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The N uMLAB Numerical Laboratory
J. MAUBACH1 AND A. TELEA2

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Abstract A large range of software environments addresses numerical simulation, interac­
tive visualisation and computational steering. Most such environments are designed to cover
a limited application domain, such as finite element or finite difference packages, symbolic
or linear algebra computations or image processing. Their software structure rarely provides
a simple and extensible mathematical model for the underlying mathematics. Thus, assem­
bling numerical simulations from computational and visualisation blocks, as well as building
such blocks is a difficult task for the researcher in numerical simulation.
This paper presents the NUMLAB environment, a single numerical laboratory for compu­
t.at.ional and visualisation applications. By closely reflecting the modelled mathematical
concept.s int.o the software architecture, NUMLAB offers a basic, yet generic framework for a
large class of computational applications, such as partial and ordinary differential equations,
non-lineal' systems, matrix computations and image and signal processing. Building applica­
tions which combine interactive visualisation and computations is provided in a simple and
interactive visual manner. We present several features of the NUMLAB approach, illustrated
with some applications.

1 Introduction

The NUMLAB (Numerical Laboratory) environment has been constructed after a thorough
search through a wide range of software environments for numerical computation, interac­
tion, and data visualisation. NUMLAB'S goals include seemless integration of computation
and visualisation, convenient application construction, communication with other software
environments, and a high level of extensibility for research purposes. In order to assess the
merits of the NUMLAB environment, we first consider software environments in general.

From a structural point of view, software environments can be classified into three categories
(see for instance [33]): Libraries, turnkey systems, and application frameworks.
Libm,Ties such as LAPACK [60], NAGLIB [61], or IMSL [62] for numerics, or OpenGL
[64], Open Inventor [20], or VTK [23] for the visualisation, provide services in the form of
data structures and functions. Libraries are usually easy to extend with new data types .
and functions, However, using libraries to build a complete computational or visualisation
application requires' involved programming.
Turnkey systems such as Matlab [58], Mathematica [59], or most of the existing dedicated
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numerical simulators on the market, are simpler to use than libraries to build a complete
numerical application. However, extending the functionality of such systems is usually lim­
ited to a given application domain, as in the case of the dedicated simulators, or to a fixed
set of supported data types, as in the case of the Matlab programming environment.
Application (computational) frameworks, such as the Diffpack and SciLab systems for solving
differential equations [21, 57] or the Oorange system for experimental mathematics [24]
combine the advantages of the libraries and turnkey systems. On one hand, frameworks have
an open structure, similarly to libraries, so they can be extended with new components, such
as solvers, matrix storage schemes, or mesh generators. On the other hand, some (notably
visualisation) frameworks offer an easy manner to construct a complete application that
combines visualisation, numerics, and user interaction, e.g. by means of visual programming
tools such as Matlab's Simulink [58], the dataflow network editing tool of AVS or Oorange
[22, 24].

With the above in mind, consider how the NUMLAB environment integrates all of these cat­
egories. On the level of libraries, NUMLAB'S C++ routines can be called from and linked to,
from Fortran, Pascal, C, C++ (its C++ routines can both be compiled and interpreted [65]).
Next, similar to a turnkey system, it offers full integration of visualisation and numerical
computation, and implements communication with other environments (for instance with
Simulink [58] and MathLink [59]). On the application framework level, NUMLAB provides
interactive application construction with its visual programming dataflow system VISSION.

In order to better address NUMLAB'S merits on all levels, we need a more detailed exam­
ination of computational frameworks. Though efficient, most implemented computational
frameworks are limited in several respects. First, limitations exist from the perspectives of
the end user, application designer, and component developer [39,33, 40, 11]. Furthermore,
there are limitations due to the computational framework (library design), and extension
restrictions.

First, few computational frameworks facilitate convenient interaction between visualisation
(data exploration) and computations (numerical exploration), both essential to the end user.
Secondly, from the application designer perspective, the visual programming facility, often
provided in visualisation frameworks such as [22, 48], usually is not available for numerical
frameworks.
Finally, from the numerical component developer perspective, understanding and extending
a framework's architecture is still (usually) a very complex task, albeit noticeably simplified
in object-oriented environments such as [21, 23]. ... ..

Next to limitation with respect to the three types of users, many computational frameworks
are constrained in a more structural manner:. Similar mathematical concepts are not factored
out into similar software components. As a consequence, most existing numerical software
is heterogeneous, thus hard to deploy and understand. For instance, in order to sp·~ed
up the iterative solution of a system of linear equations, a preconditioner is often used.
Though iterative solvers and preconditioners fit into the same mathematical concept - that
of an approximation x which is mapped into a subsequent approximation z ~ F(x) - most
computational software implements them incompatibly, so preconditioners can not be used
as iterative solvers and vice versa [21].
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Another example emerges from finite element libraries. Such libraries frequently restrict
reference element geometry and bases to a (sub)set of possiblilities found in the literature.
Because this set is hardcoded, extensions to different geometries and bases for research
purposes is difficult, or even impossible.

The design of NUMLAB addresses the problems above. NUMLAB is a numerical framework
which provides C++ software components (objects) for the development of a large range
of interdisciplinary applications (PDEs, ODEs, non-linear systems, signal processing, and
all combinations). Further, it provides interactive application design/use with its visual
programming dataflow system VISSION [11, 38], cooperates (Simulink and MathLink), and
can be used outside the interactive environment: Both with standard compilation and in­
terpretation. Its computational libraries factor out fundamental notions with respect to
numerical computations (such as evaluation of operators z = F(x) and their derivatives),
which keeps the amount of basic components small. All components of these libraries are
aware of dataflow, even in the absence of the vission dataflow system, and can for instance
call back to see whether provided data is valid.

The remainder of this paper addresses some fundamental NUMLAB design aspects, and is
structured as fo11o\vs. In section 2, the mathematics that we desire to model in software is
reduced to a set of simple but generic concepts. Section 3 shows how these concepts are
mapped to software entities. Section 4 illustrates the above for the concrete case of solving
the Navier-Stokes partial differential equation. Section 5 presents how concrete simulations
combining computations and visualisation are constructed and used in NUMLAB. Finally,
section Gconcludes the paper presenting further directions.

2 The mathematical framework

In order to reduce the complexity of the entire software solution, we show how NUMLAB
reduces different mathematical concepts to fewer more basic mathematical notions. As a
rule, NUMLAB's components are either operators F, or their vector space arguments x, y.
The most frequent NUMLAB operations are the related operator evaluation F(x) as well as
vector space operations such as x + y: .

