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Random electric fields and impurity diffusion in é layers
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COBRA Inter-University, Eindhoven University of Technology, P. O. Box 513, NL-5600MB Eindhoven, The Netherlands
(Received 8 July 1999

Impurity diffusion in thed layer during the process of its growth has been considered. Experiments show
that the spreading of the impurity profile has a complex dependence on the in-plane impurity concentration. We
carried out the numerical simulation of the self-consistent diffusion problem for the impurities moving in their
own random electric field and have shown that at some critical impurity concentratibfayer the impurity
distribution function perpendicular to the layer acquires a non-Gaussian character.

[. INTRODUCTION at large distances from the ions. However, the effects of elec-
tric field on the ion diffusion, which are of our primary in-
The present state of molecular beam epitaxy allows one tterest, are noticeable only in the closest vicinity of the ions,
fabricate semiconductor structures with an almost arbitranat distances much less than the screening length at the
profile of dopant concentration along the growth axis. One ofyrowth temperature, which justifies our assumption. Never-
the most important achievements in this respect is the sdheless, it would be incorrect to say that we completely ig-
called § layer, i.e., structures with a planar distribution of nored the charge of free electrons. In fact, this charge is
impurity ions. In ideals layers all impurities are concen- considered as a uniform background providing the total neu-
trated in one single monolayer but the direct measurementsality of the system.
showt? that in real structures ions can be distributed over The spatial distribution of the electric field created by an
several monolayers due to diffusion during the structurearbitrary system of ions can only be found numerically. For
growth. This spreading of the impurity profile may changethis purpose we use the procedure of Monte Carlo simula-
noticeably the energy spectrum and other electronic propetion. A similar procedure is also used for the calculation of
ties of & layers®# The in-plane impurity distribution is also diffusion and for this reason we discuss it in more detail.
of a considerable importance. Randomly placed impurity We take a planak XL lattice in thexy plane with a unit
ions create large fluctuations of local electric fields whereasattice constant. For a given density= N/L%2<1 we ran-
the amplitude decreases in the presence of correlation in thdomly distribute the point chargesover the lattice sites. For
ion positions. These factors influence the carrier moBiiity the drift out of the plain we are interested in the electric field
and the optical spectra of doped sampi@hus the calcula- componeng, in the sites of a similar lattice shifted tzg in
tion of the impurity distribution ind layers represent an im- thezdirection. To exclude effects caused by the finite length
portant physical problem. of the lattice, we apply periodic boundary conditions assum-
To solve this problem, we must consider the diffusion ofing the pattern of ions to be repeated with the petiods a
impurities during the process of layer growth. However, atresult we find
the growth temperaturgypically having the order of 700 K
impurities are ionized and electric forces caused by the e
above-mentioned fluctuations of local electric fields cang -~ | _signz)+> >, e~ kim?+nzgginkax;gimkay, |
strongly modify the diffusion processes and, hence, the re- L? m n
sulting impurity distribution. The self-consistent diffusion (D)
problem for impurities moving in their own random electric
fields will be considered in our paper. We will show that for whereAx; andAy; are the coordinates of ions related to the
a large enough impurity concentration, their distributionpoint whereE, is measuredk=2/L.
along the growth axis differs noticeably from the Gaussian For numerical purposes it is convenient to tabulateBhe
distribution characterizing ordinary diffusion not influenced values given by Eq.1), for different values of,. Due to the
by electric fields. symmetry of the problem, it is enough to consider one eighth
on the square containing onhyt ¢1)(L+ 3)/8 rather than
L? points(see in Fig. 1
A typical result of the electric field distribution obtained
In our approach we considered bare ion charges neglecby the numerical simulation is shown in Fig. 2 by the solid
ing the effects of electron screening. This can be inadequatee.

