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Abstract

We show how to compute exact cumulants of two�sample linear rank statistics� In order to ap�

proximate tail�probabilities of these statistics� we consider Edgeworth expansions using these

exact cumulants instead of asymptotic cumulants� Finally� we use exact tail�probabilities to
show that in several cases Edgeworth expansions with exact cumulants provides a signi�cantly

better approximation than other existing methods�

Keywords Two�sample linear rank tests� Edgeworth expansions� generating functions� exact
cumulants� computer algebra�

� Introduction

Several authors have considered Edgeworth expansions of two�sample linear rank statistics in
order to obtain an approximation formula for tail�probabilities of these statistics under the null�
hypothesis� We refer to ��� and ��� in which uniformly valid expansions and conditions for two�
sample linear rank statistics were obtained� In ��� certain alternative hypotheses are also discussed�
In �	� the authors obtain explicit asymptotic expansions for the Klotz� Van der Waerden and
Wilcoxon type statistics� after verifying that the assumptions in ��� are ful
lled� They compare tail�
probabilities resulting from the Edgeworth expansion and from the standard normal approximation
with exact tail�probabilities� They conclude that the Edgeworth approximations are clearly omly
an improvement of the normal approximation for the Klotz test at the �� level of signi
cance�
These authors use approximation formulas for the cumulants� Therefore� we hope to improve
the approximations by using the exact cumulants of the test statistics� For one special case� the
Wilcoxon statistic� this was done before in ���
Closed formulas for higher moments and cumulants were derived for this statistic �see ���� as
well as for the Freund�Ansari�Bradley statistic �see ������ These statistics have one�dimensional
probability generating functions and these generating functions are used to 
nd closed formulas�
No one�dimensional probability generating function is known for arbitrary two�sample linear rank
statistics� However� there exists a two�dimensional generating function for arbitrary two�sample
linear rank statistics� We use this to for computing exact cumulants� Because of the required
symbolic computations we implemented the method in the computer algebra system Mathematica�
We refer to ��� for a survey of computer algebra in statistics�

We compare various methods for computing tail�probabilities �exact� Edgeworth approximation
with exact cumulants� Edgeworth approximation with approximated cumulants and standard nor�

�



mal approximation� on the base of accuracy and computing time� This results in recommendations
concerning which approximation is suitable for which cases of sample sizes and test statistics�

� Generating function

Suppose two independent random samples X�� � � � � Xm and Y�� � � � � Yn with distribution functions
F and G� respectively� are given� We de
ne a general two�sample linear rank statistic�

Tm�n �
NX
i��

a�i�Zi� ���

where a � f�� � � � � Ng � R is said to be a rank score function� N � m � n� Zi � � if the ith score
is assigned to an X�observation and Zi � � otherwise� Note that we do not exclude the possibility
of the presence of ties� Let HTm�n�x� y� be the two�dimensional probability generating function of
Tm�n with respect to the sample size m and the value of the test statistic t� so

HTm�n�x� y� �
NX

m��

X
t

Pr�Tm�n � t�xtym �

It is known that under H�

HTm�n�x� y� � ��

�
N

m

� NY
i��

�� � xa�i� y�� �	�

This formula was already known to Euler �see ���� in the context of generating the frequencies of
all outcomes of the sum of m integers that form a subset of N integers� It is rediscovered in ����
where it is derived under the unnecessary assumption that the scores are nonnegative integers� In
fact� �	� holds for any set of real scores�

� Exact cumulants

In this section we show how to compute exact cumulants of Tm�n� We recall that cumulants are the
coe�cients in the cumulant generating function which is the logarithm of the moment generating
function� We use these cumulants for the Edgeworth expansions in the next section� The method
is very suitable for implementation in a computer algebra package like Mathematica� because it
involves symbolic computation�

