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Random electric fields and impurity diffusion in d layers
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~Received 8 July 1999!

Impurity diffusion in thed layer during the process of its growth has been considered. Experiments show
that the spreading of the impurity profile has a complex dependence on the in-plane impurity concentration. We
carried out the numerical simulation of the self-consistent diffusion problem for the impurities moving in their
own random electric field and have shown that at some critical impurity concentration ind layer the impurity
distribution function perpendicular to the layer acquires a non-Gaussian character.
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I. INTRODUCTION

The present state of molecular beam epitaxy allows on
fabricate semiconductor structures with an almost arbitr
profile of dopant concentration along the growth axis. One
the most important achievements in this respect is the
called d layer, i.e., structures with a planar distribution
impurity ions. In ideald layers all impurities are concen
trated in one single monolayer but the direct measurem
show1,2 that in real structures ions can be distributed o
several monolayers due to diffusion during the struct
growth. This spreading of the impurity profile may chan
noticeably the energy spectrum and other electronic pro
ties of d layers,3,4 The in-plane impurity distribution is also
of a considerable importance. Randomly placed impu
ions create large fluctuations of local electric fields wher
the amplitude decreases in the presence of correlation in
ion positions. These factors influence the carrier mobility5–7

and the optical spectra of doped samples.8 Thus the calcula-
tion of the impurity distribution ind layers represent an im
portant physical problem.

To solve this problem, we must consider the diffusion
impurities during the process of layer growth. However,
the growth temperature~typically having the order of 700 K!
impurities are ionized and electric forces caused by
above-mentioned fluctuations of local electric fields c
strongly modify the diffusion processes and, hence, the
sulting impurity distribution. The self-consistent diffusio
problem for impurities moving in their own random electr
fields will be considered in our paper. We will show that f
a large enough impurity concentration, their distributi
along the growth axis differs noticeably from the Gauss
distribution characterizing ordinary diffusion not influenc
by electric fields.

II. ELECTRIC FIELD CALCULATION

In our approach we considered bare ion charges neg
ing the effects of electron screening. This can be inadeq
PRB 610163-1829/2000/61~4!/3033~6!/$15.00
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at large distances from the ions. However, the effects of e
tric field on the ion diffusion, which are of our primary in
terest, are noticeable only in the closest vicinity of the io
at distances much less than the screening length at
growth temperature, which justifies our assumption. Nev
theless, it would be incorrect to say that we completely
nored the charge of free electrons. In fact, this charge
considered as a uniform background providing the total n
trality of the system.

The spatial distribution of the electric field created by
arbitrary system of ions can only be found numerically. F
this purpose we use the procedure of Monte Carlo simu
tion. A similar procedure is also used for the calculation
diffusion and for this reason we discuss it in more detail.

We take a planarL3L lattice in thexy plane with a unit
lattice constant. For a given densityn5N/L2!1 we ran-
domly distribute the point chargese over the lattice sites. Fo
the drift out of the plain we are interested in the electric fie
componentEz in the sites of a similar lattice shifted byz0 in
thez direction. To exclude effects caused by the finite leng
of the lattice, we apply periodic boundary conditions assu
ing the pattern of ions to be repeated with the periodL. As a
result we find

Ez5
2pe

L2 S 2sign~z!1(
m

(
n

e2kAm21n2z0einkDxieimkDyi D ,

~1!

whereDxi andDyi are the coordinates of ions related to t
point whereEz is measured,k52p/L.

For numerical purposes it is convenient to tabulate theEz
values given by Eq.~1!, for different values ofz0. Due to the
symmetry of the problem, it is enough to consider one eig
on the square containing only (L11)(L13)/8 rather than
L2 points ~see in Fig. 1!.

A typical result of the electric field distribution obtaine
by the numerical simulation is shown in Fig. 2 by the so
line.
3033 ©2000 The American Physical Society
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It is interesting to compare this data with the analytic
results which can be obtained for the noncorrelated distr
tion of ions in a similar way as the Holtsmark distribution
the gravitational field in a random system of stars.9 Calcula-
tions given in Appendix A result in the following distributio
function for Ez :

W~Ez!5
1

2pE2`

`

dr exp@2 irEz2nC~r!#, ~2!

with

C~r!5pE
z0
2

`

dxF12expS ir
ez0

x3/2D G .