II. ELECTRIC FIELD CALCULATION
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At small distancesnz§<1, Eq.(2) can be written as

me’n

W(E,) = % f :cos(t— V3étPRyexp — ét2Rydt,  (4)
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FIG. 1. The lattice site used in the field calculation. For §<1, that is for strong electric fields,
- . . . . n(e20)2/3
It is interesting to compare this data with the analytical W(E)=——F— (5)
results which can be obtained for the noncorrelated distribu- E;

tion of iqns .in a si.mila_r way as the Holtsmark distribution of Thig asymptotic formula has a simple physical explanation.
the gravitational field in a random system of sta@alcula-  For smallz,, the high-field tail of the distribution function is

tions given in Appendix A result in the following distribution .. saq by an ion nearest to the point (&), For nz(2)<1

function forE, : the probability for another ion to have similars negligible.
In other words, the high-field talW(E,)dE, is determined
1 (= ] by the probability that a single ion is found in the interval
W(E,) = EJ%dP exd —ipE,~nC(p)], (2 betweenrg and rg+dr where E,=ez(r2+2z2) %2 This
probability is proportional tanrgdr which results in Eq(5).
The distribution function at small distances, E4), has

some unusual properties. The average electric field
= [dE,E,W(E,)=2men—a common result for homoge-
_ neously charged layer, whereas the maximurWgE,) lies
1—exp< 'PXT/z”' at considerably lower fields. It is connected with a strong
asymmetry ofW(E,) and its slow decrease at lar§g [see
. L L Eqg. (5)]. Such character of the distribution function reflects
This function is shown by the dashed line in Fig. 2. A goody,e hresence of strong fluctuations of electric field in the
correlation with the numerical results is seen, with an eXCePgiract vicinity of the impurity layer. As will be shown in the

tion at th? very s'maIEZ Where.numerlcal simulation fails next section, these fluctuations may influence noticeably the
due to a limited sizé. of the lattice. diffusion process of layer

Far from the impurity layer, fonz§>1, the distribution
function Eq.(2) is well described by the Gaussian distribu- I1l. FIELD-INDUCED IMPURITY DIFFUSION
tion with the mean value 2en:

with

oo

C(p)=77f2dx

20

A. General description

- T T T L a— The exact profile of & layer is determined by the ion
N motion during epitaxy at growth temperature. There are
b many possible mechanisms of impurity motion in the crystal
] lattice which complicates dramatically the formulation of a
] guantitative model. In our work, we do not try to reach an
7 exact quantitative correspondence between theory and ex-
periment. We only want to demonstrate qualitatively how the
unusual distribution of the electric field in real systems can
reveal itself in impurity diffusion. That is why we restrict
ourselves to a simple model that qualitatively describes the
4 main properties of the drift/diffusion process.

We shall assume impurities to move between sites on a
spatial lattice which can be both the substitional or interstitial

L L . sites of a real lattice. The probability of hopping to the near-
0000 0005 0010 0015 0020 0025 est empty site in the time intervdk in the absence of exter-
E, nal fields will be written as

W(E,)

W(E,)

FIG. 2. Electric field distribution near thé layer at different off
distances from it. The upper plot is drawn foe 20 lattice con- W=A~ex;{ - W)dt, (6)
stants, the lower one fa=0.1. Solid lines show the results of the
numerical simulation for 100 particles in a square with xa@0  whereU ¢ is the effective potential including both the hop-
lattice sites; dashed lines show the analytical rediitss.(3) and ~ ping barrier between the initial and final site and a possible
@] reconfiguration of neighboring atoms due to the transition.
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0.025 — 77— ence in the diffusion processes with and without electric field
at the same temperature and will write the hopping probabil-

0.020 | i ity between sites andj as

0.015 W—-=ex;{ﬂ)dr (10

s ] ! 2kT/) 7

§ !