The 
rst step is to compute the factorial moments of Tm�n� We extend the method used in ���
for computing �factorial� moments with the one�dimensional probability generating function of
the Wilcoxon statistic to our two�dimensional case� The coe�cient of ym in HTm�n�x� y�� denoted
by HTm�n�x� y��y

m�� is obviously the one�dimensional probability generating function of Tm�n�
Elementary properties of ordinary probability generating functions yield

E�
kY
i��

Tm�n � i� �
� dk

dxk
HTm�n�x� y��y

m�
����

x��
�
� dk

dxk
HTm�n�x� y�

���
x��

�
�ym�� ���

Since HTm�n�x� y� has a product form it is convenient to use its logarithm for computing derivatives
in an e�cient way� Therefore� we de
ne

LTm�n �x� y� � log
�
HTm�n�x� y�

�
� ���

Then�

d

dx
HTm�n�x� y� � HTm�n�x� y�

d

dx
LTm�n�x� y�� ���

	



With ��� we express any derivative of HTm�n�x� y� in terms of HTm�n�x� y� and derivatives of
LTm�n�x� y� by repeatedly using the product rule for di�erentation and eliminating lower deriva�
tives of HTm�n�x� y�� It is now fairly simple to compute the kth factorial moment� 
nd the 
rst
k derivatives of LTm�n�x� y�� substitute x � � into these derivatives and into HTm�n�x� y� and sub�
stitute the results into the expression for the kth derivative of HTm�n�x� y�� Finally� expand the
resulting polynomial in y and take the coe�cient of ym which is the desired result�

From the factorial moments we compute the ordinary moments of Tm�n� Let S��k� ��� k � �� � �
�� � � � � k denote the Stirling numbers of the second kind� then �see ���� p� ����

E�T k
m�n� �

kX
���

S��k� ��E�
�Y

i��

Tm�n � i�� ��

The last step is to get from the moments to the cumulants� Using the fact that the cumulant
generating function is the logarithm of the moment generating function we are able to express the
kth cumulant as a linear combination of the 
rst k moments as in ��� p� �	��

� Edgeworth expansions

We use the fourth and sixth order Edgeworth approximation based on the formula in ��� p� �����
The 
rst one is the most common one� We denote the ith exact cumulant by �i� Its value depends
on the set of rank scores and the sample sizes m and n� The Edgeworth expansion formulas are

Gm�n�x� � ��y� � ��y�

�
��

H��y� �

��
	�
H��y� �

���
�	
H	�y�

�

�Gm�n�x� � ��y� � ��y�

�
��

H��y� �

��
	�
H��y� �

�	
�	�

H��y� �
����� � �


�	�
H	�y�

�
�

���

where y is the standardized value of x� � is the standard normal c�d�f�� � is the standard normal
p�d�f� and Hi�y� are the Hermite polynomials which are orthogonal to �� so

H��y� � y� � �� H��y� � y� � �y� H��y� � y� � y� � �� H	�y� � y	 � ��y� � ��y�

� Criteria for utility

Each method for computing tail�probabilities under the null�hypothesis should be judged on the
following two criteria

�� the accuracy of that method

	� the computing time that is needed using that method

The 
rst criterion is of course best satis
ed by exact methods �see ��� or ��	��� however they are
often very time consuming for larger sample sizes� Howmuch computing time is needed depends on
the rank scores� If one uses scores that are in general non�rational �e�g� normal scores�� computing
times increase quickly when the total sample size N grows� For rational scores �e�g� Wilcoxon and
Mood scores� the e�ect is less dramatic� We roughly found that� using a Pentium 	�� Mhz PC�
the exact methods are practically too time consuming for N � �� in the case of rational scores
and for N � 	� in the case of non�rational scores�

The computing time criterion is best satis
ed by the Edgeworth expansion with approximated cu�
mulants� because this method provides explicit formulas for the cumulants and tail�probabilities�
From the previous sections we conclude that the computing time needed by the Edgeworth ex�
pansion with exact cumulants is basically determined by the computing time needed to compute