This function is shown by the dashed line in Fig. 2. A go
correlation with the numerical results is seen, with an exc
tion at the very smallEz where numerical simulation fails
due to a limited sizeL of the lattice.

Far from the impurity layer, fornz0
2@1, the distribution

function Eq.~2! is well described by the Gaussian distrib
tion with the mean value 2pen:

FIG. 1. The lattice site used in the field calculation.

FIG. 2. Electric field distribution near thed layer at different
distances from it. The upper plot is drawn forz520 lattice con-
stants, the lower one forz50.1. Solid lines show the results of th
numerical simulation for 100 particles in a square with 1003100
lattice sites; dashed lines show the analytical results@Eqs. ~3! and
~4!#.
l
-

-

W~Ez!5
z0

peAn
expF2

z0
2~Ez22pen!2

pe2n
G . ~3!

At small distances,nz0
2!1, Eq. ~2! can be written as

W~Ez!5
1

pEz
E

0

`

cos~ t2A3jt2/3!exp~2jt2/3!dt, ~4!

j5
4p

3
nS e

Ezz0
2D 2/3

.

For j!1, that is for strong electric fields,

W~Ez!>
n~ez0!2/3

Ez
5/3

. ~5!

This asymptotic formula has a simple physical explanati
For smallz0, the high-field tail of the distribution function is
caused by an ion nearest to the point (0,0,z0). For nz0

2!1
the probability for another ion to have similarr is negligible.
In other words, the high-field tailW(Ez)dEz is determined
by the probability that a single ion is found in the interv
betweenr E and r E1dr where Ez5ez0(r E

21z0
2)23/2. This

probability is proportional tonrEdr which results in Eq.~5!.
The distribution function at small distances, Eq.~4!, has

some unusual properties. The average electric fieldĒz
5*dEzEzW(Ez)52pen—a common result for homoge
neously charged layer, whereas the maximum ofW(Ez) lies
at considerably lower fields. It is connected with a stro
asymmetry ofW(Ez) and its slow decrease at largeEz @see
Eq. ~5!#. Such character of the distribution function reflec
the presence of strong fluctuations of electric field in t
direct vicinity of the impurity layer. As will be shown in the
next section, these fluctuations may influence noticeably
diffusion process ofd layer.

III. FIELD-INDUCED IMPURITY DIFFUSION

A. General description

The exact profile of ad layer is determined by the ion
motion during epitaxy at growth temperature. There a
many possible mechanisms of impurity motion in the crys
lattice which complicates dramatically the formulation of
quantitative model. In our work, we do not try to reach
exact quantitative correspondence between theory and
periment. We only want to demonstrate qualitatively how t
unusual distribution of the electric field in real systems c
reveal itself in impurity diffusion. That is why we restric
ourselves to a simple model that qualitatively describes
main properties of the drift/diffusion process.

We shall assume impurities to move between sites o
spatial lattice which can be both the substitional or intersti
sites of a real lattice. The probability of hopping to the ne
est empty site in the time intervaldt in the absence of exter
nal fields will be written as

W5A•expS 2
Ue f f

kT Ddt, ~6!

whereUe f f is the effective potential including both the hop
ping barrier between the initial and final site and a possi
reconfiguration of neighboring atoms due to the transition
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To discuss the specific properties of impurity diffusio
let us consider in more detail the resulting distribution
impurities near thed layer without electric field. According
to Eq. ~6!, diffusion is a Poisson process. The probability
find a particle at the positionl at the timet after this particle
started from the origin is

P~ l ,t !5
1

2p (
n

~2Wt!n

n!

3exp~22Wt!E
2p

p

cosnw•cos~ lw!dw. ~7!

