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1. Introduetion 

For several decades such divergent areas as production planning, transportation, telecommu­
nication, and VLSI design have been an inexhaustible souree of combinatorial optimization 
problems. These problems are usually characterized by a finite set of solutions from which 
the best solution with respecttoa given objective function has to be found. The practical rel­
evanee of many combinatorial optimization problems stimulates the search for good solution 
methods. Unfortunately, most of these problems are NP-hard (cf. Garey and Johnson [16]). 
This implies that it is generally considered to be very unlikely that efficient solution meth­
octs for such problems willever be developed. As a consequence, a vast amount of research in 
combinatorial optimization is devoted to the design of approximation algorithms that find rea­
sonably good solutions in an acceptable amount of time. Nevertheless, algorithms that always 
provide the optimal solution but for which an efficient performance cannot be guaranteed, have 
also proven to be of great use in tackling hard combinatorial optimization problems. An opti­
mization technique that bas contributed to the successful solution of a large number of these 
problems, as for example listed by Jünger et al. [23] and Aardal and van Hoesel [1], is based 
on polyhedral combinatorics. InSection 1.1 we present basic concepts and results from poly­
hedral theory and discusshow polyhedral techniques can be applied in order to solve problems 
in the area of combinatorial optimization. 

In this thesis we study the discrete lot-sizing and scheduling problem from a polyhedral 
point of view. This problem is one of the many lot-sizing models, which have been classified 
in a recent paper by Kuik et al. [24]. This paperalso gives an extensive survey ofthe research 
in this area. The usual setting fora lot-sizing problem is a production facility that can pro­
duce several different items. One bas to delermine at what time and in what amount the items 
have to be produced in order to meet a given demand at minimum costs. Basic in lot-sizing 
is the trade-offbetween the costs related to inventory and the costs incurred by adjusting the 
facility for the production of a particular item. The typical features of the discrete lot-sizing 
and scheduling problem will be discussed inSection 1.2. This sectionis further devoted to the 
modeling of the problem and a review of earlierresearch on the subject. 

An outline of the remainder of the thesis concludes this chapter. 

1.1 Polyhedral combinatorics 

In this section we will discusshow polyhedral methods can be applied to solve combinatorial 
optimization problems. First somebasic concepts and results from polyhedral theory are in­
troduced. For a detailed treatment of this subject, including proofs of the results stated bere, 
the reader is referred to Nemhauser and Wolsey [30] and Schrijver [39]. 



4 Introduetion 

For many combinatorial optirnization problems, the solutions can be represented as n-dimen­
sional integral veetors x that satisfy a set of linear constraints and for which the objective func­
tion is linear in the variables X;, 1 ~ i ~ n. Such a problem can thus be formulated as 

min{cx: Ax ~ b, x EZ"}, (1.1) 

i.e., for given c, A, and b we have to find the integral vector x satisfying Ax ::; b with mini­
mum cost ex. Here c, A, and bare assumed to be integral. This formulation is called an integer 
linear programming problem, or lP for short. If only a subset of the variables has to be inte­
gral, then the problem is called a mixed integer linear programming problem (MIP). In the 
remainder we will only consider IPs, but the results hold for MIPs as well. 

In this context an algorithm is said to be efficient if it solves every instanee of a problem 
to optimality in a number of steps that is polynomial in the size of the input. The NP-hardness 

of most combinatorial optimization problems suggests that an efficient metbod for solvingIPs 
is not likely to be ever developed. The integrality constraints form the complicating factor. 
If these constraints are ornitted from the formulation, then the resulting problem is a linear 
programming problem (LP), called the linear programming relaxation or LP-relaxation of the 
lP under consideration. LPs are in general considerably easier than IPs, since they can be 
solved in polynomial time. 

In order to obtain a solution to the lP one can apply branch-and-bound. This is a gen­
eral impHeit enumeration technique to solve combinatorial optimization problems. Here we 
restriet ourselves to the description of a linear programming based branch-and-bound proce­
dure. In such a solution approach the original lP is partitioned into several subproblems by 
adding linear constraints. For example, in case of binary variables two subproblems can be 
created by fixing one variabie to zero and one, respectively. For each subproblem we sol ve the 

corresponding LP-relaxation. If the linear program is infeasible or if its solution is integral, 
then the subproblem needs no further evaluation. Otherwise, a further refinement is made by 
splitting the subproblem into new subproblems. Note that the LP-relaxation provides a lower 
bound to the optimal value of the subproblem. If this lower bound is greater than or equal to 
the value of the currently best solution to the original problem, then the subproblem can also 
be discarded from further evaluation. Hence, in order to keep the number of subproblems that 
bas to be evaluated as small as possible, it is important that strong lower bounds can be com­
puted in an efficient way. Our efforts in applying polyhedral techniques are aimed at finding 
a strong LP-formulation of the problem at hand that serves as a good starting point for the 

branch-and-bound procedure. 

Basic in polyhedral combinatodes is the existence of a linear program min{cx: A' x ::; b'} 
that solves the integer program ( 1.1). Before we state the two results from which this is an 
immediate consequence, we fust introducesome terrninology. Let S = {x1, ... , xk} be a set 

of veetors in ~~~. The convexhullof S, denoted by conv(S), is the set o::::~=l À;Xî : L~=l À; = 1 
and À; 2:0 for all i}. Thefirstresultis thatmin{cx: x ES}= min{cx: x E conv(S)} for any 
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linear function c. Second, the convex huil of a fini te numher of points is a bounded polyhedron, 
i.e., thereexistsafiniteset oflinear inequalities Ax s b such thatconv(S) ={x E IRn: Ax s b}. 
We say that Ax s bis a linear de scription of conv(S). 

From the aforementioned it follows that the combinatorial optimization problem (1.1) can 
besolved by solving thelinearprogrammin{cx: A' x s b'}, whereA'x s b' is alineardescrip­
tion of the convex huil of thesetof feasible solutions S ={x: Ax s b, x integral}. For most 
problems, however, it is very hard to find a complete linear description of conv(S). One there­
fore usually restricts oneself to the derivation of one or more classes of valid inequalities for 
the convexhullof S. These are inequalities that are satisfied by allelementsof S. In partic­
ular, one is interested in the so-calledfacet-defining inequalities, which are necessary in the 
linear description of conv(S). Before we explain the latter term, some more definitions are in­
troduced. Consicter a polyhedron P = {x E IRn : Ax s b} and let ax s {3 be a valid inequality 
for P. The set F = {x E P : ax = {3} is called a face of P and ax s {3 is said to define F. If F 
is neither empty nor equal toP, then it is said to he a proper face of P. A vector x is called a 
direction of P if there exist two different veetors x1 and x2 in P such that x = x1 

- x2 • More­
over, a set of veetors x1 , ••• , x* is said to he linearly independent if .L:L À;xi = 0 implies 
that À; = 0 for all i. The dimension of a polyhedron P, denoted by dim(P}, is defined as the 
maximum numher of linearly independent directionsin P. lf dim(P) n, then P is said to 
he full-dimensional. This only occurs if there is no inequality that is satisfied at equality by 
all x E P. Note that a face of a polyhedron is also a polyhedron. Now thefacets of a poly­
hedron P are those faces F with dim( F) dim( P) 1. Together with the equalities that are 
satisfied by all x E P, the facet-defining inequalities yield a linear description of P with as few 
constraints as possible. In order to prove that a valid inequality ax s {3 for a polyhedron P 
defines a facet, we proceed as follows. First, we have to show that there is a vector x0 E P such 
that ax0 < {3. This is usually trivialand therefore not explicitly mentioned. Then we provide 
dim(P) llinearly independent directionsx1 - x2 , wherex1 and x2 are twodifferent veetors 
in P that satisfy the inequality at equality. 

Suppose that for the integer program (1.1) a partiallinear description of the convex hull of 
thesetof feasible solutions bas been established. An explicit list of all inequalities, even when 
restricted to those that are facet-defining, usually yields a linear program that is too large to he 
handled by any LP-solver. However, in order to find the optima! solution to the lP, it suffices 
to include only a small numher of inequalities, namely, the facet-defining inequalities that are 
satisfied at equality by this solution. This observation suggests the following procedure for 
solving IPs: 

1. Take the LP-relaxation min{cx: Ax s b} as the first linear program. Go to 2. 
2. Solve the current LP and denote the optima! solution by x. lf x is integral, 

then stop; otherwise go to 3. 
3. Find a valid inequality that is violated by x. If no such inequality can be found, 

then stop; otherwise add the inequality to the LP and go to 2. 
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This is called a cutting plane algorithm, since the inequalities found in Step 2 cut offthe current 
LP-solution. The procedure of finding violated inequalities is called separation. A separation 
algorithm for a class of valid inequalities is called exnct if it always fincts a violated inequality 
in this class unless such an inequality does not exist. When no reasonably fast exact separation 
procedure is known, one usually applies a heuristic method. Then it is not guaranteed that 
there are no violated inequalities in the class at hand if the algorithm fails to find one. 

The cutting plane algorithm terminates in one of the following two ways: either an inte­
gral solution is obtained in Step 2, or no violated inequality is identified in Step 3. In the fust 
case, we have found an optimal solution to the lP. In the latter case, i is fractional and ei is a 
lower bound to the optimal value of the lP. Then an optimal integral solution can be obtained 
by applying branch-and-bound. In the branch-and-bound procedure one can try to improve 
the lower bounds by subjecting the subproblems to the cutting plane procedure. The com­
bination of branch-and-bound and cutting planes is called branch-and-cut. Apart from good 
separation algorithms, the performance of a branch-anct-eut algorithm depends on many other 
aspects such as the definition ofthe subproblems and the availability of strong upper bounds. 
Implementation issues in branch-and-cut algorithms are extensively discussed by Jünger et al. 
[23]. 

1.2 The discrete lot-sizing and scheduling problem 

The main subject of our research is the discrete lot-sizing and scheduling problem, or DLSP 
for short. This production planning problem is concerned with a single machine that can pro­
duce a number of different items. The planning horizon is partitioned into small periods in 
each of which production occurs for at most one item. Furthermore, we assume an all-ar­
nothing policy with respect to the production level in one period, i.e., the production is either 
zero or at full capacity, which is defined as one unit of one item. This is often a reasonable 
assumption in short-term production planning, when the time periods are smalt. The demand 
for each item is dynamîc and bas to be satisfied without backlogging. In the fust period of a 
production batch a so-called startup cost is incurred for setting up the machine for the item 
at hand. Since in multi-item problems startup costs usually arise when the machine switches 
from the production of one item to the production of another item, these costs arealso known 
as changeover costs. Apart from startup costs, production and inventory costs have tobetaken 
into account. Now DLSP is the problem of determining a production schedule that satisfies 
the given restrictions at m:inimum costs. 

Startup costs are said to besequence-independentifthey only depend on the item for which 
the machine is set up. DLSP with sequence-independent stmtup costs is studied in Chapters 2 
and 3. Moreover, a startup is assumed not to affect the production capacity. This assumption 
is reasonable, e.g., when the startups occur out of regular production hours. In Chapter 4 we 
consicter an extension of DLSP in which startups take up an integral number of production 
periods. 
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In practice planning problems will usually have more complicating features than the on es cap­
tured by DLSP. Nevertheless, the study of these simplified modelsis a valuable aidin the solu­
tion of more realistic problems. Case-studies of production planning systems in which DLSP 
appears as a subproblem are presented by Van Wassenhave and Vanderhen st [40] and de Lange 
[25]. In the first paper only single-item problems have to be solved, whereas de Lange con­
siders DLSP with sequence-dependent startup times. Moreover, Fleischmann [14] showshow 
DLSP can be used as an approximation for a capacitated lot-sizing problem with larger time 
periods in which production can occur for more than one item. 

From the NP-hardness of DLSP (cf. Chapter 3) it follows that one should not strive for 
a polynomial-time solution procedure. Salomon [35] presents a dynamic programming algo­
rithm for solving DLSP with sequence-independent casts. The running time of this algorithm 
is O(M2TTI:!1 D;), where M denotes thenumber of items, T thenumber ofperiods, and D; 

the total de mand for item i. Thus, when the number of items is fixed the problem can be solved 
in polynomial time. In particular, the single-item DLSP can be solved in O(T D) time, where 
D denotes the total demand. For special co st functions faster algorithms are developed by van 
Hoesel [18] (see also [21]). 

The dynamic programming algorithm for the single-item DLSP plays an important role 
in two other approaches to DLSP with sequence-independent startup costs, namely, by La­
grangean relaxation (Fleischmann [14]) and column generation (Cattrysse et al. [7]). An out­
line of bath solution methods will be given in Chapter 3. The latter approach was in fact 
primarily developed for DLSP with sequence-independent startup times. In order to handle 
sequence-dependent startup costs Fleischmann [15] reformulates DLSP as a traveling sales­
man problem with additional time constraints and proposes a salution procedure in which 
lower bounds are obtained by Lagrangean relaxation. We return to this reformulation at the 
end of the section. Salution methods for DLSP with sequence-dependent startup times are dis­
cussed in recent papers by Salomon et al. [37] and Jordan and Drexl [22]. The former authors 
present an approachbasedon dynamic programming, whereas Jordan and Drexl transfarm the 
problem into a batch sequencing problem which is solved by a branch-and-bound algorithm. 

The remainder of this sectionis mainly devoted to DLSP with sequence-independent startup 
costs. First an integer linear programming formulation ofthe problem is discussed. Then we 
will review polyhedral results that are obtained for DLSP and some generalizations. For a 
comprehensive survey of results for lot-sizing problems in the area of polyhedral combina­
todes we refer to Pochet and Wolsey [33]. 

Let T denote the number ofperiods and let M denote the number of items. The demand for 
item i in period t is denoted by d:. Since at most one unit of one item is produced per period, 
we assume withoutlossof generality that d: E {0, 1} for all i and t. Furthermore, let p: denote 
the cost for producing item i in period t, h; the costof holding one unit of item i in stock at the 
end of period t, and Jj the startup co st that is incurred when the machine is set up in period t 
for the production of item i. 

The problem can be mathematically formulated using two types of binary variables: x~, 
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which indicates whether production occurs for item i in period t or not, and y;, which takes 
the value one if a startup occurs for item i in period tand zero otherwise. For notational con­

venience we write xL2 insteadof 2::~11 x:, dt.rz insteadof 2::~ 1, d;, etc .. If M = 1, then the 
superscript i will be omitted. 

We assume thatinitial inventories are zero. Consequently, the inventory of item i at the end 
ofperiod t equals the total production of item i up to period t minus the total demand of item i 
up to this period. Hence, the inventory costs for item i can be expressedas h: (x~ 

1
- df 

1
). 

Define c; P! + h!,r and Hi = - 2:;=1 h;dL. Now DLSP can be modeled as ' , 

M T 
(DLSP) min.L:.L:<c:x: + J/y:) 

i'=1 1=1 

s.t. xL :::: dL (1 ::; i ::; M, 1 ::; t ::; T) (1.2} 

xi < xi +Yi r- r-1 t (1::; i::; M, 1::; t::; T, x&= 0) (1.3) 
M 

z:::x: ::; 1 (1::; t::; T) (1.4) 
i=1 

x;, Yl E {0, 1} (1 ::; i::; M, 1 ::; t::; T) (1.5) 

where the constant 2::!1 Hi is omitted from the objective function. Constraints (1.2) imply 
that for item i the total production up to period t is at least equal to the total demand up to this 
period. Inequalities (1.3) force that a startup for item i takes place in period t if production 
occurs for item i in this period, but not in the preceding one. Constraints ( 1.4) are the coupling 
constraints which state that in any period production can occur for only one item. Observe 
that when these constraints are not taken into account, the remaining problem consists of M 
single-item problems. 

Note that a solution to (1.2) - ( 1.5) may have a positive inventory at the end of the plan­
ning horizon. Moreover, a startup is allowed to occur in a period without production, i.e., we 
may have y; = 1 and x; 0 forsome item i and period t. Also solutions in which two batches 
of the sameitem are scheduled contiguously, i.e., solutions with x;_1 = Y! x; 1 forsome 
i and t are allowed. One can easily add extra constraints to the model in order to exclude so­
lutions having one of the aforementioned features. However, such a solution is never optimal 
when all costs are positive. 

Polyhedral results for lot-sizing problems mainly concern the polyhedral structure of single­
item models (cf. [33]). This also holds for the results described in this thesis. Obviously, valid 
inequalities for the single-item formulation remain valid for the multi-item problem. 

For the single-item DLSP van Hoesel [18] characterizes one class of facet-defining in­
equalities, the so-called hole-bucket inequalities. A polynomial separation algorithm forthese 
inequalities is given in [19]. Van Hoesel and Kolen present a multicommodity flow reformula­
tion of the single-item DLSP in [20]. This model is obtained by splitting the original produc­
tion variabie x1 intovariables Xrk which have value one if the production in period t satisfies the 
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demand in the kth demand period and zero otherwise. For this tormulation a complete linear 
description of the associated polyhedron is derived. No te that such a tormulation bas a bout 

dt,T T variables, whereas the original tormulation bas only 2T variables. 

DLSP can be considered as a special case of the capacitated lot-sizing problem with stanup 
casts or CLSS for short. We discuss bere the single-item version of this problem. In CLSS the 

production in period t can attain any value between zero and the available capacity C1• The 
amount of production in period t is denoted by X1 and incurs a cost c1X1• The binary setup 

variabie Y1 indicates whether production can take place in period t or not. Obviously, Y1 must 
be one if X1 > 0. However, the machine might be set up for production, even if no production 
occurs. The setup cost ft can be considered as the fixed co st incurred whenever the machine 
is able to produce, Moreover, if the machine is set up in a period t, but not in the preceding 
period, then a startup bas to occur in period t. The startup variables and startup costs are bere 
denoted by Z1 and g~> respectively. Now CLSS can be formulated as 

(CLSS) 

s.t. 

T 

min L(c1X1 + /1f1 + g1Z1) 
1=1 

X1,1 ?: d1,1 

Y1 ~ Y1-1 + Z1 

XI ~ CIYI 

X1?: 0, Yr, Z1 E {0, 1} 

(1 ~ t ~ T) 

(1 ~ t ~ T, Yo = 0) 

(1 ~ t ~ T) 

(1 ~ t ~ T) 

CLSS clearlyreduces to DLSP ifwe set C1 equal to oneandrequire X1 = Yr forevery t. Hence, 
valid inequalities for CLSS can be easily turned into valid inequalities for DLSP. However, 
even if the original inequality is facet-defining for CLSS, the resulting inequality might be 

trivia! ordefine a face of low dimension for DLSP. 
Constantino [5] derives several classes of valid inequalities for CLSS. In relation to our 

work two classes are of great importance, namely, the left and right supermodular inequali­
ties. The ideas bebind these inequalities will be discussed in Chapter 2. For two subclasses, 

the intervalleft and right supennodular inequalities, Constantino establishes necessary and 
sufficient conditions for an inequality to be facet-defining and gives a polynomial-time sepa­
ration algorithm. Moreover, he introduces valid inequalities for the single-item problem with 
more complicating features, such as lower bounds on the production and backlogging, and 
two classes of multi-item inequalities. 

Magnanti and V achani [28] and Sastry [38] study the special case of CLSS in which C1 = 
1 for every t and the production variables are also binary. Hence, the only difference with 
DLSP is that the setup of the machine can be maintained during idle periods. In this way, one 
can avoid a more expensive startup. A class of facet-defining inequalities for this problem is 
discussed in [28]. This class forms the basis of the skip inequalities introduced by Sastry. He 

gives a complete characterization of facet-defining skip inequalities and presents a separation 

algorithm based on linear programming for one subclass. 
For some problems it can be shown that a partiallinear description of the related polyhe-
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dron always provides an optimal salution with respect to a certain class of objective functions. 
For lot-sizing problems this kind of result bas been obtained for cost functions that satisfy the 
Wagner-Whitin property. For DLSP a cost function is said to be of the Wagner-Whitin type 
if the unit inventory cost hr and the production cost Pr satisfy h, + Pt 2: Pt+I for every pe­
riod t. Recalling that Cr = p, + h1,r, this is easily seen to be equivalent to c1 2: ct+1 for all 
t. The Wagner-Whitin property implies that it is always optimal to produce as late as possi­
ble. Hence, with Wagner-Whitin costs there always exists an optimal salution for which the 
inventory at the end of period t - 1 is zero for any period t in which a production batch is 
started. Pochet and Wolsey [32] study four single-item lot-sizing problems and give for each 
of them a partiallinear description of the convex huil that solves the problem in the presence 
ofWagner-Whitin costs. These polyhedra involve considerably fewer constraints than in the 
general cost case. In Section 2.3 we derive a similar result for the single-item DLSP. 

We conclude this section with a brief discussion of the reformulation of DLSP as a traveling 
salesman problem with time windows (TSVIW). Consicter a graph in which every unit of de­
mand is represented by a node, i.e., if d; = 1, then this unit of demand is represented by a node 
v(i, t). With v(i, t) a deadline t is associated. Now a production schedule can be considered 
as a tour that starts and finishes at a depot and visits every node before or at its deadline. The 
travel time between two nodes equals one if the nodes correspond to units of the same item, 
and one plus the required startup time otherwise. Startup and production costs are incorpo­
rated in the costs of using an are, whereas inventory costs can be modeled as costs incurred 
when a node is visited strictly before its deadline. 

Reischmann [15] was the first to formulate DLSP as a TSP'IW. He models DLSP with 
sequence-dependent startup costs and zero startup times as a TSVIW with time-dependent 
costs. A reformulation of DLSP with sequence-dependent startup times as a TSPTW is pre­
sented by Salomon et al. [37). Both problems will not be considered in this thesis. However, 
in Chapter 5 we will study another variant of the TSP, the so-called delivery man problem, 
in which the objective is to find a tourstarting from a given depot that minimizes the sum of 
the waiting times of the customers located at the nodes. We will present a MIP-formulation 
that can easily be turned into a formulation for the TSVIW. Furthermore, we will derive some 
additional valid inequalities and report computational results. 

1.3 Outline of the thesis 

The remainder of the thesis is organized as follows. 
Chapters 2 and 3 are devoted to the discrete lot-sizing and scheduling problem with se­

quence-independentstartup costs. In Chapter 2 we study the polyhedral structure of the single­
item version ofthe formulation discussed in the previous section. We first investigate the gen­
eral form of facet-defining inequalities for which all coefficients of the x-variables are either 
zero or one. Then three subclasses are discussed in more detail. In the last section we present 
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a partiallinear description of the convex hull of feasible solutions that solves the problem in 
the presence ofWagner-Whitin costs. This result already appeared in van Eijl and van Hoe­
sel [11]. The multi-item problem is dealt with in Chapter 3. lts computational complexity is 
addressed first. Furthermore, we describe the implementation of a branch-and-cut algorithm 
andreport computational results. 

In Chapter 4 the problem with sequence-independen tstartup times is considered. We show 
that this problem can be modeled by a slight modification of the tormulation for the problem 
that only involves startup costs. Valid inequalities for the latter tormulation are hence easily 
turned into valid inequalities for the problem with startup times. We also present a multicom­
modity flow tormulation for the single-item problem and show that its LP-relaxation solves 
the problem to optimality. 

As mentioned before, Chapter 5 differs from the other chapters in that it focuses on the 
delivery man problem instead of the discrete lot-sizing and scheduling problem. We present 
a mixed integer programming tormulation for this problem, derive classes of additional valid 
inequalities, and give some computational results. This chapter is basedon van Eijl [10]. 



2. The single-item DLSP 

In this chapter we study the pol yhedral structure of the model discussed in the previous chapter 
when only one item is involved. Although the single-itemDLSP is polynomially solvable, an 
explicit description of the convex hull of the set of feasible solutions to this tormulation is not 
known. A partiallinear description is given by van Hoesel [18]. Magnanti and Vachani [28] 
and Sastry [38] derive inequalities for a slightly more general problem in which also setup 
costs are involved. Furthermore, Constantino [5] derives several classes of valid inequalities 
for the capacitated lot-sizing problem with startup costs. This problem is a generalization of 
DLSP in which the production in period t can attain any value between zero and the available 
capacity in this period. Inequalîties forthese more general problems can easily be adapted to 
valid inequalities for DLSP. However, even if we start from a facet-defining inequality for the 
original problem, the resulting inequality for DLSP might be trivial or define a face of low 
dimension. 

This chapter is organized as follows. In Section 2.1 the formulation from Chapter 1 is 
reviewed. In Section 2.2 we fust investigate the general form of facet-defining inequalities 
for which all coefficients of the x-variables are either zero or one. Then three subclasses are 
discussed in more detail. The first subclass slightly extends the class of right supermodular 
inequalities of Constantino when adapted to DLSP. The inequalities of the first subclass are 
also related to the skip inequalities discussed in [38]. The second subclass generalizes the 
hole-bucket inequalities introduced by van Hoesel. The lastsubclassis again an extension of 
a class derived by Constantino, namely, the class of intervalleft supermodular inequalities. 
For all three subclasses we also address the separation problem. Inthelast section we present 
a partiallinear description of the convex huil of feasible solutions that solves the problem in 
the presence ofWagner-Whitin costs. 

2.1 Preliminaries 

Throughout, the interval {tt, ... , tz} ~ {1, ... , T} will be denoted by [tt, tz]. If ft > tz, then 
[t1, t2] 0. Now the single-item version of the model discussed in the previous chapter reacts 

as follows: 
T 

(DLSP) min 2)c:Xz + frYz) 
1=1 

s.t. Xt,: 2: de: for all t E [1, T] (2.1) 

Xt ::::; X:-l + Yt for all t E [1, T] (xo 0) (2.2) 

Xz, Yt E {0, 1} for all tE [1, T] (2.3) 
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Denote by X the set offeasiblesolutions to theaboveformulation, i.e., X= {(x, y) E {0, 1}2T: 

(x, y) satisfies (2.1) and (2.2)}. One of the main advantages of allowing a positive inventory 
at the end of the planning horizon and startups in periods without production, is that the con­
vex hull of X is full-dimensional whenever d1 = 0 (note that imposing y1 ::S X1 for all t yields 
the equality X1 = y1 ). In the sequel e(x1) and e(y1) denote the unit vector of length 2T corre­
sponding to the variabie X1 and Yr. respectively. 

Proposition 2.1.1 The convexhullof X has dimension 2T if and only if d1 = 0. 

PROOF. If d1 = 1, then every solution satisfies y1 = x1 = 1, hence, in this case, the dimension 
of conv(X) is at most 2T- 2. 

In order to prove sufficiency, we show that the 2T unit veetors e(x1) and e(y1) for all t are 
directionsin conv(X). First, let (x, y) be defined by x 1 = Yr = 1 for all tand let (i, y) be the 
solution obtained ftom (x, y) by setting Xr to zero. Then (x, y)- (x, y) = e(xr). Furthermore, 
let (i, y) be obtained from (i, y) by setting y1 to zero. Then (i, y) - (i, y) = e(y1). 0 

Since it is usually easier to prove that a given inequality defines a facet when the associated 
polyhedron is full-dimensional, it is from now on always assumed that d1 = 0. Consequently, 
an inequality ax + {Jy ::: y can be shown to define a facet of conv(X) by exhibiting 2T- 11in­
early independent directions (x, y) - (x, y), where (x, y) and (i, y) are feasible solutions to 
DLSP that satisfy the given inequality at equality. The following proposition gives necessary 
and sufficient conditions for the inequalities in the modeland the trivial inequalities X1 , y1 ::: 0 
and x1, y1 ::S 1 to be facet-defining for conv(X). For the proof the reader is referred to van 
Hoesel [18] or vanHoeseland Kolen [19]. 

Proposition 2.1.2 (i) X1 ::: 0 defmes a facet of conv(X) if and only if (t = land dz = 0) or 
(t > 1 anddz,r < t -1); 

(ii) Xr ::S 1 defines a facet of conv(X) if and only if t > 1; 
(iii) Yr::: 0 defines a facet ofconv(X) ifand only ift > 1 and dz,r < t -1; 
(iv) Yr ::S 1 defines a facet of conv(X)for all t; 
(v) X1,r::: d1,r defines a facet ofconv(X) if and only if d1 = 1 and either t = Tor dr+l = 0; 
(vi) Xr ::S Xr-1 + Yr defines a facet ofconv(X) if and only ift = 1 or dz,r < t- 1. 0 

The LP-relaxation of the above formulation, i.e., min{cx + fy: (x, y) satisfies (2.1), (2.2), 
and 0 ::S x1, y1 ::S 1}, yields in general weak lower bounds. 

Example 2.1.1 Let T = 10, d1 = 1 fortE {3, 5, 7, 9, 10}, and fr = 10, c1 = 10- t + 1 (thus, 
hr = 1, Pr = 0) for all t. Then 

1 2 3 4 5 6 7 8 9 10 

Yr I I 
2 TO 

Xr I I 1 I 3 3 3 3 3 
'i 2 2 2 5 5 5 5 5 
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with value 30 is the optimal solution to the LP-relaxation, whereas the optimal salution to 
DLSP has value 40 (y3 = X3 =... X7 = 1). D 

Now let t be a period with d: = 1. Reeall that dt ,: denotes the total demand up to period t. Then 
in order to satisfy the demand up to t, we have to produce at least once in the interval [d1,1, t]. 

This implies that at least one startup has to occur in the interval [d1,1 + 1, t] if no production 
occurs in period d1,1• This establishes the validity of the following inequality: 

(2.4) 

In the above example we have d1 = 1 and d1,7 3. Thus, x3 + Y4,7 ?::: 1 is a valid inequality 
for the instanee ofExample 2.1.1. For this instanee the lower bound is substantially improved 
by adding the above constraints for all demand periods t to the LP-relaxation. 

Example 2.1.1 (continued) The optimal salution to the LP-relaxation extended with inequal­
ities (2.4) for all demand periods t is 

with value 37. 

1 2 3 4 5 6 7 8 9 10 
1 
1 2 2 2 2 2 

5 5 5 5 5 

D 

From the general assumption that dt = 0 it follows that t > dt,r. hence, the interval [dt,: + 1, t] 
is not empty. One easily checks that inequality (2.4) defines a facet of conv(X). The latter im­
plies that for any other facet-defining inequality ax + {3y ?::: y, there exists a salution (x, y) 

satisfying ax + {3y = y andxd,,, + Yd~,r+l.t?::: 2. 
No te that in the above example the costs satisfy the Wagner-Whitin property, i.e., Ct ?::: c1+1 

for all t. InSection 2.3 it will be shown that for such an instanee the optimal salution to DLSP 
is yielded by the LP-relaxation extended with one of the classes of facet-defining inequalities 
of conv(X) discussed in the following section. 

2.2 Facet-defining inequalities 

In this section we derive additional classes of facet-defining inequalities of conv(X), where X 
denotes thesetof solutions to (2.1) - (2.3). In particular, we study inequalities for which the 

coefficients of the x-variables are either zero or one. We first study the general form of such 
inequalities. Then three classes are discussed in more detaiL 

2.2.1 General form 

Throughout this section, ax + {3y :::::: y denotes a valid inequality for x other than one of the 
inequalities that define the LP-relaxation. Without loss of generality all coefficients are as-
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sumed to be integral. We fust derive some restrictions on ct and fJ when the inequality defines 
a facet of conv(X). 

Lenuna 2.2.1 Let ax + fJy :;:: y be a valid inequality for X other than one ofthe inequalities 
that defme the LP -relaxation. lf a x+ fJY 2: y defines a facet of conv(X), then at 2: 0 for all t, 
fJ1 0, flt 2: 0 for every t > 1, and at+ flt 2: flt+l for every t < T. Moreover, zf at E {0, 1] 
for every t, then ar+ fJr ::::; flt+l + 1 for every t < T. 

PROOF. ·Let X denote thesetof feasible solutions to DLSP that satisfy a x+ fJY :;:: y at equal­
ity, i.e., X= {(x, y) EX: ax+ fJy = y}. 

First, suppose that flt < 0 forsome t. Then y1 1 for every solution (x, y) EX. This im­
plies that fJ 1 :;:: 0 must hold for every t if a x+ fJy :;:: y defines a facet of conv(X). Furthermore, 
fJ1 must be zero, otherwise X1 Y1 for all solutions in X. 

Now suppose that at< 0 forsome t. If flt 0, then x1 = 1 for all (x, y) EX. Otherwise, 
if fJr > 0, then every (x, y) EX satisfies Xr-1 + y1 S 1 and if equality holds, then Xr equals 
one as well. Hence, if ar < 0 and fJr > 0, then Xr-1 + y1 = x1 for all (x, y) EX. This shows 
that ar ~ 0 for every period t if ax + fJY :;:: y defines a facet of conv(X). 

Next, suppose that ar+ fJr < flr+l forsome t < T. Let (x, y) be a solution in X satisfying 
Yr+I = 1. Since flr+I > 0, we have Xr 0 and Xr+J 1. Moreover, flt 2: 0 implies that either 
y1 = 0 or (fJr = 0 and Yr = 1), thus, flrYt 0. Extend the production batch startingin t + 1 by 
producing in period taswelland denote the new solution by (i, y). Th en ir = Yr = 1, Yt+l = 
0, i.,. = x.,. for -r =1= t, and y.,. = y.,. for -r >/. {t, t + 1]. Since (i, y) is obviously feasible, we have 

ax + fJy = ai+ fJy + flr+l - a 1 - flr(Y1 Yr) > ai+ fJ.Y 2: y, contradkling our assumption 
that (x, y) EX. From this it follows that Yr+l 0 for all solutions that satisfy a x+ fJy :;:: y at 
equality. Hence, ifthe inequality defines a facet of conv(X), then ar+ fJr 2: flt+I for all t < T. 

Finally, assume that a 1 E {0, 1] for all t. We claim that in this case ar + fJr ::::; fJr+l + 1 for 
every t < T. Since fJ1 = 0 and fJ2 :;:: 0, this obviously holds fort= 1. Hence, let 1 < t < T 
and suppose ar+ flt > flr+I + 1. Then fJr > 0. Let (x, y) be a salution satisfying in X sat­
isfying Yt = 1. Since ax + fJy y and fJr > 0, we have Xt-1 = 0 and Xr 1. Let s be 
the fust period that is not used for production. Then s < t as Xr-I = 0. Now let (i, y) be 
the solution obtained from (x, y) by moving the production in period t to period s. Then 

is = 1, ir = 0, i.,. =x.,., -r >/. {s, t}, and Yt 0, Yr+J = 1, .Ys = 1 if s = 1 and 0 otherwise (thus, 
flsYs = 0), and y.,. = y.,., T >/. {s, t, t + 1}. Since as E {0, 1 }, we have ax + fJY =ct i+ fJy + 
ar+ fJr- flt+I -as- flsYs > ai+ fJY 2: y, a contradiction. Thus, ar+ fJr > flr+l + 1 implies 
that Yr = 0 for all solutions (x, y) EX. Hence, if a x+ f3y 2: y defines a facet of conv(X), then 
ar+ f3t S fJr+1 + 1 must hold for every t < T. 0 

Before additional necessary conditions for an inequality to be facet-defining for conv(X) are 
discussed, let us first introducesome notation. Given an inequality ax + fJy :;:: y, we denote 
by t* the last period t for which ar+ fJr > 0. Notice that if ax + fJy:;:: y satisfies the conditions 
statedinLemma 2.2.1, then ar• + fJr• 1. Furthermore, a period t is called a hole with respect 
to the inequality under consideration if a1 fJr = 0. In particular, all periods after t* are holes. 
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Lemma 2.2.2 ( cf. [18], [38]) Let ax + {3y ::: y be a facet-dejining inequality of conv(X) other 
than one ofthe inequalities that define the LP-relaxation, and assume that {31 > Ofor at least 
one period t. Let t* be as dejined above. Then this inequality satisjies thefollowing properties: 

Pl. Period t* is a demand period, thus, dt· = 1. 
P2. For every period t < t* the number of holes in the interval [t, t*] is less than 

the total demand in this interval. 
P3. lfthere is a hole befare t' = min{t: f3t+l > 0}, thenfor every tE [s, t' -1], 

where s denotes the first hole, the number of holes in the interval [s, t] exceeds 
the total demand in this interval. 

PROOE Denote agaîn by X thesetof feasible solutions to DLSP that satisfy ax + {3y :::: y at 
equality. 

Ad Pl. Suppose dt• 0 and at' = 1. Let (x, y) be a feasible salution satisfying X1• = 1. 
We may assume that Yt Xt 1 for every t > t*. Since dt· 0, cancelling the production 
in period t* yields another feasible solution, say, (i, y), and ax + {3y ?: ai+ {3y + at• > y. 

Hence, Xr• = 0 for every (x, y) EX. However, this contradiets the assumption that a x+ {3y::: 
y defines a facet of conv(X). Using similar arguments we find that dt• = 0 and f3r• 1 im­
ply that Yt• 0 for every solution in X. Thus, d1• l when ax + {3y::: y defines a facet of 
conv(X). 

Ad P2. Suppose t < t* is a period for which the number of holes in the interval [t, t*] is at 
least d1, 1•• Let (x, y) EX. Withoutlossof generality assume that y .. = Xs 1 for every holes. 

Then Xr,r'-1 ::: d1,1• and Xr'+l,T ::: dt'+l,T· Since a x+ {3y = y and a1• + f3r• > 0, we must have 
X1• 0 if a 1• > 0 and Yt• = 0 if f3r• > 0. This holcts for every solution in X, which contradiets 
the assumption that ax + {3y ::: y defines a facet of conv(X). 

Ad P3. Suppose there is a hole before t' and suppose that P3 is violated for some t E 

[s, t' - 1], where s denotes the first hole. That is, the number of holes in the interval [s, t] 
is less than or equal to d.r,r. Sinces is a hole, this implies d,, 1 ::: 1. Also observe that ar: 1 
and f3r: = 0 for every period r::::: t thatisnot a hole. Hence, in a salution (x, y) with Xs 0, the 
demand of at least one period in [s, t] is produced in a period r satisfying ar: = 1 and f3r: = 0. 
This unit of production can be moved to period s while maintaîning feasibility. From this we 
conclude that if (x, y) is a salution without production in period s, then ax + {3y > y. Hence, 
Xs 1 for every (x, y) E X, which again contradiets the assumption that a x+ {3y ::: y defines 
a facet of conv(X). 0 

Using similar argumentsas in the proof of P2 and P3, one readily shows that if a x+ {3y ::: y 

is a facet-defining inequality of conv(X) with {31 = 0 for all t, then the inequality is the pro­
duction inequality Xt,r• :::':: dt,r•. In the sequel it is therefore always assumed that {31 > 0 for at 
least one period t. 

As mentioned before, we will study facet-defining inequalities of conv(X) for which the co­
efficients ofthe x-variables are either zero or one. We start by investigating the general form 
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of these inequalities. 
In Section 1.2 we briefly discussed the capacitated lot-sizing problem with startup vari­

ables (CLSS). For this problem Constantino [5] derives several classes of valid inequalities. 
These inequalities are all of the form Ir ~ LB(X, Y, Z), i.e., they yield a lower bound on the 
inventory Ir at the end ofperiod t. By taking the capacity in every period equal to one and by 
identifying the setup and the production variables, valid inequalities for DLSP are obtained. 
One of the classes that yields nontrivial inequalities for DLSP is the class of right supennod­
ular inequalities ([5], Section 2.4). These inequalities are obtained by establishing a lower 
bound on the inventory at the end of a certain period when, up to this period, the total produc­
tion exceeds the total demand. 

