
belonging to the inglb and the exposeglb list are incorporated in the module list for the
slave module. Part B also shows how different module lists can 'cut through' each
other: the events e5, e6, e9, elO are part of the master's module list. Following Mona
Lisa primitive list properties can easily be understood using the example of Figure 24.

property 1.
Every send-receive pair in Mona Lisa belongs as a whole to one primitive list. This is
demonstrated by the inglb primitive list in Figure 24.

S. l Moving away from logical clocks 63

property2.
Every Mona Lisa primitive list starts with an event that.is generated within the module
generating the primitive call.

We will use these properties to help us with the construction of primitive lists in Viper.
Note however, that these properties are not valid for just any paradigm as shown by the
following example: property 2 would not hold for a paradigm where a receive() primi­
tive exists; this primitive would have primitive lists associated with it that start with the
send event, which is generated in a different module.

As mentioned before, primitive lists are combined into module lists. A module list,
associated with a certain module, concatenates all primitive lists that are generated by
that module. The primitive lists in a module list are ordered in sequence of execution:
the first list corresponds to the first call in the module execution etc.

Property 3.
Module lists are consistent. This follows directly from the fact that a module list is a
consistent concatenation of consistent primitive lists.

We can make the following observation: every send-receive event pair belongs as a
whole to one primitive call and is thus part of a module list. This means that the module
lists' ordering respects the direct causal dependency for send-receive pairs. The other
direct causal dependency (i.e. between successive events in one module) is respected
by the sequence lists: in every module's sequence list, events are ordered according to
the sequence in which they are generated by the module. See Part C in Figure 24.

Viper constructs a consistent run by merging the sequence lists, using the module lists
to ensure correct ordering:

• The module list ordering ensures we do not violate the causal dependency between a
send and receive event.

• The sequence number ordering ensures we do not violate the causal dependency
between two events in the same module.

Merging takes place by continuously transferring the 'heads' of the sequence lists to
the run list, with the following rule: an event is only transferred when its predecessor in
its module list has been transferred . In the algorithm below (shown in pseudo code) we
leave out the construction of the module lists for the moment (note that in the algorithm
we manipulate trace messages, not events):

Process observer
VAR

BEGIN

END

m: Module;
q[m: Module]: Array of Queue; {array of sequence lists implemented as message queues J

r : Run; {message queue I
t: Tram:

WHILE True DO

OD

IF (m.1 : l in module list of module m: next_approved(m) = t) THEN r.append(t):
Fl

IF receive(t ,m) THEN q[m].insert(l);
FI

64 5.1 Moving away from logicHI clocks

The function next_approved(m: Module) in the above algorithm returns the next trace
message for which the predecessor mpred in the module list is already in run r, or nil if
such a trace message does not (yet) exist.

The function receive(/: Tram; m: Module) returns true if a new trace message has
arrived for module m (which is then returned in variable t), and false otherwise.

5.1.1 The construction of sequence and module lists

The construction of a sequence list is relatively straightforward. We tag each event,
sent in a trace message to Viper, with a sequential number that defines the ordering.
This sequential number is derived from an internal counter maintained within the mod­
ule.

The construction of a module list as a concatenation of primitive lists is demonstrated
by using our example program with five modules, Slave(!) through Slave(4) and Mas­
ter. Let us assume that for module Slave(2) we have constructed the first n-1 primitive
lists, and we now aim to reconstruct primitive list n.

Figure 25 shows the situation we aim to obtain. Holes in the sequence lists (indicating
events that have not yet been observed) are marked white. For events that have been
observed, the co1Tesponding squares are marked red. As events are allocated to a prim­
itive list we will mark the corresponding square yellow, joining subsequent events in
different sequence lists with arrows.

module SLAVE(l) MASTER SLAVE(2) SLAVE(3) SLAVE(4)

seq.nr ll

12

13

14

15

16

This represents an empty position in the list because the event
with this seq. nr has not been observed yet.

cut C.

D
D This represents an event that has been allocated to a primitive list

• This represents an event that has not been allocated to a primitive
list yet.

FIGURE 25. Situation after completion of primitive list n for Slave(2).

The line across the sequence lists marks up to which point the set of sequence lists
presents a complete observation: the line passes via the first missing event in each

5.1 Moving aw;iy from logical clocks 65

sequence list In the primitive list construction process we can only take the observa­
tion up to cut C into account. For instance, event eslave(l).IS cannot be incorporated in
any primitive list until eslave(l). 14 is received to determine whether it is a better candi­
date. This means that the information below cut C cannot be used. This information is
usable once cut Chas 'descended' in the diagram.

The first step in constructing primitive list n of Slave(2) consists of identifying the
event that starts the list. As property 2 indicates, this event must be found in the
sequence list of Slave(2), among the red events above cut C. The trace message type
marks for an event whether or not it is the start of a primitive call (refer to Table 3).
Assuming in our example that events eslave(Z).l I and eslave(Z). 14 are both the start of a
primitive call, we must take esiave(Z).l I as the first event in the list n.

The trace message type of eslave(Z). I I immediately tells us:

• the number of events list n is composed of;

• which trace message type is expected for each position in the list;

• which sequence lists contain these events .

In our example esiave(Z),I I is the start of a call Master.inglb(..). Therefore, list n con­
tains events as listed in Table 3 which must be found in the sequence lists of Slave(2)
and Master.

Once the first event of list n has been found , the process of list construction continues
by identifying the second event for list n (of which the type and source sequence list is
now known), then the third event, etc. For example, the second event with trace mes­
sage type INRQ RECEIVED is searched for in the sequence list of Master. As with the
first event, we look for the red events above cut C of the required type. Assuming that
both eMaster,11 and eMaster,!6 in list Master are of the required type, which one should
we take?

module

seq.nr II

12

13

14

15

16

SLAVE(l) MASTER SLAVE(2) SLAVE(3) SLAVE(4)

cut C.

FIGURE 26. Finding the correct 'receive request' event as part of the inglb call.
We will show that such choices cannot occur.

Figure 27 shows the general case of a parallel program where send-receive pairs can
cross-over in time. Situation A can be distinguished from situation B by an external

66 5.1 Moving away from logical clocks

observer with a technique such as logical clocks. However, we will show that such
choices can never occur.

time

Situation A

module X y

Message m2 'overtakes'
m1 and arrives at X earlier
even though sent later

Situation B

module X y

Messages do not overtake

FIGURE 27. Generally, modules might interact with messages that 'overtake'.

Situation A can never occur in Mona Lisa programs because of the way primitives are
structured: the ' request-reply' protocol imposes the first send to complete with a
receive before the next reply (e.g. acknowledgement) or request is sent, as demon­
strated in the next diagram.

time

Mona Lisa interaction

module X Y

. _ •.•• _ .. _ •this receive event.
reply2

... will always come after:

. _________ •This receive event

The way that two Mona Lisa modules inter:ict prevents
two messages travelling in the same direction from
overtaking each other.

FIGURE 28. The request-reply protocol in Mona Lisa prevents 'overtaking'.

Therefore we know that we can always take the first event in the sequence list with the
appropriate type and from a given source. In our example this is eMascer.ll (and event
eMaster,16 must belong to a primitive list >n) . After completion of the primitive list con­
struction process as described above, we obtain the diagram of Figure 25. After con-

5.1 Moving awuy from logical clocks 67

struction of all the master and slave(2) related primitive lists (an exercise we leave to
the reader), we obtain the diagram of Figure 29 showing the partial module lists of the
two modules.

module SLAVE(!) MASTER SLAVE(2) SLAVE(3) SLAVE(4)

seq.nr 11

12

13

14

IS

16
cut C.

D
D

• •

I I I I I

• • • • • This represents an empty position in the list because the event
with this seq. nr has not been observed)'el.

This represents an event that has been allocated to the module list
of Slave(2) .

This represents an event that has been allocated to the module list
of Master .

This represents an event that has not been allocated to a module
list yet.

FIGURE 29. Situation after completion of' multiple primitive lists.

In the next section we will look at a formalisation of the primitive list construction
process.

5.1.2 The algorithm of primitive list construction

We have seen that trace messages can only be allocated to primitive lists when some
conditions have been satisfied (e.g. all predecessors of relevant sequence lists have
arrived; profile of the primitive has been identified). For this reason, trace messages go
through various states:

• INITIAL - the trace message is in the sequence list but below the cut (so its prede-
cessor has not been observed yet);

• QUEUED - all predecessors are also in the sequence list;

• INTEGRATED - the trace message is assigned a position in a primitive list;

• TRANSFERRED - the trace message has been merged into the run.

68 5.1 Moving away from logical clocks

Tracking these trace message states in the run construction algorithm is straightforward
as demonstrated below (again, in pseudo code):

Process observer
TYPE

VAR

BEGIN

END

PrimLisr = record (
list[i: Integer]: Array of Tram:
type : PrimitiveType;
size : Integer:
):

m: Module;
t: Tram;
q[m: Module]: Array of Queue: I array of sequence lists implemented us message queues I
r : Run: I message queue I
prim_ list[m: Module] : Array of Primlist;

I one PrimList per module that holds the primitive list under construction I

WHILE True DO

OD

11. promote tram statuses 10 INITIAL or QUEUED where possible I
IF receive(t.m) THEN

q[m].insen(t):
1.s1arus =INITIAL;
FOR ALL tin q[m]

IF head(t) or predecessor(t).status=QUEUED THEN 1.status:=QUEUED:
ROF

Fl ;
12. start new primitive list if possible I
FORALLm

ROF

IF prim_list[m] is empty THEN

Fl

I find thejirs1 tin q[m] with status QUEUED" that starts a primitive call I
IF (3 t: t in q[mj:1.srntus =QUEUED and is_primitive_starr(tram_type(t))) THEN

prjm_list[m].list[I]:=1;

Fl

I.status= INTEGRATED:
prim_listfm].type = primitive_type(tram_type(t)):
prim_list[m].size = primitive_size(tram_type(t)):

13. promote tram statuses to INTEGRATED where possible I
FOR ALLm

ROF;

FOR ALL t in q[m]

ROF

IF accepted(prim_lisi[ml,I) THEN
prim_list[ml.list.insen(t);
t.status =INTEGRATED;

Fl

14. promote tram siatuses to TRANSFERRED where possible]
IF (3 m,t: tis present in q[m) and 1.status=INTEGRATED

FI

and (head(t) or predecessor(t).status=TRANSFERRED)) THEN
r.append(t):
I.status = TRANSFERRED;

The function predecessor(t: Tram) in the above pseudo algorithm returns the predeces­
sor oft in the sequence list that t belongs to. The function returns an empty Tram value
with the status field set to INVALID in those cases where a predecessor does not exist,
i.e . when tis not part of a sequence list yet, or when tis the first element in the
sequence .list. In the particular case where a tram is the first element, the function
head(t: Tram) returns true.

5.1 Moving nway from logical docks

The following four functions reflect the fact that we can derive many properties from
the type of a trace message as explained on page 65.

• The function ttype(t: Tram) returns the tram type oft.

69

• The function is_primitive_start(tt: TramType) tests whether the tram type passed
corresponds to the start of a primitive call. For example, with tt equal to INRQ
RECEIVED this function would return false, as this can never be the start of a prim­
itive call.

• The function primitive_type(tt: Tram Type) maps tram types to primitive types . For
example, only inglb primitive calls start with a trace message of type INRQ START.
Hence, primitive_type(INRQ START) returns INGLB.

• Similarly, the function primitive_size(tt: TramType) returns the number of trace
messages that are required to make up the complete primitive list using the fact that
the primitive type can be derived from the tram type.

The function accepted(p: PrimList, t: TraceMessage) tests whether the trace message
conforms to the conditions as outlined previously (i.e. of all messages with status
QUEUED, appropriate type and appropriate sequence list, it must be the one with the
lowest sequence number).

The algorithm does not show the clean up of finished primitive lists. The prim_list
structure is meant to hold only the primitive list currently under construction for each
module. Once this primitive list has been fully constructed, the algorithm proceeds
with the construction of the next list, starting with an empty prim_list. The incorpora­
tion of this logic into the algorithm would be achieved by inserting the following
pseudo-code segment after step 4:

{ 5. clear primitive lists that have been incorporated into run)
FOR ALLm

IF (i : O<i<=prim_list(m]. size : prim_list(m].list[il .status =TRANSFERRED) THEN
prim_list(ml :=empty:

ROF

The run construction algorithm as presented here does not suffer from the disadvan­
tages associated with logical clocks:

• The additional overhead is small. Although sequence numbers need to be attached
to trace messages just like logical clock values, there is a difference regarding the
communication between modules. Whereas logical clock values need to be attached
to messages between modules, the algorithm presented here does not interfere with
the inter module communication at all; the sequence number generation is done
locally (inside a module). There is also no extra cost associated with the determina­
tion of the trace message type: trace messages already contain type information lo
distinguish, for instance, send events from receive events.

• The approach has an advantage over logical clocks in that it allows the generation of
sequence numbers at a later stage. Imagine for example an MIMD parallel process­
ing architecture where trace messages are cached on the local processing node. At
the point of parallel processing completion, trace messages are collected from all
nodes through FIFO communication channels; finally, sequence numbers are
attached to trace messages at the point of collection.

70 5.2 Wall clock time of lhc uhservcr process versus ·gJohal system time·

• The reconstruction algorithm adds a trace message to the run list as soon as the trace
messages it causally depends on have been added to the run list as well. Therefore
the delay between trace message reception and parallel program state update is min­
imal under the consistency constraint.

5.2 Wall clock time of the observer process versus 'global
system time'

A parallel program state as displayed by Viper refers to the state of the program at a
certain point in time. Viper attempts to give the user an indication of this point in time,
by maintaining a virtual clock in the status window. This clock "ticks" on the basis of
the time stamps, stored in the trace messages.

The Chorus operating system provides a clock on each node which is used to time
stamp trace messages. The clock values have a precision of 1 ms. However, the clocks
tend to drift slightly, both between themselves and also in relation to the wall clock
time. Drifts in the order of 10-20 ms. have been noted. The Chorus operating system
therefore does not provide a global system clock.

In the absence of a global system clock, we have to construct our own virtual global
clock as an approximation. This clock still "ticks" on the basis of the time stamps, but
when trace messages are collected by Viper, their (unreliable) time stamps may some­
times be in conflict with the ordering imposed by causal dependency. This is then cor­
rected in the process of run construction as outlined below.

?

module A
1'4=60 c.~=9~1"5=100 1'6=130~

module B z bl z
_____.... actual datatlow

. ___ • dataflow as suggested
by original time stamps

__ _.... data flow under corrected
Time stamps

t : wall clock time

t' : original time stamp for event;
due to operating system
scheduling it can be that t' c>tc

t": the time stamp as corrected
by Viper to keep time stamping
consistent with event order

FIGURE 30. Time stamp adjustment to make time stamps consistent with event order.

Figure 30 shows the time line for two modules that exchange messages, and the time
stamps of the associated send and receive events. In this scenario the operating system
delays the read out of the system clock (by internal rescheduling) such that time stamp
t' 2 does not correspond to the 'real' time t2. When the time stamps are interpreted as
wall clock time, this gives the incorrect observation that a message has been sent at

5.2 Wall clock time ,,f the observer process versus 'glohal system time' 71

time t= 100 and is received at time t=90. Viper tries to correct this by setting the clock
offset for module A to I 0, thereby shifting t' 5 to t" 5. Now at least messages do not
travel back in time: the observation is changed to module A instantaniously receiving a
message sent by module B.

The question arises however what should be done with later time stamps of module A.
In this scenario, it is reasonable to set the clock offset back to 0, as the incorrect time
stamp t' 2 was just an incident. But if in fact the clocks of module A and B are not
aligned correctly, it is better to keep the offset at I 0 for all future trace messages. To
allow a smooth compromise between the two options, we introduce a clock offset
decay parameter.

The clock offset decay parameter determines the evolution of the clock offset over
time. A value of 0.5 for instance means that with every trace message the clock offset
parameter is reduced by 50% (unless consistency constraints dictate otherwise). The
values 0 and 1 correspond to the incidental time stamping error and the misalignment
of clocks respectively.

The progression of system time can now progress in line with the construction of the
consistent run: the global system time is set equal to the maximum time stamp value of
events in the run constructed so far.

The implementation of the concept described above involves the following steps. With
every module we associate a time offset that indicates how much the time stamps of
trace messages generated by that module are "out". When trace messages are ready to
be transferred to the run list, their time stamp is adjusted if necessary by comparing the
current time stamp plus the time offset with the time stamps of the trace messages it
directly causally depends on. The maximum of these values will be the new time
stamp. If the gap between the old and new time stamp exceeds the current time offset,
this offset is updated to reflect the need for a higher offset value for future trace mes­
sages. The offset value is subsequently multiplied by the clock offset decay paremeter.
Finally, the new time stamp is used to update the global clock .

Summarising, the time stamp re-calculation ensures two things :

• within a send-receive event pair the send event will never have a time stamp greater
than that of the receive event. The time stamps for successive events in the same
module also remain ascending. Hence, the new time stamping respects causal
dependency.

• if there are no send-receive event pairs to be taken into account, the time distance
between successive events is not disturbed (at most event occurrences will be trans­
lated in time due to a non-zero module offset) .

With a clock offset decay parameter value of I, module offsets can only increase, pos­
sibly resulting in a stretched time axis in Viper's space time view. Setting the parameter
to a value lower than 1 allows module offsets to reduce gradually by a fixed percentage
each time a time stamp calculation is performed, provided the dependency constraints
permit this . The reduction percentage is a user defined parameter.

The run construction method as discussed in this section has been presented at the
EuroMicro conference on parallel and distributed processing [SS95], as it is one of
Viper's unique features : at a small cost and with minimal delay Viper can reconstruct a
consistent observation of the parallel computation despite potential disturbances that

72 :S.:1 Implications for Viper's design

may occur in the time stamping or the trace message collection. A potential weakness
of the method is its strong dependency on reliable trace message delivery; if we want to
allow incidental trace message scramble or loss, there are many more issues to be taken
into account, and at present this is not supported by Viper.

