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Abstract 
We consider a storage model that can be either interpreted as a cer

tain queueing model with dependence between a service request and 
the subsequent interarrival time, or as a fluid production/inventory 
model with a two-state random environment. We establish a direct 
link between the workload distributions· of the queueing model and 
the production/inventory model, and we present a detailed analysis of 
the workload and waiting time process of the queueing system. 
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1 Introduction 

In this paper we consider a storage model that can be interpreted either as a 
certain queueing model with dependence between a service request and the 
subsequent interarrival time, or as a fluid production/inventory model with 
a two-state random environment. The two models are directly related in the 
sense that the steady-state law of the workload in the queueing interpretation 
can be expressed in terms of the steady-state law of the buffer content in the 
fluid interpretation. As a stochastic model, the fluid interpretation may be 
more natural than the queueing one; however, the queueing interpretation 
enables to locate the problem in the general setting of queueing models, and 
to use well-established tools and results from queueing theory for the solution. 

Under the fluid interpretation, we consider a manufacturing problem in
corporating machine reliability and maintenance. We assume that items are 
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produced continuously and uniformly by a single machine that is subject to 
breakdown. During a machine ON time, there is a deterministic net flow 
into the inventory buffer at rate Q' > 0, where Q' is the production rate minus 
the demand rate. If a failure occurs before some time T has elapsed, then a 
machine repair operation will start; this results in an OFF period of type O. 
However, if a failure does not occur before T, then the controller stops pro
duction to initiate a preventive maintenance action; this results in an OFF 
period of type 1. During an OFF period of either type 0 or type 1, there is a 
deterministic demand generating a linear outflow from the inventory buffer 
at a constant rate that, w.l.o.g., is taken to be 1. It is assumed that negative 
inventory is not allowed, so there is no outflow whenever the buffer is empty. 

Perry and Posner [13] have studied the special case in which the thresh
old T is a constant and the OFF periods of both types are exponentially 
distributed. Their analysis is based on the fact (cf. Kella and Whitt [9]) 
that the conditional steady-state buffer content distribution, given that it is 
positive, is independent of the inflow rate Q'. Obviously, the validity of this 
fact holds for the more general case - to be considered in the present paper 
- in which the threshold T is a generally distributed random variable. By 
setting Q' 00, we generate a sample path in which ON periods are deleted 
and are represented by upward jumps, while the OFF periods are being glued 
together. 

This brings us to the above-mentioned queueing interpretation, as the 
resulting process can be interpreted as the workload process of the follow
ing queueing model. Customers arrive with a service request at a single 
server. Service requests of successive customers are independent, identically 
distributed random variables Bi , i = 1,2, .... Upon arrival, the service re
quest is registered. If the service request is less than a threshold Ti , then 
the next interarrival interval is exponentially distributed with rate AO (this 
corresponds to an 0 FF period of type 0); otherwise, the service time be
comes exactly equal to Ti (is cut off at Ti ), and the next interarrival interval 
is exponentially distributed with rate A1. 

In this paper we concentrate On the queueing interpretation. We present 
a detailed analysis of the joint distribution of workload and 'state of the 
arrival process', as well as of the waiting time distribution. We refer to 
Kella and \Vhitt [9] for a discussion of the equivalence relation between the 
workload process of the G I / G /1 queue and the buffer content process of a 
fluid model with linear flow and a two-state random environment. See [8] 
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for an extension to the case of non-linear flow, and [3] for several equivalence 
relationships in the case of a three-state random environment. For related 
work on production and manufacturing fluid models, in which equivalence 
relations with queueing models are studied, we refer to Meyer, Rothkopf and 
Smith [11, 12], Chen and Yao [4], and Vanneste and Van der Duyn Schouten 
[15]. 

According to the original production/inventory interpretation, our model 
is motivated as a replacement model with preventive maintenance. For a 
detailed survey on replacement policies and preventive maintenance we refer 
to Beichelt [1] and Voldes-Flores and Feldman [16]. 
According to the queueing interpretation, our model is a correlated single 
server queue with Markov arrivals. There are quite a few studies on single 
server queues in which the service time of a customer depends on the previous 
interarrival time; see, e.g., Borst et al. [2] that also contains an extensive list 
of references. But in the present case, as in [13] mentioned above, it is the 
interarrival time that depends on the service request of the previous arrival. 
In principle, this kind of dependence is allowed in the Lindley approach to 
the waiting time process in the G/G/l queue (see Cohen [6], Section 11.6.3). 
However, the resulting Wiener-Hopf decomposition in general does not yield 
a very explicit solution - whereas in the present case such an explicit solution 
is indeed obtained. See Cidon et al. [5] for a detailed analysis of a .; M /1 
queue in which the interarrival time depends linearly on the service time of 
the previous customer. 