For DLSP these inequalities can be introducedas follows. Let t* be a demand period and 
let u, v E [1, t*], u :s v, such that v-u~ du;r·· Then the inventory at the end ofperiod t* is at 
least one when all v u+ 1 periods in the interval [u, v] are used for production. The latter 
occursifthereis production in v andno startup in theinterval [u+ 1, v], i.e., if x" Yu+l,v = 1. 
Observe that Xv- Yu+!,v is integral and less than or equal to one for any salution (x, y) EX. 
Thus, Ir· ~ Xv- Yu+l,v is a valid inequality for X. 

Now let V ~ [1, t*] and let an interval [u( v), v] satisfying v - u ( v) ~ du< "l, r• be associated 
with every v E V. We claim that 

Ir• ~ L(X"- Yu(v)+I.v). 
vEV 

(2.5) 

is valid for X. In order to show this, let (x, y) EX and let j = LvEv(x" Yu<vl+I,v). As­
sume that j > 0, otherwise (2.5) is obviously satisfied. Then x" Yu<vl+l.v equals one for 
precisely j differentelementsof V, say, for v E {vJ, ... , Vj}, where VJ < ... < vi. This 
implies that all intervals [u( Vj), vil, 1 :s i :s j, are completely used for production in (x, y). 

Thus, the total production in the interval [u( vJ), t*] is at least the production in the periods 
[u(v1), vd U {v2, ... , Vj}. which is at leastdu(v,),r• + j. Hence, theoverproductionin the in­
terval [u( v1), t*l amounts to at least j units, which proves our claim. Inequalities (2.5) are a 
direct adaptation of the right supermodular inequalities of Constantino to DLSP. In the sequel 
we will refer to them as right stock-minimal inequalities. 

We can generalize the idea bebind these inequalities in the following way. Suppose that 
fora demand period t*, we are given a set of nonempty intervals [u(v), v] ~ [1, t*] and an 
integer k ~ 1 for which the following holds: the inventory at the end ofperiod t* is at least 
one in any salution to DLSP for which precisely k of these intervals are completely used for 
production. Then the following inequality is valid for X: 

Ir• ~ L(Xv Yu(v)+l,v)- k+ 1. 
vEV 

(2.6) 

This can be shown using similar arguments as for (2.5), i.e., for inequality (2.6) with k = 1. 

Let (x, y) EX and assume that LvEv(x"- Yu(v)+J,v) equals k + j I forsome j > 0. Let 
{v1, ••• , vk+i-d• v1 < ... < vk+j-h be the subset of elementsin v E V that satisfy x"-
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Yu(v)+l,v 1. Then all periods in [u(v;), v;] are used for production in (x, y). In par­
ticular, production occurs in every periodin ur=l [u( V;)' V;] u { Vk+h ••. ' Vk+ j-d. By assump~ 
ti on, using all periods in ut=l [u( v;), v;] for production yields an inventory of size at least one 
at the end of period t*. This also implies that the demand in [ vk + 1, t*] can be satisfied from 
productioninperiods Up tO Vk. Thus, ifalJperiodsin ur=l[U(V;), viJ U {Vk+!, ... , Vk+j-1} are 
used for production, then the inventory at the end of period t* is at least j. This establishes the 
validity of (2.6) for X. 

Example2.2.l Letd1 = 1 fortE {2,4, 6, 9, 10, 12, 14}. 
First, let t* 10. We consider the following intervals: [1, 6], [4, 8], and [8, 1 0]. Thus, 

V= {6, 8, 10}, u(6) = 1, u(8) = 4, and u(lO) = 8. Onereadily checks that v- u(v) = du(v),IO 

for each v E V. Hence, by the above arguments, inequality (2.5) with t* = 10 and the intervals 
[u(v), v], v E V, i.e., 

lro ::: (X6 Y2.6) - (xs .Ys,s) - (xw .Ys,to), 

is valid for the instanee at hand. 
Next, let t* 14. We consicter the following intervals: [3, 8], [6, 9], [5, 1 0], [12, 12], and 

[13, 14]. That is, V = {8, 9, 10, 12, 14}, u(8) = 3, u(9) = 6, u(10) 5, u(12) 12, and 
u(14) 13. The demand periods and the intervals aredepicted below. 

~~ 11 2 3 ~ 5 ~ 7 8 ~ 10 11 
12 13 14 

1 1 
[· ................. ] H 

[ .......... ] 
[· ................. ] 

Now it is not difficult to check that for any feasible solution in which at least two of these 
intervals are completely used for production the inventory at the end of period 14 is at least 
one. Hence, 

is a valid inequality of the form (2.6) with k = 2 and t*, V, and [u(v), v], v E V, as given. 0 

Using Ir• X!,r• - d~,t•. we can rewrite inequality (2.6) as 

L Xr + LYu(v)+!,v ::: dt,t•- k + 1. (2.7) 
IE[l,t*j\V VEV 

Note that tbe coefficient of x1 is either zero or one, whereas the coefficient of y1 is equal to 
l{v E V: u(v) < t ~ v}l, whichcan obviouslybelargerthan one. 

We claim that every facet-defining inequality of conv(X) with x-coefficients in {0, 1} is 
of the form (2.7) with u( v) < u( v') for v < v'. In order to show this, consicter an inequality 
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ax + {Jy :::: y such that ar E {0, 1 }, {31 = 0, and fJr :::: 0 for all other t. As usual, t* denotes 
the last period t for which ar + fJr > 0. Define V = {t : t s t* and ar = 0}. Denote the ele­
mentsof V by v;, iE {1, ... , lVI}, where v; < vi+l· The following algorithm determines a 
period u( v) s v for every v E V such that at termination fJr :::: I{ v E V: u( v) < t s v} I for all t. 

begin DETERMINE.lNTERVALS 
fort= 1 to t* do ÏJr := fJr; 
for i= 1 to lVI do begin 

\*Invariant: ÏJr = fJr -lU: 1 s j <i and tE [u(vj) + 1, vi]}l:;:: 0 for all t *\ 
u( v;) := max{t s v; : ÏJr = 0}; \* thus, ÏJr > 0 for all t E [u( v;) + 1, v;] *\ 
fort= u(v;) + 1 to v; do ÏJr := /Jr -1 

end 
end. 

From the assumption that {31 = 0, it follows that u ( v;) is well defined for every i. Furthermore, 
u( v;) s v; and equality holcts if and only if v; is a hole. Observe also that u( v;) s u( V i+ I). 

Example 2.2.2 Let a x+ {Jy :::: y be the second inequality of Example 2.2.1 rewritten in the 
form (2.7), i.e., 

+Y4+Ys+2y6+3Y?+3ys+2y9+YIO +YI4 > 6 _ 
X! + X2 + X3 + X4 + X5 + X6 + X7 + X11 + X13 -

Then V= {8, 9, 10, 12, 14}. Applying theabovealgorithmyields u(8) = 3, u(9) = 5, u(lO) = 
6, u(12) = 12, and u(14) = 13. Reeall that the inequality was constructed from a different 
set ofintervals, namely, with [6, 9] and [5, 10] insteadof [5, 9] and [6, 10]. However, this set 
cannot be obtained from DETERMINE.lNTERVALS, since the algorithm yields periods u( v), 

v E V, with u(v) s u(v') ifv s v'. 0 

Lemma 2.2.3 Let ax + {Jy :::: y be a facet-defining inequality of conv(X) withar E {0, 1} for 
all t, and let t* and V be as defined before. Let u(v), v E V, be as provided by the above 
algorithm. Then fJr = l{v E V: u(v) < t s v}lforeveryt st* andu(v) < u(v')forv < v'. 

PROOF. Note that flr = l{v E V: u(v) < t s v}l if and only if ÏJr = 0 at termination of 
DETERMINE.lNTERVALS. We fust show that flr• = I{ v E V: u(v) < t* s v}l. This obviously 
holcts when flr• = 0, since in this case maxvEV v < t*. If t* E V, i.e., if ar• = 0, then inthelast 
iteration ofDETERMINE.lNTERVALS we have ÏJr• = flr• = 1, hence, u(t*) < t*. 

Now suppose there is a period t < t* such that fJr > I{ v E V: u(v) < t s v}l. Lets be the 
last period with this property. Observe that, as Ï3s > 0 at termination ofthe algorithm, u( v) =I= s 

for any v E V. Furthermore, reeall that s E V if and only if as= 0. Then, by definition of s, 
webave 

fJs+I l{vEV:u(v)<s+1sv}l = l{vEV:u(v)<ssv}l-0-as) 
< fls +as -1. 
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However, by Lemma 2.2.1, ar+ f3r .:.S f3r+t + 1 for all t. Thus, f3r = I { v E V : u( v) < t .:.:: v} 1 

for all t. Itis readily checked that this, together with a 1 + f3r 2: f3r+t for all t (cf. Lemma 2.2.1), 
impliesthatu(v) < u(v') forv < v'. 0 

This result shows that any facet-defining inequality ax + f3y 2: y of conv(X) with ar E {0, 1} 

for all t can be written in the form (2.7) with u(v) < u(v') for v < v' and k d1, 1• - y + 1. 
In order to show that k 2: 1, consicter the solution (x, y) defmed by y1 1 if and only if t = 1 
ort > t*, and Xr = 1 if and only if Yt = 1 or t E [2, du·]. Thus, production occurs in the fust 
du· periods and in every period after t*. Reeall fromLemma 2.2.1 that {3 1 = 0 for any facet­

defining inequality. Thus, ax + f3Y = ax.:.:: d1,t'· Hence, y.:.:: d1,r•, which implies k 2: 1. 

Now suppose we are given a demand period t*, an integer k 2: 1, a subset V 5; [1, t*] such 

that lVI 2: k, and a set of intervals [u(v), v], v E V, satisfying u(v) < u(v') for v < v'. An 
importantquestion is how to establish the validity of the corresponding inequality (2.7) for 
conv(X). We already showed that the inequality is valid if for every subset W of V of size k 
the following holds: for every solution in X in which all periods in Uwew[u(w), w] are used 
for production, the inventory at the end of period t* is at least one. The lemma below asserts 

that this condition is also necessary for (2.7) to be valid. We fust show that the aforementioned 
condition can be formally expressedas 

max[l U [u(w), w]i-du(v),r•] 2: 1. 
veW w:wEW,w;:::v 

(2.8) 

for every subset W of V of size k. In order to see the correctness ofthis expression, let Wc V 
and define S = UwEw[u(w), w]. Now suppose that for any solution in X for which production 
occurs in all periods in S the inventory at the end of period t* is at least one. It is nothard to see 
that thisholds ifand only irthereis a period sE S satisfying l{t E S: t 2: s} I 2: ds,t' + 1. The lat­
ter condition is equivalent to (2.8) because ofthe following observation: if vis the maximum 
perioctin W satisfying u(v) .:.Ss, then sE [u(v), v], which yields I Uw:weW,w;:::v [u(w), w]l = 
/{t E s: t 2: s} I + s- u( v) 2: ds,t' + 1 + du(v),s-1 = du(v),t' + 1. 

Lemma 2.2.4 Given a demand period t*, an integer k 2: 1, a subset V 5; [1, t*] such that 
lVI 2: k, and a set of intervals [u(v), v], v E V; satisfying u(v) < u(v')for v < v'. Then 
inequality (2.7) is validfor X if and only if 

m~[l U [u(w), w]l- du(v),r•] 2: 1. 
ve w:weW,w;:::v 

for every subset W of V of size k. 

PROOF. Rewrite inequality (2.7) again in the form (2.6), thus, as 

Ir' 2: L(X"- Yu(v)+l,v) k + 1. 
VEV 
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We only have to prove the necessity of the condition. Therefore, suppose that there exists a 

subset W of V satisfying IWI k and I Uw:wEW,w2:Ju(w), w]j ::$ du(v),t• for every v E W. 
Then a feasible solution (x, y) that violates (2.7) can be constructed as follows. We can eas­
ily deal with the demand in periods t > t* by setting Yr x1 1 for every period t > t* 
with positive demand. Hence, we only have to consicter the production in the interval [1, t*]. 

First, define Xr = 1 for every tE UvEw[u(v), v]. Then, by assumption, the total production 
in the interval [u(v), t*] does not exceed the total demand in this interval for any v E W. If 
the total production up to period t* is strictly less than dv, then let U consist of the first 
di,t•- I UvEW[u(v), v]l periods not used for production yet, and set Xr 1 for every tE U. 
Finally, set YI = 1 if XJ 1 and set y1 = 1, t > 1, ifx1 = 1 and Xr-I 0. Notice that if Yr = 1, 
then t jt UuEW[u(v) + 1, v]. Then (x, y) is feasible and XI,z• = d1,z•, hence, 11• = 0. However, 
as {v E V: Xv- Yu(v)+I,v 1} 2 W, LvEV(Xv- Yu(v)+I,v) is atleastk. Thus, (x, y) violates 
(2.7), which shows the necessity of the condition. D 

In general, given a set of intervals [u(v), v], there is no easy way todetermine k. However, if 
somerestrictions are imposed on the intervals or k, then we are able to describe (facet-defining) 
inequalities more explicitly. For example, if k equals the number of holes before t* plus one, 
then the facet-defining inequalities of conv(X) of the form (2.7) can be completely character­
ized. This is the subject of the following subsection. 

2.2.2 Hole-lifted right stock-minimal inequalities 

In this subsectien we study inequalities ax + {Jy ?:. y of the form (2.7) for which the right­
hand side equals dv - I {t :::::; t* : t is a hole} I forsome period t*. Then the inequality bas the 
following form: 

L Xt + LYu(v)+I,v ?:. di,t•- !Vol, (2.9) 
IE[I,t']\V VEV 

where V ~ [1, t*], u( v) :::::; v for any v E V, and V0 is the set of holes in [1, t*], We always 

assume that u{v) < v for any v, v' E V such that v < v'. This implies that if u(v) v, then 
v jt [u(v'), v'] forany v' E V\{v}. Since V= {t ::$ t*: a 1 =0} andf31 = l{v E V: u(v) < t ::$ v}l 
for all t, webave Vo = {v e V: u(v} v}. Furthermore, define VI= V\ V0 • Since the facet­
defining production inequalities XI,r?:. d1,1 are the only facet-defining inequalities of the form 
(2.9) with V1 = 0, we assume throughout that VI =f. 0. 

With an inequality of the form (2.9), we associate three sets S j. 0 :::::; j :::::; 2, that partition 
the set of the demand periods up to period t* as follows. First, So is the set of de mand periods 
before min"Ev u(v). Observe that in any feasible solution the demand fora period in S0 is 
produced in a period t with ar 1 and {31 f3r+I = 0. Next, let SI be the set of demand 
periods t :::::; t* for which there is a period t' :::::; t such that the number of holes in the interval 
[t', t] is at leastdr,t· Hence, if(x, y) is asolution that uses a hole beforet* forproduction, then 
this production can be assumed to satisfy the demand for one of the periods in S1• This implies 
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that the demand for a period s E Sz {t :::; t* : dt = 1 and t f/. SoU St} is always assumed to 
be produced in a period t ::; s satisfying a 1 + fJr > 0. 

Throughout this subsection, the sets Sb 0 :S j :S 2, play an important role. We want to em­
phasize that these sets, just as Vo and Vt, are always defined with respect to a certain inequality. 
For notational convenience, this is not indicated explicitly unless confusion can arise. 

Example 2.2.3 Let dr = 1 fortE {2, 5, 7, 8, 9, 11, 12, 15}. Take t* = 15, Vo = {3, 4, 12}, 
V1 {9, 11, 15}, u(9) = 5, u(ll) = 7, and u(15) = 14. The conesponding inequality (2.9) 
is 

1 1 1 1 1 

+ Y6 + Y1 + 2 Ys + 2 Y9 + YJO + Yti + Yts 
Xt + Xz + X5 + X6 + X7 + Xg +xto + X13+X14 2: 5. 

For this inequality we have So {2}, S1 = {5, 7, 12}, and S2 {8, 9, 11, 15}. 0 

In the sequel we derive necessary and sufficient conditions for an inequality (2.9) to be facet­
defining for conv(X). In Lemma 2.2.2 we discussed three conditions that need to be satisfied 
by any facet-defining inequality with x-coefficients in {0, 1}. These conditions state, among 
other things, that t* is a de mand period (Pl) and that for any period t < t* the number of holes 
in the interval [t, t*] is less than dt,t• (P2). Thus, if these conditions hold, then t* f/. St and, 
hence, jS11 = !Vol. Moreover, since we assume that V1 =/=- 0, Sz contains at least one element, 
namely t*, whereas S0 and St might beempty. 

Let us first deterrnine the size ofthe intervals [u(v), v], v E Vt, for which (2.9) is valid. 

Lemma 2.2.5 Inequality (2.9) is validfor X ifand only ifv- u(v) 2: l{t E Sz: t 2: u(v)}l 
for every v EVt. 

PROOF. We first prove the sufficiency of the condition. Therefore, assume that v- u( v) 2: 
l{t E S2 : t 2: u(v)}l for every v E Vt. We rewritè (2.9) in the form (2.6), i.e., we consicter the 
inequality 

Ir• 2: L(Xu Yu(u)+l,v)- !Vol, 
vEV 

where Ir• denotes the stock at the end ofperiod t*. 

(2.10) 

De fine k* = !Vol and denote the elements of Vo by vk, 1 :S k :S k*. Let Xk. 0 :S k :S k*, be 
thesetof solutions to DLSP with production in Vj for k < j :S k*. Thus, Xk ={(x, y) EX: 
x" i = 1, k < j :S k*}. We show by induction that 

k 

It• 2: L(Xu- Yu(v)+l,v) + L(X.,i -1) (2.11) 
t!EV1 j=l 

is valid for Xk. 0 ::; k ::; k*. Since (2.1 0) is (2.11) with k = k* and Xk· X, this establishes 
the sufficiency of the condition. 
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We first show that 

Ir• 2: L (Xv- Yu(v)+J,v) 
VEVt 
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(2.12) 

is valid for X). Let (x, y) be a solution in X). Then all holes before t* are used for production. 

By definition of S 1, we can assume that the production in V0 satisfies the demand in the periods 
in SJ. Thus, production in a period tE U"ev, [u(v), v] satisfies the demand in a periodin Sz or 

contributes one unit to the inventory at the end of period t*. Now let X be the set of solutions 
to DLSP with respect to the demand function J, where th = 0 if t E S1 and d1 = d1 otherwise. 

Then (2.12) is valid for X) if and only if the inequality is valid for X. Observe that (2.12) is 

a right-stock minimal inequality for X (cf. Subsection 2.2.1), which is valid if v u(v) 2: 
du(v),t• for all v E V1. Hence, since l{t E Sz : t 2: u( v)} I du(v),t'• (2.12) is valid for X). 

Now suppose that the validity of (2.11) for .Xk bas been established for 0 :::;: k :::;: k', where 

Ie' < k*. We claim that 

k'+l 

ft• 2: L(X"- Yu(v)+l,v) + L(Xv1 -1) (2.13) 
vEVt j=l 

is satisfied by all (x, y) e À:k+I. This obviously holds for {(x, y) e Xk +I : x"", +1 = 1} = Xk. 
Therefore, let (x, y) be a solution in .Xk•+i without production in period v"'+l· Let (i, y) be the 

solution obtained from (x, y) by setting x"", +I and y"",+1 to one. Note that y"",+l bas coefficient 
zero in (2.13). Since (x, y) is a feasible solution to DLSP, the extra unit produced in period 

vk'+l increases the inventory at the end ofperiod t* by one, hence, It• = fz• + 1. Obviously, 
(i, y) e Xk, thus, by the induction hypothesis, 

lr• -1 2: L(i" 
vEV1 

k' 

Yu(vJ+J,v) + L(X"1 
j=l 

k' 

Yu(v)+l,v) + L(X"1 
j=l 

1)-1. 

This shows the validity of (2.13) for (x, y) and, hence, for À:k+l· 

In order to prove the necessity of the condition, wedefine 

1) 

M(W) max[l U [u(w), w]l du(v),r•]. 
vEW w:weW,w;::v 

1 

Reeall fromLemma 2.2.4 that M(W) 2: 1 means that the inventory at the end ofperiod t* bas 

size at least one when all periods in Uvew[u( v ), v] are used for production. This lemnia yields 

that (2.9) is only valid if M ( W) 2: 1 for every subset W of V of size IVo I + 1. 
Suppose that v- u(v) < l{t e S2 : t:::: u(v)}l forsome v e V1• Define W = V0 u {v}. If 

v > v, then 

I U [u(w), w]l l{w E Vo: w 2: u(v)}l ::S: l{t E S1: t 2: u(v)}l ::S: du(v),t'· 

w:wEW,w~v 
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Otherwise, 

I U [t,l(w),w]l = l{wEVo:w2':u(v)}l+ii u(iï)+1 
w:weW,w~v 

::5 l{t E SI us2: t 2': u(v)}l = du(v).t•. 

since v u(v) < u(ïi) if v < v. Thus, ii- u(v) < l{t E S2: t 2: u(ïi)}l implies M(W) 5 0. 
This concludes the proof of the lemma. D 

In the proof we already noticed that the valid inequalities of the form (2.9) with V0 0 are 
the right stock-minimal (RSM) inequalities (2.5), which are the direct adaption of the right 
supermodular inequalities of Constantino [5] to DLSP. Roughly speaking, valid inequalities 
(2.9) are obtained from RSM inequalities by introducing holes in the interval [1, t*]. In the 
proof of Lemma 2.2.5 the introduetion of the holes occurs by lifting. Inequalities (2.9) are 
therefore called hole-lifted right stock-minimal inequalities or HRSM inequalities for short. 
Obviously, an RSM inequality is an HRSM inequality with Vo 0. 

In the sequel we derive necessary and suftleient conditions for an HRSM inequality to de­
fine a facet of conv(.X). One necessary condition immediately follows from Lemma 2.2.5. 
Let a x+ {3y 2: y be a valid HRSM inequality with v u( iï) > I {t E S2 : t 2: u( iï)} I forsome 
v EVt. Observethat l{t E S2: t 2': u(ii) + 1}1 5 l{t E S2: t 2': u(ii)}l v (u(v) + 1). Now 
the above lemma asserts that the inequality remains valid if u( ïi) is replaced by u( ii) + 1. Re­
eaU that f3r = l{v E V: u(v) < t 5 v}. Thus, substituting u(ii + 1) for u(ii) decreases f3u(v)+l 

by one. This implies the following condition. 

Corollary 2.2.6 !fan HRSM inequality dejines a facet ofconv(X), then v u(v) = l{t E S2: 
t 2: u(v)}lforevery v EVt. D 

However, the following example shows that this condition is not sufficient. 

Example 2.2.4 Letdr = 1 fortE {2, 3, 5}. Let t* = 5 and V= {5}. If u(5) < 5, then SI = 0 
and S2 = {t: dr = 1 and t 2:: u(5)}, hence, IS2I du(5),r• for the corresponding HRSM in­
equality. Onereadily checks that ifu(5) E {3, 4, 5}, then 5- u(5) du(S).t'· Thus, by Lemma 
2.2.5, 

(1): Xt,4 + Ys 2': 3, (2): Xt,4 + Y4,5 2': 3, and (3): Xt,4 + Y3,5 2': 3 

are all valid HRSM inequalities. Obviously, neither (2) nor (3) can define a facet for the in­
~ce~~ D 

Lemma 2.2.7 lf an HRSM inequality dejines a facet of conv(X). then u( v) E SI for every 
V E V1 satisjying du(v) = 1. 

PRooF. Let a x+ {3y 2: y be an HRSM inequality such that v u ( v) = 1 {t E S2 : t .2': u( v)} 1 

for all v. Moreover, let ii E V1 satisfy du(v) = 1 and u(ii) E S2. We will show that ax + jly 2: y, 
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where Pu(v)+l = f3u(v)+l 1 and Pr = f:Jr for all ti= u(ii) + 1, is also satisfied by all solutions 
(x, y) EX. This implies that ax + {:Jy 2: y does not define a facet of conv(X). 

Write {Jy as EvEVt Yu(v)+l,v• then ü(v) = u(v) + 1 and ü(v) = u(v) otherwise. For the 
new inequalily we further have S2 = S2 \{u( v)} (and So Sou {u(ii)}, cf. Example 2.2.4) if 

u(ii) = minvEVU(V), and s2 = s2 otherwise. Then V- ü(v) l{t E Sz: t 2: ü(v)}l for all 
v E V1• Hence, by Lemma 2.2.5, the new inequality is also valid for X. D 

Combining Corollary 2.2.6 and Lemma 2.2.7 yields the following necessary condition for an 
HRSM inequality to define a facet of conv(X): 

Cl. For every v E Vh v u(v) = l{t E S2: t 2: u(v)}l and u(v) tf. S2. 

Reeall that a facet-defining HRSM inequality must satisfy the conditions Pl-P3 discussed in 
Lemma 2.2.2. In Theorem 2.2.9 it will be shown that, together with Cl, these conditions are 
also suftleient for an HRSM inequality to define a facet of conv(X), provided that there exists 
a period t before rninvE v1 u( v) that is not a hole. We already observed that this implies that t* 
is a demand period and that t* E S2. Furthermore, combining P3 and Cl yields the following: 

Lemma 2.2.8 lfanHRSM inequalitysatisfiesP3 andCl, then v1- u(vJ) = IS2I. where v1 
rninveV1 V. 

PROOF. The validity of Cl yields that v1 - u(vt):::; IS21. Now suppose that strict inequality 
holds. Then there is a period in S2, say t, such that t < u(vJ). By definition of S2 and v1, 
there must be a hole before t. Lets be the fust hole. Since t tf. S1. the nurnber of holes in the 
interval [s, t] must be strictly less than d,, 1• However, this contradiets the assurnption that P3 
is satisfied. D 

In the proof ofTheorem 2.2.9 we use the following notation with respect to an HRSM inequal­
ity a x+ {:Jy 2: y. Fort satisfying {31 > 0 wedefine v(t) max{ v E V1 : u( v) < t :::; v}. Since 
u(v) < u(v')ifv, v' E Vand v < v', andu(v) = vforeveryv E Vo, we have Vo n[t, v(t)] = 0. 
Hence, every period t' e [t, v(t)] with a~ = 0 belongs to V1• This yields 

v(l) 

f3r = l{v E V1: u(v) < t:::; v}l = l{v E V1: t:::; v:::; v(t)}l = })1-a~). (2.14) 
~=t 

Furthermore, define VI = minveVl V and denote the elementsof the set s2 by IJ, t2, .•. 'tiS21• 

such that 1t < tz < ... < t1s21 = t*. 

Theorem 2.2.9 Let ax + {:Jy 2: y be an HRSM inequality satisfying Pl-P3 and Cl, and sup­
pose that there is a period t < u( v1) that is nota hole. Then a x+ {:Jy :::: y defines a facet of 
conv(X). 
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PRO OF. First, observe that Lemma 2.2.5 assures the validity of the inequality. We prove our 
claim by providing 2 T- 1linearly independent directionsin the set X = {(x, y) E X : ax + 
{)y = y}. We start by constructing two sets of solutions in X: (x", y") for v E V1 and (i1

, jE) 
for t satisfying {31 > 0. In all these solutions production occurs in every period t E S0 U V0 

and in every demand period t > t*. Note that f3r = 0 for all the aforernentioned production 
periods, hence, for convenience, we set Yt 1 for all these periods. Thus, for the partial solu­
tion defined up to now we have ax + fjy = I So 1. The production in a period t E S0 or t > t* is 
assumed to satisfy the demand in that period. Furthermore, we can assume that the production 
in V0 satisfies the demand for the periods in S 1. Hence, the solutions under construction only 

differ in the periods in which the demand for the periods in s2 is produced. 
First, for 1) E VI wedefine (x"' y") to be the solution in which the demand for s2 is pro­

duced in the intervals [u(v1), v1 - v + u(v) -1] (empty if v = v1) and [u(v), v -1]. Lemma 

2.2.8statesthat v1 u(vJ) = !S2I and v- u(v) l{t E ,'h: t > u(v)}l. Thissolutionisclearly 
feasible. Using at 1 fortE [U(VJ), VJ- l], and f3u(u) = l{w E V1: U(w) < U(v) ::5 w}l = 

l{w E VI : u(v) ::5 w < v}l = L:~,:~(v)(l- ar), we get 

ax" + fjy" I Sol+ Pu(vt)Y~(u!) + au(Ut}.vt-v+u(v)-I + /Ju(v} + au(u),v-1 

= ISol+(vl-v+u(v)-u(vJ))+v-u(v) = !Soi+IS2I = dv-IVol. 

hence, (x", y") E X. In particular the solution (x"1 , y"1
) will be often used in the sequel as a 

starting point for the construction of directionsin X. This is the solution in which the demand 
for the periods in S2 iS produced in the interval [U(VJ), 1J1 - 1). 

Next, for t satisfying fj1 > 0 we denote by (r, yr) the solution in which the demand for 
S2 ÎS producedin theintervals (U(VJ), VJ- v(t) + t -2) (again, this Întervalmight beempty) 

and [t, v(t)], where v(t) = max{v E V1 : u(v) < t::::; v}. By Cl, I{< E S2: -c > u(v(t))}l = 
v(t) u( v(t) ), hence, I { -c E S2 : -r 2: t} I = v(t) u( v(t)) {t - u( v(t)) 1} = v(t) - t + 1. 
Thus, (i1

, yr) is feasible. Using (2.14), which states that f3r + a 1, v(t} = v(t) t + 1, it is read­
ily checked that ar+ Pl = y. 

In the sequel we show that the following directions are in X: 

(i) e(x1) for all t satisfying ar = 0; 
(ii) e(yr) for all t satisfying Pt = 0; 
(iiia) e(xr) + e(yr) - e(X",1-d for all t satisfying f3r > 0 and (t =Tor Pt+l = 0); 

(iiib) e(xt) + e(yr) e(Yr+l) - e(xr) forsome t' i= tand all t < T satisfying f3r > 0 

and Pt+I > 0; 
(iv) e(xr)- e(x",1_J) for all ti= v1 - 1 satisfying at= 1. 

Since a",1 _ 1 1, (i) and (iv) yield T- 1 different directions, whereas (ii), (iiia), and (iiib) 

yield T different directions. lt is left to the reader to check that these 2 T - 1 directions are 
linearly independent. This proves that ax + {)y ::: y defmes a facet of conv(X). 
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Ad (i). Let t be a period such that a 1 = 0. Suppose there exists a salution (x, y) EX satisfy­
ing x1 = 0 and X1-1 = 1 or y1 = 1. Then the salution (i, y) obtained from (x, y) by actding 
one unit of production in period t is also in X, and (i, .Y) - (x, y) = e(x1). If {31 > 0, i.e., if 
t = v forsome v E V1, then (xu, yv) satisfies x~_ 1 = 1 and x~= 0. In order to show that such 
a salution exists when {31 = 0, i.e., when t is a hole, it suffices to give a salution (x, y) E X 
satisfying x" = 0, where s is the first hole. Con si der (xu1 , yu1 ). If the salution obtained from 
(xu1 , yu1 ) by rnaving the production in period s to period v1 (and keeping Ys to one) is fea­
sible, then we are done. Feasibility trivially holds ifs ::=:: u(v1). Otherwise, we have that for 
every t E [s, u( v1 ) - 1] the total production in [s, t] equals the number of holes in this interval, 
which, by P3, is strictly larger than ds,l· 

Ad (ii). Let t be a period such that fJ1 = 0. Then the direction e(yl) is easily constructed 
from a salution (x, y) EX satisfying Y1 = 0. We have already seen that such a salution exists 
when t is a hole, i.e., when a 1 = 0. Consicter the salution (iu(utl+l, yu(vtl+l) defined above. 

In this salution the demand for the periods in S2 is produced in the interval [u( v1) + 1, vt], 

thus, in periods with positive y-coefficient. Hence, for every t satisfying {31 = 0 and a 1 = 1 
we have y~<utl+l = 0, except when t E S0 • Reeall that we always assume that d1 = 0, thus if 
S0 # 0, then a 1 = 1 and i~(utl+l = 0. Fort E S0 a salution (x, y) EX with {31 = 0 is now 
readily constructed. 

Ad (iiia). Reeall that for t satisfying fJ1 > 0 we defined v(t) = max{ v E V1 : u( v) < t ~ v}. 
Now let t be a period satisfying {31 > 0 and either t = Tor {31+1 = 0. Using {31 = I { v E V : 

u(v) < t ~ v}l. it is not difficult to see that in this case the following holds: t = v(t) and 
t-:f;u(v)foranyvE V1. 

Con si der the salution (i1
, )i'). Since t = v(t), the demand for the periods in S2 is produced 

in the interval [u( v1), v1 - 2] and in period t. Moving the production in period t to period 
v1 -1 yields the salution (xu1 , yu1 ). Thus, (i1 ,_yt)- (xu1 , yu1 ) = e(x1) + e(y1)- e(xu1- 1). 

Ad (iiib). Let t < T be a period satisfying fJ1 > 0 and fJ1+1 > 0. We will construct the di­
rection e(x1) + e(y1) - e(Yr+l) - e(xr) forsome t' # t. First, we show that if t = u( v) for 
some v E V1, then the above direction with t' =vis in X. If t # u(v) for any v E V1, then 
t < v(t) (cf. (iiia)). In this case the direction e(x1) + e(y1) - e(yl+l)- e(Xu1-(u(l)-r+l)) will 
be established. 

First, suppose that t = u(v) forsome v E V1. Consicter the two solutions (xv, yv) and 
(iu(v)+l, yu(v)+l) defined previously. Observe tb at the second salution is obtained from the 

first by rnaving the production in period u(v) to period v. These two solutions provide the 

direction e(Xu(v)) + e(yu(v))- e(Yu(v)+l)- e(xv). 

Now assume that t # u(v) for any v E Vt. Then flr+l > 0 implies t < v(t). For conve­
nience, define i = v(t) - t + 1. No te that i ~ I S2 1 ~ v1 - u( v1 ). Similar as in (iiia) we start 
from the salution (i1

, )i'), in which the demand for the periods in S2 is produced in the inter­
vals [u ( v1), v1 - i - 1] and [t, v(t) ]. Denote by (x, y) the salution obtained from (i1

, .Y1) by 
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moving the production in period t to period tiJ -i. Since t =1= u( v) for any v E V1, we have 
Pr+1 = l(v E V1 : u(v) < t + 1 .:S v}l l{v E V1 : u(v) < t < v}i. Moreover, since tE V1 
if and only if ar= 0, we have Pr l{v E V1: u(v) < t < v}i + (1- at)= f3r+I + (1 ar). 
Hence, 

ax+ fJy 

thus, (x, y) EX. Together with (r, .V), (x, y) yields the direction e(xt) + e(yt) - e(Yr+l) 

e(xv,-i). 

Ad (iv). Finally, we construct the direction e(x1) e(xv, -I) for every t =/= VJ 1 satisfying 
at = 1.. In most cases the direction is established by decomposing it into (e(xt) e(x,)) + 
(e(x,) - e(xv,-1) ), where sis the first period that is not used for production in (xv', yv' ). Re­
eaU that (xv1 ' yv1 ) is the solution in which the demand for the periods in s2 is produced in the 
interval [u(v1), tiJ 1]. 

Let us fust show that s < u(vJ). If So =1= 0, then we already observed that a 1 1 and 

xr' = 0. Hence, in this case, we have s = 1. Otherwise, if So = 0, then the only production 
periods in (xv', yv') up tot* are the holes and the periods in the interval. [u(vJ), v1 - 1]. By 
assumption, there exists a period before u( v1) that is not a hole. From the above observation 
it follows that this period is not used for production in (xv,, yu'). Thus, also when S0 = 0 we 

have s < u( VJ ). Denote by (x, y) the solution obtained from (xv', yv') by setting Ys to one, 
and by (i, y) the solution obtained from (x, y) by moving the production in v1 - 1 tos. Since 

a, 1 and f3s = 0, both solutions are in X. From thesesolutions thedirection e(x,)- e(xv,-d 

is readily constructed. 
From now on, let t be a period satisfying at 1 and t =1= v1 - 1. First, we consider the case 

that Pt = 0 and x~1 0. We may assume that in (xv', yv') the demand in t* is satisfied by the 
production in v1 - 1. Thus, if x~1 0, then the solution obtained from (xv', y v,) by moving 

the production in period v1 - 1 to t is easily seen to be in X. From these two solutions the 
direction e(xr)- e(xv, - 1) can be constructed. 

Fort satisfying f3r = 0, x~' = 1, and t =/= u(vi) weconstructe(xt)- e(x .. ). Note thatt E So 
in this case, thus, s = 1. Hence, the direction e(Xt)- e(xs) is easily constructed from (xv', yv') 

and the solution obtained from the latter by moving the production in period t to period 1. 
Next, let f3r > 0 and tE UueV,\(vd[u(v), v -1]. Define v min{v E V1 : v > t}. Then 

a~= 1 forevery rE [t, ij -1] and u( ij)< t, sincef3t = l{v E V1: u(v) < t .:S v}l = l{v E V1: 
v 2: v and t > u(v)}l > 0. Consider thesolution (x", yü) forwhich thedemand for theperiods 
in S2 is produced in the intervals [u( t11), v1 - ij +u( ii) - 1] and [u( v), v - 1]. Let (x, y) be 
the solution obtained from (xv, yii) by moving the production in the interval [t + 1, ij - 1] to 
[v1 - v+ u(v), v1 t+ u(v) -2]. Then (x, y) E Xandxs =x~= 0. Using similararguments 

as before, the direction e(xt) - e(x .. ) is now readily established. 
We are left with the construction of the directions e(x1) e(xs) fort E [u( v1 ), VJ 2). 

Assume that v1 - u(v1) IS21 2: 2, otherwise we aredone. LettE [u( vJ), v1 - 2) and define 
v1 t. We claim that there exists period t' such that f3rt > 0 and v(n - t' + 2 i. Then 
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the solution (r, y') satisfies xr 1, and x;+ I =x;'= 0. Again, the solution obtained from 
(xt', yr) by moving the production in period t to period sis in X and yields, together with 
(xr, yr), the direction e(xr) e(xs). In orderto prove our claim, consicter the period t1Szl-i+2· 

Suppose first that {3%1-1+2 0. It is nothard to see that there exists a period v E V1 satisfying 
v < t1Sz1-i+2· {3" = 1, and f3v+l = 0. In this case we take t' v ~i+ 2. Then Cl implies 
V- U( V)= i{t E S2: t 2: U(v)}i 2:: Î- 1, hence, U(v) < t1

:::; V, thus, f3r > 0, and v(t1
) =V. If 

f3r1Sz,-H2 > 0, then take t' = v(tiSzH+2) - i+ 2. Using the same arguments as before, we find 
that f3r > 0 and v(t') = v. Hence, the direction e(x1) - e(xs) can be constructed for every 
tE [u(v1), v1 - 2]. This concludes the proof of the theorem. 0 

Example 2.2.5 Let T = 12 and d, = 1 fort E {3, 6, 8, 9, 11, 12}. Let t* = 12, Vo = [4, 5], 
V1 = [9, 12], u(9) = 6, u(lO) = 7, u(ll) = 8, and u(12) = 10. Thecorresponding HRSM 
inequality is 

+Y7+2Ys+3Y9+2YI0+2Yn+YI2 > 4 
X1 + X2 + X3 + X6 + X7 + Xs -

with So {3}, S1 = {6, 8}, and S2 = {9, 11, 12}. By Theorem 2.2.9 the inequality defines a 
facet. This also holds for 

+ Y3+ Y4+ Ys+ 2y6+ Y1+ Ys 
X1 + X2 + X3 + X4 + X5 + X7 +XJO 

> 4, 
+xl2 -

tbe HRSM inequality defined by t* = 12, Vo = {9, 11}, V1 = {6, 8}, u(6) = 2, and u(8) = 5. 
Here So = 0, SI= {9, 11}, and s2 {3, 6, 8, 12}. 0 

If u(v1) = 1 or all periods before u(vi) are holes, then Cl does not suffice for an HRSM in­
equality to define a facet of conv(X), as the following example shows. 