5.3 Implications for Viper's design

The refinement of the run construction method has direct implications for the activity
update run of the Viper activity diagram, since this activity performs the run construc­
tion. The revised description of the activity update run starts with Figures 31 (a State­
Mate activity diagram) and 32 (an object diagram). As outlined in the previous section,
the run construction involves the construction of one sequence list and one module list
per module. A module list is a concatenation of primitive calls performed by one mod­
ule, so it can be constructed on a primitive list by primitive list basis.

update run

tram source

sequence
list

Primitive
Builder

tram owner

sequence
lists

Primitive
Builders

r - - - ..,

run
L - - ...J

list head

FIGURE 31. Activity diagram for the activity update run.

In the activity diagram of Figure 31 the activity select list selects a sequence list from
all lists according to the source specification of the incoming tram. The activity process
tram can thus insert the tram in the appropriate sequence list and update the relevant
tram states in this sequence list to INlTIAL and/or QUEUED as outlined in the algo­
rithm presented earlier.

The list selection process makes sure that a sequence list receives the trams that are
generated by the module it is associated with. In the object diagram we see this link is
established through the association "generated by" between Tram and Module, and
"has a" between Module and SequenceList.

A module delegates the task to construct a primitive list to a primitive builder. There is
therefore one PrimBuilder object per Module. A tram is assigned to a builder according to
the association "updates state of' between Tram and Module, which is represented in
the object diagram of Figure 32. This association is represented in the activity diagrams
by the tram attribute 'owner'.

5J Implications for Viper's design 7.1

In the activity diagram of Figure 31 we see that select builder selects the appropriate
builder using the 'owner ' attribute of the incoming tram. The builder subsequently
absorbs the copies of the trams that are delivered by process tram to build the appropri­
ate cross-dependencies between the trams (this dependency is marked in the object dia­
gram by the association "cross depends on" for the Tram class).

Finally, the activity transfer moves the trams from the sequence lists to the run . The
pre-requisite for moving a tram is that any tram it has a cross dependency with is
already transferred . In other words, it moves a tram 's status from INTEGRATED to
TRANSFERRED. This activity therefore performs the last stage of the algorithm pre­
sented earlier.

Scheduler
passes trams to >

Program

String: name
Run
insert(Tram) ,_

update_run(tram)
:::::>

Module ---
Sequence list

String: name
has a>

update_tram(Tram)

Primitive list

PrlmBullder

has a> process_tram(constructs >

generated Tram)

by"
• •" updates state of •

Tram

I
cross depends on

FIGURE 32. Object diagram for class Program, with a focus on run construction.

Summarising, trams are passed from the Program class to the Module whose sequence
list needs updating, and to the Module whose primitive list needs updating. The Mod­
ule that needs to update a primitive list passes the tram to the PrimBuilder. This implies
that the activity process tram is implemented as part of the operation update_tram()
of the Module class which passes the data to the operation process_tram() of the
PrimBuilder class . The primitive list under construction is an internal data structure of
that class, consisting of pointers to the tram data structures that are stored in the
sequence lists. This will now be discussed in more detail.

In Figure :n we show the activity diagram for the operation process_tram() of the
class Prim Builder. Figure 34 shows the associated state diagram.

74 5.3 Implica tions for Vipers design

When the primitive builder has to start a new primitive list, it waits for a tram to arrive.
If the tram is of the correct source and type, the activity select creates a primitive
object, based on the type of primitive call to which the tram belongs (for instance,
inglb), and inserts this tram into the primitive. Subsequent trams are inserted as well,
or, if they are not accepted by the primitive, put in a buffer. When a new primitive list is
started, this buffer is searched and scanned first. The search activity tries to find a tram
that is the start of a primitive call. The scan activity goes through the whole buffer and
tries to find further tram candidates for the primitive.

r - - - .,

Tram
L - - - ...I

process tram

primitive type

tram

tram

FIGURE 33. Activity diagram for process tram.

Primitive
table

We are not interested in permanently storing the primitive list. We only need the list to
establish the cross dependencies between trace messages of different sequence lists.
Hence, the activity process tram (and hence class PrimBuilder) absorbs trams only to
establish their cross dependencies. It does not produce any other output. Finally,
Figure 34 shows the state diagram for the Prim Builder class.

new tram
[not source_matchV do insert

[not found]
empty ~--------i searching ~-----.

new_tram
[source_matchV

do select;
do insert

[completed and
buffer_ empty)

[completed]

new_tram
[acceptedV

~---do insert) ~----'--~

~-----i~completing extending

[not completed]

new tram
[not acceptedVdo insert

FIGURE 34. State diagram for the Primitive Builder.

~.4 Vipers 1hird pro1rnype 75

5.4 Viper's third prototype

The conclusion of the optimisation of the run reconstruction process resulted in an
intermediate release (the second prototype), to mark the rounding off of this work.
However, three outstanding trace message issues still had to be addressed before Viper
could be considered 'mature'. The implementation of these points resulted in the third
prototype:

• The implementation of the real-time connection between the parallel program
and Viper.

• Standardisation of trace message formatting and reduction of trace message size
to reduce overhead.

• The implementation of a trace file export facility to allow tools such as Para­
Graph to interpret some of the information contained in the Viper trace files.

5.4.1 Adoption of the PICL trace message format

For the first prototypes of Viper the attention was focused on the functionality of the
application and minimising the requirements of the application towards e.g. the infor­
mation captured in trace messages. The format of trace messages was chosen to be as
expressive as possible (including textual fields in ASCII format) to facilitate debug­
ging.

In adopting an improved trace message format for Viper, we pursued three goals:

• following existing standards;

• wide applicability across computing environments;

• minimising overhead (i.e. trace message size and format related processing).

At the time of writing, the little work that had been done and published on trace mes­
sage formatting was essentially captured in the format that was adopted for ParaGraph.
This visualisation tool was specifically designed to work with the Portable Instru­
mented Communication Library (PICL), a packaged set of communication primitives,
also developed at MIT. The PICL trace format is expressive and general enough to
allow any paradigm to use it, yet its numerical encoding scheme ensures relatively
modest storage requirements. The use of the ASCII storage format ensures portability
across platforms.

Table 5 lists the data field structure of a PICL formatted trace message.

field type description

record type enumerate indicates the type of info (stan/end even! , statistics etc.)

event type enumerate Mona Lisa event type to which the trace message relates

time sramp floating point processor clock value at time of trace message generation.

source integer id. nr. of the module that generated the trace message

datafields integer number of data fields that follow (event type dependent)

data field format enumerate For Viper we use the same format for all data fields: integer

first data field : integer each module enumerates all the trace messages it generates,
sequence nr starting at 1. This number is stored as the first data field

TABLE 5. Description of the PICL trace message structure as adopted for Viper.

76 :\.4 Vipers th i r~ prototype

field type description

other (optional)
data fields:

partner integer id. nr. of the partner module, involved in sending/receiving

variable integer id. nr. of the global variable to which the message relates

offset & size integer vector vector specification of variable slice (for instance sub-array)

TABLE 5. Description of the PICL trace message structure as adopted for Viper.

Figure 35 shows how the original trace message format for Viper maps to the final
PICL format:

12100 M_EXPOSE INSTANT 2 -1 3 (1, 1) (5,5)
instant exposure of variable 3, segment [1,5) by [1,5), in module 2, at time 12100

1 13 12100 2 6 22 5 3 1 1 5 5

in addition to original format : record type I , event type 13, sequence number 5.

FIGURE 35. Example of a trace message in original format (upper) and PICL format (lower).

5.4.2 Implementation of the on-line connection

The hardware and operating system details of the interface between a parallel process­
ing architecture and the controlling console or work station are usually proprietary and
vary substantially across different systems. The challenge with building an on-line (i.e.
real-time) connection between Viper and the parallel program therefore lies in making
the implementation sufficiently general by abstracting from such details. Object-ori­
ented design is particularly suited for this, as we will demonstrate.

In our design we aim to provide a UNIX socket connection, which is not only a stand­
ard mechanism in distributed computing, but also maps very well to the Chorus/Mix
operating system which provides such a socket implementation. It should be noted
however that the design is not reliant on the presence of a UNIX socket communication
structure; for example, it applies equally well to a Windows socket environment.

Our starting point for the design discussion is the class TramSource from Figure 22,
shown now in more detail in Figure 36. This class has an attribute EXclock (Execution
clock) that contains the highest time stamp read so far. There is also a reference to the
tram it last returned from get_tram(). As we can have two different types of input (file
or socket), TramSource is specialized into two different subclasses, Tram File and
TramSocket. A TramFile is created for a specific file name, and a TramSocket reads
from a specific socket-id, so these are modelled as class attributes.

5.4 Vipers third prototype 77

Tram Source
<reads from

Scheduler

Real: EXclock

tram_pending()
start()

abstract
tram get_tram()
reset()
(-) read_string() Tram

abstract
last read>

~
I

Tram File TramSocket

(-)String: tram_file (-)Integer: Socket

tram_pending() tram_pending()
reset() reset()
(-) read_string() (-) read_string()

FIGURE 36. Object model for the TramSource class

The implementation of operation get_tram() is not really different for both cases, only
the way ASCII characters are retrieved is different. Therefore, get_tram() is defined at
the level of the TramSource class, using a private operation read_string() . This oper­
ation is not implemented at this level (abstract), but only at the subclass level (Tram­
File and TramSocket). The operation tram_pending() needs to be treated the same
way, as the implementation is also input device dependent. The operation reset() has
both device specific aspects and general aspects; this operation is therefore imple­
mented at both the super and the subclass. This completes the modelling of the class
TramSource and implementation is a straightforward programming exercise.

5.4.3 Implementation of Viper's trace file export facility

The aim of the trace file export facility is to allow the use of Viper as a tram pre-proc­
essor for other analysis tools such as ParaGraph, that might benefit from Viper's tram
ordering capabilities. The trace file exported might be a simple re-ordering of the input
trace messages, or a sub-set, or it might be a completely different set of trace messages.

The design of it is essentially based on an extension of the capabilities of the Tram
class. An operation output() is called at the moment a Tram object is taken out of the
run. This operation writes (to a trace file) zero, one or more trace messages, depending
on the mapping that is defined between the input trace messages, and the output trace
messages. This mapping is completely localised within the Tram class definition.

As an example, we describe below how we could produce a ParaGraph trace file from
a Mona Lisa trace file. The transformation process of input trace messages to output
trace messages consists of two main parts:

78 ~.4 Viper s 1hird pro101ypc

• Remove the details of the Mona Lisa paradigm. Translate Mona Lisa primitives to
elementary send/receive operations.

• Add implementation details. Explicitly model a Mona Lisa module as a supervisor
process and an application process. Correctly show the scheduling out of the appli­
cation process as the supervisor process becomes active (both processes run on a
single node and in the absence of time slicing, only one can be active at any point in
time).

The transformation would then be done in two steps:

• Viper first processes a Mona Lisa trace file, it translates all trace information to
PYM-like primitives, and doubles the number of nodes to introduce the supervisor
processes. Remember, in ParaGraph I process corresponds to I processor/node.

• Viper then processes the newly produced trace file with the PYM view on the com­
putation. This time, the scheduling is corrected (idle periods are introduced in the
application process), and the PYM-style trace messages are translated to the Para­
Graph format which is in effect a subset of the PICL standard.

The two-phased approach simplifies the translation logic that has to be implemented as
part of the output() operation of each Tram subclass.

Aiming at flexibility of Viper's design to allow such close integration to other tools
was part of the design effort. However, the implementation of the ParaGraph transfor­
mation proposed above was out of scope. Therefore, actual examples cannot be shown
here.

This section concludes the description of the third prototype. Viper is now in a state
where it can be applied and evaluated. This will be the topic of the next chapter.

6.1 The CPREAD case study b<1ckgn1unJ 79

Chapter 6

Application of Viper to high energy

physics image reconstruction software

In the previous chapter we have discussed the development of Viper for Mona Lisa. In
this chapter we will report on the first use of the Viper tool to support and evaluate the
transformation of a sequential high energy physics application called CPREAD into a
parallel Mona Lisa program.

In the CPREAD case study we have investigated the parallelisation of an existing high
energy physics event image reconstruction software package in terms of costs (effort,
computing resource requirements), benefits (performance increase) and the feasibility
of a systematic parallelisation approach. The following sections start with the motiva­
tions for doing this work. The reader is then given an informal introduction to some rel­
evant aspects of the CPLEAR experiment for which CPREAD has been developed,
followed by an overview of the structure of CPREAD and of its potential for parallel­
ism. Subsequently we discuss the required implementation effort, focusing on code
decomposition and data organisation. These issues are illustrated by the implementa­
tion of parallel track fitting within CPREAD. Finally, we aim to extrapolate some
guidelines facilitating parallel implementations for future software development in
high energy physics . The work as presented in this chapter has been presented at the
Real Time '95 Conference in Lansing, Michigan USA, and subsequently published
[SF95].

6.1 The CPREAD case study background

One of the deliverables of the GP-MIMD project has been a document reporting on the
investigation of the parallelisation of existing high energy physics analysis software.
Various ways to exploit parallel platforms for this type of HEP applications have been
looked at in this study. The investigation has covered the use of different paradigms:
message passing, the Mona Lisa paradigm and a novel paradigm based on database
transactions, see [Arg98]. Each paradigm has been used on a specific hardware plat­
form. A detailed overview of the work carried out can be found in [Dob95].

The Viper project's contribution to the GP-MIMD deliverable has pursued parallelisa­
tion of CPREAD in combination with Transputers, Chorus and Mona Lisa, by parti­
tioning the application into smaller modules to be executed in parallel. This means we
exclude the traditional event farming, as this has already been covered in [War95].

Our interests in doing this study are twofold; firstly, to see if the promises that have
been made about Mona Lisa and Viper within the context of parallelism in high energy

80 6.2 The CPI.EAR experiment

physics can be fulfilled . Secondly, we want to determine whether significant paralleli­
sation using partitioning of CPREAD at reasonable cost (i.e. limited amount of code
rewriting) is at all possible given the complexity of this type of software, and if so,
what the limits in performance improvement are. It is to be expected that the effort con­
straint certainly limits the performance increase.

The significance of this study to the high energy physics community lies in the contri­
bution that it provides to an ongoing discussion on a highly controversial issue, namely
the extent to which sequential legacy software can benefit from parallel computing.
Although event farming is now widely recognised as a highly effective technique for
boosting performance, opinions on the effort/benefit ratio of other types of parallelism
based on partitioning of the sequential application (as opposed to replication) are still
divided . That there is cause for doubt is already partly demonstrated by the duration of
this study; it has taken approx. 6 man months to produce the first parallel version! In
addition we mention here that several previous abortive attempts by others (such as an
attempt to transform the software to a parallel version using Fortran90 constructs) pre­
ceded this study.

6.2 The CPLEAR experiment

The CPREAD software package performs the image reconstruction for the CPLEAR
experiment: it processes data from the detector, corresponding to a particle collision
(an event), to reconstruct the trajectories of the involved particles and to derive other
properties of the particle interaction. Figure 37 shows a cross-sectional schematic of
the CPLEAR detector, with the graphical representation of a recorded CPLEAR event.
We will now describe this event in more detail to show some of the relevant issues in
CPLEAR's event image reconstruction.

FIGURE 37. A typical 4 track event recording of the CPLEAR experiment.

6.3 S1ruc1ure or 1hc Cl'RF.AD rrogram HI

In the centre of the detector, an anti-proton annihilates with a fixed proton target and
produces three garticles: a positively charged kaon K+; a negatively charged pi-; and a
neutral kaon K . The first two particles' trajectories are depicted by the curves starting
in the centre of the diagram. The v-shaped origin of the two particles is called a vertex.
The lines that represent the particle trajectories are the result of a curve fitting process,
applied to the hits that were registered by the detector (indicated as X's in the diagram) .
As we are dealing with particle tracks, this fitting is called track fitting.

The K0 particle travels from the centre in the opposite direction, and quickly decays
into a pi+, pi- particle pair, as indicated by the other two curves in the diagram. These
curves extend beyond the particles' origin; crossing the two extrapolated lines gives an
accurate indication of the pi+, p(vertex position. The position of this second vertex is
a function of the momentum and the lifetime of the kaon particle, which are not con­
stant. Given the fact that the detector cannot trace the neutral kaon, the vertex position
therefore has to be derived from extrapolating the charged particle curves. From the
distance between the two vertices, the life time of the neutral kaon for this particular
event can be determined.

The event type as described above is only one of several types that are relevant to the
CPLEAR experiment. By comparing rate of event occurrence and life time of the neu­
tral kaon and its anti-particle, the CPLEAR experiment can measure CP-, T- and CPT­
violation phenomena, which is the overall aim of the experiment.

6.3 Structure of the CPREAD program

CPREAD is the off-line event reconstruction pac kage of the CPLEAR experiment.
Off-line means CPREAD batch processes tapes with recorded raw event data from the
experiment. It is a typical representative of off-line software:

• CPREAD is large - in the order of 200K lines of Fortran.

• It is developed and maintained with the code management tool Patchy [KZ94].

• It uses standard HEP packages such as Zebra [Zeb95] for UO and dynamic memory
management, HBOOK [Hbo95] for histogramming purposes and FFREAD [Ffr95]
for application steering.

• It performs typical tasks such as decoding, pattern recognition, track and vertex fit­
ting and event display.

Figure 38 shows a schematic of the event reconstruction steps, the main data structures
and the data flows within CPREAD. Two types of data may be distinguished, event
data and long term data (e.g. calibration constants). The latter is constant throughout a
sequence of events (called a run). The event data only exists within a single event anal­
ysis.

82 6.1 S1ruciure of <he Cl'IU' AD pro£rnm

:dila:(=D1-
D data

D2 D3 DS D6

D code

decode pattern track vertex calori- calori-
-!> control & fit fit meter meter

flow translate (cluster) shower -- data flow

FIGURE 38. A schematic of the event reconstruction steps in CPREAD.