1. TTo,'/I"c;ient boundary value problems (BVPs): Static Finite Elements/Volumes/Differences
discretizations are opera.tors F such that F(x) = 0, defines the BVP's solution x. For
transient problems, such operators can be reformulated with the use of time-step and
time-integration operators into ordinary differential equations (ODEs) operators. Al­
ternatively, BVP operators can be directly reduced to differential algebraic equation
(DAEs) operators, or straightforward to a sequence of non-linear operators;

2. System.s of ODEs: Such systems are operators and their evaluation is reduced to
repeated evaluations of non-linear operators;

3. Systems of non-linear equations: Such systems are operators, and reduced to a se­
quence of linear systems, possibly with the use of derivative evaluations;

4. System.s of linear equation.s: Such sysems are also operators F(x) = Ax- b, and solved
with a sequence of operator evaluations combined with vector space operations.
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The reduction from one type of operator into another is commented on in the subsections
of section 2, in the reverse order of the itemisation above. Thus, section 2.1, treats systems
of linear and non-linear equations. Section 2.2 treats the reduction of systems of ODEs to
non-linear systems. Finally, section 2.3 shows how to either reduce a discretized boundary
value problem to a non-linear system, or to a system of ODEs.

2.1 Linear and non-linear systems

This subsection introduces NUMLAB'S operator approach, and demonstrates how operator
evaluations reduce to repeated vector space operations and operator evaluations. This is
demonstrated by means of non-linear systems.

Within NUMLAB, linear and non-linear systems are specializations (special cases) of generic
operators. First, consider linear systems. These are of the form:

F(x) = Ax - b. (1)

The solution of the system satisfies F(x) = 0, D is the diagonal of the matrix A, and the
triangular matrices LU are the (approximate) Gaussian elimination factors. Solving the
above equation can be done in several ways, e.g. by direct or iterative solution methods.
The latter can use a preconditioner to accelerate the computations. The following example
shows that iterative solution method, preconditioner, operator and other related items need
not be distinguished within the NUMLAB environment.

NUMLAB (iterative) solution methods are also operators. For the sake of demonstration,
consider an accelerated Richardson's method. This method corresponds to the operator

R(x) := R F T(x),,

which solves F(x) = 0 by repeated evaluation:

x(k+l) x(k) - T(F(x(k»))
.- S(x(k»).

To be precise: The evaluation

yields

z - x(n)- ,

(2)

(3)

(4)

.. (5)

where x(n) was obtained after n steps of the successive substitution in 3. As can be observed,
NUMLAB allows operators to make use of auxilliary arguments, for Richardson's method F
and T.As a matter of fact, iterative solvers such as Richardon's have an extra auxilliary
argument, an iteration control block, where the user can specify the stop criteria.

In line with the operator concept, NUMLAB regards the accelerator T in Richardson's method
as an operator, just as the system F - if T is not provided, NUMLAB substitutes the identity
operator. Now recalL that the evaluation of Richardson's method 4 reduces to repeated
evaluations of iteration operator S:
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z = sex) :
{

r = F(x); II operator evaluation
d = T(r) ; II operator evaluation
z = x - d; II vector space operation

}

Thus the Richardson's operator evaluation in 4 involves vector space operations and oper­
ator evalllations, nothing else. In NUMLAB all non vector space operations are regarded as
operator evaluations, whence all operators (which includes iterative solution methods) are
build with these basic two items: vector space operations and operator evaluations. This
thoroughly simplifies the mathematical framework, especially for interdisciplinary applica­
tions.

In a last emphasis on NUMLAB'S operator approach, consider the accelerator T, which is
likely to depend on (a derivative of) F:

(6)

An accelerator in nature, the operator T presumedly approximates A's inverse: Potential
candidates are:

• Non-accelerate methods: T(x) = x;

• D'iagonal!)'('econditioners: T(x) = D-Ix;

• Incomplete L U preconditioners: T(x) ~ V-I L -IX;

• Dir'ect methods: T(x) = V-I L -lX,

and other related methods (even Richardson's method itself). Because Ruses T which at
its turn can use F, is follows that in NUMLAB solvers can make use of other solvers, in an
multiple level nested manner.

Though NUMLAB regards preconditioning as approximate function evaluation - which sim­
plifies its framework - this does not solve the problem of proper preconditioning. Iterative
solution methods might require preconditioners to preserve for instance symmetry (such
as the preconditioned gradient method PCG [51]) or at least positive definiteness of the
symmetric part (see GMRES [53] and GCGLS[52], and many other minimal residual meth­
ods). The application designer should keep these mathematical restrictions in mind, when
designing a suitable solver for the problem at hand.

Similar to linear systems, non-linear systems are also formulated to be operators F, with so­
lutions x = F-1(O). Possibly related solution methods, are again formulated as an operator.
For the sake of demonstration, consider a successive substitution operator

(7)
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This operator solves F(x) = 0 by repeated evaluation:

x(k+l) X(k) - F(X(k))

.- S(X(k)).
(8)

More precise: The evaluation

(9)

yields

z = x(n) , . (10)

VTK Viewer

Figure 1: An image: a 256 x 256 matrix of
greyscales

(11)F(x) = Ax,

In order to close this section on non­
linear operators, note that images are also
treated as operators

where A is a matrix (or block-diagonal)
matrix of color-intensities. Thus, image
visualisation reduces to jacobian visualisa­
tion:

where x(n) was obtained after n user controlled steps 8. Non-linear operators which do not
provide derivatives can further be solved by the combinatorial fixed point method [50] (a
multi-dimensional variant of the bisection method).
Other solution methods, such as (damped,
inexact) Newton methods, lead to a se-
quence of linear systems, and are treated
as mentioned above. Again, the applica­
tion designer should take care that the
fixed point function G is chosen properly.
The above choice can work for operators
F which have a Jacobian with a positive
definite symmetric part.

Section 5 will comment on the software implementation of NUMLAB, and the related viewer
in figure 1 above.

2.2 Ordinary differential equations

Discretisations of ordinary differential equations can also be formulated as operators whos
evaluation reduces to a sequence of vector space operations and function evaluations. For
instance, let E be an operator, and consider the initial value problem: Find x := x(t) for
which:

()
atX = E(t,x), x(O) = Xo. (12)
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The application of the Euler backward method with tn = nh for all n

x(n+l) _ x(n) = hE(t x(n+l)). n+l,

which can be rewritten as

x(n+l) - hE(tn+1, x(n+l)) - x(n) = O.