Example 2.2.6 Letd1 = 1 fortE {4, 6, 7}. Taket* = 7, V= V1 = {4, 6, 7}, u(4) 1, u(6) = 
3, and u(7) = 5. Then 

+ Y2 + Y3 + 2y4 + Ys + 2y6 + Y1 > 3 
X1 + X2 + X3 + X5 -

is a valid HRSM inequality withSo = S1 0 and S2 = V One readily checks that Pl-P3 and 
Cl are satisfied. However, every solution (x, y) that satisfies the above inequality at equality 
also satisfies the inequality x2 + Y3,6 2: 1 at equality. The latter inequality is the facet-defining 

inequality Xd1,, + Yd1.,+I.r 2: 1 with t 6 (cf. Section 2.1). 0 

In this case one extra condition is needed to guarantee that the inequality defines a facet of 
conv(X). The proofs of the necessity and sufficiency of this condition are rather technica! and 
do not provide any further insight. Moreover, there is no easy way to test whether a given 
inequality satisfies this condition. Therefore, the following result is merely given for sake of 
completeness. The same notation as in Theorem 2.2.9 is used. 
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Theorem 2.2.10 Suppose ax + {Jy ~ y is an HRSM inequality satisfying Pl-P3, Cl, and ei­
ther u(vt) = 1 or allperiods before u(vt) are holes. Then the inequality dejines a facet of 
conv(X) if and only if for every i E {2, ... , I Szl} one of the following holds: 
(i) there exists a period t :S: t1s2H+I such that {11 > 0 and v(t) :S: t +i 2; 
(ii) there exists a period v E V1 such that v1 < v :S: t1s21+i-l and av- i 1 for every j E 

{l, ... ,i}. D 

Notice that the extra condition stated in the above theorem is always satisfied if I S2 1 = 1. In 
this case, S2 = {t*}, where t* is a demand period, and S1 = { t < t* : d1 1}. In orderto satisfy 

Cl, u( v) = v 1 must hold for every v E V1 since { r E Sz : r ~ t} {t*} for every t :S: t*. 
Thus, inthiscase,ar+ {11 :S: 1 foreveryt. Uwetake Vo [1,dt,t* 1] and V1 [dl,t' + 1, t*], 

then we obtain the inequality Xd1,,. + Yd,,,.+l,t* ~ 1, hence, the inequalities (2.4) discussed at 
the end of Section 2.1 are a special case of the HRSM inequalities. 

Before we address the separation problem for the HRSM inequalities, let us discuss how they 
relate to inequalities derived for generalizations ofDLSP. We already mentioned that the RSM 

inequalities, i.e., the HRSM inequalities with V0 = 0, are a direct adaptation of the right super­
modul ar inequalities of Constantino to DLSP. Sastry [38] derives a class of inequalities for the 
extension ofDLSP with both startup and setup costs called skip inequalities. Denote by X1, Y1, 

and Z1 respectively the production variables, the setup variables, and the startup variables for 

this problem. lf ax + {Jy ~ y is a facet-defining HRSM inequality, then 'A X+ 11-Y + vZ ~ y, 
with Àr = a1 if t E [1, t*]\ Uvev[u(v), v] and zero otherwise, ILr a1 if tE [u( v), v] forsome 
v E V and zero otherwise, and v1 {11 for all t, is a facet-defining skip inequality. Magnanti 
and Sastry [27] describe a linear programming based separation algorithm for a subset of the 
skip inequalities. With some slight modifications the separation algorithm described below 

applies to a much broader class of skip inequalities, which includes the subset for which sep­
aration is discussed in [27]. 

Let us now consicter the separation problem for the HRSM inequalities. Y. Pochet (personal 

communication) proposes a dynamic programming algorithm for separating, not necessarily 
facet-defining, HRSM inequalities. This algorithmruns in O(T'J) time, hence, the separation 

problem for the HRSM inequalities can be solved in polynornial time. However, it is obvious 
that such an algorithm is too time-consuming to be of practical use in a cutting plane method. 
Therefore we do not give any details. Instead we describe an 0((dJ,TT)2) algorithm for the 

subclass of HRSM inequalities that, besides P1-P3 and Cl, satisfy the following condition: 

C2. If Vo =f. 0, then maxvEVo V< minueV, V, 

i.e., if t :S: t* is the fust period satisfying {11 > 0, then there arenoholes in the interval [t - 1, t*]. 

This implies that max,Es1 t < minrES2 t. In Example 2.2.5 only the first inequality satisfies this 
condition. Hence, the secondinequality cannot be found by the separation algorithmdescribed 
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below. 
Denote by s; the ith demand period, i.e., d,1 = 1 and d1,s1 = i. Conditions P1 and P2 hold 

if and only if t* = S;• forsome i* E {1, ... , d1.Tl and S;· E S2. The validity of C2 implies 

the following. If Vo =/: 0, then sl = {SiJ+!' ... 'S;z} and s2 = {Siz+l' ... 'S;·} forsome Î! and 
i2 satisfying 0 ~ i1 < i2 <i*. Moreover, Vo 5; [s;1 + 1, ü- 1], where ü = minvev1 u(v) and 
!Vol i2- i1. Nowin orderto satisfy P3 wemusthaves;2 2: ü or, equivalently, i2 2: d1,ü-1 + 1. 
Furthermore, the number of holes in the interval [s;, + 1, s;] mustbeat least i - i1 + 1 for any 

iE {iJ + 1, ... , dl.u-d. thus, 

I[S;1 + 1, s;] n Vol 2: i i1 + 1 for iE {iJ+ 1, ... , d1,ü-d· (2.15) 

lf Vo 0, then s2 {sal,iH+I• ...• S;•}. In this casedefine Î2 dl,Ü-l· Condition Cl is sat­
isfied if for all V E VI the following holds: V u( v) = l{t E s2 : t 2: u( v)} I and if du(v) 1, 
then u(v) s; forsome i::; i2. This yields 

V- U( V) = i*- max(i2, dl,u(v)), (2.16) 

since min{i: S; E S2 and S; 2: U( v)} max(h + 1, dt,u(v)-1 + 1) max(i2, dt,u(v)- du(v)) + 1 
and i2 2: dt,u(v) if du(v) = 1. 

Let (i, y) be a solution to theLP-relaxation ofDLSP. The question to be answered is: does 
there exist an HRSM inequality satisfying Pl-P3, Cl, and C2 that is violated by (i, y), thus, 
for which 

(iJ,s1• -i*)+ (!Vol- Lir) + L (Yu(v)+l,v- iv) < 0? (2.17) 
tEVo vEVt 

In our algorithm we first delermine for each i* and V1 the set Vo satisfying the aforemen­
tioned conditions for which the left-hand si de of (2.17) is minima!. An important observation 
is that this set is the same for all i* and V1 with the same values of u= minuev1 u(v) and i2 

i* + u minue v1 v min;es2 i - 1 ); we will therefore refer to it as Fu(h). Now fora given 
period u and a given index i2 < d1,T satisfying S;2 2: u, F,.(i2) is determined as follows. For 
hE {0, ... , i2 -1} let F .. (it, i2) beasubsetofh -i1 periodsin [S;1 + 1, u l]suchthat(2.15) 

is satisfied for Vo = Fu(it, i2) and such that LreF.(i
1
,;

2
) Xr is maximaL Define /u(ÎJ, i2) = 

I Fu(ÎJ, h) I - LteF.(i~oizl ir. Then Fu(iû = F .. (i;, i2), whereij = argmino::;i1 <iz fu(ÎJ, h). For 
0 :5 it < i2 wedetermine Fu(ÎJ, i2) and f,.(iJ, i2) in the following way: 

delerminet E [S;1 + 1, sHl -1] sucb that iris maxima!; 
Fu(ÏJ, Î2) {t}; fu(il, Î2) := 1 - it; 
for i = it + 1 to dt,u-1 do begin 

determine t E [S;1 + 1, s;]\Fu(ÎJ, iû sucb that iris maxima!; 
Fu(il, i2) := F,.(ii, i2) U {t}; fu(il, i2) /u(Î!, iû + 1 ir 

end 
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determine F ~ [sh + 1, u 1]\Fu(it, iz) such that IFI iz dt,u-·1 1 
and LrEF ir is maxi mal; 
Fu(il, iz) := F.,(il, iz) U F; fu(il, iz) := /u (i!, iz) +I Fl LtEFXt 

Hereitisassumedthatsi,+l > S;1 + 1 andu -1-s;, 2: i2 -i1, otherwiseweset Fu(i1 , iz) = 0 

and fu(il, iz) = -oo. Determining F"(iz) and fu(iz) = IFu(iz)l LtEF.(iz) Xr for all periods 
u E [1, Sd,,r- 1] and iz E {dl,u-1 + 1, ... , d1,T- 1} can be done in O((d~,rT)2) time. 

Let u be a period in [1, Sd1.r 1]. If u u(v) forsome v E Vt, then we already observed 
that v u+ i*- max(iz, d1,u) (cf. (2.16)). Now define 

for dt,u :S iz < i* :S d1,T· These values can be determined in O(dt,T) time for u fixed, since 

gu(dt,u, dt,u + 1) = Yu+l - Xu+!• 

and gu(i2, i*)= gu(dt,u. i*- Î2 + dt,u) for dt,u < iz < i*. Now (i, y) violates an HRSM 
inequality satisfying Pl-P3, Cl, and C2 if and only if one ofthe following holds: there exist 
an index i* E {1, ... , dt,T} and a nonempty set U ~ {t E [1, S;• - 1] : dr 0} such that 

(Xt,.v1, i*)+ Lgu(dt,u, i*) < 0, (2.18) 
UEU 

or there exist two indices i2 and i* satisfying 1 :S iz < i* :S d1,r, and a nonempty set U ~ 
[iz + 1, S;• -l]\{S;2 + 1, ... , Si•-!} with Umin = minuEU u :S S;2 such that 

(Xt,s1, i*)+ fumi.n (iz) + L gu(max(i2, dl,u), i*) < 0. (2.19) 
uEU 

Since (i, y) satisfies i 1,,.,. 2: i*, ît is obvious that if (2.18) holds for i* and U, then we can 
assume that g.,(d1,", i*) < 0 for all u E U. Suppose that (2.19) holds for i*, and U, where 
gu(max(i2, dt,u), i*) 2: 0 forsome u E U. If u :J: Umin. then (2.19) also holds if U is replaced 
by U\{u}. Therefore, suppose that gu ••• (iz, i*) 2:0. Since f"(iz) 2: 0 for any u and iz, we 
must have that U'= U\{Umin} :J: 0. It is nothard to see that f" 1 (iz) 2: /"2 (iz) if UJ < Uz and 
sh 2: Uz. From this it follows that if S;2 2: min u EU' u, then (2.19) also holds for î*, iz, and U'. 
Finally, if Siz < minuEU' u, then gu(max(iz, dJ,u), i*)= gu(d!,u. i*) for all u E U'. Then 

A "* ""' (d "*) X!,s1, - l + ~ gu !,u> l :S Xt,s,, i*+ furn1, (iz) + L gu(max(i2, dt,u), i*), 
u EU' uEU 

hence, the inequality with Vo = 0 corresponding to i* and U is at least as much violated as the 

inequality with Vo = F"""• (iz) corresponding to i*, i2, and U. 
Now take i* E {1, ... , d1,r}. The following algorithm provides the most violated HRSM 

inequality satisfying Pl-P3, Cl, and C2 with t* = S;•, if one exists: 
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begin SEPARATION(i*) 

.ó. opt := 0; determine gu(iz, i*) for u E [1, S;• - 1] and d1,u ::;: iz < i*; 
U {u E [1, S;• - 1] : du 0 and gu(dl,u, i*) < 0}; 

.Ó. := j\_s;•- i*+ Lueugu(dt,u. i*); 
if .ó. < .ó. opt then begin uopt := U; i{1 0; .ó. opt := .ó. end 
for iz = i* 1 downto 1 do begin 

U {u E [iz + 1, S;• - 1] : (Siz 2: u or du = 0) and gu(max(iz, d1,u), i*) < 0}; 
.ó. := Xl,S;• -i*+ LueU gu(max(iz, dl,u). i*); Umin minueU u; 
while Umin::;: S;2 do begin 

if .ó. + fu .... (iz) < .ó. opt then 
begin uopt := U; i~pt := iz; .ó. opt .ó. + fum~. (iz) end 

.Ó. := .Ó. g"""• (iz, i*); U U\{Umin}; Umin := minueU U 

end 
end 

end. 

lf .ó. opt < 0, then (x, y) violates the inequality corresponding to i*, i~pt (if i~pt 0, then V0 = 
0), and U0 P1• lf fu(iz) and Fu(iz) are determined beforehand, then SEPARATION(i*) runs in 

O(d1.rT) time. 

Summarizing, the most violated HRSM inequality (2.9) for which P1-P3, Cl, and C2 hold, 

if one exists, can be found as follows: fust, determine fu(iz) and Fu(iz) for u E [1, Sd1.r- 1] 
and d1,u-1 + 1 ::;: iz <i*::;: d1,T and, second,run SEPARATION(i*) for i* E {1, ... , d1,T}. The 
most time consuming part is the determination of f.,(iz) and F.,(iz), hence, the separation al­

gorithmruns in 0( (dl,T T)2
) time. Note that if we restriet ourselves to RSM inequalities, i.e., 

to HRSM inequalities with Va = 0, then the separation can be performed in O(dl,T T) time. 

2.2.3 Regular block inequaüties 

In this subsection we study another subclass of inequalities ofthe form (2.7). Let us fust reeall 
some definitions. If ax + {Jy 2: y is an inequality of the form (2.7), then 

ax+ {Jy = L Xt + LYu(v)+l,," 
tE[l,t')\ V VEV 

where t* is a period with ar• + fJr• = 1, V asubset of[1, t*], and u( v) a period associated with 
v .E V such that u( v) ::;: v. We always assume that u( v) < u( v') if v < v'. By definition, V is 
the set ofperiods {t: t ::;: t* and a 1 0}. 

Similar as in the previous subsection, we denote by V1 the subset of periods t in V with 
{31 > 0, bence, V1 = { v E V : u( v) < v}. In this subsection we study inequalities of the form 
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(2.7) for which the following holds: 

if v, v' E V1 and v < v', then [v, v'] ~ V1 or [u(v), v] n [u(v'), v'] = 0. (2.20) 

Suppose V1 satisfies the above condition. Let [v, v + q 1] be a maximal interval in V1, Le., 
[v, v + q- 1] ~ V1, if v > 1, then v -1 f/. V1, and if v + q 1 < T, then v + q f/. V1. Let 
v E V1 . Condition (2.20) implies that v < u(v) if v < v, and u(v):::: v + q if v > ii + q. 
Moreover, note that if v E V is a hole, i.e., if u( v) v, then vis not contained in [u( v'), v'] for 
any v' E V1. This follows from the assurnption that u( v) < u( v') for any v, v' E V satisfying 
v < v'. Thus, in the interval [u(v), v + q- 1] we have a1 1 fortE [u(v), v- 1] anda1 = 0 
otherwise, and fJr = 0 ifand only ift = u(v). Furthermore, flv+q = 0 if v +q ::s T. Theinterval 
[u(ii), v + q -1] is called a (p, q)-block, where p ii u(v). 

Example 2.2.7 Let ax + {Jy = 

+ Yz + Y3 +Y6+2Y?+2ys+Y9 + Yu + Y12 + Yt4 + Yts + Yt6 
+ Xto + xu + Xt3 + X14 

[ ...... ] [· ......... ] [· ......... ] 
[ ...... ] [· ........... ] [· ........... ] 

[· ........... ] [ ...... ] 

In this exarnple we have V= V1 = {2, 3, 7, 8, 9, 12, 15, 16}. The intervals [u(v), v], v E Vt, 
are depicted above. There are four blocks: the (1, 2)-block [1, 3], the (2, 3 )-block [5, 9], the 
(2, 1 )-block [10, 12], and the (2, 2)-block [13, 16]. 0 

An inequality ax + {Jy ::=: y of the form (2.7) satisfying (2.20) is called a block inequality. 
Observe that (2.7) is a block inequality if and only if there are no periods t < T such that 

at= 0, at+l = 1, and flt+l > 0. 
Block inequalities generalize the hole-bucket inequalities discussed by van Hoesel in [18] 

(see also vanHoeseland Kolen [19]). These are inequalities ofthe form (2.7) with a 1 + fJr ::S 1 
for every period t. Since {31 = l{v: u(v) < t ::S v}l, this implies that u(v) = v- 1 for every 
v E V1• Note that in this case (2.20) is always satisfied. Thus, a hole-bucket inequality is a 
block inequality with p 1 for any (p, q)-block. Van Hoesel derives necessary and suftleient 
conditions for a hole-bucket inequalîty to de fine a facet of conv(X). 

Here we will give sufficient conditions for a subclass of the block inequalities to define a 
facet of conv(X), narnely, for block inequalities that only contain regular blocks. A (p, q)­
block [u(ii), v + q- 1] is called regular if u(v +i- 1) = u(ii +i) - 1, 1 < i :::: q, i.e., if 

l[u(ii +i), v + t]l = l[u(ii), v]l p + 1 for all i. Otherwise, the blockis called nonregular. 
In the above example the first three blocks are re gul ar and the lastblockis nonregular. A block 
inequality that only contains regular blocks is called a regu/ar block inequality or R -block in­
equality for short. Obviously, hole-bucket inequalities are contained in this subclass. 

The following lemma states an important property of R-block inequalities. Let us fust 
introduce some notation. In the sequel, the first and the last period of a block B are denoted 
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by ZB and UB, respectively. Moreover, wedefine PB= l{t EB: at= 1}1 and qB = l{t EB: 
at = 0}1, thus, B [lB, UB] is a (pB, qB)-block. When no confusion can arise, the subscript 
B is omitted. 

Lenuna 2.2.11 Let ax + f3y 2: y be a valid R-block inequality of X that contains the (p, q)­

block B = [l, u]. Let (x, y) be a salution satisfying ax + f3y = y. Then L~=1 (arXt + f3rYr) = 
min(Xt,u. p). 

PRO OF. By definition, Bis a regular blode, hence, u( v) = v- p for all v E B n V1 = [l + 
p, u]. Reeall that a 1 = 1 fortE [l, l + p- 1] and a 1 = 0 fortE [l + p, u]. Furthermore, let 
tE [l, u]. If v E V1, then tE [u(v) + 1, v] ifandonlyifv E [t, min(t+ p -1, u)]. Using this 
and the trivial observation that there are no holes in [l, u], we get 

min(t+p-l,u) 

/31 = l{vEVI:u(v)<t:::;Sv}l = L (1-as)· (2.21) 
s=t 

In particular, we have f3z = 0. Reeall further that f3u+l = 0 if u < T. Hence, without loss of 
generality, we may assume that Yt = 1 if Xt 1 and Yu+l = 1 if Xu+l = 1. Thus, if [t, t'] is a 
production batch in (x, y) and [t, t'] U B =f:. 0, then [t, t'] s; B. 

Lett be a period in [l, u] and k 2: 1 such that [t, t+ k 1] ç [l, u]. Then 

f3 t~l (2,31) I k + L~~~~:p-l,u)(l -a") if k :::5 p- 1 I . (k ) 
t + L.,; as - t+k-l . 2: mm , p . 

s=t p+ Ls=t+pas = p lf k 2: p 
(2.22) 

This implies that L~=1 (atXt + f3tYr) 2: min(Xt,u. p). In order to prove that equality holds, let 
us fust consicter the case that at least p periods in Bare used for production in (x, y). Then 
'L~1 (atXt + f3tYr) 2: p. Suppose that L~=t(atXt + f3tYr) > p. Denote by (i, ji) the solu­
tion obtained from (x, y) by moving the production in B to the fust Xt,u periods in B. Then 
L~=1 (atit + f3tY 1) = 'L;!;~·-l at+ f3I = p, thus ai+ f3.Y <a x+ f3y < y, which contradiets 
the validity of the inequality. Thus, if Xt,u 2: p, then L~=1 (atXt + f3tYt) = p. 

Next, suppose that the total production in Bis less than pand suppose that [t, t + k 1] 
ç [l, u] is a batch of length kin (x, y) satisfying L~=l(a1x1 + f3tY 1) > k. If there is no pro­
duction in [l, t 1], then define t' = l. Otherwise, let t' 1 bethelast period before t in 
which production occurs. Denote by (i, ji) the solution obtained from (x, y) by moving the 
production in [t, t + k -ll to [t', t' + k- 1]. It is readily checked that f31' Yt' + 'L~~;-I as :::5 k, 
hence, ai+ f3ji < ax + f3y y. Again, we find a contradiction. This concludes the proof of 
the lemma. 0 

Let [t, t + k- 1] be contained in the regular block [l, u]. Using (2.22) it is nothard to see that 
/31 + I::~~- I as= min(k, p) ifandonlyifk 2: port E {l, u k+ 1}. Togetherwith theabove 
lemma, this implies the following: 
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Corollary 2.2.12 Let ax + {3y 2:: y be a valid R-block inequality of X and let B [l, u] be 
a (p, q)-block. Suppose that (x, y) is a salution that satisjies the inequality at equality and 
for which k periods in B are used for production. lf k > p, then the production in B occurs 
in one interval [t, t + k 1]for some tE [l, u-k+ 1]. Otherwise, the production occurs in 
[I, l + k- 1], or in [u-k+ 1, u], or in two intervals [l, l + k1 - 1] and [u k2 + 1, u], where 
k1,k2 > Oandk1 +k2 = k. 0 

In Lemma 2.2.2 we derived three properties, P1-P3, of facet-defining inequalities with x­
coefficients in {0, 1}. The above result implies another property of facet -defining R-block in­
equalities. 

Lemma 2.2.13 Let a x+ {3y 2: y be a facet-dejining R -block inequality of conv(X) and let B 
be the jirst block. Then this inequality satisjies the following property: 

P4. lf all periods befare IB are holes and if sis a demand period satisfying d1,s IB, 
then s 2: UB- PB+ 2 or ax + {3y 2:: y is equivalent to Xz8 + Yls+l,s 2: 1. 

PROOF. Suppose that s :::; u B p B + 1 and ax + {3y 2: y is notequivalent to Xz8 + Yls + 1 ·" 2: 1. 
Since a x+ {3y 2:: y defines a facet of conv(X) , there must be a solution (x, y) E X satisfying 
ax + {3y = y and Xt8 + Yls+I,s 2: 2. Then this solution contains two different batches with 
periods in B that both start before or in period s. However, this contradiets Corollary 2.2.12, 
which yields that the second batch doesnotstart before period u, -PI+ 2. 0 

In the sequel, we will give sufficient conditions for an R-block inequality to be facet-defining 
for conv(X). Therefore, we first have to deal with the following question: given an R-block 
structure a x+ {3y, what is the maximal value of y such that a x+ {3y 2: y is valid? Van Hoe­
set shows that a greedy algorithm always yields the optima! value fora hole-bucket structure, 
i.e., when PB = 1 for every block B. A generalization of this algorithm provides a solution 
(i, y) that, under certain conditions, is minimal with respect to ax + {3y, i.e., ai + {3y = 
min{ax + {3y: (x, y) EX}. Then, obviously, ax + {3y 2: ai+ {3y is valid for X. 

FILLBLOCKS 

Consicter the demand periods one by one in increasing order and determine for each 
demand period t a period to produce its demand according to the following rul es: 
1. If there is an empty holes :::; t, then produce the de mand for period tin s; otherwise 

go to 2. 
2. If there is a partially filled block, then produce the demand for period t ln the first empty 

period of this block; otherwise go to 3. 
3. If there exists an empty block B with ZB :::; t, then produce the demand for period tin 

the first period of the fust empty (p*, q*)-block, where q* max{ qB : B empty and 
ZB:::; t} and p* min{pB: B empty, ZB:::; t, and qB q*}; otherwise go to 4. 

4. Produce the demand for period tint. 
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Denote the solution provided by this algorithm by (i, y), where y1 = 1 if and only if i 1 = 1 
and either t = 1 or iz-t = 0. Hence, startups only occur in periods t for which {J1 ~ 0. Further­
more, for each demand period s we denote by (r, y) the partial solution where X: = 1 for all 
periods t that are chosen by FILL...BLOCKS to produce the demand for somedemand period 
in [1, s]. Observe that ifblock B' is chosen for production after B, then possibly lB' <lB. In 
that case, we have q B' :S q Band p B' > p B when equality holds. The following example shows 
that (i, y) is not necessarily minimal with respect to the given inequalîty. 

Example 2.2.8 Let d1 = 1 for 1 E {4, 5, 7, 8, 10} and let ax + {Jy = 

+ Y3+ Y4 + Y6 + Ys+ 2y9+ Yto 
Xt + Xz + X3 + X5 + X7 + Xg 

The production periods determined by FILL...BLOCKS are [2, 4] U [7, 8], hence, ai= 4. How­
ever, producing in the interval [2, 6] yields a feasible solution (x, y) satisfying ax + {Jy = 3. 

D 

The following lemma gives a sufficient condition for ax + {Jy 2::: ai+ {Jy =ai tobevalid for 
x. 

Lemma 2.2.14 Let a x+ {Jy denote a regular block structure and let (i, y) denote the salution 
provided by FILL...BLOCKS. Then ax+ {Jy 2::: ai is validfor X ifthefollowing condition is 
satisfiedfor every demand period s: ifperiod lB + j- 1, jE {1, ... , p}, of a (p, q)-block 
Bis chosenfor the production ofthe demand ins, then there is no empty (p', q')-block B' in 
(is, y) with lB' :::; s such that p' < p- j + 1 or q' > q. 

PRO OF. Suppose that the condition of the lemma is satisfied for all demand periods. Let X 
be the set of minimal solutions with respecttoa x+ {Jy. Thus, (x, y) E X if and only if ax + 
{Jy 2::: ai+ {Jy is a valid inequality. We will show that for every demand period s there exists 
a salution (i, y) E X in which all periods that are determined by the algorithm to produce the 
demand for the demand periods up to s are used for production, i.e., if iJ 1, then Xz = 1. 
This clearly proves the statement. 

Let (i, y) EX. Withoutlossof generality we assume the following for (x, y): (i) every 
hole is used for production; (ii) if fora block B period lB + PB - 1 is used for production, 
then all periods in the interval [lB +PB. UB] are used for production, and (iii) if k periods of a 
block Bare used forproduction, then these are the first k periods of B (cf. Corollary 2.2.12). 
Let s be the first demand period for which the algorithm determines a period to produce its 
demand, say t, that is not used for production in (i, y). Because of (i)-(iii), we have az = 1. 
If t <f. B for any block B, i.e., if {J1 = fJz+t 0, then all holes before s and all blocks B with 
lB :::; s are completely used for production both in (i~. _ys) and in (i, Jl). Hence, there is a 
period t' :Ss such that at! = 1, t' not in a block, and t' used for production in (i, y) but not in 
(i', _ys). Moving the production in t' tot yields a solution in X for which production occurs 
in every period t satisfying x; = 1. 



38 The single-item DLSP 

Now assume that t is aperiod in a block B, say t = LB + j- 1 forsome jE (1, ... , PB}. 
The definition of Simplies that x~ = 1 for 't E [lB, t- 1]. Then, by (iii), x~ = 0 for every 
rE [t, uB]. Let t' be the fust period that is used for production in (i, y) but not in (r, ys). 

Obviously, t' ::::; s and, by (i) and (iii), a1, 1. If t' is a period that is not in a block, then the 
solution obtained from (i, y) by moving the production in t1 to t is also in X. Otherwise, t' is 
the fust period of a block B' that is empty in (r, ys). Then, by assumption, PB' 2: PB- j + 1 
and qB'::::; qB. Suppose that in (x, y) kperiods of B' are used for production. Then, by (ii) and 
(iii), these are the first kperiods of B' and k = IB'I or k < PB'· Definek' = min(k, UB t + 1) 
and let (x', y') be the solution obtained by moving the production in the last k! perîods of B' 
that are used for production to thefirstk' empty periods of B, i.e., to the interval [t, t + k'- 1]. 

Using PB' 2: PB j + 1 and qB' ::::; qB, one readily checks that ai:'+ fW ::::; ai+ f3Y. Since 
(i, y) is assumed to be minima!, equality holds. Hence, there exists a solution in X for which 
all periods in which production occurs in (i, ji) are used for production. D 

The above lemma gives a suflident condition for FILLBLOCKS to provide the correct right­
hand si deofan R-block inequality. However, this condition is not necessary, as the following 
example shows: 

Example 2.2.9 Let d1 1 for t E { 5, 6, 1, 8, 9, 1 0} and let a x + {Jy 

+ Y7 + Ys 

The algorithm chooses period s to produce the demand in period s + 4, 1 ::::; s ::::; 6, hence, 
ax 4. It is readily checked that ax + {Jy 2: 4 is indeed valid. However, when period 2, 
i.e., the second period of the (3, 2)-block B [1, 5], is chosen for the production of d6 , the 

(1, 2)-block B' = [6, 8] is empty and PB' 1 < 2 =PB- j + 1. D 

If p B 1 for every block B, i.e., if ax + {Jy is a hole-bucket structure, then FILL..l3LOCKS is 
equivalent to the greedy algorithm given in [18], which always provides the optima! value of 
the right-hand side of such an inequality. It is readily checked that in this case the condition of 
Lemma 2.2.14 is indeed always satisfied. This also holds when every blockis a (p, q)-block 
forsomepand q, i.e., PB= pand qB q for every B. 

In the following theorem we give sufflcient conditions for an R-block inequality to be facet­
defining for conv(X). Similar as before, let (i, y) bethe solution provided by the algorithm for 
an R-block inequality a x+ {Jy 2: y. Moreover, denote by B1, B2, ••• , BK the blocks that are 
used for production in (i, ji), such that Bt+l is chosen for production after B~c. For notational 
convenience, we write l~c, u~c, etc., insteadof lBt' uB •• etc. Reeall that we may have l~c > h+I 
forsome k. In that case, either qk > qk+l or q~c = qk+J and Pk < Pk+J must hold. 
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Theorem 2.2.15 Let ax + fly :::: y be a valid R-block inequality satisfying P1-P4 and let 
(i, ji) and Bt, 1 ~ k ~ K, be as defined above. Suppose that ai = y and that the following 
conditions are satisfied: 

S1. FILL...BLOCKS chooses period lx + Px -1for the production ofthe demand int*. 
S2. 1/FILL...BLOCKS chooses period lt + Pt to produce the demand in period s, then 

there is an empty block B in (i', j') with lB ~ s, PB E {Pk+I. ... , Px}. and QB :::: Qt. 
S3 . .lfFILL...BLOCKS chooses period lkfor the production ofthe demand int, then 

t >Uk- Pt or li < l~cfor some j > k. 
S4. lf Bis a block that is not usedfor production in (i, ji) and Pk < PBfor every block Bk 

with lt > lB. then there is a block Bk with lk < l B· M oreover, Plr! :::: p B and period 
llr! + Plr!- PB is chosen by FILL...BLOCKS to produce the demandfor some period 
t > UB- PB. where k1 = max{k: lt < lB}. 

Then ax + {:ly:::: y defines a facet ofconv(X). 

PROOF. Denote by X thesetof feasible solutions to DLSP that satisfy ax + {:ly :::: y at equal­
ity. Thus, in particular, (i, ji) E .X. In order to prove that ax + fly :::: y defines a facet of 
conv(X), we have to provide 2T 1linearly independent directions. For every block B we 
construct solutions (x1», y1») and (xu», yu») in X for which the only periods of this block that 

are used for production are the first p B and the last p B periods, respectively. Observe that, 

by S2, Q1 ~ Q2 ~ ... ~ qx. Together with the earlier observation that qi ~ Qk if j > k and 

Ij< lt. this yields qi = Qk (and Pi> Pk) if j >kandIj< lk. Together with P3, S2 further­
more implies that if there is a hole t ~ s or a block B with lB ~ s, sa demand period, then 
FILLBLOCKS chooses either a hole or a period in a block for the production of the demand 

in s. 

We first determine solutions (i-•, y1•), 1 ~ k ~ K, that satisfy the following properties: 

(a) all blocks B i• 1 ~ j < k, are completely used for productipn; 
(b) only the first Pk periods of Bk are used for production; 
(c) if Bis used for production and Bi= Bj for any j < k, then QB :::: Qk and 

PB E {Pk+I• ... , Px}; 
(d) axlt + py'• = y, thus, (x1•, y1•) eX. 

By Sl, onlythefirst px periodsof Bx areused forproduction in (i, ji), hence, we set (x1K, y1K) 

(i, y). Now let k < K and suppose that a solution (x1i, y1i) with the desired properties 

has been constructed for all j > k. Suppose period lk + Pk was chosen by FILL...BLOCKS to 
produce the demand for period s. If s :::: li forsome j > k, then let (x1•, yl•) be the solution 
obtained from (i' i, yli) by moving the production in the last Qk periods of Bk to the fust Qk 
empty periods of Bj. i.e., to the interval [lj + Pi>li +Pi+ Qk -1]. Reeall that Qk ~ Qj· lt 
is easily seen that this solution satisfies (a)-(d). Otherwise, if s < l i for any j > k, then S2 

yields that there is an empty block B in (i, ji)d1·' such that s:::: lB. PB= Plr! forsome k! E 

{k + 1, ... , K}, and QB:::: Qk· Thus, Bi= Bi for any j ~ k. Moreover, since lB ~ s < lj for 
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any j > k, we conclude that Bis empty in (i, y). Tagether with lB < l~c· and PB= p"" this 
implies qB < qk'. Hence, by (c), Bis empty in (.t"', /"'). Now let (x1•, y1•) be the salution 
obtained from (x1"', y1"') by rnaving the production inthelast q~c periods of B~c and in (the first 
PI!! periods of) Bk' to block B. Again, one readily checks that this salution satisfies (a)-(d). 

Second, denote by (xu•, yu•) the salution obtained from (x1•, y1•) by rnaving the production 

from the fust Pk periods to the last Pk periods of the block Bk. This salution is feasible if 
x~~1,_ 1 ?: dl,u,-p,· Th is clearly holds if there is nodemand period in the interval [h, Uk- Pk]. 
Therefore, suppose that thereis at leastonede mand period in this interval. Define s = max{t E 

[Ik. uk- Pk] : dr = 1}. If FILLBLOCKS chooses a period.before h to produce the demand in 

s, then x~~1,_ 1 ?: ~.lt-I = d1 ,s. since all holes before lk and all blocks B i• j < k, are completely 
used for production in (xu•, yu•). Otherwise, S3 asserts that there is a block Bi with j > k and 

lj < l~c, hence, qi = q~cand Pi> p~c. We may assume that (x1•, y1•) is obtained from (x1', yl1) 

by rnaving the production inthelast qk periods of Bk tothelast Qk (= qj) periods of Bi· Then 
Bj is completely used for production in (xu•, yu•), thus, x7~1,_ 1 ?: iL1,_1 +Pi+ Qj?: d1,u,. 
Hence, (xu•, yu•) is feasible. Since ax1• + {3y1

f( y, it follows from Corollary 2.2.12 that 
(xut, yu•) is also in X. 

Finally, let B be a block that is empty in (i, y). We first show that for any k, 1 ::::; k ::::; K, we 

have h::::; IB or Pk::::; PB· Suppose Bk satisfies h > lB and Pk >PB· Since Bk was chosen for 
production by FILL..BLOCKS insteadof B, we must have qB < qk. Then (c) implies that Bis 
empty in (x1•, y1•). Let (x, y) bethesolution obtainedfrom (x1•, y1•) by movingthe production 

in [h + Pk- PB 2, h + Pk l] to the fust PB+ 1 periods of B. Then ax + f3y ax1• + 
f3y'•- (PB+ 1) +PB. contradicting the validity of ax + {3y?: y. Hence, if h > lB, then 
Pk::::; PB· Let us now determine solutions (X8 , yi8 ) and (~8 , yu8 ) with the desired properties. 
We can easily deal with the case that Pk PB forsome block Bk with lk > lB. Then the 
solutions (x18 , y1a) and (xua, yue) that are obtained from (x1•, yl•) by moving the production 

in [h, h + Pk- 1] to respectively the fust PB and the la.<;t PB periods of Bare clearly in X. 
Therefore, assumethat PI<< PB for all blocks Bk with h >lB. By S4, k' max{k: h < lB} is 
well defined and Plé ?: p B. By ( c ), B is empty in (X"' , y1"'). Moreover, all blocks Bi, j < k', 
are compietel y used for production in this solution, hence, by S4, the production in the interval 
[lk' +PI!!- PB- 1, lk' + Plé- 1] can be moved tothelast PB periods of B while feasibility 
is maintained. Denote this salution by (xua, yu8 ). Then (xue, Y118

) satisfies ax + f3y ?: y at 
equality, justas (x18

, yi8 ), the salution obtained from (Xu8 , yu8 ) by moving the production in 
the last p B periods of B to the fust p B periods of this block. 

Now in order to prove that ax + {3y ?: y defines a facet of conv(X), we will show that the 
following directions are in X: 

(i) e(xr) for all t satisfying ar 0; 
(ii) e(yr) for all t satisfying f3r = 0; 
(iiia) e(Xr+p-d + e(yr) e(Xr-J)- e(Yr-I) for all tE UB [lB + 1, UB- PB+ 1]; 
(iiib) e(Xr-q-d + e(yr) e(Xr-1) e(Yr-Ü for all tE UB [UB- PB+ 2, UB]; 
(iv) e(Xr)- e(xlK+PK-1) for all t # lK + PK- 1 satisfying ar= 1. 
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Note that fJz > 0 if and only if tE [lB + 1, UB] forsome block B. Thus, (ii), (iiia), and (iiib) 
yield T different directions. Since at,<:+prl 1, (i) and (iv) yield T- 1 different directions. 
One readily checks that these 2T - 1 directions are linearly independent. This shows that 
ax + fJy 2: y defines a facet of conv(X). 

Ad (i) and (ii). The directions e(x1) and e(yz) fort satisfying a,= 0 and fJr = 0, respectively, 
can be constructed in a similar way as in the proof of Theorem 2.2.9. Therefore, we omit the 
details. 

Ad (iii). Let t be a period satisfying fJr > 0. Then t E B forsome (p, q)-block B = [l, u] 
and t > l. Consicter the previously defined solution (x", yu) in which only the last p peri­
ods of Bare used forproduction. FortE[/+ 1, u p + 1] thedirection e(xr+P-l) + e(y1)­

e(x1-t) e(Yz-1) is constructedfrom the solutions obtained from (xu, yu) by moving thepro­
duction in [u-p+ 1, u] to [t, t + p- 1] and [t- 1, t + p- 2], respectively. From Corol­
lary 2.2.12 and a x" + pyu y, it follows that these solutions are also in X. Furthermore, for 
tE [u-p+ 2, u] thedirection e(Xz-q-1) +e(yr)- e(Xr-1)- e(Yr-d isconstructedfromthe 
solutions obtained from (x", yu) by moving the production in the interval [u- p + 1, s- 1] to 
the interval [u p q + 1, s q 1] = [l, s- q- 1] forsE {t -1, t}. Again, by Corollary 
2.2.12, these solutions satisfy ax + fJY 2: y at equality. 

