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1. Introduction

For several decades such divergent areas as production planning, transportation, telecommu-
nication, and VLSI design have been an inexhaustible source of combinatorial optimization
problems. These problems are usually characterized by 2 finite set of solutions from which
the best solution with respect to a given objective function has to be found. The practical rel-
evance of many combinatorial optimization problems stimulates the search for good solution
methods. Unfortunately, most of these problems are NP-hard (cf. Garey and Johnson [16]).
This implies that it is generally considered to be very unlikely that efficient solution meth-
ods for such problems will ever be developed. As a consequence, a vast amount of research in
combinatorial optimization is devoted to the design of approximation algorithms that find rea-
sonably good solutions in an acceptable amount of time. Nevertheless, algorithms that always
provide the optimal solution but for which an efficient performance cannot be guaranteed, have
also proven to be of great use in tackling hard combinatorial optimization problems. An opti-
mization technique that has contributed to the successful solution of a large number of these
problems, as for example listed by Jiinger et al. [23] and Aardal and van Hoesel [1], is based
on polyhedral combinatorics. In Section 1.1 we present basic concepts and results from poly-
hedral theory and discuss how polyhedral techniques can be applied in order to solve problems
in the area of combinatorial optimization.

In this thesis we study the discrete lot-sizing and schedzezmg problem from a polyhedral
point of view. This problem is one of the many lot-sizing models, which have been classified
in arecent paper by Kuik et al. [24]. This paper also gives an extensive survey of the research
in this area. The usual setting for a lot-sizing problem is a production facility that can pro-
duce several different items. One has to determine at what time and in what amount the items
have to be produced in order to meet a given demand at minimum costs. Basic in lot-sizing
is the trade-off between the costs related to inventory and the costs incurred by adjusting the
facility for the production of a particular item. The typical features of the discrete lot-sizing
and scheduling problem will be discussed in Section 1.2. This section is further devoted to the
modeling of the problem and a review of earlier research on the subject.

An outline of the remainder of the thesis concludes this chapter.

1.1 Polyhedral combinatorics

In this section we will discuss how polyhedral methods can be applied to solve combinatorial
optimization problems. First some basic concepts and results from polyhedral theory are in-
troduced. For a detailed treatment of this subject, including proofs of the results stated here,
the reader is referred to Nemhauser and Wolsey [30] and Schrijver [39].



4 Introduction

For many combinatorial optimization problems, the solutions can be represented as n-dimen-
sional integral vectors x that satisfy a set of linear constraints and for which the objective func-
tion is linear in the variables x;, 1 < i < n. Such a problem can thus be formulated as

min{ex: Ax < b, x € Z"}, (1.1)

i.e., for given ¢, A, and b we have to find the integral vector x satisfying Ax < b with mini-
mum cost cx. Herec, A, and b are assumed to be integral. This formulation is called an integer
linear programming problem, or IP for short. If only a subset of the variables has to be inte-
gral, then the problem is called a mixed integer linear programming problem (MIP). In the
remainder we will only consider IPs, but the resuits hold for MIPs as well.

In this context an algorithm is said to be efficient if it solves every instance of a problem
to optimality in a number of steps that is polynomial in the size of the input. The NP-hardness
of most combinatorial optimization problems suggests that an efficient method for solving IPs
is not likely to be ever developed. The integrality constraints form the complicating factor.
If these constraints are omitted from the formulation, then the resulting problem is a linear
programming problem (LP), called the linear programming relaxation or LP-relaxation of the
IP under consideration. LPs are in general considerably easier than IPs, since they can be
solved in polynomial time.

In order to obtain a solution to the IP one can apply branch-and-bound. This is a gen-
eral implicit enumeration technique to solve combinatorial optimization problems. Here we
restrict ourselves to the description of a linear programming based branch-and-bound proce-
dure. In such a solution approach the original IP is partitioned into several subproblems by
adding linear constraints. For example, in case of binary variables two subproblems can be
created by fixing one variable to zero and one, respectively. For each subproblem we solve the
corresponding LP-relaxation. If the linear program is infeasible or if its solution is integral,
then the subproblem needs no further evaluation. Otherwise, a further refinement is made by
splitting the subproblem into new subproblems. Note that the LP-relaxation provides a lower
bound to the optimal value of the subproblem. If this lower bound is greater than or equal to
the value of the currently best solution to the original problem, then the subproblem can also
be discarded from further evaluation. Hence, in order to keep the number of subproblems that
has to be evaluated as small as possible, it is important that strong lower bounds can be com-
puted in an efficient way. Our efforts in applying polyhedral techniques are aimed at finding
a strong LP-formulation of the problem at hand that serves as a good starting point for the
branch-and-bound procedure, o

Basic in polyhedral combinatorics is the existence of a linear program min{cx : A'x < b’}
that solves the integer program (1.1). Before we state the two results from which this is an
immediate consequence, we first introduce some terminology. Let § = {x}, ..., x*} be a set
of vectors in R". The convex hull of §, denoted by conv(S), is the set {Y_r_, Aixi: 3% A;=1
and ; > O for all {}. The first result is that min{cx : x € 8} = min{cx : x € conv(S)} for any
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linear function c. Second, the convex hull of a finite number of points is a bounded polyhedron,
i.e., there exists a finite set of linear inequalities Ax < bsuch thatconv(S) = {x € R” : Ax < b}.
We say that Ax < b is a linear description of conv(S$).

From the aforementioned it follows that the combinatorial optimization problem (1.1} can
be solved by solving the linear programmin{cx : A’x < b}, where A’x < b’ is a linear descrip-
tion of the convex hull of the set of feasible solutions § = {x : Ax < b, x integral}. For most
problems, however, it is very hard to find a complete linear description of conv(S). One there-
fore usually restricts oneself to the derivation of one or more classes of valid inequalities for
the convex hull of S. These are inequalities that are satisfied by all elements of S. In partic-
ular, one is interested in the so-called facet-defining inequalities, which are necessary in the
linear description of conv(S). Before we explain the latter term, some more definitions are in-
troduced. Consider a polyhedron P == {x ¢ R” : Ax < b} and let ¢x < 8 be a valid inequality
for P. Theset F = {x € P:oax= f}iscalled aface of P and ax < fis said to define F. If F
is neither empty nor equal to P, then it is said to be a proper face of P. A vector x is called a
direction of P if there exist two different vectors x! and x? in P such that x = x! — x2. More-
over, a set of vectors x!, ... , x* is said to be linearly independent if Y+ | \;x' = 0 implies
that A; = 0 for all i. The dimension of a polyhedron P, denoted by dim(P), is defined as the
maximum number of linearly independent directions in P. If dim(P) = n, then P is said to
be fill-dimensional. This only occurs if there is no inequality that is satisfied at equality by
all x € P. Note that a face of a polyhedron is also a polyhedron. Now the facets of a poly-
hedron P are those faces F with dim(F) = dim(P) — 1. Together with the equalities that are
satisfied by all x € P, the facet-defining inequalities yield a linear description of P with as few
constraints as possible. In order to prove that a valid inequality ox < g for a polyhedron P
defines a facet, we proceed as follows. First, we have to show that there is a vector x° € P such
that @x® < 8. This is usually trivial and therefore not explicitly mentioned. Then we provide
dim(P) — 1 linearly independent directions x! — x2, where x! and x? are two different vectors
in P that satisfy the inequality at equality.

Suppose that for the integer program (1.1) a partial linear description of the convex hull of
the set of feasible solutions has been established. An explicit list of all inequalities, even when
restricted to those that are facet-defining, usually yields a linear program that is too large to be
handled by any LP-solver. However, in order to find the optimal solution to the IP, it suffices
to include only a small number of inequalities, namely, the facet-defining inequalities that are
satisfied at equality by this solution. This observation suggests the following procedure for
solving IPs:

1. Take the LP-relaxation min{cx : Ax < b} as the first linear program, Go to 2,
2. Solve the current LP and denote the optimal solution by £. If £ is integral,
then stop; otherwise go to 3.
3. Find a valid inequality that is violated by X. If no such inequality can be found,
then stop; otherwise add the inequality to the LP and go to 2,
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This is called a cutting plane algorithm, since the inequalities found in Step 2 cut off the current
LP-solution. The procedure of finding violated inequalities is called separation. A separation
algorithm for a class of valid inequalities is called exact if it always finds a violated inequality
in this class unless such an inequality does not exist. When no reasonably fast exact separation
procedure is known, one usually applies a heuristic method. Then it is not guaranteed that
there are no violated inequalities in the class at hand if the algorithm fails to find one.

The cutting plane algorithm terminates in one of the following two ways: either an inte-
gral solution is obtained in Step 2, or no violated inequality is identified in Step 3. In the first
case, we have found an optimal solution to the IP. In the latter case, X is fractional and ¢Xis a
lower bound to the optimal value of the IP. Then an optimal integral solation can be obtained
by applying branch-and-bound. In the branch-and-bound procedure one can try to improve
the lower bounds by subjecting the subproblems to the cutting plane procedure. The com-
bination of branch-and-bound and catting planes is called branch-and-cut. Apart from good
separation algorithms, the performance of a branch-and-cut algorithm depends on many other
aspects such as the definition of the subproblems and the availability of strong upper bounds.
Implementation issues in branch-and-cut algorithms are extensively discussed by Jiinger et al.
[23].

1.2 The discrete lot-sizing and scheduling problem

The main subject of our research is the discrete lot-sizing and scheduling problem, or DLSP
for short. This production planning problem is concerned with a single machine that can pro-
duce a number of different items. The planning horizon is partitioned into small periods in
each of which production occurs for at most one item. Furthermore, we assume an all-or-
nothing policy with respect to the production level in one period, i.e., the production is either
zero or at full capacity, which is defined as one unit of one item. This is often a reasonable
assumption in short-term production planning, when the time periods are small. The demand
for each item is dynamic and has to be satisfied without backlogging. In the first period of a
production batch a so-called startup cost is incurred for setting up the machine for the item
at hand. Since in multi-item problems startup costs usually arise when the machine switches
from the production of one item to the production of another item, these costs are also known
as changeover costs. Apart from startup costs, production and inventory costs have to be taken
into account. Now DLSP is the problem of determining a production schedule that satisfies
the given restrictions at minimum costs.

Startup costs are said to be sequence-independentif they only depend on the item for which
the machine is set up. DLSP with sequence-independent startup costs is studied in Chapters 2
and 3. Moreover, a startup is assumed not to affect the production capacity. This assumption
is reasonable, e.g., when the startups occur out of regular production hours. In Chapter 4 we
consider an extension of DLSP in which startups take up an integral number of production
periods.
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In practice planning problems will usually have more complicating features than the ones cap-
tured by DLSP. Nevertheless, the study of these simplified models is a valuable aid in the solu-
tion of more realistic problems. Case-studies of production planning systems in which DLSP
appears as a subproblem are presented by Van Wassenhove and Vanderhenst [40] and de Lange
[25]. In the first paper only single-item problems have to be solved, whereas de Lange con-
siders DLSP with sequence-dependent startup times. Moreover, Fleischmann [14] shows how
DLSP can be used as an approximation for a capacitated lot-sizing problem with larger time
periods in which production can occur for-more than one item. ;

From the NP-hardness of DLSP (cf. Chapter 3) it follows that ore should not strive for
a polynomial-time solution procedure. Salomon [35] presents a dynamic programming algo-
rithm for solving DLSP with sequence-independent costs. The running time of this algorithm
is O(M”fﬂfi 1 Di), where M denotes the number of items, T the number of periods, and D;
the total demand for item {. Thus, when the number of items is fixed the problem can be solved
in polynomial time. In particular, the single-item DLSP can be solved in O(T D) time, where
D denotes the total demand. For special cost functions faster algonthms are developed by van
Hoesel [18] (see also [21]).

The dynamic programming algorithm for the single-item DLSP plays an important role
in two other approaches to DLSP with sequence-independent startup costs, namely, by La-
grangean relaxation (Fleischmann [14]) and column generation (Cattrysse et al. [7]). An out-
line of both solution methods will be given in Chapter 3. The latter approach was in fact
primarily developed for DLSP with sequence-independent startup times. In order to handle
sequence-dependent startup costs Fleischmann {15] reformulates DLSP as a traveling sales-
man problem with additional time constraints and proposes a solution procedure in which
lower bounds are obtained by Lagrangean relaxation. We return to this reformulation at the
end of the section. Solution methods for DLSP with sequence-dependent startup times are dis-
cussed in recent papers by Salomon et al. [37] and Jordan and Drexl [22]. The former authors
present an approach based on dynamic programming, whereas Jordan and Drexl transform the
problem into a batch sequencing problem which is solved by a branch-and-bound algorithm.

The remainder of this section is mainly devoted to DLSP with sequence-independent startup
costs. First an integer linear programming formulation of the problem is discussed. Then we
will review polyhedral results that are obtained for DLSP and some generalizations. For a
comprehensive survey of results for lot-sizing problems in the area of polyhedral combina-
torics we refer to Pochet and Wolsey [33]. ‘

Let T denote the number of periods and let M denote the number of items. The demand for
item i in period ¢ is denoted by . Since at most one unit of one item is produced per period,
we assume without loss of generality thatd’ € {0, 1) for all i and ¢, Furthermore, let p denote
the cost for producing item { in period £, ki the cost of holding one unit of item i in stock at the
end of period £, and £} the startup cost that is incurred when the machine is set up in period ¢
for the production of item i.

The problem can be mathematically formulated using two types of binary variables: xi,
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which indicates whether production occurs for item i in period £ or not, and yi, which takes
the value one if a startup occurs for item { in period 7 and zero otherwise. For notational con-
venience we write x;, , instead of Y, xi, di , instead of 37, d, etc. If M = 1, then the
superscript i will be omitted.

We assume that initial inventories are zero. Consequently, the inventory of item { at the end
of period 1 equals the total production of item { up to period £ minus the total demand of item i
up to this period. Hence, the inventory costs for item i can be expressed as 3, hixi , —di ).
Define ¢; = pi+ hi 7z and H' = — Y,_, kid} ,. Now DLSP can be modeled as

M T
(DLSP) ~ miny Y (cixi+ fi¥)

i=l =1

s.t. X, = d, (I1<i<M,1<t<T) (1.2)
< x4y (I<i<M1<t<T,xi=0) (13)
M
PR (I<t<T) (14)
i=1
x5, y; € {0, 1) (l<i<M1<t<T) (1.5)

where the constant Zf‘i , H' is omitted from the objective function. Constraints (1.2) imply
that for item { the total production up-to period £ is at least equal to the total demand up to this
period. Ineqgualities (1.3) force that a startup for item i takes place in period ¢ if production
occurs for item  in this period, but not in the preceding one, Constraints (1.4) are the coupling
constraints which state that in any period production can occur for only one item. Observe
that when these constraints are not taken into account, the remaining problem consists of M
single-item problems.

Note that a solution to (1.2) — (1.5) may have a positive inventory at the end of the plan-
ning horizon. Moreover, a startup is allowed to occur in a period without production, i.e., we
may have y! = 1 and x! = 0 for some item i and period £. Also solutions in which two batches
of the same item are scheduled contiguously, i.e., solutions withx}_| = y} = x! = 1 for some
i and 1 are allowed. One can easily add exira constraints to the model in order to exclude so-
lutions having one of the aforementioned features. However, such a solution is never optimal
when all costs are positive. ) »

Polyhedral results for lot-sizing problems mainly concern the polyhedral structure of single-
item models (cf. [33]). This also holds for the results described in this thesis. Obviously, valid
inequalities for the single-item formulation remain valid for the multi-item problem.

For the single-item DLSP van Hoesel [18] characterizes one class of facet-defining in-
equalities, the so-called hole-bucket inequalities. A polynomial separation algorithm for these
inequalities is given in [19]. Van Hoesel and Kolen present a multicommodity flow reformula-
tion of the single-item DLSP in [20]. This model is obtained by splitting the original produc-
tion variable x, into variables x, which have value one if the production in period ¢ satisfies the
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demand in the kth demand period and zero otherwise. For this formulation a complete linear
description of the associated polyhedron is derived. Note that such a formulation has about
dy 7T variables, whereas the original formulation has only 27 variables.

DLSP can be considered as a special case of the capacitated lot-sizing problem with startup
costs or CLSS for short. We discuss here the single-itern version of this problem. In CLSS the
production in period ¢ can attain any value between zero and the available capacity C;. The
amount of production in period ¢ is denoted by X, and incurs a cost ¢, X;. The binary setup
variable Y, indicates whether production can take place in period ¢ or not. Obviously, ¥; must
be one if X, > 0. However, the machine might be set up for production, even if no production
occurs. The setup cost f; can be considered as the fixed cost incurred whenever the machine
is able to produce. Moreover, if the machine is set up in a period ¢, but not in the preceding
period, then a startup has to occur in period . The startup variables and startup costs are here
denoted by Z, and g, respectively. Now CLSS can be formulated as

T
(CLSS) min Y (¢ X+ Y+ g4
=1
s.t, X, > dy, (a=t=gT
Y <Y+ 4 (A<t<T,Hh=0)
X, < Y, (I<t<T)
X, =0, Y., Z (0,1} (I=<t=T)

CLSS clearly reduces to DLSP if we set C; equal to one and require X; = Y, forevery 7. Hence,
valid inequalities for CL.SS can be easily turned into valid inequalities for DL.SP. However,
even if the original inequality is facet-defining for CLSS, the resulting inequality might be
trivial or define a face of low dimension for DLSP.

Constantino [5] derives several classes of valid inequalities for CLSS. In relation to our
work two classes are of great importance, namely, the left and right supermodular inequali-
ties. The ideas behind these inequalities will be discussed in Chapter 2. For two subclasses,
the interval left and right supermodular inequalities, Constantino establishes necessary and
sufficient conditions for an inequality to be facet-defining and gives a polynomial-time sepa-
ration algorithm. Moreover, he introduces valid inequalities for the single-item problem with

‘more complicating features, such as lower bounds on the production and backlogging, and
two classes of multi-item inequalities.

Magnanti and Vachani [28] and Sastry [38] study the special case of CL8S in which C; =
1 for every ¢ and the production variables are also binary. Hence, the only difference with
DLSP is that the setup of the machine can be maintained during idle periods. In this way, one
can avoid a more expensive startup. A class of facet-defining inequalities for this problem is
discussed in [28]. This class forms the basis of the skip inequalities introduced by Sastry. He
gives a complete characterization of facet-defining skip inequalities and presents a separation
algorithm based on linear programming for one subclass.

For some problems it can be shown that a partial linear description of the related polyhe-
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dron always provides an optimal solution with respect to a certain class of objective functions.
For lot-sizing problems this kind of result has been obtained for cost functions that satisfy the
Wagner-Whitin property. For DLSP a cost function is said to be of the Wagner-Whitin type
if the unit inventory cost /. and the production cost p; satisfy k, + p: > p.41 for every pe-
riod ¢. Recalling that ¢, = p, + h, 1, this is easily seen to be equivalent to ¢; = ¢,4; for all
t. The Wagner-Whitin property implies that it is always optimal to produce as late as possi-
ble. Hence, with Wagner-Whitin costs there always exists an optimal solution for which the
inventory at the end of period ¢ — 1 is zero for any period ¢ in which a production batch is
started. Pochet and Wolsey [32] study four single-item lot-sizing problems and give for each
of them a partial linear description of the convex hull that solves the problem in the presence
of Wagner-Whitin costs. These polyhedra involve considerably fewer constraints than in the
general cost case. In Section 2.3 we derive a similar result for the single-item DLSP.

We conclude this section with a brief discussion of the reformulation of DLSP as a traveling
salesman problem with time windows (TSPTW). Consider a graph in which every unit of de-
mand is represented by a node, i.e., if d! = 1, then this unit of demand is represented by a node
v(i, 1), With v(i, 1) a deadline ¢ is associated. Now a production schedule can be considered
as a tour that starts and finishes at a depot and visits every node before or at its deadline, The
travel time between two nodes equals one if the nodes correspond to units of the same item,
and one plus the required startup time otherwise. Startup and production costs are incorpo-
rated in the costs of using an arc, whereas inventory costs can be modeled as costs incurred
when a node is visited strictly before its deadline.

Heischmann [15] was the first to formulate DLSP as a TSPTW. He models DLSP with
sequence-dependent startup costs and zero startup times as a TSPTW with time-dependent
costs. A reformulation of DLSP with sequence-dependent startup times as a TSPTW is pre-
sented by Salomon et al. [37]. Both problems will not be considered in this thesis, However,
in Chapter 5 we will study another variant of the TSP, the so-called delivery man problem,
in which the objective is to find a tour starting from a given depot that minimizes the sum of
the waiting times of the customers located at the nodes. We will present a MIP-formulation
that can easily be turned into a formulation for the TSPTW. Furthermore, we will derive some
additional valid inequalities and report computational results.

1.3 OQOutline of the thesis

The remainder of the thesis is organized as follows.

Chapters 2 and 3 are devoted to the discrete lot-sizing and scheduling problem with se-
quence-independentstartup costs. In Chapter 2 we study the polyhedral structure of the single-
item version of the formulation discussed in the previous section. We first investigate the gen-
eral form of facet-defining inequalities for which all coefficients of the x-variables are either
zero or one. Then three subclasses are discussed in more detail. In the last section we present
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a partial linear description of the convex hull of feasible solutions that solves the problem in
the presence of Wagner-Whitin costs. This result already appeared in van Eijl and van Hoe-
sel [11]. The multi-item problem is dealt with in Chapter 3. Its computational complexity is
addressed first. Furthermore, we describe the implementation of a branch-and-cut algorithm
and report computational results.

In Chapter 4 the problem with sequence-independentstartup times is considered. We show
that this problem can be modeled by a slight modification of the formulation for the problem
that only involves startup costs. Valid inequalities for the latter formulation are hence easily
turned into valid inequalities for the problem with startup times. We also present a multicom-
modity flow formulation for the single-item problem and show that its LP-relaxation solves
the problem to optimality.

As mentioned before, Chapter § differs from the other chapters in that it focuses on the
delivery man problem instead of the discrete lot-sizing and scheduling problem. We present
a mixed integer programming formulation for this problem, derive classes of additional valid
inequalities, and give some computational results. This chapter is based on van Eijl [10].



2. The single-item DLSP

In this chapter we study the polyhedral structure of the model discussed in the previous chapter
when only one item is involved. Although the single-item DLSP is polynomially solvable, an
explicit description of the convex hull of the set of feasible solutions to this formulation is not
known. A partial linear description is given by van Hoesel [18]. Magnanti and Vachani {28]
and Sastry [38] derive inequalities for a slightly more general probiem in which also setup
costs are involved. Furthermore, Constantino [5] derives several classes of valid inequalities
for the capacitated lot-sizing problem with startup costs. This problem is a generalization of
DLSP in which the production in period £ can attain any value between zero and the available
capacity in this period. Inequalities for these more general problems can easily be adapted to
valid inequalities for DLSP. However, even if we start from a facet-defining inequality for the
original problem, the resulting inequality for DLSP might be trivial or define a face of low
dimension.

This chapter is organized as follows. In Section 2.1 the formulation from Chapter 1 is
reviewed. In Section 2.2 we first investigate the general form of facet-defining inequalities
for which all coefficients of the x-variables are either zero or one. Then three subclasses are
discussed in more detail. The first subclass slightly extends the class of right supermodular
inequalities of Constantino when adapted to DLSP. The inequalities of the first subclass are
also related to the skip inequalities discussed in [38]. The second subclass generalizes the
hole-bucket inequalities introduced by van Hoesel. The last subclass is again an extension of
a class derived by Constantino, namely, the class of interval left supermodular inequalities.
For all three subclasses we also address the separation problem. In the last section we present
a partial linear description of the convex hull of feasible solutions that solves the problem in
the presence of Wagner-Whitin costs,

2.1 Preliminaries

Throughout, the interval {#;,...,5;} & {1,..., T} will be denoted by [#;, 1;]. If t; > 1,, then
[11, ] = @. Now the single-item version of the model discussed in the previous chapter reads
as follows: '

T
(DLSP)  miny (e, + fiys)
=1 ’

8.t X1 = dig forallz e [1, T} 2.1
X < X1 4w forallt € [1, T] (xo = 0) 2.2)
x, 9. €{0,1) forallt e[1, T] 2.3)
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Denote by X the set of feasible solutions to the above formulation, i.e., X = {(x, y) € {0, 1}*T :
(x, y) satisfies (2.1) and (2.2)}. One of the main advantages of allowing a positive inventory
at the end of the planning horizon and startups in periods without production, is that the con-
vex hull of X is full-dimensional whenever d; = 0 (note that imposing y, < x, for all ¢ yields
the equality x; = y;). In the sequel e(x;) and e(y;) denote the unit vector of length 27 corre-
sponding to the variable x; and y,, respectively.

Prbposition 2.1.1 The convex hull of X has dimension 2T if and only if d, = 0.

PROOF. Ifd; = 1, then every solution satisfies y; = x; = 1, hence, in this case, the dimension
of conv(X) is at most 2T — 2.

In order to prove sufficiency, we show that the 2T unit vectors e(x;) and e(y,) for all ¢ are
directions in conv(X). First, let (x, y) be defined by x; =y, = 1 for all ¢ and let (X, y) be the
solution obtained from (x, y) by setting x; to zero. Then (x, ¥) — (X, ) = e(x,). Furthermore,
let (%, §) be obtained from (X, ) by setting y, to zero. Then (X, ) — (X, §) = e(¥). O

Since it is usually easier to prove that a given inequality defines a facet when the associated
polyhedron is full-dimensional, it is from now on always assumed that d; = 0. Consequently,
an inequality ax 4+ By > y can be shown to define a facet of conv(X) by exhibiting 27 — 1 lin-
early independent directions (x, y) — (X, y), where (x, y) and (X, ¥) are feasible solutions to
DLSP that satisfy the given inequality at equality. The following proposition gives necessary
and sufficient conditions for the inequalities in the model and the trivial inequalities x;, y, > 0
and x;, y; < 1 to be facet-defining for conv(X). For the proof the reader is referred to van

Hoesel [18] or van Hoesel and Kolen [19].

Proposition 2.1.2 (i) x, > 0 defines a facet of conv(X) if and only if (t = 1 and d, = 0) or
(t>1landd,, <t—-1),

(ii) x; < 1defines a facet of conv(X) if and only if t > 1;

(iii) y; > O defines a facet of conv(X) ifand only ift > land dp,; <t — 1,

(iv) y; <1 defines a facet of conv(X) for all t;

(v) x1,; = d; defines a facet of conv(X) if and only ifd, = 1 and either t =T or d;; = 0;
(vi) x; < x,—1 + Yy, defines a facet of conv(X) ifand onlyift=1ord,, <t - 1. O

The LP-relaxation of the above formulation, i.e., min{cx + fy: (x, y) satisfies (2.1), (2.2),
and 0 < x,, y; < 1}, yields in general weak lower bounds.

Example 2.1.1 LetT=10,d;=1fort € (3,5,7,9,10},and f; =10, ¢, = 10 — r + 1 (thus,
h, =1, p,=0) for all . Then '

t|1 2345 6 78910
A 1

1 1 1 1 3 3 3 3 3
X 27332 5 5355 3%
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with value 30 is the optimal solntion to the LP-relaxation, whereas the optimal solution to
. DLSPhasvalue 40 (ys=x3=...=x7 = 1). n

Now let £ be a period with d; = 1. Recall that d; , denotes the total demand up to period . Then
in order to satisfy the demand up to £, we have to produce at least once in the interval [d; -, f].
This implies that at least one startup has to occur in the interval [d; ( + 1, 7] if no production
occurs in period d; .. This establishes the validity of the following inequality:

Xa, + Va1 2 1 (2.4)

In the above example we have dy = 1 and d; 7 = 3. Thus, X3 + ya7 = 1 is a valid inequality
for the instance of Example 2.1,1. For this instance the lower bound is substantially improved
by adding the above constraints for all demand periods ¢ to the LP-relaxation.

Example 2.1.1 (continued) The optimal solution to the L.P-relaxation extended with inequal-
ities (2.4) for all demand periods ¢ is

1|1 2345678910

i 1
X 1 11

e

2
g .
with value 37. a

Al
R g
b

From the general assumption thatd; = 0 it follows thatt > d ;, hence, the interval [d; ; + 1, t]
is not empty. One easily checks that inequality (2.4) defines a facet of conv(X). The latter im-
plies that for any other facet-defining inequality ax + fy > y, there exists a solution (x, y)
satisfying ax + By = y and x4, + Ya, 41,0 = 2.

Note that in the above example the costs satisfy the Wagner-Whitin property, i.e., ¢; 2 €41
for all £. In Section 2.3 it will be shown that for such an instance the optimal solution to DLSP
is yielded by the LP-relaxation extended with orie of the classes of facet-defining inequalities
of conv(X) discussed in the following section.

2.2 Facet-defining inequalities

In this section we derive additional classes of facet-defining inequalities of conv(X), where X
denotes the set of solutions to (2.1) — (2.3). In particular, we study inequalities for which the
coefficients of the x-variables are either zero or one. We first study the general form of such
inequalities. Then three classes are discussed in more detail.

2.2.1 General form

Throughout this section, ex + By > y denotes a valid inequality for X other than one of the
inequalities that define the LP-relaxation. Without loss of generality all coefficients are as-
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sumed to be integral. We first derive some restrictions on « and S when the inequality defines
a facet of conv(.X).

Lemma 2.2.1 Let ax + By = y be a valid inequality for X other than one of the inequalities
that define the LP-relaxation. [f ax+ 8y > y defines a facet of conv(X), then o, > 0 for allt,
B1=0, Bi=>0foreveryt > 1, and o, + By = Biyy foreveryt < T. Moreover, if a; € {0, 1}
Joreveryt, thena,+ B; < Biy1+ 1 foreveryt < T.

PROOF. Let X denote the set of feasible solutions to DLSP that satisfy ax + By > y at equal-
ity, i.e, X ={(x,y) e X:ax+ fy=y}).

First, suppose that 8; < 0 for some t. Then y, = 1 for every solution (x, y) € X. This im-
plies that 8, > 0 must hold for every ¢t if ax -+ By > y defines a facet of conv(X). Furthermore,
B1 must be zero, otherwise x; = y; for all solutions in X.

Now suppose that &, < 0 for some ¢. If 8; = 0, then x, = 1 for all (x, y) € X. Otherwise,
if B, > 0, then every (x, y) € X satisfies x,_; + y; < 1 and if equality holds, then x, equals
one as well. Hence, if ¢, < Oand 8, > O, then x,; + y; = x, forall (x, y) € X. This shows
that o; > 0 for every period # if ax + By > y defines a facet of conv(X).

Next, suppose that oy + B; < By forsomet < T, Let (x, y) be a solution in X satisfying
Ver1 = 1. Since Sy > 0, we have x; = 0O and x4 = 1. Moreover, 8, > 0 implies that either
y: =0or (B =0and y, = 1), thus, By, = 0. Extend the production batch starting in 7 4 1 by
producing in period ¢ as well and denote the new solution by (X, y). Then X; = y; =1, y;41 =
0, X, =x.fort#t, and ¥. = y, for v & {¢, 1+ 1}. Since (X, ¥) is obviously feasible, we have
ax+ By =aX+ ¥+ B — o — Bi(¥: — ¥:) > oX + By > y, contradicting our assumption
that (x, y) € X. From this it follows that y,;.; = O for all solutions that satisfy ax+ By > y at
equality. Hence, if the inequality defines a facet of conv(X), then o, + B; > ;4 forallt < T.

Finally, assume that a; € {0, 1} for all £. We claim that in this case o; + B; < By + 1 for
everyt < T. Since 8; = 0 and 8, > 0, this obviously holds fort = 1, Hence,let1 <t < T
and suppose a; + B > Biy1 + 1. Then B > 0. Let (x, y) be a solution satisfying in X sat-
isfying v, = 1. Sinceax+ iy = y and B; > 0, we have x,_; = O and x, = 1. Let s be
the first period that is not used for production. Then s < # as x.—; = 0. Now let (X, ) be
the solution obtained from (x, y) by moving the preduction in period ¢ to period s. Then
L=1,%=0,X=x,t€{st}),and ;= 0, y;4; = 1, ¥, = 1 if s = 1 and 0 otherwise (thus,
Bs¥s=0), and j. = y., T & {5,¢,1+ 1}. Since s € {0, 1}, we have ox + By = aX + By +
a;+ By — Bri1 —as — Bs¥s > aX + BY = y, acontradiction. Thus, o, + B¢ > Biyg + 1 implies
that y, = 0 for all solutions (x, ¥) € X. Hence, if «x + By > y defines a facet of conv(X), then
o; + B < Bry1 + 1 must hold foreveryt < T 0

Before additional ﬁecessary conditions for an inequality to be facet-defining for conv(X) are
discussed, let us first introduce some notation. Given an inequality ax + By > y, we denote
by ¢* the last period ¢ for which «, + f8; > 0. Notice that if @x + By > y satisfies the conditions
stated in Lemma 2.2.1, then e + B, = 1. Furthermore, a period ¢ is called a hole with respect
to the inequality under consideration if &, = f; = 0. In particular, all periods after ¢* are holes.
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Lemma 2.2.2 (cf. [18),[38]) Let ax+ By > y be afacet-defining inequality of conv(X) other
than one of the inequalities that define the LP-relaxation, and assume that B, > 0 for at least
one periodt. Let t* be as defined above. Then this inequality satisfies the following properties:

Pl. Period t* is a demand period, thus, dw = 1.

P2. Forevery periodt < t* the number of holes in the interval [z t*] is less than
the total demand in this interval.

P3. Ifthere is a hole before ' = min{t : B > 0}, then for everyt € 5,1 — 1],
where s denotes the first hole, the number of holes in the interval [s, 1] exceeds
the total demand in this interval.

PROOF, Denote again by X the set of feasible solutions to DLSP that satisfy ax + By > yat
equality.

Ad P1. Suppose d;« = 0 and «rp» = 1. Let {x, y) be a feasible solution satisfying x» = 1.
We may assume that y, = X, = 1 for every { > t*. Since d» = 0, cancelling the production
in peried ¢* yields another feasible solution, say, (X, ¥), and ax + 8y > ai+ By + ap > y.
Hence, x = 0 forevery (x, y) € X. However, this contradicts the assumption that ax + By >
y defines a facet of conv(X). Using similar arguments we find that dp = 0 and 8p = 1 im-
ply that y,» = O for every solution in X. Thus, d,» = 1 when ax + By > y defines a facet of
conv(X).

Ad P2. Suppose t < 1* is a period for which the number of holes in the interval [z, 1*] is at
leastd, ... Let (x, y) € X. Without loss of generality assume that y; = x; = 1 for every hole 5.
Then x; -1 > d; p and Xp1,7 > dpesq r. Since ax+ fy = y and ap + By > 0, we must have
xp =0ifap > 0and y, = 0if B > 0. This holds for every solution in X, which contradicts
the assumption that ax + By > y defines a facet of conv(X).

Ad P3. Suppose there is a hole before ' and suppose that P3 is violated for some ¢ €
[s, ¢ — 1], where s denotes the first hole. That is, the number of holes in the interval {s, }
is less than or equal to d, ;. Since s is a hole, this implies d,; > 1. Also observe that ¢, = 1
and B, = 0 for every period 7 < f thatis not a hole. Hence, in a solution (x, y) with x, = 0, the
demand of at least one period in [s, 7] is produced in a period t satisfying oy = 1 and 8; = 0.
This unit of production can be moved to period s while maintaining feasibility. From this we
conclude that if (x, y) is a solution without production in period s, then ax + By > y. Hence,
x; = 1 for every (x, y) € X, which again contradicts the assumption that ex + By > y defines
a facet of conv{X). S

Using similar arguments as in the proof of P2 and P3, one readily shows thatif ex + By > v
is a facet-defining inequality of conv(X) with B, = 0 for all ¢, then the inequality is the pro-
duction inequality x; » = dy . In the sequel it is therefore always assumed that 8, > O for at
least one period 1.

As mentioned before, we will study facet-defining inequalities of conv(X) for which the co-
efficients of the x-variables are either zero or one. We start by investigating the general form
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of these inequalities.

In Section 1.2 we briefly discussed the capacitated lot-sizing problem with startup vari-
ables (CLSS). For this problem Constantino [S] derives several classes of valid inequalities.
These inequalities are all of the form I, > LB(X, Y, Z), i.e., they yield a lower bound on the
inventory I, at the end of period 1. By taking the capacity in every period equal to one and by
identifying the setup and the production variables, valid inequalities for DLSP are obtained.
One of the classes that yields nontrivial inequalities for DLSP is the class of right supermod-
ular inequalities ([S], Section 2.4). These inequalities are obtained by establishing a lower
bound on the inventory at the end of a certain period when, up to this period, the total produc-
tion exceeds the total demand.