Define the function T := T t x(n) t as follows:
n, l n+l

T(x) = x - hE(tn+1, x) - x(n).

(13)

(14)

(15)

Then x(n+l) is a solution of T(x) = O. Of course, T depends on the user-provided values
x(n), tn and tn +1 .

The above operator formulation x(n+l) = T-1 (0) not only applies to explicit methods such
as Runge Kutta type methods [55], but likewise applies to all implicit discretisation methods,
such as Euler Backward and Backward Difference Formulas (BDF) by Gear [54].

It is obvious that the evaluation of T at
a given x again only involves vector space
opera.tions and opera.tor evaluations. Solv­
ing T (x) = 0 can thus be done by several
methods: Successive substitution, New­
ton type methods, preconditioned meth­
ods, etc.
Naturally, a time-step integrator comple­
ments the time-step mechanism. NUMLAB

provides standard fixed time-step meth­
ods and - required for stiff problems ­
a.daptive time-step integrators of the PEC
and PECE type [56]. The Lotka-Volterra
predator-prey problem's solution is shown.

Figure 2: The predator prey solution
(x(t), y(t)), t E [0,211"]

Naturally, phase-plane plots can also be generated.

2.3 Partial differential equations and initial boundary value prob­
lems

In order to show how partial differential equations (PDEs) are reduced to (non-)linear sys­
tems of equations, consider the evolution boundary value problem: Let n c Rn be the region
of interest. Find a solution 'U(x, t) which satisfies

a
at'U = 6.'U + f (t > 0),

7

'U(O) = 'Uo· (16)



For the sake of presentation, the boundary conditions are all assumed to be of Dirichlet
type. Equation (16) directly fits into the framework of section 2.2, for a suitable operator
E, defined below.

Standard Galerkin finite element discretisations of the static variant - !:l'u = f assume
that the solution u := u(t) is an element of a space VII., with basis {vih, i.e., u(t, x) =

Li Ui(t)Vi(X), for all x E n. Related to VII. is the linear vector space V~ C VI!, which contains
all elements which are zero at the Dirichlet boundary. The related finite element operator
F: Rn H Rn is coefficientwise defined as follows (see section 4.1 for more information):

z, = [F(x)], = f['7 (~x,v,) '7v, - Iv,] , (17)

if variable i is not related to a Dirichlet point, and Zi = 0 elsewise (is briefly explained below.
Due to this choice, the derivative operator DF(x) acts as the identity on variables related to
Dirichlet points). By construction, F is an operator from Rn onto Rn, but is related to an
operator from VII. onto V~.. The solution vector x E Rn of F(x) = 0 is the coeffient vector
related to the actual solution x EVil..

Due to inhomogeneous boundary conditions, NUMLAB'S finite dimensional spaces V" are
not linear vector spaces because x, y EVil. does not imply x + y E VII.. However, NUM­

LAB'S spaces behave as vector spaces because operators map V II. into V~. and vector space
operations are only performed on x, y E V~. This last claim is now supported by means of
an example.

In order to solve F(x) = 0, the solution x E V is split into a user elected part xeD) which
satisfies the (inhomogeneous) Dirichlet conditions, and into the to be computed correction
d = x - x CD). Then, equation F(x) = 0 is solved as follows:

E V
(Dx F(xCD)))-l( -F(x(D)))
xeD) + d

(18)

For linear systems this procedure might seem complicated. However, in this case the middle
line of equation (18) translates into

,

(19)

where the right hand side contribution - Ax(D) is usually described as the elimination of
.'

boundary conditions.
The fact that DF(x) = Ion the subset of Dirichlet related variables does not cause problems
with standard iterative solution algorithms (subspace invariance) and neither create problems
with properties such as positive definite, elementwise storage, and so forth.

Finally, we consider the NUMLAB formulation of 16. Under the assumption that the solution
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x E V, equation (16) is equivalent to the autonomous ODE

a
-x = -F(x)at (t > 0), (20)

where x(O) is the coefficient vector related to function Uo. At its turn, this equation is
equivalent to (12) for E(t, x) = -F(x). Therefore, the initial boundary value problem (16)
reduces to a sequence of systems of non-linear equations.

2.4 Conclusions

The examples in sections 2.1, 2.2 and 2.3 have shown how mathematical problems with a
.seemingly different formulation can be reduced to the two basic operations of vector space
computations and operator evaluation. Because of this, the NUMLAB software provides the
basic notions as well as concrete specialisations of vector spaces V and operators F on V.

3 From the Mathematical to the Software Framework

In this section, we show how the notion of operators F and arguments v in linear vector
spaces V ma.p to a software framework. As outlined in the previous section, a large class of
solution methods for problems of the form F(x) = 0 can be reduced to a simple mathematical
framework based on dimensional linear vector spaces and operators on those spaces. The
software framework we propose will closely follow the mathematical model. Consequently,
the obtained software product will be simple and generic as well.
First, the vector space V a.nd the operator F are presented in more detail. The linear vector
space V is spanned by n functions v: Rd H R. Thus, an element x in V is a function
a H L .T-;'lJi(a), characterized by its coefficient vector x ERn. (Vector-spaces can be of cross
product type).
In many situations, the functions Vi of the basis of V have local support. For instance, for
finite element computations, one uses an approximation space spanned by functions having
local snpport. In order to define this support a triangulation algorithms subdivides the
domain n E R rl into subregions called elements. In such cases, the functions Vi are defined
element-wise.

3.1 The Grid module

To be able to define local support for the basis functions Vi, we need to discretize the
function's domain n. This is modelled in the software framework by the Grid module, which
covers the function's domain with elements. As a matter of fact, Grid takes a Contour as
input, which describes the boundary an of the region n. The default contour is the unit­
square.

.....~
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In our framework, the grid can be of any
dimension (e.g. 2D planar or 3D spa­
tial) , and can have any desired element
shapes, such as triangles and quadrilater­
als in 2D or tetrahedra, prisms,or cubes
in 3D. All grids implement a common in­
terface which provides services to iterate
over the grid elements and vertices, topo­
logical queries such as vertex and element
neighbours, and location of the element in
which a given point falls. The common
grid interface can be implemented by Grid
modules that produce the grid in different
manners, such as performing Delaunay tri­
angulation of a given contour or reading an
existing triangulation from a file.