Ad{iv). We show that thedirection e(x1) e(lx + Px -l)can beconstructedforeveryperiod 
t =folx + PK- 1 with a1 1. In the proofwe often restriet ourselves to the construction of a 
direction e(xr) e(Xt ), where t' is a period for which the direction e(xt) - e(Xtx+Px-1) bas 
already been constructed. 

First, let t be a period such that az 1, fJr 0, and iz = 0. Since period lx + Px- 1 
was chosen by FILL..BLOCKS to produce the demand in period t*, the solution obtained from 
(i, ji) by moving the production in period lx + px - 1 tot is in X. Together with (i, ji) and 
the direction e(y1) constructed previously, this solution provides the desired direction. If t is 
a period with a 1 = 1, i 1 1, and tnotin a block, then t is a demand period before the fust 
hole and before rninB lB. In this case we have a 1 = 1 and i 1 = 0, as it is always assumed that 
d1 = 0. Thus, the directions e(xr) e(xJ) and e(xJ) e(xtx+px-d are easily constructed. 

Next, let t E [l, l + p- 1], where B = [l, u] is a (p, q)-block that is not used for pro­
duction in (i, ji). Con si der the solution (:x!, y1) in which the first p periods of B are used for 
production. Reeall that (x1, y1) was obtained from (:x!•, y1•) forsome k E {1, ... , K}, say k, 

by moving the production in [/t + Pk p, Ik+ Pk -1] to [l, l + p l]. Denote by (x, y) 

the solution obtained from (x1, y1) by moving the production in [t + 1, l + p- 1] tothelast 
l + p- t -1 periodsof B. We already observed thatax+ fJy= y. Furthermore,XI.+p.-p = 0 
and moving the production in period t to lk + Pk p yields another solution in X. Hence, the 
direction e(x1)- e(x/t+p,-p) can be constructed for every tE [l, l + p 1]. Together with the 
direction e(Xt) e(Xtx+px-d• whichhas alreadybeen established becausea1 = 1, fJt = 0, and 
i 1 0, this yields the desired direction fort E [I, l + p -l ]. 
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What is left to show is that the direction e(x1) - e(XLK+PK-d can be constructed for ev­
ery t E u:=l [it, lt + Pk 1 ], t #- IK + p K 1. We wil! fust establish this direction for the 
periods in [IK, IK+ PK 2]. Then it is shown how e(x1) e(XLK+pri) can be constructed 
fort E [it, lk + Pk 1 ], k < K if the direction has already been established for all periods in 
Uf=k+I [l 1, l 1 + pi- 1]. However, we start by showing that there exists a period t such that 
a1 = 1 and x1 = 0. No te that if there exist periods that are neither a hole nor in a block, then 
at least one of these periods is empty in (i, y). Therefore, suppose that there is no period t 
with a1 = 1 that is not in a block. Furthermore, suppose that all blocks are (partially) used for 
production in (i, y). Then there are no blocks but Bk, 1 ::5 k ::5 K, hence, by S1, ax + fly 

ai= r::=l Pk- Let k' satisfy lw = mink lt. By P4, the total demand up to period uw - pw + 1 
is less than lw, hence, the solution (i, y) in which all periods but [lk•, uw - Pk' + 1] are used 
forproduction is feasible. However, ai+ fly = r::=l Pk- pw + (pk'- 1), which contradiets 
the validity of a x+ fly 2: y. Hence, there always exists a period t with at 1 for which no 
production occurs in (i, y). 

We wil! first construct the direction e(XtK)- e(xz) for every tE [lK, lK + PK- 1], where 
tK = rnin{t: a 1 = 1 and it = 0}. From the above arguments it follows that tK is well defined 
and, by S1, flrK 0. Notethat thedirection e(xtK) e(xlK+PK-d bas alreadybeen established. 
Thus,lett E [lK. lK + PK- 2] andlet (x, y) bethesolution obtainedfrom (i, y) bymoving the 
production in the interval [t + 1, lK + PK -1] tothelast lK + PK- t -1 periods in the block 
BK, i.e., to the interval [t + qK + 1, UK]. Then (x, y) EX. From this solution the direction 
e(x1K)- e(xLK+J-t) can be easily constructed, provided that moving the production in period 
t to period lK yields a feasible solution. This trivially holds if lK < lK. Hence, suppose that 
t K > uK. No te that this implies that each period before t K is either a hole or in a block. Th en 
the productionint can be moved totKif the total production in (x, y) up to period t + qK, 

whîch equals t - 1, is not less than the total demand up to this period. Sirnilar as before, let 
l"' mink h. We already observed that the solution for which production occurs in all periods 
exceptin the interval [lk'· uw- pw + 1] is feasible. Thus, the total demand up to period t + qK 

is at most t + qK- (qk + 1). The proof is concluded by showing that qk = qK. Therefore, 
consicter again the solution (i, y). If qk < qK. then we can move the production in the last 
qk + 1 periods of Bk to to the first qk + 1 empty periods of BK while maintaining feasibility. 
However, this new solution (x', y') satisfies ar+ fly' =ai+ fi.Y- 1, contradicting again the 
validity of ax + fly 2: ai. Thus, qk qK. since we already observed that qk ::5 qK. 

Now letk < K and suppose that the direction e(xt) e(IK+ PK- 1) has been established 
for every tE Uf=k+1[lj, lj +Pi- 1]. Consicter the solution (xlt, y1t), in which in Bk only 
production occurs in the first Pk periods. Moreover, all blocks B i• j < k, are completely used 
for production. Using sirnilar argumentsas before, one easily shows that tk rnin{t: at= 1 
and ~t = 0} is well defined. Then either tk is empty in (i, y) or tk is the fust period of a 
block Bi forsome j > k. In both cases the direction e(Xtt) - e(xiK+pri) has already been 
established. Now the direction e(xtk) - e(xt). tE [lk, lk + Pk- 1], can be constructed in a 
similar way as fortE [IK, IK+ PK- 2]. This coneindes the proof ofthe theorem. 0 
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Example 2.2.10 Let T = 15 and dr = 1 fortE {4, 6, 7, 9, 11, 13, 15}. Consicter the following 
R-block inequalities: 

+ Y2 + 2y3+ Y4 + Y6+ 2y7+ 2ys+ Y9 + Yn + Y12+ YI3 + Y1s 
X! + X2 + X5 + X6 + X7 + XJQ + X11 + X12 + X!4 

2: 5 

and 

+ Y2+ Y3 + Ys + Y?+ Ys + Y11 +2Y12+2Yl3+ Y!4 
X! + X2 + X4 + X6 + X7 + X9 + X!O + Xu + X15 

2: 5. 

Given the left-hand side of the first inequality, FILL.BLOCKS chooses period i, 1 ~ i ~ 7, to 
produce the demand for the ith demand period. With respect to the left-hand side of the sec­
ond inequality FILL..BLocKs proceeds as follows: fi.rst, the (1, 1 )-block [4, 5] is completely 
filled, then the (2, 1)-block [1, 3] is filled, and finally periods 10 and 11 are chosen to produce 
the demand for period 13 and 15, respectively. In both cases (i, ji) is minimal with respect 
to the R-block structure at hand because of Lemma 2.2.14. It is left to the reader to check 
that P1-P4 and S 1-S4 hold in either case. Hence, both inequalities are facet -defining for the 
instanee at hand. D 

We already observed that a x+ {Jy 2: ai is always valid for X if p8 = 1 for all B or if every 
blockis a (p, q)-block forsomepand q. Van Hoesel [18] proves that conditions P1-P4 and 
S1-S3 are both necessary and sufficient fora hole-bucket inequality to be facet-defining for 
conv(X). Note that St implies S4 in this case. Let us now consicter the subclass ofR-blockin­
equalities with p 8 = p and q B = q for all B. Using similar argumentsas in [18], we can show 
that such an inequality must satisfy S1-S4 in order to define a facet of conv(X). Together 
with Theorem 2.2.15, this yields a complete characterization of the facet-defining inequalities 
of in this subclass. 

With respect to separation we mention the following results. Van Hoesel and Kolen [19] 
present a separation algorithm for the hole-bucket inequalities that is based on dynarnic pro­
gramming. They define an acyclic networksuch that each path corresponds toa facet-defining 
hole-bucket inequality and vice versa. The running time of this algorithm is 0(T5). A simi­

lar approach can be used for the separation of R-block inequalities with PB= pand qs = q 
for all blocks B. Because of their large running times, these separation algorithms will not be 
used in our computational experimentsin Chapter 3. Therefore, we will nol describe them in 
more detail. 

2.2.4 Hole-lifted left stock-minimal inequalities 

The last subclass of facet-defining inequalities with x-coefficients in {0, 1} that we discuss 
is also based on a class of inequalities derived by Constantino for the capacitated lot-sizing 
problem with startup costs, namely, the class of intervalleft supermodular inequalities (cf. 
[5], Section 2.2). In the sequel, we will notmake use ofthe general form (2.7) of facet-defining 
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inequalities with x-coefficients in {0, 1}. Although the inequalities discussed bere can also be 
staled in this form, there is a much more insightful way to introduce them. SimHar as before, 
s; denotes the i tb demand period, thus, d", = 1 and d1,s, = i. 

Let t be a period in [0, T] and let s be the jth demand period after t, thus, s Sd1 •• + i· If 
no production occurs in the interval [t + j, s], then the inventory at the end of period t must 
beat least one, or, equivalently, the total production up to period t mustbeat least du + 1. 
Consicter the following inequality: 

X!,t + Xr+j + Yt+j+J.s ~ d1,1 + 1 · (2.23) 

Observe that Xr+ i + Yr+ j+l ,s is nonnegative and integral for any feasible salution to DLSP. 
Moreover, Xt+j + Yr+j+l,s = 0 implies that there is no production in [t + j, s]. Hence, (2.23) 
farces the inventory at the end of period t to be at least one if no production occurs in the 
interval [t + f, s]. 

Proposition 2.2.16 LettE [0, T] and let 1 Ç {1, ... , dr+I,r}. Then 

X!,t + L(Xr-t-j+ Yr+j+l,sd,,,+) 2:: du + 111 
jeJ 

(2.24) 

is validfor X. 

Befare we prove the above proposition, we give an example. 

Example 2.2.11 Let T = 12 and d1 = 1 fortE {2,4, 5, 7, 8, 9, 10, 12}. Take t 3 and 1 
{1, 3, 4, 6, 7}. Then {sd,,r+i: jE 1} = {4, 7, 8, 10, 12}. By Proposition 2.2.16, 

+ Y4 + Y6+2Y7+ Ys+ Y9+2YJO+ Y11 + Y12 > 6 
X1 + X2+ X3 + xs +x9 

is a valid inequality for the given instance. 0 

PROOF OF PROPOSITION 2.2.16. Theproofis by induction on 111. First, note that for 1 = 0 
the above inequality is the production inequality x u~ du, hence, (2.24) is valid for I 11 0. 
Now let 1 ç {1, ... , dr+I,T}, 111 ~ 1, and suppose (2.24) is valid for all subsets 1' of size 
11'1 < 111. Let (x, y) be a salution to DLSP vialating (2.24) for the given choice of 1. Let 
j* = maXjeJ j and define 1' = 1\{j*}. By the induction hypothesis, (2.24) is valid for 1', 
hence, 

dt,r+l11 > XJ,t+ L(Xt+j+Yr+j+l,sdu+) 
jeJ 

= Xl,t + L (Xr+ j + Yt+ j+l,sd,,,+) + Xt+ j• + Yt+ j'+l.sd,,,+r 
jE]' 

2:: dl,r+I11-1+Xr+j'+Yt+i'+l.s4 +J'' 1,1 
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Since (x, y) is integral, we have xt+ i' + Yt+ i'+1,sd
1

,+i' = 0, which implies that no production 
occurs in the interval [t + j*, sd.,,+ i']. Moreover, (.x, y) satisfies the production requirements, 

thus, Xt,t+i'-l Xt,sd,,,+i' ~ dt,t+ j*. This yields 

Xt,t + L(Xt+j + Yt+i+I.sd,,,+J) 
jeJ 

~ Xt,t + LXt+j = X],t+j'-1 
iEl' 

> dt,t+ j*- (j* -1-11'1) 

L Xt+j 
jE{l, ... ,j'-1)\J' 

d~.t+ 111, 

which contradiets the assumption that (x, y) violates (2.24) for the given choice of 1. 0 

An inequality of the form (2.24) is called a left stock-minimal inequality or LSM inequality for 
short. LSM inequalities are a direct adaptation of the interval Ie ft submodular inequalities of 
Constantino to DLSP. In Subsection 2.2.2 we discussed HRSM inequalities, which generalize 
the RSM inequalities, which intheir turn are a direct adaption ofthe interval right submodular 
inequalities ofConstantino. A similar generalization oftheLSM inequalities will bediscussed 
later. 

We first investigate under which conditlans an LSM inequality defines a facet of conv(X). 
If 1 = 0, then (2.24) is the production inequality Xt,t ~ dt ,r. which de fin es a facet of conv(X) if 
and only if dt 1 and either t = Tor dt+t = 0 (Proposition 2.1.2). If t = 0, then (2.24) is the 
sum of inequalities of the form x i+ y j+t,s1 ~ 1. These inequalities are facet-defining, hence, 
if t = 0, then (2.24) does not define a facet unless I 11 = 1. Therefore, assume that t > 0 and 
1 =!= 0. If (2.24) defines a facet of conv(X), then at least the general properties P1-P3 stated 
in Lemma 2.2.2 have to be satisfied. No te that for 1 =I= 0 the demand period sd,,,+ i', where 
j* = max.iEl j, is the last period r withaf + {3f > 0, hence, P1 is obviously satisfied. The only 
holes before sd,,r+i' are the periods t + j, 1 :S j < minjeJ j. Hence, for every r < Sd1,,+i' the 
number of holes in [ r, Sd1,,+ i'] is strictly less than the demand in this interval, thus, P2 hol ds. 
Finally, P3 states that the number of holes in the interval [t + 1, t + j], 1 :S j < min jEJ j, 
must exceed dt+l,t+i· If minjEJ j > 1, then this condition is satisfied if and only if dt+t 0. 
Moreover, if 1 E 1 and dt+1 = 1, then (2.24) is equivalent to the inequality with t replaced by 
t + 1 and 1 replaced by 1' = {j 1 : j E 1 and j > 1}. Hence, we only have to consicter the 
case that tE [1, T- 1], dt+l = 0, and 1 =!= 0. 

Theorem 2.2.17 LettE [1, T- 1] such that dt+I = 0 and let 0 =/= 1 ~ {1, ... , dt+l.T}. Then 

XI,t+ L(Xt+j+ Yt+i+I.s41 ,,+) ~ dt,t+ 111 
jEl 

defmes a facet ofconv(X). 

PROOF. Let ax + {3y ~ y be an inequality of the form (2.24) such that tand 1 satisfy the 
required conditions. Let X be the set of solutions in X that satisfy the inequality at equality. 

Let j* = max jE; j. For r E [t + 1, Sd1,,+ r] wedefine jf min{j : 1 :S j :S j* and sd,,,+ i ~ <:}. 
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Thus, Sd1,,+ j, is the fust demand period after -r- 1. We claim that the following 2T- llinearly 
independent directlans are in X: 

(i) e(x-r) for all periods -r witha-r = 0; 

(ii) e(y-c) for all periods -r with /3-r = 0; 
(iii) e(x-r) e(Xd1,,+1) for all periods -r =I= dt,t + 1 witha-r = 1; 

(iva) e(y-r) + e(x-r+j'- j,)- e(Y-r-Ü e(X-r-Ü for all periods -r with f3r > 0 and j,; jr-J; 

(ivb) e(y-r) + e(xt+ i.-1) - e(Y-r-1) e(X-r-J) for all periods-r with /3-r > 0 and jr > j-r-1· 

Thesedirectlans can be constructed using similar argumentsas in the proofs ofTheorems2.2.9 
and 2.2.15. Therefore, we restriet ourselves to providing salutlans (xr, y-r) E X for all -r E 

[t + 1, sd,,,+ i'] that can be used for the construction of the aforementloned directlons. 

Let -rE [t + 1, sd,,~+ i'] and define (x\ y-r) as follows. First, set y"j Xsj = 1 for j -:::,: du 

and for j > du + j*. Furthermore, produce the demand for Sd1,,+b 1 -:::,: jj*, in the intervals 
[t + 1, t + j-r- 1] and [ -r, -r + j* - j-r]. The feasibility of (x-r, y-r) follows from the definition of 

j-r. Hence, it remains to show that ax-r + f3y-r = y dt,t +IJl. Observe that dt+t 0 implies 

that j-r < -r- t for all r > t + 1. Thus, we have x~_ 1 = 0 and, hence, y~ = 1. Then 

ax-r + f3y-r = dt,t + f3t+ 1 + at+l.r+ i.- I + /3-r + ar:;r+ r- j, 

= dt,t + lU E 1: j <MI+ /3-r + ar,r:+j•-j,· 

Ih > t + j*, then f3r: = lU E 1: Sd1,,+i 2: -r}l = lU E 1: j 2: j.,;}l anda-r,-r+i'-j, 0. Oth­
erwise, if -r = t + j forsome jE {1, ... , j*}, then /3-r = lU E 1: Sd,,t+j 2: -rand j < j}l and 

a-r. -r+ i'-i< = at+ i.r+ i' = I U E 1 : j 2: j} 1. Thus in both cases we have ax-r + f3y-r = d1,z + I 11. 
0 

Example 2.2.12 Let T 12 andd1 = 1 fortE {3, 6, 8, 9, 11, 12}. Lett = 3 and 1 = {3, 4, 5}, 

thus, {Sd1,,+i: jE 1} {9, 11, 12}. ByTheorem2.2.17, 

+ X6 + X7 + Xg 
(2.25) 

is a facet-defining LSM inequality for this instance. This also holds for 

+ Y6 + Ys + Y9 + Y10 + Ytt + Y12 
~+~+~+~+~ +~ +~ 

2: 4, (2.26) 

where t = 4, 1 = {1, 3, 5}, and, hence, {Sd1,,+i: jE 1} = {6, 9, 12}. 0 

Consider the fust inequality in the above example. Let Vo = {t: at f3t = 0} [4, 5] and 

let V1 {t: a,= 0 < f3t} = [9, 12]. Then the right-hand side equals dt,t2 -IVo I. Reeall that 

all facet-defining inequalitles of the general form (2.7) with right-hand side dt, 1• - IVo I are 

contained in the class of HRSM inequalities discussed in Subsection 2.2.2. Here t* denotes as 

usual the last period t with a 1 + f3, > 0 and Vo is the set of holes befare t*. Thus, (2.25) also 
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belongs to the class of facet-defining HRSM inequalities (cf. Example 2.2.5). lt is nothard to 
see that this holds for every inequality (2.24) for which 1 is an interval {j', ... , j*}. Observe 
that in this case the inequality is also a block inequality containing one block, namely, the 

(IJl, sa,,,+ i'- t- j*)-block [t+ j', sa,,,+ i•]. Reeall that a blockis said to beregular ifu(v) = 

u( v + 1) - 1 for all periods v and v + 1 in the intersectien of V1 and the block. Thus, the 
(3, 4 )-block [6, 12] in (2.24) is nonregular. In fact, the blockis regular if and only if sa,,,+ i' = 
sa,,,+ i'+ j*- j'. 

In Section 2.3 we will give a partialli:near description of conv(X) that solves the prob­
lem when the costs satisfy the Wagner-Whitin property. This linear description will consist of 
the inequalities in the LP-relaxation of DLSP and the LSM inequalities with 1 = { 1, ... , j*}, 

1 ~ j* ~ dt+I,T· 

We next discuss an extension oftheLSM inequalities by introducingholes in theinterval [1, t]. 
In the sequel, we use the following notation: if t is a period, and j and k are two nonnegative 
integers, then s(t, j, k) denotes the (j + k)th demand period after t, i.e., s(t, j, k) = sa,,,+ i+k· 

Proposition 2.2.18 Let t E [0, n, k 2: 0, and H s; [1, t] such that the inventory at the end 
ofperiod t is at least k when all periods in Hare usedfor production. Furthermore, let 1 s; 
{1, ... , dt+I.T- k}. Then 

L Xr + L(Xt+j + Yt+i+l,s(t,j,k)) 2: d1,1 + k+ 111- I Hl. (2.27) 
rE[l,t]\H jEJ 

is validfor X. 

PRO OF. The pro of is similar to the pro of of Lemma 2.2.5, in which we gave a necessary and 
sufficient condition for the HRSM inequalities to be valid for X. Rewrite (2.27) as follows: 

lt 2: k+ L(l- Xt+i- Yt+i+l.s(t,j,kJ) + L(Xr- 1), (2.28) 
~~ HH 

where lt denotes as usu al the stock at the end of period t, thus, lt =x u- du. Define h* = lH I 
and denote the periods in H by th, 1 ~ h ~ h*. Furthermore, let ..\h, 0 ~ h ~ h*, be the set 
of solutions to DLSP in which the periods t;, h < i ~ h*, are used for production. Hence, 
..th = {(x, y) EX: x1, = 1, h < i ~ h*}. We show by induction that 

h 

/1 2: k+ 2:::::0- xt+i- Yt+i+I.s<t.i.kJ) + l:::Cxt, -1) 
jEJ i=l 

is valid for ..\h, 0 ~ h ~ h*. Since ÀÎ,• = X, this obviously proves the statement. 
We first show that 

/1 > k + 2:::::0- xt+i- Yt+i+l.s(t,j,kJ) 
jEJ 

(2.29) 

(2.30) 
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is valid for À(). Similar as in the pro of of Proposition 2.23, we use induction on 1 11. First, let 
J 0 and let (x, y) be a salution in À(). Then x~ = 1 for all -r E H. Hence, by assumption, 
Ir 2: k. Therest ofthe proofis analogous to the proof ofProposition 2.23,.to which tbcreader 
is referred for more details. 

Now suppose that the validity of (2.30) for Xi. bas been established for 0 :::;: h :::;: h', where 
h' < h*. We claim that 

h'+l 

Ir 2: k+L:O-xr+i-Yt+i+l.s(t.j,k))+L(xr. 1) (2.31) 
jEJ h=l 

is satisfied by all (x, y) E Xi.'+I· This obviously holds for {(x, y) E Xi.'tl : Xrh'H = 1} = Xj,,. 

Therefore,let (x, y) be a salution in Xi.'+I without production in period th'+l· Let (i, y) be 
the salution obtained from (x, y) by setting Xrh'+t and Yrw+1 to one. Since (x, y) is a feasible 
salution to DLSP, the extra unit produced in period tw+I increases the inventory at the end of 
period t by one, hence, Ï 1 = Ir+ 1. Obviously, (i, y) E Xj,., hence the induction hypothesis 
yields that 

Ïr - 1 2: k + L (1 
jEJ 

h' 

ittj Ytti+I.s(r,j,k)) + L(ir. -1) -1 
h=l 

h' 

= k+LO-Xt+j. Yt+j+l,s(t,j,k))+L(Xr.-1) 1. 
jEJ h=l 

This shows the validity of (2.31) for (x, y) and, hence, for .xïrti· D 

An inequality of the form (2.27) is called a hole-lifted left stock-minimal inequality or HLSM 
inequality for short. Obviously, an HLSM inequality with H = 0 is an LSM inequality. We 
already characterized the facet-defining LSM inequalities of conv(X). Therefore, consicter an 
HLSM inequality with I Hl 2: 1. In order for (2.27) to define a facet of conv(X), the conditions 
Pl-P3 of Lemma 2.2.2 must be satisfied. This imposes the following restrictions on the set 

H: I Hl < dh,T. where h = min~EH -r, and 

IHn {h, -r]l > dh,.r: forevery rE [h, t]. (2.32) 

Thus, in particular, I Hl > dh,r· Observe that if H satisfies the aforementioned restrictions, 
then the stock at the end ofperiod t is at least I Hl dh,r when all periods in Hare used for 
production. Thus, k = I Hl dh,r in (2.27). Furthermore, J =f:. 0, since there mustbeat least 
one period with positive y-coefficient. Note that from J ç {1, ... , dr+l,T- k}, J =f:. 0, and 
k = lH I dh,r it follows that lH I < dh,T· Thefollowing theorem implies that P1-P3 arealso 
sufficient for an HLSM inequality with H =f:. 0 to be facet-defining of conv(X). The result can 
be proven in a similar way as Theorem 2.2.17. 
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Theorem 2.2.19 Let t E [1, T] and let H be a nonempty subset of[1, t] satisfying (2.32). Fur­
thermore, let 1 ~ {1, ... , dh,T -I Hl}, 1 # 0, where h = min".EH"· Then 

L x".+ L(Xt+j+ Yt+j+l,s(r,j.IHI-d~t.,))?: dl,h-1 + 111 (2.33) 
t'E[I,t]\H jE] 

defmes a facet of conv(X). 0 

It is not hard to show that every HLSM inequality (2.33) for which 1 is an interval, can also 
be considered as an HRSM inequality with Va = HU {t + j : 1 :::; j :::; jmin- 1} and V1 

[t + jmax + 1, s(t, jmax. I Hl - dh,r)], where jmin mînjEJ j and Anax maxJEl j. See for 
example the first înequality below. 

Example 2.2.13 Let T = 12 and d1 = 1 fort E {2, 4, 8, 10, 11, 12}. Take t 7 and H = 
{1,2,4,5}. Furthermore,take1={1, ... ,1HI dr,t} {1,2}. Thens(t,j,2) 10+j, 
j E 1. By Theorem 2.2.19 

+ Y9+ 2yw + 2yu + Y12 
+ X6 + X7 + Xg + X9 

is a facet-defining inequality for this instance. This also holds for 

+x1+ Xs 

where t = 7, H {6}, and 1 = {1, 3}. 

?: 2, 

0 

To conclude this subsection, we describe a polynomial algorithm to separate HLSM inequal­
ities. Let (i, y) denote a solution to the LP-relaxation of DLSP. The algorithm provides the 
most violated inequality of the form 

L Xr + L(Xr+j + Yt+J+I.s(t,J,IHI-dh.r))?: dr,h-1 + 111, (2.34) 
l"E[l,t]\H jE] 

where t E [1, T] and either H = 0 and 1 ~ {1, ... , dh,T- lH I} or Hand 1 satisfy the condi­
tions of Proposition 2.2.19, or concludes that such an inequality does not exist. 

In the sequel, we assume that t is fixed. We first make the following observation with re­
spect to the set H. Let H ~ [1, t], H # 0, and define h = min.,.EH<. Define kt= dr.h-l and 
k2 = I Hl + k1. Then sk, is the last demand period before h, hence, H ~ [sk, + 1, t]. Now 
(2.32) is equivalent to 

lH n [sk, + 1, Sk]l > k- k, for all k E {k1 + 1, ... , d1,rl· (2.35) 

Note that the above condition can only be satisfied if k2 > dt,t· 

We first deal with the separation problem for inequalities (2.34) with H ~ [sk, + 1, t] and 
lH I= k2 kt for given integers kt and k2 satisfying either 0:::; kt < dJ,t < k2 < d1,r or k1 
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dt,t ~ kz < dl.T· The question to be answered is: do there exist a set H 5:; [sk, + 1, t] of size 
kz kt satisfying (2.35), and a set J 5:; {1, ... , d1,r- kz} such that 

L ir+ L,:<xr+i+ Yr+j+l,st
2
+1) <kt+ 111? (2.36) 

~E[t ,1]\H jE J 

Note that H = 0 if and only if kt = kz dt,t. hence, in this case (2.35) is satisfied. Further­

more,if H =I= 0andh = min~EHr, then IHI-dh,t kz -d1.r. dt+t,T- (I Hl dh,r) = d1,r -kz, 

and s(t, j, kz du) = SkzH For 1 ~ j ~ di,T kz wedefine 

Then the separation problem boils down to finding sets Hand J such that 

L i..: k1 + L /j(t, kz) - I 11 < 0. 
rE[l,t]\H jEJ 

Since L-rE[t,t]\Hi.., 2:: Xt,st, 2:: kt for any H 5:; [sk, + 1, t], a most violated HLSM inequality, 
if one exists, will satisfy /j(t, k2) ~ 1 for all j E J. Hence, take J = (j : 1 ~ j ~ d1,r - k2 

and fi(t, kz) < 1}. From all possible sets H we take the one that maximizes L-rEHXr· Thus, 
if kt d1,r. then we take the kz - kt periods r in [sk, + 1, t] with largest value of Xr. If 
k1 < du, then H must be chosen in such a way that I H n [sk, + 1, sk] I > k - k1 for all k E 
{kJ + 1, ... , d1,r}. This is achieved in the same way as in the separation algorithm for the 
HRSM inequalities. First, wedetermine a set H(t, kt) 5:; [sk, + 1, t] of size d1,1 kJ that sat­

isfies IH(t, k1) n [sk, + 1, Sj]l > k- kJ for all k E {kJ+ 1, ... ,di,rL and L-rEH(t,ktli"' is 
maxim al: 

determine t' E [sk, + 1, Sk,+l - 1] such that i" is maximal; H(t, kt) { t'}; 

for k =kt + 1 to du do begin 
determine rE [sk, + 1, Sj]\H(t, kt) such thati" is maximal; H(t, kt):= H(t, k1) u {t'} 

end 

Let Hconsistsoftheset H(t, k1) andthekz -dl.t 1 (2:: O)periodsdn [sk, + 1,t]\H(t, kt) 

with largest value of i..:. It is readily checked that H satisfies the required conditions. Ob serve 
that (i, y) violates an inequality of the form (2.36) for t, k1, and k2 if and only if (2.36) is 
violated for the given chokes of H and J. 

The following algorithm provides the most violated HLSM inequality, if one exists, for 

a given period t. Note that /j(t, kz} = /j(t- 1, kz) + Xr+j- Xr+j-!- .Yt+i and /j(t, k2) = 
h+I (t- 1, kz 1) provided that j < d1,T- kz and kz > dJ,t· Hence, the value of /j(t, kz) 

can be evaluated in an efficient way. 
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begin SEPARATION(t) 
IJ. opt = 0; determine fj(t, kû for d1,r ::::: k2 < d~,r and 1 ::::: j ::::: di,T k2; 

for k2 = d1,t to d1.r- 1 do begin 
Jkz {j: 1 ::::: j::::: d1,T- k2 and /j(l, kz) < 1}; !J.kz := LjEltz /j(t, kz) I h 2 1 

end 
for k1 = 0 to d1, 1 do begin 

if k1 d1,1 then begin H := 0; k* := d1,t end 
else begin 

determine H(t, k1) as described previously; H := H(t, k1); k* du + 1 
end 

IJ. Xt,t LTEHit"-kl; 
for k2 k* to d1,T- 1 do begin 

if IJ.+ !J.kz < IJ. opt then begin ] 0P1 := h 2 ; H 0P1 := H; IJ. opt := IJ.+ !J.kz end 
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determine 't' E [Sk, + 1' t]\H such that XT is maximal; H := Hu { ;:} ; IJ. IJ. x" 
end 

end 
end. 

If IJ. opt < 0 at termination of SEPARATION(t), then (2.27) is violated fort, Hop\ and JOP1• Ap­
plying the above algorithmfor every tE [1, T t] gives an 0((di.rT)2 ) algorithm to find the 
most violated HLSM inequality. Note that the separation can be performed in 0(d1,r T) time 
when we restriet ourselves to HLSM inequalities with H 0, i.e., to the LSM inequalities 
(2.24). 

2.2.5 Forther remarks 

In this sec ti on we studied facet-defining inequalities of conv(X) with x-coefficients in {0, 1}. 
We derived some general properties of these inequalities and discussed tbree subclasses in 
more detail. We already observed that the intersection of these three subclasses is not empty. 
The HLSM inequalities for which Kis an interval also belong to the class of HRSM inequali­
ties. In fact, it is nothard to show that these are the only inequalities that are contained in both 
classes. Moreover, these inequalities are block inequalities with one, not necessarily regular, 
block. The inequalities xa,,, + Ydu+l.t :=:: 1, where t is a demand period, are contained in the 
intersection of the three sub classes. 

Example 2.2.14 Let T 12 and d1 = 1 fortE {3, 6, 8, 9, 11, 12}. Take V= {8, 10, 11, 12}, 
u(8) = 2, u(lO) = 5, u(11) = 7, and u(12) = 10. Then 

+yg+y4+Ys+2y6+2Y1+3Ys+2Y9+2y10+2yu+YI2 ::::
6 

Xt + X2 + X3 + X4 + X5 + X6 + X7 + X9 

is a facet-defining HRSM inequality fortbis instance, since S2 = {3, 6, 8, 9, 11, 12},du(v) 0, 
and v- u(v) = l{t E S2: t :=:: u(v)}l for every v E V1. Obviously, the inequality is neither a 
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block inequality nor an HLSM inequality. An example of a facet-defining R-block inequality 
that is not contained in one of the other two subclasses is 

+ Y2 + Y3 + Ys + Y6 + Y1 + .V9 + .V JO+ .Vu 
X! + X2 + X4 + X5 + X6 + Xg + X9 + Xto + X12 

::: 5. 

Finally, inequality (2.26) in Example 2.2.12 is an HLSM inequality that defines a facet for the 
given instanee and belengs to neither of the other two subclasses. 0 

For most instauces the three subclasses, together with the inequalities in the model, only yield 
a partial description of conv(X). 

Example 2.2.15 Let T = 11 and dr 1 for t E {7, 9, 10, 11}. For this instanee 

+ Y3 + Y4 + Ys + 2y6 + 2y7 + .Vs + 2y9 + Yto + Yu ::: 3 

defines a facet. 0 

lt is readily seen that the above inequality does not belong to any of the three subclasses dis­
cussed in the previous subsections. In fact, even a complete characterization of the facet­
defining inequalities with x-coefficients in {0, 1} would not give a complete linear description 
of conv(X), since for mostinstances there exist facet-defining inequalities with x-coefficients 
larger than one. 

Example 2.2.16 Let T = 8 and dr = 1 fortE {4, 6, 7, 8}. For this instanee 

+3Y2 +2y4+ Ys +2y7+2Ys 
3Xt + 3X3 + X4 + X5 + 2X6 + 2X7 

::: 7 

and 
+ Y2 + Y3 + 2 Ys + 2 Y1 + Ys :;:: 4 

X! + X2 + 2X4 + 2X6 + Xg 

are facet-defining. 0 

2.3 Wagner-Whitin costs 

In this section we give a partiallinear description of the convex hull of feasible solutions to 
DLSP that solves the probiemin the presence ofWagner-Whitin costs. Reeall that the costs are 
said to satisfy the Wagner-Whitin property if Ct::: Cr+l for all t. This implies that there exists 
an optimal solution that satisfies the zero-inventoryproperty, which means that the inventory 
at the end of period t 1 is zero for any period t in which a production batch is started. 

Pochet and Wolsey [32] derive simHar results for four other single-item lot-sizing mod­
els. For each problem they give an extended tormulation for which the LP-relaxation always 
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yields a solution that satisfies the zero-inventory property. By projection they obtain an LP­
formulation in the original variables that solves the problem in the presence of Wagner-Whitin 
costs. We will prove our result in a different way, without the introduetion of additional vari­
ables. 

We start from the tormulation of DLSP presented in Section 2.1 with the extra restrietion that 
overproduction is not allowed, i.e., werequirex1,r = d1,r. No te that if Cz is nonnegativefor all 
t, then there always exists an optimal solution to the more general formulation that satisfies 
this constraint. Denote by RDLSP the LP-relaxation of DLSP extended with the O(duT) 
inequalities 

j 

Xt,t + L (Xr+i + Yt+i+l,sd1,,+•) 2: dl,t + j 
i=l 

(2.37) 

fortE [0, T -1] and jE {1, ... , d1+1,r}. Asusual,s;denotestheithdemandperiodin [1, T]. 

Inequalities (2.37) are a special case of the LSM inequalities for which Kis an interval (cf. 
Subsection 2.2.4). It was already observed that these inequalities also belong to the class of 
RSM inequalities discussed in Subsection 2.2.2. We will prove the following result: 

Theorem 2.3.1 lf the cast function satisjies the Wagner-Whitin propeny, then the objective 
value of RDLSP equals the objective value of DLSP. 

When c1 strictly decreases in t, an even stronger result can be proven, namely, that RDLSP 
solves DLSP. 

Theorem 2.3.2 lf c1 > c t+I for every period t, then any optima! salution of RDLSP is a con­
vex combination offeasible solutions of DLSP, i.e., thesetof optima! solutions of RDLSP has 
integral extreme points, 

The remainder of this sec ti on is mainly devoted to the pro of of the second theorem. Afterwards 
we will prove Theorem 2.3.1 as a corollary to Theorem 2.3.2. From now on it is therefore as­
sumed that c1 > ct+1 for all t. The proofuses a partitioning of a solution (x, y) ofRDLSP into 
a set of batches 'iJ, where a batch B = [pB, qB] is identified with the partial solution (xB, yB) 
defined by Y!s = 1, x!= 1 fortE [pB, qB], and all other variables equal zero. Furthermore, 
a value bB, 0 < bB::::; 1, is attached to every batch B such that (x, y) = LBe'lJbB(xB, yB). 
We say that 'iJ satisfies the panitioning condition if 

'v'ie{l, ... ,d1,Tl L bB = 1, 
~Be'lJ:s,eJB 

where JB consistsof the fust 1 BI demand periods in [pB, T]. 

(2.38) 

The proof of Theorem 2.3.2 consistsof the following two steps. First, we prove that the 
partitioning condition is a sufficient condition for (x, y) to be a convex combination of so­
lutions of DLSP (Lemma 2.3.3). Second, we present a greedy algorithm that partitions any 
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optimal solution (x*, y*) of RDLSP into a set of batches '1J with values bB, B E 'lJ, such that 
(x*, y*) = LBE'.BbB(xB, yB) and the partitioning condition is satisfied. Combining these re­
sults yields that all extreme points of the set of optimal solutions of RDLSP are integral. 

Lemma 2.3.3 Given a set of batches '1J with values bB, 0 < bB :s 1, B E 'lJ, such that (2.38) 
is satisfied. Then (x, y) LBE'.BbB(xB, yB) is a convex combination of solutions of DLSP. 