For DLSP these inequalities can be introduced as follows. Let ¢* be a demand period and
letu, ve[l, *], u < v, suchthat v — u > d,,~. Then the inventory at the end of period 1* is at
least one when all v — u + 1 periods in the interval [u, v] are used for production. The latter
occurs if there is productionin v and no startup in the interval [u + 1, v}, i.e., if Xy — Vyq1, .= 1.
Observe that x, — Yu41,0 18 integral and less than or equal to one for any solution (x, ¥) € X,
Thus, I« > x4 — Yu41,0 18 2 valid inequality for X,

Now let V C [1, t*] and let an interval [u(v), v] satisfying v — u(v) > dy,),» be associated
with every v € V. We claim that

Ir > E(xv - yu(v)+l,v)- (25)

eV

is valid for X. In order to show this, let (x, ¥) € X and let j = Y (X — Yu(wy+1,0). As-
sume that j > 0, otherwise (2.5) is obviously satisfied. Then x, — Yu(v)+1,0 €quals one for
precisely j different elements of V, say, for v € {v;, ..., v;}, where v; < ... < v;. This
implies that all intervals [u#(v;), v;], 1 <i < j, are completely used for production in (x, y).
Thus, the total production in the interval [u(v;), £*] is at least the production in the periods
[u(vy), v;1U{v,, ..., v;}, which is at least dy(v,,» + j. Hence, the overproduction in the in-
terval [#(v;), £*] amounts to at least j units, which proves our claim. Inequalities (2.5) are a
direct adaptation of the right supermodular inequalities of Constantino to DLSP. In the sequel
we will refer to them as right stock-minimal inequalities.

We can generalize the idea behind these inequalities in the following way. Suppose that
for a demand period 1*, we are given a set of nonempty intervals [u{v), v} € {1, r*] and an
integer k > 1 for which the following holds: the inventory at the end of period #* is at least
one in any solution to DLSP for which precisely & of these intervals are completely used for
production. Then the following inequality is valid for X:

I 2 ) (6= Yuws1) —k+1. 2.6)

veV

This can be shown using similar arguments as for (2.5), i.¢., for inequality (2.6) with k= 1.
Let (x, y) € X and assume that ) _y{Xy — Yu)+1,v) equals k + j — 1 for some j > 0. Let
{vi, ..., Yrpj-t}y Y1 < ... < Ugyj1, be the subset of elements in v € V that satisfy x, —
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Yu(vy+1,» = 1. Then all periods in U "“ 1[u(u i), v;} are used for productionin (x, y). In par-

ticular, production occurs in every permdm Uk v, vilU{veg, ..., vey jo1}. By assump-
tion, using all periods in U _lu(vi), vi] for producﬂon yields an mventory of size at least one
at the end of period ¢*, Th1s also implies that the demand in [vg + 1, £*] can be satisfied from
production in periods up to vg. Thus, if all periods in u" Ll (), vilUfve, .o, vpy e ;} are
used for production, then the inventory at the end of period t* is at least j. This establishes the
validity of (2.6) for X.

Example 2.2.1 Letd, = 1fort € {2,4,6,9,10, 12, 14}.

First, let t* = 10. We consider the following intervals: {1, 6], [4, 8], and I8, 10]. Thus,
V=1{6,8, 10},u(6) =1, u(8) =4, and u(10) = 8. Onereadily checks that v — u(v) = dy(yy 10
for each v € V. Hence, by the above arguments, inequality (2.5) with £* = 10 and the intervals
[u(v),v],ve V,ie,

o > (X6 — y2.6) — (X3 — ¥s.8) — (X10 — ¥8,10),

is valid for the instance at hand.

Next, let t* = 14. We consider the following intervals: [3, 8], [6, 91, [5, 10}, [12, 12], and
[13,14], Thatis, V = {8,9,10,12, 14}, u(B) = 3, u(9) = 6, u(10) = 5, u(12) = 12, and
#{14) = 13. The demand periods and the intervals are depicted below.

t|1 2345 6 7 8 9 10 11 12 13 14
d; 1 1 1 1 1 1 1
[rrrrrrinnnnmnes ] -]

Now it is not difficult to check that for any feasible solution in which at least two of these
intervals are completely used for production the inventory at the end of period 14 is at least
one. Hence,

ha = (X8 — ya8) — (X9 ~ ¥7,9) ~ (%10 — ¥5,10) — X12 — (X1 — y14) = 1
is a valid inequality of the form (2.6) with k = 2 and t*, V, and [u(v), v], v € V, as given. [

Usmg Iy = x1 p — di +, we can rewrite inequality (2.6) as

Z xt+zyu(v)+l.v > dip—k+1. 2.7

te[l,r\V veV

Note that the coefficient of x, is either zero or one, whereas the coefficient of y, is equal to
[{v e V:u(v) <t < v}, which can obviously be larger than one.

We claim that every facet-defining inequality of conv(X) with x-coefficients in {0, 1} is
of the form (2.7) with u(v) < u(v’) for v < v/. In order to show this, consider an inequality
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ax+ By = y such that o, € {0,1}, 81 =0, and §; > O for all other 7. As usual, ¢* denotes
the last period ¢ for which «; + 8; > 0. Define V = {¢ : t < ¢* and ¢, = 0}. Denote the ele-
ments of V by v;, i € {1,...,|V|}, where v; < v;;;. The following algorithm determines a
period u(v) < v forevery v € V such that at termination 8; > |{v € V : u(v) < ¢t < v}| forallz.

begin DETERMINE_INTERVALS
fort=1to t* do B, = B
for i = 1 to |V| do begin
\# Invariant: B, = B, — |[{j:1<j<iandt € [u(v;)+1,v]}] >0 forall ¢ %\

u(v;) ;= max{t < v; : B; = O); \* thus, B; > 0 forall z € [u(v;) + 1, v;] *\
for 1 =u(v;) + 1tov;do B, =B, — 1
end

end.

From the assumption that 8; = 0, it follows that u(v;) is well defined for every i. Furthermore,
u(v;) < v; and equality holds if and only if v; is a hole. Observe also that u(v;) < u(viy1).

Example 2.2.2 Let ax + By > y be the second inequality of Example 2.2.1 rewritten in the
form (2.7), i.e.,

+ Ya+ ys+2ys+ 3y7+ 3ys + 2y9 + Y10 + Y14
X1+ X2+ X3+ Xe+ x5 + X5 + X7 +xn 4+ x3

Then V= (8,9, 10, 12, 14}, Applying the above algorithm yields u(8) =3, u(9) =5, u(10) =
6, u(12) = 12, and u(14) = 13. Recall that the inequality was constructed from a different
set of intervals, namely, with [6, 9] and [5, 10] instead of {5, 9] and [6, 10]. However, this set
cannot be obtained from DETERMINE_INTERVALS, since the algorithm yields periods u(v),
ve V, with u(v) <u@)ifv<v. O

> 6.

Lemma 2.2.3 Let ax+ By > y be a facet-defining inequality of conv(X) with o, € {0, 1} for
all t, and let t* and V be as defined before. Let u(v), v € V, be as provided by the above
algorithm. Then B, = |{v e V: u(v) <t < v}| foreveryt <t* and u(v) < u(v’) forv < v'.

PROOF. Note that 8; = |{v € V : u(v) < t < v}| if and only if B, = O at termination of
DETERMINE_INTERVALS, We first show that B = |{v € V : u(v) < t* < v}|. This obviously
holds when B, = 0, since in this case max,cy v < t*. If t* € V; i.e., if a; = 0, then in the last
iteration of DETERMINE_INTERVALS we have ,_3,' = B = 1, hence, u(t*) < t*.

Now suppose there is a period ¢ < t* such that 8, > |[{v € V: u(v) <t < v}|. Let s be the
last period with this property. Observe that, as Bs > () at termination of the algorithm, u(v) # s
for any v € V. Furthermore, recall that s € V if and only if ¢y = 0. Then, by definition of s,
we have

Bsii = veV:iu@) <s+1<v}| = |{veViu@) <s<v}|—(1-ay)
< PBsta;—1.
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However, by Lemma2.2.1, o, + B < Biyr + 1 forall ¢, Thus, B, =|{ve V:iuw) <t < v}
for all 1. Itis readily checked that this, together with«; + 8, > By for all 1 (cf. Lemma2.2.1),
implies that u(v) < w(v') forv < v'. O

This result shows that any facet-defining inequality ax + By > y of conv(X) with a, € {0, 1}
for all £ can be written in the form (2.7) with u(v) < u(v') forv < v andk =d;,» —y + 1.
In order to show that k > 1, consider the solution (x, y) defined by y, = lifandonly if = 1
ort>t*,and x, = 1ifand onlyif y, =1 or ¢ € [2, dy »]. Thus, production occurs in the first
dy , periods and in every pericd after 1*. Recall from Lemma 2.2.1 that 8; = 0 for any facet-
defining inequality. Thus, ex + 8y = ax < d),. Hence, y < d -, which implies k¥ > 1.

Now suppose we are givén a demand period £*, an integer k > 1, a subset V € [1, *] such
that |V| > k, and a set of intervals [u(v), v], v € V, satisfying u(v) < u(v’) forv < v'. An
important question is how to establish the validity of the corresponding ineguality (2.7) for
conv(X). We already showed that the inequality is valid if for every subset W of V of size k
the following holds: for every solution in X in which all periods in Uewlu(w), w] are used
for production, the inventory at the end of period ¢* is at least one. The lemma below asserts
that this condition is also necessary for (2.7) to be valid. We first show that the aforementioned
condition can be formally expressed as

maxl] | [u(w), wll ~ dugoy.e] 2 1. eX)

wiwe W, w>v

for every subset W of V of size k. In order to see the correctness of this expression, let W C V
and define § = Uyewlu(w), w]. Now suppose that for any solution in X for which production
occursin all periods in § the inventory at the end of period ¢* is at least one. It is nothard to see
that thisholdsifand onlyifthereis aperiod s € § satisfying {{t € §: ¢t > 5}| = d; « + 1. Thelat-
ter condition is equivalent to (2.8) because of the following observation: if v is the maximum
period in W satisfying u(v) < s, then s € [u(v), v], which yields | Uy.wew,we v [ (w), w]| =
Hte Stz +s5—u) 2dsp+ 14+ duy,s—1 = duy . + 1.

Lemma 2.2.4 Given a demand period t*, an integer k > 1, a subset V < [1, t*] such that
V] = k, and a set of intervals [u(v), v}, v € V,; satisfying u(v) < u(v) for v < v'. Then
inequality (2.7) is valid for X if and only if

max(] ) few), wll ~dyw.el 2 1.

wiwe W, w>v
Jor every subset W of V of size k.

PROOF. Rewrite inequality (2.7) again in the form (2.6), thus, as

Lo 2 3 (%= Yue1w) —k+ L.

veV
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We only have to prove the necessity of the condition. Therefore, suppose that there exists a
subset W of V satisfying |W| = k and |, pcw wso[t(w), wl| < duq),» for every v € W.
Then a feasible solution (x, y) that violates (2.7) can be constructed as follows. We can eas-
ily deal with the demand in periods ¢ > ¢* by setting y, = x, = 1 for every period ¢ > ¢*
with positive demand. Hence, we only have to consider the production in the interval [1, 1.
First, define x, = 1 for every t € |J,.w[u(v), v]. Then, by assumption, the total production
in the interval [u(v), *] does not exceed the total demand in this interval for any v € W. If
the total production up to period #* is strictly less than d; ;+, then let U consist of the first
di i — [|U,ewlu(v), v]| periods not used for production yet, and set x; = 1 for every t € U.
Finally, sety; =1ifx; = landsety, =1, t> 1,ifx; = 1 and x,.; = 0. Notice thatif y, =1,
thent ¢ J,wlu(v) + 1, v]. Then (x, y) is feasible and x; » = d, 1, hence, I, = 0. However,
as{veV:ix,— Yumso =1} 2 W, Zuev(xv — Yuewy+1,0) 15 at least k. Thus, (x, y) violates
(2.7}, which shows the necessity of the condition, [

In general, given a set of intervals [u(v), v], there is no easy way to determine k. However, if
some restrictions are imposed on the intervals or k, then we are able to describe (facet-defining)
inequalities more explicitly. For example, if k equals the number of holes before ¢* plus one,
then the facet-defining inequalities of conv(X) of the form (2.7) can be completely character-
ized. This is the subject of the following subsection.

2.2.2 Hole-lifted right stock-minimal inequalities

In this subsection we study inequalities ex + By > y of the form (2.7) for which the right-
hand side equals d;  — |{t < ¢* : t is a hole}| for some period #*. Then the inequality has the
following form:

X+ Y Yuwyitw = die—|Vol, 2.9)
te[l,r\V veV

where V C [1,¢*], u(v) < v for any v € V, and Vy is the set of holes in [1, *]. We always
assume that u(v) < v for any v, v' € V such that v < ¢/, This implies that if u(v) = v, then
v [u(v),v]forany v’ € V\{v}). Since V={t<t*:q,=0}and B;=|{ve V:u(v) <1 < v}
for all £, we have Vy = {v € V : u(v) = v}. Furthermore, define V; = V\V;. Since the facet-
defining production inequalities x; ; > d, ; are the only facet-defining inequalities of the form
(2.9) with V; = @, we assume throughout that V; # 8.

With an inequality of the form (2.9), we associate three sets §;, 0 < j < 2, that partition
the set of the demand periods up to period ¢* as follows. First, Sy is the set of demand periods
before min,ey u(v). Observe that in any feasible solution the demand for a period in S; is
produced in a period ¢ with a; = 1 and B, = 8,41 = 0. Next, let §; be the set of demand
periods ¢ < ¢* for which there is a period ¢ < ¢ such that the number of holes in the interval
[¢, t] is at leastdy ;. Hence, if (x, y) is a solution that uses a hote before £* for production, then
this production can be assumed to satisfy the demand for one of the periods in §;. This implies
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that the demand foraperiods € §; = { <¢*:d, =1 and ¢t € S U §;} is always assumed to
be produced in a period ¢ < s satisfying e, + 8, > 0.

Throughout this subsection, the sets S5, 0 < j <2, play an importantrole. We want to em-
phasize that these sets, just as ¥, and V;, are always defined with respect to a certain inequality.
For notational convenience, this is not indicated explicitly unless confusion can arise.

Example2.2.3 letd, =1 fort € {2,5,7,8,9,11,12,15). Take ¢* = 15, Vo = {3,4, 12},
Vi = {9, 11,15}, u(9) = 5, u(11) = 7, and u(15) = 14. The corresponding inequality (2.9)
is

d,: 1 1 1 1 1 11 . 1
+ Yo+ 1+ 2ys+ 2y9+ yio + yui + yis
X1+x +x+xs+x +xg + X0 + X153+ X14 > 5
For this inequality we have Sp = {2}, Sy = {5,7,12},and §; = {8, 9, 11, 15}. O

In the sequel we derive necessary and sufficient conditions for an inequality (2.9) to be facet-
defining for conv(X). In Lemma 2.2.2 we discussed three conditions that need to be satisfied
by any facet-defining inequality with x-coefficients in {0, 1}. These conditions state, among
other things, that £* is a demand period (P1) and that for any period ¢ < ¢* the number of holes
in the interval {t, £*] is less than d, » (P2). Thus, if these conditions hold, then t* ¢ S; and,
hence, |81| = |Vo]. Moreover, since we assume that V; 3 @, S contains at least one element,
namely ¢*, whereas Sy and §; might be empty. ‘
Let us first determine the size of the intervals [u(v), v], v € Vi, for which (2.9) is valid.

Lemma 2.2.5 Inequality (2.9) is valid for X ifand only if v — u(v) = |{t € §2 : t = u(v)}|
Joreveryuve Vy.

PROOF. We first prove the sufficiency of the condition. Therefore, assume that v — u(v) >
|{t € 87 1t = u(v)}| for every v € Vi, We rewrite (2.9) in the form (2.6), i.e., we consider the
inequality
Lo 2 3 (0 = Va1 — Vo, (2.10)
veV

where I» denotes the stock at the end of period £*.

Define k* = | V| and denote the elements of Vo by v, 1 <k <k* Let X3, 0 <k <k*, be
the set of solutions to DLSP with production in v; for k < j < k*, Thus, X = {(x, y) € X :
Xy, =1,k < j < k*}. We show by induction that

k.

Lo 2 ) (= Yuwyst) + 30, — 1) 2.11)
YJEV; j=l

is valid for X, 0 < k < k*. Since (2.10) is (2.11) with k = k* and X;- = X, this establishes

the sufficiency of the condition.
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We first show that
Ix" = E(xv - )/’u(v)+1,v) (212)

wW

is valid for Xp. Let (x, y) be a solution in X5. Then all holes before £* are used for production.
By definition of 1y 1, we can assume that the production in V,, satisfies the demand in the peribds
in §;. Thus, productionin a period t € Uy, [u{v), v] satisfies the demand in a period in S, or
contributes one unit to the inventory at the end of period *. Now let X be the set of solutions
to DLSP with respect to the demand function d: where cf; =0ift e 8§ and a?; = d, otherwise.
Then (2.12) is valid for X; if and only if the inequality is valid for X. Observe that (2.12)is
a right-stock minimal inequality for X (cf. Subsection 2.2.1), which is valid if v — u(v) >
a?u(v),,. for all v € Vy. Hence, since [{t € $3 : t = u(v)}| = (fu(,,),,x, (2.12) is valid for Xo.

Now suppose that the validity of (2.11) for Xy has been established for 0 < k < X/, where
k < k*. We claim that

K41
In = 3 (%= Yawrr) + Gy — 1) (2.13)
veV; j=1

is satisfied by all (x, y) € Xp+1. This obviously holds for {{x, ¥) € Xe41 : Xy, ,, =1} = Xpe.
Therefore, let {x, y} be a solution in Xz 4; without production in period ve 4. Let (X, y) be the
solation obtained from (x, y) by setting x,,,,, and y,,.,, to one. Note that y,, has coefficient
zero in (2.13). Since (x, y) is a feasible solution to DLSP, the extra unit produced in period
Vg +1 increases the invéntory at the end of period ¢* by one, hence, I = I, + 1. Obviously,
(%, 7) € Xy, thus, by the induction hypothesis, '

14
I = Li—12 ) &= Juwu)+p F -1 -1

veV) j=1

K
= }:(x,, = Yuty+1,0) + Z(x,,j -D-1
=1

eV i .
This shows the validity of (2.13) for (x, y) and, hence, for ..

In order to prove the necessity of the condition, we define

M(W) = max]| w:wngf“(w)’ wl| = du ]
Recall from Lemma2.2.4 that M(W) > 1 means that the inventory at the end of period £* has
size at least one when all periods in |_J,, .y [#(v), v] are used for production. This lemma yields
that (2.9) is only valid if M(W) > 1 for every subset W of V of size | Vo] + 1.
Suppose that § — u (D) < |{t € §; : 1 = u(D)}| for some ¢ € V,. Define W = VU {3}, If
v > v, then

I | @), wll = l{weVo:w>u@)l < 1€ Si:t2u@)] < duw,e

wiweW,w>v
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Otherwise,

I U e, wl

wweW, wrv

HweVo:rwzu}|+v—u@+1

1A

Hte S$1U8z 12 u(W}] = duwyr,

since v = u(v) < u(v) if v < v, Thus, v — u(v) < |{t e 87 1 ¢ = u(v)}| implies M(W) < 0.
This concludes the proof of the lemma. ]

In the proof we already noticed that the valid inequalities of the form (2.9) with Vy = @ are
the right stock-minimal (RSM) inequalities (2.5), which are the direct adaption of the right
supermodular inequalities of Constantino [5] to DLSP. Roughly speaking, valid inequalities
(2.9) are obtained from RSM inequalities by introducing holes in the interval {1, £*]. In the
proof of Lemma 2.2.5 the introduction of the holes occurs by lifting. Inequalities (2.9) are
therefore called hole-lifted right stock-minimal inequalities or HRSM inequalities for short.
Obviously, an RSM inequality is an HRSM inequality with V; = @.

In the sequel we derive necessary and sufficient conditions for an HRSM inequality to de-
fine a facet of conv(X). One necessary condition immediately follows from Lemma 2.2.5.
Let ax + By = y be a valid HRSM inequality with v — u(v) > |[{t € §3: ¢ = u(v)}] for some
v e Vy. Observethat|{te Syt u(@+ 1} <{te S 12 uW)}| € v — @)+ 1). Now
the above lemma asserts that the inequality remains valid if «(¥) is replaced by u(v) 4+ 1. Re-
call that B, = [{v € V : u(v) < 1 < v}. Thus, substituting u(v + 1) for u(?) decreases Bu+1
by one. This implies the following condition.

Corollary 2.2.6 If an HRSM inequality defines a facet of conv(X), then v — u(v) = |{t € Sy :
t > u(v)}| forevery v & V). ]

However, the following example shows that this condition is not sufficient.

Example 2.2.4 Letd, = 1fort€{2,3,5}. Lett* =5and V= {5}). Ifu(5) < 5, then §; =@
and 83 = {I: d; = 1 and 1 = u(5)}, hence, |52| = dus) ¢ for the corresponding HRSM in-
equality. One readily checks that if u{5) € (3, 4, 5}, then 5 — u(5) = d, (5 . Thus, by Lemma
225, '

M xpat+ys =3, @) xpa+yas =3, and B): xpa+y3s = 3

are-all valid HRSM inequalities. Obviously, neither (2) nor (3) can define a facet for the in-
stance at hand. v O

Lemma 2.2.7 If an HRSM inequality defines a facet of conv(X), then u(v) € §; for every
ve V) satisfying dyqy = 1.

PROOF. Letax+ By = y be an HRSM inequality such that v — u(v) = |{t € 52 : 1 = u{v)}|
for all v. Moreover, let v € V; satisfy dy;) = 1 and u(9) € §,. We will show that ax + 8y > y,
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where Bu(;,m = Puw+1 — 1 and B, = f, for all t £ u{v) + 1, is also satisfied by all solutions
(x, y) € X. This implies that ox 4 By > y does not define a facet of conv(X).

Write By as 2 vev, Ya(w)+1,w then u(v) = u(v) + 1 and i(v) = u(v) otherwise. For the
new inequality we further have §; = $;\{u(v)} (and Sy = So U (u(v)}, cf. Example 2.2.4) if
#(9) = minyeyu(v), and §; = S, otherwise. Then v — ii(v) = |{t € S, : t > ii(v)}| for all
v € V;. Hence, by Lemma 2.2.5, the new inequality is also valid for X (]

Combining Corollary 2.2.6 and Lemma 2.2.7 yields the following necessary condition for an
HRSM ineguality to define a facet of conv(X)

Cl. Foreveryve Vi, v—u(v) = |[{t € S2:1 > u(v)}| and u(v) ¢ S».

Recall that a facet-defining HRSM inequality roust satisfy the conditions P1—P3 discussed in
Lemma 2.2.2. In Theorem 2.2.9 it will be shown that, together with C1, these conditions are
also sufficient for an HRSM inequality to define a facet of conv(X), provided that there exists
a period ¢ before min, .y, #(v) thatis not a hole. We already observed that this implies that ¢*
is a demand period and that t* € §,. Furthermore, combining P3 and C1 yields the following:

Lemma 2.2.8 Ifan HRSM inequality satisfies P3 and C1, then v; — u{(v,) = |53, where v; =
min,,e v, U

PROOF. The validity of C1 yields that vy — u{v;) < |5;]. Now suppose that strict inequality
holds. Then there is a period in S, say 7, such that ¢ < u{v;). By definition of §; and v;,
there must be a hole before ¢, Let 5 be the first hole. Since ¢ ¢ §;, the number of holes in the
interval [s, f] must be strictly less than d, ;. However, this contradicts the assumption that P3
is satisfied. 0

In the proof of Theorem 2.2.9 we use the following notation with respect to an HRSM inequal-
ity ax+ By = y. For  satisfying B, > 0 we define v(?) = max{v e V| : u(v) < t < v}. Since

u(v) < u(¥)ifv,v e Vandv < v/, and u(v) = vforeveryv € Vy, wehave Vy N [t, v()] = 0.
Hence, every pericd t € [¢, v{t)] with &, = 0 belongs to V;. This yields

v{t)
Bo=IlveViiuw <t=v)| = [veWirsvsvl = Y (I-w).  (214)

T=t

Furthermore, define v; = minyevy, v and denote the elements of the set S; by 11,12, ..., 115,
suchthat fy <1y <... < ljg, =1t~

Theorem 2.2.9 Let ax + By > y be an HRSM inequality satisfying P1—P3 and C1, and sup-
pose that there is a period t < u(vy) that is not a hole. Then ax + By > y defines a fucet of
conv{X).
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PROOF. First, observe that Lemma 2.2.5 assures the validity of the inequality. We prove our
claim by providing 27 — 1 linearly independent directions in the set X = {(x, y) € X : ax+
By = y}. We start by constructing two sets of solutions in X: (x?, y*) for v € V; and (¥, 7)
for ¢ satisfying B, > 0. In all these solutions production occurs in every period ¢ € S U Vg
and in every demand period ¢ > *. Note that §; = 0 for all the aforementioned production
periods, hence, for convenience, we set y, = 1 for all these periods. Thus, for the partial solu-
tion defined up to now we have ax + By = |Sg|. The production in a period t € Sg o1 > 1* is
assumed to satisfy the demand in that period. Furthermore, we can assume that the production -
in V; satisfies the dernand for the periods in $;. Hence, the solutions under construction only
differ in the periods in which the demand for the periods in §; is produced.

First, for v € V; we define (x°, y*) to be the solution in which the demand for $; is pro-
duced in the intervals [u(vy), vy — v+ u(v) — 1] (empty if v = v;) and [u(v), v — 1]. Lemma
2.2 8statesthat vy — u(vy) =[Szl and v — u(v) = [{t € 9 : t > u(v)}|. Thissolution is clearly
feasible. Using o, = 1fort ¢ [u(vl), vy — 1], and Buyy = {w e V1 1 u(w) < u(v) < w}| =
Hwe Vi:uw) <w< v} = Z,_u(v)(l — @), we get

ax’+ By’ = [Sol + Butw)Yugw) T Futwr),m—viu@)-1 + Buew) + Luvy,v-1
= |So]+ (vi —v4u(v) —u(u)) +v—u) = |Sol + 52| = di» —|Vol,

hence, (x*, y*) € X. In particular the solution (x*, y**) will be often used in the sequel as a
starting point for the construction of directions in X. This is the solution in which the demand
for the periods in S, is produced in the interval [u(v;), v; — 1].

Next, for ¢ satisfying B; > 0 we denote by (¥*, ) the solution in which the demand for
S, is produced in the intervals [#(v;), v1 — v(t) + ¢ — 2] (again, this interval might be empty)
and [z, v()], where v(f) = max{v € Vit u(v) <t <v}. ByCl, |{r € §7: > u{v(t)} =
u(t) —u(v(®)), hence, [{r € $2: v = 1} = v(t) — w(u(®)) — {t — u(v(®)) — 1} = v(t) — 1+ 1.
Thus, (%', ¥") is feasible, Using (2.14), which states that 8, + o1,y = v{f) — t + 1, it is read-
ily checked that a¥’ + By = y.

In the sequel we show that the following directions are in X

i) e{x,) for all ¢ satisfying «; = 0;

iy  e(y,) for all t satisfying B, = O;

(iila) e(x;) + e(y;) — e(xy,-1) for all ¢ satisfying f; > O and (t =T or By = O0);

(iiib)  e(x,) +e(y) —e(Vy1) —e{xy) forsome t’ 5 t and all 1 < T satisfying B, > 0
and ;1 > 0

(iv) e(x)—e(xy1)forallr#v -1 satxsfymg a,=1.

Since oy, 1 = 1, (i) and (iv) yield T — 1 different directions, whereas (ii), (iiia), and (iiib)
yield T different directions. It is left to the reader to check that these 2T — 1 directions are
linearly independent. This proves that ox + By > y defines a facet of conv(X).
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Ad (i). Let ¢ be a period such that &, = 0. Suppose there exists a solution (x, y) € X satisfy-
ing x, = 0 and x,—; = 1 or y, = 1. Then the solution (x, y) obtained from (x, y) by adding
one unit of production in period # is also in X, and (%, V)—(x,y)=e(x). If B, > 0, 1e, if
1 = v for some v € Vy, then (x¥, y*) satisfies x;_, = 1 and x; = 0. In order to show that such
a solution exists when B; = 0, i.e., when 7 is a hole, it suffices to give a solution (x, y) € X
satisfying x; = O, where s is the first hole. Consider (x™, y*!). If the solution obtained from
(x1, y1) by moving the production in period s to period v; (and keeping y; to one) is fea-
sible, then we are done. Feasibility trivially holds if s > u(v;). Otherwise, we have that for
everyt € [s, u(vy) — 1] the total production in [, ] equals the number of holes in this interval,
which, by P3, is strictly larger than d; ,.

Ad (ii). Let z be a period such that g, = 0. Then the direction e(y,) is easily constructed
from a solution (x, y) € X satisfying y, = 0. We have already seen that such a solution exists
when 1 is a hole, i.e., when &, = 0. Consider the solution (¥*(*1)+1, y4(*D+1y defined above.
In this solution the demand for the periods in S is produced in the interval [u(v;) + 1, v1],
thus, in periods with positive y-coefficient. Hence, for every ¢ satisfying 8, =0 and o, = 1
we have 5“1 = 0, except when ¢ € So. Recall that we always assume that d; = 0, thus if
So # @, then oy = 1 and ¥*™* = 0. For ¢ € S, a solution (x, y) € X with §; = 0 is now
readily constructed.

Ad (iiia). Recall that for ¢ satisfying 8, > 0 we defined v(#) = max{v € V; : u(v) <t < v},
Now let ¢ be a period satisfying 8, > 0 and either 1 = T or 8,1 = 0. Using g, =|{ve V:
u(v) <t < v}, it is not difficult to see that in this case the following holds: ¢ = v(?) and
t # u(v) for any v € Vi,

Consider the solution (¥*, 3*). Since f = v(¢), the demand for the periodsin S, is produced
in the interval [u(v;), v; — 2] and in period . Moving the production in period tto period
v; — 1 yields the solution (x™, y*1). Thus, (¥, ¥) — (¥, y") = e(x;) + e(¥:) — €(Xy—1).

Ad (iiib). Let t < T be a period satisfying 8, > 0 and B8;4+; > 0. ‘We will construct the di-
rection e(x;) + e(y;) — €(¥s41) — e(xy) for some ¢’ # ¢. First, we show that if 1 = u(v) for
some v € Vi, then the above direction with ¢’ = v is in X. If t # u(v) for any v € Vi, then
1 < v(t) (cf. (iiia)). In this case the direction e(x;) + e(¥;) — €(Vr41) — €(Xy—(v@ry—s+1y) Will
be established.

First, suppose that ¢ = u(v) for some v € V;. Consider the two solutions (x?, y*) and
(FW+1 3uM+1y defined previously. Observe that the second solution is obtained from the
first by moving the production in period u(v) to period v. These two solutions provide the
direction e(Xu(v)) + €(Yuw)) — e(Yuwy+1) — €(xv).

Now assume that ¢ 3 u(v) for any v € V;. Then 8,41 > 0 implies 1 < v(#). For conve-
nience, define i = v(t) —t + 1. Note that i < | 53| < v; — u(vy). Similar as in (iiia) we start
from the solution (X, ¥*), in which the demand for the periods in §; is produced in the inter-
vals [u(vy), v; — i — 1] and [z, v(¥)]. Denote by (x, y) the solution obtained from (¥‘, ') by
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moving the production in period ¢ to period v; — i. Since f 5 u(v) for any v € V;, we have
B =lveViiul <t4+1 <v}]=}{veVy:ulv) <t <v). Moreover, since f € V;
ifandonlyifo, =0, wehave Br={{ve Vi1 u(v) <t < v+ (1 —a)) = Brs1 + (1 — ).
Hence,

ax+ gy = afz'*’ﬂyt"‘ﬁt-t-l'{“av,-—i—at—ﬁz = ¥,

thus, (x, y) € X. Together with (¥, ), (x, y) yields the direction e(x;) + e(y;) — e(Yi41) —
e{Xy,—i).

Ad (iv). Finally, we construct the direction e{x;} — e(x,,~1) for every t £ v; — 1 satisfying
o; = 1. In most cases the direction is established by decomposing it into (e(x) — e(xs)) +
(e(xs) — e{xy,—1)), where s is the first period that is not used for production in (x"!, y*1). Re-
call that (x™, y™) is the solution in which the demand for the periods in §; is produced in the
interval [u{v,}, vy — 11

Let us first show that s < u(vy). If S # 0, then we already observed that oy = 1 and
x;* = 0. Hence, in this case, we have s = 1. Otherwise, if So = @, then the only production
periods in (x*, y¥'} up to #* are the holes and the periods in the interval [u(v;), v; — 1]. By
assumption, there exists a period before u#(v;) that is not a hole. From the above observation
it follows that this period is not used for production in (x*t, y*), Thus, also when $¢ = & we
have s < u(v;). Denote by (x, y) the solution obtained from (x™, y**) by setting y, to one,
and by (X, ¥) the solution obtained from (x, y) by moving the productionin v; — 110 5. Since
a; = 1and B, = 0, both solutions are in X. From these solutions the direction e (x,) — e(xy,-1)
is readily constructed. )

Fromnow on, let t be a period satisfying o, = 1 and t ¢ v; — 1. First, we consider the case
that B, = 0 and x;* = 0. We may assume that in (x™, y"*) the demand in #* is satisfied by the
production in vy — 1. Thus, if x;* = 0, then the solution obtained from {(x™, y™) by moving
the production in period v; — 1 to ¢ is easily seen to be in X. From these two solutions the
direction e(x;} — e{xy, — 1) can be constructed.

For 1 satisfying 8, =0, x* = 1, and 1 # u(v;) we construct e(x,;) — e(x,). Notethatf € §
in this case, thus, s = 1. Hence, the direction e(x,) — e(x;) is easily constructed from (x", y*)
and the solution obtained from the latter by moving the production in period ¢ to period 1.

Next, let 8, > Oand t € Uvevl\(ul)[u(u), v —1]. Define v = min{v € V; : v > 1}. Then
a,=1foreveryre(t, 0~ 1land u(®) < t,since = |{ve Viiu(v) <t <v}=|{ve V:
v> 7 and t > u(v)}| > 0. Consider the solution (x°, y*) for which the demand for the periods
in S, is produced in the intervals [u(v;), vy — U + u(3) — 1] and [u(¥), & — 1]. Let (x, y) be
the solution obtained from (x°, y*) by moving the production in the interval [t + 1, v — 1] to
[v; — T+ u(¥), v; —t + u(d) — 2]. Then (x, y) € X and x, = x* = 0. Using similar arguments
as before, the direction e(x;) — e(x,) is now readily established.

We are left with the construction of the directions e(x,) — e(x;) fort € [u(vy), v; —2).
Assume that vy — u(vy) = |83] > 2, otherwise we are done. Let ¢ € [u(v), v — 2] and define
i = v — t. We claim that there exists period #’ such that 8y > O and v(#') — ¢/ + 2 = {. Then
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the solution (¥, 3*) satisfies ¥ = 1, and ¥, = % = 0. Again, the solution obtained from
(x*,¥") by moving the production in period ¢ to period s is in X and yields, together with
(x*, "), the direction e(x;) — e(x;). In order to prove our claim, consider the period t;s,_i12.
Suppose first that By, ,,, = 0. Itis not hard to see that there exists a period v € V; satisfying
U < sy-i+2. By = 1, and B,y = 0. In this case we take ¢ = v — i + 2. Then C1 implies
v—u(v)=|{te Stz u(v)}{ =i~ 1, hence, u(v) <t <v, thus, Br >0, and v(¥) =v. If
Brgyiva > 0, then take &' = v(ts,-i+2) — i + 2. Using the same arguments as before, we find
that By > 0 and v(¢') = v. Hence, the direction e(x,) — e(x,) can be constructed for every
t € [u(vy), vy — 2]. This concludes the proof of the theorem. ‘ (]

Example 2.2.5 Let T =12 andd, = 1 fort € {3,6,8,9,11,12}. Let * =12, Vo = [4, 5],
Vi =19,12], w(9) = 6,u(10) = 7, u(11) = §, and u(12) = 10. The corresponding HRSM
inequality is

+ y7++ 2y8+ 3¥o+ 2y10+ 2yu + Y1z

> 4
X1+ X2+% + X+ X7 + X

with Sy = {3}, §1 = {6, 8}, and $» = {9, 11, 12}, By Theorem 2.2.9 the inequality defines a
facet. This also holds for

+ 3+ Yo+ Ys+ 2¥s+ y1+ ¥s
X1+ X2+ X3+ X4 + Xs o+ X7 + X0 -+ X2
the HRSM inequality defined by t* = 12, Vo = {9, 11}, V1 = {6, 8}, u(6) = 2, and u(8) = 5.
Here Sy =9, §; = {9,11},and §; = {3, 6, 8, 12}. O

If uv;) = 1 or all periods before u(v;) are holes, then C1 does not suffice for an HRSM in-
equality to define a facet of conv(X), as the following example shows.