3.2 The Space module

Figure 3: A cubic finite element interpolant
on a 2-manifold in R 3

The vector space V is implemented by the software module Space. Space takes <1, Grid and
BoundaryConditions as inputs. The grid's discretisation in combination with the boundary
conditions are used to build the supports of its basis functions Vi. The default boundary
conditions are Dirichlet type conditions for all solution components. None, Robin, Neumann
and vectorial boundary conditions are specified per boundary part.
The Space module provides services to evaluate its basis functions Vi and their derivatives. A
specific Space module will thus implement a specific set of basis functions, such as constant,
linear, quadratic, or cubic. The interface of the Space module follows the mathematical
properties of the vector space V presented so far, i.e. provides services to evaluate functions
x E V and their derivatives. To present this, we first outline the implementation of the
function mathematical concept.

3.3 The Function module

As discussed so far, a function x is defined in a linear vector space of functions V, as a sum
of the basis functions Vi of V weighted by the coefficients Xi of x. Therefore, x is simply
implemented as a vector of real numbers Xi in the software module Function. Together with
these coefficients, Function stores a reference to its vector space Space. This is consistent
with the assumption ofour mathematical framework that a function can only exist in a given
vector space.
The Function module provides services to evaluate the function and its derivatives at a given
point a E Rd. To evaluate a given function x in a given point a E Rd, both x and a are passed
to the Space module of that function, which returns the value of x(a). This is computed
following the definition x(a) = L:i xivi(a) described before. In order to implement this
efficiently, Space first determines which of the basis functions Vi have supports that contain
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the point a. Next, the above scalar product between the values ofthe selected basis functions
Vi in the point a and the corresponding coefficients Xi is computed. The computation of the
derivatives of a given function x in a point a follows a similar implementation.
Providing evaluation of functions x E V and of their derivatives at given points is, strictly
speaking, the minimal interface the Space module has to implement. However, it is some­
times convenient to be able to evaluate a function at a point given as an element number
and local coordinates within that element. This is especially important for efficiency in the
case where one operation is iterated over all elements of a Grid, such as in the case of nu­
merical integration. If the Space module allows evaluating functions at points specified as
elements and local element coordinates, the implementation of the numerical integration is
considerably faster than when point-to-element location has to be performed. Consequently,
we also provided the Space module with a function evaluation interface which accepts an
element number and a point defined in the element local coordinates.

3.4 The Operator module

As described previously, an operator F: V H W maps an element x E V to an element of
a linear vector space W ::1 z =F(x). The evaluation z = F(x) computes the coefficients
Zi of z from the coefficients Xi of x, as well as from the bases {vd and {wd of V and W
respectively. Next to the evaluation of F, derivatives such as the Jacobian operator DF of
F are evaluated in a similar manner. Such derivatives are important in several applications.
For example, they can be used in order to find a solution of F(x) = 0, with Newton's method.
The softwa.re implementation of the operator notion follows straightforwardly the mathe­
matical concepts introduced in Section 2. The implementation is done by the Operator
module, which offers two services: evaluation of z = F(x) and of the Jacobian of F in point
y, z = DF(y)x. To evaluate z == F(x), the Operator module takes two Function objects
z and x (LS input and computes the coefficients Zi using the coefficients Xi and the bases of
the Space objects z and x carry with them. It is important that both the 'input' z and the
'output' x of the Operator module are given, since it is in this way that most Operators
determine the spaces V, respectively W.
To evaluate z = DF(y)x, the Operator proceeds similarly. It takes two input Function
objects y and x. The point y determines where the Jacobian DF is computed, and the point
x where it is evaluated. Next, Operator takes also an output Function object z in which
the result of the Jacobian evaluation is stored. Finally, Operator provides also an output for
its Jacobian in a given point y, DF(y). The Jacobian is also implemented as an Operator
"vhich, given an argument x, outputs DF(y)x. Internally, DF(y) is implemented as a matrix
of coefficients, and the operation DF(y)x is a matrix-vector multiplication. However, the
implementation details are hidden from the user, who works only with the mathematical
notions of Function and Operator.
Specific Operator implementations differ in the way they compute the above two evaluations.
For example, a simple Diffusion operator z = F(x) may produce a function z where
Zi = .Ti-l - 2.7:i + Xi+l' A generic Linear operator may produce a vector of coefficients
z = Ax where A is a matrix. A Summator operator z = F1(x) + F 2 (x) may take two inputs
F 1 and F 1 and produce a vector of coefficients Zi = [F1(x)L + [F 2 (x)k Remark that the
modules implementing the Linear and Summator operators actually have two inputs each.
In both cases the function x is the first input, while the second is the matrix A for the
Linear operator and the function y for the Summator operator. These values could be as
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well hard-coded in the operator implementation. In both cases however, we see Operator
as a function of a single variable x, as described in the mathematical framework.

3.5 The Solver module

The previous section has described a mathematical framework in which a large class of
problems is reduced to solving an equation F(x) = O. Solving this equation is, in its
turn, reduced to performing vector space operations and evaluations of similar operators
G(x). We model the solving of F(x) = 0 by the module Solver in our software framework.
Mathematically speaking, Solver is similar to an operator S: V H W, where V and Ware
function spaces. The interface of Solver provides evaluation at functions x E V, similarly
to the Operator module. The implementation of the Solver evaluation operation z = S(x)
should provide an approximation z to z :::::: F-1(x). However, Solver does not provide
evaluation of its Jacobian, as this is complex to compute in the general case, i.e. for any
solver implementation.
Practically, Solver takes as input an initial guess Function object x and an Operator object
F and modifies the x object such that F(x) = O. The operations done by the solver are
either vector space operations and evaluations of its input Operator object, or evaluations
of similar operators G(x). In the actual implementation, this is modelled by providing the
Solver module with one or more extra inputs of type Solver. In this way, one can for
example connect a chain of preconditioners to an iterative solver module.
Implementing several Solver s follows straightforwardly from its mathematical description.
Iterative solvers such as Richardson, GMRES, (bi)conjugate gradient, with or without pre­
conditioners, are easily implemented in this framework. The framework makes no distinc­
tion between a solver and a preconditioner, following the mathematical model introduced
in Section 2. The sole difference between a solver and a preconditioner in this framework
is semantic, not structural. A solver is supposed to produce an exact solution of F(x) = 0,
whereas the preconditioner is supposed to return an approximate one. Both are implemented
as Solver modules, which allows easy cascading of a chain of preconditioners to an itera­
tive solver as well as using preconditioners and solvers interchangeably in applications. The
framework makes also no structural distinction between direct and iterative solvers. For
example, an 1LUSolver module is implemented to compute an incomplete LU factoriza­
tion of its input operator F. The 1LUSolver module can be used as a preconditioner for
a ConjugateGradient solver module. In the case the 1LUSolver is not connected to the
ConjugateGradient module's input, the latter performs non preconditioned computations.
Alternatively, a LUSolver module is implemented to provide a complete LU factorization
of its input operator F. The LUSolver can be used eigher directly to ~olve the equation
F(x) = 0, or as preconditioner for another Solver module.