5 ooto} J where the transition to normal diffusion corresponds to
Ag;j=0. As a result, the hopping probability between dif-
ferent neighboring sites depends Arp;; and the effective

0.005 1 7 equation for a large number of hopping events may differ
drastically from the diffusion equation. Now the probabilities

0.000 . P T W;; become dependent on the coordinates of all other par-
-60 -40 -20 0 20 40 80  ticles which prevents us from obtaining a simple analytical

/ expression. For this reason, we can only proceed by numeri-

cal simulation.
FIG. 3. Plot of the function(8) at 2Wt=300 (crosses and the

respective Gaussian distributigsolid line). . ) ) o
B. Numerical simulation of diffusion
To discuss the specific properties of impurity diffusion, The simulation procedure was organized in the following
let us consider in more detail the resulting distribution ofway. As in Sec. Il, we take & XL lattice and placeN
impurities near thes layer without electric field. According =nL? point charges on the lattice. Then we take an occupied
to Eq. (6), diffusion is a Poisson process. The probability toith site and with the help of formula Eq®1) or (B5) given
find a particle at the positiohat the timet after this particle in Appendix B we calculate the potential differencis;;

started from the origin is between the giventh site and all empty neighboring sites,
caused by all other charges. For this we can use the previ-

1 (2wp" ously calculated array as it has been mentioned in Sec. II.

P = o0 En: n! The electric potential, EqB1) converges well outside the

plane z=0. In the plane itself one should perform the
m Evald’'s transformation of the corresponding Fourier series
X exp(—2WY fﬁﬂ cos'e-codle)de.  (7) given in more detail in Appendix B. This is not required for
the calculation off, since atz=0E,=0.
The first factor in Eq(7) is the probability to make exactly Next we calculated the probability of hopping to the cor-
steps along any direction afaxis whereas the second factor responding empty site per unit time. The time interkal is
is the well-known probability to reach the sitaftern steps  chosen such that the probability of a double hop in this time
when there is an equal probability for moving right or left. interval can be neglected. In accordance with the calculated
This probabilityP(I,t) multiplied by the initial particle con- probabilities, particles either moved or remained in place,
centration, gives us the impurity distribution after the time after which the procedure was repeated.

Performing the summation in E¢7) before integration, we Some results of our numerical simulations are presented
obtain in Fig. 4. The upper row shows the particle distribution at
different times. The lower row in Fig. 4 shows the distribu-
P(l,t)=exp —2W1t) 1 (2W), (8)  tion at the same times where, instead of the self-consistent

electric field, a homogeneous field ¢f=2mn|z| has been
wherel(x) is the modified Bessel function. As can be seenysed in the calculations. In this case one can see that the
from Fig. 3 for large values divt, P(l,t) as a function of  distribution for =5 is well approximated by a Gaussian
representing the coordinate of a particle, coincides with a distribution. Thus the non-Gaussian distribution observed at
Gaussian distribution. Thus, wheée1/W our model in the =5 in the upper row is not due to the high electric field
absence of electric field describes normal diffusion. near thes layer but due to fluctuations in the field strength.
The influence of Coulomb interaction between thewnhen the Coulomb interaction between the particles is com-
charged impurities on the diffusion process can be taken intgletely neglected normal Gaussian distributions are obtained
account by replacing Eq6) with similar to those in the lower row in Fig. 4. The time needed
to obtain distributions having the same width as in the lower
Ueri—Ag;j/2 part of Fig. 4 is however much longer as in the case that the
kT dt. ©) electric field is included.
Calculations show that up te=0.04 (which corresponds
Here A ¢;; is the difference in potential enerdgetermined to the real impurity concentrations 1.6x 10" cm™?) the
by the electrostatic potentjabetween sites andj. Equation  particle distribution after large enough time is well approxi-
(9) can be modified by introducing the effective tindee  mated by a Gaussian distribution. This means that up to these
= A exp(—Ugs/kT)dt which depends on temperature. This is densities the process has a purely diffusional character and in
equivalent of introducing the effective dimensionless timethe limit of large times obeys the standard diffusion equa-
2Wt in Eq. (8). We concentrate our attention on the differ- tion.

Wij :A'eX[< —
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FIG. 4. Histograms of the impurity distribution near théayer
(500 particles in a lattice of 1200100 unit cell. In the first column
7=1, in the second=3, andr=5 in the third one. The upper row
shows the diffusion in the self-consistent electric field, whereas th
lower one shows the diffusion in a constant electric fieldEgf
=2n containing no fluctuations. The solid lines show the Gauss
ian fits to the histograms.