Each reconstruction step may access both the long term data and event data to produce
new, additional event data, as depicted by the data flow and data dependencies in Fig­
ures 38 and 39. For instance, the data dependency between D3 and D2 indicates that
the track fitting accesses D2 in order to produce D3. All data depicted in Figure 39 are
event data.

raw

05

D2 D4

data
dependency

FIGURE 39. Data dependencies among event data banks in CPREAD

The first reconstruction step, decoding, involves the translation of detector read-out
data into units with meaningful dimensions, such as energy (eV), vector co-ordinates
etc . Then, pattern recognition is performed on the hit patterns, to find candidate track
segments. These are then subjected to kinematic constraints etc . in the track fitting
process. Once the vertices are determined, they are also subjected to constraints in the
vertex fitting step. Once these steps have all been performed successfully, the outer
sub-detector read-out (the calorimeter part) is analysed for energy showers in two
steps: first clustering is performed, then shower analysis.

In each reconstruction step the event analysis may be aborted, for example because
some event data appears to be missing, inaccurate or corrupted, or because the event is
not one of the relevant types. In such cases, the event is said to be rejected. Of all event
data that is generated in the CPLEAR experiment, approx. 80% is rejected .

The sequential order in which the event reconstruction steps are executed is based on
data dependencies and computing optimization (i.e. aiming for minimal average event
analysis time) . The computing optimization is a function of the rejection power of each
reconstruction step, defined as the rejection percentage per second of step analysis
time. Computing optimization is achieved by executing reconstruction steps in
decreasing order of rejection power where data dependencies permit. This is the reason
why the calorimeter clustering step is at the back of the chain: this computationally
intensive step can be done much earlier as indicated by the data dependencies, but it

6.4 Jnv~s1igati<rn or prn~ntial parallelism 83

does not have enough rejection power. Doing this step earlier would therefore result in
wasting more computing on events that are rejected in later stages of the analysis.

6.4 Investigation of potential parallelism

The introduction of parallelism in event image reconstruction software can be pursued
in two directions, as discussed in Section 2.2: improving event throughput (i.e. the
number of events processed per time unit) and improving event latency (i.e. the time to
solution for a single event analysis).

The aim here is to introduce para] lei ism at low cost. This means aiming for a parallel
version of CPREAD resembling the sequential code as much as possible, minimising
the effort involved in code rewriting. Therefore the program structure (in terms of
reconstruction steps and data structures) is to be left intact as much as possible, using it
as a guideline for identifying tasks and partitioning the program into modules. With
this strategy in mind, three (non-exclusive) ways of parallelisation can be considered:

• Reconstruction steps that have no data dependency between them are run in parallel
for the same event. In CPREAD we can execute the analysis on charged tracks in
parallel with the calorimeter analysis, as suggested by Figure 39. This is algorithmic
parallelism within an event, and will be referred to as task parallelism.

Task parallelism reduces the event latency and increases the event throughput com­
pared to the sequential analysis . Also, additional rejection paths may be created and
exploited if the step running in parallel has significant filtering capabilities, further
improving latency and throughput. A negative effect is that running a step in parallel
with the step normally succeeding it, implies that the latter now has to deal with
more events due to less filtering, making the latency of the step an issue.

• Reconstruction steps that are data interdependent can still work in parallel on differ­
ent events using event pipelining. For example, when pattern recognition has proc­
essed an event, the track fitting starts to work on it, but at the same time the pattern
recognition can accept a new event. This is pipelining, an example of algorithmic
parallelism working on different events.

Pipeline parallelism does not reduce the latency of the event reconstruction, but
does increase the event throughput compared to the sequential analysis.

• Parallelism is introduced within a reconstruction step by replicating an individual
step and partitioning the data structure on which analysis has to be performed, so
that the overall structure can be processed in parallel. The simplest example is loop
unrolling. In this context, data parallelism will solely refer to para! lei ism within an
event, excluding the well known parallelism applied at the event level, event farm­
ing.

There is a high degree of inherent data parallelism in HEP analysis code, given the
repetitive nature of the work in each reconstruction step. For instance, for every
track in an event a track fit is performed and these track fits do not depend on each
other. Data parallelism reduces latency and increases throughput. An additional pos­
itive aspect of this type of parallelism applied to a specific reconstruction step is its
local impact on the program structure.

All three approaches reduce the memory requirements per processor. Both algorithmic
event parallelism and data parallelism can affect the rejection power of a reconstruction
step, so a re-ordering of independent steps after parallelisation may be beneficial. For

H4 6.4 lnvl.!sti~alion of po1i.;n1ial parallelism

example, should performance improvements predominantly apply to the calorimeter
clustering step (currently performed at the end of the reconstruction), then in theory the
rejection power of this step could increase sufficiently to justify moving this step for­
ward in the reconstruction process.

The choices concerning the amount and type of parallelism to introduce are based on
the effort required and the benefits obtainable. The amount of effort is measurable by
the amount of code changes, while the benefits are understood in terms of the improve­
ments to event latency and throughput. The reduction in memory requirement is not
considered to be a strategic benefit given the low cost of memory per Mbyte.

As a first step in quantifying the cost and benefit parameters, a profiling tool is used to
measure the amount of computing time spent in each step. Table 6, column 2 shows the
results for a representative CPLEAR batch processing job. For example, it can be seen
that 19% of the execution time is spent on pattern recognition. In total, the reconstruc­
tion steps account for 77.4% of the execution time. The remaining time (22.6%) is
mainly spent on i/o. Included in column 3 are the cumulative rejection percentages at
the end of each step. Track fitting for instance rejects 3% of all events processed.
Finally, column 4 shows the profiling for events that go through all steps; the percent­
ages therefore indicate the relative contribution of each step to the so-called maximum
latency of a single event analysis.

TABLE 6. Profiling of CPREAD using IBM 3270, event sample size -1200.

% execution % rejection % relative
step time (cumulative) latency

decoding II 0 8.0

pattern 19 34 13.9

track fit 15 37 15.9

vertex fit 27 70 30.3

calorimeter 5.4 79 17.7

total 77.4 79 85.8

others 22.6 0 14.2

The distinction between column 2 and 4 in Table 6 is important when defining a paral­
lelisation strategy. If for example a choice would have to be made in halving the execu­
tion time of the decoding step or the calorimeter step, it would depend on which
alternative would be more beneficial: an increase in event throughput can best be
established by parallelising the decoding as in column 2 its contribution is twice the
contribution of the calorimeter. However, a parallel calorimeter analysis is more effec­
tive for decreasing the maximum event analysis time as shown in column 4.

6.4.1 Applicability of algorithmic and data parallelism

At the beginning of Section 6.4 three parallelisation techniques have been introduced.
These techniques are not all equally applicable with CPREAD. For instance, the strong
data dependencies between the individual steps leave little scope for reducing the
latency with algorithmic parallelism: the only option (at the granularity level of recon­
struction steps) is running the calorimeter analysis in parallel with the rest.

6.4 Investigation of potential parallelism 8'i

The event throughput can be addressed by pipelining the steps. The prime advantage
here is the cost effective introduction of additional processors while keeping the overall
memory requirement of the program constant. But the creation of different code mod­
ules requires work, proportional to the number of modules, whereas the amount of
work involving the implementation of data parallelism is independent of the number of
module copies working together on the same data structure.

Within the processing of an event, data parallelism can only be identified within a
reconstruction step. This is due to the fact that most rejection decisions are of a global
nature and are taken at the start or end of a reconstruction step, subjecting the whole of
the event data to various constraints. At the end of the track fitting for instance, an
event may be rejected if only three out of four charged tracks have been fitted properly.
As such, rejection criteria impose synchronisation points in a parallel implementation.

The cost/benefit estimates for data parallelism for a single event are summarised in
Table 7. The numbers in column 2 are estimates of the speed-up that may be obtained
by applying data parallelism and are based on the task being performed in terms of
physics. For example, on average four track fits need to be performed per event; fitting
the tracks in parallel should naively reduce the latency of this step by a factor four if we
assume linear speed-up.

The percentual amount of code change in column 3 that is required to obtain the speed­
up is a first order estimate. Further precision requires a detailed study of the application
structure. The size of each code module in column 4 is information that was actually
obtained at a later stage in the study, but it is presented here to allow translation of the
percentual amount of code change to absolute numbers.

TABLE 7. Cost/benefit estimates for data parallelism per reconstruction step.

proj. speed-up module size in
step (estimate) % code change #of lines

decoding 6 < 5 20000

pattern < 10 > 25 25000

track fit 4 <I 17000

vertex fit 4 <10 25000

calorimeter <10 <15 20000

6.4.2 Projected performance improvements of CPREAD

Table 8 shows the calculated benefits for event processing latency and throughput for
the different types of parallelisation strategies (applied separately and a combination of
data parallelism and pipelining) at the application level. In the calculations of our pro­
jections we have excluded tasks that are not related to the event reconstruction such as
i/o. This does not mean we assume this 22.6% of CPU time to be a fixed cost overhead,
as this would have serious implications for the scalability of any parallel version
according to Amdahl's Jaw. However, addressing the improvement of i/o performance
by a sequential optimisation, a parallel i/o implementation or even by making hardware
modifications is not within the scope of this thesis.

86 6.4 Investigation of potentiaJ parallelism

The projections are based on the figures from Table 6 and 7, not taking into account
communication overhead and imperfect load balancing effects. Both throughput and
latency figures are expressed using numbers from Table 6, column 4 (i.e. time% of the
total analysis time for a single event that is not rejected). Rather than expressing
throughput as number of events processed per time unit, we indicate throughput rate by
measuring the cycle time: the average time period it takes for the program to complete
one event and already start on a new event (irrespective of the number of events being
worked on in parallel). The word cycle time is borrowed from the manufacturing
industry, where the concept is used to describe the througphput of a production line.
This facilitates the explanation of the link with Table 6 and 7. The last column shows
the number of processors that the implementation requires based on the assumption
that each parallel program module runs on a separate processor.

TABLE 8. Calculated performance improvement. Throughput is expressed as I/cycle time;
latency is expressed as percentage of single event analysis time.

program average maximum #processors
version throughput latency latency required

sequential 1/56.8 56.8 85.8 I

task parallelism 1151.5 51.5 68.1 2

pipelining" 1/21.4 84.1 116 5

data parallelism 1/10.7 10.7 16.0 II

combined" 1/4.9 19.6 26.0 34

a. obtained through computer model simulation

The figures for the sequential version show a maximum latency of 85.8% of the total
single event analysis time, equal to the total of column 4 in Table 6 whereas the aver­
age latency is less because an average event does not complete all analysis steps. The
throughput of the sequential version is a direct function of this average latency, i.e. I
event per cycle, where the cycle time equals 56.8% of the maximum single event anal­
ysis time. There is only a single proct:ssor required to run tht: sequential version.

The task parallelism strategy only has a moderate improvement over the sequential
program. The maximum latency drops by 17 .7%, the time required for the calorimeter
analysis (see column 4, Table 6) because this analysis is now done in parallel with the
other steps. This has a minimal positive effect on both average latency and throughput,
especially compared to the amount of extra processing power required. This example
shows that task parallelism can improve both latency and throughput, but the benefit is
highly dependent on the application. There are two processors required for the task par­
allelism strategy, with one processor dedicated to the calorimeter analysis.

A pure pipelining strategy of the five steps improves throughput, but the differences in
step latencies (pipelint: imbalance) has a negative effect on the processor utilisation and
the event latency, because consecutive events in the pipeline can block each other. This
effect is partly compensated for by the dropping out of events (rejection). The figures
in Table 8 are obtained via model simulation. Pipelining requires five processors, one
for each step.

The data parallelism strategy addresses the latency of the individual reconstruction
steps and thereby also the total event throughput. The figures in Table 8 are based on
the speed-up figures from Table 7 applied to each step, showing a relatively high per­
formance improvement. Full data parallelism requires an extra JO processors in a farm

6.5 Investigation of implcmcnia1ion 87

configuration, in order to speed up the pattern recognition and calorimeter analysis by a
factor close to I 0.

The combined strategy of data parallelism and pipelining gives maximum throughput,
although the latency improvement is not as good as in the case of pure data parallelism.
This is because of the blocking that is introduced by the unbalanced pipeline; the pace
with which events go through the pipeline is determined by the slowest step. It should
be noted that the application of data parallelism to the stages in the pipeline influences
the unbalanced nature. It is in fact a well known technique for reducing the idle time
that is introduced by an unbalanced pipeline: by improving the latency of the pipeline
bottJeneck with data parallelism, the work load is spread more evenly over the pipeline,
resulting in a more efficient use of processors.

Table 9 contains the same data as Table 8, but presents it in a normalised form. Both
throughput and latency improvements are expressed in speed-up factors, thereby
allowing a direct comparison between perfonnance improvement and computing
power (number of processors) required. In addition, Table 9 shows the average proces­
sor utilisation, calculated as:

utilisation%= (throughput I sequential throughput)*(I I #processors required)* I 00 %.

This calculation is a simple re-distribution of a fixed workload of N events taking time
T to be processed by the sequential version: on a parallel version the same workload is
done in a different time frame (the first factor in the calculation), and distributed over
multiple processors (the second factor in the calculation).

TABLE 9. Calculated performance improvement, normalised figures.

average maximum #processors processor
version throughput latency latency required utilisation (%)

sequential 1.0 1.0 1.0 100

task parallelism I. I I. I 1.3 2 55

pipelining" 2.7 0.68 0.74 5 53

data parallelism 5.3 5.3 5.4 11 48

combined" 11.6 2.9 3.3 34 34

a. obtained through simulation

The first conclusion that we can draw from the table above is that the scalability of our
parallelisation approach is limited. This is of course a direct consequence of our choice
to restrict the amount of code rewriting, and to refrain ourselves from redesigning the
algorithms at all. In the following sections we investigate whether the modest targets of
Table 9 are indeed feasible with moderate effort.

6.5 Investigation of implementation

In the previous section the scope for parallelism in CPREAD has been investigated. In
this section; we discuss the approach that should be taken to implement parallelism,
and what obstacles can be encountered in doing so.

88 6.5 Jnvestiga1itm of implcmenrn1ion

6.5.1 Development approach

Current HEP software development and maintenance makes use of code management
tools such as Patchy [KZ94] and its successor CMZ [Cod94]. The code modifications
necessary for a parallel version need to be implemented using the same tools, allowing
the sequential and the parallel versions to co-exist. This corresponds to the real-life sit­
uation in which different members (i .e. institutes) of an international HEP collabora­
tion may require a sequential or parallel version, depending on the hardware available
to them. It also facilitates the necessary integration of ongoing code developments,
thus ensuring that any parallel version stays as up to date as the sequential version.
HEP code is continuously evolving!

Patchy and CMZ provide version management for a large library of Fortran routines,
referred to as a code pool. A program is constructed from this code pool by executing a
user-written extraction script which selects the appropriate routines and combines them
into a program. Code management is facilitated by the decomposition of the code pool
into a hierarchical structure. For this study, CMZ was adopted .

The Mona Lisa parallel programming paradigm is used as an additional structuring
tool, as the development of a parallel application requires additional structuring to that
provided by a sequential programming language such as Fortran77. As explained in
Section 2.3 , Mona Lisa is shaped as a language extension, offering a set of primitives
which allow the exchange of data among modules that run in para! lei and together
make up the parallel program. Mona Lisa provides development support in several
ways:

• In a single file, declaration statements indicate the start and end of the individual
code modules that together make up the parallel program. A front-end translator
processes this file and automatically produces a (separately compilable) Fortran file
for each module, thus reducing user file management.

• Data exchange between modules occurs through user designated variables. The
Mona Lisa front-end translator, while processing the single file, performs cross­
module type checking on the communication of the values of these variables, trap­
ping potential programming errors before compile time.

• The Viper visualisation tool, an integral part of the Mona Lisa development environ­
ment, can be used in the process of analysing, improving and debugging a parallel
program at the level of the interacting modules. It can assist for instance in investi­
gating the program behaviour as a function of the number of processors that we allo­
cate.

• Every Mona Lisa program has a built-in component, the program manager. The par­
allel program is executed by starting up the program manager. It then takes care of
loading the modules on processors, starting the application, and unloading the mod­
ules once the application has finished. It also has the capability of run-time deadlock
detection.

To summarise, CMZ is used for static and syntactic code management, while Mona
Lisa provides dynamic and semantic development support. Automatic executable code
generation from a single source file (via code extraction scripts and the Mona Lisa
front-end translator) and the existence of a ported sequential version (see below)
ensure systematic c;ode and result comparison.

6 . .5 Investigation ()f implcmcmation 89

6.5.2 Porting CPREAD

In general, the parallel platform will involve different hardware with different process­
ing characteristics (e.g. processor speed, floating point arithmetic precision). The
sequential version of the application should first be ported to this platform, thus decou­
pling the issues related to application porting from the parallelisation issues. The exist­
ence of a sequential version on the target platform allows a better comparison of
performance improvement and is needed to verify that the parallel version produces the
same results as the sequential version.

The porting of CPREAD to the target platform has been combined with a study of the
existing code modularity. To this end the code has been ported incrementally to the
new platform. The first ported version only performs program initialisation and termi­
nation. Each successive version includes an additional reconstruction step. An addi­
tional advantage of this approach is that it avoids putting effort into porting code that is
not used in this case study, for example the code needed for event displaying.

The porting of the code has involved not only the foreseen problems (different i/o han­
dling, floating point arithmetic precision etc.) due to a new hardware platform, which
in this case study was a Transputer network. Some additional code changes had to be
made caused by compiler differences and limited memory availability, forcing us to
work on eliminating unneeded code for both sequential and parallel versions. We will
not elaborate on these issues, as they do not influence the essence of the problem. It is
important to mention however that this particular phase can generally be very time
consuming and is usually underestimated.

6.5.3 Code decomposition

For any of the proposed parallelisation approaches to be effective and efficient in terms
of code size per processor, the code needs to be decomposable into the modules that
correspond to the reconstruction steps. A coarse decomposition of CPREAD already
exists, based on the existing code pool hierarchy and associated code extraction scripts.
However, a finer grain extraction procedure is required . The following two points pro­
hibit a systematic change of the existing extraction scripts to obtain the required level
of extraction and necessitate new scripts:

• The existing hierarchical code structure only roughly coincides with the decomposi­
tion into reconstruction steps. The routines that make up one reconstruction step are
not grouped together, but exist at different places within the hierarchy.

• The existing scripts, for reasons of simplicity, extract much code regardless of
whether it is used at run-time or not, in a coarse grain extraction process.