Example 2.2.6 Letd, = 1forr€{4,6,7). Taket* =7, V = V; = {4, 6, T}, u(@) = 1, u(6) =
3,and u(7) = 5. Then

+ ¥y +y3 +2y4+ys +2¥ + ¢

>3
X1 +X2 + X3 -+ X5

is a valid HRSM inequality with Sp = §1 = @ and $» = V One readily checks that P1—P3 and
C1 are satisfied. However, every solution (x, y) that satisfies the above inequality at equality
also satisfies the inequality x; + y3 6 > 1 at equality. The latter inequality is the facet-defining
inequality x4,, + ¥4, ,+1,: = 1 with £ = 6 (cf. Section 2.1). ; , (W]

In this case one extra condition is needed to guarantee that the inequality defines a facet of
conv{X). The proofs of the necessity and sufficiency of this condition are rather technical and
do not provide any further insight. Moreover, there is no easy way to test whether a given
inequality satisfies this condition. Therefore, the following result is merely given for sake of
completeness. The same notation as in Theorem 2.2.9 is used.
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Theorem 2.2.10 Suppose ax+ fy > y is an HRSM inequality satisfying P1—P3, C1, and ei-
ther u(vy) = 1 or all periods before u(v;) are holes. Then the inequality defines a facet of
conv(X) ifand only if for every i € (2, ... , |82} one of the following holds:

(i) there exists a period t < lyg,j-iyy Suchthat B; > Qand v(t) <t+i-2;

(ii) there exists a period v € Vi such that vi < v < {1g,j4i-1 and oty_; = 1 for every’ j€
{1,...,i. O

Notice that the extra condition stated in the above theorem is always satisfied if |[$;] = 1. In
this case, $; = {#*}, where t* is a demand period, and 81 = {¢ < t*: d, = 1}. In order to satisfy
C1, u(v) = v~ 1 must hold forevery v € Vy since {t € $3 . v > 1} = {t*} forevery t < 1*.
Thus, inthis case, a; + f; < 1 foreveryt. If wetake Vo ={1,di» — 11and V| =[d; » + 1, 1],
then we obtain the inequality X4, . + ¥4, .+1,+ = 1, hence, the inequalities (2.4) discussed at
the end of Section 2.1 are a special case of the HRSM inequalities.

Before we address the separation problem for the HRSM inequalities, let us discuss how they
relate to inegualities derived for generalizations of DLSP. We already mentioned that the RSM
inequalities, i.e., the HRSM inequalities with V = @, are a direct adaptation of the right super-
modular inequalities of Constantino to DLSP, Sastry [38] derives a class of inequalities for the
extension of DLSP with both startup and setup costs called skip inequalities. Denoteby X, Y3,
and Z, respectively the production variables, the setup variables, and the startup variables for
this problem. If ax + By = y is a facet-defining HRSM inequality, then A X + pu¥ + vZ > y,
with A, = o if £ € [1, I\ e [4(v), v] and zero otherwise, pu, = &, if € [u(v), v] for some
v € V and zero otherwise, and v; = f§,; for all £, is a facet-defining skip inequality. Magnanti
and Sastry [27] describe a linear programming based separation algorithm for a subset of the
skip inequalities. With some slight modifications the separation algorithm described below
applies to a much broader class of skip inequalities, which includes the subset for which sep-
aration is discussed in [27].

Let us now consider the separation problem for the HRSM inequalities. Y. Pochet (personal
communication) proposes a dynamic programming algorithm for separating, not necessarily
facet-defining, HRSM inequalities. This algorithm runs in O(7?) time, hence, the separation
problem for the HRSM inequalities can be solved in polynomial time. However, it is obvious
that such an algorithm is too time-consuming to be of practical use in a cutting plane method.
Therefore we do not give any details. Instead we describe an O((d, 7T)%) algorithm for the
subclass of HRSM inequalities that, besides P1—P3 and Cl, satisfy the following condition:

C2. If Vo # 6, then maxyey, v < mingey, v,
i.e., ift <t*isthe first period satisfying B, > 0, then there are no holes in the interval {z — 1, £*].

This implies that MaX;e 5 < mineg, t. In Example 2.2.5 only the first inequality satisfies this
condition. Hence, the second inequality cannot be found by the separation algorithm described
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below,

Denote by s; the ith demand period, i.e., d,, = 1 and d, ,, = i. Conditions P1 and P2 hold
if and only if * = s for some i* € {1,...,d; 7} and 5 € §;. The validity of C2 implies
the following. If Vy 5 8, then §; = {sy41, ..., 5;,) and S2 = {Si,41, ... , 5=} for some i; and
iy satisfying 0 < i; < i, < i*. Moreover, Vy C [s;, + 1, i — 1], where # = min,cy, #(v) and
{Vo| == Iy — i;. Now in order to satisfy P3 we must have s;, > i or, equivalently, i; = dy z-1 + 1.
Furthermore, the number of holes in the interval [s;, + 1, ;] must be at least i —i; + 1 for any
iE{il-}-],...,dl,,;_l},thuS, -

sy, + L, INVol = i—i1+1 forie{in+1,...,d15-1} (2.15)

If Vo =0, then §3 = {$4,,_,+1,- .., 5} In this case define i = d; 3-1. Condition C1 is sat-
isfied if for all v € V; the following holds: v — u(v) = |{t € 8, : £ > w(v)}} and if dyqy = 1,
then u(v) = s; for some i < i;. This yields

v — u(v) = - max(iz, dl,u(v))y (216)

sincemin{i:s; € 57 and 5; > u(v)} = max(i + 1, dl,u(v)—l + 1) = max{iz, dj uw) — du(u)) +1
and i; > dl,u(v) if d“(u) =1,

Let (%, $) be a solution to the LP-relaxation of DLSP. The question to be answered is: does
there exist an HRSM inequality satisfying P1—P3, C1, and C2 that is violated by (X, $), thus,
for which

Rree =+ (Vo = 32 + Y Guorrn = B) < 07 @17

eV veV)

In our algorithm we first determine for each #* and V) the set V; satisfying the aforemen-
tioned conditions for which the left-hand side of (2.17) is minimal. An important observation
is that this set is the same for all /* and V) with the same values of u = min,ey, u(v) and i, =
i* 4+ u — minyey, v (= minseg, 1 — 1); we will therefore refer to it as F,(iz). Now for a given
period u and a given index iz < dy 7 satisfying s;, > u, F,(iz) is determined as follows, For
ir€{0,...,iz—1}1et F,(i1, iz) beasubset of i — iy periodsin[s;, +1, 4 — 1]suchthat (2.15)
is satisfied for Vo = F,(i1, iz) and such that §_,_ FuGivia) i, is maximal. Define [,{i;, i) =
| Fuliy, )|~ Z,Epn(fhiz) %;. Then F, (iz) = F,(if, i2), where i = argmino<;, «i, fu(i1, i2). For
0 < iy < i we determine F, (i1, #2) and f,{i1, &) in the following way:

determine { € [8; + 1, 5i.41 — 1] such that %, is maximal;
Fu(in, i2) :={t}; fulin, i2) =1 ~%4
fori=i; + 1 tod; . do begin
determine ! € [s;, + 1, si]\ F, (i1, i2) such that X, is maximal;
Fu(ir, i) i= F(iy, i) Ut} fulir, i2) = fuli, i) +1 -3,
end
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determine F C [Sil +1u- INF.(i1, iz) such that | F| = iy — dl,u-~--1 -1
and 3, p X is maximal;
F iy, i2) := F,(iy, i) U F; fu(i1, 02) i= fulin, ) + |Fl =3 p %

Hereitis assumed thats; .1 > §;, + landu—1 — 55, > i3 — i1, otherwise we set Fu(i;, i) =0
and f,(i1, i») = —oo. Determining F,(i2) and f,(i2) = |F,(i2)| — Z‘,em,«z) X, for all periods
u€ll,sq,—1landis € {dyu-1+1,...,d, 7 — 1} can be done in O((d, rT)?) time.

letubea penod inf{l, 54, —~ 1]. If u = u(v) for some v € Vi, then we already observed
that v = u + i* — max{(iz, d1 ) (cf. (2.16)). Now define '

812, 1" = Pt uriv—iy = Zurir—i
for dy , < i, < i* < d; 7. These values can be determined in O(d; ) time for i fixed, since
gu(dl‘u; dl,u + 1) = yAu+1 - j\:u-Hy

8uldiuw, "+ 1) = guldyu ") + Rurir—dy, + Furir—dy 1 — Buvir—a, 01 fOri* < dir,

and guia, I*) = guldy u i* — iy + dy ) for dy . < in < i*. Now (£, §) violates an HRSM
inequality satisfying P1—P3, C1, and C2 if and only if one of the following holds: there exist
anindexi* € {1,...,dyr}and anonemptyset U C {t € {1, 5; — 1] : d; = 0} such that

Grse =i+ Y guldiwi®) < 0, 2.18)
uel/
or there exist two indices i and * satisfying 1 < i, < * < d; 7, and a nonempty set U €
o+ L spe —I0N\{s,+ 1, ..., i1} with Uy, = mingey u < 53, such that
Gl =)+ fama i) + Y gulmax(iz, di ), i*) < 0. 2.19)
uel/

Since (X, ) satisfies %15, > i*, it is obvious that if (2.18) holds for i* and U, then we can
assume that g,{d; 4, i*} < 0 for all u € U. Suppose that (2.19) holds for i, i*, and U, where
gu(max{iz, di ,), %) = O for some u € U, If # 5 tmin, then (2.19) also holds if U is replaced
by U\{u}. Therefore, suppose that g, . (i3, 1*) > 0. Since fu(i;) > 0 for any u and i, we
must have that U’ = U\{umin} # . It is not hard to see that f,, (i2) = f,,(i2) if uy < u; and
$i, = ty. From this it follows that if s, > minyep 4, then (2.19) also holds for i*, i, and U'.
Finally, if 5;, < mingep u, then g, (max(iz, di,.), i*) = g.(dy 4, i*) for all u € U, Then

Riaw =4 ) guldiwi®) S Xpp — i+ fum(zz) + Y gu(max(iz, dy u), i* ).
ucl)’ ucl/
hence, the inequality with Vi == @ corresponding to :* and U is at least as much violated as the
inequality with Vo = F,  (#;) corresponding to i*, i3, and U.
Now take i* € {1, ..., d) r}. The following algorithm provides the most violated HRSM
inequality satisfying P1-P3, C1, and C2 with £* = s, if one exists:



2.2 Facet-defining inequalities 33

begin SEPARATION(*)
A% := 0; determine g,(iz, i*) foru € [1, 5, — 1] and dy ., < iz < i*;
Ui={uell,s;) ~1]:1d, =0and g,(d1,,.1*) < 0);
A= il,s,». -t 4+ Zu€U gu(dl,uv l*),
if A < A then begin UP" :=U; i :=0; A® := A end
for i; = i* — 1 downto 1 do begin
U={ueli+1,s ~11: (8, zuord, = 0) and g,(max(iz, di u), i*) < 0);
A= Ry, — )y 8u(max(is, diy), %)) Uimin 1= MiNyey 4;
while un, < §5;, do begin
if A+ fu,(i2) < A% then
begin UP = U, i i= ip; AP 1= A + f,.. (i) end
A=A = g, (i, 1), U= U\{thmin}; Umin = MiDyey 4
end
end
end.
If A% < 0, then (%, §) violates the inequality corresponding to *, iS?* (if if¥' = 0, then V, =
2), and U, If £,(iy) and F,(i») are determined beforehand, then SEPARATION(i*) runs in
O(d, 7T) time.

Summarizing, the most violated HRSM inequality (2.9) for which P1-P3, C1, and C2 hold,
if one exists, can be found as follows: first, determine f,,(72) and F,(iy) foru € [1, 54, — 1]
and dy .1+ 1 < i <i* < d; rand, second, run SEPARATION(*) for i* € {1, ... ,d1 ). The
most time consuming part is the determination of f,(iz) and F, (i), hence, the separation al-
gorithmruns in O((d; 7T)?) time. Note that if we restrict ourselves to RSM inequalities, i.e.,
to HRSM inequalities with Vy = &, then the separation can be performed in O(d; rT) time.

2.2.3 Regular block inequalities

In this subsection we study another subclass of inequalities of the form (2.7). Let us first recall
some definitions. If ax + By > y is an inequality of the form (2.7), then

ax -+ AB}’ = E X+ Z}’u{v)-}-l,m
te[l,’\V veV

where t* is a period with o« + B+ = 1, V asubset of [1, #*], and u(v) a period associated with
v € V such that #(v) < v. We always assume that #{v) < u(v') if v < v/. By definition, V is
the set of periods (£ : £ < ¢* and &, = 0}.

Similar as in the previous subsection, we denote by V) the subset of periods ¢ in V with
B: > 0, hence, Vi = {v € V! u(v) < v). In this subsection we study inequalities of the form
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{2.7) for which the following holds:
ifv,v" € Vyand v < v/, then [v, v'] € Vi or [u(v), viN[u(y), v'] = 8. 2.20)

Suppose V; satisfies the above condition. Let {9, ¥ + g — 1] be a maximal interval in Vi, i.e.,
[V, 9+g—1]1C Vi, ifv> 1, thent—1¢V,andifo+g—1<T,thenv+g¢V,. Let
v € V;. Condition (2.20) implies that v < w(d) if v < v, and u{v) > v+ gif v > v + q.
Moreover, note that if v € Visa hole, i.e., if u(v) = v, then v is not contained in [u(v'), v'] for
any v’ € V). This follows from the assumption that u(v) < u{v’) for any v, v/ € V satisfying
v < v/, Thus, in the interval [u(9), v+ g — 1] wehave o, = 1 forz € [u(»), v —1land o, =0
otherwise, and B, = Qif and only if = 1(). Furthermore, 54, =0if v+ g < T. Theinterval
[u(v), v+ g — 1] is called a (p, q)-block, where p = © — u(v).

Example 2.2.7 Letax + fy =

+y2+ 3 + Y+ 2y +2ys+ ¥ + yu+yi + Y1a+ Y15+ Yis
X1 + Xa+ X5+ X -+ X10 + X1 + X134+ X14
[ ] [oreirnens ] [-eeeenne- ]
[ 1 [orreeeninns 1 [oeieieeins ]
[oreeieeenns 1 [Feveen ]

In this example we have V = V| = {2,3,7, 8,9, 12, 15, 16}. The intervals [u{v), v], v € Vi,
are depicted above, There are four blocks: the (1, 2)-block {1, 3], the (2, 3)-block [35, 9], the
(2, 1)-block [10, 12], and the (2, 2)-block [13, 16]. 0

An inequality ex + By = y of the form (2.7) satisfying (2.20) is called a block inequality.
Observe that (2.7) is a block inequality if and only if there are no periods t < T such that
oy = O, U] = 1, and ﬂ;+1 > 0.

Block inequalities generalize the hole-bucket inequalities discussed by van Hoesel in {18]
(see also van Hoesel and Kolen [19]). These are inequalities of the form (2. 7y withe, + 8, < 1
for every period t. Since B, = [{v: u(v) < t < v}|, this implies that u{v) = v ~ 1 for every
v € V;. Note that in this case (2.20) is always satisfied. Thus, a hole-bucket inequality is a
block inequality with p = 1 for any (p, g)-block. Van Hoesel derives necessary and sufficient
conditions for a hole-bucket inequality to define a facet of conv(X). ,

Here we will give sufficient conditions for a subclass of the block inequalities to define a
facet of conv{ X}, namely, for block inequalities that only contain regular blocks. A (p, q)-
block [u(v), v+ g — 1liscalled regular if u(v+i—- 1) =u(@+i) -1, 1 <i <gq,ie.,if
Huw+10), 5+ i} = {{u(¥), 0}l = p+ 1 for all i. Otherwise, the block is called nonregular.
In the above example the first three blocks are regular and the last block is nonregular. A block
inequality that only contains regular blocks is called a regular block inequality or R-block in-
equality for short. Obviously, hole-bucket inequalities are contained in this subclass.

The following' lemma states an important property of R-block inequalities. Let us first
introduce some notation. In the sequel, the first and the last period of a block B are denoted
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by Ip and u g, respectively. Moreover, we define pp={{f € B: o, = 1}|andgp=|{t € B:
o, = 0}|, thus, B = [lp, uplis a (pp. gp)-block. When no confusion can arise, the subscript
B is omitted.

Lemma 2.2.11 Let ax + By > y be a valid R-block inequality of X that contains the (p,q)-
block B = [1, ul. Let (x, y) be a solution satisfying ax + By = y. Then 3 _,_(a:X; + By} =
min(x; ,, p).

PROOF. By definition, B is a regular block, hence, u(v) =v—pforalve BNV =[l+
p,ul. Recallthatey, =1 fort e [{,1+ p—1]and o = O for ¢ € [I + p, u]. Furthermore, let
tell,ul. Kve Vi thenre[u(v)+1,v]ifand onlyif v € [t, min(t + p — 1, u)]. Using this
and the trivial observation that there are no holes in [/, u], we get

min{t+p-1,u)
B = |lveVitu(v)<t<v)| = Z (1 —ay). (221)

Sa=p
In particular, we have B; = 0. Recall further that 8,41 = 0if 4 < T, Hence, without loss of
generality, we may assume that y; = 1if x; = 1 and vy = 1if x4 = 1. Thus, if [£, ] is a
production batch in (x, y) and [¢, ¥Y1U B # 8, then [¢,¥] < B.
Letzbe aperiodin [/, u] and k£ > 1 such that [1,1+ k — 1] € [I, u]. Then

trk-1 > min(k, p). (2.22)

T oy | kIO L) ifk<p-1
B:+ Z oy = ’ .
o P2 s = P iftk>p

This implies that Z',;,(a,x, + Biy:) = min(x;,, p). In order to prove that equality holds, let
us first consider the case that at least p periods in B are used for production in (x, ). Then
¥ (a:x: + Biy:) = p. Suppose that 3% (a,x; + B:y:) > p. Denote by (%, ) the solu-
tion obtained from (x, y) by moving the production in B to the first x; , periods in B. Then
S eXe+ By = Zi;f“‘"l a;+ B = p, thus aX + By < ax+ By < y, which contradicts
the validity of the inequality. Thus, if x;,, > p, then Y% (c.x: + Biy:) = p.

Next, suppose that the total production in B is less than p and suppose that [1, ¢+ k — 1]
C [I, u] is a batch of length k in (x, y) satisfying Y, (ct:x; + Bry:) > k. If there is no proy-
duction in [/, — 1], then define ¢’ = [. Otherwise, let ¢/ — 1 be the last period before ¢ in
which production occurs. Denote by (%, ¥) the solution obtained from (x, y) by moving the
productionin [¢, t +k — 1] to [/, ¢ + k — 11. It is readily checked that B, ju + 315 o, <k,
hence, X + By < ax -+ By = y. Again, we find a contradiction. This concludes the proof of
the lemma. O

Let [z, 1+ k — 1] be contained in the regular block [/, 4]. Using (2.22) it is not hard to see that
B+ Y 1 g, = min(k, p)if and onlyifk > port e (I, u— k+ 1}. Together with the above
lemma, this implies the following:
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Corollary 2.2.12 Let ax + By > y be a valid R-block inequality of X and let B = [I, u] be
a (p, g)-block. Suppose that (x, y) is a solution that satisfies the inequality at equality and
Jor which k periods in B are used for production. If k > p, then the production in B occurs
in one interval [t, 1 +k — 1] for some t € [, u — k + 11. Otherwise, the production occurs in
[LiI+k—1) orinfu—k-+1,ul,orintwointervals [I,1+k — 11 and[u — k, + 1, u], where
ki.ko>0andki +ky =k ] . 0

In Lemma 2.2.2 we derived three properties, P1—P3, of facet-defining inequalities with x-
coefficients in {0, 1}. The above result implies another property of facet-defining R-block in-
equalities.

Lemma 2.2.13 Let ax + By = y be a facet-defining R-block inequality of conv(X) and let B
be the first block. Then this inequality satisfies the following property:

P4. If all periods before Iy are holes and if 5 is a demand period satisfying d; s = Ip,
then s > ug — pp+2orax- By = yis equivalent to X1, + Yi,41,5 = 1.

PROOF. Suppose thats <up— pp-+1and ax+ 8y > yisnotequivalent to x;, + yr41.5 > 1.
Since ax + By > y defines a facet of conv(X), there must be a solution (x, y) € X satisfying
ax + By = y and x;, + yi,41s = 2. Then this solution contains two different batches with
periods in B that both start before or in period 5. However, this contradicts Corollary 2.2.12,
which yields that the second batch does not start before period u; — py -+ 2. 0

In the sequel, we will give sufficient conditions for an R-block inequality to be facet-defining
for conv(X). Therefore, we first have to deal with the following question: given an R-block
structure ax + Sy, what is the maximal value of y such that ex + 8y > y is valid? Van Hoe-
sel shows that a greedy algorithm always yields the optimal value for a hole-bucket structure,
i.e., when pp = 1 for every block B. A generalization of this algorithm provides a solution
(x, ¥) that, under certain conditions, is minimal with respect to ax -+ By, i.e., aX + 8y =
min{ax+ By (x, y) € X}. Then, obviously, ax + By > ax + B9 is valid for X.

FILL_BLOCKS

Consider the demand periods one by one in increasing order and determine for each

demand period 7 a period to produce its demand according to the following rules:

1. If there is an empty hole 5 < 1, then produce the demand for period ¢ in 5; otherwise
goto2,

2. If there is a partially filled block, then produce the demand for period ¢ in the first empty
period of this block; otherwise go to 3.

3. If there exists an empty block B with I < ¢, then produce the demand for period ¢ in
the first period of the first empty (p*, g*)-block, where ¢* = max{gp : B empty and
Ig <1} and p* = min{pp : B empty, Ip <1, and gp = ¢*}; otherwise go to 4.

4. Produce the demand for period t in .
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Denote the solution provided by this algorithm by (X, ¥), where ¥, = 1 ifand only if X; = 1
and either ¢ = 1 or X,y = 0. Hence, startups only occur in periods ¢ for which ; = 0. Further-
more, for each demand period s we denote by (¥°, §°) the partial solution where ¥ = 1 for all
periods ¢ that are chosen by FILL_BLOCKS to produce the demand for some demand period
in {1, s]. Observe that if block B’ is chosen for production after B, then possibly Iz < Ip. In
that case, we have g < gp and pp > pp when equality holds. The following example shows
that (X, ¥) is not necessarily minimal with respect to the given inequality.

Example 2.2.8 Letd, = 1fort € {4,5,7,8,10} and let ax + By =

+ Y3 v4 + ¥s + Y8+ 2y9+ Yio
Xy -+ X3+ X3 +Xxs 0+ X7+ X3

The production periods determined by FILL_BLOCKS are [2, 4]U{7, 8], hence, oX = 4. How-
ever, producing in the interval [2, 6] yields a feasible solution (x, y) satisfying ax + fy =3.
0

The following lemmma gives a sufficient condition for ax + 8y = aX+ ¥ = aX to be valid for
X.

Lemma 2.2.14 Let ax+ Bydenote a regular block structure and let (X, ) denote the solution
provided by FILL BLOCKS. Then ax -+ By > aX is valid for X if the following condition is
satisfied for every demand period s: if period Ig+ j— 1, j€ {1,..., p}, of a (p, q)-block
B is chosen for the production of the demand in s, then there is no empty (p’, ¢')-block B in
X, V) withlp < ssuchthatp’ < p—~ j+lorqg > gq.

PROOF. Suppose that the condition of the lemma is satisfied for all demand periods. Let X
be the set of minimal solutions with respect to ax + By. Thus, (£, $) € X if and only if ax +
By > aX 4+ B is a valid inequality. We will show that for every demand period s there exists
a solution (£, $) € X in which all periods that are determined by the algorithm to produce the
demand for the demand periods up to s are used for production, i.e., if X = 1, then &; = 1.
This clearly proves the statement.

Let (X, §) € X. Without loss of generality we assume the following for (%, 9): (i) every
hole is used for production; (ii) if for a block B period Iz + pp ~ 1 is used for production,
then all periods in the interval [Ip -+ pp. ug] are used for production, and (iii) if k periods of a
block B are used for production, then these are the first k periods of B (cf. Corollary 2.2.12).
Let s be the first demand period for which the algorithm determines a period to produce its
demand, say /, that is not used for production in (£, $). Because of (i)—(iii), we have o, = 1.
If t & B for any block B, i.e., if 8, = B4 =0, then all holes before s and all blocks B with
Ip < s are completely used for production both in (¥°, ¥°) and in (%, $). Hence, there is a
period ¢’ < s such that oy = 1, ¢ not in a block, and ¢ used for production in (X, ) but not in
(¥, ¥*). Moving the production in ¢’ to ¢ yields a solution in X for which production occurs
in every period f satisfying ¥} = 1.
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Now assume that f is aperiod in ablock B,sayt = Ilp+ j— 1 forsome je {1,..., pp}.
The definition of s implies that £, = 1 for v € [{p, t — 1]. Then, by (iii), £, = 0 for every
t € [t, up). Let ¢’ be the first period that is used for production in (£, $) but not in (&*, 7).
Obviously, ¥’ < s and, by (i) and (iii), ay = 1. If t’ is a period that is not in a block, then the
solution obtained from (£, §) by moving the production in ¢ to ¢ is also in .X. Otherwise, ¢’ is
the first period of a block B’ that is empty in (&, *). Then, by assumption, pp > pp— j+ 1
and ¢p < ¢p. Suppose thatin (£, $) k periods of B are used for production, Then, by (ii) and
{iii), these are the first k periods of B’ and k = |B’| or k < pp. Define &’ = min(k, up — 1+ 1)
and let (X', $') be the solution obtained by moving the production in the last k' periods of B’
that are used for production to the first K’ empty periods of B, i.e., to theinterval [z, 1+ k' — 11.
Using pp = pp— j+ 1 and gp < gp, one readily checks that a¥’ + By < af + B¥. Since
(%, $) is assumed to be minimal, equality holds. Hence, there exists a solution in X for which
all periods in which production occurs in (X, ¥) are used for production. O

The above lemma gives a sufficient condition for FILL_BLOCKS to provide the correct right-
hand side of an R-block inequality. However, this condition is not necessary, as the following
example shows:

Example 2.2.9 Letd, = 1fort € {5,6,7,8,9, 10} and let ax + By =

+ y2+ 2¥3+ 2y4+ s +y1+ s
X1+ x2 +x3 + Xg -+ X9 + X10

The algorithm chooses period s to produce the demand in period s + 4, 1 < 5 < 6, hence,
aX == 4. It is readily checked that ax + By > 4 is indeed valid. However, when period 2,
i.e., the second period of the (3, 2)-block B = [1, 5], is chosen for the production of ds, the
(1,2)-block B = [6,8lisemptyand pp =1 <2=pp— j+ 1. 0

If pp =1 for every block B, i.e., if ax + By is a hole-bucket structure, then FILL.BLOCKS is
equivalent to the greedy algorithm given in [18], which always provides the optimal value of
the right-hand side of such an inequality. Itis readily checked that in this case the condition of
Lemma 2.2.14 is indeed always satisfied. This also holds when every block is a (p, g)-block
for some p and g, i.e., pp = p and gp = ¢ for every B.

In the following theorem we give sufficient conditions for an R-block inequality to be facet-
defining for conv(X). Similar as before, let (X, y) be the solution provided by the algorithm for
an R-block inequality ax + By > y. Moreover, denote by By, B, ..., Bk the blocks that are
used for production in (X, ¥), such that By, is chosen for production after By. For notational
convenience, we write /¢, ug, etc., instead of Ig,, up,. etc. Recall that we may have I > Iz
for some k. In that case, either gx > r+1 OF gr = Gr41 and P < P+ must hold.
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Theorem 2.2.15 Let ax + By = y be a valid R-block inequality satisfying P1 P4 and let
(X, ¥) and By, 1 <k < K, be as defined above. Suppose that ax = y and that the following
conditions are satisfied:

S1. FILL_BLOCKS chooses period lx 4 px — 1 for the production of the demand in t*.
S2. If FILL_BLOCKS chooses period Iy + pi to produce the demand in period s, then
- there is an empty block B in (X°, ¥*) with lp <5, pp € {Prs1,---» Px), and gp = qr.

83. If FILL_BLOCKS chooses period I for the production of the demand in t, then

t> ur— prorlj<lyforsome j >k
S4. If B is a block that is not used for production in (X, ¥} and pr < pp for every block By

with I > lg, then there is a block By with I < lg. Moreover, py > pp and period

by -+ pr — pg is chosen by FILL_BLOCKS to produce the demand for some period

t > up — pp, where &' = max{k : lIr < lp).

Then ax + By = y defines a facet of conv{X).

ProoF. Denote by X the set of feasible solutions to DLSP that satisfy ax + 8y > y at equal-
ity. Thus, in particular, (%, §) € X. In order to prove that ox + By > y defines a facet of
conv(X), we have to provide 2T — 1 linearly independent directions. For every block B we
construct solutions (x', y*#) and (x“#, y*#) in X for which the only periods of this block that
are used for production are the first pp and the last pp periods, respectively. Observe that,
by 82, 41 < q2 < ... < gx. Together with the earlier observation that ¢; < g if j > k and
l; < Iy, this yields q; = qi (and p; > po) if j > kand I; < lx. Together with P3, 52 further-
more implies that if there is a hole t < s or a block B with Iz < s, 5 a demand period, then
FILL_BLOCKS chooses either a hole or a period in a block for the production of the demand
in s.

We first determine solutions (x*, y*), 1 < k < K, that satisfy the following properties:

(a) all blocks Bj, 1 < j < k, are completely used for production;

(b) only the first p, periods of By are used for production;

(c) if Bisused for production and B # B; for any j < k, then gp > 4 and

PB € {Prs1s -5 Py}

(d) ax® + gyt =y, thus, (x*, y*) € X.
By S1, only the first px periods of By are used for production in (%, 7), hence, we set (x'x, y/)
= (%, 7). Now let k < K and suppose that a solution (x%, y%) with the desired properties
has been constructed for all j > k. Suppose period Iy + pi was chosen by FILL_BLOCKS to
produce the demand for period 5. If s > I; for some j > k, then let (x*, y*) be the solution
obtained from (%, y%) by moving the production in the last g periods of By to the first g
empty periods of B, i.e., to the interval [I; + p;, {; + p; + gr — 1]. Recall that g < ¢;. It
is easily seen that this solution satisfies (a)—(d). Otherwise, if s < [; for any j > k, then §2
yields that there is an empty block B in (X, ¥)? such that 5 > I, ps = py for some k' €
{k+1,....K}, and g > q&. Thus, B # B; for any j < k. Moreover, since [z < s < [; for
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any j > k, we conclude that B is empty in (X, ¥). Together with Iz < Iy and pg = py, this
implies gz < gr. Hence, by (), B is empty in (x'*, y%). Now let (x*, y*) be the solution
obtained from (x , y*) by moving the production in the last g periods of B and in (the first
pw periods of) By to block B. Again, one readily checks that this solution satisfies (a)—(d).

Second, denote by (x*, y*) the solution obtained from (x* , y*) by moving the production
from the first p; periods to the last py periods of the block B;. This solution is feasible if
x'l" b1 > dy -~ p,- This clearly holds if there is no demand period in the interval [I, ug — pyl.
Therefore, suppose that there is at least one demand period in this interval. Define s = max{r €
{le, u— pl s d: = 1}. If FILL_LBLOCKS chooses a period before Iy to produce the demand in
5, then xlllfz,,mx > i o1 = dy s, since all holes before [ and all blocks B;, j < k, are completely
used for production in (x*, y*). Otherwise, $3 asserts that there is a block B; with j > k and
l; < I, hence, g; = grand p; > pr. We may assume that (x*, y*) is obtained from (x", y)
by moving the production in the last g; periods of By to the last gx (= ¢;) periods of B;. Then
B; is completely used for production in (x*, y*}, thus, x'l‘flk_l =X, Fpita;= di .
Hence, (x*, y*) is feasible. Since ax* + By** = y, it follows from Corollary 2.2.12 that
(x*, y*) is also in X.

Finally, let B be ablock thatis empty in (X, ¥). We first show that forany k, 1 <k < K, we
have I <lIpor p; < pp. Suppose By satisfies {; > Ip and py > pp. Since By was chosen for
production by FILL.BLOCKS instead of B, we must have gp < qi. Then (¢} implies that B is
empty in (x%, y¥). Let (x, ) be the solution obtained from (x*, y*) by moving the production
in [le+ pr — pp— 2, L+ pr — 1] to the first pp + 1 periods of B, Then ax + By = axh +
By* — (pr + 1) + pa, contradicting the validity of ax + 8y > y. Hence, if Iy > Iz, then
Pt < pg. Letus now determine solutions (.xi‘?, yzf’) and (x*#, y*#) with the desired pmperties.
We can easily deal with the case that p; = pg for some block By with /i > 5. Then the
solutions (x’z, y'2) and (x“s, y##) that are obtained from (x*, y*) by moving the production
in [, Iy + pr — 11 to respectively the first pp and the last pp periods of B are clearly in X.
Therefore, assume that px < pp for all blocks By with Iy > Ig. By S4, k' = max{k: [y < Ip}is
well defined and py > pp. By (c), B is empty in (x*, y*). Moreover, all blocks B;, j < K/,
are completely used for productionin this solution, hence, by 84, the production in the interval
[l + pr — pp— 1, I + pr — 1] can be moved to the last pp periods of B while feasibility
is maintained. Denote this solution by (x"#, y##). Then (x"?, y“?) satisfies ax+ By > y at
equality, just as (x'2, y'), the solution obtained from (x*#, y*#) by moving the production in
the last pp periods of B to the first pp periods of this block.

Now in order to prove that ax + 8y > y defines a facet of conv(X), we will show that the
following directions are in X:

i) e{x;) for all t satisfying «, = 0;

i)  e(y,) for all r satisfying B, = 0;

(ila) e(xrp-1)+e(y) —e(x1) —e(y—y) forallt e Jg llp+ 1, up— pp+ 11;
(iiib)  e(x—g-1) +e(y) —e(xm1) —e(y;-1) forallz € | g [up — pp+2, usl;
(iv)  e(x) = e(igqpr-1) forallt # lg + pg — 1 satistying o; = 1.
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Note that 8, > 0 if and only if € [Ig + 1, upg] for some block B. Thus, (ii), (iiia), and (iiib)
yield T different directions. Since a4 p,-1 = 1, (i) and (iv) yield T — 1 different directions.
One readily checks that these 27 — 1 directions are linearly independent. This shows that
ox + By = y defines a facet of conv(X),

Ad (i) and (ii), The directions e(x,) and e(y,) for ¢ satisfying «; = 0 and S, = 0, respectively,
can be constructed in a similar way as in the proof of Theorem 2.2.9. Therefore, we omit the
details.

Ad (iii). Let ¢ be a period satisfying 8; > 0. Then 1 € B for some (p, g)-block B = [/, u]
and ¢ > l. Consider the previously defined solution (x*, y*) in which only the last p peri-
ods of B are used for production. For t € [/ -+ 1, u — p-+ 1] the direction e{x:1p—1) + e(y;) ~
e(x;-1) — e(y;-1) is constructed from the solutions obtained from (x*, y*) by moving the pro-
ductionin [u — p+ 1, ujtoft,t+ p — 1] and [z — 1, 2+ p — 2], respectively. From Corol-
lary 2.2.12 and ax* + By* = y, it follows that these solutions are also in .X. Furthermore, for
t € lu~ p+2, u] the direction e(x;—g—1) + 2(y:) — e(x—1) — e(y,—1) is constructed from the
solutions obtained from {x*, y*) by moving the productionin theinterval{u — p+1,5— 1]to
the interval [u— p—g+1,s—g—1]={l, s —g—1}fors e {t — 1, ¢}. Again, by Corollary
2.2.12, these solutions satisfy ax + 8y > y at equality.