PROOF. The lemma is proven by induction on the number of batch-pairs (B, D) in '}) with 
intersecting demand sets [B and 1°, which is denoted by v. Thus, v I{(B, D) : B, D E 

'lJ, B # D, and [B n 1° # 0}1. 
If v = 0, i.e., if no two batches have an intersecting demand set, then, by (2.38), each batch 

B in '1J has value bB = 1, and the lemma follows immediately. 
Now let v > 0 and suppose that the result has been established forsets of batches that 

satisfy the partitioning condition and for which at most v - 1 batch-pairs have intersecting 
demand sets. In order to show that (x, y) can be written as a convex combination of solutions 
of DLSP, we introduce the following definition: a subset 1J of '1J is said to yield a partition of 

thesetof demand periods {s1, ... , s j}. 1 :s j :S d1,1·, if UBë!J:iE/a s; = {s1, ... , s j} and no two 
batch-pairs in 1J have intersecting demand set. We will construct a subset 1J of '1J that yields 
a partition of the set {si. ... , Sd1.r}. First, we take a batch B whose demand set contains the 
first demand period s1 and set 1J = { B}. Suppose that we have found a set of batches 1J that 
yields a partition of the first i < d1,T demand periods. Then there exists a batch D E '1J\1J 
such that the demand set 1° contains si+ I but not s;. This follows from 

L bB = L bB = 1 = L bB > L bB. 
BE'.B\'D:s;+J El8 Be'.B:si+l e/8 Be'.B:s;El8 Be'.B\'1J:,,,EI8 

Thedemandset of Dis {si+l• ... , Sït} for somei' E {i+ 1, ... ,dl.r}. Actding D to 1J gives a 
partition ofthe demand periods {s1 , •.. , Si'}. We proceed in this way until1J yields a partition 
of {s1, ... , sd,,r}. By construction, the integral vector (x', y') := LBE'D(xB, yB) is a feasible 
solution of DLSP. 

Set b min{bB : B E 1J} and define 7jj 'lJ\{B E 1J: bB b}. Note that, by (2.38) and 
the assumption that v > 0, we have b < 1. Set ÏJB = (bB b)/(1 - b) for B E '1J n 1J and 
ÏJB = bB f(l- b) for BE 7jj\1J. Leti E {1, ... , d1,r}. Since there is exactly one batch BE 1J 
such that Si E [B, we have · 

L bB = 1. 
BE'.ii:s,EIB 

Hence, ?li satisfies the partitioning condition. Since b < 1, there is at least one batch-pair 
(B, D) with B E '1J and D E '1JVB such that JB n 1° # 0. This implies that the number of 
pairwise intersecting demand sets in 1'i is less than v, the number ofpairwise intersecting de­
mand sets in 'lJ. Now the induction hypothesis yields that (x'', y") LBe1i ÏJB(xB, yB) is a 
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convex combination ofintegral solutions. Thus, so is (x, y) = h(x', y') + (1- h)(x'', y11
). D 

Using the above lerr1ma and the observation that one can always add extra startups to a solu­
tion, it is nothard to show the following: 

Corollary 2.3.4 IJ (x, y) is a feasible salution of RDLSP and 'lJ a set of batches B with val­
ues bB, B E 'iJ, such that x= LBE2I bB xB, y 2: LBE2I bB yB, and the partitioning condition is 
satisjied, then (x, y) is a convex combination of solutions of DLSP. D 

From the above results it follows that, in order to prove Theorem 2.3.2, it suffices to show that 
any optima! salution (x*, y*) of RDLSP can be partitioned intoasetof batches 'lJ with val­

ues bB, B E 'iJ, such that x*= LBE2IbBxB, y* 2: LBE2I bByB, and the partitioning condition 
is satisfied. In the sequel, (x*, y*) denotes an op ti mal salution of RDLSP. We claim that the 
following algorithm provides a set of batches 'IJ with the desired properties. 

begin CONSTRUCLBATCHES 
fort= 1 toT do begin Xr :=x;; Yr := y;; dr := dr end 

\ * iris called the residual production, etc. *\ 
']) := 0; 
while i1,T > 0 do begin 

qD := last period with positive residual production; 

pD := last period in [1, qD] with positive residual startup; 
D := [pD, qD]; 

JD := set of demand periods with positive residual demand in [pD, T]; 

bD := min{YPD' minrED Xr, minrEJDdr}; 

Y- ·- y- bD. pD.- pD- , 

fort E D do Xr := Xr - bD; 
fort E JD do dr := dr- bD; 

'IJ:= 'IJ U {D} 
end 

end. 

Observe that ir. Yr. and dr are non-increasing and nonnegative during the execution of the 
algorithm. Moreover, the residual demands ds1 are non-increasing in i. It is also easily seen 

that ir s Yr + Xr-1 holcts for all t. Therefore, XqD = minrED ir > 0, and if JD =/= 0, then d:; = 
minrEJD dr. where s denotes the last period with positive residual demand. We will prove that 
during the execution of the algorithm the following invariant holds: 

(h) 'v'rE[l,T] x;= Xr + L bB; 
BëD:rEB 

(h) 'v'rE[l,T] y; = Yr + L bB; 
BE'D:r=pB 
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(h) Vie(l. . .,d1,r] 1 = ds, + L bB; 
BE'}):s;EJ8 

(l4) VBe'lJ IJBI = IBI; 
Us) Vre[I,T-1] i1,r 2::: J,,r and it,T = Jl.T· 

No te tbat fort < pB, tbe residual values are equal to the original values, i.e., i 1 =x:, y1 = y;, 
anddr dr. 

Suppose tbat (h) -(15 ) hold during the execution of tbe algorithm. At termination oftbe 

algoritbm we have it 0, Yr 2::: 0, and, by (Is). dr = 0 for all t. Hence, by (11) and (lz), tbe 

set of batches 'lJ provided by CONSTRUCLBATCHES satisfies x* = LBevbBxB and y* 2::: 

LBevb8 y8 . Moreover, from (l4) it follows tbat 18 , BE 'IJ, can be identified witb JB, tbe 
set oftbe fust IBI demandperiods in [pB, n. Tagether witb (IJ), this implies tbat tbe set']) 
satisfies the partitioning condition. Now Corollary 2.3.4 yields that (x*, y*) is a convex com­

bination offeasible solutions ofDLSP. Thus, the validity of the invariant during tbe execution 

of tbe algoritbm implies tbe validity of Theorem 2.3.2. 
The invariant is easily checked to hold initially. We will provetbat if the invariant holds 

at tbe beginning of an iteration, tb en it also holds at tbe end of tbat iteration. In tbe sequel 
tbe current iteration is tbe one for whieh validity of tbe invariant is proven. We denote tbe 

batch defined in tbe current iteration by D. Thesetof batchestbat are constructed in previous 

iterations is denoted by 'lJ. Now (1!)-(h) are easily checked to holdat the end of tbe cur­

rent iteration, and (Is) follows from (14). The latter holds at the end of tbe current iteration if 

IJDI IDI. Hence, we are left witb the proofof 11°1 I Dl. 

PROOF OF IJDI = IDI. 
We fust showtbat IJDI > IDI implies tbat (x*, y*) is not optima!. Next, we showtbat if 

I JD I < I Dl, tben (x*, y*) violates a constraint of type (2.37). Botb results contradiet the as­

sumption tbat (x*, y*) is an optima! solution ofRDLSP, which leads to the condusion tbat 

IJDI=IDI. 

PART 1: I JDI :5 I Dl. 
Assume tb at I J0 I > I Dl. We claim tb at in this case we can move an amount E > 0 from tbe 

production in period qD to period qD + 1 while maintaining feasibility. Since Cqv > Cqv+l, 

tbis yields a cheaper solution than (x*, y*), whieh contradiets the optimality of (x*, y*). In 

order to prove our claim, it suffices to show that tbe following constraints have positive slack, 

i.e., tbey are not satisfied at equality: 

(i) x* > O· 
qD- ' 

(ii) x;v+1 :5 1; 

(iii) x;v+l :5 Y;v+1 + x;v; 
j 

(iv) Vr,j:t+i=qv xL + L(x;+i + y;+i+!,sd
11

+) 2::: d1,t + j. 
i=l . 
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By definition of qD, we have x;v 2: iqv > 0. For the proof of x;v+1 < 1, we use the following 
important observation: if period s bas positive residual demand in the current iteiation, then 
sE IB for every batch BE 'lJ with pB ~ s. Now let s' be the first demand period after qD. 

Then ds' > 0, since liDI > I Dl. Hence, if BE 'lJ satisfies qD + 1 EB, then s' E IB. Tagether 
with iqv+l = 0, this yields 

(j,., < 1. 

In order to show that (iii) is not satisfied at equality, notice that whenever iqv+1 decreases in 
an iteration, one ofthe variablesiqv or yqv+1 decreases by the same amount. At the beginning 
of the current iteration, strict inequality holcts since 0 = iqv+1 < iqv. 

Finally, consicter a constraint (2.37) such that t + j = qD. Now 

j 

x!,t + L (x;+ i+ y;+i+l,s411+) 
Î=l . 

j j 

(11~2) * """'<- - ) """' """' xl,t + L... Xt+i + Yt+i+l,sd,,,+i + L... L... 

> 

i=] i=J BE'.D:q8?::t+i,p8 ::Ssd1,,+i 
j 

XÎ,t + it+!.t+ j + Yt+2,pD + L L bB 
i=l BE'.D:q8?::r+i,p8 ::Ssa1,,+' 

j 

xt,t + ir+J.t+ j + Yt+2.pv + L L bB 
i=l BE'.D;sd +i<JB 

1,1 

j 

xL + ir+J,qD + Yt+2.pv + LO- ds.,,,+), 
i=l 

where (*) holcts because Sa1,,+i E IB implies pB ~ sa,,,+i• and t +i~ t + j qD ~ qB. In 
order to show that strict inequality holcts for the constraint under consideration, we distinguish 

two cases. First, suppose that pD > t + 1. Then, since Ypv > 0, i 1,qv iJ,T, and du = du. 
webave 

j 

xf.r + ir+J,qD + Yr+2,pv + L (1 - d. •• l,,+) 
i= I 

j - (Is) - j -

> it,r+ L:o ds.,,,+i) 2: dl,sa,,,+j+ L:o-d".,,,+) 
Î=l Î=l 

If pD ~ t + 1, then the assumption that liDI> I Dl implies that liDI> t+ j pD + 1 2: j. 
Hence, if s denotes the last period with positive residual demand, then s > Sd1,,+ j· Then, by 
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(1 d,,) 

dt,r+j 

> dt,sdt,r+J + L (1 ds) = dt,pD-i + dt,t + j di,pD-i = dl,t + j, 
i=dl,pD -I+ I 

where (*) follows from the validity of (h) for every period in [pD, t], the validity of (13) for 
iE {dl.po_1 + 1, ... , d1,t}. and the observations that for any BE']) webave qB 2: qD > tand 
at most t- pB + 1 periods with positive residual demand in [pB, t]. 

We conclude that none of the constraints (i)-(iv) is satisfied at equality, which establishes 
the validity of IJDI :':: IDI. 

PART 2: lfDI:::: IDI. 
Suppose that liDI < I Dl. We claim that in this case constraint (2.37) with t = pD 1 and 
j = I JD I is violated by (x*, y*), i.e., 

11°1 

x;,po-1 + ~(x;o+i-i + Y;o+i,sd,,pD_
1
+,) < dt,pD-i +liDI. 

First, suppose that I JDI 0. Then x:.po_1 ::::::: i 1.pD-I < i 1,po :':: dt,T d1,po-i = d1,po-I> 
which establishes our claim. In the sequel, we therefore assume that I JDI > 0. In the proof 
we use the following observation: 

0, (2.39) 

where s denotes the last period with positive residual demand. Note that fort E [pD + 1, qD] 
this holds by choice of pD. Therefore, suppose that ji"' > 0 forsome t' E [qD + 1, S]. Sirnilar 
as in Part 1, we claim that in this case wecan obtain acheaper solution than (x*, y*) by rnoving 
an amount E > 0 frorn the production in period qD to period t'. In order to prove our claim, 
it again suffices to show that the following constraints are not satisfied at equality: x;o 2: 0, 

x; :':: 1, x; :':: y~ + x;_i' and xi,1 + L./=1 (x;+i + y;+i+I,sà,,,+,) 2: dt,r + j for all t and j such 

that t + j = qD. For most cases the same argurnents as in Part 1 can be used. Therefore, we 
only show that the last inequality is not satisfied at equality when t + j = qD, pD :::: t + 1, and 

ss dt,t+ j: 

j 

xi,1 + L:<x:+i + y;+i+l,sd1 ,+) 
i=l . 

j 

2: XÎ,t + Xt+l,qD + .Yr + L (1 - J,,dl,r+) 
Î=l 

dt.r+i 
2: dl,sd1,,+J + L (1 ds,) = du + j. 

i=dt,pD-t +1 
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For more details we refer to Part 1. 

Note that sd,.pD_,+IJDI is the last period with positive residual demand, hence, the right­

hand side of (2.37} with t = p0 -1 and j 11°1 equals d1.s· We have 

Note that in the current iteration all demand periods in [p0 , S] have positive residual de­

mand. Thus, foreach BE !Bwith pB::::; sd,,pD_,+i• i :Sil0 i, wehavesd,,pD_,+i E JB. Thisshows 
the validity of(*). Moreover, theassumption that iJ Di < I Dl yields that pD -1 + 11°1 < qD, 
hence, bydefinitionofqD and (Is), wehavei1,pD-J+IJDI < XJ.qD d1,.;. Fromthisthevalidity 
of (t) immediately follows. 

This concludes the proof of I JDI = I Dl and, hence, the proof ofTheorem 2.3.2. D 

As a corollary we can prove Theorem 2.3.1 as follows. For arbitrary E > 0 the cost function 
c; :=Cr+ (T- t)E satisfies the requirements of Theorem 2.3.2. Therefore, for every E > 0 
there exists an optimal solution of RDLSP that is an integral extremepoint Since the objec­
tive function is continuous in E, there must be an integer optimal solution ofRDLSP for E = 0. 
However, we do not necessarily find that for E 0 all extreme points ofthe set of optimal so­
lutions ofRDLSP are integral. 

In the following chapter we develop a branch-anct-eut algorithm in order to solve multi-item 
problems. As only problems with Wagner-Whitin costs will be considered, the 0(d1,r T) con­
straints of type (2.37) are expected to yield strong cutting plan es. 

We conclude this sec ti on by presenting some computational results for single-item prob­
lems with costs that do not satisfy the Wagner-Whitin property. In general, such a problem 
will not be solved by the addition of inequalities (2.37) only. Our only purpose bere is to in­
vestigate the quality of the lower bounds obtained when some of the inequalities discussed in 
the previous section are added to the LP-relaxation. For more details on the implementation 
the reader is referred to the following chapter. 
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We consider the following lower bounds: 

zo : optima! value of the LP-relaxation of DLSP; 
Zt : optima! value of the LP-relaxation of DLSP + inequalities (2.37); 
z2 : optima! value of the LP-relaxation of DLSP + LSM inequalities; 
z3 : optima! value of the LP-relaxation of DLSP + LSM + RSM inequalities. 

Reeall that the LSM inequalities can be separated in O(dl.T T) time. Also the separation algo­
rithm for the RSM inequalities runs in O(d1,r T) time. We already observed that inequalities 
(2.37) are contained in the intersection of these two classes. 

Our testsetconsists oftwelveinstancesl.x.y, wherex E {1, 2, 3} and y E {a, b, c, d}. Here 
x refers to one of three randomly generated demand patterns with T 96 and total demand 
dt,T 65, and y denotes the type of production cost Pr: 

a : Pt = lO if t mod 7 E {0, 6} and 0 otherwise; 
b : Pt = 20 if t mod 7 E {0, 6} and 0 otherwise; 
c : Pt is randomly chosen in {I, ... , 1 0} for all t; 
d : Pr is randomly chosen in {1, ... , 20} for all t. 

Cases a and b can be interpreted as follows: one period represents one day and producing 
during the weekend incurs an extracostof 10 and 20, respectively. We always take ft = 10 and 
ht 1 for all t. The objectiveis to minimize (PrXt + frYr + htlr). where Ir= Xt,t- dt,t· 

inst z• Zo 8o Zt 81 Z2 82 Z3 83 

l.l.a 224 202.3 9.7 224 0 

1.2.a 215 197.4 8.2 215 0 

1.3.a 237 208.9 11.9 237 0 

l.l.b 284 256.0 9.9 281.5 0.9 281.5 0.9 281.5 0.9 

1.2.b 227 216.9 4.5 227 0 

1.3.b 292 271.5 7.0 292 0 

I.l.c 456 414.9 9.0 453.6 0.5 454.5 0.3 456 0 

1.2.c 459 405.8 11.6 456.5 0.5 458.0 0.2 459 0 

1.3.c 496 453.5 8.6 494.5 0.3 494.5 0.3 496 0 

I.l.d 696 670.7 3.6 690.7 .0.8 692.7 0.5 694.5 0.2 

1.2.d 747 719.9 3.6 743.5 0.5 745.5 0.2 746.5 0.1 

1.3.d 722 708.0 1.9 720.0 0.3 720.0 0.3 722 0 

Table 2.1: Lower bounds and gaps for instances with non-Wagner-Whitin costs 

For each instanee Table 2.1 shows the optimal value z*, the lower bounds Z;, 0 5 i 5 3, and the 
corresponding integrality gaps g; 100% x (z* Z;) /z*. The addition of inequalities (2.37) 
already yields lower bounds that differ less than 1% from the optima! value. The gap is further 
reduced by the addition of inequalities from the two larger classes, but is not closed for three 
out of twelve instances. 



3. The multi-item DLSP 

The multi-item DLSP is an NP-hard problem, as wil! be shown inSection 3.1. In order to 
solve multi-item problems to optimality we have developed a branch-and-cut algorithm based 
on the following integer programming formulation: 

M T 
(DLSP) min LL (<P~ + h~.T)x; + J/y: hi rdi) I, I 

i=l 1=1 

s.t. xL ::: dL for all i and t (3.1) 

i< i + i Xr - Xt-J Yt for all i and t <xb 0) (3.2) 
M 

.Lx; ::; 1 for all t (3.3) 
i=l 

x~, y; E {0, 1} for all i and t (3.4) 

As far as the objective function is concerned, reeall that P! denotes the costof producing item 
i in period t and ff the cost of setting up the machine for item i in period l. Moreover, a cost 
h!<x; 1 - d; 1) is incurred for the inventory of item i at the end ofperiod t. Fora more detailed 
discussion of the above formulation the reader is referred to Chapter 1. 

The cutting plane procedure incorporates separation routines for some of the inequalities 
discussed in the previous chapter. In actdition we introduce valid inequalities for the multi-item 
problem in Section 3.2. Section 3.3 describes the branch-and-cut algorithm insome detail and 
reports on its computational performance. The last section discusses other solution methods 
for DLSP as proposed in the literature and compares their performance to the performance of 
the branch-and-cut algorithm. 

3.1 Complexity 

This section discusses complexity results for DLSP. For a general introduetion to the theory 
of computational complexity the reader is referred to Garey and Johnson [16]. 

First observe that there exists at least one feasible solution to DLSP if and only if for each 
period t the total demand up tot does not exceed the available capacity up tot, i.e., if and only 
if 

M 

L dL ::; t for all t. (3.5) 
i=l 
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Thus, the feasibility of an instanee can be checked in O(MT) time. Moreover, the single-item 
DLSP can be solved in O(dt,T T) time by a straightforward dynamic programming algorithm 
(see, e.g., van Hoesel [18]). Complexity results for the multi-item problem are discussed by 
Salomon et al. in [36]. They show that DLSP is solvable in polynomial time when the startup 
costs are zero. They further claim that DLSP with zero production costs and constant inven­
tory and startup costs per item is NP-hard, but their proof is not correct since the proposed 
reduction from PARTITION is not polynomial. However, as pointed out by G. Woeginger, a 
similar reduction from 3-PARTITION shows the correctnessof their claim. 

For ease of presentation, the instances for DLSP considered in this section do not neces­
sarily satisfy our general assumption that the demand function is binary. It is nothard to see 
that for such an instanee there exists an equivalent instanee with binary demand and a cost 
function that differs only by a constant value from the original one. 

Proposition 3.1.1 (Woeginger, personal communication) DLSP with p~ 0, h~ h~. and 
!/ ff for all i and t is NP-hard. 

PROOF. As mentioned before, thereduction is from 3-PARTITION. This problem is NP- com­
plete in the strong sense ([16], p. 224). 

3-PARTITION 
Given an integer B and a multiset A consisting of 3n positive integers ai. 1 :::;: i ::::: 3n, with 
B/4 <a;< B/2 and r::~1 a;= nB, does there exist a partition of A into n pairwise disjoint 
subsets A j. 1 :::;: j :::;: n, such that the elements in A j add up to B? 

Let IJ be an instanee of 3-PARTITION encoded in unary. Let 12 be an instanee ofDLSP with 
T n(B + 1) periods, 3n + 1 items, and 

di-r- { 
a;, t = T 

0, otherwise 

= { 1, t=j(B+1), 
0, otherwise 

p: = 0, h: = 0, f! = 1' 

1:::;:j:::;:n 

Pi"+t 0, hi"+t = 1, j["+l 0, 

1 :::::i::::: 3n, 

1 :::::i::::: 3n, 1 ::::: t::::: T, 

1:::;: t:::;: T. 

The cost of a schedule for h is at least 3n and equality holds if and only if production for item 
3n + 1 occurs in period j(B + 1), 1 ::::: j::::: n, and the demand for item i, 1 :::::i::::: 3n, is pro­
duced in exactly one batch. From this it immediately follows that IJ is a yes-instance if and 
only if there exists a schedule for h with cost 3n. 0 

The instauces used in our computational experiments have the cost structure considered in the 
above proposition. The following result is concerned with the complexity of DLSP when only 
startup costs are taken into account. 
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Proposition 3.1.2 DLSP with p: = h: = 0 for all i and t is NP-hard. 

PRO OF. The reduction is from a special case of the following problem: 

SCHEDULING JOBS OF EQUAL LENGTH (SEL) 
Given an integer C, a planning horizon of T periods and n jobs of length p, p E z+, which 
have to be scheduled on one machine without preemption. Starting job jin period t incurs a 
cost c it· Does there exist a feasible schedule with cost less than or equal to C? 

Crama and Spieksma [6] prove that SEL is NP-complete, even for p = 2 and c jr E {0, 1} for 
all j and t. The proof is basedon a reduction from 3-DIMENSIONAL MATCHING. We use 
this result to prove our claim. 

Let J1 be an instanee of SEL with T periods, n jobs of length 2, and processing costs c jr E 

{0, 1} for all jobs j and periods t. Let h be an instanee ofDLSP with T periods, n items, and 

d; = 0, t =I= T, andd~ = 2, 1 ::; i ::; n, 

h: = p: = 0, Jj = n+c;r+1, 1 ::; i ::; n, 1 ::; t ::; T. 

Assume without loss of generality that C ::; n. We prove our claim by showing that there 
exists a schedule for ft with cost C if and only if there exists a schedule for h with cost 
n(n + 1) + C. Obviously, a schedule for ft with co st C corresponds to a schedule for h with 
cost n(n + 1) + C. Observe that a schedule for h is a feasible schedule for ft if and only 
if all batches have length 2, i.e., if and only if exactly n startups occur. Such a schedule bas 
co st less than (n + 1 )2, whereas a schedule with more than n startups bas co st at least (n + 1 )2• 

Thus, a schedule for J2 with cost n(n + 1) + C corresponds toa schedule for .4 with cost C. D 

lt is still an open problem whether DLSP with zero production and inventory costs and con­
stant startup costs per item U/ = f{ for all i) is NP-hard. In particular, we are left with the 
question whether the minimum number of startups of any feasible salution can be determined 
in polynomial time U/ = 1 for all i and t). The complexity of this problem is closely related 
to the complexity of the following problem: 

BATCH SCHEDULING WITH UNIT CHANGEOVER CaSTS (BS-UCC) 
Suppose we are given J jobs and an integer C. Each job bas a processing time pi and a dead­
line dj, and belongs toa job class Yi E {1, ... , n}. These jobs have to be scheduled without 
preemption on one machine such that no job finishes afterits deadline. If a job is not sched­
uled immediately after another job from the same class, then a unit changeover co st is incurred. 
The question to be answered is whether there exists a feasible schedule with total changeover 
cost less than or equal to C. 

Bruno and Downey [4] prove that BS-UCC is NP-complete by a reduction from PARTITION. 
However, they also show that the problem is polynomially solvable when the number of dead-
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lines is part of the problem description. To our knowledge, it is still an open problem whether 
BS-UCC with an arbitrary number of deadlines is NP-complete in the strong sen se (cf. Garey 
and Johnson [16], p. 238). The following proposition shows that an affirmative answer to the 
latter question will make it very unlikely that the minimum number of startups can be deter­
mined in an efficient way. 

Proposition 3.1.3 IfBS-UCCwith an arbitrary numberofdeadlines is strongly NP-complete, 
then DLSP with p: = h: 0 and jj = 1 for all i and t is NP-hard. 

Proof. Given an instanee -4 of BS-UCC encoded in unary. Without loss of generality we 

assumethatmaxiJi = Lj Pi· Let I;_ bean instanceofDLSP with T =maxi db n number 
of classes) items, and 

for all i and t, 

for all i and t. 

We show that there exists a schedule for ft with cost C if and only ifthere exists a schedule for 
I;_ with cost C. Obviously, a schedule for 11 with cost C corresponds toa salution for I;_ with 
cost C, i.e., a salution with C startups. However, a salution for I;_ might yield a preemptive 
schedule for li.. Let k;, 1 :;:: i:;:: n, denote the number of jobs in job class i and denote the jobs 
by l;k. iE {1, ... , n}, k E {1, ... , ki}, such thatjob lik belongs to job class i and J1;K ~ J,u 
for l < k. Then a solution for 12 can be considered as a feasible schedule for -4 if for every 
period t that is the fust period of a production batch the following holds: if production occurs 
for item i in period t, then the total production for i from period t up to period T must equal 
L:7~k p lil for some k E { 1, ... , k;}. Such a solution is called nonpreemptive. 

We claim that any feasible salution for I;_ can be transformed in polynornial time into a 
nonpreemptive salution without increasing the number of startups. Therefore, consicter a pre­
emptive schedule for I;_ with C startups. Denote by Xj the total production for item i from 
period t up to period T. Let t be the fust period of a batchforsome item, say i, such that Xj f::. 
L:7~k p '" for any k E {1, ... , k;}. Withoutlossof generality, assume that t is maximaL Let k* 
satisfy L:7~k'+l PJ;1 < X! < L:7~k' PJ;1• Note thát from the feasibility of the schedule under 
consideration it follows that the deadline of job J;k• is at least t. Define !l = L~~k· p Ju Xf. 
Now there is at least one batch for item i which ends before t, say in period t'. For convenience, 
assume that the length of this batch is at least !l. Move the production for i in the interval 
[t' !l + 1, t'] to [t- !l, t- 1] and move the production in period r, r E [t' + 1, t- 1 ], in the 
original schedule to period r- !l. One readily sees that the new schedule is still feasible and 
has at most C startups. Repeating this argument finally results in a nonpreemptive schedule 
for 12 with at most C startups. 

From this we conclude that if there exists a solution for 12 with cost C, then there exists a 
feasible schedule for .4 with cost :;:: C. This completes the proof of the proposition. 0 
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3.2 Valid inequalities 

In the following sectien we discuss a branch-and-cut algorithm for the multi-item DLSP that 
is basedon the formulation presented in the beginning of this chapter. Let X denote thesetof 
solutions to DLSP, i.e., X {(x, y) : (x, y) satisfies (3.1) (3.4) }. An effective use of the 

cutting plane procedure requires additional valid inequalities for X that can serve as cutting 
planes. We already observed that when the coupling constraints I:; x: ~ 1, 1 ~ t :5 T, are 
omitted, the remaining problem consists of M single-item problems, which are denoted by 

DLSP;, 1 :5 i~ M: 

T 
(DLSP;) min L ( (p; + h;,T )x; + f/y; h:.rd;) 

I= I 

s.t. xL 2:: dL for all t (3.6) 

x; :5 xLt + y; for all t (x~ = 0) (3.7) 

x:, y) E {0, 1} for all t (3.8) 

Denote by x;, 1 ~ i ~ M, thesetof solutions to DLSP;. Obviously, all inequalities that are 

valid for x; are also valid for X. This holds in partienlar for the inequalities discussed in the 
previous chapter. The latter are called single-item inequalities for DLSP, since all variables 
with nonzero coefficient have the same index i. By taking the demand for other items into 
account we can derive single-item inequalities for item i that are valid for X, but not for x;. 
This is the subject ofthe following subsection. In Subsectien 3.2.2 we discuss some multi-item 
inequalities. 

3.2.1 Single-item inequalities 

In multi-item probierus the number ofperiods up to period t that can beused for the production 
of item i is usually strictly less than t, since demand for other items bas to be satisfied as wel!. 
In the sequel we always assume that there exists at least one feasible solution to DLSP, thus, 

L; dL ~ t for all t. 
Let u; denote the maximum number of production periods for item i up to period tin any 

feasible solution. It is not difficult to see that u; bas the following value: 

U~ T- Ldf.r and u;= min(u;+I• t- LdL) fort< T. (3.9) 
ji-i i# 

Since DLSP is assumed to be feasible, we have u; 2:: d) for all i and t. Moreover, u;+l - Uf E 

{0, 1} fort< T. 
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Example 3.2.1 Let T = 12 and M = 3. Consicter the following demand function. 

2 3 4 5 6 7 8 9 10 11 12 

df 0 0 0 0 0 0 0 0 

dt00 000 0 0 0 0 

Jiooo oo 0 0 0 0 

Using (3.9), the values of Uf can be easily determined. 

2 3 4 5 6 7 8 9 10 11 12 
ut 

I 1 2 2 2 3 3 3 4 5 5 6 6 

uz 
I 1 2 2 2 3 3 3 3 4 4 5 5 

u3 
I 1 2 2 2 3 3 3 4 4 5 5 5 

Given i and t, one readily constructs a salution (x, y) satisfying xl,r = Uf. For example, let 
i = 1 and t = 6. Suppose item 1 is produced in periods 4, 5, and 6. Then the periods 1, 2, 3, 
and 7 must be used for the production of items 2 and 3, say, xi = xi = 1 and x~ = ~ = 1. 
Tagether with xf0 = xi1 = xlz = l, this yields a feasible salution satisfying xL6 = UJ = 3. 
From this it also immediately follows that a salution satisfying xL6 ~ 4 does not exist, since 
in that case the total production up to period 7 mustbeat least 4 + df.7 + df.7 = 8. D 

Now let i E {1, ... , M} and k E {1, ... , di,r}. Denote by s~ the kth demand period of item i. 
Reeall from Section 2.1 that 

X~+ y~+l,s;. ~ 1 

defines a facet of conv(Xi). The validity of this inequality follows from the observation that 
at least one unit of item i must be produced in the interval [k, sU. 

The inequality xj + yà_ 9 ~ 1 is therefore valid for the instanee in the above example. How­
ever, from Ul = 2 and UJ = 3 it follows that the third production period for item 1 cannot 
occurbefore period 5. Thus, in the interval [5. 9] at least one period must be used for the pro­
duction of item 1. This establishes the validity of the inequality x~ + Y~. 9 ~ 1 for the instanee 
in Example 3.2.1. Note that the face defined by xj + Y!. 9 ~ 1 is strictly contained in the face 

defined by x~ + Y~. 9 • since xj + Y!, 9 = L;=4 (x~_ 1 + y: -x:)+ x~ + Y~, 9 ~ x~ + Y~. 9 for all 
feasible solutions. 

Generalizing the above argument leads to the following class of valid inequalities for X: 

(3.10) 

where e~ denotes the fust period in which the kth unit of item i can be produced, i.e., e~ = 
min{t: Uf = k}. lf k <eL then (3.10) yields a stronger cut than x~+ y~+l.s~ ~ 1. 

In Example 3.2.1 we observed that a production batch for item 1 starting in period 4 cannot 
consist of more than three periods. Thus, in multi-item problems the demand for other items 
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imposes a restrietion on the leng tb of a production batch for item i starting in a certain period 
t. Suppose that there exists a feasible salution for which a production batch for item i starts in 
period t. If this batch bas length l, then the total production for item i up to period t + l- 1 is 

at least dL~1 + l. By definition of Uf, we must have dL~1 + l s u:+l~J· On the other hand, if 
dL~1 + l u;+l-1 forsome i, t, and l, then there exists a feasible salution to DLSP in which 
all periods in [t, t + l- lJ are used for the production of item i. Thus, if wedefine 

t; max{/: t + 1- 1 sTand dL~1 +Is u;+z~d, 

then l{ denotes the maximumlengthof a production batch for item i startingin period tin any 

feasible solution. Observe that t; l!+l + 1 if d! = 1 and t < T. 
Now consicter anitem i and a period tand suppose that t + l{ s T. By definition of l~, the 

interval [t, t + t;J cannot be completely used for the production of item i. Thus, if item i is 
produced in period t + z;, then the machine bas to be set up for item i in one of the periods in 
[t + 1 ' t + m . This is implied by the following inequality: 

X i < yi 
r+li - t+1,t+l!' (3.11) 

Since t + l{ t + 1 + 1;+1 when d{ = 1, the strongest cuts of the above form are obtained for 
d{ =0. 

3.2.2 Multi-item inequalities 

The class of multi-item inequalities discussed fust is adapted from the class of uncapacitated 
multi-item inequalities introduced by Constantino ([5). Section 4.3). The basic idea bebind 
these inequalities is the same as for the LSM inequalities: if there is no production for item 
i in the interval [t, t'], then the inventory for item i at the end of period t - 1 must be at least 

d:,t'. 
Let iE (1, ... , M}, J ~ {1, ... , M}\{i}, and lett1, t2, and t3 be threeperiods satisfying 

1 s t 1 s t2 s t3 s Tand dL
3 

2::: 1. Suppose that all periods in [tJ, ti] are used for production of 
item j E J and that there is no startup for item i in the interval [t2 + 1, t'], where t' E [12 + 1, t3]. 

Then, clearly, the demand for item i in the interval [t1, t'] must be produced before period tr. 
This is forced by the following inequality: 

13 

xL~-1 2::: dL~-1 + d;1,t3 L)x{2- Y{l+l.r)- L d;,t>y;. (3.12) 
jEJ t=rz+l 

lts validity for X is shown as follows. Since we can produce at most one item per period, 
LjeJ(x{

2 
- Y!

1
+1•

1
) either equals one or is nonpositive. In the latter case, the inequality is 

clearly valid. Hence, suppose that the expression equals one. Then there exists an item j E J 
for which production occurs in every period t E [t1, t2]. If there is no startup in the interval 
[t2 + 1, t'] forsome t' E [12 + 1, t3], then there is no production for item i in [t1, t']. In this 
case, all demand for item i in [t1, t'] bas to be satisfied from stock. In other words, the total 
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production for item i up to period t1 - 1 must be at least di,r· Note that if y; = 0 for every 
tE [tz + 1, t3], then theright-band side of (3.12) equals dL,,. Otherwise, theright-hand side is 

at most dLr• where t' min{t E [tz, l3- 1] : y:+I = 1 }. This establishes the validity of (3.12). 

No te that the inequality remains valid wben the term d:.r,Y; is replaced by x:z+l ,
13

• 

The separation problem for inequalities (3.12) can be solved in O(Q:::i log d~ r)T2 ) time. . , 
In order to show this, rewrite the right-hand side of (3.12) as 

13 

dL1-1 + dL2 L(x/z- Y1
1
+!,t

2
) + L d;(L(x/2 Y{

1
+I.t)- Y;2+l,t). (3.13) 

jEJ t=tz+ I jEJ 

Let (i, y) denote the currentLP-solution and assume that i, t1, and tz are fixed. Then, as y;z+l,t 
is nonnegativeand nondecreasing int, (3.13) is maximal for J* {j #i: i~> .9{,+1.

1
,) and 

t3 min(tz, max{t E [tz + 1, T]: d; = 1 and L:<ifz Y{
1
+Ltz) > Y;z+l,t}). 

jEJ' 

Hence, in order to find out whether there exists an inequality of the form (3.12) that is vio­

lated by (i, y) for i, t1, and t2, it suffices to check violation for J* and tj. From the trivia! 

observation that .Y!z+l.t = .YL- .YL
2 

it follows thatt; can be determined in O(log dLr) time 
by applying binary search on the demand periods si. provided that the values .YL are deter-

mined beforehand. Moreover, if for all t the value Yj := d~.YL is known as well, then 
t! • A' ' "'• A' ' A' ' A • 

Lr:_t +1 d:Y! +I 1 can be efficiently computed as Y;. - Y; - d! +1 1, y'1 1 • Both y~ and Y; can be 
-2 2 • 3 2 2 13 12 

calculated in O(MT) time. Now for 0 ::::; t1 ::::; t2 ::::; T we proceed as follows: 

begin SEPARATION(tJ, tz) 
Z Limax(O, (~2 - Y~ +I 1 )); I , 2 

for i = 1 to M do begin 
zi := Z max(O, i!

2 
- _y; +I 1 ); 

I • 2 . . . 

determine t3 max(tz, max{t E [tz + 1, T] : d; = 1 and Z' > .Y; +I 1} ); 
2 ' 

check whether iL,-1 < dL,-1 + d:,,~;zi- L~~tz+ 1 d:.Y!z+l,r 
end 

end. 

Obviously, ii,1,_1 and x!
2 

y~t+ 1,
12 

can be updatedinconstant time in the iteration correspond­
ing to (ti, tz). Hence, the separation procedure runs in O((l:::; log dl T)r2) time. 

We conclude this section by showing two examples of multi-item inequalities that are strongly 
related to inequalities (3.11). Consicter again Example 3.2.1. lf item 1 is produced in periods 
3, 4, and 5, then one of the periods 6 and 7 must be used for the production of item 2 and 
the other for the production of item 3. This observation yields the following valid multi-item 

inequalities for the problem at hand: 

1 1 2 3 6 7 d 1 1 + j+ j • Xs ::S Y4,5 + Yr + Yr, t = 1 1 an Xs ::S Y4,5 X6 Y1• J 2, 3. 
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lt is nothard to deduce valid multi-iteminequalities for the general problem from this example. 
However, computational tests showed that these inequalities rarely improve the lower bound. 
Therefore, we do not discuss them in more detail. 

3.3 Branch-and-cut 

In order to solve multi-item problems to optimality we have developed a branch-and-cut al­
gorithm for DLSP based on the integer programming tormulation presented in the beginning 
of this chapter. The main steps of such an algorithm have already been explained in Chapter 
1. In Subsection 3.3 .1 we discuss some specific features of our implementation, in particular, 
the ones concerning the cutting plane procedure. Subsection 3.3.2 reports on the computa­
tional performance ofthe cutting plane procedure and differentvariantsof the branch-and-cut 
algorithm. Throughout, (x, y) denotes the current LP-solution. 

3.3.1 Implementation issues 

This subsection gives a detailed description of the cutting plane procedure. Furthermore, we 
discuss the computation of upper bounds and branching strategies. 

The cutting plane procedure 

The current procedure incorporates separation routines for the RSM and LSM inequalities that 
are facet-defining for DLSPï, 1 s i s M. These routines, that will be discussed in some more 
detail hereafter, also identify violated inequalities ofthe form (3.10) and (3.11). Furthermore, 
cuts are generated from the class of multi-item inequalities (3.12). 

In Subsection 2.2.4 we presentedan 0( (df TT)1 ) separation algorithm for the HLSM in­
equalities that are facet-defining for DLSP;. Preliminary experiments showed that for the in­
stances in our test set all cuts generated by this algorithm belonged to the subclass of LSM 
inequalities, i.e., the HLSM inequalities with H = 0. These inequalities have the following 

form: 

xL, + ~,<x!+i + y;+i+I.s~~) ~ dL+ 111. 
JE 

(3.14) 

where t E [0, T- 1], d;+l = 0, J ~ {1, ... , d;+I,T}, and where s~(l.jl denotes the jth demand 
period for item i after t. Reeall from Subsection 2.2.4 that the separation problem for inequal­
ities (3.14) can be solved in O(dLTT) time. Because of the aforementioned observation the 
cutting plane procedure only incorporates the less time-consuming separation routine for in­
equalities (3 .14 ). This routine also solves the separation problem for inequalities (3 .1 0). In the 
cutting plane algorithm the separation routine for inequalities (3.1 0) and (3.14) is successively 
called for i= 1, ... , M. In the sequel we refer to this procedure as SEP1. 