At n>0.04 the distribution of particles at large enough
time has an essentially non-Gaussian character. The distrib

tion acquires well-developed shoulders. The explanation oft

this phenomenon lies in the fact that at snralitrong field
fluctuations are created only by tight clusters of a small num
ber of particles. Such a cluster is rapidly expanded inxthe
plane due to diffusion, and particles do not have enough tim
for moving far along thez axis until the fluctuation is dis-
solved.

KOENRAAD, AND WOLTER

FIG. 5. Standard deviation as a function ofor the different
particle densities: 1 —ng=0.05, 2 —ng=0.01, and 3 —ng
=0.001.

where the impurity diffusion in BeS-doped layers in GaAs
was analyzed with cross-sectional SFMBy identifying
single impurity atoms, this method allows to observe directly
the S-layer broadening and to draw histograms similar to
those of Fig. 4. The drawback of the method is a lack in
statistics. An X-STM histogram consists of no more than
60-70 doping atoms which is insufficient for direct compari-
son of the histograms obtained by STM and by numerical
simulation.

The data of Ref. 2 show that for Be concentrations up to
10" cm™? no noticeable layer broadening is obserytis
has been recently confirmed by experiments on Si-daped
layerg. At higher Be concentrations, a shasdayer broad-
ening occurgcorresponding data for Si-doped layers are not
available yex The layer thickness was found to increase 10
fimes when the concentration increase from'31@ 3
X 10" cm 2. The samples investigated in Ref. 2 contained
a set of 5 layers kept at the growth temperature for a differ-
ent time which allowed us to investigate the time dependen-
cies of the layer broadening. It was found that for the con-
gentrations less than ¥0cm 2 this dependence is best
pproximated by the standard law- /7.

To compare the results of experiment and numerical
simulation, we have analyzed the latter in the same way as
the results of STM measurements. For a given concentration,

e 7 dependence of the standard deviatiowas plotted for
the corresponding histograms. The dependence obtained was
fitted to the curve

The process changes its character when the probability to

form a large enough cluster becomes noticeable. In this case

the runaway probability in thety plane decreases and the
particles begin to move iadirection as well. Until the mo-

b

og=arT . (11)

For the normal diffusionp=1/2 anda corresponds to the

ment that strong field fluctuations are destroyed by diffusiondiffusion coefficient. Some of these(7) dependencies
the particles escaping the plane will form shoulders in thgsquaresare shown in Fig. 5 together with the fitting curves

density profile, which then will remain during diffusion in
the mean electric field.

IV. COMPARISON WITH EXPERIMENT

of Eqg. (11) (solid lines.

The concentration dependence of fitting paramedeaad
b is shown in Fig. 6. As mentioned above, the non-Gaussian
histogram broadening starts at the concentration close to 0.04
in our units which for GaAs corresponds to the ion density of

It is interesting to compare the theoretical predictionsorder 1.3<10* cm 2. This value is in an excellent agree-

given above with the results of experimental measurement
From a number of related experiments, we have chosen tho

snent with the STM data. Figure 6 demonstrates that-
$eeases with concentration from almost 0.5 up to the value
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20 p———— T 7T Let us consider a circle with the radil& containingN
[ ] ions and find the probabilityVy(E,)dE, for the z compo-
- 1 nent of electric field acting at an ion in the origin, to lie in the
sk ] interval betweerk, andE,+dE,. In the point (0,0,), the
z component of electric field caused by an ion placed at
(x,y,0), is equal to E,=ez/(r’+z3) % with r
=x?+yZ2. Using this expression and applying Markoff's
or - ] method described in Ref. 9 in more detail, we have
X X x x
o ] ' W(E)= o [ dpexp—ipE A(p),  (AD)
;2<>§( ] N z:_f pEXPL—IpEL)ANIP),
05 . - 2m) o
]
where
0'?)oo . 02)1 . 0:32 ' 02)3 . 02)4 - 0'05 . o;)e . 0:37 008 ﬁ 1 (R 2 . €5
n An(pr) i1 7R? |ri|:od fiex Ip(rinrz%)3’2 '
S (A2)

FIG. 6. The dependence of the parameter&quarep and b

(crosseg of the fitting curve(11) on the impurities concentration. If we subsequently leR andN go to infinity while keep-

ing the ion densityn constant, lirg_...(3N/47R3) =n, then

close to 0.8. This can be explained by the dominance OP‘N(”) tends to

diffusion at low and of drift at higher concentrations. .