Ad (iv). We show that the direction e(x;) — e(lx + px — 1) can be constructed for every period
t# lg + px — 1 with o, = 1. In the proof we often restrict ourselves to the construction of a
direction e(x;) — e(xy), where ' is a period for which the direction e(x¢) — (X1, 4 p,—1) has
already been constructed.

First, let £ be a period such that ¢, = 1, B = 0, and X; = 0. Since period g + px —~ 1
was chosen by FILL_.BLOCKS to produce the demand in period ¥, the solution obtained from
(%, %) by moving the production in period Ix + px — 1 to ¢ is in X, Together with (%, ) and
the direction e(y;) constructed previously, this solution provides the desired direction. If 7 is
aperiod witha, == 1, %, = 1, and ¢ not in a block, then ¢ is a demand period before the first
hole and before ming 3. In this case we have «¢; = 1 and X; =0, as it is always assumed that
dy = 0. Thus, the directions e(x;) — e(x;) and e(x1) — e{Xi,4.p,—1) are easily constructed.

Next, let ¢ € [{,1 + p— 1], where B = [[, u] is a (p, ¢)-block that is not used for pro-
duction in (¥, 7). Consider the solution (x, ) in which the first p periods of B are used for
production. Recall that (x', y*) was obtained from (x*, y*) for some k € {1, ..., K}, say &,
by moving the production in [lx + pr — p, I + pr — 1] to [I, 1 + p — 1]. Denote by (x, y)
the solution obtained from (x, y') by moving the production in [t + 1, 1+ p — 1] to the last
I+ p—1t—1periods of B. We already observed that ax + Sy = y. Furthermore, X, p,—., =0
and moving the production in period £ to I + pi — p yields another solution in X. Hence, the
direction e(x;) — e(Xy,4p,-p) can be constructed for every t € [{, I+ p — 1]. Together with the
direction e(x;) — e(X;+ pg—1), which has already been established because oy = 1, f; =0, and
x; = 0, this yields the desired direction forz ¢ [{, I+ p—1].
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What is left to show is that the direction e(x;) — (X1 pp-1) Can be constructed for ev-
eyl € U,,c_l U, Ik + pe — 11, t # Ix + px ~ 1. We will first establish this direction for the
periods in {lg, lx + px — 2}. Then it is shown how e(x;) — e(X1 4 ,,-1) can be constructed
fort € [lx, e + pr — 11, k < K if the direction has already been established for all periods in
Uf:k 1llj, 1+ p; — 1]. However, we start by showing that there exists a period ¢ such that
o, = 1 and X, = 0. Note that if there exist periods that are neither a hole nor in a block, then
at least one of these periods is empty in (X, ). Therefore, suppose that there is no period ¢
with «; = 1 that is not in a block. Furthermore, suppose that all blocks are (partially) used for
production in (X, y). Then there are no blocks but B, 1 <k < K, hence, by S1, ax+ 8y =
aX = Z,f:] Dr. Let K/ satisfy Iy = mimg [;. By P4, the total demand up to period uy — pe -+ 1
is less than Iy, hence, the solution (X, ¥) in which all periods but {Iy, up — pr + 11 are used
for production is feasible. However, «X + gy = 2§=1 Pr— pr + (pr — 1), which contradicts
the validity of ax + By > y. Hence, there always exists a period ¢ with «; = 1 for which no
production occurs in (X, ¥).

We will first construct the direction e(x;,) — e(x;) for every t € [Ix, lx + px — 1], where
tx =min{f: «; = 1 and X; = 0}. From the above arguments it follows that rg is well defined
and, by 81, B, = 0. Note that the direction e(x;, ) — (X, +p,—1) has already been established.
Thus, letf € {lg, Ix + px — 2] and let (x, y) bethe solution obtained from (x, y) by moving the
production in the interval [t + 1, Ix + px — 1]1to the last Ix + px — £ — 1 periods in the block
Bk, ie., to the interval [t + gx + 1, ux]. Then (x, y) € X. From this solution the direction
e{x;,) — e(X.+;-1) can be easily constructed, provided that moving the production in period
t to period tx yields a feasible solution. This trivially holds if zx < {x. Hence, suppose that
tx > ux. Note that this implies that each period before {x is either a hole or in a block. Then
the production in ¢ can be moved to g if the total production in (x, y) up to period t + gx,
which equals £ — 1, is not less than the total demand up to this period. Similar as before, let
Iy = ming ;. We already observed that the solution for which production occurs in all periods
except in the interval [l up — pr + 1] is feasible. Thus, the total demand up to period 1+ g
is at most £ + gx — (gx + 1). The proofis conciuded by showing that g = gx. Therefore,
consider again the solution (x, ). If g» < gk, then we can move the production in the last
g+ 1 periods of By to to the first gx + 1 empty periods of Bx while maintaining feasibility.
However, this new solution (x/, y') satisfies ax’ + By = aX-+ By — 1, contradicting again the
validity of ax + By > aX. Thus, g, = gx, since we already observed that g < gg.

Now letk < K and suppose that the direction e{x;) — ¢(Ix + px — 1) has been established
foreveryt € U;i,c iy 1;+ pj — 1]. Consider the solution (&, y*), in which in By only
production occurs in the first py periods. Moreover, all blocks Bj, j < k, are completely used
for production. Using similar arguments as before, one easily shows that fy = min{t : o, = 1
and xﬁ* = 0} is well defined. Then either ; is empty in (X, ¥) or 2 is the first period of a
block B; for some j > k. In both cases the direction e(x;,) — e{(Xi,4p,~1) has already been
established. Now the direction e(x,,) — e(x,),t € [k, I + pr — 1], can be constructed in a
similar way as for t € [lx, lx + px — 2]. This concludes the proof of the theorem., 0
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Example 2.2.10 LetT=15andd,=1fort € {4, 6,7, 9, 11, 13, 15)}. Consider the following
R-block inequalities:

+ ¥2+2y3+ Y4 + Y6+ 2y7+ 2ys+ ¥o + yii+ yiz+ nis + y15

. > 5
X1+ Xg . o+ X+ X +x7 + X10+ X1 + X12 + X14 -
and

+y2+ ¥y + ¥s +yr+ys + v+ 212+ 2y13 + Y14 > 5
X1+ X3 + X4 + X5+ x7 + X9+ X100+ X11 + X155

Given the left-hand side of the first inequality, FILL_BLOCKS chooses periodi, 1 <i <7, to
produce the demand for the ith demand period. With respect to the left-hand side of the sec-
ond inequality FILL_.BLOCKS proceeds as follows: first, the (1, 1)-block [4, 5] is completely
filled, then the (2, 1}-block [1, 3] is filled, and finally periods 10 and 11 are chosen to produce
the demand for period 13 and 15, respectively. In both cases (X, ¥} is minimal with respect
to the R-block structure at hand because of Lemma 2.2.14. It is left to the reader to check
that P1—P4 and S1-84 hold in either case. Hence, both inequalities are facet-defining for the
instance at hand. O

We already observed that ax + By > oX is always valid for X if pp = 1 for all B or if every
block is a (p, g)-block for some p and ¢. Van Hoesel [18] proves that conditions P1 —P4 and
§1-S83 are both necessary and sufficient for a hole-bucket inequality to be facet-defining for
conv(X). Note that S1 implies S4 in this case. Let us now consider the subclass of R-block in-
equalities with pp = p and gp = ¢ for all B. Using similar arguments as in [ 18], we can show
that such an inequality must satisfy §1—S84 in order to define a facet of conv(X). Together
with Theorem 2.2.15, this yields a complete characterization of the facet-defining inequalities
of in this subclass. '

With respect to separation we mention the following results. Van Hoesel and Kolen {19]
present a separation algorithm for the hole-bucket inequalities that is based on dynamic pro-
gramming. They define an acyclic network such that each path corresponds to a facet-defining
hole-bucket inequality and vice versa. The running time of this algorithm is O(T3). A simi-
lar approach can be used for the separation of R-block inequalities with pp = pandgp=¢
for all blocks B. Because of their large running times, these separation algorithms will notbe
used in our computational experiments in Chapter 3. Therefore, we will not describe them in
more detail. '

2.2.4 Hole-lifted left stock-minimal inequalities

The last subclass of facet-defining inequalities with x-coefficients in {0, 1} that we discuss
is also based on a class of inequalities derived by Constantino for the capacitated lot-sizing
problem with startup costs, namely, the class of interval left supermodular inequalities (cf.
[5], Section 2.2). In the sequel, we will not make use of the general form (2.7) of facet-defining
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inequalities with x-coefficients in {0, 1}. Although the inequalities discussed here can also be
stated in this form, there is a much more insightful way to introduce them, Similar as before,
s5; denotes the ith demand period, thus, d;, = 1 and d; , = .

Let t be a period in [0, 7] and let s be the jth demand period after 1, Lhus $ = Sgy,4 5. If
no production occuts in the interval [ + j, s], then the inventory at the end of period ¢ must
be at least one, or, equivalently, the total production up to period ¢ must be at least dy , + 1.
Consider the following ineguality;

Xt + Xepj+ Verjers 2 dig+ 1 (2.23)

Observe that X, ; + Yiij41,5 is nonnegative and integral for any feasible solution to DLSP.
Moreover, X4 j + Yrvj+1,s = 0 implies that there is no production in [z + j, s1. Hence, (2.23)
forces the inventory at the end of period £ to be at least one if no production occurs in the
interval fr + j, s].

Proposition 2.2.16 Lett € {0, Tl andlet J S {1, ... ,du1,1). Then

X+ Z(Jlnﬂ'j + )’r+j+1,s,,l‘(+j) > dy+|J] (2.24)
jelJ

is valid for X.

Before we prove the above proposition, we give an example.

Example 2.2.11 LetT=12andd, =1fort €{2,4,5,7,8,9,10,12). Take t = 3 and J =
{1,3,4,6,7). Then {54,,+;: j € J} = {4,7, 8,10, 12}. By Proposition 2.2.16,

+ ¥4 + Y6+ 2y7+ ys+ Yo+ 2Zyio+ yuu+ iz

> 6
X+ X2+ X3 + X5 4+ Xg + Xg -+ Xo

is a valid inequality for the given instance. a

PROOF OF PROPOSITION 2,2,16. Theproofis by induction on |J|. First, note that for J =0
the above inequality is the production inequality x; , > d ;, hence, (2.24) is valid for | J| =
Now let J € {1,...,di17}, |J] 2 1, and suppose (2.24) is valid for all subsets J’ of size
1J/| < |J]. Let {x, y) be a solution to DLSP violating (2.24) for the given choice of J. Let
j* = max.s j and define J' = J\{j*}. By the induction hypothesis, (2.24) is valid for J/,
hence, )

d o+ > X+ Z(X:-z-j F Vet it p0s)
jeJ
= X+ Z(xt+j + }’z+j+1,s,,,ﬁj) + Xptjr F Vet lisg o
jel’
dl,l + I} - 14 Xepjr + yl-%}'"i“l»-sdl v

v
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Since (x, y) is integral, we have X,y j + Y14 JALsay e = 0, which implies that no production
occurs in the interval [ + j*, 54, 4 j»]. Moreover, (x, y) satisfies the production requirements,
thus, x4 jo-1 = Xysg oy = dy 4+ j*. This yields

X1+ E (xt+j+}’r+j+l.sd“+,-) Z X+ E Xevj = Xippjol ™ Z Xitj
jeT Jer jello P —I0\F

di+J -G 1= = di.+ ],

Y%

which contradicts the assumption that (x, y) violates (2.24) for the given choice of J. ]

An inequality of the form (2.24) is called a left stock-minimal inequality or LSM inequality for
short. LSM inequalities are a direct adaptation of the interval left submodular inequalities of
Constantino to DLSP, In Subsection 2.2.2 we discussed HRSM inequalities, which generalize
the RSM inequalities, which in their furn are a direct adaption of the interval right submodular
inequalities of Constantino. A similar generalization of the LSM inequalities will be discussed
later.

We first investigate under which conditions an LSM inequality defines a facet of conv(X).
If J = 0, then (2.24) is the production inequality x, , > d, ;, which defines a facet of conv(X) if
and only if d; = 1 and either t = T or dy.yy = O (Proposition 2.1.2). If 1 = 0, then {2.24) is the
sum of inequalities of the form x; + ¥;41,5;, 2 1. These inequalities are facet-defining, hence,
if t = 0, then (2.24) does not define a facet unless | J| = 1. Therefore, assume that ¢ > 0 and
J # @, If (2.24) defines a facet of conv(X), then at least the general properties P1--P3 stated
in Lemma 2.2.2 have to be satisfied. Note that for J # @ the demand period 54, 4, where
J¥ =maX ey j, is the last period r with o, + B, > 0, hence, P1 is obviously satisfied. The only
holes before 54, are the periods 1 + j, 1 < j < minje; j. Hence, forevery T < 54,4+ the
number of holes in [, 54,4 j+] is strictly less than the demand in this interval, thus, P2 holds.
Finally, P3 states that the number of holes in the interval [1+ 1,2+ j1, 1 < j < minjes J,
must exceed dyy1,11j. If minjey j > 1, then this condition is satisfied if and only if diy; = 0.
Moreover, if 1 € J and d,1; = 1, then (2.24) is equivalent to the inequality with f replaced by
t+1and Jreplaced by J'={j—1: je Jand j > 1}. Hence, we only have to consider the
casethatt € [1, T —1],d;y1 =0, and J # 0.

Theorem 2.2.17 Lett € (1, T — 1 suchthatd, .y =0andlet @£ J {1, ... ,dr17}). Then

X1+ Z(xt-t-j + y;+;+1,sd,,,+,~) >-dy+ 1]
jerJ

defines a facet of conv(X).

PROOF. Let ax + By = y be an inequality of the form (2.24) such that ¢ and J satisfy the
required conditions. Let X be the set of solutions in X that satisfy the inequality at equality.
Let j* =maxjesj. Fort € [t +1, 54,4 j] we define jr =min{j:1 < j < j* and 54,4 2 7}
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Thus, 54, ,+ j, is the first demand period after v — 1. We claim that the following 2T — 1 linearly
independent directions are in X

(i)  e(x;) for all periods r with e, = 0;

(i) e(y,) for all periods r with B, = 0;

(iii) e(x¢) — e(xq,,41) for all periods v # dy , + 1 witharp = 1;

(iva) e(¥e) + e(Xeqj—j. ) —e(ye—1) —€{xc-1) for all periods = with 8; > 0 and j, = j.;
(ivb) e(y:) + e(Xi4 jo-1) — €(¥r-1) — €(x.—1) for all periods © with B > O and j; > j.1.

These directions can be constructed using similar arguments as in the proofs of Theorems 2.2.9
and 2.2.15. Therefore, we restrict ourselves to providing solutions (x%, y*) € X for all = €
[t+1, 54 4] that can be used for the construction of the aforementioned directions.

Let t € [t 41, 54,4+ -] and define (x%, y*) as follows. First, set y,, = x;, = 1 for j < di,
and for j > d; .+ j*. Furthermore, produce the demand for s4, 4 ;, 1 < jj* in the intervals
[t+1,t4 jr.—1]and [r, v+ j* — j]. The feasibility of (x*, y*) follows from the definition of
Jv. Hence, it remains to show that «x® + By* = y = d; ; + | J|. Observe that d;,y = 0 implies
that j. < t—¢ forall v > 1+ 1, Thus, we have x{_, = 0 and, hence, y; = 1. Then

ax* + BY° = di;+ Pt F Gt je-1 + Bt Qrei e
= di+{je T j< i+ Betreyjoj,

Ifr>t+ % then B =|{j e J:sq,4; =t} ={j€J:j= jo}| and acqjoj, = 0. Oth-

erwise, if t=1t+ jforsome je{l,..., *Lthen Br={{j€ J: 54, ,+; > vand j < j}| and
Orrtjimje = Oupjury = }{J € J 1 j = j}|. Thusin both cases we have ex® + gy* = di ;+ | /1.
O

Example 2.2.12 LetT=12andd; = 1fort €(3,6,8,9,11,12}. Lett =3 and J = {3, 4, 5},
thus, {s4,,+;: j € J} = {9,11,12}. By Theorem 2.2.17,

+ ¥4+ 2y8+ 3y9 + 2y104+ 2y + ¥z

> 4 2.25)
Xi+x2+Xx3 +X+x7 X : .
is a facet-defining LSM inequality for this instance. This alsc holds for
+¥  FystwEyetyntye g, (2.26)
X1+ X3+ X3+ X4+ Xs +x; + Xs - ’
where ¢ =4, J = (1,3, 5}, and, hence, {s4,,+;: j € J} = (6,9, 12}. o

Consider the first inequality in the above example. Let Vy = {1 ¢, = B; = 0} = [4, 5] and
let Vi = {t: e =0 < 8,} = [9, 12]. Then the right-hand side equals d; ;5 — | V]. Recall that
all facet-defining inequalities of the general form (2.7) with right-hand side d;  — | Va| are
contained in the class of HRSM inequalities discussed in Subsection 2.2.2. Here ¢* denotes as
usual the last period ¢t with o, + B; > 0 and V; is the set of holes before £*. Thus, (2.25) also
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belongs to the class of facet-defining HRSM inequalities (cf. Example 2.2.5). It is not hard to
see that this holds for every inequality (2.24) for which J is an interval {j, . .. , j*}. Observe
that in this case the inequality is also a block inequality containing one block, namely, the
(1], $ay,4j» —t — j*)-block [t + j, 54, ,+j+]. Recall that a block is said to be regular if u(v) =
u(v+ 1) — 1 for all periods v and v + 1 in the intersection of V; and the block. Thus, the
(3, 4)-block [6, 12] in (2.24) is nonregular. In fact, the block is regular if and only if 54,,4 » =
Say+y +J* =T

In Section 2.3 we will give a partial linear description of conv(X) that solves the prob-
lem when the costs satisfy the Wagner-Whitin property. This linear description will consist of
the inequalities in the LP-relaxation of DLSP and the LSM inequalities with J = {1, ..., j*},
1< j*<diar.

We next discuss an extension of the LSM inequalities by introducing holes in the interval [1, £].
In the sequel, we use the following notation: if ¢ is a period, and j and k are two nonnegative
integers, then s(z, j, k) denotes the (j + k)th demand period after 7, i.e., 5(t, j, k) = $4, ,+ j+«-

Proposition 2.2.18 Lett € [0, T], k > 0, and H C [1, t] such that the inventory at the end
of period t is at least k when all periods in H are used for production. Furthermore, let J <
{1,...,dis1,0 — k). Then

3 X+ D> it Yerirswin) 2 dis+k+1J] - |H|. 2.27)
vefl,]N\NH jedJ

is valid for X.

PROOF. The proof is similar to the proof of Lemma 2.2.5, in which we gave a necessary and
sufficient condition for the HRSM inequalities to be valid for X. Rewrite (2.27) as follows:

L > k+ Z(l — Xegj — Vet j+lste k) + Z(Xr -1, (2.28)
jed teH - ’

where I, denotes as usual the stock at the end of period ¢, thus, I, = x1 ; — d; ;. Define h* = |H|
and denote the periods in H by t;, 1 < h < h*. Furthermore, let X;, 0 < h < h*, be the set
of solutions to DLSP in which the periods t;, h < [ < h*, are used for production. Hence,
Xo={(x,y) € X:x, =1, h <i < h*}). We show by induction that

h
L 2 k+ ) (1= X = Yerjatsin) + 9%, — 1) (2.29)
jeJ ) i=1

is valid for Xy, 0 < h < h*. Since Xp» = X, this obviously proves the statement.
‘We first show that

I > k+ Z(l — Xy = Vet j4los(n k) (2.30)
jeJ
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is valid for Xo. Similar as in the proof of Proposition 2.23, we use induction on | J|. First, let
J =@ and let (x, y) be a solution in Xp. Then x, =1 for all = € H. Hence, by assumption,
I, > k. The rest of the proof is analogous to the proof of Proposition 2.23, to which the reader
is referred for more details.

Now suppose that the validity of (2.30) for X;, has been established for 0 < & < A/, where
R < h*, We claim that ‘ '

K +1
L= k4 (1= Xt = Yy jansin) + 3, — 1) (2.31)
jeJ h=1

is satisfied by all (x, y) € X+1. This obviously holds for {(x, ) € Xwi1 : X;,,, = 1} = Xp.
Therefore, let (x, y) be a solution in X4 without production in period 1. Let (X, ¥) be
the solution obtained from (x, y) by setting x,, , and y,,, to one. Since (x, y) is a feasible
solution to DLSP, the extra unit produced in period fx. increases the inventory at the end of
period ¢ by one, hence, I, = I, + 1. Obviously, (X, ¥) € Xy, hence the induction hypothesis
yields that

h}
L o= L=12k+) (1=Zuj— Jujrisein) + 3_G -1 ~1
jE] h=1"
- h,
k4 Z(l = Xegj = Yetj+l,s0,0) + Z(X:h -1
jeJ h=1

I

This shows the validity of (2.31) for (x, y) and, hence, for Xy, ;. ( O

An inequality of the form (2.27) is called a hole-lifted left stock-minimal inequality or HLSM
inequality for short. Obviously, an HLSM inequality with H = @ is an LSM inequality. We
already characterized the facet-defining LSM inequalities of conv(X). Therefore, consider an
HLSM inequality with | H} > 1. In order for (2.27) to define a facet of conv(X), the conditions
P1-P3 of Lemma 2.2.2 must be satisfied. This imposes the following restrictions on the set
H: |H| < dy y, where h = mif ey 7, and

IHN\[A, t}] > dy . forevery t € [k, £]. - (2.32)

Thus, in particular, |H| > dj,. Observe that if H satisfies the aforementioned restrictions,
then the stock at the end of period ¢ is at least [H| — d; when all periods in H are used for
production. Thus, k = |H| — dj in (2.27). Furthermore, J 3 #, since there must be at least
" one period with positive y-coefficient. Note that from J € {1, ... .di1 7 — k). J # 8, and
k= |H| — d) it follows that |H| < dj r. The following theorem implies that P1—P3 are also
sufficient for an HLSM inequality with H 5 @ to be facet-defining of conv(X). The result can
be proven in a similar way as Theorem 2.2.17.
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Theorem 2.2.19 Lett € [1, T)and let H be a nonempty subset of [1, 1] satisfying (2.32). Fur-

thermore, let J € {1,...,dpr — |H|}, J # 0, where h = minecy v. Then
Z Xt Y (Cerj+ Vi jaLste i Hi-dnp) 2 dnt + 1] (2.33)
velLINH jel ,
defines a facet of conv(X). 0

It is not hard to show that every HLSM inequality (2.33) for which J is an interval, can also
be considered as an HRSM inequality with Vo = HU{t+ j: 1 < j < jun— 1} and V] =
[+ Jmex + 1, S, Jjmax, | H| — dp,)], Where juin = Miljey j and jumax = Maxjes j. See for
example the first inequality below.

Example 2.2.13 Let T =12 and d, = 1 fort € {2,4,8,10,11,12). Take t =7 and H =
{1,2,4,5). Furthermore, take J = {1, ..., [H| — di,} = {1,2). Then s(¢, j,2) = 10+ j,
j € J. By Theorem 2.2.19

+ Yo+ 2y + 2y11 + ¥z

> 2,
X3 +xe+ X7+ X3+ X0

is a facet-defining inequality for this instance. This also holds for

+ Yo+ Yo+ yu+yn

. >4
X1+Xxp+ X3+ X+ X A+ X7+ Xs + X10 -

wheret =7, H = {6}, and J = {1, 3}. 0

To conclude this subsection, we describe a polynomial algorithm to separate HLSM inequal-
ities. Let (£, §) denote a solution to the LP-relaxation of DLSP. The algorithm provides the
most violated inequality of the form

X+ Z(%ﬂ + Vet jrlste g Hi~dnn) = d1p-1+ |1, (2.34)
re[l,f]\NH jelJ

wheret € [1, T] and either H =@ and J C {1,...,dy 7 — |H|} or H and J satisfy the condi-
tions of Proposition 2.2.19, or concludes that such an inequality does not exist.

In the sequel, we assume that ¢ is fixed. We first make the following observation with re-
spect to the set H. Let H € [1,¢], H # @, and define A = min.cy . Define k) = dj »—; and
ky = |H| + k1. Then sy, is the last demand period before &, hence, H < [s, + 1,17]. Now
(2.32) is equivalent to

I HOsy +1 sl >k -k forallke{ki+1,...,d1.). (2.35)

Note that the above condition can only be satisfied if k; > d) ;.
We first deal with the separation problem for inequalities (2.34) with H < [sg, + 1, f] and
|H| = k; — k; for given integers k, and k; satisfying either 0 <k; < dy, < by <dyyork =
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dy; < kg < dy 7. The question to be answered is: do there exist a set H C [sg, + 1, £] of size
k, — k; satisfying (2.35),and aset J C {1, ..., d; v — ko) such that

Yo Rt 3 Grrjt Fritng,) < ki + 117 (2.36)
e[LLt(\H jel .

Note that H = @ if and only if k; = k; = d ;, hence, in this case (2.35) is satisfied. Further-

more, if H#@andh =mincy 7, then |H| —dy,=ky —dy ndiir— (H| —dp) =dy — K,
and 5(2, j, kp — di1) = Sgp+j. For 1 < j <dy 7 — ky we define

[it ko) = Repj1 + )3:+j+1‘s,,2+,~-

Then the separation problem boils down to finding sets H and J such that

Re—ki+ Y filt. k) = I} < 0.
te[1,0\H jel

if one exists, will satisfy f;(f,k;) < 1forall j e J. Hence, take J={j:1 < j<dir—k:
and f;(t, k2) < 1}. From all possible sets H we take the one that maximizes 3" £. Thus,
if ky = dy,;, then we take the k; ~ k; periods t in [sg + 1. f] with largest value of £,. If
k1 < dy;, then H must be chosen in such a way that {H M [sg, + 1, sel] > & —k forallk e
{ki +1,...,d:,}. This is achieved in the same way as in the separation algorithm for the
HRSM inequalities. First, we determine a set H(f, k) € [s¢, + 1, 7] of size dy , — ki that sat-
isfies |H(t, ki) N sy, + 1,8l > k—k forallk € (ki + 1,...,d1,), and 3 g, ) Be i
maximal:

Since 3 o pu Xe = £1,5, = ka for any H S [5¢, + 1,7], a most violated HLSM inequality,

determine v € [s¢, + 1, $4,+1 — 1] such that X, is maximal; H(t, k1) = {1}
fork =1k + 1 tod;, do begin

determine v € [sy, + 1, s;]\H (2, k1) such that £, is maximal; H{t, k1) := H{t, k) U {7}
end

Let H consists of the set H(t, k) andthe ky — dy;, — 1 (= O periods v in {s¢, + L. (NH(, k1)
with largest value of X,. Itisreadily checked that H satisfies the required conditions. Observe
that (, ) violates an inequality of the form (2.36) for ¢, ky, and k; if and only if (2.36) is
violated for the given choices of H and J. ‘

The following algorithm provides the most violated HLSM inequality, if one exists, for
a given period f. Note that f;(1, k) = fj(t — 1, k2) + Xpqj — Rigj1 — Peqj and (2, k) =
fi+1¢ — 1,k — 1) provided that j < d\ v — k; and k; > d ;.. Hence, the value of f;(z, k)
can be evaluated in an efficient way. ‘



2.2 Facet-defining inequalities 51

begin SEPARATION(t)
AP = 0; determine f;{t,ky) fordy, <k, <djrand1 < j<dir —ky;
fork; = d; ;tod; v — 1 do begin
Joi={j:12j<dir—kand fi(t, k) < 1}; Ay, = Z]-EJ,Z it k) — 1, |
end )
for ky = 0 to d; ; do begin
if k) = d; ; then begin H := 0; k* == d, ; end
else begin ,
determine H (¢, kq) as described previously; H := H(t, ki); k" :=dy ; + 1
end : ~
Ac=R1,— }:fey-i'z - ki3
for ky = k* to d; v — 1 do begin
if A+ Ay, < A then begin J := J,; H"' := H; A% := A + Ay, end
determine v € {5y, + 1, {1\ H such that X, is maximal; H := HU{t}; A 1= A - X,
end
end
end.

If A% < 0 at termination of SEPARATION(?), then (2.27) is violated for £, H', and J°%, Ap-
plying the above algorithm for every z € [1, T — 1] gives an O((dy,7T)?) algorithm to find the
most violated HL.SM inequality. Note that the separation can be performed in O(d; 7T) time
when we restrict ourselves to HLSM inequalities with H = @, i.e., to the LSM inequalities
(2.24).

2.2.5 Further remarks

In this section we studied facet-defining inequalities of conv(X) with x-coefficients in {0, 1}.
We derived some general properties of these inequalities and discussed three subclasses in
more detail. We already observed that the intersection of these three subclasses is not empty.
The HLSM inequalities for which K is an interval also belong to the class of HRSM inequali-
ties, In fact, it is not hard to show that these are the only inequalities that are contained in both
classes. Moreover, these inequalities are block inequalities with one, not necessarily regular,
block. The inequalities xy4,, + Y4, +1, = 1, where 1 is a demand period, are contained in the
intersection of the three subclasses.

Example 2.2.14 et T=12andd, = 1forr € {3,6,8,9,11, 12}. Take V = {8, 10, 11, 12},
w(® =2,u(10)=5,u(11) =7, and u(12) = 10. Then

+ 3+ ya+ s+ 2¥6+ 2y7+ 3ys+ 2yo + 2y10+ 2y + yiz
Xi+Xo+ X3+ X+ X +X + X7 + X9 -

is a facet-defining HRSM inequality for this instance, since $2 = {3, 6, 8,9, 11, 12}, dy) = 0,
and v —u(w) = |{t € 55 1 t = u(v)}| for every v € V. Obviously, the inequality is neither a
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block inequality nor an HLSM inequality. An example of a facet-defining R-block inequality
that is not contained in one of the other two subclasses is

+ ¥2+ y3 + s+ Y5+ y2 + Yo+ Yo+ yu
X+ x2 + X4+ Xs + X¢ + Xg+ X9 + X0 + X1

Finally, inequality (2.26) in Example 2.2.12 is an HLSM ineguality that defines a facet for the
given instance and belongs to neither of the other two subclasses. o

For most instances the three subclasses, together with the inequalities in the model, only yield
a partial description of conv(X).

Example 2.2.15 Let T =11 and d; = 1 fort € {7, 9, 10, 11}. For this instance

+ ¥3+ Ya+ ys+ 2y + 2y1+ Yo + 29 + Yio+ Y
X1+ x2 + X34 X5 + X -

defines a facet. 0

It is readily seen that the above inequality does not belong to any of the three subclasses dis-
cussed in the previous subsections. In fact, even a complete characterization of the facet-
defining inequalities with x-coefficients in {0, 1} would not give a complete linear description
of conv(X), since for most instances there exist facet-defining inegualities with x-coefficients
larger than one.

Example 2.2.16 Let T =8and d, =1 for t € {4, 6, 7, 8}. For this instance

+3» + 2y4+ s + 2y7+ 2ys
3xy +3x3 + Xa+ X5+ 2x6 + 2x7

and
+ ¥+ ¥ + 2ys +2y7+ ¥s
i+ X + 2x4 + 2xg + x3

are facet-defining,. O

2.3 Wagner-Whitin costs

In this section we give a partial linear description of the convex hull of feasible solations to
DLSP that solves the problem in the presence of Wagner-Whitin costs. Recall that the costs are
said to satisfy the Wagner-Whitin property if ¢; > ¢, for all 2. This implies that there exists
an optimal solution that satisfies the zero-inventory property, which means that the inventory
at the end of period ¢ — 1 is zero for any period ¢ in which a production batch is started.
Pochet and Wolsey [32] derive similar results for four other single-item lot-sizing mod-
els, For each problem they give an extended formulation for which the LP-relaxation always
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yields a solution that satisfies the zero-inventory property. By projection they obtain an LP-
formulation in the original variables that solves the problem in the presence of Wagner-Whitin
costs. We will prove our result in a different way, without the introduction of additional vari-
ables.

We start from the formulation of DLSP presented in Section 2.1 with the extra restriction that
overproduction is not allowed, i.e., werequire x; 7 = d; r. Note that if ¢, is nonnegative for all
t, then there always exists an optimal solution to the more general formulation that satisfies
this constraint. Denote by RDLSP the LP-relaxation of DLSP extended with the O(d; ,T)
inequalities

j
Xot D it Yerivteg o) = dist (2.37)
i=1
forte [0, T—1]and je {1,...,d;+1,1}. Asusual, s; denotes the ith demand period in [1, T7].
Inequalities (2.37) are a special case of the LSM inequalities for which X is an interval (cf.
Subsection 2.2.4). It was already observed that these inequalities also belong to the class of
RSM inequalities discussed in Subsection 2.2.2. We will prove the following result:

Theorem 2.3.1 If the cost function satisfies the Wagner-Whitin property, then the objective
value of RDLSP equals the objective value of DLSP.

When ¢, strictly decreases in ¢, an even stronger result can be proven, namely, that RDLSP
solves DLSP.

Theorem 2.3.2 Ifc; > c,41 for every periodt, then any optimal solution of RDLSP is a con-
vex combination of feasible solutions of DLSP, i.e., the set of optimal solutions of RDLSP has
integral extreme points.

The remainder of this section is mainly devoted to the proof of the second theorem. Afterwards
we will prove Theorem 2.3.1 as a corollary to Theorem 2.3.2. From now on it is therefore as-
sumed that ¢; > ¢4 for all ¢. The proof uses a partitioning of a solution (x, y) of RDLSP into
a set of batches B, where a batch B = [p®, ¢®] is identified with the partial solution (x2, y?)
defined by y’lf,, =1,xP =1fort e [p®, ¢®], and all other variables equal zero. Furthermore,
a value b, 0 < b® < 1, is attached to every batch B such that (x, ) = Y .05 (x5, yB).
We say that B satisfies the partitioning condition if

Vie(1,....di 1) Z b® =1, (2.38)
-BeB:s;c 1B

where IZ consists of the first | B| demand periods in [p?, T1.

The proof of Theorem 2.3.2 consists of the following two steps. First, we prove that the
partitioning condition is a sufficient condition for (x, y) to be a convex combination of so-
lutions of DLSP (Lemma 2.3.3). Second, we present a greedy algorithm that partitions any
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optimal solution (x*, y*) of RDLSP into a set of batches B with values b%, B € B, such that
(*, %) = Y p.s b2(x®, y¥) and the partitioning condition is satistied. Combining these re-
sults yields that all extreme points of the set of optimal solutions of RDLSP are integral,

Lemma 2.3.3 Given a set of batches B with values b®, 0 < b® < 1, B € B, such that (2.38)
is satisfied. Then (x,y) =Y.z b5 (xE, ¥®) is a convex combination of solutions of DLSP.

ProoOF. The lemma is proven by induction on the number of batch-pairs (B, D) in B with
intersecting demand sets I8 and I?, which is denoted by v. Thus, v = |{{B,D): B, D ¢
B, B +# D, and I N IP # @)|.

If v =0, i.e., if no two batches have an intersecting demand set, then, by (2.38), each batch
B in B has value b? = 1, and the lemma follows immediately.

Now let v > 0 and suppose that the result has been established for sets of batches that
satisfy the partitioning condition and for which at most v — 1 batch-pairs have intersecting
demand sets. In order to show that (x, y) can be written as a convex combination of solutions
of DLSP, we introduce the following definition: a subset 2 of B is said to yield a partition of
the set of demand periods {s1,...,8;},1 < j<dy 7,if Upepijers 5i= (51, .., 5;} and notwo
batch-pairs in D have intersecting demand set. We will construct a subset D of B that yields
a partition of the set {5y, ..., 54, .}. First, we take a batch B whose demand set contains the
first demand period s, and set 2 = {B}. Suppose that we have found a set of batches 2 that
yields a partition of the first i < dy » demand periods. Then there exists a batch D € B\D
such that the demand set I® contains s;,1 but not 5;. This follows from

= 3 b=1= Y b> 3 bE

BeB\D:siyel¥ BeBisiycl® BeBsiel? Be®\D:siel?