3.6 An object-oriented approach to the''Software framework

Sofar, sections have outlined the structure of the proposed numerical software framework:
This structure is bas~d upon a few basic modules which parallel the mathematical concepts of
Grid, Function, Space, Operator, and Solver. These modules provide their functionality
via interfaces containing a small number of operations, such as the Operator's evaluation
operation or the Grid's element-related services previously outlined.
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As stated in the beginning of this section, a large range of numerical problems can be
modelled 'with these few generic modules. In order to capture the specifics of a given problem,
such as the type of PDE to be solved or the basis functions of an approximation space,
the generic modules have to be specialized. The specialized modules provide the interface
declared by their class, but can implement it in any desirable fashion. For example, a
ConjugateGradient module implements the Solver interface of evaluating z = F-1x by
using the conjugate gradient iterative method.
The above architectural requirements are elegantly and efficiently captured by using an
object-oriented approach to software design [7, 26, 10]. Consequently, we have implemented
our numerical software framework as an object-oriented library written in the C++ lan­
guage [13]. This design enabled us to naturally model the concepts of basic and specialized
modules as class hierarchies. The software framework implements a few base classes Grid,
Function, Space, Operator, and Solver. These base classes declare the interface to their
operations. The interface is next implemented by various specializations of these base classes.
An overview of the implemented specializations follows:

• Grid: 2D and 3D grid generators for regular and unstructured grids, and grid file
readers;

• Function: Several specific functions Vi are provided, such as sines, cosines, or piecewise
(WJll- )conforming polynomial functions in several dimensions;

• Space: There is a single Space class, but several basis functions are implemented, as
described further in Section 5;

• Operator: Operators for several ODEs,PDEs, and non-linear systems have been imple­
mented, such as Laplace,.Stokes, Navier-Stokes, and elasticity problems. Next, several
operators for matrix manipulation and image processing have been implemented;

• Solver: A range of iterative solvers including biconjugate gradient, GMRES, GCGLS,
QMR, and Richardson are implemented. Several preconditioners such as ILU are also
provided as Solver specializations, following the common treatment of solver and
preconditioner modules previously described.

Besides the natural modelling of the mathematics in terms of class hierarchies, the object­
oriented design allows users to easily extend the current framework with new software mod­
ules. Implementing a new solver, preconditioner, or operator usually involves writing only a
fev" tenths of lines of C++ to extend an existing one. The same approach also facilitates the
reuse of existing numerical libraries such as LAPACK [60] or Templates [63] by integrating
them in the current object-oriented framework.

4 The transient N avier-Stokes equations

This section describes a finite element NUMLAB operator F, suited for the solution of the tran­
sient Navier-Stokes I equations. This finite element operator is chosen because the involved
mathematics requires a finite dimensional vector space V of basis functions, and because
the transient formulation leads to differential algebraic equations. This class of equations is
common ill industrial problems.
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To begin with, we examine the static problem. For a discretisation, we first show that
there is a straightforward and lucid relation between the mathematical formulae and their
NUMLAB software implementation. We further show how the NUMLAB implementation of
F accomplishes the finite element integration, without V exposing its basis functions and
element geometries to F.

The static case is followed with the NUMLAB software formulation of the transient problem.
We demonstrate that the static problem operator F can be used in combination with all
suitable time-integrators S - suited for indefinite/stiff problems.

Due to the high degree of orthogonality between F, V and time-stepper methods, NUMLAB
can and does offer a range of finite element types - higher order, as well as nOll-conforming
Crouzieux-Raviart types - on rather arbitrary support geometries: simplices, parallellepip~

ida, prisms, etc. It facilitates and supports user-defined reference bases and geometries, as
well as user-supplied geometries and grid generators. Existing applications do not have to
be adapted for new bases and geometries, as long as all required mathematical conditions
hold.

4.1 The N avier-Stokes equations

The Navier-Stokes equations describe an incompressible fluid u subject to forces f, in a region
n. For the sake of brevity, we assume n E R 2 . Then the fluid's velocities are u = ['1),1, '1),2],
and p denotes the pressure. The classical problem is to find sufficiently smooth (u, p) such
that in n:

{

-E~U + uVu + Vp = f,

V·u = o. (21 )

For the sake of demonstration, we assume all boundary conditions of Dirichlet type (parabolic
inloutflow profiles and no-slip along walls). Problem 21 is discretized with the use of a finite
element method:

(22)IV·uq = o.

The equations are multiplied with a test function (v, q) in a finite dimensional Hilbert space
V - commented on later - and partial integration results in a variational problem: Find
(u,p) E V such that for all (v, q) E V

IEVU : Vv - pVv + (uVu - f)v 0,

This problem can be reformulated as: Find the vector function x = [V'l' 'l1.2, p] E V which
solves F(x) = o.

In order to understand the NUMLAB implementation F of the Navier Stokes operator F, we
must examine the component-wise definition of F:= [Fl,F2,.F:3]. Let x = [:1:1,:1:2,:7::3] E V,
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and Z = [Zl' Z2, Z:3] := F(x). Due to the definition of {~}c, these vector functions are of
the form :/;c = L :tciVci, described with coefficients [Xc]i = Xci, The Navier-Stokes operator,
discretized in space, now is:

[F 1(Xl,X2,X3)]i

fE\7xl \7Vli-X 30 x Vli+(XlOx Xl +X20 y X l- h)Vli

[F 2 (Xl' X2, X3)]i

fE\7X2 \7V2i-X30yV2i+(XlOxX2+X20yX2-h)V2i

[F3(Xl' X2, X3)]i

f(OxXl +Oy X 2)V3i .

(23)

It is evident - as stated earlier - that F uses the coefficients of x as well as the bases functions
in order to compute the coefficients of the result z.

The NUMLAB operator F implements a discrete version of (23). For the sake of notation, we
assume D is covered with a triangular grid, and that V is an orthogonal product of spaces
V = i·Ot x V2 x V3. For the Navier-Stokes applications, the spaces {~}c have to satisfy
the L.B.B. condition, so for instance we use quadratic conforming finite elements for the
velocities (V1 and Vi), and piecewise linear conforming finite for the pressure (V3 ).