The paper is organized as follows. In Section 2 we present the queueing 
model in detail. The workload process is analysed in Section 3, and the 
waiting time process in Section 4. Section 5 contains conclusions and some 
suggestions for further research. 

2 Model formulation 

We consider the following queueing model. Customers arrive with a service 
request at a single server. Service requests of successive customers are inde
pendent, identically distributed (i.i.d.) random variables Bi , i = 1,2, ... with 
distribution B(·), mean (3 and Laplace-Stieltjes transform (LST) (3(.). Upon 
arrival, the service request is registered. If the service request Bi is less than 
a threshold Ti , then the next interarrival interval is exponentially distributed 
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with rate Ao; otherwise, the service time becomes exactly equal to Ti (is cut 
off at Ti ), and the next interarrival interval is exponentially distributed with 
rate AI. 

Perry and Posner [13] have studied this model in the case of a determin
istic threshold T. In the production/inventory application that motivated 
their study, the threshold is not necessarily deterministic. In the present 
study, we assume the threshold Ti to be i.i.d. random variables with general 
distribution T(·) that has mean 7 and LST 7('), In the sequel, B (T) shall 
denote a generic service request (threshold) with distribution B(·) (T(·)). It 
will turn out that a detailed analysis of the steady-state workload process, 
and of the waiting time, is possible. The workload analysis will be provided 
in Section 3, and the waiting time analysis in Section 4. We close the present 
section with some useful additional notation, and two observations. Define, 
for Re s ;:::: 0: 

x(s) E[e-sB(B < T)] 1:0 e-SX(1- T(x))dB(x), (2.1) 

'IjJ(s) E[e-sT (T < B)] 1:0 e-
SX

(1 B(x ))dT(x). (2.2) 

Note that 
X(s) + 'IjJ(s) E[e-smin(B,T)]. 

It immediately follows that 

E[min(B, T)] -X'(O) - 'IjJ'(O). 

Our first observation concerns the ergodicity condition. This condition is 
simply that E[min(B, T)] is less than the mean interarrival time EA, where 
A denotes a generic interarrival time: 

-x'(O) 
1 1 

'IjJ'(O) < Ao X(O) + Al 'IjJ(O). (2.3) 

For the waiting time, this follows immediately from Lindley's theorem for the 
ordinary single server queue ([10], d. also [6], Section IL1.3), as this theorem 
applies even if an interarrival time depends on the previous service time. 

Our second observation is, that interarrival times are negatively (posi
tively) correlated with the previous service request if Al > «)Ao, as one 
would expect: 

E[BA] = ~+ C1 
,10 )X'(O), 

Al Al A 
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and 

EBEA 
1 1 

,8[ Ao X(O) + Al ~(O)] 
1 1 1 

,8[- + (- - -)X(O)], 
Al Ao Al 

and hence 

cov(B, A) = (:1 :0 )(X(O),8 + X'(O)). (2.4) 

The result follows since X(O),8 + X'(O) = P{B < tHEB - E(BIB < T]] > O. 

3 The workload process 

For the queueing model described in the previous section, consider the stochas
tic process ((V(t), J(t)); t ~ 0), with V(t) denoting the workload at time t 
and J(t) denoting the status of the interarrival interval at time t: J{t) = i 
if the interarrival interval is exponentially distributed with rate Ai, i = 0,1. 
Note that the above stochastic process is a Markov process. We assume that 
the ergodicity condition (2.3) is satisfied. Consider the steady-state distri
bution 

Fi(X) := limt--+ooP{V(t) < x, J(t) = i}, x ~ 0, i = 0,1. (3.1) 

Using level crossing theory [7], or using the integro-differential method of 
T;i,kacs [14] (d. also [6], Section lI.4.5), we obtain for x > 0: 

dFo{x) 
dx = AoFo(x) AO 1:0 l::Y 

(1 T(b))dB(b)dFo{Y) 

Al 1:0 l::Y 

(1 - T(b))dB(b)dF1{y), (3.2) 

AO 1:01::Y

(1- B(z))dT(z)dFo(Y) 

Al 1:0 l::Y 

(1 B(z))dT(z)dF1{y). (3.3) 