The demand set of D is {8i+1, ..., 8¢} forsomei € {i+1,...,d; 7). Adding Dto Dgivesa
partition of the demand periods {si, .. ., s#}. We proceed in this way until D yields a partition
of {s1, ..., S4,,). By construction, the integral vector (X', ¥') = Y p.p(xB, yB) is a feasible
solution of DLSP.
Set b = min{b® : B € D) and define B = B\(B € D : b® = b). Note that, by (2.38) and
the assumption that v > 0, we have b<1 Seth®= b2 -b)/(1 —b)for BeBnD and
=bB/(1—b)forBe B\D.letic{l,..., d, r}. Since there is exactly one baich B € D
such that s; € I®, we have ‘

Z BB — Z j’f:_f+ bB_ _ ZBGﬁB:sseI”_bB_Z’ 1

Beﬁ;sfefg BeD:siel? 1 - b BeB\Ds;eI? 1 - b 1 - b

Hence, B satisfies the partitioning condition. Since b < 1, there is at least one batch-pair
(B, D) with B € B and D € B\B such that I " IP # @. This implies that the number of
pairwise mtersectmg demand sets in B is less than v, the number of pairwise intersecting de-
mand sets in B. Now the induction hypothesis yields that (x”, y") := "5 5 bP(x®, yB) is a
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convex combination of integral solutions. Thus, so is (x, y) = b(x, Vy+ ({1 - b)(x", vy, 3

Using the above lemima and the observation that one can always add extra startups to a solu-
tion, it is not hard to show the following:

Corollary 2.3.4 If (x, y) is a feasible solution of RDLSP and B a set of batches B with val-
ues b, B B, suchthat x =Y p 5 b2xB, y > 3" p o bBy8, and the partitioning condition is
satisfied, then (x, y) is a convex combination of solutions of DLSP. O

From the above results it follows that, in order to prove Theorem 2.3.2, it suffices to show that
any optimal solution (x*, y*) of RDLSP can be partitioned into a set of batches B with val-
ues b8, B € B, such that x* = Y5 5 b2x8, y* > ¥, 2 bBy5, and the partitioning condition
is satisfied. In the sequel, (x*, y*) denotes an optimal solution of RDLSP. We claim that the
following algorithm provides a set of batches 2 with the desired properties.

begin CONSTRUCT_-BATCHES
fort=1to T dobegin X, := x*; 7,:=y*; d;:=d, end
\ % X, is called the residual production, etc. *\
D=0,
while x; 7 > 0 do begin
qP := last period with positive residual production;
pP := last period in [1, gP] with positive residual startup;
D:=[p® ¢"}
JP .= set of demand periods with positive residual demand in [ pD , T,
b? := min{§ 0, minyep %;, min,. o di};
pr = )_’pb — bD;
forte Ddox, =X —b>;
fort € JP dod, :=d, — bP;
D :=DU{D}
end
end.

Observe that x;, ¥,, and d, are non-increasing and nonnegative during the execution of the
algorithm. Moreover, the residual demands Jsi are non-increasing in i. It is also easily seen
that X; < y; + X, holds for all z. Thérefore, iqu = mMilsep X > 0, and if JP # @, then d_g =
min, yo d;, where § denotes the last period with positive residual demand. We will prove that
during the execution of the algorithm the following invariant holds:

M) Yeepn =%+ Z b%,
BeD:teB

(I2) Y ¥i=y+ Z bE;
BeD:t=p?
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(3) Vit 1=ds+ Z b,
BeD:sicJP
(14) Ypen |78 =Bl

() Veepr.r-1) %1 > disand % =di g

Note that for t < p?, the residual values are equal to the original values, i.e., X; = x5 V=5
and d, = d,.

Suppose that (I1)—(I5) hold during the execution of the algorithm. At termination of the
algorithm we have %, = 0, §, > 0, and, by (I5), d; = 0 for all ¢. Hence, by (I) and (I,), the
set of batches D provided by CONSTRUCT_BATCHES satisfies x* = 3 ;. ,b%x? and y* >
S pep bEyE. Moreover, from (1y) it follows that J%, B € B, can be identified with I, the
set of the first | B| demand periods in [p®, T]. Together with (I3), this implies that the set D
satisfies the partitioning condition. Now Corollary 2.3.4 yields that (x*, y*) is a convex com-
bination of feasible solutions of DLSP. Thus, the validity of the invariant during the execution
of the algorithm implies the validity of Theorem 2.3.2.

The invariant is easily checked to hold initially. We will prove that if the invariant holds
at the beginning of an iteration, then it also holds at the end of that iteration. In the sequel
the current iteration is the one for which validity of the invariant is proven. We denote the
batch defined in the current iteration by D. The set of batches that are constructed in previous
iterations is denoted by D. Now (I;)—(Is) are easily checked to hold at the end of the cur-
rent iteration, and (Is) follows from (I4). The latter holds at the end of the current iteration if
|JP| = | D|. Hence, we are left with the proof of | J?| = | D|.

PROOF OF |JP| = |D|. :

We first show that |JP| > |D| implies that (x*, y*) is not optimal. Next, we show that if
|JP| < | D|, then (x*, y*) violates a constraint of type (2.37). Both results contradict the as-
sumption that (x*, y*) is an optimal solution of RDLSP, which leads to the conclusion that
[JP| =D}

PART 1: |J?| < |D|.

Assume that | JP| > | D|. We claim that in this case we can move an amount € > 0 from the
production in period ¢ to period ¢” + 1 while maintaining feasibility. Since Cqp > Cqpyys
this yields a cheaper solution than (x*, y*), which contradicts the optimality of (x*, y*). In
order to prove our claim, it suffices to show that the following constraints have positive slack,
i.e., they are not satisfied at equality:

0 xpz0
() xp, =15
(i) x3p,1 < Yoy + X0}

J
. x .
({iv) Vt,j:H-}:qD xi; + z (xz+:' + }’f+s+1,sdu+,.) z dl,t + .

=]
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By definition of ¢°, we have x = X, > 0. For the proof of x, b+t < 1, we use the following
important observation: if peﬂod s has posmve residual demand in the current iteration, then
s € JB for every batch B € D with p? < 5. Now let s’ be the first demand period after g°.

Thend, > 0, since |JP| > |D|. Hence, if B € D satisfies g° + 1 € B, then s’ € J5. Together

with X0, = 0, this yields

Kooy =Xy — T = Y bP< Y bP=1-d, <1.
B:g?+1¢B Bisie JB

In order to show that (iii) is not satisfied at equality, notice that whenever X 0., decreases in
an iteration, one of the variables X,» or y,» decreases by the same amount. At the beginning
of the current iteration, strict inequality holds since 0 = X0, < X0

Finally, consider a constraint (2.37) such that t + j = g°. Now

X+ Z(xt+: + Yirisn, 54y ,+-)

iz}

1
), () 11 A+ Z(XH« + Frtit1 s.;“+.) + Z Z b3

i=1 BeDigP>t+i, pPssa v

v

X+ epnej + P + Z > b®

i=1 Be@:q‘?zwi,pﬂﬁsdl o+

J
- = B
X Topt e+ Vegz o0 + z E b

i=1 Beﬁ'sd it

—
&
N

I

X+ Tpp1,q0 + Vg2, p0 T Z(l Sff; W)
i=1

where () holds because s, ,+; € JZ implies p? <54 1, andt+i<t+j=¢" <¢f. In
order to show that strict inequality holds for the constraint under consideration, we distinguish

~two cases. First, suppose that pP > t+ 1. Then, since Ypo > 0, X o = X1,1, and d],, == dy
we have

X[t X100+ Veao e Z(l ds,, ,+.)
i=1

Is) = . .
> xl T+Z(1 Sdlt'“) _5 d} s,g“ﬁ'*'Z(l 93,,+¢ dl.t"}‘f = dl,t+}-

If p? < t+ 1, then the assumption that | J?| > | D| implies that | J?| > t+ j — pP+ 1> j.
Hence, if 5 denotes the last period with positive residual demand, then § > 54, ,4;. Then, by
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(Is), Xy pp =X 7 =d1 5> dl's,,m). ‘We have

J dyat+]j
- - - {%) _ -
xi: +xt+l,q9 + )’Hz,p" + Z(l —d&u!‘,-ﬂ) 2 xl,qo + Z (1 —d‘s;)
i=1 i=d, p_,+1
_ dig+j _
> iyt P, (=dy) =dip+dii+j—dypoy =di+
izd},pp—ﬁ'l

where (x) follows from the validity of (I;) for every period in [p?, 1], the validity of (I3) for
ie{d; o1 +1,...,d1,}, and the observations that for any B € D we have g% > g > tand
at most ¢ — p& + 1 periods with positive residual demand in [p?, 1].

We conclude that none of the constraints (i)—(iv) is satisfied at equality, which establishes
the validity of | JP| < |D|.

PART 2: |JP| = |D|.
Suppose that |JP| < | D|. We claim that in this case constraint (2.37) with t = p? — 1 and
j = |JP|is violated by (x*, y*), i.e.,

19
* * * . D
xl,p”—l+§ :(xp9+i—l +yp”+i,xdlpp 1*‘) < dl.PD‘l +1J i
=1 T

First, suppose that | J?| = 0. Then x;"p,,_l = Xy, o1 < Xy p0 <dr= (il'po_l =dy po_1,
which establishes our claim. In the sequel, we therefore assume that | J?| > 0. In the proof
we use the following observation:

v:e[p”-}-l,&} ?t = 0, 2.39)

where § denotes the last period with positive residual demand. Note that forz € [pP? + 1, g”]
this holds by choice of pP. Therefore, suppose that ¥, > 0 for some 7 € [¢P + 1, §]. Similar
asinPart 1, we claim that in this case we can obtain a cheaper solution than (x*, y*) by moving
an amount € > 0 from the production in period g® to period z. In order to prove our claim,
it again suffices to show that the following constraints are not satisfied at equality: x;D >0,
x<lxrsyi+x,andxi, + L O+ Vi, ) 2 dis+ jforall  and j such
that 1 4+ j = gP. For most cases the same arguments as in Part 1 can be used. Therefore, we
only show that the last inequality is not satisfied at equality when ¢+ j = ¢”, pP? <t+1, and
§<dy+

i j
* * * ® - - -
X+ E (X + Vrgitl sy m) > XiptXep1,q0 + Vet E a- dsa“,ﬁ)
=1 ' i=1
dytj diit]

> jl,qb+ : Z (l _‘istz..,w) bl él*sdl,r” + Z (1 "'(z.f;) = dl,[+ j-

i=dl,pﬁ-l+1 i=d1.pp_1+l
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For more details we refer to Part 1.
Note that 54, ,_ 4 is the last period with positive residual demand, hence, the right-
hand side of (2.37) with ¢ = p” — 1 and j = |J?| equals d; ;. We have
172 ‘
xi ooy t+ Z(x;D—Hi + y;”-1+i+1,54l p”—z”)
= 172 ‘ 2

), () B
= R oot ) Fppotbirisg ,,‘+,+§: > b
fa=1 i=1 BeD;qBZpD—l+i,p"554w3-,+,~
B

2.39) . B
= Ry poeren Y > b
=1 Bed):q32p0~l+i,p”§sdl'pn_l+,»
JD
© 2] )
S Fppenmt), ). b

i=1 BaDs, jeJE
dl,pb-lh

72
= x] pP—14|J7} +Z(l dxd - +,) (T) d}s

i=1

Note that in the current iteration all demand periods in [p?, 5] have positive residual de-

mand. Thus, for each B € Bwith p¥ <54 oy +ind = [JP|, wehavesy, ,_ ,+1 € JB. This shows
the validity of (). Moreover the assumpuon that |JP| < | D] yields that PP —141J% < g%,
hence, by definition of g and (I5), we have X X1, pp-141J0) < Xp g0 = d 5. From this the validity
of (1) immediately follows.

This concludes the proof of | J¥| = | D] and, hence, the proof of Theorem 2.3.2. 0

As a corollary we can prove Theorem 2.3.1 as follows, For arbitrary € > 0 the cost function
¢, = ¢; + (T — t)e satisfies the requirements of Theorem 2.3.2. Therefore, for every € > 0
there exists an optimal solution of RDLSP that is an integral extreme point. Since the objec-
tive function is continuous in ¢, there must be an integer optimal solution of RDLSP for € = 0.
However, we do not necessarily find that for ¢ = 0 all extreme points of the set of optimal so-
lutions of RDLSP are integral.

In the following chapter we develop a branch-and-cut algorithm in order to solve multi-item
problems. As only problems with Wagner-Whitin costs will be considered, the O(d; 7T con-
straints of type (2.37) are expected to yield strong cutting planes.

We conclude this section by presenting some computational results for single-item prob-
lems with costs that do not satisfy the Wagner-Whitin property. In general, such a problem
will not be solved by the addition of inequalities (2.37) only. Our only purpose here is to in-
vestigate the quality of the lower bounds obtained when some of the inequalities discussed in
the previous section are added to the LP-relaxation. For more details on the implementation
the reader is referred to the following chapter,
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We consider the following lower bounds:

2o . optimal value of the LP-relaxation of DLSP;

z; © optimal value of the LP-relaxation of DLSP + inequalities (2.37);

Zz » optimal value of the LP-relaxation of DLSP + LSM inequalities;

z3 ; optimal value of the LP-relaxation of DLSP + LSM + RSM inequalities.

Recall that the LSM inequalities can be separated in O(d; rT') time. Also the separation algo-
rithm for the RSM inequalities runs in O(d; vT) time. We already observed that inequatities
(2.37) are contained in the intersection of these two classes.

Our test set consists of twelve instances I.x.y, where x € {1, 2,3}and y € {a, b, ¢, d}. Here
x refers to one of three randomly generated demand patterns with T = 96 and total demand
dy,r = 65, and y denotes the type of production cost p;:

a: p,=10ifrmod 7 € {0, 6} and 0 otherwise;

b py=20if t mod 7 € {0, 6} and 0 otherwise;

¢ ¢ prisrandomly chosenin {1,..., 10} forall f;

d: p.israndomly chosenin {1,...,20} forall 1.
Cases a and b can be interpreted as follows: one period represents one day and producing
during the weekend incurs an extra cost of 10 and 20), respectively. We always take f; = 10and
h, = 1 for all . The objective is to minimize 23;1 (pexe + five+ hely), where Iy = Xy, — di ;.

inst z* 20 £o 4| £ £ 82 23 83
I.l.a ] 224 | 2023 97| 224 0
I.2.a | 2151974 82| 215 0
L3.a |l 237 | 2089 119 237 0
L1.b ]| 284 | 2560 99| 2815 092815 092815 09
125} 227 | 2169 45| 227 O
13 2922715 70 292 0O
Lic | 456 | 4149 9.0 ] 453.6 05| 4545 03| 456 0
1.2.c || 459 | 405.8 11.6 | 456.5 05 458.0 0.2 459

I3.c |] 496 | 453.5 86| 4945 0314945 03| 49 0
1.1.d ] 6% | 670.7 3.6 | 690.7 08| 6927 0516945 02
1.2.d || 747 | 7199 3.6 7435 05 745.5 0.21746.5 0.1
1344 722 {7080 197200 037200 03] 722 O

Table 2.1: Lower bounds and gaps for instances with non-Wagner-Whitin costs

For each instance Table 2.1 shows the optimal value z*, the lower bounds z;, 0 < i < 3, and the
corresponding integrality gaps g; = 100% x (z* — z;}/2*. The addition of inequalities (2.37)
already yields lower bounds that differ less than 1% from the optimal vatue. The gap is further
reduced by the addition of inequalities from the two larger classes, but is not closed for three
out of twelve instances.



3. The multi-item DLSP

The multi-item DLSP is an NP-hard problem, as will be shown in Section 3.1. In order to
solve multi-item problems to optimality we have developed a branch-and-cut algorithm based
on the following integer programming formulation:

M T
(DLSP)  min Y Y ((pi+H )xi+ fiyi — ki rd))

i=1 =1

s.t. X, zd, for all i and ¢ (3.1)
X< x +y foralliand? (xp=0)  (3.2)
M
dxd<1 for all ¢ (33)
i=1
X, yie{0,1) for all i and 1 | (3.4)

As far as the objective function is concerned, recall that pi denotes the cost of producing item
i in period ¢ and f; the cost of setting up the machine for item i in period {. Moreover, a cost
hi(xi , —di ) is incurred for the inventory of item / at the end of period 7. For a more detailed
discussion of the above formulation the reader is referred to Chapter 1.

The cutting plane procedure incorporates separation routines for some of the inequalities
discussed in the previous chapter. In addition we introduce valid inequalities for the multi-item
problem in Section 3.2. Section 3.3 describes the branch-and-cut algorithm in some detail and
reports on its computational performance. The last section discusses other solution methods
for DLSP as proposed in the literature and compares their performance to the performance of
the branch-and-cut algorithm.

3.1 Complexity

This section discusses complexity resuits for DLSP. For a general introduction to the theory
of computational complexity the reader is referred to Garey and Johnson [16].

First observe that there exists at least one feasible solution to DLSP if and only if for each
period £ the total demand up to 7 does not exceed the available capacity up to £, i.e., if and only

if

M 3
> di, <t forallt. (3.5)
=1
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Thus, the feasibility of an instance can be checked in O(MT) time. Moreover, the single-item
DLSP can be solved in O(dy rT) time by a straightforward dynamic programming algorithm
(see, e.g., van Hoesel [18}). Complexity results for the multi-item problem are discussed by
Salomon et al. in [36]. They show that DLSP is solvable in polynomial time when the startup
costs are zero, They further claim that DLSP with zero production costs and constant inven-
tory and starfup costs per item is NP-hard, but their proof is not correct since the proposed
reduction from PARTITION is not polynomial. However, as pointed out by G. Woeginger, a
similar reduction from 3-PARTITION shows the correctness of their claim.

For ease of presentation, the instances for DLSP considered in this section do not neces-
sarily satisfy our general assumption that the demand function is binary. It is not hard to see
that for such an instance there exists an equivalent instance with binary demand and a cost
function that differs only by a constant value from the original one.

Proposition 3.1.1 (Woeginger, personal communication) DLSP with p; = 0, ki = hi, and
fi= fiforalliandt is NP-hard.

PROOF. As mentioned before, the reduction is from 3-PARTITION. This problem is NP- com-
plete in the strong sense ([16], p. 224).

3.PARTITION

Given an integer B and a multiset A consisting of 3n positive integers a;, 1 < i < 3n, with
B/4 < a; < B/2 and Z?;l a; = nB, does there exist a partition of A into n pairwise disjoint
subsets A;, 1 < j < n, such that the elements in A; add up to B?

Let § be an instance of 3-PART1T[0N encoded in unary. Let L be an instance of DLSP with
T = n{B + 1) periods, 3n + 1 items, and

o a£a£=T . s
% = { 0, otherwise , 1<i<3n,

d3é+l _ | Lr=jB+D), 1<jz=n

f 0, otherwise

Pi=0 k=0, f =1, 1<i<3n 1<t<T,
pirl = 0, Bt = 1, il =, 1<t<T.

The cost of a schedule for 4 is at least 3z and equality holds if and only if production for item
3n +1 occurs in period j(B+ 1), 1 £ j < n, and the demand for item 4, 1 < i < 3n, is pro-
duced in exactly one batch. From this it immediately follows that § is a yes-instance if and
only if there exists a schedule for L with cost 3n. . O

The instances used in our computational experiments have the cost structure considered in the
above proposition. The following result is concerned with the complexity of DLSP when only
startup costs are taken into account.
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Proposition 3.1.2 DLSP with pi = hi = 0 for all i and t is NP-hard.

PROOF. The reduction is from a special case of the following problem:

SCHEDULING JOBS OF EQUAL LENGTH (SEL)

Given an integer C, a planning horizon of T periods and n jobs of length p, p € Z™, which
have to be scheduled on one machine without preemption. Starting job j in period ¢ incurs a
cost ¢ ;. Does there exist a feasible schedule with cost less than or equal to C?

Crama and Spieksma [6] prove that SEL is NP-complete, even for p =2 and cj, € {0, 1} for
all j and ¢. The proof is based on a reduction from 3-DIMENSIONAL MATCHING. We use
this result to prove our claim.

Let I; be an instance of SEL with T periods, n jobs of length 2, and processing costs ¢, €
{0, 1} for all jobs j and periods ¢. Let | be an instance of DLSP with T periods, n items, and

d =01#T, anddy = 2, l<i<n,
Bo=pi=0 fil =n+tcu+l, l<i<n 1<t<T

Assume without loss of generality that C < n. We prove our claim by showing that there
exists a schedule for I; with cost C if and only if there exists a schedule for 5 with cost
n{n+1) + C. Obviously, a schedule for I; with cost C corresponds to a schedule for 5 with
cost n(n+ 1) + C. Observe that a schedule for % is a feasible schedule for 1 if and only
if all batches have length 2, i.e., if and only if exactly » startups occur. Such a schedule has
cost less than (n + 1)2, whereas a schedule with more than n startups has cost at least (n + 1)2.
Thus, a schedule for 5 with cost n{n+ 1) + C corresponds to a schedule for J; with cost C. O

It is still an open problem whether DLSP with zero production and inventory costs and con-
stant startup costs per item ( ff = f? for all {) is NP-hard. In particular, we are left with the
question whether the minimum number of startups of any feasible solution can be determined
in polynomial time ( f/ = 1 for all i and ). The complexity of this problem is closely related
to the complexity of the following problem:

BATCH SCHEDULING WITH UNIT CHANGEOVER COSTS (BS-UCC)

Suppose we are given J jobs and an integer C. Each job has a processing time p; and a dead-
line d j» and belongs to a job class y; € {1, ..., n}. These jobs have to be scheduled without
preemption on one machine such that no job finishes after its deadline. If a job is not sched-
uled immediately after another job from the same class, then aunit changeover cost is incurred.
The question to be answered is whether there exists a feasible schedule with total changeover
cost less than or equal to C.

Bruno and Downey [4] prove that BS-UCC is NP-complete by a reduction from PARTITION.
However, they also show that the problem is polynomially solvable when the number of dead-
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lines is part of the problem description. To our knowledge, it is still an open problem whether
BS-UCC with an arbitrary number of deadlines is NP-complete in the strong sense (cf. Garey
and Johnson [16], p. 238). The following proposition shows that an affirmative answer to the
latter question will make it very unlikely that the minimum number of startups can be deter-
mined in an efficient way.

Proposition 3.1.3 IfBS-UCCwithanarbitrary number of deadlines is strongly NP-complete,
then DLSP with pi = hi =0and f! =1 for all i and t is NP-hard.

Proof. Given an instance L, of BS-UCC encoded in unary. Without loss of generality we
assume that max;d; = 3, p;. Let b be an instance of DLSP with 7 = max; d ;, n (= number
of classes) items, and

d =3 jidymt,yymi P for all i and ¢,
p=HKH=0 f=1 foralliand ¢

]

We show that there exists a schedule for ; with cost Cif and only if there exists a schedule for
L with cost C. Obviously, a schedule for 5, with cost C corresponds to a solution for £ with
cost C, i.e., a solution with C startups. However, a solution for b might yield a preemptive
schedule for ji. Let k;, 1 <i < n, denote the number of jobs in job class i and denote the jobs
by Ju,i€{l,...,n}, k€ {1,..., k], such that job Ji belongs to job class { and c&, Z dAJ"
for I < k. Then a solution for 4 can be considered as a feasible schedule for I if for every
period 1 that is the first period of a production batch the following holds: if production occurs
for item { in period ¢, then the total production for ¢ from period £ up to period T must equal
Y iy Py, forsomek € {1, ..., k;}. Such a solution is called nonpreemptive.

We claim that any feasible solution for £ can be transformed in polynomial time into a
nonpreemptive solution without increasing the number of startups. Therefore, consider a pre-
emptive schedule for 5 with C startups. Denote by X! the total production for item i from
period £ up to period T. Let ¢ be the first period of a batch for some item, say #, such that X} #
Zf;k pr foranyk e (1,..., k}. Without loss of generality, assume that 7 is maximal. Let k*
satisfy Z’;“’:k, aba < X< Zf":k. Py, Note that from the feasibility of the schedule under
consideration it follows that the deadline of job Ji. is at least ¢. Define A = Zf‘_;k. ps, — XL
Now there is at least one batch for item { which ends before 1, say in period ¢/, For convenience,
assume that the length of this batch is at least A, Move the production for i in the interval
[t/ —A+1,1]to[t — A, ¢t — 1] and move the production in periodr, t € [ + 1, ¢ — 1], in the
original schedule to period = — A. One readily sees that the new schedule is still feasible and
has at most C startups. Repeating this argument finally results in a nonpreemptive schedule
for L with at most C startups.

From this we conclude that if there exists a solution for L, with cost C, then there exists a
feasible schedule for I} with cost < C. This completes the proof of the proposition. O
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In the following section we discuss a branch-and-cut algorithm for the multi-item DLSP that
is based on the formulation presented in the beginning of this chapter. Let X denote the set of
solutions to DLSP, i.e,, X = {(x, y) : {(x, y) satisfies (3.1) — (3.4)}. An effective use of the
cutting plane procedure requires additional valid inequalities for X that can serve as cutting
planes. We already observed that when the coupling constraints 3, x) < 1,1 <t < T, are

omitted, the remaining problem consists of M single-item problems, which are denoted by
DLSP, 1 i< M:

T
(DLSP)  min Y ((p}+ 4 p)x} + £} — hi rd])

zwl

s.t. X, = di, forall¢ (3.6)
X< x4y for all ¢ (x) = 0) (3.7)
X, yie€{0,1) forallt (3.8)

Denote by X;, 1 < i < M, the set of solutions to DLSP;. Obviously, all inequalities that are
valid for X; are also valid for X. This holds in particular for the inequalities discussed in the
previous chapter, The latter are called single-item inequalities for DLSP, since all variables
with nonzero coefficient have the same index i. By taking the demand for other items into
account we can derive single-item inequalities for item i that are valid for X, but not for X;.
This is the subject of the following subsection. In Subsection 3.2.2 we discuss some multi-item
inequalities.

3.2.1 Single-item inequalities

In multi-item problems the number of periods up to period # that can be used for the production
of item / is usually strictly less than ¢, since demand for other items has to be satisfied as well.
In the sequel we always assume that there exists at least one feasible solution to DLSP, thus,
Ydi, <tforallt.

Let U! denote the maximum number of production periods for item i up to period f in any
feasible solution. It is not difficult to see that U! has the following value:

Up=T-Y dl, and U} =min(Ui,;, 1~y d] ) fort < T. 3.9
j#i ) J#

Since DLSP is assumed to be feasible, we have U} > d; for all i and ¢. Moreover, U | — U} €
{0,1)fort < T.
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Example 3.2.1 Let T = 12 and M = 3. Consider the following demand function.

t (1 2 3 4 5 6 7 8 9 10 11 12
dlo00oo0o1 01001 0 0 1
d,2 0O 01 0 0 01 0 O 1
2100 01 001 00 0
Using (3.9), the values of U,i can be easily determined.

t 1 2 3 4 5 6 7 8 9 10 11 12
U} 1 2 2 2 3 3 3 4 5§ 6
vzt 2 2 2 3 3 3 3 4 S

U,3 1 2 2 2 3 3 3 4 4 S5 5§ 5

Given i and ¢, one readily constructs a solution (x, y) satisfying x’i‘ .= U!. For example, let
i =1 and ¢ = 6. Suppose item 1 is produced in periods 4, 5, and 6. Then the periods 1, 2, 3,
and 7 must be used for the production of items 2 and 3, say, x? = x3 = land x; = x3 = 1.
Together with x3) = x%, = x], = 1, this yields a feasible solution satisfying xj ; = U} = 3.
From this it also immediately follows that a solution satisfying x}yé > 4 does not exist, since
in that case the total production up to period 7 must be at least 4 + d% , +dj ; = 8. )

Nowletie{l,...,M}andke{l,... ,di,T). Denote by s;'c the kth demand period of item i.
Recall from Section 2.1 that

Xt Yy, 21
defines a facet of conv(X;). The validity of this inequality follows from the observation that
at least one unit of item i must be produced in the interval [k, sL].

The inequality x} + y}‘,g > 1 is therefore valid for the instance in the above example. How-
ever, from U} = 2 and U} = 3 it follows that the third production period for item 1 cannot
occur before period 5. Thus, in the interval [5, 9] at least one period must be used for the pro-
duction of item 1. This establishes the validity of the inequality x§ + yé,t) > 1 for the instance
in Example 3.2.1. Note that the face defined by x} + y} 9 = lis strictly contained in the face
defined by x5 + y6 9» Since X3+ y4 g = Z:,_“(Jc,_l +yl—axh+ x5 + y6 9= X+ y6 o for all
feasible solutions.

Generalizing the above argument leads to the following class of valid inequalities for X

Bty 21 (3.10)

where e} denotes the first period in which the kth unit of item i can be produced, i.e., e, =
minfs : Uf = k}. If k < e}, then (3.10) yields a stronger cut than x} + -Y;'c+1 =t

In Example 3.2.1 we observed that a production batch for item 1 starting in period 4 cannot
consist of more than three periods. Thus, in multi-item problems the demand for other items
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imposes a restriction on the length of a production batch for item ¢ starting in a certain period
t. Suppose that there exists a feasible solution for which a production batch for item ¢ starts in
period £. If this batch has length /, then the total production for item f up to period 1 + 1 — 1 is
atleastd] | + . By definition of U}, we musthaved; , | +1 < U/, . On theother hand, if
dy, y+1=Uj,_, forsomei, 1, and [, then there exists a feasible solution to DLSP in which
all periodsin [f, 1+ [ — 1] are used for the production of item i. Thus, if we define

=max{l:t14+!~1<Tandd, +1<U, ),

then I} denotes the maximum length of a production batch for item i starting in period ¢ in any
feasible solution. Observe that I = 1! | + 1ifdi=1andt < T.

Now consider an item i and a period f and suppose that £ + I < T, By definition of I, the
interval [t, ¢ + II] cannot be completely used for the production of item i. Thus, if item i is
produced in period ¢ + [, then the machine has to be set up for item i in one of the periods in
[t+1,¢+ ] . This is implied by the following inequality:

i i :
x£+2§ = yt+1,t+l;" (3.11)

Since t+ I{ = 1+ 1+ I, when d} = 1, the strongest cuts of the above form are obtained for
di=0.

3.2.2 Multi-item inequalities

The class of multi-item inequalities discussed first is adapted from the class of uncapacitated
multi-item inequalities introduced by Constantino ([5], Section 4.3). The basic idea behind
these inequalities is the same as for the LSM inequalities: if there is no production for item
i in the interval [#, '], then the inventory for item / at the end of period ¢ — 1 must be at least
di,. |
Letie{l,..., M}, JC{1,..., MI\{i}, and let 11, £2, and t;3 be three periods satisfying
1<ti<ph£ts<Tand a‘ﬁh,s > 1. Suppose that all periodsin [¢1, ;] are used for production of
item j € J and that there is no startup for item { in the interval [t; + 1, '}, where t' € [t + 1, 3]
Then, clearly, the demand for item 7 in the interval [#;, ¢'] must be produced before period ¢;.
This is forced by the following inequality:

]
i i i i j : i
xl,h—l Z dl,ll—l + d{;,!} Z(x!z - yn.’,.]’tz) - E d:‘,tgyt' {3~12)
jedJ t=6+1

Its validity for X is shown as follows. Since we can produce at most one item per period,
2 J(Jc{'2 - yfl +1.1,) cither equals one or is nonpositive. In the latter case, the inequality is
clearly valid. Hence, suppose that the expression equals one. Then there exists an item j € J
for which production occurs in every period ¢ € [f1, £;]. If there is no startup in the interval
[t + 1,¢'] for some 1’ € [t; + 1, 15], then there is no production for item { in [#;, £']. In this
case, all demand for item { in [y, '] has to be satisfied from stock. In other words, the total
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production for item ¢ up to period #; — 1 must be at least di‘,,. Note that if y! = 0 for every
t € [124 1, 13], then the right-hand side of (3.12) equals | , . Otherwise, the right-hand side is
atmostd] ,, where ' = min{t € [, £3 - 11: ¥, | = 1}. This establishes the validity of (3.12).
Note that the inequality remains valid when the term Zt_:z +1di,yiisreplaced by Jc,2 e

The separation problem for inequalities (3.12) can be solved in O((3_;log d! Lr) T2) time.
In order to show this, rewrite the right-hand side of (3.12) as

* z ts . s . .
diaHd Y G =y o+ D O Gl =Y~ V) (B3)
jeJ =htl jek
Let (£, 9) denote the current LP-solution and assume that i, t;, and £, are fixed. Then, as A
is nonnegative and nondecreasing in ¢, (3.13) is maximal for J* = {j#£1i: Jc,2 > y,1 +1.,) and

z3 =min(, max{t € [+ 1, T]:di =1and Y G, — 9], ) > F 00 ).
jeJ*

Hence, in order to find out whether there exists an inequality of the form (3.12) that is vio-
lated by (%, $) for i, 11, and f, it suffices to check violation for J* and £3. From the trivial
observation that § ., , = $ , — 9} , it follows that § can be determined in O(log d} ;) time
by applying binary search on the demand periods si, provided that the values j’i‘ , are deter-
mined beforehand. Moreover, if for all  the value f”' =Y ;149! is known as well, then

,_32 + d;y,2 +1,, an be efficiently computed as ¥ Y,‘z d,' +1g ¥ 1 Both ¥ # and ¥/ can be
calculated in O(MT) time. Now for0 <1, <t; < < T we proceed as follows:

begin SEPARATION(?;, 2)
Z:= Y, max(0, (&, -} 1 ,))
for i = 1 to M do begin
Zh=7 -max(0,%, - 9 ,1,.) ‘ o
determine t3 = max{(f;, max{t € [tz + 1, 7] : d; =land Z'> §, ., 1)
check whether £, | <d} , | +d ,Z SINRY )3
end

end.

Obviously, # |, and X} — ¥, .,  canbeupdatedin constant time in theiteration correspond-
ing to (1, 2). Hence, the separation procedure runs in O((3_;log di 7)T?) time.

We conclude this section by showing two examples of multi-item inequalities that are strongly
- related to inequalities (3.11). Consider again Example 3.2.1. If item 1 is produced in periods
3,4, and 5, then one of the periods 6 and 7 must be used for the production of item 2 and
the other for the production of item 3. This observation yields the following valid multi-itern
inequalities for the problem at hand:

X< Yhs+Y2+0h 1=6,7, and X} < yhs+xl4yl, j=2,3.
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1tis not hard to deduce valid multi-item inequalities for the general problem from this example.
However, computational tests showed that these inequalities rarely improve the lower bound.
Therefore, we do not discuss them in more detail.

3.3 Branch-and-cut

In order to solve multi-ifem problems to optimality we have developed a branch-and-cut al-
gorithm for DLSP based on the integer programming formulation presented in the beginning
of this chapter. The main steps of such an algorithm have already been explained in Chapter
1. In Subsection 3.3.1 we discuss some specific features of our implementation, in particular,
the ones concerning the cutting plane procedure. Subsection 3.3.2 reports on the computa-
tional performance of the cutting plane procedure and different variants of the branch-and-cut
algorithm. Throughout, (£, §) denotes the current LP-solution.

3.3.1 Implementation issues

This subsection gives a detailed description of the cutting plane procedure. Furthermore, we
discuss the computation of upper bounds and branching strategies.

The cutting plane procedure

The current procedure incorporates separation routines for the RSM and LSM inequalities that
are facet-defining for DLSP;, 1 < i < M. These routines, that will be discussed in some more
detail hereafter, also identify violated inequalities of the form (3.10) and (3.11). Furthermore,
cuts are generated from the class of multi-item inequalities (3.12).

In Subsection 2.2.4 we presented an O((d} 7T)?) separation algorithm for the HLSM in-
equalities that are facét-defining for DLSP;, Preliminary experiments showed that for the in-
stances in our test set all cuts generated by this algorithm belonged to the subclass of LSM
inequalities, i.e., the HLSM inequalities with H = @. These inequalities have the following
form:

ot D Ol Viig,,) =t (3.14)
jeJ ’
wheret € [0, T—1),d},, =0,J S {1,... ,dj,, ), and where 5}, ., denotes the jth demand

period for item ¢ after . Recall from Subsection 2.2.4 that the sepatation problem for inequal-
ities (3.14) can be solved in O(d; ;T) time. Because of the aforementioned observation the
cutting plane procedure only incorporates the less time-consuming separation routine for in-
equalities (3.14). This routine also solves the separation problem for inequalities (3.10). In the
Cutting plane algorithm the separation routine for inequalities (3.10) and (3.14) is successively
called fori = 1, ..., M. In the sequel we refer to this procedure as SEP1.

For the HRSM inequalities we implemented the version of the separation algorithm dis-
cussed in Subsection 2.2.2 that only identifies violated RSM inequalities, i.e., HRSM inequal-
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ities with Vy = @. For item { these inequalities can be written in the following form:

Xt D Olrrrd, — Sra,) = Ao (3.15)
uclU '
where ! satisfies d = 1 and U C {r: t < ¢ and d’. = 0). The separation for inequalities (3.11)
is easily incorporated in the O(di,TT) separation procedure for inequalities (3.15). The suc-
cessive calls of this routine for all items are denoted by SEP2.
Violated inequalities of the form (3.12) are identified by the separation algorithm outlined
in the previous section.