�



 � � � 	 �
A � � � � � 	�
B � � � 	 � ��
C � � � � 	 �

Table �� The tie structures used for the Wilcoxon statistic

the factorial moments� because the rest of the computations is handled with explicit formulas�
Since Mathematica deals very well with the di�erentiation of LTm�n�x� y� and the expansion of the
expression in y� we found that the Edgeworth expansion with exact cumulants uses less than one
minute computing time on a Pentium 	��Mhz PC for N � ���� Therefore� it is useful to compare
the two Edgeworth expansion methods on the 
rst criterion�

� Finite sample achievements

To 
nd out whether the formulas in ��� are an improvement with respect to criterion �� upon
existing approximations we compare the various approximations with the exact probabilities for
values of the sample sizes for which exact computations can be executed within reasonable time�
We perform the comparisons for four commonly used test statistics� the Van der Waerden statistic�
the Mood statistic� the Klotz statistic and the Wilcoxon statistic with tied scores� We refer to ��
for the results on the Wilcoxon statistic with untied scores� We computed exact critical values and
tail�probabilities of the test statistics �see ��� or ��	�� for signi
cance levels 	 � �� and 	 � ��
and for various sample sizes� For these critical values we compute approximate tail�probabilities
with the approximation formulas� The absolute value of the di�erence between the approximated
and the exact tail�probability is a measure of the accuracy of the approximation method for the
concerning signi
cance level� sample sizes and test statistic� Therefore� we consider the average
deviations over the various samples as a measure of correctness of the approximation method for
that signi
cance level and test statistic�

For the Van der Waerden� Mood and Klotz test statistics we compared our approximationwith the
standard normal approximation and with the approximation based on the Edgeworth expansions
as in ��� and �	�� For the Wilcoxon statistic with ties we compared our method with the standard
normal approximation� The results are in the tables except for the Van der Waerden statistic� For
this statistic we found that all approximations based on Edgeworth expansion are very good and
they are only slightly better than the standard normal approximation�

One should read the tables as follows� For each pair m and N � m � n the exact critical values
c� are given for the left signi
cance levels 	 � �� and 	 � �� and� below these� for the right
signi
cance levels 	 � �� and 	 � ��� The critical values are followed by the exact left and
right tail�probabilities� the approximations based on the Edgeworth expansion with approximate
cumulants �Fm�n�� the approximations based on the fourth order Edgeworth expansion with exact
cumulants �Gm�n�� the approximations based on the sixth order Edgeworth expansion with exact

cumulants � �Gm�n� and the standard normal approximations ���� For practical reasons all these
tail�probabilities are given in percentages� For the Wilcoxon statistic with ties we dealt with three
cases A� B and C as given in Table �� The integers in the top row are tie sizes� the other integers
are the number of ties for the relevant tie structure of the size given in the relevant column�

� Conclusion

For the Klotz statistic we conclude from Tables 	 and � that the approximations based on Edge�
worth expansions with exact cumulants are a de
nite improvement on the two other approxima�
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tions for the 	 � �� levels� This true for all considered pairs of sample sizes� The approximation
�Gm�n is slightly better than Gm�n in these cases� For 	 � ��� left� the approximations based on
Edgeworth expansions perform approximately equally well and perform better than the standard
normal approximation� For 	 � ��� right� Gm�n is the best on the average and for almost all pairs
of sample sizes�
For the Mood statistic we reach the same conclusion for the 	 � �� levels� although the im�
provement with regard to the existing approximations is less dramatic for the right critical value�
For 	 � �� the approximations based on Edgeworth expansions perform approximately equally
well and better than the standard normal approximation� The improvement with regard to the
standard normal approximation for the Wilcoxon test with ties is small�

In general we observe a signi
cant improvement for the 	 � �� levels when we use �Gm�n or Gm�n

instead of Fm�n or �� For the 	 � �� level we found one case in which �Gm�n performs clearly
better than the other approximations�
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Table �� Klotz� absolute average deviations from exact probabilities
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