Let 
(3.4) 
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It follows from (3.2) and (3.3) that, for Re s 2:: 0 (note that we assume that 
P(B > 0) = P(T > 0) 1; otherwise a minor change is required), 

cPo(s) - Fo(O+) = Ao cPo(s) - AO cPo(s) X(s) - Al cPl(S) X(s), 
8 S S 

cP1 (8) - F1 (0+ ) Al cPl (s) _ Ao cPo { s) ~(s) _ Al cPl (s) ~(8). 
S S 8 

Eliminating cPl ( 8) from these two equations, it follows that 

(3.5) 

or, for Re S 2:: 0: 

cPo(s )[8 >'0 + AoX( s) - Ao Al 
S 

X(8)~(S) 1 
Al+Al~(S) 

8Fo(0+ ) 
AIX( 8 )sF1(0+) 

(3.6) -
Al + Al~(sf 8 

Similarly, for Re 8 2:: 0: 

cPl (8 )[8 Al + Al ~(s) - AoA1 
s 

X(s)~(s) 1 
AO + AoX( s) 

sF1(0+) 
AO~( 8 )8Fo( 0+ ) 

(3.7) -
AO + AoX( s r 8 

After some calculations, in which s is factored out in numerator and denom
inator, we rewrite (3.6) and (3.7) into: For Re 8 2:: 0, 

cPo ( 8) - \ \ \ () \ o/,() \ \ l-x(s)-1P(s) ' 
S - AO - Al + AOX S + Al'P 8 + AOAI s 

(3.8) 

(3.9) 

Let us now determine the constants Fo(O+) and F1(0+). Obviously, we have 
the normalizing equation 

Fo ( 00 ) + Fl ( 00) = 1, (3.10) 

6 



I.e., 
(3.11 ) 

Substitution of s = 0 in (3.8) and (3.9) yields, after a straightforward calcu
lation: 

Ao1/1(O) + A1X(0) + AoAdx'(O) + 1/1'(0)] 
Ao1/1(O) + AIX(O) 

(3.12) 

Remark 3.1. Note that Fo(O+) + F1(0+) is positive iff the ergodicity 
condition (2.3) holds. In fact, dividing both numerator and denominator 
of the righthand side of (3.12) by AoAl shows that Fo(O+) + F1(0+) = 

1 E[min(B,T)]jEA. 

A second equation for Fo(O+) and FI(O+) is obtained by observing that 
the denominator of the righthand side of (3.8) (which coincides with the 
denominator of the righthand side of (3.9)) has exactly one zero in Re s > 0 
(we outline the proof in Remark 3.2 below). Call this zero 0". Since the 
LST's <Po ( s) and <PI (s) are analytic functions for Re s > 0, the numerators of 
the righthand sides of (3.8) and (3.9) must also be zero for s 0". In both 
cases, this yields the same relation between Fo(O+) and FI (0+) (the equality 
of these two relations is most easily seen by observing that the lefthand side 
of (3.6), and of (3.7), is zero for s 0"): 

Fo(O+ ) (3.13) 

This completes the determination of <pi(S), i 0,1. 

Remark 3.2. The fact that the denominator of the righthand side of (3.8), to 
be called h( s), has exactly one zero in Re s > 0 can be shown by application of 
Rouche's theorem to h(s). Write h(s) h1(S)+hz(s), with h1(S) := S-Ao-A1 
and h2( s) AoX( s) + Al 1/1 ( s) + AoA1 l-x(sl-1P(s). It is useful to observe that 

!~[~:2(1¥}1 is the LST of the residual service time, where service time is 
min( B, T). Take R to be a closed contour, consisting of the imaginary axis 
from -ir to +ir and a semi-circle in the right halfplane with radius rand 
origin 0; we'll let r ---+ 00. We observe that h1(S) and h2(S) are analytic 
inside R, and that hI (s) has exactly one zero inside R for r large enough. 
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On the boundary, 1 hI (s) 1 > I h2 (S) I. This is obviously true on the semi-circle; 
on the imaginary axis, one has Ihi (s) 1 ~ Ao + Al and 

1 h2 ( s) 1 ::; IAox(O) 1 + 1 Al ~(O) 1 + AOA1E[min{ B, T)] 
< AoX(O) + AI~(O) (AIX(O) + AO~(O)) = AO + >11, 

the last inequality following from the ergodicity condition (2.3). Rouche's 
theorem now implies that h(s) has for Re s > 0 just as many zeros as h1(S), 
viz., one zero. Note that, on the imaginary axis, s = 0 is a removable 
singularity. 