Rather than running all available separation routines in each iteration of the cutting plane pro-
cedure, it is often preferable to call certain separation routines only when other algorithms
have failed to identify violated inequalities. Here both the effectiveness of the cuts and the
computational effort needed to generate them are taken into account. Moreover, one should
decide on the maximum number of inequalities added in one iteration, as the size of the for-
mulation may considerably influence the time needed to solve the linear programs.

After some preliminary experiments we decided to use the following separation strategy
in our cutting plane algorithm. First, SEP1 is called, i.e., for each item i it is checked whether
there are violated inequalities of the form (3.10) or (3.14). For each item all violated inequali-
ties of the first type and only the most violated inequality of the second type, if any, are added
to the formulation. If at least M /2 cuts are generated by SEP1, then the separation phase is
left and the new linear program is solved. Otherwise, SEP2 is called. Similar as for SEP1, this
separation procedure generates for each item all violated inequalities of the form (3.11) and
only the most violated inequality of the form (3.15). The multi-item inequalities (3.12) are
only checked on violation if no cuts have been generated by the other two separation proce-
dures. Also in this case we only add the most violated inequality per item, This means that for
each item 7, there is at most one combination of #1, fo, t3, and J € {1, ..., M}\{} for which
(3.12) is added to the formulation.

The size of the formulation can be reduced by eliminating previously added inequalities
that do not seem to play a role anymore. In our algorithm every ten iterations all inequalities
with slack larger than 0.1 are deleted.

Computation of upper bounds

In the branch-and-bound procedure a subproblem can be discarded from further evaluation if
its lower bound is greater than or equal to the value of the best known feasible solution. Thus,
the quality of the available upper bounds may have a considerable influence on the size of the
search tree. Good feasible solutions can often be constructed from the LP-solutions occurring
during the branch-and-cut algorithm. We have implemented two LP-based heuristics that are
called each time a linear program has been solved.

Both algorithms work as follows. First, a set of pairs (ix, &), where iy € {1, ..., M} and
Iy € Z* such that Doki=i = di’T for all i, is determined. The two heuristics differ in the
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way these pairs are constructed from the LP-solution. This will be discussed in more detail
later. By associating start times £ to the pairs (i, Ix), we obtain production batches By =
[tx, te + I — 11, where By is a production batch for item #. The periods # are determined such
that #x + I < t+1 and the production schedule consisting of the baiches By has minimum cost.
Since all instances in our test set have Wagner-Whitin costs and constant startup costs per item,
the production schedule is optimal with respect to the given restrictions if #; is chosen as late
as possible. Let 5 be the demand period for which the demand is produced in the first period
of By;. Here it is assumed that the demand for the jth demand period of item i is produced in
the jth production period for this item. Let K be the number of pairs (ix, {x). Then tx = 5
and fy = min(8y, ty41 — &) for k < K. Obviously, the schedule is feasible if and only if 1y > 1.

If this construction provides us with a feasible solution, then we apply an improvement
heuristic that boils down to joining two batches of the same item that are not far apart in the
current solution. Loosely speaking, for each pair of indices k; and k; satisfying ky < kp, iy, =
ir,, and i; # iy, for ky < j < ky, it is checked whether the current solution is improved by
moving B, forwards and appending it to By,, or by moving B, backwards and appending it
to By,. Note that such a move involves a recalculation of the optimal periods #¢, which can
be performed in time linear in the number of batches. For instances with constant inventory
and production costs per item, recalculating the costs can also be done in linear time. If a
better solution is found in this way, then we take the one that gives the largest improvement
and repeat the above procedure. '

The heuristics differ in the way the initial sequence is constructed from the LP-solution.
The first heuristic determines foreveryiand j,1 < j < di,T, the first period ¢ for which the
total production for item i up to this period exceeds j. This period is denoted by t'J Let
(imt),1<h<H:=%HX d; , denote the sequence of pairs (i, ti.) sorted in order of non-
decreasing t; Set k3 = 1 and determine K and indices g, 1 < k < K, such that A is the first
index h after A1 for which i, differs from iy, ,, and iy, = iy for hx < h < H. Then the pairs
(e, ) = Gngs s — ), 1 <k < K and hg = H + 1, form the initial set. '

In the second heuristic we first determine for each item i the set {¢ : £ > O and (£ = 1
or £_, = 0)}. Let j; denote the cardinality of this set and denote its elements by £}, ... , £},
where £} < £, for all j. Furthermore, set £}, = T + 1. For notational convenience, let Xi
denote the total production for item 7 up to period t} +1 — 1 in the current LP-solution. Deter-
mine % successively for j=1,..., ji, where I} = D?} - Zj,fjl}} if )2'; - Li’jj exceeds a
given threshold value (0.7 in our implementation), and I} = | Xj — 3", < ;1] otherwise. The
initial set (i, Ix), 1 < k‘s K =¥, ji, is now formed by the pairs (i, l}) sorted such that the
corresponding periods £} are nondecreasing.

Branching strategies

If the current subproblem cannot be discarded from further evaluation after the termination of
the cutting plane procedure, then new subproblems will be created according to a prespecified
branching strategy. The simplest strategy in the presence of binary variables is to create two
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subproblems by fixing one fractional variable to zero and one, respectively.

Two well-known branching strategies for general 0—1 problems are the one in which a
fractional variable closest to % is chosen as branching variable and the one in which the frac-
tional variable closest to 1 is selected. We considered both strategies in our computational
experiments, with the restriction that only fractional x-variables are selected.

Moreover, we tested the performance of branching strategies that construct a schedule by
fixing the periods one by one either in increasing or in decreasing order. For both orders two
variants were implemented. In the first variant we simply branch on the fractional x-variable
with smallest respectively largest index £. We do not report results for this variant, since it
was outperformed by the second variant, in which the branching variable is selected from the
set of fractional x-variables of which the value is in a certain interval [§ — w1, § + u2]. The
idea behind this is to avoid branching on a variable that is close to zero or one in the cur-
rent LP-solution (£, §). We take p; =  — 4 max{%} : & < 1} and p, = S min{& : & > 1).
Thus, results are reported for the strategies in which from all fractional x-variables with value
in [% — K1, % + u2] the one with smallest respectively largest index ¢ is selected for branching.

Apart from defining a branching strategy, one also has to specify in which order the subprob-
lems are to be evaluated. We examine two well-known search strategies: best-bound and
depth-first. In the first strategy the subproblem with the smallest lower bound is selected,
whereas depth-first search selects the subproblem that is created last. Since the subproblem
with the smallest lower bound must be evaluated anyway in order to prove optimality, one may
expect that the size of the search tree is smaller in a best-bound search. However, in a best-
bound search two subproblems that are subsequently evaluated can be far apart in the search
tree, whereas in a depth-first search they often differ only in the fixing of one variable. As a
consequence, the computational effort per node is usually higher in a best-bound search,

It may happen that, despite the addition of violated inequalities, the LP-value does not increase
significantly during a number of consecutive iterations. This effect is called tailing off. In
order to prevent this, a branching step is forced at any node but the root node when the LP-
value has not been improved by more than 0.1% during the last three iterations. At the root
node cutting planes are added as long as violated inequalities are identified.

3.3.2 Computational results

The implementation of the branch-and-cut algorithm is based on MINTO ([29], version 2.0),
which s a software system for solving mixed integer linear programs by means of a linear pro-
gramming based branch-and-bound algorithm. Within the general framework the user can em-
bed problem specific functions such as separation routines, primal heuristics, and branching
strategies. MINTO also provides the optional use of preprocessing techniques, construction of
feasible solutions, and generation of generic inequalities such as knapsack cover inequalities.
However, in our experiments none of these system functions were used. All computational
results were obtained on a SUN Sparcstation 5 using CPLEX 2.1 as LP-solver.



3.3 Branch-and-cut ' 73

Instances

In order to test our branch-and-cut algorithm a set of 486 instances was generated. These in-
stances have either 60 or 100 periods and either 2, 4, or 6 items, Moreover, we consider vari-
ations in the total demand D = p x T, where the capacity utilization p equals respectively
0.65, 0.80, and 0.90. This yields 18 different (T, M, p) combinations. As far as the inequal-
ities x , = d , in the IP-formulation are concerned, it clearly suffices to include only those
for'i and ¢ satisfying di = 1. Hence, the size of the initial LP-formulation is larger for larger
values of each of the three parameters T, M, and p. This also holds for the size of the classes
of inequalities from which cuts are generated.

The instances are further characterized by two parameters 8 and £, that both relate to the
cost function. Let us mention first that the production cost p! equals zero for all  and £. More-
over, both the inventory costs and the startup costs are constant per item, i.e., hﬁ == h‘i and
fi = fi forall i and t. The parameter § € {0, 1,2} indicates whether or not i} and fi have
the same value for different items i. If § € {0, 1}, then A} = 2 for all items i; otherwise, & is
randomly generated from the interval [1, 3]. Furthermore, f} equals f for all i if § = 0, but is
randomly generated from the interval [ f, 2 f] for § € {1, 2). We consider instances with f
equal to 10, 20, and 40, respectively. Three instances were generated for each (T, M, p, 8, f)
combination. This resulted in a test set of 18 x 9 x 3 = 486 instances.

Given T, M, and p, the demand periods are generated as follows. For each item i we gener-
ate d: . demand periods, where d; ;. is randomly taken from the interval [| 1 D/M], | 3 D/M]]
such that d;,r = D. The demand periods are randomly generated in such a way that the
feasibility condition Y d} , <1 is satisfied for all . Moreover, all instances satisfy d} = 0 for
all items i and di- = 1 for at least i.

Recall that an instance is said to have Wagner-Whitin costs if £ + p; > pi_; for all items
i and periods £. This obviously holds for all instances in our test set.

Lower bounds

We first investigate the effectiveness of the culting plane procedure in improving the bounds
obtained from the LP-relaxation. Recall that the cutting plane procedure incorporates two sep-
. aration routines for single-item inegualities and one for multi-item inequalities. We will also
consider the lower bounds obtained when only single-item inequalities are added to the for-
mulation.

The quality of a lower bound z is often expressed in terms of the integrality gap g = 100% x
(z* —2)/7*, where z* denotes the value of the optimal integral solution. Table 3.1(a) reports
integrality gaps with respect to the following lower bounds:

' Zy . the optimal value of the LP-relaxation of DLSP;
z; : the value of the LP-solution after the addition of single-itemn inequalities only;
7> : the value of the LP-solution after the addition of both single-item and multi-item
inequalities.
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Column g;, 0 < j < 2, shows the average value of the integrality gap with respect to z; over
the 27 instances within one (7', M, p) combination. Note that these entries represent percent-
ages. The number between brackets denotes the number of problems (out of 27) for which an
integral solution was obtained. Table 3.1(b) provides information on the average number of
linear programs solved d ), the average number of cuts added (¢;), and the average compu-
tation time (£}, in seconds) needed to obtain the lower bound z pi=12.

T =60 T =100

M| p &o & & o I3 g2

065 || 53.1(0) 0.16 (16) 000 (25) || 520 (0) 022 (14) 0.04 (20)
2 | 080 || 5160 046(18) 017 21) || 518 @) 068 (5) 0.22 (13)
090 || 467 () 087 (14) 043 (18) || 4.9 @) 086 (5) 034 (7)
0.65 {| 544 (0) 028 (12) 0.11 (20) || 549 (0) 0.14 (11) 0.03 (21)
4 {080 |l 5250 037 @ 01602 || 5260 035 (4 0.10 (13)
090 || 499 @ 055 (7) 02415 || 481 (0) 065 (1) 038 (3
0.65 || 541 (0) 004 (15) 000 (25 || 550(0) 014 (8) 0.05((16)
6 | 080 || 537(0) 037 (8 010(12) || 541(0) 035 (5) 0.16 (12)
0.90 I 521(0) 043 (4) 021(15 | 499(0) 059 (0) 023 (4

Table 3.1(a): Quality of the lower bounds at the root node

Ml ol & HlL & HBllL & LlL & &
0651 25 79 5 sl 48 129 15]s51 135 16
2 (0801 3 100 6 (34 109 756 176 22|67 197 26
090 |31 117 7|4 133 9| 57 205 26|79 246 36
065 22 114 7|24 119 71 42 199 25|45 206 26
4 (080 27 143 12|33 158 12|/ 48 244 38 |55 265 42
090 || 28 161 15|38 188 17|/ 53 293 51|66 326 59
06519 129 9|20 132 9| 36 233 27|38 238 27
6 | 080 24 166 14|28 178 14| 45 1309 53|53 1336 57
090 || 26 191 18|33 214 21| 49 357 73|67 415 87

Table 3.1(b): Average number of LPs, average number of cuts,
and average computation time at the root node

First observe that the LP-relaxation is rather weak in general; the average gap is about 50%.
However, the addition of single-item inequalities already yields lower bounds that, on average,
differ less than 1% from the optimal value. Furthermore, about two-third of the remaining gap
is closed when also multi-item inequalities are added. The cutting plane procedure yields an
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integral solution for 273 problems, which amounts to 56% of the total test set.

Table 3.1(a) suggests that the problems with highest capacity utilization o are the most
difficult. In general, the integrality gaps g; and g, increase and the number of problems solved
to optimality decreases for increasing values of p. From the presented results we cannot draw
solid conclusions about the effect of the number of periods 7 or the number of items M on the
quality of the lower bounds. However, the number of problems for which an integral solution
is found is significantly higher for T = 60 than for T = 100.

Table 3.1(b) shows that computation times increase for increasing values of T, M, and
p. This is not surprising, considering the larger size of the initial formulation and the larger
number of generated cuts. Recall from our discussion of the cutting plane procedure that the
more items, the more cuts can be added in one iteration. This may explain why the number of
linear programs that are solved decreases when M increases (and T and p are kept constant).
However, this decrease in the number of linear programs is outweighed by the increase in the
computational effort spent on one linear program.

In order to obtain more insight into the effect of increasing either T, M, or o on the qual-
ity of the lower bounds, we performed some additional tests. Starting from the combination
(T, M, p) = (100, 4, 0.80), we varied, one at a time, the values of T, M, and p. Moreover, we
report results for different values of T while M and p are kept to 6 and 0.80, respectively. For
each new combination (T, M, p) 27 instances were generated in the same way as described
previously. Tables 3.2(a)—(d) provide information on the integrality gap after the addition
of both single-item and multi-item inequalities (£), and the computation time (7, in seconds).
Again, the entries are averages over the 27 instances within one (T, M, p) combination.

T| 60 100 150 200 T| 60 100 150 200 ||
g 1016 010 014 024 £ 1010 0616 020 021
f 12 42 132 322 i 17 59 159 370
Table 3.2(a): Average gaps and computation Table 3.2(b): Average gaps and computation
times for different values of T times for different values of T
(M =4, p=0380) (M =6, p=0.80)
M 2 4 6 8 10 p | 050 065 080 090 095 099
g 1022 010 016 011 0.16 £ | 000 003 010 038 068 0.59
T 26 42 571 60 67 f| 13 26 42 57 88 100
Table 3.2(c): Average gaps and computation Table 3.2(d): Average gaps and computation
times for different values of M times for different values of p
(T =100, p = 0.80) (T=100,M =4)

One may conclude from Tables 3.2(a) and (b) that the lower bounds become weaker when the
number of periods becomes larger. A more solid conclusion can be reached about the com-
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putational effort required for the cutting plane procedure: computation times grow rapidly for
increasing T. The number of items does not seem to have much influence on the size of the
gap. Finally, Table 3.2(d) confirms the previously observed relation between the value of p
and the quality of the lower bounds. For larger values of p we expect that a fair number of
variables can be fixed beforehand. This may explain the decrease in g when p increases from
0.95% to 0.99%. '

Recall that, besides T, M, and p, an instance is characterized by two other parameters that
refer to the cost function. The results did not suggest any relation between the values of these
parameters and the size of the integrality gap.

Upper bounds

Table 3.1(a) reports that 67% of the 60-period problems (163 out of 243) and 45% of the 100-
period problems (110 out of 243) were solved to optimality without branching. The use of
the primal heuristics increased these percentages to 76% and 57%, which corresponds to 184
and 139 problems, respectively. Note that in the presence of integral cost coefficients the op-
timality of a feasible solution is established as soon as its value and the value of the current
LP-solution differ less than the greatest common divisor of the cost coefficients, This feature
is incorporated in MINTQ. ‘

For the instances that were not solved to optimality at the root node, the gap between the
value of the best available solution at termination of the cutting plane procedure and the value
of the optimal solution was on average 0.65%.

Branching

For 163 out of 486 problems of our original test set branching was required in order to prove
optimality, Here we report on the performance of different variants of the branch-and-cut al-
gorithm with respect to these problems. Results are presented for the following branching
strategies, which were discussed in more detail in the previous subsection:

« FRAC: selects the fractional x-variable closest to 1;
o MaX: selects the fractional x-variable closest to 1;

o FIRST: selects the fractional x-variable with smallest index f and value in ,
{% - i1, % + p2], where pg = % - %max{ﬁi A< %} and pp = 2 min{f: £ > 1};
o LAST: selects the fractional x-variable with lérgest index t and value in
[} — 11, 3 + o], where ) and p, are as defined for FIRST.

Eachbranching strategy was tested in combination with both best-bound search and depth-first
search. For each variant of the branch-and-cut algorithm a limit of two hours was imposed on
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the computation time spent on one instance. Three instances could not be solved within this
limit for at least one of the eight variants. ' '

Table 3.3 gives a first impression of the performance of the different branch-and-cut pro-
cedures. The entries are averages over the 160 instances that were solved to optimality by all
variants within the imposed time limit of two hours. Besides the average number of nodes in
the branch-and-bound tree (#) and the average computation time (7, in seconds), we report the
average ratio between the time needed to solve the problem to optimality and the time speﬁt
at the root node (7,).

HALF Max FIRST LAST
7] 7 7 i i P fi 7 7 n f A
best-bound | 21 76 155 | 43 105 197 | 38 114 204 |31 90 178
depth-first | 19 63 139 | 39 81 163 | 37 98 183132 81 164

Table 3.3: Average performance of the different branching and search strategies for 160 instances

For both search strategies HALF yields the best results on average. For all branching strate-
gies the problems are solved faster on average by depth-first search than by best-bound search.
In the previous subsection we remarked that in a depth-first strategy usually more nodes have
to be evaluated than when best-bound is applied. Apparently, this does not hold in our case.
Because of the above results, depth-ﬁrst is the default search strategy in the sequel.

We observed that for the majority of the instances the size of the branch-and-bound tree was
fairly small for all branching strategies. Therefore, the differences in the average results re-
ported in Table 3.3 are mainly dueto arelatively small set of problems. In the remainder we in-
vestigate the performance of the different branch-and-cut procedures separately for so-called
easy and hard instances. An instance is said to be easy if the average computation time re-
quired by the four branch-and-cut algorithms is at most twice the time spent at the root node.
This definition labels 142 out of 163 instances (87%} as easy.
We first provide some statistics related to the easy problems. Table 3.4 presents average
results for each (T, g) combination. Column #inst reports the number of instances over which
~ the average is taken. Furthermore, Z00: gives the average gap at the root node and 7, 7, and 7;
have the same meaning as in Table 3.3.

It appears that strategy HALF also yields the best results when only the easy instances are
taken into account. Except for the problems with (T, p) = (100, 0.80) HALF performs at least
as good as any of the other strategies. However, there is not much difference between the four
variants, Note that 7, almost always increases when p increases. This is not surprising, since
the average gap at the root node is larger for larger values of p, hence, we may expect that
more nodes have to be evaluated in order to prove optimality. For p = 0.65 about 10% of the
total computation time is taken up by the branching phase, whereas for p = 0.90 this is more
than 20% on average.
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HAaLP Max FIRST Last

T o | #inst | Bree PR |lr f RolAa T K |R T R
0.65 7 0.40 9 109 59 109 7 10 11311 11 1.21
60 | 0.80 21 0.44 16 1.10 8§ 17 113 8 17 1.15 8§ 17 1.14

090 25 0.57 24 122 115 26 131 |10 25 1.26 | 11 25 1.28
0.65 16 0.20 29 1.09 8§ 29 L1l 6 29 1.09 8 29 1.09
100 | 080 | 31 030 | 16 54 124 |17 53 122115 55 1251 11 SO0 115
090 | 42 040 | 12 68 121 |25 77 136|114 71 12719 74 133

o | o |

Table 3.4: Average performance of the different branching strategies for the easy instances

The last table presents results for the 21 hard instances. For each instance we give the number
of nodes (n) and the computation time (¢} required for each of the four different branching
strategies. An instance is identified as 1.7.M.D.k, where D denotes the total demand, i.e.,
D=pxT,andk €{1,...,27}. Notsurprisingly, the majority of these instances has capacity
utilization p = 0.90. Column g..t shows the integrality gap at the root node. The time spent
before entering the branching phase is reported in column f0c. The last row presents average
results over the 19 instances for which no entry ‘—’ appears in the corresponding row. This
entry indicates that the problem could not be solved within two hours.

For the 19 instances for which average results are reported in the last row, strategy HALF
yields considerably better results than the other three strategies. Note however that L AST per-
forms as least as good as HALF for a fair number of these problems. Moreover, for the two
instances that are not considered in the average results, LAST outperforms the other strategies
by far.

3.4 Related research

In this section we give an outline of two other solution methods for DLSP proposed in the
literature. The performance of these methods is compared to the performance of the branch-
and-cut algorithm. ‘
Hleischmann [14] proposes a branch-and-bound algorithm using Lagrangean relaxation
for the determination of both the lower and upper bounds. This approachis based on the same
formulation as our branch-and-cut procedure. Relaxing the coupling consirainis Eixﬁ <1
for all £ decomposes the problem into M single-item problems, which are solved by means of
dynamic programming (DP). The Lagrangean multipliers are updated iteratively by a standard
subgradient optimization technique. Feasible solutions are obtained by successively solving
the subproblems for item i = 1, ..., M by a modification of the DP-algorithm in which the
periods already used for the production of item j < i are skipped. The branching strategy
constructs a schedule by fixing the periods one by one in decreasing order. That is, from a
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HALF MAX FIRST Last

instance &root | oot n 1 n . H n t n t
16025413 | 466 | 27 | 317 119|533 170 | 675 295 | 895 294
16045418 | 150 | 22| 23 41| 29 36| 21 3| 187 153
16045424 | 148 | 32| 31 8 | 113 137| 51 125| 25 74
16045425 | 064 | 33| 9 46| 105 100| 73 129 3 40
1606486 | 149 | 24 | 97 116 | 191 156 | 189 212 | 41 78
16065423 | 123 | 29| 35 9| 95 130| 39 13| 29 85
110048024 | 1.02 | 84 | 43 198 | 449 659 | 103 418 | 41 21
1100490.12 | 099 | 94 | 115 369 | 207 439 | 141 439 | 295 835
110049015 | 0.65 | 103 | 235 803 | 215 494 | 245 912 | 457 1594
110049018 | 064 | 66 | 77 211|197 288 | 499 924 | 33 101
110049026 | 143 | 74 | 119 299 | 193 317 | 365 923| 39 145
110049027 | 094 | 148 | 29 286 | 103 484 | 75 569 | 45 360
1100.6.80.19 | 1.59 | 100 | 335 1630 | 665 1860 | 355 1591 | 737 3865
110068022 | 044 | 111 | 17 169 | 419 825 | 8 316 | 31 182
11006903 | o071 |19 | — —| — —| — | 559 4186
1100.690.10 | 1.16 | 177 | 665 3083 | —  — | 1631 6540 | 147 907
110069015 [ 048 { 94| 75 277|413 3| 697 1253 | 103 262
110069016 | 053 | 151 | 21 227 | 103 396 | 389 896 | 21 208
110069019 | 1.07 | 85 33 120|353 671 | 227 435 | 1073 1764
110069021 | 012 | 127 | 231 463 | 53 211 | 259 439 5 137
110069025 | 026 | 139 | 3 156 | 33 259 | 159 1001 15 . 190
Average (19) | 1.10 | 81| 97 301 | 238 440 | 245 580 | 214 = 557

Table 3.5: Performance of the different branching strategies for the hard instances

subproblem in which periods £ + 1 up to T are fixed, M + 1 new subproblems are created by
either assigning production of item i, 1 <i < M, to period ¢ or leaving £ idle.

Cattrysse et al. [7] present a solution method for DLSP based on column generation. This
algorithm has been primarily developed for the problem with sequence-independent startup
times. The columns in the master problem represent production schedules for the different
items. The method is used as a heuristic as it only solves the LP-relaxation of the master
problem. The procedure starts with a restricted-set of columns and generates new produc-
tion schedules by solving single-item problems by dynamic programming. These are added
to the formulation as long as they price out. A dual ascent procedure followed by subgradient
optimization provides approximately optimal dual variables of the LP-relaxation of the mas-
ter problem. Feasible solutions are obtained from the upper bounding procedure developed
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by Fleischmann and from an enumeration algorithm that tries to construct a feasible schedule
from the single-item production schedules generated so far.

Fleischmann tested his algorithm on data sets from the literature on a capacitated lot-sizing
problem with larger time periods during which production can occur for more than one item.
This problem is transformed in a discrete lot-sizing and scheduling problem by a discretiza-
tion of the production periods. Unlike Fleischmann, we can solve most of the problems TV
(T varies between 63 and 96, 8 items, total demand 61) without branching, but his algorithm
requires much less computation time. Furthermore, neither of his problems G1 and G2 (250
periods, 3 items, p € {0.84, 0.90}) was solved by our algorithm within one hour. In general, we
conclude that the approach based on Lagrangean relaxation can handle much larger instances
than the branch-and-cut procedure within the same amount of time.

Cattrysse et al. present computational results for a test set of 45 instances with T = 60,
M € {2,4,6), and p either < (.55, between 0.55 and 0.75, or > 0.75. The cost structure is
somewhat different from ours; for more details we refer to [7]. The authors compare the per-
formance of their algorithm to Fleischmann’s procedure, where the latter is applied without
branching. The column generation approach yields smaller gaps and a larger number of prob-
lems that are solved to optimality, but requires a larger computational effort. We may expect
that, when branching is applied, Fleischmann’s algorithm needs less time than the column gen-
eration procedure in order to reach gaps of the same size.

Finally, we compare the results reported by Catirysse et al. to the results that we obtained
for our set of 60-period problems. The cutting plane procedure yields slightly better gaps when
p is (about) 0.65. For larger values of p column generation performs better. This also holds
with respect to the computation times, although we have no insight into the exira time that will
be needed by this approach in order to solve all instances to optimality. Moreover, we cannot
say anything about how the two approaches will compare for larger values of T.



4. Sequence-independent startup times

In this chapter we study the extension of DLSP in which startups take up an integral num-
ber of periods in which no production can occur. We restrict ourselves to the problem with
sequence-independent startup times, i.e., the startup times only depend on the item for which
the machine is set up. In Section 4.1 we present an integer programming formulation of the
problem that is similar to the formulation of DLSP studied in the previous chapters. Valid in-
equalities for the latter formulation are therefore easily turned into valid inequalities for the
problem with startup times. Section 4.2 deals with this subject in some more detail. In Section
4.3 we discuss a multicommodity flow formulation of the single-item problem. By reformu-
lating the problem as a shortest path problem we derive a complete linear description in the
new variables,

4.1 Formulation

The setting for the problem with sequence-independent startup times, denoted by DLSS, is
the same as for DLSP, except that a startup for item i takes up o; periods, o; € Z™, in which
no production can occur. As before, T denotes the number of periods of the planning horizon,
M the number of items, and d’ € {0, 1} the demand for item i in period £. We assume that
the machine is turned off at the beginning of the planning horizon, hence, o; + 1 is the first
period in which item ¢ can be produced. As a consequence, it is always assumed that there is
no demand for item i before period o; + 1.

As for DLSP, the binary variable x! indicates whether production occurs for item i in period
t or not. Ifitem i is produced in period ¢, then this incurs a cost ¢!. Furthermore, we introduce
variables z! that equal one if the interval [t — o3, t — 1] is used for setting up the machine for
item i and zero otherwise. Thus, z} = 1 indicates that a production batch of item ; can be started
in period ¢. Associated with z! is the startup cost gi. Obviously, x! and z! are only defined for
tefo;+1, T

If startups do not affect the production capacity, then there exists a production schedule
that satisfies all demand in time if and only if 3, d} , < £ for all £ (cf. Section 3.1). In the
presence of startup times, however, the existence of such a production schedule is not easily
established. In order to prevent infeasibility of an instance, we therefore assume that the de-
mand can always be satisfied by producing-out of the regular production periods. This incurs
a penalty cost c(‘; per unit of item . The nonnegative integer variable Xg represents the total
number of units of item ¢ produced in this way. For convenience, this production is said to
occur in period 0. In practice, X; may correspond to the demand quantity of item i that cannot
be satisfied, in which case c} Xg represents the lost purchases.

Now DLSS can be formulated in the following way:



82 Sequence-independent startup times

min Z[CQX0+ Z Ctxi+gtzt}

r=o+1
s.t. Xo+x , zd C(oi<t<T,1<i<M) 4.1
xi < x| +7 (oi<t<T,1<i<Mx =0) 42)
min(t+0;,T)
e+ Y dy<t1 Qs=tsD 43)
foy<t r=max(oi+1,241)
XieN, x,zi € 0,1} (oi<t<T,1<i<M) (4.4)

Constraints (4.1) imply that the demand up to period f is always satisfied, either from produc-

tion in the regular production periods up to ¢ or from production in period 0. Constraints (4.2)
force the machine to be set up for item i in [t — oy, £ — 1] if this item is produced in period ¢
but not in period ¢ — 1. Constraints (4.3) assure that no production occurs when the machine
is being set up. Moreover, they assure that in one period at most one item is produced.

As in the case of DLSPE, we can add extra constraints to the formulation in order to exclude
solutions with a positive inventory at the end of the planning horizon or with zi = 1 and xi = 0
for some { and £. Note that in the latter case, constraints (4.3) imply that for any item j period
t+o;+ 1isthe first period after £ in which this item can be produced. Clearly, such a solution
is never optimal in the presence of positive startup costs.

Recall that 7 = 1 indicates that the machine is being set up for item i in [t — oy, £ — 1].
Thus, z{ = 1 implies that we can start a production batch of item 7 in period 7. Observe that
the z-variables have the same meaning as the y-variables in the formulation of DLSP studied
in the previous chapters. Hence, if a startup for some item { only incurs a cost but does not
affect the production capacity, then this can be easily incorporated in the above formulation
by taking o; = 0. Moreover, most of the inequalities derived for DLSP can therefore easily be
turned into valid inequalities for the set of solutions to (4.1) — (4.4), as will be shown in the
following section.

We conclude this section by comparing our model of DLSS to a slightly different formulation
proposed by Cattrysse et al. in [7]. Instead of z! they use binary variables v! that indicate
whether the machine is being set up for item { in period ¢. For ease of explanation, assume
that o; > O for all items i, Thus, if a production batch for item i starts in period ¢, then v/, must
equal one for every 7 € [t — i, t — 1]. This incurs a cost }:{_i_(, 2., where gi is the cost
associated with v.. The correctness of the formulation below is now readily seen.

min Z [COX0+ Z Zgiv{} 8.t (4.1),

1=0p+1
xo<x ol (Isk<oi<t<T,1<i<Mx,=0)
Zx—{—Zv,_ (1<t<T)
xc7,<!
XieN, xie (0,1} (oi<t<T 1<i<M)

i€ (0,1} ' (1<t<T 1<i<M)
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Observe that for o; > 1 there exist solutions (Xp, x, v) with vf =1 for k subsequent periods,
where k is not a multiple of o;. Such a solution does not correspond to any feasible solution
to (4.1) — (4.4). However, one easily verifies that if (Xy, x, z) satisfies (4.1) — (4.4), then

(Xo, x, v) with
’ } min(¢+0;,T) )
v, = Z z,
t=max(o;+1,¢+1) )
for all i and ¢ is a solution to the above formulation. In particular, if g = i‘:l,_a,_ glandgi>0
for all i and ¢, then both formulations yield the same optimal solution to DLSS. Furthermore,
it is not difficult to show that if gi = Y"*”}__ 2! for all i and ¢, then the LP-relaxation of our
model yields lower bounds that are as least as good as the lower bounds obtained from the

LP-relaxation of the model proposed in [7].

4.2 Valid inequalities

In this section we give some results on valid inequalities for DLSS. We mainly consider valid
inequalities for the single-item problem, i.e., inequalities that are valid for all (Xo, x, z) satis-
fying

Xo+ Xot1, 2 doti (c<t=<T) 4.5)
Xy <. X-1+2 (o <t< T1 X =0) 4.6)
min(t+a,T) _
xt+ Yy z<l (0<t<T,x,=0) @7
T=t+1
XoeN, x,z €{0,1} (c<t<T 4.8)

where T denotes the number of periods and J, € {0, 1} forallt (d_1_<7 = (). For ease of presen-
tation, we renumber the periods such that period 1 is the first period in which production can
occur. Let T denote the last period of the new planning horizon, ie., T = T — o. Moreover,
define d, = J,+,,, 1 <t < T. Then the above formulation can be restated as

Xo+x1,, > di; (1<1<T) 4.9
X < X1+ 2 (1=<t=<T,x=0) (4.10)
min(t+o,T)
Xt Y oz <1 (0<t=<T,x%=0) @11
=t+1
XoeN, x,2,€{0,1} 1<t=<T) 4.12)

Let X, denote the set of feasible solutions to (4.9) — (4.12). Every valid inequality for X5
clearly yields a valid inequality for the set of feasible solutions to (4.5) — (4.8) by substituting
X:+o and z,4, for x, and z,, respectively, for every ¢t € [1, T].

Let o > 0. Because of (4.11), we have X, C X,_; and conv(X,) C conv(X,_1). Thus,
all valid inequalities for X,,_; are valid for X,,. In particular, all valid inequalities for X, are
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valid for X,,. Obviously, the subset of solutions in Xy with Xp = 0 is the set of solutions to
the formulation of the single-item DLSP studied in Chapter 2 with y, replaced by z;. For the
latter formulation we derived several classes of facet-defining inegualities x + Bz > y with
a; € {0, 1} for all z. Recall that these inequalities can be written as [, > LB(x, z}, i.e., they
yield a lower bound on the inventory ; at the end of period £, If production may also occur in
period 0, then I, = Xg -+ x1; — dy,. Thus, the inequalities from Chapter 2 become valid for
Xp by adding the term X, to the left-hand side. It is not hard to see these inequalities are also
facet-defining for conv(JXg).

For two subclasses we will give conditions for the inequalities to be facet-defining for
conv(X,). However, we will not prove in detail that an inequality defines a facet since these
proofs are similar to the proofs in Chapter 2. As a matter of fact, they are usually facilitated
by the possibility to produce in period 0. The following lemma implies that, in order to prove
that an inequality defines a facet of conv{X,), one has to construct 27 linearly independent
directions in the subset of solutiens in X, that satisfy the inequality at equality.

Lemma 4;2.1 Conv(X,) has dimension 2T + 1 forall o > 0. O

Since demand can always be produced in period 0, one readily constructs the 27 + 1 unit vec-
tors as directions in X;. It is obvious that there always exists a feasible solution with Xy = 0
for the single-item DLSS. However, if the variable X is omitted from the formulation, then
the dimension of the convex hull of X,, depends on the demand function. For example, ifo =2
and dy = 1, then all solutions in X; with X, = O satisfy x; + z; = 0 and z; = 0.

The following lemma gives a necessary condition for an inequality to be facet-defining for

conv{Xy).

Lemma 4.2.2 Let o > 0. Let g Xy + ax+ Bz = y be a facet-defining inequality of conv{X,)
that is not of the form (4.11). Then for anyt < T — o the following holds:

Cl. There exists a solution in X, without production in the interval [t, t + o that satisfies
the inequality at equality.