The finite element operator is evaluated support-wise, which requires the definition of basis
function Vci restricted to support e. Using the notation from the previous section, let solution
x = [1;1, :t2, :1::3] = [V'l' U2, pl· Then Xc = L XciVci, where Vci are the functions which span finite
dimensional vector space V c' The restriction of Vci to support e is vc,r (global function i,
restricted to support e, is function r) is coded in software with iCe, r). The integrals in (22)
are computed supportwise, with the use numerical integration, involving integration points
X/i;. The value 'uc,l,(Xk) and gradient vector \7vc,r(Xk) are represented with vee) (k) (r),

respectiv(~ly dv(e) (k) (r). In a similar manner, x(e) (k), respectively dx(e) (k) denote
. :IAxk) am] \7:tc (X/i;). Likewise, dv(e) (k) (r) (dY) denotes OyVc,r(Xk)' Define U1 = 0, U2 =

1, P = 2. The NUMLAB evaluation of z = F(x) and z = DF(x)*y for support e (typeset
to fit this layout) is:

Operator z = F(x):

z(U1)(i(U1)(r)) += qw(k)*
(eps*dx(U1)(k)*dv(U1)(k)(r) ­
x(P)(k)*dv(Ul)(k)(r)(dX) +

(x(Ul)(k)*dx(U1)(k)(dX) +
x(U2)(k)*dx(U1)(k)(dY) ­
fl(qp(k)) * v(Ul)(k)(r)));

z(U2)(i(U2)(r)) += qw(k)*
(eps*dx(U2)(k)*dv(U2)(k)(r) ­
x(P) (k)*dv(U2) (k) (r)(dY) +

(x(U1)(k)*dx(U2)(k)(dX) +
x(U2)(k)*dx(U2)(k)(dY) -
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f2(qp(k» * v(U2)(k)(r»);
z(P)(i(P)(r» += qw(k)*

((dx(Ul)(k)(dX) +
dx(U2)(k)(dY» * v(P)(k)(r»;

The Jacobian's description is:

Jacobian z = DF(x)*y:

DF(Ul)(Ul)(i(Ul)(r»(i(Ul)(s» += qw(k)*
(dv(Ul)(k)(s)*dv(Ul)(k)(r) +
v(Ul)(k)(s)*dx(Ul)(k)(dX) +
x(Ul)(k)*dv(Ul)(k)(s)(dX»;

DF(P)(U2)(i(P)(r»(i(U2)(s» += qw(k)*
(dv(U2)(k)(s)(dY)*v(P) (k)(r»;

z = DF * y;

Both evaluation operations have an almost identical loop structure:

v = x->getSpace();
for (Integer e = 0; e < V->NElements(); e++)
V->fetch(i, v, dv, x, dx, ..... );
for (Integer c = 0; c < i.size(); c++)
for (Integer r = 0; r < iCc) .size(); r++)
for (Integer k = 0; k < x(c) .size(); k++)

The Jacobian has an extra inner loop over trial functions s. With regard to this implemen­
tation, several observations come to mind:

• First, F does not have spaces Vand Was input (i.e., as auxilliary variables). The spaces
are obtained from the input/output variables. This technique simplifies computational
networks.

• Secondly, because F performs numerical integration, it solely requires the value of
(partial derivatives of) the basis functions at the quadrature points. The basis functions
themselves are not required, so F operates orthogonal to V and W.

• Finally, the NUMLAB operator models the Navier-Stokes equations in (22) in a conve­
nient fashion. The software implementation is o'ne-to-one with the mathematics, and
can in fact be automated.

Finally, recall that the derivative operator acts as the identity operator on Dirichlet point
related variables, which requires fetch to deliver the related informatioll.
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4.2 The time discretisation

The transient Navier-Stokes equations can be formulated as so-called differential algebraical
equations (DAEs):

{

gtU = f.6U - u\lu - \lp + f,

u(O) = Uo,

\l·u = O.

(24)

NUMLAB will solve such systems with the use of specialized packages such as dassl, or
ortherwise explicitly with the use of the static NUMLAB operator F in (23), in combination
with a specific time-discretisation.

For the sake of illustration of the last option, first consider solving the time-dependent
variables u in (24) with the use of a rather basic time-step method: the () method. In
practice, for stiff problems - high Reynolds number - one would rather use Gear's method.
The (}-method for a general non-linear system of ODEs:

leads to the recursion:

Uo
Un+l-Un

h

aat u = E(t, u)

u(O),
(}E(tn,un) + (1 - (})E(tn+1, Un+l)

(25)

(26)

with solution u = limw _+ oo u(n), for t H 00. This all fits into the NUMLAB Operator style,
if we define the time-step operator T := T t u(n) t as follows:

n, , n+l

T(u) := u - u(n) - h(}E(tn, u(n)) - h(l - (})E(tn+l' u). (27)

In this manner, the Jacobian of T is positive definite for small h, if the Jacobian of E is,
and the approximation u(n+l) of u(tn+l) is a root of

T(u) = o. (28)

Finally, the operator T is used to describe the solution of the explicit DAE: Note that (24)
is equivalent to:

8 -F1(u,p)at Ul
8 -F2(u,p)8t U2

u(O) Uo,
(29)

0 F3 (u,p).
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Every approximate solution x(n+l) = [u(n+l), p(n+l)] must both solve.

{
o = T(u,p)
o = F3(u,p). (31)

where according to the theta-step method (27),

T(u,p) := u - urn) - h()Ep(tn, urn)) - h(1 - ())Ep(tn+1, u). (32)

Summarizing (24) - (32), we have shown that each approximate solution x(n) of x(tn ) must
solve the non-linear system of equations G(x) = 0 defined by

(33)

This new non-linear operator G can be supplied to a NUMLAB non-linear solver in order to
compute a solution x to G(x) = O.

Finally, some remarks and observations. First, the value which operator G attains at x, is
composed of the values which F attains at related points. Therefore, the Jacobian DG(x)
can be formulated in terms of Df at related points. The NUMLAB implementation of time­
steps exploits this: The Jacobian DG(x) is a sequence of call-backs to the Jacobians Df.
Secondly, a NUMLAB discretized system of partial differential equations leads to an operator
F(u) which can be the operator provided to an ODE step method. In this case, the PDE
and ODE discretisations are used strictly orthogonal in the software illlplemelltation.