The unique zero 0' is real and lies between AO and AI' Indeed, substitution 
of s = AO and s Al in h(s) immediately shows that, since h(Ao) (Ao -
AI) X( Ao) and h( AI) = (AI - AO )~( AI): 

min(Ao, Ad ::; 0' ::; max(Ao, AI)' 

Remark 3.3. If the threshold is infinite, then ~(s) = 0 and X( s) = f3( s). 
It is not hard to check, using (3.9), that then F1 (O+) = 0 (e.g., by substi
tuting s 0'). SO <l>1(S) = 0, and 4>0(8) reduces to the Pollaczek-Khintchine 
expression sFo(O+)/(s - Ao + Aof3(S)). Hence the system now behaves like 
an MIG/1 queue with arrival rate AO and service time distribution B(·) - as 
it should. 

Summation of the two expressions (3.8) and (3.9) for 4>o(s) and 4>1(S) gives 
the LST of the distribution of steady-state workload V. We present this 
result, plus an expression for the mean workload, in the next theorem. Re
member that h(s) is the denominator of (3.8) and (3.9). 

Theorem 3.1. For Re s ~ 0, 

[s - Al + (AI - AO)~( s )]Fo(O+) + [s - AO + (AO - Adx( s )]F1(O+) . 
s - AO Al + AOX( s) + Al ~(s) + AOA1 l-X(S~-1f(s) , 

(3.14) 
E[V] = [1 + (AI - Ao)~'(O)]Fo(O+) + [1 + (AO - At)X'(0)]F1(O+) h'(O) 

h(O) + h(O)' 
(3.15) 

Remark 3.4. For Ao AI, it is easily checked that (3.14) reduces to the 
LST of the steady-state workload distribution in the MIG/1 queue with ar
rival rate AO = Al and service time LST X( s) + ~(s), which is the LST of 
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min(B,T). 
Note that one can easily express E[V] into the model parameters. For exam
ple, 

h(O) ->'0 - >'1 + >'oX(O) + >'1~(0) + >'O>'l E[min(B,T)] 

>'0>'1 [E[min(B, T)]- EA]. (3.16) 

Remark 3.5. As mentioned in the Introduction, the workload process of 
the queueing model and the content process of the production/inventory 
fluid model have the same conditional steady-state law, given that the pro
cesses are positive. It is also easy to see that both processes are regenerative 
processes. This enables one to express the steady-state law of each process in 
terms of the steady-state law of the other process. More specifically, let Fw (·) 
and Fo(·) denote the steady-state distributions of the workload process and 
the content process, respectively. Then 

Fw(x) = ?Tw + fox fw(y)dy, Fo(x) = ?To + fox fc(y)dy, (3.17) 

where ?Tw and ?To are the respective atoms at 0 of the workload and the 
content process, and fw(-) and fo(-) are the respective absolutely continuous 
densities. The fact that the conditional steady-state laws are the same simply 
says that for all x > 0: 

fw(x) 
1-?Tw 

fc(x) 
1 -?To 

Since both processes are regenerative, we have: 

?To = 

E[idle period] 

E[idle period] + E[busy period] , 

E[silence period] 

E[silence period] + E[activity period]' 

(3.18) 

where by 'idle period' and 'busy period' we mean that the queueing system 
is empty and not empty, respectively. Similarly, the 'silence period' and 
the 'activity period' are the time periods in which the production/inventory 
system is empty and not empty, respectively. 

By the construction of the workoad process from the content process, 

E[idle period] = E[silence period], 
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and (remember that 0: is the net inflow rate during machine 0 N times) 

(1 + o:)E[busy period] = E[activity period], 

so that 

fc(x) f ( )( ) E[idle period] + E[busy period] 
W x 1 +0:. . . . 

E[ldle perIod] (1 + o:)E[busy perIod] 
(3.19) 

4 The waiting time 

Let Wn denote the waiting time of the nth arriving customer, n = 1,2, .... In 
the present section we determine the steady-state waiting time distribution, 
by using a Wiener-Hopf approach. This is a classical approach for the GIG/l 
queue, d. Lindley [10]; see also Section 11.6.3 of [6J. A nice feature of the 
model under consideration is, that the Wiener-Hopf decomposition can be 
worked out in detail here, leading to quite explicit results. 