PROOE. Define X, = {(Xo, X, 2) € X, : @Xo + ax + Bz = y}. From the assumption that
ax + By > y defines a facet of conv(X;) and is not of the form (4.11), it follows that for any
t < T — o there must be at least one solution (X, X, z) € X, satisfying X, + Zr41 ¢4 = 0. Since
X; + Ze+1,040 = O implies that no production occurs in [z, ¢ + o], this proves the statement. [

‘We discussed before how facet-defining inequalities derived in Chapter 2 can easily be turned
into valid inequalities of X,,. In the sequel, we will give conditions for the inequalities of two
subclasses to be facet-defining of conv(X,). For all inequalities Xo + ax + fz > y in these
subclasses the following holds: for any ¢ € [1, T — o] there exists a solution in X,, satisfying
Xo+oax+ fz=y+1and x,+ Z+1,140 = 0. The following lemma shows how such an in-
equality can be strengthened with respect to conv{X;) when condition C1 is violated for some
period £,
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Lemma 4.2.3 Leto > Qandt € [1, T — o). Let Xo + ax+ Bz > y be as.described above. If
there is no solution in X, without production in [t, t + o} that satisfies the inequality at equality,
then '

Xo+ax+Bz+x+ 2140 =y +1 4.13)

is valid for X, and defines a higher-dimensional face for conv(X,) thanthe original inequality.
' O

It is not hard to see that if C1 is also violated for 7 and o’ < o, then (4.13) is valid for X~ as
well. However, the new inequality does not necessarily define a higher-dimensional face with
respect to conv{X,).

Example 4.2.1 Let T = 6 and ds = ds = 1. Then

+ Zs
Xo+xi4+x2+x3+ x4

defines a facet of conv{Xs) but not for conv(X;), since for any solution in X and, hence, in X
that satisfies the inequality at equality production occurs in at least one of the periods 5 and 6
(see also Proposition 4.2.4 below). By Lemma 4.2.3

+ 25+ 26 .
Xo+ x1+ X2+ X3+ X4+ X5 -

is valid for Xp and X;. Moreover, the inequality defines a facet of both conv(Xp) and conv(Xj).
~ O

We first consider the LSM inequalities (cf. Subsection 2.2.4), which have the following form:

Xo+ X1+ Z(MH + Zerjitsagy) 2 it 1 (4.14)
jel
~wheret € [0, T—1),dr1 =0,J ©{1,...,di41,7}, and where 54, j) denotes the jth demand

period after ¢. These inequalities are facet-defining for conv(Xp).

Proposition 4.2.4 Let o > 0. Inequality (4.14) defines a facet of conv(Xy,) if and only if for
every j € {1,...,dy 1} the following holds: if sqsjy <t + j+o, thenje J. O

The necessity of the condition follows from the observation that for j € {1, ..., dy1 7)\J
there is no solution in Xg, and, hence, none in X, without productionin [¢ + j, 54, j] that sat-
isfies (4.14) at equality. By Lemma 4.2.3, we can add Xi4 j + Ze+j+1,54,;, = 1 to (4.14). This
obviously yields another inequality of the form (4.14) with J/ = J U {j}.
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We next consider the RSM inequalities (c¢f. Subsection 2.2.2), which can be written in the
form

Xo+Xie 4 Y (Zuttubdye = Xurdge) = dip, (4.15)
uecl

where t* is a demand period and U € {t : ¢ < t* and d; = 0}. For convenience, define V =
{u+d, . u € U). Moreover, denote by u(v), v € V, the element in U satisfying u + dy ¢ = v.
Again, these inequalities are facet-defining for conv(Xp).

Unlike in the case of constraints (4.14), we can only give sufficient conditions for (4.15)
to be facet-defining for conv(X,), o > 0. We use the following notation with respect to an in-
equality of the form (4.15): if t* is not the last demand period, then ¢’ denotes the first demand
period after t*, otherwise we set ¢’ = T + 1. Furthermore, define vy, = minyey v.

Proposition 4.2.5 Leto > 0. Ift > min(T, ¥+ o+ 1yorif =t* + o+ land (v + 0 < ¢
or t* € V), then inequality (4.15) defines a facet of conv(X) O

With respect to conv(Xj) we can give both necessary and sufficient conditions for (4.15) to
define a facet. These are easily obtained from the following lemma, which provides a strong
relation between facet-defining inequalities of conv(Xs) and conv(Xi).

Lemma 4.2.6 A facet-defining inequality of conv(Xp) defines a facet of conv(Xq) if and only
if for everyt < T there exists a solution in Xy without productionin [t, t + 1] that satisfies the
inequality at equality.

PROOF. We already proved the necessity of the condition, Hence, let apXo + ax + pz = y be
a facet-defining inequality of conv({Xp), and denote by X, the set of solutions in X, o € {0, 1},
that satisfy the inequality at equality. Moreover, suppose that for every t < T there exists a so-
lution in X; without production in [t, £+ 1]. Since the inequality defines a facet of conv(Xy),
there exist 27 linearly independent directions in X (cf. Lemma 4.2.1). The direction e(z;)
is easily established for all ¢ > 1 with B, = 0, where e(z,) denotes the unit vector of length
2T + 1 corresponding to the variable z,, We may assume that the other directions are obtained
from solutions in X; that satisfy x, + z.4, < 1 for all 1, thus, these are directions in X; as well.
Hence, it suffices to show that e(z,) is also a direction in X; for all ¢ > 1 with B:=0. To
that end, let ¢ > 1 satisfy B, = 0. By assumption, there exists a sotution (X, x, z) € X, sat-
isfying x,; + z; = 0. Then (Xo, x,Z) with Z, = 1 and z, = z, for T % ¢ is also in X, and
(X0, x,2) — (X0, X, 2) = e(zy). O

It is not likely that a simple relation between the facet-defining inequalities of conv(Xo_1)
and conv{X,) can-be established for o > 1. In any case, the following example shows that the
above result for o = 1 does not hold for general o,
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Example 4.2.2 Let T =10and d;, = 1for ¢t € {7, 8,9, 10}. Then

2
+ 23+ 224+ 25 + 27+ 23 > 2 (4.16)
Xo+x14+ x4+ x3 + X5+ X7

is an inequality of the form (4.15) with ¢* =8 and U = {2, 3, 6} that defines a facet of conv(X;)
(cf. Proposition 4.2.7 below). Furthermore, for each ¢t € [1, 8} there exists a solution in X;
without productionin [z, z 4 2] that satisfies (4.16) at equality: take Xo =2,z = x9 = x50 = 1

fort <6,and Xp=0,20=x2=...=x5 =1 fort =7, 8. However, (4.16) does not define
a facet of conv(X3), since x7 + zg = x3 for all (Xo, x, z) € X; that satisfy the inequality at
equality. O

Let us consider inequalities (4.15) again. Throughout, we use the following notation with re-
spect to such an inequality: = max{t € [t*, T] : d, = 1 for all T € [¢*, t]}. For every inequal-
ity of the form (4.15) condition C1 is satisfied with respect to X fort < t* and fort > 1, i.e.,
for these periods ¢ there exists a solution in X without production in [z, t + 1] that satisfies
(4.15) at equality. For t € [t*, f — 1] the condition is satisfied if and only if one of the follow-
ing holds: (i) f = ¢*, (i) f = ¢* + 1 and v < t*, or (iii) f > * + 1 and {v, v+ 1} C V for
some v < t*. Hence, by Lemma 4.2.6, we have the following result.

Proposition 4.2.7 Inequality (4.15) defines a facet of conv(X;) if and only if one of the fol-
lowing holds: (i) i =t*, (i) I = t* + 1 and vy < 1*, 0or (iii) £ > ©* + 1 and (v, v+ 1} C V for
some v < t*, O

The above result implies that (4.15) does not define a facet of conv(.X) if either f > r* 4+ 1 and
Vmin = ¥ 0r £ > 1* + 2, umin < t*,and v+ 1 ¢ V for any v € V. Denote by R the set of periods
t that violate condition C1 with respect to X;. Then R = [¢t*, 7 — 1]if { > t* + 1 and vy = t*,
and R = [t* + 1, T — 1] otherwise. Inequality (4.15) can now be strengthened with respect to
conv(Xj) by applying Lemma 4.2.3 for at least one t € R. The question is: for which R’ € R
is :

Xo + x1,0 + Z(zuﬂ,uﬂz“. — Xutd,e) + Z(xr +2z41) = dins+|R] @.17)
uelU TeR
facet-defining for conv(X;)?

First, notice that if vy, = t*, then (4.15) is also of the form (4.14) with t = u(t*) — 1 and
J={1,...,t* —u(t*) + 1}. Then, by Proposition 4.2.4, (4.17) defines a facet of conv(X;) if
and only if R" = R = [¢*,{ — 1]. It is also not difficult to check that if f > t* +2, |V| = {v},
and v < ¢*, then (4.17) defines a facet of conv(X;) if and onlyif R = R=[t*+1,i—1]. For
the remaining cases we have the following result:

Proposition 4.2.8 Let (4.17) satisfy I>42,|V|=2 andv +1¢VforanyveV. Fur-
thermore, let R' = {t* +2j—1:j=1,..., (- t*)/2]). Then (4.17) is valid for X. The
inequality defines a facet of conv(Xy) if and only if one of the following holds: (1) f = t* +2,
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(ii) there exists v € V such that v+ 2 € V or u{v) = v — 1, or {iii) f — t* is even and there
existsve Vsuchthatv+3€ Voru(w)y=v-2 O

In all cases, the validity of (4.17) for .X; can be shown by sequentially applying Lemma 4.2.3
to the elements of R’ in increasing order, Obviously, if (Xg, x, 2) € Xo\Xi, then the solution
obtained from (X, x, z) by setting z, to zero for all # satisfying x,; = 7, = 1 yields a solution
in X;. Hence, a valid inequality for X with nonnegative z-coefficients is also valid for X5. In
particular, (4.17) is valid for X if it is valid for X;. Moreover, it is not difficult to show that
(4.17) defines a facet of conv(Xy) whenever the inequality is valid for X;. Then, by Lemma
4.2.6, the result that (4.17) defines a facet of conv(X;) for the given set R’ is established by
checking that for any ¢ € R there exists a solution in X; without production in [z, ¢ + 1] that
satisfies (4.17) at equality.

Example 4.2.3 Let T =10and d, = 1 for t € {5, 10]. Then

+23+ 2+ 25+ 2

> 2
Xo+xi+x+x + X5

defines a facet of conv{Xy) but not for conv(Xy), since x,—; + z; == 1, ¢ € [8, 10], for any solu-
tion (X, x, 2) € X that satisfies the inequality at equality. Now the above proposition yields
that ‘
+2t 2+ 5+ % + 23 + 210 - 4
Xo+ X1+ x4+ X3 + Xs + X7 + Xy -

defines a facet of both conv(Xs) and conv(.X;). Notice that this inequality does not belong to
any of the three subclasses of facet-defining inequalities of conv(Xp) that were discussed in
Subsections 2.2.2 through 2.2.4. (]

Let us finally show how the multi-item inegualities (3.12) (cf. Section 3.2) can be strength-
ened in the presence of startup times. Consider the multi-item formulation presented at the
beginning of this chapter. For convenience, we add xi = zi = 0 for all i and ¢ < o;. Then the
following modification of (3.12) is valid for the set of solutions to (4.1) — (4.4):

f
. t. . L o
Xp+x, . = od, +d S, - > dld @18

jel tmty 4t

where i e {1,..., M}, JC {1,..., M}\{i}, and #1, £, and {3 are three periods that satisfy
l<fisth<tg<Tand d;'h,z > 1. These inequalities were derived from the following obser-
vation: if there is no production for item { in the interval [#;, '], where ¢’ € [t; + 1, #;], then
the inventory for item ¢ at the end of period #; — 1 must be at least d{h,,. If startup times are
zero, then there is no production for item i in [¢;, £,] if the whole interval is used for produc-
tion of item j. The latter is implied by x{z - zfl +1., = 1. In the presence of positive startup
times, however, we cannot produce item / in the interval [, fz] if all periods in [f; + 0}, &]

are used for production of item j, which is implied by xfz - z;’l totl = 1. Moreover, if item
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J is produced in period 13, then #; + o; + 1 is the first period after #; in which production for
item i can occur. The above inequality can therefore be strengthened to '

B
i i i i J J i i
XO + xl,ll-] Z dl.ll—l + dl].l; Z(xh - Zl| +a’j+],!2) - Z dl,tgzl' (4'19)
jel =ty +op+1

Recall that inequalities (4.14), (4.15), and (4.18) (with Xé = for all i) served as cutting planes
in the branch-and-cut algorithm for DLSP discussed in the preceding chapter. Obviously, the
separation routines can be used in a cutting plane algorithm for DLSS as well, The sirength-
enings of inequalities (4.15) or (4.18) presented above can easily be incorporated. Computa-
tional experiments will have to show whether the addition of these inequalities is as effective
in reducing the integrality gap for DLSS as for DLSP.

4.3 A multicommodity flow formulation

A natural formulation for single-item lot-sizing problems is the one in which the variables
are only indexed by ¢. However, the introduction of new variables often yields a tighter for-
mulation with fewer consiraints. Various types of extended formulations are discussed in the
literature; for a review we refer to Pochet and Wolsey [33]. In many cases a complete linear
description in the new variables is derived.

One such extended formulation is the multicommodity flow formulation, in which the pro-
duction variables x, are split into variables x,; that specify how much is produced in period ¢
to satisfy the demand in the kth demand period. Van Hoesel and Kolen [20] present a multi-
commodity flow formulation for DL.SP in which not only the production variables x, but also
the startup variables y, are split. By modeling DLSP as a shortest path problem they derive an
LP-formulation in these variables that always yields an integral solution .

Here we give a similar result for the single-item problem with startup times. We consider
DLSS with the additional restrictions that we always produce when the machine has been set
up for production (z; < x;) and that overproduction is not allowed. As in Section 4.2, the
periods are numbered such that period 1 is the first period in which production can occur. Thus,
we consider the following formulation of DLSS:

T
min  coXo+ Y (CXr+ gi21)

=1

s.t. Xo+xi; = diy (I<t<T 4.20)
Xo+xr = dir 4.21)
Z <X < X+ (1<t=T, x=0) (4.22)
min(r+o,T)
x+ Y z<1l  (0<t<Tx=0) (4.23)
=141
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In a multicommodity flow formulation of DLSS the variables x, and z, are split into binary
variables x4 and zg, respectively. As usual, s, denotes the kth demand period. Then xy =1
if and only if production occurs in period ¢ to satisfy the demand in s. Similarly, zx = 1 if
and only if period £ is used to produce for period sy after a startup in [t — o, t — 1]. The integer
variable Xy is split into binary variables xo; that indicate whether the demand for period sy is
produced in period 0. Without loss of generality we assume that the demand for s¢, k > 1, is
not produced before the demand for $¢..y, i.e., we only consider solutions to DLSS that satisfy

Xy 1 =X, =1, thenty <forty =t =0 4.25)

In the sequel a complete linear description of the convex hull of the set of these solutions will
be established. The result is obtained by modeling DL.SS as a shortest path problem on an
acyclic network such that the variables x, and z, form a subset of the flow variables in the
corresponding linear program. Elimination of the other variables yields a linear program in
the x- and z-variables that always has an optimal integral solution.

We first present a dynamic programming algorithm that solves DLSS. This algorithm will
be transformed into the shortest path formulation mentioned above. For convenience, define
K=A{1,...,dr} ;

Now let ¢(z, k), t € [1, 5] and k € K, denote the minimum cost of a solution for periods
O up to t in which period £ is used for production and the total production up to ¢ equals k. If
¢ < k, then the production in period 0 is at least k — 7, which incurs a cost of ¢g per unit. Also
observe that if ¢ € [2, o] is used for production and the total production up to tequals k > 1,
then either ¢ is the first period in [1, ¢] in which production occurs or period £ — 1 used for
production as well.

Furthermore, let ¥(t, k), t € [2, sx — o] and k € K, denote the minimum cost of a solution
for periods O up to ¢ for which the following holds: period # is not used for production, period
¢ — 1 is not used for setting up the machine, and the total production up to ¢ equals k — 1.
In this case the kth unit cannot be produced before t + 0. Hence, ¥ (1, k) is only defined for
t < 5 — 0. Note thatif the (kX — 1)stunitis producedin some period € [sp — o+ 1, 531 + 11,
then the kth unit must be produced in period # + 1. Moreover, if the kth unit is produced in
f> Sx_y -+ 1, then a startup occurs in the interval [t — o, 1 — 1].

Using the above observations we obtain the following forward recursion is easily verified:

1, 1) = g +c forte(l,s], and

ot ky =
. cotk—~1)4+ g fort=1
‘min(cglk ~ 1)+ g, ¢t -1, k=1)) forte[2,0+1]
¢+ min(@(t—1L,k—-1), ¥t~ k) +g) fori€lo+2, min(se—1 +1, 5¢ — 0)]
Vit — o, k) + g; fort € [se—1+2, 5 — o]
¢ -1,k-1 fortelsy—o+1, 5.1 -+1]
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min{cg(k — 1), ¢(1,k — 1)) fort=2
¥t k) = min(¢ (¢ —-1,k), 90t -1,k —1)) fort €3, min(sp_1+1,5: — 0)]
v(—-1,Kk fort € [sp.1+ 2, 8 — o]

for k € K\{1}. Calculation of min (codl,r Mgt ey 1 DU, dl_T)) yields the minimum cost
of any feasible solution to DLSS.

The dynamic programming algorithm gives rise to a shortest path formulation in the following
way. For convenience, define K; = K\{1}. We define a network that, apart from a source §
and a sink &, consists of the following nodes:

s uy forallz € [0, 5i} and k € K, except for (¢, k) = (0, dv 7);
o vy forallt €2, 51+ 11andke Ky,
o wy forallt e [2,5: —olandk € K.

Every solution to DLSS will correspond to a path from S to §’. Node ux will be on the path if
and only if the kth unit of demand is produced in period ¢. Node vy will be on the path if and
only if the demand for sy is produced in period ¢ — 1. Finally, node wy, will be on the path
if the following holds: there is no production in period ¢, the total production up to period ¢
equals k — 1, and the machine is not being setup in ¢ — 1.

Table 4,1 lists the arcs in the network together with the corresponding flow variable and
cost. Figure 4.1 shows the network corresponding to the instance with T =6, o = 2, and
demand periods 5y =2, s, = 5, and 53 = 6.

arc variable | cost | defined for
(S, up1) Xo1 o
(S, uy) Zn &1 rell, 8]
(4o k1, Uox) Xou co | ke Ki\{d, 7}
(Uok-1, #x) Zuk g |tell,o+1]andk e K,
(Mo p—1, W) Yik 0 | keKk
(g1 i V) | Xeetp=1 | €1 | £€[2, 51+ 1] and k € K,
(Ui, #g) L 0 |ltel2, s+ 1]andke K,
(v, wy) B 0 |rel2,min{s;-;+1,5 ~0)andke K,
(Wy, Wi 2) Y 0 tef2, s —0o—1landke K,
(Wi, Uepap) Zitok give | tE[2, s —0olandk € K|
(dody 7~1,5") | Xodr | Co
(1,4, 7, ) Xtdy y e | te[l,sq,]

Table 4.1: Arcs in the network
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Figure 4.1: Shortest path formulation of DLSS

Tt is not hard to see that for f € [1, 5] and k € K the value of ¢(1, k) — ¢; equals the length of the
shortest path from § to uy and, hence, that ¢(¢, k) corresponds to the length of the shortest path
from 8 t0 vy41 k41 for k < dy 7. Furthermore, ¥ (2, k) corresponds to the length of the shortest
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path from S to wy. Note that the unique shortest path from § to ug, k < dy 1, has length
cok. Thus, the length of the shortest path from § to §” is min(cod) 1, mint,gu‘sdl‘r]'qﬁ(t, dir)).
Hence, DLSS can be solved by solving the shortest path problem on this network.

Consider a path from S to §’. Observe that the intermediate nodes are nondecreasing in
both the index ¢ and the index k. Thus, for every k < d; r there is precisely one node uy,
t € [0, 511, on the path, hence, x4 = 1 for precisely one ¢ € [0, 5¢]. The latter also holds for
k = d; r. Furthermore, if xop = 1,k > 1,then xg 1 = 1, and if x = 1 fort > O and k > 1,
then x, x-; = 1 for some 7 < ¢. Thus, (4.25) is satisfied. Note further that z4 = 1 implies
Xy = 1. Finally, if zx = 1 for k > 1, then x; ;- = 1 for some v < max(0,7 —o — 1).

. The other variables can be interpreted as follows. If oy = 1, then the demand for 5. is
produced in ¢ — 1 and the demand for s i3 produced in period 1. If By = 1, then the demand
for sy_; is produced in ¢ — 1 but there is no production in period ¢. Finally, if y,; = 1, then
there is no production in period £ and the total production up to ¢ equals k — 1. Moreover, pe-
riod ¢ is not used for setting up the machine.

The shortest path problem can be solved by the linear program formed by the flow conser-
vation constraints and the nonnegativity constraints. The flow conservation constraints yield
explicit expressions for the «-, #-, and y-variables in terms of the x- and z-variables. Using
these and the nonnegativity constraints, we can obtain an equivalent linear program in the x-
and z-variables only. Itis a tedious but straightforward procedure to check that elimination of
the a-, 8-, and y-variables yields the linéar program

dl,T Sy

miny [COka + 3 (exa+ g:zw)il (4.26)
k=1 t=l
x .

sty xm =1 for k € K ' @27

=0
Zn = Xn fort €[1, 5] (4.28)
Zk = Xk forte {1} U[sy—1 +2, 56} and k € K 4.29)
Ze < X < X1 k-1 + Zn fort € [2, min(sy — o, $¢.1 + 1] and k € K (4.30)
Zk S X = Xp-1k-1+ 2k fortelsp—o+1,51+1]andk € K; “4.31)
Sk~ o Sy
Y xeri+ Yz = Y xafortell,si—o—1landk e K (4.32)
T=f r=t+1 Te=t41 )
Xok, Xek, 2k = 0 forte[l,s;]Jandk e K 4.33)

From the above discussion it follows that the linear program (4.26) — (4.33) always yields an
integral solution. Hence, we have proven the following result:

Theorem 4.3.1 The linear program (4.26) — (4.33) solves DLSS. 0

A formulation for the multi-item DLSS in the variables x, and z!, is obtained by taking the
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single-item formulations for the different items together with the linking constraints

o,

ST e+ D > | < tforaits (4.34)

ieM \ kisi>1 T=t+] stz

Obviously, its LP-relaxation will not yield an integral solution in general. However, it is ex-
pected to give stronger lower bounds than the LP-relaxation of the formulation in the natural
variables. A disadvantage of the multicommodity flow formulation is its large number of vari-
ables, which is about d) r7. If the formulation is used in a branch-and-cut algorithm, then it
may be computationally advantageous to start with an LP-formulation in which only a subset
of the variables is included and to add nonactive variables only when they price out. This is
an interesting topic for further research.



5. The delivery man problem

This chapter deals with the delivery man problem or DMP for short. This problem is a vari-
ant of the well-known traveling salesman problem (TSP) in which the objective is to find a
tour starting from a given depot that minimizes the sum of the waiting times of the customers.
The DMP can also be interpreted as a single-machine scheduling problem with sequence-
dependent processing times in which the total flow time of the jobs has to be minimized.

Polyhedral methods have been proven to be very successful for the TSP and many of its
extensions. Most of these extensions deal with extra conditions on the graph structure, ¢.g.
precedence constraints, such that the problem can still be formulated as a 0 — 1 model. How-
ever, we will formulate the DMP as a mixed integer programming problem by introducing
time variables (Section 5.1). This formulation can easily be adapted to the problem with time
windows, i.e., when each customer has to be visited within a specified interval. Only a few
papers deal with this kind of extension. Ascheuer [2] has developed a branch-and-cut code
for the TSP with time windows. Escudero and Sciomachen [12] and Escudero, Guignard, and
Malik [13] study the sequential ordering problem with time windows, where the sequential
ordering problem is the problem of finding a minimum weight Hamiltonian path subject to
precedence constraints. For this problem Maffioli and Sciomachen [26] propose a formula-
tion that is similar to our formulation of the DMP.

In Section 5.2 we will detive additional classes of valid inequalities in order to strengthen
the linear programming relaxation. The quality of the lower bounds obtained from the LP-
relaxation and the effectiveness of the new inequalities in reducing the gap are studied com-
putationally in Section 5.3. ‘

This chapter differs from the previous chapters in that it is primarily devoted to the DMP
instead of the DLSP. Nevertheless, the formulation presented here may also serve as a basis
for a polyhedral approach to the DLSP with sequence-dependent startup times. To that end,
we use the reformulation of the latter problem as a TSP with time windows (cf. Section 1.2).
The DLSP then only differs from the DMP with time windows as far as the objective function
is concerned.

5.1 Formulation

The delivery man problem is formally stated as follows. We consider the complete directed
graph G = (VU {0}, A), where V = {1, ..., n}. With each arc (j, j) we associate a nonnega-
tive integer travel time p;;. Itis assumed that visiting time is included in the travel time, hence,
the arrival time at node { equals the departure time at node i. Node 0 is the depot, i.e., every
tour starts and finishes in node 0. Furthermore, we assume that every tour starts at time 0.
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Then the waiting time of the customer located at node i is equal to the departure time at node
i. Now the problem is to find a tour that minimizes the sum of the departure times at the nodes.

The DMP can be modeled using the following two types of variables. For every arc (i, j)
there is a binary variable x;; that indicates whether the arc (i, j) is included in the tour or not,
and a time variable #;; defined as follows:

fio = departure time at node i, if x;; = 1,
Y 0, otherwise.

Since we assume that every tour starts at time 0, the variables #o; can be omitted from the
model. This gives rise to the following formulation of DMP, in which C denotes a large con-
stant; - :

n u
min Z Z L
==l je=0, jEI
s.t. dox =1 O<i<n (5.1
Cj=0, jski o
n
Noxo= 1 ©<j<n 52)
i=0,14 ]
" n n
Z Lij + Z pijxij = }: Lik =zj=n (5.3)
i=Ligj  i=0,i#] k=0 KA j
0<t; = Cxj O<ij=sni#ji#0) ($4)

xj € {01} O<ij=sni#)) (5.5

Constraints (5.1} and (5.2) ensure that every node, including the depot, is visited exactly once.
Constraints (5.3) guarantee that if x;; = 1, then the departure time at node j equals the depar-
ture time at node i plus the travel time p;;. These constraints also prevent subtours, unless
there exists a set of subtours such that every node is in precisely one subtour and p;; = 0 for
all arcs (i, j) that are involved in these subtours. If C is an upper bound on the departure time
at node i, e.g. C = n-max;;pyj, then (5.4) is valid when x;; = 1. Furthermore, these con-
straints force that ;; = 0 if x;; = 0. ‘

This model can easily be adapted to the problem with time windows (DMPTW), i.e., when
each node i has to be visited within a specified interval [e;, ;). The delivery man may arrive
at node  before e;, but cannot deliver before the opening of the time window. In this case,
the departure time at node i is strictly larger than the arrival time at node i. To model this,
equalities (5.3) must be replaced by

n " L

Z Lij + Z pixij = }: it (l<j=n). (5.6)

d=1Li#) i=0,i# j k=0 ks ]
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Furthermore, substituting
eixij < bij < Lixi; O=ijsni#ji#0) (&N

for (5.4) yields that #;; = 0 if x;; = 0 and that the departure time at node i is in the time window
lei, 1i] otherwise. The sum of the waiting times is now 37, (3 ;% — e:).

1t is evident that, apart from the objective function, the formulation for the DMPTW mod-
els the TSP with time windows as well. A well-known model for the TSPTW is the one with
variables x;; and #;, where t; denotes the departure time at node i (cf. Desrochers et al. [8]).
Then the set of feasible tours is the set of solutions to (5.1), {5.2), (5.5), and

L+ pij+ Mij(xij— 1) < ¢ O<ijsni# ) j#0,6=0)

e <ti<l ; (I<ign

where Mj; > I; 4+ p;; — e;. Compared to this model an important feature of the formulation
with variables x;; and ¢;; is that it does not involve big-M coefficients in the constraints.

As mentioned before, the DMP can also be considered as a model for the singie-machine
scheduling problem with sequence-dependent processing times, In this case we have n jobs, a
dummy job 0 that is scheduled twice, once at the beginning and once at the end of the schedule,
and sequence-dependent processing times p;;. Furthermore, in the presence of time windows,
every job i is released at time ¢; and has to be started not later than I;.

A frequently used objective in scheduling problems is minimizing the completion time of
the last job in the schedule. In our formulation this can easily be expressed as ) (fio + pioXio).
For this problem Maffioli and Sciomachen [26] have proposed a similar formulation in which,
in addition to the t;;, time variables y;; and u;; are introduced to denote the departure time at
node j and the time the delivery man has to wait at node j, respectively, when i is visited before
J. Variables u;; are only defined for arcs (i, j) satisfying e; 4+ pi; < e;. Now a feasible tour is
a vector (x, ¢, u, y) satisfying (5.1), (§.2), (5.5) — (8.7}, and

n

7
dovi= )tk (I=zj=n)

=G, ] =0k j
ij = Yij— PijXij — lij O=ijsni# ), j#0,1;=0)
eiXi; < yi < Iixy O=<ijsnis#),j#0)
(ej—pij—WTxj < wij < (ej~pij—ed™x; O=<ij<ni#]jj#0,e=0)

We will also consider this model and the one with variables x;; and ¢; in our computational
experiments. ‘
5.2 Valid inequalities

In the sequel, let X and X denote the set of feasible solutions to DMP and DMPTW, respec-
tively. That is, X = {(x, 1) : (x, 1) satisfies (5.1) — (5.5)} and Xw = {{x, £) : (x, 1) satisfies
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(5.1), (5.2), and (5.5) — (5.7)}. In this section we derive valid inequalities for X and Xi..
These inequalities contain both x- and ¢-variables, which may lead to a stronger connection
between the two types of variables. V

5.2.1 Inequalities for the delivery man problem

The inegualities presented in this section can be considered as a generalization of the inequal-
ities derived by Queyranne [34] for the single-machine scheduling problem with sequence-
independent processing times. We will briefly discuss the latter, using the terminology of the
DMP, Recall that for every solution to this problem the departure time equals the arrival time
at any node but the depot.

Sequence-independent processing times correspond to travel times p;; that only depend on
node i, i.e., p;j = p; Furthermore, pg = 0. For the model that only involves departure times
1;,1 € V, Queyranne derived the following inequalities:

Zpife > Z piPi (5.8)

ics i,jes.i<j

where § is a nonempty subset of V. He proves that the set of all inequalities of the form (5.8)
defines the convex hull of the set of all feasible tours.

The validity of (5.8) is easily shown. Let § = {=(1), ..., n(s)} and suppose without loss
of generality that the nodes in § appear in the tour in the order 7(1), ..., n(s). Thus, £, <
Lrsny for 1 <i < s Thentz > Zj,-;ll Dx(j) and equality holds if every node in § is visited
before any node in V\S. Hence,

): piti = Z Pty = ZZ Pr@Pr(j) = Z piPj

=N fz=1 i=1 j=1 i, jes,i<j

which establishes the validity of (5.8) for the model with variables t; only.

Let us first indicate how the above inequalities can be transformed into valid inequalities for
our model. The terms py; in (5.8) will be split into terms p;jt;;. At theright-hand side p; will
be replaced by 3 j PijXij, since a travel time pj; occurs only if xi; = 1. Unfortunately, this
yields quadratic terms at the right-hand side. These have to be linearized, as we can only deal
with linear inequalities. However, we will first present the quadratic inequalities obtained in
this way and show their validity.

In the sequel, a tour is identified with a solution (x, 1} € X, thus (x, t) satisfies the con-
straints (5.1) — (5.5). Furthermore, the following notation isused. Asusual, x(§) = E, jes Xij
and x(S1, $2) = Z,Eél jes, Xij+ 1 S isa subset of V, then S = SU {0}, We abbreviate 3., 1
by ¢;.
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Proposition 52.1 Forall SCV, §#9,

Ty 2
1 1
> piti 2 §( > Pfi—"ff) -3 > P (5.9

i, jes ieSq, jus ieSq, jes
is a valid (quadratic) inequality for X.

PROOF. Let § = {7(1), 7(2), ..., 7(s)} € V and define § = V\S. The validity of (5.9) is
first established for tours for which every node in § is visited before any node in S, i.e., < ¢;
forallie S, je S. Let (x, 7) be a tour satisfying this restriction and assume that the elements
of § are visited in the order #(1), w(2), ..., 7(s). Thus Xz »i+1 = 1, 0 < i < 5, where
7(0) = 0. Since we assumed that (x, #) satisfies (5.3), we have
i1
Lry.n @) = Pr@a)s ba@ai+) = In(-1),m0) T Prli-D.a = Z Dr(pr(j+l)s 2 SE< 8.
=0

Obviously, trgy, ;= Xz, =0for j£n(i4+1),0<i <5, and b, j = Xy, j=0for j€ .
Hence,

s—1 51 i—1
Z Dijtij = ZPx(f),;z(f+1)fz(f),;z(f+1) = sz(i),n(i—t—l)' szr(j),:r(f+l))
ijes =1 i=1 =0
s—1 2 s—1 1 2 1
= 1 o 1 2 — v 2.
=5 Zl’n(x},n(wl) —Ezpﬂ(s),z(m) =3 quxr; ) Zpijxv'
i=0 =0 i€So, jes i€So, jes

Thus (5.9) is satisfied at equality by all tours for which #; < ¢; foralli€ §, je S holds.

To establish the validity of (5.9) for all tours, we introduce the notion of a block §’, which is
defined as a maximal set of nodes of § that are visited successively in thetour, i.e., if |§'| >
1, then x($") = |§’| — 1, and x(S\ 8, §) = x(§', S\$’) = 0. Obviously, if x(8) = |§] — k&*
for some k* > 1, then the set § is partitioned into k* blocks S of size sy > 1, k=1,... k"
Denote the elements of S by m (1), . .., me{s), and assume that the nodes in § are visited in
the order z2y(1), ..., 71(81), ma(1), . .., m2(s2), ..., e (1), ..., e (Spe). Since (x, £) sat-
isfies (5.3), we have

Intmi+l) =  Ini-Dm0 T PuG-D.m6)» 2<i<ssi—1,1<k<k%.

Furthermore, if node m1(1) is visited first in the tour, then Xo,, ¢y = 1 and £r, 1) = Pox,)-
Otherwise, Y, ¢ Poixo; = 0. Also notice that if i is the last node of a block, then the terms ¢;;
and x;; in (5.9) are all equal to zero. Combining the above observations yields

k—1 s—1 i-1

Inety,mtir1) 2 Pom)X0,m(1) + ZZPmcj),mum + meumcm) (5.10)
‘ I=1 j=1 =1
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forl<i<g-—1,1<k<k* and

[ATES

Z pijlij = Z Z Prieti) it D by i) 1)

i,jes =] gl

k' os—1 k—1 s1—1 —1 ‘
. 10)
Z E Pryti),mti+1) © (Po mOXo,m ) + Z Z Py jpmii+ty + Z Py, M(rt—l))
=1 i=1

I=1 j=1 j=1

1 k* Sg—l 2 l k* Sg'-l
2 2
=3 Po,m(1)%0,m 1) + Z Z Pretiy,m(i+1) | — 7 Po w1y ¥o,mr) + ZZ Potiy, meGi+1)

k=1 j=1 k=1 i=1
1 2 1
= 5(. Z pijxij) -3 2 Pixij. (5.11)
ie8p, jes ieSo, jeS

This concludes the proof of the validity of inequality (5.9) for all tours. a

If all travel times are strictly positive, then (5.9) is satisfied at equality by all tours {x, 1) for
which x(0, §) = 1, x(§) = |§] — k* forsome k* > 1, and [S3| = 1 for 1 < k < k*. This can
be seen as follows. If p;; > O for all 4, j, then Ly, 1y > Iy (o) fOr 1 < k < k* and 1,01y >
> PoiXoi. Hence, equality holds in (5.10), and, consequently, in (5.11)if x(0, §) =1,k =1,
and 1 <i < 51 — 1. These restrictions are equivalent to the ones mentioned before.

Observe that when we set p;; = p; in the above inequality, we do not get inequality (5.8),
unless S = V. In order to obtain (5.8), we would need for every i € S the terms pi;t;; and p;ix;;
for every j € V. However, these terms appear in (5.9) only for j € §.