Based on the structure of the code at the highest level in the program, an attempt has
been made to extract in isolation the program initialisation, termination and reconstruc­
tion steps. These modules are all identifiable by an appropriate top-level routine which
is called in the main program loop. By recursively selecting the routines that are called
(a procedure which was largely automated), the set of routines constituting a recon­
struction step can be constructed. However, this strategy of creating code modules fails
due to the fact that at a lower level the identified modules have too many inter depend­
encies, although there appears to be a clean separation between individual reconstruc­
tion steps at a higher level. Trying to construct the decode module with this approach

90 65 lnves1iga1ion of implementation

we end up with a code segment that is almost half the size of the complete program,
whereas this module covers at most l 0% of the total functionality of the program!

TABLE IO. CPREAD code decomposition.

module size in
code module #of lines

init & end 15000

main event loop 20000

decoding 20000

pattern 25000

track fit 17000

vertex fit 25000

calorimett!r 20000

other (display etc.) 88000

total 230000

The adopted procedure to create code modules is a combination of the procedure men­
tioned above and the elimination of calls to routines that are deemed not to be relevant
to the code module being extracted . This requires an understanding of the purpose of
the individual routines. The resulting code decomposition is summarized above. The
combined process of code porting and decomposition has taken around 2 man months
to complete. A significant part of this period had to be spent on rewriting the extraction
scripts for our needs. This is a CPREAD specific process, and therefore a significant
learning curve for this process does not exist (i .e ., for an application other than
CPREAD but similar in size and complexity, a similar investment would have to be
made) . Our main conclusion therefore is that it is more than worthwhile to take into
account the code decomposition needed for a parallel implementation when setting up
the code pool hierarchy structure, to avoid a "hierarchy redesign" at a later stage.

6.5.4 Data organisation

The main data structures depicted in Figure 39 are all implemented as globally accessi­
ble so-called Zebra data structures, upon which the physics analysis code operates. A
Zebra data structure is a type of dynamic data structure based on variable sized arrays
called banks, that are organised in tree configurations. Although an individual bank is
contiguously stored in memory, the overall tree structure may be dispersed. The Zebra
package that provides the functionality to create and manage Zebra structures was
developed within CERN as an extension to the poor data structuring capabilities of
Fortran77 and its predecessors.

LMITRA(5)

MZCOPY ••

merged array

FIG URE 40. An example of a Zebra structure in CPREAD: the organisation of track data. The
routine MZCOPY can be used to reformat the data into a contiguous array or vice-versa.

6.6 Parnllel track finin~ 91

The figure above demonstrates the principle for CPREAD. The track data are stored in
a linked list of n Zebra banks (where for example n is the number of tracks in the
event) . Both direct and indirect data access are used in CPREAD. The static array
LITRAO provides direct links to the individual banks. However, because the number of
banks used can vary, it is better to access the so-called mother bank first via the link
LMITRA(5). This bank contains several flags and parameters that relate to the track
data as a whole, including the number of banks currently defined. With the Zebra rou­
tines LUP(), LDOWN() and LNEXT() it is then possible to 'walk' from the mother
bank down to bank LITRAO(I).

The standard mechanism of data communication on MIMD parallel computers is via
message passing. The message passing library supports the communication of blocks
of contiguous data, thus supporting the communication of individual Zebra banks. For
the communication of large data structures, consisting of several banks, the communi­
cation overhead becomes excessive as multiple communications are required . Zebra
provides a set of calls (MZCOPY calls, see figure) that implement the selective copy­
ing of (partial) Zebra structures to an array (and vice versa), thereby establishing a con­
tiguous data block that can be communicated in one message passing call . However,
the additional overhead introduced by reformatting the data must be weighed against
that of multiple communications.

6.6 Parallel track fitting

In the previous sections scope for parallelism in CPREAD has been discussed, fol­
lowed by a discussion on implementation issues. In this section we apply this to an
example of data parallelism: parallelisation of the track fitting. Due to its minimal
impact on the algorithmic structure, this example allows us to focus on the develop­
ment approach, code partitioning and data flow implementation with minimal applica­
tion specific code rewriting.

The data sets representing the individual tracks are self-contained (mutually independ­
ent), and a fit is performed to each data set within a loop construct. Data parallelism is
therefore introduced by simply unrolling this loop.

The first step towards a parallel version is to decide how many modules to implement
and what tasks they must perform. Subsequently, the data flows between the modules
are identified, and finally, using the task assignment and the data flows, the individual
modules are constructed.

Two different modules are developed: one which performs the full CPLEAR event
reconstruction except for the track fitting (called the master) and a second module
which performs a single track fit (called a slave). A representative CPLEAR event
sample contains events with 2 to 6 tracks, approximately 80% being 4 tracks events .
Therefore we implement a Mona Lisa program consisting of 1 master and 4 slaves.

The principal data flow consists of event data: track banks, communicated from master
to slave, and the resulting fit banks, communicated from the slave to the master. Both
the track banks and fit banks are around I Kbytes in size and stored in a linked list
structure in the master. In addition, track fitting uses calibration data (introduced in
Section 6.3 as long term data). This data is independent of the master or slave and as
its name suggests does not have to be communicated per event. For these reasons it is
replicated over all modules. Updates of calibration data are triggered by a change in the

92 6.6 P;uallel 1rack fiuing

run number in the master. This run number is therefore also communicated from the
master to the slaves.

The construction of the master and slave code modules is relatively straightforward:
the modules can be composed from the individual components obtained during code
decomposition. The master code is identical to the sequential code without the track fit­
ting step. The slave code consists of program initialisation/termination, the main event
loop, the track fitting step and the routines necessary for updating the calibration data.
Some additional code in both the master and slave is added to implement the data
flows.

6.6.l Running the parallel track fitting program

The first implementation of the parallel track fitting version has taken place on a T805
Transputer network, using the Mona Lisa paradigm to implement the parallel features.
The Chorus distributed operating system supports the current (prototype) Mona Lisa
implementation and provides (amongst other things) point-to-point message passing
functionality across T805 Transputer nodes.

Initially we were unable to run the program for more than a few events, after which the
program would 'hang'. Taking one of the observed 'deadlock' scenarios visualised
with Viper as our starting point for an investigation, we discovered the locking up was
due to a bug in the Mona Lisa communication library.

With the corrected Mona Lisa library, we have run the parallel program for benchmark­
ing on a set of l 0 4-track events; the measured speed-up that we have observed was a
factor 1.5 instead of the naive estimate of 4 (see Section 6.4.1). Using Viper to analyse
this discrepancy, we arrive at Figure 41 where we focus on a particular event.

I ,. \

I ' l.. L \.

.

FIGURE 41. Viper's space time view on the track fitting of one event

Although we can use the figure for a qualitative analysis, it is good to bear in mind that
the introduction of additional tracing has a disturbing effect on the computation; the
speed-up factor for instance for the traced parallel version is further reduced, to just
below 1 - in effect we then have a parallel program that is slower than the original
sequential version!

6.6 Parallel track filling 93

From the figure we observe the following:

• The program is, as far as module interaction is concerned, behaving correctly: each
slave receives track data (the arrow going upwards), processes the data, and the
result is communicated back to the master (the arrow going downwards).

• There is fairly good load balancing, judging by the similar size of the green part of
each slave's time bar.

• The track fits are perfonned largely simultaneously, and not staggered. Staggering
as a result of the communication pattern between the master and the slaves during
job distribution would have been a possible explanation for the lower speed-up fac­
tor, see Figure 42.

Two stylistic diagrams of the Viper space-time view can
illustrate the impact of staggering

slave 1
slave 2
slave 3
slave 4

No staggering ----master - -......

Staggering ----- -... .. _____ ..,~
._.. = total track fit time

FLGURE 42. The effect of staggered track fitting on total fit time and hence speed-up.

The most important observation however is the clear cause for the disappointing speed­
up: the result collection by the master. Comparing the job distribution overhead with
the result collection, we see a striking difference: only long after slave 1 has completed
his job, is his fit data collected by the master. Why is this?

To answer this, we have to do some communication analysis. We recall Figure 9 from
Section 3.2.2, where the implementation of an inglb primitive has been explained for a
distributed memory machine (as is the Transputer network that we use) in terms of
required point-to-point communications.

If we count the number of point-to-point send's and receives that are required for each
Mona Lisa primitive call , we get:

• no send/receive's when using exposeglb or hideglb.

• 2 send's and 2 receive's when using rdglb, inglb or wrglb.

The situation for an inrglb primitive is more complicated, and is illustrated below in
Figure 43. We take as example the call Slave.inrglb(Result,MyResult,Slaveld) that a
Master module uses to retrieve data from the first Slave that has finished his job. In this
particular example, it is Slave(2) that will actually deliver the data. The actions of
Slave(3) represent what may take place for each of the other Slave(i) modules.

The protocol starts with the Master sending a request to all Slave modules involved. A
number of Slave modules may have a result ready and exposed, and reply by sending
it. The master accepts the first result that it receives, and indicates this to the Slave

94 6.6 Parallel track fitting

module involved (i.e. Slave(2)) by sending it an Acknowledge. Slave(2) can now
update the state of the Result variable and set it to hidden.

Immediately after sending the acknowledge, the Master sends Cancel messages to each
of the other Slave modules to try and prevent them from sending a reply that it has to
ignore anyway. After updating the value of My Result, the Master's Supervisor thread
is finished and the application process wakes up.

Some of the Slave modules may have sent a reply before they had time to receive the
Cancel message (such as Slave(3) as indicated in the diagram). These replies are
re<.:eived by the Master Supervisor, and a Cancel message is sent in reply.

Master 's Master 's
applic. process SPY

time

Slave(2)'s
SPY

Slave(3)'s
SPY state of Master

executing
interacting

blocked

interacting

executing

FIGURE 43. Analysis of the call Slave.inrglb(Result,MyResult,Slaveld) by module Master.

In the current implementation of Mona Lisa, the Cancel message is sent to all Slave
modules through a broadcast mechanism. Performan<.:e benchmarking has shown that
broadcasting to N modules under Chorus v. I has similar performance <.:haracteristics as
sending to N modules consecutively. Therefore, if we count the communication effort
for a general case of N Slave modules, assuming that N/2 modules will try to reply, we
obtain a total of 3*N send's and 3*N receive's. When tracing is active, this increases to
9*N send's and 3*N receive's.

Applying this knowledge to our parallel program, we conclude that the result collection
phase involves 4 inrglb 'sand the overlapping start-up of 4 inglb calls from the Slaves
for new jobs, totalling to 52 send's and 52 receives (without tracing). The majority of
this communication takes place at the Master side, effectively causing a major bottle­
neck. On Chorus v. l, the kernel processing time of sending and receiving a single byte
amounts roughly to 1 ms. These processing times increase to 2-3 ms. for the cases
where 4 Kbytes of track and fit data is communicated. Processing times may increase
further due to increased context switching, the result of the Master becoming an obvi­
ous communications bottle-neck. Summarising we can state that the Chorus run-time

6.6 Parallel 1rack fitting 95

kernel overhead can easily account for the extended period of time of the result collec­
tion phase.

Now that we have analysed and explained why the parallel version underperforms, we
can work on a solution . We start by replacing the Mona Lisa primitive calls by Chorus
point-to-point message passing calls. The result is a speed-up factor of 2.3 . This is
already quite an improvement, but apparently Chorus is still a heavy burden for the
T805 platform.

The Chorus version of the parallel program has a communication structure that allows
it to be mapped easily to the T9000 Transputer network using the INMOS toolset , the
native message passing library. The improved communications in terms of latency and
bandwidth, supported by the native message passing library, result in a speed-up factor
3.0: instead of 137 msec. for sequential track fitting , only 45 msec. are needed in the
parallel case.

To investigate the discrepancy between the measured speed-up factor 3 and the theoret­
ical maximum 4 1 we perform a detailed timing analysis by instrumenting the code with
timing statements. The results are presented below in Table 11 . The maximum track fit­
ting time within an event is measured as 39 .97 msec, which is 15% above the average
track fitting time. This imperfect load balancing causes the theoretical maximum
speed-up factor to drop to 3.5. The Zebra data reformatting operations on both the
Master and the Slave side account for another 3.67 msec . The remaining time is spent
in communication.

Please note that the communication time does not only relate to the data associated
with the longest track fit. As this fit can be any of the 4 tracks , it can take 1, 2, or 3 pre­
ceding bank communications before the longest track fit data is sent out by the Master.
Therefore, the 2 ms. that is mentioned in the table corresponds to an average of
0.25*(1+2+3+4)=2.25 sends by the Master, I receive by the Slave, 1 send by the Slave
and I receive by the Master.

TABLE 11. T9000 wall clock time spenditure on parallel fit, 1000 evt. sample.

attributable
aspect time in msec. time in%

algorithm (fitting) 39.97 87.6

communication 2.01 4.4

Zebra manipulations 3.67 8.0

total 45.65 100.0

An important observation is that the Zebra operations that move the data structures
between the Zebra dynamic storage area and the static communication arrays are rela­
tively expensive: 8.0 percent of the total time, compared to 4.4 percent for the commu­
nication. This emphasises our point made earlier on the fine balance that exists
between data reformatting with a single communication or choosing multiple commu­
nications without data reformatting.

I. The tenn theoretical maximum may be misleading; it is not the maximum speed-up achievable at all
cost, but the maximum speed-up obtainable given the decision to keep the track fitting code for an
individual track fit intact.

96 6.7 lJiscussion on high energy physics aspects

With this section we conclude our implementation example of parallelism in CPREAD.
In the following sections we summarise our findings and topics for further research.
We start with aspects relevant for high energy physics and subsequently discuss the
learning points for Mona Lisa and Viper.

6. 7 Discussion on high energy physics aspects

The tasks performed by typical HEP applications have substantial potential for parallel
execution. To achieve reduced event latency, finer grain parallelism compared to event
farming has to be introduced into the application . Parallelisation can reduce the task
size and complexity per processor, so resources such as (cache)memory are utili zed
better and consequently a more cost effective solution is obtained . The disadvantages
compared to farming lie in the area of scalability, processor utilisation (load balancing)
and difficulty of implementation. We will shortly address each of these issues .

Scalability is not an issue for event farming: the number of events to be processed is
large enough, and the ratio of i/o to computation is low enough, to ensure good load
balancing, even with a large set of slaves. Scalability need not be an issue for finer
grain parallelism either; principles such as locality behaviour of particles that are used
in computations on fluid dynamics could equally be applied to high energy physics,
thus achieving scalable solutions. However, it does become an issue when we want to
impose this parallelism to an existing sequential application. The requirement to keep
the sequential and parallel version identical as much as possible puts a limit on our
scalability.

In this case study we have looked at one example of CPREAD's tasks in particular,
track fitting. We have shown that with minimal code changes a speed up factor close to
the theoretical maximum - that is, given the decision to keep the track fitting code for
an individual track fit intact - can be achieved. The maximum theoretical speed-up is
not obtainable due to load imbalance and communication overheads introduced by data
parallelism. Indeed , track parallelism is more sensitive to load imbalance than event
farming , where it is not an issue. Data parallelism can be equally applied to the other
tasks performed in HEP reconstruction . Scope for large scale parallelism of this type
exists in future experiments on LHC, where for instance the number of tracks per event
increases considerably.

We have seen that communication overheads introduced in the parallelisation process
can be reasonably minimised using the data reformatting functionality offered by
Zebra. This functionality - the grouping and structuring of data - allows efficient data
communication to be implemented for current and future parallel Fortran applications.
However, the Zebra data structures should be defined carefully. As banks can be used
as the unit of data distribution, independent data sets that can be processed in parallel
should not be stored in a single bank whereas interdependent data should. These two
points aid in achieving minimal communication and Zebra operation overheads. The
track fitting example showed that, although no data reformatting needs to be performed
for a single bank, the copying of individual track banks to communication arrays is
already costly.

This case study also looked at the code modularity of CPREAD. It has proved very dif­
ficult to decompose the application into its component reconstruction steps although it
has been developed and maintained by a code management tool. Code management

6 .7 Discussion o n high energ y ph ysics aspe(ts 97

tools such as Patchy and CMZ can and should be used more efficiently to achieve code
modularity, a basic software engineering requirement.

Modularity should also be addressed at the level of the algorithms. Logically independ­
ent algorithms should be self contained at the physical code level. The parallel execu­
tion of these algorithms is easier if code optimization issues are decoupled from the
algorithms. This could lead to a substantial reduction in the amount of code rewriting.

In this case study various tools have been found to be necessary for a structured paral­
lelisation strategy. A profiler is needed to asses the potential for different types of par­
allelism. During development, a code management tool (CMZ) is needed for classical
code management. Finally, a parallel programming paradigm (Mona Lisa) provides the
tools for additional structuring, tuning and debugging .

In the future, good programming techniques will be used to allow efficient/effective
parallelism. Indeed, one could say that developing parallel software requires careful
software development and similar techniques applied to sequential software will
improve its quality as well. Parallel programming techniques could be regarded as a
tool for quality software development in general.

The use of fine grain parallelism allows a reduction of the (cache)memory require­
ments per processor. This has been demonstrated in the track fitting example, where
the code of one slave amounts to less than 20% of the sequential program code size.
The memory savings should be weighed against the disadvantage of suboptimal use of
processors that is introduced by fine grain parallelism.

Table 12 summarises our findings regarding the strong and weak points of the various
parallelisation strategies, with ratings varying between++ (very positive), 0 (neutral)
and - (negative) .

TABLE 12. Parallelisation strategy characteristics

data parallelism

aspect event farm track farm

throughput ++ +

latency 0 ++

scalability ++ +

memory req. +

effort ++

algorithmic parallelism

pipeline

+

+

+

task parallelism

+

+

+

Going through the table, we see that event farming is regarded as the most suitable for
increasing event throughput. This is hardly a surprise given the large amounts of events
to be analysed, the usually extremely small communication to computation ratio, and
last but not least the ease with which it can be implemented . The latter point causes the
minus in the category of memory requirement, as the full replication of the application
over the computing nodes is quite wasteful in terms of memory.

The track farm variant and the pipeline strategy also address throughput, although to a
much lesser extent. The task parallelism alternative is the least favourite for throughput
increase: due to changing event rejection patterns this type of parallelisation is likely to
incur extra computing on events that would normally have been discarded earlier.