_ The concentration dependenceads much more interest-  A(,)=ex —27T|'IJ rdri 1—ex ipe—zo
ing. This parameter varies slowly at the concentrations less 0 (r’+ ZS)B/Z
than 0.04 and then demonstrates a steep growth. It is just the (A3)
same concentration where non-Gaussian impurity diStribUWhiCh eventually gives the final formula E¢g)
tion becomes noticeable. Thus the change in the diffusion/ The distrib t'y gf tion for the in-pl .I ric fi
drift behavior at the critical concentration is revealed experi-Can b?a dIZrir\I/el:jl?nnausrilr%:I(;r; v(\;; ) € in-plane electric fief
mentally as a sharp increase in the observed “diffusion Y:
coefficient.” The layer thickness, as a function of concentra- 1 (=

tion at fixed time and temperature, grows sharply in this W(E\\):z_j dp pJo(pE))exp(— menp)
region(see Fig. 5. The results are in a good agreement with mJo

experimertt both qualitatively and quantitatively.

en 1 (Ad)
T 5p3 2, 132"
V. CONCLUSION 2E] [(mnelE))“+1]
To summarize, we have shown that at rather high impu- APPENDIX B

rity concentration in & layer, the impurity distribution func-

tion perpendicular to the layer acquires a non-Gaussian char- To use periodic boundary conditions, one should calculate
acter because the process can no longer be described byt potential in a pointx,y,z) created by a periodic two-
linear diffusion equation. The effect has a critical characterdimensional rectangulaffor simplicity, squarey lattice of
occurring above the critical dimensionless concentratiorpoint charges. For points outside the lattice plare0, the
~0.04 and being almost invisible at lower concentrationsproblem is easily solved by summation of the Fourier series
The above-mentioned critical behavior manifests itself ex-

perimentally as a step in the observed diffusion coefficient 2

and, hence, in thé layer thickness at the critical concentra- P(X,y,2)= F s

tion.
. exp(—kym?+n?|z|+imx+iny)
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rity layer and wherz=1/\/n it has a constant value of&n. To evaluate the formal sum
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” 1
s= >

n=-e m;” Jix=nL)Z+(y—mL)Z+ 2%’

we use the relation fiz]=(2/\/7)/5exp(—2Zp?)dp, which
gives us

(B2)

xexp{—[(x—nL)2+(y—mL)2+ z2]1p%dp.

ey
(B3)

The integrand in Eq(B3) is a periodic function in they

plane which could be expanded in a Fourier series by anal-

ogy witht°

=23

k2(m2+n2
— r{—(—z)—zzpzﬁknx
L2 mn Jo p? 4p

2 o
+ikmy|dp+—= > | exp{—[(x—nL)?

\/;m,n G

+(y—mL)2+2%]p?}dp. (B4)
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Herek=2=/L and the constan® are chosen empirically to
provide fast convergence of the series. Equati®d) at G
—oo transforms into Eq(B1). All integrals in Eq.(B4) are
expressed in terms of the complementary error function
erfc(x) = (1/\7) [ exp(—t?)dt and, eventually,

T o w  expliknx+ikmy)

PR I My e
kym?+n?
X | exp(kym?+ nzz)erfc< TR + ZG)

/ 2
+exp— ky/mZ+ nzz)erfc(k LS G)

erfo(\/Z2+ (x+nL)?+ (y+mL)%-G)
VZ2+ (x+nL)Z+(y+mL?Z

(B5)
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