As mentioned before, we can only deal with linear inequalities. In the sequel, we discuss a
linearization of the right-hand side of (5.9) that yields valid linear inequalities for X

Let § € V and define I'(S) to be the set of all values that ) ;¢ jes PijXij can attain, thus,
T(8) = (3 ics, jes Pikij * (x, 1) is a tour}. Note that the assumption that the travel times are
integral implies that all elements of T'(S) are integral. Let 3 and y,, 11 < y», be two consec-
utive elements of I'(S), i.e., every y € I'(§) satisfies y < | or y > y,. Then

( Z DijXij — y1)( Z piixij—vy) = 0

i€So, jes i€So, jes
and, hence,
2
(' Z pixij| = (Z PisXij — Vl)(E piixij= v+ i+ y2) - Z PijXij = v1v2
ieSo. jes ie8p, je§ ieSq, jeS i€8g, jes

v

(472 Y Pukij— v

i€ 8y, jes
for every tour (x, #). Thus, substituting (y1 + ¥2) -X_ics, jes Pif¥ij — ¥1y2 for the quadratic
term in the right-hand side of (5.9) yields a valid linear inequality of X. This proves the fol-
lowing statement.
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Proposition 5.2.2 Let S C V, S # 0. Then for every pair {y1, y2) of consecutive elements of
I'(s) ’ . i

1 1
Zpijtij bl 3 Z Pij(71+72—pij)xij-§}'ly2 5.12)

i,jes i€ 8y, jes )
is valid for X. O

In this way we obtain for every § a set of valid linear inequalities. Notice that these inequalities
differ in the coefficients of the x-variables and the constant term, but not in the coefficients
of the r-variables. In a separation algorithm for (5.12) we only have to check violation for
at most one inequality yielded by §. For every triple (11, y2, y3) of consecutive elements of
I'(S), where y1 < y2 < y3, and y € R, we have

+v)y—-ras—Iln+r)y—rird=(@s—y)(y—y) >0ifandonlyif y > y,.

Let (£, ) be a solution to the LP-relaxation of our formulation for DMP and let S € V. Define
Y=2icso.jes Piikij. Thenitis easily seen from the above observation that (y1 +12) 9 — 12 is
maximal for y; = max{y € I'($) | y < 9} and y» = min{y € I'(5) | y > ¥}. From this it follows
that when for a given subset S some inequalities of the form (5.12) are violated by (%, 1), the
inequality with y; and y, as defined above is the most violated one. Thus, in a separation
routine it suffices to consider at most one inequality for every subset §.

However, we expect the inequalities (5.12) to be rather weak in general. Let us therefore
consider the tours that satisfy (5.12) at equality. Clearly, such a tour also satisfies (5.9) at
equality. If we restrict ourselves to the case that all travel times are strictly positive, then it was
observed before that for every tour (x, ¢) satisfying (5.9) at equality there is a subset ' € §
such that x(§") = x(S) = |§’| — 1 and x(0, §") = 1. In general, we cannot say much about the
number of such tours for which 3, ¢ . Pijxij has a particular value, but we expect it to be
small. Notice that even if there would exist a linear inequality that is satisfied at equality by
all tours that satisfy (5.9) at equality, then this would not define a facet. This follows from the
observation that every tour (x, 1) satisfying (5.9) at equality also satisfies x(0, S) = 1, hence
x0; = O forevery i ¢ S. V

Furthermore, there will not be an efficient way in general to determine I'($). In a separa-
tion routine that uses the ideas described previously, it will usually be too time-consuming to
determine y; = max{y € I'(S) | ¥y < ¥} and y» = min{y € T'(§) | ¥ > ¥}. Hence, checking
violation will have to be restricted to the inequality with yy = | #] and y» = |+ 1]. From the
assumption that all travel times are integral, it is easily seen that these inequalities are always
valid for X. However, if neither y nor y + 1 is an element of T'(S), then there is no feasible
solution that satisfies such an inequality at equality. '

A second class of valid linear inequalities can be derived in a similar way. In this case we
- start from the following class of quadratic inequalities. For § € V, define § = V\ S and let
T denote the set of arcs (¢, j) € V x V for which at most one of { and j is in S,ie, Ty =
(Vx V(S x 5).
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Proposition 5.2.3 Let S C V, S+ 9, and let Ty be as defined above. Then

2
1 1 1
Z pitij = E(prxo;'*- Z ;?s;xi,—) "52 pﬁ;xﬂ;—i Z pixii (5.13)
jev

(L, ))eTs jev G, ))eTs i jels

is a valid (guadratic) inequality for X.
PROOF. We first restrict ourselves to tours in which no two nodes in S are visited successively
before the last node of S. Let (x, £) be such a tour. Define §' = {j € §| x(SU {0}, j) = 1}.

Furthermore, let §' = SU 8 = {z(1), ..., 7(s")} and suppose Xz e+ =1, 1 < j <8 1.
Note that 7(s"y € § when §’ # V. By definition of &', we have

S opiti =Y. piti = Y. pijty = 0. (5.14)
ije§ ieS, jeS\§' e\§, je§

Hence,

ZP:‘;“:‘;‘ = Zpajti;’ +ZP:‘;Z;} + Z pijtij + Z Pijtij

ijes ijes i je§ ieS, je¥ ie¥,jes
= D Pty + D ity + Y pili = D Piliy
ijes ic§, je§ ic$, jes nels

Clearly, (5.14) and the above equality also hold with vaiables x;; instead of £;;. Furthermore,
2 jes Poj¥oj = 3 jcy PojXo;. Combining these results with the observation that (5.9) is sat-
isfied at equality for the subset §/, we get

2
1 1
Y piti = Z Piitj = 3 Z Pixij} —3 > P
et iy iedy e ieS) jes
2
1 1 1
= 5| 2 poimes+ 3 puxi | —35 3 phxoi—5 ) Pl
je& ijes jes i jes
1 t 1
= 3 (Z poiXoj + D pffxij) =32 Phxoi— 5 3 Pl
jev i,jeTs jev i, jels

The proof that (5.13) is also valid for all other tours is analogous to the corresponding pfoof
in Proposition 5.2.1 and is therefore omitted. (M|

From the above proof it follows that (5.13) is satisfied at equality by all tours in which no two
nodes in § are visited successively before the last node of S. Hence, unlike in the case of (5.9),
there exist tours (x, ¢) such that x(0, §) = 1 which satisfy (5.13) at equality.

To these quadratic inequalities we can apply a linearization that is similar to the one de-
scribed for (5.9). Therefore, we will not discuss it in detail. Define I'(Ts) = { 3_ ;cy PojXo; +

Z(i.j)eTs DijXij . x,1) e X}.
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Proposition 5.2.4 Let § C V, § £ 8. Then for every pair (y1, y2) of consecutive elements of
I'(Ts)

1
Z Dijlij = Zpﬁ;(}’l +v- pO;)xﬂz 2 Z Piilvi + v2 — pipxij — }’1 y2 (5.15)
(i NeTs }GV (. DTy

is valid for X. ' D

From the proof of Proposmon 5.2.3 it follows that (5.13) is satisfied at equality by all tours in
which no two nodes in § are visited successwely before the last node of §. Hence, unlike in
the case of (5.9), there exist tours (x, £) such that x(0, §) = 1 which satisfy (5.13) at equality.
In general, (5.13) will be satisfied at equality by more tours than (5.9). However, since T'(T)
will usually be larger than I"(S$), the linearization of (5.13) will yield a larger set of linear
inequalities than the linearization of (5.9). We therefore do not expect inequalities (5.15) to
be much stronger than inequalities (5.12).

5.2.2 Inequalities for the delivery man problem with time windows

Let us now consider tours (x, t) that satisfy constraints (5.1), (5.2), and (5.5)— (5.7), thus,
{x,1) € Xy. Constraint (5.6) yields that the departure time at node [ may be strictly larger
than the arrival time. In this case we say that waiting time occurs at node i. Note that waiting
affects the left-hand side of the inequalities derived in the previous subsection, but not the
right-hand side. Hence, inequalities (5.12) and (5.15) are also valid for the problem with time
windows.

In the remainder of this section we show how time windows can be incorporated in the
inequalities derived previously. We first present two classes of valid quadratic inequalities
for Xiw that involve earliest and latest departure times, respectively. Detailed proofs of their
validity are omitted, since these are similar to the proof of Proposition 5.2.1. The inequalities
will be linearized in the same way as the quadratic inequalities derived for the problem without
time windows. ] ;

The first class of inequalities can be considered as a generalization of (5.9). Let S be a set
of nodes and let es = min;cge;. Introduce an extra node (¢ that has to be left at time eg and
for which py; = piy = 0 for every i € V. This extra node can be considered as a depot for
the set §. Let (x, £) be a tour satisfying x(§) = 5 — 1, where s = |§|. Subtracting es from
all departure times yields a vector for which (5.9) holds, if 0 is replaced by ¢, Recalling that
poi = 0 for all i € V, this shows the validity of the following inequality for tours satisfying
x(S)y=s5~-1.

Proposition 5.2.5 Let S C V, § # 0, and define es = minics e;. Then

Z pijtij Z (Z p!]xu) 2 Z py;xzj + és Z PijXij (516)

i, jes ijes ijes i,jes

is a valid (quadratic) inequality for Xw. 0
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The validity of the above inequality for all other tours can be easily proven, using similar argu-
ments as in Proposition 5.2.1. From the above interpretation it immediately follows that (5.16)
is satisfied at equality by all tours for which the departure time at the first node of § equals e,
x(8) = 5~ 1, and no waiting time occurs at any node of S, except possibly at the one visited
first. Thus, in this case, L) xi+1) = €5+ Z';;l, Pr(jagj+nholdsfori=1,..., s~ 1, where
it is assumed that $ = {(1), ..., n(s)} and the nodes are visited in this order. Note that such
a tour might not exist.

Until now, we discussed inequalities that involved a certain moment from which the tours were
considered. For the second class of quadratic inequalities, tours will be considered until a
moment Is, defined as the maximum latest departure time of the nodes in a set §.

Proposition 5.2.6 Let S C V, S # @, and define Iy = max;cg l;. Then

Z piti; = Is Z Pijxij — (Z P:;xq) Z P,}X:; 5.17)

i,jes i, jes i, jes i, jes
is a valid (quadratic) inequality for Xw.

PROOF, We show that equality holds for all tours for which the departure time at the last node
of S equals Is, x(§) = 5 — 1, where s = {§], and no waiting time occurs at any node in S,
except possibiy in the one visited first. As in the previous case, such a tour might not exist. Let

= {w(1},7(2), ..., 7(s)} € V and suppose (x, #} satisfies Xz e+ =11 < j <s-—1.
Furthermore let r,,m =lsand

. 5—1
Ixa(irl) = baGiel) = Pryas) = Is = 3 Priiaien) (5.18)
j:i

fori=1,...,5—1.Then

s—1
Z piftij = Z Prtiy wti+ Dbxi) mtir) = Z Pr iy, m(i+1) ( Z Pt ;:(;+1))

ijes i=1

31 1 s=1 2 14 —1 '
= lszp'z(i),n(m) ) (an(i),:r(iﬂ)) 74 :r(z) m(i+1)
i=1 i=1 i=1
= lS Z P:;x:; g (Z Puxq) Z P,,JCU

ijes ijes z;eS

Notice that for a tour (x, ) such that Xz ~o+1 = 1,1 < i < 5, (5.18) is the latest possi-
ble departure time for everyi € S. Hence, if tr(i-1),70) + Pr(i-Don@y < Ly, m(i+1) fbt some
I,2 < I < s, then the left-hand side of (5.17) is /ess than when equality holds. As the right-
hand side is the same in both cases, this shows the validity of (5.17) for all tours (x, f) with
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x{S8) = s — 1. For tours (x, 1) satisfying x(S) < s — 1 validity can be proven in a similar way
as in Proposition 5.2.1. ’ ]

To (5.16) and {5.17) almost the same linearization as the one described for (5.9) can be applied.
Define P(S) = {Zi,jes DijXi; . (x,0) e .XZW} i

Proposition 5.2.7 Let S C V, S # 0, and let es5 and I be as defined before. Then for every
pair (y1, y2) of consecutive elements of T'(S)

1 1
Z piti; = 3 Z‘Pij(yl + 2 — pij)xij — es Z Pij%ij — 51112 (5.19)
i, jes i jes ijes
and
1 1
Z piitii = s Z’pijxij —3 Z‘pij(}’] + y2+ pijxi+ anr (5.20)
i, jes i,jes i,jes .
are valid for Xow. o

For the quadratic inequalities (5.16) and (5.17) we already noticed that the number of tours
satisfying the inequality at equality will be small in general, hence, this will certainly hold for
(5.19) and (5.20).

5.3 Computational experiments

The main purpose of our computational experiments is to study the quality of the lower bounds
for the DMP and DMPTW given by the LP-relaxation and the improvement of these lower
bounds by adding cuts from some specific classes. We compare these bounds for the three
models discussed in Section 5.1, i.e., the model introduced in Section 5.1 with variables x;;
and ¢;; (model 1), the model proposed in [26] with variables x;;, £;j, vi;, and u;; (model 2), and
the model with variables x;; and #; (model 3). The first subsection briefly describes the steps
of our cutting plane procedure. Computational results are reported in Subsection 5.3.2. All
experiments have been performed using MINTO (cf. Section 3.3).

5.3.1 Implementation issues

Before solving the initial LP one usually tries to reduce the size of the problem or improve
the formulation by preprocessing techniques such as fixing variables and improving bounds.
We restrict ourselves to fixing variables x;; in the presence of time windows. Since for all our
instances the travel times p;; will satisfy the triangle inequality, variable fixing can be done
in the following way: if e; + pi; > I; (¢; > min;l;, l; < max;e; ), then xij (Xo;, Xio) is set
to zero. After a variable has been fixed, it is eliminated from the formulation. Observe that
x;; = 0 implies #;; = 0 (model 1, 2) and y;; = 0, u;; = 0 (model 2). Therefore, preprocessing
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may considerably reduce the large number of variables in our models (e.g., 2n% + n in model
1), especially when the time windows are tight.

It is a trivial observation that all inequalities derived for the TSP, such as subtour elimina-
tion constraints (SECs), 2-matching constraints, comb inequalities, etc. (cf. Grotschel and -
Padberg [17]), are also valid for the three models considered here and, hence, can be used as
cutting planes to improve the lower bounds obtained from the LP-relaxations of these formu-
lations. We will restrict ourselves to the addition of SECs, which have the following form:

x(8) < I8j~1,85c{0,...,n},2<|S|=<n.

Our cutting plane procedure works as follows, First, the exact separation algorithm described
by Padberg and Rinaldi [31] is applied to check whether the LP-solution satisfies all SECs.
Violated SECs found in this way are added to the formulation and the LP is solved again. This
step is repeated until the LP-solution satisfies all SECs.

Next, we check whether violated inequalities of the form (5.12) or (5.15) can be identified.
Notice that this step can only be applied to the formulations with variables ¢, i.e., to model 1
and 2. Our (not very sophisticated) separation algorithms are inspired by the O(nlogn) exact
algorithm for inequalities (5.8), i.¢., } ies Piti = )i jes.ic; PiPi for § & V. Given an LP-
solution Z, the separation problem for these inequalities amounts to checking whether (5.8)
is violated for § = {#(1), ..., 7({i)},1 <i{ < n, where the permutation 7 ;: V — V satisfies
frtiy < Bxgi41y (cf. Queyranne [34]).

Let us now give an outline of the separation algorithm for inequalities (5.12). Let (%, {)
be the LP-solution and let the permutation 7 : V — V be such that fr() < Fri41). We check
whether (£, £) violates (5.12) for § = {z(1), ..., 7))}, 1 <i<n,y; = 9] and va=19+1],
where § = } . ¢ . Pijhij (cf. Subsection 5.2.1). This procedure is repeated a fixed number
of times with a permmtation » that is obtained from the permutation 7 in the previous iteration
by putting #(}) = w(i-+ 1) and 7+ 1) = #n(i) fori € V', where V' isa randomly chosen
subset of V of size at most | V|/2.

A similar separation heuristic is used to identify violated inequalities (5.15). The heuris-
tics for {5.19) and (5.20) differ slightly from the one described above, but we will not discuss
them since we never found violated inequalities of these types. This is possibly due to the fact
that these separation algorithms were only called when neither violated SECs nor violated in-
equalities of type (5.12) or {5.15) were identified. ‘

5.3.2 Results

We report results for twelve sets of five randomly generated instances with n = 15. These
sets were constructed from two sets of five matrices (p;;), which are denoted by grid and
sched, respectively. For grid the 15 nodes and the depot are randomiy generated lattice points
of a 20 x 20 grid The travel time p;; equals the Manhattan distance between { and j, i.e.,
pij = lai — a;} + |bi — bj|, where (a;, b;) denotes the pair of coordinates of node i. The sec-
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ond set-of matrices, sched, results from the interpretation of the DMP as a machine scheduling
problem with sequence-dependent processing times. Here p;; can be considered as the sum of
a fixed processing time p; for job i and a changeover time ;. The (integer) processing times
pi, i # 0, and changeover times 5;;, j # 0, are randomly chosen from the interval [5, 15] and
{0, 4], respectively. Furthermore, py = 0 and sy = 0. Observe that only in grid the matrices
are symmetric. However, in both sets the travel times p;; satisfy the triangle inequality. Fur-
thermore, for fixed i the value of py; in the first set is in the interval [1, 38], whereas in the
second set this value only ranges from p; to p; + 4. .

Each of these two sets of matrices gave rise to six sets of five instances by the addition of
time windows. These sets are denoted by grid_k and sched k, where k € {0, .. ., 5}.

o For k = 0 the instances are instances for the ordinary DMP, i.e., no time windows are
involved.

¢ For k = 1 the nodes are partitioned into three clusters of size five. Every node in cluster
¢,1 < ¢ <3, has a time window [(¢ — 1) W5, ¢ Wingl, where Wy, = 80 and Wiepea =
100. ’

e For k = 2 the nodes are partitioned into five clusters of size three. Every node in cluster
¢, 1 ¢ <5,hasatime window [{¢ — 1) Wing, ¢ Wins:], where W,i0 = 50 and Wicpoq = 70.

s The instances in grid k and sched k, k € {3, 4, 5}, have the following form. First, a ran-
dom solution to the DMP is generated. The departure time at node { in this solution is
denoted by #7. Then for each node an earliest departure time e;is randomly generated
such that ti»‘ is in the interval [¢;, €; -+ Wi], where Wi = 60, Wy = 40, and W5 = 20.

All instances were tested with respect to the objective function Y 7, f;.

Table 5.1 shows integrality gaps with respect to a lower bound z and the best known upper
bound z to the value of the optimal solution to the DMPTW, where the integrality gap is defined
as 100% x (Z — z)/Z. The value z was found by a branch-and-cut algorithm in which in every
node a feasible solution to the DMPTW was constructed from the LP-solution (max. 2000
nodes). The last column of Table 5.1 lists the number of problems (out of five) for which the
upper bound z was proven to be optimal.

For all three models column g, shows the average gap over five instances, where z is the
value of the LP-relaxation of the model. The average gap after SECs have been added to the
formulation is reported in column g;. Finally, for model 1 and 2 column g; shows the average
gap after both SECs and inegualities (5.12) and (5.15) have been added.

Since every solution to the LP-relaxation of model 2 yields a feasible solution to the LP-
relaxation of model 1, the lower bounds obtained from the latter cannot exceed the lower
bounds obtained from the first. Table 5.1 shows that the bounds obtained from model 2 can
be considerably better than the bounds obtained from model 1. The LP-relaxation of the third
formulation yields bounds that are inferior to the corresponding bounds obtained from model
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model 1 mode] 2 model 3
inst go g £2 £o £ £2 £0 & | opt
grid 0 | 565 535 332|565 535 304 | 649 649 | 0
grid.1 | 256 233 196 | 231 210 175|351 351 | 1
grid2 | 172 150 142|129 112 1001 | 243 243 | 1
grid3 | 111 95 72| 87 74 45| 169 169 | 4
grid4 | 61 54 53| 33 28 27| 84 84| 4
grid5 | 63 28 23| 48 25 19]102 99| 5
sched 0 | 810 810 59| 810 810 50971 971 | ©
sched.l | 273 263 70| 261 250 611|392 392 0
sched2 | 119 110 581|104 96 36| 215 215 ]| 2
sched3 | 166 160 48| 163 156 35| 320 320 | 2
schedd | 44 42 34| 32 30 18110 110 5
schedS | 17 15 12| 12 12 07| 128 127 5

Table 5.1: Quality of the lower bounds

1 and which are rarely improved by the addition of SECs. Also for model 1 and 2 we con-
clude that the reduction of the gap by the addition of SECs is rather limited. This especially
holds for the second set of problem instances. However, the addition of inegualities (5.12)
and (5.15) substantially improves the lower bounds for these instances. For the instances of
the sets grid_k, the gaps are also reduced by the addition of inegualities (5.12) and (5.15), but
clearly not as much as for the instances of the sets sched k.

For model 1 the instances of grid k and sched k, k € {1, 2, 4}, were also tested with respect to
the ordinary TSP objective, i.e., minimizing 3, ; pijx;;. Table 5.2 shows the results for both
objective functions. As in the previous table, go shows the average gap obtained from the LP-
relaxation of model 1, g; gives the average gap after SECs have been added, and g, shows the
average gap after the addition of SECs and inequalities (5.12) and (5.15). As far as the last
column is concerned, we mention that all instances of the TSPTW were solved to opt1mahty
by N. Ascheuer (personal communication),

We also compare the effect of preprocessing as described in the previous section for the
two problems. Column g reports the average gap for the value of the LP-relaxation of model
1 without preprocessing. We observe that variable fixing hardly improves the value of the
LP-relaxation with respect to the DMP objective. Only for the instances with the smallest
time windows (k = 5, not reported in Table 5.2 we found that preprocessing increased the
value of the LP-relaxation by more than 0.5%. With respect to the TSP objective, however,
preprocessing actually leads to an improved formulation for all instances.

Furthermore, we conclude from Table 5.2 that the addition of SECs may be much more ef-
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Q
a=
-~ -

obj inst 8o &0 & %
grid_1 25.6 25.6 233 196
Z,- I grid 2 175 172 150 142

gridd | 64 61 54 53
grid.1 | 326 273 129 129
Y., Pa% | grid2 | 363 278 181 181
gridd | 412 228 116 116
schedl | 273 213 263 7.0
¥t sched2 [ 119 119 110 58
sched4 | 45 44 42 34
sched.l | 21 16 14 14
Y., P | sched2 | 32 24 23 23
schedd | 47 30 28 28

L L Llh D O|lWn N s = =

Table 5.2: Comparison of DMPTW and TSPTW

fective for the TSPTW than for the DMPTW. However, this does not hold for the inequalities
derived in Section 5.2. Although violated inequalities of this kind were identified for the in-
stances of the TSPTW, the value of the objective function was not improved by adding these
inequalities. Apparently, the addition of violated inequalities of the form (5.12) and (5.15)
hardly influences the value of the x-variables, but only changes the value of the ¢-variables.

5.3.3 Further remarks

The aim of our computational experiments was to get some idea of the quality of the lower
bounds obtained from the LP-relaxation of the proposed formulation and the effectiveness of
the new inequalities in reducing the gap. The results show that the addition of the inequali-
ties derived in Section 5.2 can substantially improve the lower bound. Nevertheless, further
study is necessary to reach more solid conclusions about the possibility to solve the DMP and
DMPTW efficiently by means of polyhedral methods and the value of our model in this ap-
proach.

The performance of the cutting plane procedure will undoubtedly be improved when more
extensive preprocessing is applied and other classes of inequalities are incorporated.

In the preprocessing phase we only applied a simple rule to eliminate arcs. As mentioned
before, the formulation can also be improved by reducing the time windows. This may also
lead to a strengthening of inequalities (5.19) and (5.20). Time windows can be tightened by
applying the rules described by Desrosiers et al. [9].

Furthermore, the structure of the time windows may yield precedences between nodes.
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If node i has to be visited before node j, then the following constraint can be added to our
formulation of the DMPTW:

STtatY paxe < Yt (5.21)

k#i, j ksti, j ki, j

Balasetal. [3] discuss a strengthening of the SECs that takes precedences into account. These
inequalities can also be added in order to obtain better lower bounds.
Because of the time windows some paths will not occur as a subpath in any feasible tour.

For example, if
£-1

exqy+ Z Py xiir) > lawy
i=1
for some subset {7r(1), ..., m(k)} of V, then the path (7(1), ..., w(k)) will not be contained
in any feasible tour. In this case

k-1
Y Ex@airy < k=2
i=1
is a valid inequality for all three models considered in our experiments. For obvious reasons,
this is called an infeasible path inequality. Ascheuer [2] discusses several generali?ations of
these inequalities. His branch-and-cut code for the TSPTW is based on a formulation that only
involves x-variables. The time constraints are modeled implicitly by the infeasible path con-
straints. Ascheuer concludes from his computational experiments that this model is superior
to the one with variables x;; and ¢; (model 3 in our experiments). However, this formulation
can only be used with respect to the TSP objective.
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Samenvatting

Dit proefschrift is gebaseerd op onderzoek op het gebied van de combinatorische optimalise-
ring. Combinatorische optimaliseringsproblemen kunnen gekarakteriseerd worden door een
eindige, maar mogelijk zeer grote, verzameling oplossingen waaruit de oplossing met de laag-
ste kosten moet worden gevonden. Het bekendste voorbeeld van een dergelijk probleem is
ongetwijfeld het handelsreizigersprobleem, waarbij de kortste route langs een gegeven ver-
zameling steden moet worden gevonden. Veel van de in de combinatorische optimalisering
bestudeerde problemen zijn geinspireerd door praktische problemen uit uiteenlopende gebie-
den als produktieplanning, telecommunicatie, transport en VL.SI-ontwerp.

Een groot deel van de combinatorische optimaliseringsproblemen is NP-lastig, hetgeen
betekent dat het probleem hoogstwaarschijnlijk niet efficiént, d.w.z. in polynomiale tijd, op te
lossen is. Hoewel er daarom meestal gebruik wordt gemaakt van algoritmen die binnen eenre-
delijke tijd een oplossing van acceptabele kwaliteit geven, hebben methoden die gegarandeerd
de optimale oplossing vinden inmiddels ook hun waarde bewezen. Voor een groot aantal pro-
blemen zijn goede resultaten geboekt met optimaliseringsalgoritmen waarbij gebruik wordt
gemaakt van polyhedrale technieken. Hierbij wordt een probleem geformuleerd als een (ge-
mengd) geheeltallig lineair programmeringsprobleemen vervolgens opgelost met een branch-
and-cut algoritme. Dit is een op lineaire programmering (LP) gebaseerd branch-and-bound
algoritme dat is uitgebreid met een zogenaamde snedemethode. Hiermee worden toegelaten
ongelijkheden, d.w.z. ongelijkheden waaraan alle oplossingen van het oorspronkelijke pro-
bleem voldoen, aan het LP-probleem toegevoegd. Het doel hiervan is het verkrijgen van een
betere LP-formulering die hopelijk zal leiden tot een kieinere zoekboom. -

De bestudering van de polyhedrale struktuur van een probleem leidt meestal tot één of
meer klassen toegelaten ongelijkheden. We zijn hierbij met name geinteresseerd in facet-
definiérende ongelijkheden, Dit zijn de ongelijkheden die noodzakelijk zijn in een volledige
lineaire beschrijving van de verzameling toegelaten oplossingen van het probleem. Het toe-
voegen van alle gevonden ongelijkheden aan de initiéle formulering levert meestal een LP-
probleem op dat te groot is om rechtstreeks te kunnen worden opgelost. We beginnen daarom
met een LP-probleem met een beperkt aantal ongelijkheden en lossen dit op. Indien de LP-
oplossing ook een oplossing voor het oorspronkelijke probleem is, dan is deze oplossing op-
timaal en is het oorspronkelijke probleem dus opgelost. Zo niet, dan wordt geprobeerd é¢n of
meer ongelijkheden te vinden waaraan de LP-oplossing niet voldoet. Als dit lukt, dan wor-
den de gevonden ongelijkheden aan het LP-probleem toegevoegd en wordt dit probleem op-
nieuw opgelost. Omdat de oude LP-oplossing niet meer aan de huidige LP-formulering vol-
doet, wordt een nieuwe oplossing gevonden die minstens zo goed is als de vorige. De hierbo-
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ven beschreven stappen kunnen nu worden herhaald. Als er geen geschonden ongelijkheden
gevonden worden, dan kan men branch-and-bound toepassen om een optimale oplossing te
vinden. Het vinden van geschonden ongelijkheden wordt separatie genoemd. Efficiénte se-
paratiemethoden zijn van groot belang voor de kwaliteit van een branch-and-cut algoritme.
Daarnaast dient bij de ontwikkeling van een dergelijke methode ook aandacht te worden be-
steed aan diverse andere aspecten, zoals het vertakkingsschema en de zoekstrategie.

Een groot deel van dit proefschrift is gewijd aan de ontwikkeling van een branch-and-cut al-
goritme voor het discrete serie-grootte probleem (DSP). In dit produktieplanningsprobleem
beschouwen we een machine waarmee verschillende goederen geproduceerd kunnen worden.
De planningshorizon bestaat uit een aantal korte perioden waarin ten hoogste één goed gepro-
duceerd kan worden. Karakteristiek voor het discrete serie-grootte probleem is de ‘alles-of-
niets’ produktie: als er geproduceerd wordt in een periode, dan wordt de machinecapaciteit
volledig benut. Gegeven is in welke perioden en in welke hoeveelheden de goederen afge-
leverd moeten worden. Er dient nu een produktieschema ontworpen te worden waarmee aan
deze vraag voldaan wordt en waarvan de kosten zo laag mogelijk zijn. De belangrijkste kos-
ten zijn de voorraadkosten van de goederen die niet direct afgeleverd kunnen worden en de
opstartkosten. Dit zijn de kosten die in rekening worden gebracht wanneer er een nieuwe pro-
duktieserie wordt gestart, bijvoorbeeld voor het instellen van de machine voor het te produce-
ren goed. We nemen aan dat de opstartkosten volgorde-onafhankelijk zijn, hetgeen betekent
dat de kosten alleen afhangen van het goed waarvoor wordt opgestart.

Het vinden van een optimaal produktieschema komt in feite neer op het vinden van een
optimaal schema voor ieder goed afzonderlijk met daarbij als extra eis dat de verschillende
schema’s elkaar niet mogen overlappen. In hoofdstuk 2 bestuderen we daarom de polyhedrale
struktuur van het discrete serie-grootte waarin slechts één goed wordt geproduceerd (1-DSP).
Dit probleem is weliswaar polynomiaal oplosbaar, maar de verkregen ongelijkheden kunnen
gebruikt worden in een snedemethode voor het probleem met meerdere goederen, dat NP-
lastig is. Er worden verschillende klassen facet-definiérende ongelijkheden afgeleid. Voor
twee klassen worden efficiénte separatie-algoritmen ontwikkeld. Verder wordt aangetoond
dat het toevoegen van ongelijkheden uit de doorsnede van deze klassen aan de initi¢le LP-
formulering volstaat om het 1-DSP op te lossen wanneer de kosten van het Wagner-Whitin
type zijn. Dit is een veel gebruikte kostenstruktuur in serie-grootte problemen waarvoor het
niet optimaal is om een nieywe produktieserie te starten wanneer er nog uit voorraad geleverd
kan worden.

In hoofdstuk 3 worden eerst enkele resultaten met betrekking tot de complexiteit van het
DSP gegeven. Vervolgens worden toegelaten ongelijkheden voor het probleem met meerdere
goederen afgeleid. Tenslotte wordt de ontwikkeling van een branch-and-cut algoritme bespro-
ken en wordt verslag gedaan van uitgebreide rekenexperimenten,

In hoofdstuk 4 wordt het DSP met volgorde-onafthankelijke opstarttijden bestudeerd. Bij
dit probleem legt het opstarten van de machine de produktie gedurende een aantal perioden stil.
We modelteren het probleem met opstarttijden zodanig dat toegelaten on gelijkhedeh voor het
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gewone DSP eenvoudig kunnen worden omgezet in toegelaten ongelijkheden voor het pro-
bleem met opstarttijden. Verder wordt voor het 1-DSP met opstarttijden een multicommodity
flow formulering besproken. Hiervoor wordt een volledige lineaire beschrijving gegeven.

Het laatste hoofdstuk staat enigszins los van de voorgaande hoofdstukken. Het geeft een
eerste aanzet tot een polyhedrale aanpak van het delivery man probleem. Dit is een variant
van het handelsreizigersprobleem waarbij de totale wachttijd van de klanten geminimaliseerd
moet worden. Er wordt een formulering gegeven waarmee ook tijdvensters eenvoudig gemo-
delleerd kunnen worden. Zowel voor het gewone delivery man probleem als voor het pro-
bleem met tijdvensters worden extra klassen toegelaten ongelijkheden afgeleid en rekenresul-
taten gepresenteerd.
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1

Beschouw de formulering voor het 1-item DLSP uit hoofdstuk 2 van dit proef-
schrift. Zij ax + By > y een facet-definiérende reguliere-blokongelijkheid met
pp=1voor ieder blok Benmet1* = max{t: o, + B, > 0} zodanigdat dp .y 7 > 1
(zie paragraaf 2.2.3 voor definities). Definieer f = max{t: o, = 1} en laat s ;de
Jde vraagperiodena 1* zijn. Zij verder (X, §) de met het algoritme FILL_.BLOCKS
bepaalde oplossing. Als X;, = 1 voor ieder blok B, als X; = 0 voor ten minste één
periode met @, = 1 en als s; # 7+ 1, dan definieert de ongelijkheid

ax+BY+ ) O+ Virjins,) = ¥+ 1]
jeJ

voor iedere J € {1,...,d+11 7} €e0 facet.

I

In [1]en [2] worden gemengd geheeltallige programmeringsformuleringen voor
het handelsreizigersprobleem met tijdvensters voorgesteld waarbinnen verschil-
lende typen doelstellingsfunkties gehanteerd kunnen worden. De effectiviteit van
sommige typen sneden blijkt sterk af te hangen van het type doelstellingsfunk-
tie. Bij de ontwikkeling van goede snedemethoden gebaseerd op een dergelijke
formulering zal dan ook informatie over de geldende doelstellingsfunktie benut
moeten worden.

{11 A. Langevin ¢t al., A two-commodity flow formulation for the traveling salesman
and the makespan problems with time windows, Networks 23 (1993), 631-640.
[2] Hoofdstuk 5 van dit proefschrift.

i

Zij A de verbindingsmatrix van de Higman-Sims graaf, de unieke sterk reguliere
graaf met parameters (100, 22, 0, 6). Zij I de 100 x 100-eenheidsmatrixen J de
100 x 100-matrix waarvan alle elementen gelijk aan 1 zijn. Voor iedere b € Z is
de rang van A + bJ over ¥y gelijk aan 22 en de rang van A — 27+ bJ over Fs
gelijk aan 23,

3] A.E. Brouwer en C.A. van Eijl, On the p-rank of the adjacency matrices of strongly
regular graphs, Journal of Aigebraic Combinatorics 1 (1992), 329-346.



v

Beschouw een voetbalpool waarin voor n wedstrijden moet worden voorspeld
wat de uitslag wordt: winst voor de thuisspelende ploeg, winst voor de uitspe-
lende ploeg of gelijkspel. Wanneer men niet meer dan één nitslag verkeerd voor-
speld heeft, ontvangt men een prijs. Als M(n) het minimum aantal voorspellin-
gen is dat men moet inleveren om zeker te zijn van een prijs, dan geldt M=
153, M(8) = 399, M(9) = 1062 en M(11) = 7826.

[4] M. Struik, Covering radius problems, Ongepubliceerd manuscript.

v

Om bij de lezer geen ijdele hoop op de bruikbaarheid van een referentie te wek-
ken, dient men de mededeling ‘personal communication’ niet in de referentielijst
maar in de tekst zelf op te nemen.

Vi

Volgens [5] komt het woord ‘logistick’ weliswaar van het Griekse ‘logistikos’
(bedreven in het rekenen) maar heeft het in zijn huidige betekenis weinig van
doen met rekenkunst. Gezien het feit dat de ‘logistika’ vooral de praktische re-
kenkunst betrof (6]) en gezien het belang van kwantitatieve modellen en metho-
den in de moderne logistiek, is deze bewering onjuist.

[5] The new encyclopaedia Brittanica, Yolume 29, 15th edition, 1994.
[6] D.J. Struik, Geschiedenis van de wiskunde, Het Spectrum, 1990,
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Een optimale permutatie van de getallen O tot en met 9 met betrekking tot de kos-
tenfunktie die Paul Clark in zijn theatervoorstelling ‘Bohemian from 9 to 5 in-

troduceerde, is
OUcd 31 148566

De waarde van deze permutatie bedraagt 16.



Vi
Teveel openheid wekt afgrijzen op. Voorbeelden hiervan kunnen in ruime mate

op de televisie gevonden worden en op de website http://www.cam-orl.co.uk/cgi-
bin/ab.

X

Telefoontoestellen op perrons zouden zodanig moeten worden afgesteld dat ge-
sprekken niet langer dan 45 seconden kunnen duren.

X

De meeste elektrische apparaten worden aangeschaft om energie te besparen.