5 Application design and use

The previous sections have presented the structure of the NUMLAB computational frame­
work. It has been shown how new algorithms and numerical models can easily be embedded
in the NUMLAB framework, due to its design based on few generic mathematical concepts.
This section treats the topics of numerical application construction and use with the NUM­

LAB system.
As stated in section ??, a numerical framework should provide an easy way to construct nu­
merical experiments by assembling predefined components such as grids, problem definitions,
solvers, and preconditioners. Next, one should be able to interactively change all parameters
of the constructed application and monitor the produced results in a numerical or visual
form. Shortly, we need to address the three roles of component development, application
design, and iteractive use for the scientific computing domain.
We have approached the above by integrating the NUMLAB component library in- the VISSION

system. As NUMLAB is written as a C++ component library, its integration into VISSION

was easy. Moreover, the structure of NUMLAB as a set of components that communicate by
data streams in order to perform the desired computation matches well VISSION'S dataflow
application model. The integration of the NUMLAB library in VISSION implied writing the
short metaclass descriptions for its few tenths of numerical components. As no modification
of the NUMLAB code was necessary, its integration in VISSION took only a few hours of vvork.
Once all the NUMLAB components were integrated into VISSION, constructing numerical
applications and providing interactive computational steering and visualisation was easily
achieved by using VISSION'S visual network construction and end user interaction facilities
described in chapter ?? We shall illustrate the above with the Navier-Stokes problem
discussed in the previous section.
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Figure 1: a) Navier-Stokes simulation built with NUMLAB components. b) User interface
for the grid generator module

5.1 Navier-Stokes simulation construction

As outlilled previously, numerical applications built with the NUMLAB components are actu­
ally VISSION dataflow networks. Figure 1 a shows such a network built for the Navier-Stokes
problem discussed in the previous section. The modules in the Navier-Stokes computational
network ill Fig. 1 are arranged in five groups. The functionality of these groups is explained
in the following.

5.1.1 Computational Domain

The first group contains modules which define the geometry of the computational domain.
This basically contains modules that accomplish three functions:

1. ddilliticlll of the computational domain's contour.

2. definition of the reference geometric element.

3. mesh generation

In our example, the computational domain is a rectangular region whose boundary is defined
by the GeometryContourUnitSquareStandard module. This module allows the specification
of the rectangle's sizes, as well as a distribution of mesh points on the contour. Next, the
GeometryGridUniformTriangle module produces a meshing of the rectangle into triangles.
The reference triangle geometry is given by the GeometryReferenceTriangle. The mesh
produced by the GeometryGridliniforrnTriangle module conforms both to the reference
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element supplied as input and to the boundary points output by the GeometryContourUnit­
SquareStandard module. Different combinations of contour definitions, mesh generators,
and reference elements are easily achieved by using different modules. In this way, 2D and
3D regular and unstructured meshes of various element types such as triangles, quadrilaterals,
hexahedra, or tetrahedra can be produced. The produced mesh can be directly visualised or
further used to define a computational problem~

5.1.2 Function Space

The second group contains modules that define the function space V over the computational
domain~ The modules in this group perform two functions:

1. definiton of a set of basis functions Vi that span V.

2. definition of V from the basis functions and the discretised computational domain.

The first task is done by the SpaceReferenceTriangleLinear and SpaceReferenceTriangle­
Quadratic modules, which define linear, respectively quadratic basis functions on the ge­
ometric triangles. The functions are next input into the Space module, which has already
been discussed in the previous sections. The support of the basis functions is defined by the
computational domain's discretisation which is also input into Space. In our case, Space uses
the quadratic basis function module twice and the linear basis function module once, as the
2D Navier-Stokes problem has two velocity components to be approximated quadratically
and one linearly approximated pressure component.
An important advantage of the design of NUMLAB is the orthogonal combination of basis
functions and geometric grids. Several other (e.g. higher order) basis function modules are
provided as well,' defined on different geometric elements. By combining them as inputs to
the Space module, one can easily define a large range of approximation spaces for various
computational problems. In the case of a diffusion PDE solved on a grid of quadrilaterals,
for example, one would use a single SpaceReferenceQuadLinear basis function input to the
Space module.

5.1.3 Operators and solvers

The third group contains modules that define the function F for which the equation F(x) =
o is to be solved, as well as the solution method to be used. This group contains thus
specialisations of the Operator and Solver modules described in the previous sections.
In our example, the discrete formulation of (23) discussed -in the previous section is'imple­
mented by the OperatorlmplementationFiniteElementNavierStokes module. The static
Navier-Stokes problem is then solved by a Newton solver implemented by the Operator­
IteratorNonLinearNewtonDamped module. The linear system output by the Newton mod­
ule is then solved by a conjugate gradient solver implemented by the OperatorIterator­
LinearCGS module. The solution is accelerated by using an incomplete LV preconditioner
OperatorlteratorLinearILU which is passed as input to the conjugate gradient, solver.
Other problems can be readily modelled by choosing other operator implementations. Sim­
ilarly, to use another solution or preconditioning method, a chain of Solver specialisations
can be constructed. As solvers have an input of the same Solver type, complex solution
algorithms can be built on the fly.
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5.1.4 Functions

The fourth group contains specialisations of the Function module. These model both the
solution of a numerical problem as well as its initial conditions or other involved quantities
such as material properties. In our example, the FunctionVector module holds both the
velocity and pressure solution of the Navier-Stokes equation. The solution is updated at
every iteration, as this module is connected to the solver module's output. As explained in
the previous sections, a function is associated with a space. This is seen in the Function's
input eOlmection to the Space module.
The solution of the problem is initialised by connecting the FunctionSymbolicBubble mod­
ule to the FunctionVector's input. When the user changes the initial solution value, by
changing an input of the FunctionSymbolicBubble signal or by replacing it with another
function, the network restarts the computations from this new value.

5.1.5 Scientific Visualisation

As presented in section 1, a computational environment should provide a large range of
facilities for data visualisation and monitoring. Such facilities should cover the following:

• sevrTal dataset r-epr-esentations, such as structured, unstructured, curvilinear, rectilin­
ear, and uniform grids, with several types of values defined per node or per cell (scalar,
wct.or, tensor, colour, etc). Support for image datasets should be provided as well.
Besides these discrete datasets, the possibility of defining continuous datasets (e.g.
implicit functions) should also be taken into account.

• several dataset pr-ocessing tools, such as dataset readers and writers for various data
formats, filters producing streamlines, streamribbons, isosurfaces, warp planes, slices,
dataset simplifications, feature extraction, and so on. Imaging operations should also
be supported, such as image filtering, Fourier transforms, image segmentation, colour
processing, etc.