98 6.K Discussion on Viper and Mnna Lisa aspccls

Data parallelism scales up to higher speed-up factors than algorithmic parallelism. The
projections in Section 6.4. l may need some adjustment in the light of the results for the
parallel track fitting , but they still show a clear case for data parallelism, especially if
the reduction of latency is an issue. The relatively positive characteristics of track farm
paral.l.elism compared to algorithmic parallelism do not come for free: it is the most
Jabour intensive parallelisation strategy, noted by the minus in the category effort.

Concluding we can say that no single parallelisation strategy appears to address all five
issues of latency, throughput, implementation effort, memory requirement and scalabil­
ity. The best approach would appear to be a combination of the various parallelisation
strategies. Scalability of throughput is best assured by farming out events to workers.
Latency, not addressed by event farming, can be addressed by the addition of finer
grain strategies. For example, the replacement of a worker by a team of subworkers,
implementing a pipeline with data parallelism at each stage.

6.8 Discussion on Viper and Mona Lisa aspects

In the CPREAD case study we have looked at potential speed-up, obtainable under the
restriction that the main code rewriting should be restricted to the way the code is
organised, and not replacement of fundamental algorithms such as pattern recognition.

To be able to do the type of analysis as presented in this chapter succesfully, the follow­
ing tools , skill sets and environments can be summarised to be essential:

• knowledge regarding application structure (which modules exist and how are they
constructed)

• knowledge regarding application domain (for example, the speed-up factor 4 for
track fitting is based on the underlying characteristics of the physics involved)

• a profiler to determine the processing time distribution at module level, per unit of
work (in the case of the CPREAD study a unit of work is equal to a single event).

• a software configuration management tool to help with the creation of the modules
(in this case we used CMZ).

Last but not least, the use of Viper was instrumental in our analysis of the behaviour of
the parallel version of CPREAD. Starting with a visual confirmation that the actual
track fitting was indeed properly distributed over the four slaves, the space time win­
dow allowed us to identify the nature of the problem of the lack of program speed-up
under Mona Lisa. Viper proved easy to use, with all the appropriate navigational aids
available to focus on the area of interest in the parallel computation (e.g. the use of go/
stop, fast forward until a certain time stamp is reached , scroll bars in the time win­
dows) .

Viper could not be used in the later stages of the analysis because the Chorus libraries
and T9 toolset are not equipped with PICL trace file generation capabilities. This
clearly demonstrates the biggest dependency of successful use of any visualisation
tool: access to program execution data via generic and standardised trace message
structures. Therefore, this points to a weakness that needs to be addressed across the
board in commercial parallel computing, where the Jack of such standard infrastructure
prohibits us to reap the benefits of advances made in parallel computing science.

6.8 Uiscussion on Viper and Mona Lisa aspects 99

The use of Mona Lisa for designing a parallel CPREAD has been satisfactory. The
process of parallelising the CPREAD program has been intuitive and straightforward:

• Partition the sequential code in modules

• Variable accesses over module boundaries indicate which variable declarations
should be preceded with the word GLOBAL (so that they become Mona Lisa global
variables)

• Any references to global variables belonging to other modules are replaced by
Mona Lisa read primitives (rdglb, inglb or inrglb).

• When a result value is stored in a global variable that is subsequently needed in
another module, an exposeglb primitive call is inserted to make the result available.

However, both the Mona Lisa paradigm and its development environment are still at a
level of immaturity. During our study, the Mona Lisa front-end parser had to be
extended to parse the CPREAD program, as some parts of it are older than Fortran77.
Also, a limit had to be defined on the support of automatic translation of global varia­
ble declarations using parameterised dimensions. For instance, a declaration of

PARAMETER P=lOO
GLOBAL INTEGER X(P)

is allowed, because the front-end also parses the PARAMETER statements and can
therefore substitute P with 100 in the global variable declaration, but the declaration

COMMON A (10)
DATA A(l)=lOO
GLOBAL INTEGER X(A(l))

is not recognised by the front-end and results in a parse error.

Also the existing functionality of the Mona Lisa primitives is not to our ful I satisfac­
tion. Currently, the primitives only allow the reading of fixed-size variable slices: in
the call Slave.iriglb(Result,MyResult,Offset,Size) we must indicate precisely what
subarray (slice) of Result we want to read into MyResult. CPREAD's extensive use of
Zebra banks for data structuring, including the track and fit data, forced us to make a
choice between the following alternatives:

• Communicate a fixed sized array that is always big enough for the banks in question
(thus sometimes communicating more data than necessary). This means we can
replace the argument Size with a constant.

• have a preceding communication indicate the size of the bank(s) first. This is then
used for the Size argument in the following inglb call.

Despite the communication of excess data, the first alternative is the better of the two;
separate communication of the bank size has a higher performance penalty. However,
what would have been more suitable for instance is the possibility to have a zero value
for Size in the inglb call indicate that we want to read whatever part of the array is
exposed. Upon return, the value of Size can indicate the size that has been communi­
cated. An additional primitive in the shape of Module.is_exposed(var) that checks if
a global variable is exposed would also be essential for elegant programming solutions
in some cases.

100 6.8 Discussion on Viper and Mona I .isa asrec1s

Aside from the functionality of the paradigm, there is the performance issue on a paral­
lel machine with a distributed memory architecture. Inherent to the paradigm, a slight
overhead has to be paid for to the use of a supervisor process. Much more ~evere how­
ever is the multitude of messages that are required to implement a basic primitive such
as the inrglb. With a worst case of 4*N send's and receive's per primitive call (where N
is the number of replicated instances involved), this primitive clearly exhibits non-scal­
able behaviour. One could of course try to avoid using the inrglb, for instance by doing
result collection with wrglb calls, but this does not solve the problem ...

The performance issue is aggravated by the Chorus operating system. With the used
implementation (Clhorus v.1) on T805 Transputers, Chorus message passing operations
incur more than a ms. kernel cpu processing overhead, even with very small message
sizes. The Chorus functionality that Mona Lisa uses could easily be replaced by native
Transputer Tool set operations. Doing this for the T9000 platform would make Mona
Lisa affordable, at least for medium sized applications with not too large networks: the
T9000 has a communication latency from T9 to T9 under 10 microsec., with link
speeds exceeding 1 OOMbit/s.

Another performance related issue is trace message generation. When we analysed the
Mona Lisa version of parallel track fitting, we experienced a significant performance
degradation of the program execution when tracing was enabled: the track fitting time
increased from 149 ms. per track without tracing to 177 msec. with tracing! This is
attributable to the interference of the Chorus microkernels, that together have to proc­
ess another 88 trace messages per event that are immediately communicated to the
Mona Lisa program manager after generation.

To reduce the perturbation of parallel program execution resulting from trace message
communications, we have implemented two new Mona Lisa primitives that allow us to
temporarily buffer the trace messages on the node where they have been generated.
The generation of the trace messages hardly takes up any CPU time, and provided there
is enough memory to store the trace messages, we can wait with downloading the trace
information to file (via the program manager) until the parallel program execution has
finished .

The new primitive trace_buf(int size) is used at the start of a module's execution to
allocate an internal trace message buffer of the requested size. With the primitive call
tracing(true) trace message generation is then activated, whereas the call
tracing(false) suppresses further trace message generation. This enables us to trace an
interesting part of a long program execution without having the need for an extremely
large buffer to hold all trace messages generated.

In this case study, the Viper tool has assisted us in analysing and improving the execu­
tion of a parallel program with a small number of parallel modules. Now that we have
covered the issues that emerged from this (such as the trace buffering), we can focus on
increasing the problem size. In the next chapter we discuss the use of Viper in a project
where it is used to visualise the interaction of a I 000 network nodes.

7.1 Th~ Ma1.:ruml' prn_ic1.:1 hackgrnund 111 1

Chapter 7

Application of Viper in a study of large

switching networks

In the ESPRIT Macrame project P8603 [OMI95][Mar98] studies have been carried out
on the behaviour of traffic patterns going through large switching networks. Of particu­
lar interest is the appearance of communication bottlenecks (so-called hot spots) in dif­
ferent topologies such as mesh, tree and hypercube, and the behaviour of these hot
spots over time - how they spread out, how long the effect lasts etc. CERN has an inter­
est in participating in this project because of the applicability of study results in the
building of data acquisition systems. HEP experiments such as the ATLAS experiment
for LHC are foreseen to make extensive use of switching network technology in their
data acquisition systems. In this thesis we will describe the situation of the Macrame
project as it was in January 1996, to sketch the context in which Viper made a contribu­
tion to the project.

7.1 The Macrame project background

The switching network that was built in the Macrame project consists of more than a
thousand traffic sources that send messages to each other through a network of 64
switching devices . The traffic sources and switching devices are interconnected using
point-to-point links based on Transputer technology. This network is used as a test bed
to study different traffic patterns. Different topologies can be studied by using recon­
figurable hardware. In addition, the software that boots and controls the network and
drives the data communication patterns can be set up so that only a sub-network, or
sub-topology, is used.

Some issues of complexity must be dealt with:

1. Over a thousand devices have to be interconnected, partially by hand-wired cabling,
to implement a desired topology. The mapping of a logical topology to a physical
network setup is complex due to cabling restrictions, and is error prone. Therefore, a
systematic verification process is desirable.

2. A network of this nature is likely to show at least some transient problems such as
link failure or device failure. Making sure that all devices have booted without error
states and that the network is fully operational before starting to use it for experi­
mental runs is a necessity.

3. The amount of data produced by the network to monitor the traffic pallerns is sub­
stantial, and necessitates some form of data filtering and further processing in order
to facilitate data analysis.

102 7.1 The Mal'ramC pnJjcct backgrnunt..I

4. There are three separate network descriptions that each use different device identifi­
cation schemes: the physical network cabling, the sub-network definition in the con­
trol software and the logical topology being implemented. These descriptions need
to be mapped onto each other in a coherent way.

The picture below of the Macrame network that was produced at the end of the project
demonstrates the size and complexity of some of these issues:

FIGURE 44. The Macrame network of 1024 nodes and 64 switches.

Visualisation techniques can help to address the issues mentioned:

• The first two issues, which can be classified as hardware debugging related, can
benefit from a graphical representation of the system state where the sound opera­
tion of devices and links is represented via the use of colours. We can take note here
of the similarity with Viper's animation window where each module of the overall
parallel program has a state definition associated with it, which is represented
graphically using colours.

• Visualisation techniques facilitate the analysis of large data volumes considerably,
provided a suitable graphical mapping can be defined. In the case of Macrame, the
data volumes relate particularly to data describing the development of hot spots over
time. Viper 's time view similarly shows inter-module communication and module
state patterns over time.

• The handling of different network representations such as logical topology is a key
support feature of many visualisation tools. Viper's capabilities in this area were
still quite rudimentary after three prototypes, but could easily be extended.

7.2 The conccp1 of customismion 1113

The decision was therefore made to investigate the suitability of Viper's visualisation
capabilities to address some of the issues mentioned . From the project description
given so far we can distil some preliminary new requirements for Viper on which its
usability for Macrame depends:

• The ability to support different module types (e.g. nodes and switches) that may
have different state behaviour.

• The ability to graphically represent different modules in different ways, so that for
example a node and a switch can have a different appearance on the screen.

• The ability of Viper to display a network of a thousand nodes in the animation view,
and to provide multiple views that the user can switch between at any time.

• The ability of Viper to reach a sustainable update rate of this view.

In the following section we discuss the impact that these requirements have on the core
design. Next, we describe the Macrame network architecture in more detail to refine
the requirements for Viper. We then describe the specification for Viper that supports
the aforementioned requirements. After looking at the design and implementation
issues that arise from the extended Viper specification, we report on the results.

7.2 The concept of customisation

As we saw with Mona Lisa, Viper uses the term module for the individual components
that interact with each other. From the previous section it is clear that the different
devices that display state information have different state definitions and requirements.
Therefore, we need to be able to define multiple module types and associated state rep­
resentations. Viper as it was developed for Mona Lisa does not support multiple mod­
ule types: all modules have identical state behaviour and graphical representation.

The implementation of such capabilities relies on the adaptation of fundamental soft­
ware classes in the Viper design, such as the ModuleState class. We introduce the con­
cept of customisation: adapting Viper to a particular application through the definition
of so-called customised sub-classes. We can illustrate this quite easily with the Mod­
uleState class: by defining a class CustomModuleState which is a sub-class from Mod­
uleState (see Figure 45) we achieve the following:

• A module can now have a customised module state definition by adaptation of the
CustomModuleState class.

• All base functionality that is required from the state class can be incorporated in the
base class ModuleState. Therefore, even an empty definition of the CustomMod­
uleState class would be sufficient for Viper to function properly.

• The definition of the CustomModuleState class can be kept in a separate code pack­
age (in our case, the files custom.h and custom.c).

The principles of using subclasses to override default implementations with the aim of
introducing application flexibility are described in an excellent way in [Gam95]. This
book describes many useful object-oriented design patterns. A design pattern can be
loosely defined as 'a description of the core of a solution to a recurring design problem,
such that it can be used generically and repeatedly, albeit not necessarily with the same
result each time'.

104 7.2 The conct:pt of c..:uswmisation

The patterns that are relevant here are the Factory method and Abstract factory. They
describe in a generic way what we want to achieve with the Viper design: the core of
the application does not care about the specifics of a customised object (e.g. Custom­
ModuleState), as it only handles it through the interface of the base class (e.g. Mod­
uleState), which is in any case inherited by the sub-class (CustomModuleState) .

The result is extremely powerful: in the same way that a Node object visualises the
state of a ModuleState object in the animation window, a CustomNode object visual­
ises the CustomModuleState object. However, since these objects can have problem
domain specific class definitions, their graphical representations can also be problem
domain specific!

Module State List
has history >

con
String: name I<>-

tains >

process_tram(Tram)

lhas a current
CustomModuleState

{ordl--
is a

ModuleState

lnglbStartTram

••" updates state of
~

update_state(
Tram ~ Module)

update_state(
Module) abstract

ExposeEndTram

c-- update_state(
Module)

- - . ..

FIGURE 45. Customising the State definition of a Module

The use of factory (and other) design patterns greatly enhances the flexibility of an
application from a code maintenance point of view. However, some up front invest­
ment in a more solid class structure is required (for example, which abstract factories
are required to instantiate problem domain specific objects). It is therefore desirable to
know in advance the dimensions along which an application has to be generic, so that
the class structure design can take this into account from the start.

7J The Macrum~ network 10)

7 .3 The Macrame network

As we mentioned in the introduction of this chapter, the Macrame network consists of
traffic sources. called nodes, that send messages to each other through a network of
switches. Both the nodes and the switches belong to the family of Transputer technol­
ogy devices . The CI 04 switching device that is used is a 32 port asynchronous packet
cross-bar switch from SGS-Thompson. The nodes that are responsible for generating
messages are implemented with CI 01 chips.

: -----!ii]· ---------------------------------------:

· - - · control

- data

~ T2xx Transputer

~ T8xx Transputer

:[iii

Node

Switch

FIGURE 46. Example of a small network, showing the key components and interconnections.

Figure 46 shows some of the relevant aspects of the network technology. The example
topology here is two switches interconnecting 8 nodes, indicated by the gray shading of
the relevant parts. Both switches are heavily underutilised in this example, as they are
each capable of fully interconnecting 2 groups of 16 nodes. The unused Cl 04 links are
drawn explicitly as small lines hanging off the CI 04 to illustrate this. In the full hard­
ware configuration the 64 switches are fully utilised to interconnect over a I 000 nodes.

The C104's in Figure 46 are interconnected by two links, with one link passing through
a so-called spy node. This node has been specially equipped to measure the properties
of the individual messages that go through the link (e.g. travel time), as well as moni­
toring properties of the link itself (throughput, occupancy rate etc.). The spy node is
also called an intelligent node as opposed to the CI 01 nodes, which are simple nodes.

Apart from the devices that make up the actual topology, there are also a number of
devices required for the control network, mostly Transputers of the T2xx and T8xx
series. The supporting interconnections are drawn as dotted lines in the diagram, to dis­
tinguish them from the topology interconnections over which the actual data patterns
are transmitted during a run. The control network is responsible for :

• Downloading device configuration files, executable programs (such as routing soft­
ware on the T8's) and data (e.g. the data patterns for the simple nodes) from the host
to the relevant devices in the network. This occurs during network booting.

• Collecting measurement data from the topology. This needs to be done during the
run.

106 7 J Thi:! Maname nclwork

• Collecting status information from the network devices (e.g. active, or in error).
Such actions are initiated from the host after booting but before the run, using spe­
cial software tools such as ispy and T9spy.

The switches and the nodes are part of different control networks . This is due to the
fact that they make use of different link technologies: the nodes use OS link technol­
ogy, whereas the switches use DS link technology. As a result, the C l04's control
structure is a daisy chain that is connected to the host separately.

An important device in the node control structure is the T2: this chip 'manages' a
group of 4 simple nodes, collects all relevant data from these nodes and communicates
it back to the host. T8's are used to take care of the routing of these messages. For a
1000 node network the control structure becomes quite a large, tree shaped network,
with the host at the root, the T2's as leaves and T8 's as branches . However, our exam­
ple is quite small, so we only have one TS.

To allow for easily reconfigurable network topologies, standard board modules have
been designed that can be interconnected on a per link basis using link cables. The link
cables are part of the data network; the control network is interconnected differently.
The 3 most important board modules are depicted schematically in the diagram below.

Simple node board Switch board Spy board

FIGURE 47. The Macrame network is built using standard modules.

The simple node board connects 16 simple nodes (numbered NJ to Nl6) to a switch.
They are controlled via 4 T2's, numbered Tl to T4. The remaining 16 links of the
switch can be connected to other boards through cabling. The switch board is simply a
switch with all links available for connections to other boards. Finally, the spy node
board has an intelligent node mounted on it with ingoing and outgoing links, allowing
monitoring of a data stream passing through the node.

The boards are organised in crates where they occupy a slot position. The crate pro­
vides the power supply, but more importantly, also the control network interconnec­
tions that run over the crate backplane. The data network connections between boards
are all established with link cables. Depending on the logical topology that has to be
implemented, the cabling patterns can become quite complex, because of two restric­
tions :

• There is a limited number of crates (-30), and a crate has a limited number of slots.