The first factor in Eq.~7! is the probability to make exactlyn
steps along any direction ofz axis whereas the second fact
is the well-known probability to reach the sitel aftern steps
when there is an equal probability for moving right or le
This probabilityP( l ,t) multiplied by the initial particle con-
centration, gives us the impurity distribution after the timet.
Performing the summation in Eq.~7! before integration, we
obtain

P~ l ,t !5exp~22Wt!I l~2Wt!, ~8!

whereI l(x) is the modified Bessel function. As can be se
from Fig. 3 for large values ofWt, P( l ,t) as a function ofl
representing thez coordinate of a particle, coincides with
Gaussian distribution. Thus, whent@1/W our model in the
absence of electric field describes normal diffusion.

The influence of Coulomb interaction between t
charged impurities on the diffusion process can be taken
account by replacing Eq.~6! with

Wi j 5A•expS 2
Ue f f2Dw i j /2

kT Ddt. ~9!

HereDw i j is the difference in potential energy~determined
by the electrostatic potential! between sitesi and j. Equation
~9! can be modified by introducing the effective timedt
5A exp(2Ueff /kT)dt which depends on temperature. This
equivalent of introducing the effective dimensionless tim
2Wt in Eq. ~8!. We concentrate our attention on the diffe

FIG. 3. Plot of the function~8! at 2Wt5300 ~crosses! and the
respective Gaussian distribution~solid line!.
,
f

n

to

ence in the diffusion processes with and without electric fi
at the same temperature and will write the hopping proba
ity between sitesi and j as

Wi j 5expS Dw i j

2kT Ddt, ~10!

where the transition to normal diffusion corresponds
Dw i j 50. As a result, the hopping probability between d
ferent neighboring sites depends onDw i j and the effective
equation for a large number of hopping events may dif
drastically from the diffusion equation. Now the probabilitie
Wi j become dependent on the coordinates of all other p
ticles which prevents us from obtaining a simple analyti
expression. For this reason, we can only proceed by num
cal simulation.

B. Numerical simulation of diffusion

The simulation procedure was organized in the followi
way. As in Sec. II, we take aL3L lattice and placeN
5nL2 point charges on the lattice. Then we take an occup
i th site and with the help of formula Eqs.~B1! or ~B5! given
in Appendix B we calculate the potential differencesDw i j
between the giveni th site and all empty neighboring site
caused by all other charges. For this we can use the pr
ously calculated array as it has been mentioned in Sec.

The electric potential, Eq.~B1! converges well outside the
plane z50. In the plane itself one should perform th
Evald’s transformation of the corresponding Fourier ser
given in more detail in Appendix B. This is not required fo
the calculation ofEz since atz50Ez50.

Next we calculated the probability of hopping to the co
responding empty site per unit time. The time intervalDt is
chosen such that the probability of a double hop in this ti
interval can be neglected. In accordance with the calcula
probabilities, particles either moved or remained in pla
after which the procedure was repeated.

Some results of our numerical simulations are presen
in Fig. 4. The upper row shows the particle distribution
different times. The lower row in Fig. 4 shows the distrib
tion at the same timest where, instead of the self-consiste
electric field, a homogeneous field ofw52pnuzu has been
used in the calculations. In this case one can see that
distribution for t55 is well approximated by a Gaussia
distribution. Thus the non-Gaussian distribution observed
t55 in the upper row is not due to the high electric fie
near thed layer but due to fluctuations in the field strengt
When the Coulomb interaction between the particles is co
pletely neglected normal Gaussian distributions are obtai
similar to those in the lower row in Fig. 4. The time need
to obtain distributions having the same width as in the low
part of Fig. 4 is however much longer as in the case that
electric field is included.

Calculations show that up ton.0.04 ~which corresponds
to the real impurity concentrations.1.631013 cm22) the
particle distribution after large enough time is well appro
mated by a Gaussian distribution. This means that up to th
densities the process has a purely diffusional character an
the limit of large times obeys the standard diffusion equ
tion.
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At n.0.04 the distribution of particles at large enou
time has an essentially non-Gaussian character. The dist
tion acquires well-developed shoulders. The explanation
this phenomenon lies in the fact that at smalln strong field
fluctuations are created only by tight clusters of a small nu
ber of particles. Such a cluster is rapidly expanded in thexy
plane due to diffusion, and particles do not have enough t
for moving far along thez axis until the fluctuation is dis-
solved.