For the HRSM inequalities we implemented the version of the separation algorithm dis­
cussed in Subsection 2.2.2 that only identifies violated RSM inequalities, i.e., HRSM inequal-
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ities with Vo 0. Por item i these inequalities can be written in the following form: 

xL+ L(Y~+I.u+d~, X:,+d1) 2: dLz, 
uEU . 

(3.15) 

where t satisfies d! = 1 and U ~ { r : r < t and d~ = 0}. The separation for inequalities (3.11) 
is easily incorporated in the O(d\_rT) separation procedure for inequalities (3.15). The suc­
cessive calls of this routine for all items are denoted by SEP2. 

Violaled inequalities of the form (3.12) are identified by the separation algorithm oullined 
in the previous section. 

Rather than running all available separation routines in each iteration of the cutting plane pro­
cedure, it is often preferabie to call certain separation routines only when other algorithms 
have failed lo identify violated inequalities. Here both the effectiveness of the cuts and the 
computational effort needed to generate them are taken into account. Moreover, one should 
decide on the maximum number of inequalities added in one iteration, as the size of the for­
mulation may considerably influence the time needed to solve the linear programs. 

Mter some prelirninary experiments we decided to use the following separation strategy 
in our cutting plane algorithm. First, SEPl is called, i.e., for each item i it is checked whether 
there are violated inequalities of the form (3.10) or (3.14). Por each item all violated inequali­
ties of the fust type and only the most violaled inequality of the second type, if any, are added 
to the formulation. If at least M/2 cuts are generated by SEPl, then the separation phase is 
leftand the new linear program is solved. Otherwise, SEP2 is called. Similar as for SEP1, this 
separation procedure generates for each item all violated inequalities of the form (3.11) and 
only the most violated inequality of the form (3.15). The multi-item inequalities (3.12) are 
only checked on vialation if no cuts have been generated by the other two separation proce­
dures. Also in this case we only add the most violaled inequality per item. This means that for 
each item i, there is at most one combination of t1, t2, t3, and J ~ { 1, ... , M} \ {i} for which 
(3.12) is added to the formulation. 

The size of the formulation can be reduced by eliminating previously added inequalities 
that do not seem to play a role anymore. In our algorithm every ten iterations all inequalities 
with slack larger than 0.1 are deleted. 

Computation of upper bonmis 

In the branch-and-bound procedure a subproblem can be discarded from further evaluation if 
its lower bound is greater than or equal to the value of the best known feasible solution. Thus, 
the quality of the available upper bounds may have a considerable influence on the size of the 
search tree. Good feasible solutions can often be constructed from the LP-solutions occurring 
during the branch-anct-eut algorithm. We have implemenled two LP-based beuristics that are 
calledeach time a linear program bas been solved. 

Both algorithms workas follows. First, a set of pairs (i"' lk), where h E {1, ... , M} and 
h E z+ such that Lk:ik=i lk = d(.r for all i, is determined. The two beuristics differ in the 
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way these pairs are constructed from the LP-solution. This will be discussed in more detail 
later. By associating start times tk to the pairs (ik, h), we obtain production batches Bk = 

[tb lk +Ik- 1], where Bk is a production batch for item h. The periods tk are determined such 
that tk + h:::; tk+l and the production scheduleconsisting ofthe batches Bkhasminimumcost. 
Since all in stances in our test set have Wagner-Wh i tin costs and constant startup costs per item, 
the production schedule is optimal with respect to the given restrictions if tk is chosen as late 
as possible. Let sk be the demand period for which the demand is produced in the fust period 
of Bk. Here it is assumed that the demand for the jth demand period of item i is produced in 
the jth production period for this item. Let K be the number of pairs (ik. ft). Then tx = Sx 
and tk = min(sk, tk+1 -Ik) for k < K. Obviously, the schedule is feasible if and only if ft 2:: 1. 

If this construction provides us with a feasible solution, then we apply an impravement 
beuristic that boils down to joining two batches of the same item that are not far apart in the 
current solution. Loosely speaking, for each pair of indices kt and k2 satisfying k1 < k2 , ik1 

h2' and Îj =I= h1 for k1 < j < k2, it is checked whether the current solution is improved by 
moving Bk2 forwards and appending it to Bk1 , or by moving Bk1 backwarcts and appending it 
to Bk2 • Note that such a move involves a recalculation of the optimal periods tk, which can 
be performed in time linear in the number of batches. For instances with constant inventory 
and production costs per item, recalculating the costs can also be done in linear time. If a 
better solution is found in this way, then we take the one that gives the largest impravement 
and repeat the above procedure. 

The beuristics differ in the way the initial sequence is constructed from the LP-solution. 
The first beuristic delermines for every i and j, 1 :s j :::; dLr> the first period t for which the 
total production for item i up to this period exceeds j. This period is denoted by t~. Let 

(ih, th), 1 :::; h :S H 2:~1 dLr· denote the sequence of pairs (i, t)) sorted in order of non-
decreasing t~. Set h1 1 and determine K and indices hk. 1 < k :::; K, such that hk is the fust 
indexhafter hk-1 for which Îh differs from ihk-l' and ihK = Îh for hx :S h :S H. Then the pairs 

Uk, h) = (ihk' hk+t- hk). 1 :s k :s K and hx+I = H + 1, form theinitial set. 
In the second beuristic we first determine for each item i the set {t : x: > 0 and (t = 1 

or iL1 = 0)}. Let j; denote the cardinality ofthis set and denoteits elements by tj, ... , ~~~· 
where t~ < t~+t for all j. Furthermore, set ~~~+t = T + 1. For notational con:venience, let X} 
denote the total production for item i up to period t}+l - 1 in the current LP-solution. Deler-

mine l~ successively for j = 1, ... , j;, where I}= fXj- Ll<il} l if X} lX}J exceeds a 

given threshold value (0.7 in our implementation), and l} = LX} Li<i l}J otherwise. The 
initial set (h, lk). 1 :s k :::; K := L; j;, is now formed by the pairs (i, l~) sorted such that the 
corresponding periods t~ are nondecreasing. 

Branching strategies 

If the current subproblem cannot be discarded from further evaluation aft er the terminalion of 
the cutting plane procedure, then new subproblems will be created according to a prespecified 
branching strategy. The simplest strategy in the presence of binary variables is to create two 
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subproblems by fixing one fractional variable to zero and one, respectively. 
Two well-known branching strategies for general 0-1 problems are the one in which a 

fractional variable closest to ~ is chosen as branching variable and the one in which the frac­
tional variable closest to 1 is selected. We considered both strategies in our computational 
experiments, with the restrietion that only fractional x-variables are selected. 

Moreover, we tested the performance of branching strategies that construct a schedule by 
fixing the periods one by one either in increasing or in decreasing order. For both orders two 
variauts were implemented. In the fust variant we simply branch on the fractional x-variable 
with smallest respectively largest index t. We do not report results for this variant, since it 
was outperformed by the second variant, in which the branching variable is selected from the 
set of fractional x-variables of which the value is in a certain interval[~- /-LJ, ~ + ~-L2 ]. The 
idea bebind this is to avoid branching on a variable that is close to zero or one in the cur­
rent LP-solution {i, y). We take /-LI = ~ - ~ max{x; :.x; :::; ~} and f.-L 2 = ~ min{x; : .x; 2:: ~ }. 
Thus, results are reported for the strategiesin which from all fractional x-variables with value 
in [! - 1-L 1, ~ + f.-L 2] the one with smallest respectivel y largest index t is selected for branching. 

Apart from defining a branching strategy, one also bas to specify in which order the subprob­
lems are to be evaluated. We examine two well-known search strategies: best-bound and 
depth-first. In the fust strategy the subproblem with the smallest lower bound is selected, 
whereas depth-first search selects the subproblem that is created last. Since the subproblem 
with the smallest lower bound must be evaluated anyway in order to prove optimality, one may 
expect that the size of the search tree is smaller in a best-bound search. However, in a best­
bound search two subproblems that are subsequently evaluated can be far apart in the search 
tree, whereas in a deptb-fust search they often differ only in the fixing of one variable. As a 
consequence, the computational effort per node is usually higher in a best-bound search. 

It may happen that, despite the actdition ofviolated inequalities, the LP-value does not increase 
significantly during a number of consecutive iterations. This effect is called tailing off. In 
order to prevent this, a branching step is forced at any node but the root node when the LP­
value basnotbeen improved by more than 0.1% during the last three iterations. At the root 
node cutting planes are added as long as violated inequalities are identified. 

3.3.2 Computational results 

The implementation of the branch-and-cut algorithm is basedon MINTO ([29], version 2.0), 
which is a software system for solving mixed integer linear programs by means of a linear pro­
gramming based branch-and-bound algorithm. Within the general framework the user can em­
bed problem specific functions such as separation routines, primal heuristics, and branching 
strategies. MINTOalso provides the optional use of preprocessing techniques, construction of 
feasible solutions, and generation of generic inequalities such as knapsack cover inequalities. 
However, in our experiments none of these system functions were used. All computational 
results were obtained on a SUN Sparestation 5 using CPLEX 2.1 as LP-sol ver. 
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Instances 

In order to test our branch-and-cut algorithm a set of 486 in stances was generated. These in­
stances have either 60 or 100 periods and either 2, 4, or 6 items. Moreover, we consicter vari­
ations in the total demand D = p x T, where the capacity utilization p equals respectively 
0.65, 0.80, and 0.90. This yields 18 different (T, M, p) combinations. As far as the inequal­
ities xL ~di., in the IP-formulation are concerned, it clearly suffices to include only those 
for i and t satisfying d; 1. Hence, the size of the initial LP-formulation is larger for larger 
val u es of each of the three parameters T, M, and p. This also holcts for the size of the classes 
of inequalities from which cuts are generated. 

The instances are further characterized by two parameters a and f, that both relate to the 
co st function. Let us mention fust that the production co st p: equals zero for all i and t. More­
over, both the inventory costs and the startup costs are constant per item, i.e., h; = hi and 
f! = f{ for all i and t. The parameter o E {0, I, 2} indicates whether or not h~ and ff have 
the same value for different items i. If o E {0, 1 }, then h{ = 2 for all items i; otherwise, h~ is 
randomly generated from the interval [1, 3]. Furthermore, ff equals f for all i if a 0, but is 
randomly generated from the interval [! f, ! f] for o E { 1 , 2}. We con si der in stances with f 
equal to 10, 20, and40, respectively. Threeinstances were generated for each (T, M, p, o, f) 
combination. This resulted in a test set of 18 x 9 x 3 = 486 instances. 

Given T, M, and p, thedemand periods are generated as follows. For each item i we gener­
ate dLr demand periods, where dl,r is randomly taken from the interval [l! DIM J, l ~DIM J] 
such that Lidi T = D. The demand periods are randomly generated in such a way that the 
feasibility condition Lid~ .r :5 t is satisfied for all t. Moreover, all in stances satisfy d~ = 0 for 
all items i and 4 = 1 for at least i. 

Reeall that an instanee is said to have Wagner-Whitin costs if h; + p; ~ P!+1 for all items 
i and periods t. This obviously holds for allinstances in our test set. 

Lower boumls 

We fust investigate the effectiveness of the cutting plane procedure in improving the bounds 
obtained from the LP-relaxation. Reeall that the cutting plane procedure incorporates two sep­
aration routines for single-item inequalities and one for multi-item inequalities. We will also 
consicter the lower bounds obtained when only single-item inequalities are added to the for­
mulation. 

Thequality ofalowerboundz isoftenexpressedin terms oftheintegrality gap g = 100% x 
(z*- z)lz*, where z* denotes the value of the optimal integral solution. Table 3.1(a) reports 
integrality gaps with respect to the following lower bounds: 

zo : the optimal value of the LP-relaxation of DLSP; 
z1 : the value of the LP-solution after the actdition of single-item inequalities only; 
z2 : the value of the LP-solution after the actdition of both single-item and multi-item 

inequalities. 
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Column g i• 0 5 j 5 2, shows the average value of the integrality gap with respect to z i over 
the 27 instances withîn one (T, M, p) combinatîon. No te that these entries represent percent­
ages. The number between brackets denotes the number ofproblems (out of 27) for which an 
integral solution was obtained. Table 3.l(b) provides information on the average number of 
linear programs solved (lj), the average number of cuts added (ë j), and the average compu­
tation time (ij, in seconds) needed to obtain the lower bound Zj, j = 1, 2. 

M p 

0.65 

2 0.80 

0.90 

0.65 

4 0.80 

0.90 

0.65 

6 0.80 

0.90 

M p 

0.65 

2 0.80 

0.90 

0.65 

4 0.80 

0.90 

0.65 

6 0.80 

0.90 

T= 60 T= 100 

Co C1 c2 Co C1 
53.1 (0) 0.16 (16) 0.00 (25) 52.0 (0) 0.22 (14) 

51.6 (0) 0.46 (18) 0.17 (21) 51.8 (0) 0.68 (5) 

46.7 (0) 0.87 (14) 0.43 (18) 44.9 (0) 0.86 (5) 

54.4 (0) 0.28 (12) 0.11 (20) 54.9 (0) 0.14 (11) 

52.5 (0) 0.37 (4) 0.16 (12) 52.6 (0) 0.35 (4) 

49.9 (0) 0.55 (7) 0.24 (15) 48.1 (0) 0.65 (1) 

54.1 (0) 0.04 (15) 0.00 (25) 55.0 (0) 0.14 (8) 

53.7 (0) 0.37 (8) 0.10 (12) 54.1 (0) 0.35 (5) 

52.1 (0) 0.43 (4) 0.21 (15) 49.9 (0) 0.59 (0) 

Tab1e 3.1(a): Quality of the lower bounds at the root node 

T=60 T= 100 

•I <-i 'I Zz ëz Îz il Ct Ït lz 
25 79 5 26 81 5 48 129 15 51 

30 101 6 34 109 7 56 176 22 67 

31 117 7 41 133 9 57 205 26 79 

22 114 7 24 119 7 42 199 25 45 

27 143 12 33 158 12 48 244 38 55 

28 161 15 38 188 17 53 293 51 66 

19 129 9 20 132 9 36 233 27 38 

24 166 14 28 178 14 45 309 53 53 

26 191 18 33 214 21 49 357 73 67 

Table 3.1(b): Average number ofLPs, average num.her of cuts, 

and average computation time at the root node 

Cz 
0.04 (20) 

0.22 (13) 

0.34 (7) 

0.03 (21) 

0.10 (13) 

0.38 (4) 

0.05 (16) 

0.16 (12) 

0.23 (4) 

êz tz 

135 16 

197 26 

246 36 

206 26 

265 42 

326 59 

238 27 

336 57 

415 87 

First observe that the LP-relaxation is rather weak in general; the average gap is about 50%. 
However, the actdition of single-item inequalities already yields lower bounds that, on average, 
differ less than 1% from the op ti mal value. Furthermore, about two-third of the remaining gap 
is closed when also multi-item inequalities are added. The cutting plane procedure yields an 
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integral solution for 273 problems, which amounts to 56% of the total test set. 
Table 3.1(a) suggests that the problems with highest capacity utilization p are the most 

difficult. In general, the integrality gaps g1 and g2 increase and the number ofproblems solved 
to optimality decreases for increasing values of p. From the presentedresults we cannot draw 
solidconclusions about theeffect ofthe number ofperiods Tor the number of items M on the 
quality of the lower bounds. However, the number ofproblems for which an integral solution 
is found is significantly higher for T = 60 than for T 100. 

Table 3.l(b) shows that computation times increase for increasing values of T, M, and 
p. This is not surprising, consictering the larger size of the initia! tormulation and the larger 
number of generated cuts. Reeall from our discussion of the cutting plane procedure that the 
more items, the more cuts can be added in one iteration. This may explain why the number of 
linear programs that are solved decreases when M increases (and Tandpare kept constant). 
However, this decreasein the number of linear programs is outweighed by the increase in the 
computational effort spent on one linear program. 

In order to obtain more insight into the effect of increasing either T, M, or p on the qual­
ity of the lower bounds, we performed some additional tests. Starting from the combination 
(T, M, p) = (100, 4, 0.80), we varied, oneat a time, the values of T, M, and p. Moreover, we 
report results for different values of T while Mandpare kept to 6 and 0.80, respectively. For 
each new combination (T, M, p) 27 instances were generated in the same way as described 
previously. Tables 3.2(a)-(d) provide information on the integrality gap after the addition 
ofboth single-item and multi-item inequalities (g), and the computation time (Ï, in seconds). 
Again, the entries are averages over the 27 instances within one (T, M, p) combination. 

T 60 100 150 200 

g 0.16 0.10 0.14 0.24 

'i 12 42 132 322 

Table 3.2(a): Average gaps and computation 
times for different values of T 

(M = 4, p ""0.80) 

4 6 8 10 

0.10 0.16 0.11 0.16 

42 57 60 67 

Thble 3.2(c): Average gaps and computation 
times for different va1ues of M 

(T 100, p ""0.80) 

T 60 100 

0.10 0.16 

17 59 

150 200 

0.20 0.21 

159 370 

Table3.2(b): Average gaps and computation 
times for different values of T 

(M = 6, p"" 0.80) 

p 0.50 0.65 0.80 0.90 0.95 0.99 

g 0.00 O.o3 0.10 0.38 0.68 0.59 

'i 13 26 42 57 88 100 

Table 3.2(d): Average gaps and computation 
times for different values of p 

(T"" 100, M 4) 

One may conetude ft om Tables 3.2(a) and (b) that the lower bounds become weaker when the 
number of periods becomes larger. A more solid condusion can be reached about the com-
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putational effort required for the cutting plane procedure: computation times grow rapidly for 
increasing T. The number of items does not seem to have much influence on the size of the 
gap. Finally, Table 3.2(d) confirms the previously observed relation between the value of p 

and the quality of the lower bounds. For larger values of p we expect that a fair number of 
variables can be fixed beforehand. This may explain the decreasein g when p increases from 
0.95% to 0.99%. 

Reeall that, besides T, M, and p, an instanee is characterized by two other parameters that 
refer to the cost function. The results did not suggest any relation between the values of these 
parameters and the size of the integrality gap. 

Upper bounds 

Table3.1(a) reports that 67% ofthe 60-period problems (163 out of243) and 45% ofthe 100-
period problems (110 out of 243) were solved to optimality without branching. The use of 
the primal beuristics increased these percentages to 76% and 57%, which corresponds to 184 
and 139 problems, respectively. Note that in the presence of integral cost coefficients the op­
timality of a feasible solution is established as soon as its value and the value of the current 
LP-solution differ less than the greatest common divisor of the cost coefficients. This feature 
is incorporated in MINTO. 

For the instances that were not solved to optimality at the root node, the gap between the 
value of the best available solution at termination of the cutting plane procedure and the value 
of the optimal solution was on average 0.65%. 

Branching 

For 163 out of 486 problems of our original test set branching was required in order to prove 
optimality. Here we report on the performance of different variants of the branch-and-cut al­
gorithm with respect to these problems. Results are presented for the following branching 
strategies, which were discussed in more detail in the previous subsection: 

• FRAC: selects the fractional x-variabie ciosest to ! ; 
• MAX: selects the fractional x-variable ciosest to 1; 

• FIRST: selects the fractional x-variable with smallest index t and value in 

[~ - J-Lt, 4 + JL2l. where JLI = t - 4 max{i~: ~ 5 41 and JL2 4 min{i~: i~ ~ tJ; 
• LAST: selects the fractional x-variabie with largest indextand value in 

H- /Lt. 4 + JL2J. where J-Lt and JL2 are as defined for FIRST. 

Each branching strategy was tested in combination with both best -bound search and depth-first 
search. For each variant of the branch-and-cut algorithm a limit of two hours was imposed on 
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the computation timespent on one instance. Three instances could not be solved within this 
limit for at least one of the eight variants. 

Table 3.3 gives a first impression of the performance of the different branch-and-cut pro­
cedures. The en tri es are averages over the 160 in stances that were sol ved to optimality by all 
variants within the imposed time limit of two hours. Besides the average number of nodes in 
the branch-and-bound tree (n) and the averagecomputation time (Î, in seconds), we report the 
average ratio between the time needed to solve the problem to optimality and the time spent 
at the root node (f1). 

HALF MAX FIRST LAST 

ft ï rz ii ï r/ ft ï r/ ft ï ï't 

best-bound 21 76 1.55 43 105 1.97 38 114 2.04 31 90 1.78 

deptb-first 19 63 1.39 39 81 1.63 37 98 1.83 32 81 1.64 

Table 3.3: Average performance of the different brancbing and searcb strategies for 160 instances 

For both search strategies HALF yields the best results on average. For all branching strate­
gies the problems are solved faster on average by deptb-fust search than by best-bound search. 
In the previous subsection we remarked that in a deptb-fust strategy usually morenodes have 
to be evaluated than when best-bound is applied. Apparently, this does not hold in our case. 
Because of the above results, deptb-fust is the default search strategy in the sequel. 

We observed that for the majority of the instances the size of the branch-and-bound tree was 
fairly small for all branching strategies. Therefore, the differences in the average results re­
ported in Thble 3.3 are mainly due to a relativel y small set ofproblems. In the remainder we in­
vestigate the performance of the different branch-and-cut procedures separately for so-called 
easy and hard instances. An instanee is said to be easy if the average computation time re­
quired by the four branch-and-cut algorithms is at most twice the timespent at the root node. 
This definition labels 142 out of 163 instances (87%) as easy. 

We fust providesome stalistics related to the easy problems. Table 3.4 presentsaverage 
results for each (T, p) combination. Column #inst reports the number of in stances over which 
the average is taken. Furthermore, !i root gives the average gap at the root node and ii, i, and fr 

have the same meaning as in Table 3.3. 
It appears that strategy HALF also yields the best results when only the easy instances are 

taken into account. Exceptfor theproblems with (T, p) = (100, 0.80) HALFperfarms atleast 
as good as any of the other strategies. However, there is not much difference between the four 
variants. Note that f 1 almost always increases when p increases. This is not surprising, since 
the average gap at the root node is larger for larger values of p, hence, we may expect that 
morenodes have to be evaluated in order to prove optimality. For p = 0.65 about 10% of the 
total computation time is taken up by the branching phase, whereas for p = 0.90 this is more 
than 20% on average. 
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HALF MAX FIRST LAST 

T p #in st i root ii t r, ii ï r, ii t r, ii t r, 
0.65 7 0.40 5 9 1.09 5 '9 1.09 7 10 1.13 11 11 1.21 

60 0.80 21 0.44 6 16 1.10 8 17 1.13 8 17 1.15 8 17 1.14 

0.90 25 0.57 9 24 1.22 15 26 1.31 10 25 1.26 11 25 1.28 

0.65 16 0.20 6 29 1.09 8 29 1.11 6 29 1.09 8 29 1.09 

100 0.80 31 0.30 16 54 1.24 17 53 1.22 15 55 1.25 11 50 1.15 

0.90 42 0.40 12 68 1.21 25 77 1.36 14 71 1.27 19 74 1.33 

Table 3.4: Average performance of the different branching strategies for the easy instances 

The last table presents results for the 21 hard in stances. For each instanee we give the number 
of nodes (n) and the computation time (t) required for each of the four different branching 
strategies. An instanee is identified as I.T.M.D.k, where D denotes the total demand, i.e., 
D p x T, andk E {1, ... , 27}. Not surprisingly, themajority oftheseinstances bas capacity 
utilization p = 0.90. Column groot shows the integrality gap at the root node. The timespent 
before entering the branching phase is reported in column troot· The last row presentsaverage 
results over the 19 in stances for which no en try '-' appears in the corresponding row. This 
entry indicates that the problem could not be solved within two hours. 

For the 19 in stances for which average results are reported in the last row, strategy HALF 
yields considerably better results than the other three strategies. No te however that LAST per­
farms as least as good as HALF for a fair number of these problems. Moreover, for the two 
in stances that are not considered in the average results, LAST outperfarms the other strategies 
by far. 

3.4 Related research 

In this section we give an outline of two other salution methods for DLSP proposed in the 
literature. The performance of these methods is compared to the performance of the branch­
anct-eut algorithm. 

Fleischmann [14] proposes a branch-and-bound algorithm using Lagrangeau relaxation 
for the determination of both the lower and upper bounds. Th is approach is based on the same 
formulation as our branch-and-cut procedure. Relaxing the coupling constraints I:; x~ :s 1 
for all t decomposes the problem into M single-item problems, which are solved by means of 
dynamic programming (DP). The Lagrangeau multipliers are updated iteratively by a standard 
subgradient optimization technique. Feasible solutions are obtained by successively solving 
the subproblems for item i = 1, ... , M by a modification of the DP-algorithm in which the 
periods already used for the production of item j < i are skipped. The brànching strategy 
constructs a schedule by fudng the periods one by one in decreasing order. That is, from a 
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HALF MAX FIRST LAST 

instanee 8tool treo~ n t n. t n t n t 

!.60.2.54.13 4.66 27 317 119 533 170 675 295 895 294 
1.60.4.54.18 1.50 22 23 41 29 36 21 37 187 153 

1.60.4.54.24 1.48 32 31 89 113 137 51 125 25 74 

1.60.4.54.25 0.64 33 9 46 105 100 73 129 3 40 

1.60.6.48.6 1.49 24 97 116 191 156 189 212 41 78 

!.60.6.54.23 1.23 29 35 96 95 130 39 113 29 85 

1.100.4.80.24 1.02 84 43 198 449 659 103 418 41 211 

1.1 00.4.90.12 0.99 94 115 369 207 439 141 439 295 835 

I.1 00.4.90.15 0.65 103 235 803 215 494 245 912 457 1594 

1.100.4.90.18 0.64 66 77 211 197 288 499 924 33 101 

1.100.4.90.26 1.43 74 119 299 193 317 365 923 39 145 

1.1 00.4.90.27 0.94 148 29 286 103 484 75 569 45 360 

1.100.6.80.19 1.59 100 335 1630 665 1860 355 1591 737 3865 

1.100.6.80.22 0.44 111 17 169 419 825 89 316 31 182 

1.1 00.6.90.3 0.71 179 - - - - 559 4186 

1.100.6.90.10 1.16 177 665 3083 - - 1631 6540 147 907 

1.100.6.90.15 0.48 94 75 277 473 733 697 1253 103 262 

1.100.6.90.16 0.53 151 21 227 103 396 389 896 21 208 

1.100.6.90.19 1.07 85 33 129 353 671 227 435 1073 1764 

1.1 00.6.90.21 0.12 127 231 463 53 211 259 439 5 137 

1.1 00.6.90.25 0.26 139 3 156 33 259 159 1001 15 190 

Average (19) 1.10 81 97 301 238 440 245 580 214 557 

Table 3.5: Performance of !he different branching strategies for the hardinstances 

subproblem in which periods t + 1 up to T are fixed, M + 1 new subproblems are created by 
either assigning production of item i, 1 :5 i :5 M, to period t or leaving t idle. 

Cattrysse et al. [7] present a salution metbod for DLSP basedon column generation. This 
algorithm has been primarily developed for the problem with sequence-independent startup 

times. The columns in the master problem represent production schedules for the different 
items. The metbod is used as a beuristic as it only solves the LP-relaxation of the master 
problem. The procedure starts with a restricted set of columns and generates new produc­
tion schedules by solving single-item problems by dynamic programming. These are added 
to the formulation as long as they price out. A dual aseent procedure foliowed by subgradient 

optimization provides approximately optimal dual variables of the LP-relaxation of the mas­
ter problem. Feasible solutions are obtained from the upper bounding procedure developed 
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by Fleischmann and from an enumeration algorithm that tries to construct a feasible schedule 
from the single-item production schedules generaled so far. 

Fleischmann tested bis algorithm on data sets from the literature on a capacitated lot-sizing 
problem with larger time periods during which production can occur for more than one item. 
This problem is transformed in a discrete lot-sizing and scheduling problem by a discretiza­
tion of the production periods. Unlike Fleischmann, we can solve most of the probieros TV 
(T varies between 63 and 96, 8 items, total demand 61) without branching, but his algorithm 
requires much less computation time. Furthermore, neither ofhis probieros Gl and G2 (250 
periods, 3 items, p E {0.84, 0.90})wassolved by our algorithm within onehour. In general, we 
conclude that the approach based on Lagrangeau relaxation can handle much largerinstances 
than the branch-and-cut procedure within the same amount of time. 

Cattrysse et al. present computational results for a test set of 45 instances with T = 60, 
ME {2, 4, 6}, and p either :5 0.55, between 0.55 and 0.75, or > 0.75. The cost structure is 
somewhat different from ours; for more details we refer to [7]. The authors compare the per­
formance of their algorithm to Fleischmann's procedure, where the latter is applied without 
branching. The column generation approach yields smaller gaps and a larger number of prob­
Ieros that are solved to optimality, but requires a larger computational effort. We may expect 
that, when branching is applied, Fleischmann's algorithm needs less time than the column gen­
eration procedure in order to reach gaps of the same size. 

Finally, we compare the results reported by Cattrysse et al. to the results that we obtained 
for our set of 60-period problems. The cutting plane procedure yields slightly better gaps when 
pis (about) 0.65. For largervalues of p column generation performs better. This also holds 
with respect to the computation times, although we have no insight into the extra time that will 
be needed by this approach in order to solve all in stances to optimality. Moreover, we cannot 
say anything about how the two approaches will compare for largervalues of T. 



4. Sequence-independent startup times 

In this chapter we study the extension of DLSP in which startups take up an integral num­
ber of periods in which no production can occur. We restriet ourselves to the problem with 
s~uence-independent startup times, i.e., the startup times only depend on the item for which 
the machine is set up. In Section 4.1 we present an integer programming formulation of the 
problem that is similar to the formulation ofDLSP studied in the previous chapters. Valid in­
~ualities for the latter formulation are therefore easily turned into valid inequalities for the 
problem with startup times. Section 4.2 deals with this subjeetin somemoredetail. InSection 
4.3 we discuss a multicommodity flow formulation of the single-item problem. By reformu­
lating the problem as a shortest path problem we derive a complete linear description in the 
new variables. 

4.1 Formulation 

The setting for the problem with s~uence-independent startup times, denoted by DLSS, is 
the same as for DLSP, except that a startup for item i takes up u; periods, u; E z+, in which 
no production can occur. As before, T denotes the number ofperiods of the planning horizon, 
M the number of items, and d; E {0, 1} the demand for item i in period t. We assume that 
the machine is turned off at the beginning of the planning horizon, hence, u; + 1 is the first 
period in which item i can be produced. As a con~uence, it is always assumed that there is 
no demand for item i before period u; + 1. 

As for DLSP, the binary variablex: indicates whetherproduction occurs for item i in period 
t or not. If item i is produced in period t, then this incurs a cost c;. Furthermore, we introduce 
variables z: that equal one if the interval [t u;, t 1] is used for setting up the machine for 

item i and zero otherwise. Thus, z: = 1 indicates that a production batch of item i can be started 
in period t. Associated with z: is the startup cost g;. Obviously, x: and z; are only defined for 
t E [a;+ 1, T]. 

If startups do not affect the production capacity, then there exists a production schedule 
that satisfies all demand in time if and only if Li dL, s t for all t (cf. Section 3.1 ). In the 
presence of startup times, however, the existence of such a production schedule is not easily 
established. In order to prevent infeasibility of an in stance, we therefore assume that the de­
mand can always he satisfied by producing out of the regular production periods. This incurs 
a penalty cost c~ per unit of item i. The nonnegative integer variabie X~ represents the total 
number of units of item i produced in this way. For convenience, this production is said to 
occur in period 0. In practice, XJ may correspond to the demandquantity of item i that cannot 
he satisfied, in which case eb X& represents the lost purchases. 

Now DLSS can he formulated in the following way: 
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s.t. XJ +x~,+I.t ;:: d~<+1,t 
xi < xi +z' t - t-1 I 

min (t+u;, T) 

:L<x:+ L z~) < 1 
i:u1<t -c=max(u;+1.t+l} 

X~ EN, X~, z: E (0, 1} 

(a; < t s T, 1 sis M) (4.1) 

(a, < t s T, 1 sis M, X~1 0) (4.2) 

(1 st sT) (4.3) 

(a; < t s T, 1 si s M) (4.4) 

Constraints ( 4.1) imply that the demand up to period t is always satisfied, either fromproduc­
tion in the regular production periods up tot or from production in period 0. Constraints (4.2) 
force the machine to be set up for item i in [t -a;, t- 1] if this item is produced in period t 
but not in period t - 1. Constraints ( 4.3) assure that no production occurs when the machine 
is being set up. Moreover, they assure that in one period at most one item is produced. 

As in the caseofDLSP, we can addextraconstraints to the formulation in order to exclude 
solutions with a positive inventory at the end of !he planning horizon or with d = 1 and x~ = 0 
forsome i and t. Note that in the latter case, constraints (4.3) imply that for any item j period 
t +a j + 1 is the first period after tin which this item can be produced. Clearly, such a solution 
is never optima! in the presence ofpositive startup costs. 

Reeall that z: = 1 indicates that the machine is being set up for item i in [t- a;, t- 1]. 
Thus, z! = 1 implies that we can start a production batch of item i in period t. Observe that 
the z-variables have the same meaning as the y-variables in the formulation of DLSP studied 
in the previous chapters. Hence, if a startup for some item i only incurs a cost but does not 
affect the production capacity, then this can be easily incorporated in the above formulation 
by taking a; = 0. Moreover, most of the inequalities derived for DLSP can therefore easily be 
turned into valid inequalities for the set of solutions to ( 4.1) - ( 4.4 ), as will be shown in the 
following section. 

We conclude this section by camparing our model ofDLSS toa slightly different formulation 
proposed by Cattrysse et al. in [7]. Instead of z: they use binary variables v: that indicate 
whether the machine is being set up for item i in period t. For ease of explanation, assume 
tb at a; > 0 for all items i. Thus, if a production batch for item i starts in period t, then v~ must 
equal one for every r E [t - a;, t 1]. This incurs a cost 1:~~11_.,., g~. where g~ is the tost 
associated with v~. The correctnessof the tormulation below is now readily seen. 

min t [c~X~ + 
1

t.
1 
c~; + tg~v;] 

x! s x~_ 1 + v~-k 
:Lx~+ I>: s 
i:u!<t i 

X~ E N, x: E {0, 1} 

V~ E {0, 1} 

s.t. (4.1), 

(1 s k sa;< t sT, 1 sis M, x~, = 0) 

(1 st sT) 

(a; < t s T, 1 sis M) 

(1 s t s T, 1 s i s M) 
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Observe that fora; > 1 there exist solutions (X0 , x, v) with v; = 1 for k subsequent periods, 
where kis not a multiple of a;. Such a solution does not correspond to any feasible solution 

to (4.1)- (4.4). However, one easily verifies that if (X0 , x, z) satisfies (4.1)- (4.4), then 

(Xo, x, v) with 
min(Hu;, T) 

v~ L z~ 
~=max(u;+I.HI) 

for all i and t is a solution to the above formulation. In particular, if g; = L~~11_"., g~ and g; > 0 
for all i and t, then both formulations yield the same optimal solution to DLSS. Furthermore, 

it is not difficult to show that if g; = L~~~-u, g~ for all i and t, then the LP-relaxation of our 
model yields lower bounds that are as least as good as the lower bounds obtained from the 

LP-relaxation of the model proposed in [7]. 

4.2 Valid inequalities 

In this section we give some results on valid inequalities for DLSS. We mainly con si der valid 

inequalities for the single-item problem, i.e., inequalities that are valid for all (Xo, x, z) satis­
fying 

Xo+Xu+l,t ~ du+l,t (a < t:::; T) (4.5) 

Xt ::S Xt-1 + Zt (a < t:::; T, x".= 0) (4.6) 
min(t+u,T) 

Xt+ L Zt :::; 1 (a :::; t :::; T, x". = 0) (4.7) 
~=t+l 

Xo EN, Xr, Zt E {0, 1} (a<t::ST) (4.8) 

where T denotes the number ofperiods and dr E {0, 1} for all t <d1,u = 0). For ease ofpresen­
tation, we renumber the periods such that period 1 is the first period in which production can 

occur. Let T denote the last period of the new planning horizon, i,e., T = t - a. Moreover, 

define d 1 = dt+"., 1 :::; t :::; T. Then the above formulation can be restated as 

Xo + x1.r ~ di.t (l:::;t:::;T) (4.9) 

Xr ::S Xt-1 + Zt (1 S t ::S T, Xo = 0) (4.10) 
min(t+u,T) 

Xt+ L z~ :::; 1 (0 ::S t ::S T, Xo = 0) (4.11) 
~=t+l 

Xo EN, Xr, Zt E {0, 1} (1 :::; t:::; T) (4.12) 

Let X,. denote the set of feasible solutions to (4.9)- (4.12). Every valid inequality for X,. 

clearly yields a valid inequality for thesetof feasible solutions to (4.5) - (4.8) by substituting 

x1+". and Zt+u for x1 and Zr. respectively, for every tE [1, T]. 

Let a > 0. Because of (4.11), we have X, c x,._1 and conv(X,) c conv(X,_ 1). Thus, 

all valid inequalities for x,._1 are valid for X,. In particular, all valid inequalities for -Xó are 
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valid for .X:,.. Obviously, the subset of solutions in ;\ó with Xo = 0 is the set of solutions to 
the formulation of the single~item DLSP studied in Chapter 2 with y1 replaced by z1• For the 
latter fotmulation we derived several classes of facet-defining inequalities ax + {Jz ~ y with 
a1 E {0, 1} for all t. Reeall that these inequalities can be written as Ir ~ LB(x, z), i.e., they 
yield alower bound on theinventory Ir at the end ofperiod t. Ifproduction mayalso occur in 
period 0, then Ir= Xo + Xt,r- dt,r· Thus, the inequalities from Chapter 2 become valid for 
;\ó by actding the term Xo to the left-hand side. It is nothard toseethese inequalities are also 
facet-defining for conv(;\ó). 

For two subclasses we will give conditions for the inequalities to be facet~defining for 
conv(.X:,.). However, we will notprove in detail that an inequality defines a facet since these 
proofs are simHar to the proofs in Chapter 2. As a matter of fact, they are usually facilitated 
by the possibility to produce in period 0. The following lemma implies that, in order to prove 
that an inequality defines a facet of conv(.X:,.), one has to construct 2T linearly independent 
direcUons in the subset of solutions in .X:,. that satisfy the inequality at equality. 

Lenuna 4.2.1 Conv(.X:,.) has dimension 2T + 1 for all u ~ 0. D 

Since demand can always be produced in period 0, one readily constructs the 2T + 1 unit vee~ 
tors as directlans in .X:,.. It is obvious that there always exists a feasible salution with Xo 0 
for the single-item DLSS. However, if the variabie Xo is omitted from the formulation, then 
thedimension oftheconvexhull of .X:,. depends on thedemand function. Forexample, if u= 2 
and d2 = 1, then all solutions in Xz with Xo 0 satisfy x1 + zz 0 and Z3 = 0. 

The following lemma gives a necessary condition for an inequality to be facet-defining for 
conv(.X:,.). 