• A link cable has a limited length.

7.4 The Viper spccifir.:<uion for MacramC 107

The result of the two above limitations is that the symmetry that exists in the topology
(e.g. mesh) cannot be translated completely to a corresponding symmetry in the wiring
between crates.

crate cl crate c2

slot sO sl s2 s3

FIGURE 48. Connecting up crates can give complex and asymmetrical wiring patterns.

In the next section we discuss how Viper can visualise the state information of simple
nodes and switches.

7 .4 The Viper specification for Macrame

Viper visualises the execution of a Macrame test run as a sequence of state changes,
very much like it visualises a Mona Lisa program execution. The state of a Mona Lisa
program is a function of the state of the individual modules. Here, the state of the test
bed is a function of the states of the individual devices. With Mona Lisa we were deal­
ing with uniform modules whereas in this case we are dealing with several types of
devices (nodes and switches) that each have different state behaviour. The support of
multiple module types is therefore a new requirement for Viper.

The state information for the network devices can be split into two parts:

• setup information related to the network boot (setup) phase of the run.

• state information related to the execution phase of the run.

The setup information is essentially describing whether a device is included in the net­
work configuration software (called NDlfile) and whether it has come alive success­
fully after booting. If this is the case, we can detect its presence with the software tools
ispy or T9spy. This setup information applies to both nodes and switches.

During the run, a node can send and receive data. We therefore define a node to consist
of a transmitter and receiver part. The transmitter sends data according to the data pat­
tern that has been loaded into the node as part of the setup. This data pattern specifies a
list of messages to be sent, and per message the size and the time that it must be sent,
relative to the start of the run. Subsequently, a transmitter can be in any of the follow­
ing states:

• idle/ok: there is currently no data to be sent according to the data pattern loaded.

• communicating: the transmitter is sending a message as defined by the data pattern.

108 7.4 The Viper spccilil'aiion for MacramC

• congested : the transmitter is sending a message, but at a time that is later than
defined by the data pattern due to temporary unavailability of outgoing links (i .e.
blocking because of other messages being transmitted) . If sufficient idle time is
'planned' between successive sends , this temporary backlog can be corrected and
the transmitter goes back to communicating or idle/ok.

• overflow: the transmitter is sending a message, but at a time that is later than
defined by the data panem, similar to the congested case. In addition, the time dif­
ference exceeds a threshold that puts the transmitter in an overflow state to indicate
the severity of the 'time overflow'. The only state transition allowed from this state
is to error.

• error: a hardware failure has occurred.

The receiver part of a Node has similar states idle/ok, communicating and error, but
not congested and overflow because it does not send data . In addition , both transmitter
and receiver have a data rate associated with them, indicating the current average com­
munication bandwidth.

If we define boolean A to represent "device is alive" and boolean B to represent
"device is included in the sub-topology according to NOL file", the following state
domain definitions serve as basic building blocks of state information:

• Setup_state ={not A & not B, not A & B, A & not B, A & B}

• Dynamic_state = { idle/ok, communicating, congested, overflow, error, undefined}

• Data_rate = integer value ranging from 0 to MAXRATE.

The state of a transmitter can now be defined as a compound state (Dynamic state: d,
Data_rate: r) with initial state (undefined, 0). The same definition applies to the
receiver. The state definition for the node and switch then become:

• Switch state: (Setup_state: s, Dynamic_state d).
Initial state: (not A & not B, undefined}

• Node state: (Setup_state: s, Transmitter_state: t, Receiver_state r).
Initial state: (not A & not B, initial_transmitter_state, initial_receiver_state).

7.4.1 Viper's output

Applying the concepts we introduced in chapter 3 to Macrame, we define a view to be a
graphical representation of (part of) the Macrame test bed state information, that high­
lights a particular aspect of the test bed state. The intuitive traffic light colours that we
used for Mona Lisa can be re-used here, for example to mark a node as communicating
(green), congested (yellow) or in overflow (red) . Before describing Viper's views, we
need to introduce the graphical representation of nodes and switches in these views.

7.4 The Viper specification for Macramo! 109

7.4.1.1 Graphical representation of a Node

A node with state (s,t,r) is represented by is a rectangle consisting of a transmitter and a
receiver part and a base whose colour is defined by the colour mapping defined for
setup states.

transmitter
receiver

height is proportional to data rate base

FIGURE 49. Graphical representation of a Node.

The transmitter and receiver parts are each split into an upper and lower region, sug­
gesting a meter. The relative size of the lower region is proportional to the value of the
data rate, and is coloured green/yellow/red according to the value of the dynamic state.
The upper region is transparent. When the node is in error, a white cross is drawn
across the rectangle.

7.4.1.2 Graphical representation of a Switch

The representation of a Switch with state (s,d) consists of a rectangle and a static text
label. The rectangle's colour is normally defined by the colour mapping for setup state
s, but overridden by the colour mapping for dynamk_state d in case of error.

FIGURE 50. Graphical representation of a Switch.

7.4.1.3 Viper views

We will describe the views using an example Macrame setup. This setup consists of 9
switches arranged in a 3x3 mesh topology and 9x16 nodes. This means that the nodes
gain access to the communication network through a dedicated switch in groups of 16.
The device boards are mounted in 3 crates with 3 slots each.

Animation view. The adaptable animation view can be re-used without significant
modifications. A setup file specifies the subset of devices shown, their positions and
their graphical representation. Specific device error messages can be displayed selec­
tively, using the functionality that was created for displaying Mona Lisa primitive calls.

Figure 51 shows our example setup of 9 switches and 144 nodes. The static text label
of the switches is used to indicate the vertex in the mesh that a switch and its corre­
sponding 16 nodes represent.

110 7.4 The Viper specifica1io11 for Ma1.:ramt!

FIGURE 51. Example of a Macrame Animation View, topology view.

For the Macrame testbed we define two relevant animation views: one view that shows
the setup of the hardware architecture (crates, slots, boards etc.), and another view that
shows the topology setup (vertices arranged as a mesh, tree etc.). Figure 52 shows what
the hardware view looks like for our example. This view is useful for locating devices
with problems; for instance, faulty devices can be highlighted with a different colour.
The topology view in Figure 5 I enables the global analysis of on-line monitoring data,
including the observation of hot spots. Both views assist in the setup process where the
mapping between topology and cabling is verified.

We therefore have a requirement to support different views on the same test bed. This
can be supported by using different setup files which the user can load at any particular
time using the menu option 'setup ... ' provided on the menu bar in the animation view.

The control software that is responsible for the network analysis and setup, and mes­
sage handlers that deal with messages that come out of the network, can be extended
with logic for the generation of the corresponding setup files.

7.4 The Viper specification for Macnune Ill

FIGURE 52. Example of a Macrame Animation View, hardware view.

A necessary enhancement to the animation view is the possibility to include additional
graphical elements in the display for layout purposes only (e.g. lines and text labels) as
demonstrated in the hardware view. This allows us to group nodes belonging to one
board/slot/crate etc. where such detail is desired.

Space time view. A setup file specifies which nodes are shown in what order on the
vertical axis. In the case of Macrame, we will have to make extensive use of the ability
to visualise only a subset of the nodes given their potentially large number. Also, there
is ljttle interest in including the switches : the primary use of the space time view is the
study of congestion patterns, which focuses on the node transmitters. The view is very
similar to the Mona Lisa view, showing the dynamic state of the node 's transmitter in a
coloured bar using traffic light colours . Given the similarity to the Mona Lisa view, an
example figure has not been included.

We conclude the section on Viper's desired output with the colour codings that are
required to make the visualisation specification complete.

TABLE 13. Mapping of setup _state to colours

setup _state

not A. not B

not A. used

A, not B

A, B, dynamic_slate =undefined

A, B, dynamic_slale <>undefined

colour

black

red

yellow

grey

blue

112 7.4 The Vi.per specifica1ion for Macrame

TABLE 14. Mapping of dynamic_state to colours

dynamic_state colour

undefined black

idle/ok green

communicating green

congested yellow

overflow red

error red

7.4.2 Specification of trace message types

The updates of module states, and hence the module representation, is driven by trace
messages. In this section we determine what suitable trace message types we need . The
reader is referred to Section 5.4.l on page 75 where the PICL trace message standard
was introduced. The discussion here is concerned with the possible values that are to be
stored in this generic structure, such as the possible values for record type and event
type.

The definition of PICL trace messages is based on a one-to-one correspondence
between the occurrence in the network of an event that affects the state of a device, and
the registration of this event by the generation of a trace message. Events are catego­
rised into types, and each event type corresponds to one trace message type, as listed in
Table 15.

Na'ively, a single event type could be defined to cover all possible state changes. How­
ever, it is not the best choice if we want to optimise the size of the trace messages . As
we record different state information for different devices, it makes sense to have a spe­
cific event type (and thus trace message type) for each module type; in this way we can
reduce the amount of redundant state information stored in the trace message. This
leads us to define two event types: "Node changed" and "Switch changed".

For each state aspect we can distinguish a specific phase in the network simulation run
where this aspect is subject to change. For instance, the information whether a module
is found by ispy only becomes available (and therefore only causes a state change) dur­
ing the setup/initialisation phase. By using different event types for different run execu­
tion phases, we can again reduce the data redundancy in a trace message.

The above leads to the following definition of event and trace message types:

TABLE 15. Overview of event types and the mapping to trace message types

event type description trace message type

module found !SPY result on the network module Module_found

module used NDL interpretation for this network module Module_used

Node changed a Node 's (new) state has been recorded Node_changed

Switch changed a Switch 's (new) state has been recorded Switch_changed

For the initial state we assume a device not to be included in the NDL file and not alive.
During the setup phase, an appropriate trace message of type Module_used is gener-

7.4 The Viper specification for Macrame 113

ated for each device that is part of the NDL description, and a device generates another
trace message itself (of type Module_used) upon coming alive. All other trace mes­
sages are generated during the actual run execution.

Viper requires trace messages to be formatted according to the PICL standard and only
accepts numerical fields. Also, Viper requires a sequence number in every trace mes­
sage. The resulting trace message template is described in Table 16

TABLE 16. Trace message template.

field value description

record type 2 indicates nature of event (start, end, instant). we only
have instant.

event type 30, 31, ... mapping of event type to integer values

time stamp integer Viper imposes no constraints on quality of time stamp
values. Ordering of trace messages is established using
the sequence number.

processor id integer id of the component that generated the trace message

process id 0 not used.

nr. of data fields integer nr. of data fields (they contain the actual state informa-
tion)

type of data fields 2 we only have numerical data fields.

data field I integer data field

data field 2 etc ... integer data field

Applying this template to each trace message type we get:

TABLE 17. Overview of trace message types and their formatting.

trace message type

Module_found

Module_used

Node_changed

Switch_changed

where

format

2 30 <time_stamp> <id> 0 I 2 <seq>

2 31 <time_stamp> <id> 0 I 2 <seq>

2 32 <time_stamp> <id> 0 5 2 <seq> <transmitter_state>
<transmitter_rate> <receiver_state> <receiver_rate>

2 33 <time_stamp> <id> 0 2 2 <seq> <state>

• <id> stands for the component identification number (consecutive from 0 onwards).

• <seq> stands for the sequence number of the trace message for component <id>.
Trace messages are numbered per component consecutively from I onwards.

• <state> stands for the numerical value of dynamic_state for component <id>. Map­
ping of dynamic_state values to numbers is by enumeration, starting at 0. Similar
definitions for <transmitter_state> and <receiver_state>.

<transmitter_rate> and <receiver_rate> stand for the data_rate value for the transmitter
and the receiver of component <id>.

7.4.3 Performance improvement

The number of Nodes in the Macrame project will be significantly larger than those
encountered in our Mona Lisa examples. The Viper application is definitely not geared

114 7.'5 Design imrlication.'i for Viper

up to supporting a thousand graphical objects in the Animation view without signifi­
cantly slowing down the trace message processing rate. For Macrame, the following
performance target is set: With the animation view opened, Viper should be capable of
processing from file I 000 trace messages per second. This corresponds roughly to 1
update per node per second, and hence a complete ' refresh ' of the animation view each
second .

This performance target is to be achieved on the fastest platform available to the GP­
MIMD group, a SPARC workstation running Solaris.

7.5 Design implications for Viper

From the previous section we can summarise the new requirements for Viper on which
its usability for Macrame depends:

I. The ability to support different module types (node and switch) that exhibit different
state behaviour.

2 . The ability to graphically represent different modules in different ways, so that for
example a node and a switch can have a different appearance on the screen (for
Mona Lisa we could represent each module by the same, coloured circle). In addi­
tion, the following graphical elements should be available for layout purposes in the
animation view: lines, rectangles and text labels.

3. The ability of Viper to display a network of a thousand nodes in the animation view,
and to provide multiple views (topology and hardware) that the user can switch
between at any time. The latter is done by using different setup files which the user
can load at any particular time using the menu option 'setup ... ' on the menu bar in
the animation view.

4. The ability of Viper to reach a sustainable update rate of this view in the on-line
mode, in the order of 1000 node state changes per second.

Some of the functionality that is essential for Mona Lisa is not required here : the inter­
action between network components at the individual node level is not a relevant visu­
alisation aspect. In particular, a consistent run construction is not an issue. In the
following sections we will discuss how the new requirements affect the Viper design.

7.5.1 Viper customisation

This section discusses in more detail the implementation of the concept of customisa­
tion as discussed in Section 7.2 . For the proper modelling of the state behaviour of the
Node and Switch modules we have two design options:

I. implement two separate class definitions of type CustomModuleState, one for each
module type.

2 . implement one CustomModuleState class that contains the superset of state compo­
nents of all module types.

We decided to implement option two, mainly to keep the complexity of additional class
definitions to a minimum.

7.) Design implic: . .uions for Vi~r 115

For the CustomModuleState definition in Macrame this means we define the following
class:

c l ass Cus t omised_module_s t a t e : publi c Module_state {
publ ic:

Se tup_ s t a te secup_ s t a t e;
Nc<le_stat e overall _s t ate;
Nc<le_stat e r eceiver_ sr.at e ;
i n t recei ver_ ra te;
Ncde_state t r ans mi t r.e r_st a te;
int tran8m1tter_r ate;
vo id clear (l {

}

};

setup_state = NOT_ F'_NOT_U:
o vera ll_stat e = UNDEF'lNED;
recciver_ s tate = UNDEF I NED;
r ecei ver_rate -= O;
t r an smitter_state = UNDEF I NED;
tra n.smi t t er_ rate = O;
Module_st a t e: :clea r {) ;

As can be seen in the class definition, this means that the Switch module contains the
state components only relevant for the Node module and vice versa. This introduces a
certain level of redundancy, but this is not considered to be too critical. The advantages
of a single class definition outweigh the disadvantages: limited change in Viper's
design, and limited effort required for defining a customisation.

The code package that contains all the customisation of Viper includes much more than
just the state class definition . We mention here: primitive classes , trace message type
classes, the associated abstract factory classes and the graphics classes that need to be
customised to generate the desired look-and-feel in the animation view. The same prin­
ciple has been followed for these classes and is not discussed further in this thesis.

7.5.2 Adaptation of the animation view

The animation view has to be adapted in a number of ways to support Macrame:

• The setup file needs to be extended with an additional column where we specify for
each module what representation we require.

• The setup file definition needs to be extended with a section where we can specify
layout elements (lines, rectangles and text labels).

• The setup file needs to be re-loadable at any time to switch between alternate views.

• The graphics handling in this view needs to be optimised to achieve the required
performance increase to approx. 1000 updates per second.

The implementation of these features is straightforward from a Viper design perspec­
tive and is straightforward software development.

7 .5.3 Animation view setup files

The setup files are generated by the same tools that generate the NDL files. This sys­
tematic linkage ensures the files are synchronised. Manual generation or indeed any
manual intervention in the file generation process would increase the probability of
setup errors.

116 7.6 Kcsuhs

7.6 Results

At the time when Viper was adapted for Macrame, the project was in its initial phase
and the testbed still under construction. As a result, Viper could only be tested in a lim­
ited way. An integration test was performed with the first Node board produced for the
Macrame testbed. This test demonstrated the viability of the use of Viper from a func­
tional point of view.

To test Viper's capability to deal with a large number of Nodes, a fictitious trace file
was produced to simulate a Macrame setup of 64 x 16 = 1024 nodes in an 8x8 mesh. A
trace file processing rate of approx . 800 trace messages per minute was achieved,
which was considered to be acceptable.

From a functional point of view, this simulation test was a success: on a 21" monitor,
the size of an individua'l node was reduced to approx. 0.7 x 0.7 cm., but this was still
large enough to show all the relevant detail such as congestion state of the transmitter,
and the qualitative data rate of both the transmitter and receiver.

The speed at which Viper proved to be adaptable to Macrame's requirements was an
important success: within 2 months we demonstrated that Viper could fully support the
visualisation of Macrame test runs . This equated roughly to the total effort required on
the testbed side to implement the generation of the required PICL trace messages. This
highlights an important point of visualisation tools: their dependency on quality trace
information is crucial. Even with the most flexible and adaptable visualisation tool, a
lot of hidden effort can go into preparing the basic infrastructure such as trace message
generation.

At the Macrame project review held in November 1996 for the ESPRIT review board,
a real-time demonstration was given using Viper, where it visualised a setup of 256
nodes . As a conclusion we can say that the Macrame project was used to demonstrate
some important design objectives: the general purpose nature of Viper, and the re-usa­
bility of its design.

8.1 Viper

Chapter 8

Discussion and conclusion

In this last chapter we will discuss some aspects of the work performed that are rele­
vant to the criteria, described in [Bco94], against which a designer's thesis is tested.

At the start of this designer's PhD, the following objectives were formulated in the
project proposal [Schi93/2]:

• Realisation of a Mona Lisa software engineering environment, comprising all the
indispensable tools for the life cycle of parallel program development.

117

• Case study of the parallelisation of a representative HEP event reconstruction pro­
gram.

• Publication of the case study results, comprising not only a parallel program but also
design criteria for parallel HEP reconstruction programs.

• Publication of aspects of Viper that are of scientific importance.

We will discuss the extent to which this plan was executed in its original form, and the
results obtained. Finally, the scope for further work is outlined.