Starting-point is the following recurrence relation (below, [x]+ denotes 
max(O, x) and [x]- denotes min(O, x)): 

[~Vn + Bn A~~l]+ if Bn < Tn) 

[~Vn + Tn A~l~l]+ if Bn ~ Tn. ( 4.1) 

Here A~tl denotes an interarrival interval that is exponentially distributed 
with rate Ai, i = 0,1. Taking LST's and using the identity 

e-s[xj+ + 

we obtain for Re s = 0: 

E[e-SWn+1 ] 1 E[e-s[Wn+Bn-A~o~tl- (Bn < Tn)] 

E[e-s[Wn+Tn-A~l~lj- (Bn ~ Tn)] (4.2) 

+ E[e-s(Wn+Bn-A~oll)(Bn < Tn)] + E[e-S(Wn+Tn-A~~l)(Bn ~ Tn)]. 

Now we assume that the ergodicity condition (2.3) holds, and we restrict 
ourselves to the steady-state waiting time distribution. W shall denote a 

10 



random variable with this steady-state distribution. After a brief calculation, 
Formula (4.2) leads to the following identity: For Re 8 = 0, 

( 4.3) 

where 

(-(8) := 1 - E[e-s[W+B-A(O)]-(B < T)]- E[e- s[W+T-A(1)]-(B ~ T)]. 

Note that (- ( 8) is analytic in Re 8 ~ O. 
Remembering the definition of h( 8) in Remark 3.2 - note that h( 8) is the 

denominator of the righthand side of both (3.8) and (3.9) - we can rewrite 
(4.3) into: 

We now have the appropriate formulation for a Wiener-Hopf boundary value 
problem. The lefthand side of (4.4) is bounded and analytic in Re 8> 0, and 
the righthand side of (4.4) is bounded and analytic in Re 8 < 0, and both 
sides are equal on the boundary Re 8 = O. Note that 8 = 0 is a removable 
singularity of the right hand side. In view of the linear behaviour in 8 at 
infinity, Liouville's theorem implies that the lefthand side should equal a 
first-order polynomial, say a8 + b, for Re 8 ~ O. In fact the same holds for 
the righthand side in Re 8 ~ 0, but we are not interested in determining 
(- (8). Remembering that 8 = 0" is the only zero of h( 8) in Re 8 > 0, d. 
Remark 3.2, it follows that b = -aO". Substitution of 8 = 0 yields that 

h(0).1 = -aO", 

so (see (3.16)) 

a = >'0>'1 (EA - E[min(B, T)]). 
0" 

( 4.5) 

Finally we obtain the following expression for the LST of the steady-state 
waiting time distribution: 

Theorem 4.1. For Re 8 ~ 0, 

>'0(T>q (EA - E[min(B, T)])(8 - 0") 
( 4.6) 
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EliV 
-a h'(O) 

h(O) + h(O) 
1 h'(O) 
;- + h(O)" (4.7) 

Remark 4.1. Note that the steady-state distributions of V and W differ; 
although the arrivals occur at exponentially distributed intervals, PASTA 
does not hold. 

Remark 4.2. The LST's of V and W appear to be relatively simple functions 
of the LST's x( s) and 'lj;( s). The latter functions are easily expressed in the 
LST of T when service requests are exponentially qistributed, and in the 
LST of B when thresholds are exponentially distributed. In the former case, 

1 
X(s) = 'lj;(S) = T(S + 1/(3), Re S ~ 0, 

with T(') the LST of the threshold distribution; in the latter case, 

x(S) (3(8 + l/T), 
1-

'lj;(s) -
1 + TS 

with (3(.) the LST of the service request distribution. 

Re S ~ 0, 

5 Conclusions and suggestions for further re
search 

In this paper we have presented a detailed analysis of the workload and 
waiting time process of a queueing model with dependence between a service 
request and the subsequent interarrival time. We have also established a link 
between this model and a certain production/inventory model, that provided 
the initial motivation for the present study. 

We have taken exponentially distributed inter arrival intervals, with rate 
depending on the previous service request. It should be possible to extend 
the analysis of Sections 3 and 4 to the case of interarrival intervals with 
distributions that have a rational LST; d. the analysis of the Km/ G /1 queue 
in Section II.5.11 of [6]. For example, in (4.3) the terms )..d()..i - s) then have 
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to be replaced by more complicated quotients of polynomials, after which all 
the zeros of the resulting new function h( s) in Re s > 0 must be determined. 

The results of the present study might be used for optimization purposes. 
In the production/inventory version of the model, e.g., the goal could be to 
choose the production rate 1 + 0: such that some cost function is minimized. 
E.g., with respect to the choice of 0: there should be a trade-off between hold
ing costs (which are linear in the mean buffer content and then increasing in 
0:) and unsatisfied demand costs (which are linear in the probability 7rc of 
having an empty buffer, and then decreasing in 0:). 
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