Lenuna 4.2.2 Let u> 0. Let aoXo + ax+ {Jz ~ y be afacet-defining inequality ofconv(.X:,.) 
that is not oftheform (4.11 ). Thenfor any t :S T- u thefollowing holds: 

Cl. There exists a salution in .X:,. without production in the interval [t, t +u] that satisfies 
the inequality at equality. 

PROOF. Define .,t. = { (Xo, x, z) E .X:,. : aoXo +a x+ {Jz = y}. From the assumption that 
a x+ {Jy ~ y de fin es a facet of conv(.X:,.) and is not of the form ( 4.11), it follows that for any 
t :s T u there mustbeat least one solution ( Xo, x, z) E ..t. satisfying Xr + Zt+l .t+cr = 0. Since 
x1 + Zt+l,t+cr = 0 implies that no production occurs in [t, t +u], this proves the statement. D 

We discussed before how facet-defining inequalities derived in Chapter 2 cari easily be turned 
into valid inequalities of .X:,.. In the sequel, we will give conditions for the inequalities of two 
subclasses to be facet~defining of conv(X,.). For all inequalities Xo + ax + {Jz ~ yin these 
subclasses the following holds: for any t E [1, T -u] there exists a salution in X- satisfying 
X0 + ax + {Jz = y + 1 and Xr + Zr+t,t+cr = 0. The following lemma showshow such an in~ 
equality can be strengthened with respect to conv(X,.) when condition Cl is violated forsome 
period t. 
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Lemma 4.2.3 Let a> 0 and tE [1, T-a]. Let Xo + ax + f.lz;::: y be as described above.lf 
there is no solution in X:,. without production in [t, t +a] that satisjies the inequalityat equality, 
then 

Xo + ax + f.lz + Xt + Zt+l,t+tr ;::: y + 1 (4.13) 

is validfor x;,. anddejines a higher-dimensionaljace jorconv(X:,.) than the original inequality. 
0 

lt is nothard to see that if Cl is also violated fort and a' < a, then (4.13) is valid for .:V as 
well. However, the new inequality does not necessarily define a higher-dimensional face with 
respect to conv(..:V). 

Example 4.2.1 Let T 6 and ds = d6 = 1. Then 

+ Z5 > l 
Xo + X1 + Xz + X3 + X4 -

defines a facet of conv(.:\á) but not for conv(Xi ), since for any solution in .M and, hence, in Xi 
that satisfies the inequality at equality production occurs in at least one of the periods 5 and 6 
(see also Proposition 4.2.4 below). By Lemma 4.2.3 

+ Z5 + Z6 ::: 2 

is valid for .M and X1• Moreover, the inequality defines a facet ofboth conv(XJ) and conv(Xi). 
0 

We fust consider theLSM inequalities (cf. Subsection 2.2.4), which have the following form: 

Xo+Xt,t+ L(Xt+j+Zt+j+l,sdq,1);::: d~,t+lll. 
jE] 

(4.14) 

where t E [0, T- 1], dt+1 0, J 5:; {1, ... , dt+J,T}, and where Sd(t,J) denotes the jth demand 
period after t. These inequalities are facet-defining for conv(.:\á). 

Proposition 4.2.4 Let a> 0. lnequality (4.14) de.fines a facet ojconv(X:,.) if and only iffor 
every j E {1, ... , dt+J,T} the following holds: if Sd(t, J) :::;: t + j +a, then j E J. 0 

The necessity of the condition follows from the observation that for jE {1, ... , dt+t,r}\1 
there is no solution in .:\á, and, hence, none in x;,., without production in [t + j, Sd(t,Jl] that sat­

isfies (4.14) at equality. By Lemma4.2.3, we can add Xt+j + Zt+j+l •. rd<r.J) ;::: 1 to (4.14). This 
obviously yields another inequality of the form (4.14) with J' = JU {j}. 
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We next consicter the RSM inequalities (cf. Subsection 2.2.2), which can be written in the 
form 

Xo+Xt,e•+ L(Zu+l,u+d.,,. -Xu+d.,,.) ~ dt,e•, 
u EU 

(4.15) 

where t* is a demand period and U s; {t: t < t* and de= 0}. For convenience, define V= 
{u +du,t• :u E U}. Moreover, denote by u(v), v E V, theelementin U satisfying u+ du,t• v. 
Again, these inequalities are facet-defining for conv(~). 

Unlike in the case of constraints (4.14), we can only give sufficient conditions for (4.15) 
to be facet-defining for conv(X,.), a> 0. We use the following notation with respect to an in­
equality of the form ( 4.15): if t* is not the last demand period, then t' denotes the fust demand 
period after t*, otherwise we set t' T + 1. Furthermore, define Vmin = minvEV v. 

Proposition 4.2.5 Let a > 0. Ij t' > min ( T, t* + a+ 1) or if t' = t* + a + 1 and (V min + a S t* 
ort* E V), then inequality (4.15) defines a facet ojconv(X,.) D 

With respect to conv(Xt) we can give both necessary and sufficient conditions for (4.15) to 
define a facet. These are easily obtained from the following lemma, which provides astrong 
relation between facet-defining inequalities of conv(~) and conv(Xi). 

Lenuna 4.2.6 Afacet-defining inequality ojconv(~) defines a facet of conv(Xt) if and only 
ij for every t < T there exists a solution in Xi without production in [t, t + l] that satisfies the 
inequality at equality. 

PROOF. We already proved the necessity ofthe condition. Hence, let aoXo + ax + {Jz ~ y be 
a facet-defininginequality ofconv(~). and denote by Xr theset ofsolutions in X,., a E {0, 1}, 
that satisfy the inequality at equality. Moreover, suppose that for every t < T there exists aso­
lution in% without production in [t, t + 1]. Since the inequality defines a facet of conv(~). 
there exist 2T linearly independent directionsin ,Xö (cf. Lemma 4.2.1). The direction e(z1) 

is easily established for all t > 1 with fJr = 0, where e(z1) denotes the unit vector of length 
2T + 1 corresponding to the variabie ze. We may assume that the other directions are obtained 
from solutions in% that satisfy Xt + Zt+ 1 S 1 for all t, thus, these are directionsin Xi as well. 
Hence, it suffices to show that e(ze) is also a direction in% for all t > 1 with fJr = 0. To 
that end, let t > 1 satisfy fJr 0. By assumption, there exists a solution (Xo, x, z) E Xi sat-

isfying Xt-1 +Ze = 0. Then (Xo, X, z) with Ze 1 and zt' z.- for r i= t is also in Xi and 
(Xo, X, Z) (Xo, X, Z) e(Zt). D 

It is not likely that a simpte relation between the facet-defining inequalities of conv(X,.-1) 
and conv(X,.) can be established fora > 1. In any case, the following example shows that the 
above result fora 1 does not hold for general a. 
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Example 4.2.2 Let T = 10 and d1 = 1 fortE {7, 8, 9, 10}. Then 

+ Z3 + 2z4 + Zs + Z7 + Zs 

Xo + Xt + X2 + X3 + X6 + X7 
~ 2 (4.16) 

is an inequality öfthe form (4.15) with t* = 8 and U= {2, 3, 6} that defines a facet of conv(X1) 

(cf. Proposition 4.2.7 below). Furthermore, for each tE [1, 8] there exists a salution in X2 
without production in [t, t + 2] that satisfies (4.16) at equality: take Xo = 2, z9 = x9 = Xto = 1 
fort :::; 6, and X0 = 0, z2 = x2 = ... = xs = 1 fort= 7, 8. However, (4.16) does not define 
a facet of conv(X2), since x1 + zs = xs for all (Xo, x, z) E Xz that satisfy the inequality at 
equality. 0 

Let us consicter inequalities (4.15) again. Throughout, we use the following notation with re­
spect to such an inequality: Î = max{t E [t*, T] : dr: = 1 for all TE [t*, t]}. For every inequal­
ity of the form (4.15) condition Cl is satisfied with respect to X1 fort < t* and fort ~ î, i.e., 
forthese periods t there exists a salution in X1 without production in [t, t + 1] that satisfies 
(4.15) at equality. Fort E [t*, î- 1] the condition is satisfied if and only if one of the follow­
ing holds: (i) Î = t*, (ii) Î = t* + 1 and Vmin < t*, or (iii) Î > t* + 1 and { v, v + 1} s; V for 
some v < t*. Hence, by Lemma 4.2.6, we have the following result. 

Proposition 4.2. 7 Inequality ( 4.15) defmes a facet of conv(Xt) if and only if one of the fol­

lowing holds: (i) î = t*, (ii) Î = t* + 1 and Vmin < t*, ar (iii) Î > t* + 1 and {v, v + 1} s; V for 

some v < t*. 0 

The above result implies that ( 4.15) does not define a facet of conv(Xi) if either î ~ t* + 1 and 
Vmin = t* or î ~ t* + 2, V min < t*, and v + 1 f/. V for any v E V. Denote by R the set of periods 
t that vialate condition Cl with respect to Xi. Then R = [t*, î- 1] if î ~ t* + 1 and Vmin = t*, 

and R = [t* + 1, î- 1] otherwise. Inequality (4.15) can now be strengthened with respect to 
conv(X1) by applying Lemma 4.2.3 for at least one tE R. The question is: for which R' s; R 
is 

Xo + Xt,t• + L(Zu+l,u+d..,,.- Xu+d..,,.) + L(Xr: + Zr:+l) ~ dt,t• + IR'I (4.17) 
uEU r:ER' 

facet-defining for conv(Xt)? 
First, notice that if V min = t*, then ( 4.15) is also of the form ( 4.14) with t = u(t*) - 1 and 

J = {1, ... , t*- u(t*) + 1}. Then, by Proposition 4.2.4, (4.17) defines a facet of conv(X1) if 
and only if R' = R = [t*, î- 1]. lt is also not difficult to check that if î ~ t* + 2, 1 VI = { v}, 
and v < t*, then ( 4.17) defines a facet of conv(XJ) if and only if R' = R = [t* + 1, î- l]. For 
the remaining cases we have the following result: 

Proposition 4.2.8 Let ( 4.17) satisfy î ~ t* + 2, IV I ~ 2, and v + 1 f/. V for any v E V. Fur­

thermore, let R' = {t* + 2j -1: j = 1, ... , L(Î- t*)/2J}. Then (4.17) is validfor X1• The 

inequality defmes a facet ojconv(XJ) if and only ifone ofthefollowing holds: (i) î = t* + 2, 
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(ii) there exists v E V such that v + 2 E V or u(v) 
exists v E V such that v + 3 E V or u ( v) = v - 2. 

v 1, or (iii) î- t* is even and there 

0 

In all cases, the validity of (4.17) for X1 can be shown by sequentially applying Lemma 4.2.3 
to the elements of R' in increasing order. Obviously, if (Xo, x, z) E Xl \X1, then the solution 
obtained from (Xo, x, z) by setting Zt to zero for all t satisfying Xt-1 = Zt = 1 yields a solution 
in X1. Hence, a valid inequality for X1 with nonnegative z-coefficients is also valid for XJ. In 
particular, ( 4 .17) is valid for Xl if it is valid for Xi. Moreover, it is not difficult to show that 
(4.17) defines a facet of conv(XJ) whenever the inequality is valid for XJ. Then, by Lemma 
4.2.6, the result that (4.17) defines a facet of conv(X1) for the given set R' is establîshed by 
checking that for any t E R there exîsts a solution in Xi without production in [t, t + 1] that 
satisfies ( 4.17) at equality. 

Example 4.2.3 Let T = 10 and d1 1 fortE [5, 10]. Then 

+ Z3 + Z4 + Z5 + Z6 

Xo + x1 + x2 + X3 + Xs 

defines a facet of conv(XJ) but not for conv(X1), since Xz-l + Zt = 1, tE [8, 10], for any solu­
tion (X0 , x, z) E X1 that satisfies the inequality at equality. Now the above proposition yields 
that 

+ Z3 + Z4 + Z5 + Z6 + Zs + Zto > 4 
+x9 -Xo + X1 + X2 + X3 + X5 

defines a facet ofboth conv(XJ) and conv(Xt). Notice that this inequality does not belong to 
any of the three subclasses of facet-defining inequalities of conv(XJ) that were discussed in 
Subsectiens 2.2.2 through 2.2.4. 0 

Let us finally show how the multi-item inequalities (3.12) (cf. Sectîon 3.2) can be strength­
ened in the presence of startup times. Consicter the multi-item formulation presentedat the 
beginning of this chapter. For convenience, we add x~ = z; = 0 for all i and t ::::; a;. Then the 
following modification of (3.12) is valid for the set ofsolutions to (4.1)- (4.4): 

t, 

X~ + xL,-1 2:: dL,-1 + d!,,1, :L)x/2 - z{t+Lr) - L d:,1,z;, (4.18) 
jEJ t=tz+l 

where i E {1, ... , M}, J ç {1, ... , M} \{i}, and t 1, t2, and t3 are three periods that satisfy 
1 ::::; t 1 ::::; t2 ::::; t3 ::::; Tand dL, 2:: 1. These inequalities werederived from thé following obser­
vation: if there is no production for item i in the interval [lt, t'], where t' E (t2 + 1, t3], then 
the inventory for item i at the end of period t1 - 1 must beat least d1 r. If startup times are 

" zero, then there is no production for item i in [t1, t2] if the whole interval is used for produc-
tion of item j. The latter is implied by x{, - zf +I 1 1. In the presence of positivè startup 

"' 1 , 2 

times, however, we cannot produce item i in the interval [t1, tz] if all periods in [t1 + a j, tz] 

are used for production of item j, which is implied by x/
2

- z~+o)+1 . 12 = 1. Moreover, if item 
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j is produced in period t2, then t2 +a; + 1 is the first period after t2 in which production for 
item i can occur. The above inequality can therefore be strengthened to 

x~ + xL~-1 2: dL~-1 + d:t.ll L:<xf,- zfi+l7j+1.r)- t d;,t,z;. <4.19) 
jEJ t=t2+a;+1 

Reeall that inequalities (4.14), (4.15), and (4.18) (with X~= 0 for all i) servedas cutting plan es 
in the branch-and-cut algorithm for DLSP discussed in the preceding chapter. Obviously, the 
separation routinescan be used in a cutting plane algorithm for DLSS as well. The strength­
enings of inequalities ( 4.1 5) or ( 4 .18) presented above can easily be incorporated. Computa­
tional experiments will have to show whether the actdition of these inequalities is as effective 
in reducing the integrality gap for DLSS as for DLSP. 

4.3 A multicommodity flow formulation 

A natura! formulation for single-item lot-sizing problems is the one in which the variables 
are only indexed by t. However, the introduetion of new variables often yields a tighter for­
mulation with fewer constraints. Various types of extended formulations are discussed in the 
literature; fora review we refer to Pochet and Wolsey [33]. In many cases a complete linear 
description in the new variables is derived. 

One such extended formulation is the multicommodity flow formulation, in which the pro­
duction variables x, are split into variables X1k that specify how much is produced in period t 
to satisfy the demand in the kth demand period. Van Hoesel and Kolen [20] present a multi­
commodity flow formulation for DLSP in which not only the production variables x, but also 
the startup variables y, are split. By rnadeling DLSP as a shortest path problem they derive an 
LP-formulation in these variables that always yields an integral solution. 

Here we give a similar result for the single-item problem with startup times. We consicter 
DLSS with the additional restrictions that we always produce when the machine has been set 
up for production (z1 :::; x1) and that overproduction is not allowed. As in Section 4.2, the 
periods are numbered such that period 1 is the first period in which production can occur. Thus, 
we consicter the following formulation of DLSS: 

T 
min coXo + L (CrXr + g,Zr) 

1=1 
s.t. Xo + Xl,t 2: d1,t Ost<T) (4.20) 

Xo+X1,T d1,T (4.21) 

z, S Xz S Xz-1 +zz (1 s t s T, Xo = 0) (4.22) 
rnin(t+17,T) 

x,+ I: Zr S 1 (0 st sT, Xo 0) (4.23) 
l=t+l 

Xo EN, Xz, Zt E {0, 1} (1 st sT) (4.24) 
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In a multicommodity ftow formulation of DLSS the variables x1 and Zr are split into binary 
variables Xrk and Ztk• respectively. As usual, Sk denotes the kth demand period. Then Xrk = I 
if and only ifproduction occurs in period t to satisfythe demand in sk. Similarly, Zrk = I if 
and only ifperiod t is used to produce forperiod Sk aftera startup in [t- (1, t- 1]. The integer 
variabie X0 is split into binary variables Xok that indicate whether the demand for period sk is 
produced in period 0. Withoutlossof generality we assume that the demand forSt. k > I, is 
not produced before the demand for Sk-I, i.e., we only consider solutions to DLSS that satisfy 

if Xr1,k-I = Xr2,k = I, then ti < tz or ti = tz 0. (4.25) 

In the sequel a complete linear description of the convex huil of the set of these solutions will 
be established. The result is obtained by modeling DLSS as a shortest path problem on an 

acyclic network such that the variables Xrk and Zrk form a subset of the ftow variables in the 
conesponding linear program. Elimination of the other variables yields a linear program in 
the x- and z-variables that always bas an optimal integral solution. 

We fust present a dynamic programming algorithm that solves DLSS. This algorithm will 
be transformed into the shortest path formulation mentioned above. For convenience, define 

K {I, ... ,d~,r}. 
Now let tjJ(t, k), t E [1, sk] and k E K, denote the minimumcostof a solution for periods 

0 up to t in which period t is used for production and the total production up to t equals k. If 
t < k, then the production in period 0 is at least k-t, which incurs a cost of c0 per unit. Also 
observe that if t E [2, C1] is used for production and the total production up to t equals k > 1, 
then either t is the first period in [1, t] in which production occurs or period t - 1 used for 
production as well. 

Furthermore, let lfr(t, k), t E [2, Sk- C1] and k E K, denote the minimumcostof a solution 
for periods 0 up tot for which the following holds: period t is not used for production, period 

t I is not used for setting up the machine, and the total production up to t equals k 1. 
In this case the kthunit cannot be produced before t + (1. Hence, lfr(t, k) is only defined for 

t 'S. sk (1, Note that if the (k- 1 )st unit is produced insome period t E [sk- (1 + I, sk-I + 1 ], 
then the kth unit must be produced in period t + I. Moreover, if the kth unit is produced in 
t > Sk-I+ 1, then a startup occurs in the interval [t (1, t- 1]. 

Using the above observations we obtain the following forward recursion is easily verified: 

tjJ(t, I) 

t/J(t, k) = 

Cr+ 

gr+Cr fortE [1, sJ], and 

co(k -1)+ gl 
min(co(k -1) + g1, t/J(t -1, k-1)) 
min(tjJ(t- 1, k 1 ), lfr(t- C1, k) + gr) 

lfr(t (1, k} + gt 

tjJ(t -1, k 1} 

fort= 1 
fortE [2, (1 + 1] 
fortE [C1 + 2, min(sk-1 + 1, sk- C1)] 

fort E [Sk-I + 2, sk-a] 

fortE [Sk- C1 + 1, Sk-I+ 1] 



4.3 A multicommodity flow formulation 

'1/f(t, k) = 
{ 

min(co(k-l),<P(l,k 1)) 
min('!fr(t -1, k), <P(t -1, k -1)) 

t(t- 1, k) 

fort= 2 
fortE [3, min(Sk-1 + 1, Sk-a)] 

fort E [Sk-I + 2, Sk a] 
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for k E K\{1}. Çalculation of min (codi,T, minre[l,s•
1
.rJ <P(t, dt,T)) yields the minimum cost 

of any feasible solution to DLSS. 

The dynamic programming algorithm gives rise toa shortest path tormulation in the following 
way. For convenience, define Kt = K\{1}. Wedefine a network that, apart from a soureeS 
and a sink S', consists of the following nodes: 

• Urk for all tE [0, Sk] and kEK, except for (t, k) = (0, dt,T); 

• Vrk for all tE [2, Sk-I+ 1] and k E Kt; 

• Wrk for all tE [2, Sk-a] and k E Kt. 

Every solution to DLSS will correspond toa path from S to S'. Node Urk will be on the path if 
and only ifthe kthunit of demand is produced in period t. Node Vrk will be on the path if and 
only if the demand for Sk-1 is produced in period t- 1. Finally, node Wrk will be on the path 
if the following holds: there is no production in period t, the total production up to period t 
equals k 1, and the machine is not being set up in t - 1. 

Table 4.1 lists the arcs in the network together with the corresponding flow variabie and 
cost. Figure 4.1 shows the network corresponding to the instanee with T = 6, a 2, and 
demand periods s1 = 2, s2 = 5, and S3 6. 

are variabie fined for 

(S, Uot) Xot co 

(S, u,1) Ztt g, tE[l,sJ] 

(uo,k-1, uok) XQk co k E Kt \{dt,T} 

(uo,k-1, u,k) Ztk g, tE[l,a+l]andkEKt 

(uo,k-1, W21<) Ytk 0 kEKt 

(Ur-l,k-1, Vrk) Xr-t,k-1 Cr-I tE [2, sk-I + 1] and k E Kt 

( v,k, Urk) fttk 0 tE [2, sk-I + l] and k E Kt 

(Vtk> Wrk) fJ,k 0 tE [2,min(sk-t +l,sk a)] and k E Kt 

(wrk• w,+t,k) Ytk 0 t E [2, sk - a- 1] and k E K1 

( Wtk, Ut+.,.,k) Zt+.,.,k 8t+D' t E [2, sk - a] and k E Kt 

(uo,dt.r-t. S') XO,dt,T co 

(ur,d1 T'S') Xt,dtT c, tE[1,sd1 rl 

Table 4.1: Arcs in the network 
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uo1 Xoz Uoz Xo3 

T= 6, a= 2 

St = 2, Sz = 5, S3 = 6 

Figure4.1: Shortest path formulation ofDLSS 

lt is nothard to see that fort E [1, Sk] and k E K the value of rp(t, k) - Cr equals the lengthof the 
shortest path from S to Urk and, hence, that rp(t, k) corresponds to the length ofthe shortest path 

from S to Vr+l,k+l for k < dl.T· Furthennore, 1/t(t, k) corresponds to the length ofthe shortest 
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path from S to Wz~c. Note that the unique shortest path from S to uo~c. k < d1,T• has length 
cok. Thus, the lengthof the shortest path from S to S' is min(codJ,r. minzE[t,sd

1
,rJ q)(t, dt,r) ). 

Hence, DLSS can be solved by solving the shortest path problem on this network. 
Consicter a path from S to S'. Observe that the intermediale nodes are nondecreasing in 

both the index t and the index k. Thus, for every k < d 1,r there is precisely one node u1~c, 
t E [0, s~c], on the path, hence, X11c = 1 for precisely one t E [0, s~c]. The latter also holds for 
k = dt,T· Furthermore, if Xok 1, k > 1, then Xo,k-t = 1, and if Xtk = 1 fort> 0 and k > 1, 
then x'!',k-t = 1 forsome r < t. Thus, (4.25) is satisfied. Note further that Ztl< = 1 implies 
Xrk 1. Finally, if Z11c 1 for k > 1, then X-r,k-t = 1 forsome r ::;: max(O, t a 1 ). 

The other variables can be interpreled as follows. If ark = 1, then the demand for Sk-t is 
produced int 1 and the demand fors" is produced in period t. If flrk 1, then the demand 
for sk-I is produced in t - 1 but there is no production in period t. Finally, if Ytk = 1, then 
there is no production in period t and the total production up to t equals k - 1. Moreover, pe­
riod t is not used for setting up the machine. 

The shortest path problem can be solved by the linear program formed by the flow conser­
vation constraints and the nonnegativity constraints. The flow conservalion constraints yield 
explicit expressions for the a-, {1-, and y-variables in terms of the x- and z-variables. Using 
these and the nonnegativîty constraints, we can obtain an equivalent linear program in the x­
and z-variables only. It is a tedious but straightforward procedure to check that eliminabon of 
the a-, {1-, and y-variables yields the linear program 

St 

s.t.l:xlk = 1 
1=0 

Zti = Xtt 

Ztk = Xtk 

for kEK 

for t E [1, st] 

fortE {1} U [s~r.-I + 2, s~c] and k E Kt 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Ztk ::;: Xtk ::;: Xt-I,k-l + Ztk 

Ztk ::;: Xrk = Xt-l.k-t + Ztk 

fortE [2, min(s~r.- a, s~c-t + 1)] and k E Kt (4.30) 

fortE [sk-a+ 1, s~r.-t + 1] and k E Kt (4.31) 
st-! t+u 

l:x>',k-1+ L Z-rk < 
1'=1 1'=1+1 

Xok. X1k, Z1k 2: 0 

Sk L X'!'k fortE [1, Sk a 1] and k E Kt 
'!'=t+t 

fort E [1, Sk] and k E K 

(4.32) 

(4.33) 

From the above discussion it follows that the linearprogram (4.26) (4.33) always yields an 
integral solution. Hence, we have proven the following result: 

Theorem 4.3.1 The linear program (4.26)- (4.33) solves DLSS. D 

A fonnulation for the multi-item DLSS in the variables x;k and z;" is obtained by taking the 
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single-item formulations for the different items together with the linking constraints 

(4.34) 

Obviously, its LP-relaxation will not yield an integral solution in general. However, it is ex­
pected to give stronger lower bounds than the LP-relaxation of the formulation in the natural 
variables. A disadvantage of the multicommodity flow formulation is its large number of vari­
ables, which is about d1.r T. If the formulation is used in a branch-and-cut algorîthm, then it 
may be computationally advantageous tostart with an LP-formulation in which only a subset 
of the variables is included and to add nonactive variables only when they price out. This is 
an interesting topic for further research. 



5. The delivery man problem 

This chapter deals with the delivery man problem or DMP for short. This problem is a vari­
ant of the well-known traveling salesman problem (TSP) in which the objective is to find a 
tourstarting from a given depot that minimizes the sum of the waiting times of the customers. 
The DMP can also be interpreled as a single-machine scheduling problem with sequence­
dependent processing times in which the total flow time of the jobs bas to be minimized. 

Polyhedral methods have been proven to be very successful for the TSP and many of its 
extensions. Most of these extensions deal with extra conditions on the graph structure, e.g. 
preeedenee constraints, such that the problem can still be formulated as a 0 - 1 model. How­
ever, we will formulate the DMP as a mixed integer programming problem by introducing 
time variables (Section 5.1). This formulation can easily be adapted to the problem with time 
windows, i.e., when each customer bas to be visited within a specified interval. Only a few 
papers deal with this kind of extension. Ascheuer [2] bas developed a branch-and-cut code 
for the TSP with time windows. Escudero and Sciomachen [12] and Escudero, Guignard, and 
Malik [13] study the sequentia! ordering problem with time windows, where the sequential 
ordering problem is the problem of finding a minimum weight Hamiltonian path subject to 
preeedenee constraints. For this problem Maffioli and Sciomachen [26] propose a formula­
tion that is similar to our formulation of the DMP. 

In Section 5.2 we will derive additional classes of valid inequalities in order to strengthen 
the linear programming relaxation. The quality of the lower bounds obtained from the LP­
relaxation and the effeetiveness of the new inequalities in reducing the gap are studied com­
putationally inSection 5.3. 

This chapter ditiers from the previous chapters in that it is primarily devoted to the DMP 
instead of the DLSP. Nevertheless, the formulation presenled bere may also serve as a basis 
for a polyhedral approach to the DLSP with sequence-dependent startup times. To that end, 
we use the reformulation of the latter problem as a TSP with time windows (cf. Seetion 1.2). 
The DLSP then only differs from the DMP with time windows as far as the objective function 
is concerned. 

5.1 Formulation 

The delivery man problem is formally stated as follows. We consicter the complete directed 
graph G = (V U {0}, A}, where V= {1, ... , n}. With each are (i, j) we associate a nonnega­
live integer travel time Pi i· It is assumed that visiting time is included in the travel time, hence, 
the arrival time at node i equals the departure time at node i. Node 0 is the depot, i.e., every 
tour starts and finishes in node 0. Furthermore, we assume that every tour starts at time 0. 
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Then the waiting time of the customer located at node i is equal to the departure time at node 
i. Now the problem is to find a tour that minimizes the sum of the departure times at the nodes. 

The DMP can be modeled using the following two types of variables. For every are (i, j) 
there is a binary variabie X; i that indicates whether the are (i, j) is included in the tour or not, 
and a time variabie t;i defined as follows: 

{ 
departure time at node i, 
0, 

if Xij 1, 
otherwise. 

Since we assume that every tour starts at time 0, the variables toj can be omitted from the 
model. This gives rise to the following formulation of DMP, in which C denotes a large con-
stant: 

n n 

min L L: t;j 

i=l j=O.j#i 

" 
s.t. L: Xij 1 (0 5. i 5. n) (5.1) 

j=O,j#i 

n 

L: Xij = 1 (0 5. j 5. n) (5.2) 
i=O,i#j 

n n n 

L: t;j + L: PijXij L: t jlc (1 5. j 5. n) (5.3) 
i=l.i#j i=O,i,fj k=O,k,fj 

0 5. t;j 5. CXij (0 5. i, j 5. n, i =1= j, i =1= 0). (5.4) 

X;j E (0, 1} (0 5. i, j 5. n, i =1= j) (5.5) 

Constraints (5.1) and (5.2) ensure that every node, including thedepot, is visited exactly once. 
Constraints (5.3) guarantee that if Xij 1, then the departure time at node j equals the depar­
ture time at node i plus the travel time Pii· These constraints also prevent subtours, unless 
there exists a set of subtours such that every node is in precisely one subtour and Pii = 0 for 
all arcs {i, j) that are involved in these subtours. If Cis an upper bound on the departure time 
at node i, e.g. C = n · max;,j Pii> then (5.4) is valid when X;j 1. Furthermore, these con­
straints force that lij= 0 if Xij = 0. 

This model can easily be adapted to the problem with time windows (DMP1W), i.e., when 
each node i bas to be visited within a specified interval [e;, l;]. The delivery man may arrive 
at node i before e;, but cannot deliver before the opening of the time window. In this case, 
the departure time at node i is strictly larger than the arrival time at node i. To model this, 
equalities (5.3) must be replaced by 

n n 

L tij + L p;jXij 5. 
i=l,i#j i=O,i,fj 

" L Ijk 
k=O,k#j 

(1 5. j 5. n). (5.6) 
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Furthermore, substituting 

(0 :5: i, j :5: n, i :f j, i :f 0) (5.7) 

for (5.4) yields that l;j = 0 if X;J 0 and that the departure time at node i is in the time window 
[e;, l;] otherwise. The sum ofthe waiting times is now L;,(L;,t;1 - e;). 

It is evident that, apart from the objective function, the formulation for the DMP'IW mod­
els the TSP with time windows as well. A well-known model for the TSP'IW is the one with 
variables X;J and I;, where t; denotes the departure time at node i (cf. Desroehers et al. [8]). 
Then the set of feasible tours is thesetof solutions to (5.1 ), (5.2), (5 .5), and 

t; +PiJ+ M;j(Xij- 1) :5: Ij 

e; :5: I; :5: l; 

(0 :5: i, j :5: n, i :f j, j :f 0, to = 0) 

(1 :5: i :5: n) 

where Mij :::: 1; + Pij - ei· Compared to this model an important feature of the tormulation 
with variables XiJ and t;j is that it does not involve big-M coefficients in the constraints. 

As mentioned before, the DMP can also be considered as a model for the single-machine 
scheduling problem with sequence-dependent processing times. In this case we haven jobs, a 
dummy job 0 that is scheduled twice, once at the beginning and once at the end ofthe schedule, 
and sequence-dependent processing times PiJ· Furthermore, in the presence of time windows, 
every job i is releasedat time e; and bas to be started notlater than l;. 

A frequently used objective in scheduling problems is minimizing the completion time of 
the last job in the schedule. In our formulation this can easily be expressedas L;;{t;o + p;oX;o). 

For this problem Maffioli and Sciomachen [26] have proposed a similar formulation in which, 
in actdition to the t;j. time variables YiJ and U;J are introduced to denote the departure time at 
node j and the time the delivery man bas to wait at node j, respectively, when i is visited before 
j. Variables U;j are only defined for arcs (i, j) satisfying e; + PiJ < ei· Now a feasible tour is 
a vector (x, t, u, y) satisfying (5.1), (5.2), (5.5)- (5.7), and 

n n 

L Yij = L Ijk 

i=O,i#J k=O,k#j 

Uij = Yij - PiJXij l;j (0 :5: i, j :5: n, i :f j, j :f 0, to1 = 0) 

e jXij :5: Yii :5: ljXiJ (0 :5: i, j :5: n, i :f j, j :f 0) 

(ei-PiJ l;)+xii :5: u;i 5 (eJ-Pii e;)+xiJ (Osi,jsn,i=fj,j=fO,eo=O) 

We will also consicter this model and the one with variables X;J and t; in our computational 
experiments. 

5.2 Valid inequalities 

In the sequel, let X and Xw denote the set of feasible solutions to DMP and DMP'IW, respec­
tively. That is, X= {(x, t): (x, t) satisfies (5.1)- (5.5)} and .xtw {(x, t): (x, t) satisfies 
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(5.1), (5.2), and (5.5) (5.7)}. In this section we derive valid inequalities for X and ~w· 
These inequalities contain both x- and t-variables, which may lead to a stronger conneetion 
between the two types of variables. 

5.2.1 Inequalities for the delivery man problem 

The inequalities presented in this section can be considered as a generalization of the inequal­
ities derived by Queyranne [34] for the single-machine scheduling problem with sequence­
independent processing times. We will briefiy discuss the latter, using the terminology of the 
DMP. Reeall that for every solution to this problem the departure time equals the arrival time 
at any node but the depot. 

Sequence-independentprocessing times correspond to travel times Pii that only depend on 
node i, i.e., p;j p;. Furthermore, po = 0. For the model that only involves departure times 
t;, iE V, Queyranne derived the following inequalities: 

L p;t; ::::: L PiPb (5.8) 
iES i,jES,i<j 

where Sis a nonempty subset of V. He proves that the set of all inequalities of the form (5 .8) 
defines the convexhullof the set of all feasible tours. 

The validity of (5.8) is easily shown. Let S = { :rt(l), ... , :rt(s)} and suppose without loss 
of generality that the nodesin S appear in the tour in the order :rt(l ), ... , :rt(s). Thus, t:r(iJ :::;; 

t:r(i+I) for 1 :::;; i < s. Then t:r(il :::=: 2:~~11 P:r<jl• and equality holcts if every node in Sis visited 
before any node in V\S. Hence, 

s s i-i 

L p;t; = L P:r(i)l;r(i) ::::: L L P:r(i)P:r(j) = L p;p Î• 
ieS i=l i=1 j=l i,jeS,i<j 

which establishes the validity of (5.8) for the model with variables t; only. 

Let us first indicate how the above inequalities can be transformed into valid inequalities for 
our model. The terms p;t, in (5.8) will be split into terms Piitu. At theright-hand side Pi will 
be replaced by I: j p;jXij. since a travel time Pij occurs only if Xij 1. Unfortunately, · this 
yields quadratic terms at the right-hand side. These have to be linearized, as we can only deal 
with linear inequalities. Bowever, we wil! first present the quadratic inequalities obtained in 
this way and show their validity. 

In the sequel, a tour is identified with a solution (x, t) E X, thus (x, t) satisfies the con­
straints (5.1)- (5.5). Furthermore, thefollowingnotation isused. Asusual, x(S) = Li,jEsXij 

and x(St, S2) = Lies
1
,jes

1 
Xij· If Sis a subset of V, then So =SU {0}. We abbreviate L#i t;j 

by t;. 
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Proposition 5.2.1 For all S ~ V, S =I= 0, 

L Pii1ij 2: 
i, jES 

is a valid (quadratic) inequality for X. 
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(5.9) 

PROOF. LetS= {.1r(l ), .7r(2), ... , .1r(s)} ~ V and define S = V\S. The validity of (5.9) is 
fust established for tours for which every nodeinS is visited before any node in S, i.e., t; ::: ti 

for all i E S, j E S. Let (x, t) be a tour satisfying this restrietion and assume that the elements 
of S are visited in the order .1r(l), .7r(2), ... , .1r(s). Thus Xn(i),n(i+Il = 1, 0::: i< s, where 
.1r(O) = 0. Since we assumed that (x, t) satisfies (5.3), we have 

i-I 

1n(l).n(2) P:rr(O),n(J), tn(i),n(i+l) = fn(i-l),:rr(i) + P:rr(i-l).n(i) = L Pn(j),n(j+l), 2 Si< S. 
j=Ü 

Obviously, ln(i),j = Xn(i),j = 0 for j =I= .1r(i + 1 ), 0 s i < s, and tn(s),j = X:rr(s),j = 0 for jE S. 
Hence, 

Thus (5.9) is satisfied at equality by all tours for which t1 :::ti for all iE S, jES holds. 

To establish the validity of (5.9) for all tours, we introduce the notion of a block S', which is 
defined as a maximal set of nodes of S that are visited successively in the tour, i.e., if iS'i > 
1, then x(S') iS'I 1, and x(S\S', S') x(S', S\S') 0. Obviously, if x(S) = ISI - k* 
for some k* 2: 1, then the set S is partitioned intO k* blocks Sk of size Sk 2: 1, k = 1, ... , k*. 
Denote the elementsof S" by Jr"(l), ... , .7r1f.(sk), and assume that the nodesin S are visited in 
the order .7rt (1), ... , .7rt (s1 ), .1r2 (1 ), ... , .1r2(s2), ... , .7l'k• (1 ), ... , .7l'k• (Sk• ). Since (x, t) sat-
isfies (5.3), we have 

2 S i S Sk - 1, 1 S k S k*. 

Furthermore, if node .1r1 (1) is visited fust in the tour, then Xo,n,(l) = 1 and t:rr1 (1) = po,:rr1(1)· 

Otherwise, po;Xo; = 0. Also notice that if i is the last node of a block, then the terms tii 
and xu in (5.9) are all equal to zero. Combining the above observations yields 

k-1 s1-l i-1 

lnk(i),:rrt(i+l) 2: PO,n1(1)XO,:rr1(1) + L L Pnl(j),nJ(j+1) + L Pnk(j),nk(j+1) (5.10) 
1=1 j=l j=1 
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for 1 ~i~ s"- 1, 1 ~ k ~ k*, and 

k' St-1 

L L P1rt(i),,r.(i+1)l1rt(i),Jrt(i+1) 

!:=1 i=1 

This concludes the proof ofthe validity of inequality (5.9) for all tours. 

(5.11) 

D 

If all travel times are strictly positive, then (5.9) is satisfied at equality by all tours (x, t) for 
which x(O, S) 1, x(S) =I SI-k* forsome k*;::: 1, and !Stl = 1 for 1 < k ~ k*. This can 

beseen as follows. lf Pi i > 0 for all i, j, then tJrtOl > t1ft-• (st-tl for 1 < k ~ k* and t1r,(1) ;::: 

L; po;Xo;. Hence, equality holds in (5.10), and, consequently, in (5.11) if x(O, S) = 1, k = 1, 
and 1 ~ i ~ s1 1. These restrictions are equivalent to the ones mentioned before. 

Observe that wben we set Pi i= p; in the above inequality, we do not get inequality (5.8), 
unless S = V. In order to obtain (5.8), we would need for every i E S the terms p;jlij and p;jXij 

for every jE V. However, these terms appear in (5.9) only for jES. 

As mentioned before, we can only deal with linear inequalities. In the sequel, we discuss a 
linearization of the rigbt-band side of (5.9) that yields valid linear inequalities for X. 