8.1 Viper

The project has demonstrated that the visualisation requirements as formulated in the
GP-MIMD project can be met with the Viper tool. The flexibility of the graphical rep­
resentation allows the tuning of the visualisation to the problem domain. Furthermore,
it supports scaling to a large numbers of elements. This makes Viper suitable for visu­
alisation of massively parallel applications - the core objective of our work.

Using Viper for parallelising HEP software

Specifically within the context of the GP-MIMD project, Viper has been developed to
serve as the core component in the Mona Lisa software engineering environment (the
first objective mentioned at the start of this chapter). The CPREAD case study has sub­
sequently demonstrated that, within the context of Mona Lisa, Viper assisted in the
construction of the parallel version of CPREAD. From a behavioural point of view,
Viper was used to verify that there was reasonable opportunity for load balancing.
From a program tuning point of view, Viper demonstrated the performance bottleneck
that was incurred by the usage of the INRGLB primitive call. Finally, some debugging
support was also provided during the first test runs that lead to the discovery of the
software bug in the Mona Lisa communication library.

118 8. 1 Viper

Using Viper outside the HEP parallelisation context

In this thesis we have stressed the benefit of progranuning paradigms with a high level
of abstraction. Nevertheless, it is vital that Viper itself does not rely on any specific
paradigm - it merely has to be able to exploit the presence of one. Paradigm independ­
ence has been a key consideration in our design decision to separate the visualisation
process from the model to be visualised. Instead of letting an object in the state model
visualise itself, a strict separation has been introduced which means that each object
has a (configurable) visualisation object associated with it.

The demonstration of the achievement of this paradigm independence took place in the
Macrame project. Here, Viper visualised traffic patterns in a large network of commu­
nicating nodes, with objectives, similar to those for parallel progranuning support:
behavioural analysis and debugging of the testbed configuration . The systematic steps
used to map the new problem domain to a set of visualisation objects and trace mes­
sage types, showed how Viper can be adapted quickly to a different problem domain.

Comparison of Viper with other visualisation tools

In Section 2.4 an overview of visualisation tools has been given, including a detailed
description of one of the most prominent members ParaGraph. We outline here in sum­
mary where Viper's added value lies compared to ParaGraph:

• Ability to provide adaptable views at the programming paradigm level, without
compromising the general purpose nature of the tool. This was demonstrated by the
work on CPREAD and Macrame.

• Ability to construct a consistent observation by exploiting the properties of the para­
digm, without having to rely on the accuracy of the trace message time stamps.

• Ability to provide real-time visualisation whilst maintaining observation consist­
ency. Especially in the context of unreliable time stamping, this is a unique feature
of Viper.

These features clearly distinguish Viper from ParaGraph, or any other available visual­
isation tools that were researched at the start of the project. The innovative nature of
these features resulted in a publication [SS95].

The Mona Lisa case study proved the added value of paradigm related visualisation as
provided by Viper compared to the ParaGraph views . An important question however
concerns the synthesis with ParaGraph: is the existence of Viper on its own justifiable?
Should there not be a design where Viper and ParaGraph are incorporated in the same
tool, with a paradigm dependent part for the Viper views?

The answer to that last question may well be yes . The boundary conditions in which the
work has been carried out did not allow for this though. It is important to recognise that
a well-defined scope definition on a project, resulting for instance in a fixed time
period and effort, is designed to deliver its benefit in a way which is not necessarily
ideal , but nevertheless cost effective (where cost refers to any scarce resource which
needs to be expended within the project) .

A full integration with ParaGraph was never in the scope of the project, simply because
of the effort required . Nevertheless, the combination of Viper and ParaGraph is an area
where significant work can still be done. Future work can address both the details of

8.2 CPR f.AD ca:;c s1udy 11 9

the proposed interaction between Viper and ParaGraph using trace files, which was
originally intended to be demonstrated using a message passing paradigm. Also , the
scenario of a single application design incorporating the concepts of both tools merits
further study.

8.2 CPREAD case study

The CPREAD case study constitutes the second objective as listed at the start of this
chapter. The primary conclusion here is that with limited code change, a reasonable
speed-up at single event level can be achieved , although within limits. However, the
economics (business case) needs to be assessed for each application individually, given
the varying levels of investment and return involved . The results of the case study,
together with the application design criteria that alleviate the investment required for
parallelisation, are published [SF95].

8.3 Evaluation of Mona Lisa

Mona Lisa was a critical case study for Viper to highlight the added value of paradigm
related visualisation. In this context, we have shown that paradigms are useful for
enriching the information presented to the user (e .g. showing primitive calls being exe­
cuted). When Mona Lisa was put to the test with the parallelisation case study of
CPREAD, the results from a performance point of view were less encouraging.
Although an interesting concept, Mona Lisa had inherent scalability weaknesses. This
weakness was particularly noticeable with the Chorus operating system implementa­
tion, which used the relatively inefficient Chorus communication mechanisms.

The conclusions reported in the publication article for RT'95 mention this, in addition
to the design criteria for parallel HEP reconstruction programs. As a result, our focus
on the implementation of a full Mona Lisa development environment (as per original
plan) shifted towards other, more relevant tasks such as finding a solution for the con­
sistent run observation under unreliable trace message time stamping.

8.4 Evaluation of the design process

Original time plan versus execution

The original project proposal already contained a global time plan. Most of these tasks
have been executed according to plan in a straightforward manner, such as the
CPREAD case study and the publications. However, other tasks were re-defined as a
result of project scope changes.

The disappointing scalability of Mona Lisa resulted in an important decision - no fur­
ther investment would be put into this development environment. In addition , the unex­
pected difficulty encountered with trace message time stamps meant a shift of priority :
instead of working on the integration of Viper with a sequential debugger, we tackled
the consistent observation problem. This proved to be such a sizeable task, that the
work on the analysis tool for process-to-processor allocation strategies, as originally
foreseen, was taken out of the project scope.

120 R.5 Conclusion

Finally, there was another unforeseen task: the re-usability of Viper was validated in
the Macrame project.

Software engineering approach

Viper's adaptation to Macrame's problem domain demonstrated the importance of soft­
ware changeability during an application's lifecycle. Indeed, it is typical for software
applications to undergo rework at some point as a result of changing requirements in
the environment. In Viper's case, the dimensions where flexibility was required were
relatively unknown at the start. The participation in Macrame, for instance, was not
foreseen. As a consequence, we introduce risk when taking design decisions that limit
flexibility. For Viper, a well-designed framework and an incremental development
process proved to be a successful combination to manage this risk.

Adoption of this approach in corrunercial environments where similar risks exist (e.g.
applied research institutes) could have the additional benefit that incremental invest­
ment can be weighed more explicitly against the incremental benefit - thus ensuring a
focus on adding value during the software development process.

The iterative software approach also proved to be successful in coping with the project
scope changes that were mentioned before. Finally, the iterative approach was also use­
ful in dealing with the heterogeneous user groups (GP-MIMD project members for
CPREAD; the experimental Mona Lisa user community; Macrame project members
for the test bed visualisation). Using intermediate software versions, it was possible to
portray the possibilities of the Viper tool at an early stage, and this stimulated the dis­
cussion which drove the tool's development in the desired direction .

Future work

As discussed, most of the original project goals were reached. Where substantial work
is still required , is in the integration with ParaGraph, and the integration with a sequen­
tial debugger for variable value inspection. Finally, although in a sense aesthetics
always plays a role when creating a tool with a prominent user interface, specific
objectives for user friendliness where not specified in Viper's design process. The tool
might well benefit from some further work in this area.

8.5 Conclusion

Viper is a visualisation tool that supports a developer in the construction of parallel
programs. It does so by providing graphical feedback at the programming paradigm
level (real-time if so desired), to facilitate the developer in his programming task. In
the context of HEP, we successfully demonstrated this capability with the parallelisa­
tion of CPREAD using the Mona Lisa paradigm. This case study also showed that with
limited code rewriting, a reasonable speed-up of sequential HEP applications at single
event level can be obtained. The general purpose nature, re-usability and scalability of
Viper were demonstrated in the Macrame project where it visualised traffic patterns in
a network of up to I 024 nodes.

Viper. a Visu"li sat ion Tool for Paralkl Program Consuu, tion 12 1

Appendix A

A Mona Lisa program example

To illustrate the Mona Lisa concept, we introduce here an example parallel program.
The bulk of this program is assumed to be written in the (sequential) language Fortran.
The Mona Lisa parallel programming paradigm has been used to implement the logic
required to obtain a parallel program.

Our Mona Lisa program is called Farm, and consists of 5 modules: one master and
four slaves. The program performs a repetitive task: the master repeatedly reads in an
image from a file, processes this image and writes the results to file again. The slaves
assist the master in the image processing. When the master starts on a new image, it
partitions the image data in four parts . Each partial image acts as a job specification for
one slave. The job specifications are distributed over the slaves, who start to process
the (partial image) data. When a slave has finished, it makes the resulting data availa­
ble to the master. When the master has collected and combined the data from all slaves,
it performs the final image processing stage, writes the image to file, and reads the next
image to be processed. This continues until the whole image file has been processed.

Figures 53 and 54 show the Mona Lisa program in a stylistic way; only the code sec­
tions relevant to this example are shown. We assume the master to read from the file
INFILE, and to write to the file OUTFILE. The image data is initially read into the var­
iable IMAGE and consists of 1600 pixels (of type INTEGER). A subrange of the array
(i.e. the partial image data) is assigned to JOB and exposed in a DO loop.

Each slave executes the same infinite loop, so we can suffice with a replicated module
definition. A loop iteration starts with reading the data stored in JOB into the variable
RESULT. This data is then processed, and the variable RESULT is exposed. The slave
then immediately tries to read the next JOB. This primitive call will block until the
master is ready to expose JOB again, with JOB containing data of the next image.

The master collects the results from the slaves through a loop, storing the data in the
variable IMAGE. After some final processing, it then writes the data to file, and pro­
ceeds with the next image until the end of the file is reached. When the master termi­
nates, the slaves (that are still trying to read the variable JOB of the terminated master
module) are automatically terminated by the program manager as well; the program
manager can detect that no further progress of computation is possible.

122 Viper. a Visualisation Tool for Parallel Program Construction

MODULE MASTER
GLOBAL INTEGER JOB(400)

PROGRAM MAIN
INTEGER IMAGE(1600)

<open files, initialise program>
* * * * * * WHILE NOT EOF DO
100 READ(INFILE,END=400) IMAGE

DO 200 I=0,3
JOB= IMAGE (l+I *400: (I+l) *400)
EXPOSEGLB ("JOB")

200 CONTINUE
DO 300 I=0 ,3

SLAVE. INRGLB("RESULT", IMAGE[l+I*400: l+ {I+l) *400])
300 CONTINUE

<do final processing>
WRITE(OUTFILE)IMAGE
GOTO 100

END OF MAIN LOOP
400 <close files, terminate program>

END PROGRAM

END MODULE MASTER

FIGURE 53. Code for the module MASTER.

MODULE SLAVE[4]
GLOBAL INTEGER RESULT[400]

PROGRAM MAIN
100 MASTER . INGLB ("JOB", RESULT)

<process data, stored in RESULT>
EXPOSEGLB ("RESULT")
GOTO 100
END PROGRAM

END MODULE SLAVE

FIGURE 54. Code for the SLAVE modules.

Viper, a Visualisation Tool for Parallel Program Constru~tion 123

Appendix B

Module setup file syntax

The syntax of Viper's Module Setup File can be defined easily using an LL- I grammar
definition:

File:: Module_count_header;
module_count;
Group_count_header;
group_count;
[group_mapping]
Module_def_header;
{Module_def}"
Global_id_def;

(nr of modules in program)

(nr of module groups)
(range of module id's per group)

(definition of group comprising all modules)
{Group_def)'
{Attribute_def_header;Attribute_listj•

G roup_mapping::

Module_range::

Module_def::

Group_def::

Attribute_list::

Attribute_ def::

Group_mapping_header;
{Module_range}'

module_id;
group_size

module_file;
module_name;
module_id

"-"·
group_name;
group_id;

{Attribute_def)'

attribute_name;
attribute_id;
attribute_type

Module_count_header::
"MODULES:"

Group_count_header::
"GROUPS:"

Group_mapping_header::
"RANGE FOR GROUPS:"

Module_def_header::
"DEFINITION TABLE:"

A !tribute_ def _header: :

(module with smallest id in group)
(size of module group)

(file name of module executable)
(name of the module)
(id nr of the module)

(list of attributes of a particular module)

"#ATIRIBUTES for module";
module name;

124 Viper. a Visualisation Tool fur Parallel Program C1)ns1ruc1ion

"#"

Global_id_def: :
"- # all_modules #";
module_id

Grammar terms that start with a lower case letter, not further defined in the above rules, are
either integer or string values (which one should be clear from the context).

The following example file corresponds to the example program Farm, introduced in
Appendix A. The Mona Lisa pre-processor generates this file automatically when it
parses the Mona Lisa source code.

MODULES:
5
GROUPS:
1

RANGE FOR GROUPS:
1 4
DEFINITION TABLE:
file name
farm.MASTER
farm' SLAVEl
farm. SLAVE2
farm.SLAVE3
farm. SLAVE4

module I group name
module MASTER
module SLAVE[l]
module SLAVE[2]
module SLAVE[3]
module SLAVE[4]
all_modules #
replication group SLAVE

#ATTRIBUTES for module MASTER#
attribute name
JOB

id
0

#ATTRIBUTES for module MASTER#
attribute name
RESULT

i d
0

id
0

4

5

type
INTEGER(400)

type

INTEGER I 400]

FIGURE SS. Example of a module setup file.

Viper. a Visualisa1inn Tool for Parallel Program Cons1ruction 125

Summary

This thesis describes the development of Viper. Viper has been developed during a
designer's Ph.D. project carried out at CERN, the European Laboratory for Particle
Physics, in collaboration with the Eindhoven University of Technology. Viper, which
stands for VIsualisation of Parallel program Execution at Run-time, aims at supporting
the parallel program developer in tuning and debugging activities using visualisation
techniques, thereby raising the level of understanding of parallel program behaviour.

The basis of Viper's capabilities lies in the parallel program's event history: data
recorded during the program's execution for debugging and/or performance evaluation
purposes. Viper replays these events, thereby providing the user with a sequence of
parallel program state changes in graphical form. The user can analyse the interaction
pattern of the sequential components of the parallel program, which data is exchanged
when etc.

The performance requirements on the software supporting High Energy Physics (HEP)
experiments is continuously increasing. Parallel computing is used at present, and will
be used increasingly to meet future demands. CERN's research efforts into parallel
computing include the GP-MIMD ESPRIT project, the context in which this work has
been performed.

One of the underlying aims of the GP-MIMD project was to investigate and demon­
strate the potential benefits of parallel computing for existing HEP applications. On the
whole, these are very large applications written in Fortran77. This relatively old lan­
guage does not have the expressive power to allow for a simple transition to parallel
machines. A new paradigm called Mona Lisa was developed within GP-MIMD that
provides (through a language extension) the functionality needed for constructing par­
allel applications. This allows a large part of the Fortran77 software to be maintained in
its present form while migrating sequential applications to parallel machines.

Viper has been successfully applied to the parallelisation of the HEP application
CPREAD. In the case of CPREAD we learned that a strategy of minimal code change
limits the amount of parallelism that can be introduced and gives only a small gain in
execution time. Higher gains would have to come progressively from significant code
rewriting. Future HEP applications provide a more profitable area for parallel comput­
ing where the parallel perspective can be taken into account at an early design stage.

Viper has been developed addressing the following issues: the consistent observation
of a parallel computation under unreliable trace message time stamping; support of
parallel programming paradigms with a high level of abstraction such as Mona Lisa;
and finally, programming paradigm independent design of the application. The latter is
illustrated by the tool's use in a completely different context from Mona Lisa and
CPREAD: the investigation of traffic patterns in very large switching networks.

126 Viper. a Visualisation Tool for Parallel Program Consrruction

Samenvatting

Dit proefschrift beschrijft de ontwikkeling van Viper. Viper is ontwikkeld als proe­
fontwerp, uitgevoerd bij CERN, het Europees Instituut voor Hoge Energie Fysica, in
samenwerking met de Technische Universiteit Eindhoven. Viper, wat staat voor Visual­
isatie van Parallelle Programma Executie gedurende Run-time, beoogt de ondersteun­
ing van programma-ontwikkelaars bij afstel- en debugactiviteiten, door middel van
visualisatie technieken die het inzicht in het parallel le programma gedrag vergroten.

Aan de grondslag van Viper's capaciteiten ligt de event historie van het parallelle pro­
gramma: gegevens, geregistreerd tijdens de programma-uitvoering voor debuggen en/
of prestatie evaluatie doeleinden. Viper herspeelt deze events als een rij van pro­
gramma status veranderingen, en we! in grafische vorm. De gebruiker kan vervolgens
het interactiepatroon van de sequentiele componenten van het parallelle programma
analyseren, welke gegevens zijn uitgewisseld etc.

De prestatie-eisen gesteld aan software ter ondersteuning van hoge energie fysica
experimenten nemen continue toe. Parallelle berekeningen zullen in toenemende mate
worden toegepast om aan de vraag naar rekencapaciteit te voldoen. Het GP-MIMD
ESPRIT projekt is een voorbeeld van CERN's onderzoeksinspanningen op het gebied
van paraJlelle berekeningen, en vonnt de context waarin dit werk is verricht.

Een van de hoofddoelstellingen van het GP-MIMD project was het onderzoeken en
demonstreren van de potentiele voordelen van parallelle berekeningen toegepast op
bestaande fysica applicaties. Deze applicaties zijn merendeels erg groot en geschreven
in Fortran77. Deze relatief oude taal staat een eenvoudige transitie naar parallelle
machines in de weg. Een nieuw paradigma genaamd Mona Lisa en ontwikkeld in GP­
MIMD, verschaft d.m. v. een taal extensie de benodigde functionaliteit voor de con­
structie van een parallel programma. Dit stelt ons in staat een groot dee] van de
Fortran77 software intact te laten in het process van migratie naar parallelle machines.