The process changes its character when the probabilit
form a large enough cluster becomes noticeable. In this c
the runaway probability in thexy plane decreases and th
particles begin to move inz direction as well. Until the mo-
ment that strong field fluctuations are destroyed by diffusi
the particles escaping the plane will form shoulders in
density profile, which then will remain during diffusion i
the mean electric field.

IV. COMPARISON WITH EXPERIMENT

It is interesting to compare the theoretical predictio
given above with the results of experimental measureme
From a number of related experiments, we have chosen t

FIG. 4. Histograms of the impurity distribution near thed layer
~500 particles in a lattice of 1003100 unit cells!. In the first column
t51, in the secondt53, andt55 in the third one. The upper row
shows the diffusion in the self-consistent electric field, whereas
lower one shows the diffusion in a constant electric field ofEz

52pn containing no fluctuations. The solid lines show the Gau
ian fits to the histograms.
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where the impurity diffusion in Bed-doped layers in GaAs
was analyzed with cross-sectional STM.2 By identifying
single impurity atoms, this method allows to observe direc
the d-layer broadening and to draw histograms similar
those of Fig. 4. The drawback of the method is a lack
statistics. An X-STM histogram consists of no more th
60–70 doping atoms which is insufficient for direct compa
son of the histograms obtained by STM and by numeri
simulation.

The data of Ref. 2 show that for Be concentrations up
1013 cm22 no noticeable layer broadening is observed~this
has been recently confirmed by experiments on Si-doped
layers!. At higher Be concentrations, a sharpd layer broad-
ening occurs~corresponding data for Si-doped layers are n
available yet!. The layer thickness was found to increase
times when the concentration increase from 1013 to 3
31013 cm22. The samples investigated in Ref. 2 contain
a set ofd layers kept at the growth temperature for a diffe
ent time which allowed us to investigate the time depend
cies of the layer broadening. It was found that for the co
centrations less than 1013 cm22 this dependence is bes
approximated by the standard laws;At.

To compare the results of experiment and numeri
simulation, we have analyzed the latter in the same way
the results of STM measurements. For a given concentra
thet dependence of the standard deviations was plotted for
the corresponding histograms. The dependence obtained
fitted to the curve

s5atb. ~11!

For the normal diffusion,b51/2 anda corresponds to the
diffusion coefficient. Some of theses(t) dependencies
~squares! are shown in Fig. 5 together with the fitting curve
of Eq. ~11! ~solid lines!.

The concentration dependence of fitting parametersa and
b is shown in Fig. 6. As mentioned above, the non-Gauss
histogram broadening starts at the concentration close to
in our units which for GaAs corresponds to the ion density
order 1.331013 cm22. This value is in an excellent agree
ment with the STM data. Figure 6 demonstrates thatb in-
creases with concentration from almost 0.5 up to the va

e

-

FIG. 5. Standard deviation as a function oft for the different
particle densities: 1 –nS50.05, 2 – nS50.01, and 3 –nS

50.001.
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close to 0.8. This can be explained by the dominance
diffusion at low and of drift at higher concentrations.

The concentration dependence ofa is much more interest
ing. This parameter varies slowly at the concentrations
than 0.04 and then demonstrates a steep growth. It is jus
same concentration where non-Gaussian impurity distr
tion becomes noticeable. Thus the change in the diffus
drift behavior at the critical concentration is revealed expe
mentally as a sharp increase in the observed ‘‘diffus
coefficient.’’ The layer thickness, as a function of concent
tion at fixed time and temperature, grows sharply in t
region~see Fig. 5!. The results are in a good agreement w
experiment2 both qualitatively and quantitatively.

V. CONCLUSION

To summarize, we have shown that at rather high im
rity concentration in ad layer, the impurity distribution func-
tion perpendicular to the layer acquires a non-Gaussian c
acter because the process can no longer be described
linear diffusion equation. The effect has a critical charac
occurring above the critical dimensionless concentrat
;0.04 and being almost invisible at lower concentratio
The above-mentioned critical behavior manifests itself
perimentally as a step in the observed diffusion coeffici
and, hence, in thed layer thickness at the critical concentr
tion.
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APPENDIX A

Let us calculate the distribution function of the norm
electric field componentEz . It is evident that atz50, Ez is
always zero but it appears as we move away from the im
rity layer and whenz@1/An it has a constant value of 2pen.