Let S ç; V and define r(S) to be thesetof all values that LiESo,JES PïiXij can attain, thus, 
r(S) = {LiESo,jES PiJXij: (x, t) is a tour}. Note that the assumption that the travel times are 
integral implies that allelementsof r(S) are integral. Let YI and Y2. Y1 < )12, be two consec­
utive elementsof r(S), i.e., every y E r(S) satisfies y ~ Y! or y;::: Y2· Then 

and, hence, 

( L PiJXij - Yl) ( L PiJXij - YÛ > 0 
iESo,]ES iESo,jES 

( L PiiXij- yi)( L PijXij 
iES0 ,jES iES0 ,jES 

::::: (Yl + Y2). L PijXij Yl Y2 
iES0 ,jES 

y2) + (YI + Y2) . L PijXij 
iES0 ,jES 

Y1Y2 

for every tour (x, t). Thus, substituting (YI + Y2) · LiESo,JcS PïJXiJ - YI Y2 for the quadratic 
term in the right-hand side of (5.9) yields a valid linear inequality of X. This proves the fol­
lowing statement. 
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Proposition 5.2.2 LetS s; V, S =f:. ~. Thenfor every pair (y1, yz) of consecutive elementsof 
f(S) 

is validfor X. 

L Pijlij :::: 
i, jeS 

1 
-Y:t Yz 
2 

(5.12) 

0 

In this way we obtain for every Sa set of valid linear inequalities. Notice that these inequalities 
differ in the coefficients of the x-variables and the constant term, but not in the coefficients 
of the t-variables. In a separation algorithm for (5.12) we only have to check violation for 
ar most one inequality yielded by S. For every triple ( Yt, yz, y3) of consecutive elementsof 
r(S), where Y1 < yz < y3, and y E JR, webave 

(yz + Y3)Y- Y2Y3 [(Yt + Yz)Y- Yt yz] = (y3- yJ)(y YÛ > 0 if and only if y > yz. 

Let (x, i) be a solution to the LP-relaxation of our formulation for DMP and let Ss; V. Define 

:9= Lieso,jes PiiXij· Then it is easily seen from theaboveobservation that (YJ + Yz)Y- YI yz is 
maximalfor Yt = max{y E r(S) I y :::5 y} and Y2 = min{y E f(S) I y > y}. Fromthisitfollows 
that when for a given subset S some inequalities of the form (5 .12) are violated by (i, i), the 
inequality with y1 and yz as defined above is the most violaled one. Thus, in a separation 
routine it suffices to consider at most one inequality for every subset S. 

However, we expect the inequalities (5.12) to be rather weak in general. Let us therefore 
consider the tours that satisfy (5.12) at equality. Clearly, such a tour also satisfies (5.9) at 
equality. If we restriet ourselves to the case that all travel times are strictly positive, then it was 
observed before that for every tour (x, t) satisfying (5.9) at equality there is a subset S' s; S 
such that x(S') = x(S) IS' I - 1 and x(O, S') 1. In genera], we cannot say much about the 

number of such tours for which Lieso.jes p;jXij bas a partienlar value, but we expect it to be 
small. Notice that even if there would exist a linear inequality that is satisfied at equality by 
all tours that satisfy (5.9) at equality, then this would not define a facet. This follows from the 
ob servation that every tour (x, t) satisfying (5.9) at equality also satisfies x(O, S) 1, hence 

x0; = 0 for every i f/. S. 
Furthermore, there will not be an efficient way in generalto determine f(S). In a separa­

tion routine that uses the ideas described previously, it will usually be too time-consuming to 
determine y1 max{y E f(S) I y:::; y} and Y2 min{y E f(S) I y > y}. Hence, checking 
vialation will have to be restricted to the inequality with YI = lY J and Y2 lY + 1 J. From the 
assumption that all travel times are integral, it is easily seen that these inequalities are always 
valid for X. However, if neither y nor y + 1 is an element of f(S), then there is no feasible 
solution that satisfies such an inequality at equality. 

A second class of valid linear inequalities can be derived in a similar way. In this case we 
start from the following class of quadratic inequalities. ForS s; V, define S = V\S and let 
Ts denote thesetof arcs (i, j) E V x V for which at most one of i and j is in S, i.e., Ts = 
(V x V)\(S x S). 
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Proposition 5.2.3 Let S Ç V, S # 0, and let Ts be as defined above. Then 

I: pijlij :::. 
(i,j)ETs 

~ " p2
·X·· (5.13) 2 L._. IJ lJ 

(i,j)ETs 

is a valid (quadratic) inequality for X. 

PROOF. We first restriet ourselves to tours in which no two nodesin S are visited successively 
before the last node of S. Let (x, t) be such a tour. Define S' ={jE SI x(S U {0}, j) = 1}. 
Furthermore, let S' = SUS'= {.rr(l ), ... , .rr(s')} and supposeXn(i),n(i+l) = 1, 1 :::; j:::; s'- 1. 
Note that .rr(s') E S when S' =F V. By definition of S', we have 

He nee, 

L Pijlij = L Pijlij 
i,jES' iES,jES\S1 

= L Pijlij + L Pijlij 
i,jES i,jES' 

L Pijlij = 0. 
iES\S',jES 

= L Pijlij + L Pijlij + L Pijlij = L p;jlij· 
i,jES iES,jES iES,jES (i,j)ETs 

(5.14) 

Clearly, (5 .14) and the above equality also hold with vaiables Xii instead of ti i· Furthermore, 
LiES' PojXoj = LiEV pojXOi· Combining these results with the observation that (5.9) is sat­
isfied at equality for the subset S', we get 

= & (LPojXoj+ -~,PiiXii)
2

- & ~P~ixoi- & .L,PfjXij 
jES l,JES jES I,JES 

= & (~PojXoj+ .L p;jXij)

2

- & ~P~iXoj & L PfiXij· 
JE V I,) ETs JE V i, jETs 

The proof that (5.13) is also valid for all other tours is analogous to the cortesponding proof 
in Proposition 5.2.1 and is thereforeomitted. D 

From the above proof it follows that (5.13) is satisfied at equality by all tours in which no two 
nodes in S are visited successively before the last node of S. Hence, unlike in the case of (5. 9 ), 
there exist tours (x, t) such that x(O, S) 1 which satisfy (5.13) at equality. 

To these quadratic inequalities we can apply a linearization that is similar to the one de­
scribed for (5.9). Therefore, we will not discuss it in detail. Define r(T,ç) { LjEV pojXoj + 
L(i,j)ETs PijXij: (x, t) EX}. 
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Proposition 5.2.4 LetS~ V, S =f: 0. Thenfor every pair (Yl, rz) of consecutive elementsof 
r(Ts) 

is validfor X. 0 

Fr om the proof of Proposition 5.2.3 it follows that (5 .13) is satisfied at equality by all tours in 
which notwonodes in S are visited successively befare the last node of S. Hence, unlike in 
the case of (5.9), there exist tours (x, t) such that x(O, S) = 1 which satisfy (5.13) at equality. 
In genera!, (5.13) will be satisfied at equality by more tours than (5.9). However, since r(Ts) 
will usually be larger than r(S), the linearization of (5.13) will yield a larger set of linear 
inequalities than the linearization of (5.9). We therefore do not expect inequalities (5.15) to 
be much stronger than inequalities (5.12). 

5.2.2 Inequalities for the delivery man problem with time windows 

Let us now consicter tours (x, t) that satisfy constraints (5.1 ), (5.2), and (5.5)- (5.7), thus, 
(x, t) E ~w· Constraint (5.6) yields that the departure time at node i may be strictly larger 
than the arrival time. In this case we say that waiting time occurs at node i. Note that waiting 
affects the left-hand side of the inequalities derived in the previous subsection, but not the 
right-hand side. Hence, inequalities (5.12) and (5.15) arealso valid for the problem with time 

windows. 
In the remainder of this section we show how time windows can be incorporated in the 

inequalities derived previously. We fust present two classes of valid quadratic inequalities 
for Xw that involve earliest and latest departure times, respectively. Detailed proofs of their 
validity are omitted, since these are simHar to the proof ofProposition 5.2.1. The inequalities 
will be linearized in the same way as the quadratic inequalities derived for the problem without 
time windows. 

The first class of inequalities can be considered as a generalization of (5.9). LetS be a set 
of nodes and let es = min;Es e;. Introduce an extra node 0' that has to be left at time es and 
for which P!Yi = p;o• = 0 for every i E V. This extra node can be considered as a depot for 
the set S. Let (x, t) be a tour satisfying x(S) s 1, where s = iSI. Subtracting es from 
all departure times yields a vector for which (5.9) holds, if 0 is replaced by 0'. Recalling that 
Po•; 0 for all i E V, this shows the validity of the following inequality for tours satisfying 

x(S) = s 1. 

Proposition 5.2.5 ·LetS~ V, S =f: 0, and defme es min; ES e;. Then 

"p .. t.. > ! (" P"X·)
2

- ! "P2·x-· + e•·" p .. x .. L IJ lJ - 2 L IJ IJ 2 L IJ IJ " L IJ IJ 
i,jES i,jES i,jES i,jES 

(5.16) 

is a valid (quadratic) inequality for ~w· 0 
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The validity of the above inequality for all other tourscan be easily proven, using similar argu­
mentsas in Proposition 5.2.1. From the above interpretab on it immediately follows that (5 .16) 
is satisfied at equality by all tours for which the departure time at the fust node of S equals es, 
x(S) = s- 1, and no waiting time occurs at any node of S, except possibly atthe one visited 
fust. Thus, in this case, trr(i),rr(i+IJ es+ I:~:; Prr(J),rr(J+IJ holds for i= I, ... , s 1, where 
it is assumed that S = {.n-(1 ), ... , .n-(s)} and the nodes are visited in this order. No te that such 
a tour might not exist. 

Until now, we discussed inequalities that involved a certain momentfrom which the tours were 
considered. For the second class of quadratic inequalities, tours will be considered until a 
moment ls, defined as the maximum latest departure time ofthe nodesin a setS. 

Proposition 5.2.6 Let S s; V, S i= 0, and define ls max;es l;. Then 

""p··t·· < ls"" p .. x··- ~ ("" p··x··)

2

- ~ ""p~.r·· L.." IJ IJ - L.." IJ IJ 2 L.." IJ IJ 2 L.." zriJ 
i,jeS i,jeS i,jeS i,jeS 

(5.17) 

is a valid (quadratic) inequality for .:\tw. 

PROOF. We show that equality holds for all tours for which the departure time at the last node 
of S equals ls, x(S) = s- 1, where s lSl, and no waiting time occurs at any node in S, 
except possibly in the one visitedfirst. As in the previous case, such a tour rnight not exist. Let 
S = {.n-(1 ), .n-(2), ... , .n-(s)} Ç V and suppose (x, t) satisfies Xn(i).n(i+IJ = 1, 1 ::;: j::;: s- 1. 
Furthermore, let t1r(s) = ls and 

tn(i),n(i+l) = ln(i+l)- Pn(i),n(i+1) 

for i = 1 , ... , s - 1. Then 

s-1 
ls- LPn(j),n(j+l) 

j=i 

(5.18) 

s-1 
= L Pn(i),n(i+l)ln(i),n(i+l) 

i= I 
~ Pn(i),rr(i+IJ (zs- Ï: PnUJ.n(j+IJ) 
1=1 }=I 

s-1 

= ls LPn(i),n(i+l) 
i=l 

1 (s-1 )2 1 s-1 2 
2 .t;Pn(i),rr(i+l) - 2 B Pn(i),n(i+l) 

= ls ""p .. x. ·- ~ ("" p· ·x··)
2 

- ~ ""p
2
.x· · L.." IJ IJ 2 L.." lJ lJ 2 L.." !] l]' 

i,jeS i,jeS i,jeS 

Notice that for a tour (X, t) such that Xn(i),n(i+IJ 1, 1 ::;: i < s, (5.18) is the latest possi­
bie departure time for every i E S. Hence, if tn(i-1),n(i) + Pn<i-l),n(i) < tn(i),n(i+1J forsome 
i, 2 < i < s, then the left-hand side of (5.17) is less than when equality holds. As the right­
hand si de is the same in both cases, this shows the validity of (5 .17) for all tours (x, t) with 
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x(S) s 1. For tours (x, t) satisfying x(S) < s- 1 validity can be proven in a similar way 
as in Proposition 5.2.1. D 

To (5.16) and (5.17) almost the same linearization as the one described for (5.9) can be applied. 

Define r(S) CL:ues PijXij: (x, t) E Xw}. 

Proposition 5.2.7 LetS 5; V, S # 0, and let es and Is be as dejined before. Thenfor every 
pair ( Yl, yz) of consecutive elementsof r( S) 

and 

L Putu 
i, jeS 

are validfor .:tw. 

es LPijXïj 
i, jES 

1 1 
:S Is L PïjXij- 2 L p;j(YJ + Y2 + Pii)x;i + 2 Yt Y2 

~jES ~jES 

(5.19) 

(5.20) 

D 

For the quadratic inequalities (5.16) and (5.17) we already notleed that the number oftours 
satisfying the inequality at equality wîll be small in general, hence, this will certainly hold for 
(5.19) and (5.20). 

5.3 Computational experiments 

The main purpose of our computational experimentsis to study the quality of the lower bounds 
for the DMP and DMP'IW given by the LP-relaxation and the impravement of these lower 
bounds by adding cuts from some specific classes. We compare these bounds for the three 
models discussed inSection 5.1, i.e., the model introduced inSection 5.1 with variables Xïj 

and tij (modell), the model proposed in [26] with variables X;j. tij, Yii• and U;j (model2), and 
the model with variables Xij and t; (model 3). The first subsection briefly describes the steps 
of our cutting plane procedure. Computational results are reported in Subsection 5.3.2. All 
experiments have been performed using MINTO (cf. Section 3.3). 

5.3.1 Implementation issues 

Before solving the initial LP one usually tries to reduce the size of the problem or improve 
the formulation by preprocessing techniques such as fixing variables and improving bounds. 
We restriet ourselves to fixing variables Xïj in the presence oftime windows. Since for all our 
instances the travel times Pij will satisfy the triangle inequality, variabie fixing can be done 

in the following way: if e; +Pij > I i (e; > min i I i• I; < maxi e j), then X;j (xo;, xw) is set 
to zero. After a variabie bas been fixed, it is eliminated from the formulation. Observe that 
Xïj = 0 implies t;j 0 (modell, 2) and Yii = 0, U;j = 0 (model2). Therefore, preprocessing 
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may considerably reduce the large number of variables in our models (e.g., 2n2 + n in model 
1), especially when the timewindowsare tight. 

It is a trivial observation that all inequalities derived for the TSP, such as subtour elimina­
tion constraints (SECs), 2-matching constraints, comb inequalities, etc. (cf. Grötschel and 
Padberg [17)), are also valid for the three models considered bere and, hence, can be used as 
cutting planes to improve the lower bounds obtained from the LP-relaxations of these formu­
lations. We will restriet ourselves to the actdition of SECs, which have the following form: 

x(S) s ISI 1, Sc{O, ... ,n}, 2::::;1Sisn. 

Our cutting plane procedure works as follows. First, the exact separation algorithm described 
by Padberg and Rinaldi [31] is applied to check whether the LP-solution satisfies all SECs. 
Violated SECs found in this way are added to the formulation and theLP is solved again. This 
step is repeated until the LP-solution satisfies all SECs. 

Next, weeheek whetherviolatedinequalities ofthe form(5.12) or (5.15) can beidentified. 
Notice that this step can only be applied to the formulations with variables tij, i.e., to model 1 
and 2. Our (not very sophisticated) separation algorithms are inspired by the O(nlogn) exact 

algorithm for inequalities (5.8), i.e., LieS p;t; ~ Li,jeS.i<j p;p i for S s;; V. Given an LP­
solution ~ the separation problem forthese inequalities amounts to checking whether (5.8) 
is violated forS= {:rr(l), ... , :rr(i)}, 1 ::::; i ::::; n, where the permutation n: V--+ V satisfies 

Î1r(i) ::::; ÎK(i+l) (cf. Queyranne [34]). 
Let us now give an outline of the separation algorithm for inequalities (5.12). Let (i, Î) 

be the LP-solution and let the permutation ;rr: V--+ V be such that Î1r(i) ::::; Î1r(i+l)· We check 
whether (i, Î) violates (5.12) forS= {:rr(l), ... , :rr(i)}, 1 $i ::::; n, YI l.9 J and yz = l.Y + lJ, 
where Y LieSo.ieS Pui;i (cf. Subsectien 5.2.1). This procedure is repeated a fixed number 
of times with a permulation ;rr that is obtained from the permutation ir in the previous iteration 
by putting ir(i) = :rr(i + 1) and ir(i + 1) :rr(i) for i E V', where V' is a randomly chosen 
subset of V of size at most I Vl/2. 

A sirnilar separation beuristic is used to identify violated inequalities (5.15). The beuris­
tics for (5.19) and (5.20) differ slightly from the one described above, but we will not discuss 
them since we never found violated inequalities of these types. This is possibly due tothefact 
that these separation algorithms were only called when neither violated SECsnor violated in­
equalities of type (5.12) or (5.15) were identified. 

5.3.2 Results 

We report results for twelve sets of five randomly generated instauces with n = 15. These 
sets were constructed from two sets of five matrices (p;j), which are denoted by grid and 
sched, respectively. For grid the 15 nodes and the depot are randoml y generated lattice points 
of a 20 x 20 grid The travel time Pii equals the Manhattan distance between i and j, i.e., 
Pii =la;- ail + lb; bil, where (a;, b;) denotes the pair of coordinates ofnode i. The sec-
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ond set of matrices, sched, results from the interpretation of the DMP as a machine scheduling 
problem with sequence-dependent processing times. Here Pi i can be considered as the sum of 
a fixed processing time Pi for job i and a changeover time Sii· The (integer) processing times 
Pi, i =f 0, and changeover times Sii> j =f 0, are randomly chosen from the interval [5, 15] and 
[0, 4], respectively. Furthermore, p0 0 and s;o 0. Observe that only in grid thematrices 
are symmetrie. However, in both sets the travel times PiJ satisfy the triangle inequality. Fur­
thermore, for fixed i the value of Pi i in the fust set is in the interval [1, 38], whereas in the 
second set this value only ranges from Pi to Pi+ 4. 

Each of these two sets of matrices gave rise to six sets of five instances by the actdition of 
time windows. These sets are denoted by grid..k. and sched..k., where k E {0, ... , 5}. 

• For k = 0 the instances are instances for the ordinary DMP, i.e., no time windows are 
involved. 

• For k = 1 the nodes are partitioned into three clusters of size five. Every node in cluster 
c, 1 :Sc :S 3, has a time window [(c- 1) Winst. cW;",.e], where Wgrid = 80 and Wsched = 
100. 

• For k = 2 the nodes are partitioned into five clusters of size three. Every node in cluster 

c, 1 ::; c::; 5, hasatimewindow [(c- 1) Winst. cW;"stl. where W8,;d = 50 and Wsched = 70. 

• The instances in grid..k. and sched..k., k E {3, 4, 5}, have the following form. First, a ran­
dom solution to the DMP is generated. The departure time at node i in this solution is 
denoted by ti. Then for each node an earliest departure time e; is randomly generated 
such that ti is in theinterval [e;, e; + Wk], where W3 = 60, W4 = 40, and Ws = 20. 

All instauces were tested with respect to the objective function 2::7=1 t;. 

Table 5.1 shows integrality gaps with respect to a lower bound z and the best known upper 
bound z to the value of the optima! solution to the DMPTW, where the integrality gap is defined 
as 100% x (Z- z) /z. The value z was found by a branch-and-cut algorithm in which in every 
node a feasible solution to the DMPTW was constructed from the LP-solution (max. 2000 
nodes). The last column ofTable S.llists the number ofproblems (out of five) for which the 
upper bound z was proven to be optima!. 

For all three models column g0 shows the average gap over five instances, where z is the 
value of the LP-relaxation of the model. The average gap after SECs have been added to the 
formulation is reported in column g1. Finally, for model1 and 2 column g2 shows the average 
gap after both SECs and inequalities (5.12) and (5.15) have been added. 

Since every solution to the LP-relaxation of model 2 yields a feasible solution to the LP­
relaxation of model I, the lower bounds obtained from the latter cannot exceed the lower 
bounds obtained from the fust. Table SJ shows that the bounds obtained from model2 can 
be considerably better than the bounds obtained from model1. The LP-relaxation of the third 
formulation yields bounds that are inferior to the corresponding bounds obtained from model 
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model1 mode12 model3 

in st 8o 8t g2 8o 81 82 go Kt opt 

grid_O 56.5 53.5 33.2 56.5 53.5 30.4 64.9 64.9 0 

grid_1 25.6 23.3 19.6 23.1 21.0 17.5 35.1 35.1 . 1 

grid..2 17.2 15.0 14.2 12.9 11.2 10.1 24.3 24.3 1 

grid..3 11.1 9.5 7.2 8.7 7.4 4.5 16.9 16.9 4 

gridA 6.1 5.4 5.3 3.3 2.8 2.7 8.4 8.4 4 

grid...5 6.3 2.8 2.3 4.8 2.5 1.9 10.2 9.9 5 

sched_O 81.0 81.0 5.9 81.0 81.0 5.0 97.1 97.1 0 

sched_l 27.3 26.3 7.0 26.1 25.0 6.1 39.2 39.2 0 

sched..2 11.9 11.0 5.8 10.4 9.6 3.6 21.5 21.5 2 

sched..3 16.6 16.0 4.8 16.3 15.6 3.5 32.0 32.0 2 

schedA 4.4 4.2 3.4 3.2 3.0 1.8 11.0 11.0 5 

sched...5 1.7 1.5 1.2 1.2 1.2 0.7 12.8 12.7 5 

Table 5.1: Quality of the lower bounds 

1 and which are rarely improved by the actdition of SECs. Also for model 1 and 2 we con­
etude that the reduction of the gap by the actdition of SECs is rather limited. This especially 
holds for the secoud set of problem instances. However, the addition of inequalities (5.12) 
aud (5.15) substautially improves the lower bounds forthese instauces. For the instauces of 
the sets grid.k, the gaps arealso reduced by the addition of inequalities (5.12) aud (5.15), but 
clearly not as much as for the instauces of the sets sched.k. 

For modell the instauces of grid.k and sched.k, k E (1, 2, 4}, were also tested with respect to 
the ordinary TSP objective, i.e., minimizing Li,j p;jXij· Table 5.2 shows the results for both 
objective functions. As in the previous table, g0 shows the average gap obtained from the LP­
relaxation ofmodell, g1 gives the average gap after SECs have been added, and g2 shows the 
average gap after the addition of SECs and inequalities (5.12) and (5.15). As far asthelast 
column is concerned, we mention that all instauces of the TSP'IW were solved to optimality 
by N. Ascheuer (personal communication). 

We also compare the effect of preprocessing as described in the previous section for the 
two problems. Column go reports the average gap for the value of the LP-rela.xation of model 
1 without preprocessing. We observe that variabie fixing hardly improves the value of the 
LP-relaxation with respect to the DMP objective. Only for the instauces with the smallest 
time windows (k = 5, not reported in Table 5.2 we found that preprocessing increased the 
value of the LP-relaxation by more thau 0.5%. With respect to the TSP objective,liowever, 
preprocessing actually leads to an improved lormulation for all instauces. 

Furthermore, we conetude from Table 5.2 that the ad dition of SECs may be much more ef-
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obj in st go 8o 81 82 opt 

grid_1 25.6 25.6 23.3 19.6 1 

Li'i grid.2 17.5 17.2 15.0 14.2 1 

grid_4 6.4 6.1 5.4 5.3 4 

grid_1 32.6 27.3 12.9 12.9 5 

Li,jPijXjj grid.2 36.3 27.8 18.1 18.1 5 

grid-4 41.2 22.8 11.6 11.6 5 

sched_1 27.3 27.3 26.3 7.0 0 

L:jri sched.2 11.9 11.9 11.0 5.8 2 

sched-4 4.5 4.4 4.2 3.4 5 

sched_1 2.1 1.6 1.4 1.4 5 

Li,jPijXij sched.2 3.2 2.4 2.3 2.3 5 

sched-4 4.7 3.0 2.8 2.8 5 

Table 5.2: Comparison of DMPTW and TSPTW 

fective for the TSP1W than for the DMP1W. However, this does not hold for the inequalities 
derived in Section 5.2. Although violated inequalities of this kind were identified for the in­
stances of the TSP1W, the value of the öbjective function was not improved by actding these 
inequalities. Apparently, the actdition of violated inequalities of the farm (5.12) and (5.15) 
hardly infiuences the value of the x-variables, but only changes the value of the t-variables. 

5.3.3 Further remarks 

The aim of our computational experiments was to get some idea of the quality of the lower 
bounds obtained from the LP-relaxation of the proposed formulation and the effectiveness of 
the new inequalities in reducing the gap. The results show that the actdition of the inequali­
ties derived in Section 5.2 can substantially imprave the lower bound. Nevertheless, further 
study is necessary to reach more solid conclusions about the possibility to solve the DMP and 
DMP1W efficiently by means ofpolyhedral methods and the value of our model in this ap­
proach. 

The performance of the cutting plane procedure will undoubtedly be improved when more 
extensive preprocessing is applied and other classes of inequalities are incorporated. 

In the preprocessing phase we only applied a simple rule to eliminate arcs. As mentioned 
before, the formulation can also be improved by reducing the time windows. This may also 
lead to a strengthening of inequalities (5.19) and (5.20). Timewindows can be tightened by 
applying the rules described by Desrosiers et al. [9]. 

Furthermore, the structure of the time windows may yield preeedences between nodes. 
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If node i bas to be visited before node j, then tbe following constraint can be added to our 
formulation of the DMPTW: 

(5.21) 

Balas et al. [3] discuss a strengtbening ofthe SECs that takes preeedences into account. These 
inequalities can also be added in order to obtain better lower bounds. 

Because of the time windows some patbs will not occur as a subpath in any feasible tour. 
For example, if 

k-1 

en-(1) + L Pn-(i),n-(i+l) > ln-(k) 
Î=l 

forsomesubset {1r(l), ... , 1r(k)} of V, then thepath (1r(l), ... , 1r(k)) willnotbecontained 
in any feasible tour. In this case 

k-1 

LXn-(i),n(i+l) S k- 2 

i=l 

is a valid inequality for all three models considered in our experiments. For obvious reasons, 
this is called an infeasible path inequality. Ascbeuer [2] discusses several generalizations of 
these inequalities. His brancb-and-cut code for tbc TSPTW is basedon a formulation that only 
involves x-variables. The time constraints are modeled implicitly by the infeasible path con­
straints. Ascbeuer concludes from bis computational experiments that tbis model is superior 
to the one with variables Xij and t; (model 3 in our experiments). However, this formulation 
can only be used with respect to the TSP objective. 
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Samenvatting 

Dit proefschrift is gebaseerd op onderzeekop het gebied van de combinatorische optimalise­
ring. Combinatorische optimaliseringsproblemen kunnen gekarakteriseerd worden door een 
eindige, maar mogelijk zeer grote, verzameling oplossingen waaruit de oplossing met de laag­
ste kosten moet worden gevonden. Het bekendste voorbeeld van een dergelijk probleem is 
ongetwijfeld het handelsreizigersprobleem, waarbij de kortste route langs een gegeven ver­
zameling steden moet worden gevonden. Veel van de in de combinatorische optimalisering 
bestudeerde problemen zijn geïnspireerd door praktische problemen uit uiteenlopende gebie­
den als produktieplanning, telecommunicatie, transport en VLSI-ontwerp. 

Een groot deel van de combinatorische optimaliseringsproblemen is NP-lastig, hetgeen 
betekent dat het probleemhoogstwaarschijnlijkniet efficiënt, d.w.z. in polynomiale tijd, op te 
lossen is. Hoewel er daarom meestal gebruik wordt gemaakt van algoritmen die binnen een re­
delijke tijd een oplossing van acceptabele kwaliteit geven, hebben methoden die gegarandeerd 
de optimale oplossing vinden inmiddels ook hun waarde bewezen. Voor een groot aantal pro­
blemen zijn goede resultaten geboekt met optimaliseringsalgoritmen waarbij gebruik wordt 
gemaakt van polyhedrale technieken. Hierbij wordt een probleem geformuleerd als een (ge­
mengd) geheeltallig lineair programmeringsprobleemen vervolgens opgelost met een branch­
and-cut algoritme. Dit is een op lineaire programmering (LP) gebaseerd branch-and-bound 
algoritme dat is uitgebreid met een zogenaamde snedemethode. Hiermee worden toegelaten 
ongelijkheden, d.w.z. ongelijkheden waaraan alle oplossingen van het oorspronkelijke pro­
bleem voldoen, aan het LP-probleem toegevoegd. Het doel hiervan is het verkrijgen van een 
betere LP-formulering die hopelijk zalleiden tot een kleinere zoekboom. 

De bestudering van de polyhedrale struktuur van een probleem leidt meestal tot één of 
meer klassen toegelaten ongelijkheden. We zijn hierbij met name geïnteresseerd in facet­
definiërende ongelijkheden. Dit zijn de ongelijkheden die noodzakelijk zijn in een volledige 
lineaire beschrijving van de verzameling toegelaten oplossingen van het probleem. Het toe­
voegen van alle gevonden ongelijkheden aan de initiële formulering levert meestal een LP­
probleem op dat te groot is om rechtstreeks te kunnen worden opgelost. We beginnen daarom 
met een LP-probleem met een beperkt aantal ongelijkheden en lossen dit op. Indien de LP­
oplossing ook een oplossing voor het oorspronkelijke probleem is, dan is deze oplossing op­
timaal en is het oorspronkelijke probleem dus opgelost. Zo niet, dan wordt geprobeerd één of 
meer ongelijkheden te vinden waaraan de LP-oplossing niet voldoet. Als dit lukt, dan wor­
den de gevonden ongelijkheden aan het LP-probleem toegevoegd en wordt dit probleem op­
nieuw opgelost. Omdat de oude LP-oplossing niet meer aan de huidige LP-formulering vol­
doet, wordt een nieuwe oplossing gevonden die minstens zo goed is als de vorige. De hierbo-
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ven beschreven stappen kunnen nu worden herhaald. Als er geen geschonden ongelijkheden 
gevonden worden, dan kan men branch-and-bound toepassen om een optimale oplossing te 
vinden. Het vinden van geschonden ongelijkheden wordt separatie genoemd. Efficiënte se­
paratiemethoden zijn van groot belang voor de kwaliteit van een branch-and-cut algoritme. 
Daarnaast dient bij de ontwikkeling van een dergelijke methode ook aandacht te worden be­
steed aan diverse andere aspecten, zoals het vertakking.sschema en de zoekstrategie. 

Een groot deel van dit proefschrift is gewijd aan de ontwikkeling van een branch-and-cut al­
goritme voor het discrete serie-grootte probleem (DSP). In dit produktieplanningsprobleem 
beschouwen we een machine waarmee verschillende goederen geproduceerd kunnen worden. 
De planningshorizon bestaat uit een aantal korte perioden waarin ten hoogste één goed gepro­
duceerd kan worden. Karakteristiek voor het discrete serie-grootte probleem is de 'alles-of­
niets' produktie: als er geproduceerd wordt in een periode, dan wordt de machinecapaciteit 
volledig benut. Gegeven is in welke perioden en in welke hoeveelheden de goederen afge­
leverd moeten worden. Er dient nu een produktieschema ontworpen te worden waarmee aan 
deze vraag voldaan wordt en waarvan de kosten zo laag mogelijk zijn. De belangrijkste kos­
ten zijn de voorraadkosten van de goederen die niet direct afgeleverd kunnen worden en de 
opstartkosten. Dit zijn de kosten die in rekening worden gebracht wanneer er een nieuwe pro­
duktieserie wordt gestart, bijvoorbeeld voor het instellen van de machine voor het te produce­
ren goed. We nemen aan dat de opstartkosten volgorde-onafhankelijk zijn, hetgeen betekent 
dat de kosten alleen afhangen van het goed waarvoor wordt opgestart. 

Het vinden van een optimaal produktieschema komt in feite neer op het vinden van een 
optimaal schema voor ieder goed afzonderlijk met daarbij als extra eis dat de verschillende 
schema's elkaar niet mogen overlappen. In hoofdstuk2 bestuderen we daarom de polyhedrale 
struktuur van het discrete serie-grootte waarin slechts één goed wordt geproduceerd ( 1-DSP). 
Dit probleem is weliswaar polynomiaal oplosbaar, maar de verkregen ongelijkheden kunnen 
gebruikt worden in een snedemethode voor het probleem met meerdere goederen, dat NP­
lastig is. Er worden verschillende klassen facet-defmiërende ongelijkheden afgeleid. Voor 
twee klassen worden efficiënte separatie-algoritmen ontwikkeld. Verder wordt aangetoond 
dat het toevoegen van ongelijkheden uit de doorsnede van deze klassen aan de initiële LP­
formulering volstaat om het 1-DSP op te lossen wanneer de kosten van het Wagner-Whitin 
type zijn. Dit is een veel gebruikte kostenstruktuur in serie-grootte problemen waarvoor het 
niet optimaal is om een nieuwe produktieserie te starten wanneer er nog uit voorraad geleverd 
kan worden. 

In hoofdstuk 3 worden eerst enkele resultaten met betrekking tot de complexiteit van het 
DSP gegeven. Vervolgens worden toegelaten ongelijkheden voor het probleem met meerdere 
goederen afgeleid. Tenslotte wordt de ontwikkeling van een branch-and-cutalgoritme bespro­
ken en wordt verslag gedaan van uitgebreide rekenexperimenten. 

In hoofdstuk 4 wordt het DSP met volgorde-onafhankelijke opstarttijden bestudeerd. Bij 
dit probleem legt het opstarten van de machine de produktie gedurendeeen aantal perioden stil. 
We modelleren het probleem met opstarttijden zodanig dat toegelaten ongelijkheden voor het 
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gewone DSP eenvoudig kunnen worden omgezet in toegelaten ongelijkbeden voor het pro­
bleem met opstarttijden. Verder wordt voor het 1-DSP met opstarttijden een multicommodity 
flow formulering besproken. Hiervoor wordt een volledige lineaire beschrijving gegeven. 

Het laatste hoofdstuk staat enigszins los van de voorgaande hoofdstukken. Het geeft een 
eerste aanzet tot een polyhedrale aanpak van het delivery man probleem. Dit is een variant 
van het handelsreizigersprobleem waarbij de totale wachttijd van de klanten geminimaliseerd 
moet worden. Er wordt een formulering gegeven waarmee ook tijdvensters eenvoudig gemo­
delleerd kunnen worden. Zowel voor het gewone delivery man probleem als voor het pro­
bleem met tijdvensters worden extra klassen toegelaten ongelijkheden afgeleid en rekenresul­
taten gepresenteerd. 
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I 

Beschouw de formulering voor het 1-item DLSP uit hoofdstuk 2 van dit proef­
schrift. Zij ax + {3y ;:::: y een facet-definiërende reguliere-blokongelijkheid met 
PB= 1 voor iederblokBen mett* = max{t: a 1 + {31 > 0} zodanigdatd1'+l,T;:::: 1 
(zie paragraaf 2.2.3 voor definities). Definieer î max{t : ar = 1} en laat si de 
jdevraagperiodenat* zijn. Zij verder (i, y) demethetalgoritmeFILLBLOCKS 
bepaalde oplossing. Als it8 = 1 voor ieder blok B, als i 1 = 0 voor ten minste één 
periode met ar = 1 en als s1 =f:. î + 1, dan definieert de ongelijkheid 

ax + f3y + 2)xi+ i+ Yî+j+l,s) 2:: Y +I 11 
jE/ 

voor iedere J s;; {1, ... , dr'+l,T} een facet. 

11 

In [1] en [2] worden gemengd geheeltallige programmeringsformuleringen voor 
het handelsreizigersprobleemmet tijdvensters voorgesteld waarbinnen verschil­
lende typen doelstellingsfunkties gehanteerd kunnen worden. De effectiviteit van 
sommige typen sneden blijkt sterk af te hangen van het type doelstellingsfunk­
tie. Bij de ontwikkeling van goede snedemethoden gebaseerd op een dergelijke 
formulering zal dan ook informatie over de geldende doelstellingsfunktie benut 
moeten worden. 

[1] A Langevin et al., A two-commodity flow tormulation for the traveling salesman 

and the makespan problerns with time windows, Networks 23 (1993), 631-640. 

[2] Hoofdstuk 5 van dit proefschrift. 

lil 

Zij A de verbindingsmatrix van de Higman-Sims graaf, de unieke sterk reguliere 
graaf met parameters ( 100, 22, 0, 6). Zij I de 100 x 1 GO-eenheidsmatrix en J de 
100 x 100-matrix waarvan alle elementen gelijk aan 1 zijn. Voor iedere b EZ is 
de rang van A + b J over F2 gelijk aan 22 en de rang van A 21 + b J over lf5 

gelijk aan 23. 

[3] A.E. Brouwer en C.A. van Eijl, On the p-rank of the adjacency matrices of strongly 

regular graphs, Journat of Algebraic Combinatones 1 (1992), 329-346. 



IV 

Beschouw een voetbalpool waarin voor n wedstrijden moet worden voorspeld 
wat de uitslag wordt: winst voor de thuisspelende ploeg, winst voor de uitspe­
lende ploeg of gelijkspel. Wanneer men niet meer dan één uitslag verkeerd voor­
speld heeft, ontvangt men een prijs. Als M(n} het minimum aantal voorspellin­
gen is dat men moet inleveren om zeker te zijn van een prijs, dan geldt: M(7) ::=: 
153, M(8} 2:::399, M(9) 2::: 1062en M(11) 2:::7826. 

[4] M. Struik, Covering radius problems, Ongepubliceerd manuscript. 

V 

Om bij de lezer geen ijdele hoop op de bruikbaarheid van een referentie te wek­
ken, dient men de mededeling 'personal communication' niet in de referentielijst 
maar in de tekst zelf op te nemen. 

VI 

Volgens [5] komt het woord 'logistiek' weliswaar van het Griekse 'logistikos' 
(bedreven in het rekenen) maar heeft het in zijn huidige betekenis weinig van 
doen met rekenkunst. Gezien het feit dat de 'logistika' vooral de praktische re­
kenkunst betrof ([6]) en gezien het belang van kwantitatieve modellen en metho­
den in de moderne logistiek, is deze bewering onjuist. 

[5] The new encyclopaedia Brittanica, Volume 29, 15th edition, 1994. 

[6] D.J. Struik, Geschiedenis van de wiskunde, Het Spectrum, 1990. 

VII 

Een optimale permutatie van de getallen 0 tot en met 9 met betrekking tot de kos­
tenfunktie die Paul Clark in zijn theatervoorstelling 'Bohemian from 9 to 5' in­
troduceerde, is 

De waarde van deze permutatie bedraagt 16. 



VIII 

Teveel openheid wekt afgrijzen op. Voorbeelden hiervan kunnen in ruime mate 
op de televisie gevonden worden en op de website http://www.cam-orl.co.uklcgi­

binlab. 

IX 

Telefoontoestellen op perrons zouden zodanig moeten worden afgesteld dat ge­
sprekken niet langer dan 45 seconden kunnen duren. 

x 

De meeste elektrische apparaten worden aangeschaft om energie te besparen. 