• several visualisation pr-imitives, such as 2D and 3D rendering or objects with various
shading models, mapping scalars to colors via various colourmaps, direct manipulation
of the viewed objects, interactive data probing and object picking, hard copy options,
animation creation, and so on.

A second requirement is that the visualisation tools should be open for extension or cus-
.tomisation, as researchers often need to extend, adapt, optimise, or experiment otherwise
with various visualisation algorithms and data structures.
\iVriting such a library is clearly a task out of the scope of a single person. Moreover,
such librnries exist, offering various degrees of application domain specificity and numbers of
components. In order to provide NUMLAB with the desired visualisation capabilities, we have
integrated the Visualization Toolkit (shortly VTK) [23] library into the VISSION envi~onment.

VTK is one of the most powerful freely available scientific visualisation libraries;'~ith;over
400 components for scalar, vector, and tensor visualisation, imaging, volume rendering,
charting, and more. Similarly to NUMLAB, VTK is implemented as a set of C++ classes
that specialise a few basic concepts such as datasets, filters, mappers, actors, viewers, and
data readers and writers.
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The last group of modules provides visualisation facilities to the computational network. The
main module in here is the FunctionVTKViewer meta-group which takes as input the current
solution of the Navier-Stokes equation and the grid upon which it is defined. In our exam­
ple, the FunctionVTKViewer module inputs the velocity and pressure solution components
into various visualisation methods, such as stream lines and hedgehogs for the vectorial,
respectively color plots and isolines for the scalar component. Several other visualisation
methods can be easily attached to the Navier-Stokes simulation, by editing the contents of
the FunctionVTKViewer meta-group. Keeping the visualisation back-end pipeline inside a
single meta-group allows a natural separation of the computational network from the post­
processing operations. This also helps to reduce the overall network visual complexity.

5.2 Navier-Stokes simulation steering and monitoring

Once the Navier-Stokes computational network is constructed, one can start an interactive
simulation by changing the parameters of the various modules involved, such as mesh re­
finement, solver tolerance, or initial solution value. All the numerical parameters, as well
as the parameters of the visualisation back-end are accessible via the module interactors
automatically created by VISSION (Fig. 1 b).
Moreover, the evolution of the intermediate solutions produced by the Newton solver can be
interactively visualised. This is achieved by constructing a loop which connects the output
of the OperatorlteratorNonLinearNewtonDamped module to its input. The module will
then change the FunctionVector, and thus the visualisation pipeline downstream of it, at
every iteration. This allows one to interactively monitor the improvement of the solution
at a given time step, and eventually change other parameters to experiment new solvers or
preconditioners.
Figure 2 shows a snapshot from an interactive Navier-Stokes simulation. The simulation
domain, shown meshed in Fig. 2 a, consists of a 2D rectangular vessel with an inflow and
an outflow. The inflow and outflow have both parabolic essential boundary conditions on
the fluid velocity. The sharp obstacle placed in the middle of the container can be inter­
actively manipulated by the end user by dragging its tip with the mouse anywhere inside
the vessel. Once the obstacle's shape is changed, the NUMLABnetwork re-meshes the new
domain, recomputes the stationary solution for the Navier-Stokes simulation defined on this
new domain, and displays the velocity solution (Fig. 2 b). Various other parameters, such
as fluid viscosity, mesh refinement, and solver accuracy, can also be interactively controlled.
The computational steering of the above problem proceeds at near-interactive rates. Con­
sequently, such NUMLAB setups can be used for quick, interactive testing of the robustness
and accuracy of various solvers, preconditioners, and mesh generators. For example,one can·
test the speed and robustness of an iterative solver for different combinations of obstacle size
and shape, mesh coarseness, and fluid viscosity for the above problem.
NUMLAB can also be used for solving large computationaLproblems. In the following exam­
ple, glass pressing in the industry is considered. The process of moulding a hot glass blob
pressed by a parison is simulated. The glass is modelled as a viscous fluid, subjected to the
Navier-Stokes equations. The pressing simulation is a time-dependent process, where the size
and shape of the computational domain is changed at every step, after which the stationary
Navier-Stokes equations are solved on the new domain. The flow equations can be solved on
a two-dimensional cross-section in the glass, since the real 3D domain is axisymmetric.
The simulation is analogous in many respects to the one previosuly presented. However,
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Figure 2: Interactive Navier-Stokes simulation: mesh (a) and velocity solution (b)

a mesh in the glass' pressing simulation involves tenths of thousands of finite elements,
whereas the previous example used only a few hundreds. Consequently, the latter simulation
can not be steered interactively. However, all computational parameters of the involved
NUMLAB network can be interactively controlled at the beginning of the process, or between
computation steps. Figure 3 shows several results of the glass pressing simulation. The first
row depicts several snapshots of the 3D geometry of the moulded glass, reconstructed and
realistically rendered in NUMLAB from the 2D computational domain. The second row in
Fig. 3 shows fluid pressure snapshots taken during the 2D numerical simulation. The output
of the, sc NumLab visualisation pipeline can be connected to an MPEG movie creation
module. In this way, one can produce movies of the time-dependent simulation which can
be visualised outside the VISSION environment as well.
The above has presented two computational applications built with the NUMLAB library in
the VISSION system. However different in terms of interactivity, computational complexity,
and visualisation needs, these applications illustrate well the smooth integration of numerics,
user interaction, and on-line visualisation that is achieved by embedding the NUMLAB library
in the VISSION environment.

6 Conclusions

For numerical simulations, the numerical laboratory NUMLAB offers high level interactive
application design and use with VISSION, low level extensions - in all C-link compatible
la,ngllages - and communication (Matlab, Mathematica). Thus, it avoids the critical software
environment limitations mentioned in the introduction: The end-user is offered seemlessly
integrated numerical exploration and visualisation, the application designer can use the
interactive programming environment VISSION and component developers can link against
canned software in most languages, and even call back on Matlab and Mathematica, both
compiled and interpreted. Furthermore, due to the factoring out of a few fundamental
mathematical notions - all iterative solution methods, all preconditioners, all time steppers
etc., are instance of approximate evaluations X(k+l) = F(X(k)) - only a few fundamental
concepts exist: Vectors x, spaces V, and operators F on such spaces. "
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Figure 3: 3D visualisation of glass pressing (top row). Pressure magnitude in'2DcI'oss-section
(bottom row)
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