Viper is succesvol toegepast in de parallellisatie van de fysica applicatie CPREAD. In
deze specifieke studie leerden we dat een strategie van minimale code verandering de
graad van parallellisme die kan worden ge"introduceerd gelimiteerd is, en dat dit slechts
in een kleine verbetering in de executietijd resulteert. Meer voordeel zou behaald kun­
nen worden ten koste van progressief code herschrijven. Toekomstige fysica applica­
ties bieden een aantrekkelijker gebied voor parallelle berekeningen waar het parallelle
perspectief reeds in het ontwerpstadium in beschouwing kan worden genomen.

Viper's ontwikkeling addresseert de volgende wetenschappelijke uitdagingen: een con­
sistente observatie van een parallel le berekening onder onbetrouwbare tijdstempels van
trace messages; ondersteuning van parallel le programmeerparadigmas met een hoog
abstractieniveau zoals Mona Lisa; en tenslotte, programmeer paradigma onafhankelijk
ontwerp van de applicatie. Dit laatste is gei"lllustreerd middels de toepassing van Viper
in een volledig andere context als Mona Lisa en CPREAD: het onderzoek van commu­
nicatiepatronen in grote schakelnetwerken.

Viper, a Visualisation Toul for Parallel Program Cons1ruc1ion 127

Acknowledgements

There are many people who have helped and aided me in the work that has culminated
into this thesis. In particular I would mention Peter van der Stok, Ian Willers, Brian
Martin and Bob Dobinson, for providing me with the opportunity to carry out the
research under their support and guidance.

Peter's personal qualities, and his perseverance as Ph.D. supervisor and thesis reviewer
have been especially appreciated, without which it would have been impossible to
bring this thesis to an end. Thanks go to Ian for ensuring CERN's sponsorship, and for
his helping hand in getting the project started . Appreciation also for Bob's unrelentless
drive to stimulate young talent in his group. Brian will always be remembered for his
marketing skills, his pantomime writing talent, and his wit which kept us all in good
spirits. Thanks go out to Peter Hilbers, for his willingness to support my work under
his professorship.

Amongst the many colleagues with whom I have had the opportunity to work with, I
would like to mention the following people that have contributed to Viper and this the­
sis directly: my close friend Jose Pages, who taught me the essentials of HEP during
long nights and contributed to focusing me on the right things; Michael Ward, whose
expertise in Chorus was essential to me; Dave Francis, for his collaboration on the
CPREAD parallelisation study; Stefan Haas, for the integration of Viper and the Mac­
rame testbed; and last but not least my friend Roger Heeley who provided a sound­
board on many design issues, and supported me in the T9 implementation ofCPREAD.

In addition, the following friends and colleagues have contributed a great deal indi­
rectly: Adrian Mills, who taught me the importance of knowing your system adminis­
trator and introduced me to Right Said Fred ; Erco Argante, who taught me a lesson or
two in skiing, unhindered by his Dutch nationality; and Bernard Sarosi, who was
exemplary of the superb life style in Pays de Gex. My wife Isabelle is mentioned here
for her understanding and persuasion that enabled me to finish my thesis in the odd
hours that private and working life left available.

Finally, this work would not have been possible without its sponsors. It has been jointly
funded by the Ph.D. programme at CERN and the designers Ph.D. programme of the
Stan Ackennans institute for continuing education (SAI) at the Eindhoven University
of Technology, the Netherlands.

128

Curriculum Vitae

Rene Schiefer

20th of December 1969

1981 - 1987

1987 - 1991

199 J - 1993

1993 - 1996

1996 - 1999

1999 - Present

Viper. a Visualisai ion Tool for Parallel Program Construct ion

Born in Rotterdam, the Netherlands

Secondary school (VWO)
Katholieke Scholengemeenschap Etten-Leur

Computing Science
Eindhoven University of Technology

Software technology (post-masters programme)
Eindhoven University of Technology

Ph.D. research
Eindhoven University of Technology,
Executed as Doctoral Student at CERN, Geneva

Business Consultancy
Shell International B.V., Den Haag

Asset Management Tools in Private Banking
Deutsche Bank, Geneva

Viper, a Visualisation Tool for Parallel Pro,gram Construction 129

References

[Arg98] E. Argante, "CoCa: a model for parallelization of high energy physics soft­
ware", Ph.D. thesis, University of Eindhoven, 1998.

[Atl94] ATLAS Collaboration, "The ATLAS Technical proposal", CERN/LHCC/
94-43, LHCC/P2, ISBN: 92-083-067-0, December 1994.

[Bbn95] Bot Beranek and Newman Inc., TotalYiew User's Guide v3.4, March 1995.
See also http://www.bbn.com/tv/.

[Bco94] Bestuurscommissie Ontwerpers- en korte Onderzoekersopleidingen, "Noti­
tie: Op weg naar promotie op proefontwerp", February 1994.

[Boe88] Boehm, IEEE Computer Vol. 21 , no. 5, 1988.

[Boo94] G. Booch, "Object Oriented Analysis and Design with Applications", The
Benjamin/Cummings Publishing Co., ISBN 0-8053-5340-2 1994.

[BH92] M. Brown, J. Hershberger, "Color and Sound in Algorithm Animation" in
IEEE Computer, December 1992.

[CG90] N. Carriero, D. Gelemter, "How to write parallel programs", The MIT
Press, Cambridge, 1990.

[Cho94] Chorus systemes, "Chorus Kernel v3 r5 for T425/T805, Overview", Tech­
nical Report CS/TR-94-75, May 1994.

[Cod94] CodeME S.A.R.L. France, "CMZ User's guide", 1994.

[Com95] IEEE Computer Vol. 28 No. 11, November 1995. Special issue on parallel
and distributed processing tools.

[Cul99] David E. Culler et al., "Parallel Computer Architecture", Morgan
Kaufmann, 1999.

[Dob95] R.W. Dobinson et al., GP-MIMD deliverable D5. l/4: "Demonstration and
final report on parallelisation of High Energy Physics analysis software",
1995.

[Ffr95] FFREAD, Long Writeups 1302, CERN Program Library Office, 1995.

[Gam95] E. Gamma et al ., "Design Patterns", Addison-Wesley, 1995.

[Gea95] Geant package, CERN Program Library Office, CERNLIB, CERN, 1995.

[Gei93/l] A Geist et al., PYM 3 User's Guide and reference manual, Oak Ridge
National Laboratory, May 1993.

[Gei93/2] A Geist et al., "Visualisation and Debugging in a Heterogeneous Environ­
ment", Computer, June 1993.

[Gpm94] GP-MIMD Consortium, GP-MIMD P5404 Technical Annex for Esprit,
1994.

[Hbo95] HBOOK, Long Writeups Y250, CERN Program Library Office, 1995.

130

[HE91]

[Hey89]

[Hil95]

[Hoa86]

[lnm93]

[Koe94]

[KZ94]

[Lin92]

[Map93]

[Mar98]

[Mic92]

[Moo95]

[MS95]

[Mul93]

[OMI95]

[Pea93]

[Pre94]

[RA90]

Viper. a Visualisation Tool for Parallel Program Cons1ruclion

M. Heath, J. Etheridge, "Visualising the Performance of Para.lie] Pro­
grams", IEEE Software, September 1991.

A. J. G. Hey, "Experiments in MIMD parallelism", in Lecture Notes in
Computer Science, Vol. 366, (Springer-Verlag J 989), pp.28.

P.A. J. Hilbers, "Parallel rekenen: een uitdaging voor industrie en wetensc­
hap", inauguration speech at the Technical University of Eindhoven, Sep-
tember J 995.

C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall J 986.

lnmos Ltd, Occam 2 Reference Manual, Prentice Hall ISBN 0-13-6293 l 2-
3, 1993 .

C. Koebel et al., "The High Performance Fortran Handbook, MIT Press,
Cambridge, MA, J 994.

H. Klein, J. Zoll, "Patchy Reference Manual", CERN Program Library
Office, 1994.

Mark Linton et al., "InterViews Reference Manual", 3.1 edition, Stanford
University, 1992.

L. Mapelli, LHC Era Computing, CERN Acadamic Training, May J 993.

B. Martin et al., "Realisation and Performance of IEEE J 355 DS and HS
Link based, High Speed, Low Latency Packet Switching Networks", IEEE
Transactions on Nuclear Science, Vol. 45, No. 4, August 1998.

M. Michelotto, "Delfarm, the delphi offline production event farm", Pro­
ceedings CHEP92, pp.459, 1992.

J. Moonen, "A test bed for ATLAS level 2 trigger communication using a
CJ 04-based architecture", OOTI report, Technical University of Eind-
hoven, August 1995.

J. Maillard, J . Silva, "Track Parallelisation in GEANT Detector Simula­
tions", College de France, Paris, France, J 995.

S. Mullender, "Consistent global states of distributed systems", Distributed
Systems, Addison Wesley, 1993.

OMI/Macrame P8603 ESPRIT,
http://www.pact.srf.ac.uk/macrame/welcome.html.

K. Peach et al, "The Ongoing Investigation of High Performance Parallel
Computing in HEP", CERN/DRDC 93-10, 12 Jan J 993.

R. S. Pressman, "Software Engineering, a practitioner's approach",
McGraw Hill , 1994.

Sarah Rolph, Tammy Alfano, "Learning StateMate by Example", i-Logix
Inc. , J 990.

[Rum91] James Rumbaugh et al., "Object-oriented Modeling and Design",
ISBN 0- I 3-62984 l -9, Prentice Hall 199 J.

[Sar93] Bernard Sarosi, "Using a Network of IBM-RS/6000 Workstations to run
Coarse Grained Parallel Applications" , presented at SHARE Europe, 1993 .

[Scha96] J. P. M. van Schalkwijk, Syllabus 5514, "lnformatie theorie I", Technical
University of Eindhoven, 1996.

Viper, a Visualisa1ion Tool for Parallel Prugr~m Construrtion 131

[Schi93/1] R. Schiefer, "Visualisation of Parallel Program Execution, a case study",
OOTI report, Eindhoven University of Technology, March 1993.

[Schi93/2] R. Schiefer, "Project Proposal for a Designers PhD: Data synchronised par­
allelism in High Energy Physics software development", Eindhoven Uni­
versity of Technology, November 1993.

[Schn93]

[SF95]

[SS95]

[Str92]

[TU94]

[War95]

[Wor92]

[ZC91]

[Zeb95]

A. Schneider, "Programming Parallel Computers", Ph.D. thesis, University
of Geneva, 1993.

R. Schiefer, D. Francis, "Parallelisation of an Existing High Energy Phy­
siscs Software Package", IEEE Transactions on Nuclear Science, 1995.

R. Schiefer, P. D. V. van der Stok, "Viper, a tool for the Visualisation of
Parallel Programs", Proceedings of the EuroMicro Workshop on Parallel
and Distributed Processing, IEEE Computer Society Press ISBN 0-8186-
7031-2, 1995.

B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1992.

G. Tomas, C. Ueberhuber, "Visualization of Scientific Parallel Programs",
Lecture Notes in Computer Science 771 , Springer Verlag 1994.

M. P. Ward, "A Transputer based Scalable Data Acquisition System",
Ph.D. thesis, University of Liverpool, 1995.

P. Worley, "A new PICL trace file format" , Oak Ridge National Labora­
tory, 1992.

H. Zima, B. Chapman, "Supercompilers for Parallel and Vector Comput­
ers", ACM press, 1991.

Zebra, entries QlOO and QlOl, CERN Program Library Office, 1995.

132

Index

A

ac1ivi1y chart 45 , 46, 72, 74
ac1ivi1y decomposi1ion 47
ATLAS experiment 14

B
Boehm 's spiral model 29
broadcas1 94

c
causal dependency 38, 63
CERN 3
Chorus 38, 54, 70, 76. 94
Chorus system I 9
class 55
clock offse1 71
CMZ 88
code decomposition 89. 90
consistent observation 4 I
consistent run 38, 6 I
CPLEAR experiment 79, 80
CPREAD 7, 79, 81
cycle 1ime 86

D
17. 32, 52

21
29
30

deadlock
debugging
Design approach
design princi pies
designers thesis
de1ector

3
l'.l. 16. 81. 82

E
ESPRIT 5
essential model 45
even! 13, 36.38. 47 , 48,49,59

history
internal event
latency
receive event
recons1ruc1ion
rejec1ion
send event
simula1ion
throughpul

event data
event fanning
event observa1ion
event reconstruc1ion
event 1hroughpu1

F
Fortran77

G
GEANT simulation
global clock

6, 22
37
15
36
l'.l
13
36
15
15

81, 91
79, 80

38
82
85

6

15
70
70
38

global sys1em 1ime
global liming
GP-MIMD 5,30,54. 79

Vip~r. a Visualisation Tm11 for Paralkl Program CnnstfUl'tion

H
HBOOK
HEP

computing req's
HPF

image reconstruction
interac1ion pallem
InterYiews

L
LHC
Linda
LL- I grammar
logical clock
logical clock values
long tenn daia

M
memory architecture

81
5. 13

13
6. 12

79
6, 61

53, 54. 59

5
12
43
39
40

81. 91

distribu1ed IO
NUMA II
shared 10

message passing 12. 17
module list 61. 62, 63. 64, 72
mo du le replication 17
Module Setup file42, 43. 44. 124
Module setup file 123
Mona Lisa 6, I 6

module 18
primitive I 8
supervisor 35
variable 18

0
object
objec1 model
observer
OMT

p

55
56
70
54

paradigm 27
object-handler-viewer 47 , 48
See also paraJlel programming

paradigm
paradigm independence 29
ParaGraph 24
parallel

computation 6
computing 5
programming paradigm 6

parallel compu1ing 9
parallel programming paradigm

13, 16
parallelisation 79, 80. 83

84
85

strategy
parallelisation s1rategie
parallelism

algorithmic
data
fanning
geome1ric
task

Patchy
panem recogni1ion
perfonnance analysis
perfonnance tuning
PICL
pipelining

I I, 83
I I, 83

II
II
83

81 , 88
82

23,25
23

24, 75
83
59
27

polymorphism
pos1-mortem visualisation

primitive 74
primitive builder 72, 74
primi1ive call 72

analysis 36
primitive list61. 62. 63. 65, 69, 72
processor utilisaiion 87
profiling 84
program manager I 7. 38, 52, 54
prototype 45 , 75
pro101yping 30
PYM 12

R
real-lime connection 7 5. 76
real-time visualisation23, 27 , 42.

I 18
rejected 82
rejection 84
rejec1ion power 82. 83
run 46. 62, 81
run cons1ruc1ion 68, 69, 71 , 72

s
SAi 3
scalability 96
scheduling 48
sequence lis1 6 I. 62. 63. 64, 72
specification 44

Viper 30
State

module
parallel program
processor

state diagram
StateMate
supervisor

T
time stamp
1ime stamping
trace

31
32
31

45,49, 74
45,58

37

70,71
37

file 22. 48. 75. 77
message 22, 40. 59. 63
message example 76
message fonna1 7 5
message ordering 38

!race message 35, 52
trace message s1ructure 35.42.

46, 48 , 51.52,61, 75,
98

1rack fiuing
1ram

81 , 82. 91. 96

Transputer
Transpu1er Machine
trigger

event
muhi-level

u
UML
Unified Me1hod

v
vec1or clock
vertex
vertex fining
view

animation
program stale
space time
variable

visualisation

46
19
54
16
13
14

54
54

41
81
82
32
32
34
33
34
21

Viper. a Visualisation Tool for Parallel Program Construction

visualisation tool 23

w
wall clock time 70,95
waterfall model 30

z
Zebra banks 16, 90. 91
Zebra reformatting 91. 95

Stellingen behorende bij het proefontwerp

Viper, a Visualisation Tool for Parallel
Program Construction

door René Schiefer

[1] With increased knowledge about event patterns, the conditions under which Lamport’s
algorithm can be used to construct a consistent run with logical clocks can be weakened
and a stronger algorithm can be used.

References:
S. Mullender, “Consistent global states of distributed systems”,

Distributed systems, Addison Wesley, 1993.
R. Schiefer, “Viper, a visualisation tool for parallel program construction”,

Chapter 5, 1999.

[2] Visualisation tools are essential for dealing with parallel program tuning and debugging
given the sheer complexity of the task at hand.

[3] The way towards better visualisation tools for parallel program construction lies not only
in further EC funded research, but also in successful commercial exploitation of these
tools. An open and flexible interface architecture is needed, permitting inter-operability
between the tool and a wide range of parallel computing platforms.

[4] The use of explicit parallelism in its current form, where it is regarded as an additional
level of program sophistication, complexity and thus source of error, is unlikely to be the
way forward in developing high quality software and is more a symptom of immaturity.

[5] With complex IT systems, a good design rarely comes about without serendipity. Para-
doxically, a good design process would more likely demonstrate a lack of serendipity.

[6] The way organisations conduct core business, shapes the way they deploy IT. Where
Shell’s engineering culture leads to an appreciation for IT architectures, its long-term
planning and risk mitigation in the oil business is sometimes reflected in a careful
approach to follow the swift pace of change in IT.

[7] “Was mit der Hand nicht geht, geht mit EDV1 auch nicht, nur schneller” (a personal
quote of my dear friend Manfred Kneip), is one of the axioms of the application of IT in
business. Yet, when compiling user requirements it appears to be a non-triviality to most
users.

1 EDV : Elektronische Daten Verarbeitung

[8] The debate on the topic of the UK joining the EMU should be fought less on political
ground and more based on sound economical observations such as the fact that there is a
phase difference of several years between the macro-economic cycle of the UK and Con-
tinental Europe.

[9] The instability that is introduced by the globalisation of financial markets, as witnessed
by the collapse of Asian and Russian economies, demonstrates the weakness of mankind
in deploying its intelligence and advances in science to improve the stability of ordinary
people’s existence.

[10] Corporate change programmes, initiated to improve shareholder value, require a certain
amount of consensus to be present for change to be implemented effectively. Paradoxi-
cally, a state of continuing profits can stand in the way of obtaining this consensus, even
if these profits are below the norm.

[11] It is not an uncommon perception that, to be successful as an individual in a multi-
national environment such as CERN or Shell, thespeakingof different languages is a
major advantage. However, a lack oflisteningskills or understanding of foreign culture
is a greater barrier for effective communication.