FIG. 6. The dependence of the parametersa ~squares! and b
~crosses! of the fitting curve~11! on the impurities concentration.
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Let us consider a circle with the radiusR containingN
ions and find the probabilityWN(Ez)dEz for the z compo-
nent of electric field acting at an ion in the origin, to lie in th
interval betweenEz andEz1dEz . In the point (0,0,z0), the
z component of electric field caused by an ion placed
(x,y,0), is equal to Ez5ez0 /(r 21z0

2)23/2 with r
5Ax21y2. Using this expression and applying Markoff
method described in Ref. 9 in more detail, we have

WN~Ez!5
1

2pE2`

`

dr exp~2 irEz!AN~r!, ~A1!

where

AN~rr !5)
i 51

N
1

pR2Eur i u50

R

d2r iexpS ir
ez0

~r i
21z0

2!3/2D .

~A2!

If we subsequently letR andN go to infinity while keep-
ing the ion densityn constant, limR→`(3N/4pR3)5n, then
AN(r) tends to

A~r!5expS 22pnE
0

`

r dr H 12expF ir
ez0

~r 21z0
2!3/2G J D ,

~A3!

which eventually gives the final formula Eq.~2!.
The distribution function for the in-plane electric fieldEi

can be derived in a similar way:

W~Ei!5
1

2pE0

`

dr rJ0~rEi!exp~2penr!

5
en

2Ei
3

1

@~pne/Ei!
211#3/2

. ~A4!

APPENDIX B

To use periodic boundary conditions, one should calcu
the potential in a point (x,y,z) created by a periodic two
dimensional rectangular~for simplicity, squared! lattice of
point charges. For points outside the lattice planez50, the
problem is easily solved by summation of the Fourier ser

w~x,y,z!5
2p

L2 F2uzu

1(
m,n

exp~2kAm21n2uzu1 imx1 iny!

kAm21n2 G .

~B1!

This series converses well outside thez50 plane. Forz50
the situation becomes more difficult and atx or y equal to
zero, the series formally diverges. Similar problems are w
known in the theory of lattice sums for ionic crystals. One
the possible tricks successfully used for their solution is
Evald’s transformation of the initial series~see, e.g., Ref. 10!
which will be used below with the account of specific fe
tures of our system.

To evaluate the formal sum



na

ion

3038 PRB 61AVERKIEV, MONAKHOV, SHIK, KOENRAAD, AND WOLTER
S5 (
n52`

`

(
m52`

`
1

A~x2nL!21~y2mL!21z2
, ~B2!

we use the relation 1/uzu5(2/Ap)*0
`exp(2z2r2)dr, which

gives us

S5(
m,n

2

Ap
E

0

`

exp$2@~x2nL!21~y2mL!21z2#r2%dr.

~B3!

The integrand in Eq.~B3! is a periodic function in thexy
plane which could be expanded in a Fourier series by a
ogy with10

S5
2p

L2 (
m,n

E
0

G 1

r2
expF2

k2~m21n2!

4r2
2z2r21 iknx

1 ikmyGdr1
2

Ap
(
m,n

E
G

`

exp$2@~x2nL!2

1~y2mL!21z2#r2%dr. ~B4!
d

M

R.
o

er
l-

Herek52p/L and the constantG are chosen empirically to
provide fast convergence of the series. Equation~B4! at G
→` transforms into Eq.~B1!. All integrals in Eq.~B4! are
expressed in terms of the complementary error funct
erfc(x)5(1/Ap)*x

`exp(2t2)dt and, eventually,

S5
p

kL2 (
n52`

`

(
m52`

`
exp~ iknx1 ikmy!

Am21n2

3Fexp~kAm21n2z!erfcS kAm21n2

2G
1zGD

1exp~2kAm21n2z!erfcS kAm21n2

2G
2zGD G

1 (
n52`

`

(
m52`

`
erfc„Az21~x1nL!21~y1mL!2

•G…

Az21~x1nL!21~y1mL!2
.

~B5!
tt.
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